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Abstract

This thesis is devoted to the problem of designing Proportional-Integral-Derivative
(PID) controllers for uncertain, linear time-invariant (LTI), single-input-single-output
(SISO) plants. The uncertainty of the plant is explicitly taken into account in the
design stage of the controller. It is assumed that any mathematical model used to
describe a real plant is an approximation, and hence, its ignorance should be quantified
and taken into account when designing a control system. In addition, the most valuable
feature of feedback control is its ability to reduce the effect of uncertainty, both model
mismatch and unknown external disturbances. It should be noted that in absence of
uncertainty or when it is acceptably small, feedback control is not necessary at all.
In such cases, more advantageous solutions could be adopted by means of open-loop
control.

The choice of a PID control structure is because of the fact that it is by far the
most used form of feedback. It is present in more than 95 % of the industrial control
loops. Even with the advent of more advanced control techniques, this situation has
not changed. As a matter of fact, the only of such techniques that have achieved a
significant presence in the industry is the predictive control, and it is generally deployed
at a supervisory level, e.g., generating set-points for the bottom level PID controllers.
Therefore, the overall performance of a control system based on predictive control is
usually subordinated to the existence of properly tuned PID controllers. Nevertheless,
the consideration of this control structure should not be a limitation, since most of the
presented methods could be applied to more complex control structures.

The task of modeling uncertainty comprises a trade-off between obtaining a math-
ematically amenable model (unstructured uncertainty) and an accurate description
of the uncertainty (structured uncertainty). This thesis adopts the latter approach.
Interval parametric models are considered throughout this thesis, but some results are
also applicable to the case of nonparametric multi-models in the frequency domain.
The control design problems are posed as constrained optimization problems. Different
kinds of problems are considered, depending on which control specification is most
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important to the designer. In addition, a probabilistic description of the uncertainty
is also tackled. The major strength of this approach is that it allows to state (soft)
specification in terms of probability of constraint violation; then a considerable increase
of performance may be obtained with respect to a design based on (hard) worst-case
specifications, even when considering small values of probability constraint violation.

The practical problem of (easily) obtaining plant models is acknowledged. A
breakthrough in the problem of identifying for PID control design was the relay
autotuner method. A novel autotuning method is presented through its application in
an industrial in-line pH problem. Its most outstanding features are the short duration
of the experiment and its ability to estimate and employ for synthesis an uncertainty
model of the obtained parameters.



Resumen Extendido

Esta tesis presenta varios procedimientos para el diseño de sistemas de control reali-
mentado, también conocidos como sistemas de control en lazo cerrado. Se considera el
caso en el que la planta a controlar es modelada por un sistema lineal e invariante en el
tiempo con una entrada y una salida. En particular, se estudian métodos de diseño en
los que el controlador es de tipo proporcional integrador derivativo (PID) y en los que
se considera de forma explícita un modelado de la incertidumbre sobre la dinámica de
la planta que se quiere controlar. Este último punto es de crucial importancia, ya que
en ausencia de incertidumbre no hay necesidad de utilizar realimentación, entendiendo
como incertidumbre los siguientes puntos: inexactitudes en el modelado de la planta y
perturbaciones no medibles que actúan sobre ella. En tales casos, un controlador en
lazo abierto ofrecería una solución al problema de control, sin la necesidad de embeber
a la planta en un sistema de control realimentado. También puede darse el caso en
el que el efecto de la incertidumbre sea aceptable en relación con las especificaciones
de control, en tales casos la realimentación tampoco sería estrictamente necesaria. La
realimentación es peligrosa en el sentido de que esta puede provocar inestabilidades,
por lo tanto su uso está solamente justificado por la necesidad de reducir el efecto
de la incertidumbre por debajo de unos límites marcados por las especificaciones de
control. Además, es importante tener en cuenta que el diseño de un sistema de control
realimentado se puede interpretar como un juego de suma cero (en el mejor de los
casos) para cualquier planta real. Esto se deduce de la integral de Bode (también
llamada de Horowitz) sobre la sensibilidad.

Dicho lo cual, cualquier método general de diseño (o síntesis) de controladores
realimentados, que aspire a ser útil en la práctica y no solo un elegante ejercicio
matemático, deberá incluir algún tipo de modelado de la incertidumbre de la planta
así como unas especificaciones de diseño. En líneas generales, se podría decir que la
incertidumbre se puede modelar con un modelo con mayor o menor nivel de detalle
(incertidumbre estructurada), o bien de una forma más laxa, imponiendo unos ciertos
márgenes de estabilidad sobre un modelo nominal (incertidumbre no estructurada). Con
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respecto a las especificaciones, a grandes rasgos un tipo de especificación razonable es
que el sistema diseñado exhiba una cierta insensibilidad con respecto a variaciones en la
dinámica de la planta, esta propiedad es denominada como robustez en la terminología
de la teoría del control. En otras palabras, se desea que el comportamiento del sistema
diseñado mantenga unas ciertas características, a pesar de posibles cambios en la
planta física. Estos cambios pueden ser debidos al envejecimiento de componentes, a la
existencia de distintos puntos de operación, a cambios en el entorno, etc.

El problema de diseño de un sistema de control es un problema rico que debe tener
en cuenta varios aspectos, como por ejemplo, la atenuación de perturbaciones de carga,
el seguimiento de referencias, el ruido de la medida y las variaciones en la dinámica de
la planta. Dentro del abanico de técnicas desarrolladas para tratar estos problemas, un
enfoque en el dominio de la frecuencia aporta las herramientas necesarias para abordar
este problema de una forma relativamente sencilla y efectiva. Una desventaja de este
enfoque es la imposibilidad de tratar el caso de parámetros variables en el tiempo,
imponiendo necesariamente la asunción de parámetros inciertos pero constantes. En
particular, esta tesis considera la Teoría de Control Cuantitativa (QFT por sus siglas
en inglés) desarrollada principalmente por Isaac Horowitz, que extiende y generaliza
conceptos previamente estudiados por Hendrik W. Bode. Esta técnica ha demostrado
su solvencia mediante un gran número de casos de éxito en aplicaciones prácticas,
así como su extensión tanto a sistemas multivariables, no lineales, o de parámetros
distribuidos. Por otro lado, también se hace uso de la metodología del espacio de
parámetros del controlador, cuyos orígenes se remontan al menos a finales siglo XIX,
época en la que ya era usada por Ivan A. Vishnegradsky. A la hora de formular los
problemas de diseño del controlador, estos se modelan en esta tesis como problemas de
optimización con restricciones. La especificación más importante tomará el papel de
función de coste a optimizar, mientras que las otras especificaciones se incluirán como
restricciones. Una formulación extensivamente empleada aquí es la optimización del
rechazo de perturbaciones sujeta a restricciones sobre la robustez y la amplificación
del ruido. Actualmente existen métodos de optimización que permiten resolver estos
problemas de forma relativamente fiable. Además, algunos problemas de optimización
tienen una cierta estructura (por ejemplo, linealidad o convexidad) que les dota de
unas ciertas bondades, que permiten su resolución de forma altamente eficiente. Hoy en
día, la optimización lineal es considerada una tecnología, mientras que la optimización
convexa está cerca de serlo.

A la hora de modelar la incertidumbre en el dominio de la frecuencia, el método
predominante en la literatura sobre control robusto es mediante incertidumbre no
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estructurada. El uso de este tipo de modelado de la incertidumbre supone un sacrificio
en cuanto a exactitud a cambio de obtener un modelo más ameno matemáticamente.
Este tipo de modelos permite obtener propiedades de estabilidad robusta mediante
la aplicación de resultados basados en el Teorema de la Ganancia Pequeña. En
contra, el uso de un modelado estructurado de la incertidumbre permite reducir el
conservadurismo inherente al modelado no estructurado, con el coste de plantear un
problema de diseño sustancialmente más complejo. Por ejemplo, el enfoque de los
valores singulares estructurados (o análisis mu) requiere la resolución de problemas de
complejidad computacional NP-complejo. La Teoría de Control Cuantitativa, calificada
a veces como un método práctico o semiformal, ofrece un buen compromiso entre
exactitud y complejidad del proceso de diseño.

Por otro lado, el hecho de considerar controladores tipo PID es debido a que
este tipo de controladores es con una amplia diferencia el más usado en la práctica.
En la mayoría de casos prácticos este controlador es capaz de ofrecer una solución
satisfactoria al problema de control cuando las especificaciones no son demasiado
exigentes. Diferentes estudios cifran en más del 95 % su presencia en sistemas de
control industriales. También se indica que muchos de estos controladores no utilizan
la acción derivativa, resultando en controladores tipo proporcional integrador (PI).
Además, el predominio de este tipo de controlador no se ha visto amenazado por
la irrupción en entornos industriales de otras técnicas de control denominadas como
avanzadas. La única clase de tales técnicas que ha tenido una penetración significante
en la industria es la representada por el control predictivo, también conocido con otros
nombres como control predictivo basado en modelo o realimentación óptima en lazo
abierto, por nombrar algunos. En la mayoría de casos, los controladores predictivos
conviven en el mismo sistema de control que los controladores tipo PID, de modo que
los controladores PID se encargan de los lazos de control a bajo nivel, mientras que un
controlador predictivo se encarga de las interacciones entre distintos lazos a un nivel
superior. Gran parte del éxito del control predictivo se debe a su habilidad para poder
tratar de forma sistemática con interacciones y, en especial, con restricciones sobre la
señal de control y la salida de la planta. Estas restricciones pueden estar motivadas
por limitaciones físicas, de seguridad o medioambientales. Cabe destacar que en un
gran número de casos, el desempeño global de un sistema de control que incluye un
controlador predictivo estará supeditado a la existencia de unos controladores tipo
PID debidamente ajustados. Además, se reconoce que una parte del éxito atribuido
al control predictivo es debido realmente a los avances en las técnicas de diseño de
controladores tipo PID.
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A pesar de lo dicho sobre los controladores PID, el hecho de considerar una estructura
relativamente sencilla como la de estos puede parecer una limitación importante. Cabe
destacar que varios de los métodos de diseño presentados en esta tesis son también
aplicados a estructuras de control más generales.

Una primera parte de los resultados presentados en esta tesis corresponde a métodos
de diseño para ciertos tipos de modelos, que describen el comportamiento de gran
parte de las dinámicas encontradas en procesos industriales. Los dos modelos que se
consideran son: integrador con retardo temporal y primer orden con retardo temporal.
En estos casos, el modelado de la incertidumbre se realiza usando un conjunto de
plantas definido mediante incertidumbre paramétrica intervalar en cada uno de los
parámetros que aparecen en estos modelos. El enfoque adoptado en estos dos casos es
la identificación de un número reducido de plantas que permita llevar a cabo el diseño
para el conjunto inicial, de la forma menos conservadora posible. En el primer caso
se obtiene un método de diseño en forma de una regla de ajuste; y en el segundo, el
problema inicial, que considera un conjunto infinito de plantas, se resuelve considerando
una única planta instrumental de orden fraccionario. Esta planta representa en un
cierto modo al conjunto de plantas inicialmente considerado.

Posteriormente se estudia el caso en el que el modelo de la planta a controlar está
compuesto por una conjunto finito de respuestas en frecuencia. Cabe destacar que
el rango de aplicación de este último modelo es bastante amplio. Por una parte, es
posible obtener la respuesta en frecuencia de cualquier modelo lineal invariante en
el tiempo. Por otra parte, experimentos de identificación entrada salida mediante el
análisis de la respuesta en frecuencia son ampliamente usados en diversas ramas de
ingeniería. Estas características hacen que este procedimiento de diseño sea adecuado
para una gran variedad de problemas de control prácticos. Otra ventaja del método es
el uso de algoritmos basados en optimización convexa. Esto hace que una vez que el
problema de control ha sido debidamente formulado, su resolución sea prácticamente
trivial y no requiera de supervisión alguna por parte del usuario. Este método permite
el diseño de controladores PID con especificaciones tipo QFT de una forma más sencilla
y considerablemente más rápida que las ofrecidas por métodos previos.

Otro enfoque tratado en esta tesis es el estudio de un modelado probabilístico
de la incertidumbre. De este modo, un parámetro incierto pero perteneciente a un
intervalo acotado, puede ser descrito como una variable aleatoria continua sujeta a
una distribución de probabilidad uniforme. La mayor parte de las técnicas de diseño
de controladores consideran un modelado determinista de la incertidumbre, ya sea
estructurado o no estructurado. Un modelado determinista resulta inevitablemente en
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especificaciones tipo peor caso, donde una cierta propiedad se garantiza para todo el
conjunto de parámetros inciertos. Una crítica a este enfoque es que la probabilidad
de que ocurra el escenario asociado al peor caso podría ser muy baja. Por contra, un
modelado probabilístico permite plantear especificaciones más ricas, como por ejemplo,
en términos de probabilidad de cumplimiento de una cierta propiedad. Este enfoque
permite obtener controladores que alcancen un desempeño superior a los diseñados
con técnicas deterministas, con el coste de incumplir las especificaciones de diseño con
una probabilidad predefinida por el usuario y típicamente pequeña. En uno de los
ejemplos presentados, el cual está basado en un modelo de un sistema de transmisión
mecánica tomado de la literatura, se muestra como es posible triplicar el rendimiento
con respecto al caso determinista a costa de permitir una violación de la especificación
con una probabilidad de tan solo el 2 %.

Por último se presenta un nuevo método de sintonía automático de controladores
PID mediante su aplicación a un problema de control de pH en línea en una planta
industrial. Normalmente, la obtención de un modelo para su uso en el diseño de un
controlador tipo PID puede ser una tarea costosa en términos económicos. Es por ello
que los métodos de sintonía automática basados en un experimento tipo relé son muy
populares en la industria de control de procesos, donde una industria típica podría
contener cientos o incluso miles de lazos de control. El método presentado tiene como
ventajas con respecto a métodos previos: una duración del experimento sustancialmente
más corta, y la habilidad de identificar y emplear para el diseño del controlador un
modelo probabilístico de la incertidumbre de los parámetros estimados.
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Chapter 1

Introduction

1.1 Preliminaries

Feedback control is one of the great concepts developed (mostly) in the last century, it
has had an utmost impact on the technological development of modern society. Among
its wide range of applications are aerospace, automotive, industrial processes, robotic,
renewable energy, etc. In particular, control engineering aims to design systems that
interact with the plant to be controlled, making the plant to behave in a desired way1.
The purpose of a control system is generally that the plant output follows a reference
signal as well as possible, in spite of disturbances acting on the plant or uncertainty
about the plant model. The control system or controller has then the role of computing
a signal that is fed into the plant with the aim of achieving this goal. An everyday
example of a control system is the cruise control system, typically encountered in most
of the modern cars. It attempts to maintain the velocity of the car close to a given
desired velocity, in spite of uncertain factors such as changes in the road slope, different
wind conditions, and several road surface properties.

Control systems may operate in one of two different modes: open loop or closed
loop, see Figure 1.1 where both modes are sketched. There are three signals: the
reference input r, the controller output u, and the plant output y. In an open-loop
control system, the output of the controller is obtained from the reference input, and
possibly a measurable disturbance, using a mathematical model of the plant. This
operation mode is very sensitive to inaccuracies in the plant model. It only works
well when the effects of inaccuracies in the model of the plant and unknown external

1The word plant is generally used in control engineering to denote the combination of a process
and actuator.
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Controller Plantr u y

Controller Plantr u y

−

Figure 1.1 Open-loop (top) and closed-loop (bottom) control systems

disturbances acting on the plant are acceptable in relation to the desired specifications.
Closed-loop control, also known as feedback control, attempts to overcome this caveat
(sensitivity to uncertainty both in the model and in the disturbances) by measuring the
output of the plant and using the error between the reference input and the measured
output to generate the output of the controller.

The idea of feedback is at the core of control theory, it has interesting properties, such
as making it possible to reduce the effect of unmeasured disturbances and uncertainty
about the plant model. It is worth to point out that the only reason for using closed-
loop control is because of uncertainty, both in the plant model and in the external
disturbances acting on the plant [124]. In absence of these factors, more economical
solutions can be adopted by means of open-loop control. On the other hand, its major
drawback is that it may cause instability. An improper use of feedback may result in
an unstable closed-loop system (a bounded input may generate an unbounded output),
even when the plant to be controlled is stable (bounded inputs generate bounded
outputs). In addition to the risk of instability, another limitations inherent to any
feedback control system is due to the presence of the errors in the measuring signals
(sensors have a certain accuracy), that inevitably imposes a lower bound on the error
of the control system. Another issue is that high-frequency measurement noise causes
actuator stress. These issues are generally disregarded in the control literature. There
are some exceptions that to put emphasis on these issues, for example, [85, 125].

Let us consider the two-degrees-of-freedom (2-DOF) feedback control system of
Figure 1.2. This system has three blocks corresponding to the plant P , the feedback
controller C, and the feedforward controller F . There are three external signals:
the reference input r, the load disturbance d, and the measurement noise n. Under
the assumption that plant, controller, and prefilter are single-input-single-output
(SISO) linear time-invariant (LTI) systems. The following equation, where the Laplace
transform representation of these systems is used, relates the plant output with the
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Figure 1.2 2-DOF feedback control system

external signals and serves to illustrate the properties of feedback2:

Y (s) = P (s)C(s)
1 + P (s)C(s)F (s)R(s) + P (s)

1 + P (s)C(s)D(s) − P (s)C(s)
1 + P (s)C(s)N(s). (1.1)

Assuming an ideal situation in which N(s) = 0, the desired output is practically
achieved Y (s) ≈ F (s)R(s) if a controller with enough high gain is used, despite
unknown disturbances and uncertainty about the plant model. The equation that
relates the controller output with the external signals is

U(s) = C(s)
1 + P (s)C(s)F (s)R(s) − C(s)P (s)

1 + P (s)C(s)D(s) − C(s)
1 + P (s)C(s)N(s). (1.2)

It should be mentioned that the transfer functions3 that appear in equations (1.1) and
(1.2) have specific names [21]:

• Sensitivity function: S(s) = 1
1 + P (s)C(s) .

• Complementary sensitivity function: T (s) = 1 − S(s) = P (s)C(s)
1 + P (s)C(s) .

• Load disturbance sensitivity function: P (s)S(s) = P (s)
1 + P (s)C(s) .

• Noise sensitivity function: C(s)S(s) = C(s)
1 + P (s)C(s) .

This group of equations is often called the Gang of Four [21]. Coming back to
the situation where N(s) ̸= 0, a controller with high gain may amplify and fed the
measurement noise into the control signal, leading to undesirable effects [124]. Therefore,
there is a trade-off between designing a controller that achieves sufficiently high gain for

2Lower- and upper-case versions of the same letter are used, the former denotes a time-domain
signal and the latter denotes its Laplace transform.

3The transfer function of an LTI system is the Laplace transform of the output due to a unit
impulse input; s is the complex variable.
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obtaining a good performance and designing one with a sufficiently low gain in order
to minimize the undesirable effects of the measurement noise and the risk of losing
stability. As load disturbances typically have low frequencies and measurement noise
has high frequencies, the loop transfer function L(s) = P (s)C(s) should be designed
with high gain at low frequencies and low gain at high frequencies4. Note that there
are limitations imposed on LTI control systems by Bode’s gain-phase relationship that
states that gain and phase of an LTI system cannot be designed independently [42].
This constraint makes designing a control system a challenging problem. In addition
to the previous requirements over the gain of the loop transfer function, the transfer
function L(s) should be shaped to have adequate stability margins, as gain and phase
margins or peak of sensitivity functions. There are many aspects that have to be
accounted for when designing a feedback control system, they can be summarized in
the following points [19, 21]:

• the effect of load disturbance has to be reduced or minimized;

• the designed system has to be robust (at least maintain closed-loop stability)
against plant model uncertainty;

• the amount of measurement noise fed into the plant should be limited or minim-
ized;

• the output of the plant should follow the reference input.

From equations (1.1) and (1.2), it is clear that the role of the feedback controller C is
to deal with the three first points. On the other hand, the prefilter F is in charge of
the last one. Therefore, each one, the feedback controller and the prefilter, may be
designed separately. A reasonable approach is to first design the feedback controller
C for performance and robustness, and later the prefilter F to handle changes in the
reference input.

Another important specifications are the constraints on the control signal and/or
plant output, but this kind of specifications will not be treated in the present thesis.
These constraints are present in any real control systems. Nevertheless, to the best of
the author’s knowledge, there is not a feedback control design method able to handle
these constraints for continuous-time systems in a systematic manner5.

4Performance of a control system will be poor in cases where frequency content of load disturbances
and measurement noise are overlapped.

5The situation changes for discrete-time systems, in which several techniques can handle them, for
example, Vertex control [113], Model Predictive Control [54, 170], and interpolation based techniques
[196].
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The number of degrees of freedom of a control system is defined as the number
of closed-loop transfer functions that can be designed independently [125]. We have
presented a 2-DOF control system, where it is assumed that the output of the plant
and the reference are available to the control system. Therefore, closed-loop trans-
fer functions from disturbance to output and reference to output can be designed
independently. In 1-DOF control systems, F (s) is restricted to be 1 since the control
system only have available the error signal. The advantages of exploiting extra DOFs,
when the corresponding signals are available to the control system, were presented
by Horowitz [125]. Previously, a lot of development of feedback control was done
on servomechanism [140], primarily for the radar problem, where only the error is
available to the controller. After that, the feedback control academic community
continues considering this constraint, even in cases where the output of the plant and
the reference signals were available.

1.1.1 Introduction to PID Control
Taking into account the points discussed in the previous section, a good candidate for
a feedback controller seems to be one that achieves high gain at low frequencies and
low gain at high frequencies. A simple controller that meets these specifications is an
integrator6. It has the following time and Laplace domain representations:

Time domain u(t) =
∫ t

0
e(τ)dτ,

Laplace domain U(s) = 1
s

E(s).
(1.3)

Let us come back to the ideal situation in which N(s) = 0, an integrator as feedback
controller achieves perfect reference tracking and disturbance rejection for constant
references and disturbances in spite of plant model uncertainty, these facts follow from
equation (1.1). In the time domain a similar analysis can be performed, if the output of
an integrator is constant over an interval of time, then the input must be zero over the
same interval. Now, assume that a system with constant references and disturbances
inputs reaches steady state; then all signals, including integrator output reach constant
steady-state values. This implies that the error (input of the integrator) is zero. Note
that this property holds independently of

• the values of the constant references or disturbances,
6There is also some evidence that integral feedback appears in biological systems, where disturbance

attenuation by integral feedback is usually known as perfect adaptation [242, 272].
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• the initial conditions of the plant and controller,

• ignorance about the plant dynamics, and

• whether the plant and controller are linear or nonlinear.

The main drawback of using an integrator as feedback controller is that, in general, it
makes the system less stable. Note that the integrator itself is not a stable system,
for example, for a step input, a bounded signal, its output is a ramp, an unbounded
signal. From a frequency domain perspective, the integrator has a constant phase lag
of π/2 rad (or 90 degrees); then some elements that achieve phase lead are desirable7.
A real zero is a simple element that is able to provide phase lead, its representation in
the Laplace domain is given by the following transfer function:

s + a

a
, (1.4)

where a is a parameter. This transfer function corresponds to a zero at s = −a

and a gain equal to 1/a in order to have a steady-state gain equal to 1. The series
combination of an integrator and a real zero (in addition to a gain factor) leads to a
proportional-integral (PI) controller that is given by:

CPI(s) = kp + ki

s
, (1.5)

where kp and ki are the parameters of the controller, that are called proportional and
integral gain, respectively. Although the phase lag of the controller (1.5) is π/2 rad
at low frequencies, it is 0 rad at high frequencies. The frequency where the phase
lag changes can be adjusted by tuning the parameters of the controller. In cases
where more phase lead is necessary, another zero could be added in series leading to a
proportional-integral-derivative (PID) controller

CPID(s) = kp + ki

s
+ kds, (1.6)

where the new parameter kd is the derivative gain. Note that transfer function (1.6)
is not necessarily composed of an integrator and two real zeros, it could also be
composed by an integrator (pole at the origin) and a pair of complex zeros. This

7Several nonlinear elements with the same gain characteristic of an integrator, but with less phase
lag, in terms of the describing function approach, have been studied. See, for example, the Clegg
Integrator (CI) [64], the split-path nonlinear (SPAN) filter [88], and an integrator with zero phase lag
[150].



1.1 Preliminaries 7

10−1 100 101 102
−40

−20

0

20

I

fPI

fPID

ω, rad/s

G
ai

n,
dB

10−1 100 101 102
−2

−1

0

1

I

fPI

fPID

ω, rad/s

Ph
as

e,
ra

d

Figure 1.3 Bode plots for PID controllers
Bode plot for an integrator (I), a filtered PI (fPI), and a filtered PID (fPID).

ideal representation of the PID controller is not physically realizable (transfer function
(1.6) is not proper when kd ̸= 0), but this issue is solved when a low-pass filter for
noise measurement is added. Then, in order to guarantee amplitude roll-off at high
frequencies, the feedback controller is usually combined in series with a measurement
filter, that may be a first-order filter for a PI controller as

GPI(s) = 1
Tfs + 1 , (1.7)

or a second-order filter for a PID controller

GPID(s) = 1
T 2

f s2/2 + Tfs + 1 . (1.8)

This second-order filter has two complex poles with the smallest damping ratio for
which there is no amplitude amplification. Other filter structures are possible [115],
but this choice keeps the number of parameters as low as possible. Figure 1.3 shows
an example of Bode plot of an integrator (I), a filtered PI (fPI), and a filtered PID
(fPID).

Regarding the prefilter F , although the benefits of using a 2-DOF control structure
was early emphasized by Horowitz [124, 125] at the end of the 1950s, this approach
did not appear in the academic control community until the mid-1980s8 [11, 84]. In
PID control a common form of obtaining a simple control structure with 2 DOF is by
means of set-point weighting, that consists in obtaining the error that enters into the

8Before this time, some industrial implementations of PID controllers applied derivative action
only to the output of the plant. This is a simple implementation of a 2-DOF control structure.
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proportional part as
ep(t) = br(t) − y(t), (1.9)

and the error that enters into the derivative part as

ed(t) = cr(t) − y(t). (1.10)

The use of set-point weighting corresponds to the following structure of the prefilter
F (s) (see [22]):

FSPW(s) = ckds2 + bkps + ki

kds2 + kps + ki

, (1.11)

where the parameters b and c are called set-point weights.

The PID controller, also known as the three-term controller, provides feedback
using a relatively simple control structure, but despite its simplicity, it offers a very
efficient solution to many real-world control problems. As it was presented before,
the integral action provides very desirable properties while proportional action, and
possibly derivative action, may improve the performance and robustness levels. Even
with the advent of more advanced control techniques, the PID controller is by far
the most used form of feedback in industry [17]. In fact, it has been the first and
only controller to be mass produced for the market existing in the process industry
[144]. One of the few advanced control techniques that has gained popularity in the
industry is model predictive control (MPC), and it is common to use this technique in
combination with PID control, in a way that the PID controllers are used in the lowest
levels while a multivariable MPC controller provides the references [17]. According to
a survey of over eleven thousand controllers in continuous process industries (among
others refining, chemicals, and pulp and paper industries), the PID controller was
used 97 % of the time [72]. Most of them are in fact PI controllers because derivative
term is regarded as difficult to tune. Similar figures hold in the motion control and
aerospace industries [231]. In addition, this type of controllers is also found in many
devices used in everyday life, such as cruise control for cars, CD and DVD players,
and mobiles phones. Therefore, due to its widespread use, any improvement in its
design has the potential to have a significant engineering and economic impact. Aside
from engineering, PID control also appears in areas like biology [21], or even, economy
[102, 121].

The development of PID control traces back to at least 250 years [34–36]. Some of
the milestones in its development are enlisted as follows:
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• End of the eighteenth century. Windmills were operated at a constant speed by
using centrifugal governors. In 1788, James Watt adapted it to the steam engine.
Originally they provided proportional action, but the Pérrier brothers introduced
the integral action around 1790. Later, the Siemens brothers, who also proposed
an alternative implementation of integral action, proposed derivative action based
on an inertial wheel [20].

• 1911. Elmer A. Sperry developed an automatic ship-steering mechanism that
incorporated PID control and automatic gain adjustment to adapt to different
sea conditions [215]. This device was designed to behave like an experienced
helmsman. The U.S. Navy adopted it, remaining in use through World War II.

• 1939. Taylor Instrument Companies and Foxboro Instrument Company added a
control action proportional to the derivative of the error signal (it was referred
as “pre-act” by the first and “hyper-reset” by the latter) to previous commercial
pneumatic controllers, that already had proportional and integral actions [34].

• 1942. John G. Ziegler and Nathaniel B. Nichols, employees of the Taylor Instru-
ment Companies, published a method for obtaining the gains of a PID controller
[280], this method was the result of empirical investigations.

• 1984. Karl J. Åström and Tore Hägglund proposed the relay autotuning method
[14], that makes possible to tune a PID controller with no prior information of the
process by performing a relatively short experiment. Computer implementations
of PID controllers allow to incorporate this kind of functionalities.

1.1.2 Bibliometrics Analysis

The topic of PID control has attracted a great interest among the academic control
community over the last decades. A considerable amount of books mainly focused on
PID control have been published, particularly in the last decade, see the following
books [7, 15, 16, 19, 43, 63, 67, 144, 201, 205, 232, 244, 245, 254, 255, 259, 275]. This
topic has a tremendous impact on the scientific community, Table 1.1 shows some
bibliometric figures retrieved from Scopus9 when searching for “PID control” OR
“PID controller” OR “PID compensator” in the article title, abstract or keywords. It
is important to highlight that all the documents that appear in Table 1.1 are not
mainly focused on PID control, but the presence of these words in the title, abstract

9Data retrieved 22 February 2017.
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Table 1.1 Bibliometric figures about the presence of PID control on Scopus

Number of publications 26291

h-index 107

Publications per subject area 1) Engineering 20084

2) Computer Science 9226

3) Mathematics 3433

4) Physics and Astronomy 1809

5) Energy 1676

Publications per country/territory 1) China 10196

2) United States 2183

3) India 1956

4) Japan 1293

5) Taiwan 851

Publications per cites 1) Relay autotuning [14]

2) Simple Internal Model Control [233]

3) Particle Swarm Optimization [94]

4) Internal Model Control [214]

5) Analysis, Design, and Technology [9]

or keywords indicates some influence of the topic on them. The h-index of this group
of documents is 110.

1.2 Motivation and Objectives

1.2.1 History of Feedback Control

Since the invention of the Watt’s governor in 1788, the desire of obtaining control
systems designed to work well under different operation points and external environment
conditions, among other factors, has been implicit. These properties lead to the concept
of robustness, that can be understood, as a “quantitative tolerance of large modeling
uncertainties” [221]. Originally, it was clear that the main purpose of a feedback
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control system was to cope with plant uncertainty. A central problem in the dawn
of the telephone industry around the 1920s was to design amplifiers whose properties
remain constant in spite of variations in supply voltage and component variations, this
problem was solved by Harold S. Black by inventing the negative feedback amplifier
[40]. Around these years, the well-known Nyquist criterion to determine the stability of
feedback system in terms of its loop transfer function was developed in [200]. Hendrik
W. Bode had designed feedback control systems for amplifiers that were robust to
variations in the gain [42] and he had also used complex variable theory to prove that
there are fundamental limitations in the design of feedback systems [223]. This may
be considered the first systematic research in feedback theory. Isaac M. Horowitz
extended the Bode’s robust design to more general process variations resulting in a
technique called Quantitative Feedback Theory (QFT) [125, 129]. This technique is
regarded as the first mathematical formulation of a robust feedback control problem
[221], although Horowitz did not use the word robust.

The significance of the Horowitz’s works was unnoticed by the academic control
community during the following decades. Most of the theory developed in these years
considered a nominal model of the plant (that was assumed to be sufficiently accurate)
ignoring the key problem of the uncertainty. During the period of time between 1960 and
1975, state-space and optimal control theories were developed. The Linear Quadratic
Regulator (LQR) was developed in [8], it has very good robustness properties in terms
of classic stability margins (infinite gain margin and 60 degrees of phase margin) over a
nominal plant [148, 222]. In addition to the robustness property, this technique has the
advantages of being well suited to numerical computations and extending well to the
multivariable case. However, it leads to difficult implementations in which a constant
gain controller is needed for each state. There was an extension of the LQR to the
case of output feedback called Linear Quadratic Gaussian (LQG) controller, relying on
the use of a Kalman-Bucy filter as a state observer. The separation principle states
that the problem can be split into the design of an optimal observer and the design of
an optimal controller. The robustness properties of the LQG controller were object of
study, that culminated with the publication of a simple counterexample by John C.
Doyle in a paper entitled “Guaranteed Margins for LQG Regulators” with possibly one
of the shortest abstract “There are none” [76]. Some criticisms of these techniques had
been reported earlier in [217], this work shows that these optimal control techniques
have properties that cannot be achieved in most of real systems and also some highly
undesirable properties. By this time, there was also criticism of the state-space theory
in favor of frequency domain methods [132].



12 Chapter 1. Introduction

At the end of the 1970’s, the analysis of robust stability became an emerging topic
due to the publication of the Kharitonov Theorem [155]. This theorem states that
the stability of an interval family of polynomials is equivalent to the stability of four
elements of this family. This fact is independent of the degree of the polynomials. An
extension of this result for the case where coefficients of the polynomials are affine
functions of the uncertain parameters is presented in [33], it is known as the Edge
Theorem. Extension of the latter to time-delay systems was published in [93].

Some progress was also made in the study of multivariable systems in the frequency
domain during these years. The parameterization of stabilizing controller for a given
plant was presented in [157, 273, 274]. The Nyquist stability criterion was generalized
to multivariable systems in [168].

The drawbacks of optimal control methods and the advances on multivariable
systems in the frequency domain motivate the development of a new wave of robust
control methods. In the early 1980s, George Zames published a work [277] that laid the
foundation for H∞ control. This seminal work on H∞ control was strongly motivated
by Horowitz [86], Zames wrote on it: “Many of the ideas in this paper are foreshadowed
by . . . Horowitz . . . who derived various limits on sensitivity imposed by the plant,
and stressed the need to consider plant uncertainty in design”. Further developments
in H∞ were done in [80, 278]. A brief historical review of H∞ control can be found
in [279]. The development of H∞ control brought robustness to the forefront with
techniques that also can be generalized to multivariable systems. As in LQR/LQG
techniques, the control problem is expressed as a mathematical optimization problem,
and the method yields the controller that solves the problem. Some caveats of this
technique are that the approach to model uncertainty is generally by using conservative
unstructured uncertainty and that H∞ synthesis usually leads to high-order controllers.
The problem becomes harder to solve when structural constraints on the controller are
considered, in this case, the problem is not longer convex [139]. These methods can
be used for structured uncertainty leading to the structured singular value framework
[77]. Synthesis procedure for this method (D-K iterations) was proposed in [78, 220]
and combines µ analysis and H∞ synthesis in an iterative procedure. There are some
drawbacks that limit the applicability of this method: calculation of structured singular
value (also known as µ) is approximated by its upper bound and there is not guarantee
for the convergence of the D-K iterations.

During the 1990s, there were several pessimistic results concerning the computational
complexity of several algorithms used for analysis and synthesis of robust controllers
[41, 194, 211]. These facts fueled a growing interest in using randomized algorithms
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(RAs) for analysis and synthesis of control systems, see [246] for an overview of these
techniques. In addition, from a more practical point of view, the usual approach
for modeling uncertainty as unknown-but-bounded parameters, that leads to worst-
case (hard) specifications, may result in conservative designs. The assignation of a
probability density function to the uncertain parameters allows to consider probabilistic
(soft) specifications, with designs that are expected to be less conservative than their
deterministic counterpart.

1.2.2 Motivation
The brief exposition of the evolution of feedback control design methods, done in the
previous section, serves as motivation for the desirable features that any practical
control design method should exhibit. Some common characteristics of the several
methods presented in this thesis are enlisted below:

• a structured model of the uncertainty is taken into account in the design stage;

• the approach to control SISO plants is restricted to output feedback;

• control design problems are cast as optimization problems;

• fixed controller structures are considered.

The design methods presented in this thesis range from a tuning rule for a simple
parametric model with uncertainty to a convex-based optimization method for a family
of plants given by frequency response data. Low-order controllers, such as PID, are
considered, but many of the presented methods are extendable to more complex
controller structures. In some cases, the extension to other controller structures is
sketched in the application examples.

1.2.3 Objectives
Our target in this thesis is to obtain advances in the field of robust PID control. The
general objectives of the thesis are exposed as follows.

Design Methods for Target Plant Models in the Process Industry

Most of the dynamics encountered in the process industry are relatively well modeled
by either an integrating time-delay (ITD) or a first-order time-delay (FOTD) plant
model. A wide variety of PID tuning rules and simple design methods has been
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proposed for these plant models (see [201]). Nevertheless, almost all of them are
developed for some nominal parameters of the plant model. There is no need to say
that a desirable property that makes a method attractive for its use in industry is
its simplicity. Therefore, it is necessary to find a compromise between simplicity and
accuracy. An important issue in designing feedback control systems is to consider the
ignorance about the plant model. In this context, one of the objectives of this thesis is
to develop tuning rules or simple design methods able to account for the uncertainty
of these models.

Design Methods for Nonparametric Plant Models

A very general method to model an uncertain plant is by means of a collection of
frequency response data. For example, any LTI model can be transformed into a
frequency response, and input/output identification experiments deliver a model in
form of a frequency response. There are some methods able to deal with this kind of
models, but almost all of them include some steps that require of user intervention.
This issue may limit the applicability of such methods. A main objective of this thesis
is to devise a PID design method that overcomes this caveat, or at least, one that
requires a minimal user intervention.

Design Methods for Plant Models with Probabilistic Uncertainties

Robust control design methods generally consider a deterministic model of the uncer-
tainty, guaranteeing some specifications for all the possible cases [209]. It is natural
to claim that such approach may be quite conservative, since the occurrence of the
worst-case scenario may be very unlikely. One of the aims of this thesis is to develop
PID design method able to deal with models with a probabilistic parameterization.

Autotuning of PID Controllers

An important milestone in the history of PID control is the development of the relay
autotuning method. A multitude of variants have been presented since its conception.
Unfortunately, the issue of uncertainty, both in identification and synthesis, has not
received much attention. In this context, another objective is to obtain a robust version
of the relay autotuner method. It is considered its application to an industrial in-line
pH control system.
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1.3 List of Publications
Most of the results exposed in this thesis have been published (or submitted) to several
peer-review conferences and journals [177–181, 185, 186, 238, 239]. In this section, we
provide the list of publications:

• Mercader, P., Baños, A., Vilanova, R.: “Robust PID design for processes with
interval parametric uncertainty”. IET Control Theory & Applications, doi:
10.1049/iet-cta.2016.1239, 2017.

• Mercader, P., Baños, A.: “A PI tuning rule for integrating plus dead time processes
with parametric uncertainty”. ISA Transactions, doi: 10.1016/j.isatra.2017.01.025,
2017.

• Soltesz, K., Mercader, P., Baños, A.: “An automatic tuner with short experiment
and probabilistic plant parametrization”. International Journal of Robust and
Nonlinear Control, doi: 10.1002/rnc.3640, 2016.

• Mercader, P., Åström, K. J., Baños, A., Hägglund, T.: “Robust PID design
based on QFT and convex-concave optimization”. IEEE Transactions on Control
Systems Technology, doi: 10.1109/TCST.2016.2562581, 2017.

• Mercader, P., Soltesz, K., Baños, A.: “Autotuning of an in-line pH control
system”, 21st IEEE International Conference on Emerging Technologies and
Factory Automation, Berlin, Germany, 2016.

• Mercader, P., Soltesz, K., Baños, A.: “PID synthesis under probabilistic para-
metric uncertainty”, American Control Conference, Boston, USA, 2016.

• Soltesz, K., Mercader, P.: “Identification for control of biomedical systems using
a very short experiment”, International Conference on Systems in Medicine and
Biology, Kharagpur, India, 2016.

• Mercader, P., Baños, A.: “Robust PI compensator design for FOPDT systems
with large uncertainty”, 14th International Conference on Control, Automation
and Systems, Seoul, Korea, 2014.

• Mercader, P., Baños, A.: “Tuning of PI compensators for integrating systems with
large parametric uncertainty”, 19th IEEE International Conference on Emerging
Technologies and Factory Automation, Barcelona, Spain, 2014.
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Below a list of additional publications, that have been submitted and are currently
under review, is provided:

• Mercader, P., Soltesz, K., Baños, A.: “Robust PID design by chance-constrained
optimization” (Submitted to journal).

• Rubin, D., Mercader, P., Nguyen, H.-N., Gutman, P.-O., Baños, A.: “Improve-
ments on interpolation techniques based on linear programming for constrained
control” (Submitted to conference).

• Mercader, P., Carrasco, J., Baños, A.: “IQC stability analysis of time-delay reset
control systems” (Submitted to journal).

Finally, a list of publications obtained during the PhD studies of the author [182–
184], whose results are not presented in the thesis, is given:

• Mercader, P., Davó, M. A., Baños, A.: “Performance analysis of PI and PI+CI
compensation for an IPDT process”, 23rd Mediterranean Conference on Control
and Automation, Torremolinos, Spain, 2015.

• Mercader, P., Carrasco, J., Baños, A.: “IQC Analysis for time-delay reset control
systems with first order reset elements”, 52nd IEEE Conference on Decision and
Control, Florence, Italy, 2013.

• Mercader, P., Davó, M. A., Baños, A.: “H∞/H2 analysis for time-delay reset
control systems”, 3rd International Conference on Systems and Control, Algiers,
Algeria, 2013.

1.4 Overview of Contents
This thesis is organized as follows:

• Chapter 2 is devoted to provide a background in feedback control. After a general
introduction, QFT and PID control are treated with more detail.

