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Abstract

Nowadays, the scientific community envisions nanoscale electronic devices working at Ter-
aHertz (THz) frequencies. For such frequencies, the displacement current—the temporal
variation of the electric flux—has a role as relevant as the particle current. In addition,
for such dimensions, typical semi-classical simulation tools have to be substituted by
quantum ones. However, the correct modelling of the electrical displacement current in
quantum scenarios implies important fundamental and practical challenges. The first
issue is the quantum measurement problem, which requires a multi-time measurement
process to extract information of the open system at THz frequencies. The second chal-
lenge is related with the many-body problem, which implies that the Coulomb interaction
among all particles needs to be taken into account to properly get the time-dependent
electric flux. In this dissertation, it has been presented a practical solution on both
problems based on Bohmian mechanics–an explanation of quantum phenomena based
on particles moving choreographed by the wave function. In particular, the conditional
wave function, the Bohmian definition of a wave function of an open system, has been
used to provide a practical solution to both problems. The mentioned Bohmian solution
for the computation of the displacement current in quantum devices has been included
into the BITLLES simulator. The correct modelling of the quantum dissipation inside
the open system and its spatial boundary conditions with the conditional wave function
have been discussed. The same problems have many difficulties when trying to be tackled
with orthodox theories.

As practical applications, the high frequency behaviors of graphene-based nanode-
vices are investigated with special attention to the proper computation of particle and
displacement currents. From such computations, it is argued that the definition of the
intrinsic cut off frequency (fT ) of nanodevices based on the current gain equals to one (0
dB) needs to be carefully revisited. In particular, a condition for the validity of the quasi-
static estimation of fT is established in terms of the temporal variations of the electric
charge and electric flux. For electron devices working at THz frequencies, the quasi-static
estimation becomes inaccurate and prediction models beyond the quasi-static approxi-
mation are required. A proposal based on the time-dependent simulation of the intrinsic
delay time (including particle and displacement currents) following the Bohmian-type
ideas mentioned above has been presented.
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Sobre la corriente de desplazamiento en nanodisposi-

tivos cuánticos de THz: aplicación a la simulación de

transistores de grafeno

Resumen: En la actualidad, la comunidad cient́ıfica está trabajando en dispositivos
electrónicos en la nanoscala para frecuencias de TeraHertzios (THz). Para tales frecuen-
cias, la corriente de desplazamiento -la variación temporal del flujo eléctrico- tiene un
papel tan relevante como la corriente de la part́ıcula. Además, para tales dimensiones,
las t́ıpicas herramientas de simulación semi-clásicas tienen que ser sustituidas por otras
cuánticas. Sin embargo, el modelado correcto de la corriente de desplazamiento eléctrico
en los escenarios cuánticos implica importantes desaf́ıos fundamentales y prácticos. El
primer problema es el problema de la medición cuántica que requiere un proceso de
medición multi-tiempo para extraer información del sistema abierto en las frecuencias
THz. La segunda cuestión está relacionada con el problema de muchos cuerpos, lo que
implica que la interacción de Coulomb entre todas las part́ıculas debe tenerse en cuenta
para obtener correctamente el flujo eléctrico dependiente del tiempo. En esta tesis, se
presenta una solución práctica para ambos problemas basados en la mecánica Bohmi-
ana, una explicación de los fenómenos cuánticos en términos de part́ıculas moviéndose
coreografiadas por una función de onda. En particular, se aprovecha la función de onda
condicional, la definición Bohmiana de una función de onda de un sistema abierto, para
proporcionar una solución práctica a ambos problemas. La solución Bohmiana men-
cionada para el cálculo de la corriente de desplazamiento en dispositivos cuánticos se ha
incluido en el simulador BITLLES. También se discute sobre el correcto modelado de la
disipación cuántica dentro del sistema abierto y sus condiciones de contorno espaciales
con la función de onda condicional. Los mismos problemas tienen muchas dificultades al
intentar abordarse con teoŕıas ortodoxas.

Como aplicaciones prácticas, se investigan los comportamientos de alta frecuencia de
los nanodispositivos a base de grafeno con especial atención al cálculo de las corrientes
de part́ıculas y desplazamiento. A partir de estos cálculos, se argumenta que la definición
de la frecuencia de corte intŕınseca (fT ) de los nanodispositivos basada en la ganancia
de corriente igual a uno (0 dB) necesita ser revisada cuidadosamente. En particular, se
establece una condición para la validez de la estimación cuasi estática de fT en términos de
las variaciones temporales de la carga eléctrica y del flujo eléctrico. Para los dispositivos
electrónicos que trabajan en las frecuencias THz, la estimación cuasi-estática se vuelve
inexacta y se requieren modelos de predicción más allá de esta aproximación. Se ha
presentado una propuesta basada en la simulación en función del tiempo del retardo
intŕınseco que sufren las señales (incluyendo corrientes de part́ıculas y desplazamiento)
basada en las ideas mencionadas anteriormente.

ii



This dissertation is dedicated to my beloved little B.
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Chapter 1

Fundamental Issues in THz

Quantum Transport

1.1 Historical Development of Electronics

The electronics and their usages have changed our life style dramatically since the be-

ginning of the 20th century when the electronics took birth. Over one century passed, a

huge number of electronic devices are used to simplify our life and the electronics become

so important that it is impossible for people to spend even a few hours without them.

In this Chapter 1, firstly, I will give some important milestones of the evolution of elec-

tronics. In order to achieve higher performance, the dimensions of electronic devices are

becoming smaller and smaller. As a consequence, the understanding of electron transport

in such devices is changing from classical (or semiclassical) theories into quantum ones.

Therefore, after the introductory history, I will discuss some fundamental issues in the

computation of quantum electron transport, which also plays an important role in the

continuous and rapid development of electronics.

The electronics took birth in 1904 when John Ambrose invented a two-element vac-

uum tube—the diode, where electric current can flow in one direction through the diode

between two electrodes. Electronics became a more versatile discipline in 1906 when Lee

Deforest invented the three-element tube called a vacuum triode for use as an electronic

amplifier in radio communications. In the triode, an additional electrode between the

cathode and anode makes the device able to amplify signals for all frequencies. The tubes

dominated the field of electronics at that time. However, the tubes have major limita-

tions: its macroscopic size, its reliability and they consumed electrical power even when

not be used. In 1947, William Shockley, John Bardeen and Walter Brattain fabricated the

first solid-state transistor, which made them awarded the Nobel Prize in Physics in 1956.

The Silicon transistors were developed in 1954. In 1958, Jack Kilby conceived the concept

of building an entire electronic circuit on a single silicon substrate. Kilby was awarded

1



2 Chapter1. Fundamental Issues in THz Quantum Transport

Figure 1.1.1: Evolution of the metal-oxide-semiconductor field-effect transistor (MOS-
FET) gate length and the number of transistors integrated on a single microprocessor
chip. The numbers above the gate length curve indicate the processor supply voltage
VDD. Note the continuous decrease of VDD in the past and the required continuation of
this trend in the future. The ITRS targets refer to MOSFETs for high-performance logic
as specified in the 2013 ITRS edition [1].

the Nobel Prize in Physics in 2000 for the invention of the integrated circuit. The field-

effect transistors (FETs) become the backbone of today’s electronics. Since then, the size

of the transistors was reduced drastically, and the number of the integrated components

on a chip was doubled every year. Based on such an empirical evidence, Gorden Moore

stated that the number of components per integrated circuit would double in performance

every two years [2]. At this point, it is important to mention the roadmap published for

the semiconductor industry, which is named the International Technology Roadmap for

Semiconductors (ITRS). This roadmap is probably the most important blueprint in the

electronic industry, and it presents an industry-wide consensus on the best estimate of the

research and developments needed in a 15-year horizon. The core progress in the first

versions of the ITRS was the geometrical scaling and equivalent scaling (i.e., strained

silicon, multigate transistors, high-K/metal gate, use of non-silicon semiconductors in

general) of semiconductor logic and memory devices, which successfully supported the

regularly double growth of the density of integrated circuits according to the Moore’s

Law. According to the ITRS roadmap, transistors with gate lengths below 5 nm will

be required in 2028 [1]. At this stage of scaling, it becomes more difficult to achieve

the needed device performance due to the problems of short-channel effects, parasitics

effects, etc.[3]. In order to keep on with Moore’s Law, new device geometries and new

materials are required [1, 3–5]. Two-dimensional (2D) materials, i.e., graphene and other
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2D materials like transition metal dichalcogenides (TMDs), Bi2Se3 and Bi2Te3, provide

ultimate thin ‘channel’ transistors and the opportunity for new device concepts [5, 6].

Hereafter, I will mainly concentrate on the devices based on 2D materials.

1.1.1 Graphene and other 2DMs based FETs

Although many new materials have been proposed as candidates to substitute the old-

fashioned Silicon FETs, a recent article concluded that : “many such saviours have come

and gone, yet the reliable silicon CMOS continues to be scaled and to reach even higher

performance levels ” [7]. Among these new materials, graphene was viewed by the scien-

tific community as a new material with a great potential impact in our society, in general,

and in electronics, in particular [4, 8]. Graphene is a single 2D layer of carbon atoms

with a hexagonal lattice [8]. It has a linear energy-momentum dispersion (which provides

massless Dirac fermions), an extraordinary elasticity (allowing flexible electronics) and

extremely large electrical conductivity (with electron velocities of 106 m/s) [9]. However,

graphene has a zero bandgap implying a small on-off ratio for graphene digital FETs.

It is important to notice that reliable techniques to create a sizeable gap degrade a lot

the properties mentioned above. Therefore, it seems that successful graphene logic ap-

plications are not currently feasible. On the contrary, the large conductivity of graphene

is very welcome for (small-signal) radio frequency applications (such as amplifiers or

mixers) [4, 10, 11] which are not required to switch off.

Although the best performance of nowaday radio-frequency graphene transistors is

still quite below the one obtained from Silicon and III-V HEMTs [4], significant progress

has been made since the experimental demonstration of the first GigaHertz graphene

transistors in 2008 [12]. Most notably, a research group reported graphene FETs breaking

the 100-GHz cut-off frequency (fT ) mark in 2010 [13]. Furthermore, only a few months

later, researchers demonstrated [14] a graphene FET that has a fT of 300 GHz. In

2012, graphene FETs with cut-off frequency exceeding 400 GHz has been reported [15].

Undoubtedly, graphene FETs consist a very young class of devices compared to the

traditional FETs. After the enthusiastic days of research, the electronic community

realizes that the graphene would not be able to fulfill these high expectations owing

to its zero bandgap since a reasonable bandgap is mandatory needed for proper device

operation [3].

In 2011, a paper on the fabrication of single-layer MoS2 gave new momentum to the

research on 2D materials [16]. The ITRS has mentioned other 2DMs as candidates for

future electronics since 2011 [17]. In fact, already in 2005, the Novoselov-Geim group

reported the preparation of single-layer materials (for instance, MoS2, MoSe2, MoTe2

and WS2) other than graphene [18]. The experimental MoS2 FETs show reasonable

mobilities and excellent switch-off [16, 19]. On the theoretical work, simulation results
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qualitatively confirm the experimental results and predict very high ON-OFF ratios with

monolayer dichalcogenide channels [20, 21].

1.1.2 Physical theories for electron devices

Generally, the success of the rapid evolution of electronics has been supported by sophis-

ticated physical theories to make prediction on the characteristics of new electron devices.

The modeling of electron transport in electronic devices has become a mandatory tool

to characterize these devices before the fabrication. During the last decades, due to the

increase of the complexity and cost of the technological processes necessary to fabricated

device prototypes, predictions of their functionality allow to rule out certain designs,

which lead to the research and development cost reduction amount to 35% and to in-

crease up to 40% in the near future [22]. Inspiring by these compelling demands from the

electronic community, an uncountable number of electron device approaches, with more

or less physical complexities, from simple circuit-based simulations till many-body quan-

tum approaches, have been developed by the scientific researchers in last years. Most of

them (specially those involving quantum features like tunneling or energy quantization)

are mainly focus on DC simulations.

The ITRS reports that electron devices are entering into the nanoscale era with

working frequencies of few TeraHertzs (THz). As indicated above, the predictions of the

high-frequency features of nanoelectronic devices are based on quasi-static approxima-

tions, where the time derivative of the electric fields is neglected. Undoubtedly, there

are many successful examples in the literature on how quasi-static approaches are still

capable of getting reliable THz information of quantum devices. Among many others,

we mentioned those based on time-independent solutions of the Non-Equilibrium Green’s

function framework, for example the Klimeck’s group with the NEMO simulator [23] or

Fiori and Iannaccone’s group with the NANOTCAD ViDES simulator [6]. In this regard,

the ab initio (time-independent ground-state) density functional theory (DFT) has also

been successfully used in the literatures for such graphene THz predictions [24, 25]. The

strategy of all these time-independent (steady-state) quantum simulators for predicting,

for example, the cut-off frequency is, first, simulating the dependence of DC currents and

charges on (gate voltages), then, calculating transconductances and capacitances from

such simulations. Finally, they plug these values of transconductances and capacitances

into analytical expressions of the cut-off frequency (usually obtained from a small-signal

circuit model). In any case, Such procedure has been demonstrated to be very success-

ful, providing very-valuable physical insight of the high frequency quantum problems

while greatly reducing the computational burden associated to explicit time-dependent

simulations [5, 5, 26].

An important part of this dissertation will concentrate on discussing the origin of
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the potential limitations of these quasi-static quantum electron transport models. Due

to its enormous physical complexity, approximations are required in the computation of

electron transport. Some fundamental problems that requires approximations are, for

example, the many-body problem and quantum measurement problem. After this brief

introduction of the electronics, in the following, I will explicitly discussed the fundamental

problems appear in the computation of quantum transport at THz frequencies.

1.2 Displacement Current and Electronics

The displacement current is somehow ignored in the quantum modeling of electron trans-

port with the DC approximation. In this section, I will discuss the relevance of the

displacement current in quantum transport simulation.

1.2.1 Particle Current Versus Displacement Current

Historically, the first scientists who realized on the relevance of the displacement current

in electronics were S. Ramo and W. Shockley. In 1938, Ramo wrote in his paper that

[27]: “in designing devices in which the electron transit time is relatively long, it is

necessary to discard the low-frequency concept that the instantaneous current computed

on a particular surface is proportional to the number of electrons crossed this surface per

second (i.e., the particle current, which is also named as the conduction current), and

a proper concept of current must also consider the instantaneous change of electrostatic

flus lines which end on the surface (i.e., the displacement current)”. At the same time,

Shockley also mentioned this issues [28]: “in the scenario that the electron transit time

is of comparable duration with the periods of alternating circuits, it is consequently of

interest to know the instantaneous value of the current induced by the moving charge

over its entire time of transit”. Their work relating microscopic electron dynamics with

macroscopic displacement currents is known now as the Ramo-Shockley theorem. This

theorem was originally proposed for vacuum tubes, which was the state-of-the-art device

at that time. Since then, its extension to semiconductors and any conducting medium has

been performed [29–31]. Indeed, it is of great importance in the semiclassical simulation

of electron devices beyond DC behaviour, i.e., for investigating AC, transient and noise

characteristics.

At this point, let us give a simple theoretical estimation on why we pay attention to

the displacement current. A direct expression of the typical drift (particle) current Ip(t)

on surface S is:

Ip(t) =

∫
S

~Jc(~r, t) · d~s ≈ nq~vAS (1.1)

where ~Jc(~r, t) is the particle current density, n is the number of electrons crossed the
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Figure 1.2.1: Frequency dependence of the particle and displacement currents.

surface S per unit volume, q is the electron charge with sign, ~v is the drift velocity, AS

is the cross-sectional area of surface S. The particle current (i.e. the flux of electrons

on a particular surface) is basically related to the injection rate of electrons from the

contact and its order of magnitude is not modified when the input signal frequency f of

the device is increased. Assuming that n ≈ 1020 m−3, q ≈ 1.6 × 10−19 C, ~v = 105 m/s

and AS = 10−12 m2, we get a typical estimation of the particle current on the order of

micro Amperes (A), Ip(t) ≈ 10−6 A, independent of the frequency. On the other hand,

the direct expression of the displacement current Id(t) on surface S is:

Id(t) =

∫
S

ε(~r)
d ~E(~r, t)

dt
· d~s (1.2)

where ε(~r) is the electric permittivity, ~E(~r, t) is the electric field. Imaging that the

electric permittivity is ε(~r) ≈ 10−12 F/m, the electric field is ~E(~r, t) ≈ E0 cos(ωt) being

E0 ≈ 106 V/m a constant and ω = 2πf the angular frequency, then the displacement

current expression is rewritten as:

Id(t) ≈ AS · ε(~r)
d ~E(~r, t)

dt
≈ 2πASε(~r)E0f ≈ 10−18f (1.3)

which is linearly dependent on the input signal frequency f . The simple estimation of the

frequency-dependent particle and displacement currents are plotted in figure 1.2.1. At

very low frequencies, only the particle current is relevant, while the displacement current

becomes negligible in front of the particle current. This is the typical working region

of electronics. On the contrary, at frequencies high enough, the displacement current

(proportional to the frequency growth) becomes the only relevant current. It can be
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orders of magnitude larger than the particle current. This is the typical working scenario

for applications based on electromagnetics. The two lines cross at a frequency around

f = 1 THz, at which the particle current equals the displacement one. Certainly, in

the frontier between typical electronics and electromagnetism there is a spectrum where

both displacement and particle currents become relevant. We argue that nanoelectronics

is reaching this new area where one also envisions new concepts of devices, between

electronics and electromagnetism.

1.2.2 Equivalence between Computed and Measured Currents

Next, let us discuss a general relationship between the current measured in a laboratory

and the current predicted. It is common to compute the electrical current on the (simu-

lated) surface SD (SD=S1 at the device contact) of the active region in figure 1.2.2, while

a real measurement is performed on the (non-simulated) surface SA in the ammeter.

Then, the question appears: Does the current simulated on SD equals to the current on

SA measured by the ammeter? In fact, these currents will only be identical if we consider

the total current IT (t) = Ip(t) + Id(t). The justification comes from Maxwell equations.

Let us start from the current conservation law:

~∇ ·~jc(~r, t) +
∂ρ(~r, t)

∂t
= 0 (1.4)

where ρ is the free electric charge density in the wire volume Λ enclosed by a larger

surface S = {SD, SA, SL}. As we have discussed previously, the first term on the left

hand side of equation (1.4) is the particle current density, the ρ in the second term can

be related to the electric field by using the Gauss’s law, which is:

~∇
(
ε(~r) ~E(~r, t)

)
= ρ(~r, t) (1.5)

Rewriting the ρ in equation (1.4) with the expression (1.5), we obtain:

~∇ ·~jc(~r, t) +
∂

∂t
~∇
(
ε(~r) ~E(~r, t)

)
= ~∇ ·~jc(~r, t) + ~∇ε(~r)∂

~E(~r, t)

∂t

= ~∇ ·
(
~jc(~r, t) + ε(~r)

∂ ~E(~r, t)

∂t

)
= 0 (1.6)

From the equation (1.6), we can define the total current density ~JT (~r, t), which is a

combination of the particle current density ~Jc(~r, t) and the displacement current density
~Jd(~r, t), as:

~JT (~r, t) = ~Jc(~r, t) + ~Jd(~r, t) = ~jc(~r, t) + ε(~r)
∂ ~E(~r, t)

∂t
(1.7)
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Figure 1.2.2: Schematic representation of a typical electrical circuit used for studying the
different between the computed and the measured currents in electrical devices.

Using the divergence theorem in the current conservation law in equation (1.6), we can

rewrite the expression as:∫
Λ

~∇ · ~JT (~r, t)dv =

∫
SD+SL+SA

~JT (~r, t) · d~s = 0 (1.8)

Owing to the current conservation law, an integral of the total current density ~JT (~r, t) on

a closed surface in the wire S = {SD, SA, SL} in figure 1.2.2 is zero. We have defined SL

as the surface parallel to the transport direction in the cable. In particular, for a cable

we can assume
∫
SL

~JT (~r, t)d~s = 0, so finally we get
∫
SD

~JT (~r, t)d~s = −
∫
SA

~JT (~r, t)d~s. The

irrelevant sign for the total current on surfaces SA or SD is related with the direction of

the vector d~s. Therefore, the important point is that we have to simulate the total current

(not only the particle current) on SD if we want to ensure that the simulated result is

equal to the measured one on SA. Since the time-average of the displacement current

Id(t) equals zero, in a DC transport, one can only concentrate on the computation of the

particle current Ip(t). For a quantum device working beyond the DC picture, we have to

properly compute the displacement current many times where two fundamental issues—

the many-body problem and the measurement problem—appear. In the following, I will

focus on these two fundamental problems.

1.3 The Many-Body Problem in Electronics

The displacement current is a magnitude related to the Coulomb interaction among

electrons. The computation of the Coulomb interaction among electrons in a quantum

systems is part of the so-called many-body problem.

In quantum mechanics, in principle, an accurate description of the closed system could

be obtained by solving the many-particle Schrödinger equation governing the system

dynamics when the initial state of the system is perfectly well known [32, 33]. That is
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to say, the many-particle wave function in huge configuration spaces gives a complete

description of the closed system. In electronics, for instance, a closed system can be

a circuit including the battery, the contacts, the active region and all the set-up that

is needed to measure the electron flow. The dynamic of the circuit is governed by the

Schrödinger equation, which can be written in the first quantization as:

i~
∂Ψ

∂t
= HcircuitΨ (1.9)

where Ψ is the many-particle wave function and Hcircuit is the Hamiltonian of the circuit.

Assuming the whole circuit contains MT electrons and MS −MT atomic cores, then, the

Hcircuit in the position representation is written as:

Hcircuit =

MT∑
i=1

{
K(~pi) +

1

2

MT∑
j=1
j 6=i

qU0(~ri, ~rj)

}
+

MT∑
i=1

MS∑
j=MT+1

qZjU0(~ri, ~rj)

+

MS∑
i=MT+1

{
K(~pi) +

1

2

MS∑
j=MT+1
j 6=i

qZiZjU0(~ri, ~rj)

}
(1.10)

where the i-th particle has momentum ~pi and position ~ri, q is the elementary charge

(without sign), Zi is the atomic number of the i-th atom, K(~pi) is the kinetic energy of

the i-particle and U0(~ri, ~rj) is the Coulomb interaction between the i and j particles. It’s

important to emphasize that along the whole dissertation, only non-relativistic quantum

system will be discussed1. Then, the local Coulomb interaction is approximately defined

as U0(~ri, ~rj) = 1
4πε0

q
|~ri−~rj | .

From a computational point of view, except for trivially simple cases (i.e., a toy-

model of two-particle system), the direct solution of equation (1.9) is inaccessible. The

main reasons are in the following: First of all, the correlation terms in (1.10) prevent

a separation of the many-body wave function degrees of freedom into MS single-body

problems. Secondly, the entire system has huge degrees of freedom, for instance, one

mole of a solid contains MT ∼ 1023 electrons resulting the wave function contains at least

3MT degrees of freedom. From a numerical point of view, these two points make the

equation (1.9) unsolvable. Let us give a simple example to describe the complexity of this

intractable problem of solving the many-body Schrödinger equation (1.9). Assuming that

the computation of a single-particle wave function needs 100×100×100 cells, which means

1In principle, in the time-dependent theory, a retarded potential is generally considered for the interac-

tion between the i and j particles U(~ri, ~rj , t) =
ρ(~rj ,t

′)
4πε0

δ(t−t′−|~ri−~rj |/c)
|~ri−~rj | being ε0 the vacuum permittivity,

c the speed of light and ρ(~r, t) the charge density at position ~r at time t. Imaging two electrons i and j
has a distance |~ri − ~rj | ≈ 10−9 m, then, the additional term in the Coulomb interaction |~ri − ~rj |/c gives
an advanced time of around 10−17 s, which can be reasonably neglected.
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the single-particle wave function defined in a matrix contains 106 elements. Imaging the

whole system has 10 electrons, then, the number of elements consisting the matrix for

the 10-particle wave function becomes 1060. If the information of each element is saved as

numbers which take 10 bits, the information of the 10-particle wave function needs 1061

bits. The current largest hard drive has storage capacities of 10 Terabyte ≈ 1014 bits. In

order to exactly manipulate the 10-particle wave function, I need at least 1047 computers!

Such tough technical issue, known as the many-body problem, is the core of almost all

the unsolved problems in nature. As Dirac wrote in his paper in 1929:

The underlying physical laws necessary for the mathematical theory of a large

part of physics and the whole of chemistry are thus completely known, and the

difficulty is only that exact application of these laws leads to equations much

too complicated to be soluble. It therefore becomes desirable that approximate

practical methods of applying quantum mechanics should be developed, which

can lead to an explanation of the main features of complex atomic systems

without too much computation — P. A. M. Dirac[34]

Thus, from a practical perspective, approximations are required to make the Schrödinger

equation (1.9) solvable, whilst retaining as much of the key physics as possible. Hereafter,

starting from the many-body theory in equation (1.9), we will mention the standard

approximations used in the literature to solve the many-particle Schrödinger equation by

opening our quantum electron system.

1.4 Electron Device as Open and Stochastic Systems

A closed system is deterministically governed by the Schrödinger equation (1.9) when

its initial state is perfectly well known and when it does not interact with anything else

(for example, the measuring apparatus). Nevertheless, a system not interacting with

a necessary apparatus will be a quite useless experiment. The Schrödinger equation is

linear, unitary and time-reversible. The truth is that no system is really closed, except for

the universe itself. Since it is impossible to deal with the universe, a common strategy

is to reduce the system degrees of freedom as much as possible. In particular, let us

try to anticipate in next two subsections which degrees of freedom can be reduced in

the Hamiltonian expression (1.10) of a closed circuit. In equation (1.10), the first two

terms on the right hand side gives the electronic kinetic energy and electron-electron

interaction, the third term represents the interaction of the electrons with bare nuclei,

the nuclear kinetic energy and the nuclei-nuclei interaction are described by the last two

terms.
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1.4.1 Internal Openness of the System

The Born-Oppenheimer approximation [35] is assumed to decouple the nuclear and elec-

tronic degrees of dynamics. As the nuclei mass is (103 − 105 times) higher than that

of electrons, the nuclei may be considered stationary on the timescale of the motion of

the electrons, i.e. the nuclei position are fixed to their central value. As a result of

this, it is possible to eliminate the nuclear kinetic energy from the total energy of the

system. The internuclear repulsions are neglected in the total energy of the system as

well. Moreover, since the atoms remain in their equilibrium positions, somehow frozen,

the interactions between electrons and atoms can be treated through the effective mass

approximation [36]. For instance, for a material with the parabolic band structure, the

treatment of the electron–nuclear attractions is realized by replacing the electron mass

in the Hamiltonian with the effective one. However, in reality, the atoms are not really

frozen. They have perturbations around their equilibrium positions. In order to have a

proper and realistic understanding of the system behaviour, the information of the influ-

ence of the atom movements for the electron-nuclear interactions can be reintroduced by

including phonon scatterings in the equation of motion of the open system. The phonon

scatterings are stochastic processes for the electrons which are the only degrees of

freedom simulated. The information of this process is assumed to be statistically known.

For example, for electrons in a particular material like GaAs, one can know the aver-

age values of the scattering rate changing with energies and temperatures. More details

about the collisions will be discussed in Chapter 4. Furthermore, the degrees of freedom

of core electrons 3MC are also eliminated from the Hamiltonian expression (1.10). Since

the core electrons are relatively tightly bound to the nuclei, which remain intact during

the timescale of the motion of the MT − MC conduction electrons, simply refer to as

“(free) electrons”. All these standard approximations discussed above can be considered

as the internal decoupling of the whole system degrees of the freedom, i.e. the internal

openness of the system.

1.4.2 External Openness of the System

Up to now, although the degrees of freedom in equation (1.9) have been reduced to

3(MT −MC), the complexity of the problem still remains unaffordable, and some ad-

ditional measures must be taken to continuously reduced the degrees of freedom of the

whole circuit. From a computational point of view, instead of taking into account of the

whole system, one can approximately partition the universe into a system2 of interest

(named open system) and “everything else”, i.e., the environment, and only focus on this

2Except when specified to the contrary, I will use the word “system” in the whole dissertation repre-
sents open system.
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Figure 1.4.1: Schematic of a closed system, which is approximately constructed by the
device active region (simulation box) of interest coupled with spatial boundary conditions.
Basing on the educated guess, the boundary conditions in the borders of the simulation
box have properties analogous to the reservoirs at different electrochemical potentials.
The boundary conditions prepare electrons in the distant past and far away from the
simulation box into wave packets.

open system. For example, in electronics, as the complexity of integrated circuit grows

exponentially, instead of describing a whole closed circuit, the engineers are interested in

a portion of the whole system with respect to electron flow, i.e. the device active region.

The device active region is the most relevant region in determining the flow of electrons.

In this regard, the MT −MC electrons is reduced to N electrons inside the device active

region. Within these standard approximations, the Hamiltonian for N electrons in the

open system is given by:

Hopen =
N∑
i=1

{
K(~pi) +

1

2

N∑
j=1
j 6=i

qU0(~ri, ~rj)

}
=

N∑
i=1

K(~pi) + U(~r1, . . . , ~rN , t) (1.11)

The truth is, even by replacing the Hamiltonian in (1.10) with a reduced one in (1.11), the

many-particle Schrödinger equation is still intractable. Various attempts to provide rea-

sonable approximations for the many-body problem in a open system are proposed, and

some of the approaches are very successful and well-accepted. For example, the Density

functional theory [37, 38] and the Hartree-Fock approximation [39–41] are some of the

most accepted theories. Along the whole dissertation, I will use the Bohmian trajectories

to describe the quantum transport, and the many-body problem in the Bohmian me-

chanics will be approximated by a natural and original approach based on the so-called

conditional wave function [42].

Since I am interested in the simulation of quantum transports at THz region, along
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the whole dissertation, the definition of the external open system implies dealing with

spatial boundary conditions. The open system exchanges energy or particles with the

environment through the boundary conditions, namely, the injection of electrons, as

illustrated in figure 1.4.1. The injection of electrons into the simulation box is also a

source of stochasticity [43]. More details about the stochastic injection will be discussed

in the Chapter 3. On the other hand, there are Coulomb interactions among electrons

inside and outside of the open system. As a consequence, the boundary conditions of the

electric fields and potentials at the borders of the simulation box have to be defined in the

solution of the Poisson equation in the active device region. For instance, the possibilities

of the boundary conditions can be the Dirichlet or Neumann boundary conditions (or

the combinations of the Dirichlet and Neumann boundary conditions).

1.5 Equilibrium and Non-Equilibrium in Electron De-

vices

As seen in figure 1.4.1, an open system in electronics is a spatially well-defined structure

in between two electrodes which include the role of the battery into the system. It is

relevant to realize that there is no electrical current (in a time average sense) flowing

in one direction if the system is under thermodynamical equilibrium. Then, needless

to say, in the study of quantum transport, one basic issue we have to deal with is the

natural fact that an open system coupled to a battery implies that quantum electrical

transport problem is a non-equilibrium problem. The current flowing in the device

active region can be considered as a fundamental non-equilibrium process (where our

thermodynamical knowledge developed for equilibrium systems is not directly applicable).

As we have mentioned, in principle, the battery is too complicated to be exactly de-

scribed. Then the electron source is approximately considered as a reservoir3 of electrons

in figure 1.4.1. The reservoir is considered as a system in a thermodynamical equilibrium

or quasi-equilibrium (many-body) state. In this ideal reservoir, an additional particle

will not modify the internal state of the reservoirs. Similarly, if we remove a particle

from it, we will not change the reservoir state. That is to say, the reservoirs are in the

local equilibrium.

As we have said, the device active region with an applied bias V is indeed an open

quantum system far from thermodynamics equilibrium, as in the figure 1.4.1. The device

active region is sandwiched between two reservoirs. On one hand, since the reservoirs

represent a battery, the electrochemical potential associated with the left reservoir, µL,

3The definition of reservoir is that an ideal system supplies and receives particles and energy without
changing its internal system state. The theoretical concept of reservoir fits the definition of infinite
electrodes, which have infinite Poincaré recurrence time.
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differs from the electrochemical potential of the right reservoir, µR, with the relationship

V = µR − µL. Let us assume that the electrons injected from the reservoirs have a lo-

cal equilibrium distribution appropriate to the corresponding electrochemical potential,

namely, following the Fermi-Dirac statistical distribution. On the other hand, we know

that the device active region (which is also named as the simulation box) has to be mod-

eled under non-equilibrium conditions. In summary, as plotted in figure 1.4.1, the basis

of the transport theories is the combination of the (thermodynamical) statistical

mechanics with the (mechanical) quantum mechanics. In the reservoir (or in

the stochastic injection model), the system is in a quasi-equilibrium condition, where the

information for the electrons is statistically known. In the simulation box, however, the

system is in a non-equilibrium state and is ruled by the mechanical Schrödinger equation

(or similar quantum mechanical equations of motion).

1.6 Irreversible Phenomena in Electron Devices: a

Fundamental Law of Nature

In principle, an ideal closed system is governed by time-reversible laws (like the Schrödinger

equation) so the entropy of such ideal system does not change. In open system, however,

there is no guaranty that the equations of motion become time-reversible so that entropy,

in general, increases in open systems. This property of the entropy, as Plank said, is the

second law of thermodynamics in open (sub) systems:

Every process occurring in nature proceeds in the sense in which the sum of

the entropies of all bodies taking part in the process is increased. In the limit,

i.e. for reversible processes, the sum of the entropies remains unchanged.[44]

At the microscopic level, electron in a real device interact with phonons, impurities or

other electrons. This interactions makes the electron lose its energy, and finally, this

energy is dissipated as heat. While the Schrödinger equation (1.9) describes a reversible

system, once collisions are properly included into the equation of motion of a electronic

systems, time-irreversibility appears in the open system evolution. For instance, we gen-

erally know that the scattering rate of emission phonon is larger than that of absorption

phonon. Furthermore, due to the many-body problem, ignoring the degrees of freedom

outside of those explicitly simulated in an open system also introduces irreversibility.

When the Hamiltonian of a system is given by the expression (1.11), it implies an irre-

versible degradation of the whole system’s available information, i.e. the influence of the

degrees of freedom of the environment into the simulation box cannot be know exactly.

In the computation of quantum transport, the boundary condition is necessary in solving

the dynamic equation, and it reintroduce these outside openness by fixing the different



1.6. Irreversible Phenomena in Electron Devices: a Fundamental Law of Nature 15

electrostatic potential in the borders of the simulation box. It has been proved that

some boundary conditions of a system also introduce irreversibility to the open system.

[45, 46].

In conclusion, although time-irreversible appears because we are dealing with an open

(sub) systems, it is natural to adopt the view that irreversibility is a fundamental

law of nature. The consideration of irreversibility in the modeling of quantum transport

is of paramount importance to provide realistic predictions. A typical strategy to deal

with dissipative processes in open systems is using the density operator ρ̂(t). The equation

of motion of ρ̂(t) is ∂ρ̂/∂t = [Ĥopen, ρ̂] + Ĉ[ρ̂], which is a linearly combination of the so-

called Liouville-von Neumann equation and a collision term Ĉ[ρ̂]. As we know, the

Liouville-von Neumann equation describes a closed system. Here, the collision term

Ĉ[ρ̂] introduces the openness of the environment. More details about dissipation in the

quantum transport will be explicitly described in Chapter 4.
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Chapter 2

Measurement of Quantum Transport

2.1 The Measurement Problem

As indicted in the previous chapter, the measurement of the electrical current in a nano-

electronic device is not trivial, if such nanoelectronic devices behave quantum mechani-

cally. Since the beginning of the twentieth century, different quantum theories have been

developed to explain non-classical phenomena. However, the interpretations of these

quantum theories are still a topic of lively controversy because these quantum theories

imply different interpretations of the reality of our world. Generally, physical theories are

human attempts to connect the reality with the experiments. While different quantum

theories predict identical results for experiments1, they have different visions of what is

the reality. In particular, in the quantum transport, most of the discussions are focused

on how the different theories explain the reality behinds the measurement of quantum

systems. In this section, I will concentrate on the measurement problem by explaining

the paradox of Schrödinger’s cat. As Erwin Schrödinger wrote in his paper in 1935:

One can even set up quite ridiculous cases. A cat is penned up in a steel

chamber, along with the following device (which must be secured against direct

interference by the cat): in a Geiger counter, there is a tiny bit of radioac-

tive substance, so small, that perhaps in the course of the hour one of the

atoms decays, but also, with equal probability, perhaps none; if it happens, the

counter tube discharges and through a relay releases a hammer that shatters

a small flask of hydrocyanic acid. If one has left this entire system to itself

for an hour, one would say that the cat still lives if meanwhile no atom has

decayed. The first atomic decay would have poisoned it. The Ψ-function of

1For simplicity, in the thesis, I will refer to the different explanations of the quantum phenomena,
with identical experimental predictions, as different quantum theories, interpretations or approaches.
For instance, the orthodox theory and the Bohmian theory. On the contrary, some people consider
that different explanations have to give different empirical results to be considered as different physical
theories.

17
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the entire system would express this by having in it the living and dead cat

(pardon the expression) mixed or smeared out in equal parts.

It is typical of these cases that an indeterminacy originally restricted to the

atomic domain becomes transformed into macroscopic indeterminacy, which

can then be resolved by direct observation. That prevents us from so naively

accepting as valid a ”blurred model” for representing reality. In itself, it would

not embody anything unclear or contradictory. There is a difference between

a shaky or out-of-focus photograph and a snapshot of clouds and fog banks.–

Erwin Schrödinger [47].

