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Abstract 
 

In the last decades, anthropogenic activities have increased the concentrations of heavy 

metals in aquatic systems. Since these elements are bio-accumulative and could be 

toxic, it is important to study their bioavailability in natural media. An analytical 

technique called Diffusive Gradients in Thin Films (DGT) allows studies of the 

availability of metals in water, based on the deployment of DGT devices, which 

accumulate the target analytes for a known period of time. Physico-chemical models 

that consider the reactions and transport of species inside the device and in the solution 

are required for the interpretation of the accumulations. The commonly used model has 

shown to be appropiate in many cases, but in some conditions it is not suitable to 

replicate the experimental results. The main objective of this thesis is to contribute to 

the study of the bioavailability of metals, through the DGT devices, when the typical 

model is not adequate. 

 

A starting point was the study of the distribution of binding agent in the resin layer on 

the accumulation of metal in DGT devices. It was found that this factor is relevant in 

presence of partially-labile complexes.  

 

The influence of the ionic strength on the DGT measurements was also analysed. It was 

found that, in systems with only metal, the electrostatic effects can produce nonlinear 

accumulations with time at some ionic strengths. The main cause of this behavior is the 

influence of the ionic strength on the affinity between the metal and the resin. A 

rigorous model based on Nernst-Planck equations and a simplification based on the 

Donnan model were used to understand this influence and applied to the study of Mg 

accumulation. The numerical solution was obtained with the Finite Element Method. 

 

Three situations, in which metal accumulations can be nonlinear with time, were 

analysed: 1) the binding of metal to the resin is kinetically controlled, 2) there are 

equilibrium effects between free and bound metal and 3) there are other metallic cations 

competing for the binding sites in the resin. Analytical approximate expressions that 

improve the standard model in these situations were proposed and applied for the 

analysis of Mg and Mn accumulations. Their accuracy was checked with the numerical 

simulation. 

 

Finally, the metal accumulation and lability degree in systems that contain a mixture of 

complexes were studied under non ligand excess conditions.  
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Resumen 
 

En las últimas décadas, las actividades antropogénicas han aumentado las 

concentraciones de metales pesados en los sistemas acuáticos. Dado que estos 

elementos son bio-acumulativos y podrían ser tóxicos, es importante estudiar su 

disponibilidad en medios naturales. La técnica analítica llamada Diffusive Gradients in 

Thin Films (DGT) permite estudiar la disponibilidad de los metales en aguas. Los 

dispositivos DGT se despliegan en el medio para que acumulen el analito durante un 

período de tiempo determinado. Los análisis de disponibilidad se realizan con base en la 

masa acumulada y para ello, se requieren modelos fisicoquímicos que consideren las 

reacciones y el transporte de especies dentro del dispositivo y en la solución. El modelo 

teórico comúnmente usado para estos análisis funciona en muchos casos, pero en 

algunas condiciones no es apropiado para explicar los resultados experimentales. El 

objetivo principal de esta tesis es contribuir al estudio de la disponibilidad de metales, a 

través de los dispositivos DGT, en situaciones en las que el modelo más utilizado no es 

el adecuado. 

 

Como punto de partida se estudió la influencia que tiene la distribución de agente 

extractante en la resina, sobre las medidas realizadas con los dispositivos DGT. Se 

encontró que este factor es importante en presencia de complejos parcialmente lábiles. 

 

Posteriormente se estudió la influencia que ejerce la fuerza iónica en las medidas 

realizadas con dispositivos DGT. Se encontró que, en sistemas con sólo metal, los 

efectos electrostáticos pueden producir acumulaciones no lineales con el tiempo y la 

causa principal de este comportamiento es la influencia que tiene la fuerza iónica en la 

constante cinética de asociación entre el metal y la resina. También se propusieron dos 

modelos para analizar esta influencia y se aplicaron al estudio de la acumulación de Mg. 

Se proporcionaron soluciones numéricas basadas en el método de los elementos finitos. 