• Chapter 3 tackles the problem of designing a PI controller for an ITD plant
model, in presence of interval parametric uncertainty. The design is based on
optimization of load disturbance rejection with constraints on the magnitude of
the sensitivity and complementary sensitivity functions, but instead of solving
this problem with a brute force approach (grid the uncertainty set), we prove
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that this problem can be solved by considering only two plants. That lets us to
obtain a tuning rule after using some approximations. The proposed tuning rule
is applied to some examples.

• Chapter 4 studies the design of PID controllers, with a second-order measurement
filter, for FOTD plant models containing interval parametric uncertainty. The
control design problem is posed as an optimization problem where performance
is maximized subject to some stability margins over a family of transfer func-
tions. We derive conditions that allow to obtain a solution to the resulting
robust optimization problem by solving a nominal optimization problem. This
simplification is made by introducing an instrumental fractional-order plant that
characterizes the uncertain (interval) process and stating certain conditions over
the fractional-order loop transfer function. The design approach is also applied
to a Smith-Predictor (SP) based Dead-Time Compensator (DTC).

• Chapter 5 presents an automatic loop shaping (ALS) method for designing
PID controllers. Criteria for load disturbance attenuation, measurement noise
injection, set-point response, and robustness to plant uncertainty are given.
One criterion is chosen to be optimized with the remaining ones as constraints.
Two cases are considered: M-constrained integral gain optimization (MIGO)
and minimization of the cost of feedback according to QFT. Optimization is
performed using the convex-concave procedure (CCP). The method, that relies
on solving a sequence of convex optimization problems, converges to a local
minimum or a saddle point. The proposed method is illustrated by examples.

• Chapter 6 presents a method for synthesizing PID controllers for process models
with probabilistic parametric uncertainty. The proposed method constitutes a
stochastic extension to the well-studied MIGO approach. The underlying optim-
ization problem is solved using a gradient-based algorithm once the stochastic
objective and constraints have been approximated by deterministic ones. The
approximated solution is then probabilistically verified using RAs. The proposed
method is demonstrated through several realistic synthesis examples.

• Chapter 7 presents a novel autotuning procedure and its application to an
industrial in-line pH control system. The procedure has three advantages over
classical relay autotuners: experiment duration is very short (no need for limit-
cycle convergence); all data is used for identification (instead of only peaks and
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switch instances); a parameter uncertainty model is identified and utilized for
robust controller synthesis.

• Chapter 8 summarizes the contributions of the thesis and presents some potential
future works.



Chapter 2

Background

This chapter provides a general introduction to some concepts that will be used throught
this thesis. Firstly, an overview of feedback control is given. After that, QFT and PID
control are presented. These two topics are extensively used throughout this thesis.

2.1 Overview of Feedback Control
This section presents fundamental concepts of feedback control, such as closed-loop
stability, relative stability, performance, trade-offs, and limitations of feedback control
systems. These issues will be developed in the following sections. A deeper treatment
of them can be found in [21, 101, 228].

2.1.1 Closed-Loop Stability

As it has been already mentioned in the first chapter, closed-loop stability is a crucial
issue in a feedback control system. The reason is that feedback may cause instability
when applied to any practical plant. We say that a system is stable if any bounded
input produces a bounded output for all bounded initial conditions. That implies that
the poles a transfer function representing an LTI model have to be in the open left
half plane (OLHP) of the complex plane [101]. The next theorem states a stability
condition of a closed-loop transfer function in terms of the loop transfer function.

Theorem 2.1 (Nyquist Criterion). Consider a closed-loop system with the loop transfer
function L(s) having P poles in the region enclosed by the Nyquist contour, this contour
consists of the imaginary axis and a semicircle of arbitrary large radius in the right
half-plane (RHP). Let N be the net number of clockwise encirclements of −1 by L(s)
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when s encircles the Nyquist contour Γ in the clockwise direction. The closed-loop
system then has Z = N + P poles in the RHP.

The image of L(s) under the Nyquist contour, that is known as Nyquist plot, is
usually reduced to the image of L(s) under the positive imaginary axis, since the
contour at infinity maps to 0 in the case of strictly proper transfer function1 and
the plot corresponding to the negative imaginary axis is the mirror of its positive
counterpart.

This stability criterion has some great advantages. Some methods to analyze the
stability of a closed-loop system, as by means of Lyapunov functions, only provides
whether the system is stable or not. This criterion also provides information on how the
controller has to be modified in order to obtain a stable closed-loop system, or a system
with a desired stability margin, that is a measure of how close is the Nyquist plot to
the critical point. More precisely, it makes possible to perform a loop shaping of the
loop transfer function to obtain a closed-loop system with some desired characteristics.

The presence of a delay element in the feedback loop is very common in control
practice, in these cases neither the latter criterion nor the Hurwitz stability criterion
are applicable, both criteria assume that the plant is described by rational transfer
functions. A popular method in these cases is to approximate the delay element by a
rational approximation, but it is well-known that this approximation may lead to wrong
conclusions [230]. Fortunately, the Nyquist criterion is also extendable to transfer
function with time delay by means of the generalized Nyquist criterion developed by
Yakov Tsypkin in 19462, that extends the Nyquist criterion to systems with time delay.

The Nyquist criterion can be reformulated in the Nichols plane instead of the
complex plane. The Nichols plane displays gain in decibel (dB), i.e. 20 log10 | · |, versus
phase in radian (rad)3. The reformulation of the Nyquist criterion in the Nichols plane
is based on the fact that counting the number of encirclements in the complex plane
can be done by counting crossings instead of encirclements [253]. By defining a ray
Rp

0 = (−∞, −1), a crossing occurs when the Nyquist plot intersects the ray Rp
0. The

crossing is positive if the direction of the plot is upward, and negative otherwise, see
Figure 2.1. This reformulation in the Nichols plane is done by counting the net number
of crossings of the Nichols plot [65], that is the Nyquist plot represented in the Nichols

1A transfer function where the degree of the numerator is less than the degree of the denominator.
2The original article was published in Russian, but a translation to English is included in the

compilation of articles [248].
3The use of the degree as unit of the phase (angle) is more common in the control literature, but

the author prefers to use the radian. It is the standard unit of angular measure.
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Figure 2.1 Crossing in the complex plane (left) and Nichols plane (right)

plane, with the family of rays

Rk
0 =

{
[ϕ r]⊤ : ϕ = (2k + 1)π rad, r > 0 dB, k ∈ Z

}
, (2.1)

with the left direction being positive and right direction being negative, see Figure 2.1.
As we have already commented, it is common to use only half of the Nyquist plot due
to symmetry properties (only nonnegative frequencies are considered). In such cases,
each crossing of the half plot has to be counted twice. Special attention is required for
crossings corresponding to ω = 0 and infinite gain of the loop transfer function [95].

Example 2.1. This example aims to illustrate the convenience of using the Nyquist
criterion in the Nichols plane instead of using it in the complex plane. Let us consider
the following loop transfer function:

L(s) = 150(1 + 0.94s + (0.67s)2)(1 − 0.14s + (0.1s)2)
s(1 + 4s)2(1 + 0.01s + (0.02s)2) e−0.01s. (2.2)

This loop transfer function has no RHP poles, therefore the closed-loop system will be
stable if net number of encirclements of −1 by the Nyquist plot is zero, or equivalently,
if the net number of crossings of the Nichols plot with the family of rays Rk

0 is zero.
Figure 2.2 shows the Nyquist plot (top) and the Nichols plot (bottom). The dashed line
in the Nyquist plot corresponds to negative frequencies. On the other hand, the solid
line in Nyquist and Nichols plots corresponds to nonnegative frequencies. Note that to
perform a stability analysis using the Nyquist plot it is necessary to explore in different
scales and the counting of encirclements may be messy. The counting of crossing is
more clear, but it is also necessary to explore in different scales. Whereas, the situation
is more clear when the Nichols plot is used. In this case, the closed-loop system is
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Figure 2.2 Nyquist plot (top) and Nichols plot (bottom) (Example 2.1)

stable, but we can easily deduce from the Nichols plot that small modifications of the
gain of the loop transfer function may induce instability.

Besides the absence of RHP zeros in the transfer function 1 + L(s), there are more
points that deserve attention when considering closed-loop stability. The presence of
pole-zero cancellations in the closed RHP between P (s) and C(s) leads to unstable
behaviors. This fact motivates the notion of internal stability, a feedback system is
said to be internally stable if each of the transfer functions T (s), S(s), P (s)S(s), and
C(s)S(s) are stable. Here, we are assuming that F (s) is stable, otherwise the feedback
system would be unstable. The following theorem can be found, e.g., in [79, 101].

Theorem 2.2. A feedback control system is internally stable if and only if

• The transfer function 1 + L(s) has no RHP zeros.

• There are no pole-zero cancellations in the closed RHP between P (s) and C(s).

Finally, a major limitation of the Nyquist criterion is that it is only applicable to
LTI systems. An approximated extension exists in the case of feedback systems formed
by a linear system and a static nonlinearity, that is known as describing function
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analysis [99, 252]. It is based on considering the first harmonic of the output of the
nonlinearity, neglecting the higher harmonics when the input of the nonlinearity is a
sinusoidal signal; this analysis assumes a low-pass behavior of the linear system. The
errors introduced by the approximation can be bounded for the case of slope-bounded
single-valued nonlinearities [175].

2.1.2 Relative Stability

First of all, when designing a feedback controller, it is of utmost importance to guarantee
closed-loop stability. While feedback controllers with sufficiently high gain immunize
the closed-loop system against plant model uncertainties and unknown disturbances,
these controllers have a destabilizing effect on any practical plant. However, plain
stability is not sufficient, e.g. a stable closed-loop system may have a quasi-infinite
settling time or a small variation in a parameter may lead to instability. Therefore, it
is essential to consider any stability margin. They indicate how close the Nyquist plot
is to the critical point −1. Classical stability margins are the gain and phase margins,
which indicate how much gain can be added and how much phase can be subtracted,
respectively, to the loop transfer function without the closed-loop system becoming
unstable. They are introduced as follows.

Gain and phase margins. Let us denote by phase crossover frequency ωpc the
frequency where the phase lag of the loop transfer function L(s) is equal to π rad, then
the gain margin gm is given by

gm = 1
|L(jωpc)|

. (2.3)

On the other hand, let us denote by gain crossover frequency ωgc the frequency where
the loop transfer function L(s) has unit magnitude, then the phase margin φm is
expressed as

φm = π + arg L(jωgc). (2.4)

Sensible values for the gain and phase margins are in the intervals 6 − 14 dB (or 2 − 5)
and 0.5 − 1 rad (or 30 − 60 degrees), respectively [19]. Figure 2.3 shows the gain and
phase margins for a certain system in the complex plane and Nichols plane, note that
they are easily calculable in the Nichols plane. These margins have been defined for
the case when the Nyquist plot only intersects the unit circle and the negative real
axis once, for multiple intersections (i.e. loop transfer functions with several phase
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Figure 2.3 Classical stability margins
Gain margin gm and phase margin φm in the complex plane (left) and Nichols plane (right).

crossover and/or gain crossover frequencies) it is necessary to consider the closest to
the critical point.

These classical measures of robustness do not capture what happens if the gain and
phase vary simultaneously. Stronger stability margins, that capture this behavior, are
the maximum of the sensitivity and complementary sensitivity, they are defined below.

Sensitivity. The value of |S(jω)|−1 = |1 + L(jω)| is equal to the distance from the
point on the Nyquist curve (corresponding to frequency ω) to the critical point −1.
Then, the maximum of the sensitivity (i.e. ∥S∥∞) is equal to the inverse of the smallest
distance to the critical point. Desirable values for ∥S∥∞ are in the range 1.2 − 2 (as
indicated in the reference [19]). Constraints on the magnitude of the sensitivity transfer
function have a graphical interpretation in the complex plane, they are represented by
circles centered in −1 and radius equal to δ−1, where δ is the value of the constraint,
i.e. ∥S∥∞ ≤ δ. These circles are mapped into the Nichols plane as closed regions,
that contain the critical point for values greater than 1 (or 0 dB). These circles in the
complex plane (or closed regions in the Nichols plane) impose forbidden regions to the
Nyquist plot (or Nichols plot). They are called inverse M-circles, where M is a positive
real number indicating the value of the specification. In the Nichols plane, they are
distorted into noncircular shapes.

Figure 2.4 shows these regions in the complex plane (left) and Nichols plane (right)
for the values 1, 1.26, and 2; or equivalently 0, 2, and 6 dB. Furthermore, a constraint
over the peak of the sensitivity function magnitude also guarantees closed-loop stability
in presence of a static nonlinearity f in the loop satisfying [19] the following condition

∥S∥∞
∥S∥∞ + 1 <

f(α)
α

<
∥S∥∞

∥S∥∞ − 1 . (2.5)
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Figure 2.4 Inverse M-circles in the complex plane and Nichols plane
Constraints over the magnitude of the sensitivity in the complex plane (left) and Nichols
plane (right).

A reasonable assumption is that actuator nonlinearities may be modeled by a static
nonlinearity confined to a conic sector4.

Complementary sensitivity. The complementary sensitivity as robustness measure
indicates how large additive uncertainty can be added to the plant before losing stability.
If the plant model changes from P (s) to P (s) + ∆P (s) being ∆P (s) stable, a condition
for stability is ∣∣∣∣∣∆P (jω)

P (jω)

∣∣∣∣∣ <

∣∣∣∣∣ 1
T (jω)

∣∣∣∣∣ , ∀ω ≥ 0. (2.6)

Then, ∥T∥∞ is clearly another robustness measure, whose desirable values are in the
same range as ∥S∥∞.

Constraints on the maximum peak of magnitude of the complementary sensitivity
transfer function also have a graphical interpretation in the complex plane, they are
represented by circles of center

− δ2

δ2 − 1 , (2.7)

and radius equal to
δ

δ2 − 1 , (2.8)

being δ > 1 the value of the constraint, i.e. ∥T∥∞ ≤ δ. In the Nichols plane, these
circles are mapped to closed regions, that contain the critical point. For a value δ = 1,
the forbidden region in the complex plane is a semiplane containing the critical point,
that is defined by the vertical line across −0.5 (see Figure 2.5 (left)). These constraints
are displayed in Figure 2.5, both in the complex plane (left) and Nichols plane (right)

4More general nonlinear plants can be treated in the framework of QFT by means of the Schauder
fixed point theorem [31].
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Figure 2.5 M-circles in the complex plane and Nichols plane
Constraints over the magnitude of the complementary sensitivity in the complex plane (left)
and Nichols plane (right).

for the values 1, 1.26, and 2; or equivalently 0, 2, and 6 dB. Observe that the loci of
constant |T | in the Nichols plane are symmetric with respect to the horizontal line
defined by 0 dB to the corresponding to the loci of constant |S|, that were displayed in
Figure 2.4. Similarly to the previous regions, they are known as M-circles.

2.1.3 Performance of Feedback Control Systems

After guaranteeing closed-loop stability with pre-specified stability margins, the follow-
ing step is to consider the performance of the control system. In terms of performance,
the feedback controller is in charge for reducing the effect of load disturbances and
plant model uncertainty, while feeding a limited or a minimum amount of measurement
noise into the plant.

Reducing the Effect of Load Disturbances

The effect of load disturbances acting on the input or output of the plant can be
determined by the sensitivity function S(s). Let us consider a disturbance d(t) = d0e

jωt.
Then, the steady-state response of the plant output y is given by

yss(t) = P (jω)S(jω)d0e
jωt (2.9)

for the case of a disturbance entering at the plant input. On the other hand, for a
disturbance entering at the plant output5, the steady-state response of the plant output

5This case was not considered before in equations (1.1)–(1.2), but it can be easily taken into
account using the same arguments as in the other case.
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y is given by
yss(t) = S(jω)d0e

jωt. (2.10)

Therefore, the effect of disturbances may be reduced by requiring |P (jω)S(jω)| ≪ 1
and/or |S(jω)| ≪ 1 over a range of frequencies representative of the disturbances.

Reducing the Effect Due to Plant Model Uncertainty

The sensitivity function quantifies the effect that small changes with respect to the
plant model cause in the closed-loop transfer function from the reference signal to the
plant output, i.e. T (s). This is illustrated as follows:

dT (s)
dP (s) = C(s)

(1 + P (s)C(s))2 = T (s)S(s)
P (s) , (2.11)

this equation can be rearranged as

dT (s)
T (s) = S(s)dP (s)

P (s) . (2.12)

The latter equation applies only for small changes of P (s). Horowitz extended it to
finite changes in [125]. Let us consider the nominal transfer functions T0(s) and P0(s),
and their perturbed counterparts defined as follows:

Tp(s) = T0(s) + ∆T (s),
Pp(s) = P0(s) + ∆P (s).

(2.13)

Then, the Horowitz sensitivity function [167] is defined as:

SH(s) = ∆T (s)/Tf (s)
∆P (s)/Pf (s) = 1

1 + P0(s)C(s) . (2.14)

Therefore, the response of the control system is hardly influenced by variations with
respect to the plant model in the range of frequencies where the magnitude of the
sensitivity function is very small.

Reducing the Effect Due to Measurement Noise

The effect of measurement noise on the plant output is determined by the complementary
sensitivity function T (s). Consider a noise signal n(t) = n0e

jωt. Then, the steady-state
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response of the plant output y due to this signal is given by

yss(t) = −T (jω)n0e
jωt. (2.15)

On the other hand, the steady-state response of the controller output u due to the
same signal is given by

uss(t) = −C(jω)S(jω)n0e
jωt. (2.16)

Therefore, the effect of measurement noise on the plant output may be reduced by
requiring |T (jω)| ≪ 1, or in the case of the effect on the controller input by imposing
|C(jω)S(jω)| ≪ 1. Note that this requirement implies a trade-off between achieving
good performance and reducing the effect of measurement noise. Since the first
two specifications require a controller with sufficiently high gain, while the latter
specification demands one with low gain. This results in an unavoidable trade-off.

Performance Specifications in the Nichols Plane

Performance specifications can be thus stated in terms of upper bounds on the mag-
nitude of the sensitivity and the complementary sensitivity transfer functions for a given
range of frequencies. This kind of specifications has been presented as stability margins,
but the same idea is used to specify a desired level of performance. There are some
differences with respect to their use as stability margins. Performance specifications
may be stated as upper bounds with values less than 1 (or 0 dB). When they act like
stability margins, the value of the specifications is restricted to be greater than or
equal to 1 (or 0 dB) (these values lead to regions that protect in some way the critical
point). In addition, the value of the upper bound is usually given as function of the
frequency (or even, it may be given for a finite range of frequencies), instead of being a
constant value for all nonnegative frequencies.

Now, we are going to consider specifications in terms of an upper bound of the
magnitude of the sensitivity and the complementary sensitivity for a given frequency
and an arbitrary nonnegative value. That generalizes the presentation done for this
class of specifications when introducing stability margins in Section 2.1.2. Let us firstly
consider the specification |S(jω)| ≤ δ, this specification is translated to the complex
plane as circles centered at −1 (critical point) and with radius δ−1. That is easily
proved by considering L(jω) = x + jy, then we can obtain contours of constant values
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Figure 2.6 Curves of constant values of |S| in the Nichols plane

of |S(jω)| = |(1 + L(jω))−1| = δ as

((x + 1)2 + y2) = δ−2. (2.17)

These circles impose forbidden regions to the loop transfer function at the considered
frequency. When they are translated to the Nichols plane, the three following cases are
possible:

• The curves for δ > 1 are closed curves that enclose the critical point, i.e. −π rad
and 0 dB, and are contained in a range of phases that expands from −3π/2 to
−π/2 rad.

• The curve for δ = 1 is an asymptotic curve to −3π/2 and −π/2 rad.

• The curves for δ < 1 are open curves that impose a minimum amount of gain of
the loop transfer function for each possible value of the phase.

Figure 2.6 shows some curves of constant values of |S|. These curves, that are symmetric
about the vertical line at −π rad, are repeated every 2π rad. This kind of diagram is
known as inverse Nichols chart.

On the other hand, the specification |T (jω)| ≤ δ is also translated to the complex
plane as circles of center

− δ2

δ2 − 1 , (2.18)
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Figure 2.7 Curves of constant values of |T | in the Nichols plane

and radius equal to
δ

|δ2 − 1| , (2.19)

when δ ≠ 1, and a semiplane containing the critical point, whose boundary is a vertical
line at −0.5 in the case of δ = 1. Let us consider as before L(jω) = x + jy, then we
can obtain contours of constant values of |T (jω)| = |L(jω)(1 + L(jω))−1| = δ as

δ2((x + 1)2 + y2) = x2 + y2, (2.20)

after factoring, this becomes

1 − δ2

δ2 x2 − 2x + 1 − δ2

δ2 y2 = 1. (2.21)

After straightforward manipulations, it is easy to see that this condition corresponds
to the circles given before, when δ ≠ 1, and a straight line when δ = 1. In the Nichols
plane these curves of constant values of |T (jω)| may be obtained by taking the mirror
image of the curves of constant values for |S(jω)| with respect to the line corresponding
to 0 dB, this is due to the fact that S(jω) + T (jω) = 1. Figure 2.7 displays some
curves of constant values of |T |. Similarly to the previous one, this kind of diagram is
known as Nichols chart. The same treatment done for the loci of constant magnitude
of S and T could also be done for the loci of constant phase of S and T .

Under the assumption that references and load disturbances have low-frequency
content and measurement noise has high-frequency content, these objectives may
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be achieved by designing the loop transfer function, with adequate gain at different
frequency ranges. Bode’s gain-phase relation states that the phase lag of any minimum-
phase (MP) system is approximately equal to nπ/2 rad, where n is the slope of the
Bode plot of L(jω), i.e. d log |L(jω)|/d log ω. (Nonminimum phase (NMP) systems
exhibit additional phase lag to the imposed by the latter relation.) This relation implies
that an arbitrary fast transition from a range of frequencies where |L(jω)| is sufficiently
high to another where |L(jω)| is sufficiently low cannot be achieved, due to the great
amount of phase lag that it would imply.

We can identify three frequency ranges [29, 42, 125, 167], where the feedback
controller has different roles:

• Low frequencies where |L(jω)| ≫ 1. The role of the feedback controller in
this frequency range is to achieve good performance in terms of attenuation
of disturbances and changes in the closed-loop due to plant model uncertainty.
Therefore, a controller that achieves sufficiently high gain is desired.

• Intermediate frequencies where |L(jω)| ≈ 1. In this intermediate frequency
range, the feedback controller has to provide adequate stability margins. At
this frequency range the gain of the loop transfer function has to decrease,
but maintaining adequate stability margin. The existing relation between gain
and phase for MP transfer function imposes a certain amount of phase lag per
decrement on the gain. Too much phase lag would destabilize the closed-loop
system.

• High frequencies where |L(jω)| ≪ 1. At high frequencies, the main objective is
to attenuate measurement noise. Therefore, a controller that achieves sufficiently
low gain is desired. At high frequencies, the benefits of feedback are negligible.

Figure 2.8 shows a usual loop transfer function where the roles of the feedback controller
at different frequency ranges are indicated.

2.1.4 Trade-Offs in Control Design

Performance versus Cost of Feedback

A control design approach based on plant inversion is ideally feasible for MP plants,
those without RHP poles and zeros and time delay. Then, practically any desired
performance specification in terms of disturbance attenuation and changes in the
closed-loop behavior due to plan model uncertainty is achievable when the controller
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Figure 2.8 Roles of feedback controllers at different frequency ranges

contains an inverse model of the plant, a sufficiently high gain and/or an integrator,
and possibly some far poles to ensure realizability. This approach generally leads to
controllers with too high bandwidth and neglects specifications about limiting the
effect of measurement noise. Most of the cases this design is not realistic and does not
care about important drawbacks that arise when the gain of the controller is too large
over a wide range of frequencies, for example:

• Sensor noise and disturbances at the plant input may generate control output
too large, under these circumstances, there is an instability risk due to actuator
saturation.

• Controller output may be too sensitive to sensor noise, leading to expensive wear
of actuators.

• There are always unmodeled dynamics at sufficiently high frequencies, at these
frequencies the gain of the controller must be low enough.

These drawbacks are related to the notion of cost of feedback, term coined by Horowitz
[125]. It denotes a range of frequencies where the channel from the measurement noise
to the output of the controller is amplified. Figure 2.9 illustrates this concept, the
frequency of range where the cost of feedback takes place is approximately from the
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Figure 2.9 Cost of feedback

gain crossover frequency of the plant until the gain crossover frequency of the controller,
where the graph of |L(jω)| intersects |P (jω)|.

The trade-off between performance (benefits of feedback) and cost of feedback
(drawbacks of feedback) may be solved in different ways. Two approaches are presented
here:

• Maximization of benefits of feedback. That is achieved by maximizing |L(jω)| (or
minimizing |S(jω)|) at low frequencies, subject to constraints that should limit
|L(jω)| at high frequencies.

• Minimization of drawbacks of feedback. That is achieved by minimizing |L(jω)|
at high frequencies, subject to constraints that impose a desired minimum level
of performance in terms of lower bounds on |L(jω)| (or upper bounds on |S(jω)|)
at low frequencies.

An analog situation occurs in the portfolio optimization theory developed by the
Nobel laureate economist Harry Markowitz [171]. In this approach, the two strategies
that may adopt an investor are to maximize return subject to a given level of risk or
to minimize the level of risk subject to a given level of expected return. This can be
understood as maximization of benefits of inversion and minimization of drawbacks of
inversion, respectively. A brief exposition of the modern portfolio theory of Markovitz
can be found in [53].
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Nonminimum-Phase (NMP) Systems

In addition to the issue of the cost of feedback, the situation is worse for plants containing
RHP poles and zeros and/or time delay, since additional theoretical limitations exist
on the bandwidth of the loop transfer function. RHP zeros and time delay impose
an upper bound on the bandwidth, and RHP poles impose a lower bound on the
bandwidth. The latter may seem more benign, but it implies that a plant cannot
be stabilizable if the actuator has not sufficiently high bandwidth [241]. In addition,
saturation in feedback control systems containing RHP poles may lead to instability.
Some rule of thumbs about these limitations over the gain crossover frequency of the
loop transfer function are given as follows (see [13] for further details):

ωgc < 1/L, imposed by a time delay L,

ωgc < 0.5b, imposed by an RHP zero at s = b,

ωgc > 2a, imposed by an RHP pole at s = a.

(2.22)

These limitations are obtained by assuming Bode’s ideal loop transfer function and
a reasonable value of phase margin. It is worth highlighting that a controller with a
bandwidth that does not satisfy these constraints will necessary exhibit poor stability
margins.

The Nichols plot of NMP loop transfer functions may also provide some insight
into these limitations. Some examples are included below.

Example 2.2. RHP zeros are common in models that have a competing effect of slow
and fast dynamics [234]. Let us consider the following loop transfer function with an
RHP zero:

L(s) = s − 1
s(s + 4) = s + 1

s(s + 4)
s − 1
s + 1 . (2.23)

This transfer function has been factored into two transfer functions, namely an MP
and an NMP with unitary gain. Note that the second transfer function provides a
phase lag equal to π rad at high frequencies, while it is not possible to cancel it. It
clearly imposes a limitation on the gain of the loop transfer function. This situation is
illustrated on the Nichols plane in Figure 2.10 (left). The position of the RHP zero is
very important, since the addition of phase lag takes place about the frequency ω = b

for an RHP zero that is placed at s = b. Time delays impose similar limitations since
they can be approximated by a transfer function containing an RHP zero.
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Figure 2.10 Limitations imposed by an RHP zero (left) and an RHP pole (right)

Example 2.3. This example examines the presence of an RHP pole in the loop transfer
function. Let us consider the following loop transfer function:

L(s) = 5(s + 2)
s(s − 1) = 5(s + 2)

s(s + 1)
s + 1
s − 1 . (2.24)

As in the previous example, the transfer function can be factored into two transfer
functions, an MP and an NMP with gain equal to one. Here, the NMP part provides a
phase lag of π rad at low frequencies, and the phase lag decreases to 0 at a frequency
ω = a for an RHP pole that is placed at s = a. Then, it is necessary a minimum
amount of gain in order to achieve closed-loop stability. This situation is depicted in
Figure 2.10 (right).

2.1.5 Limitations of Feedback Control Systems
Another important point regarding limitations of feedback control6 is the Bode’s
Integral Formula. Control specifications are usually given in form of constraints over
the upper bound of the magnitude of the sensitivity. The question of deciding if a given
specifications is or not attainable has attracted the interest of the control community,
see for example [13, 223, 234]. A seminal result in this topic is the Bode’s sensitivity
integral discovered by Hendrik Wade Bode7, that is presented as follows:

Theorem 2.3 (Bode’s sensitivity integral). Assume that the loop transfer function
L(s) of a feedback system goes to zero faster than 1/s as s → ∞. If the L(s) has

6We comment here limitations of linear and time-invariant feedback systems, but limitations of
nonlinear feedback systems also exist and have been studied, see for example, [224].

7This result is a control systems interpretation done by Horowitz from results obtained by Bode
[223], and it is sometimes referred as Horowitz’s area formula [160].
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Figure 2.11 Nichols plots of L1(s) (left) and L2(s) (right) (Example 2.4)

poles pk in the open right half-plane, then the sensitivity function satisfies the following
integral: ∫ ∞

0
log 1

|1 + L(jω)|dω = π
∑

k

pk. (2.25)

This constraint imposes a limitation on the achievable performance for any practical
control system. The benefits of feedback in terms of small sensitivity for a range of
frequencies is necessarily paid in terms of a range of frequencies where the magnitude
of the sensitivity is higher than 1. It is very illustrative to show the Nichols plots of
different loop transfer functions to see how this constraint affects to each one.

Example 2.4. Let us consider the following loop transfer functions:

L1(s) = 1
s

, L2(s) = 1
s(s + 1) . (2.26)

The constraint (2.25) does not apply to L1(s), but this is not the case of L2(s).
Figure 2.11 shows the Nichols plot of L1(s) (left) and L2(s) (right), in addition, loci of
constant |S| in dB are overlaid for some values (inverse Nichols chart). In the case of
L1(s), it is possible to increase the gain of the loop transfer function reaching lower
values for the sensitivity. On the contrary, if the gain of L2(s) is increased, it will
lead to lower values for the sensitivity at low frequencies, but higher values for the
sensitivity in the vicinity of the critical point [−π 0]⊤. This phenomenon is known as
waterbed effect.

The extension of Theorem 2.3 to stable strictly proper loop transfer functions with
time delay was done in [90], in this case, the constraint holds even in the case of L(s)
that goes to zero equal to 1/s as s → ∞.
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Figure 2.12 Nichols and Bode plots (Example 2.5)
Nichols plot of the loop (left) and Bode plot of the corresponding sensitivity (right) corres-
ponding to L(s) (solid line) and 0.5L(s) (dashed line).

Example 2.5. Let us consider the following loop transfer function with time delay:

L(s) = e−s

s + 0.5 . (2.27)

This example shows how the presence of time delay imposes the constraint (2.25),
even in the case of loop transfer functions that go to zero equal to 1/s as s → ∞.
Figure 2.12 compares the Nichols plot and Bode plot of S(s) for L(s) and 0.5L(s).
While L(s) achieves a higher sensitivity reduction at low frequencies than 0.5L(s), the
peaks of the sensitivity function are also higher. In the time delay case, the sensitivity
function has an infinite number of relative maximums, these correspond to each one of
the critical points that appear every 2π rad.

2.2 QFT Design Method
QFT is a control design method mainly developed by Horowitz and coworkers. The
seminal works are [124, 133] and some tutorial material can be found in [129, 265]. It
is deeply rooted in classical control, extending and generalizing some ideas previously
proposed by Bode. In spite of its flavor of classical control, it has also been extended
to deal with multiple-input-multiple-output (MIMO) [169, 264, 267] and nonlinear
[27, 126, 131] plants.

In the words of Horowitz, QFT addresses “the problem of achieving desired system
tolerances from uncertain plants, at minimum cost of feedback” [130]. While most
of the robust control literature only uses either the gain or the phase information
about the uncertainty of the plant model, QFT uses both gain and phase information
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to describe the model uncertainty and to design the loop transfer function8. These
points allow to obtain controllers with only the necessary bandwidth to cope with the
considered amount of uncertainty, i.e. feedback is employed in a quantitative way.

This technique considers a 2-DOF feedback control structure and aims to design a
prefilter F (s) and a controller C(s), that achieve performance and stability specifications
for an uncertain plant that can be described as a member of a finite or infinite set of
transfer functions

P (s) ∈ P . (2.28)

For a given frequency ω, a template Pω is defined as the set of all frequency responses
values at this frequency. Formally, Pω is defined as

Pω =
{
P (jω) : P (s) ∈ P

}
. (2.29)

2.2.1 QFT Control Specifications

All specifications must be formulated in the frequency domain, and the ones originally
stated in the time domain have to be translated into the frequency domain9. The
following specifications are typically considered in QFT:

• Relative stability and output disturbances attenuation

|S(jω)| =
∣∣∣∣∣ 1
1 + L(jω)

∣∣∣∣∣ ≤ δS(ω), ∀P (jω) ∈ Pω, ∀ω ∈ ΩS. (2.30)

• Relative stability and measurement noise attenuation

|T (jω)| =
∣∣∣∣∣ L(jω)
1 + L(jω)

∣∣∣∣∣ ≤ δT (ω), ∀P (jω) ∈ Pω, ∀ω ∈ ΩT . (2.31)

• Input disturbances attenuation

|P (jω)S(jω)| =
∣∣∣∣∣ P (jω)
1 + L(jω)

∣∣∣∣∣ ≤ δP S(ω), ∀P (jω) ∈ Pω, ∀ω ∈ ΩP S.

(2.32)

8This approach is denoted as loop gain-phase shaping in [25], this work presents a comparison that
shows the superiority of QFT over other alternative robust control techniques based on loop gain
shaping.

9There is no an exact method to translate time-domain specifications into frequency-domain
specifications, but some heuristic relations exist, see [228, 265].
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• Control effort

|C(jω)S(jω)| =
∣∣∣∣∣ C(jω)
1 + L(jω)

∣∣∣∣∣ ≤ δCS(ω), ∀P (jω) ∈ Pω, ∀ω ∈ ΩCS.

(2.33)

• Tracking

δl(ω) ≤ |F (jω)T (jω)| ≤ δu(ω), ∀P (jω) ∈ Pω, ∀ω ∈ ΩF T . (2.34)

A simple manipulation of the latter equation results in the following specification
for the feedback controller C(s):

max
P (jω)∈Pω

20 log10 |T (jω)| − min
P (jω)∈Pω

20 log10 |T (jω)| ≤ 20 log10
δu(ω)
δl(ω) ,

∀ω ∈ ΩF T .

(2.35)

If this specification is satisfied for a controller C(s), then there exists an MP
prefilter F (s) that satisfies (2.34) [128].

The sets Ω•, considered in the previous specifications, may include a finite or infinite
range of frequencies; but in order to obtain a tractable problem, they have to be
discretized for solving the design control problem. The same situation occurs with the
templates Pω. In addition to the presented specifications, alternative specifications
for tracking in terms of tracking error specifications are presented in [85], and more
general specifications, including phase specifications, are considered in [190].

The QFT design procedure involves several steps that will be explained in the
sections ahead.

2.2.2 Generation of Plant Templates
Templates characterize the plant uncertainty by capturing the gain and phase variations
of the plant at a given frequency. They are obtained for some frequencies of interest
and one arbitrary transfer function from P is assigned as the nominal. Figure 2.13
illustrates the template generation by showing the templates of the uncertain plant

P =
{

k

τs + 1 : [k τ ]⊤ ∈ Θ = [1, 5] × [1, 5]
}

, (2.36)

at the frequencies ω = 0.1, 1, 20. Several methods have been proposed in the literature
to the problem of calculation of templates (also known as value set computation):
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• Grid method. This approach consists in gridding equidistantly each parameter
interval. It is straightforward but computationally expensive. This method suffers
from a curse of dimensionality (i.e. the number of points grows exponentially
with respect the number of uncertain parameters).

• Parametric method. The work [26] presents a method to obtain directly the
boundary of the templates, but it assumes that the plant is modeled by rational
transfer functions with independent parameters in the numerator and denomin-
ator. In [24], the previous approach is extended to the case in which numerator
and denominator coefficients are affine functions. The work [92] states conditions
under which to map edges is sufficient to generate the templates.

• Symbolic method. The work [60] assumes a rational transfer function with
numerator and denominator coefficients given as nonlinear functions of uncertain
parameters. This method checks the edges and, possibly, some interior lines that
satisfy certain conditions obtained by symbolic calculations.

• Interval method. The work [192] presents a method applicable to transfer functions
whose magnitude and phase are continuous functions of the uncertain parameters.
It generates templates with a prescribed accuracy level by means of interval
mathematics methods.

• Recursive method. The paper [114] constitutes an extension of the grid method,
where the gridding is adapted locally in order to achieve a prescribed accuracy
level. A Prune algorithm is also presented to find the boundary of the template,
this algorithm is also part of the recursive method.

• Analytic method. The paper [173] presents a method that combines the use of
subtemplates defined by at most two uncertain parameters (analytical functions)
with operations between these subtemplates [112, 213] to compose a template.

2.2.3 Generation of Boundaries

The design specifications are translated into certain boundaries (also known as Horowitz-
Sidi bounds) on the nominal loop transfer function L0(s) = C(s)P0(s). Theses
boundaries can be obtained by moving the plant template between the closed-loop
magnitude contours in the Nichols chart (or the inverse Nichols chart), that is a very
intuitive algorithm to see how QFT works. This procedure is illustrated in Figure 2.14,
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Figure 2.13 Generation of templates
Mapping from the controller parameter space (left) to the Nichols plane (right).

where for a given template (placed in the bottom right corner) corresponding to a
frequency ω = 0.1, are obtained the boundaries for the following specifications:

Robust stability: 20 log10 |T (j0.1)| ≤ 6, ∀P (j0.1) ∈ P0.1.

Robust tracking: max
P (j0.1)∈P0.1

20 log10 |T (j0.1)| − min
P (j0.1)∈P0.1

20 log10 |T (j0.1)| ≤ 0.5.

(2.37)
The boundary for the first specification is obtained by sliding the rotated (by π rad)
template in such a way that the nominal plant coincides with the corresponding M-circle
in the Nichols chart. The nominal plant is marked with a circle, it is placed in the
upper left part of the template (it is arbitrarily chosen). The boundary for the second
specification is obtained (for each controller phase) by moving vertically the template
until the specification is satisfied, note that if the controller gain is large enough the
specification is met. The procedure to obtain the boundary in both cases is illustrated
in Figure 2.14. Boundaries for other specifications can be obtained by following the
same procedure.

The boundary calculation has been sketched by using graphical manipulations of
the templates, but this task can be done automatically by using computer algorithms.
A computer algorithm proposed by Horowitz [128] performs a line search along constant
phase grid lines in the Nichols plane, similarly to the procedure presented before for
the second specification. A method based on solving quadratic inequalities is proposed
in [59]. These methods do not obtain the correct bounds in cases where the bound
takes more than two values for a given phase, this phenomenon was firstly described
in [26]. A method based on level sets able to compute multivalued boundaries was
independently proposed in [114, 189]. More recently, another method able to obtain
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Figure 2.14 Generation of boundaries over the Nichols Chart

multivalued boundaries has been presented in [263], it combines a procedure to test
whether a complex point lies in a bound and a pivoting algorithm.

2.2.4 Loop Shaping

The previous stage transforms the simultaneous design problem into a problem for
a nominal plant with some extra constraints that account for plant uncertainty and
desired specifications. Therefore, a nominal loop transfer function should be designed.
That is carried out by adding poles and zeros, in order to obtain a stable nominal closed
loop satisfying all specifications imposed by boundaries in the Nichols plane. According
to QFT, an optimum loop transfer function is one that satisfies all specifications and its
gain decreases as rapidly as possible with frequency to keep the controller bandwidth
as low as possible.

Traditionally, the synthesis of QFT controllers has been performed by hand, although
this may be a problem for the novel user, this technique offers direct insight into the
quantitative trade-off between specifications, controller bandwidth, and controller
complexity. Many software packages are available to assist the designer in this steps
[46, 74, 96, 110, 134]. In addition, many automatic loop shaping methods have been
proposed in the literature. This started with the seminal work of Gera and Horowitz
[100]. This work was followed by a multitude of approaches, based on analytic
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methods [247], genetic algorithms [61], linear programming [58], interval analysis
[193], evolutionary algorithms [56], combined feedforward-feedback design [212], and
optimization algorithms [281], among others.

Coming back to the example that we are presenting in this section, let us consider
the following specifications:

Robust stability: 20 log10 |T (jω)| ≤ δ1(ω), ∀P (jω) ∈ Pω,

Robust tracking: max
P (jω)∈Pω

20 log10 |T (jω)| − min
P (jω)∈Pω

20 log10 |T (jω)| ≤ δ2(ω),
(2.38)

where δ1(0.1) = δ1(1) = δ1(20) = 6 dB and δ2(0.1) = 0.5 dB, δ2(1) = 2 dB, and
δ2(20) = ∞ dB. (Due to the presence of 20 log10 | · |, δ1 and δ2 are expressed in dB.)
Figure 2.15 shows the forbidden regions (blue) in the Nichols plane for the designed
nominal loop transfer function at each one of the design frequencies. Now, we consider
the following controller

C(s) = 0.326s2 + 5.770s + 1
0.0125s3 + 0.525s2 + s

, (2.39)

that satisfies the constraints imposed in (2.38). The resulting nominal loop transfer
function joint with the Horowitz-Sidi bounds are shown in Figure 2.16.

2.2.5 Design of Prefilter

After designing the feedback compensator C(s), it is necessary to design a prefilter to
bring the response within the upper and lower tolerance, δl(ω) and δu(ω). The task of
designing is relatively easy, the role of the prefilter is only to move the magnitude of
transfer function T vertically on a Bode plot. Therefore, if the feedback controller has
been designed to cope with the uncertainty, it is possible to design a prefilter that will
be able to meet the specification (2.34) [128, 265].