In Schrödinger’s experiment, one possible state for the macroscopic system is the cat

dead ΨD, and the other possible state is the cat alive ΨL. If the equation of motion

of the system is linear (for instance, the Schrödinger equation), then the superposition

of the dead cat and alive cat states, like Ψ = 1/
√

2ΨD + 1/
√

2ΨL, is also a valid state

for the system. If the wave function of the macroscopic system contains full information

(nothing else is needed to define a quantum state), as it happens in the Copenhagen

or orthodox theory, the cat is described by Ψ = 1/
√

2ΨD + 1/
√

2ΨL, i.e. the cat is

simultaneously dead and alive. This explanation of Copenhagen reality is beyond the

intuition of most of the people who believe that in a reality the cat is either dead or alive,

but not both! Then, the Copenhagen interpretation argues that the state of a quantum

system gets a definite value (the cat is either dead or alive) only when the system is

measured. Albert Einstein criticized this idea—a definite value of reality depends on the

measurement—with a simple example: Do you really think the moon isn’t there if you

aren’t looking at it? Max Born, one of fathers of Copenhagen school, in response, would

say, however hard you try, you will not be able to detect the moon without some types

of measurement. Yet, when the door of the chamber is opened, the quantum system is

measured by an observer who sees the cat either dead or alive, but not both! According

to the Copenhagen school, the wave function Ψ = 1/
√

2ΨD + 1/
√

2ΨL is collapsed into

Ψ = ΨD or Ψ = ΨL because someone has observed the cat. However, the Copenhagen

explanation of the measurement opens many intriguing questions: Who is the observer?

A well educated Ph.D student? A dog looking at the cat will collapse the system? At

what time exactly will the superposition ends? How? In any case, even if you like or not

the theory, the orthodox quantum mechanics provides predictions in excellent agreement

with all quantum experiments.

As we have said previously, different quantum theories give different explanations of

the processes of measuring a quantum system. All these quantum theories have both

advantages and disadvantages. It has been shown that in any explanations of the mea-

surement problem, one cannot construct a quantum theory which satisfies completely the

following three claims [48–51]:
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Figure 2.1.1: (a) The orthodox approach assumes that only the quantum system is explic-
itly simulated, and the measuring operator is replaced by a proper but imprecise operator
Ĝ acting on the wave function of the subsystem. (b) The Bohmian approach assumes
that both the quantum system and the measuring apparatus are explicitly simulated.

• (A) The wave function is only governed by a linear dynamical equation (for in-

stance, the Schrödinger equation).

• (B) The wave function of a system is complete, i.e. the wave function specifies

(directly or indirectly) all of the information of a system.

• (C) Measurements provide a determinate outcomes, i.e. at the end of the measure-

ment process of the cat, the measuring system is either in a state which indicates

cat alive (and not dead) or cat dead (and not alive).

The measurement problem derives from the incompatibility of these three claims. Pro-

posed solutions to it can be classified by which claims they abandon [48]. There are

several quantum theories available in the literature to explain the quantum measurement

problem. In the following, I will briefly concentrate on how the orthodox, Bohmian and

many-worlds approaches explain the quantum measurement.

2.1.1 The Orthodox Approach

Theories which abandon (A) and retain (B) and (C) are generally called non-linear theo-

ries. In the non-linear theory, one must specify exactly when and what way the non-linear

evolution takes place. The orthodox quantum theory (also referred as the Copenhagen

interpretation of quantum mechanics) is a non-linear theory due to the collapse law. Its

pioneers explicitly rejected the argument that the orthodox theory is incomplete, and

they also asserted that the macroscopic measuring device is described by the language

of classical physics. Obviously, they denied (A). According to the orthodox theory, the

time evolution of the wave function of a system is governed by two different laws — the
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Schrödinger equation (linear) plus the collapse law (non-linear), to successfully reproduce

the experimental results in a laboratory. As illustrated in figure 2.1.1(a), the orthodox

outcomes are described through the use of an operator Ĝ whose eigenvalues g give the

possible values of the measurement, i.e., Ĝ|Ψg〉 = g|Ψg〉2 with |Ψg〉 one of eigenvectors of

the operator Ĝ. This is the so-called von Neumman measurement [52]. Many physicists

and philosophers believe that the orthodox approach gives an ambiguous answer to the

measurement process. The orthodox theory only points out that such operator exists.

However, it does not specify which operator Ĝ is needed. As stressed by Bell: The tra-

ditional theory papered over this defect by describing the collapses in terms of imprecise

notions such as ‘observation’ or ‘measurement’ [53]. That is to say, the orthodox theory

did not explain with total accuracy under what circumstances, and in what way the non-

linear evolution (collapse) takes place. It does not define clearly where is the separation

between the classical measuring apparatus and the quantum system. It does not explain

who is the observer. Therefore, the orthodox approach solves the measurement problem

and provide correct statistical results (collapses randomly to one of the eigenstates of

the particular operator Ĝ), but it still contains many ambiguities in the definition of a

particular operator Ĝ associated to each experiment.

2.1.2 The Bohmian Approach

Theories which abandon (B) and retain (A) and (C) are generally called hidden vari-

able theories. In the hidden variable theory, one must specify exactly what the hidden

variables are and what laws govern them. The Bohmian explanation of the quantum

phenomena is the most famous one among these hidden variable theories. In Bohmian

theory, the quantum system is completely described by both the wave function Ψ and

the Bohmian trajectory. Therefore, it denies the claim (B). The extra variables are par-

ticle positions and the dynamics of these variables is governed by the so-called guidance

equation. In this sense, the entire quantum system is described by the wave function plus

the trajectory following two evolution laws:

• (1) The dynamics of the wave function (independently of whether a measurement

process takes place or not) in the entire configuration spaces is governed by the

Schrödinger equation (with a proper Hamiltonian of the quantum system plus the

measuring apparatus).

• (2) The time evolution of a trajectory (independently of whether a measurement

2As described in most textbooks, the collapse law mentioned here is called strong measurement. The
effect of the operator Ĝ interacting with the quantum system is that the initial wave function Ψ collapses
into Ψg. There also exists another type of measurement known as weak measurement, which is useful to
describe situations where the effects of the operator on the measured system is just a small perturbation.
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process takes place or not) is determined by the time integration of the Bohmian

velocity.

The Bohmian measurement processes are treated similarly as any other quantum process

of interacting particles, and there is no need to introduce operators in the Bohmian

approach [54–56]. As depicted in figure 2.1.1(b), imaging that some kind of pointer

indicates the measured quantity, for instance, a pointer in an ammeter moves to a position

that indicates the current measured of the whole circuit in the laboratory. The particle

pointers (degrees of the freedom of the system) associated with Bohmian trajectories

must be present in the Hamiltonian of the quantum system. In fact, in spite of being

referred as hidden variables, the particles of the pointer is the only elements that we

really “see”. Bell expressed this point in one of his didactic sentences:

In physics the only observations we must consider are position observations,

if only the positions of instrument pointers. It is a great merit of the de

Broglie-Bohm picture to force us to consider this fact. —J. S. Bell [57]

Therefore, a proper modeling of the Bohmian measurement process only needs the

explicit consideration of the degrees of the freedom of the pointers (particle positions) in

the many-body wave function and in the many-body Bohmian trajectories that define the

entire system. The trajectories specify which state in a spatial superposition of states

is the relevant one. The position of the particle is only in the support of one of the

states (for instance, the cat alive state), and the rest of states are empty waves. The

quantum randomness is implicit by the probability distributions of the initial conditions

of trajectories. The effects of the collapse of the wave function are easily taken into

account by the trajectories. For instance, in the case of an electron interacting with a

barrier, after the interaction is completed, the electron that is transmitted at time t1 will

remain as a transmitted electron with full certainty at future time t2. In fact, while the

Bohmian approach and the orthodox approach provide the same probabilistic outcomes

in the prediction, the mathematical implementation of the equations of motion in these

approaches are quite different. Let us emphasize again that, as shown in figure 2.1.1, the

orthodox approach needs a proper operator Ĝ with all its conceptual difficulties, while

this operator is not needed in the Bohmian descriptions of the quantum measurement.

It is substituted by a proper description of the Hamiltonian that provides the interaction

between the system and measuring apparatus.

2.1.3 The Many-Worlds Approach

Theories which retain (A) and (B) while abandoning (C) are less common. The Many-

worlds theory [58] is one of the interpretation of the quantum phenomena that denies the
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wave function collapse and that still asserts that the wave function is complete. It implies

that, at the end of the measurement, all possible outcomes given by the superpositions

of states are real and each represents an actual “world” (or “Universe”). In the many-

worlds interpretation of the Schrödinger’s cat, the cat is both dead and alive even before

the measurement. But the dead and alive cats are in different branches of worlds – a

world with the cat dead and a world with the cat alive. Both of the worlds are equally

real and not interact with each other. In fact, denying (C) entails other difficulties. In

this thesis, we will not discuss about this type of solutions to the measurement problem.

Up to now, different interpretations of the quantum measurement problem have been

explicitly discussed with the Schrödinger’s cat example. Since, the quantum transport

in the THz range is the core issue being focused on along the whole dissertation, in the

following, the orthodox and Bohmian approaches will be used to explain the measure-

ment problems that appear in the quantum transport computation, in particular, in the

prediction of quantum noise, DC current and total current in nano electronic devices.

2.2 The Quantum Measurement Problem in Elec-

tron Devices

In the literature, the study of quantum transport in electron devices is mainly devoted to

DC properties [59]. However, a better understanding of well-designed electronic devices

needs to compute some properties related to their noise, transient and AC behaviours,

which is intrinsically linked to the understanding of multi-time measurement processes in

a quantum system [60]. Indeed, the multi-time measurement issue is a relevant problem

in electron devices. Therefore, in this section, firstly, I will discuss about the definitions of

quantum noise emphasizing the need of the multi-time measurement. Then, the interpre-

tation of the multi-time measurement from both the orthodox and Bohmian perspectives

will be explained with an example of electrons impinging upon a partially transparent

barrier.

2.2.1 A Preliminary Discussion

Let us assume that a signal that we are interested in an electrical device is the DC value

of the current 〈I〉. Once we have the signal 〈I〉, in principle, the noise can be quantified

by time averaging the difference between the measured value of the current I(t) and the

signal 〈I〉 in a unique device:

∆I2 = lim
T→∞

1

T

∫ T

0

(
I(t)− 〈I〉

)2

dt (2.1)
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At this point, it is very important to point out that I(t) presents very rapid fluctuations

that cannot be captured by the standard laboratory apparatuses. Any experimental setup

that measures the current fluctuations behaves as a low-pass filter (i.e., the current fluc-

tuations at frequencies higher than the apparatus cut-off frequency are not measured).

Then, the experimentally accessible information about the fluctuation is not given by

equation (2.1), but by the power spectral density of noise SN(ω) where ω is the angular

frequency and the superindex “N” represents noise. In explaining the procedure to com-

pute SN(ω), firstly, the time average definition of the autocorrelation function, ∆R(τ),

is defined as:

∆R(τ) = lim
T→∞

1

T

∫ T

0

∆I(t1)∆I(t1 + τ)dt1 = lim
T→∞

1

T

∫ T

0

I(t1)I(t1 + τ)dt1 − 〈I〉2 (2.2)

where we use the definition ∆I(t) = I(t)−〈I〉. From the Wiener-Khinchine relation, the

SN(ω) can be defined as the Fourier transform of ∆R(τ):

SN(ω) =

∫ ∞
−∞

∆R(τ)e−jωτdτ (2.3)

It is quite natural to realize that the definition of SN(ω) in equation (2.3) is consistent

with the previous expression given by (2.1):

∆I2 =

∫ ∞
−∞

SN(ω)dω (2.4)

From equations (2.2) and (2.3), we realize that the measurement of SN(ω) requires the

knowledge of the measured current I(t) in almost all time t. Thus, we have to make

predictions about the evolution of the electrical device while being measured many times.

In a quantum system, the measurement process has very relevant implications because

the evolution of a system with or without measurement (with or without collapse law in

the orthodox theory) can be dramatically different.

Let us see in what sense ergodicity [61] can simplify the quantum noise predictions.

From expression (2.1), the quantum noise is computed from a unique measurement in

ergodic systems:

4I2 =
∑
i

(Ii(t1)− 〈I〉)2P (Ii(t1)) (2.5)

where P (Ii(t1)) is the probability of getting Ii(t) at time t1. Once again, the noise

measured in a laboratory is not given by 4I2, but by SN(ω) in (2.3). The amount

of noise generated by an instantaneous current evolving, for example, from I(t1) = 5

mA to I(t2) = 10 mA during a time interval of t2 − t1 = τ = 1 fs, is not captured

from state-of-the-art laboratory apparatuses (which already have difficulties to capture
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noise at frequencies higher than a few of Terahertzs). The average over an ensemble of

experiments of the autocorrelation defined in equation (2.2) is:

4R(t1, t2) =
∑
i

∑
j

Ij(t2)Ii(t1)P
(
Ij(t2), Ii(t1)

)
− 〈I〉2 (2.6)

In general, it is reasonable to assume that the instantaneous current in an electronic de-

vice behaves as a wide-sense stationary random process. Then, the signal 〈I〉 is constant

and time-independent. Identically, the autocorrelation function in (2.6) depends only on

the time difference ∆R(t1, t1 + τ) = ∆R(τ) with t2 = t1 + τ . Finally, using expression

(2.3) with 4R(τ) computed from (2.6), the noise power spectral density SN(w) in an

ergodic system is obtained.

Note that the probability P
(
Ij(t2), Ii(t1)

)
implies a two-measurement process for each

electronic device. That is, the system evolves freely (without interaction with the mea-

suring apparatus) from an initial time t0 till t1 when the current is measured, which gives

the value Ii. Then, the system evolves freely again till time t2 when the system current

is measured again, which gives value Ij. Even the ergodicity is invoked, the computation

of the quantum noise through the autocorrelation function ∆R(τ) in equation (2.6) still

requires, at least, two measurements at different times in a single experiment (and then

the average over all experiments). Thus, the quantum noise is specially sensible to the

fundamental quantum mechanics issues—the quantum measurement problem. This ex-

plains why the concept of quantum noise have such a halo of mystery around, while its

mathematical definition seems so trivial. As a consequence, the multi-time measurement

issue is quite relevant in quantum transport. Next, I will focus on how the probabili-

ties P
(
Ij(t2), Ii(t1)

)
in a multi-time measurement process are computed according to the

orthodox and Bohmian theories. In particular, we discuss an experiment with a flux of

electrons impinging upon a tunneling barrier.

2.2.2 The Multi-Time Measurement with Orthodox Approach

When a flux of electrons impinge upon a partially transparent barrier, electrons are either

transmitted or reflected, but not both! This is true in the orthodox and Bohmian theo-

ries. For simplicity, to focus on the importance of the measurement process, I consider

spinless electrons without Coulomb and exchange interaction. Then, a flux of electrons

is assumed to be constantly injected (at zero temperature), one by one. Each electron,

after measuring at time t1, will appear randomly at the left or at the right of the tunnel-

ing barrier. The time averaged number of transmitted electrons will be proportional to

the transmission probability, but the number of transmitted electrons fluctuates instan-

taneously because of the randomness of the transmission. These fluctuations are named
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(a) Unitary evolution (b) Non-unitary evolution

Figure 2.2.1: (a) Unitary evolution of the squared modulus of the wave function Ψ(x1, t)
of an electron impinging on a tunneling barrier located at x = 0 (green solid line). Four
different times corresponding to a) initial time, b) the moment when the wave function
interacts with the barrier, c) the time t1 when the first measurement occurs and d)
time t2 corresponding to the second measurement. At time t1 and t2, because of the
unitary evolution, the electron can be detected at both sides of the barrier. (b) The
same experiment for a non-unitary evolution guided by the Schrödinger equation and
collapse law. a, b, c and d for a reflected electron detected at time t1 at the left side. e,
f, g and h for a transmitted electron detected at time t1 at the right side.

partition noise3. Of course, there are many other sources of noise in electrical device.

For instance, the 1/f noise is very relevant at low frequency. But only the multi-time

measurement of the partition noise due to a tunneling barrier will be discussed in this

part.

Now I will give a detailed discussion of the role played by the measuring apparatus

(for example, an ammeter here). For a single-particle wave function Ψ(x1, t), according

to the Copenhagen interpretation, the wave function is firstly ruled by the unitary and

deterministic Schrödinger equation (1.9) in Chapter 1. The unitary evolution of such

wave function is depicted in figure 2.2.1(a). Obviously, it does not explain correctly the

experiment without collapse. From this unitary evolution, there exist a non-zero proba-

bility that an electron found at time t1 at the right side of the barrier (as a transmitted

3In the literatures [62–66], the fluctuations due to both the partition noise of the barrier and the
thermal noise of the injection of electrons at finite temperature are known as quantum shot noise. For
the sake of simplicity, the injection is assumed to be happened at zero temperature, so the thermal noise
will not be considered here, which will be explicitly discussed in Chapter 3.
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one) can be found in a later time t2 at the left side as a reflected electron. That is

nonsense! As from an experimental point of view, one electron is detected at one side in

time t1 will always find in the same side in a later time t2.

As has been discussed in the Subsection 2.1.1, in order to reproduce the experimental

outcomes, a second law, collapse of the wave function, is taken into account in the

orthodox approach. A new non-unitary (and ad-hoc) operator Ĝ provides the effects of

the interaction of a measuring apparatus with the quantum system. As illustrated in

figure 2.2.1(b), once an electron is randomly measured as a reflected (or transmitted)

electron at time t1, the transmitted (or reflected) part of the wave function is eliminated.

In order to explain correctly this temporal correlations, a unitary and non-unitary time-

evolution of the system from a initial time until the final one is required.

The new operator Ĝ is the only tool provided by the theory to determine the possible

results of a measurement. In principle, we only know that the operator is a (hermitian

Ĝ = Ĝ∗) function acting on Hilbert spaces whose (real) eigenvalues g of its spectral de-

composition are the possible results of the measurement. Over the years, physicists have

identified the operators, by developing instincts on which are the effects of measurements

on the wave function. There are scenarios (as the one depicted in figure 2.2.1(b)) where

it is quite obvious which operator is the right one. On the contrary, for example, when

measuring the total (particle plus displacement) current, it is not at all obvious which are

the relevant operators. There are many other problems, for instance, is this measurement

process continuous or instantaneous? Does it provide a strong or a weak perturbation of

the wave function? The answers to these questions are certainly not simple. The postu-

lates of the Copenhagen theory themselves does not answer these technical questions on

how to find the right operator Ĝ in a practical problem.

2.2.3 The Multi-Time Measurement with Bohmian Approach

As we have seen, there are alternative theories to explain the multi-time measurement

issue in quantum transport. The one I will discuss in this subsection is the Bohmian

theory. In this approach, there is no need to introduce operator in the measurement

process. Here, I will concentrate on its interpretation of the multi-time measurement.

All details of the formalism can be found in Appendix A and in literatures [67, 68].

Considering the apparatus (here is a transmitted charge detector) as another (big and

complex) quantum system interacting with our measured system. The entire system is

an electron labeled as X1 impinging on an external tunneling barrier plus a measuring

device which is located behind the barrier, indicated as a single degree of freedom X2

(thought as the pointer of the apparatus). The many-particle wave function Ψ(x1, x2, t)

described in a configuration space, is ruled by the following many-particle Schrödinger
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equation:

i~
∂Ψ(x1, x2, t)

∂t
=

(
− ~2

2m

∂2

∂x2
1

− ~2

2M

∂2

∂x2
2

+ U(x1)− i~λQ(x1)
∂

∂x2

)
Ψ(x1, x2, t) (2.7)

where M is the mass of the apparatus pointer which is assumed to be M = 75000 m,

U(x1) is the external potential energy barrier and −i~λQ(x1) ∂
∂x2

is interpreted as the

interaction between the electron and the pointer with λ the interaction constant and

Q(x1) a function that equals to zero when the electron is outside the detector (x1 < 75

nm in figure 2.2.2(a)), and equals to one when the particle is inside the detector (x1 > 75

nm). The measurement interaction introduces a channelling of the wave function in the

configuration space such that the desired property of the “measured system” (whether

the electron is reflected or transmitted) can be read off from the final position of the

pointer X2 of a particle.

In the figure 2.2.2(a), four trajectories {Xα
1 [t], Xα

2 [t]} (being α = 1, · · · , 4) with dif-

ferent initial positions are considered. The property of the measured system is described

by the conditional wave function ψ(x1, t) = Ψ(x1, X2[t], t), which is defined from the

many-particle wave function Ψ(x1, x2, t) in configuration space with all the actual particle

positions being fixed excluding the measured system. More details about the conditional

wave function can be found in Appendix A. The main feature of a transmitted charge

detector is that the center of mass of the wave function in the x2 direction has to move if

the electron is transmitted and it has to be at rest if the electron is reflected. All details

about the simulation can be found in [68]. At the initial time t = 0, the wave function

is defined as Ψ(x1, x2, 0) = ψ(x1, 0)φ(x2, 0). At time t0, the wave function has split up

into reflected and transmitted parts due to the barrier, see figure 2.2.2(a) b and (b) b,

f. For time t > t0, the measured system starts to interact with the detector, which pro-

duces two channels in the configuration space, one corresponding to the electron being

transmitted (the pointer X2 moves) and the other corresponding to the electron being

reflected (the pointer does not move). Therefore, by looking at the pointer position, one

can perfectly certify if the particle has been reflected (X1[t] < −50 nm and X2[t] = 0

nm) or transmitted (X1[t] > −50 nm and X2[t] 6= 0 nm). Of the four possible evolutions

shown in figure 2.2.2(a), three show the electron being transmitted (α = 2, 3, 4) and one

being reflected (α = 1).

The same measurement can also be described in a physical space by using the con-

ditional wave function Ψ(x1, X2[t], t) for the measured system (see Appendix A). The

figure 2.2.2(b) is the time evolution of the conditional wave functions for the electron, for

trajectories α = 1 (reflected electron) and α = 3 (transmitted electron). The key point

illustrated here is that the collapse of the wave function for an electron arises naturally
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(a) In configuration space (b) In physical space

Figure 2.2.2: (a) Time evolution of the squared modulus of Ψ(x1, x2, t) at four different
times. In configuration space region, the transmitted charge detector is present by a green
rectangle, and the barrier by a red solid line located at x1 = −50 nm. Four trajectories
{Xα

1 [t], Xα
2 [t]} with different initial positions are presented with �, ∗, × and +. (b) The

+ line in a, b, c and d is the time evolution of the squared modulus of the conditional
wave function ψR = |Ψ(x1, X

α=1
2 [t], t)| in physical space. The � line in e, f, g and h is

the squared modulus of the conditional wave function ψT = |Ψ(x1, X
α=3
2 [t], t)|.

and automatically in Bohmian approach. For the trajectory α = 1, the position of the

pointer does not change with time, and after the interaction with the detector has been

performed, the electron’s conditional wave function includes only a reflected part. For

the trajectory α = 3, after the electron transmitted, it is the reflected part of the condi-

tional wave function collapses away. The conditional wave function Ψ(x1, X2[t], t) is not

unitary, even though the evolution of the many-particle wave function Ψ(x1, x2, t) is. Let

us emphasize again that the collapse within the Bohmian theory in a very natural way.

Such a natural derivation of the collapse behaviour demystifies the measurement process

and the quantum noise. The non-unitary evolution of the conditional wave function of

the measured system ψ(x1, t) is simply achieved by slicing the enlarged wave function

Ψ(x1, x2, t) (which includes the apparatus) in the configuration space.

Up to here, it is enlightening to give an answer to one question: What is the ultimate
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origin of quantum noise according to the orthodox and Bohmian interpretations? In the

orthodox approach, because of the collapse of the wave function due to measurements,

the transmission or reflection of a single electron impinging upon a tunneling barrier

becomes unpredictable. The partition noise in the tunneling barrier is owing to the action

of the operator. The collapse implements randomness by selecting the final wave function

stochastically among the set of its available eigenstates. In the Bohmian approach, the

randomness in the values of the measured current I(t) is provided by the α distributions

(i.e., the initial positions of Bohmian trajectories). Although the Bohmian mechanics is

deterministic, an appearance of randomness emerges in the subsystems. The ultimate

origin of the unpredictability is the fact that the uncertainty principle does not allow us

to known the (ontologically well-defined in the Bohmian theory) initial position of the

particles in each experiment (see the Quantum equilibrium hypothesis in Appendix A). It

is important to notice that the measurement of the system does not introduce any source

of randomness.

Let us return to the questions posed at the end of the Subsection 2.2.2 about the

technical problems that appear in a multi-time measurement process with the orthodox

approach, when selecting the proper operator. Is such operator compatible with a con-

tinuous measurement process or with an instantaneous one? Does it provide a strong or

a weak perturbation of the wave function? The Bohmian theory, as far as we include

the measuring apparatus, clearly indicates the path to answer these questions without

operator.

2.3 Prediction of DC and Total Currents with Or-

thodox Approach

In this part, I will concentrate on how the orthodox theory predicts the measurable

properties of quantum electron devices. Firstly, I will theoretically discuss how to measure

the DC current4 and prove that the measurement problem can be completely relaxed in

this case for an ergodic system. Secondly, attempts to compute the total (particle plus

displacement) current in the high-frequency scenario (ω →∞) will discussed.

4Generally, one can extract the DC information from a time-dependent total (particle plus displace-
ment) current by using the expression (2.8), which is commonly adopted by the Bohmian approach (I will
explicitly explain it in the following Section 2.4). Alternatively, since the time-average of the displace-
ment component in equation (2.8) goes to zero, in the prediction of DC current, one can only consider
the particle component. This method is usually adopted by the orthodox approach. For example, when
use the expression (2.9) to compute the DC current, we can only know the particle current operator
ĜJc , which appears in any fundamental quantum books.
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2.3.1 The DC Current

As we have explained, an important set of properties that a well-designed electronic

device has to satisfy, comes from the study of DC current for fixed DC bias conditions,

the so called current-voltage characteristic. From an experimental point of view, what

measured in a laboratory for the DC signal is the time average value of the instantaneous

current I(t) in a unique device during a large period of time T :

〈I〉 = lim
T→∞

1

T

∫ T

0

I(t) dt (2.8)

It is relevant to point out that the prediction of DC current from expression (2.8) re-

quires the knowledge of the measured current I(t) in all time t, where the multi-time

measurement problem appears.

If the electronic device satisfies the ergodic theorem [61], a continuous measurement

of the system can be avoided. Let us see in what sense ergodicity can simplify our DC

current measurements. Assuming an ensemble of identical electrical devices5 is considered

with each one labeled by a sample space variable γ. The (instantaneous) current is labeled

by a random process Iγ(t). For a fixed time, t1, the quantity Iγ(t1) is a random variable

while Iγ1(t1) is just a real number. Generally, the sample space variable γ is omitted

in the notation and a distribution of Ii(t1) values with i = 1, · · · ,W is obtained with a

probability P (Ii(t1)) of getting Ii at time t1. The DC value of the current in equation

(2.8) can be alternatively defined for an ergodic system as:

〈I〉 =
W∑
i=1

Ii(t1)P (Ii(t1)) (2.9)

The probability P (Ii(t1)) is defined as the ratio of the number of devices (experiments)

providing Ii divided by the total number of devices (experiments). It is important to

realize that the experimental evaluation of (2.9) requires only one measurement of the

current at t1 in a large number of identical γ-devices. Therefore, the theoretical pre-

dictions of DC value in (2.9) do only need to determine the free (without measuring

apparatus) evolution of the electronic device from the initial time t0 till t1. Expression

(2.9) explains why the measurement problem can be completely relaxed in the prediction

of DC current.

Once we know the definition of the DC current, let us see how to compute it from a

5At this point, the reader will wonder that, in typical laboratory experiments, only one electronic
device is available (not an ensemble of them). Then, as a practical definition of ensemble, I can define
the instantaneous currents for an ensemble of devices by measuring one electronic device in different
time-intervals: Iγ1(t) for the instantaneous current measured during the first time interval, Iγ2(t) for
the second interval, and so on.
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practical point of view. Imaging that the DC current is measured on an arbitrary surface

Si. In the orthodox theory, the measured quantum system is described by a (normalized)

many-body wave function Ψ(~r1, · · · , ~rN , t) in the configuration space {~r1, · · · , ~rN}, which

is ruled by the unitary Schrödinger equation (1.9) in Chapter 1 with the Hamiltonian

described in expression (1.11) and by the non-unitary collapse law. For DC quantum

transport measurements in the orthodox approach, equation (2.9) is greatly preferred in

front of expression (2.8) because it deals directly with the probabilistic interpretation of

the wave function. Let us discuss this point in more detail. Defining the eigenstates |Ψi〉
of the current operator ĜIi , as these vectors that satisfy the equation ĜIi|Ψi〉 = Ii|Ψi〉.
The eigenvalue Ii is one of the W possible measured values in (2.9)6. Since the entire set

of eigenstates form a basis for the Hilbert space, the many-body wave function Ψ can

be decomposed as |Ψ(t)〉 =
∑W

i=1 ci(t)|Ψi〉, with ci(t) = 〈Ψi|Ψ(t)〉. Then, the ensemble

average value of the current is:

〈I〉 = 〈Ψ(t)|ĜIi|Ψ(t)〉 =
W∑
j=1

c∗j(t)〈Ψj|
W∑
i=1

Iici(t)|Ψi〉 =
W∑
i=1

IiP (Ii) (2.10)

where we have used the orthonormal property of the eigenstates 〈Ψj|Ψi〉 = δij, an observ-

able is computed from the expression 〈G〉Ψ = 〈Ψ|Ĝ|Ψ〉 and the definition of the (Born)

probability P (Ii)= |ci(t)|2.

In fact, in the prediction of DC current, the explicit knowledge of the eigenstates |Ψi〉
is not needed if the free evolution of the state |Ψ(t)〉 and the measuring operator Ĝ are

completely known. That is, the mathematical burden of the collapse of the wave function

can be largely relaxed. Supposing the system is only measured at a final time t = t1.

As discussed previously, we only require the knowledge of the particle current operator,

which is:

ĜJc(~r1, · · · , ~rN) =
N∑
k=1

1

2m

(
|~rk〉〈~rk|P̂k + P̂k|~rk〉〈~rk|

)
(2.11)

where P̂k is the k-component momentum operator. Then, the ensemble value of the

6For simplicity, I assume that there is no degeneracy. Our qualitative discussion does not change if
degeneracy is considered.
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particle current density 〈 ~Jc(~r, t1)〉 in the physical space is:

〈 ~Jc(~r, t1)〉 = 〈Ψ(t1)|ĜJc(~r1, · · · , ~rN)|Ψ(t1)〉

=
i~
2m

N∑
k=1

∫
Ω∞

dv1 · · ·
∫

Ω∞

dvk−1

∫
Ω∞

dvk+1 · · ·
∫

Ω∞

dvN ·(
Ψ(~r1, · · · , ~rN , t1)

∂Ψ∗(~r1, · · · , ~rN , t1)

∂~rk
−Ψ∗(~r1, · · · , ~rN , t1)

∂Ψ(~r1, · · · , ~rN , t1)

∂~rk

)∣∣∣∣
~rk=~r

(2.12)

where Ω∞ represents an infinite three dimensional space for the volume-integration.

Then, the DC current on the surface Si can be written as:

〈ISi(t1)〉 =

∫
Si

〈 ~Jc(~r, t1)〉 · d~s (2.13)

From the expressions (2.12) and (2.13), it is clear that once the many-particle wave

function Ψ(~r1, · · · , ~rN , t1) is known, the DC current 〈ISi(t1)〉 of the electron devices is

known as well.

In summary, the prediction of the DC current with the orthodox approach has been

discussed in this subsection. For an ergodic quantum system, the measurement problem

can be relax in the prediction of the DC current in the quantum transport. Since the

time-average of the displacement current goes to zero, in a low frequency (ω → 0) ap-

plication, the measurement of the total (particle plus displacement) current is equivalent

to the prediction of DC behavior of the electronic devices. Therefore, in this section, the

measurement of DC current 〈I〉 in an electron device also represents the prediction of

total current in a low frequency (ω → 0) case. In the following section, I will discuss how

to predict the total current in a high frequency (ω � 0) case.

2.3.2 The Total Current

As we have discussed in Chapter 1, nowadays, the current ITRS roadmap envisions the

state-of-the-art device working at THz range. Such devices are in the frontier between

electronics (dealing mainly with particle current) and electromagnetism (dealing with

displacement current). Therefore, the proper measurement of the displacement current

in a time-dependent quantum simulation is urgently demanded in the prediction of future

devices. Up to here, a natural question appears: how to properly extract the time-

dependent displacement current in an open quantum system?

From a practical computation of point, in the high frequency applications (ω � 0), the

rapid change of total current I(t) in a unique device cannot be captured by the standard

laboratory apparatuses. Similar to the prediction of the quantum noise discussed in
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Section 2.2, any experimental setup that measures the instantaneous current behaves as

a low-pass filter (i.e. the current fluctuations at frequencies higher than the apparatus

cut-off frequency are not measured.) Therefore, the experimentally accessible information

about the instantaneous current is given by the power spectral density of the total current,

S(ω), which is defined as:

S(ω) =

∫ ∞
−∞

R(τ)e−jωτdτ (2.14)

where the autocorrelation function R(τ) is:

R(τ) = lim
T→∞

1

T

∫ T

0

I(t1)I(t1 + τ)dt1 (2.15)

From equation (2.15), one has to note that the prediction of R(τ) requires the knowledge

of the measured current I(t) in almost all time t. The quantum system has to be sequen-

tially measured during the time evolution, where the measurement problem occurs and

even by invoking ergodicity do not simplify its mathematical treatments.

If the system is ergodic [61], the ensemble average version of the autocorrelation

defined in equation (2.15) is rewritten as:

R(t1, t2) =
∑
i

∑
j

Ij(t2)Ii(t1)P
(
Ij(t2), Ii(t1)

)
(2.16)

In general, the autocorrelation function in (2.16) depends only on the time difference

R(t1, t1+τ) = R(τ) with t2 = t1+τ . Finally, using expression (2.14) with R(τ) computed

from equation (2.16), the current power spectral density S(w) in an ergodic system is

obtained. From equation (2.16), let us see what the computational difficulties are if we

compute the total current with the current power spectral density in equation (2.14). The

probability P
(
Ij(t1+τ), Ii(t1)

)
implies a multi-time measurement of the quantum system.

That is, at time t1, a total current operator T̂Ii = ĜIi + D̂Ii being ĜIi the particle current

operator and D̂Ii the displacement current operator, acts on the quantum system, which

gives an eigenvalue of Ii(t1) and the initial quantum state |Ψ〉 collapse into a state |ΨIi〉.
Then, the system evolves freely again until the time t1 + τ when the system is measured

again by using an operator T̂Ij , which gives the eigenvalue Ij(t1 +τ) and eigenstate |ΨIj〉.
The probability P

(
Ij(t1 + τ), Ii(t1)

)
is:

P
(
Ij(t1+τ), Ii(t1)

)
=
∣∣∣〈ΨIj |U(t1+τ, t1)|ΨIi〉〈ΨIi|Ψ(t1)〉

∣∣∣2 = P
(
Ij(t1+τ)

∣∣∣Ii(t1)
)
·P
(
Ii(t1)

)
(2.17)

where U(t1 + τ, t1) is a linear operator, the probabilities P
(
Ii(t1)

)
=
∣∣〈ΨIi|Ψ(t1)〉

∣∣2 is

the probability of obtaining the value Ii when the system is measured at time t1 and

P
(
Ij(t1 + τ)

∣∣Ii(t1)
)

=
∣∣〈ΨIj |U(t1 + τ, t1)|ΨIi〉

∣∣2 is the probability of extracting Ij when
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the system is measured again at time t1 + τ . In the computation of P
(
Ij(t1 + τ), Ii(t1)

)
,

two different laws—the Schrödinger equation and the collapse law—are required. The

probability P
(
Ij(t1 + τ)

∣∣Ii(t1)
)

=
∣∣〈ΨIj |U(t1 + τ, t1)|ΨIi〉

∣∣2 in equation (2.17) represents

multi-time measurement, where the measurement problems discussed in Subsection 2.1.1

dramatically appear.

In the previous development, we have used |ΨIi〉 as the eigenstates of the particle

current operator ĜIi presented in (2.11) without discussing the practical problems that

appears when trying to give a more detailed information about |ΨIi〉. Such detailed

information of |ΨIi〉 is required to compute the probabilities in (2.17). If we are only in-

terested in ensemble values of the particle current (not in the time correlations mentioned

above) such technical problems can be ignored. From expressions (2.12) and (2.13), the

ensemble value of the particle current 〈IpSi(t1)〉O at one particular time (without previous

measurements) is given by:

〈IpSi(t1)〉O =

∫
Si

〈 ~Jc(~r, t1)〉 · d~s (2.18)

The technical problems mentioned above in the proper description of the eigenstates

associated to the current operators are even more dramatically present when dealing with

displacement currents. To elaborate such discussion let us first compute the ensemble

value of the displacement current at one particular time (without previous measurements)

as 〈IdSi(t1)〉O, whose expression can be obtained from (1.2) in Chapter 1. The vector

field ~E(~r, ~r1, · · · , ~rN , t) can be interpreted as the electric field ‘seen’ by an additional

‘probe’ electron located at position ~r at time t due to a distribution of electrons given by

~r1, · · · , ~rn. The probability at each position is given by the (normalized) many-particle

wave function |Ψ(~r1, · · · , ~rN , t)|2. Thus, the mean value of the electric field is:

〈 ~E(~r, t)〉 =

∫
Ω∞

dv1 · · ·
∫

Ω∞

dvN |Ψ(~r1, · · · , ~rN , t)|2 · ~E(~r, ~r1, · · · , ~rN , t) (2.19)

Then, the orthodox expression of the displacement current 〈IdSi(t)〉O on surface Si at time

t1 (without previous measurements) can be written as [69]:

〈IdSi(t1)〉O =

∫
Si

ε(~r)
d〈 ~E(~r, t)〉

dt

∣∣∣
t=t1
· d~s (2.20)

From the expressions (2.20), it seems easy to find the operator D̂ that provides the

displacement current. Equation (2.20) contains a time-derivation of the electric field
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d〈Ê〉/dt, which can be rewritten as:

d〈Ψ|Ê|Ψ〉
dt

= 〈dΨ

dt
|Ê|Ψ〉+ 〈Ψ|dÊ

dt
|Ψ〉+ 〈Ψ|Ê|dΨ

dt
〉 = 〈Ψ|[Ê, Ĥ]|Ψ〉+ 〈Ψ|dÊ

dt
|Ψ〉 (2.21)

where Ĥ is the Hamiltonian that determines the evolution of Ψ. It seems obvious that

the displacement current operator can be written as D̂ = [Ê, Ĥ] + dÊ
dt

. The computation

of the eigenstates of this operator D̂ are, at least, equally intriguing as the eigenstates

of the particle current. Without the eigenstates of the particle current and displacement

current operators, the evaluation of time-correlations becomes almost impossible. We

can compute ensemble values (measured only one time), but we cannot compute time

correlations to get noise and power spectral densities. The alternative to overcome this

problem seems clear. Let us look for a solution of the quantum measurement problem

where such operators (and its associated eigenvalues) are not needed. As discussed in the

previous subsections of this chapter, such solution is the Bohmian theory (see Appendix

A).