 

Se analizaron tres situaciones en las cuales las acumulaciones de metales pueden no ser 

lineales con el tiempo: 1) cuando la acumulación de metal en la resina es controlada 

cinéticamente, 2) cuando hay efectos de equilibrio entre el metal libre y el metal 

enlazado y 3) cuando hay otros cationes metálicos que compiten por los sitios de enlace 

de la resina. Se propusieron expresiones analíticas aproximadas que mejoran el modelo 

típico en estas situaciones y se aplicaron al estudio de las acumulaciones de Mg y Mn. 

Su exactitud fue contrastada con simulaciones numéricas. 

 

Finalmente, se realizó un primer estudio de la acumulación de metal y del grado de 

labilidad en sistemas con mezclas de complejos, cuando no hay condiciones de exceso 

de ligando en la solución.  
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Resum 
 
En les darreres dècades les activitats antropogèniques han incrementat la concentració 

de metalls pesants en els ecosistemes aquàtics. Donat que aquests elements són bio-

acumulatius i poden ser tòxics, és important estudiar la seva biodisponibilitat en els 

medis naturals. La tècnica Diffusive Gradients in Thin Films (DGT) permet estudiar 

la disponibilitat d’aquests metalls pesants en les aigües, mitjançant dispositius DGT que 

s’introdueixen en el medi per a acumular l’analit durant un període de temps determinat. 

Les anàlisis de disponibilitat es realitzen en funció a la massa acumulada i, per això 

calen models fisicoquímics que tinguin en compte les reaccions i el transport dels 

analits dins del dispositiu i en la solució. El model teòric més emprat per efectuar 

aquestes anàlisis és adequat en la majoria dels casos, però, en determinades condicions, 

no pot replicar els resultats experimentals. L’objectiu d’aquesta tesis és, doncs, 

contribuir a l’estudi de la biodisponibilitat de metalls pesants, mitjançant l’ús de 

dispositius DGT en aquelles situacions en les que el model habitual no resulta òptim. 

 

El punt de partida va ser l’estudi de la influència que té la distribució de l’agent 

extractant en la resina sobre les mesures realitzades amb els dispositius DGT, un factor 

especialment rellevant en complexos parcialment làbils.  

 

Es va estudiar la influència que exerceix la força iònica en les mesures realitzades. Els 

resultats varen mostrar que en sistemes amb presència només de metalls, els efectes 

electrostàtics poden produir acumulacions no lineals al llarg del temps a determinades 

forces iòniques. La causa principal d’aquest efecte és la influència de la força iònica en 

la constant cinètica d’associació entre el metall i la resina. Per analitzar aquesta efecte 

es va fer servir un model, basat en les equacions de Nernst-Planck i un de simplificat 

prenent el model de Donnan, els quals van ser aplicat a l’estudi d’acumulació de Mg. Es 

van proporcionar solucions numèriques basades en el mètode dels elements finits.  

 

Les tres situacions analitzades, en les quals l’acumulació de metalls no va ser lineal al 

llarg del temps, van ser: 1) l’acumulació de metall en la resina està controlada 

cinèticament, 2) hi han efectes d’equilibri entre el metall lliure i el metall enllaçat i 3) hi 

han altres cations metàl·lics competint pels setis d’unió en la resina. Així, es van 

proposar expressions analítiques aproximades que milloren el model estàndard en 

aquetes tres situacions i aquestes expressions es van aplicar a l’estudi de l’acumulació 

de Mg i Mn. La precisió dels models va ser contrastada amb simulacions numèriques. 