2.3 PID Control

As it was mention in the first chapter, PID control is the most used form of feedback.
A PID controller is able to provide a satisfactory design, taking into account the three
requisites typically required to a feedback controller when the demanded specifications
are not too high:
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Figure 2.15 Boundaries in the Nichols plane
Boundaries (or Horowitz-Sidi bounds) corresponding to the specifications (2.38) for the
frequencies: ω = 0.1 rad/s (top), ω = 1 rad/s (middle), and ω = 20 rad/s (bottom).



2.3 PID Control 45

−2π −3π/2 −π −π/2 0−40

−20

0

20

40

Phase, rad

G
ai

n,
dB

ω = 0.1 rad/s
ω = 1 rad/s
ω = 20 rad/s

Figure 2.16 Example of feasible loop transfer function
Nominal loop transfer function satisfying the design specifications (2.38).

• Reduction of the effect of load disturbances and plant model uncertainty. A PID
is able to achieve very high gain at low frequencies due to the presence of an
integrator.

• Guaranteeing closed-loop stability with a prescribed stability margins. The possibly
two zeros of the PID provide phase lead necessary to guarantee adequate stability
margins.

• Feeding a limited or minimum amount of measurement noise to the plant. The
measurement filter is in charge of limiting the undesirable effects of measurement
noise.

The choice of a PID controller naturally imposes constraints on the structure of transfer
functions to be designed for the feedback controller and the prefilter, implying that
they are defined by the equations (1.6) and (1.11), respectively.

2.3.1 PID in the Controller Parameter Space
An advantage of using a controller with a fixed structure is that the controller parameter
space approach may be used [1, 39]. This is a graphics-oriented approach, whose main
caveat is that it is limited to a few controller parameters (less than 3), but it offers
figures that provide very valuable insights. Different properties are usually displayed in
the controller parameter space such as stability regions and region where performance
specifications are met.
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Stability in the Controller Parameter Space

A primary concern of a feedback controller is to guarantee closed-loop stability, since
feedback control may induce instability. The study of the set of controller parameters
that provides closed-loop stability has received considerable attention [107], and in
particular for the case of a PID controller [123, 219, 225]. The approach consists
on constructing a boundary of the stability domain by performing a mapping of the
characteristic equation from the imaginary axis into the controller parameter space.
This is performed by obtaining the controller parameters that satisfy the following
equation for each frequency

1 + L(jω) = 0, −∞ ≤ ω ≤ ∞, (2.40)

This idea traces back at least to Vishnegradsky [257], he used that to study the
stability regions of the Watt’s governor for the steam engine. This technique, known
as D-partition, was mainly developed by Neimark in the Russian literature and by
Mitrovic and Siljak in the Western literature [107]. At the early 1980’s, Ackermann
extended it to the design of robust controllers [1].

Let us consider a plant model defined by a transfer function with time delay P (s),
without zeros on the imaginary axis. On the other hand, we consider a PID controller
that is given by

C(s) = kp + ki

s
+ kds. (2.41)

Let us assume that the corresponding loop transfer function is a strictly proper transfer
function with time delay. Then, equation (2.40) takes the form

1 + P (jω)
(

kp − j ki
ω + jkdω

)
= 0, 0 ≤ ω ≤ ∞. (2.42)

By symmetric properties, it is only necessary to explore the range of frequencies
0 ≤ ω ≤ ∞. The mapping from (2.42) to the kp − ki plane with kd fixed has
nonsingular (0 < ω < ∞) and singular (ω = 0 or ω = ∞) boundaries [225]. From
equation (2.42), the nonsingular boundary is given by

kp = −ℜ(P (jω))
|P (jω)|2

,

ki = ω2kd − ω
ℑ(P (jω))
|P (jω)|2

,

(2.43)
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and the singular boundary for ω = 0 is given by

kiP (0) = 0, (2.44)

in the case of P (0) ̸= 0 the singular boundary for ω = 0 is ki = 0. For ω = ∞, equation
(2.42) has no solution for a loop transfer function that is given by a strictly proper
transfer function with time delay. In addition, note that for ki = 0 there is a drop in
the degree of the numerator of C(s), therefore there is a spurious solution, although
this line separates regions with different number of stable roots, the parameters placed
over this line do not correspond necessarily to closed-loop systems with a pole in the
imaginary axis.

The same procedure may be performed for a PID respect to any two selected para-
meters while the third parameter remains constant. The equations of the corresponding
curves can be consulted, for example, in [219, 225]. In the case of a PID endowed with
a measurement filter, it may be included in the plant in equation (2.42).

This procedure obtains a division of the controller parameter space into root
invariant regions. The nonsingular boundary separates the regions with ±2 difference
in the number of stable roots and singular boundaries separate the regions with ±1
difference in the number of stable roots [219]. The paper [219] provides results that
allow to calculate the number of unstable poles for each region from the number of
unstable poles in one of the regions. It allows to obtain the stabilizing region without
testing the number of unstable poles in each region.

Example 2.6. This example pretends to illustrate the concept of D-partition using
the plant model

P (s) = 1
(s + 1)3 , (2.45)

and a PI controller
C(s) = kp + ki

s
. (2.46)

Figure 2.17 shows the D-partition for this closed-loop system composed by the previous
plant and controller, the number of unstable closed-loop poles of each region is also
given. In this case, the singular boundary is the horizontal line ki = 0 and the
nonsingular boundary corresponds to the curve starting at kp = −1 and ki = 0. In
addition, Figure 2.18 shows the closed-loop poles corresponding to different controllers,
that are placed in different regions of the D-partition.
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Figure 2.17 D-partition (Example 2.6)
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Figure 2.19 D-partition (Example 2.7)

Example 2.7. This example examines the D-partition for a plant with time delay.
Let us consider as plant model

P (s) = e−s

(s + 0.5) , (2.47)

and a PI controller, as in the previous example. The resulting characteristic equation
of this system is a transcendental equation (in this case, it contains the exponential
function), due to the presence of time delay. This term leads to an infinite number of
roots of the characteristic equation. Therefore, it is expected to have regions with an
arbitrarily large number of unstable closed-loop poles. The (truncated) D-partition
for the considered system is shown in Figure 2.19. In this example, the nonsingular
boundary takes the form of a spiral, then each time that it crosses the singular boundary,
i.e. ki = 0, a region with an additional unstable pole is generated.

The previous procedure allows to obtain the stability region in the controller
parameter space. Figure 2.20 shows some examples of stability regions, where the
controller is a PI as the one used in the previous examples. In the left figure, the
stabilizing set considering an FOTD plant is shown for different pole values. Note that
for a stable plant, the zero controller is included in the stability region. The stability
region of an unstable process does not include the zero, in theses cases, a controller with
a minimum bandwidth is needed (recall limitations imposed by NMP elements over the



50 Chapter 2. Background

−1 0 1 20

0.5

1
e−s

s+0.5
e−s

s

e−s

s−0.5

kp

k
i

0 10 200

60

120 1
s+1

e−0.1s

s+1

e−0.2s

s+1

kp

k
i

Figure 2.20 Stability regions in the kp − ki plane
Plants modeled by an FOTD with different pole values (left) and different time delay values
(right).

bandwidth). The right figure shows the stabilizing sets for a time-delay plant as the
time delay varies. Note that for the delay-free case the stabilizing region is unbounded,
arbitrarily large bandwidth of L(jω) are achievable. However, the situation changes
for the processes with time delay (recall again limitations imposed by NMP elements).
It is worth to note that these limitations are more stringent when a given controller
structure is used. As a matter of fact, the use of a given controller structure generally
implies limitations that may be circumvented by using a higher-order controller.

Relative Stability and Performance in the Controller Parameter Space

The next step in the process of designing a feedback controller is to guarantee relative
stability and performance. An early approach in the controller parameter space to
guarantee relative stability was to map a shifted imaginary axis, obtaining in this way
a region containing controller parameters that achieve closed-loop poles with their real
part less than a prescribed value [107]. In addition to a shifted imaginary axis, other
contours could be mapped. Specifications for relative stability and performance in
terms of an upper bound on the magnitude of closed-loop transfer functions can also
be translated into the controller parameter space. We are going to focus on the upper
bound on the magnitude of the sensitivity and complementary sensitivity as control
design specifications (for relative stability and performance).

As presented in Section 2.1.3, the constraints |S(jω)| ≤ δ and |T (jω)| ≤ δ have a
graphical interpretation in the complex plane. They impose that the Nyquist plot at a
given frequency should lie outside or inside a certain circle. For a PID controller

C(s) = kp + ki

s
+ kds, (2.48)
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these circles in the complex plane are mapped into the controller parameter space as
ellipses described by the following equation (see [19]):
(

|P (jω)|
rc

)2 (
kp + ℜ(P (jω))cc

|P (jω)|2
)2

+
(

|P (jω)|
ωrc

)2 (
ki + ωℑ(P (jω))cc

|P (jω)|2
− ω2kd

)2

= 1,

(2.49)
where rc and cc take the following values depending on the specification

cc = −1, rc = δ−1, for |S(jω)| ≤ δ,

cc = δ2

1 − δ2 , rc = δ2

|1 − δ2| , for |T (jω)| ≤ δ.
(2.50)

An alternative (equivalent) procedure to translate these specifications into the
controller parameter space is by noting that these specifications are equivalent to
simultaneously stabilize a family of plants. This approach is presented in [152, 153].
The specification ∥WS∥∞ < γ is equivalent to stabilize P (s) and the family of plants

P =

P (s)

 1
1 + 1

γ ejθW (s)

P (s) : θ ∈ [0, 2π]

 , (2.51)

and the specification ∥WT∥∞ < γ is equivalent to stabilize P (s) and the family of
plants

P =
{

P (s)
[
1 + 1

γ
ejθW (s)

]
P (s) : θ ∈ [0, 2π]

}
. (2.52)

Example 2.8. This example illustrates the obtainment of regions in the controller
parameter space, whose parameters achieve certain specifications on the magnitude of
the sensitivity. This example considers the plant model

P (s) = e−s

(s + 0.5) , (2.53)

and a PI controller
C(s) = kp + ki

s
. (2.54)

The specification that we consider here is ∥S∥∞ ≤ 1.4. The region of parameters
satisfying this condition is shown in Figure 2.21. The top and bottom left figures show
the region obtained using the expression (2.49) that imposes forbidden regions in form
of ellipses for each frequency, and the right figure shows the same region but obtained
by using multiple stabilization of the family of plant presented in (2.51).
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Figure 2.21 Feasible region corresponding to ∥S∥∞ ≤ 1.4 (Example 2.8)
Feasible region corresponding to ∥S∥∞ ≤ 1.4 obtained by frequency-wise forbidden ellipses
(2.49) (top and bottom left) and multiple stabilization (2.51) (bottom right). The red dashed
line corresponds to the boundary of the stability region. Feasible region corresponds to the
intersection between stabilizing region and area outside the ellipses in the first case (top and
bottom left), and to the intersection between stabilizing region and stabilizing regions of the
family of plants in the second case (bottom right).
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Performance Indicators in the Time Domain

We have commented before that a controller with sufficiently high gain at low frequencies
achieves a good level of performance. It is possible to find links between specifications
like that in the frequency domain and specifications in the time domain. One of
the most common way to measure the ability to reject load disturbances is usually
measured using the integrated absolute error (IAE), defined as

IAE =
∫ ∞

0
|e(t)| dt, (2.55)

where e(t) is the error due to a unit step disturbance entering at the process input. This
integral is difficult (if not impossible) to solve in an analytical manner. An alternative
indicator is the integrated error (IE) defined as

IE =
∫ ∞

0
e(t)dt. (2.56)

Both indicators yields the same value for a non-oscillatory system, and close values for
an oscillatory but well-damped system. This latter property is usually guaranteed by
constraining upper bound on the sensitivity function. The great advantage of using the
IE is that its value for a control system with a PID as controller is IE = 1/ki (see [19]),
under the assumption that the steady-state gain of the plant is positive. Therefore, we
conclude that

maximizing ki ⇐⇒ minimizing IE. (2.57)

This is not surprising since it is equivalent to maximize the gain of the controller at low
frequencies (i.e. ω → 0), and it is well-known that the performance of a control system
is provided by the gain of the loop transfer function (typically at low frequencies). The
maximization of the integral gain also has a positive impact over reference tracking (or
disturbances entering at the process output), since the IE due to a unit step reference
is equal to (P (0)ki)−1. However, the reference tracking capability may be improved by
using set-point weighting [120], a particular implementation of a control system with 2
DOF when the feedback controller is a PID.

Example 2.9. The aim of this example is to analyze through a particular plant, the
relation between the approximation IAE ≈ IE and the value of ∥S∥∞. We consider
the same plant model and controller that were considered in Example 2.8. Figure 2.22
shows the boundary of the stabilizing region (red dashed line), and level curves for the
IAE (gray) and ∥S∥∞ (black). Observe that the region where the level curves of the
IAE are horizontal, contains the controller parameters that satisfy IAE = IE = k−1

i .
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Figure 2.22 Time-domain performance in the controller parameter space
Level curves of IAE (gray) and ∥S∥∞ (black) for Example 2.9. The red dashed line corresponds
to the boundary of the stability region.

Regions where the H∞-norm of the sensitivity takes relatively low values, i.e. ≤ 1.4,
also guarantee that IAE ≈ IE.

2.3.2 PID Design via Optimization

A natural way of stating the control design problem is by using a mathematical
optimization problem. Several control design methods, such as LQR/LQG or H∞,
pose the control design problem in this way. A wide variety of problems involving
design can be cast in the form of a mathematical optimization problem. This is about
making the best possible choice, with respect to a predefined criterion, from a set of
candidates choices, that typically have to satisfy some specifications (constraints). In
general, an optimization problem has the following form:

minimize
x

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m.

(2.58)

In the latter problem, the vector x ∈ Rn is the optimization variable, the function
f0 : Rn → R is the objective function, and the functions fi : Rn → R, i = 1, . . . , m, are
the constraint functions.
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In the case of PID design, the optimization variable will be the vector of controller
parameters, and the specifications will be used as objective and constraint functions.
The specification that is considered as most important will play the role of objective
function. At this point, it is very important to formulate the optimization problem
in a way that it captures all the specifications of the control systems. Although
optimization methods are very powerful, they may yield unrealistic solutions, when
some specifications are not stated [19]. Unfortunately, this situation is not uncommon
in the PID control literature, there are several methods in which some index for
performance is optimized, but robustness is not taken into account. These methods
may result in controllers with very low robustness levels [19].

Some caveats of optimization methods are that it is possible the presence of many
local minimum and the numerical algorithm may be trapped in one of them. On the
other hand, the obtainment of a solution may require excessive computational burden.
Fortunately, some classes of optimization problem can be efficiently and reliably solved
due to is particular structure, e.g. linearity and convexity. See Appendix A for more
details about optimization problems.

The design of PID controllers is usually stated as a constrained optimization problem

minimize
x

f0(x, θ)

subject to fi(x, θ) ≤ 0, i = 1, . . . , m.
(2.59)

where x is the design (controller) parameter vector, and θ is a vector of plant model
parameters. A very popular approach is the IE or IAE minimization under constraints
on the H∞ norm of S(s), T (s), P (s)S(s), and/or C(s)S(s). This has been thoroughly
studied. Early work focusing on robustness constrained IE minimization was presented
in [22, 203]. Efficient convex-optimization-based algorithms for solving the same
problem were recently presented in [119]. Constrained minimization of IAE has been
investigated in [98]. Efficient gradient-based algorithms for the same problem were
proposed [106]. Simultaneous synthesis of PID controllers and measurement filter was
addressed in [236].

In the forthcoming chapters, several control design problems stated as optimization
problems will be presented. This thesis addresses the problem of designing PID
controllers for plants with large uncertainty. In any real-world control system, the
parameters of the plant model are seldom known exactly during the modeling phase,
or they usually change as the environment or the operation point changes. In contrast
to most of the available tuning methods, that are specifically developed for some
nominal values of the plant model parameters, here the goal is to obtain a design
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method for plant models with ignorance in its parameters, i.e. it will be assumed
that vector of plant parameters belong to a given set that represents the plant model
uncertainty. Obviously, it can be argued that available methods already account for
plant uncertainty since they usually include some robustness specifications for a nominal
plant parameters vector. Here, the design has a stronger emphasis on robustness, since
some stability margins are guaranteed for each value of the process parameters in its
uncertainty interval.

2.3.3 Literature on PID Design under Parametric Uncertainty

Some approaches that tackle the problem of designing PID controllers under parametric
uncertainty are reviewed as follows.

Kharitonov’s theorem [155] and related results can be used to study the stability of
interval plants (with possibly fixed delay). In order to ensure some margins of stability,
a virtual gain-phase margin tester (see [117]) may be added, leading to stability margins
in the form of gain and phase margins. Applications of these results to the design of
PID controllers has been reported in [135]. The drawbacks of these methods are the
inability to deal with stronger stability margins (e.g. maximum sensitivity functions)
and uncertainty in the time delay.

Faced with the issue of design PID controllers in presence of interval parametric un-
certainty subject to maximum sensitivity functions, several works have been published,
see among others [89, 143, 179, 268, 269]. In general, this problem is very hard to
solve, since it is necessary to consider all the plants belonging to a given set of plants.
Most of them use a brute force approach, which is based on gridding the uncertainty
set10. Another interesting approach to deal with interval plants is the use of interval
techniques [141], these techniques can be applied to a generalized n-th order transfer
function, but they rely on some algorithms that are very time-consuming, e.g. SIVIA
[141]. Some applications of these techniques to PID control have been reported in
[45, 154].

Automatic loop shaping (ALS) methods for QFT that consider a fixed control
structure can be particularized to the design of PID controllers. There are several
papers that deal with this problem [56, 89, 142, 270, 281, 282]. They differ in the
choice of optimization techniques. The paper [89] combines local and global optim-
ization with constraints in the form of Horowitz-Sidi bounds in the Nichols plane.
Optimization is done using standard Matlab routines. In [282] the controller is chosen

10The QFT approach of using boundaries of the templates is hardly found on the PID literature.
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from computations of a set of controllers. In the paper [270] the design specifications
are translated into constraints on the controller parameter space and the controller
is then chosen by optimization. Similar to [269], it works only with two controller
parameters, iterations are necessary with more controller parameters. An approach
using evolutionary optimization is proposed in [56]. In [281], the problem is formu-
lated as an unconstrained optimization problem that is solved using the Nelder-Mead
method. A procedure based on deterministic interval global optimization techniques
and consistency methods is presented in [142].

The chapters ahead will present different design methods for uncertain plants. Some
of them are tailored to simple parametric models, while others are able to deal with
nonparametric models or probabilistic models.





Chapter 3

PI Design for an Uncertain ITD
Plant

3.1 Introduction

This chapter is focused on the problem of tuning PI controllers for ITD plants having
interval parametric uncertainty. ITD plant models are common and important in the
modeling task for the process industry. This model is extensively used, for example, in
level systems, pulp and paper plants, oil-water-gas separators in the oil industry, etc.
[254, 256]. It also appears on simplified Saint-Venant equations to model irrigation
canals for control design purpose [163–165], where this model is referred to as integrator
delay (ID) model. In addition to processes presented in low-level control loops, it is
also used to model supply chain management (SCM) processes [71, 75]. Recent works
on ITD plants controlled by PID-type controllers have been reported in [10, 70, 158].
The work [10] applies direct synthesis method to design the PID controller, it matches
the characteristic equation of the system, after applying a Padé approximation, with a
desired characteristic equation. The paper [70] proposes a nonlinear modification of
a PI controller, in particular, a reset controller and a design method for ITD plants.
The work [158] proposed a design based on Internal Model Control (IMC) principles.

The method proposed here is based on the parameter space approach [1, 229],
without using time-delay approximations or ignoring parameter uncertainties. These
are two important features. On the one hand, it is well known that some time-delay
approximations can lead to instability [230]. On the other hand, most of the tuning
rules are usually based on a nominal plant model [201], whereas in practice the model
usually varies with the operation point, or simply it is not known precisely. In addition,
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Figure 3.1 1-DOF feedback control system.

since the PI controller has just two tuning parameters, the parameter space approach
is quite suitable for control design [219].

Specifically, in PI(D) control, the formulation of the control design problem with
parametric uncertainty has previously been approached in a number of works, see
for example [136, 143, 269]. However, in all these previous works, the design method
comes up with an algorithmic or graphical procedure to obtain the optimum value of
the controller parameters. This problem is usually solved with a brute force approach
(by gridding the uncertainty set). This chapter will show how to solve this problem by
considering only two ITD plants, and that a solution in form of a tuning rule can be
obtained without introducing too much conservatism.

The outline of this chapter is as follows. Section 3.2 describes the problem at hand.
The main results of this chapter are presented in Sections 3.3 and 3.4. Section 3.3
provides an equivalent control design problem that only involves two plants, making a
key simplification of the original problem. Section 3.4 presents a tuning rule for an
uncertain ITD plant, which is based on the solution of the simplified control problem.
Some design examples that illustrate the proposed tuning rule are given in Section 3.5.

3.2 Problem Statement
The considered control system setup is the 1-DOF feedback control system shown in
Figure 3.1, where r is the reference input, y is the plant output, e = r − y is the error,
d is the disturbance input, and u is the controller output. Here, C is the controller,
and P is the plant.

3.2.1 Plant and Controller Structures

A plant that is modeled by an ITD model is mathematically described by the transfer
function

P (s) = k

s
e−sh, (3.1)
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where k is the (velocity) gain and h is the time delay. This model is also a good
approximation to lag dominant FOTD models. They are given by the transfer function

P (s) = K

τs + 1e−sh, (3.2)

where K is the gain, τ is the time constant, and h is the time delay They may be
well-approximated by an ITD model like (3.1) with (velocity) gain k = K/τ , when
τ ≫ h.

This chapter will consider ITD plants with potentially large parametric uncertainty.
An uncertain ITD plant P is represented by an indexed family of transfer functions
like (3.1), where the gain k and the time delay h have values in the intervals [k1, k2]
and [h1, h2], respectively. Therefore, the index set Θ = [k1, k2] × [h1, h2] represents the
interval uncertainty of the plant. Without loss of generality, we assume that Θ belongs
to the first quadrant of the real plane. That implies that all the processes have positive
steady-state gain and positive time delay. The uncertain ITD plant P is given by

P =
{

P (s, θ) = k

s
e−sh : θ = [k h]⊤ ∈ Θ

}
. (3.3)

On the other hand, the PI controller is given by the following transfer function

C(s, x) = kp + ki

s
, (3.4)

where x = [kp ki]⊤ is the vector of controller parameters. In control practice, the
integration time Ti is often used instead of the integral gain ki, that is defined as
Ti = kp/ki. However, it is more convenient to use the parameter ki for the derivation of
results in this work. For example, the stabilizing set, in the controller parameter space,
is more conveniently expressed in terms of kp and ki. By using Ti, the stabilizing sets
extend until infinite values of Ti, see for example [136].

Finally, for any vector of plant parameters θ ∈ Θ the corresponding loop transfer
function is defined as L(s, x, θ) = C(s, x)P (s, θ).

3.2.2 Control Design Specifications

This section presents a set of specifications for the closed-loop system. These specifica-
tions are based on the ones presented in Chapter 2 and must be met for every plant
belonging to the set P , or equivalently for any vector of plant parameters θ belonging
to the set Θ.
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Robust Stability

A common design specification is to place an upper bound on the magnitude of the
sensitivity transfer function, that is

∥S(x, θ)∥∞ ≤ Ms, ∀θ ∈ Θ, (3.5)

where the sensitivity bound has to be Ms > 1. Remind that the specification Ms = 1
is infeasible, due to the Bode’s sensitivity integral presented in the previous chapter.

Note that a sensitivity bound implies certain values for the gain and phase margins
(see for example [269]) and that (3.5) guarantees a worst-case sensitivity peak over the
uncertain plant P .

Robust Set-Point Response

Tracking specification in an 1-DOF feedback control system may be conveniently
specified by an upper bound on the magnitude of the complementary sensitivity
transfer function, that is

∥T (x, θ)∥∞ ≤ Mt, ∀θ ∈ Θ, (3.6)

where the complementary sensitivity bound has to be Mt > 1. Again, this imposes a
worst-case complementary sensitivity peak over the uncertain plant P .

Robust Load Disturbance Rejection

A common way to measure the ability to reject disturbances is the IAE due to a load
disturbance in the form of a unit step at the plant input, i.e.

IAE =
∫ ∞

0
|e(t)| dt. (3.7)

An analytical solution is difficult (if not impossible) to obtain with this criterion. As it
is proposed in [16], a simpler approach is to use the IE defined as

IE =
∫ ∞

0
e(t)dt. (3.8)

The main reason for using this criterion is that IE = 1/ki [19]. On the other hand,
the sensitivity constraints guarantee a well-damped system where IE ≈ IAE (see [19]).



3.2 Problem Statement 63

Note that this objective (maximize ki) is very convenient for the problem tackled in
this chapter since it does not depend on the uncertain parameters of the plant.

These criteria seem quite suitable for the evaluation of performance and robustness,
as it has been pointed out, for example, in [5, 105]. Moreover, minimization of IE
(or IAE) without constraints may result in control systems with poor robustness [98].
Thus, the problem of minimizing IE subject to robustness constraints as (3.5)–(3.6) is
clearly sound for plants with significant uncertainty. Lastly, note that load disturbances
may enter at many different places, here disturbances at the plant input are considered.
On the other hand, disturbances at the plant output affect in an equivalent way to
set-points responses (both paths are defined by the same transfer function, but with
opposite sign), in this way the two extreme cases are considered.

3.2.3 Control Design Problem

Before introducing the control design problem as an optimization problem, we need to
define some sets, these are defined as

fs(θ, Ms) ≡ {x ∈ D(θ) : ∥S(x, θ)∥∞ ≤ Ms}, (3.9)

ft(θ, Mt) ≡ {x ∈ D(θ) : ∥T (x, θ)∥∞ ≤ Mt}, (3.10)

where D(θ) is the set of controller parameters that provide closed-loop stability for
the plant with parameters θ. The set D(θ) can be easily obtained in the controller
parameter space, a method to obtain it was presented in Section 2.3.1.

Furthermore, are also defined the feasible sets where these constraints are met for
a given set Θ. These sets are given by

Fs(Θ, Ms) ≡
⋂

θ∈Θ
fs(θ, Ms), (3.11)

Ft(Θ, Mt) ≡
⋂

θ∈Θ
ft(θ, Mt). (3.12)

The elements in theses sets guarantee a worst-case sensitivity and complementary
sensitivity peaks (in addition to closed-loop stability) for a set of plants defined by the
box Θ.
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After defining these sets, the control design problem is formulated as the following
constrained optimization problem:

maximize
x=[kp ki]⊤

ki

subject to x ∈ Fs(Θ, Ms),
x ∈ Ft(Θ, Mt).

(3.13)

The control design problem (3.13) is based on the well-known MIGO approach for
PI design presented in [22], but considering a set of plants representing an uncertain
plant. This extension of the MIGO approach to a family of plants is not new and
has been studied in some previous work, for example [268, 269]. The novelty here is
two-fold. First, we prove that it is only necessary to consider two plants in order to
obtain a solution to (3.13) when considering an uncertain ITD like (3.3). Second, an
approximate solution to (3.13) in form of a tuning rule, for a given values of Ms and
Mt, is presented.

3.3 Reformulation of the Optimization Problem

A previous step for the obtainment of the main results of this chapter is the reformulation
of the optimization problem (3.13). The constraints of the optimization problem (3.13)
will be translated into a normalized controller parameter space. We use f(θ, Ms, Mt)
to denote a set that contains the controller parameters that satisfy both specifications
for a given plant parameters vector. That is

f(θ, Ms, Mt) ≡ fs(θ, Ms)
⋂

ft(θ, Mt). (3.14)

Let us denote by F (Θ, Ms, Mt) ⊂ R2 the feasible set of the optimization problem
(3.13). This set is given by the intersection of the indexed family of sets f(θ, Ms, Mt)
over θ ∈ Θ, that is

F (Θ, Ms, Mt) ≡
⋂

θ∈Θ
f(θ, Ms, Mt). (3.15)

In the following, we will show how the feasible set of the optimization problem (3.13),
i.e. F (Θ, Ms, Mt), can be obtained as the intersection of only two plant parameter
vectors instead of an infinite number of plant parameter vectors, greatly simplifying
the problem at hand.
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3.3.1 A Normalized Feasible Set

The nondimensionalizing (also known as scaling or normalizing) should be taken into
account whenever a model is developed, with that technique it is possible to simplify
and parameterize certain problems [234]. Here, the goal is to reduce the number
of parameters by performing a normalization with respect to θ, and to obtain a
normalized feasible set f̄(Ms, Mt) that can be used as a pattern to obtain any feasible
set f(θ, Ms, Mt). Firstly, it is necessary to introduce the following normalized variables
(they are denoted with a bar):

ω̄ ≡ ωh,

x̄ ≡ [k̄p k̄i]⊤ = [kpkh kikh2]⊤,

θ̄ ≡ [k̄ h̄]⊤ = [1 1]⊤.

(3.16)

By using these normalized variables, the loop transfer function is expressed as

L(jω̄, x̄, θ̄) =
(

k̄p + k̄i

jω̄

)
1

jω̄
e−jω̄. (3.17)

Let us define a normalized loop transfer function as

L̄(jω̄, x̄) ≡
(

k̄p + k̄i

jω̄

)
1

jω̄
e−jω̄. (3.18)

Therefore, by using (3.18), the sensitivity (3.5) and the complementary sensitivity (3.6)
constraints are also normalized. The sensitivity constraint, for a given frequency, is
directly normalized as ∣∣∣∣∣ 1

1 + L̄(jω̄, x̄)

∣∣∣∣∣ ≤ Ms. (3.19)

The above inequality corresponds to a region in the k̄p − k̄i plane outside the ellipse

M2
s

ω̄2

(
k̄p − ω̄ sin(ω̄)

)2
+ M2

s

ω̄4

(
k̄i − ω̄2 cos(ω̄)

)2
= 1. (3.20)

This expression is obtained by directly substituting (3.18) in (3.19). On the other
hand, it is a particular case of the expression given in (2.49). Note that the centers
of these ellipses determine the stabilizing set in the controller parameter space [202],
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which consists of the straight line k̄i = 0 and a (parametric) curve given by
 k̄p(ω̄) = ω̄ sin(ω̄),

k̄i(ω̄) = ω̄2 cos(ω̄).
(3.21)

The normalized sensitivity constraint (3.19) results in a region of the k̄p − k̄i plane
whose boundary is the envelope of the family of ellipses (with ω̄ as parameter) given
by (3.20). This envelope is easily obtained by using (3.20) and its partial derivative
with respect to ω̄:



M2
s

ω̄2

(
k̄p − ω̄ sin(ω̄)

)2
+ M2

s

ω̄4

(
k̄i − ω̄2 cos(ω̄)

)2
= 1,

4(1 − M2
s )ω̄3 − 2M2

s ω̄k̄2
p + 2M2

s ω̄ cos(ω̄)(ω̄2k̄p + 2k̄i)

+2M2
s ω̄2 sin(ω̄)(3k̄p − k̄i) = 0.

(3.22)

In the end, a feasible set corresponding to (3.19) is obtained by using the envelope
(3.22). The envelope of this family of ellipses has two branches, referred to as inner
and outer [22]. Since the outer branch does not intersect the stabilizing set, only the
inner branch is used. Thus, by combining the inner branch of the envelope (3.22) with
the stabilizing set, it is obtained a feasible set where the closed-loop system is stable
and the constraint (3.19) holds, see shadow region in Figure 3.2.

On the other hand, the complementary sensitivity constraint (3.6), but for a given
frequency, is also normalized to ∣∣∣∣∣ L̄(jω̄, x̄)

1 + L̄(jω̄, x̄)

∣∣∣∣∣ ≤ Mt, (3.23)

and, using similar arguments, it can be shown that this constraint defines a feasible
region in the k̄p − k̄i plane outside a set of ellipses whose envelope is given by the
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Figure 3.2 Constraint ∥S∥∞ ≤ Ms in the controller parameter space
Ellipses sets (blue), stabilizing set boundary (dashed red), envelop inner branch (solid black),
and feasible set (shadow region) for Ms = 1.7.

following equations:

(M2
t − 1)2

M2
t ω̄2

(
k̄p − M2

t ω̄ sin(ω̄)
(M2

t − 1)

)2

+(M2
t − 1)2

M2
t ω̄4

(
k̄i − M2

t ω̄2 cos(ω̄)
(M2

t − 1)

)2

= 1,

(M2
t − 1)(ω̄2k̄2

p + 2k̄2
i ) + M2

t ω̄2(ω̄2k̄p − 2k̄i) cos(ω̄)

−M2
t ω̄3(k̄p + k̄i) sin(ω̄) = 0.

(3.24)

Again, we are interested in the inner branch of the envelop of this family of ellipses,
see Figure 3.3.

Finally, for some given values Ms and Mt, a normalized feasible set f̄(Ms, Mt)
belonging to the k̄p − k̄i plane is obtained as the intersection of the two feasible sets
obtained above (see the darker area in Figure 3.4). Note that this set is identical
to the set f(θ̄, Ms, Mt) in the kp − ki plane. Once f̄(Ms, Mt) has been obtained, the
feasible set F (Θ, Ms, Mt) may be computed by using a mapping from the k̄p − k̄i plane
to the kp − ki plane, directly using (3.16). By definition, for a given vector of plant
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Figure 3.3 Constraint ∥T∥∞ ≤ Mt in the controller parameter space
Ellipses sets (blue), stabilizing set boundary (dashed red), envelop inner branch (solid black),
and feasible set (shadow region) for Mt = 1.3.
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Figure 3.4 Normalized feasible set f̄(Ms, Mt)

Normalized feasible set f̄(Ms, Mt) (darker shadow region) for Ms = 1.7 and Mt = 1.3.
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parameters θ = [k h]⊤, the mapping Tθ is defined as

[kp ki]⊤ = Tθ[k̄p k̄i]⊤ ≡
[

k̄p

kh

k̄i

kh2

]⊤

. (3.25)

Thus, the set f(θ, Ms, Mt) is directly given by

f(θ, Ms, Mt) = Tθf̄(Ms, Mt), (3.26)

and finally, using (3.15) and (3.26), the feasible set F (Θ, Ms, Mt) can be rewritten as

F (Θ, Ms, Mt) =
⋂

θ∈Θ
Tθf̄(Ms, Mt). (3.27)

Again with some abuse of notation, the mapping Tθ is also used to denote the

mapping from the kp − ki plane to itself, that maps [kp ki]⊤ to
[

kp

kh

ki

kh2

]⊤
. Thus,

f̄(Ms, Mt) can be used as a region of the k̄p − k̄i plane or of the kp −ki plane, indistinctly.
In addition, a property of the mapping Tθ that will be useful is

Tθf([1 1]⊤, Ms, Mt) = T[k 1]⊤T[1 h]⊤f([1 1]⊤, Ms, Mt) = T[k 1]⊤f([1 h]⊤, Ms, Mt).
(3.28)

Now, the mapping Tθ is acting from the kp − ki plane to itself.
Moreover, it is illustrative to show how the mapping Tθ maps f̄(Ms, Mt) for different

values of k and h. Roughly speaking, for a given value of k, Tθf̄(Ms, Mt) gives regions
as shown in Figure 3.5, in such a way that the intersection of a number of these regions
is exactly the region corresponding to the larger value of h (a formal statement and
proof will be given in the next section as Proposition 3.1). On the other hand, for a
given value of h, Tθf̄(Ms, Mt) results in a larger and right-shifted region when k < 1,
and in a smaller and left-shifted region when k > 1. Note that the intersection of a
number of these regions corresponds to the intersection of the regions with the extreme
values of k as shown in Figure 3.6 (again a formal statement and proof of this fact will
be given in the following section as Proposition 3.2).

3.3.2 A Simplified Optimization Problem
Now, it will be shown that in fact the feasible set F (Θ, Ms, Mt) can be computed by
using a finite number of plant parameter vectors θ, greatly simplifying the control
design problem.
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Figure 3.5 Mapping T[1 h]⊤ over f̄(Ms, Mt)

Mapping T[1 h]⊤ over f̄(1.7, 1.3) for h = 0.5, 1, 2.
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Figure 3.6 Mapping T[k 1]⊤ over f̄(Ms, Mt)

Mapping T[k 1]⊤ over f̄(1.7, 1.3) for k = 0.5, 1, 2.
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Proposition 3.1. For a given value of k ∈ [k1, k2],

⋂
h∈[h1, h2]

f(θ, Ms, Mt) = f([k h2]⊤, Ms, Mt), (3.29)

where θ = [k h]⊤.

Proof. Firstly, since the intersection of a number of sets is included in each set, it
directly follows that

⋂
h∈[h1, h2]

f(θ, Ms, Mt) ⊆ f([k ha]⊤, Ms, Mt) for any ha ∈ [h1, h2],

then it is obvious that
⋂

h∈[h1, h2]
f(θ, Ms, Mt) ⊆ f([k h2]⊤, Ms, Mt).

Secondly,
⋂

h∈[h1, h2]
f(θ, Ms, Mt) ⊇ f([k h2]⊤, Ms, Mt) will be proved in the following.

Consider the controller and plant frequency responses in their polar form

C(jω, x) = kp + ki

jω
= mc(ω, x)ejϕc(ω,x),

P (jω, θ) = k

jω
e−jωh = mp(ω, θ)ejϕp(ω,θ),

L(jω, x, θ) = C(jω, x)P (jω, θ) = ml(ω, x, θ)ejϕl(ω,x,θ),

(3.30)

where

mc(ω, x) =
√

k2
p + k2

i

ω2 , ϕc(ω, x) = − arctan ki

ωkp

,

mp(ω, θ) = k

ω
, ϕp(ω, θ) = −π

2 − hω,

ml(ω, x, θ) = mc(ω, x)mp(ω, θ), ϕl(ω, x, θ) = ϕc(ω, x) + ϕp(ω, θ).

(3.31)

The arguments of these functions are dropped most of the time for the sake of brevity.
Then, the constraint (3.5) (∥S(jω, x, θ)∥∞ ≤ Ms) is equivalent to1

m2
l + 2ml cos(ϕl) +

(
1 − 1

M2
s

)
≥ 0, (3.32)

for all nonnegative frequencies. Analogously, the restriction (3.6) (∥T (jω, x, θ)∥∞ ≤ Mt)
can be stated as

m2
l

(
1 − 1

M2
t

)
+ 2ml cos(ϕl) + 1 ≥ 0, (3.33)

1The quadratic inequalities (3.32) and (3.33) were obtained in [59], within the framework of QFT.
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again, for all nonnegative frequencies. In the remain of the proof, it will be demonstrated
that x = [kp ki]⊤ ∈ f([k h2]⊤, Ms, Mt) implies that x ∈ f(θ, Ms, Mt) for any h ∈
[h1, h2].

Now, ϕl,2 and ϕl are defined as the angles given by (3.31) corresponding to the time
delays h2 and h ≤ h2, respectively. In addition, for a vector of controller parameters
x ∈ f([k h2]⊤, Ms, Mt), from (3.32)–(3.33) it results that

m2
l + 2ml cos(ϕl,2) +

(
1 − 1

M2
s

)
≥ 0, (3.34)

and
m2

l

(
1 − 1

M2
t

)
+ 2ml cos(ϕl,2) + 1 ≥ 0. (3.35)

Regarding restriction (3.32), two cases are possible:

1. ml ≤ 1 − 1/Ms. Rewriting as 1 − ml ≥ 1/Ms and squaring leads to m2
l − 2ml +

1 − 1/M2
s ≥ 0, therefore (3.32) is met for any value of h.

2. ml > 1−1/Ms. By closed-loop stability and by (3.31), it is clear that −π ≤ ϕl,2 ≤
ϕl < −π/2. As a result, using (3.34) it directly follows that m2

l + 2ml cos(ϕl) +
1 − 1/M2

s ≥ m2
l + 2ml cos(ϕl,2) + 1 − 1/M2

s ≥ 0, and thus (3.32) is satisfied for
any h ≤ h2.

Alternatively, regarding restriction (3.33) there are also two possible cases:

1. ml ≤ (1 + 1/Mt)−1. Rearranging as 1 − ml ≥ l/Mt and squaring leads to
m2

l (1 − 1/M2
t ) − 2ml + 1 ≥ 0, therefore (3.33) is met for any value of h.

2. ml > (1 + 1/Mt)−1. Again, since −π ≤ ϕl,2 ≤ ϕl < −π/2 then m2
l (1 − 1/M2

t ) +
2ml cos(ϕl) + 1 ≥ m2

l (1 − 1/M2
t ) + 2ml cos(ϕl,2) + 1 ≥ 0 for any h ≤ h2.

As a result, restrictions (3.32)–(3.33) are satisfied for any h ≤ h2 and thus x ∈
f(θ, Ms, Mt) for any h ∈ [h1, h2].

Proposition 3.2. For a given value of h ∈ [h1, h2],

⋂
k∈[k1, k2]

f(θ, Ms, Mt) = f([k1 h]⊤, Ms, Mt) ∩ f([k2 h]⊤, Ms, Mt), (3.36)

where θ = [k h]⊤.
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Proof. By using (3.26) and (3.28), it is true that

⋂
k∈[k1, k2]

f(θ, Ms, Mt) =
⋂

k∈[k1, k2]
Tθf̄(Ms, Mt) =

⋂
k∈[k1, k2]

T[k 1]⊤f([1 h]⊤, Ms, Mt). (3.37)

Now, note that T[k 1]⊤ acts as a uniform scaling with a scale factor equal to 1/k, then
it follows that the above intersection is given by the extreme values of the interval

⋂
k∈[k1, k2]

f(θ, Ms, Mt) = T[k1 1]⊤f([1 h]⊤, Ms, Mt) ∩ T[k2 1]⊤f([1 h]⊤, Ms, Mt), (3.38)

and using again (3.28) the result directly follows.