2.4 Prediction of DC and Total Currents with the

Bohmian Approach

In the Bohmian theory, the N -particle system is described by the many-particle wave

function Ψ(~r1, · · · , ~rN , t) plus the Bohmian trajectories {~rj1[t], · · · , ~rjN [t]}. As we have

discussed in Appendix A, in principle, any measured quantity is simply calculated as a

function of the actual particle positions over an infinite ensemble of trajectories. What

really matters in the computation of an expectation value of the quantum system are only

the trajectories of the Bohmian particles (not the wave function). Due to the second pos-

tulate (quantum equilibrium hypothesis) and the local continuity equation, at any time t,

the probability density can be reproduced with an infinite ensemble of Bohmian trajec-

tories |Ψ(~r1, · · · , ~rN , t)|2 = lim
W→∞

1
W

W∑
j=1

N∏
k=1

δ
(
~r−~rjk[t]

)
where the trajectories are obtained

from the many-particle Schrödinger equation. A great simplification can be obtained

when using the (single-particle) equation of motion of a conditional wave function, which

avoids an explicit solution of the many-particle Schrödinger equation. A mathematical

description of the equation of motion of the conditional wave function can be found in

Appendix A. From a computational point of view, in the prediction of the Bohmian

trajectories, an approximation for the interaction between the electron in the measured

quantum system (for instance, the active region in electron devices) and the measuring

apparatus (ammeter, cables, the environment, etc in a whole circuit) is needed. Such ap-

proximation, however, is only technical (without great implications) because there is no
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collapse law in the Bohmian theory and the measurement process is treated as any other

many-body interaction, where approximations are routinely accepted. In the following,

I explain briefly the algorithm to obtain the Bohmian trajectories {~rj1[t], · · · , ~rjN [t]} by

using the conditional wave function:

• Step 1: At the initial time t0, define the initial conditional wave function φa(~ra, t0) =

Ψ(~ra, ~rb[t0], t0) and the initial position ~ra(t0) for a = 1, · · · , N particles. This is the

stochastic injection model will be discuss in Chapter 3.

• Step 2: At each time step dt, solve the following N charge densities and associated

N potential Ua(~ra, ~rb[t], t) equations:

ρa
(
~ra, ~rb[t], t

)
=

N∑
k=1
k 6=a

q · δ
(
~ra − ~rk[t]

)
(2.22)

∇2
~ra

(
ε(~ra) · Ua(~ra, ~rb[t], t)

)
= ρa

(
~ra, ~rb[t], t

)
(2.23)

Instituting theN potential profiles andN educated guesses of potentialsGa(~ra, ~rb[t], t)

and Ja(~ra, ~rb[t], t), the N single-particle pseudo-Schrödinger equations are solved

i~
∂φa(~ra, t)

∂t
=

(
− ~2

2m

∂2

∂~r2
a

+Ua(~ra, ~rb[t], t)+Ga(~ra, ~rb[t], t)+iJa(~ra, ~rb[t], t)

)
φa(~ra, t)

(2.24)

to obtain the N conditional wave functions.

• Step 3: compute the next position ~ra[t+ dt] using the equations:

va(~ra, t) =
Ja(~ra, t)

|Ψ(~ra, ~rb[t], t)|2
(2.25)

~ra[t] = ~ra[t0] +

∫ t

t0

va(~ra[t
′], t′)dt′ (2.26)

where the particle current density Ja(xa, t) is defined as (also the standard quantum

definition of the expectation value of the particle current density):

Ja(~ra, t) = i
~

2m

(
Ψ(~ra, ~rb[t], t)∇~raΨ∗(~ra, ~rb[t], t)−Ψ∗(~ra, ~rb[t], t)∇~raΨ(~ra, ~rb[t], t)

)
(2.27)

• Step 4: Repeat the same algorithm (Step 1 to Step 3) for an infinite ensemble of

experiments j = 1, · · · ,W with W →∞. Each experiment includes N trajectories
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~rjk[t] for k = 1, · · · , N with different initial positions, to ensure:

|Ψ(~r, t)|2 = lim
W→∞

1

W

W∑
j=1

N∏
k=1

δ(~r − ~rjk[t]) (2.28)

at any time t (also including the initial time t0) when ergodicity is taken into

account in the quantum system.

Once the Bohmian trajectories {~rj1[t], · · · , ~rjN [t]} with j = 1, · · · ,W for the many-particle

quantum system are known, the computation of the electrical current (DC, AC, noise,

etc.) follows very simple receipts. The reader will realize that these receipts are exactly

those used in classical modelling of electron devices. In a particular experiment j, the

Gauss equation related the electrical field seen by an additional Bohmian ‘probe’ at

position ~r and time t can be written as:

~∇ ·
(
ε(~r) ~Ej(~r, t)

)
= q

N∑
k=1

δ(~r − ~rjk[t]) (2.29)

As an example, if the boundary conditions are an electric field equal to zero at infinite,

the solution of the Gauss equation gives the electric field at position ~r and time t, as:

~Ej(~r, t) =
1

4πε(~r)

N∑
k=1

q
~r − ~rjk[t]
|~r − ~rjk[t]|3

(2.30)

In typical electron device scenarios, a numerical solution of (2.29) is required. Once the

electric field ~Ej(~r, t) is known, we can compute the displacement current associated to

the experiment j on a particular surface Si as [69, 70]:

Id,jSi,B(t) =

∫
Si

ε(~r)
d ~Ej(~r, t)

dt
· d~s (2.31)

Identically, the particle current associated to electrons crossing the surface Si in the j

experiment can be trivially written as [69, 70]:

Ip,jSi,B(t) =

∫
Si

N∑
k=1

q~vjk[t]δ(~r − ~r
j
k[t]) · d~s (2.32)

Finally, the total current is the sum of the displacement plus the particle currents:

IjSi,B(t) =

∫
Si

ε(~r)
d ~Ej(~r, t)

dt
· d~s+

∫
Si

N∑
k=1

q~vjk[t]δ(~r − ~r
j
k[t]) · d~s (2.33)
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Once we know the time-dependent total current IjSi,B(t), associated to one j ex-

periment, the DC, AC and noise current can be just computed averaging over all j-

experiments. Technically, in numerical simulations, instead of repeating numerically the

experiment in the electron device many times, a unique numerical simulation is con-

ducted in the electron device during a time long enough (electrons entering and leaving)

so that many different scenarios are considered in such unique experiment. For example,

by using the expression (2.8), the DC current on the surface Si is extracted by the time

averaging IjSi,B(t) in one experiment j:

〈ISi(t)〉 = lim
T→∞

1

T

∫ T/2

−T/2
IjSi,B(t)dt = lim

T→∞

1

T

∫ T/2

−T/2

∫
Si

N∑
k=1

q·~vk
(
~rjk[t]

)
δ
(
~r−~rjk[t]

)
·d~s (2.34)

where we have used that the time-average of displacement current is zero.

Next, let us see what is the mean value of the displacement and particle currents

in equations (2.31) and (2.32), and how it related to the mean values computed from

expressions (2.20) and (2.18) with the orthodox approach. The ensemble values of the

displacement 〈IdSi(t)〉B and particle 〈IpSi(t)〉B currents at any time t in the Bohmian

approach are:

〈IdSi(t)〉B =
1

W

W∑
j=1

Id,jSi,B(t) =
1

W

W∑
j=1

∫
Si

ε(~r)
d ~Ej(~r, t)

dt
· d~s (2.35)

〈IpSi(t)〉B =
1

W

W∑
j=1

Ip,jSi,B(t) =
1

W

W∑
j=1

∫
Si

N∑
k=1

q~vjk[t]δ(~r − ~r
j
k[t]) · d~s (2.36)

If the quantum system is only measured once at time t1, the ensemble values of the

displacement and particle currents computed from (2.35) and (2.36) in the Bohmian ap-

proach are equivalent to that measured from (2.20) and (2.18) in the orthodox approach.

However, if the system has to be measured, at least, two times (for example, in the high

frequency scenario), then the advantages of the Bohmian approach become evident.

The reader can wounder now why the autocorrelation of the current at two different

times, t and t+τ , cannot be computed from the unproblematic orthodox values 〈IpSi(t)〉O
and 〈IpSi(t+ τ)〉O. We explain why such option is wrong below. If we use the expressions

(2.20) and (2.18) to compute the currents at time t+ τ , then, the probability P
(
Ij(t1 +

τ), Ii(t1)
)′

in the autocorrelation (2.16) becomes:

P
(
Ij(t1 + τ), Ii(t1)

)′
=
∣∣∣〈ΨIj |U(t1 + τ, t1)|Ψ(t1)〉〈ΨIi|Ψ(t1)〉

∣∣∣2 = P
(
Ij(t1 + τ)

)
·P
(
Ii(t1)

)
(2.37)
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which is dramatically different from the probability P
(
Ij(t1 + τ), Ii(t1)

)
computed from

the expression (2.17). In fact, in the expression (2.37), only the Schrödinger equation

is required, which clearly shows why it is wrong: no measurement collapse in the quan-

tum system in the middle time appears. On the contrary, the Bohmian solution can

safely compute the autocorrelation of the current without the need to know the correct

displacement current operator D̂ or its eigenstates.

In summary, a comparison between the orthodox and Bohmian approaches is made

in the prediction of total current for an electronic device. We have emphasized the

advantages that the Bohmian computation has over the orthodox ones when tackling the

many-body problem and the quantum measurement problem. The fact that Bohmian

mechanics do not require the knowledge of the displacement current operator and its

eigenvalue is a great numerical advantage for the reliable computations of high frequency

performances of nanoscale electron devices.
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Chapter 3

Stochastic Injection of Electrons

3.1 Introduction

A closed quantum system can be fully described by a many-body wave function Ψ(~r, t) =

〈~r|Ψ(t)〉, which is ruled by the unitary, time-reservible and linear Schrödinger equation

(1.9) if the initial state is well known. As we have explained in Chapter 1, due to

the many-body problem, one has to reduce the degrees of freedom of the system. By

internally and externally opening the closed system, we end with an open system. We

partition the closed system into a system of interest (named open system, for example,

the device active region) and everything else (the environment).

A closed quantum system can be fully described by a many-body wave function

Ψ(~r, t) = 〈~r|Ψ(t)〉, which is ruled by the unitary, time-reversible and linear Schrödinger

equation (1.9) if the initial state is well known. As we have explained in Chapter 1, due

to the many-body problem, one has to reduce the degrees of freedom of the system. By

internally and externally opening the closed system, we are interested in dealing with an

open system, that is, partitioning the closed system into a system of interest (named open

system, for example, the device active region) and everything else (the environment)

In order to have a fully understanding of the effect of the boundary conditions1 (also

called electron injection model here) on the open system, let us start by discussing a

closed system by decomposing the many-body wave function as |Ψ(t)〉 =
∑

j pj(t)|ψj〉
and describing the closed system with the density matrix operator ρ̂(t), which is:

ρ̂(t) = |Ψ(t)〉〈Ψ(t)| =
∑
i

∑
j

pi(t)p
∗
j(t)|ψi(t)〉〈ψj(t)|, (3.1)

where pj(t) = 〈ψj|Ψ(t)〉 specifies the probability that the system described by the pure

state |ψj〉. The time evolution of the density operator ρ̂(t) is given by the so-called

1In fact, the boundary condition enter the simulation of electronic devices at two levels: in the solution
of Poisson’s equation and in the carrier injection. In this part, unless otherwise specified, we talk about
the boundary conditions in the carrier injection.

41
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Liouville-von Neumann equation:

∂ρ̂(t)

∂t
=

1

i~
[Ĥ, ρ̂(t)] ≡ L[ρ̂(t)], (Closed quantum system), (3.2)

where Ĥ is the Hamiltonian of the closed system, and L is the Liouville superopera-

tor. Under the typical effective mass approximation, the equation (3.2) in the position

representation becomes:

i~
∂ρ(~r, ~r′, t)

∂t
= − ~2

2m∗

[
∂2

∂~r2
− ∂2

∂~r′
2

]
ρ(~r, ~r′, t) + [U(~r)− U(~r′)]ρ(~r, ~r′, t), (3.3)

where U(~r) is the Coulomb interactions and m∗ is the effective electron mass. The spatial

boundary conditions for an closed system are assumed to be unproblematic. For example,

one can assume that ρ(~r, ~r′, t)→ 0 when ~r → ±∞ and ~r′ → ±∞.

3.1.1 Irreversible Boundary Conditions for Open System

An approach to model the behaviour of the open system is to apply the Liouville-von

Neumann equation (3.2) to a finite spatial domain representing the open system (for

example, the active device region) and included the boundary conditions that model

the openness of the environment [45, 71]. A large list of various approaches have been

proposed to deal with the boundary conditions [45, 46, 66, 72–76].

We assume that the open system is sandwiched between two electric contacts, which

are located at positions ~rb,l = −~rb and ~rb,r = ~rb. The subscripts “b, l” and “b, r” represent

the left and right spatial boundaries. As we have discussed in Chapter 1, the closed system

is internally and externally opened. We have shown that the fact that we open internally

the system (by neglecting the degrees of freedom of the atoms/ions for example) and we

later reintroduce the effect of the electron-ion interaction into the equation of motion

of the open system, implies that a time irreversible evolution of the open system[45,

71]. That is, an additional collision term is included in the Liouville-von Neumann

equation (3.2) to take into account the electron-phonon or electron-impurity interactions.

Note that analysis of the dissipative interactions within the open system will appear in

Chapter 4. If the external openness of the environment is to be modeled by spatial

boundary conditions, these boundary conditions should preserve the time irreversible of

the dynamics of the open system. A physical picture to obtain such time-irreversibility

in the open system model is the following:

• The distribution of particles flowing into the open system depends upon the prop-

erties of the reservoirs to which the system is connected.
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• The distribution of particles moving out of the open system depends on the stochastic(time-

irreversible) equation of motion of the system.

Moreover, the behaviour of the reservoirs connected to the opens system (a two terminal

device is assumed along this chapter) is analogous to that of an optical blackbody [45].

However, for the sake of simplicity and to better understand the role played by the

boundary conditions, in this chapter, we assume that there is no damping within the

open system.

The practical implementation of the boundary conditions mentioned above can be

easily done for (conditional) wave packets, since we can fix its initial momentum and

know if they are entering or leaving the open system. However, the implementation of

such boundary conditions with the density matrix ρ(~r, ~r′, t) is quite complicated since

we do not have the detailed information of the momentum of each electron. The Wigner

function provides, somehow, such momentum information.

3.1.2 Frensley Boundary Conditions for Open System

Based on the Wigner function formalism, starting from the pioneering work by Frensley

[45], the quantum transport simulations of open systems have been performed by coupling

the Wigner transport expression (3.5) with the irreversible boundary conditions. In order

to distinguish between particles flowing into and those flowing out of the system, it is

relevant to change from the density matrix formalism ρ(~r, ~r′, t) to a Wigner picture

FW (~r, ~p) in phase space (~r, ~p) being ~p the particle momentum. The Wigner distribution

is defined as the Weyl-Wigner transform of the density matrix [77]:

FW (~r, ~p) =

∫
d~r′ 〈~r +

~r′

2
|Ψ〉〈Ψ|~r −

~r′

2
〉e−i~p~r′/~, (3.4)

Then, the Liouville-von Neumann equation becomes:

∂FW (~r, ~p)

∂t
= LW [FW (~r, ~p)] (Closed system), (3.5)

Under the effective mass approximation, the term LW [FW (~r, ~p)] is given by:

LW [FW (~r, ~p)] = − ~p

m∗
∂FW (~r, ~p)

∂~r

− 1

~

∫ ∞
−∞

d~p′
∫ ∞
−∞

d~r′
1

2π~
sin
(
(~p− ~p′)~x′/~

)[
U(~r +

~r′

2
)− U(~r −

~r′

2
)
]
FW (~r, ~p′). (3.6)

From the expressions (3.5) and (3.6), it is clear that the Liouville-von Neumann equation

is of first order with respect to the position ~r and does not contain derivative with respect
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Figure 3.1.1: Possible boundary conditions for the Liouville-von Neumann equation (3.5)
in phase space. We only need to specify one boundary value (indicated by heavy lines)
for the position. It can be at position ~r = −~rb in (a), or at position ~r = ~rb in (b),
or divided between to spatial boundaries, related to the sign of the momentum in (c)
and (d). In the vertical axis, positive momenta are on the top and negative ones in
the bottom. According to the concept of the irreversible boundary conditions, (c) is the
proper one need for the open system.

to momentum ~p. From a mathematical point of view, in order to have a unique solution

of equation (3.5), we need only one boundary value of the Wigner function at only one

particular position ~rb. Assuming the open system region is bounded by ~rb,l = −~rb and

~rb,r = ~rb, all kinds of appropriate boundary conditions for equation (3.5) are plotted in

figure 3.1.1. As we have discussed in the previous subsection, an irreversible boundary

condition describes a picture that particles entering the device active region depend only

on the reservoirs and that the particles leaving the device depend on the equation of

motion of the device. Therefore, the figure 3.1.1(c) is the proper boundary condition for

the system. We specify the value for the spatial boundaries:

F b
W (~p) ≡ F b

W (~rb(~p), ~p) =

{
F b
W (−~rb, ~p), for ~p > 0

F b
W (~rb, ~p), for ~p < 0

(3.7)

where ~rb(~p) = −sign(~p) ·~rb. In an electronic device, F b
W (−~rb, ~p) is the distribution associ-

ated to the left reservoir of the system, F b
W (~rb, ~p) is the distribution of the right reservoir

of the system. Within such boundary value F b
W (~rb(~p), ~p), the mathematical solution of the
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Liouville-von Neumann equation in steady state conditions (time-independent picture)

can be written as:

FW (~r, ~p) = F nb
W (~r, ~p) + F b

W (~rb(~p), ~p) (3.8)

where the superindex “nb” denotes that F nb
W (~r, ~p) is the homogeneous solution of the

Liouville-von Neumann equation without boundary conditions, and F b
W (~rb(~p), ~p) is the

particular solution given by the values in equation (3.7).

For an open system, where the Wigner function is limited to the bounded region Ω of

the phase space in 3.1.1, we can deduce the equation of motion of the Wigner function

of the open system from the Wigner function of the closed system in (3.5). We define

FW,0(~r, ~p) = FW (~r, ~p)Θ(~r+~rb)Θ(~rb−~r)Θ(~p+ ~pb)Θ(~pb− ~p) where ±~pb are the boundaries

in the momentum. We introduce this Wigner function bounded in the region Ω in to

the transport equation in (3.5). Since there is no momentum derivatives and the spatial

derivative of Θ(~r + ~rb) is just a delta function at the spatial boundary, including the

appropriate boundary conditions in (3.7), we get:

∂FW (~r, ~p)

∂t
= LW [FW (~r, ~p)] + δ(~r − ~rb(~p))~vin(~p)F b

W (~rb(~p), ~p) (Open system) (3.9)

where we assume ~vin(~p) = d~r/dt denotes the incoming part of particle velocity in the

transport direction. For particles exiting the device active region Ω, the group velocity

~vin(~p) is always equal to zero. On the contrary, for electrons entering the device ac-

tive region, the velocity ~vin(~p) is always different from zero. The irreversible boundary

conditions are illustrated in figure 3.1.1 (c).

We notice that this irreversible boundary conditions discussed here are mathemati-

cally different from those employed in the Landauer approach, where both the particles

both entering and leaving the volume Ω) are specified [66]. The Landauer boundary

conditions are perfectly valid for system without collisions, but not in systems where the

collisions introduce time-irreversability.

In the following, we will have an explicit description of the effect of the source term

δ(~r − ~rb(~p))~v
in(~p)F b

W (~rb(~p), ~p) of the spatial boundaries on the dynamical equation of

the open system Ω, in particular, the problem of application the boundary conditions to

an open system described with the density matrix formalism in steady state conditions

(∂FW (~r, ~p)/∂t = 0).

3.1.3 Limitations of the Frensely Boundary Conditions

We discuss here some limitations of the Frensley boundary conditions mentioned above.

In particular, we discuss the limitations when applied to a time-independent system

and the limitations that appears because of the continuous (non-discrete) injection of
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electrons.

Limitations because of Using a Time-Independent Picture

In an open system, the irreversible boundary conditions give the value of the distribution

function inside the device active region Ω at the initial time t0 as well as the value of the

incoming particle distribution on the boundaries ~rb at any later time t. First of all, to

better clarify the interplay between the volume Ω and the boundary conditions, let us

consider a simply case, i.e., there has no potential barrier in the volume Ω. We inject from

the left side −~rb of volume Ω a source term δ(~r−~rb(~p))~vin(~p)F b
W (~rb(~p), ~p) and investigate

the steady state (∂FW (~r, ~p)/∂t = 0). Then, the equation of motion (3.9) is reduced to:

∂FW (~r, ~p)

∂t
= − ~p

m∗
∂FW (~r, ~p)

∂~r
+ δ(~r − ~rb(~p))~vin(~p)F b

W (~rb(~p), ~p) = 0 (3.10)

Integrating both side from initial position −~r+
b (avoid the point ~r = −~rb) to ~r and

assuming the value of FW (~r, ~p) on the position ~r = −~r+
b (adjacent to the position −~rb)

equals F b
W (−~rb, ~p), finally, we obtain:∫ ~r

−~r+b

− ~p

m∗
∂FW (~r, ~p)

∂~r
d~r +

∫ ~r

−~r+b

δ(~r − ~rb(~p))~vin(~p)F b
W (~rb(~p), ~p)d~r

= − ~p

m∗
(
FW (~r, ~p)− FW (−~r+

b , ~p)
)

+

∫ ~r

−~r+b

δ(~r + ~rb)~v
in(~p)F b

W (−~rb, ~p)d~r

= − ~p

m∗
(
FW (~r, ~p)− F b

W (−~rb, ~p)
)

+ 0 = 0 (3.11)

Therefore, the solution of the Wigner transport equation (3.10) is:

FW (~r, ~p) = F b
W (−~rb, ~p) (3.12)

which means that the distribution F b
W (−~rb, ~p) can be moved from the left side of the

volume Ω to the right side if the open system has no potential barrier. However, the

problem appears when a potential barrier is included. See figure 3.1.2. In a time-

independent picture, one expect that the the density matrix is build from Hamiltonian

eigenstates. Therefore, trying to inject a plane wave from the left (which is not an

eigenstate of a system with barrier) implies that we are, in fact, injecting unexpected

waves from the right.

The time-independent picture of the injection model in equation (??) shows that the

injection of a particle with well-defined momentum ~p is described by a coherent superpo-

sition of states α1 and α2, which is different with the concept of ideal reservoir—injection

from a thermal (diagonal) charge reservoir. For equilibrium, the generic scattering state
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Figure 3.1.2: Schematic representation of injection a plane wave with momentum ~pα1

from the left reservoir, which is a superposition of the left and right scattering states in
a particular one-dimensional case. Imaging a barrier is located at position ~r0 = 0, t(α1)
and r(α1) are the transmission and reflection coefficients for wave vector ~pα1 , respectively.

α1 on the left side of volume Ω comes out to be a superposition of positive momentum ~pα1

and negative momentum −~pα1 . Consequently, the picture of injecting a plane-wave with

momentum ~pα1 > 0 from the left contact is almost identical to that of the superposition

of scattering states injected from both left and right contacts, which can be seen from

figure 3.1.2. An electron injected from the left contact coupled to left as well as to right

scattering states, which is unphysical in a quantum-mechanical system.

The solution to this problem of the Frensley boundary conditions, due to a time-

independent model, is simple solved by using a time-dependent model. Then, a wave

packet can be close to a plane wave in the left reservoir at the initial time (without

unexpected injections form other sides) and such wave packet will become reflected and

transmitted in a latter time.

Limitations because of continuous injection

In the following subsection, we will use SISOW (an acronym for the Stationary Incoherent

Superposition of Wave packets) to describe the source term of the boundary conditions for

the open system [78]. By injecting a constant flux of time-dependent wave packets, all the
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problems (i.e., non-diagonal, electrons injected from left couples to left as well as to right

scattering states) discussed in the previous part will disappear. Such wave packets can

be understood as conditional wave functions (see Appendix A) associated to individual

electrons. The dynamical information of states that constructed the density matrix of the

open system are well known. Providing all the detailed dynamical information known,

the irreversible collisions can be straightforwardly implemented in the open system. The

dissipative scattering in a quantum transport will be investigated in Chapter 4.

In addition, the continuous injection implicit in the Frensley model is also a handicap

for the correct modeling of quantum transport. We know that the charge of electrons

is a constant and discrete magnitude, not a continuous one, of value q. Therefore, we

expect that the injection process has to be done with quantized values of charge q at each

time an electron is entering. We cannot inject 0.5q values of the charge. Our injection

model with a detailed information of the injection wave packets allows us to inject one

electron q or not inject it. The average value will be obviously 0.5q, but our injection

model will allow us to compute DC, AC and also noise due to the fluctuations of the

injected electron (thermal noise).

3.1.4 SISOW as irreversible Boundary Conditions in Time-Dependent

Picture

We define a time-dependent wave packet Ψ~kc,t0
(~r, t) = 〈~r|Ψ~kc,t0

(t)〉 which is a linear

superposition of Hamiltonian eigenstates |ψα〉 as:

|Ψ~kc,t0
(t)〉 =

∑
α

C
~kc
α e
−iEα(t−t0)

~ |ψα〉 (3.13)

where the coefficient C
~kc
i = 〈ψα|Ψ~kc,t0

(t0)〉 with the superindex “~kc” represents the center

momentum of the wave packet, Eα is the kinetic energy of the state |ψα〉 and t0 is

the tine the wave packet entering the open system. The wave packet is described by

the conditional wave functions (see Appendix A). Now, we describe the reservoir in the

density matrix formalism:

ρ̂ =
∑
~kc

f(~kc)|Ψ~kc,t0
(t)〉〈Ψ~kc,t0

(t)| (3.14)

where f(~kc) satisfy Fermi-Dirac statistics to take into account the quantum statistics in

the quantum-mechanical system. Substituting the wave packet in equation (3.13) into
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the density matrix, we obtain:

ρ̂ =
∑
~kc

f(~kc)
∑
α

C
~kc
α e
−iEα(t−t0)

~ |ψα〉
∑
β

C
~kc∗
β ei

Eβ(t−t0)
~ 〈β|

=
∑
~kc

f(~kc)
∑
α

∑
β

C
~kc
α C

~kc∗
β e−i

(Eα−Eβ)t

~ ei
(Eα−Eβ)t0

~ |ψα〉〈ψβ| (3.15)

In the macroscopic scenario, the carrier injection picture can be considered as a constant

flux of identical time-dependent wave packets with each one leaving the reservoir and

entering the open system at different time t0. The probability of the electron entering

the volume Ω or not dependents on f(~kc), which satisfies the Fermi-Dirac distribution.

The time-average of the density matrix ρ̂ approaches to:

〈ρ̂〉 ≈ 1

2T

∫ T

−T
dt0
∑
~kc

f(~kc)
∑
α

∑
β

C
~kc
α C

~kc∗
β e−i

(Eα−Eβ)t

~ |ψα〉〈ψβ|ei
(Eα−Eβ)t0

~

=
∑
~kc

f(~kc)
∑
α

∑
β

C
~kc
α C

~kc∗
β e−i

(Eα−Eβ)t

~ |ψα〉〈ψβ|
sin
(
(Eα − Eβ)T/~

)
(Eα − Eβ)T/~

(3.16)

The equation (3.16) is the definition of the SISOW, which is quasi-diagonal in the time-

independent picture. The SISOW describes a equilibrium system.

In the microscopic scenario, the SISOW describes a non-equilibrium system. For

example, at time t0, the wave packet will either succeed in entering the system with

f(~kc) equals to one or fail to enter with f(~kc) equals to zero. As a consequence, in the

time-dependent picture, the SISOW introduce the thermal noise of injecting electron

into the open system. On the contrary, the boundary conditions in equation (3.7) does

not provide such enrich information. For example, in Frensley’s paper, he assumed the

boundary value to be F b
W (−~rb, ~p) = (m∗/(π~2β)) × ln[1 + e−β(~p2/(2m∗)−µ)] being µ the

Fermi energy and β = 1/(kBΘ) with kB the Boltzmann’s constant and Θ the absolute

temperature [45]. In a time-independent picture, this boundary condition gives the same

result as that of SISOW, which satisfies the Fermi-Dirac distribution. However, in the

time-dependent picture, it does not provide the thermal noise.

3.2 Electron Injection Model for 2D Materials

3.2.1 2D Materials with a Parabolic Dispersion Relation

As we have discussed previously, the electron injection model (boundary conditions) is

essentially important to affect the performance of the device. In this section, the electron

injection model for the nanoscale devices with parabolic dispersion relations of carriers in
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the channel material (for example the Silicon) is explicitly discussed. For the purpose of

investigating how the energy dispersion relations affect the injection model in the electron

transport simulation of nanoscale transistors, firstly, a 2D material with parabolic band

structure is considered and the details (for instance, the number of particles needed to

be injected at each time step, the velocity of each new state of the particles, and so on)

of carrier injection will be discussed.

Phase-Space Density

The parabolic dispersion relations in the 2D material is given by:

E(~k) = E0 +
~2|~k|2

2m∗
= E0 +

~2|k2
x + k2

z |
2m∗

(3.17)

where the m∗ is the electron effective mass, E0 is assumed to be zero, ~k is the wave vector

in 2D (x-z) plane with kx and kz are respectively wave vectors in the x and z directions

and |~k|2 = k2
x + k2

z . As the consequence of the Pauli exclusion principle, the number of

available states np2D inside the spatial cell x0 < x < x0 + ∆x and z0 < z < z0 + ∆z and

inside the reciprocal cell kx0 < kx < kx0 + ∆kx and kz0 < kz < kz0 + ∆kz is:

np2D = gsgv
∆x∆z∆kx∆kz

(2π)2
(3.18)

where the gs and gv are the spin and valley degeneracies, respectively. The superindex

“p” represents the parabolic band structure.

The ultimate reason the phase-space density of states is limited is because the Pauli

exclusion principle. It can be understood, equivalently, from the exchange interaction

among electrons. Due to the position and momentum uncertainty, each state needs “its

own” volume of the phase-space (equal to 2π) for each pair of the conjugate variables,

for example, one pair of variables ∆x and ∆kx. Owing to the Pauli exclusion principle,

the probability of finding another state close to the first state (inside “its own volume”

of the phase-space) is zero.

Minimum Temporal Separation tp0

We have explicitly computed the maximum number of states np2D in an arbitrary phase-

space cell ∆x∆z∆kx∆kz closed to the contact surface. At any particular time t, all

electrons with wave vector kx ∈ [kx0, kx0+∆kx] inside the cell must attempt to be injected

during the time-interval ∆tp, which is defined as the time needed for the electrons with

velocity component in the transport direction vpx to move a distance ∆x. Therefore, the
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time-interval ∆tp can be written as:

∆tp =
∆x

vpx
=

∆xm∗
~kx

(3.19)

The minimum temporal separation, tp0, defined as the time step between the injection of

two consecutive electrons into the system, can be computed as the time-interval divided

by the number of available carriers in a arbitrary cell:

tp0 =
∆tp

np2D
=

(
gsgv

1

(2π)2

~kx
m∗

∆z∆kx∆kz

)−1

(3.20)

From equation (3.20), it is clear that the minimum temporal separation tp0 is only affect

by the wave vector kx, and an electron with higher kx needs less time injection tp0 to enter

in the system. That is to say, the injection model will inject more electrons with higher

kx than that with lower wave vector. Then, the number Np of attempts of injecting

electrons with wave vector kx during the time interval ∆t is:

Np =
∆t

tp0
= ∆tgsgv

1

(2π)2

~kx
m∗

∆z∆kx∆kz (3.21)

Probability of Injecting N Electrons During τ

In non-degenerate conditions, the injection process for a particular phase-space cell is a

periodic sequence of electrons injected with period tp0, and the injection statistics of the

corresponding k-state obey Poisson distribution in average time. The electrons that are

being injected are only correlated because of the Pauli exclusion principle. Two electrons

in the same states are forced to have a spatial separation, which finally lead to a temporal

separation tp0 after being successfully injected into the system.

In degenerate conditions, for temperature Θ > 0, the possibility of finding or not

an electron in a particular state is uncertain, which obeys the occupation probability.

The injection processes is assumed to follow the Binomial statistics with probability

fsum(E), which explicitly depends on temperature Θ. The probability P i(N, τ)p that N

electrons are effectively injected into a particular cell i adjacent to the contact during a

time-interval τ is defined as:

P i(N, τ)p =
Mp

τ !

N !(Mp
τ −N)!

fsum(E)N(1− fsum(E))M
p
τ−N (3.22)

where Mp
τ is the number of attempts of injecting carriers in a time-interval τ , defined

as a number rounds the quotient τ/tp0 to the nearest natural number towards zero. The

number of injected electrons is N = 1, 2, . . . ,Mp
τ . Note that the electron injection model
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includes the exchange (Fermi) interaction among electrons inside the injection contact,

as well as the exchange interaction among electrons at different contacts.

3.2.2 2D Materials with a Linear Dispersion Relation

Now we change to a material with the linear band structure, for example, the graphene

material, and check how the energy band structure will affect the carrier injection.

Phase-Space Density

The dispersion of mobile electrons in graphene in the first Brillouin zone (BZ) is given

by:

E(~k) = s~vf |~k| (3.23)

where the band index s = +1 is the conduction band (CB) and s = −1 is the valence

band (VB), ~ is the reduced Planck’s constant, vf ∼ 106 m/s is the Fermi velocity of

carriers in graphene, and |~k| =
√
k2
x + k2

z is the wave vector of carriers in the 2D (x-z)

plane of the graphene sheet. The point |~k| = 0, referred to as the “Dirac point” is a

convenient choice for the reference of energy, i.e. E(|~k| = 0) = 0 eV.

In the graphene sheet, the number of available states n2D inside the spatial cell x0 <

x < x0 + ∆x and z0 < z < z0 + ∆z and inside the reciprocal cell kx0 < kx < kx0 + ∆kx

and kz0 < kz < kz0 + ∆kz is:

n2D = gsgv
∆x∆z∆kx∆kz

(2π)2
(3.24)

Each ~k point is twofold spin with the spin degeneracy factor gs = 2, and there are two

valleys in the first BZ (the K and K’ valleys) with the valley degeneracy factor gv = 2.

Deviations from the conical bandstructure are neglected in this work. In the following,

we will only focus on the injection of electron (with s = 1) from the conduction band,

but an analogous expression with band index s replaced by −1 is valid for the hole.

Minimum Temporal Separation t0

Up to now, we have known exactly the maximum number of states in an arbitrary phase-

space cell ∆x∆z∆kx∆kz closed to the contact surface. At any particular time, all states

with wave vector component in transport direction (x direction) kx ∈ [kx0, kx0 + ∆kx] in

a phase-space cell must attempt to be injected during the time-interval ∆t. The ∆t is

defined as the time needed for a carrier with x component velocity vx to travel a distance
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∆x, i.e. ∆t = ∆x
vx

. For a specified linear dispersion E(~k), the carrier velocity is given by:

~v(~k) =
1

~
∇~kE(~k) (3.25)

Then, the x component carrier velocity vx is:

vx =
1

~
× s~vf

kx

|~k|
= svf

kx

|~k|
(3.26)

From the equation (3.26), it is important to emphasize that the x component electron

velocity vx is explicitly dependent on both wave vector component kx and kz, which is

different from the expression in equation (3.19) for the case of materials with parabolic

dispersion. In the parabolic dispersion relation, the electron velocity is vx = ~kx
m∗

, which

is only determined by the kx. Then, the time-interval ∆t can be written as:

∆t =
∆x|~k|
svfkx

(3.27)

The minimum temporal separation t0, between the injection of two electrons from a

particular cell is defined as the time-interval divided by the number of the available

states in the phase-space cell:

t0 =
∆t

n2D

=

(
gsgv

svfkx

(2π)2|~k|
∆z∆kx∆kz

)−1

(3.28)

According to the equations (3.26) and (3.28), an electron injected with larger kz will

obtain a lower velocity in the transport direction. In fact, electrons with lower vx need

more injection time interval t0 to enter into the system. As a consequence, almost all

electrons in graphene are injected closed to the maximum velocity vf . The number of

attempts of injecting electrons, N , during the time interval ∆t is:

N =
∆t

t0
= ∆tgsgv

svfkx

(2π)2|~k|
∆z∆kx∆kz (3.29)

The effect of the material energy spectrum on the number of attempts of injecting

electrons into the system is plotted in figure 3.2.1. As we have discussed in Section 3.2,

in figure 3.2.1(b), only electrons with larger kx are tried to be injected into the system.