 

Finalment, es va estudiar l’acumulació de metalls i el seu grau de labilitat en una barreja 

de complexos en condicions de no excés de lligand en la solució.  
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-3

 

*

ic   Concentration of species i in bulk solution mol·m
-3

 

TR
c  Total concentration of free resin sites mol·m

-3
 

iD   Diffusion coefficient of species i common to all phases m
2
·
 
s

-1
 

DBL Diffusive boundary layer m 

DGT Diffusive Gradients in Thin films None 
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e  Elementary electric charge C 
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−1

 

r
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-1

 

FDM Finite Difference Method None 

FEM Finite Element Method None 
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-3
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2
·
 
s
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 ·s
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j
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CHAPTER 1 
 

 

 

 

 

1. OBJECTIVES AND OUTLINE OF THE THESIS 
 

 

 Significance of the study 1.1

 

Nowadays there is a rising concern on the sustainability of human activities. 

Sustainability embraces many issues, since a definition generally accepted is that the 

needs of the present have to be achieved without compromising the resources of future 

generations. One issue of the sustainability is referred to the environment. Climate 

change is now recognized as a challenge in the environmental sustainability but 

contamination has also been a classical problem that has attracted the attention of 

scientists and of the society. This Thesis develops concepts, methods, techniques and 

criteria to measure and interpret chemical contamination. 

 

Although most of the concepts, techniques and criteria here developed can be applied to 

chemicals in general, we restrict ourselves to speak in terms of heavy metals and waters. 

Many contaminants run into water bodies being, then, the waters the main source of its 

dissemination. Among contaminants, heavy metals have been studied for long time and 

they are especially suited to illustrate the concepts here developed. 

 

Even though there is no standard definition for the term "heavy metals", this name is 

often given to those with higher density.
1,2

 Among heavy metals, there is a group known 

for their tendency to represent serious environmental problems such as mercury, lead, 

cadmium or copper.
3-5

 Sometimes, other light toxic elements are included in this 

category, such as beryllium or aluminium, or some semimetal like arsenic in the context 

of contamination. However, not all heavy metals are toxic at low concentrations and 

some of them are essential for plants and animals.
6,7

 Methods developed in this work are 

intended to be used in dealing with problems of nutrition and contamination. 

 

In industrialized countries, high concentrations of heavy metals dissolved in water or 
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soil are one of the main sources of pollution for living organisms, whereas, in other 

parts of the world, these concentrations may be insufficient with respect to nutritional 

requirements. Metals reach the soil or water from different natural or anthropogenic 

sources. In the latter sources we find agricultural activities, where fertilizers, animal 

manures and pesticides containing heavy metals are widely used. Metallurgical 

activities, processes for the production and transport of energy, microelectronic products 

and the deposition of waste are also anthropogenic inputs of metal ions in the 

environment.
8,9

 

 

Heavy metals cannot be degraded (neither chemically nor biologically) and can remain 

in the environment for hundreds of years, so they can be taken up by plants and animals 

through absorption processes. For this reason, metals accumulate in living organisms 

reaching concentrations higher than those achieved in food or in the environment, and 

these concentrations increase as we ascend the trophic chain, causing toxic effects. 

 

In general, the uptake and toxicity of heavy metals does not only depend on their total 

concentration, but on other factors such as their speciation,
10-12

 the content of organic 

matter, pH and ionic strength of the medium. Chemical speciation is defined as the 

distribution of a particular chemical element among the different forms in which it can 

exist (species), in a given medium. It includes both the free elements (in neutral or 

ionized form) and the variety of complexes that can be formed with different ligands. 

Knowledge about the speciation of heavy metals is important because their availability 

depends on the stability, mobility and kinetic of inter-transformation, under 

environmental conditions, of the chemical species present.
13

  

 

 

 DGT devices 1.2

 

One analytical technique increasingly used to determine the availability of trace metals 

in waters, sediments or soils is Diffusive Gradients in Thin Films (DGT).
14

 DGT 

devices are passive samplers and consist of a layer of a strong metal ion-binding agent 

dispersed in a gel (named resin layer), a diffusive gel and a filter. These layers are 

housed inside a cylindrical plastic protector (Figure 2.1). The DGT device is introduced 
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into the soil, sediment or water for a certain time and the metals diffuse from the sample 

through the filter and the gel to the resin, where the metal is bound. The accumulated 

masses of the species of interest can be measured for different times. With these data, it 

is possible to obtain information about average bulk concentrations, mean fluxes, 

lability of complexes and speciation.
15,16

  

 

Multiple studies have been conducted in order to analyse the relationships between 

experimental results and factors such as the composition of the system, kinetics of 

chemical reactions and transport processes.
17-22

 Traditional analysis of DGT 

measurements are based on the following assumptions: 

 

1. All the processes in the DGT device take place essentially in one relevant spatial 

dimension. 