Propositions 3.1 and 3.2 make possible to simplify the optimization problem (3.13)
as

maximize
x=[kp ki]⊤

ki

subject to x ∈ f([k1 h2]⊤, Ms, Mt)
⋂

f([k2 h2]⊤, Ms, Mt).
(3.39)

Now, the feasible set of the latter optimization problem is simply given by the intersec-
tion of the two sets f([k1 h2]⊤, Ms, Mt) and f([k2 h2]⊤, Ms, Mt), given by some extreme
values of the plant parameters.

3.3.3 Illustration of Results in the Nichols Plane
We consider here an example with the aim of illustrating the previous results. Proposi-
tions 3.1 and 3.2 guarantee that a design considering the plant parameter vectors [k1 h2]⊤

and [k2 h2]⊤ will be valid for any plant defined by a vector θ ∈ Θ = [k1, k2] × [h1, h2],
in terms of satisfaction of specifications over the upper bound on ∥S(x, θ)∥∞ and
∥T (x, θ)∥∞, in addition to closed-loop stability.

Let us consider an uncertain ITD plant that is defined by the set Θ = [0.5, 1.5] ×
[0.5, 1.5] and a vector of controller parameters that satisfies x = [0.1628 0.0156]⊤ ∈
Fs(Θ, 1.5), i.e., x guarantees closed-loop stability and ∥S(x, θ)∥∞ ≤ 1.5 for all θ ∈ Θ.
Although the results were obtained for F (Θ, Ms, Mt), by taking a sufficiently high
value of Mt, we obtain F (Θ, Ms, Mt) = Fs(Θ, Ms).

Figure 3.7 shows the constraint imposed to the loop transfer function by the
specification ∥S(x, θ)∥∞ ≤ 1.5 (red region), some compensated templates for the
frequencies ω ∈ [0.03 0.05 0.075 0.125 0.5 1.75] (green regions), and Nichols plots
corresponding to the plants with parameters [k1 h2]⊤ and [k2 h2]⊤. This figure shows
how the satisfaction of ∥S(x, θ)∥∞ ≤ 1.5 for these extreme plants guarantees that the
same specification is also met for any plant defined by Θ.
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Figure 3.7 Nichols plot of a PI with a family of ITD plants
Compensated templates (green regions), inverse M-circle (red region), and Nichols plots of
some extreme plants.

3.4 A PI Tuning Rule for Uncertain ITD Plants

In spite of this simplification for the computation of F (Θ, Ms, Mt), the optimization
problem (3.39) is still hard to solve in a closed form. Nevertheless, it will be shown how
an approximation of the normalized set f̄(Ms, Mt) can efficiently solve the optimization
problem without introducing an excessive conservatism. The key idea is to use an
inner approximation to the set f̄(Ms, Mt). We propose to use a polygon f̄p(Ms, Mt)
satisfying f̄p(Ms, Mt) ⊂ f̄(Ms, Mt), in such a way that an inner approximation to any
set f(θ, Ms, Mt) can be obtained as follows:

fp(θ, Ms, Mt) ≡ Tθf̄p(Ms, Mt) ⊂ Tθf̄(Ms, Mt) = f(θ, Ms, Mt). (3.40)

Here, the polygon f̄p(Ms, Mt) is defined by approximating ∂f̄(Ms, Mt) by straight line
segments, where ∂f̄(Ms, Mt) denotes the boundary of f̄(Ms, Mt). In this way, a feasible
set Fp(Θ, Ms, Mt) ⊂ F (Θ, Ms, Mt) defined as

Fp(Θ, Ms, Mt) ≡ fp([k1 h2]⊤, Ms, Mt)
⋂

fp([k2 h2]⊤, Ms, Mt), (3.41)
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Table 3.1 Points of polygon f̄p(1.7, 1.3)

Point kp ki

1 0.0096 0.0000

2 0.0560 0.0009

3 0.1642 0.0104

4 0.4979 0.0623

5 0.5621 0.0000

may be used to formulate an approximate form of the optimization problem (3.13) as

maximize
x=[kp ki]⊤

ki

subject to x ∈ Fp(Θ, Ms, Mt).
(3.42)

Note that since Fp(Θ, Ms, Mt) ⊂ F (Θ, Ms, Mt), an optimal solution to this problem
is a suboptimal solution to the optimization problem (3.13). We will show how an
appropriate choice of f̄p(Ms, Mt) may lead to suboptimal solutions that are very close
to the optimal ones.

3.4.1 Proposed Tuning Rule

We define f̄p(1.7, 1.3) as a pentagon (see Figure 3.8), whose coordinates are given in
Table 3.1. In addition, the side of this polygon with vertex i and j is denoted as
S̄i,j(Ms, Mt). In this way, the polygons fp(θ, Ms, Mt) and its sides Si,j(θ, Ms, Mt) are
obtained by means of

fp(θ, Ms, Mt) ≡ Tθf̄p(Ms, Mt),

Si,j(θ, Ms, Mt) ≡ TθS̄i,j(Ms, Mt).
(3.43)

Finally two polygons, fp([k1 h2]⊤, Ms, Mt) and fp([k2 h2]⊤, Ms, Mt), define the
approximated feasible set Fp(Θ, Ms, Mt). These polygons differ only by a scaling
factor, since T[k 1]⊤ acts as a uniform scaling. Thus, the point with maximum ki in the
approximated feasible set Fp(Θ, 1.7, 1.3) = fp([k1 h2]⊤, 1.7, 1.3)⋂ fp([k2 h2]⊤, 1.7, 1.3)
is given by the intersection of the side S4,5([k1 h2]⊤, 1.7, 1.3) with S3,4([k2 h2]⊤, 1.7, 1.3),
S2,3([k2 h2]⊤, 1.7, 1.3) or S1,2([k2 h2]⊤, 1.7, 1.3), depending on the value of the ratio
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Figure 3.8 Approximation of the normalized feasible set

Approximation of the normalized feasible set by using a polygon f̄p(1.7, 1.3) ⊂ f̄(1.7, 1.3).

between k2 and k1. These three cases will appear explicitly in the expression of the
proposed tuning rule. This fact is illustrated in Figure 3.9, where some polygons are
plotted for several values of k and a given value of h. Note that for low values of the
ratio k2/k1 the solution of the optimization problem lies on the intersection between
S4,5([k1 h2]⊤, 1.7, 1.3) and S3,4([k2 h2]⊤, 1.7, 1.3) (see k2/k1 = 1.5 in Figure 3.9). When
this ratio increases, the solution lies on the intersection between S4,5([k1 h2]⊤, 1.7, 1.3)
and S2,3([k2 h2]⊤, 1.7, 1.3) (see k2/k1 = 5 in Figure 3.9). Finally for higher values
of this ratio the solution lies on the intersection between S4,5([k1 h2]⊤, 1.7, 1.3) and
S1,2([k2 h2]⊤, 1.7, 1.3).

After some straightforward calculations, it is obtained that the value of x = [kp ki]⊤

that solves the optimization problem (3.42) is

[kp ki]⊤ =



S3,4([k2 h2]⊤, 1.7, 1.3)⋂S4,5([k1 h2]⊤, 1.7, 1.3), k2

k1
∈ [1, 3.2),

S2,3([k2 h2]⊤, 1.7, 1.3)⋂S4,5([k1 h2]⊤, 1.7, 1.3), k2

k1
∈ [3.2, 9.9),

S1,2([k2 h2]⊤, 1.7, 1.3)⋂S4,5([k1 h2]⊤, 1.7, 1.3), k2

k1
∈ [9.9, 50].

(3.44)
A direct application of (3.44) (details are omitted for brevity and because it involves
straightforward but tedious calculations) results in the following tuning rule. The value
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Figure 3.9 Intersections for different values of k2/k1

Polygons f̄p(1.7, 1.3), fp([1.5 1]⊤, 1.7, 1.3) and fp([5 1]⊤, 1.7, 1.3). Intersections for different
values of k2/k1 are denoted with a dot.

of x that solves the optimization problem (3.42) is

kp = α

h2k2
,

ki = β

h2
2k2

,

(3.45)

where α and β are given by

α = α0

(
1 + α1

k2

k1

)
,

β = β0

(
1 − β1

k2

k1

)
.

(3.46)

In general, the values of α0, α1, β0, and β1 depend on the specifications Ms and Mt,
and also on the value of k2/k1. These values are shown in Table 3.2 for Ms = 1.7 and
Mt = 1.3 (for other values of Ms and Mt these values may be obtained by repeating
the procedure exposed here).

The tuning rule presented in this section depends on the approximation of the
feasible set. Note that the chosen approximation provides a good trade-off between
simplicity and accuracy, since a more accurate approximation of the feasible set will be
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Table 3.2 Parameters of the obtained tuning rule

k2/k1 α0 α1 β0 β1

[1, 3.2) 0.485 0.028 0.075 0.173

[3.2, 9.9) 0.516 0.007 0.045 0.081

[9.9, 50] 0.551 0.0003 0.011 0.017

necessarily based on the use of a polygon with more vertices, and thus it would result
in a more intricate tuning rule.

3.4.2 Tuning Rule for a Nominal ITD Plant

The proposed tuning rule has been developed for an uncertain ITD plant. Now, the
rule is particularized to a nominal plant, i.e. with gain k = k1 = k2 and time delay
h = h1 = h2. As a result, equations (3.45)–(3.46) give the following tuning rule:

kp = 0.499
hk

,

ki = 0.062
h2k

.

(3.47)

These values are almost identical to the ones given by the Simple/Skogestad Internal
Model Control (SIMC) rule for ITD plants (when using the recommended value for
the closed-loop time constant Tc = h) [233]. The values given by the latter are

kp = 0.5
hk

,

ki = 0.0625
h2k

.

(3.48)

The proposed tuning rule (3.45)–(3.46) can be seen as an extension of the SIMC rule for
ITD plants with significant uncertainty. As the uncertainty is larger, an SIMC-based
tuning (necessarily based on a nominal parameters choice) will result in a poorly tuned
PI for the whole set of plants, which can even result in an unstable design for some
parameters values. In contrast, the proposed tuning rule will give a close-to-optimal
solution to the optimization problem (3.13).
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3.4.3 Analysis with the Performance Portrait Method
A tuning rule for a PI controller with an ITD plant can be analyzed with the closed-
loop performance portrait method, that has been recently presented in [136, 137]. We
consider the following performance indexes for the unit step set-point response:

• IAE,

• overshoot,

• settling time,

and for the unit step disturbance response:

• IAE,

• maximum deviation,

• settling time.

Both settling times are given with respect to the standard 5 % criterion. Note that
overshoot and settling time for step set-point response, and maximum deviation and
settling time for step disturbance response were not considered in [136], but their use
can be easily justified making use of the same arguments that are exposed in [136].
Basically, this work uses normalization properties of the Laplace transform.

In Figure 3.10, level curves of the performances indexes are shown (with values that
may depend on k or h), jointly with the boundary of the stabilizing region (red dashed
line) and the polygon f̄p(1.7, 1.3) (black solid line). The presented tuning rule provides
controller parameters that remain inside the polygon f̄p(1.7, 1.3). Some interesting
properties of the presented tuning rule are given as follows:

1. The IAE for disturbance response is almost identical to the IE, that implies that
the response to step disturbances is not oscillatory. Therefore, the approximation
IAE ≈ IE in the region fp(θ, 1.7, 1.3) is well justified.

2. The overshoot for set-point response is always less than 30 %.

These properties justify the election of the specifications Ms = 1.7 and Mt = 1.3. Note
that higher values of Ms and Mt lead to oscillatory responses to step disturbances and
higher overshoots for step references.

Lastly, these figures also allow us to analyze a posteriori these performance indexes
for a given plant and controller parameters.
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Figure 3.10 Performance indexes in the normalized controller parameter space
Performance indexes for step response (first column) and for disturbance rejection (second
column). Stabilizing region (red dashed line) and the polygon f̄p(1.7, 1.3) (black solid line).
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3.5 Examples
This section includes some examples that illustrate the obtained tuning rule. The
ultimate goal of this chapter is to present a simple way to tune a PI controller for an
uncertain ITD plant. The following examples will show that a PI controller tuned
with the rule (3.45)–(3.46) can ensure a close-to-optimum behavior, according to the
optimality criterion and constraints of the optimization problem (3.13).

Example 3.1. Consider an ITD plant with parametric uncertainty represented by the
set of plants

P =
{

k

s
e−sh : [k h]⊤ ∈ Θ = [1, 2.5] × [1, 2.5]

}
. (3.49)

The proposed tuning rule (3.45)–(3.46) provides the PI parameters kp = 0.0830 and
Ti = 30.74. This solution yields a suboptimal value IE = 370.37, while the optimum
value is IEopt = 357.14. (Figure 3.8 showed that the approximation done is not very
conservative.)

The obtained controller is compared with other methods from the literature. We
obtain the solution to the optimization problem (3.13) by using the numerical method
recently proposed in [177] (this method will be presented in Chapter 5), and also a
PI tuned with SIMC [233] for a nominal plant corresponding to k = (k1 + k2)/2 and
h = (h1 + h2)/2. The first method yields the parameters kp = 0.0836 and Ti = 29.86,
while the latter obtains kp = 0.1633 and Ti = 14. The comparison is shown in
Figures 3.11 and 3.12, where the plant output and controller output are shown for
a unit step disturbance entering at the plant input and for a unit step reference,
respectively.

This example has illustrated that the approximation used in order to obtain a
simple tuning rule is not overly conservative (proposed tuning rule and optimization
method [177] yield very similar results). In addition, it has shown that the application
of a nominal tuning rule for an uncertain plant may result in a very poor performance
and robustness; in the presented case, very oscillatory responses and worst case for the
sensitivity higher than 4 (recommended values are within the range 1.2−2.0 as indicated
in [19]). The proposed tuning rule, that takes into account parametric uncertainty,
allows for easily obtaining a robust design; removing the difficulties associated with
solving a robust optimization problem or the application of a conventional tuning rule
for a nominal plant taken from a set of plants.

Finally, we consider the situation in which the tuning rule is applied to a plant
with larger uncertainty intervals. Let us consider an uncertain plant described by the
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Figure 3.11 Disturbance rejection (Example 3.1)
Plant output (left) and controller output (right) due to a unit step disturbance. Proposed
tuning rule (3.45)–(3.46) (top), SIMC tuning rule [233] (middle), and optimization method
[177] (bottom).
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Figure 3.12 Reference tracking (Example 3.1)
Plant output (left) and controller output (right) due to a unit step reference. Proposed
tuning rule (3.45)–(3.46) (top), SIMC tuning rule [233] (middle), and optimization method
[177] (bottom).
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set Θ = [1, 5] × [1, 5]. In this case, the proposed tuning rule provides the parameters
kp = 0.0214 and Ti = 100. The obtained value of the IE is 4669, which is close to
the optimum value of 4539. Again the application of the SIMC tuning rule for some
nominal plant gives a closed-loop system with poor performance (even the closed-loop
system is unstable for some plant parameters).

Example 3.2 (Application to an irrigation canal pool). We take this example from
the literature [163–165], it considers the problem of distant downstream PI control of
irrigation canals. The canal pool is represented by the model

Y = P (s)U1 + Pd(s)(U2 + P ) = e−τds

Ads
U1 − 1

Ads
(U2 + P ), (3.50)

with three inputs u1, u2, and p, and one output y. Here, the signal u1 is the deviation
from upstream discharge, u2 is the deviation from downstream discharge, y is the
deviation from downstream water elevation, and finally p is the outlet discharge; in
addition, Ad is the equivalent backwater area and τd is the delay (for a deeper treatment
see [163]). In distant downstream control schemes, the control variable is the upstream
discharge u1 and the controlled variable is the downstream water level y. The feedback
control system is shown in Figure 3.13, the inputs u2 and p enter as a disturbance
d = u2 + p.

In practice, the robust control design problem consists of tuning a PI controller for
the canal pool operating at different hydraulic conditions (high and low flow conditions
and tuned and untuned situations [165]). This can be modeled by an uncertain ITD
plant, where different plant parameters correspond to different hydraulic conditions.
These parameters, presented in Table 3.3, are taken from [165], and correspond to a
real-world example. (The reader is referred to [165] for a more detailed exposition of
the different hydraulic conditions.) Note that in this control problem, although the
disturbance is at the output, the value of the IE index with respect to a unit step
output disturbance is (by using the final value theorem of the Laplace transformation)

IE =
∫ ∞

0
e(τ)dτ = lim

s→0
s

−Pd(s)
1 + P (s)C(s)

1
s2 = lim

s→0

1
Ads

1 + eτds

Ads

(
kp + ki

s

) 1
s

= 1
ki

, (3.51)

that is the same value of the IE for a unit step input disturbance. Thus, the control
design problem can be recast as the optimization problem (3.13), for which the PI
tuning rule (3.45)–(3.46) has been proposed as solution.
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Figure 3.13 Feedback control system of a canal pool (Example 3.2)

Table 3.3 Model parameters (Example 3.2)

τd, s Ad, m2

308 775

315 752

238 546

247 501

A set of plants corresponding to different hydraulic conditions is characterized by

P =
{

k

s
e−sh : [k h]⊤ ∈

[ 1
775 ,

1
501

]
× [238, 315]

}
. (3.52)

A direct application of the tuning rule defined by (3.45)–(3.46) and Table 3.2 results in
the controller parameters kp = 0.8048 and Ti = 2874.3.

Figure 3.14 shows temporal responses, for different hydraulic conditions, to a
disturbance of 0.2 m3/s occurring at time 600 s. Although the PI controller designed
in [165] has better performance for some indexes (e.g. a minor settling time after
perturbation), this is at the cost of having worse robustness levels in terms of peaks of
sensitivity and complementary sensitivity functions. A clear advantage of the proposed
method is that it follows directly from a tuning rule, while the method presented in
[165] is based on an iterative procedure (“guided trial-and-error” method).
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Figure 3.14 Disturbance rejection (Example 3.2)
Disturbance rejection response for different plant parameters (shown in Table 3.3), which
correspond to different hydraulic conditions. Plant output (top) and controller output
(bottom).



Chapter 4

PID Design for an Uncertain
FOTD Plant

4.1 Introduction

This chapter addresses the design of PID controllers for uncertain FOTD plants. The
vast majority of process dynamics encountered in industry can be approximately
modeled by an FOTD model [227], which is mathematically described by the following
transfer function:

P (s) = k

τs + 1e−sh, (4.1)

where k is the steady-state gain, h is the time delay, and τ is the time constant of the
process.

The aim of this chapter is to devise a simple method to design PID controllers for
FOTD plant models in presence of parametric uncertainty. We will derive conditions
under which a solution to the design problem can be obtained by considering only
an instrumental fractional-order plant, that is representative in a certain sense of the
considered uncertain plant model.

The outline of this chapter is as follows. Section 4.2 describes the problem at hand.
Section 4.3 presents the control design problem as a robust optimization problem.
Section 4.4 presents the main results of this work that allow to approximate the robust
optimization problem. In Section 4.5, some examples are discussed.
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4.2 Problem Statement

We consider the same 1-DOF feedback control system of Figure 3.1, that was considered
in the previous chapter, where r is the reference input, e = r − y is the error, u is the
controller output, d is the disturbance input, n is the measurement noise, and y is the
plant output. The controller and the plant are C and P , respectively.

4.2.1 Plant Model and Uncertainty Description

Uncertainty associated with the plant model can be modeled as a set of transfer
functions. Here, an FOTD model with unknown-but-bounded parameters is assumed.
Therefore, the following set of transfer functions is used throughout this chapter to
model an uncertain plant

P =
{

P (s, θ) = k

τs + 1e−sh : θ = [k h τ ]⊤ ∈ Θ
}

, (4.2)

where Θ = [k1, k2] × [h1, h2] × [τ1, τ2] with k1, h1, τ1 ≥ 0. We will use the polar form
P (jω, θ) = mp(ω, θ)ejϕp(ω,θ) of the frequency response, where

mp(ω, θ) = k√
1 + τ 2ω2 ,

ϕp(ω, θ) = − arctan τω − hω.
(4.3)

As it was introduced in Section 2.2, the interval parametric uncertainty can be graph-
ically represented in the complex plane or Nichols plane using templates (or value
sets), these contain information about gain and phase of the frequency response. This
representation of uncertainty plays a crucial role in QFT, where it is used to define
an open-loop gain-phase shaping procedure (see for example [25, 125]). Here, the
purpose is to simplify this problem specifically for FOTD plants, by using a nominal
fractional-order plant that is representative of the uncertain plant P .

A template is the set of all frequency response values at a given frequency. More
precisely, a template Pω for the uncertain plant P is defined as

Pω = {P (jω, θ) : θ ∈ Θ} . (4.4)

A key point in this work is the use of a fractional-order system that is representative
of the uncertain plant P. A (nominal) fractional-order plant P F (s) is proposed to
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characterize the set of plants defined by Θ, it is mathematically described by

P F (s) =

√√√√(1 − τ2s)(1 + τ2s)
(1 − τ1s)(1 + τ1s)

k2

τ2s + 1e−sh2 . (4.5)

Note that when there is no time-constant uncertainty (i.e. τ1 = τ2), this plant is
described by a rational-order transfer function with time delay. This representative
plant depends on some of the parameters that define the uncertainty box Θ, this
dependence is implicit in the formulation.

Again, it is introduced the polar form P F (jω) = mF
p (ω)ejϕF

p (ω), where

mF
p (ω) = k2√

1 + τ 2
1 ω2

,

ϕF
p (ω) = − arctan τ2ω − h2ω.

(4.6)

From (4.3) and (4.6), the following relations are obtained:

ϕF
p (ω) = ϕp(ω, θ2) ≤ ϕp(ω, θ),

mF
p (ω) = mp(ω, θ1) ≥ mp(ω, θ),

(4.7)

for ω ≥ 0 and θ ∈ Θ, where θ1 = [k2 h2 τ1]⊤ and θ2 = [k2 h2 τ2]⊤.
Figure 4.1 illustrates the properties presented in equation (4.7), this figure shows

the templates (or value sets) and the point corresponding to P F (jω) in the Nichols
plane, for an uncertain plant with parameters k1 = h1 = τ1 = 0.5 and k2 = h2 = τ2 = 1.
Observe that the point corresponding to P F (jω) is located at the upper left corner of
the minimum area rectangle containing Pω.

4.2.2 Controller

The PID controller, with a second-order filter with time constant Tf , is given by the
transfer function

C(s, x) =
(

kp + ki

s
+ kds

)(
1

1 + sTf + s2T 2
f /2

)
, (4.8)

with the vector of controller parameters x = [kp ki kd Tf ]⊤ (design parameters), it
is reasonable to assume that all elements belonging to x are nonnegative, with the
exception of ki that is assumed to be positive (this is necessary in order to guarantee
zero steady-state error for a step reference or disturbance). When considering a PI
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Figure 4.1 Templates for an uncertain FOTD plant
Templates Pω (green regions) and points corresponding to P F (jω) (circles) for some frequen-
cies in the Nichols plane.

controller (kd = 0), a first order filter is recommended. Other filter structures are
possible [6, 115], but this choice keeps the number of parameters as low as possible.

4.2.3 Loop Transfer Function

The loop transfer function is denoted as L(s, x, θ) = C(s, x)P (s, θ). Using the polar
form of the controller C(jω, x) = mc(ω, x)ejϕc(ω,x), the polar form of the loop transfer
function is given by L(jω, x, θ) = ml(ω, x, θ)ejϕl(ω,x,θ), where

ml(ω, x, θ) = mc(ω, x)mp(ω, θ),

ϕl(ω, x, θ) = ϕc(ω, x) + ϕp(ω, θ).
(4.9)

A property about ϕl(ω, x, θ), that we will use later, is stated as follows

ϕl(ω, x, θ) ≤ π

2 , (4.10)

for all ω ≥ 0, under the assumptions made about the design and plant parameters. This
property can be easily sketched, at low frequencies ϕl(ω, x, θ) tends to −π/2 rad due
to the presence of the integrator (present in the controller), and the unique elements
able to add phase are the two zeros (present in the controller), which add a maximum
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of π/2 rad each one, or equivalently, π rad in the case of a pair of complex zeros. The
rest of the elements (i.e. poles and delay) subtract phase.

At this point is important to consider the loop transfer function that will result from
considering the previously introduced fractional-order plant. This plant will be used as
an auxiliary tool to design a controller for the set of plants P . The nominal (fractional-
order) loop transfer function LF (s, x) = C(s, x)P F (s) has the polar representation
LF (jω, x) = mF

l (ω, x)ejϕF
l (ω,x), where

mF
l (ω, x) = mc(ω, x)mF

p (ω),

ϕF
l (ω, x) = ϕc(ω, x) + ϕF

p (ω).
(4.11)

It is worth pointing out that fractional-order system theory is a well-established
topic and has been successfully used in many engineering disciplines including control
engineering [62, 188] and, in particular, PID control [172]. Regarding the (fractional-
order) loop transfer function LF (s, x), it is worth noting that the most well-known
stability criterion in the field of fractional-order systems is only applicable to the
particular case of fractional-order systems commonly known as fractional differential
systems of commensurate order [188], and this is not the case of the fractional-order
system under consideration in this chapter (obtained from (4.5)). It should be pointed
out that the loop transfer function LF (s, x) = C(s, x)P F (s) has 2 singularities (branch
points) in the open right-half plane (ORHP) when τ2 > τ1 , at s = τ−1

1 (due to the
denominator) and s = τ−1

2 (due to the numerator). Results presented in [187] show
that the closed-loop is unstable due to the presence of branch points in the ORHP
(instabilities caused by unstable branch points cannot be removed by feedback). This is
not a problem and it should not lead to a confusion, since the fractional-order system
is only instrumental for the design of the PID controller.

Henceforward, dependency with respect to plant and controller parameters may be
omitted for brevity in some cases.

4.2.4 Control Design Specifications

The issue of closed-loop stability is of utmost importance when applying feedback
control to any plant. While feedback controllers with sufficiently high gain immunize
the closed-loop system against model uncertainties and unknown disturbances, they
have a destabilizing effect on any practical plant. However, plain stability is not
sufficient (e.g. an asymptotically stable closed-loop system may have a quasi-infinite
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settling time or a small variation in a parameter may lead to instability); therefore it
is essential to consider any type of stability margin.

As in the previous chapter, we will consider the H∞-norm of the sensitivity and
complementary sensitivity as stability margins.

Sensitivity. The value of |S(jω, x, θ)|−1 = |1 + L(jω, x, θ)| is equal to the distance
from the point on the Nyquist curve (corresponding to frequency ω) to the critical
point −1. Then, the maximum of the sensitivity (i.e. ∥S(x, θ)∥∞) is equal to the
inverse of the smallest distance to the critical point. Desirable values for ∥S(x, θ)∥∞

are in the range from 1.2 to 2 (as indicated in the reference [19]).
Complementary sensitivity. The complementary sensitivity as robustness measure

indicates how large additive uncertainty can be added to the plant before losing stability.
If the plant changes from P (s, θ) to P (s, θ) + ∆P (s) being ∆P (s) stable, a condition
for stability is ∣∣∣∣∣∆P (jω)

P (jω, θ)

∣∣∣∣∣ <

∣∣∣∣∣ 1
T (jω, x, θ)

∣∣∣∣∣ , ∀ω ≥ 0. (4.12)

Then, ∥T (x, θ)∥∞ is clearly another robustness measure, which desirable values are in
the same range as ∥S(x, θ)∥∞.

As it is usual in this thesis, a strong emphasis on the robustness is stated. In fact,
the same stability margins are required for any instance of the uncertain plant. This is
to say, it is required the same stability margins for any plant belonging to set of plants
P .

After guaranteeing closed-loop stability with pre-specified stability margins, the
following step is to consider the performance of the controller. Load disturbance
attenuation is the main concern in process control [227], the ability to reject load
disturbances is usually measured using the IAE, defined as

IAE =
∫ ∞

0
|e(t)| dt, (4.13)

where e(t) is the error due to a unit step disturbance entering at the plant input. With
this criterion it is difficult (if not impossible) to obtain an analytical solution. As it is
proposed in [16], a simpler approach is to use the IE defined as

IE =
∫ ∞

0
e(t)dt. (4.14)

The quantity IAE is equal to IE for a non-oscillatory system, and very close to IE for
an oscillatory but well-damped system. This desirable behavior is guaranteed by the
bounds on the worst-case sensitivity and complementary sensitivity peaks. Moreover, it
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has been shown that IE = 1/ki (see [16]). This is not surprising since it is equivalent to
maximize the gain of the controller at low frequencies (i.e. ω → 0), and it is well-known
that the performance of a control system is provided by the gain of the loop transfer
function (typically at low frequencies). Note that the choice of this criterion to measure
the performance is very convenient for the problem tackled in this work, since it does
not depend on the parameters of the plant.

The maximization of the integral gain also has a positive impact on reference
tracking (or disturbances entering at the plant output), since the IE due to a unit step
reference is equal to (P (0)ki)−1. However, the reference tracking capability may be
improved by using a 2-DOF control structure (e.g. set-point weighting is generally used
in a PID to obtain a simple control structure with 2 DOF [22, 120]), but this point
is out the scope of the work developed in this chapter. In addition, in cases where
the disturbance can be measured, a feedforward controller may be used to improve
disturbance rejection [216].

4.3 Characterization of the Feasible Set
In a similar way to the done in the previous chapter, the control design problem will
be enunciated after introducing some sets. We start introducing a pair of feasible sets
(sets whose elements satisfy certain constraints related to the stability margins) that
are defined as follows

fs(θ, Ms) ≡ {x ∈ D(θ) : ∥S(x, θ)∥∞ ≤ Ms}, (4.15)

ft(θ, Mt) ≡ {x ∈ D(θ) : ∥T (x, θ)∥∞ ≤ Mt}, (4.16)

where D(θ) is the set of controller parameters that provide closed-loop stability for
the plant with parameters θ. The set D(θ) can be easily obtained in the controller
parameter space (see Section 2.3.1).

Furthermore, are also defined the feasible sets where these constraints are met for
a given set Θ. These sets are expressed as

Fs(Θ, Ms) ≡
⋂

θ∈Θ
fs(θ, Ms), (4.17)

Ft(Θ, Mt) ≡
⋂

θ∈Θ
ft(θ, Mt). (4.18)
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The elements in theses sets guarantee a worst-case sensitivity and complementary
sensitivity peaks (in addition to closed-loop stability) for a set of plants defined by the
box Θ.

The control design problem considered in this work is a generalization of the well-
known MIGO [22], where interval parametric uncertainty is accounted for. It has been
motivated by the control requirements presented in the previous section, and it is
stated as follows:

maximize
x=[kp ki kd Tf ]⊤

ki

subject to x ∈ Fs(Θ, Ms),
x ∈ Ft(Θ, Mt).

(4.19)

Note that the optimization problem (4.19) implies a simultaneous design considering
every plant parameter vectors belonging to the set Θ. In the next section, the
simultaneous design for every plant parameter vector will be replaced, at the cost of
some conservatism, by a constrained design for the nominal fractional-order plant.

Alternatively to this optimization problem, we could choose any vector of controller
parameters x following any other optimal criteria. For example when considering an
unfiltered PI, in order to limit the control effort due to measurement noise, the value
of kp may be limited (since it defines the high-frequency gain of the controller).

4.4 Optimization-Based Design under Uncertainty

The optimization problem (4.19) can be classified as a robust optimization problem,
since the constraints depend on uncertain parameters (see equations (4.17) and (4.18)).
In general, robust optimization problems are computationally intractable, and the
method generally used to obtain an approximate solution is by using a brute force
approach, i.e. grid the uncertainty set. Here, the aim is to simplify the robust
optimization problem (4.19) by using the nominal fractional-order plant (4.5), and thus
reformulating it as a much simpler optimization problem (at the expense of introducing
some conservatism).

In the following, with the purpose of generating an inner approximation of the
feasible region of the optimization problem (4.19), we isolate the effect of each uncertain
parameter by fixing two of them while changing the remaining one.



4.4 Optimization-Based Design under Uncertainty 95

4.4.1 Uncertain Gain
To analyze the effect of gain uncertainty, we consider a plant parameters set Θ with
h1 = h2 and τ1 = τ2. Before presenting the first result, it is needed to define some
additional sets

as(L(jω, x, θ), Ms) ≡
x : π/2 ≥ ϕl(ω, x, θ) ≥ − arccos

(
−
√

1 − 1/M2
s

)
,

∀ω ≥ 0 s.t. ml(ω, x, θ) ≥ (1 − 1/M2
s )1/2

,

(4.20)

at(L(jω, x, θ), Mt) ≡
x : π/2 ≥ ϕl(ω, x, θ) ≥ − arccos

(
−
√

1 − 1/M2
t

)
,

∀ω ≥ 0 s.t. ml(ω, x, θ) ≥ (1 − 1/M2
t )−1/2

.

(4.21)

Controller parameters that belong to as(L(jω), Ms) (or at(L(jω), Mt)) allow to decrease
the gain of L(jω) (vertical displacement of the Nichols plot of L(jω)), without violating
the specification ∥S∥∞ ≤ Ms (or ∥T∥∞ ≤ Mt). This fact is illustrated in Figure 4.2
that shows an inverse M-circle corresponding to Ms = 1.8 with its interior (red region)
and the constraint imposed to the loop transfer function by the controller parameters
belonging to the set as(L(jω), 1.8) (blue rectangle). These forbidden regions may be
thought as boundaries (or Horowitz-Sidi bounds) used in the QFT technique.

Proposition 4.1. If Θ is defined with h1 = h2 and τ1 = τ2, then

fs(θ2, Ms) ∩ as(L(jω, x, θ2), Ms) ⊆ Fs(Θ, Ms), (4.22)

ft(θ2, Mt) ∩ at(L(jω, x, θ2), Mt) ⊆ Ft(Θ, Mt), (4.23)

where θ2 = [k2 h2 τ2]⊤.

Proof. Let start proving (4.22), the condition ∥S(x, θ)∥∞ ≤ Ms is equivalent to

m2
l + 2ml cos(ϕl) + 1 − 1/M2

s ≥ 0, (4.24)

for all ω ≥ 0 (see [59]). Note that only ml(ω, x, θ) depends on k. We consider two
cases:
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Figure 4.2 Forbidden area imposed to the loop transfer function by as(L(jω), Ms)
Forbidden area imposed to the loop transfer function (blue rectangle) by the controller
parameters belonging to the set as(L(jω), 1.8) in the Nichols plane. The region enclosed by
the inverse M-circle corresponding to Ms = 1.8 is also shown (red regions).

1) π/2 ≥ ϕl(ω, x, θ2) ≥ − arccos
(
−
√

1 − 1/M2
s

)
. Under this condition, (4.24) is met

independently of the value of k. It is easy to see that (4.24) has not real solutions for
ml, when the equality is considered.
2) ϕl(ω, x, θ2) < − arccos

(
−
√

1 − 1/M2
s

)
. In this case, we also have that ml(ω, x, θ2) <√

1 − 1/M2
s . Condition (4.24) is defined by a quadratic function on the variable ml that

attains a unique minimum at ml = cos(ϕl), then if a given ml(ω, x, θ2) <
√

1 − 1/M2
s

satisfies (4.24), it is also satisfied by any ml(ω, x, θ) with θ ∈ Θ.

The relation (4.23) is proved using that the condition ∥T (x, θ)∥∞ ≤ Mt is equivalent
to

m2
l (1 − 1/M2

t ) + 2ml cos(ϕl) + 1 ≥ 0, (4.25)

for all ω ≥ 0. This case follows similarly to the previous one, and it is omitted here.

Regarding stability, we assume that the controller parameters x stabilizes the plant
with parameters θ2. Then, the closed-loop system remains stable for any θ ∈ Θ, since
the boundary between stabilizing and stabilizing parameters corresponds to an infinite
value for the sensitivity (and the complementary sensitivity), and it has been proved
that when reducing k the sensitivity (and the complementary sensitivity) remains
bounded.
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4.4.2 Uncertain Time Delay
The effect of the time-delay uncertainty is studied using a set Θ where k1 = k2 and
τ1 = τ2. Before presenting the result concerning to time-delay uncertainty, it is needed
to define some additional sets:

bs(L(jω, x, θ), Ms) ≡
x : ml(ω, x, θ) ≤ (1 − 1/Ms),

∀ω ≥ 0 s.t. ϕl(ω, x, θ) ≤ −π or ϕl(ω, x, θ) ≥ π/2
,

(4.26)

bt(L(jω, x, θ), Mt) ≡
x : ml(ω, x, θ) ≤ (1 + 1/Mt)−1,

∀ω ≥ 0 s.t. ϕl(ω, x, θ) ≤ −π or ϕl(ω, x, θ) ≥ π/2
.

(4.27)

These sets have a similar role to the ones presented in the previous section, controller
parameters that belong to bs(L(jω), Ms) (or bt(L(jω), Mt)) allow to increase the phase
of L(jω) (horizontal displacement of L(jω) in the Nichols plane), without violating
the specification ∥S∥∞ ≤ Ms (or ∥T∥∞ ≤ Mt). Analogously to the previous section,
Figure 4.3 shows region enclosed by an inverse M-circle corresponding to Ms = 1.8
(red region) and the constraint imposed to the loop transfer function by the controller
parameters belonging to the set bs(L(jω), 1.8) (blue rectangle) in the Nichols plane.

Proposition 4.2. If Θ is defined with k1 = k2 and τ1 = τ2, then

fs(θ2, Ms) ∩ bs(L(jω, x, θ2), Ms) ⊆ Fs(Θ, Ms), (4.28)

ft(θ2, Mt) ∩ bt(L(jω, x, θ2), Mt) ⊆ Ft(Θ, Mt), (4.29)

where θ2 = [k2 h2 τ2]⊤.

Proof. Let start proving (4.28), the condition ∥S(x, θ)∥∞ ≤ Ms is equivalent to (4.24).
Note that only ϕl(ω, x, θ) depends on h. We consider two cases:
1) ml(ω, x, θ2) ≤ 1 − 1/Ms. Rewriting as 1 − ml ≥ 1/Ms and squaring leads to
m2

l − 2ml + 1 − 1/M2
s ≥ 0, therefore (4.24) is met independently of the value of h.

2) ml(ω, x, θ2) > 1−1/Ms. The second term of (4.24) is the only that may be negative,
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Figure 4.3 Forbidden area imposed to the loop transfer function by bs(L(jω), Ms)
Forbidden area imposed to the loop transfer function (blue rectangles) by the controller
parameters belonging to the set bs(L(jω), 1.8) in the Nichols plane. The region enclosed by
the inverse M-circle corresponding to Ms = 1.8 is also shown (red regions).

taking into account that

−π < ϕl(ω, x, θ2) ≤ ϕl(ω, x, θ) < π/2. (4.30)

That leads to
cos(ϕl(ω, x, θ)) ≥ min(0, cos (ϕl(ω, x, θ2))) . (4.31)

Then (4.24) is met for any θ ∈ Θ.

The proof of (4.29) is similar to that of (4.28), and it is omitted for brevity. On
the other hand, we assume that the controller parameters x stabilizes the plant with
parameters θ2. Then the closed-loop system remains stable for any θ ∈ Θ, since the
boundary between stabilizing and unstabilizing parameters corresponds to an infinite
value for the sensitivity (and the complementary sensitivity), and it has been proved
that when reducing h the sensitivity (and the complementary sensitivity) remains
bounded.
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4.4.3 Uncertain Time Constant

In this section, it is initially considered a set Θ where k1 = k2 and h1 = h2. Variations
in the time constant affect both gain and phase of the plant, that makes the analysis of
uncertainty in the time constant more involved. As a consequence of that, Fs(Θ, Ms)
and Ft(Θ, Mt) are not easily defined by one element belonging to the set Θ. In some
cases, the following relations hold

fs(θ1, Ms) ∩ fs(θ2, Ms) = Fs(Θ, Ms), (4.32)

ft(θ1, Mt) ∩ ft(θ2, Mt) = Ft(Θ, Mt). (4.33)

But these relations do not hold in general. It is not difficult to find counterexamples
where to obtain Fs(Θ, Ms) and Fs(Θ, Ms) is needed to take into account more cases
in addition to the extremes. This fact motivates the use of the fractional-order plant,
introduced in the previous section, to deal with time constant uncertainty. It is needed
to define two additional sets that play a similar role to fs and ft, but in this case, they
are referred to the (fractional-order) loop transfer function LF (s, x). These sets are
defined below:

fF
s (Ms) =

{
x ∈ DF :

∥∥∥SF (x)
∥∥∥

∞
≤ Ms

}
, (4.34)

fF
t (Mt) =

{
x ∈ DF :

∥∥∥T F (x)
∥∥∥

∞
≤ Mt

}
, (4.35)

where DF is the set of controller parameters that make the loop transfer function
LF (s, x) to have a positive phase margin (that does not imply closed-loop stability
for this particular fractional system). This set would be the stabilizing set if Nyquist
theorem were applicable to this loop transfer function. SF (s, x) and T F (s, x) denote
the sensitivity and complementary sensitivity, respectively, for the (fractional-order)
loop transfer function LF (s, x).

As consequence of Propositions 4.1 and 4.2, it is possible to state the following
result.

Proposition 4.3. Considering Θ defined with k2 ≥ k1, h2 ≥ h1, and τ2 > τ1. Then,
the following statements hold

fF
s (Ms) ∩ as(LF (jω, x), Ms) ∩ bs(LF (jω, x), Ms) ⊆ Fs(Θ, Ms), (4.36)
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fF
t (Mt) ∩ at(LF (jω, x), Mt) ∩ bt(LF (jω, x), Mt) ⊆ Ft(Θ, Mt). (4.37)

Proof. This proof involves analogous arguments to the used in Propositions 4.1 and
4.2, therefore a complete proof is omitted for brevity. Roughly speaking, LF (jω, x)
has greater or equal gain and less or equal phase to L(jω, x, θ) with θ ∈ Θ (see (4.7)).
Therefore, the same arguments applied in the proofs of Propositions 4.1 and 4.2 lead to
the result presented in this proposition. The only concern is about closed-loop stability,
but controller parameters belonging to fF

s (Ms) and fF
t (Mt) provides to LF (jω, x) with

a positive phase margin, that guarantees a positive phase margin for L(jω, x, θ) with
θ ∈ Θ, and hence closed-loop stability.