However, in the case of material with linear dispersion relations, as shown in figure

3.2.1(a), the majority of injected electrons have smaller kz. As a consequence, most

injected electrons moving in the system at the saturation velocity vf in the transport
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(a) The linear band structure (b) The parabolic band structure

Figure 3.2.1: Number of attempts of injecting electrons computed from equation
(3.28) plotted in (a) and from equation (3.20) in (b) for a particular phase space cell
∆x∆z∆kx∆kz during a simulation time ∆t = 10 ns at 300 K. The parameter m∗ = 0.2m0

being m0 the free electron mass, gs = 2, gv = 2, fermi velocity vf = 5×105m/s, the dimen-
sions of the phase-space cell are selected as ∆z = Lz = 20nm, ∆kx = ∆kz = 3× 106m−1.

direction.

Probability P (N, τ) of Injecting N Electrons During τ

The probability P i(N, τ) that N electrons are effectively injected into a particular cell i

adjacent to the contact during a time-interval τ is defined the same as that in Section

3.2, which is:

P i(N, τ) =
Mτ !

N !(Mτ −N)!
fsum(E)N(1− fsum(E))Mτ−N (3.30)

where Mτ is the number of attempts of injecting carriers in a time-interval τ , defined

as a number rounds the quotient τ/t0 to the nearest natural number towards zero. The

number of injected electrons is N = 1, 2, . . . ,Mτ .

As a simply estimation, we assume a ballistic transport in the electronic device and

compute the (instantaneous) current I taken by each electron when it manage to enter

the device active region. The current I is computed by using the expression I = qvx/Lx

being q the electron charge without sign, vx the electron velocity component and Lx the

distance in the transport direction. As plotted in figure 3.2.2(a), almost all electrons

injected from a contact with linear band structure have the same velocity and carry

the same instantaneous current I. On the contrary, in figure 3.2.2(b), electrons injected

from a parabolic band structure materials have large dispersion in both the velocity and
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(a) The linear band structure
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(b) The parabolic band structure

Figure 3.2.2: Number of electrons as a function of instantaneous current I during a
simulation time τ = 10 ns at temperature Θ = 300 K, with Fermi level Ef = 0.1 eV for
materials with (a) a linear band structure and (b) a parabolic band structure.

instantaneous current I. The current dispersion (noise) of both types of band structures

are dramatically different, which can have relevant effect in the intrinsic behaviour of AC

and noise performances.

3.3 Implementation of the Injection Model into the

BITLLES Simulator

An algorithm for the general injection of electrons with parabolic ε(kx, ky, kz) disper-

sion in nanoscale devices and with (or without) electron confinement for degenerate (or

non-degenerate) conditions is extensively described in the literature[79]. Therefore, in

this part, we will only provide specific attributes to the injection model suitable for the

graphene transistor in BITLLES simulator. Firstly, we will explicitly compute the oc-

cupation probability that a new state of electron with energy E, which will eventually

attempt to inject from the ideal contact into the 2D channel. Generally, the fluctuating

occupancy of the incoming electron at the injection contact, and particularly, the energy

occupation at the opposite of the injection contact associated with a Fermi-Dirac distri-

bution, and the conservation of the momentum projection kz will be investigated. We will

focus on the carrier injection from the source contact. The injection from drain contact

is identical. Then, an algorithm to implement the injection model to the simulator will

be briefly described.

Using the FET transistor nomenclature, source contact for left injection and drain

contact for right injection. Now we consider the Pauli exclusion principle at the injection
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contact, i.e. the source contact. The Fermi-Dirac distribution gives the occupation

probability that a state with energy E exists in thermal equilibrium, as

fs(E) =
1

exp[(E − Efs)/(kBΘ)] + 1
(3.31)

where Efs is the Fermi-level (chemical potential) at the source contact, kB is the Boltz-

mann constant and Θ is the temperature. The electron energy E is related to its wave

vector by the appropriate energy dispersion E(~k).

Due to the peculiar tunneling properties of two-dimensional massless Dirac electrons

in graphene sheet, injections from the contact have to consider carriers from both the

valence band (VB) and the conduction band (CB), which is different from the case in

conventional semiconductors (for example, the Silicon semiconductor). In the literature,

the electrons with positive energy called electrons and with negative energy called holes.

In order to avoid confusing the electron moving in the valence band with the hole, in

our injection model, we do not use the name hole but directly inject electrons in VB

(electrons with negative energy) and in CB (electrons with positive energy) 2.

In graphene sheet with the linear dispersion relations, it is convenient to choose the

Dirac point which has energy E(|~k| = 0) = 0 as the reference of energy. At the drain

contact, for the electrons with positive energy E = E(~k), only the electrons with kx < 0

are considered, and the energy distribution is described by the Fermi-Dirac distribution.

On the contrary, for the electron with negative energy moving in the VB, the energy

distribution is also determined by the Fermi-Dirac distribution, but only the electrons

with kx > 0 are considered. The electrons injected from the drain contact have the energy

distribution determined by:

fd(E) =
1

exp[(E − Efd)/(kBΘ)] + 1

{
for E = E(~k) > 0 with kx < 0

for E = E(~k) < 0 with kx > 0

In (or near) equilibrium, according to the Fermi-Dirac distribution, band with all energies

many kBΘ above the Fermi energy Efs will be unoccupied. Furthermore, below the bands

that all energies many kBΘ less than Efs are completely filled. Thus, we do not need

to consider infinitely many carriers of different types, but only those in bands within a

few kBΘ of, or lower than Fermi level Efs. This restriction can be utilized as one of the

following selected rules for the maximum wave vector in the injection model.

2It must be emphasized that pictures of electron and hole can not be mixed within a given band, i.e.,
if one washes to regards electrons as carrying the current, then the holes make no contribution; if one
wishes to regard the hole as carrying the current, then the electrons make no contribution.
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Correlation Between the Source and Drain Contact

It is reported[80, 81] that electrons in the graphene approach ballistic transport. The

total energy E for an electron moving inside graphene channel satisfies the fundamental

conservation law. Assuming that the applied fields do not cause interband transitions,

it is reasonable to consider that each band has limitation to contain the maximum num-

ber electrons. This can be explained equivalently from a quantum mechanical point of

view. As a consequence of the Pauli exclusion principle at the contact and inside the

active region, in the 2D graphene case, each electron needs a volume for itself in a four-

dimensional phase-space. Given any region of four-dimensional phase-space Ω, on the

condition that no two electrons can occupy the same state, the Ω contains a maximum

number of electrons allowed. The number of electrons in the Ω region can only be re-

duced if there are some incompletely filled states in the band for those electrons to move

into. The probability that a state at energy E will be unoccupied at the drain contact in

thermal equilibrium is:

fsd(E) =

(
1− 1

exp[(E − Efd)/(kBΘ)] + 1

)Ct

(3.32)

where the exponent Ct = 1 for the case of ballistic transport and Pauli exclusion principle

included, the exponent Ct = 0 for non-ballistic transport. On the condition that the

correlation between the source and drain contact is considered, before an electron is

attempted to inject from the source contact into the system, one need to make sure that

when the electron move to the drain contact, there has a vacancy for the electron to

move into, because it is no sense to have more than one electron occupy one state. The

probability distribution is determined by equation (3.32).

Conservation of Momentum Projection kz

When considering a massless Dirac particle incident on a potential barrier that is transla-

tionally invariant in the z direction (perpendicular to the transport direction) V (x, z) =

V (x), in addition the conservation law of electron energy E as a result of time trans-

lational invariance, the conservation of the momentum projection kz is also need to be

considered as a result of translational invariance along z dimension.

Let us give an example how the conservation of momentum projection kz affect our

injection model. Considering one electron with energy E injected successfully from the

source contact into the system. Assuming that the electron transmitted the potential

barrier and finally manage to arrive at the drain contact. Due to the applied voltage

drop VDS cross the system, the electron has energy E+ qVDS after it move into the drain

contact. According to the linear dispersion relation in graphene sheet, the maximum
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absolute value of momentum projection kz that the electron can obtain is |kz|max =

|(E + qVDS)/(~vf )|, being ~ the reduced Planck’s constant and vf the Fermi velocity

of particles in graphene sheet. If one electron is injected at the source contact with

|kz| > |kz|max, according to the general conservation law of total energy and momentum

projection kz, at the drain contact, no state is extant to allow the electron to move into.

therefore, at the source contact, owing to the conservation law of momentum projection

kz, the energy distribution for an electron with energy E can be described as:

Pkz =

(
1−H

(
|kz| − |kz|max

))Ck

(3.33)

where H(|kz| − |kz|max) is a Heaviside step function and the maximum absolute value of

kz is calculated from the formula |kz|max = |(E + qVDS)/(~vf )|. The exponent Ck = 1

for the case of the channel with linear dispersion relations and Ck = 0 for other cases.

Up to now, three fundamental laws, which we utilize to explicitly compute the occu-

pation probability fsum(E) for an electron with energy E, have been briefly described. At

the source contact, the fsum(E) is a product of the distributions given in this subsection

as:

fsum(E) = fs(E)fsd(E)Pkz =
1

exp[(E − Efs)/(kBΘ)] + 1

×

(
1− 1

exp[(E − Efd)/(kBΘ)] + 1

)Ct(
1−H

(
|kz| − |kz|max

))Ck

(3.34)

The occupation probability formula fsum(E) in equation (3.34) is more general than the

expression in equation (3.31), which was used as the energy distribution for our previous

injection model[79]. The Fermi-Dirac distribution in equation (3.31) is a more general law

used in most nanoscale simulators. The other two additional laws in equations (3.32) and

(3.33) are options in the improved injection model. In the case of an electron with energy

described by the linear dispersion expression and ballistic transport, the two additional

laws are valid (i.e. the exponents Ct = 1 and Ck = 1). Otherwise, the value for the terms

fsd(E) and Pkz are all the time equal to 1, and the probability expression in equation

(3.34) equals to that in equation (3.31).

The figure 3.3.1 illustrated how the additional two laws affect the energy distribution

in the new injection model in the case of injected electrons has ballistic transport in

graphene transistors. In figure 3.3.1(a), all the electrons move in VB are attempt to

inject into the system, only the Pauli exclusion principle is considered in the injection

contact. However, in figure 3.3.1(b), when the relation between the source contact and

drain contact and the kz conservation laws are also included, the energy distribution in
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(a) (b)

Figure 3.3.1: The energy distribution of the electrons with positive energies (in CB) (on
the right side of (a) and (b) for kx > 0) and with negative energies (in VB) (on the left
side of (a) and (b) for kx < 0) injected from the source contact plotted in (a) which
computed from equation (3.31) and in (b) which computed from equation (3.34). The
absolute temperature Θ = 300 K, Fermi-level at the source contact Efs = 0.1 eV, an
voltage drop VDS = 0.3 V applied to the device and the Fermi velocity vf = 5× 105 m/s.

Figure 3.3.2: Schematic representation of a 4 dimensional phase-space cell where the
injection probability is computed.

VB is different to that in figure 3.3.1(a). In figure 3.3.1(b), less electrons from VB are

attempt to be injected into system. The occupation probability for the electrons in VB

with kz > 0.5 1/(nm) equals to 0, which is a result of the kz conservation. The probability

for the electrons in VB with energy E > 0.2 eV (for |~k| > 0.5 1/(nm)) approximate to 0,

which is a result of the correlation between the source and drain contact.

The electron injection model in the time-dependent formalism needs to specified de-

tails of the carrier injection: (a) the way to determine the number of carriers needed to

be injected in each time step; (b) the moment at which the injected particle enter into

the system; (c)the coordinates for the injected particle; (d) the velocity for the new state

of the particle. The particles and current processes in the model are all considered to

be stationary and ergodic, i.e., the distribution for one ensemble element (for example
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the number of injected carriers, the current and fluctuations in the current) over time is

identical to the distribution over the whole ensemble at a chose point in time. The injec-

tion model in the time-dependent picture can be utilized to study the AC and transient

current as well as noise performance in nanoscale devices.

The injection model is mainly described by equations (3.28) and (3.30) for materials

with the linear band structure (or equations (3.20) and (3.22) for contact with a parabolic

dispersion). The procedure of the injection model in implementing to the BITLLES

simulator for the whole simulation time is as following:

• Step 1. Define a mesh (see figure 3.3.2) for the whole phase-space associated to the

injecting surface: The limits of the spatial space are selected by the boundaries of

the contact surfaces. It is proved [79] that the selection of dimensions of each spatial

cell is arbitrary. In the 2D case, in order to speed the computational algorithm,

the spatial cell can be chosen as large as the contact surface (i.e. ∆z = Lz being

Lz the lateral width). In the {kx, kz} space, The limits of the reciprocal space is

selected indirectly by the occupation distribution. That is, the maximum value of

the wave vector components, kx max and kz max must be selected large enough to be

sure that fsum(E(kx max)) = fsum(E(kz max)) ≈ 0. The minimum value of the wave

vector components is assumed to be kx min = −kx max and kz min = −kz max. The

Dirac point as the reference energy. The wave-vector cell width is assumed to be

{∆kx,∆kz}. Then, the wave vector components are specified as kx i = i∆kx and

kz j = j∆kz with i, j ∈ N. The step ∆kx has to be small enough to assure a rough

constant transport velocity for electrons. From the expressions for the minimum

temporal separation in equations (3.28) and (3.20), the selection of step ∆kz can

be different for the material with parabolic or linear dispersion relations. For the

material with parabolic band, the dimension of kz is arbitrary[79]. We can select

∆kz = 2 · kz max. However, for the material with linear band, due to the fact that

vx is explicitly dependent on both wave vector component kx and kz, the interval

∆kz should be also selected small enough to roughly maintain the constant vx.

• Step 2. Select the minimum temporal separation t0 (or tP0 ) for each phase-space

cell : At each simulation time equals to multiples of t0, an attempt to inject an

electron from this particular phase-space cell into the active device region happens.

• Step 3. Compute the kinetic energy E of the electron: At this point, a random

number r uniformly distributed between zero and one is generated, and the electron

is considered to successfully be injected only if r < f(E). This procedure reproduces

the Binomial probability described in equation (3.30).

• Step 4. Select the properties of the effective injected electron: Since a phase-space

cell manages to inject an electron enter the system, the information about the
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moment , the velocity and x position for the electron are specified. Next, we need to

select its y and z positions. There has no confinement in z direction, the positions of

the electron are selected with a uniform random distribution along the lateral width

of the spatial cell ∆z. As the y direction is confined, the y position of the electrons is

selected according to the non-uniform distribution |Ψz(z)|2 = 2
T

sin2(π · z/T ) being

T the length of the device in y direction. Up to here, the procedure for one attempt

is completed, and the complete process is repeated for the whole simulation time.

• Step. 5 Repeat the complete injection procedure: The same procedure is repeated for

all valleys, and all subbands participating in the electron transport. The injection

model has to be implemented to all contacts of the device.
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Chapter 4

Dissipative Transport Through

Collisions

4.1 Preliminary Discussions

As I have discussed in previously, owing to the many-body problem, people are interested

in partitioning a closed system into an open system and “everything else”. An electron

device with an applied bias is indeed a quantum open system far from thermodynamic

equilibrium. The electrons inside the active region of the device are part of the simulated

degrees of freedom of the open system, while many other degrees of freedom (like the

electrons in the battery, the phonons, etc.) are not included in the simulations. From a

practical perspective, an open system is described by the density matrix in terms of mixed

states (a statistical ensemble of several quantum states)[82–84]. In the usual perturbation

theory, the dynamics of the simulated electrons of interest are modeled through a well

defined unperturbed Hamiltonian H0. The interchange of energy between the simulated

electrons and the environment1, like electron-phonon or electron-impurity interactions,

is added into the unperturbed equation of motion as an additional term, the so-called

collision term [71]. The unperturbed Hamiltonian term can be easily treated, while the

collision term requires typically important approximations [45, 71, 85].

The consideration of the collision term in the modeling of quantum transport is of

paramount importance because it converts a unitary and reversible equation of motion for

the density matrix into a non-unitary and irreversible one, accounting for the phenomena

of dissipation and decoherence. The proper treatment of such phenomena is mandatory

for a realistic simulation of electron devices [46, 86, 87]. There are many proposals for the

collision operator in the literature [88–94]. Some simple versions of the collision term have

a wide practical applicability, but in some scenarios they can lead to unphysical results, in

1Although phonons and impurities are in the same physical space as the electrons, since their degrees
of freedom are not simulated, we consider them “outside” of the system.

63
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terms of negative values of the probability presence of electrons at some locations. In this

Chapter, I will discuss the influence of knowing or not knowing the quantum states that

build the density matrix when modeling dissipative transport in electronic devices. First

of all, I introduce a simple and widely used algorithm in treating the scattering through

the Boltzmann collision operator for a quantum transport. A numerical example, a toy-

model of an electron in a double barriers interacting with a phonon, will be discussed

to illustrate the advantage of knowing the quantum states. Secondly, I will discuss the

equation of motion of the conditional wave function when dissipation is introduced. I

will apply this model to compute dissipative quantum transport in a resonant tunneling

device (RTD).

Before introduce the collision, let me explain briefly the equation of motion of the

density matrix and Wigner distribution function formalisms, which are usual used to

described the open system. For the sake of simplicity, we will assume a mean field

approximation that allows us to discuss quantum transport in terms of a set of non-

interacting individual electrons. As the same in Chapter 2, I will still consider a one-

dimensional (1D) physical space x or a 1D phase space x− k.

4.1.1 The Density Matrix Formalism

As we have discussed previously, a natural approach to describe the open system state

is the density matrix. The equation of motion of the density matrix for the open system

is the so-called Liouville Von-Neumann equation (3.2) plus an additional collision term

[71, 75]:

∂ρ

∂t
=

1

i~
[H0, ρ] + C[ρ] (4.1)

where H0 is the unperturbed Hamiltonian and C[ρ] is the collision term that describes

the effect of the interaction with the environment.

An important quantity in the modeling of electrical devices can be obtained by the

trace of the density matrix:

Q(x, t) = tr(ρ̂(t)) =
∑
j

pj(t)|ψj(x, t)|2. (4.2)

where pj(t) specifies the probability that the open system is described by the pure state

ψj(x, t). It is important to notice that the states ψj(x, t) in (4.2) are, from the orthodox

point of view, an improper mixture of states, which means that none of the states alone

provides a proper ontological description of the open system, only the mixture. In other

words, there is no orthodox wave function of an open system. On the contrary, we will

see later that ψj(x, t) in (4.2) are, from the Bohmian point of view, the conditional wave
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function of the system, with full ontological Bohmian meaning. The state ψj(x, t) is the

conditional wave function of the degree of freedom x of the quantum system in the j

experiment.

The function Q(x, t) is often referred in the literature as the charge (or probability

presence) density of the system. By definition, either interpreted as a probability presence

or as the system charge, negative values2 cannot be accepted in equation (4.2).

4.1.2 The Wigner Distribution Function Formalism

Alternatively, an open system can also be described by the Wigner distribution function

(3.4). The transport equation of the Wigner distribution function for the open system

can be written as a sum of a term given by LW [FW (x, k, t)] plus a generic collision term

CW [FW (x, k, t)] as:

∂FW (x, k, t)

∂t
= LW [FW (x, k, t)] + CW [FW (x, k, t)] . (4.3)

The term LW [FW (x, k, t)] is:

LW [FW (x, k, t)] = −~k
m

∂FW (x, k, t)

∂x
− 2

π~

∫ ∞
−∞

dk′
∫ ∞

0

dx′e[−i(k−k′)2x′]

×[V (x+ x′)− V (x− x′)]FW (x, k, t) (4.4)

under the effective mass approximation. V (x) is the potential energy. The collision

term CW [FW (x, k, t)] has many different practical implementations (based on different

approximation).

The charge density in (4.2) can also be obtained by integrating the Wigner distribution

over all momenta:

Q(x, t) = ~
∫
FW (x, k, t)dk. (4.5)

In the literatures [95–99], there is a large list of different approaches that are used to

define the collision operator, either in the density matrix formalism C[ρ] or in the Wigner

formalism CW [FW ].

2Although not relevant for this work, strictly speaking, as seen for a pure state Q(x, t) = |ψ(x, t)|2,
equation (4.2) represents the probability presence density. To avoid any misunderstanding, if one wants
to interpret (4.2) as charge, then I can also argue that it is unacceptable of a positive value of −qQ(x, t)
(with −q = −1.6e−19 C the electron elementary charge) as the charge of electrons in an open quantum
system.
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Table 4.1: Some unphysical behaviors found in the literature when modeling dissipative
quantum transport with the density matrix or Wigner distribution function formalisms
using different implementations of the collision operator.

Collision term Unphysical problem Ref.
Non-Markovian treat-
ment of collision

Without adding the Markovian approximation
negative charge appears.

[100]

Barker-Ferry equation
and Levinson equation

The simulation time has to be small enough
to avoid negative probability in the momentum
space.

[101]

Boltzmann collision
operator, plus Fermi
Golden rule

It can give negative charge in some scenarios due
to the fact that the“rates derived based on the
Fermi Golden rule rely on a well-defined kinetic
energy pre- and post-scattering states”.

[102]

Relaxation time ap-
proximation

The final (thermodynamical) equilibrium state
used in the approximation can be unknown or
unphysical.

[87]

Any type of collision
operator

A phenomenological injection model (without
inclusion of a collision term) can provide neg-
ative charge.

[46]

4.1.3 Unphysical Negative Charge Density Found in the Liter-

ature for Quantum Transport Models

As I said previously, a proper treatment of the interaction of electrons with the environ-

ment by a collision term in equations (4.1) or (4.3) is mandatory for a realistic simulation

of electron devices. Such a collision term cannot be treated exactly and some approxima-

tions are required. However, the approximations do not only imply deviations from the

exact result but, in some circumstances, they imply that the simulated results are un-

physical (for example, the negative values of the charge density discussed in this section).

In Table 4.1, I list some recent works of the literature explaining the negative values of

the charge density, obtained from quantum transport formalisms dealing with the density

matrix or the Wigner distribution function, with different implementations of the collision

terms. Indeed, there are many different reasons that explain why we can obtain negative

charge densities. One can realize the important conceptual and practical difficulties of

the proper modeling of the collision term with the recent work of Rossi and co-workers

[100]. There, the authors show that a quite detailed treatment (including only a mean-
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field approximation) of electron-phonon scattering in the density matrix formalism leads

to negative values of the charge. Surprisingly, such unphysical results disappear when

a simpler treatment (including mean-field and Markovian approximations) is considered

[100]. Similarly, a detailed treatment of scattering within the Barker-Ferry equation (or

the Levinson equation) with a generalized Wigner distribution function formalism shows

the relevance of the simulation times in the description of the collision interaction. For

such approaches, unphysical results appear if the simulation time is not short enough

(such limitation being related to the first order perturbation done in the development

of the electron-phonon coupling) [101]. The implementation of the spatial boundaries

conditions on the equation of motion of the density matrix at the borders of the sim-

ulation box can also be the origin of some unphysical results [46]. In this sense, it is

very enlightening the discussion about mathematical and physical solutions of equation

(3.4) done by Rossi and co-workers in [76]. We assume that fα(x, k) is a physical (and

mathematical) solution of (3.4), and that fβ(x, k) is another physical (and mathematical)

solution. Then, because of the superposition principle, f(x, k) = cαfα(x, k) + cβfβ(x, k)

is by sure a mathematical solution of (3.4). However, we can select the coefficients cα

and cβ in such a way (for example, a negative value of cβ) so that f(x, k) may give rise

to a negative charge distribution at some location, which means that f(x, k) will be an

unphysical solution of equation (3.4), although it is a perfect mathematical solution.

In the following subsection, I will analyze, indeed, a much simpler and widely used

treatment of the collision term. We discuss why in some circumstances the use of the

Boltzmann collision operator can produce unphysical results if we do not know the quan-

tum states during the collisions. It is important to notice here that the Boltzmann

collision operator is usually implemented through the use of the Fermi Golden rule that

determines the scattering rates3 [33, 97, 103]. In this work, we do not discuss the range of

validity of the approximation of the Fermi Golden rule, but only some inherent difficulties

that can be found in the practical implementation of the Boltzmann collision operator in

quantum simulators. Then, these potential problems could be solved once the quantum

states are known.

4.2 To Know or not to Know the Quantum States

The Boltzmann collision operator was initially proposed for classical systems [104]. For

such systems, it has a very easy and understandable interpretation. The Boltzmann

collision operator is just a rule for counting the number of electrons in and out of a

3The Fermi Golden rule itself is developed under some approximations. First, the interaction time
has to be small enough to make the first order perturbation development correct [32]. Second, the
interaction time has to be large enough to ensure that the sinc function approaches a delta function in
the development of the Fermi Golden rule [32].
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volume of the phase space ∆V due to a collision. The total number of electrons at time

t+∆t in ∆V is equal to the previous number of electrons that were there at t, before the

collision, plus the number of electrons that arrive at ∆V from outside due to collision,

minus the number of electrons that leave ∆V during the collision.

Let us imagine a classical electron at x0 with a velocity v0 that interacts with another

particle (for example, a phonon). Because of the interaction, the electron losses kinetic

energy and its final velocity is vf . For simplicity, we assume that the initial position

remains unchanged. Such collision process can be easily modeled in terms of the previous

Boltzmann collision operator. The initial classical distribution function in phase space

before the collision (apart from constant factors), at time t0, is:

Fc(x, k, t0) = δ(x− x0)δ(k − k0) (4.6)

being k0 the wave vector associated to v0. The Boltzmann collision operator generates

the effect of the collision by subtracting an electron with momentum k0 and adding a

new electron with momentum kf . The final classical distribution function in phase space

after the collision, at time t = t+ ∆t, is:

Fc(x, k, t+ ∆t) = δ(x− x0)δ(k − k0)− δ(x− x0)δ(k − k0) + δ(x− x0)δ(k − kf )
= δ(x− x0)δ(k − kf ). (4.7)

Up to here, the discussion seems very trivial in the classical system. Let us emphasize

that the negative part of the distribution function generated by the Boltzmann collision

operator −δ(x − x0)δ(k − k0) is completely compensated by the original positive one

δ(x− x0)δ(k− k0). In this sense, the use of the Boltzmann collision operator in classical

systems will always give positive charge probability in equation (4.5).

Now, let us change to the quantum system where we have to add/subtract quantum

states or wave functions, not point particles. As we will see next, the problems will

appear when we do not know the states that built the density matrix of the open system.

We consider an electron device as an open system with M electrons which can be

distributed in N different states. Say, there are M1 electrons described by state ψ1(x, t)

where we define p1 = M1/M . There are M2 electrons with probability p2 = M2/M

described by the state ψ2(x, t) and so on. Although it is not relevant in the present

discussion, we emphasized again that there is no orthodox wave function of an open

system. Therefore, the states ψ1(x, t) and ψ2(x, t) are defined only to construct an

improper mixed state. According to (3.1), we construct a mixed state through the density
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matrix that describes our open system at initial time t0 before the collision:

ρB(x, x′, t0) =
N∑
i=1

pi(t0)ψi(x, t0)ψ∗i (x
′, t0) (4.8)

with the conditions
∑N

i=1 pi(t0) = 1 and
∑N

i=1Mi = M . Because of the interaction of one

electron with a phonon, the Boltzmann collision operator will add a new final state of

the electron ψF (x, t) and will subtract another state associated to the electron ψO(x, t).

Then, the new density matrix after the scattering, at time tS = t+ ∆t, will be:

ρ(x, x′, tS) = ρB(x, x′, t)− 1

M
ψO(x, t)ψ∗O(x′, t) +

1

M
ψF (x, t)ψF (x′, t) (4.9)

The details of explanation that the collision effects through the Boltzmann collision

operator could effectively be written in the (4.9), will be discussed later in Subsection

4.2.1 and can be found in paper [105]. The problem with the expression (4.9), due to

Boltzmann collision operator, is that if we subtract a state ψO(x, t) = ψ′2(x, t) that is not

present in the density matrix before the collision, ρB(t0), then we cannot simplify the

density matrix to remove the negative sign that appears in the second term of the right

hand side of (4.9). By a simple computation, the new expression of the charge density

with (4.2) using the density matrix in (4.9) is:

Q(x, tS) =
N∑
i=1

pi|ψi(x, t)|2 −
1

M
|ψ′2(x, t)|2 +

1

M
|ψF (x, t)|2 (4.10)

This charge density is a sum of positive and negative terms. The dramatic problem

with expression (4.10) is that, when the time-evolution of the negative term ψ′2(x, t) is

not perfectly balanced by the positive term ψ2(x, t) (or by other states that build ρB)

and ψF (x, t) at every time and position, the possibility of getting negative values Q(x, t)

(unphysical result) is opened.

The solution to this problem is, in principle, quite simple. If we subtract a state

ψO(x, t) which is present in the density matrix ρB(t), for example, ψO(x, t) = ψ2(x, t),

then, we can write the density matrix in (4.9) at any time t after the scattering as:

ρ(x, x′, tS) =
N∑

i=1;i6=2

pi(t)ψi(x, t)ψ
∗
i (x
′, t) +

M2 − 1

M
ψ2(x, t)ψ∗2(x′, t)|+ 1

M
ψF (x, t)ψ∗F (x′, t)

(4.11)

The relevant point now is that, by construction, the term (M2− 1)/M will be positive at

any time t. Obviously, in the selection of the scattering process we have to ensure that

M2 ≥ 1, because if not, we will subtract a non existent state. If the condition ψO(x, t) =
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ψ2(x, t) is satisfied during the collision, then, independent of the time-evolution of all the

states, the charge density computed from (4.2) using the density matrix in (4.11) is just

a sum of positive terms:

Q(x, tS) =
N∑

i=1;i6=2

pi|ψi(x, t)|2 +
M2 − 1

M
|ψ2(x, t)|2 +

1

M
|ψF (x, t)|2 (4.12)

It is important to emphasize that this procedure requires a knowledge of the pure states

that build the density matrix (or the Wigner distribution function) at all times of our open

system. This information is usually not available in most quantum transport simulations,

because the states build an improper mixed state (with no ontological meaning for each

individual state). However, such states and its ontological meaning is trivially accessible

in the Bohmian formulation of quantum transport in terms of conditional wave function

[42]. Hereafter, firstly, I will show with some simple numerical examples where the

problems of not knowing the quantum states are present.

4.2.1 Collisions Without Knowing the Quantum States

I will firstly deduced the collision term when we do not know the quantum states (I called

the Hamiltonian eigenstates scattering approach), which is a combination of the Wigner

formalism with the Boltzmann collision operator where the scattering rates are obtained

from the Fermi Golden rule. Then, an example of electrons suffering a collision with a

phonon while traveling through a typical double barrier potential will be discussed by

using the Hamiltonian eigenstates scattering approach to deal with the scattering.

The Boltzmann collision operator in the Wigner formalism is rewritten:

CW [FW (x, k, t)] =
1

2π

∫ ∞
−∞

{
Wk′kFW (x, k′, t)−Wkk′FW (x, k, t)

}
dk′ (4.13)

where the transition probabilities Wk′k are obtained from the Fermi Golden rule according

to [106]:

W~k′~k =
2π

~
|M~k′~k|

2δ(E~k − E~k′ ∓ ~ω) (4.14)

where M~k′~k are the matrix elements for the transitions from state ~k′ to ~k, and ω is the

frequency of the phonon for inelastic scattering. The bold symbols represent vectors in

the 3D space. For technical reasons, since only one dimension is considered in subsection

(4), the 3D scattering rates must be “projected ” onto the one-dimensional model to find

Wk′k defined in (4.13):

Wk′k =
λ2
T

(2π)3

∫ ∞
−∞

d2k′⊥

∫ ∞
−∞

d2k⊥W~k′~kexp(−
λ2
Tk

2
⊥

2
) (4.15)
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where k′ and k are now the 1D initial and final states respectively.4 A very relevant

point in the discussion is that the Fermi Golden rule (4.14) forces us to use Hamiltonian

eigenstates (of the Hilbert space without the interacting potential) to compute the matrix

elements M~k′~k.

Let me note here that we are not focused on the simulation of realistic nanodevices,

but only in showing with a very simple example an unexpected result when combining the

Boltzmann collision operator and the Fermi Golden rule. The violation of the requirement

Q(x, t) ≥ 0 in only one simple system is enough to warn that such implementation of the

collision operator can lead to unphysical results in more complex or realistic simulations.

As seen in the inset of Fig. 4.2.1, we consider an electron that suffers a collision with

a phonon while traveling through a typical double barrier potential. We consider a 1D

Hilbert space with the following uniform grid xj = j∆x, for j = 1, 2, . . .M with ∆x = 0.2

nm the spatial step and M = 3000 the number of grid points. The simulation box is

large enough (it extends from 0 till 600 nm) to avoid any spurious interaction of the wave

packet with the spatial boundaries. In the simulation, the temporal step is ∆t = 3 fs.

At the initial time t0 we consider an arbitrary initial pure state 〈x|ψB〉 whose support

fits perfectly inside the simulation box. Since we are interested in describing such system

with the Wigner distribution function, the density matrix of this initial pure state is

given by ρ̂B = |ψB〉〈ψB|, and the Wigner distribution function just needs the Wigner-

Weyl transform given by equation (3.4). The time-evolution of the Wigner distribution

function can be computed directly by solving the Schrödinger equation (plus a Wigner-

Weyl transform) or by solving the equation (4.3) without the collision operator. Then, at

time tS, a scattering process takes place according to the Boltzmann collision operator.

Assuming that the scattering process is sufficiently instantaneous5 that the evolution of

the Wigner distribution function from the tS −∆t till tS is:

∂FW (x, k, t)

∂t

∣∣∣∣
t=tS−∆t

' FW (x, k, tS)− FW (x, k, tS −∆t)

∆t

=
1

2π

∫
{Wk′kFW (x, k′, tS −∆t)−Wkk′FW (x, k, tS −∆t)}dk′

(4.17)

4Here I assume that the distribution of electrons is Maxwellian with respect to the transverse wave
vector k⊥ of the initial state, and λT is the spatial dimension factor given by:

λT =
~2

KTm∗
(4.16)

where K is the Boltzmann constant and T is the absolute temperature.
5As indicated in [107], such assumption is not always valid. In any case, the consideration of a larger

time will not significantly change the drawbacks of the Boltzmann collision operator mentioned here.
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(a) A wave packet B(x,t) with velocity v0 is approaching upon a symmetric double barrier. 

barrier.  
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(b) Two-step of Hamiltonian eigenstates scattering process: the wave packet B(x,t) has a 
collision at time tS. 

1st term: FW(x, k, tS) 
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x 

v0 

k 

k0 

x 

k 

kF 

x 

+ 

+ 

- 

k0 

x 

kF 
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Hamiltonian eigenstates scattering approach: 

Figure 4.2.1: Schematic representation of the Hamiltonian eigenstates scattering process.
(a) Simulation of a wave packet impinging on double barriers, the collision is performed
at time tS before the wave packet touches the barriers. (b) A simple physical picture
of the two-step Hamiltonian eigenstates scattering process in the x-k space. During the
collision, one term (3rd term) is eliminated and a new term (2nd term) is added. The
eliminated state does not coincide with any of the old (before the collision) states of the
system.

A further elaboration of equation (4.17) requires the specification of the scattering

rates Wk′k and Wkk′ . As I just account for one collision process of one electron with one

phonon, because of the collision, the initial wave vector of the electron k0 changes to a

final value kF . By using the Fermi Golden rule in (4.15), such electron-phonon interaction

(ad hoc) can be associated to the terms:

Wk′k = αδ(k′ − k0) lim
σ→0

e−
(k−kF )2

σ2 (4.18a)

Wkk′ = αδ(k′ − kF ) lim
σ→0

e−
(k−k0)

2

σ2 (4.18b)

where the parameter α takes into account all (irrelevant for our simple example) details

of the specific computation of the Fermi Golden rule. The parameter σ → 0 means that

rates Wk′k and Wkk′ are localized closely to momentum k = kF and k = k0, respectively.



4.2. To Know or not to Know the Quantum States 73

For numerical reasons, I avoid writing explicitly delta functions in the right hand side

of equations (4.18a) and (4.18b). In simple words, Wk′k is the transition rate associated

to an electron initially in k′ = k0 that appears finally at k = kF , and Wkk′ is associated

to an electron initially in k = k0 that finally disappears from k0. The summary of this

scattering process described in (4.17) is just that an electron with initial momentum ~k0

gets a final momentum to ~kF because of the interaction with a phonon. Such scattering

process is explained in figure (4.2.1). This is the quantum version of the classical collision

explained in subsection (4.2).

Substituting the scattering rates written in (4.18a) and (4.18b) into equation (4.17)

and rearranging it, to obtain:

FW (x, k, tS) = FW (x, k, tS −∆t) +
α∆t

2π
FW (x, k0, tS −∆t)e−

(k−kF )2

σ2

− α∆t

2π
FW (x, k, tS −∆t)e−

(k−k0)
2

σ2 (4.19)

Since there is a one-to-one correspondence between the Wigner distribution function and

the density matrix [77, 108], one can obtain the density matrix by the inverse Wigner-

Weyl transform of the Wigner distribution function as:

ρ(x, x′, t) =

∫ ∞
−∞

FW (
x+ x′

2
, k, t)eik(x−x′)dk (4.20)

As a consequence, the equation (4.19) can be rewritten as,

ρ(x, x′, tS) = ρB(x, x′, tS) +
α∆t

2π
FW (

x+ x′

2
, k0, tS −∆t)eikF (x−x′)

− α∆t

2π
FW (

x+ x′

2
, k0, tS −∆t)eik0(x−x′)

= ψB(x, tS)ψ∗B(x′, tS) + ψF (x, tS)ψ∗F (x′, tS)− ψO(x, tS)ψ∗O(x′, tS) (4.21)

Up to here, I proved that the collision effects through the Boltzmann collision operator

can be written in the form of equation (4.9). The first term on the right-hand side of

equation (4.21), ρB, describes the density matrix before the collision, the second and

third terms are the terms generated (by the Boltzmann collision operator) due to the

collisions. It is important to underline that we are selecting α small enough to ensure that

the charge probability of the density matrix ρ(x, x′, tS) in (4.21) is strictly non-negative

everywhere just after the scattering. As commented previously, it would be a nonsense

to subtract more probability presence than what we have in one specific location at tS.