2. A steady-state flux is an accurate approximation for the understanding of the 

accumulation. 

3. The resin acts as a perfect-sink for the metal. 

4. There are no saturation effects in the resin layer.  

5. Ionic strength in the solution is high enough to screen electrostatic effects between 

charged species and the resin layer, the diffusive gel or the membrane filter. 

 

The model based in these assumptions has shown to be accurate enough to explain 

many experimental results. However, there are some cases in which these assumptions 

are not fulfilled and this approach is not suitable to understand the experimental data.  
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 Research objectives  1.3

 

The main objective of this work is to contribute to the study of the availability of metals 

in natural waters, using DGT devices. The particular cases examined in detail in this 

thesis and the main aims of this work are: 

 

1. To develop a simulation tool based on Finite Element Method (FEM) that allows 

studying spatio-temporal evolution of the concentrations of chemical species and 

other relevant state variables inside a DGT device, when it is introduced into a 

medium with different types of metals, ligands and complexes.  

2. To analyse the influence of the distribution of resin beads on the lability of the 

complexes and the accumulation of metal cations.  

3. To develop analytical expressions for the concentration profiles of species in DGT 

devices with inhomogeneous distribution of binding sites. 

4. To study transport and complexation phenomena in devices with two resins, with 

different distributions of resin sites.  

5. To develop theoretical models as well as numerical simulation tools to study the 

effects of the ionic strength in DGT devices. To apply these models and the 

simulations tools to study the accumulation of cations that do not bind under 

perfect-sink conditions or the accumulation in systems where the main species are 

charged partially labile complexes.  

6. To check whether simple models based on Donnan partitioning can describe the 

behaviour of systems at low ionic strength.  

7. To discuss the patterns of DGT accumulations that can arise when there are kinetic 

limitations in the binding to the resin, saturation or equilibrium effects or non-

negligible competitive effects. To check the accuracy of the simple DGT expression 

and suggest new simplified, approximate expressions to determine the analyte 

concentration in these situations. 
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8. To study concentrations of species, lability degree of complexes and accumulation 

of metals in DGT devices in single ligand and mixed systems, when there are not 

excess of ligand conditions. 

 

  Outline of the thesis 1.4

 

Chapter 2 is an introduction to the basic concepts of the DGT technique. In this chapter 

there is a description of the device, the physicochemical phenomena that occur inside 

the device and the traditional types of analysis of the results. 

 

A discussion on the usefulness of numerical methods in the study of electrochemical 

systems is presented in Chapter 3. We also describe the FEM applied to transient and 

stationary problems. The final part of this chapter describes the application of the FEM 

to the construction of a program to simulate the behavior of different species in a DGT 

sensor. It involves the solution of a system of coupled partial differential equations of 

diffusion-reaction. The software has been constructed in a one-dimensional scheme, 

using the FEM for the discretization of the space and a scheme based on Finite 

Differences Method (FDM) for the solution in time. Input parameters are diffusion 

coefficients, reaction kinetic constants, type and amount of reactions present, etc. 

Information about concentrations of species, as well as fluxes and labilities as a function 

of time can be obtained. Numerical simulation has advantages such as: the possibility of 

studying systems that are expensive, time consuming or not easily reproducible in labs, 

contrasting the experimental results with those obtained through simulation or 

developing analytical expressions based on the data obtained by software. The 

simulation tool constructed in this chapter was used in the studies presented in the rest 

of the thesis. 