4.4.4 Illustrative Example

With the purpose of illustrating the previous results, we consider a set Θ defined by
the parameters k1 = h1 = τ1 = 0.5 and k2 = h2 = τ2 = 1, and a vector of controller
parameters x = [0.53 0.56 0.66 1]⊤. This vector of controller parameter satisfies

x) ∈ fF
s (1.8) ∩ as(LF (jω, x), 1.8) ∩ bs(LF (jω, x), 1.8), (4.38)

then it also belongs to Fs(Θ, 1.8) (by Proposition 4.3). This is illustrated in Fig-
ure 4.4, that shows the region enclosed by the inverse M-circle corresponding to
Ms = 1.8 (red region), the restricted regions imposed by the sets as(LF (jω, x), 1.8) and
bs(LF (jω, x), 1.8) (blue rectangles), some compensated (multiplied by C(jω, x)) tem-
plates corresponding to the set Θ (green regions), and the Nichols plot corresponding
to LF (jω, x) (black line).

It is possible to appreciate in Figure 4.4 that being the Nichols plot of LF (jω, x)
outside the forbidden regions (red and blue regions), the compensated templates do
not enter into the region delimited by the inverse M-circle corresponding to Ms = 1.8
(red region). In this way, a simultaneous design for all uncertainty instances is replaced
by a constrained design for the nominal fractional-order plant.

4.4.5 Design for the Fractional-Order Plant

After presenting some results that allow us to obtain a subset of the feasible region of the
robust optimization problem (4.19), it may be rewritten in the following approximated
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Figure 4.4 Nichols plot of a PID with an uncertain FOTD plant
Compensated templates (green regions) and Nichols plot of LF (jω, x) (black line). Forbidden
areas defined by as(LF (jω, x), 1.8) and bs(LF (jω, x), 1.8) (blue rectangles) and inverse M-
circle corresponding to Ms = 1.8 with its interior (red region).

form

maximize
x=[kp ki kd Tf ]⊤

ki

subject to x ∈ fF
s (Ms) ∩ as(LF (jω, x), Ms) ∩ bs(LF (jω, x), Ms),

x ∈ fF
t (Mt) ∩ at(LF (jω, x), Mt) ∩ bt(LF (jω, x), Mt).

(4.39)

Note that the solution to this optimization problem is a sub-optimal solution to the
optimization problem (4.19), but in this case, the solution can be obtained by designing
for a nominal fractional-order plant and taking into account some restrictions in the
loop transfer function.

This optimization problem can be easily solved using several approaches (for
simplicity the value of the time constant of the filter Tf will be pre-specified). The
resulting optimization problem can be solved using any standard optimization solver
without encountering major difficulties. In the many designs that have been carried
out, initialization of the local algorithm active-set (implemented in the Matlab function
fmincon) with the parameter vector [0 0 0 Tf ]⊤ was sufficient to produce the global
optimum. (It is easy to see that this vector always belongs to the feasible set of the
considered optimization problem.)
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The standard form in which most numerical solvers consider optimization problems
is

minimize
x

f(x)
subject to gi(x) ≤ 0, ∀i = 1, . . . , m.

(4.40)

The optimization problem (4.39) can be arranged into this form by using some adequate
functions. (Determining whether a vector of controller parameters belongs to these
sets is easily done by performing basic operations over LF (jω).)

4.5 Examples
The proposed design method will be illustrated by two examples. The first one applies
the method to an uncertain plant, motivated by an industrial process. In order to show
the applicability of the proposed method to other control structures, the second one
considers a PID with an SP.

Example 4.1 (Temperature control problem). This example examines the application
of the proposed method to the design of a PID controller for a temperature control
problem. The plant that we consider is modeled in [251], it consists of an industrial
heat exchanger, commonly used in food industries for thermal treatments, where the
steam flow rate is manipulated to control the difference of temperature between the
outlet and the inlet of the heat exchanger. The output of the model is the difference
of temperature (in degrees centigrade) between the outlet and the inlet of the heat
exchanger, and the input is the aperture of a valve. Identification experiments carried
out for different operation points (see [251] for further details) obtained the following
interval plant

P =
{

P (s, θ) = k

τs + 1e−sh : θ = [k h τ ]⊤ ∈ Θ
}

, (4.41)

where Θ = [0.31, 0.40]× [80, 114]× [50, 88]. Time constant and time delay are expressed
in seconds.

We solve the optimization problem (4.39) (that is an approximate version of the
problem (4.19)), considering as specifications Ms = Mt = 1.4 and fixing the time
constant of the filter to Tf = 100. This controller is compared to others obtained with
different methods from the literature. Firstly, we use results presented in [177] (this
method will be presented in the next chapter) to solve the optimization problem (4.19)
(considering as specifications Ms = Mt = 1.4 and fixing the value of the time constant
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Table 4.1 Different controllers (Example 4.1)

Method kp ki kd Tf max
θ∈Θ

∥S∥∞ max
θ∈Θ

∥T∥∞

Proposed 0.86 0.77 · 10−2 101 100 1.39 1.01

[177] 0.92 0.80 · 10−2 99 100 1.40 1.02

[119] 1.18 1.19 · 10−2 139 100 1.66 1.23

[97] 1.27 1.09 · 10−2 111 100 1.64 1.16

of the filter to Tf = 100). Secondly, we use the method proposed in [119] to solve the
problem (4.42) for the nominal plant parameters θ̄ = [0.36 97 69]⊤, these parameters
are the mean parameters of the intervals that define Θ. It is expressed as:

maximize
x=[kp ki kd 100]⊤

ki

subject to x ∈ fs(θ̄, 1.4),

x ∈ ft(θ̄, 1.4).

(4.42)

Lastly, we consider the minimization of the IAE instead of the IE, also for the nominal
parameter vector θ̄; that is formulated as follows:

minimize
x=[kp ki kd 100]⊤

IAE

subject to x ∈ fs(θ̄, 1.4),

x ∈ ft(θ̄, 1.4).

(4.43)

This problem is solved using the software that accompanies the paper [97]. The
obtained controller parameters and their robustness levels are shown in Table 4.1. In
addition, a comparison between the controllers, in terms of temporal responses (plant
output and controller output) due to a unit step disturbance and a unit step reference,
is shown in Figures 4.5 and 4.6. The proposed method obtains a controller quite similar
to the obtained when solving the robust problem optimization (4.19) using [177], but
the complexity of the proposed optimization problem (4.39) is comparable to the one
corresponding to a nominal design, as (4.42) and (4.43). Note that the controllers
obtained by solving (4.42) and (4.43) (using [119] and [97], respectively) result in more
oscillatory responses and violation of the constraints, when the controller is evaluated
using the uncertain plant.
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Figure 4.5 Disturbance rejection (Example 4.1)
Plant output (left) and controller output (right) due to a unit step disturbance (right). From
top to bottom, proposed method, [177], [119], and [97].
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Figure 4.6 Reference tracking (Example 4.1)
Plant output (left) and controller output (right) due to a unit step reference (right). From
top to bottom, proposed method, [177], [119], and [97].
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Example 4.2 (PID with a Smith Predictor (SP)). This example studies the application
of Proposition 4.2 to the design of a PID with an SP, a particular case of DTC. This
type of controllers is usually regarded as inherently nonrobust, especially with respect
to uncertainty in the plant time delay [108, 127]. The reason of that is that they have
a tendency to introduce multiple crossover frequencies.

Proposition 4.2 provides conditions that allow for obtaining a design that maintains
the stability margins of the nominal plant when reducing the time delay. It should be
noted that in the proof of Proposition 4.2, a particular structure of the controller is
not used. It is only used that the phase of the loop transfer function less than π/2.
This condition guarantees that when reducing the time delay of the plant, the Nichols
plot of the loop transfer function does not enter into the (inverse) M-circles enclosing
the critical point [π 0]⊤. Then, provided this last condition is fulfilled, Proposition 4.2
may be applied to any other controller structure.

The traditional SP design procedure involves the tuning of a primary controller (i.e.
CPID(s) in equation (4.44)) as if there were no time delay. It is well-known that this
procedure may lead to disastrous designs in terms of very poor robustness properties.
Therefore, it is motivated the introduction of some constraints during the design of the
primary controller in order to avoid this undesired behavior.

We consider a feedback controller composed of an unfiltered PID with an SP, that
has the following transfer function (when a nominal plant modeled by an FOTD is
considered)

C(s, x, θ) = CPID(s, x)
1 + CPID(s, x)Π(s, θ) , (4.44)

where
CPID(s, x) = kp + ki

s
+ kds (4.45)

and
Π(s, θ) = k

τs + 1(1 − e−sh), (4.46)

being x = [kp ki kd]⊤ and θ = [k h τ ]⊤. The same approach to the presented in
Section 4.2 is used here to tune this controller. It is possible to prove that the IE due
to a unit step disturbance is minimized by maximizing the integral gain. A direct
application of the final value theorem leads to

IE =
∫ ∞

0
e(t)dt = lim

s→0
s

P (s, θ)
1 + C(s, x, θ)P (s, θ)

1
s2 = kh + 1

ki

. (4.47)



4.5 Examples 107

−7π −5π −3π −π
−20

−10

0

10

20

Phase, rad

G
ai

n,
dB

Figure 4.7 Nichols plot (Example 4.2)
Nichols plot of L(jω, x, θ2), forbidden areas defined by the set bs(L(jω, x, θ2), 1.6) (blue
rectangle) and inverse M-circles corresponding to Ms = 1.6 (red regions).

To illustrate the application of Proposition 4.2 to the design of a PID with an SP,
we consider the following uncertain plant

P =
{

P (s, θ) = k

τs + 1e−sh : θ = [k h τ ]⊤ ∈ Θ
}

, (4.48)

where Θ = [1] × [0, 5] × [1]. For simplicity, we choose a plant where uncertainty
only affects to the time delay. Using Proposition 4.2, it is stated an optimization
problem that only concerns to the plant parameters given by the vector of parameters
θ2 = [1 5 1]⊤. We propose the following optimization problem:

maximize
x=[kp ki kd]⊤

ki

subject to x ∈ fs(θ2, 1.6) ∩ bs(L(jω, x, θ2), 1.6).
(4.49)

The solution to this optimization problem is x = [0.523 0.403 0.375]⊤ (with SP, using
the feedback controller of equation (4.44)).

Figure 4.7 shows the Nichols plot for this design, as well as forbidden region
imposed to the loop transfer function by the controller parameters belonging to the set
bs(L(jω, x, θ2), 1.6) and regions delimited by the inverse M-circles corresponding to
Ms = 1.6.



108 Chapter 4. PID Design for an Uncertain FOTD Plant

In essence, our condition to provide robustness (in terms of maximum sensitivity
peak) to a PID with an SP against reduction of time delay is based on limiting the
gain of the controller at high-frequencies, similar conditions guaranteeing a gain margin
(weaker stability margin) when the time delay is reduced were presented in [159].



Chapter 5

PID Design for an Uncertain
General Plant

5.1 Introduction

This chapter tackles the problem of designing PID controllers for an uncertain general
plant model, in the sense that the uncertain plant model may be given in terms of
a family of frequency response data. Previous chapters have only considered some
particular uncertain plant models (parametric models). In addition, this chapter
also considers both control approaches already presented in Section 2.1.4, namely
maximization of performance and minimization of cost of feedback. The approach
of minimizing the cost of feedback requires the specification of a minimum level of
performance. Therefore, in addition to constraints for relative stability, constraints
for imposing a minimum level of performance are also considered here. Two classes
of control design problems are considered in this chapter: MIGO [22, 203] and QFT
[128, 265].

In this chapter, optimization problems arising from control design problems are
solved by using optimization algorithms based on the convex-concave procedure (CCP)
[48, 162]. The main advantages of the approach are:

• Given a plant description and the desired specifications, the control design problem
is directly stated in the form of an optimization problem with constraints.

• Many efficient algorithms are available for convex optimization problems.

• The QFT bounds give useful insight into the critical uncertainties.
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Convex optimization has been used earlier for PID control [47, 119, 149, 218], but
these papers do not use uncertainty specified by (not necessarily convex) templates
and Horowitz-Sidi bounds.

The chapter is organized as follows. A problem formulation, which includes plant
uncertainty, controller structure, constraints, and optimization criteria, is given in
Section 5.2 leading to the optimization problems presented in Section 5.3. The CCP is
introduced and applied to loop shaping in Section 5.4. Examples are given in Section 5.5
and a discussion is done in Section 5.6.

5.2 Problem Statement
We consider a 2-DOF feedback control system, as the one represented in the block
diagram shown in Figure 1.2, where r is the set-point, e is the error, u is the controller
output, d is the load disturbance, n is the measurement noise, and y is the plant output.
The transfer functions of the plant, the controller and the prefilter are P (s), C(s) and
F (s), respectively. Plant uncertainty is captured by assuming that P (s) belongs to a
given set P .

5.2.1 Plant Uncertainty
The approach adopted here to model an uncertain plant is by using a finite or infinite
set P of transfer functions P (s). Typically, this set may represent a physical model
of a system with parametric or nonparametric uncertainty, a set of models computed
from system identification experiments, or a finite set of models. A template Pω is the
set of all frequency responses at the frequency ω, or formally

Pω =
{
P (jω) : P (s) ∈ P

}
. (5.1)

This way of modeling uncertainty, which is the basis of QFT, has several advantages:

• There is no need for a particular plant model representation, any linear model
can be transformed into a frequency response.

• Experimental frequency response data can be used.

• The inclusion of phase uncertainty allows for obtaining less conservative results
than the obtained when only gain uncertainty is considered, e.g. unstructured
disk uncertainty commonly used in H∞ control (it considers a phase uncertainty
of ±π rad).
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Here, we include a comparison among different approaches to model uncertainty.
In particular, we are going to consider templates used in QFT and unstructured disk
uncertainty used in H∞. Let us consider the same uncertain plant that was studied in
Section 2.2.2, that is

P =
{

k

τs + 1 : [k τ ]⊤ ∈ Θ = [1, 5] × [1, 5]
}

. (5.2)

The use of unstructured disk uncertainty requires the election of a nominal plant, in
this case the plant defined by the uncertain parameters in the middle of ranges has
been chosen. Then, the uncertain set of plants is modeled by using the following set:

Punc =
{

P (s) :
∣∣∣∣∣ P (s)
Pnom(s) − 1

∣∣∣∣∣ ≤ |W (s)|
}

, (5.3)

where W (s) is known as shaping filter. This is given by a minimum-phase transfer
function of a certain order that has to be specified, there are available algorithms to
obtain it, for example, uncover implemented in Matlab. It is important to clarify that
this election of the nominal plant does not necessarily produce the tightest disk, but
the election of the nominal plant that leads to the tightest disk is usually a hard task,
and the election done here is common in practice. The resulting uncertain sets are
shown in Figure 5.1 for the frequencies ω = 0.1, 1, 20. In the case of information about
the structure of the uncertainty is available, the use of an unstructured model of the
uncertainty will lead to conservative results when comparing with a design performed
using a structured model of the uncertainty.

5.2.2 Controller and Prefilter Structures

The PID controller has the following transfer function

CPID(s, xc) = kp + ki

s
+ kds, (5.4)

where xc = [kp ki kd]⊤ is a vector of controller parameters. This representation of
the PID controller is specially suitable for the techniques used in this chapter, since
the parameters depend in a linear way. Other representations of the PID controller
and transformations about them are given in Appendix B. The PID controller can be
augmented by a low-pass measurement filter, which reduces effects of measurement
noise and provides high-frequency roll-off [19]. Then, the resulting controller with a



112 Chapter 5. PID Design for an Uncertain General Plant

−2.5 0 2.5 5−4

−2

0

2

ℜ

ℑ

Figure 5.1 Structured (templates) and unstructured (disk) uncertainty

second-order filter is
C(s, xc) = CPID(s, xc)Gf (s), (5.5)

where
Gf (s) = 1

1 + sTf + s2T 2
f /2 . (5.6)

This second-order filter has two complex poles with the smallest damping ratio for
which there is no amplitude amplification. Other filter structures are possible [115],
but this choice keeps the number of parameters as low as possible. The filter time
constant does not appear affinely in the controller. It must be determined iteratively
when using convex optimization.

Set-point weighting is used to obtain a simple control structure with 2 DOF. It
corresponds to the structure in Figure 1.2 with the prefilter F (s, xf )

F (s, xf ) = ckds2 + bkps + ki

kds2 + kps + ki

, (5.7)

where xf = [b c]⊤ is the vector of prefilter parameters. In some cases, it may be
necessary to use more general prefilter structures. In the following the loop transfer
function will be denoted L(s, xc) = C(s, xc)P (s). When it is clear from the context,
the arguments xc and xf will be dropped for the sake of brevity.
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5.2.3 Control Design Approaches

There is no need for feedback if there are no plant model uncertainty and no disturbances,
as pointed out by Horowitz [124]. The effects of uncertainties and disturbances are
small if the controller gain is large over a wide frequency range. There are however
severe drawbacks with a controller having too high gain. These are related to the cost of
feedback, that is paid in terms of bandwidth. The notion of cost of feedback expressed
in terms of the frequency band where the controller has high gain was introduced by
Horowitz [128], who emphasized the drawbacks inherent to any feedback system (it
was presented in Section 2.1.4). In addition, for NMP systems there are theoretical
limitations that limit the available bandwidth of the loop transfer function (these
limitations were briefly introduced in Section 2.1.4).

To summarize, since load disturbances typically have low frequencies and meas-
urement noise typically has high frequencies, the loop transfer function should be
shaped to have high gain at low frequencies and low gain at high frequencies. To have
adequate stability the loop transfer function should be shaped so that it has a good
phase margin at the crossover frequency ωgc where |L(jωgc)| = 1. Finding the gain
crossover frequency ωgc and a good shape of the loop transfer function is a trade-off
between performance and robustness.

We present two control design approaches, where the loop shaping trade-off is
resolved in different ways.

• Maximization of performance. In this approach, the controller gain at low
frequencies is maximized under robustness constraints that limit the gain at high
frequencies. This approach is well known in the PID literature, for example, the
MIGO method. It can be understood as a maximizing criterion of the benefits of
feedback.

• Minimization of cost of feedback. In this case, the high-frequency gain of the
controller is minimized under constraints on a lower bound on the low-frequency
gain of the controller that correspond to a desired minimum level of performance.
This approach is a central issue in QFT, and it can be interpreted as a minimizing
criterion of the drawbacks of feedback.
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5.3 Control Design Problem via Optimization
The control design problem can be stated as a constrained optimization problem.
Before introducing the optimization problem, constraints and optimization criteria will
be defined.

5.3.1 Constraints
We introduce several design specifications that will play the role of constraints in the
optimization problems. The first four constraints impose (frequency-dependent) bounds
on the gain of sensitivity functions (“The Gang of Four”), and the fifth constraint
(common in the QFT framework) is used to impose a robust tracking specification. All
these constraints are used in QFT, as it was already presented in Section 2.2.

Sensitivity

A bound on the peak of the sensitivity is a typical measure of robustness, note that the
maximum sensitivity ∥S∥∞ is the inverse of the shortest distance from a point on the
Nyquist plot of the loop transfer function to the critical point. A frequency-dependent
bound can be used to guarantee attenuation of low-frequency load disturbances.

|S(jω)| =
∣∣∣∣∣ 1
1 + L(jω)

∣∣∣∣∣ ≤ δS(ω), ∀P (jω) ∈ Pω. (5.8)

Complementary Sensitivity

To place an upper bound on the peak of the complementary sensitivity is another way
to ensure robustness. When F (s) = 1, the complementary sensitivity is the transfer
function from set-point to plant output. The peak of the set-point response can be
bounded by the constraint

|T (jω)| =
∣∣∣∣∣ L(jω)
1 + L(jω)

∣∣∣∣∣ ≤ δT (ω), ∀P (jω) ∈ Pω. (5.9)

Noise sensitivity

A bound on the noise sensitivity limits the control signal activity due to measurement
noise.

|Gun(jω)| =
∣∣∣∣∣ C(jω)
1 + L(jω)

∣∣∣∣∣ ≤ δN(ω), ∀P (jω) ∈ Pω, (5.10)
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where Gun(s) = C(s)S(s) is the transfer function from measurement noise n to control
signal u.

Load Disturbance Sensitivity

Attenuation of load disturbances at the plant input can be captured by the inequality

|Gyd(jω)| =
∣∣∣∣∣ P (jω)
1 + L(jω)

∣∣∣∣∣ ≤ δD(ω), ∀P (jω) ∈ Pω, (5.11)

where Gyd(s) = P (s)S(s) is the transfer function from load disturbance d to output y.

Robust Tracking Specification

Requirements on set-point tracking can be captured by the inequality

δl(ω) ≤ |F (jω)T (jω)| ≤ δu(ω), ∀P (jω) ∈ Pω. (5.12)

Notice that a 2-DOF controller architecture separates disturbance attenuation and
robustness from set-point tracking. The feedback controller C(s) is designed to take care
of performance and robustness, and the feedforward F (s) handles set-point tracking.

The procedure that will be used here to deal with this constraint is based on [265].
A simple manipulation of (5.12) results in the following specification for the feedback
controller C(s):

max
P (jω)∈Pω

20 log10 |T (jω)| − min
P (jω)∈Pω

20 log10 |T (jω)| ≤ 20 log10
δu(ω)
δl(ω) . (5.13)

If this specification is satisfied for a controller C(s); then there exists a minimum-phase
prefilter F (s), that satisfies (5.12) (see [128]). This constraint can also be rewritten in
the form (5.9). For a pair of plants P1(jω), P2(jω) ∈ Pω, and by considering

Laux(jω) = (1 + P1(jω)C(jω)) P2(jω)
P1(jω) − P2(jω) , (5.14)

this specification can be expressed as follows

|Taux(jω)| =
∣∣∣∣∣ Laux(jω)
1 + Laux(jω)

∣∣∣∣∣ ≤ δu(ω)
δl(ω) = δT r(ω), ∀P1(jω), P2(jω) ∈ Pω. (5.15)



116 Chapter 5. PID Design for an Uncertain General Plant

When C(s) has been determined, the next step is to design the prefilter F (s) or the
set-point weights for a PID controller (5.7). Note that with this fixed structure of the
PID controller we cannot always guarantee that inequalities (5.13) and (5.15) satisfy
the condition (5.12). A relaxation of the constraint (5.12) may, therefore, be required.

5.3.2 Optimization Criteria

Two optimization criteria are proposed namely: maximization of performance and
minimization of the cost of feedback.

Maximizing Performance

Control system performance is provided by the gain of the feedback controller (over
a range of frequencies). Therefore, a natural choice for an optimal criterion is to
maximize the gain of the feedback controller at low frequencies, with some constraints
that limit the gain of the controller at high frequencies. For PID control this criterion
is equivalent to maximize the integral gain ki. It is also equivalent to minimize the IE
due to a load disturbance at the plant input or a unit step in the set-point, since

IEd = k−1
i , IEs = (P (0)ki)−1, (5.16)

where the subscripts d and s stand for disturbance and set-point, respectively.
The criterion (5.16) for the case of disturbances combined with constraints on the

maximum sensitivities ∥S∥∞ and ∥T∥∞ corresponds to the MIGO design method.

Minimizing the Cost of Feedback

This is the optimal criterion used in QFT, where the control design problem is defined
as the minimization of the cost of feedback, subject to a constraint on the minimum
level of performance for every plant. In the words of Horowitz, that is “the problem of
achieving desired system tolerances from uncertain plants, at minimum cost of feedback”
[130]. The controller gain at low frequencies is given by the tracking specifications
(5.12) and by the disturbance rejection at the plant input (or plant output) specification
(5.11) (or (5.8)).

Minimization of the high-frequency gain of the controller corresponds to minimiza-
tion of proportional gain kp for a PI controller or derivative gain kd for a controller
with derivative action.
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To pose the design problem we choose one criterion to be optimized while keeping
the others as constraints. Different optimization problems are obtained depending on
what criterion we choose to optimize.

5.3.3 Extension of MIGO Method to a Set of Plants

Adopting the disturbance attenuation in terms of minimization of IE as the specification
to be placed as objective function, we arrive at an extension of MIGO method by
considering a set of plants instead of a nominal plant. This is presented as follows:

maximize
xc

ki

subject to ∥S(xc)∥∞ ≤ Ms,

∥T (xc)∥∞ ≤ Mt,

∥Gun(xc)∥∞ ≤ Mn,

∀P (s) ∈ P .

(5.17)

If all plants have positive gain at low frequencies, then the integral gain must be
positive to ensure closed-loop stability.

5.3.4 Control Design Problem Based on QFT Specifications

A control design problem with specifications and optimal criterion from QFT is stated
in two stages. Firstly, the feedback controller is designed and later the prefilter. The
feedback controller is determined by solving the following optimization problem:

minimize
xc

|kd|
subject to |Taux(jω, xc)| ≤ δT r(ω),

|Gyd(jω, xc)| ≤ δD(ω),

|S(jω, xc)| ≤ δS(ω),

|T (jω, xc)| ≤ δT (ω),

|Gun(jω, xc)| ≤ δN(ω),

∀P1(jω), P2(jω) ∈ Pω,

∀P (jω) ∈ Pω,

∀ω ≥ 0.

(5.18)
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The prefilter is then determined as the solution of the following optimization problem:

maximize
xf

b

subject to |F (jω, xf )T (jω)| ≤ δu(ω),

∀P (jω) ∈ Pω,

∀ω ≥ 0.

(5.19)

The design of the set-point weights is a convex optimization problem, which was solved
recently [120].

The requirement of closed-loop stability is assumed in both optimization problems,
i.e., the feasible set of each problem is the intersection of the controller parameters
satisfying the constraints with the set of parameters that provide closed-loop stability.

5.4 Loop Shaping Using the CCP

This section describes the application of the CCP to the optimization problems described
in the previous section. The key idea is to describe the constraints and the optimization
criteria as convex functions or differences of convex functions. Since CCP is an iterative
method it is also necessary to give initial conditions. Gridding of the frequency range
will be also discussed. Finally, we give a simple example that illustrates the use of the
CCP for a simple design problem.

5.4.1 The CCP Method

Convex optimization has the advantage that there is a unique minimum and that very
efficient and reliable computation algorithms are available. The CCP extends convex
optimization to the case when the criterion and the constraint can be expressed as a
difference of convex functions. That is

minimize
x

f0(x) − g0(x)

subject to fi(x) − gi(x) ≤ 0, i = 1, ..., m,
(5.20)

where fi(x) and gi(x) (for i = 0, 1, ..., m) are convex functions. This is not a convex
problem since −gi(x) is concave (see Appendix A for more details about optimization
problems). To obtain a convex criterion or constraint fi(x) − gi(x) around a point xk,
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gi(x) is substituted by its affine approximation

ĝi(x, xk) = gi(xk) + ∇gi(xk)⊤(x − xk), (5.21)

where ∇gi(xk) is the gradient of gi(x) evaluated at xk. Since

fi(x) − ĝi(x, xk) ≥ fi(x) − gi(x), (5.22)

the convex objective and constraints are more conservative than the originals. In this
way, the feasible set will be a convex subset of the original feasible set. The convexified
problem can be solved efficiently, and by using a new feasible point xk+1 the procedure
is iterated. The iterative procedure converges to a saddle point or a local minimum
[276]. The procedure is stopped when there is no significant improvement from the
last iteration. Even though there is no guarantee of convergence to a global minimum,
experience has shown the method to often be effective in obtaining good solutions
[119]. Note that the algorithm requires a feasible starting point x0, some guidelines for
determining a starting point for the control problems under consideration will be given
later.

5.4.2 Circle Constraints

Consider a circle with center cc and radius rc. The constraint that the Nyquist plot of
L(s, xc) should lie outside the circle at a given frequency ω is equivalent to

rc − |L(jω, xc) − cc| = rc − g(xc) ≤ 0, (5.23)

where xc = [kp ki kd]⊤. The inequality constraint (5.23) is not a convex constraint,
since g(xc) is a convex function. By using the approximation (5.21) of (5.23), we get

ĝ(xc, xc
k) = ℜ

(
(L(jω, xc

k) − cc)∗

|L(jω, xck) − cc|
(L(jω, xc

k) − cc)
)

, (5.24)

where ℜ and ∗, denotes the real part and complex conjugate. This linearization of
g(xc) was introduced in [119]. The vector xc

k represents the controller parameters
from iteration k that leads to the convex constraint

rc − ĝ(xc, xc
k) ≤ 0. (5.25)
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Figure 5.2 Linearization of circle constraints
Linearization of circle constraints in the complex plane (left) and the corresponding situation
in the Nichols plane (right).

Figure 5.2 illustrates graphically this linearization both in the complex plane (left) and
the Nichols plane (right), the linearization is done with respect to the point denoted
with a dot.

This constraint is used to impose an upper bound on the magnitude of the sensitivity
at a given frequency; and to impose an upper bound on the complementary sensitivity
at a given frequency, when this upper bound is greater than or equal to 1. When this
upper bound is less than or equal to 1, the constraint that the Nyquist plot should lie
inside the circle at a given frequency ω is used, that is equivalent to

|L(jω, xc) − cc| − rc = g(xc) − rc ≤ 0, (5.26)

which is also a convex constraint.
For a given plant P (s) ∈ P and a given frequency ω, the design specifications can

be expressed in the form of (5.23) or (5.26), where the values of cc and rc are given in
Table 5.1 (see [265]). The constraint (5.13) can be rewritten in the form (5.15), where
Laux(s) depends affinely on the controller parameters xc. The previous method can
thus also be used for the robust tracking specification. Finally, note that for the cases
δT = 1 and γG = 1 the circles are distorted into straight lines.

5.4.3 Initialization

The proposed method needs an initial controller that stabilizes the system and satisfies
the constraints for all plants in P . In some relevant cases this choice is quite simple, a
controller with all parameters equal to zero can be used for problems as (5.17), if all
plants are stable. More care is required if some plants in P are unstable, see [119].
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Table 5.1 Values of cc and rc for different closed-loop specifications

Specification Constraint cc rc

|S(jω)| ≤ δS(ω) (5.23) −1 1
δS(ω)

|T (jω)| ≤ δT (ω), with δT (ω) ≥ 1 (5.23) δ2
T (ω)

1 − δ2
T (ω)

δT (ω)∣∣∣1 − δ2
T (ω)

∣∣∣
|T (jω)| ≤ δT (ω), with δT (ω) ≤ 1 (5.26) δ2

T (ω)
1 − δ2

T (ω)
δT (ω)∣∣∣1 − δ2

T (ω)
∣∣∣

|Gun(jω)| ≤ δG(ω), with δG(ω) |P (jω)| ≥ 1 (5.23) γ2
G(ω)

1 − γ2
G(ω)

γG(ω)∣∣∣1 − γ2
G(ω)

∣∣∣
|Gun(jω)| ≤ δG(ω), with δG(ω) |P (jω)| ≤ 1 (5.26) γ2

G(ω)
1 − γ2

G(ω)
γG(ω)∣∣∣1 − γ2

G(ω)
∣∣∣

|Gyd(jω)| ≤ δD(ω) (5.23) −1 1
γD(ω)

γG(ω) = δG(ω) |P (jω)| and γD(ω) = δD(ω) |P (jω)|.

A two-step procedure can be used for the optimization problem (5.18). An optimiz-
ation problem of the type (5.17) is first solved in order to provide adequate controller
parameters to the optimization problem (5.18). The controller obtained by optimizing
(5.17) has high gain at low frequencies, because the integral gain ki is maximized, and
it is expected that this controller will satisfy the constraints of (5.18). This procedure
is illustrated in Example 5.3.

Finally, simple tuning rules like approximate MIGO method (AMIGO) [18] and
SIMC [233] can also be used for initialization.

5.4.4 Insight from QFT Analysis

When using CCP it is necessary to grid the templates Pω. Several ideas from QFT
may help to reduce the number of plants to consider in the proposed optimization
problems, in order to reduce the computational burden. Methods for doing this will be
discussed. Techniques for dealing with worst-case robust optimization problems will
also be briefly presented, together with relations to standard methods used in QFT
design.
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Figure 5.3 Template for an uncertain FOTD plant
Template for FOTD plant with interval parametric uncertainty (described in (5.27)) at a
given frequency.

Simply Connected Templates

For simply connected templates (templates that consist of one piece and do not have
any holes in the extended Nichols chart that spans over all Riemann surfaces) and L(s)
with a fixed number of unstable poles, it is necessary and sufficient to work only with
the boundary of the templates [57].

The FOTD plant model with interval parametric uncertainty is commonly used in
industry. It can be represented by

P =
{

k

τs + 1e−sh : [k h τ ]⊤ ∈ Θ ⊂ R3
+

}
. (5.27)

where Θ = [k, k] × [h, h] × [τ , τ ]. The boundaries of the templates for this case are
easily parametrized, since these boundaries can be decomposed into several sections,
where only one parameter changes. The boundary of the plant template can be
obtained by mapping the boundary of the plant parameter uncertainty region, as
illustrated in Figure 5.3, where the template of an FOTD model with k = h = τ = 0.5,
k = h = τ = 1, and ω = 1 is shown.

Although templates computation may be efficiently solved for some uncertainty
types (for plants like in Figure 5.3 by gridding over the edges of the parameter set [92],
or using interval analysis [192]), in general templates computation must be solved by
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gridding the whole parameter set. This approach has to be followed with some care
[114], since it may result in spurious computations because it generates a large number
of internal points of no interest for optimization, and on the other hand some critical
point of the templates could be missed. A brief overview of the generation of plant
templates has been presented in Section 2.2.2.

Simplifications for some Fixed Controller Structures

There are cases in which some conditions related to the gain and phase of the loop
transfer function may reduce the dimensionality of the problem.

Remark 5.1. Consider an uncertain ITD model given by the following set of transfer
functions

P =
{

k

s
e−sh : [k h]⊤ ∈ [k, k] × [h, h] ⊂ R2

+

}
, (5.28)

a PI controller C(s) = kp + ki
s , and the specifications of robustness, ∥S∥∞ ≤ Ms and

∥T∥∞ ≤ Mt. Then, a vector of controller parameters [kp ki]⊤ that solves the problem
for

Pr =
{

k

s
e−sh,

k

s
e−sh

}
⊆ P , (5.29)

is also a solution for the set P. The insight from the QFT analysis is that it is sufficient
to explore only two systems, corresponding to plants with the longest time delay and
the largest and smallest steady-state gains. A formal proof of that has been presented
in Chapter 3.

Remark 5.2. Consider an uncertain FOTD model given by the following set of transfer
functions

P =
{

k

τs + 1e−sh : [k h τ ]⊤ ∈ Θ ⊂ R3
+

}
, (5.30)

where Θ = [k, k] × [h, h] × [τ , τ ], a PI controller C(s) = kp + ki
s , and the specifications

of robustness, ∥S∥∞ ≤ Ms and ∥T∥∞ ≤ Mt. Then, a pair of values [kp ki]⊤ that solves
the problem for

Pr =
{

k

τs + 1e−sh : [k h τ ]⊤ ∈ [k] × [h] × [τ , τ ]
}

⊆ P , (5.31)

is also a solution for the set P, if the following property is satisfied

dArg(L(jω))
dω

≤ 0, ∀P (s) ∈ Pr, (5.32)
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where L(s) is the open-loop transfer function. The intuitive idea behind that can be
devised by using the Nichols chart and the inverse Nichols chart. The proof of this
statement follows with the same arguments as in [179].

Remark 5.3. Consider an uncertain FOTD model given by the following set of transfer
functions

P =
{

k

τs/q + 1e−sh/q : q ∈ [q, q] ⊂ R+

}
, (5.33)

a PI controller C(s) = kp + ki
s , and the specifications of robustness, ∥S∥∞ ≤ Ms and

∥T∥∞ ≤ Mt. Then, a pair of values [kp ki]⊤ that solves the problem for

Pr =
{

k

τs/q + 1e−sh/q

}
⊆ P , (5.34)

is also a solution for the set P. Uncertain models of this type appear in the process
industry, where the variable q is typically a flow. Plant dynamics changes with flow,
see [23]. An insight gained from the QFT analysis is that it is sufficient to explore
only one plant, namely the one with the lowest value of q̄. By using normalization
properties, it is easy to see that increasing q is equivalent to decreasing (in absolute
value) ki, and it is well known that such decrement of integral gain does not lead to a
violation of these constraints.

Note that the gain of the open-loop frequency response in these three cases is always
nonincreasing with respect to the frequency; in fact, it is decreasing for all controller
parameters except for the trivial parameters (kp = 0 and ki = 0).

Iterative Design in QFT

In the QFT framework, it is common to solve the problem for a (modest) number of
frequencies, and later validate the solution (some iterations may be needed to obtain a
satisfactory solution) [46]. This procedure bares similarity to some methods used to
solve worst-case robust optimization problems. The optimization problems presented
in this work can be seen as worst-case robust optimization problems, with arbitrary
dependence on the uncertain parameters (in our case points belonging to the boundary
of the templates at different frequencies), then some techniques used in such problems
can be applied to the problems presented here, for example, cutting-set methods
[191]. These methods obtain a solution for an uncertainty set U by solving a sequence
of sampled problems, with expanding sets of scenarios Ûi ⊂ U , which are found by
evaluation in the original set U (it alternates between optimization and worst-case
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analysis). It can be viewed as a generalization of the common procedure in QFT, but
considering an adaptive sampling not only in the frequency but also in the boundaries
of the templates.

The robust optimization problems presented in this works can be recast in the
following form:

maximize
x

f0(x)

subject to fi(x, u) ≤ 0, ∀u ∈ U , i = 1, . . . , m.
(5.35)

where the set U is a finite set of points, but with a large number of points, corresponding
to the (boundary) templates at different frequencies.

In order to give an overview of the methods presented in [191], it is necessary to
define some concepts. The worst-case constraint functions are defined as

Fi(x) ≡ max
u∈U

fi(x, u). (5.36)

This function is evaluated to perform a worst-case analysis. A sequence of sampled
optimization problem (indexed by k) is defined as

maximize
x

f0(x)

subject to fi(x, u) ≤ 0, ∀u ∈ Ûk
i , i = 1, . . . , m,

(5.37)

where Ûk
i are finite subsets of U . The solution of the k-th optimization problem is

denoted as xk.
A basic cutting-set method consists in solving a sequence of sampled optimization

problem (5.37), with expanding set of scenarios Ûk
i , that are found by performing a

worst-case analysis, i.e. evaluating (5.36). The expanding of the set of scenarios Ûk
i is

obtained by appending to the previous ones, i.e. Ûk−1
i , the elements u ∈ U for which

fi(xk−1, u) are maximum. The iterative process is stopped when maxi=1,...,m Fi(xk−1)
is less than a predefined threshold, typically, a small positive number.

5.5 Examples
To illustrate the effectiveness of the proposed method we will explore some examples
that have been investigated previously with other methods. The package CVX is used
to formulate and solve the optimization problems [103, 104].
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Example 5.1 (An illustrative example). The following simple example illustrates how
the CCP works. The plant and the controller have the transfer functions

P (s) = e−s

s + 1 , (5.38)

and
C(s, xc) = kp + ki

s
. (5.39)

The optimization problem is given as follows:

maximize
xc

ki

subject to ∥S(xc)∥∞ ≤ 1.6,
(5.40)

where xc = [kp ki]⊤. To obtain a tractable problem, a grid of frequencies is chosen, for
each frequency the constraint of the optimization problem takes the form of (5.23). A
sparse discretization of the frequency is used to obtain an easy visualization of the
constraints in the kp −ki plane. These constraints have a nice geometrical interpretation
in the controller parameter space, kp − ki plane; each constraint is translated into an
ellipse of forbidden parameters [22], whose centers define the stabilizing set. To obtain
convex constraints the constraints are linearized for each frequency (5.23) resulting in
constraints as half planes (5.25). Hence for each frequency, the exterior of each ellipse
is replaced by a half plane. The iterations are illustrated in Figure 5.4. Black dots
mark the point used in the linearization and the point that maximizes the integral
gain is marked with squares. The dashed line is the border of the stability region. In
this simple example, a good solution was obtained after only three iterations.

Example 5.2 (Temperature control problem). This example of temperature control
of an industrial heat exchanger is the one considered in Example 4.1. The steam
flow rate in one loop of the heat exchanger is manipulated to control the temperature
difference between outflow and inflow in the other loop. A model in the form of FOTD
transfer functions, is given in [251]. The input is the valve opening and the output is a
temperature difference. The parameters of the model for different operating points are
given in Table 5.2.

Uncertain dynamics will be modeled in two different ways. The set P1 is modeled
as

P1 =
{

k

τs + 1e−sh : [k h τ ]⊤ ∈ Θ
}

, (5.41)

where Θ = [0.31, 0.40] × [50, 88] × [80, 114], if the parameters vary independently.
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Figure 5.4 Illustration of the CCP (Example 5.1)
The feasible point used to linearize the non convex constraints (ellipses) is marked with a dot,
and the optimal point is marked with a square. The dashed line delimits the stabilizing set.
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Table 5.2 Plant model uncertainty (Example 5.2)

Plant k h τ

P1(s) 0.32 88 87

P2(s) 0.35 83 82

P3(s) 0.40 65 80

P4(s) 0.40 50 89

P5(s) 0.35 76 95

P6(s) 0.31 84 114

Another way is to model the uncertainty by the smallest simple polygon P2 in the
Nichols plane that contains the six points in Table 5.2. This is appropriate if the there
are dependencies between the parameter variations. The set P2 can be generated using
tools from computational geometry. We use the alpha shape procedure [83], with the
alpha radius that gives only one region with the tightest fitting alpha shape (containing
all the points); the result is the smallest simple polygon enclosing all the points in
this particular case. This approach remains feasible for sets with large cardinality.
The problem of finding the simple polygon containing a set of points with minimum
enclosed area is NP -complete [87].

Figure 5.5 shows the templates P1ω and P2ω for some frequency values. The figure
indicates that the template P1ω is more conservative than P2ω

We choose a PI controller with no filtering, with the transfer function

C(s, xc) = kp + ki

s
, (5.42)

where xc = [kp ki]⊤.