Even with this important requirement, the problem may appear later when the time

evolution of ρB(x, x′, tS) and −α∆t
2π
FW (x+x′

2
, k0, tS)eik0(x−x′) in (4.21) becomes different.

I compute the charge probability distribution from equation (4.5) at four different
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times corresponding to the initial time t0 = 0 ps, just after the scattering time tS = 0.006

ps, at t2 = 0.315 ps when the wave packets ψB and ψO are interacting with the barriers,

and at time t3 = 0.66 ps when the interaction is nearly finished and the initial wave

packets ψB and ψO are clearly split into transmitted and reflected components. The

information corresponding to these four times is plotted in figure 4.2.2.

In order to enlarge the typical interference effects, at the initial time t0 we con-

sider the following initial state 〈x|ψB〉 = C〈x|ψ1 + ψ2 + ψ3〉 with C a normalization

constant. Each wave function ψj(x, t0) at the initial time t0 is a Gaussian wave packet

ψj(x, t0) = ( 2
πa20

)
1
4 eik0(x−x0j)exp

(
− (x−x0j)2

a20

)
but with different initial central positions x0j.

In particular, the left wave packet ψ1 has x01 = 250 nm, the middle wave packet ψ2 has

x02 = 280 nm and the right wave packet is ψ3 has x03 = 310 nm. The initial spatial

variance of the three wave packets is a0 = 15 nm, its central wave vector k0 = 0.69 nm−1

and the effective mass m∗ = 0.2 m with m being the free electron mass. The center of

the barriers is at x = 350 nm. Both barriers have a 0.8 nm width, the energy height is

0.2 eV, and they are separated by 4 nm.

After the scattering process at time tS, The two additional wave packets ψO and ψF

are Gaussian wave packets with the same very large dispersion a0S = 2a0

(√
1 +

4~2t2S
m2
∗a

4
0

)
(to mimic a plane wave) and the same central position x0S = x0 + ~k0

m∗
tS. The wave

vectors for ψO and ψF are k0 and −k0 (here we assume kF = −k0), respectively. The

results of the charge (or probability presence) densities in the right hand side of the

figure (4.2.2) are just (4.5), that is the integral of the Wigner distribution function in the

left-hand side of the figure over all momenta (for a fixed position). The negative values

of the Wigner distribution function in the figures is not at all problematic as far as the

marginal integral in (4.5) satisfies Q(x, t) ≥ 0 [109]. Before and just after the collision,

there is not unphysical evolution of the charge. Just after the collision, the new state

ψF (x, t) gives only positive charge density and the negative contribution of the new state

ψO(x, t) is, obviously, smaller than the positive one provides by ψB(x, t) at each location.

Figure (4.2.2) (e) and (f) show the same information at the new time t2 = 0.315 ps when

the wave packets ψB(x, t) and ψO(x, t) have evolved with time and interacting with the

barriers. At position x = 300 nm, negative charge (presence probability) appears. This

result is unphysical in the same sense that a wave function with a negative modulus

will be unphysical, i.e. inconsistent with the probabilistic (Born law) interpretation

of quantum mechanics. After the interaction is completed, at time t2 = 0.66 ps, the

spurious phenomenon becomes even worse. In this particular simple example, there are

more positions (for example x = 492 nm) with negative value probabilities.

We have also performed simulations (not shown in the present paper) where the scat-

tering process is strictly performed according to (4.21) using−α∆t
2π
FW (x+x′

2
, k0, tS)eik0(x−x′)
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Figure 4.2.2: (Color online) Evolution of Gaussian wave packets coupled with the Hamil-
tonian eigenstates scattering approach moving towards barriers. (a), (c), (e), (g) are
the Wigner distribution function and (b), (d), (f), (h) are the corresponding probability
(charge) density at four different times: initial time t1 = 0 ps, scattering time tS = 0.006
ps before touching the barriers, time t2 = 0.315 ps when wave packets are interacting
with the barriers and time t3 = 0.66 ps when the interaction is completely done. The
collision is implemented with the Hamiltonian eigenstates scattering model. Because of
such model, negative charge density appears.
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instead of ψO(x, t)ψ∗O(x′, t). The results are quite similar to the ones show in figure (4.2.2),

but because of the own positive/negative oscillation of the FW (x+x′

2
, k0, t), the charge

probability results are even worse than the ones plotted here. The amplitude where the

negative probability occurs is larger and such negative value appear in more positions,

which is affected by the factor α∆t
2π
FW (x, k0, tS) describing the scattering strength. It is

important to point out that the unphysical spurious behaviors become even worse with

longer time evolutions (related to the device active region). In conclusion, the pres-

ence of negative charge is not because of the exact shape of the ψO(x, t)ψ∗O(x′, t) and

ψF (x, t)ψ∗F (x′, t), either pure states or mixed states, but because the time-evolution of

the states ψO(x, t) is different from ψB(x, t) because, at some times t, their positive and

negative contribution cannot be compensated (even if they were compensated at t0). In

simpler words, the problem appears because we develop a collision term that subtract a

part of the Wigner function during the collision process, but we ignore if such procedure

is correct or not because we cannot translated our collision term into the unproblematic

language of collision between quantum states.

4.2.2 Collisions Knowing the Quantum States

As indicated previously, the solution to avoid these unphysical results of figure 4.2.2,

while still using the Boltzmann collision operator, is having an exact knowledge of the

states involved in the description of the density matrix. By construction, this way of

working will not provide any negative charge density. In fact, the idea in the expression

(4.11) can also be presented with the Wigner formalism. Let us see what is the Boltzmann

collision operator once all the states ψi(x, t) with i = 1, · · · , N that build the density

matrix of an open system are perfectly known. Firstly, define F i
W (x, k, t) as the Wigner-

Weyl transform with respect to the element of the density matrices pi(t)ψi(x, t)ψi(x
′, t)

in (4.8). Then, because of the linearity of the Wigner distribution function with respect

to the density matrix, before the collision, we can write the whole Wigner distribution

function as follows:

FW (x, k, t0) =
N∑
i=1

F i
W (x, k, t0) (4.22)

Inspired in the classical application of the Boltzmann collision operator, we define a

collision operator in (4.13) that provides transitions between different states as:

CW [FW (x, k, t)] =
1

2π

N∑
i=1

N∑
j=1

{ZjiF j
W (x, k, t)− ZijF i

W (x, k, t)} (4.23)
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(a) A wave packet B(x,t) with velocity v0 is approaching upon a symmetric double barrier. 
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at time tS. 
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Figure 4.2.3: Schematic representation of the general states scattering process. (a) Simu-
lation of a wave packet impinging on double barriers, the collision is performed at time tS
before the wave packet touches the barriers. (b) A simple physical picture of the two-step
general states scattering process in the x-k space. During the collision, one term (3rd
term) is eliminated and a new term (2nd term) is added. The eliminated state coincides
with one of the old (before the collision) states of the system.

where the terms Zji provides the scattering rate (for the general states used in each

case) from the j− state ψj(x, t) to the i− state ψi(x, t). After the collision at time tS,

the quantum system state in the Wigner formalism is:

FW (x, k, tS) =
N∑
i=1

F i
W (x, k, t) +

1

2π

N∑
i=1

N∑
j=1

{
ZjiF

j
W (x, k, t)− ZijF i

W (x, k, t)
}

=
N∑
i=1

[
1− 1

2π

N∑
j=1

Zij

]
F i
W (x, k, t) +

1

2π

N∑
i=1

N∑
j=1

ZjiF
j
W (x, k, t) (4.24)

The sums in (4.24) are carried out over the N possible existent terms (which are in

principle infinite, but we can limit them to a reasonable number of possible states in

a practical application). We do not use Wk′k in (4.23) because, in principle, they are

computed only for Hamiltonian eigenstates, while we define Zji using our general states
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ψj(x, t)
6. This collision process is called general states scattering approach, which is

illustrated in figure (4.2.3).

We discuss here the same numerical example presented in Section 4.2.1, but here

with our new general collision operator in figure 4.2.3. We use the same initial density

matrix ρ̂B(t0) = |ψB〉〈ψB| in expression (4.8). We consider that there are two electrons

with such state, M1 = M = 2. Then, when the scattering take place, one of the two

electrons with initial state |ψB〉 changes its state, while the other remains unaffected.

The new density matrix in (4.9) is ρ̂(tS) = ρ̂B − (1/2)|ψB〉〈ψB| + (1/2)|ψF 〉〈ψF |. The

new density matrix after scattering can be greatly simplified to ρ̂(tS) = (1/2)|ψB〉〈ψB|+
(1/2)|ψF 〉〈ψF | because |ψN〉 ≡ 1√

2
|ψB〉. This collision process is explained in figure

4.2.3. Before the collision, both electrons are described by identical states that share the

same x-k support because the two electrons have the same (mean) momentum. After

the collision, one electron has higher (mean) momentum than that of the other. Thus,

electrons are described by different states with different x-k supports.

In our numerical example, we use the same initial wave packet |ψB〉 discussed in

figure 4.2.2. At the initial time t1 = 0 ps, the information of the Wigner function

and the charge probability distribution plotted in figure 4.2.4 are identical to that in

figure 4.2.2. Then, at time tS = 0.006 ps, the new collision operator in equation (4.23)

acts on the Wigner distribution function. After the scattering, the system state is ρ̂ =

|ψB〉〈ψB|+|ψP 〉〈ψP |−|ψN〉〈ψN | = 1
2
|ψB〉〈ψB|+ 1

2
|ψF 〉〈ψF |. As a consequence, the negative

values disappear. Therefore, the unphysical results are removed. These conclusions are

perfectly corroborated by figure 4.2.4.

In principle, a wave function with a negative modulus will be unphysical, i.e. in-

consistent with the probabilistic (Born law) interpretation of quantum mechanics. It is

relevant to note that the charge probability is always positive by using the general states

scattering approach to treat the scattering in a dissipative quantum transport. However,

in the Hamiltonian eigenstates scattering approach, negative unphysical values for the

charge probability appear in some simulations. In table (4.2), a comparison of these two

approaches in treating the scattering in the simulation of two electrons interacting with

a phonon while traveling through a double barriers is plotted. I have discussed the ulti-

mate reasons of such unphysical results in equation (4.9): the different time-evolutions of

the states ρB that build the density matrix in the Wigner distribution function and the

Hamiltonian eigenstates ρO generated by the Boltzmann collision operator after a colli-

sion. This problem will never occur if the transition between states during the collision

process is done according to the set of states that built the density matrix in (4.11).

6As a reasonable approximation, if the general wave packet has (a more or less) well defined momen-
tum (for example, the mean momentum of the wave packet) the terms Wk′k can be numerically used
instead of Zji in (4.23) by using some relations between j (and i) and k′ (and k).
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Figure 4.2.4: Evolution of Gaussian wave packets coupled with general states scattering
approach moving towards barriers. (a), (c), (e), (g) are Wigner distribution and (b),
(d), (f), (h) are corresponding probability density of state at for different times, which
is identical to the time in : initial time t1 = 0 ps, scattering time tS = 0.006 ps before
touching the barriers, time t2 = 0.315 ps when wave packets are interacting with the
barriers and time t3 = 0.66 ps when the interaction is completely done. The collision is
implemented with the general sates scattering approach. Because of such model, charge
density is always non-negative.
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Table 4.2: Norm of the system state (positive, negative and total probability density) at
t3 = 0.66 ps when using the Hamiltonian eigenstates (H.E.) or the general states (G.S.)
scattering to deal with the collision.

Norm
Positive probability Negative probability Total probability

H.E. scattering 1.025 -0.025 1
G.S. scattering 1 0 1

The general states scattering approach based on the generalization of the Boltzmann

collision operator as written in (4.23) will always avoid the unphysical features discussed

here. In addition, it still retains the intuitiveness and the computational simplicity of the

Boltzmann collision operator. It only require the knowledge of the states that conform

the density matrix or Wigner distribution function. This detailed knowledge of the states

that build the density matrix is trivially accessible in the Bohmian formulation mentioned

in this thesis [42]. The collision process can be applied directly into the Hamiltonian of

the time-evolution equation of the conditional wave function (just adding an additional

term in the kinetic part of the Hamiltonian) [110, 111].

We remark also that this new algorithm for collision explained here is relevant for

time-dependent modeling of quantum transport. In addition, since it requires a perfect

knowledge of the states that built the density matrix, its practical implementation fits

perfectly well with the BITLLES simulator developed with conditional wave functions

[42, 110–114], which will be discussed in the following section 4.3.

4.3 Collisions with Conditional Wave Functions

In this section I will provide a more detailed discussion on how to treat quantum dissi-

pative transport using the conditional wave functions. I will show why the conditional

sates allow us to know the states that construct the density matrix associated to an open

system, at all times. After, as a practical application of this procedure to deal with

quantum dissipation, I will numerically compute the simulation of the current-voltage

characteristic of a resonant tunneling device (RTD) with a parabolic-band structure.

As we have discussed previously, modeling dissipation in an open system requires im-

portant approximations. The physical soundness of these approximations have to avoid

unphysical results as the negative charge mentioned in the previous sections. From a

more technical point of view, this unphysical results and others can be eliminated if we

ensure that the dynamical map associated to the open system is completely positive7

7For any state |ψ〉, if the operator, for instance, a density operator ρ̂, satisfies 〈ψ|ρ̂|ψ〉 ≥ 0, then, the
operator ρ̂ is a positive operator. During the evolution of a quantum system, if the density operator of
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when including microscopic models for the collision operator. A dynamical map is just

the equation of motion that determines the time-evolution of the reduced density ma-

trix. That is, for an open system which is described by the density matrix, a proper

equation of motion of the density matrix must obtain a dynamical map that satisfies

complete positivity (CP) [115, 116], which guarantees that the density matrix is always

a positive operator at any time. In the Section 4.2, the Wigner function formalism for

collisions implemented with the Boltzmann collision operator is not CP dynamical map

and unphysical results appear. In this part, I will show that the use of conditional wave

functions to define the state of an open system, by construction, ensures that we are

dealing with a CP map for either Markovian or non-Markovian dynamics.

Considering a closed system which is described by a full many-body wave function

Ψ(~r1, · · · , ~rN , t) = 〈~r1, · · · , ~rN |Ψ(t)〉 solution of the Schrödinger equation (1.9). We de-

compose the total Hilbert space of N particles as Ĥ = Ĥa⊗Ĥb with ~r = {~r1, · · · , ~rN} =

{~ra, ~rb} being ~ra the position of the a-particle and ~rb = {~r1, · · · , ~ra−1, ~ra+1, · · · , ~rN} the

positions of the rest of particles. Let Ôa be an operator for Ĥa, its expectation values

〈Oa〉 = 〈Ψ|Ôa ⊗ 1b|Ψ〉 being 1b the identity operator for Ĥb, can be computed as:

〈Oa〉 =

∫
d~ra Oa ρ(~ra, ~r′a, t)|~r′a=~ra

(4.25)

where Oa is the position representation of Ôa and ρ(~ra, ~r′a, t) is the density matrix (of

the open system in Hilbert space Ĥa), which is:

ρ(~ra, ~r′a, t) =

∫
d~rb Ψ∗(~r′a, ~rb, t)Ψ(~ra, ~rb, t) (4.26)

Now, let us see how to describe the subsystem with the density matrix ρ(~ra, ~r′a, t) in the

Hilbert space Ĥa with the Bohmian theory. As we have discussed in the Appendix A, a

Bohmian system state is completely defined by the same wave function Ψ(~ra, ~rb, t) plus

a set of well-defined trajectories in physical space {~rj1[t], ~rjb [t]} in the j experiment. The

trajectories move continuously under the guidance of the wave function with the velocity

(see Appendix A) is:

~vja[t] =
d~rja[t]

dt
=

~Ja(~r
j
a[t], ~r

j
b [t], t)

|Ψ(~rja[t], ~r
j
b [t], t)|2

(4.27)

where ~Ja = ~Im(Ψ∗~∇aΨ)/ma is the ensemble value of the current density with ma the

mass of the a-th particle. Moreover, the set of N positions in an infinite ensemble

the system always guarantees positive, then, we call the linear dynamical map as a positive map. There
is a sub-class of the linear dynamical map on the density matrix, called completely positive map. Here,
“completely” is just a technical word. For example, given a Hilbert space H which has N dimensionality,
if a linear map Φ(ρ̂) is n-positive map, i.e., Φ⊗ 1n is positive for all positive integers n ≤ N , then, Φ is
a completely positive map.
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experiments j = 1, · · · ,W with W → ∞ can be mathematically written as (quantum

equilibrium hypothesis mentioned in Appendix A):

|Ψ(~ra, ~rb, t)|2 =
1

W

W∑
j=1

δ(~ra − ~rja[t])δ(~rb − ~r
j
b [t]) (4.28)

which guarantees empirical equivalence between Bohmian and orthodox quantum (non-

relativistic) results in the closed system, which also implies empirical equivalence of any

smaller portion, i.e., the open system. The mean value of the operator Ôa over the wave

function Ψ(~ra, ~rb, t) is:

〈Oa〉 =

∫ ∫
d~rad~rb Ψ∗(~ra, ~rb, t)QaΨ(~ra, ~rb, t) (4.29)

Putting the equation (4.28) into the mean value 〈Oa〉 in (4.29) and arrange it as:

〈Oa〉 =

∫ ∫
d~rad~rb

1

W

W∑
j=1

δ(~ra − ~rja[t])δ(~rb − ~r
j
b [t])

Ψ∗(~ra, ~rb, t)QaΨ(~ra, ~rb, t)

|Ψ(~ra, ~rb, t)|2

=
W∑
j=1

1

W

∫
d~ra δ(~ra − ~rja[t])

Ψ∗(~ra, ~r
j
b [t], t)QaΨ(~ra, ~r

j
b [t], t)

|Ψ(~ra, ~r
j
b [t], t)|2

=
W∑
j=1

1

W

Ψ∗(~ra, ~r
j
b [t], t)QaΨ(~ra, ~r

j
b [t], t)

|Ψ(~rja[t], ~r
j
b [t], t)|2

∣∣∣
~ra=~rja[t]

(4.30)

where Ψ(~ra, ~r
j
b [t], t) = φja(~ra, t) is the conditional wave function, which can be thought of

as the wave functions of the open system in Hilbert space Ĥa conditioned to a continuous

observable, i.e., the pointer position ~rjb [t]. By comparing the mean value in equation (4.25)

with that in equation (4.30), we can write the density matrix in equation (4.26) using

the fundamental elements of the Bohmian theory—the (tilde) conditional wave function

φ̃ja(~ra, t) ≡ Ψ(~ra, ~r
j
b [t], t)/|Ψ(~rja[t], ~r

j
b [t], t)| of the a-th particle in the j experiment:

ρ(~ra, ~r′a, t) =
W∑
j=1

pjφ̃
j∗
a (~r′a, t)φ̃

j
a(~ra, t) (4.31)

where pj = 1/W . The generalization of conditional wave functions with an arbitrary

number of particles is straightforward. The time evolution of equation (4.31) ensures

that the dynamical map associated with our approach is CP. For any state |φk〉, we

obtain 〈φk|ρ̂|φk〉 =
∑W

j=1 pj〈φk|φ̃ja(t) ≥ 0 at any time. We remark here again that the

information of the states that built the density matrix of the open system is known all

the time by using the conditional wave functions. As we have discussed in the Section
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4.2, the effect of the Boltzmann collision operator in the Wigner formalism is generally

not a CP map. On the contrary, the density operator of the open system in (4.31), which

is just expression (4.11), gives a positive operator at any time.

The conditional wave function φja(~ra, t) = 〈~ra, ~rb|Ψ(t)〉 can be computed from the

following single-particle pseudo-Schrödinger equation in physical space:

i~
d〈~ra, ~rb|Ψ(t)〉

dt

∣∣∣
~rb=~r

j
b [t]

= 〈~ra, ~rb|Ĥ|Ψ(t)〉
∣∣
~rb=~r

j
b [t]

(4.32)

where Ĥ is the many-body Hamiltonian of the closed system. The equation (4.32) can

also be written as:

i~
dφa(~ra, t)

dt
= H φa(~ra, t) = (Hc +Heh,~u) φa(~ra, t) (4.33)

where Heh,~u is the interaction of electrons with the displacement of the ions and Hc

includes all the kinetic energies and all interactions except Heh,~u. The computation

of 〈~ra, ~rb|Ĥ|Ψ(t)〉 before conditioning depends on the full many-body wave function

Ψ(~ra, ~rb, t) and requires educated guesses to get the effective conditional potentials Hc

and Heh,~u. More details can be found in the Appendix A. In the following, as an exam-

ple, we compute the equation of motion of the conditional wave function to deal with

electron-phonon interaction, i.e. we compute Hc and Heh,~u.

4.3.1 Conditioned Hamiltonian for the Electron-Phonon Inter-

action

For a closed system, the Hamiltonian is given in equation (1.10). Let us give more

details about the many-body Hamiltonian Ĥ. Assuming the closed system contains Ne

electrons with positions ~r = {~r1, · · · , ~rNe}, Nh ions with positions ~R = {~R1, · · · , ~RNh}
and all the rest of the particles of the closed system not explicitly indicated here. We

will usually use ~ra (~re) to refer to the a (or e) electron. We also defined ~r = {~ra, ~za} with

~za = {~r1, · · · , ~ra−1, ~ra+1, · · · , ~rNe}.
In order to discuss how electron interact with the atoms, we refer to the term that

contains electron and atoms (or ions) positions on the global Hamiltonian of the circuit

discussed in (1.10). In particular, I will explicitly construct the equation of motion for

the a-particle φa(~ra, t) in equation (4.32) with special attention to the second term on the

right of the equation (1.10)—what we have called here the electron ion Hamiltonian Ĥeh.

Due to the perturbation, the electron ion Hamiltonian Ĥeh is divided into the interaction

of the electrons with the fixed (equilibrium) positions of the ions ~R0 = {~R1,0, · · · , ~RNh,0}
in Ĥeh, ~R0

and the interaction of the electrons with the displacement of the ions ~u =
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~R− ~R0 = {~u1, · · · , ~uNh} in Ĥeh,~u. That is:

Ĥeh = Ĥeh, ~R0
+ Ĥeh,~u =

∑
e,h

Veh(~re − ~Rh)

≈
∑
e,h

[
Veh(~re − ~Rh,0) + (~Rh − ~Rh,0) · ∇hVeh(~re − ~Rh)|~Rh=~Rh,0

]
=
∑
e,h

[
Veh(~re − ~Rh,0) + ~uh · ∇hVeh(~re − ~Rh)|~Rh=~Rh,0

]
(4.34)

where the potential Veh(~re − ~Rh) is decomposed in a Taylor expansion around the fixed

position ~Rh,0. As we have discussed in Chapter 1, the term Ĥeh, ~R0
will become relevant

to the electronic band structure of the material. Let us see what is the effect of Ĥeh,~u on

the conditional wave function φa(~ra, t). Instead of dealing with individual displacement

~uh, we consider the normal coordinate ~Q~qp defined from the Fourier transform:

~uh =
∑
~qp

~Q~qpe
i ~qp ~Rh,0 (4.35)

where ~qp is a wave vector in the reciprocal space that labels each of the possible collective

solutions of the movement of ions. The Fourier transform of the potential Veh(~re − ~Rh)

is:

Veh(~re − ~Rh) =
∑
~v

ei~v(~re−~Rh)U~v (4.36)

where ~v is another wave vector in the reciprocal space and U~v is the Fourier coefficient of

the potential. Then, we can write the Hamiltonian Ĥeh,~u in the position representation,

which is:

Heh,~u =
∑
e,h

~uh · ∇hVeh(~re − ~Rh)|~Rh=~Rh,0
=
∑
e

∑
h

∑
~qp

~Q~qpe
i ~qp ~Rh,0

∑
~v

(−i~v)ei~v(~re−~Rh,0)U~v

(4.37)

Let us define the fully many-body wave function Ψ(~r, ~R, t) = Ψ(~ra, ~za, ~R, t) as:

Ψ(~ra, ~za, ~R, t) =
∑
~k,~q

a(~k, ~q, t)Φ~k(~r)Φ~q(~R)

=
∑
~k,~q

a(~k, ~q, t)Φ~q(~R)
∑
~kw

ϕ~kw(~ra)sa,w〈~za|ĉ†~k1 · · · ĉ
†
~kw−1

ĉ†~kw+1
· · · ĉ†~kNe |0〉 (4.38)

where a(~k, ~q, t) accounts for an arbitrary superposition of the many-body electron base

Φ~k(~r) and the many-body phonon base Φ~q(~R), the vector ~k = {~k1, · · · , ~kNe} represents

the index of the electronic (Bloch) base and ~q = {~q1, · · · , ~qNh} is the index of the ionic

base, the ĉ†~kw
is a operator of the (Bloch) eigenstate 〈~ra|ĉ†~kw |0〉 = ϕ~kw(~ra) and sa,w is the
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sign of the (a, w) cofactor. The Bloch eigenstate is:

ϕ~kw(~ra) = 〈~ra|ĉ†~kw |0〉 = 〈~ra|~kw〉 = ei
~kw~rau~kw(~ra) (4.39)

where u~kw(~ra) is periodic with respect to lattice translations including the appropriate

normalizing constant and ~kw is the electron (quasi) wave vector related to the quasi

momentum ~pw = ~~kw. The conditional wave function φa(~ra, t) before the collision can

be obtained from equation (4.38) by fixing ~za = ~zja[t] and ~R = ~Rj[t] which are obtained

from j experiment, as:

φja(~ra, t) = Ψ(~ra, ~z
j
a[t], ~R

j[t], t)

=
∑
~k,~q

a(~k, ~q, t)Φ~q(~R
j[t])

∑
~kw

ϕ~kw(~ra)sa,w〈~zja[t]|ĉ
†
~k1
· · · ĉ†~kw−1

ĉ†~kw+1
· · · ĉ†~kNe |0〉

=
∑
~kw

ϕ~kw(~ra)fa(~kw, t) (4.40)

with fa(~kw, t) defined as:

fa(~kw, t) =
∑
~q

∑
··· ,~kw−1,~kw+1,···

a(~k, ~q, t)Φ~q(~R
j[t])sa,w〈~zja[t]|ĉ

†
~k1
· · · ĉ†~kw−1

ĉ†~kw+1
· · · ĉ†~kNe |0〉

(4.41)

Under the standard envelop approximation that the wave packet is centered around
~kw ≈ ~k0w, we can rewrite the Bloch states as ϕ~kw(~ra) ≈ ei

~kw~rau~k0w(~ra) and substitute it

into the equation (4.40), finally, the φja(~ra, t) is:

φja(~ra, t) = u~k0w(~ra)
∑
~kw

ei
~kw~rafa(~kw, t) ≈

∑
~kw

ei
~kw~rafa(~kw, t) (4.42)

where we ignore the atomic periodicity u~k0w(~ra). The mean value of the momentum of

the initial envelop wave packet φja(~ra, t) at time t = tc1 before the collision is:

〈~pa〉tc1 =
∑
~kw

~~kw|fa(~kw, t)|2 (4.43)

Next, we will evaluate the effect of the Ĥeh,~u on the wave function Ψ(~ra, ~za, ~R, t) and then

conditioned the result to the fixed positions ~zja[t] and ~Rj[t]. The evolution of the term
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Heh,~u(~r, ~R, t)Ψ(~ra, ~za, ~R, t) is:

Heh,~u(~r, ~R, t)Ψ(~ra, ~za, ~R, t) =
[∑
e6=a

Heh,~u,~re(~re, ~R, t)Ψ(~ra, ~za, ~R, t)
]

+Heh,~u,~ra(~ra, ~R, t)Ψ(~ra, ~za, ~R, t) (4.44)

The first term
∑

e6=aHeh,~u,~re(~re, ~R, t) does not dependent on ~ra, which only provide a

global phase on the conditional wave function φja(~ra, t) when conditioned to ~zja[t] and
~Rj[t]. Therefore, we can only concentrate on the second term, which is:

Heh,~u,~ra(~ra, ~R, t)Ψ(~ra, ~za, ~R, t) = 〈~r, ~R|Ĥeh,~u,~ra|Ψ(t)〉

=
∑
~kw

∑
~k′′w

〈~ra|~k′′w〉〈~k′′w, ~za, ~R|Ĥeh,~u,~ra |~ka, ~za, ~R〉〈~ka, ~za, ~R|Ψ(t)〉

(4.45)

where we have used the identities
∫
~r

d~r|~r〉〈~r|,
∫
~R

d~R|~R〉〈~R| and
∑

~kw
|~kw〉〈~kw| and the fact

that Ĥeh,~u,~ra is diagonal in the position representation. Let as define T (~k′′w, Ĥeh,~u,~ra , ~kw) =

〈~k′′w, ~za, ~R|Ĥeh,~u,~ra|~ka, ~za, ~R〉 as the electron-phonon Hamiltonian in the momentum (Bloch

state) representation, and rewrite it as:

T (~k′′w, Ĥeh,~u,~ra , ~kw) =

∫
~ra

d~ra〈~k′′w|~ra〉〈~ra, ~za, ~R|Ĥeh,~u,~ra|~ra, ~za, ~R〉〈~ra|~kw〉 (4.46)

Substituting the expressions (4.37) and the Bloch states into the electron-phonon Hamil-

tonian, assuming the change of variable ~ra = ~r′a − ~Rm,0 with ~r′a integrates only inside

the first Brillouin zone, we obtains:

T (~k′′w, Ĥeh,~u,~ra , ~kw) =

∫
~ra

d~rae
−i~k′′w~rau~k′′w(~ra)e

i~kw~rau~kw(~ra)
∑
h

∑
~qp

~Q~qpe
i ~qp ~Rh,0

∑
~v

(−i~v)ei~v(~ra−~Rh,0)U~v

=
∑
h

∑
~qp

~Q~qp

∑
~v

(−i~v)ei
~Rh,0(~qp−~v)U~v

(∑
m

ei
~Rm,0(−~k′′w+~v+~kw)

)
∫
~r′a

d~r′a e
−i~k′′w ~r′au~k′′w(~r′a)e

i~kw ~r′au~kw(~r′a) (4.47)

The sum over ~Rh,0 in ei
~Rh,0(~qp−~v) imposes the condition ~G = ~qp−~v and the sum over ~Rm,0

in ei
~Rm,0(−~k′′w+~v+~kw) imposes that ~G′ = −~k′′w + ~v + ~kw being ~G and ~G′ two vectors of the

reciprocal lattice. We assume that all momentum vectors are in the first Brillouin zone,
~G = 0 and ~G′ = 0, so that ~k′′w = ~kw + ~qp, and the electron-phonon Hamiltonian is:

T (~k′′w, Ĥeh,~u,~ra , ~kw) =
∑
~qp

δ(~k′′w − ~kw − ~qp)g
~qp
~kw

(4.48)
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where the coupling constant g
~qp
~kw

is defined as:

g
~qp
~kw

= −i ~Q~qp~qpU~qp

∫
~r′a

d~r′a e
−i(~kw+~qp)~r′au~kw+~qp

(~r′a)e
i~kw ~r′au~kw(~r′a) (4.49)

Here, we do not include any dependence on the n band structure. Therefore, the evolution

of Heh,~u,~ra(~ra, ~R, t)Ψ(~ra, ~za, ~R, t) is:

Heh,~u,~ra(~ra, ~R, t)Ψ(~ra, ~za, ~R, t) =
∑
~kw

∑
~k′′w

〈~ra|~k′′w〉T (~k′′w, Ĥeh,~u,~ra , ~kw)〈~ka, ~za, ~R|Ψ(t)〉

=
∑
~qp

∑
~kw

g
~qp
~kw
〈~ra|~kw + ~qp〉〈~kw, ~za, ~R|Ψ(t)〉 (4.50)

Once we know the effect of the electron-phonon Hamiltonian on the conditional wave

packet, let us see what is the wave function of the a-particle after the collision. We

consider that the collision starts at tc1 and ends at tc2. Assuming that the a wave packet

is narrow enough in momentum space so that g
~qp
~kw

[t] ≈ g
~qp,j
~k0w

[t] in the j experiment. The

conditional wave function just after the collision at time t = tc2 is:

φja(~ra, tc2) = 〈~ra, ~rjz[tc2], ~Rj[tc2]|Ĥeh,~u,~ra|Ψ(tc2)〉 = g
~qp,j
~k0w

[tc2]
∑
~kw

〈~ra|~kw + ~qp〉〈~kw, ~za, ~R|Ψ(tc2)〉

= g
~qp,j
~k0w

[tc2]
∑
~kw

ϕ~kw+~qjp
(~ra)f(~kw, tc2) ≈ ei~qp~raφja(~ra, tc1) (4.51)

In one experiment j, the coupling constant g
~qp,j
~k0w

[tc2] has no big role in the dynamical of

a conditional wave function. It becomes relevant in the full many-body wave function

Ψ(~r, ~R, t) in determining the different transition probabilities between different initial and

final wave packets in different experiments. Such transition rates g
~qp
~k0w

and the distribution

of the collision time tc are precomputed from typical expressions of transition rates [117].

As an example, the figure 4.3.1 is the energy-dependent scattering rates for the GaAs

at 300 K. In the numerical example, we will use these precomputed values to implement

the elastic and inelastic collisions in the simulation. The fact that emission of a phonon is

more probable than absorption of a phonon is directly given by precomputed scattering

rates. In such asymmetry, they introduce time-irreversibility into the simulation. As

time goes by, quantum dissipation appears in the open system, not the contrary. The

ensemble momentum of the a-particle is:

〈~pa〉tc2 =
∑
~kw

~(~kw + ~qjp)|fa(~kw, t)|2 = 〈~pa〉tc1 + ~~qjp (4.52)
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Figure 4.3.1: Energy dependence of scattering rates for the Γ valley of GaAs at 300 K.

That is to say, after the collision, the (Bloch state) quasi-momentum eigenstates that built

the wave packet superposition change from |~kw〉 to |~kw + ~qjp〉, while its weight f(~kw, t)

remains unchanged.

4.3.2 Equation of motion of the conditional wave functions

Once we know the effect of the electron-phonon Hamiltonian on the wave function φa(~r, t),

let us present the equation of motion of the conditional wave function that provides

such effect. From ref. [42], for a parabolic band structure, the single-particle pseudo-

Schrödinger equation can be written as:

i~
∂φja(~ra, t)

∂t
=
[ 1

2m∗
(~pa)

2 + Va + Aa + iBa

]
φja(~ra, t) (4.53)

where Va is the Coulomb interaction of the a-particle with the rest of electrons which

can be easily known once the set of the ~zja[t] trajectories are known. The details of other

terms Aa and Ba can be found in the paper [42].

We have known the equation of motion of φa(~ra, t) before the collision in equation

(4.53). Next, we will combine the time evolution of the conditional wave function φa(~ra, t)

before and after the collision in a unique equation of motion. The time evolution operator

from initial time t = t0 until a time t < tc1 is:

Ûa(t, t0) = e
− i

~
∫ t
t0
Ĥa(t′)dt′

(4.54)

with Ĥa = 1
m∗

(~pa)
2+Va. Assuming the electron-phonon interaction is Ĥeha = −~~λa~raδ(t−
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tc). The time evolution operator from initial time t = t0 until a time t > tc1 after the

collision is:

Ûa(t, t0) = e
− i

~
∫ t
tc2
Ĥa(t′)dt′

e−
i
~
∫ tc2
tc1
Ĥeha(t′)dt′e−

i
~
∫ tc1
t0
Ĥa(t′)dt′

= e
− i

~
∫ t
tc2
Ĥa(t′)dt′

ei
~λa~ra

~ e−
i
~
∫ tc1
t0
Ĥa(t′)dt′ (4.55)

For a small time interval ∆t, we have Ûa(t+∆t, t) = 1− i
~∆tĤa, and (1− i

~∆tHa)e
i
~λa~ra

~ φa(~ra, tc1) =

ei
~λa~ra

~ (1− i
~∆tHa+λ)φa(~ra, tc1) being Ha+λ = (~pa+~λ)2

2m∗
+Va. Then, the operator Ûa(t, t0) in

equation (4.55) can be understood as until time t = t0 + n∆t. And the time evolution of

the φa(~ra, t) at time t = t0 + n∆t is:

(1− i
~

∆tHa) · · · (1−
i

~
∆tHa)e

i
~λa~ra

~ φa(~ra, tc1) = ei
~λa~ra

~ (1− i
~

∆tHa+λ) · · · (1−
i

~
∆tHa+λ)φa(~ra, tc1)

(4.56)

Finally, the time evolution of the conditional wave function φa(~ra, t) before and after the

collision is:

i~
∂φja(~ra, t)

∂t
=
[ 1

2m∗
(~pa + ~λaΘtc)

2 + Va

]
φja(~ra, t) (4.57)

where Θtc = Θ(t− tc) is the step Heaviside function. For simplicity, we have assume that

the collision process take a time interval equal to zero. We define tc = tc1 = tc2. This

equation of motion exactly reproduces the transition of φa from equation (4.42) before

the collision to the equation (4.51) after the scattering is completed. The selection of the

collision times tc and the type of collision is done following the traditional procedure in

the semi-classical Monte Carlo simulation of Boltzmann equation for transport with the

energy-dependent scattering rates plotted in figure 4.3.1. The only difference is that the

dynamics of each particle is given by (4.57), not by Newtons law.