The following optimization problem maximizes performance subject to a robustness
constraint:

maximize
xc

ki

subject to ∥S(xc)∥∞ ≤ 1.4,

∀P (s) ∈ P .

(5.43)

A discretization of the frequency range and the boundaries of the templates are required
to obtain a tractable problem. Solving the optimization problem using CCP for the
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Figure 5.5 Different templates (Example 5.2)
Templates P1ω (interval templates) and P2ω (polygonal templates) at frequencies ω ∈
[0.001 0.005 0.01 0.02].

sets P1 and P2 gives the controllers

C1(s) = 0.93 + 0.011
s , C2(s) = 1.04 + 0.013

s . (5.44)

The controllers C1(s) and C2(s) correspond to the sets P1 and P2, respectively. The
integral gain in C2(s) is about 20 % higher than the integral gain in C1(s). Figure 5.6
shows the responses from unit step disturbances at the plant input d for controllers C1

(solid lines) and C2 (dashed lines) for the six plants shown in Table 5.2.

The method applies to arbitrary templates and is less conservative than methods
based on a particular class of templates, for example, templates based on interval
parameters (as this example has shown).

Example 5.3 (Control of an exhaust gas recirculation (EGR) valve). Design of a PID
controller with typical QFT specifications is illustrated in this example. The problem
is to control the air-to-fuel ratio of exhaust gas by manipulating the EGR valve. This
loop is part of a MIMO system, where each control loop includes a PID controller with
prefilter. There are also static decouplers with gains designed to reduce cross-couplings.
Models and a detailed problem description are given in [207].
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Figure 5.6 Temporal responses (Example 5.2)
Step responses due to a unit step disturbance at the plant input d for controllers C1 (solid
lines) and C2 (dashed lines).

The plant model is given by the set

P =
{

k

τs + 1e−sh : [k h τ ]⊤ ∈ Θ
}

, (5.45)

where Θ = [0.23, 0.64] × [0.12, 0.24] × [0.43, 0.50].
The specifications cover robust stability and tracking performance. Robust stability

is ensured by an upper bound on the gain of the complementary sensitivity transfer
function. That is

|T (jω)| ≤ 1.1, ∀P (jω) ∈ Pω, ∀ω ∈ Ω, (5.46)

where Ω = 2π [0.01 0.05 0.1 0.2 0.4 0.5 1 1.5 2].
Robust tracking performance is specified by

δl(ω) ≤ |F (jω)T (jω)| ≤ δu(ω), ∀P (jω) ∈ Pω, ∀ω ∈ Ω, (5.47)

where
δu(ω) =

∣∣∣∣∣ 1.02jω + 5.09
(jω)2 + 2.67jω + 5.09

∣∣∣∣∣ , (5.48)

δl(ω) =
∣∣∣∣∣ 21.95
(jω)3 + 12.67(jω)2 + 28.86jω + 21.95

∣∣∣∣∣ . (5.49)
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The requirements are captured by minimizing the cost of feedback subject to a
robustness constraint, hence

minimize
xc

|kd|

subject to |Taux(jω, xc)| ≤ δu(ω)
δl(ω) = δT r(ω),

|T (jω, xc)| ≤ 1.1,

∀P1(jω), P2(jω) ∈ Pω,

∀P (jω) ∈ Pω,

∀ω ∈ Ω.

(5.50)

The frequency set Ω is finite, but the sets Pω are infinite. The problem will be solved
for a subset of points belonging to the boundaries of each template Pω. The first step
is to find a controller C(s), the design of the prefilter F (s) is then straightforward.

To compare with [207] we will design a controller without the measurement filter.
The first controller is obtained by maximizing performance subject to a robustness
constraint. This is captured by the following optimization problem:

maximize
xc

ki

subject to |T (jω, xc)| ≤ 1.1,

∀P (jω) ∈ Pω,

∀ω ∈ Ω.

(5.51)

A controller with all its parameters equal to zero is used for initialization. The CCP
procedure gives the following controller

CPID(s) = 2.64 + 6.60
s + 0.33s. (5.52)

Since this controller maximizes integral gain subject to a constraint on the complement-
ary sensitivity peak, it is expected that it satisfies the constraints of the optimization
problem (5.50). Using the controller (5.52) to initialize CCP for the optimization
problem (5.50) gives the controller

CPID(s) = 1.97 + 4.66
s + 0.14s. (5.53)
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In [207], the controller was obtained by manual loop shaping using a computer aided
design package. The following controller was obtained:

CPID(s) = 2.04 + 4.20
s + 0.24s. (5.54)

Figure 5.7 (top) shows the gain of the PID controllers (5.52), (5.53), and (5.54).
The controller (5.52) (dashed line) was obtained by maximizing the integral gain, as a
consequence of that this controller has higher gain than the others for all frequencies
because it maximizes performance at the cost of having a higher cost of feedback. The
controller (5.53) (solid line) that minimizes the derivative gain has similar low-frequency
properties compared to (5.54) (dotted line) but it is clearly superior at high frequencies,
where its gain is about 5 dB less than (5.54). These properties are illustrated in
Figure 5.7 (middle), where max |Taux(jω)| is plotted for the three controllers (with the
specification δT r(ω)), and in Figure 5.7 (bottom), where max |Gun(jω)| is plotted for
the three controllers.

To explore the effects of measurement noise filtering, we introduce a second-order
filter with time constant Tf = 1/30. This value has been chosen to have a filter with a
cutoff frequency greater than (but not very far from) the significant frequencies of the
previous PID controllers. Solving the optimization problems (5.51) and (5.50) gives
the controllers

CPID(s) = 2.18 + 5.88
s + 0.35s, (5.55)

and
CPID(s) = 1.98 + 4.57

s + 0.23s, (5.56)

respectively.
The properties of the closed-loop system with these controllers are illustrated in

Figure 5.8. Note that the inclusion of the filter degrades the maximum performance
achievable, compare integral gains of controllers (5.52) and (5.55).

The design of the prefilter F (s) is straightforward when the feedback controller
C(s) is known. A prefilter F (s) with the structure given by (5.7) can be obtained by
solving the following convex optimization problem:

maximize
xf

b

subject to |F (jω, xf )T (jω)| ≤ δu(ω),

∀P (jω) ∈ Pω,

ω ∈ Ω.

(5.57)
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Figure 5.7 Magnitude of relevant transfer functions without the measurement filter
(Example 5.3)
These graphs show |C(jω)| (top), max |Taux(jω)| (middle), and max |Gun(jω)| (bottom), for
the controllers (5.52) (dashed line), (5.53) (solid line), and (5.54) (dotted line). The bound
δT r(ω) is shown in a thick line in the middle graph. Frequencies in Ω are marked with a dot.
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Figure 5.8 Magnitude of relevant transfer functions with the measurement filter (Ex-
ample 5.3)
These graphs show |C(jω)| (top), max |Taux(jω)| (middle), and max |Gun(jω)| (bottom), for
the controllers (5.55) (dashed line) and (5.56) (solid line). The bound δT r(ω) is shown in a
thick line in the middle graph. Frequencies in Ω are marked with a dot.
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Figure 5.9 Prefilter design (Example 5.3)
The graphs show |F (jω)T (jω)| for (5.55) and (5.58) (left), and for (5.56) and (5.7) (with
b = 0.22 and c = 0.19) (right). Tracking specifications are shown in thick lines and frequencies
belonging to Ω are marked with a dot.

The parameters obtained for the controller (5.56), are b = 0.22 and c = 0.19. The
optimization problem for the controller (5.55) is not feasible and the prefilter was
designed by manual loop shaping resulting in the following prefilter

F (s) = (s/12 + 1)(s/20 + 1)
(s/3.5 + 1)(s/5 + 1)(s/7 + 1) . (5.58)

The properties of the prefilter designs are illustrated in Figure 5.9, where the gain
of F (s)T (s) is plotted for all P (s) ∈ P with the tracking specification bounds δl(ω)
and δu(ω).

Example 5.4 (ACC’90 benchmark). This example is a benchmark problem from
ACC’90 [261]. The plant is an undamped spring-mass system modeled by the set of
transfer functions

P =
{

k

s2(s2 + 2k) : k ∈ [0.5, 2]
}

. (5.59)

The problem is to design a controller that robustly stabilizes the system and gives a
settling time around 15 seconds for an impulse disturbance at the plant output for the
whole range of k with a reasonable control effort.

This problem has been tackled using a low-order controller (PD with a second-order
filter) in [128, pp. 198–203] and [46, Example 5]. We will attempt a design for a PD
controller with a second order filter

C(s, xc) = kp + kds

1 + sTf + s2T 2
f /2 . (5.60)
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where xc = [kp kd]⊤ and the value of the time constant of the filter is fixed to Tf = 2.5.
Notice that the plant cannot be stabilized by an ideal PD controller, as can be shown
by a root locus analysis.

A design that maximizes performance kp, subject to robustness constraints is
captured by the following optimization problem:

maximize
xc

kp

subject to |S(jω, xc)| ≤ 2,

|T (jω, xc)| ≤ 2,

∀P (jω) ∈ Pω, ∀ω ∈ Ω.

(5.61)

The set Ω is chosen as 500 frequencies logarithmically spaced between 0.01 and 10.
The templates were discretized by taking 50 values of k equidistant between 0.5 and
2. The iteration was initialized by the controller parameters kp = 0 and kd = 0.01.
Solving the problem (5.61) gives the controller parameters kp = 0.035 and kd = 0.331.

The top plot in Figure 5.10 shows the gain of the sensitivity (solid line) and
complementary sensitivity (dashed line) for the plant gains k = 0.5, 1, 2. The bound
on the sensitivities Ms = Mt = 2 is shown as a thick line in the figure. The lower plot
in Figure 5.10 shows the gain curve of the transfer function Gun from measurement
noise to control action. Notice that the gains are very low.

Figure 5.11 shows responses of an impulse at the plant output for k = 0.5, 1, 2.
The required specification for the settling time is not satisfied and the response is
oscillatory. Notice however that the controller has low order compared with other
solutions proposed for this problem.

5.6 Discussion

Computation Aspects

The algorithms used in this chapter have been implemented in Matlab using CVX on a
standard notebook (2.4 GHz dual-core and 8 GB RAM). Solution of the optimization
problem (5.61) with 500 frequencies and 50 plants took about 5 seconds. The compu-
tation time can be reduced significantly by using the cutting-set methods discussed
in Section 5.4.4. For example, by initializing the algorithm with 50 randomly chosen
scenarios and iteratively expanding this set with the one that maximizes the individual
constraint violations reduces the time to about 1 second. In addition, use of cutting-set
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Figure 5.10 Magnitude of relevant transfer functions (Example 5.4)
The graphs show |S(jω)| (solid line), |T (jω)| (dashed line), and the upper bound (thick line)
(top), and |Gun(jω)| (bottom) (for k = 0.5, 1, 2).
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Figure 5.11 Plant response with PD (Example 5.4)
Plant output due to an impulse disturbance at the plant output (for k = 0.5, 1, 2).
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methods makes it possible to increase the accuracy. For example, 500 values of k can
be used instead of 50 without significantly increasing the computing time.

Comparison with other ALS Methods

Most of the available ALS methods use the Horowitz-Sidi bounds as a starting point,
see [56, 89, 142, 212, 281, 282]. Computing the Horowitz-Sidi bounds with the QFT
Toolbox in Matlab [46] for Example 5.4 took about 8 seconds, using a phase vector
with 180 equidistant points between −2π and 0 rad. This is more time than the
required for the presented method to obtain a solution. In addition, the generation of
bounds considering more frequencies or plant cases implies a significant increment of
the computation time. For example, the computing time increases by a factor of 10 if
500 values of k are used instead of 50.

Use of Higher-order Control Structures

The presented method can be applied to a higher-order controller. We consider again
the plant model of Example 5.4. We propose the following structure

C(s, xc) = k0 + k1s + k2s
2 + k3s

3

(1 + sTf + s2T 2
f /2)2 , (5.62)

where xc = [k0 k1 k2 k3]⊤ and Tf = 1/15. A higher-order controller allows for
considering more demanding specifications, we consider ∥T∥∞ ≤ 1.5 and ∥S∥∞ ≤ 1.6
under the criterion of maximizing k0. The initial feasible controller is obtained by
manual loop-shaping xc = [0.01 0.16 0.07 0.64]⊤, the proposed method obtain as
solution the following parameters xc = [0.890 1.630 0.891 1.633]⊤. It is interesting
to note that the obtained controller have a pair of RHP complex zeros, the use of
these elements in loop shaping for bending modes is discussed in [128, pp. 198–203].
Figure 5.12 shows responses of an impulse at the plant output. This solution satisfies
specification for the settling time.
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Figure 5.12 Plant response with higher-order controller (Example 5.4)
Plant output due to an impulse disturbance at the plant output (for k = 0.5, 1, 2) using a
higher-order control structure.





Chapter 6

PID Design under Probabilistic
Parametric Uncertainty

6.1 Introduction

Designing a feedback control system comprises a trade-off between achieving a good
performance level and maintaining adequate stability margins. When model uncertainty
is explicitly incorporated into the problem formulation, it impacts the achievable
performance level. Most of the robust control literature (e.g. QFT, H∞, interval
methods, etc.) deals with deterministic uncertainty descriptions [209], resulting in worst-
case specifications for performance and robustness. It is well-known that a deterministic
approach may potentially lead to conservative designs, since the occurrence of the
worst-case scenario may be very unlikely. A probabilistic uncertainty model enables
computation of constraint violation probabilities; in this way, higher performance
levels may be achieved at the cost of having some probability of constraint violation –
typically small, and predefined by the user.

The robust design of PID controllers is usually stated as a constrained optimization
problem (see [19])

minimize
x

J(x, θ)

subject to φ(x, θ) ≤ 0,
(6.1)

where x is the design (controller) parameter vector, and θ is a deterministic vector of
plant model parameters. This approach has been the one used in the previous chapters.
The rationale of the problem (6.1) is that minimization of the objective J aims at
maximizing performance over x, while the constraint vector φ (with components φi,
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and ≤ corresponding to the component-wise inequality) is in place to ensure robustness
(i.e. to guarantee adequate stability margins).

If the model parameter vector θ is instead assumed to be a random variable, both
the cost function J(x, θ) and the constraints φ(x, θ) also become random variables.
Two possible extensions of (6.1), taking this into account, are given below:

• Expectation-variance specifications:

minimize
x

E[J(x, θ)]

subject to
∀i

E[φi(x, θ)] + αi

√
V[φi(x, θ)] ≤ 0.

(6.2)

The parameters αi in (6.2) enables the user to specify a confidence for constraint
fulfillment. This optimization problem maximizes performance while honoring
constraints in terms of mean plus a number of standard deviations.

• Chance-constrained specifications:

minimize
x

E[J(x, θ)]

subject to
∀i

Pr[φi(x, θ) ≤ 0] ≥ 1 − αi,
(6.3)

where αi specify permissible probabilities of constraint violation. The formulation
(6.3) aims to minimize the expected cost, subject to a fulfillment of the constraints
with at least a predefined level of probability.

In this context, it is highly recommended to include a stability constraint for all (or
almost all) cases [111]. Another option is to analyze, a posteriori, the closed-loop
stability by means of randomized algorithms (RAs).

Note that both formulations are extensions of (6.1) in the sense that they are
equivalent to (6.1) in the case of deterministic plant parameters θ and αi = 0 for
each possible value of i. While providing a feasible formulation in order to exploit the
stochastic nature of the plant parameters, it is typically not possible to solve either (6.2)
or (6.3) exactly, as there exists no explicit way to evaluate the objective and constraints.
Their evaluation comprises the computation of multidimensional expectation integrals.
However, numerical methods can be used to obtain approximations of these integrals
[49, 68]. Once the expectation integrals have been approximated, the problem may
be solved using standard optimization techniques. Finally, RAs may be used to
probabilistically validate the obtained (approximate) solution.
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Related prior works are briefly presented below: In [44], a Taylor series expansion
was used to approximate the integrand of the expectation integral. This approach is
the one utilized in the extended Kalman filter (EFK) to propagate the uncertainty.
Test-points methods were proposed in [186] to approximate these integrals in the
context of PID design. The latter approach has been integrated into an autotuner
method [239] able to exploit the uncertainty that arises as a result of least-square-based
identification methods (the next chapter will present these two works). In [81, 82] a
polynomial chaos approach was applied to optimize temporal responses, see Section 6.2
for details. All these works consider specifications in form of mean plus a number
of standard deviations as in (6.2), in contrast to probabilistic constraints as in (6.3).
Probability estimates can also be obtained from expectation and variance by using the
Chebychev inequality [206], but these estimates are expected to be very conservative,
since this inequality is independent of the involved probability density function (PDF).
The latter inequality states that being X an integrable random variable with finite
expected value µ and finite nonzero variance σ2, then for any positive real k

Pr [|X − µ| ≥ kσ] ≤ 1
k2 . (6.4)

This inequality is only useful when k > 1. In general, the statement of the control design
problem in terms of probability constraints makes the problem more difficult to address.
On the other hand, the work [258] considers the design of decentralized (multivariable)
PID controllers with probabilistic robustness via Monte Carlo (MC) simulations and
genetic algorithms. Other applications of stochastic methods to the design of PID
controllers, not necessarily for plant models with probabilistic parameterization, have
been reported, for example, in [116, 204, 271].

This chapter is organized as follows. The problem statement is given in Section 6.2.
An approach to approximately solve the resulting chance-constrained optimization
problem is presented in Section 6.3. RAs for numerical verification are presented in
Section 6.4. To conclude, the synthesis method is illustrated through several examples
in Section 6.5.

6.2 Problem Statement

We consider the 1-DOF feedback control system shown in Figure 3.1, with a plant P

and controller C. The plant model is given by the arbitrary-order time-delayed transfer
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function
P (s, θ) = bBsB + bB−1s

B−1 + · · · + b0

aAsA + aA−1s
A−1 + · · · + a0

e−hs, (6.5)

where A and B are known constants satisfying B ≤ A, and

θ = [bB bB−1 . . . b0 aA aA−1 . . . a0 h]⊤ (6.6)

is the stochastic plant model parameter vector. The joint PDF of θ will be denoted
as f(θ) : Rn → R, where n = A + B + 3. A multivariate uniform PDF is assumed,
being the probabilistic counterpart of the (unknown-but-bounded) interval parametric
uncertainty. A rigorous justification for the use of the uniform PDF in this setting was
done in [32].

We consider as controller a PID described by the following transfer function

C(s, x) = kp + ki

s
+ kds, (6.7)

where x = [kp ki kd]⊤ is a deterministic vector of its parameters.
The control design problem is formulated as a constrained optimization problem,

in the spirit of the chance-constrained optimization problem (6.3). The main design
challenge in this context is disturbance attenuation [19]. Tracking is not treated
here, since it could be improved by using a 2-DOF control structure, with a reference
pre-filter [19]. Similarly, attenuation of high-frequency measurement noise n is not
explicitly addressed, as it can be accomplished by considering an extended plant, being
the series connection of (6.5) and a low-pass filter. Regarding performance in terms of
disturbance attenuation, two well-known ways of achieving it are the minimization of
either the IE

IE(x, θ) =
∫ ∞

0
e(t, x, θ)dt, (6.8)

or the IAE
IAE(x, θ) =

∫ ∞

0
|e(t, x, θ)| dt. (6.9)

The error e in both (6.8) and (6.9) is caused by a unit load disturbance step d, applied
with the control system in an equilibrium state, see Figure 3.1.

For well-damped systems, it holds that IE ≈ IAE. However, oscillatory systems
with consecutive zero-crossings in e can yield small IE, while providing a large IAE.
Obviously, from a performance measure point, this is not desired. Despite this, there
remains one reason to consider minimization of IE in favor of IAE. It was shown in
[19] that minimization of IE is equivalent to maximization of ki in (6.7). That is, IE
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minimization results in a convex objective, that, in addition, does not depend on plant
parameters, and thus takes a deterministic value. Unfortunately, this is not the case
for the IAE. In this work, we minimize IE while honoring a constraint on the H∞-norm
of the sensitivity function

S(s, x, θ) = 1
1 + C(s, x)P (s, θ) . (6.10)

Alongside enforcing robust stability, the latter ensures a well-damped closed-loop
system. It is straightforward to introduce additional constraints on complementary
sensitivity T = 1 − S and noise sensitivity −CS. In a deterministic setting, this
approach is known as MIGO [22, 203].

By combining (6.3), with the IE objective (6.8) expressed as maximization of ki,
and an H∞-constraint on S(s, x, θ), we arrive at the chance-constrained optimization
problem:

minimize
x

− ki

subject to Pr[∥S(x, θ)∥∞ − Ms ≤ 0] ≥ 1 − α,
(6.11)

where Ms is greater than 1, and α is nonnegative and less than 1. Note that the
solution to the optimization problem (6.11) for α = 0 is the same as the solution to
the deterministic counterpart of this problem.

6.3 Chance-Constrained Optimization Problem

Our aim is to solve the chance-constrained optimization problem (6.11) in an efficient
way, using a gradient-based algorithm, such as sequential quadratic programming (SQP)
or interior point methods [50, 198]. This approach relies on numerous evaluations of the
objective and constraint, calling for an efficient method to calculate them. Motivated
by that, the multidimensional expectation integrals resulting from the constraint of
(6.11) are approximated by a weighted sum defined by a quadrature rule (Section 6.3.1).
The (sharp) indicator function, that is necessary to obtain probability values, have
to be approximated by a (smooth) differentiable function in order to obtain reliable
gradient information using numerical differences (Section 6.3.2). Finally, guidelines to
obtain good initialization candidates to be used in the optimization algorithm need to
be established (Section 6.3.3).
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6.3.1 Constraint Evaluation

Constraint evaluation implies the calculation of expectation integrals. For example,
the probability value of constraint satisfaction of (6.11) is

Pr[∥S(x, θ)∥∞ − Ms ≤ 0] = E [I[∥S(x, θ)∥∞ − Ms]] , (6.12)

where I[·] is the indicator function, given by

I[x] =
 1, if x ≤ 0,

0, if x > 0.
(6.13)

In this section, we introduce a function g(x, θ), which takes on the role of I[∥S(x, θ)∥∞−
Ms]. The expectation of g(x, θ) is defined by the multivariate integral

E [g] =
∫

Λ
g(x, θ)f(θ)dθ, (6.14)

where Λ is the support of f(θ), i.e., the set of values for which θ is nonzero. In
general, an analytical solution to this type of integral does not exist for nonlinear
g(x, θ). Henceforward, in this section, the dependence with respect to x will be omitted,
whenever possible, to simplify the notation. Several numerical approaches have been
presented in the literature to obtain approximate values of expectation integrals, among
others, linearization of the integrand, MC methods, and quadrature rules [49]. In this
work, the expectation integral (6.14) is approximated by a quadrature rule

I [g] ≡
N∑

i=1
wig(θi), (6.15)

comprising nodes θi and weights wi, i = 1, . . . , N . An important feature of (6.15) is
that nodes and weights depend solely on f . Hence they can be obtained for a given f ,
and subsequently used for an arbitrary g. As nodes and weights are independent of
the problem instance, there exist repositories of them [66, 243].

A quadrature rule, such as (6.15), is said to have a degree of polynomial exactness
D, if it delivers exact integral values, I[g] = E[g], for any n-dimensional polynomial g

of total order at most D. The total order of a polynomial is defined as the maximum
total order of its monomials, and the total order of a monomial is defined as the
sum of orders with respect to the individual variables. (For example, a 2-dimensional
polynomial of total order 2 may contain terms as θ1, θ2, θ2

1, θ2
2, and θ1θ2.) This issue is
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of utmost importance when using a quadrature rule, since high degree of polynomial
exactness translates to good integral approximations whenever g is approximable by
polynomial functions (through e.g. Taylor expansion).

We will start presenting the univariate case, and then extend it to its multivariate
counterpart. Focus will lie on avoiding the curse of dimensionality naturally introduced
through this extension.

Univariate Quadrature

Consider first the one-dimensional case, i.e., n = 1. A sequence of quadrature rules
for a PDF (or more general, for a given weight function) f defines, for every ν ∈ N
(accuracy level), a set of Nν nodes θν,i and weights wν,i, i = 1, . . . , Nν , which are used
to approximate the expectation integral (6.14) as the following weighted sum

Iν [g] ≡
Nν∑
i=1

wν,ig(θν,i). (6.16)

Here, the degree of polynomial exactness is denoted Dν , since it depends on the accuracy
level ν. A well-known example is the sequence of Gauss–Legendre (GL) quadrature
rules. It comprises Nν = ν nodes and achieves the maximum possible polynomial
exactness, Dν = 2ν −1 [49]. By considering the interval [−1, 1] with weighting function
f(θ) = 1, it uses as nodes the roots of the ν-th order Legendre polynomial and as
weights the integral of the associated Lagrange polynomials. Note that the previous
quadrature rule would need to be normalized when using to compute expectation values
for an univariate uniform distribution. Finally, by means of an affine transformation
applied to the nodes, it is possible to transfer to an arbitrary interval the quadrature
rule obtained for a given interval.

An interesting class of sequences of quadrature rules is the nested one. For these,
the set of nodes used for a given accuracy is a subset of the nodes used for any
higher accuracy. The GL quadrature rules do not have this property (see Figure 6.1
(left)). The nested sequences of quadrature rule are of interest when extending to
the multivariate case. Herein, a delayed sequence of the Kronrod–Patterson (dKP)
nested quadrature rules will be used, see [210]. An early nested scheme was proposed
by Kronrod, he extended an n-point GL quadrature rule by n + 1 points such that
the degree of polynomial exactness of the resulting 2n + 1 rule is maximal. Patterson
iterated the Kronrod’s scheme recursively obtaining a sequence of nested quadrature
rules. That scheme typically uses the 1-point and 3-point GL formulas and then iterates
to form a sequence of quadrature rules. The dKP sequence of quadrature rules is
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Figure 6.1 Nodes employed by different univariate quadrature rules
Nodes used by the univariate GL (left) and dKP (right) quadratures for different accuracy
levels ν, from 1 to 10.

recommended for numerical computations, details about its construction can be found
in [210].

Figure 6.1 shows the nodes employed by the univariate GL and dKP quadratures
for the univariate uniform distribution over the interval [0, 1]. Observe that due to the
restriction that all nodes corresponding a lower value of ν have to be used, the number
of nodes is in general higher that the employed by the GL rule for the same value of ν.
Although both integration rules comprise the same nodes (and weights) for the cases
corresponding to ν = 1 and ν = 3.

Multivariate Quadrature

The extension from univariate to multivariate quadrature can be performed by using
the tensor product

(Iν1 ⊗ · · · ⊗ Iνn) [g] ≡
Nν1∑
i1=1

· · ·
Nνn∑
in=1

wν1,i1 · · · wνn,ing
(
[θν1,i1 . . . θνn,in ]⊤

)
. (6.17)

This formula for multivariate integration based on a tensor product is referred to as full
grid, as opposed to sparse grid, which will be presented later. The degree of exactness
of (6.17) is the same as the minimum degree of exactness of the underlying univariate
quadratures. The main drawback is that it exhibits an exponential growth of nodes
with respect to the dimension n (it suffers from a curse of dimensionality). This is
due to the quadrature rule not being exact in a class of polynomials of a bounded
total order, but for a tensor product of univariate polynomials [122]. (For example,
considering n = 2 and D = 2, in addition to the polynomials θ1, θ2, θ1θ2, θ2

1, and θ2
2, it

is also exact for polynomials involving the higher-order terms θ2
1θ2, θ1θ

2
2, and θ2

1θ2
2.)
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An alternative to the multivariate rules based on tensor product (full grid) is
available through Smolyak’s product [235]. The expression presented originally by
Smolyak was given in terms of the difference of quadrature rules for different accuracy
levels, but we will present one that is given directly in terms of the univariate quadrature
rules, presented in [260]. The Smolyak product rule with accuracy level q, for n-
dimensional integration, was formulated in [260] as

Sq,n [g] =
∑

q+1≤∥ν∥1≤q+n

(−1)q+n−∥ν∥1

(
n − 1

∥ν∥1 − ν − 1

)
(Iν1 ⊗ · · · ⊗ Iνn) [g] , (6.18)

where ν = [ν1 . . . νn]⊤. This rule consists of a weighted sum of product rules with
accuracy levels defined by ν. Bounds on ∥ν∥1 imply that if a high level of accuracy is
used in one dimension, relatively low accuracy levels are used in the others.

Two important properties of the Smolyak’s product rule regarding degree of poly-
nomial exactness and dimensional complexity are stated below (see [49] for a more
detailed exposition):

• Assume that the sequence of univariate quadrature rules Iν , with ν ∈ N, is exact
for all univariate polynomial of order 2ν − 1. Then, the Smolyak product rule
Sq,n is exact for n-dimensional polynomials of total order 2q − 1 or less.

• The number of nodes grows polynomially with respect to the dimension n, as
opposed to the exponential growth of the tensor-product quadrature (6.17).

Both sequences of univariate quadrature rules presented here, GL and dKP, satisfy the
previous assumption on polynomial exactness degree.

Nested quadrature rules, which are usually less efficient in the univariate case,
become attractive when combined with Smolyak’s product, since the nested quadrature
rules make the union of the tensor products in (6.18) a much smaller set than when
using a non-nested quadrature rule, in which each set contains different nodes.

Figure 6.2 shows the number of nodes for different integration product rules,
with underlying univariate quadrature rules GL and dKP. The tensor product yields
quadratures with fewer nodes than Smolyak’s product rules for dimension n = 2, but
this situation changes as the dimension increases. However, a weakness of Smolyak’s
product rules is that some weights may be negative, leading to erroneous results for
ill-behaved integrands, e.g., a nearly Dirac’s delta function on a node where the weight
is negative.
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Figure 6.2 Number of nodes for different integration quadrature rules
Number of nodes versus dimension for: Full grid GL (circles), Smolyak GL (squares), and
Smolyak dKP (triangles). The left graph shows the situation when ν = 5 and the right graph
corresponds to ν = 10.

6.3.2 Constraint Gradient Evaluation

Gradient-based algorithms use the objective and constraints gradients with respect to
the controller parameter vector, to find a (local) minimum to the optimization problem
(6.11). The gradient of the objective function is trivial; on the other hand, the gradient
of the constraint requires more attention. An analytic expression for the constraint
gradient is generally not available. It may be approximated by finite differences, but
the combination of the (nonsmooth) indicator function with the quadrature rule does
not provide reliable gradient information. Several differentiable functions have been
suggested as smooth approximations to the indicator function, including the sigmoid

σa(x) = 1
1 + eax , (6.19)

where a ≥ 0. This is a smooth and tight approximation (it tightens as a increases),
used in several other applications [250]. The mentioned approximation to the indicator
function is shown in Figure 6.3 for the values a = 50, 100, 250. The use of approximations
(quadrature rule and sigmoid function) calls for verification of numeric results. This is
the topic of the next section.

6.3.3 Selection of Initial Points

To solve the chance-constrained optimization problem (6.11), a feasible initial point
has to be provided to the gradient-based algorithm. Controller parameters given by
the zero vector (i.e. x = [kp ki kd]⊤ = [0 0 0]⊤) satisfy the constraints for any stable
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Figure 6.3 Sigmoid functions
Sigmoid approximations (black lines) to the indicator function (gray line).

plant. Otherwise, a stabilizing and feasible initial controller candidate has to be found
[119].

The solution of the deterministic counterpart of the considered probabilistic design
problem is an appealing alternative to the zero controller (the method presented in the
previous chapter could be used here). In addition to being feasible, the corresponding
controller is associated with a lower objective. This translates to a faster convergence
of the method used to solve the optimization problem.

6.4 Probabilistic Verification

It is of particular interest to investigate how the approximations involved in solving the
presented optimization problems affect the final result. Tools from the RAs for control
analysis framework [51, 52, 246] can be used to evaluate the obtained (approximate)
solutions. Let us denote the constraint fulfillment probability by

p = Pr [∥S(x, θ)∥∞ − Ms ≤ 0] . (6.20)

The RA framework provides estimates p̂ of p, lying within an a priori specified accuracy
ϵ ∈ (0, 1), with probability 1 − δ. This is formally stated as

Pr [|p − p̂| ≤ ϵ] ≥ 1 − δ. (6.21)
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A simple RA for constraint verification can be obtained through the MC method [246].
The constraint fulfillment probability estimates p̂ are defined as

p̂ = 1
N

N∑
i=1

I
[
∥S(x, θ(i))∥∞ − Ms

]
, (6.22)

where the samples θ(1), . . . , θ(N) are generated by the PDF f(θ). A lower bound on
the number of samples required to meet (6.21) is given by the so-called Chernoff bound
[246]

1
2ϵ2 log 2

δ
≤ N. (6.23)

A related analysis problem is to assess the worst-case constraint violation. That is, for
a given δ and ρ, to obtain with probability 1 − δ, a level γ̂ such that

Pr [∥S(x, θ)∥∞ ≤ γ̂] ≥ ρ. (6.24)

A simple RA for obtaining γ̂ of (6.24) is

γ̂ = max
i=1,...,N

∥S(x, θ(i))∥∞, (6.25)

where θ(1), . . . , θ(N) are, again, generated by the PDF f(θ) with a minimum number
of samples given by

log δ

log ρ
≤ N. (6.26)

An interesting property of these minimum numbers of samples is that they do not
depend on the dimension of the random variable θ. On the other hand, the number of
samples becomes prohibitively high for obtaining very accurate estimates. That is why
we propose these techniques for analysis, but not for synthesis.

6.5 Examples

This section aims at illustrating the proposed method through some examples and
presenting the benefit of considering probabilistic specifications (in terms of reduction
of conservatism with respect to designs using worst-case specifications). The examples
were obtained with the aid of a software package [122] to generate nodes and weights
for the quadrature rules. Expectation integrals have been computed by using a sparse
grid with dKP as underlying univariate quadrature. Estimates of constraint fulfillment
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probability p̂ and worst-case constraint violation γ̂ presented in this section are based
on ϵ = δ = 0.005 for p̂, and δ = 10−4 and ρ = 1 − δ for γ̂.

Example 6.1 (Plants with different normalized time delays). This example considers
three uncertain FOTD plant models: one lag dominant, one balanced, and one delay
dominant:

P1(s, θ) = k

s
e−hs, P2(s, θ) = k

τs + 1e−hs, P3(s, θ) = ke−hs, (6.27)

where θ = [k h τ ]⊤, k ∈ [0.5, 1.5], h ∈ [0.5, 1.5], and τ ∈ [0.5, 1.5]. In spite of its
simplicity, this type of models captures a majority of dynamics encountered in process
industry [19, 227]. The PID controller (6.7) is considered for each of these uncertain
plants.

Figure 6.4 shows level curves in the kp − ki space (when kd = 0), corresponding to
the probability of constraint violation for the specification ∥S∥∞ ≤ 1.4. This figure
illustrates how allowing for a higher probability of constraint violation can significantly
improve the performance. Note the considerable increase in ki, with respect to the
worst-case design, that is achieved when allowing only a 2 % for the probability
constraint violation.

In the rest of this example, we study with greater detail the plant P1. Table 6.1
presents the solution to the chance-constrained optimization problem (6.11) corres-
ponding to the uncertain plant model P1 and different values of α, when kd = 0. Also
shown are the estimated mean IAE, the estimated probability of constraint violation
1 − p̂, and the estimated worst-case constraint violation γ̂. Temporal responses due to
a unit step disturbance entering at the plant input for different controllers are shown
in Figure 6.5. The solid line corresponds to the median response and the area enclosed
by dashed lines corresponds to the 5 − 95 % quantiles. In this example, performance
improves considerably with small increases in constraint violation probability, while the
worst-case of ∥S∥∞ does not reach very high values. Even with a value of constraint
violation equal to 0.18 (the highest value of α considered in Table 6.1), the estimated
worst-case of ∥S∥∞ is below 1.8.

Example 6.2 (Comparison with an alternative stochastic optimization design). This
example considers the uncertain FOTD plant model

P (s, θ) = 1
τs + 1e−hs, (6.28)



154 Chapter 6. PID Design under Probabilistic Parametric Uncertainty

0 0.05 0.10 0.15 0.20 0.250

0.5

1

1.5

2 ·10−2

0

10

kp

k
i

0 0.1 0.2 0.3 0.40

0.1

0.2

0 10

kp

k
i

0 0.05 0.10 0.15 0.20 0.250

0.1

0.2

0.3

0

10

kp

k
i

Figure 6.4 Level curves for the probability of constraint violation (Example 6.1)
Level curves in the controller parameter space for the values 0, 2, 4, 6, 8, and 10 % probability
of constraint violation, i.e. 100α, for the specification ∥S∥∞ ≤ 1.4 and the plant models P1
(top), P2 (middle), and P3 (bottom).
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Figure 6.5 Disturbance rejection considering the plant P1 (Example 6.1)
Load step response (left) and controller output (right) for α = 0 (top), α = 0.06 (middle),
and α = 0.14 (bottom). The solid line corresponds to the median response and the area
enclosed by dashed lines corresponds to the 5 − 95 % quantiles.
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Table 6.1 Results considering the plant P1 (Example 6.1)

α kp ki IE E[IAE] 1 − p̂ γ̂

0.00 0.142 0.0109 91.74 106.68 0.000 1.40

0.02 0.159 0.0136 73.53 85.10 0.020 1.47

0.06 0.176 0.0161 62.11 71.08 0.060 1.53

0.10 0.190 0.0182 54.94 62.52 0.099 1.59

0.14 0.203 0.0202 49.50 55.75 0.139 1.65

0.18 0.216 0.0220 45.45 50.74 0.177 1.71

Table 6.2 Comparison of controllers (Example 6.2)

Method kp ki kd IE E[IAE] 1 − p̂ γ̂

[81] 1.957 2.012 0.320 0.497 0.512 0.516 6.74

Proposed 0.807 1.150 0.132 0.870 0.955 0.049 1.53

where θ = [τ h]⊤, τ ∈ [0.5, 1.5], and h ∈ [0, 0.5]. This uncertain plant was considered
in [81], where a PID controller was designed by solving the stochastic optimization
problem:

minimize
x

E[IAE(x, θ)]

subject to max
0≤t≤T

V[y(t, x, θ)] ≤ Dy,
(6.29)

where V[·] denotes variance, and the value of Dy is a design specification. The solution
was obtained by approximating the stochastic temporal response of the plant output,
due to a unit step disturbance, using a polynomial chaos approach. The obtained
controller for Dy = 0.01 is shown in Table 6.2. We compare this controller with the
one resulting from (6.11) with α = 0.05 and Ms = 1.4; controller parameters are
shown in Table 6.2, where the IE and average IAE values, the estimated probability of
constraint violation of ∥S∥∞ ≤ 1.4, and the estimated worst-case constraint violation
of ∥S∥∞ ≤ 1.4, are also shown. Load step responses are shown in Figure 6.6. Line
styles correspond to those of Figure 6.5.

The solution proposed in [81], in spite of considering uncertainty in the design
stage, yields a very low level of robustness. Note that the worst case of ∥S∥∞ is higher
than 6 and acceptable values of ∥S∥∞ are in the interval 1.2 − 2 [22]. Furthermore, the
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Figure 6.6 Disturbance rejection (Example 6.2)
Plant output (left) and controller output (right) due to a unit step disturbance for the
controllers obtained in [81] (top) and the obtained with the proposed method (bottom).
The solid line corresponds to the median response and the area enclosed by dashed lines
corresponds to the 5 − 95 % quantiles.
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Figure 6.7 Feedback control system of an elastic two-mass system (Example 6.3)

specification used in the problem (6.29) is not very intuitive. Although this constraint
implicitly guarantees closed-loop stability in a probabilistic sense, it is difficult to
associate values of Dy with values of any known stability margin.

Example 6.3 (Plant with a large number of uncertain coefficients). This example
illustrates that the proposed method is applicable in cases with more general parameter
dependencies than intervals of transfer function coefficients, as in (6.5), and in cases
with a large number of uncertain coefficients. The uncertain elastic two-mass system
defined by the following transfer functions is considered (see Figure 6.7):

P (s, θ) = css + ks

d(s, θ) , (6.30)

Pd(s, θ) = −Jms2 + (cm + cs)s + ks

d(s, θ) , (6.31)

where
d(s, θ) = JmJls

3 + (Jl(cm + cs) + Jm(cm + cs))s2

+((Jl + Jm)ks + cmcl + cmcs + clcs)s + (cm + cl)ks.
(6.32)

Here, θ = [Jm cm Jl cl ks cs]⊤ denotes the vector of plant parameters. These two
transfer functions represent the paths from plant input and disturbance, respectively,
to plant output. The reader is referred to [199] for a more detailed description of this
model. The following numerical values, taken from [199], are used in this example:

Jm = 0.4 kg m2, cm ∈ [0, 0.1] Nm/(rad/s),

Jl ∈ [5.5, 6.0] kg m2, cl ∈ [0, 1] Nm/(rad/s),

ks ∈ [3000, 4000] Nm/rad, cs ∈ [1, 20] Nm/(rad/s).

(6.33)
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Table 6.3 Controllers for different values of α (Example 6.3)

α kp ki 1 − p̂ γ̂

0.000 5.816 12.048 0.000 1.60

0.010 9.131 29.695 0.011 2.37

0.015 9.942 35.054 0.016 2.75

0.020 10.626 40.598 0.021 3.00

Although the disturbance acts on the output through Pd, minimization of the
corresponding IE is equivalent to maximization of ki:

IE =
∫ ∞

0
e(τ, x, θ)dτ = lim

s→0
s

Pd(s)
1 + P (s)C(s)

1
s2 = − 1

ki

. (6.34)

A PI is often used for this kind of system, in particular, when actuator dynamic
(including delays) is relatively slow, since it limits the advantage of high bandwidth
controllers [199]. This motivates the following problem formulation:

minimize
x

− ki

subject to Pr[∥S(x, θ)∥∞ − 1.6 ≤ 0] ≥ 1 − α.
(6.35)

Table 6.3 shows the solution of (6.35) for different values of α. Estimates of the
probability of constraint violation and worst-case specification are also shown. In this
example, the level of performance increases considerably even for small (e.g. 1 − 2 %)
probabilities of constraint violation. The load step responses corresponding to the
extreme values of α in Table 6.3 are displayed in Figure 6.8. Line styles have the same
meaning as in the previous figures.