4.3.3 Example of Collisions in a Resonant Tunneling Device

As an example, we apply the new approach for the simulation of quantum dissipa-

tion with conditional wave functions solution of equation (4.57) for the simulation of

a GaAs/AlGaAs RTD. The numerical result of the current-voltage characteristic are

plotted in figure 4.3.2. We consider elastic (acoustic phonons and impurities) and inelas-

tic (optical phonons) collisions. Each electron is associated to a conditional wave function

plus a Bohmian trajectories. The number of injected electrons, and its properties, are

determined by the injection model described in the previous Chapter 3. The time evolu-

tion of the conditional wave function φa interacting with a phonon ~qp in a material with

parabolic band structure is obtained from equation (4.57). The electron effective mass is

m∗ = 0.067 me being me the free electron mass and ~λa = ~~qp accounts for the momen-

tum exchange. Each electron a = {a, · · · , Ne} has its own dynamical equation (4.57) to



90 Chapter4. Dissipative Transport Through Collisions

Figure 4.3.2: (a) Schematic representation of a typical GaAs/AlGaAs resonant tunneling
device realized in the BITLLES simulator. (b) Current-voltage characteristic for a RTD
with (solid red line) and without (blue dashed line) dissipation. (c) Effective collision
rate as a function of the source-drain bias. The parameters in the simulation are: the
barrier height is 0.5 eV, the width is 1.6 nm and the well width is 2.4 nm. In the
contacts, a N -type doping with the Fermi level of Ef = 0.15 eV above the conduction
band is considered. The optical phonons lead to an inelastic change of the electron energy
of ±0.036 eV. Here we consider the acoustic phonons, optical phonons and impurities
collisions.

compute the wave function and trajectory ~rja[t] which is computed by time integrating

the Bohmian velocity in equation (4.27). We inject the Gaussian wave packet with a

dispersion σ = 40 nm, which is initially located outside the simulation box.

The current collected on the drain contact is computed as the net number of trajec-

tories ~rj[t] transmitted from the source to the drain, divided by the total time (5 ps). As

a test, the average current is also computed from the total (particle plus displacement)

current as indicated in Section 2.4. Both computations of the average current provides

the same results, indicating the numerical accuracy of the computations and the effective

zero average value of the displacement current. The number and type of collisions are

obtain from the Fermi-Golden rule for GaAs material with the scattering rates plotted

in figure 4.3.1. In figure 4.3.2, the reduction of the transmission is due to the acoustic
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phonons and to the emission of optical phonons (energy dissipation). Moreover, we can

have the information of all sources of collisions in figure 4.3.2(c), where the number of

optical phonon emission is always larger that that of optical phonon absorption. The

number of collisions at resonance energy is three times larger than that of outside the

resource, showing that the ballisticity of RTD dependents on the electron transit time,

which changes with the applied drain bias.
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Chapter 5

High-Frequency Behaviour of FETs:

Practical Computations of Graphene

Devices

5.1 The Theoretical Discussion

In the computations of high-frequency performances of electron devices, while most

of the predictions have been obtained from the quasi-static approximation with time-

independent models, enriched information would be obtained by going beyond the quasi-

static approximation. At the beginning of this chapter, some theoretical discussions

about the non-quasi-static formalism and about what kind of new results can be accessi-

ble with this time-dependent (dynamic) simulation of particle plus displacement currents

will be discussed. Then, I will provide some numerical results about the high-frequency

noise of Graphene devices.

5.1.1 The Ramo-Shockley-Pellegrini Theorem

In Chapter 1.2, I have discussed the role of the displacement current on the measured

current obtained in a laboratory. The total current (not only the particle current) on a

surface has to be computed to be sure that the simulated result is equal to the measured

one in the laboratory. Generally, the displacement current Id(t) and the particle current

Ip(t) on a particular surface Si can be computed from the standard expressions (2.31)

and (2.32) mentioned in Chapter 2.

In order to discuss in details the relation between the total (particle plus displace-

ment) current and the dynamics of electrons inside a semiconductor device, using Green’s

second identity to create another electrokinematics equations, we provide an alterna-

tive expression (named Ramo-Shockley-Pellegrini (RSP) theorem [31]) for computing the

93
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Figure 5.1.1: Schematic representation of a 2D material device (the 2D material channel
is sandwiched between two dielectrics) in BITLLES simulator, whose volume Ω (with 3D
structure plotted by dashed red lines) is limited by a closed surface S = {S1, S2, . . . , S6}.
In volume Ω, the channel length is Lx, the surface S3 (and S6) are divided into S ′3 (S ′6)
and S ′′3 (S ′′6 ). A spacer length is L′x.

time-dependent total current different from direct definitions of displacement and parti-

cle currents. As illustrated in figure 5.1.1, a parallelepiped of volume Ω = Lx × Ly × Lz
is considered as the device active region. The volume Ω is limited by a closed surface

S which is composed of six rectangular surfaces S = {S1, S2, . . . , S6}. The total time-

dependent current on a surface Sj is defined by the RSP theorem as IT (t) = Γqj(t)+Γej(t)

with the volume expression Γqj(t) gives [31]:

Γqj(t) = −
∫

Ω

~Fj(~r) · ~Jc(~r, t) dν = −
N∑
m=1

sign(~vm) q ~Fj(~rm) · ~vm(~rm) (5.1)

and the surface expression Γej(t) as:

Γej(t) =

∫
Sj

ε(~r)
dV (~r, t)

dt
~Fj(~r) · d~s (5.2)

where ~Jc(~r, t) is the particle current density at the position ~r at time t, ~vm(~rm) is the

m-electron velocity, ~rm is the m-electron position, q is the electron charge without sign,

N is the total number of electrons in the simulation box, V (~r, t) is the scalar potential

at position ~r and time t. The vector function ~Fj(~r) is defined through an expression
~Fj(~r) = −∇φj(~r), where φj(~r) is its scalar potential. The function sign(~vm) is equal to 1

when one electron leaves the volume Ω through the surface Sj, while sign(~vm) = −1 when

the electron enters. Let us note that the terms Γqj(t) and Γej(t) cannot be interpreted as

particle current and displacement current, respectively. In fact, the term Γqj(t) includes

itself the particle current and part of the displacement current altogether. For example,
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(a) ε2 � ε1, ε3 (b) ε2 � ε1, ε3

Figure 5.1.2: Lines of electric displacement in the cross-section of volume Ω due to a
point charge q inside the graphene channel (with electric permittivity ε2 and is located
between top-dielectric (ε3) and bottom-dielectric (ε1)) (a) in case ε2 � ε1, ε3 and (b) in
case ε2 � ε1, ε3.

when an electron is not crossing a surface, say Sj, Γqj(t) 6= 0 while Ip(t) = 0. From the

RSP theorem (5.1) and (5.2), it is obvious that the electric permittivity ε and the device

geometry affect the time-dependent total current. As a consequence, in the following two

subsections, I will explicitly analyze how the ε and device geometry effectively affect the

total current.

5.1.2 The Role of Different Dielectric Constants on the Total

Current Behaviour

In this part, the 3D Poisson’s equation will be solved for a moving electron within an

arbitrary three-layer structure of figure 5.1.1, a 2D material (with electric permittivity

ε2) channel is located between the first (bottom dielectric, electric permittivity ε1) and

third (top dielectric, electric permittivity ε3) layers. More details about the solution of

the 3D poisson’s equation are provided in Appendix B. The electric displacement lines

in the 2D plane X-Y of volume Ω due to a point charge q inside the channel are plotted

in figure 5.1.2.

In the case ε2 � ε1, ε3, shown in figure 5.1.2 (a), the lines start from the point charge

and tend to reach the bottom/top regions. However, the difference on the values of the

dielectrics in the three regions implies a tendency of the electric lines to keep in region ε2.
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A moving electron inside the channel has a strong influence on surfaces S1 or S4 (right

and left in the figure) and leads to a non-negligible displacement current there. On the

contrary, displacement current on surface S2 and surface S5 in volume Ω, top and bottom

in the figure 5.1.2 (a), can be somehow neglected. Thus, in conclusion, although dealing

with a 3-terminal device, the different dielectrics tend to provide an electric field similar

to that found in a 2-terminal device.

On the contrary, when ε2 � ε1, ε3, most lines of the electric field tend to reach surface

S2 and surface S5 in volume Ω, top and bottom in the figure 5.1.2 (b), providing a non-

negligible current on the gates in a 3-terminal device. Thus, the instantaneous current

on S4 do not need to be equal to that on S1, while still satisfying instantaneous current

conservation.

From this simple results, we conclude that a proper engineering design of the different

electric permittivity allows to maximize/minimize the displacement current collected on

the gates. In the next subsection, I will show that this type of manipulation of the source,

drain and gate currents can be also realized by modifying the lateral areas of the FETs.

5.1.3 The Role of Device Geometry on the Total Current Be-

haviour

After the general discussion presented in the previous part, now I provide some simple

results focus on the 2D material transistor and study the dependence of the total current

(for an electron traversing the graphene transistor) on the device geometry. In order

to compute the current due to an electron with a trajectory ~r(t) = {vx · t, 0, 0} with

velocity vx = 5 × 105 m/s moving in FETs based on 2D material (the active region is

volume Ω), as depicted in figure 5.1.1, we define the time-dependent drain current as

ID(t) = IS1 + IS′3 + IS′6 , source current IS(t) = IS4 + IS′′3 + IS′′6 , gate current IG(t) =

IS2 + IS5 . These definitions of the gate, source and drain currents satisfy the requirement

of ID(t) + IS(t) + IG(t) = 0, at any time, because the sum
∑6

j=1 ISj(t) = 0. Here S ′3
and S ′6 are the right half parts of S3 and S6, respectively. S ′′3 and S ′′6 are respectively

the rest part of S3 and S6 to ensure that S ′3 + S ′′3 = S3 (indicated in figure 5.1.1) and

S ′6 + S ′′6 = S6.

An electron moving inside the channel generates a time-dependent electric field ~E(~r, t)

on surface S1, which finally affects the drain current ID(t). The value of ID(t) plotted

in figure 5.1.3 (a) shows the dependence of the duration of the total current peak τi

(illustrated in the figure) on the lateral area Ly × Lz. Let us emphasize that a unique

trajectory, meaning a unique electron transit time τe = Lx/vx, with a fixed length Lx = 20

nm, is used in all computations where only the lateral dimension Ly is modified. In

summery, from figure 5.1.3, the shape of the current pulse (transient current) is strongly
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Figure 5.1.3: Total current (a) ID(t) and (b) IG(t) due to an electron traversing the
volume Ω = Lx × (L1

y + L2
y + L3

y) × Lz. A fixed length Lx = 20 nm and several lateral
areas by changing height Ly but constant width Lz = 60 nm, are considered.

dependent on the lateral surface Ly × Lz. Due to the symmetry, the dependence of the

source current (not plotted) on the geometry is exactly the same as that for the drain

current (with a negative sign).

A quite different behavior for the gate current is observed. There are two peaks, one

positive and one negative, in the gate current. The positive part corresponds to increasing

the electric field collected in the gate when the electron is approaching the center of the

volume Ω, while the negative values correspond to decreasing the electric field on the

gate surface when the electron is leaving. Between positive and negative parts the gate

current has to cross the zero. Interestingly, the temporal distance between the maximum

and minimum values of the gate current increases for larger lateral areas. Let us mention

that a lot of information about the frequency spectrum of the current fluctuations can

be anticipated from these simple results. On one hand, the Fourier transform of these

currents provides direct information on the maximum frequencies of the corresponding

spectrum. For example, as a general rule, higher frequencies are required to build sharp

peaks associated to the currents of small lateral areas, while lower frequencies are required

for the soft peaks associated to the current with large lateral areas. Up to now, we have

provided numerical results how the device geometry affect the total current. As we know,

the vector function ~Fj(~r) in expressions (5.1) and (5.2) depends on the volume Ω. Next,

let us see how to explain the results in figure 5.1.3 with the RSP theorem.
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The 2-terminal Device

For the structure 20 × (30 + 1 + 30) × 60 nm3 with Ω = Lx × (L1
y + L2

y + L3
y) × Lz, the

drain current remains constant when the electron is traversing the device channel, which

recovered the old result of Ramo [27] and of Shockley [28], i.e. a current constant in time.

The gate current is almost zero. Therefore, this device behaves as a 2-terminal device.

In the following, let us see how to explain the total current behaviour of a 2-terminal

device with the RSP expressions (5.1) and (5.2).

The first version of the RSP theorem was presented by the work of Shockley [28] in

1938 and of Ramo [27] in 1939. They, separately, provided a simple expression for the

computation of the total (particle plus displacement) current flowing through a vacuum

tube, i.e. a typical electron device at that time. A vacuum tube can be roughly modeled

as two infinite metallic plates separated by air—a 2-terminal device. According to the

figure 5.1.4(a), let us name S4 the left plate, S1 the right plate and assume that an electron

is moving inside volume Ω. It can be demonstrated that one gets ~F4(~r) ≈ −(1/Lx) · ~x
when considering the volume Ω′ (the bottom and upper surfaces are much smaller than

the lateral ones) which captures all the lines of the electric field generated in the active

region by the moving electron [118], where Lx is the distance between plates and ~x is the

unit vector in the transport direction perpendicular to the plates. Then, using equations

(5.1) and (5.2) for just one electron moving with velocity ~v = {vx, 0, 0} in the transport

direction, the total current on S4 during 0 < t < τe can be written as:

I4(t) ≈ Γq4(t) ≈ −qvx(t)
Lx

, (5.3)

The current value is a constant while the electron is inside the Ω and its time-integral

during τe = Lx/vx gives the expected transmitted charge −q. In addition, the currents

on S1 and S4 are equal at any time. In this particular case, the relevant time for the

peak current τi is roughly equal to the electron transit time τe = Lx/vx.

The 3-terminal Device

For the other structures, for instance Ω = 20× (2 + 1 + 2)× 60 nm3, the devices behave

beyond the previous Ramo-Shockley result. In fact, these devices behave as a 3-terminal

device where the instantaneous current IS(t) in the source S is not equal to the ID(t) in

the drain D, while still satisfying the instantaneous current conservation. As a general 3-

terminal device Ω plotted in 5.1.4(b), the top and bottom surfaces are no longer smaller

than the lateral surfaces. For that geometry of the volume Ω, we get the expression
~F4(~r) ≈ −αx · exp (αx(x − Lx)) · ~x [118], where αx =

√
( 1
Ly

)2 + ( 1
Lz

)2 (being Ly the

vertical height and Lz the width indicated in figure 5.1.1. the vector function ~F4(~r) is
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Figure 5.1.4: (a) A 2-terminal device, a very large simulation box Ω′ is used to compute
the total current, i.e. I4 on surface S4, which is equal to the current Iammeter in the
ammeter. (b) A 3-terminal device. The dashed lines represent the variational electric
field lines.

not constant neither in modulus nor in direction. The current on S4 due to one electron

moving in x direction with velocity vx is directly written from equations (5.1) and (5.2)

as,

I4(t) ≈ Γq4(t) ≈ −q vx αx evx αx(t−τe). (5.4)

It is seen clearly that the geometry of Ω has a clear influence on ~F4(~r), which, in turn,

affects the current I4(t). Here, the electron transit time is different from the current peak

duration, τe > τi.

Up to here, we have a better understanding how the device geometry affect the

total current. Then, I will analysis the high-frequency behaviours of FETs based on

2D materials, in particular, the high-frequency noise of graphene FETs in Section 5.2.

5.2 Practical Computations for Graphene FETs

In this section, I will study the high-frequency noise of the graphene FETs. The in-

troduction of graphene has been explained in Chapter 1. Before the discussion, let me

mention shortly the theoretical work done in the prediction of the graphene transistor. A

very simple estimation of the intrinsic cut-off frequency as the inverse of electron transit

time shows that one can easily reach frequencies higher than 1 THz (active region shorter

than 10−6 m with electron velocity on the order of 106 m/s). Are such simple intrinsic

high-frequency predictions really achievable? What noise is expected at such frequencies?

The intrinsic THz performance of graphene transistors beyond the quasi-static ap-

proximation will be carefully studied, by explicitly simulating the time-dependent dis-
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placement and particle currents in the active region of graphene transistors. In previous

work, an original strategy has been presented to optimize radio frequency performance

of gate-all around (GAA) quantum-wire Silicon FETs by modifying their lateral areas,

without length scaling or mobility improvement [119]. In the definition of the duration of

the total current peak due to an electron traveling along the device, there are scenarios

where the exact transit time of the electron is not at all a relevant parameter for fT

estimations. it has been proved [119] that, for GAA quantum-wire Silicon FETs, the

ultimate responsible of the high-frequency noise is not the electron transit time τe, but

a different time related to the duration of the total current peak τi, while the electron is

crossing the device. Hereafter, I will show that similar arguments can be also applied to

the intrinsic THz performance of graphene transistors. Along this work I refer to intrin-

sic modeling in order to emphasize that spurious effects (like the important drawbacks

occasioned by the contact resistance mentioned above) are not considered in this work.

I only deal with electron dynamics inside the device active region. The intrinsic Klein

(Band-to-Band) tunneling and positive-negative energy injection on graphene transistors

are carefully analyzed and predictions on their effect on the graphene high-frequency

performance are provided.

Before computing the high-frequency noise of graphene FETs, let us discuss some

peculiarities of graphene material. Due to the 2D nature of graphene, only two degrees of

freedom specify the electron position, {x, z}. Equivalently, only two wave vectors {kx, kz}
are needed. As a consequence of the honeycomb graphene structure, the relationship

between the energy of electrons, Ek and its wave vector |k| =
√
k2
x + k2

z is:

Ek = ±~vf |k|, (5.5)

where vf = 5× 105 m/s is the Fermi velocity. This linear Ek − k dispersion has several

relevant differences with typical parabolic Ek − k dispersion in Silicon that, at the end

of the day, implies important differences with the typical Monte Carlo tools:

• Electrons with positive and negative (kinetic) energy in a gapless material: From

the ± signs in equation (5.5), we notice that there are two possible energies for

an electron with momentum |k|. In the literature, usually those electrons with

negative energy are called holes and with positive energy called electrons. We do not

use the name hole because here we simulate explicitly electrons in the conduction

band (CB, positive kinetic energy) and electrons in the valence band (VB, negative

kinetic energy). The graphene (kinetic) energy band structure has a zero (kinetic)

energy at the Dirac point. Contrary to Silicon semiconductors, there is no energy

gap between electrons with positive energy and electrons with negative energy.

Injections from the contact have to consider electrons above and below the Dirac
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Figure 5.2.1: (a) Schematic representation of an energy profile in the transport direction
of graphene transistors in BITLLES simulator. The applied drain-source bias, VDS,
provides a different source, Efs, and drain, Efd, Fermi levels, the Fermi-Dirac distribution
function at each contact are indicated. (b) The trajectory for one electron above the Dirac
point and one below with the same absolute kinetic energy injected from the source
approaching the drain.

point, as illustrated in figure 5.2.1(a). The details of the particular positive-negative

(kinetic) energy injection model in the BITLLES simulator have been explained in

Chapter 3.

• Transport equation in graphene: From equation (5.5) one can easily find the semi-

classical equations of motion for electrons in graphene. Their dynamical behavior

is similar to massless relativistic particles. However, their maximum velocity is not

the speed of light, but vf . A simple understanding of graphene electrons under an

applied bias (from drain to source) can be achieved by using the conservation of the

total energy E and of the momentum kz in the z direction (no applied bias in that

direction). If we define θ as the angle between k and kx, i.e. sin(θ) = kz/|k|, then

the conservation of E and of z-momentum imply that an electron of total energy

E moving from a location with potential energy Uo till another point with Uf has

to satisfy the relation:

(E − Uo)sin(θo) = ±(E − Uf )sin(θf ) (5.6)

When an electron with positive kinetic energy Ek moves with Uo > Uf (and with

both Uo < E and Uf < E), then, it tends to reach the maximum velocity in the x

direction and minimum in the z direction (dashed lines in the inset of figure 5.2.1(b))
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and the contrary if Uo < Uf . The opposite behavior (solid lines in the inset of figure

5.2.1(b)) is found for an electron with negative kinetic energy Ek (with both Uo > E

and Uf > E). All previous trajectories are compatible with using the sign + in

equation (5.6). On the contrary, if the electron trajectory involves changing from

positive to negative kinetic energies because of Klein tunneling (either Uo < E and

Uf > E or Uo > E and Uf < E), then, the sign − has to be used in equation (5.6).

• Because of the energies available above and below the Fermi point, the typical gap

barrier with forbidden energies found in Silicon is unachievable in graphene. This

exotic phenomenon leads to a particular effect called Klein tunneling [120, 121].

When an electron impinges with sharp variations of the potential energies, there is

a large probability that the electron tunnels from one band to another [120, 121].

This kind of band-to-band tunneling implies that the tunneling current is always

relevant, resulting in a failure to get saturation near the pinchoff [122, 123]. The

tunneling probability in the x direction is given by [81]:

T = exp
(
− π~vfk2

z/(e|F |)
)
, (5.7)

where |F | is the magnitude of the local electric field in the x direction, and kz

is the wave vector in z component. Similar probability expression is used for the

tunneling in the z direction.

The simulation of high-frequency graphene FETs is performed by using the BITLLES

simulator solving the Monte Carlo solutions of the Boltzmann equation (adapted for

graphene structures). The peculiarity in graphene, for instance, the Klein tunneling,

linear band-structure and the positive-negative injection, are also taken into account in

the simulation. An ideal Ohmic contact is assumed in the drain and source contacts to

ensure that the applied VDS directly translates into a difference of the source and drain

Fermi levels, i.e. Efd = Efs − qVDS, being Efs and Efd the source and drain Fermi

levels, respectively. The extrinsic role of the contact resistance mentioned previously is

directly disregarded in all the intrinsic results discussed in this work. All simulations

of the graphene devices are performed with a DC polarization for the gate, source and

drain bias. In particular, I define Efs = 0.05 eV with VTG = VBG = 0.05 V (being VTG

top gate voltage and VBG bottom gate voltage), VS = 0 V and VD = 0.1 V.

In any case, by dealing with an explicit time-dependent formalism, the intrinsic dy-

namics of the electrons in the active device region will be captured. Each bias point is

simulated during T = 1000 ps, with a time step of ∆t = 0.7 fs. The Poisson equation is

solved in the whole simulation box depicted in figure 5.1.1 including external spacer L′x,

larger than the device active region Ω, with Dirichlet boundary conditions on the gates,

source and drain surfaces and Dirichlet in the rest of boundaries. At each time step of
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the Monte Carlo simulation, ∆t, the total current I(t) in all surfaces of the volume Ω are

computed, following the direct expressions (2.31) and (2.32), or the RSP theorem (5.1)

and (5.2). From these currents on the six faces of the volume Ω, the source, gate and

drain currents are computed following the definitions given in Subsection 5.1.3. Once

the time-dependent currents are known, autocorrelation function ∆R(τ) and the power

spectral density (PSD) can be computed from expressions (2.2) and (2.3) in Chapter 2,

respectively [124].

Two different geometries for the graphene FET depicted in figure 5.1.1 are considered.

The device A has a volume ΩA = 20 × (2 + 1 + 2) × 60 nm3 and device B is ΩB =

20× (30 + 1 + 30)× 60 nm3 with Ω = Lx× (L1
y +L2

y +L3
y)×Lz. In both geometries, the

length in the transport direction is Lx = 20 nm (identical transit times), the height in

the y direction of the 2D graphene sheet is 1 nm and width in the z direction is Lz = 60

nm. The only difference is the height of the dielectrics. All the rest physical parameters

discussed in the previous section are identical for both structures. In order to test the

effect of the Klein tunneling and positive-negative (kinetic) energy injection discussed, we

consider high-frequency performance for three types of simulations for both structures.

The results of the DC currents and low-frequency noise with or without Klein tunneling

and with or without negative energy injection are summarized in table 5.1.

5.2.1 PSD without Klein Tunneling and only Positive Energy

Injection

First of all, a simulation without Klein-tunneling and only positive kinetic energy injec-

tion is considered. This is a type of simulation similar to the one done for Silicon FETs.

The PSD of current fluctuations for the two different geometries is plotted in figure 5.2.2.

First, from the figure, it is easy to realize that the (maximum) frequencies where the

PSD of the drain and source current fluctuations drops down to zero become different

and with a difference of almost one order of the magnitude. Let us emphasize that, in

principle, both geometries in devices A and B have roughly the same electron transit

time τe = Lx/vx. A displacement of the noise spectrum to the higher frequency range

can be achieved without changing the device active region Lx = 20 nm nor its (average)

velocity vx. The physical reason of this effect can be easily understood from the results of

figure 5.1.3 for the drain and source currents and the explanation there. Sharp temporal

peaks of the displacement currents requires higher frequencies, and vice versa. This very

relevant effect will also appear in all the rest of simulations and its consequences in the

cut-off frequencies will be mentioned in the conclusions.

In addition, in figure 5.2.2, a large peak of the gate current for device A at frequency

f = 10 THz is observed, which is much larger than that of device B. This effect can also
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Figure 5.2.2: PSD of the current fluctuations as a function of frequency for graphene
FETs with two different geometries (but identical channel length Lx = 20 nm) in device
A and B, operating under DC conditions: double gates VTG = VBG = 0.05 V, applied
bias VDS = 0.1 V, without Klein tunneling and only positive kinetic energy injection.

be clearly seen in the autocorrelation plotted in the inset of the figure. The sample B has

a much lower value of the PSD of the gate current peak and its peak appears at a lower

frequency f = 4 Thz. The basic features of these peaks of the gate current again can be

straightforwardly understood from the results of figure 5.1.3. The Fourier transform of

the gate current drawn in figure 5.1.3 is basically a delta in the frequency of the oscillatory

signal for device B and several deltas in the case of sample A. Notice the tendency to

a multi peak spectrum in the PSD of device A. In both cases, no PSD appears at zero

frequency because there is no particle current in the gate, but only displacement current

that goes to zero when averaged in a long period of time [125].

5.2.2 PSD with Klein Tunneling and only Positive Energy In-

jection

When the Klein tunneling is considered, but still only electron injection from above the

Fermi Dirac point, the results in figure 5.2.3 are qualitatively very similar to the ones

plotted in figure 5.2.2. However, let us emphasize that the PSD is basically one order
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Figure 5.2.3: PSD of the current fluctuations as a function of frequency for graphene
FETs with two different geometries (but identical channel length Lx = 20 nm) in device
A and B, operating under DC conditions: double gates VTG = VBG = 0.05 V, applied
bias VDS = 0.1 V, with Klein tunneling and only electron injection from above the Dirac
point.

of magnitude larger now as written in table 5.1. The Klein tunneling with a “random”

tunneling probability of being reflected or transmitted given by equation (5.7) (with the

change from positive kinetic energy to negative kinetic energy or vice versa) introduces an

important source of noise. These new source of noise cannot be avoided in graphene and

is present even in the ”ballistic” regime (no phonon or impurity scattering) considered

in this work.

Looking at the DC currents in table 5.1, this noise increment is obtained, in fact,

with a reduction of the DC current (the signal). The physical reason of the reduction

is quite simple. Now, electrons from the drain are able to reach the source, even with

an applied bias VDS = 0.1 V, because of the Klein tunneling. This new addition of

flux of electrons has an opposite sign when compared to the conventional source-to-

drain current. Certainly, the signal-to-noise ratio is greatly degraded because of the

Klein tunneling. This is an important and unavoidable drawback for high-frequency

applications of graphene, not usually noticed in the literature.
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Figure 5.2.4: PSD of the current fluctuations as a function of frequency for graphene
FETs with two different geometries (but identical channel length Lx = 20 nm) in device
A and B, operating under DC conditions: double gates VTG = VBG = 0.05 V, applied
bias VDS = 0.1 V, with Klein tunneling and positive-negative energy injection.

5.2.3 PSD with Klein Tunneling and Positive-Negative Energy

Injection

Finally, in figure 5.2.4, the PSD are plotted for device A and B when, both, Klein tunnel-

ing and positive-negative energy injection are considered. The main features discussed

for figures 5.2.2 and 5.2.3 are also present in these new results. Again, let me emphasize

that the PSD increases two orders of magnitude, while the DC current is roughly a fac-

tor of 10 greater than that in the first case. For the noise, the new thermal injections

from below the Fermi point implies larger noise. For the DC current, now, there is a

combination of a decrement of the DC current due to Klein tunneling and an increment

due to the source-to-drain injection from below of the Fermi Dirac point (greater than

the drain-to-source injection). Note that I consider the effect of the Pauli principle in

the injection model, but do not consider it during the dynamics of electrons in the device

active region. Therefore, the DC current is a little overestimated. In any case, the im-

portant degradation of the signal-to-noise ratio mentioned for the results of figure 5.2.3
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Table 5.1: DC current and zero-frequency noise (i.e. S(ω → 0)) for three types of
simulations for both device A and device B. In the table, KT means simulation with
Klein tunneling, PI with positive (kinetic) energy injection and NI with negative kinetic
energy injection.

Device A Device B
DC current noise DC current noise
(µA) (µA2/THz) (µA) (µA2/THz)

PI 0.68 0.130 1.50 0.095
KT PI 0.21 0.641 0.31 0.368
KT PI NI 10.2 2.711 8.14 2.956

is also present here.

In conclusion, a new path is opened to study the announced THz behavior of graphene

transistors. Instead of using the extended strategy of providing high-frequency predic-

tions from quasi-static simulations, I directly simulate the time-dependent particle and

displacement currents in an intrinsic graphene FET. Only the device active region is

explicitly simulated, thus, all extrinsic effects due to (parasitic) resistances in the source,

drain or gate contacts are directly ignored in this work. A Monte Carlo solution of the

Boltzmann equation is fully adapted to graphene FETs. In particular, the semi-classical

transport equations for electrons above and below the Dirac (zero energy) point are

adapted accordingly. In addition, the Klein tunneling is explicitly considered allowing

electrons to transit from above to below the Dirac point, or vice versa. A novel electron

injection model for electrons with positive and negative kinetic energies are developed for

graphene (including the thermal noise and Fermi Dirac statistic). From the simulations

of the dynamics of the electrons inside the active region (under constant DC polarization

in the gate, source and drain contact), I compute the measured total currents in the

three FET terminals. From such time-dependent currents, the PSD of their fluctuations

is computed as a Fourier transform of the current autocorrelation.

Particular features of high frequency behavior of graphene FETs are predicted from

such PSD. I perform simulation with and without Klein tunneling, and injection from

positive or both positive and negative (graphene injection) kinetic energies. From such

simulations, we conclude that the unavoidable Klein tunneling and graphene injection

provide an increment of noise at THz frequencies (and also at lower frequencies) when

compared to simulations without Klein tunneling or graphene injection. Such increment

of the noise is not compensated by a similar increment on the average DC current (in-

terpreted here as the signal), providing an unavoidable degradation of the signal-to-noise

ratio. Certainly, the use of a semi-classical simulation tool is an approximation, however,

a test with (Bohmian) quantum solutions of the Dirac equation that the extension to-
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wards quantum simulations tools will not provide important variations [42, 69, 70, 114].

The main approximation in this present work (common in most Monte Carlo simulations)

is the fact that the Pauli principle (the exchange interaction between electrons) is not

explicitly considered during the dynamics of electrons in the device active region.

The two geometries of the graphene FET studied in this work, device A and device

B, have exactly the same length in the x (drain-source transport) direction. Therefore,

both geometries imply the same transit time, τe, but they have different temporal width

of the peak current τi, see figure 5.1.3. However, the shorter the vertical height (in

comparison with the length of the active region in the transport direction), the larger the

maximum frequency of the PSD. This can be seen in figures 5.2.2, 5.2.3 and 5.2.4. From

this result, an alternative strategy (without length scaling) is envisioned to optimize the

intrinsic cut-off frequency of graphene transistors. It is argued from the usual (quasi-

static approximation) predictions of the cut-off frequency, fT , that its value is inversely

proportional to the transit time, fT ≈ 1/(2πτe), pointing out that the electron transit

time as the ultimate limiting factor [4, 126]. This last result suggests to improve the

material mobility and shorten the x transport direction when optimizing fT . However, in

this work, I have shown that in fact a careful time-dependent analysis of the displacement

current generated by a moving electron shows that, for some particular graphene FETs

named here as device A (with lateral dimensions much shorter than their gate length),

the limiting effective time is the current peak, τi, which can be much smaller than τe,

This can be seen in figures 5.2.2, 5.2.3 and 5.2.4. The same result can be anticipated

from figure 5.1.3.



Chapter 6

Limitations of fT to Correctly

Quantify the Speed of Nanoscale

Transistors: Practical Computations

of 2D Devices

The development of faster electron devices for digital and analog applications is a constant

demand in the electronics industry [4, 5]. The scientific community tries to quantify how

fast the field effect transistors (FETs) work through some figures of merit (FoMs). In

this chapter, I will discuss with theoretical and numerical results to test if the intrinsic

cut-off frequency (fT ) can be an appropriate FoM to quantify the intrinsic speed of these

nanoscale FETs with dimensions of few nanometers for digital or analog TeraHertz (THz)

applications.

6.1 The Theoretical Discussion

There is no such a unique FoM that unequivocally quantifies how fast an electron device

works. Some definitions are linked to a particular circuit or application, others to the

intrinsic device itself. Some FoMs are redefined to make them more easily accessible from

simulations, or from measurements. Usually, the FoMs in digital FET applications are

related with times, while that in analog ones are commonly described with frequencies.

In digital FET applications, for example, an important FoM is the intrinsic delay

time τd. The idea of this FoM is to quantify the time needed for an output signal to

respond to an input signal[127]. Many times, a simpler quasi-static (QS) definition of

the intrinsic delay time, τQSd ≈ C · Vgs/Ids, is preferred because it is easily accessible

from DC (time-independent) simulations [4]. Such expression can be interpreted as the

time needed to charge the next gate capacitor C, until the gate voltage associated to

109
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the ON state Vgs, with a constant drain-source current Ids. From an experimental point

of view, however, a new definition of the intrinsic delay time from a ring oscillator of

N (odd) CMOS inverters is used. By taking the inverse of the frequency at which the

ring oscillator runs and dividing it by N , such intrinsic delay time can be easily obtained

[128].

In analog applications, the cut-off frequency fT and the maximum oscillation fre-

quency fmax are the main FoMs. The fT is defined as the frequency at which the drain

and gate current phasors become equal (that is a current gain of 0 dB) [129, 130]. Equiva-

lently, the fmax is the frequency at which the power gain is 0 dB [4]. Both frequencies are

easily accessible from the measurement of S-parameters and even their intrinsic values

(when all parasitic elements of the circuit are eliminated using de-embedding techniques)

are measurable. Needless to say, fmax, based on Mason’s identities [131], becomes a more

relevant FoM in high-frequency analog applications [5].

It is accepted that, although the intrinsic fT is not the relevant FoM in high frequency

analog applications, it is a meritorious FoM providing useful information on the speed of

FETs. In order to provide an expression of the cut-off frequency accessible from DC (time-

independent) simulations, the so-called QS approximation fQST ≈ gm/(2πC) is presented

in the literature [6, 132–135]. It is based on assuming that the drain current is only

the DC component related to the (linear) transconductance gm = dIds/dVgs ≈ Ids/Vgs,

while the gate current is the displacement component proportional to the capacitor C and

frequency. From the previous QS definition of the intrinsic delay time τQSd ≈ C ·Vgs/Ids in

digital applications, we easily arrive to the approximation fQST ≈ 1/(2πτQSd ) [136, 137].

This last expression supposedly justifies why the cut-off frequency is a good FoM to

quantify the intrinsic switching speed in digital applications. Alternatively, several non-

quasi-static (NQS) approximations are also proposed for more accurate predictions of fT

[130, 133, 138, 139].

In this chapter, we discuss if fT can be an appropriate FoM to quantify the intrinsic

speed of these nanoscale FETs with dimensions of few nanometers for digital or analog

TeraHertz (THz) applications. In such FETs, the electric field generated by an electron

crossing the channel is not properly screened and it induces displacement current on the

terminals. We will construct a condition for the validity of the QS estimation of fQST
and prove that fT far from this condition can be a quite misleading estimator (with or

without approximations) for the speed of ballistic FETs.

We summarize here four relevant time intervals that will be used along the paper. The

intrinsic delay time τd quantifies the temporal difference between the time when a gate

voltage perturbation starts and the time when the gate, drain and source currents reach

steady-state values. The τQSd and τNQSd are the intrinsic delay time mentioned above

under the QS approximation and under the zero-order NQS approximation, respectively.
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Due to the displacement current, one electron traversing the channel length generates

a current pulse1. The temporal width of such pulse is defined as τp. The value of τp

is influenced by the device geometry and the dielectric relaxation time needed for the

background charge to neutralize (screen) the electric field generated by the single electron.

We also define fdT , fQST and fNQST as the cut-off frequencies associated to τd, τ
QS
d and

τNQSd , respectively. Finally, fT is the exact definition of the cut-off frequency from the

condition of the current gain equals to one. We will see in this chapter that fT can

dramatically differ from fdT .

6.1.1 Fourier Analysis of fT

In this subsection, a Fourier analysis of the definition of fT from the condition of the

current gain equals to one will be discussed, with special attention to the role played by

the particle and displacement currents on it. This complete discussion is valid for any

type of (ballistic or non-ballistic) FET.