Finally, it is worth mentioning that, in this example, the computational time
required by using the sparse grid with dKP is shorter, by a factor of 10, than the one
required by full grid with GL.
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Figure 6.8 Disturbance rejection (Example 6.3)
Load step response (left) and controller output (right) for the plant P1 considering α = 0
(top) and α = 0.02 (bottom). The solid line corresponds to the median response and the area
enclosed by dashed lines corresponds to the 5 − 95 % quantiles.



Chapter 7

Autotuning of PID Controllers

7.1 Introduction

Most process industrial plants can be adequately controlled using either the PI or
PID controller [254]. However, an accurate model of the plant to be controlled is a
pre-requisite for successful tuning of the controller. Obtaining such a model is usually
time-consuming and expensive [98]. A typical process industrial manufacturing plant
has thousands of PID controllers, and consequently, many of them are left poorly
tuned, or running at their factory default parameters [72]. In [72], the average tuning
price per loop is estimated to lie between USD 250 and USD 1000 in labor, while a
representative process industrial factory typically has hundreds or thousands of such
loops.

The previous facts explain the popularity of automatic controller tuning methods,
also known as autotuners. These methods combine an identification experiment with a
controller tuning. The basic idea behind the most commonly used autotuner is to close
a negative feedback loop over the plant in series with a relay, as shown in Figure 7.1.
For most industrial processes, this results in a stable limit cycle oscillation close to
the cross-over frequency of the plant [161]. This ability – to automatically produce an
input signal with adequate excitation – is a key property of relay autotuners. Controller
tuning is subsequently based on the switching time instants (the oscillation period)
and peak values of the output (used to compute process gain) [14]. The identification
experiment yields a model consisting of the system response at the plant phase crossover
frequency. An approximate criterion for predicting limit cycles is available by means
of the describing function. The inverse describing function of the relay intersects the
plant Nyquist plot along the negative axis as shown in Figure 7.2 (left), the same
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Figure 7.1 Relay autotuner
Block diagram of relay autotuner with plant P , controller C, control signal u, and plant
output y.
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Figure 7.2 Model obtained with the relay autotuner method
Nyquist (left) and Nichols (right) plot with obtained model (dot).

situation in the Nichols plane is depicted in Figure 7.2 (right). The fact that only one
frequency response point is identified is its major caveat, which has resulted in the
development of several variants of the method. In [91], an integrator was connected in
series with a second relay, to change the phase shift of the plant at which the limit cycle
occurs. The method proposed in [138] utilizes the original experiment, but makes use
of the identified frequency response differently to obtain the PID parameters. Other
modifications include extensions to MIMO systems as covered by the survey [176].

In this chapter, an improved version of the relay method is utilized. It voids the
requirement for limit cycle convergence, by using all recorded data, as opposed to
only peak and switch values. Furthermore, the identification procedure, that enables
this, also yields a parameter uncertainty model, which we utilize for robust controller
synthesis.

This chapter is structured in four sections. The novel autotuning procedure is
presented in Section 7.2. It is applied to an in-line pH control system, which is
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commonly occurring in the chemical production industry and often regarded as difficult
to control. A brief presentation of the pH control system is then given in Section 7.3.
Finally, the results of identification and control experiments carried out on the physical
plant are shown in Section 7.4.

7.2 Autotuning Method

Relay autotuning methods are very common in industrial practice. A key feature of
these methods is that they produce an experiment that excites the plant at frequencies
relevant for controller synthesis, without the need of a priori plant information. However,
the classic relay autotuner only utilizes plant output peaks and relay switch times
for modeling. This makes it noise sensitive and requires convergence of a stable limit
cycle. These caveats can be overcome by utilizing the entire experiment data set, as
suggested in [238, 239], and adopted in this chapter.

7.2.1 Identification

The use of an asymmetric relay (also known as biased-relay) has been proposed in the
literature for obtaining better signal excitation than the obtained by the symmetric
relay (see for example [151, 226, 240]). The relay output takes on the value uon, when
its input is positive, and uoff, when its input is negative. The proposed experiment
utilizes an asymmetric relay, with output levels uon = −γuoff, and γ = 1.5, as suggested
in [37, 38]. However, instead of the 6 − 8 switches typically needed for convergence,
the experiment is terminated after only 3 switches [239].

The relay hysteresis is set according to the level of noise in the process output,
in order to avoid chattering triggered by the measurement noise. Assuming white
noise with zero mean and variance σ2

n, the hysteresis level µ = 2σ2
n is recommended. A

negative feedback is generally used during the relay experiments. In the application
case that will be presented in this chapter, due to the reverse characteristic of the
process (increment in the control signal implies a decrement in the plant output), a
positive feedback loop is instead used during relay experiments.

After performing the asymmetric relay experiment, the plant input u and output y,
sampled at period ts, are used to estimate parameters θ = [k h τ ]⊤ corresponding to
the FOTD model structure:

P̂ (s, θ) = k

τs + 1e−sh. (7.1)
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Continuous time representation is utilized to limit the number of elements of the
parameter vector θ. The same approach could be applied to estimate the parameters
of any other model structure, possibly with a more elaborate experiment design. A
more thorough analysis of the number of parameters one can expect to estimate from a
given experiment is available through the persistency of excitation of the input signal,
defined as the number of singular values of the input covariance matrix exceeding a
certain threshold [166].

The parameters identification procedure is posed as an optimization problem, as
suggested in [237], aiming to minimize the output error L2-norm:

J(θ) = 1
2

∫ tf

0
e2(t)dt, (7.2)

where e = y − ŷ, ŷ is the resulting output when P̂ is driven by u, and tf is the
experiment duration. The optimization is handled by an active-set solver. To improve
convergence, the exact parameter sensitivity gradient and an approximation of the
corresponding Hessian are provided in each iteration to the optimization algorithm.
The gradient with respect to θ is given by

∇J =
∫

e∇ŷdt, (7.3)

and the Hessian is
∆J =

∫ (
∇ŷ∇ŷ⊤ + e∆ŷ

)
dt. (7.4)

The first term of the integrand (7.4) is positively semidefinite, ∇ŷ∇ŷ⊤ ≥ 0, while
the integral of the second term is small, e∆ŷ ≈ 0, under the realistic assumption
that the output error is uncorrelated with its second derivative, E [e∆ŷ] = 0. It is
therefore fair to approximate the Hessian by the integral of the first term (although
it is straightforward to extend the method outlined below, to include also the second
term). Technical details surrounding the computations yielding these expressions are
available in [238, 239].

In addition to the expectation θ̄, the optimization provides the asymptotic covari-
ance matrix

Rθ̄ = E
[
(θ − θ̄)(θ − θ̄)⊤

]
= 2

N
J̄(∆J̄)−1, (7.5)

where N is the number of samples [12]. The standard deviations of the parameter
estimates decrease proportional to 1/

√
N , meaning that one cannot expect significantly

improved estimation precision, by (small) increases in experiment duration.
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7.2.2 Controller Design

Upon obtaining estimates of the parameter expectations and covariances, a control
design problem is formulated. The aim is to synthesize a PI controller, robust to
the model uncertainty, as expressed through the parameter covariance matrix (7.5).
The synthesis method is similar to the one presented in the previous chapter, but
considering a design problem like (6.2) instead of (6.3). Hence, expectation-variance
specifications will be considered instead of probabilistic specifications, that makes the
resulting optimization problem more easily to solve. In order to integrate it in an
autotuner method, it is important that the resulting optimization problem does not
require of user supervision.

The controller is parametrized in continuous time as

C(s, x) = kp + ki

s
, (7.6)

where x = [kp ki]⊤ is the vector of controller parameters. The synthesis problem formu-
lation is based on propagating the model uncertainty (assuming that model parameter
uncertainty obeys a multivariate Gaussian distribution) through to a performance
index, which is optimized, and robustness measures, which are constrained. A common
performance index, quantifying disturbance attenuation (the main concern in process
control), is the IAE:

IAE(x, θ) =
∫ ∞

0
|e(t, x, θ)|dt, (7.7)

where e(t) is the error due to a unit step disturbance entering at the plant input.
Analytic computation of the IAE is very seldom possible. As a tractable alternative it
is common to use the IE:

IE(x, θ) =
∫ ∞

0
e(t, x, θ)dt. (7.8)

This choice simplifies the problem since minimization of (7.8) is equivalent to maximiz-
ation of the integral gain, ki in (7.6), as pointed out in [19]. The IAE and IE coincide
for control loops with non-oscillatory load step responses and are similar for loops with
well-damped responses. The latter is a desirable feature, and it can be enforced by
imposing robustness constraints. Herein this is achieved by stochastic H∞ constraints
on the sensitivity, S = (1 + P̂C)−1, and complementary sensitivity, T = 1 − S. Since
θ is Gaussian, there is a finite probability of attaining any value, and generally it is
not possible to guarantee specification of the kind worst-case constraints.
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Motivated by the above requirements, the control design problem is posed as the
following stochastic optimization problem:

maximize
x=[kp ki]⊤

ki

subject to E [∥S(x, θ)∥∞] + αs

√
V [∥S(x, θ)∥∞] ≤ Ms,

E [∥T (x, θ)∥∞] + αt

√
V [∥T (x, θ)∥∞] ≤ Mt.

(7.9)

The design parameters αs and αt let the user specify the confidence with which each
robustness constraint should be met. Note that when there is no uncertainty, i.e. zero
covariance matrices, the design problem (7.9) is equivalent to the well-known MIGO
approach for PI design [19].

The proposed approach to solve the stochastic optimization problem (7.9) is very
similar to the one exposed in the previous chapter. Here, the method to approximately
solve (7.9) is based on propagating the uncertainty by means of the unscented transform
(UT) [146, 147, Julier and Uhlmann], and the conjugate unscented transform (CUT)
[2–4]. To illustrate how these techniques are employed to propagate the uncertainty,
we consider an arbitrary (nonlinear) function g(θ), where

θ = [θ1 θ2 . . . θn]⊤ , (7.10)

is a random variable, with a multivariate Gaussian PDF. It is well-known that any
Gaussian can be transformed into one with zero expectation and unitary covariance,
through an affine transformation. This transformation can be applied to g, and
consequently, it is sufficient to consider θ with E[θ] = 0 and V[θ] = In, where In

denotes the identity matrix of size n. In order to consider a Gaussian z with E[z] = z̄
and V[z] = Z, it is sufficient to transform samples θ(i) of θ as

z(i) = z̄ + Sθ(i), (7.11)

where Z = SS⊤, which can be found using Cholesky decomposition.

Denote by f the PDF of a Gaussian zero expectation and unitary covariance. The
expectation E[g(θ)] is defined as

E [g(θ)] =
∫
Rn

g(θ)f(θ)dθ. (7.12)
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Test-point methods approximate E[g(θ)] as a weighted sum

E [g(θ)] ≈
N−1∑
i=0

wig(θ(i)), (7.13)

where
θ(i) =

[
θ

(i)
1 θ

(i)
2 . . . θ(i)

n

]⊤
, (7.14)

are known as the test points. The approximation of (7.12) as the weighted sum
(7.13) is exact for a given class of functions g. Note that MC can be considered a
test-point method with weights ωi = 1/N , and test points θ(i) randomly generated
by the underlying PDF. What makes the UT, CUT, and related test-points methods
interesting is a clever choice of deterministic test-points and weights, removing the
requirement of many samples (large N). Using the Taylor series expansion of g(θ)
about the expected value θ = 0 [68], (7.12) can be rewritten as

E [g(θ)] =
∞∑

N1=0
· · ·

∞∑
Nn=0

E
[
θN1

1 · · · θNn
n

]
N1! · · · Nn!

∂N1+···+Nng

∂θN1
1 · · · ∂θNn

n

(0). (7.15)

Assume that g belong to the class of functions for which (7.16) is exact, then by
combining (7.15) with (7.13) yields the following equation

E [g(θ)] =
∞∑

N1=0
· · ·

∞∑
Nn=0

N−1∑
i=0

wi

(
(θ(i)

1 )N1 · · · (θ(i)
n )Nn

)
N1! · · · Nn!

∂N1+···+Nng

∂θN1
1 · · · ∂θNn

n

(0). (7.16)

Equating (7.15) and (7.16) leads to a set of equations

N−1∑
i=0

wi

(
(θ(i)

1 )N1 · · · (θ(i)
n )Nn

)
= E

[
θN1

1 · · · θNn
n

]
, (7.17)

referred to as the moment constraint equations (MCE). These equations were obtained
with some abuse of notation due to the approximate nature of (7.13), but note that
this relation is exact for a given class of functions g, for which is valid the relation
(7.17).

The idea behind test-point methods is to choose test points and corresponding
weights, to fulfill all MCEs for which N1 + · · · + Nn ≤ d, where d is referred to as the
order of the MCE. This allows for exact integration of monomials up to order d, and
Taylor approximation of other functions through such monomials.
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Due to the symmetry of the considered Gaussian PDF f , odd moments are 0. The
even moments up to order d = 6 are

E
[
θ2

i

]
= 1, E

[
θ4

i

]
= 3, E

[
θ2

i θ2
j

]
= 1,

E
[
θ6

i

]
= 15, E

[
θ4

i θ2
j

]
= 3, E

[
θ2

i θ2
j θ2

k

]
= 1,

(7.18)

for distinct i, j, k ∈ {1, 2, . . . , n}.

Unscented Transform (UT)

The UT [146, Julier and Uhlmann] relies on the selection of N = 2n + 1 test-points,
satisfying the MCEs (7.17) up to order d = 3. This leaves some degree of freedom in
choosing the test points. For the UT, they are constrained to lie on the principal axes.
The resulting test points and corresponding weights are

θ(0) = 0, w0 = κ

n + κ
,

θ(i) =
√

n + κei, wi = 1
2(n + κ) ,

θ(i+n) = −
√

n + κei, wi+n = 1
2(n + κ) ,

(7.19)

where i = 1, 2, . . . , n, ei is the unit vector along the ith principal axis, and κ is a tuning
parameter. For the considered Gaussian, the choice

n + κ = 3 (7.20)

was recommended by Julier and Uhlmann [Julier and Uhlmann], since it minimizes
the error in higher order moments. Adopting this recommendation, the test points and
corresponding weights of (7.19) satisfy

N−1∑
m=0

wm = 1,
N−1∑
m=0

wm

(
θ

(m)
i

)2
= 1 = E

[
θ2

i

]
,

N−1∑
m=0

wm

(
θ

(m)
i

)4
= n + κ = 3 = E

[
θ4

i

]
,

N−1∑
m=0

wm

(
θ

(m)
i

)2 (
θ

(m)
j

)2
= 0 ̸= E

[
θ2

i θ2
j

]
= 1,

(7.21)
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for distinct i, j ∈ {1, 2, . . . , n}. With the choice (7.20), the UT fulfills one of the 4th

order MCEs through E[θ4
i ] = 3. However, due to the fact that all UT test points lie

along the principal axes, all cross moments are 0, as can be seen in the last equation of
(7.21). This fact makes impossible to satisfy the last equation of (7.21). Furthermore,
the weight w0 corresponding to the central point is negative for n > 3, leading to
higher quadrature error compared to an equivalent method with positive weights [243].
These two aspects motivate the introduction of additional test points, not lying along
the principal axes. That is the basis of the CUT, that is presented in the next section.

Conjugate Unscented Transform (CUT)

The CUT [2–4] proposes an extension of the UT test point set, by adding test points
along conjugate coordinate axes. The conjugate-m axes lie in the directions of the
vectors c(i)

m , generated by
{

c(i)
m , 1 ≤ i ≤ 2n

(
n

m

)}
= FS

[
[1 . . . 1︸ ︷︷ ︸

m

0 . . . 0︸ ︷︷ ︸
m−n

]⊤
]
. (7.22)

The FS [·] operator generates a fully symmetric set, closed under all sign and coordinate
permutations. For instance, the unit vectors ei along the principal axes together with
their negated counterparts −ei, used in the UT, are generated by

{
s(i), 1 ≤ i ≤ 2n

}
= FS

[
[1 0 . . . 0]⊤

]
. (7.23)

Including test points along conjugate coordinate axes enables solving the MCEs up
to higher order d than the one achieved by UT, while maintaining positive weights.
This comes at the cost of additional test points. To illustrate, we will consider the
CUT4 method, which fulfills all MCEs up to order d = 4 (actually d = 5). It has
N = 1 + 2n + 2n test points for 2 ≤ n ≤ 5:

• 1 central test point θ(0) = 0 with weight W0,

• 2n principal test points θ(i) = r1s(i) with weight W1,

• 2n conjugate-n test points θ(i+2n) = r2c(i)
n with weight W2.
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Table 7.1 Test points for CUT4 (first three rows) and CUT6 (all rows)

Test points Weights

θ(0) = 0 w0 = W0

θ(i) = r1s(i) wi = W1 1 ≤ i ≤ 2n

θ(i+2n) = r2c(i)
n wi+2n = W2 1 ≤ i ≤ 2n

θ(i+2n+2n) = r3c(i)
2 wi+2n+2n = W3 1 ≤ i ≤ 2n(n − 1)

The scaling factors r1, r2, and weights W0, W1, W2 for n > 2 utilized by CUT4 are
given by

r1 =
√

n + 2
2 , r2 =

√
n + 2
n − 2 ,

W1 = 4
(n + 2)2 , W2 = (n − 2)2

2n(n + 2)2 , W0 = 0.

(7.24)

For n ≤ 2 numerical values are presented in [3].
The CUT4 method corresponds to the first three rows of Table 7.1. It is evident

from the table that CUT4 is an extension of the UT (with different weights and scaling
factors).

By adding 2n(n − 1) conjugate-2 test points, one arrives at the CUT6 method,
corresponding to rows 1–4 of Table 7.1. Numeric values of corresponding weights and
scaling factors can be found in [3]. The same work also presents parameters values for
the CUT8 method.

7.3 The In-Line pH Control System
The control of pH processes has motivated many works in the literature and a wide
variety of control strategies have been applied to it (see [262] and references therein).
Most pH control loops are based on the Continuous Stirred Tank Reactor (CSTR)
model, comprising a tank with an agitator used to reach a perfect mixture. Another
possible setup is the in-line process, where mixing occurs in the production line itself
[55]. The process that will be studied here is the latter. The considered experimental
setup is part of a canned food industry pilot plant, shown in Figure 7.3. The same
industrial plant has been considered in previous works that apply reset control strategies
[30, 55, 208].
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Figure 7.3 Photograph of the pilot plant containing the in-line pH control system

The pH control loop consists of the following elements:

• A tank with a capacity of about 50 liters where the product is stored;

• A progressive cavity pump that produces a continuous product flow;

• An electromagnetic metering pump1 (LMI Milton Roy AA9), which injects acid
into the product;

• A 350 mm long static mixer;

• A pH sensor (Endress & Hauser, Orbisint CPS 11).

The product is potable water from the water supply network, the acid is an aqueous
solution of nitric acid with a 10 % concentration, and the steady product flow rate
generated by the progressive cavity pump is around 300 liters per hour (lph). The
identification and control experiments are carried out around the operating point
defined by the control output 15 spm, and its corresponding steady-state value of pH
7. The sampling time of the controller is 0.5 s.

1The pump can only make a natural number of strokes per minute (spm), between 0 and 100. At
100 spm, the pump creates a flow rate of 1.6 liters per hour (lph).
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Figure 7.4 Identification experiments
Step response (top) and relay (bottom). Curves show measured output (solid thin), simulated
output of the identified model (dashed), and input (solid thick).

7.4 Experimental Results

In this section, we demonstrate the proposed autotuning method on the industrial
in-line pH control loop described in Section 7.3.

The identification experiment was carried out using relay output levels uon = 5
and uoff = −γuon = −7.5 (corresponding to γ = 1.5, as previously mentioned).
Taking operation point offset and quantification of the control signal into account, the
corresponding control signal values become 20 and 7, respectively. The relay hysteresis
was set to 0.025.

The proposed experiment and identification procedure yielded the parameter vector
θ = [k h τ ]⊤ = [−0.067 26.5 33.7]⊤ (and corresponding covariance matrix). The gain
k is given in spm−1; while the time parameters, τ and h, are given in seconds. A
much longer (700 vs 122 s) step response experiment yielded a very similar model
parametrized by θ = [k h τ ]⊤ = [−0.068 20.3 30.8]⊤), as shown in Figure 7.4.
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Figure 7.5 Disturbance rejection experiment
Plant output (top) and controller output (bottom). Experimental data is shown in solid and
simulated in dashed.

Next, an optimization problem as (7.9) was solved, using the design parameters
αs = αt = 1 and Ms = Mt = 1.5. That is formulated as follows:

maximize
x=[kp ki]⊤

ki

subject to E [∥S(x, θ)∥∞] +
√
V [∥S(x, θ)∥∞] ≤ 1.5,

E [∥T (x, θ)∥∞] +
√
V [∥T (x, θ)∥∞] ≤ 1.5,

(7.25)

where θ is a random variable obeying a multivariate Gaussian with expectation and
variance given by the ones obtained in the identification stage. The obtained vector of
controller parameter, x = [−7.379 − 0.247]⊤, was implemented on an industrial con-
troller. Figure 7.5 shows both the experimental and simulated disturbance attenuation
capabilities of the resulting closed-loop system. The load disturbance resulting in the
response of Figure 7.5 was a pulse of height −8, active from the instant 50 to 500 s.





Chapter 8

Conclusions and Future Works

In this final chapter, we summarize the main results presented throughout this thesis
and provide some potential future works on this research field.

8.1 Conclusions

The exposition of the conclusions of this thesis will be performed by discussing each
chapter separately, due to the variety of the topics that have been addressed.

Chapter 1: Introduction

The first chapter has presented the context in which this thesis is placed, namely, the
design of PID controllers for uncertain plants. The position of the PID controller as
the most used form of feedback has been tried to justify by its desirable properties.
Emphasis has been made on the importance of considering explicitly the uncertainty
of the model in the control design stage.

Chapter 2: Background

The second chapter is devoted at providing a background on the issues that are covered
throughout the forthcoming chapters. In particular, it provided a general overview of
feedback control, and later, some issues like QFT and PID control are treated in a
more detailed way.
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Chapter 3: PI Design for an Uncertain ITD Plant

The design of PI controller for an uncertain ITP plant has been tackled in Chapter 3,
by formulating the control design problem in terms of minimizing IE subject to worst-
case peak values of the sensitivity and complementary sensitivity functions. The
contribution of this chapter is two-fold. On the one hand, the design considering an
infinite number of plant cases is replaced by one that only considers two extreme
plant cases. On the other hand, an approximate solution in form of a tuning rule
is presented to the mentioned control design problem. To the best of the author’s
knowledge, this is the first tuning rule for PI control that considers explicitly interval
parametric uncertainty. The proposed tuning rule yields a close-to-optimum robust
design, removing the difficulties associated with solving a robust optimization problem
or the application of a conventional tuning rule for a nominal plant. It effectiveness
has been proved by its application to several design examples.

Chapter 4: PID Design for an Uncertain FOTD Plant

Chapter 4 has studied the design of filtered PID controllers for uncertain FOTD plants.
As in the previous chapter, the uncertainty has been modeled by an interval parametric
uncertainty model, and the control design problem has been formulated in terms of
minimizing IE subject to worst-case peak values of the sensitivity and complementary
sensitivity functions. The control design problem was initially posed as a robust
optimization problem; then, it is approximated by a nominal optimization problem by
using an instrumental nominal fractional-order plant and some extra conditions. The
major strength of the proposed approach is that it allows to take into account interval
plant uncertainty, while the design is carried out for a nominal plant. Two examples
have been studied. The first example has demonstrated that practically at the same
computational cost of designing for a nominal, we can design for a given uncertain
plant. A second example illustrates that the obtained conditions are applicable to a
more general class of controller, in this case, it is analyzed a PID with an SP (a control
structure that may exhibit a particularly high sensitivity to time-delay uncertainty).

Chapter 5: PID Design for an Uncertain General Plant

Chapter 5 considers a more general problem than the considered in the previous
chapter. The uncertain plant model considered in Chapter 5 is given by a finite set
of frequency responses. This way of modeling is very general since any SISO LTI
model can be transformed into a frequency response. In addition, many input/output
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identification experiments yield a model in form of a frequency response. Many control
design problems are considering by generalizing the ones considered in Chapters 3 and
4. Control design problems based on QFT specifications and optimality criterion are
also considered. The method is studied in the context of PID control, but it can also
be applied to any controller structure, where the transfer function depends affinely
on the controller parameters. In other words, the controller poles are fixed, and the
synthesis method gives the zeros of the controller. The proposed design method has
been illustrated by several numerical examples.

Chapter 6: PID Design under Probabilistic Parametric Uncertainty

The three previous chapters had adopted a deterministic description of the uncertainty.
This approach to model the uncertainty leads to (hard) worst-case specifications.
Chapter 6 adopts another approach to model it. In this case, the uncertain parameters
are assumed to be described by a random variable. The uniform distribution is used to
model the interval parametric uncertainty. A probabilistic description of the uncertainty
enables us to obtain a probability of constraint violation, and hence to formulate the
control design problem by using (soft) probabilistic specifications. The probabilistic
design problem is posed in terms of minimizing IE subject to chance-constrained
specifications on the peak values of the sensitivity. The calculation of probability values
for this specification is a challenging problem. We have employed quadrature schemes
based on combining Smolyak’s product with nested univariate quadrature rules. RAs
are suggested to probabilistically validate the obtained designs. The synthesis method
has been illustrated by several examples. They show that significant performance gains
can be made, if (small) probabilities for constraint violations are permitted.

Chapter 7: Autotunning of PID Controllers

Chapter 7 has presented the successful application of a novel autotuning method on an
in-line pH control system. The method combines a modified relay experiment, output
error identification and controller design. Its main strengths lie in the short experiment
duration, combined with a robust synthesis method, explicitly accounting for identified
model parameter uncertainty.
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8.2 Future Works
In this section, we provide several potential lines of research related to the content of
this thesis.

Extension to MIMO Control

Any ALS method for SISO controllers could be extended to a method of design for
MIMO controllers based on the sequential QFT method, for example, in the spirit
of the work [266]. It is worth pointing out that [47] presents a technique based on
iterative convex optimization for the design of MIMO PID controllers and able to
handle nonparametric models. In fact, this technique has been employed by the author
of this thesis resulting in a successfully application to a benchmark problem1. However,
this technique, as most of the multivariable control literature, considers specifications
in terms of principal gains, i.e., global matrix performances. This approach for
assessing performance may be quite conservative under some realistic circumstances,
see [129, 169]. That is why, in the author’s opinion, it is worth exploring an alternative
approach based on typical QFT specifications, i.e., performance specifications over the
elements of relevant closed-loop matrix transfer functions.

Extension to Constrained Control

A caveat of virtually any feedback control design method, in the continuous-time case,
is the inability to deal systematically with constraints, both control and plant output
constraints. There are several approaches in the discrete-time case that overcome
this caveat, being the most popular by far MPC. However, finding the weights for its
optimality criterion is often nontrivial. Consequently, important issues like sensitivity
and robustness are generally not taken into account in its design. Recall that an MPC
controller behaves like a linear controller when the constraints are not active. That has
motivated several works that address the problem of reproducing an existing controller
as an MPC controller, e.g., [73, 118, 156]. Moreover, as pointed out in a recent survey
on MPC [174], some of the topics that require more attention are the problem of linking
MPC to an existing control law, robustness, and the use of output feedback, among
others issues.

In the author’s opinion, these issues can be efficiently treated using a novel control
approach known as interpolation based control [195–197]. It constitutes an appealing

1Competition on Control Engineering organized by the Spanish Committee of Automation CEA-
IFAC.
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alternative to MPC. It is less computationally demand than MPC. The price to paid is
that the controller is optimal (in MPC sense) only locally. This technique is built over
an existing controller, and the control signal is given by it when this control law is
feasible (state belongs to the maximum admissible set). Otherwise, the control signal
is generated by interpolating between the existing controller and another control law
(feasible in a controlled positively invariant set).

Therefore, this technique could be applied to any controller designed in this thesis
(once it has been discretized), endowing it with the ability to handle constraints. Work
on this topic is currently ongoing.

Extension to Reset Control

Reset control attempts to overcome the limitations of linear controllers by a nonlinear
controller. A reset controller has a dynamic governed by a lineal differential equation
between the reset instants, in which the dynamic is governed by an impulsive equation.
In terms of the (approximate) describing function approach, this kind of controllers has
the attractive property of yielding the same gain characteristic of a linear controller,
but with less phase lag than the linear counterpart. It has received considerable
attention in the literature during the last twenty years, see, for example, the recent
monographs [28, 109] and PhD theses [69, 249]. Most of the literature deals with the
problem of stability analysis, but there are a few results on control synthesis, see, for
example, [30, 70]. Nevertheless, the current state-of-the-art is far from providing a
general methodology able to incorporate important issues like robustness, sensitivity,
noise attenuation, etc.

An appealing solution is to resort to the describing function approach to extend
the methods presented here to the design of reset controllers. However, the main
disadvantage is that a rigorous justification for its use with reset control systems is an
open problem, and it seems to be a very challenging one.





Bibliography

[1] Ackermann, J. (2002). Robust Control: The Parameter Space Approach. Springer-
Verlag London.

[2] Adurthi, N. and Singla, P. (2015). Conjugate unscented transformation-based
approach for accurate conjunction analysis. Journal of Guidance, Control, and
Dynamics, 38(9):1642–1658.

[3] Adurthi, N., Singla, P., and Singh, T. (2012). The conjugate unscented transform-an
approach to evaluate multi-dimensional expectation integrals. In Proceedings of the
2012 American Control Conference, pages 5556–5561, Montreal, Canada.

[4] Adurthi, N., Singla, P., and Singh, T. (2013). Conjugate unscented transform
rules for uniform probability density functions. In Proceedings of the 2013 American
Control Conference, pages 2454–2459, Washington, USA.

[5] Alcántara, S., Vilanova, R., and Pedret, C. (2013). PID control in terms of
robustness/performance and servo/regulator trade-offs: A unifying approach to
balanced autotuning. Journal of Process Control, 23(4):527–542.

[6] Alfaro, V. M. and Vilanova, R. (2013). Performance and robustness considerations
for tuning of proportional integral/proportional integral derivative controllers with
two input filters. Industrial & Engineering Chemistry Research, 52(51):18287–18302.

[7] Alfaro, V. M. and Vilanova, R. (2016). Model-Reference Robust Tuning of PID
Controllers. Springer International Publishing.

[8] Anderson, B. D. and Moore, J. B. (1971). Linear Optimal Control. Prentice-Hall,
Inc.

[9] Ang, K. H., Chong, G., and Li, Y. (2005). PID control system analysis, design,
and technology. IEEE Transactions on Control Systems Technology, 13(4):559–576.

[10] Anil, C. and Sree, R. P. (2015). Tuning of PID controllers for integrating systems
using direct synthesis method. ISA Transactions, 57(1):211–219.

[11] Araki, M. (1984). PID control system with reference feedforward (PID-FF control
system). In Proceedings of the 23rd Society of Instrument and Control Engineers
Annual Conference, pages 31–32.

[12] Åström, K. J. (1980). Maximum likelihood and prediction error methods. Auto-
matica, 16(5):551–574.



182 Bibliography

[13] Åström, K. J. (2000). Limitations on control system performance. European
Journal of Control, 6(1):2–20.

[14] Åström, K. J. and Hägglund, T. (1984). Automatic tuning of simple regulators
with specifications on phase and amplitude margins. Automatica, 20(5):645–651.

[15] Åström, K. J. and Hägglund, T. (1988). Automatic Tuning of PID Controllers.
Instrument Society of America.

[16] Åström, K. J. and Hägglund, T. (1995). PID Controllers: Theory, Design, and
Tuning. Instrument Society of America.

[17] Åström, K. J. and Hägglund, T. (2001). The future of PID control. Control
engineering practice, 9(11):1163–1175.

[18] Åström, K. J. and Hägglund, T. (2004). Revisiting the Ziegler–Nichols step
response method for PID control. Journal of Process Control, 14(6):635–650.

[19] Åström, K. J. and Hägglund, T. (2006). Advanced PID Control. The Instrument-
ation, Systems, and Automation Society.

[20] Åström, K. J. and Kumar, P. (2014). Control: A perspective. Automatica,
50(1):3–43.

[21] Åström, K. J. and Murray, R. M. (2008). Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press.

[22] Åström, K. J., Panagopoulos, H., and Hägglund, T. (1998). Design of PI controllers
based on non-convex optimization. Automatica, 34(5):585–601.

[23] Åström, K. J. and Wittenmark, B. (1995). Adaptive Control. Addison-Wesley.

[24] Bailey, F. and Hui, C.-H. (1989). A fast algorithm for computing parametric
rational functions. IEEE Transactions on Automatic Control, 34(11):1209–1212.

[25] Bailey, F. and Hui, C.-H. (1991). Loop gain-phase shaping for single-input-single-
output robust controllers. IEEE Control Systems, 11(1):93–101.

[26] Bailey, F., Panzer, D., and Gu, G. (1988). Two algorithms for frequency domain
design of robust control systems. International Journal of Control, 48(5):1787–1806.

[27] Baños, A. (2007). Nonlinear quantitative feedback theory. International Journal
of Robust and Nonlinear Control, 17(2-3):181–202.

[28] Baños, A. and Barreiro, A. (2012). Reset Control Systems. Springer-Verlag
London.

[29] Baños, A., Cervera, J., Lanusse, P., and Sabatier, J. (2011). Bode optimal loop
shaping with CRONE compensators. Journal of Vibration and Control, 17(13):1964–
1974.



Bibliography 183

[30] Baños, A. and Davó, M. A. (2014). Tuning of reset proportional integral compensa-
tion with a variable reset ratio and reset band. IET Control Theory and Applications,
8(17):1949–1962.

[31] Baños, A. and Horowitz, I. M. (2004). Nonlinear quantitative stability. Interna-
tional Journal of Robust and Nonlinear Control, 14(3):289–306.

[32] Barmish, B. and Lagoa, C. M. (1997). The uniform distribution: A rigorous
justification for its use in robustness analysis. Mathematics of Control, Signals and
Systems, 10(3):203–222.

[33] Bartlett, A. C., Hollot, C. V., and Lin, H. (1988). Root locations of an entire
polytope of polynomials: It suffices to check the edges. Mathematics of Control,
Signals and Systems, 1(1):61–71.

[34] Bennett, S. (1993). Development of the PID controller. IEEE Control Systems,
13(6):58–62.

[35] Bennett, S. (1996). A brief history of automatic control. IEEE Control Systems
Magazine, 16(3):17–25.

[36] Bennett, S. (2001). The past of PID controllers. Annual Reviews in Control,
25:43–53.

[37] Berner, J., Åström, K. J., and Hägglund, T. (2014). Towards a new generation
of relay autotuners. In Proceedings of the 19th IFAC World Congress, Cape Town,
South Africa.

[38] Berner, J., Hägglund, T., and Åström, K. J. (2016). Asymmetric relay autotuning
– Practical features for industrial use. Control Engineering Practice, 54:231–245.

[39] Bhattacharyya, S., Chapellat, H., and Keel, L. (1995). Robust Control: The
Parametric Approach. Prentice-Hall.

[40] Black, H. S. (1934). Stabilized feedback amplifiers. Bell System Technical Journal,
13(1):1–18.

[41] Blondel, V. D. and Tsitsiklis, J. N. (2000). A survey of computational complexity
results in systems and control. Automatica, 36(9):1249–1274.

[42] Bode, H. W. (1945). Network Analysis and Feedback Amplifier Design. van
Nostrand.

[43] Boiko, I. (2013). Non-Parametric Tuning of PID Controllers – A Modified Relay-
Feedback-Test Approach. Springer-Verlag London.

[44] Boje, E. (2007). Quantitative feedback design for systems with probabilistic
parameterizations. International Journal of Robust and Nonlinear Control, 17(2–
3):173–179.



184 Bibliography

[45] Bondia, J., Kieffer, A., Walter, E., Monreal, J., and Pico, J. (2004). Guaranteed
tuning of PID controllers for parametric uncertain systems. In Proceedings of the
43rd IEEE Conference on Decision and Control, pages 2948–2953, Nassau, Bahamas.
IEEE.

[46] Borghesani, C., Chait, Y., and Yaniv, O. (1994). Quantitative feedback theory
toolbox for use with MATLAB®: User’s guide. MathWorks, Incorporated.

[47] Boyd, S., Hast, M., and Åström, K. J. (2016). MIMO PID tuning via iterated LMI
restriction. International Journal of Robust and Nonlinear Control, 26(8):1718–1731.

[48] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University
Press.

[49] Bungartz, H.-J. and Griebel, M. (2004). Sparse grids. Acta numerica, 13:147–269.

[50] Byrd, R. H., Gilbert, J. C., and Nocedal, J. (2000). A trust region method based
on interior point techniques for nonlinear programming. Mathematical Programming,
89(1):149–185.

[51] Calafiore, G., Dabbene, F., and Tempo, R. (2007). A survey of randomized
algorithms for control synthesis and performance verification. Journal of Complexity,
23(3):301–316.

[52] Calafiore, G., Dabbene, F., and Tempo, R. (2011). Research on probabilistic
methods for control system design. Automatica, 47(7):1279–1293.

[53] Calafiore, G. and El Ghaoui, L. (2014). Optimization Models. Cambridge University
Press.

[54] Camacho, E. F. and Bordons, C. (2007). Model Predictive Control. Springer-Verlag
London.

[55] Carrasco, J. and Baños, A. (2012). Reset control of an industrial in-line pH process.
IEEE Transactions on Control Systems Technology, 2(4):1100–1106.

[56] Cervera, J. and Baños, A. (2009). Nonlinear nonconvex optimization by evolution-
ary algorithms applied to robust control. Mathematical Problems in Engineering,
2009. Article ID 671869.

[57] Chait, Y., Borghesani, C., and Zheng, Y. (1995). Single-loop QFT design for
robust performance in the presence of non-parametric uncertainties. Journal of
Dynamic Systems, Measurement, and Control, 117(3):420–425.

[58] Chait, Y., Chen, Q., and Hollot, C. (1999). Automatic loop-shaping of QFT
controllers via linear programming. Journal of Dynamic Systems, Measurement, and
Control, 121(3):351–357.

[59] Chait, Y. and Yaniv, O. (1993). Multi-input/single-output computer-aided control
design using the quantitative feedback theory. International Journal of Robust and
Nonlinear Control, 3(1):47–54.



Bibliography 185

[60] Chen, W.-H. and Ballance, D. J. (1999). Plant template generation for uncertain
plants in Quantitative Feedback Theory. Journal of Dynamic Systems, Measurement,
and Control, 121(3):358–364.

[61] Chen, W.-H., Ballance, D. J., Feng, W., and Li, Y. (1999). Genetic algorithm
enabled computer-automated design of QFT control systems. In Proceedings of the
1999 IEEE International Symposium on Computer Aided Control System Design,
pages 492–497.

[62] Chen, Y., Petras, I., and Xue, D. (2009). Fractional order control - a tutorial. In
Proceedings of the 2009 American Control Conference, pages 1397–1411, St. Louis,
USA.

[63] Choi, Y. and Chung, W. K. (2004). PID Trajectory Tracking Control for Mechanical
Systems. Springer-Verlag Berlin Heidelberg.

[64] Clegg, J. C. (1958). A nonlinear integrator for servomechanisms. Transactions of
the American Institute of Electrical Engineers, Part II: Applications and Industry,
77(1):41–42.

[65] Cohen, N., Chait, Y., Yaniv, O., and Borghesani, C. (1994). Stability analysis using
Nichols charts. International Journal of Robust and Nonlinear Control, 4(1):3–20.

[66] Cools, R. (2003). An encyclopaedia of cubature formulas. Journal of Complexity,
19(3):445–453.

[67] Datta, A., Ho, M.-T., and Bhattacharyya, S. P. (2000). Structure and Synthesis
of PID Controllers. Springer-Verlag London.

[68] Davis, P. J. and Rabinowitz, P. (1984). Methods of Numerical Integration. Aca-
demic Press, Inc.

[69] Davó, M. A. (2015). Analysis and design of reset control systems. PhD thesis,
University of Murcia.

[70] Davó, M. A. and Baños, A. (2016). Reset control of integrating plus dead time
processes. Journal of Process Control, 38:22–30.

[71] Dejonckheere, J., Disney, S. M., Lambrecht, M. R., and Towill, D. R. (2003).
Measuring and avoiding the bullwhip effect: A control theoretic approach. European
Journal of Operational Research, 147(3):567–590.

[72] Desborough, L. and Miller, R. (2002). Increasing customer value of industrial con-
trol performance monitoring-Honeywell’s experience. In Proceedings of the 6th AIChE
International Conference on Chemical Process Control, pages 169–189, Tucson, USA.

[73] Di Cairano, S. and Bemporad, A. (2010). Model predictive control tuning by
controller matching. IEEE Transactions on Automatic Control, 55(1):185–190.

[74] Díaz, J., Dormido, S., and Aranda, J. (2007). An interactive software tool for
learning robust control design using Quantitative Feedback Theory methodology.
International Journal of Engineering Education, 23(5):1011–1023.



186 Bibliography

[75] Disney, S. M., Towill, D. R., and Warburton, R. D. (2006). On the equivalence of
control theoretic, differential, and difference equation approaches to modeling supply
chains. International Journal of Production Economics, 101(1):194–208.

[76] Doyle, J. C. (1978). Guaranteed margins for LQG regulators. IEEE Transactions
on Automatic Control, AC-23(4):756–757.

[77] Doyle, J. C. (1982). Analysis of feedback systems with structured uncertainties.
IEE Proceedings D (Control Theory and Applications), 129:242–250.

[78] Doyle, J. C. (1983). Synthesis of robust controllers and filters. In Proceedings of
the 22nd IEEE Conference on Decision and Control, pages 109–114.

[79] Doyle, J. C., Francis, B. A., and Tannenbaum, A. R. (1992). Feedback Control
Theory. Macmillan Publishing Co.

[80] Doyle, J. C., Glover, K., Khargonekar, P. P., and Francis, B. A. (1989). State-space
solutions to standard H2 and H∞ control problems. IEEE Transactions on Automatic
control, 34(8):831–847.

[81] Duong, P. L. T. and Lee, M. (2012). Robust PID controller design for processes
with stochastic parametric uncertainties. Journal of Process Control, 22(9):1559–
1566.

[82] Duong, P. L. T. and Lee, M. (2014). Probabilistic analysis and control of systems
with uncertain parameters over non-hypercube domain. Journal of Process Control,
24(4):358–367.

[83] Edelsbrunner, H., Kirkpatrick, D. G., and Seidel, R. (1983). On the shape of a set
of points in the plane. IEEE Transactions on Information Theory, 29(4):551–559.

[84] Eitelberg, E. (1987). A regulating and tracking PI (D) controller. International
Journal of Control, 45(1):91–95.

[85] Eitelberg, E. (2000). Quantitative feedback design for tracking error tolerance.
Automatica, 36(2):319–326.

[86] Eitelberg, E. and Houpis, C. H. (2007). Isaac M. Horowitz: an essential singularity
in the complex domain of control theory (1920–2005). International Journal of
Robust and Nonlinear Control, 17(2-3):95–105.

[87] Fekete, S. P. (2000). On simple polygonalizations with optimal area. Discrete &
Computational Geometry, 23(1):73–110.

[88] Foster, W. C., Gieseking, D. L., and Waymayer, W. K. (1966). A nonlinear filter
for independent gain and phase (with applications). Journal of Basic Engineering,
88:457–462.

[89] Fransson, C.-M., Wik, T., Lennartson, B., Saunders, M., and Gutman, P.-O. (2009).
Nonconservative robust control: optimized and constrained sensitivity functions.
IEEE Transactions on Control Systems Technology, 17(2):298–308.



Bibliography 187

[90] Freudenberg, J. and Looze, D. (1987). A sensitivity tradeoff for plants with time
delay. IEEE Transactions on Automatic Control, 32(2):99–104.

[91] Friman, M. and Waller, K. V. (1997). A two-channel relay for autotuning. Industrial
and Engineering Chemistry Research, 36(7):2662–2671.

[92] Fu, M. (1990). Computing the frequency response of linear systems with parametric
perturbation. Systems & Control Letters, 15(1):45–52.

[93] Fu, M., Olbrot, A. W., and Polis, M. (1989). Robust stability for time-delay
systems: the edge theorem and graphical tests. IEEE Transactions on Automatic
Control, 34(8):813–820.

[94] Gaing, Z.-L. (2004). A particle swarm optimization approach for optimum design of
PID controller in AVR system. IEEE Transactions on Energy Conversion, 19(2):384–
391.

[95] Garcia-Sanz, M. (2016). The Nyquist stability criterion in the Nichols chart.
International Journal of Robust and Nonlinear Control, 26(12):2643–2651.

[96] Garcia-Sanz, M., Mauch, A., and Philippe, C. (2009). QFT Control Toolbox: an
interactive object-oriented Matlab CAD tool for Quantitative Feedback Theory. In
Proceedings of the 6th IFAC Symposium on Robust Control Design, Haifa, Israel.

[97] Garpinger, O. and Hägglund, T. (2015). Software-based optimal PID design with
robustness and noise sensitivity constraints. Journal of Process Control, 33:90–101.

[98] Garpinger, O., Hägglund, T., and Åström, K. J. (2014). Performance and robust-
ness trade-offs in PID control. Journal of Process Control, 24(5):568–577.

[99] Gelb, A. and Vander Velde, W. E. (1968). Multiple-Input Describing Functions
and Nonlinear System Design. McGraw-Hill.

[100] Gera, A. and Horowitz, I. M. (1980). Optimization of the loop transfer function.
International Journal of Control, 31(2):389–398.

[101] Goodwin, G. C., Graebe, S. F., and Salgado, M. E. (2001). Control System
Design. Prentice Hall.

[102] Gorodnichenko, Y. and Shapiro, M. D. (2007). Monetary policy when potential
output is uncertain: Understanding the growth gamble of the 1990s. Journal of
Monetary Economics, 54(4):1132–1162.

[103] Grant, M. and Boyd, S. (2008). Graph implementations for nonsmooth convex
programs. In Blondel, V., Boyd, S., and Kimura, H., editors, Recent Advances in
Learning and Control, Lecture Notes in Control and Information Sciences, pages
95–110. Springer-Verlag Limited.

[104] Grant, M. and Boyd, S. (2014). CVX: Matlab software for disciplined convex
programming, version 2.1. http://cvxr.com/cvx.

[105] Grimholt, C. and Skogestad, S. (2012). Optimal PI-control and verification of
the SIMC tuning rule. IFAC Proceedings Volumes, 45(3):11–22.

http://cvxr.com/cvx


188 Bibliography

[106] Grimholt, C. and Skogestad, S. (2015). Improved optimization-based design of
PID controllers using exact gradients. In Proceedings of the 25th European Symposium
on Computer Aided Process Engineering, pages 1751–1756, Copenhagen, Denmark.

[107] Gryazina, E. N. and Polyak, B. T. (2006). Stability regions in the parameter
space: D-decomposition revisited. Automatica, 42(1):13–26.

[108] Gudin, R. and Mirkin, L. (2007). On the delay margin of dead-time compensators.
International Journal of Control, 80(8):1316–1332.

[109] Guo, Y., Xie, L., and Wang, Y. (2015). Analysis and Design of Reset Control
Systems. Institution of Engineering and Technology.

[110] Gutman, P.-O. (1996). QSYN – The Toolbox for Robust Control Systems Design
for use with Matlab.

[111] Gutman, P.-O. (2003). Robust and adaptive control: fidelity or an open relation-
ship? Systems & Control Letters, 49(1):9–19.

[112] Gutman, P.-O., Baril, C., and Neumann, L. (1994). An algorithm for computing
value sets of uncertain transfer functions in factored real form. IEEE Transactions
on Automatic Control, 39(6):1268–1273.

[113] Gutman, P.-O. and Cwikel, M. (1986). Admissible sets and feedback control for
discrete-time linear dynamical systems with bounded controls and states. IEEE
Transactions on Automatic Control, 31(4):373–376.

[114] Gutman, P.-O., Nordin, M., and Cohen, B. (2007). Recursive grid methods to
compute value sets and Horowitz–Sidi bounds. International Journal of Robust and
Nonlinear Control, 17(2-3):155–171.

[115] Hägglund, T. (2013). A unified discussion on signal filtering in PID control.
Control Engineering Practice, 21(8):994–1006.

[116] Hajiloo, A., Nariman-Zadeh, N., and Moeini, A. (2012). Pareto optimal robust
design of fractional-order PID controllers for systems with probabilistic uncertainties.
Mechatronics, 22(6):788–801.

[117] Han, K.-W. and Chang, C.-H. (1990). Gain margins and phase margins for
control systems with adjustable parameters. Journal of Guidance, Control, and
Dynamics, 13(3):404–408.

[118] Hartley, E. N. and Maciejowski, J. M. (2013). Designing output-feedback predict-
ive controllers by reverse-engineering existing LTI controllers. IEEE Transactions
on Automatic Control, 58(11):2934–2939.

[119] Hast, M., Åström, K., Bernhardsson, B., and Boyd, S. (2013). PID design by
convex-concave optimization. In Proceedings of the 12th biannual European Control
Conference, pages 4460–4465, Zürich, Switzerland.



Bibliography 189

[120] Hast, M. and Hägglund, T. (2015). Optimal proportional–integral–derivative
set-point weighting and tuning rules for proportional set-point weights. IET Control
Theory & Applications, 9(15):2266–2272.

[121] Hawkins, R. J., Speakes, J. K., and Hamilton, D. E. (2015). Monetary policy
and PID control. Journal of Economic Interaction and Coordination, 10(1):183–197.

[122] Heiss, F. and Winschel, V. (2008). Likelihood approximation by numerical
integration on sparse grids. Journal of Econometrics, 144(1):62–80.

[123] Ho, M.-T., Datta, A., and Bhattacharyya, S. (1997). A linear programming
characterization of all stabilizing PID controllers. In Proceedings of the 1997 American
Control Conference, pages 3922–3928, Albuquerque, USA.

[124] Horowitz, I. M. (1959). Fundamental theory of automatic linear feedback control
systems. IRE Transactions on Automatic Control, 4(3):5–19.

[125] Horowitz, I. M. (1963). Synthesis of Feedback Systems. Academic Press.

[126] Horowitz, I. M. (1976). Synthesis of feedback systems with nonlinear time-varying
uncertain plants to satisfy quantitative performance specifications. Proceedings of
the IEEE, 64(1):123–130.

[127] Horowitz, I. M. (1983). Some properties of delayed controls (Smith regulator).
International Journal of Control, 38(5):977–990.

[128] Horowitz, I. M. (1993). Quantitative Feedback Design. QFT Publications.

[129] Horowitz, I. M. (2001). Survey of quantitative feedback theory (QFT). Interna-
tional Journal of Robust and Nonlinear Control, 11(10):887–921.

[130] Horowitz, I. M. (2003). Some ideas for QFT research. International Journal of
Robust and Nonlinear Control, 13(7):599–605.

[131] Horowitz, I. M. and Baños, A. (2001). Fundamentals of nonlinear quantitative
feedback theory. In Baños, A., Lamnabhi-Lagarrigue, F., and Montoya, F. J.,
editors, Advances in the Control of Nonlinear Systems, Lecture Notes in Control
and Information Sciences, pages 63–132. Springer-Verlag London.

[132] Horowitz, I. M. and Shaked, U. (1975). Superiority of transfer function over state-
variable methods in linear time-invariant feedback system design. IEEE Transactions
on Automatic Control, 20(1):84–97.

[133] Horowitz, I. M. and Sidi, M. (1972). Synthesis of feedback systems with large
plant ignorance for prescribed time-domain tolerances. International Journal of
Control, 16(2):287–309.

[134] Houpis, C. and Sating, R. (1997). MIMO QFT CAD package (version 3).
International Journal of Robust and Nonlinear Control, 7(6):533–549.

[135] Huang, Y. J. and Wang, Y.-J. (2000). Robust PID tuning strategy for uncertain
plants based on the Kharitonov theorem. ISA Transactions, 39(4):419–431.



190 Bibliography

[136] Huba, M. (2013a). Performance measures, performance limits and optimal PI
control for the IPDT plant. Journal of Process Control, 23(4):500–515.

[137] Huba, M. (2013b). Performance portrait method: a new CAD tool. IFAC
Proceedings Volumes, 46(17):315–320.

[138] Ionescu, C. M. and De Keyser, R. (2012). The next generation of relay-based
PID autotuners (part 1): Some insights on the performance of simple relay-based
PID autotuners. IFAC Proceedings Volumes, 45(3):122–127.

[139] Iwasaki, T. and Skelton, R. E. (1994). All controllers for the general H∞ control
problem: LMI existence conditions and state space formulas. Automatica, 30(8):1307–
1317.

[140] James, H. M., Nichols, N. B., and Phillips, R. S. (1947). Theory of Servomech-
anisms. McGraw-Hill Book Co.

[141] Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. (2001). Applied Interval
Analysis - With Examples in Parameter and State Estimation, Robust Control and
Robotics. Springer-Verlag London.

[142] Jeyasenthil, R. and Nataraj, P. (2017). An interval-consistency-based hybrid
optimization algorithm for automatic loop shaping in quantitative feedback theory
design. Journal of Vibration and Control, 23(3):414–431.

[143] Jin, Q., Liu, Q., and Huang, B. (2015). Control design for disturbance rejection
in the presence of uncertain delays. IEEE Transactions on Automation Science and
Engineering, PP(99):1–12.

[144] Johnson, M. A. and Moradi, M. H. (2005). PID Control - New Identification and
Design Methods. Springer-Verlag London.

[Julier and Uhlmann] Julier, S. J. and Uhlmann, J. K. New extension of the Kalman
filter to nonlinear systems. In Proceedings of the SPIE 3068, Signal Processing,
Sensor Fusion, and Target Recognition VI, pages 182–193.

[146] Julier, S. J. and Uhlmann, J. K. (1996). A general method for approximating
nonlinear transformations of probability distributions. Technical report, Department
of Engineering Science, University of Oxford.

[147] Julier, S. J. and Uhlmann, J. K. (2004). Unscented filtering and nonlinear
estimation. Proceedings of the IEEE, 92(3):401–422.

[148] Kalman, R. E. (1964). When is a linear control system optimal? Journal of
Basic Engineering, 86(1):51–60.

[149] Karimi, A. and Galdos, G. (2010). Fixed-order H∞ controller design for nonpara-
metric models by convex optimization. Automatica, 46(8):1388–1394.

[150] Karybakas, C. (1977). Nonlinear integrator with zero phase shift. IEEE Trans-
actions on Industrial Electronics and Control Instrumentation, 24(2):150–152.



Bibliography 191

[151] Kaya, I. and Atherton, D. (2001). Parameter estimation from relay autotuning
with asymmetric limit cycle data. Journal of Process Control, 11(4):429–439.

[152] Keel, L. H. and Bhattacharyya, S. P. (2008). Controller synthesis free of ana-
lytical models: Three term controllers. IEEE Transactions on Automatic Control,
53(6):1353–1369.

[153] Keel, L. H. and Bhattacharyya, S. P. (2012). Modern PID control: Stabilizing
sets and multiple performance specifications. In Vilanova, R. and Visioli, A., editors,
PID Control in the Third Millennium, Advances in Industrial Control, pages 319 –
348. Springer-Verlag London.

[154] Khadraoui, S., Rakotondrabe, M., and Lutz, P. (2012). Interval modeling and
robust control of piezoelectric microactuators. IEEE Transactions on Control Systems
Technology, 20(2):486–494.

[155] Kharitonov, V. (1978). Asympotic stability of an equilibrium position of a family
of systems of linear differntial equations. Differntia Uravnen, 14(11):1483–1485.

[156] Kong, H., Goodwin, G., and Seron, M. M. (2013). Predictive metamorphic
control. Automatica, 49(12):3670–3676.

[157] Kucera, V. (1975). Stability of discrete linear feedback systems. In Proceedings
of the 6th IFAC World Congress, Boston, USA.

[158] Kumar, D. S. and Sree, R. P. (2016). Tuning of IMC based PID controllers for
integrating systems with time delay. ISA Transactions, 63:242 – 255.

[159] Lennartson, B. and Kristiansson, B. (2009). Evaluation and tuning of robust
PID controllers. IET Control Theory & Applications, 3(3):294–302.

[160] Lewis, A. D. (2003). A Mathematical Approach to Classical Control.

[161] Lin, C., Wang, Q.-G., and Lee, T. H. (2004). Relay feedback: A complete analysis
for first-order systems. Industrial & Engineering Chemistry Research, 43(26):8400–
8402.

[162] Lipp, T. and Boyd, S. (2016). Variations and extension of the convex–concave
procedure. Optimization and Engineering, 17(2):263–287.

[163] Litrico, X. and Fromion, V. (2004). Simplified modeling of irrigation canals for
controller design. Journal of Irrigation and Drainage Engineering, 130(5):373–383.

[164] Litrico, X. and Fromion, V. (2006). Tuning of robust distant downstream PI
controllers for an irrigation canal pool. I: Theory. Journal of Irrigation and Drainage
Engineering, 132(4):359–368.

[165] Litrico, X., Fromion, V., and Baume, J.-P. (2006). Tuning of robust distant
downstream PI controllers for an irrigation canal pool. II: Implementation issues.
Journal of Irrigation and Drainage Engineering, 132(4):369–379.

[166] Ljung, L. (1999). System Identification - Theory For the User. Prentice Hall.



192 Bibliography

[167] Lurie, B. and Enright, P. (2000). Classical Feedback Control: with MATLAB.
CRC Press.

[168] MacFarlane, A. G. J. and Postlethwaite, I. (1977). The generalized Nyquist
stability criterion and multivariable root loci. International Journal of Control,
25(1):81–127.

[169] Maciejowski, J. M. (1989). Multivariable Feedback Design. Addison-Wesley.

[170] Maciejowski, J. M. (2001). Predictive Control with Constraints. Prentice Hall.

[171] Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1):77–91.

[172] Martín, F., Monje, C. A., Moreno, L., and Balaguer, C. (2015). DE-based tuning
of PIλDµ controllers. ISA Transactions, 59:398–407.

[173] Martin-Romero, J. J. and Martin-Romero, A. (2007). QFT templates for plants
with a high number of uncertainty parameters. IEEE Transactions on Automatic
Control, 52(4):754–758.

[174] Mayne, D. Q. (2014). Model predictive control: Recent developments and future
promise. Automatica, 50(12):2967–2986.

[175] Mees, A. and Bergen, A. (1975). Describing functions revisited. IEEE Transac-
tions on Automatic Control, 20(4):473–478.

[176] Menani, S. and Koivo, H. (2001). A comparative study of recent relay autot-
uning methods for multivariable systems. International Journal of System Science,
32(4):443–466.

[177] Mercader, P., Åström, K. J., Baños, A., and Hägglund, T. (2017a). Robust
PID design based on QFT and convex-concave optimization. IEEE Transactions on
Control Systems Technology, 25(2):441–452.

[178] Mercader, P. and Baños, A. (2014a). Robust PI compensators design for FOPDT
systems with large uncertainty. In Proceedings of the 2014 14th International
Conference on Control, Automation and Systems, pages 1261–1266, Seoul, Korea.

[179] Mercader, P. and Baños, A. (2014b). Tuning of PI compensators for integrat-
ing systems with large parametric uncertainty. In Proceedings of the 19th IEEE
Conference on Emerging Technologies & Factory Automation, pages 1–6, Barcelona,
Spain.

[180] Mercader, P. and Baños, A. (2017). A PI tuning rule for integrating plus dead
time processes with parametric uncertainty. ISA Transactions.

[181] Mercader, P., Baños, A., and Vilanova, R. (2017b). Robust PID design for
processes with interval parametric uncertainty. IET Control Theory & Applications.

[182] Mercader, P., Carrasco, J., and Baños, A. (2013a). IQC analysis for time-delay
reset control systems with first order reset elements. In Proceedings of the 52nd
IEEE Conference on Decision and Control, pages 2251–2256, Florence, Italy.



Bibliography 193

[183] Mercader, P., Davó, M. A., and Baños, A. (2013b). H∞/H2 analysis for time-
delay reset control systems. In Proceedings of the 3rd International Conference on
Systems and Control, pages 518–523, Algiers, Algeria.

[184] Mercader, P., Davó, M. A., and Baños, A. (2015). Performance analysis of PI and
PI+CI compensation for an IPDT process. In Proceedings of the 23rd Mediterranean
Conference on Control and Automation, Torremolinos, Spain.

[185] Mercader, P., Soltesz, K., and Baños, A. (2016a). Autotuning of an in-line pH
control system. In 21st International Conference on Emerging Technologies and
Factory Automation (ETFA), pages 1–4, Berlin, Germany.

[186] Mercader, P., Soltesz, K., and Baños, A. (2016b). PID synthesis under probabil-
istic parametric uncertainty. In Proceedings of the 2016 American Control Conference,
pages 5467–5472, Boston, USA.

[187] Merrikh-Bayat, F. and Karimi-Ghartemani, M. (2008). On the essential in-
stabilities caused by fractional-order transfer functions. Mathematical Problems in
Engineering, 2008. Article ID 419046.

[188] Monje, C. A., Chen, Y., Vinagre, B. M., Xue, D., and Feliu-Batlle, V. (2010).
Fractional-order Systems and Controls: Fundamentals and Applications. Springer-
Verlag London.

[189] Moreno, J. C., Baños, A., and Berenguel, M. (2006). Improvements on the
computation of boundaries in QFT. International Journal of Robust and Nonlinear
Control, 16(12):575–597.

[190] Moreno, J. C., Baños, A., and Berenguel, M. (2011). The design of QFT robust
compensators with magnitude and phase specifications. Mathematical Problems in
Engineering, 2010. Article ID 105143.

[191] Mutapcic, A. and Boyd, S. (2009). Cutting-set methods for robust convex
optimization with pessimizing oracles. Optimization Methods & Software, 24(3):381–
406.

[192] Nataraj, P. and Sardar, G. (2000). Template generation for continuous transfer
functions using interval analysis. Automatica, 36(1):111 – 119.

[193] Nataraj, P. and Tharewal, S. (2007). An interval analysis algorithm for automated
controller synthesis in QFT designs. Journal of Dynamic Systems, Measurement,
and Control, 129(3):311–321.

[194] Nemirovskii, A. (1993). Several NP-hard problems arising in robust stability
analysis. Mathematics of Control, Signals and Systems, 6(2):99–105.

[195] Nguyen, H.-N. (2014). Constrained Control of Uncertain, Time-Varying, Discrete-
Time Systems: An Interpolation-Based Approach. Springer International Publishing.

[196] Nguyen, H.-N., Gutman, P.-O., Olaru, S., and Hovd, M. (2013). Implicit improved
vertex control for uncertain, time-varying linear discrete-time systems with state
and control constraints. Automatica, 49(9):2754–2759.



194 Bibliography

[197] Nguyen, H.-N., Gutman, P.-O., Olaru, S., and Hovd, M. (2014). Control with
constraints for linear stationary systems: An interpolation approach. Automation
and Remote Control, 75(1):57–74.

[198] Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer-Verlag
New York.

[199] Nordin, M. and Gutman, P.-O. (2002). Controlling mechanical systems with
backlash—a survey. Automatica, 38(10):1633–1649.

[200] Nyquist, H. (1932). Regeneration theory. Bell system technical journal, 11(1):126–
147.

[201] O’Dwyer, A. (2006). Handbook of PI and PID Controller Tuning Rules. World
Scientific.

[202] Padula, F. and Visioli, A. (2012). On the stabilizing PID controllers for integral
processes. IEEE Transactions on Automatic Control, 57(2):494–499.

[203] Panagopoulos, H., Åström, K. J., and Hägglund, T. (2002). Design of PID
controllers based on constrained optimisation. IEE Proceedings-Control Theory and
Applications, 149(1):32–40.

[204] Panda, S., Sahu, B., and Mohanty, P. (2012). Design and performance analysis
of PID controller for an automatic voltage regulator system using simplified particle
swarm optimization. Journal of the Franklin Institute, 349(8):2609–2625.

[205] Papadopoulos, K. G. (2015). PID Controller Tuning Using the Magnitude
Optimum Criterion. Springer International Publishing.

[206] Papoulis, A. and Pillai, S. U. (2002). Probability, Random Variables, and
Stochastic Processes. McGraw-Hill.

[207] Park, I., Hong, S., and Sunwoo, M. (2014). Robust air-to-fuel ratio and boost
pressure controller design for the EGR and VGT systems using quantitative feedback
theory. IEEE Transactions on Control Systems Technology, 22(6):2218–2231.

[208] Perez, F., Baños, A., and Cervera, J. (2011). Periodic reset control of an in-line
pH process. In Proceedings of the 16th IEEE Conference on Emerging Technologies
& Factory Automation, pages 1–4, Toulouse, France.

[209] Petersen, I. R. and Tempo, R. (2014). Robust control of uncertain systems:
Classical results and recent developments. Automatica, 50(5):1315–1335.

[210] Petras, K. (2003). Smolyak cubature of given polynomial degree with few nodes
for increasing dimension. Numerische Mathematik, 93(4):729–753.

[211] Poljak, S. and Rohn, J. (1993). Checking robust nonsingularity is NP-hard.
Mathematics of Control, Signals and Systems, 6(1):1–9.



Bibliography 195

[212] Purohit, H., Goldsztejn, A., Jermann, C., Granvilliers, L., Goualard, F., Nataraj,
P., and Patil, B. (2016). Simultaneous automated design of structured QFT controller
and prefilter using nonlinear programming. International Journal of Robust and
Nonlinear Control.

[213] Rantzer, A. and Gutman, P.-O. (1991). Algorithm for addition and multiplication
of value sets of uncertain transfer functions. In Proceedings of the 30th IEEE
Conference on Decision and Control, pages 3056–3057, Brighton, UK.

[214] Rivera, D. E., Morari, M., and Skogestad, S. (1986). Internal model control:
PID controller design. Industrial & Engineering Chemistry Process Design and
Development, 25(1):252–265.

[215] Roberts, G. (2008). Trends in marine control systems. Annual Reviews in Control,
32(2):263–269.

[216] Rodríguez, C., Normey-Rico, J. E., Guzmán, J. L., and Berenguel, M. (2016).
Robust design methodology for simultaneous feedforward and feedback tuning. IET
Control Theory & Applications, 10(1):84–94.

[217] Rosenbrock, H. and McMorran, P. (1971). Good, bad, or optimal? IEEE
Transactions on Automatic Control, 16(6):552–554.

[218] Sadeghpour, M., De Oliveira, V., and Karimi, A. (2012). A toolbox for robust PID
controller tuning using convex optimization. IFAC Proceedings Volumes, 45(3):158–
163.

[219] Saeki, M. (2007). Properties of stabilizing PID gain set in parameter space. IEEE
Transactions on Automatic Control, 52(9):1710–1715.

[220] Safonov, M. G. (1983). L∞-optimal sensitivity vs. stability margin. In Proceedings
of the 22nd IEEE Conference on Decision and Control, pages 115–118, San Antonio,
USA.

[221] Safonov, M. G. (2012). Origins of robust control: Early history and future
speculations. Annual Reviews in Control, 36(2):173–181.

[222] Safonov, M. G. and Athans, M. (1977). Gain and phase margin for multiloop
LQG regulators. IEEE Transactions on Automatic Control, 22(2):173–179.

[223] Seron, M. M., Braslavsky, J. H., and Goodwin, G. C. (1997). Fundamental
Limitations in Filtering and Control. Springer-Verlag London.

[224] Seron, M. M. and Goodwin, G. C. (1996). Sensitivity limitations in nonlinear
feedback control. Systems & Control Letters, 27(4):249–254.

[225] Shafiei, Z. and Shenton, A. (1994). Tuning of PID-type controllers for stable and
unstable systems with time delay. Automatica, 30(10):1609–1615.

[226] Shen, S.-H., Wu, J.-S., and Yu, C.-C. (1996). Use of biased-relay feedback for
system identification. AIChE Journal, 42(4):1174–1180.



196 Bibliography

[227] Shinskey, F. G. (1996). Process Control Systems: Application, Design and Tuning.
McGraw-Hill Inc.

[228] Sidi, M. J. (2001). Design of Robust Control Systems: From Classical to Modern
Practical Approaches. Krieger Publishing Company.

[229] Siljak, D. D. (1989). Parameter space methods for robust control design: a
guided tour. IEEE Transactions on Automatic Control, 34(7):674–688.

[230] Silva, G. J., Datta, A., and Bhattacharyya, S. (2001). Controller design via Padé
approximation can lead to instability. In Proceedings of the 40th IEEE Conference
on Decision and Control, volume 5, pages 4733–4737, Orlando, USA.

[231] Silva, G. J., Datta, A., and Bhattacharyya, S. P. (2002). New results on the
synthesis of PID controllers. IEEE Transactions on Automatic Control, 47(2):241–
252.

[232] Silva, G. J., Datta, A., and Bhattacharyya, S. P. (2005). PID Controllers for
Time-Delay Systems. Birkhäuser Basel.

[233] Skogestad, S. (2003). Simple analytic rules for model reduction and PID controller
tuning. Journal of Process Control, 13(4):291–309.

[234] Skogestad, S. and Postlethwaite, I. (2005). Multivariable Feedback Control:
Analysis and Design. John Wiley & Sons.

[235] Smolyak, S. A. (1963). Quadrature and interpolation formulas for tensor products
of certain classes of functions. Soviet Mathematics Doklady, 4:240–243.

[236] Soltesz, K., Grimholt, C., and Skogestad, S. (2017). Simultaneous design of
proportional–integral–derivative controller and measurement filter by optimisation.
IET Control Theory & Applications, 11(3):341–348.

[237] Soltesz, K., Hägglund, T., and Åström, K. J. (2010). Transfer function parameter
identification by modified relay feedback. In Proceedings of the 2010 American
Control Conference, pages 2164–2169, Baltimore, USA.

[238] Soltesz, K. and Mercader, P. (2016). Identification for control of biomedical
systems using a very short experiment. In Proceedings of the 2016 International
Conference on Systems in Medicine and Biology, Kharagpur, India.

[239] Soltesz, K., Mercader, P., and Baños, A. (2016). An automatic tuner with short
experiment and probabilistic plant parameterization. International Journal of Robust
and Nonlinear Control.

[240] Srinivasan, K. and Chidambaram, M. (2003). Modified relay feedback method for
improved system identification. Computers & Chemical Engineering, 27(5):727–732.

[241] Stein, G. (2003). Respect the unstable. IEEE Control Systems, 23(4):12–25.

[242] Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J., and Doyle, J. (2004). Robustness
of cellular functions. Cell, 118(6):675–685.



Bibliography 197

[243] Stroud, A. H. (1971). Approximate Calculation of Multiple Integrals. Prentice
Hall Inc.

[244] Sung, S. W., Lee, J., and Lee, I.-B. (2009). Process Identification and PID
Control. John Wiley & Sons.

[245] Tan, K. K., Wang, Q.-G., and Hang, C. C. (1999). Advances in PID Control.
Springer-Verlag London.

[246] Tempo, R., Calafiore, G., and Dabbene, F. (2012). Randomized Algorithms for
Analysis and Control of Uncertain Systems: With Applications. Springer-Verlag
London.

[247] Thompson, D. F. and Nwokah, O. D. (1994). Analytic loop shaping methods
in quantitative feedback theory. Journal of Dynamic Systems, Measurement, and
Control, 116(2):169–177.

[248] Tsypkin, Y. Z. (1979). Stability of sistems with delayed feedback. In MacFarlane,
A. G. J., editor, Frequency-Response Methods in Control Systems, pages 45–56. IEEE
Press.

[249] van Loon, S. J. L. M. (2016). Hybrid control for performance improvement of
linear systems. PhD thesis, Technische Universiteit Eindhoven.

[250] Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transac-
tions on Neural Networks, 10(5):988–999.

[251] Vidal, A. and Baños, A. (2010). Reset compensation for temperature con-
trol: Experimental application on heat exchangers. Chemical Engineering Journal,
159(1):170–181.

[252] Vidyasagar, M. (2002). Nonlinear Systems Analysis. SIAM: Society for Industrial
and Applied Mathematics.

[253] Vidyasagar, M., Bertschmann, R., and Sallaberger, C. (1988). Some simplifica-
tions of the graphical Nyquist criterion. IEEE Transactions on Automatic Control,
33(3):301–305.

[254] Vilanova, R. and Visioli, A. (2012). PID Control in the Third Millennium:
Lessons Learned and New Approaches. Springer-Verlag London.

[255] Visioli, A. (2006). Practical PID Control. Springer-Verlag London.

[256] Visioli, A. and Zhong, Q. (2011). Control of Integral Processes with Dead Time.
Springer-Verlag London.

[257] Vyshnegradskii, I. (1876). Sur la théorie générale des régulateurs. Comptes
rendus de l’Académie des Sciences, 83:318–321.

[258] Wang, C. and Li, D. (2011). Decentralized PID controllers based on probabilistic
robustness. Journal of Dynamic Systems, Measurement, and Control, 133(6):061015.



198 Bibliography

[259] Wang, Q.-G., Ye, Z., Cai, W.-J., and Hang, C.-C. (2008). PID Control for
Multivariable Processes. Springer-Verlag Berlin Heidelberg.

[260] Wasilkowski, G. W. and Wozniakowski, H. (1995). Explicit cost bounds of
algorithms for multivariate tensor product problems. Journal of Complexity, 11(1):1–
56.

[261] Wie, B. and Bernstein, D. S. (1991). Benchmark problems for robust control
design. In Proceedings of the 1991 American Control Conference, pages 1929–1930,
Boston, USA.

[262] Wright, R. A. and Kravaris, C. (2001). On-line identification and nonlinear
control of an industrial pH process. Journal of Process Control, 11(4):361–374.

[263] Yang, S.-F. (2010). Efficient algorithm for computing QFT bounds. International
Journal of Control, 83(4):716–723.

[264] Yaniv, O. (1995). MIMO QFT using non-diagonal controllers. International
Journal of Control, 61(1):245–253.

[265] Yaniv, O. (1999). Quantitative Feedback Design of Linear and Nonlinear Control
Systems. Springer US.

[266] Yaniv, O. (2006). Automatic loop shaping of MIMO controllers satisfying
sensitivity specifications. Journal of Dynamic Systems, Measurement, and Control,
128(2):463–471.

[267] Yaniv, O. and Horowitz, I. M. (1986). A quantitative design method for MIMO
linear feedback systems having uncertain plants. International Journal of Control,
43(2):401–421.

[268] Yaniv, O. and Nagurka, M. (2003). Robust PI controller design satisfying
sensitivity and uncertainty specifications. IEEE Transactions on Automatic Control,
48(11):2069–2072.

[269] Yaniv, O. and Nagurka, M. (2004). Design of PID controllers satisfying gain
margin and sensitivity constraints on a set of plants. Automatica, 40(1):111–116.

[270] Yaniv, O. and Nagurka, M. (2005). Automatic loop shaping of structured
controllers satisfying QFT performance. Journal of Dynamic Systems, Measurement,
and Control, 127(3):472–477.

[271] Yeroğlu, C. and Ateş, A. (2014). A stochastic multi-parameters divergence
method for online auto-tuning of fractional order PID controllers. Journal of the
Franklin Institute, 351(5):2411–2429.

[272] Yi, T.-M., Huang, Y., Simon, M. I., and Doyle, J. (2000). Robust perfect
adaptation in bacterial chemotaxis through integral feedback control. Proceedings of
the National Academy of Sciences, 97(9):4649–4653.

[273] Youla, D., Bongiorno, J., and Jabr, H. (1976a). Modern Wiener–Hopf design
of optimal controllers Part I: The single-input-output case. IEEE Transactions on
Automatic Control, 21(1):3–13.



Bibliography 199

[274] Youla, D., Jabr, H., and Bongiorno, J. (1976b). Modern Wiener–Hopf design of
optimal controllers Part II: The multivariable case. IEEE Transactions on Automatic
Control, 21(3):319–338.

[275] Yu, C.-C. (2006). Autotuning of PID Controllers: A Relay Feedback Approach.
Springer-Verlag London.

[276] Yuille, A. L. and Rangarajan, A. (2003). The concave-convex procedure. Neural
Computation, 15(4):915–936.

[277] Zames, G. (1981). Feedback and optimal sensitivity: Model reference transform-
ations, multiplicative seminorms, and approximate inverses. IEEE Transactions on
Automatic Control, 26(2):301–320.

[278] Zames, G. and Francis, B. (1983). Feedback, minimax sensitivity, and optimal
robustness. IEEE Transactions on Automatic Control, 28(5):585–601.

[279] Zhou, K., Doyle, J. C., and Glover, K. (1995). Robust and Optimal Control.
Pearson.

[280] Ziegler, J. G. and Nichols, N. B. (1942). Optimum settings for automatic
controllers. Transactions of the ASME, 64(11).

[281] Zimmerman, Y. and Gutman, P.-O. (2014). An innovative method for op-
timization based, high order controller autotuning. Journal of Dynamic Systems,
Measurement, and Control, 136(2):021010.

[282] Zolotas, A. and Halikias, G. (1999). Optimal design of PID controllers using the
QFT method. IEE Proceedings-Control Theory and Applications, 146(6):585–589.





Glossary

Symbols

N Set of natural numbers
Z Set of integer numbers
R Set of real numbers
R+ Set of nonnegative real numbers (including 0).
Rn Real coordinate space of n dimensions
0 The zero vector
[a, b] A closed interval in R
[a b] A row vector
: “Such that”
∈ “Is an element of”
⊂ “Is a subset of”⋂ Intersection
j Imaginary unit

√−1. Sometimes an index
arg z Argument of the complex number z

ℜ(z) Real part of the complex number z

ℑ(z) Imaginary part of the complex number z

z∗ Complex conjugate of z

log10 Logarithm to base 10
dB Decibels, x dB represents a gain of 10x/20

∥G∥∞ supω |G(jω)| where G is a transfer function
A⊤ Transpose of the real matrix A

∇ Gradient operator
∆ Hessian operator
E[·] Expectation operator
V[·] Variance operator
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Pr[·] Probability
⊗ Tensor product
∥x∥1 1-norm, ∑i |xi|

Acronyms

ALS Automatic Loop Shaping
CCP Convex-Concave Procedure
CUT Conjugate Unscented Transform
dKP delayed Kronrod–Patterson
DOF Degrees Of Freedom
DTC Dead-Time Compensator
FOTD First-Order Time-Delay
GL Gauss–Legendre
IAE Integral Absolute Error
IE Integral Error
IMC Internal Model Control
ITD Integrating Time-Delay
LQG Linear Quadratic Gaussian
LQR Linear Quadratic Regulator
LTI Linear Time-Invariant
MC Monte Carlo
MCE Moment Constraint Equation
MIGO M-Constrained Integral Gain Optimization
MIMO Multiple-Input-Multiple-Output
MPC Model Predictive Control
MP Minimum Phase
NMP Nonminimum Phase
OLHP Open Left Half-Plane
ORHP Open Right Half-Plane
PDF Probability Density Function
PI Proportional-Integral
PID Proportional-Integral-Derivative
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QFT Quantitative Feedback Theory
RA Randomized Algorithm
RHP Right Half-Plane
SIMC Simple/Skogestad Internal Model Control
SISO Single-Input-Single-Output
SP Smith Predictor
SQP Sequential Quadratic Programming
UT Unscented Transform





Appendix A

Optimization Problems

A continuous mathematical optimization problem has the form

minimize
x

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m.

(A.1)

Where x ∈ Rn is the decision variable, the function f0 : Rn → R is the objective
function, and the functions fi : Rn → R, i = 1, . . . , m, are the constraint functions.
A decision variable is called a global optimizer or optimal solution if it minimizes the
objective over all feasible points, i.e., points that satisfy the constraints. On the other
hand, a decision variable is called local optimizer if it minimizes the objective function
among feasible points that are near.

The optimizations problem can be classified into several classes depending on its
structure. An optimization problem is linear if the objective and constraint functions
f0, . . . , fm are linear, i.e., they satisfy the following condition

fi(αx1 + βx2) = αfi(x1) + βfi(x2), (A.2)

for all x1, x2 ∈ Rn and all α, β ∈ R. Otherwise, the optimization problem is nonlinear.
Another important class of optimization problems is the one in which the objective
and constraint functions are convex, i.e., objective and constraint functions satisfy

fi(αx1 + βx2) ≤ αfi(x1) + βfi(x2), (A.3)

for all x1, x2 ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, and β ≥ 0. This class of
problems is a generalization of the linear optimization problems.
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An important property of convex optimization problems is that local optimizers
are also global optimizers [48].

In general, the solution of an optimization problem (A.1) is a difficult task, even in
the case that objective and constraint functions are smooth. Some important exceptions
are optimization problems that are linear or convex. In these cases, there are very
effective algorithms for solving them. Nonconvex optimization problems are usually
solved by iterating between the solution of convex subproblems.



Appendix B

Different Representations of the
PID Controller

Along this thesis, the chosen representation of the PID controller has been

Cpar(s) = kp + ki

s
+ kds. (B.1)

This representation is generally referred to as parallel representation. It has the
advantage of particularizing to P, I, ID, PI, or PD with finite values of its parameters.
A representation that is equivalent to the latter, but with different values of the
parameter are the so-called standard or non-interacting, that is given by the following
equation

Cstd(s) = K
(

1 + 1
sTi

+ sTd

)
. (B.2)

The relation between the parameters of the representation (B.1) and (B.2) are given as
follows

K = kp,

Ti = kp

ki

,

Td = kd

kp

.

(B.3)

Another alternative representation, known as series or interacting, is given by

Cser(s) = K ′
(

1 + 1
sT ′

i

)
(1 + sT ′

d) . (B.4)
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In this case, not any controller in the representation (B.1) has an equivalent in the
representation (B.4). The reason is that representation (B.1) allows a pair of complex
zeros, while the representation (B.4) require two real zeros. Remind that the transfer
function of a PID controller in the parallel representation is composed by a gain, an
integrator (pole at the origin), and two zeros (two real zeros or a pair of complex zeros).
It is easy to show that the following transfer function

Cpar(s) = kds2 + kps + ki

s
, (B.5)

that describes a PID controller in the parallel representation, has two real zeros, when
k2

p − 4kdki ≥ 0, and a pair of complex zeros, when k2
p − 4kdki < 0. Therefore, a PID

controller in the parallel representation can be transformed into a series representation
if k2

p −4kdki ≥ 0. In this case, the relation between the parameters of the representation
(B.1) and (B.4) are given as follows

K ′ = kp

2

1 +
√√√√1 − 4kdki

k2
p

 ,

T ′
i = kp

2ki

1 +
√√√√1 − 4kdki

k2
p

 ,

T ′
d = kp

2ki

1 −
√√√√1 − 4kdki

k2
p

 .

(B.6)

It has been assumed that each parameter kp, ki, and kd is nonzero. It is worth to
note that both representations are equivalent when ki or kd is zero. In these cases, the
relation between the parameters of both representations can be obtained in an easier
manner. For example, a PI controller in the parallel representation

Cpar(s) = kp + ki

s
, (B.7)

can always be transformed to the series representation

Cser(s) = K ′
(

1 + 1
sT ′

i

)
, (B.8)
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and the relation between their parameters is given by

K ′ = kp,

T ′
i = kp

ki

.
(B.9)

Any other relation can be obtained without major difficulties.
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