We consider a dual-gate FET depicted in figure 6.1.1(a) with three terminals. The

three relevant total (displacement plus particle) currents, named I1(t), I2(t) and I3(t)

are respectively associated to the gate, drain and source terminals (more details about

the definition and computation of these three terminal total currents with the BITLLES

simulator can be found in Chapter 5), as:

Im(t) =

∫
Sm

ε(~r)
d ~E(~r, t)

dt
· d~s+

∫
Sm

~J(~r, t) · d~s, (6.1)

being ε(~r) the electric permittivity, ~E(~r, t) the electric field and ~J(~r, t) the particle current

density. We consider d~s outwards. The three surfaces in equation (6.1) construct a surface

S = S1 + S2 + S3 that totally enclose an arbitrary volume Ω. Then, by construction, at

any time t, the three currents satisfy:

I1(t) + I2(t) + I3(t) = 0. (6.2)

which is just the conservation of the total current in the active region Ω due to the

application of Gauss’s law in S.

In the evaluation of fT , we are interested in a transient simulation. Initially, the three

currents have steady-state values Im(0). At t = 0, a (small-signal) voltage perturbation

is applied on one of the three FET terminals. Then, during a time interval τd (we will

1In the case of an electron with charge q and velocity v moving between two infinite parallel metals
separated with a distance L, it is well known from the Ramo-Shockley-Pellegrini theorem [119] that the
square pulse current has a temporal width of τp = L/v and a height equals to qv/L. The total charge
of the current pulse is (qv/L)× (L/v) = q.
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Figure 6.1.1: (a) Cross-section of the active region Ω = L × (H ′ + H + H ′′) × W in
a dual-gate 2D FET being L the gate length. (b) A two-port network of the intrinsic
device.

see later that this time is indeed the intrinsic delay time), the three output currents

oscillate. Finally, new steady-state values Im(τd) for the three currents are achieved with

Im(t) = Im(τd) for t ≥ τd. For each contact m, we define the incremental charge during

τd as:

∆Qm ≡
∫ τd

0

(Im(t)− Im(τd))dt. (6.3)

Instituting the total current expression (6.1) into the incremental charge, we get:

∆Qm =

∫ τd

0

[ ∫
Sm

ε(~r)
d ~E(~r, t)

dt
· d~s+

∫
Sm

~J(~r, t) · d~s
]
dt+

∫ τd

0

Im(τd)dt

=

∫
Sm

ε(~r)[ ~E(~r, τd)− ~E(~r, 0)] d~s+

∫ τd

0

∫
Sm

~J(~r, t) · d~s dt+ Im(τd) · τd

= ∆ΦD,m +
Nm∑
j=1

sign(~vj) · q + Im(τd) · τd, (6.4)

where we define the incremental D-field flux on surface m as ∆ΦD,m = ΦD,m(τd)−ΦD,m(0)

with ΦD,m(t) =
∫
Sm
ε(~r) ~E(~r, t) d~s. The sum Nm is the number of electrons that have

crossed the surface Sm during the time from 0 till τd. The function sign(~vj) is equal to 1

when one electron leaves the volume Ω through the surface Sm, while that the sign(~vj)

is -1 when the electron enters, ~vj represents the velocity of the j-th electron and q is the

electron charge without sign. Using (6.2) that ensures I1(t) + I2(t) + I3(t) − I1(τd) −
I2(τd)− I3(τd) = 0 at any time for the volume Ω, we easily get:

∆Q1 + ∆Q2 + ∆Q3 = 0. (6.5)
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The equation (6.5) is rewritten by replacing the incremental charge ∆Qm with the ex-

pression (6.4), as:

∆ΦD,1 +

N1∑
j=1

sign(~vj) · q + I1(τd) · τd + ∆ΦD,2 +

N2∑
j=1

sign(~vj) · q + I2(τd) · τd

+ ∆ΦD,3 +

N3∑
j=1

sign(~vj) · q + I3(τd) · τd

= ∆ΦD,1 + ∆ΦD,2 + ∆ΦD,3 +
N∑
j=1

sign(~vj) · q + (I1(τd) + I2(τd) + I2(τd)) · τd

= ∆ΦD,1 + ∆ΦD,2 + ∆ΦD,3 +
N∑
j=1

sign(~vj) · q = 0, (6.6)

where we have used the current conservation law (I1(τd)+ I2(τd)+ I2(τd)) · τd = 0 and the

total number of electrons cross the surface S is N = N1 + N2 + N3. This equation just

states that the variation of electron charge from 0 till τd in the volume Ω is compensated

by the variations of the electric flux during this time interval on the surface S.

The All-order Definition of fT

The usual definition of fT comes from a FET in common source configuration as plotted in

figure 6.1.1(b). Following the signs of the currents assigned to the FET of figure 6.1.1(a),

the currents on the gate and drain terminals of the two-port network are positive when

leaving the network. In the model of figure 6.1.1(b), the relationship between the phasor

voltages Ṽm(ω) ≡ F{Vm(t)−Vm(0)}, the phasor currents Ĩm(ω) ≡ F{Im(t)− Im(0)} and

the Y -parameter matrix is:[
Ĩ1(ω)

Ĩ2(ω)

]
=

[
Y11(ω) Y12(ω)

Y21(ω) Y22(ω)

][
Ṽ1(ω)

Ṽ2(ω)

]
. (6.7)

where ω is the angular frequency and F{..} is the Fourier transform. The individual

matrix elements is computed by exciting the device with a single voltage perturbation

[129, 140]:

Ymn =
Ĩm

Ṽn

∣∣∣∣∣
Ṽk=0,k 6=n

=
F{Im(t)− Im(0)}
F{Vn(t)− Vn(0)}

. (6.8)

When a step perturbation Vn(t) = Vn(0) + ∆Vn · u(t) (with u stands for the Heaviside

step function) is applied on contact n and zero volts on the rest of terminals, the Ymn
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can be simplified by substituting the step perturbation in equation (6.8), as:

Ymn =

∫∞
−∞

(
Im(t)− Im(0)

)
e−jωtdt∫∞

−∞

(
Vn(t)− Vn(0)

)
e−jωtdt

=

∫∞
0

(
Im(t)− Im(τd) + Im(τd)− Im(0)

)
e−jωtdt

∆Vn ·
∫∞
−∞ u(t)e−jωtdt

=

(
Im(τd)− Im(0)

)
·
∫∞

0
e−jωtdt

∆Vn ·
∫∞
−∞ u(t)e−jωtdt

+

∫∞
0

(
Im(t)− Im(τd)

)
e−jωtdt

∆Vn · (πδ(ω) + 1
jω

)

=

(
Im(τd)− Im(0)

)
·
∫∞
−∞ u(t)e−jωtdt

∆Vn ·
∫∞
−∞ u(t)e−jωtdt

+

∫∞
0

(
Im(t)− Im(τd)

)
e−jωtdt

∆Vn · (πδ(ω) + 1
jω

)

≈ ∆Im
∆Vn

+
jω

∆Vn

∫ τd

0

(Im(t)− Im(τd)) e
−jωtdt (ω 6= 0), (6.9)

where the Fourier transform of the Heaviside step function is F{u(t)} = πδ(ω) + 1
jω

and

∆Im = Im(τd) − Im(0). In expression (6.9), the results Im(t) = Im(τd) for t ≥ τd and

Im(t) = Im(0) for t ≤ 0 are also considered.

The intrinsic cut-off frequency fT computed from the Y -parameter is the linear fre-

quency at which the current gain magnitude drops to unity (0 dB) [129]:

|h21(ω = 2πfT )| ≡
∣∣Y All

21

∣∣∣∣Y All
11

∣∣ ≡ F{I2(t)− I2(0)}
F{I1(t)− I1(0)}

= 1. (6.10)

The superindex All means that all orders of the Taylor expansions of the Fourier trans-

form in (6.9) are taken into account (without approximations).

The Quasi-static Definition of fQST

The expression of fQST within the QS approximation is obtained by computing the term

Y21 from (6.9) without any frequency dependence, e−jωt ≈ 0, as:

Y QS
21 (ω) ≈ ∆I2

∆V1

≡ dI2

dV1

≡ gm. (6.11)

The term Y11 is computed with a zero-order approximation, e−jωt ≈ 1, from (6.9) as:

Y QS
11 (ω) ≈ jω

∆V1

∫ τd

0

(I1(t)− I1(τd)) dt = jω
∆Q1

∆V1

, (6.12)

where ∆Q1 is defined in (6.3). The approximation in (6.11) is based on the assumption

that the current pulse τp is short enough to neglect any displacement component of

the drain current. Expression (6.12) assumes that the gate current is the displacement

component. As indicated in the Introduction, from (6.10), using (6.11) and (6.12) , we

get:

fQST =
gm

2π∆Q1/∆V1

=
gm

2πC1

, (6.13)
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where the term ∆Q1/∆V1 ≡ C1 is usually associated to the gate capacitor [141].

The Zero-Order Non-Quasi-Static Definition of fNQST

In order to better include the drain displacement current, it seems more appropriate to

use the same zero-order approximation of the exponential term, e−jωt ≈ 1, that we have

used for Y11 in (6.12), in the computation of Y21 from (6.9):

Y NQS
21 (ω) ≈ gm +

jω

∆V1

∫ τd

0

(I2(t)− I2(τd)) dt

= gm − jω|∆Q2|/∆V1, (6.14)

where ∆Q2 is also defined in (6.3). Consequently, from (6.10), a NQS estimation of fT

gives [142]:

fNQST =
gm

2π
√

∆Q2
1 −∆Q2

2/∆V1

. (6.15)

This is a first step (zero-order Taylor approximation) in the evaluation of fNQST beyond

the quasi-static approximation.

6.1.2 Conditions for the Validity of the Quasi-Static Estimation

of fT

In the QS approximation, assuming that ∆Q1 ≈ ∆Q2 during the transient evolution:

∆Q1 ≈ ∆Q2 ≡
∫ τd

0

(I2(t)− I2(τd))dt ≈ ∆I2τ
QS
d , (6.16)

we get the condition C1∆V1 = ∆Q1 ≈ ∆Q2 ≈ ∆I2τ
QS
d where τQSd ≈ C1∆V1/∆I2 is

the typical QS definition of the intrinsic delay time mentioned in the Section 6.1 when

∆V1 ≈ Vgs giving ∆I2 ≈ Ids. Then, the definition of the (small-signal) transconductance

in equation (6.11), with expression (6.16), can be redefined as [136]:

gm ≡
dI2

dV1

≈ ∆I2

∆V1

=
∆I2

∆Q1

∆Q1

∆V1

=
1

τQSd
C1. (6.17)

Putting (6.17) into (6.13), one arrives to the final result:

fQST = 1/(2πτQSd ), (6.18)

which is one of the main reasons why fQST is interpreted as a relevant FoM on how fast a

digital FET works. In summary, the QS approximation is valid whenever the condition

∆Q1 ≈ ∆Q2 is satisfied. From (6.5), such condition can be equivalently written as
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∆Q3 ≈ 0. From (6.3), the previous conditions in a transient evolution means that the

source current rapidly becomes equivalent to its high value I3(t) ≈ I3(τd) while the drain

current remains low I2(t) ≈ I2(0) during the intrinsic delay time interval 0 < t < τd.

These conditions are typical in many FETs with a large channel length L where the

intrinsic delay time τd is much larger than the temporal width of the current pulse

generated by one electron τp, i.e. τd > τp. Then, the total (particle and displacement)

current in the drain and source contacts are detected only when electrons cross the

surfaces S2 and S3, respectively. However, in FET devices with a short channel length

L, one can easily get scenarios with τd ≈ τp where an electron moving along the channel

generates a time-dependent electric field that is detected as displacement current on the

source and drain contacts without even crossing the surfaces S2 (drain contact) and S3

(source contact).

In a typical n-type FET, when ∆V1 is positive, we can expect a positive transient

current I2(t) satisfying I2(0) ≤ I2(t) ≤ I2(τd), while the current on the source is negative

and decreases I3(0) ≥ I3(t) ≥ I3(τd) because of the signs selected in figure 6.1.1(b).

Since we deal with an increment of electrons (negative charge) in the channel, we expect

I1(t) ≥ 0 in the metal. From (6.3) we get positive ∆Q1 and ∆Q3, while negative ∆Q2.

Therefore, the expression ∆Q1 +∆Q3 = |∆Q2| is achieved, which means |∆Q1| < |∆Q2|.
This condition will be numerically tested later. Therefore, in the NQS approximation,

the definition of fNQST in (6.15) can be ill-defined because it deals with a square root of a

negative number, that is, the condition |h21| = 1 cannot be reached with this zero-order

NQS approximation.

We arrive now to a relevant question about the adequacy of fT as a proper FoM for

testing FET speed. Is it possible to find FETs where the gate phasor current is always

smaller than the drain one, even with the exact definition of the Y parameters in (6.10)?

This would imply that, contrarily to what it is assumed in the own definition of fT , the

current gain never drops to 0 dB at any frequency.

6.2 Practical Computations for 2D FETs

In Section 6.1.1, the conditions of validity of fQST were discussed. We also pointed out the

possibility that the own definition of fT is ill-defined because there is no guarantee that

the gate phasor current becomes higher than the drain phasor current as frequency grows.

Next, we provide numerical confirmation of these drawbacks for ballistic nanoscale FETs.

First of all, I will give some details about the device structure and the time-dependent

simulation performed in the BITLLES simulator.

We will consider dual-gate FETs schematically drawn in figure 6.1.1(a) with a 2D

channel material. These 2D materials are expected to improve electron mobility and to
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suppress the short channel effect for ultra-scaled devices. In order to simplify the numeri-

cal simulations (avoiding extra complications, like Klein tunneling or hole transport, that

will obscure the interpretations of our numerical results), we will consider only electron

transport in the conduction band of a n-type graphene-like material with a linear energy

band E~k = ±~vf |~k| being vf = 5 × 105 m/s the Fermi velocity and ~k the wave vector

which contains the two degrees of freedom {kx, kz}. The permittivity is ε = 4ε0 in the 2D

material and ε = 3.9ε0 in dielectrics with ε0 represents the vacuum permittivity. Electron

transport will be assumed ballistic (without phonon or impurity scattering) and only the

electron-electron interaction through the time-dependent solution of the Poisson equation

will be considered. The simulation box will not include the 3D-2D contact resistances

and other parasitic elements (which are the well-known frequency bottleneck [4]). Thus,

we only simulate the intrinsic performance of FETs.

We will consider FET devices with a width of the current pulse associated to one

electron comparable to the intrinsic delay time along the channel, i.e. τp ≈ τd. These

conditions just mean that the channel is short enough and the dielectric relaxation time2

large enough so that the displacement current of an electron crossing the channel has to

be considered in each terminal even when the electron is in the middle of the channel. The

extension L′ depicted in figure 6.1.1(a) is present to ensure the proper computation of such

displacement current, even when the electrons are outside of the volume Ω. The time-

dependent total currents in equation (6.1) are computed with the BITLLES simulator

from self-consistent Monte Carlo solutions of the Boltzmann and Poisson equations. The

temporal step of the simulations is ∆t = 7 × 10−16 s. Finally, we notice that all the

transient simulations have been repeated many times and the results properly averaged in

order to minimize the presence of physical noise [144] (random fluctuations) in the current

values. The reasons are to avoid extra non-pertinent complexities in the discussions of the

results and to approach experimental S-parameters setups which provide measurements

through several periods of the oscillating signals.

6.2.1 Example 1 (Device A): Conditions for the Validity of the

Quasi-Static Approximation

As a first example, let us confirm the condition for the validity of the QS approximation.

We try to design a device which has the incremental charge ∆Q1 ≈ ∆Q2, and check

2The dielectric relaxation time indicates the time needed for a charge to become neutrality in a
medium. In electron device modeling, the electron current assigned to metals and semiconductors is the
particle component (through drift or diffusion terms), while to dielectrics is the displacement current.
Such assignments are justified in terms of the dielectric relaxation time τdie. Each electron moving along
the channel generates a time-dependent electric field that can be detected as displacement current in
the contacts. In general, electrons try to achieve charge neutrality by screening non-zero electric fields.
Therefore, such electric fields are detectable at the contacts during time intervals shorter than τdie [143].
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Figure 6.2.1: The output characteristic of device A for different V1.

if the cut-off frequency computed from the all-order, QS and NQS approximations are

equivalent.

Considering a device A with the volume ΩA = 300× (45+1+45)×1125 nm3 in figure

6.1.1(a) with the 2D material thickness H = 1 nm and the gate length L = 300 nm. In

the simulation box, we set spatial steps ∆x = 30 nm, ∆y = 11.25 nm and ∆z = 225

nm resulting 22× 11× 7 cells. The DC characteristic plotted in figure 6.2.1 is computed

by time-averaging the total drain current in (6.1) and by summing the net number of

electrons transmitted through the drain surface. Both DC values coincide because the

time-averaged displacement current is zero. In any case, such double computation of the

drain DC value certifies the correct simulation of the displacement current.

The transient currents in response to a square voltage pulses on the gate contact are

indicated in figure 6.2.2. As illustrated in figure 6.1.1(b), since we deal with a small-

signal formalism, the evaluation of Y21 and Y11 is done with a DC bias, V2 = 0.1 V,

applied between drain and source contacts, and a DC voltage V1 = −0.05 V plus the

transient perturbation ∆V1 = 0.1 V on the gate. In figure 6.2.2, the sum of the total

currents on the drain, gate and source contacts of device A maintains consistency with

the continuity equation (6.2). The incremental charges (red dashed area in figure 6.2.2)

are ∆Q1 = 69.17× 10−19 C, ∆Q2 = −80.05× 10−19 C and ∆Q3 = 17.82× 10−19 C. Note

that, in device A, the incremental charge ∆Q3 ≈ 0 and the ∆Q1 ≈ |∆Q2|, which satisfy

the conditions of validity of the QS approximation. Then, let us check if the fT predicted

from the QS approximation is equivalent to that from the all orders and the NQS ones.

The Y parameters changing with frequency in all-order (solid lines), NSQ and QS
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Figure 6.2.2: Total (particle plus displacement) transient currents on the drain (b), gate
(c) and source (d) contacts of device A when a square voltage pulses (a) is applied on
the gate contacts. V2 = 0.1 V.

models (dashed lines) for device A are plotted in figure 6.2.3. In the all-order model, for

frequencies high enough, the absolute value of Y All
21 shows strong frequency dependency

and the |Y All
11 | is no longer linearly increasing with the frequency, which is qualitatively

identical to the experimental observations [141]. The lines of |Y All
21 | and |Y All

11 | cross at

fT = 0.39 THz. Using the QS approximation in expression (6.13), we get fQST = 0.39

THz, which is exactly the same value as fT = 0.39 THz. In the NQS approximation,

since ∆Q2
1 < ∆Q2

2, there is no solution to the fT in non-quasi-static case. This result

can also be understood from (6.14) indicating that |∆Q2| controls the frequency slope of

Y NQS
21 at high enough frequencies. Similarly, from (6.12), the slope of Y QS

11 is controlled

by the ∆Q1. Since ∆Q1 < |∆Q2|, the terms Y NQS
21 and Y QS

11 never cross as can be seen

in figure 6.2.3. Surprisingly, the (zero-order) NQS model is even worse than the QS one.
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6.2.2 Example 2 (Device B and Device C): Limitations of the

Quasi-Static Approximation

Device B

We consider device B with a volume ΩB = 100 × (45 + 1 + 45) × 1125 nm3 in figure

6.1.1(a) with the 2D material thickness H = 1 nm and the gate length L = 100 nm. In

the simulation box, we set spatial steps ∆x = 10 nm, ∆y = 11.25 nm and ∆z = 225

nm resulting 22× 11× 7 cells. The DC characteristic is plotted in figure 6.2.4 where no

short channel effects appear. The transient currents in response to two square voltage

pulses on the gate contact are indicated in figure 6.2.5. In this simulation, a DC bias,

V2 = 0.1 V, is applied between drain and source contacts, and a DC voltage V1 = −0.05

V plus the transient perturbation ∆V1 = 0.1 V is applied on the gate. The sum of the

total currents in figure 6.2.5 maintains consistency with the continuity equation (6.2).

In figure 6.2.6, the solid lines are the |Y All
21 | and |Y All

11 | computed exactly from (6.9)

as a function of frequency. For frequencies higher enough, the absolute value of Y All
21

shows strong frequency dependency and the |Y All
11 | is no longer linearly increasing with

the frequency. The values of |Y All
21 | and |Y All

11 | become equal at fT = 1.31 THz. Using

the QS approximation in expression (6.13), we get fQST = 1.45 THz, which is similar

to the previous value fT = 1.31 THz. In the NQS approximation, the formula (6.15)

requires the restriction |∆Q1| > |∆Q2|. As illustrated in figure 6.2.5 (red dashed area),
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(c) and source (d) contacts of device B when a sequence of square voltage pulses (a) is
applied on the gate contacts. V2 = 0.1 V.



122
Chapter6. Limitations of fT to Correctly Quantify the Speed of Nanoscale Transistors:

Practical Computations of 2D Devices

0.1 1 10

1E-5

1E-4

0.001
fc=0.82THz

A
bs

ol
ut

e 
va

lu
e 

of
 Y

 p
ar

am
et

er
s 

(A
·V

-1
)

Frequency (THz)

|Y21|

|Y11|

QS

All

NQS

Device B

Figure 6.2.6: The Y parameters computed from the time-dependent simulation of the
total (particle plus displacement) currents in device B using three different expressions.
In solid lines, taken into account all orders (All) and in dashed lines with the NQS or
the QS approximations.

∆Q1 = 11.62×10−19 C, ∆Q2 = −26.53×10−19 C and ∆Q3 = 14.91×10−19 C. The result

∆Q1 < |∆Q2| is coincident with what we anticipated in Section 6.1.1 that no solution is

obtained for the fT in NQS case.

The errors when neglecting the displacement current in the computation of fQST can

be quantified from expression (6.14). The elimination of the drain displacement cur-

rent can be justified for those frequencies satisfying that gm is larger or equal than the

ω|∆Q2|/∆V1. By imposing the previous condition, gm ≈ 2πfc|∆Q2|/∆V1, we get a

definition of the maximum frequency fc where the drain displacement current can be

reasonably neglected:

fc =
gm

2π|∆Q2|/∆V1

. (6.19)

However, since we have demonstrated in equation (6.5) that |∆Q2| > ∆Q1, we always

get fc < fQST which can be seen in figure 6.2.6 where solid lines (All) start to deviate

from dashed lines (QS ) at fc = 0.82 THz < fQST = 1.45 THz. Notice that the condition

∆Q1 ≈ ∆Q2 in (6.19) implies that fc ≈ fQST justifying the arguments on the range of

validity of fQST mentioned in Section 6.1.1.
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Figure 6.2.7: The current-voltage characteristic of device C for different V1.
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Figure 6.2.9: The Y parameters computed from time-dependent simulation of the total
currents in device C using three different expressions (as in figure 6.2.6).

Device C

The QS approximation seems to imply that a desired condition for a fast FET is ∆Q1 → 0

(C1 → 0) if short channel effects are still under control. Such condition would im-

ply that fQST = gm/(2π∆Q1/∆V1) = gm/(2πC1) → ∞ in equation (6.13) and τQSd ≈
C1∆V1/∆I2 ≈ ∆Q1/∆I2 → 0. We consider a new design (device C) with the goal of

getting C1 → 0. In particular we consider the same FET of figure 6.1.1(a) with the

geometry ΩC = 20 × (45 + 1 + 45) × 700 nm3 (gate length L = 20 nm) under the same

type of simulation as in device A. In the simulation box, we set spatial steps ∆x = 2 nm,

∆y = 11.25 nm and ∆z = 140 nm resulting 22 × 11 × 7 cells. We plot the DC current-

voltage characteristic of device C in Fig 6.2.7. In spite of the small capacitance, the short

channel effects are reasonably under control. We use V2 = 0.1 V, applied between drain

and source contacts, and V1 = −0.1 V plus the transient perturbation ∆V1 = 0.15 V on

the gate. The total transient currents on the drain, gate and source contacts of device

C due to a step voltage perturbation in the gate are plotted in figure 6.2.8, where the

sum of the total currents also maintains consistency with the continuity equation (6.2).

Moreover, the incremental charge ∆Q1 = 1.54 × 10−19 C, ∆Q2 = −6.76 × 10−19 C and

∆Q3 = 5.24× 10−19 C.

The Y parameters changing with frequency in all orders (solid lines), NQS and QS

models (dashed lines) for device C are plotted in figure 6.2.9. In the QS estimation,

because the |∆Q1| in device C becomes smaller than that of device B, the Y QS
11 is shifted

towards the horizontal axis, therefore, the QS value of the cut-off frequency increases

giving fQST = 10.64 THz. The behaviors of NQS for device C and device B are similar.

In the all orders model, the condition |h21| = 1 is satisfied at fT = 4.97 THz. The
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Figure 6.2.10: The current-voltage characteristic of device D for different V1.

oscillations of Y All
11 and Y All

21 at higher frequencies are the Fourier transform of time-

dependent variations of the total currents in figure 6.2.8, which can be associated to

plasmonic oscillations with shorter periods than the value of τd plotted there. So the

exact value of the fT is randomly influenced by such oscillations. We have assumed

an ideal metallic contact (dielectric relaxation time equals to zero) in all simulations.

One can expect significantly different randomness in the oscillations of the Y parameters

at high frequency for heavily doped contacts [145]. The problem present in device C

is that the real frequency where the device stops working properly is much lower than

fQST = 10.64 THz and fT = 4.97 THz.

6.2.3 Example 3 (Device D): the Infinite Value of fT

To go a step further, we design a device D which has volume ΩD = 20 × (45 + 1 +

45) × 200 nm3 (gate length L = 20 nm). The DC current is plotted in figure 6.2.10,

which indicates the ability of the gate to control the channel. In the transient current

plotted in figure 6.2.11 in response to a step voltage perturbation, we get the incremental

charge ∆Q2 = −4.33 × 10−19 C, ∆Q3 = 3.45 × 10−19 C and ∆Q1 = 0.9 × 10−19 C. The

∆Q1 approaches to 0. The Y parameters are plotted in figure 6.2.12. The QS result

fQST = 13.43 THz is quite far from the maximum frequency fc = 2.68 THz. It is relevant

to emphasize that the condition |h21| = 1 is never satisfied in the whole THz window for

the all orders model, i.e. the |Y All
21 | and |Y All

11 | never cross, showing a misleading result

fT =∞. Certainly, the real nano FET stops working properly at some frequency.
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To understand the real speed limitation of devices C and D, let us notice that the

simulations in figures 6.2.5, 6.2.8 and 6.2.11 can be interpreted in two different ways.

First, as we have done up to here, the currents are the FET response to a step voltage

perturbation needed for computing the small-signal Y -parameter in a linear system.

Second, they can be identically interpreted as the current response when the gate change

from the digital voltage ‘0’ to ‘1’. Then, the time τd defined in expression (6.3) is directly

related to the intrinsic delay time τd discussed in the Introduction as a FoM for digital

electronics. In other words, the two pulses in Figs. 6.2.5(a) can be understood as the

input digital signal and the drain currents as the output digital signals. Certainly, the

FETs are not properly switched-off in our small-signal simulations, and a large-signal

simulation will be needed, in principle. However, the present simulations are enough to

compare the different FET speed estimators. The relation between the input and output

signals in figures 6.2.5, 6.2.8 and 6.2.11 can be modeled from linear system theory. It is

clear that the relevant frequencies are inversely proportional to the time interval τd. A

reasonable expression could be fdT ≈ 1/(2τd) [146] [147].

In device B, from figure 6.2.5, we get a value of the intrinsic delay time τd = 0.352

ps, resulting fdT = 1.42 THz, which is similar to the QS cut-off frequencies fQST = 1.45

THz. However, in device C, from figure 6.2.8, we get a simulated τd = 0.185 ps giving

fdT = 2.70 THz, which is much smaller that the value fQST = 10.64 THz. In device D, the

result is even worse where the intrinsic delay time is τd = 0.138 ps providing fdT = 3.62

THz. The reason why the QS expression (6.13) does not capture the real intrinsic delay

time in devices C and D is because the approximation ∆Q2 ≈ ∆Q1 is no longer true. In

fact, since we looked for ∆Q1 → 0, the result ∆Q2 >> ∆Q1 gives fQST in (6.13) much

larger than fc in (6.19). Let us notice that the QS estimation of the intrinsic delay time

is again clearly misleading. In device C, we get τQSd ≈ C1∆V1/∆I2 ≈ 0.015 ps, which

is more than one order of magnitude larger than our simulated value τd = 0.185 ps (the

ratio τd/τ
QS
d is different from fdT/f

QS
T because of the factor π in (6.18)). In device D, the

τQSd ≈ 0.012 ps is also more than one order of magnitude larger than the simulated value

τd = 0.138 ps. The reason of this discrepancy is also the condition ∆Q2 >> ∆Q1, which

invalidates the QS estimation discussed in Section 6.1.1.

In conclusion, we have established the condition for the validity of the QS approx-

imation of fQST in terms of the electrical current and electrical flux on the gate, drain

and source FET terminals defined in expressions (6.1) and (6.3). Such approximation

is applicable when ∆Q1 ≈ ∆Q2 which means that we are dealing with FETs where the

intrinsic delay time is much larger than the temporal width of the current pulse gen-

erated by one electron, i.e. τd > τp (with large channel length L as in device A). On

the contrary, in devices where τd ≈ τp (i.e. as in devices C and D with short channel
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length L), the QS approximation is not applicable because the electric field generated by

electrons are not screened inside the device active region, and its associated displacement

current becomes relevant during all the time while the electron is traversing the channel.

We have shown through analytical arguments supported by numerical simulations that

the estimations of the intrinsic cut-off frequency based on |h21| = 1 (with the QS fQST ,

zero-order NQS fNQST or without approximations fT ) can provide misleading results for

the speed of FETs. This problem is specially severe for nanoscale FETs which are rou-

tinely modeled from quantum transport simulators. The explicit quantum simulation of

the time-dependent displacement current and τd demand such huge amount of computa-

tional resources [42, 119, 145] that the intrinsic FoM of the speed of such ballistic FET

are routinely taken from QS estimations. As shown in some examples in this work, such

type of QS estimations can erroneously predict the FET speed by one order of magni-

tude. Other examples show no finite value of fT underlying an important limitation of

the traditional definition of fT to properly quantify the speed of FETs. When parasitic

elements are included in the simulation, one can expect a tendency to recover the validity

of the QS approximation (τd grows and τp remains the same) at the price of getting lower

FET speed than its intrinsic value.



Chapter 7

Conclusions

In this dissertation, I have presented a simulation model (by tackling the fundamental

issue of the measurement problem and the practical issue of the many-body problem) for

the quantum nanodevices working at THz frequencies in term of accurate computation of

the displacement current. As practical examples, this model has been utilized to compute

the high frequency behaviors of transistors based on graphene and other 2D materials.

In the first Chapter 1, firstly, I have briefly mentioned some important milestones

of the evolution of electronics since its birth at the beginning of the twentieth century.

Nowadays, transistors have reached nanoscale range with their working frequencies ex-

tended to THz range. Electron transport in the nanoelectronics has approached the

regime of quantum transport, at which some relevant quantum effects have to be taken

into account, for instance, the many-body problem, the measurement problem and the

dissipative transport. Thus, in the next Section 1.2, I have presented the importance

of the displacement current in the proper prediction of electron transport behaviour in

high-frequency regime from a computational point of view. In Section 1.3, the fundamen-

tal issue in the quantum simulation—the many-body problem—has been discussed. In

particular, some approaches (for example, the open system, the stochastic injection, the

collisions) are briefly mentioned in solving the many-particle Schrödinger equation for the

application to quantum transport (i.e., the computation of the current in an electronic

device) in the following.

Up to here, it is mandatory to mention another fundamental issue in the computation

of quantum transport—the measurement problem. In fact, the measurement problem is

an intrinsic issue since the beginning of the quantum theory. This problem can be relax

in the computation of DC current where only one measurement is enough. Since I deal

with the quantum transport in the THz range where more than twice measurements of

the system during the whole evolution are required, the measurement problem which has

been explicitly discussed in Chapter 2, becomes a relevant part in this dissertation.

The prediction of the DC and AC current behaviours of an electronic device has been

discussed with the orthodox and Bohmian approaches.

129
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In this Chapter 3, the literature relating to the irreversible boundary conditions for

open system has been considered. First of all, the explanation of the irreversible boundary

conditions has been explicitly presented. The picture of particles entering into the open

system depends on the reservoir and of particles flowing out of the system depends

on the dynamical evolution of the system itself, is relevant for the open system, which

requires the dissipative scatterings to make a proper prediction. However, the irreversible

boundary conditions have limitations (i.e., non-diagonal injection, uniqueness solutions)

in the time-independent scenario. On the contrary, all the problems disappear when we

inject wave packet into the open system in time-dependent picture. Such wave packet

is described by the conditional wave function—wave function used to describe states in

open system. Furthermore, the effect of the energy spectrum (linear band and parabolic

band structures) on the injection has been discussed. As a last step, the implementation

of the irreversible boundary conditions to the BITLLES simulator has been presented.

In Chapter 4, firstly, the use of the Boltzmann collision operator for dissipative

quantum transport has been analyzed. Its mathematical role on the description of the

time-evolution of the density matrix during a collision can be understood as processes

of adding and subtracting states. We have shown that unphysical results (i.e., negative

values of the charge density) can be present in quantum simulations when the old states

(that built the density matrix associated to an open system before the collision) are

different from the additional states generated by the Boltzmann collision operator. This

unphysical feature disappears when the Boltzmann collision operator generates states

that were already present in the density matrix of the quantum system before the collision,

which only requires the exact knowledge, at all times, of the states that build the density

matrix of the open system. As a practical application, I have discussed how to compute

the dissipative transport with conditional wave functions and its application to a resonant

tunneling device. With our scattering approach, we can have an exact description of

realistic stochastic sources of dissipation (effective collision rates of acoustic phonon,

optical phonon and impurities).

A practical computation of high-frequency behaviour of FETs, in particular, graphene

devices, has been analyzed from a careful simulation of the time-dependent particle and

displacement currents in Chapter 5. From such currents, the power spectral density

of the total current fluctuations has been computed at the source, drain and gate con-

tacts. The roles of the lateral dimensions of the transistors, the Klein tunneling and the

positive-negative energy injection on the PSD have been carefully analyzed. Through the

comparison of the PSD with and without Band-to-Band tunneling and graphene injec-

tion, we have shown that the unavoidable Klein tunneling and positive-negative energy

injection in graphene structures imply an increment of noise without similar increment

on the current, degrading the (either low or high frequency) signal-to-noise ratio. Finally,
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we have proved that the shorter the vertical height (in comparison with the length of

the active region in the transport direction), the larger the maximum frequency of the

PSD. As a byproduct of this result, an alternative strategy (without length scaling) to

optimize the intrinsic cut-off frequency of graphene transistors will be envisioned

Finally, in Chapter 6, the definition of the intrinsic cut-off frequency (fT ) based

on the current gain equals to one (0 dB) has been critically analyzed. A condition for

the validity of the quasi-static estimation of fT has been established in terms of the

temporal variations of the electric charge and electric flux on the drain, source and gate

terminals. Due to the displacement current, an electron traversing the channel length

generates a current pulse of finite temporal width. For electron devices where the intrinsic

delay time of the current after a transient perturbation is comparable to such width, the

displacement currents cannot be neglected and the quasi-static approximation becomes

inaccurate. As the first example, we have performed some simulations to conform the

validity of the quasi-static approximation. Then, We have presented numerical results for

some ballistic transistors where the estimation of fT under the quasi-static approximation

can be one order of magnitude larger than predictions obtained from a time-dependent

numerical simulations of the intrinsic delay time (including particle and displacement

currents). In other ballistic transistors, we have shown that the gate current phasor can

be smaller than the drain one at all frequencies, giving no finite value for fT .

Finally, let us complete the thesis with some further investigations. As we have

mentioned in Chapter 6, the maximum oscillation frequency fmax is a more relevant figure

of merit in high-frequency analogy applications. Following the work done in Chapter 6,

an investigation of the fmax of nanodevices based on 2D materials will be performed.

We envision that similar arguments in Chapter 6 will be achieved in the fmax when

including the input and output resistances in the simulated transistors. In addition,

the accurate inclusion of the quantum dissipation (in Chapter 4), irreversible spatial

boundary conditions (in Chapter 3), noise computation and high-frequency displacement

currents (in Chapter 2) into the time-dependent BITLLES simulator (compatible with

electron-electron interaction beyond mean field [148], exchange (fermion) interactions

[114, 149]) provides a complete quantum simulation framework for the electron transport

at all frequencies. Based on such versatile and powerful simulator, simulations of realistic

devices based on 2D materials will be performed to understand experiment results and

to optimize device performance.
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[65] M. Büttiker, “Scattering theory of thermal and excess noise in open conductors,”

Physical review letters, vol. 65, no. 23, pp. 2901, 1990.

[66] T. Martin and R. Landauer, “Wave-packet approach to noise in multichannel

mesoscopic systems,” Physical Review B, vol. 45, no. 4, pp. 1742, 1992.

[67] D. Marian, E. Colomés, Z. Zhan, and X. Oriols, “Quantum noise from a bohmian

perspective: fundamental understanding and practical computation in electron de-

vices,” Journal of Computational Electronics, vol. 14, no. 1, pp. 114–128, 2015.

[68] G. Albareda, D. Marian, A. Benali, S. Yaro, N. Zangh̀ı, and X. Oriols, “Time-

resolved electron transport with quantum trajectories,” Journal of Computational

Electronics, vol. 12, no. 3, pp. 405–419, 2013.

[69] G. Albareda, F. L. Traversa, A. Benali, and X. Oriols, “Computation of quantum

electrical currents through the Ramo–Shockley–Pellegrini theorem with trajecto-

ries,” Fluctuation and Noise Letters, vol. 11, no. 03, pp. 1242008, 2012.

[70] A Alarcón and X Oriols, “Computation of quantum electron transport with local

current conservation using quantum trajectories,” Journal of Statistical Mechanics:

Theory and Experiment, vol. 2009, no. 01, pp. P01051, 2009.

[71] F. Rossi, Theory of semiconductor quantum devices: microscopic modeling and

simulation strategies, Springer Science & Business Media, 2011.

[72] W. R. Frensley, “Wigner-function model of a resonant-tunneling semiconductor

device,” Physical Review B, vol. 36, no. 3, pp. 1570, 1987.



BIBLIOGRAPHY 139

[73] A. M. Kriman, N. C. Kluksdahl, and D. K. Ferry, “Scattering states and distribu-

tion functions for microstructures,” Physical Review B, vol. 36, no. 11, pp. 5953,

1987.

[74] N. C. Kluksdahl, A. M. Kriman, D. K. Ferry, and C. Ringhofer, “Self-consistent

study of the resonant-tunneling diode,” Physical Review B, vol. 39, no. 11, pp.

7720, 1989.

[75] F. Rossi, A. Di Carlo, and P. Lugli, “Microscopic theory of quantum-transport

phenomena in mesoscopic systems: a Monte Carlo approach,” Physical review

letters, vol. 80, no. 15, pp. 3348, 1998.

[76] R. Rosati, F. Dolcini, R. C. Iotti, and F. Rossi, “Wigner-function formalism applied

to semiconductor quantum devices: failure of the conventional boundary condition

scheme,” Physical Review B, vol. 88, no. 3, pp. 035401, 2013.

[77] E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Physical

review, vol. 40, no. 5, pp. 749, 1932.
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[151] A. Einstein, “Über einen die erzeugung und verwandlung des lichtes betreffenden

heuristischen gesichtspunkt,” Annalen der physik, vol. 322, no. 6, pp. 132–148,

1905.
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Appendix A

A Primer on Bohmian Mechanics

In the beginning of the twentieth century, some surprising phenomena appeared, for

instance, the black-body radiation [150] and the photoelectric effect [151], which were

beyond the scope of the classical explanation. In order to interpret these phenomena,

physicists had to abandon classical mechanics to develop novel and abstract formalisms.

In 1924, Louis de Broglie wrote in his doctoral thesis that matter, apart from its intrinsic

particle-like behavior, could exhibit also a wave-like one [152]. Three years later he

developed an interpretation of quantum theory based on non-classical trajectories guided

by wave field, which was the origin of the pilot-wave quantum formulation [153]. This

interpretation of quantum theory is referred in the literature as De Broglie-Bohm theory,

also known as Bohmian mechanics. In 1952, David Bohm rediscovered de Broglie’s pilot-

wave theory and he was the first to really appreciate the deep fundamental issues of

the Bohmian theory, for example, the so-called measurement problem [154, 155]. Before

closing the topic of the historical development of Bohmian mechanics, let me mention

another renowned physicist–John Bell. In 1964, inspired by Bohm’s work on nonlocal

hidden variables, he derived the famous Bell inequalities [156], which has been called

“the most profound discovery of science” [157]. During last time, a renewed interest in

the foundations of quantum mechanics appeared, and the Bohmian interpretations of

the quantum phenomena are revisited. Up to now, it has been shown that the Bohmian

mechanics is a correct interpretation for all non-relativistic quantum phenomena in the

sense that all non-relativistic quantum phenomena can be equivalently predicted using

Bohmian or other empirically equivalent theories (the orthodox or Copenhagen theory).

From a practical point of view, Bohmian mechanics is a useful tool to make predictions or

to explain quantum phenomena. Hereafter, I will give a brief description of the Bohmian

mechanics. A detailed introduction can be found in the book [112].

147
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A.1 The Bohmian Mechanics for Many-Particle Sys-

tems

In this appendix, we present Bohmian mechanics by describing the dynamics of a non-

relativistic quantum system ofN particles with their positions defined as ~x = {x1, · · · , xN}.
In the Bohmian theory, a quantum state is described by a wave function Ψ(~x, t) and N

trajectories {x1[t], · · · , xN [t]} in physical space. These N trajectories can be also con-

sidered as a unique trajectory ~x[t] in the configuration space. Owing to the mentioned

additional trajectories, this interpretation is different from that of the orthodox theory

mentioned in Subsection 2.1.11. For simplicity, I will only consider one-dimensional (1D)

physical space with particle 1 at position x1, particle 2 at position x2, · · · , particle N at

position xN . An extension of the results to three-dimensional (3D) physical space has

no fundamental difference. The first element of describing the Bohmian quantum state

is the wave function Ψ(~x, t), which is ruled by the N -particle Schrödinger equation:

i~
∂Ψ(~x, t)

∂t
=

( N∑
k=1

− ~2

2m

∂2

∂x2
k

− U(~x, t)

)
Ψ(~x, t) (A.1)

being U(~x, t) the electron-electron interactions. By rewriting the equation (A.1) with its

complex conjugate Ψ∗(~x, t), one obtain:

− i~∂Ψ∗(~x, t)

∂t
=

( N∑
k=1

− ~2

2m

∂2

∂x2
k

− U(~x, t)

)
Ψ∗(~x, t) (A.2)

Rearranging the equations (A.1) and (A.2) in the way
(

Ψ∗ · dΨ
dt
−Ψ · dΨ∗

dt

)
, one gets:

∂|Ψ(~x, t)|2

∂t
=

N∑
k=1

∂

∂xk

(
i~
2m

(
Ψ∗(~x, t)

∂

∂xk
Ψ(~x, t)−Ψ(~x, t)

∂

∂xk
Ψ∗(~x, t)

))
(A.3)

It is easy to realize that (A.3) is a local continuity equation derived from the many-particle

Schrödinger equation, where the probability density is interpreted as ρ(~x, t) = |Ψ(~x, t)|2,

1The orthodox theory is also called the Copenhagen interpretation of quantum mechanics, or standard
quantum mechanics. It was formulated by Niels Bohr and Werner Heisenberg during their collaboration
in Copenhagen around 1927. It is the only theory taught at most universities. In the Copenhagen
interpretation, a quantum state is represented only by the wave function Ψ(~x, t). The wave function
contains a full information about that system before an observation, and there has no additional “hidden”
parameters. The system exhibits its wave-like or particle-like properties depending on the experimental
arrangement.
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the k-th component of the current density, Jk(~x, t), is defined as

Jk(~x, t) =
i~
2m

(
Ψ(~x, t)

∂

∂xk
Ψ∗(~x, t)−Ψ∗(~x, t)

∂

∂xk
Ψ(~x, t)

)
(A.4)

and the electron-electron interaction U(~x, t) is assumed to be a hermitian, i.e., U∗(~x, t) =

U(~x, t). In summary, the Schrödinger equation includes the local conservation law.

The second element of the Bohmian state is the trajectories {x1[t], · · · , xN [t]}. In-

spired by the local continuity equation (A.3), if the k particle current density is inter-

preted as Jk(~x, t) = ρ(~x, t)vk(~x, t), then, a Bohmian velocity of the k particle is obtained:

vk(~x, t) =
Jk(~x, t)

|Ψ(~x, t)|2
(A.5)

where the local continuity equation (A.3) can be rewritten as:

dρ(~x, t)

dt
+

N∑
k=1

∇k · Jk(~x, t) =
dρ(~x, t)

dt
+

N∑
k=1

∇k

(
ρ(~x, t)vk(~x, t)

)
= 0 (A.6)

Having known the k particle velocity in (A.5), then, the trajectory xk[t] is computed as:

xk[t] = xk[t0] +

∫ t

t0

vk(~x[t′], t′)dt′ (A.7)

being xk[t0] the k particle initial position at initial time t0. In the Bohmian theory, the

trajectories move continuously under the guidance of the wave function Ψ(~x, t), and the

probability density ρ(~x, t) = |Ψ(~x, t)|2 is interpreted as the spatial distribution of an

ensemble (over many experiments) of trajectories. Such an ensemble of experiments is

assumed to be achieved by repeating the experiment j many times with j = 1, · · · ,M
being M →∞. In an experiment j, in principle, the initial positions for the many-particle

trajectories cannot be known with certainty. The initial positions of {x1[t], · · · , xN [t]}
at time t0 associated with the wave function Ψ(~x, t) have to be selected according to the

distribution (Quantum equilibrium hypothesis):

|Ψ(~x, t0)|2 = lim
M→∞

1

M

M∑
j=1

N∏
k=1

δ
(
xk − xjk[t0]

)
(A.8)

From a computational point of view, on the condition that an infinite ensemble of well-

selected trajectories whose initial positions are defined according to the distribution

|Ψ(~x, t0)|2 in equation (A.8), and that the k particle trajectory xk[t] is given by the

equation (A.7), then, at any time t, according to the continuity equation (A.6), the

ensemble of trajectories reproduces |Ψ(~x, t)|2, that is:
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|Ψ(~x, t)|2 = lim
M→∞

1

M

M∑
j=1

N∏
k=1

δ
(
xk − xjk[t]

)
(A.9)

The expression (A.9) explicitly confirms that the Bohmian trajectories exactly reproduce

that of the position measurement in the orthodox theory, and Bohmian trajectories also

can be used to described quantum systems.

A.1.1 Rediscovering of the Bohmian Mechanics

It will be useful to derive Bohmian mechanics from a different development. Now, the

Bohmian trajectory will be introduced following Bohm’s original paper [154]. The many-

particle wave function is rewritten in a polar form Ψ(~x, t) = R(~x, t)eiS(~x,t)/~ being R(~x, t)

and S(~x, t) real functions, and is substituted into the Schrödinger equation (A.1). By

construction, the imaginary part of the resulting equation gives:

∂R2(~x, t)

∂t
+

N∑
k=1

∂

∂xk

( 1

m

∂S(~x, t)

∂xk
R2(~x, t)

)
= 0 (A.10)

which is the continuity equation identical to the one in (A.3) or in (A.6). The real part

of the Schrödinger equation gives the so-called quantum Hamilton-Jacobi equation:

∂S(~x, t)

∂t
+

N∑
k=1

1

2m

(∂S(~x, t)

∂xk

)2

+ U(~x, t)−
N∑
k=1

~2

2m

1

R(~x, t)

∂2R(~x, t)

∂x2
k

= 0 (A.11)

The last term on the left side of the equation (A.11) gives the so-called quantum potential,

as:

Q(~x, t) =
N∑
k=1

Qk(~x, t) =
N∑
k=1

− ~2

2m

∂2R(~x, t)/∂x2
k

R(~x, t)
(A.12)

Apart from this term Q(~x, t), the equation (A.11) with the rest terms is the classical

Hamilton-Jacobi equation. Therefore, the velocity of a k-particle is defined as:

vk(~x, t) =
1

m

∂S(~x, t)

∂xk
(A.13)

In fact, it can be easily proved that the Bohmian velocity definition in (A.13) is identical

to the expression (A.5) [112]. Interestingly, a time derivative of the k particle Bohmian



A.2. Conditional Wave Function 151

velocity in (A.13) gives a quantum Newton-like equation:

m
d

dt
vk(~x[t], t) =

[∂2S(~x, t)

∂x2
k

]
~x=~x[t]

ẋk[t] +
[ ∂

∂xk

∂S(~x, t)

∂t

]
~x=~x[t]

=
[
− ∂

∂xk

(
U(~x, t)−

N∑
k=1

~2

2m

1

R(~x, t)

∂2R(~x, t)

∂x2
k

)]
~x=~x[t]

(A.14)

In this quantum Newton-like equation, Bohmian trajectories are solutions of the quan-

tum Newton second law (A.14), and both potential U(~x, t) and quantum potential Q(~x, t)

introduce correlations between the degrees of freedom of the many-body quantum system.

Up to now, I have proved that the Bohmian trajectory can be used to described

any non-relativistic quantum system. Once the Bohmian trajectories are known, any

quantity of the system is known. From equation (A.5), it seems that the many-particle

wave function solution of the many-particle Schrödinger equation has to be known if one

want to compute the Bohmian trajectories. As a consequence, the many-body problem

(explicitly discussed in Chapter 1) also appears in the Bohmian mechanics. Then, numer-

ical approaches are also required in the Bohmian mechanics to provide approximations

to the many-particle problem. Next, I will introduce a natural and original approach–

based on the conditional wave function– to provide one attractive approximation for the

many-body problem.

A.2 Conditional Wave Function

As discussed in Chapter 2, the direct solution of the many-particle Schrödinger equation

is inaccessible because of the need of computing the equation in huge N-dimensional con-

figuration space. Among all the accepted approaches for this many-body problem, the

Bohmian mechanics provides a natural and original solution, by using the conditional

wave function [158]. Typically, a N-particle quantum system in Bohmian theory is de-

scribed by the wave function Ψ(x1, · · · , xN , t) and trajectories {x1[t], · · · , xN [t]} in phys-

ical space. Because of the waves and trajectories in Bohmian mechanics, some degrees of

freedom of the many-particle wave function Ψ(x1, · · · , xN , t) can be substituted with its

corresponding Bohmian trajectories ~xb[t] = {x1[t], · · · , xa−1[t], xa+1[t], · · · , xN [t]}. This

new wave function with reduced degrees of freedom, φ(xa, t) = Ψ(xa, ~xb[t], t), is called

conditional wave function. From such wave function φ(xa, t), an approach for solving

the many-body problem is proposed [42]. In the following, firstly, I will explain why the

trajectory xa[t] can be computed by using the conditional wave function. Secondly, a

mathematical description of the equation of motion of the conditional wave function will

be described.
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A.2.1 Bohmian Velocity Computed from the Conditional Wave

Function

First of all, let us compute the Bohmian velocity from the conditional wave function. The

particle positions are divided as ~x = {xa, ~xb} with ~xb = {x1, · · · , xa−1, xa+1, · · · , xN},
and with Bohmian trajectories ~xb[t] = {x1[t], · · · , xa−1[t], xa+1[t], · · · , xN [t]}. The main

idea in the work [42] is that an a particle Bohmian trajectory xa[t] computed from

the many-particle wave function Ψ(~x, t), can be alternatively simulated from a simpler

single-particle conditional wave function φ(xa, t) = Ψ(xa, ~xb[t], t). The conditional wave

function φ(xa, t) is a slice of the many-particle wave function. We write the single-

particle wave function in a polar form φ(xa, t) = ra(xa, t)e
isa(xa,t)/~ with sa(xa, t) identical

to the angle S(xa, ~xb[t], t) of Ψ(xa, ~xb[t], t) and with ra(xa, t) to R(xa, ~xb[t], t). For a

trajectory xa[t], the velocity va[t] is computed from the spatial derivative of S(xa, ~xb, t)

on xa expressed in equation (A.13) when all the other positions are fixed at ~xb = ~xb[t],

that is,

va[t] =
1

m

(
∂S(xa, ~xb, t)

∂xa

)
~xb=~xb[t]

≈ lim
∆x→0

1

m

S(xa + ∆x, ~xb[t], t)− S(xa, ~xb[t], t)

∆x

≈ 1

m

∂sa(xa, t)

∂xa
(A.15)

which explains why the simpler single wave function φa(xa, t) can be used to compute

the Bohmain trajectory xa[t]. In fact, the velocity va[t] is only dependent on the spatial

derivative of the position xa either using sa(xa, t) or S(xa, ~xb[t], t).

A.2.2 Equation of Motion of the Conditional Wave Function

Once the conditional wave function has been defined, it is necessary to seek what is

the equation of motion for φa(xa, t). In principle, an arbitrary single-valued function

φa(xa, t), which has well-defined first-order temporal derivative and second-order spatial

derivative, can be solved from a Schrödinger like equation if the potential W (xa, t) is

selected as:

W (xa, t) =
i~∂φa(xa,t)

∂t
+ ~2

2m
∂2φa(xa,t)

∂x2a

φa(xa, t)
(A.16)

Substituting φa(xa, t) with its polar form into (A.16) and rearranging the equation, then,

the real part of the potential W (xa, t) is:

Real[W (xa, t)] = −
(

1

2m

(
∂sa(xa, t)

∂xa

)2

− ~2

2mra(xa, t)

∂2ra(xa, t)

∂x2
a

+
∂sa(xa, t)

∂t

)
(A.17)
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And the imaginary part:

Imag[W (xa, t)] =
~

2r2
a(xa, t)

(
∂r2

a(xa, t)

∂t
+

∂

∂xa

(
r2
a(xa, t)

m

∂sa(xa, t)

∂xa

))
(A.18)

If the function φ(xa, t) preserves the norm, then, the imaginary part Imag[W (xa, t)] = 0.

Replacing ra(xa, t) with R(xa, ~xb[t], t), sa(xa, t) with S(xa, ~xb[t], t) in (A.16) and carefully

computing the first-order temporal derivative in equations (A.17) and (A.18) with:

∂S(xa, ~xb[t], t)

∂t
=

(
∂S(xa, ~xb, t)

∂t

)
~xb=~xb[t]

+
N∑
k=1
k 6=a

∂S(xa, ~xb[t], t)

∂xk
vk(~x[t], t)

=

(
− 1

2m

(
∂S(xa, ~xb, t)

∂t

)2

− U(xa, ~xb, t)−Q(xa, ~x, t)

)
~xb=~xb[t]

+
N∑
k=1
k 6=a

∂S(xa, ~xb[t], t)

∂xk
vk(~x[t], t) (A.19)

∂R2(xa, ~xb[t], t)

∂t
=

(
∂R2(xa, ~xb, t)

∂t

)
~xb=~xb[t]

+
N∑
k=1
k 6=a

∂R2(xa, ~xb[t], t)

∂xk
vk(~x[t], t)

=

(
−

N∑
k=1

∂

∂xk

(
1

m

∂S(xa, ~xb, t)

∂xk
R2(xa, ~xb, t)

))
~xb=~xb[t]

+
N∑
k=1
k 6=a

∂R2(xa, ~xb[t], t)

∂xk
vk(~x[t], t) (A.20)

being U(~x, t) the potential and Q(~x, t) the quantum potential defined in equation (A.12).

Finally, the equation (A.16) can be rewritten as:

i~
∂φa(xa, t)

∂t
=

(
− ~2

2m

∂2

∂x2
a

+ Ua(xa, ~xb[t], t) +Ga(xa, ~xb[t], t) + iJa(xa, ~xb[t], t)

)
φa(xa, t)

(A.21)

where I define:

Ga(~x, t) = Ub(~xb, t) +
N∑
k=1
k 6=a

(
1

2m

(
∂S(~x, t)

∂xk

)2

+Qk(~x, t)−
∂S(~x, t)

∂xk
vk
(
~x[t], t

))
(A.22)

Ja(~x, t) =
N∑
k=1
k 6=a

~
2R2(~x, t)

(
∂R2(~x, t)

∂xk
vk
(
~x[t], t

)
− ∂

∂xk

(R2(~x, t)

m

S(~x, t)

∂xk

))
(A.23)
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U(~x, t) = Ua(xa, ~xb, t) + Ub(~xb, t) (A.24)

Here U(~x, t) is the potential appears in equation (A.1). The single-particle pseudo-

Schrödinger equation (A.21) is the main result of the algorithm in the work [42]. Up to

here, there are some discussions about the potential terms in (A.21):

• The term Ua(xa, xb[t], t) is a real-valued potential whose exact dependence on po-

sitions are known. It has to be computed from particular Bohmian positions of all

particles except xa[t].

• The term Ga(xa, ~xb[t], t) is a real-valued potential whose dependence on positions

are unknown and need some educated guess. In fact, it contains exchange interac-

tion between particles except a-particle.

• The term iJa(xa, ~xb[t], t) is an imaginary-valued potential whose dependence on

positions are unknow and need some educated guess. It claims that the single-

particle wave function φa(xa, t) is not conserved. Generally speaking, the many-

particle wave function Ψ(xa, ~xb, t) is conserved in the whole configuration spcae,

but not in only xa space.

By using the equation (A.21) for computing an a particle position xa[t], the many-

particle Bohmian trajectories {x1[t], · · · , xN [t]} can be known once the N -coupled single-

particle pseudo-Schrödinger equations are solved, and there is no need to solve directly

the many-particle Schrödinger equation (A.1). Therefore, an approach based on the

conditional wave function can be a reasonable approximation to solve the many-particle

problem. The computational simplification comes at the price that some potential terms

(Ga(xa, ~xb[t], t) and iJa(xa, ~xb[t], t)) in the single-particle pseudo-Schrödinger equation

(A.21) are unknown and required educated guesses. Some examples of the applications

of the conditional wave functions can be found in the work [42].

A.3 Bohmian Mechanics in Phase Space

Generally, the phase space formulation of quantum mechanics places the position x and

momentum p coordinates in equal footing. This formulation provides some benefits

[159]. It provides a convenient formalism to model an open system that interacts with

its environment via collisions. This explains why the scientific community has done a

constant effort to construct the phase space formulations of quantum mechanics. With

our perspective of more than a century, the different attempts seem a bit surprising. All

orthodox attempts have inherent difficulties due to the fact that the orthodox theory itself

forbids simultaneous definition of position and momentum for one particle. For instance,

the Wigner or Husimi functions are called quasi-probability distributions, which we will
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explicitly discuss later. On the contrary, as mentioned many times in this thesis, since

the concept of particle trajectory is intrinsic in the Bohmian theory, a phase space with

well-defined position x and momentum p = mv(x[t], t) becomes a natural construction

in this theory, where v(x[t], t) is the Bohmian velocity and m is the electron mass.

The phase space distribution is a main tool in the phase space formulation of quantum

mechanics. In the construction of the phase space distribution, the expression of the

correlation between position x and momentum p by a joint probability distribution in

phase space, F (x, p), will be considered. For simplicity, in this part, single-particle system

will be discussed. All conclusions elaborated about one-particle phase space probability

functions can be straightforwardly generalized for many-particle systems, only with a

large increment of notation complexity. A well-defined probability distribution in the

phase space, say F (x, p), for a quantum (or classical) system is constructed if it fulfills

the probabilities axioms:

F (x, p) ≥ 0 (A.25)∫ ∫
F (x, p)dxdp = 1 (A.26)

The phase space distribution should be nonnegative to permit a probability (or mean

value) interpretation. In addition, the marginal distribution of the phase space distribu-

tion should give the usual position or charge probability distributions:

Q(x) =

∫
F (x, p)dp (A.27)

Expression (A.27) is an important quantity in quantum transport because it is related to

the charge density, which is a very relevant magnitude in any self-consistent solution of

the electron transport. In characterizing the electrical conduction of an electron system,

the current density as another important quantity is built from this distribution, as:

J(x) =

∫
pF (x, p)dp (A.28)

In the following, I will construct the Bohmian, Wigner and Husimi distributions by

satisfying the mentioned probabilities axioms and test how these distributions can be used

in the practical computation of quantum transport. More details about the comparison

of Wigner, Husimi and Bohmian distributions can be found in the paper [109].

A.3.1 The Bohmian Phase Space Distribution

If one is interested in a probability distribution in phase space, it seems appropriate to

use a quantum theory that has a well-defined phase space, i.e. a theory that explicitly
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accounts for well-defined positions and local momenta. Bohmian mechanics is a theory

which provides a well-defined position and momentum for a particle [154, 155]. Thus,

contrarily to the orthodox theory, the Bohmian theory allows the existence of a physical

and natural phase space2. Once the well-defined Bohmian trajectories are known, the

quantum Bohmian phase space distribution can be defined as:

FB(x, p, t) = lim
M→∞

1

M

M∑
j=1

δ(x− xj[t])δ(p− pj[t]) (A.29)

where the subindex B represents the Bohmian mechanics, M is the number of different

trajectories of an ensemble of experiments with different initial position3, xj[t] is a posi-

tion of the trajectory at time t, while pj[t] = mv(xj[t], t) is the momentum of the particle.

Let us emphasize that, by construction, the phase space distribution constructed with

Bohmian mechanics is always non-negative and it satisfies all the probability axioms in

order to be a correct probability distribution. As we know, the number of Bohmian

trajectories with momentum p at the position x must be positive (or zero if there are no

particles there).

Substituting the Bohmian distribution (A.29), into equations (A.27), the charge den-

sity can be calculated:

QB(x) = lim
M→∞

∫
1

M

M∑
j=1

δ(x− xj[t])δ(p− pj[t])dp = lim
M→∞

1

M

M∑
j=1

δ(x− xj[t]) = |Ψ(x)|2

(A.30)

In the charge density expression, I have used the property of the Bohmian trajectory in

equation (A.9). Equivalently, the current density is:

JB(x) = lim
M→∞

∫
1

M

M∑
j=1

δ(x− xj[t])δ(p− pj[t]) · p dp

= lim
M→∞

1

M

M∑
j=1

δ(x− xj[t])pj[t] = |Ψ(x)|2∂S(x)

∂x
(A.31)

being S(x) the angle of the polar representation of the wave function Ψ(x, t) = R(x)e(iS(x)/~)

defined in the text in equation (A.1). In the current density (A.31), the definition of the

Bohmian velocity (A.13), which is an univalent function, is used.

2We notice that the variables x and p in the Bohmian phase space {x, p} are directly defined in the
theory itself. They are part of the ontology of Bohmian mechanics. For this reason, the Bohmian phase
space is a natural phase space.

3Let us emphasize that the different xj [t] and pj [t] associating to single-particle are different realiza-
tions of an ensemble of experiments j = 1, · · · ,M with the same conditions.
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A.3.2 The Wigner and Husimi Distributions

In this subsection, I will define the Wigner and Husimi Phase Space probability distribu-

tions, and then, compare the Bohmian with the Wigner and Husimi distributions with

some numerical results in the following subsection.

Wigner Distribution

For a given state |Ψ〉, one can construct the density matrix operator ρ̂ = |Ψ〉〈Ψ| and

express it in the position representation 〈x|ρ̂|x′〉=〈x|Ψ〉〈Ψ|x′〉 or in the momentum rep-

resentation 〈p|ρ̂|p′〉=〈p|Ψ〉〈Ψ|p′〉. The Wigner distribution can be interpreted as an in-

termediate representation between this two and it is given by a Wigner-Weyl transform

of the density matrix as [77] :

FW (x, p) =
1

2π~

∫
Ψ(x+

y

2
)Ψ∗(x− y

2
)ei

py
~ dy (A.32)

where Ψ(x) = 〈x|Ψ〉. It is relevant to mention that the Wigner distribution is a quasi-

probability distribution. It does not satisfy, in general, the condition given in equa-

tion (A.25) for a well-defined phase space probability distribution, i.e., negative values

FW (x, p) < 0 could appear in some regions of the phase space. The charge density can

be computed by substituting the Wigner distribution into equation (A.27):

QW (x) =

∫
1

2π~

∫
Ψ(x+

y

2
)Ψ∗(x− y

2
)ei

py
~ dy dp =

∫
Ψ(x+

y

2
)Ψ∗(x− y

2
)δ(y)dy = |Ψ(x)|2

(A.33)

which is identical to the charge density (A.30) in the Bohmian case. The current density

is also computed by displacing the distribution in equation (A.28) with the Wigner one.

Here, I just give the result of the current density and a more detailed discussion about

how to derive the result can be found in the paper [109]. The current density computing

from the Wigner distribution is:

JW (x) = |Ψ(x)|2∂S(x)

∂x
(A.34)

We can clearly see, that this result is also the one obtained for the Bohmian distribution.

At this point, we see that FW (x, p) is a good candidate to study quantum transport.

However, it is “dangerous” to take seriously the Wigner (quasi) phase space when further

developing the Wigner function for the quantum transport, for example, when including

transitions between the phase space points {x, p} and {x, p′} due to the (Fermi Golden

rule) scattering.
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Husimi Distribution

The Husimi distribution (FH) is another possible phase space distribution built from the

Copenhagen school [160] :

FH(x, p)=
1

π~

∫
FW (x′, p′)e

−(x−x′)2

2s2 e
−(p−p′)22s2

~2 dx′dp′ (A.35)

where s is an arbitrary parameter, and each choice of s gives a different basis function

set {x, p}. The charge density QH(x) is [109]:

QH(x) =
1√

2πs2

∫
|Ψ(x′)|2e−

(x−x′)2

2s2 dx′ (A.36)

and the current density is [109]:

JH(x) =
1√

(2πs2)

∫
|Ψ(x′)|2∂S(x′)

∂x′
e−

(x−x′)2

2s2 dx′ (A.37)

We can clearly see, that this results are the ones obtained for the Wigner or Bohmian

distributions, but smoothed by a Gaussian function. The difficulties in properly providing

the current and charge densities are a dramatic drawback for the correct simulation of

quantum electronic devices with the Husimi distribution. Once the Bohmian, Wigner

and Husimi distributions have been constructed, in the following, I will provide some

simply simulations to test the mentioned properties of these distributions.

A.3.3 Comparing the Bohmian, Wigner and Husimi Distribu-

tions

According to the conceptual discussions in the previous sections, here, I provide numerical

examples for the three mentioned quantum phase space distributions and the related

charge density and current density. For simplicity, we consider a simple one-dimensional

Gaussian wave packet impinging in a symmetric double barrier. At the initial time t0,

the wave function of a Gaussian wave packet at the left of the barrier is :

Ψ(x, t0) = (
1

2πa2
0

)
1
4 eik0(x−x0)exp

(
−(x− x0)2

4a2
0

)
(A.38)

where a0 = 7.5 nm is the initial spatial variance of the wave packet, x0 = 100 nm is the

initial central position and k0 = 0.69 nm−1 is the central wave vector. In addition, for

the Husimi evolution, I used also the same dispersion: s = 7.5 nm.

The time evolution of the initial wave packet is computed by numerically solving

the Schrödinger equation (A.1) for a single-particle system. Then, I compute the three
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quantum phase space distributions at three different times corresponding to the initial

time t0 = 0 ps, the time t1 = 0.09 ps when the wave packet is interacting with the

barrier and the time t2 = 0.3 ps when the interaction is nearly finished and the initial

wave packet is clearly split into a transmitted and a reflected components. The infor-

mation corresponding to these three times are plotted in figures A.3.1, A.3.2 and A.3.3,

respectively.

Let us start by comparing the evolutions of the Bohmian, Wigner and Husimi distribu-

tions in figures A.3.1-A.3.3. It is clearly seen that the Bohmian and Husimi distributions

have non-negative values everywhere at any time, satisfying clearly the first probability

axiom (A.25). At the initial time, the Wigner distribution is also non-negative, however,

in later times at t1 and t2, negative values appears in some regions of the phase space.

Next, let us compare the charge and current densities calculated using equations

(A.27) and (A.28) for the three quantum distributions. It is relevant to emphasize that

the values obtained from the Bohmian and Wigner distributions are always completely

identical. However, the values of equations (A.36) and (A.37) for the Husimi distribution

does not provide the correct charge and current densities obtained from the wave function.

It clearly see that the module squared of the wave packet (blue lines) in figures A.3.1b,

A.3.2b and A.3.3b are equivalent to the charge density of the Bohmian and Wigner

distributions, but not to the Husimi one.

After confirming, from the numerical simulations, the unphysical features that we

obtain from the distributions (i.e. the negative values of the Wigner distribution, the

mistaken results for the charge and current densities for the Husimi distribution and the

success in both aspects of the Bohmian distribution), I further clarify the consequences of

the negative values appeared in the Wigner distribution. After the interaction with the

double barrier, say at the time t2, the initial wave packets Ψ(x, t) splits into a reflected

ΨR(x, t) part and a transmitted ΨT (x, t) part. However, in addition, there are large

non-zero values (negative and positive, because when integrating in this region of the

phase space the result must be zero) of FW (x, p) in the middle of the barrier, x = 150

nm, at places where no probability presence of the electron is supposed to be according

to figure A.3.3b. If one tries to gives a physical meaning to FW (x, p) at these points

in figure A.3.3c (as a true physical probability distribution of the electron at the phase

space), one must be very careful. For example, let us imagine that we introduce an ad-hoc

scattering term (due to impurities, for example) in the quantum equation of motion of

the Wigner function. If such ad-hoc scattering mechanics is introduced as a transition

from an old phase space point {xC , p} (for example, xC = 150 nm) towards the new

point {xC , p′} through the Fermi Golden rule probability Wp′,p, we are moving electrons
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Table A.1: In this table, it is represented which distribution fulfills the requirements
in order to be a complete probability distribution. It clearly see that the Bohmian
distribution is the only one successful.

FB FW FH
Positive distribution Yes No Yes
Get the exact Q(x) Yes Yes No
Get the exact J(x) Yes Yes No

from places (xC = 150 nm) where there is no electron. The mistake is because we

introduce the scattering mechanism by hand as an extra ad-hoc term in the quantum

equation of movement. Obviously, this spurious effect is not present if the scattering (with

the impurity) is introduced directly in the Hamiltonian inside the quantum equation of

motion. This spurious effect does not occur within the Bohmian distribution, because as

seen in figure A.3.3a, there is only non-zero probabilities at locations where the electron

may be reflected or transmitted, but not in other regions. Furthermore, in Chapter 4, I

have a detail discussion how the Wigner distribution function could provide unphysical

results (negative charge density) in a quantum transport with scatterings.

In summary, the characteristics of the three distributions are seen in table A.1. In

any case, contrarily to the Copenhagen school, Bohmian mechanics allows a well-defined

probability distribution in phase space (according to the rules (A.25)-(A.28)) to exactly

reproduce the charge and current densities used in the development of quantum electron

transport simulators. These good properties are just a consequence of the ontology of the

Bohmian theory, which allows well-defined momentum and position, simultaneously, for

an electron. In the authors’ opinion, the Bohmian distribution has an enormous potential

to be developed and exploited, in general, for study any (non-relativistic) quantum system

and, in particular, for quantum electron transport [42, 67, 161].
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Figure A.3.1: Simulation of the (a) Bohmian distribution, (c) Wigner distribution and
(e) Humisi distribution at the initial time t0. (b) simulation of the wave packet impinging
on a double barrier, the simulation parameters are: E = 0.09 eV, m∗=0.2m0, where m0

is the free-electron mass, the barrier height is 0.2 eV, the barrier width is 0.8 nm and the
well depth is 3.2 nm (d) and (f) are the charge and current densities for the three phase
space distributions, respectively.
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Figure A.3.2: Simulation of the (a) Bohmian distribution, (c) Wigner distribution and
(e) Husimi distribution at the time t1. (b) simulation of the wave packet impinging on a
tunneling barrier with the same parameters as in Fig. A.3.1. (d) and (f) are the charge
density and current density for the three phase space distributions, respectively.
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(c) Wigner distribution at t2.
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Figure A.3.3: Simulation of the (a) Bohmian distribution, (c) Wigner distribution and
(e) Husimi distribution at the time t2. (b) simulation of the wave packet impinging on a
tunneling barrier with the same parameters as in Fig. A.3.1. (d) and (f) are the charge
density and current density for the three phase space distributions, respectively.
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Appendix B

Using the Image Method to Solve the Problem of a

Point Charge in Presence of Three Dielectric Media

with Planar Interfaces

The image method described in any physical textbook is used for computing the potential

and the electrical distribution around electrostatic charges in the presence of conductors

or dielectrics. In the case of a point charge q near a conducting plane, by using the

boundary conditions, we can directly write the field due to q and to an imaginary point

charge −q at a suitable position. In this section, we will extend the method of the images

to the case of an electrostatic point charge in the presence of three arbitrary different

dielectric media, i.e. two semi infinite media separated by a sheet.

The figure 5.1.1 in Chapter (5) shows a geometry of the problem: a point charge

is imbeded in a three-dielectric medium with infinite planar interfaces. Without loss of

generality, we locate the point charge q at an arbitrary point A1(x0, y0, z0) in the second

layer. For simplicity, we consider the situation of planar interfaces perpendicular to the

y axis and characterized by the sequence of dielectric constants:

ε1, y ≤ Y1 (B.1)

ε2, Y1 ≤ y ≤ Y2 (B.2)

ε3, y ≥ Y2 (B.3)

Using the method of images [162, 163], a straightforward calculation of potential Φ at an

arbitrary point P (x, y, z) described by rectangular coordanates is:
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Presence of Three Dielectric Media with Planar Interfaces

Φ1 =
T12q

4πε1

[ 1

r0

+
∞∑
n=1

(L12L32)n−1
(L12L32

r+
na

+
L32

r+
nb

)]
, y ≤ Y1 (B.4)

Φ2 =
q

4πε2

[ 1

r0

+
∞∑
n=1

(L12L32)n
(
− L32

r−na
− 1

r−nb
− 1

r+
nb

− L12

r+
na

)]
, Y1 ≤ y ≤ Y2 (B.5)

Φ3 =
T32q

4πε3

[ 1

r0

+
∞∑
n=1

(L12L32)n−1
(L12L32

r−na
+
L12

r−nb

)]
, y ≥ Y2 (B.6)

where Ti2 = 2εi
εi+ε2

and Li2 = ε2−εi
ε2+εi

with i = 1, 3. The distances between point P and the

infinity array of charges are given by:

r0 = [(x− x0)2 + (y − y0)2 + (z − z0)2]
1
2 (B.7)

r−na = [(x− x0)2 + (y − y0 + 2n(Y2 − Y1))2 + (z − z0)2]
1
2 (B.8)

r−nb = [(x− x0)2 + (y + y0 − 2Y1 + 2(n− 1)(Y2 − Y1))2 + (z − z0)2]
1
2 (B.9)

r+
nb = [(x− x0)2 + (y + y0 − 2Y2 − 2(n− 1)(Y2 − Y1))2 + (z − z0)2]

1
2 (B.10)

r+
na = [(x− x0)2 + (y − y0 − 2n(Y2 − Y1))2 + (z − z0)2]

1
2 (B.11)

It has been proved that the infinite series in the potential expressions can be trunkated

and that the number of terms 10 ∼ 20 is sufficient enough to achieve a good precision

[163]. In BITLLES simulator, within reasonable limits for a rapid calculation, we define

n = 100.
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