 

One of the basic assumptions in standard DGT modeling is the homogenous distribution 

of the binding agent in the resin disc. In Chapter 4 experimental evidence against this 

statement is presented and the influence of an inhomogeneous distribution of resin sites 

on DGT measurements is checked. Systems with one and two resin layers, with 

different thicknesses and with homogeneous and inhomogeneous distributions of resin 
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sites were studied. It was found that, for very labile or inert complexes, the distribution 

of binding beads in the resin layer does not have influence on the total accumulation of 

metal and in the case of partially labile complexes there is a mild influence that 

increases with the value of the stability constant.  

 

The influence of electrostatic effects on the accumulation, in systems with only metals, 

was studied in Chapter 5. This was done using numerical and experimental results 

obtained in devices with two resins. It was found that the main influence on the 

accumulation comes from the dependence of the kinetic and stability constants of the 

metal binding to the resin sites on the ionic strength. 

 

Chapter 6 is devoted to study some situations in which the metal accumulations are not 

linear with time or do not occur under perfect-sink conditions. The first case that was 

studied is the kinetically controlled binding of metal to the resin. For this case, it was 

observed a stationary flow, but smaller than expected under perfect-sink conditions. 

Metal accumulations were also studied when there is a non-negligible influence of 

equilibrium or competition effects. In these cases, fluxes can decrease along the 

deployment time. A set of approximate analytical expressions to reproduce the DGT 

accumulations have been proposed. These expressions have been used to analyse the 

binding of Mg or Mn as practical examples. 

 

Chapter 7 starts with the study of the dependence of the lability degree and total 

accumulation on the ligand concentration, in a single ligand system, when there are no 

excess of ligand conditions. It also studies how the accumulation and lability degree 

change when more ligands are added into the system (mixture effect). A particular 

attention was paid to check whether the lability degree determined in single ligand 

systems can be used to predict the accumulation in mixtures. The accumulation of Ni in 

the presence of NTA and EtDiam was studied in the final section of this chapter. 

 

The conclusions of the thesis are presented in Chapter 8. 
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CHAPTER 2 
 

 

 

 

 

2. BASIC PRINCIPLES OF DGT TECHNIQUE 
 

 

 Introduction 2.1

 

Diffusive Gradients in Thin-Films (DGT) devices were invented in 1993 by Bill 

Davison and Hao Zhang at the University of Lancaster. They were originated due to the 

need to improve the resolution and to reduce sampling times in the measurements of 

concentrations of trace metals in soils, which at that time were carried out with 

techniques such as peepers or Diffusive Equilibrium in Thin-films (DET). Sampling 

times, which for other techniques were of the order of weeks, with the DGTs were 

reduced to days and, additionally, it allowed to work at scales of millimeters. However, 

the technique was initially used in marine waters to measure metal cations.
1,2

 The first 

applications of the technique in soils were carried out in 1998 to measure concentrations 

of metals in lands treated with sewage sludge.
3
 Since that time, the technique has been 

applied in different media (waters, soils and sediments)
4-6

  and in different places around 

the world.
7-11

 In addition, about 40 different types of resins that allow the detection of 

analytes other than heavy metals, have been developed.
12-14

  

 

Theoretical contributions, numerical simulations and experimental approaches have 

been developed to interpret the measurements. To carry out these developments, it has 

been indispensable to study the physical and chemical phenomena that occur in the 

sensor while it is working. The following is a small review of the main characteristics of 

the sensor, the phenomena involved in its operation and the way in which the 

experimental results are interpreted. Much of the topics are discussed for applications in 

waters, but, in many cases, can be extended to other media. 
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 Description of DGT devices 2.2

 

The DGT devices consist of a resin layer, a diffusive gel layer and a filter embedded in a 

plastic holder.
15

 Hydrogels are used for both: resin and diffusive gel layers. In general, 

hydrogels are polymer networks that can absorb large quantity of water, which allows 

the diffusion of metal cations and complexes of interest. They are normally made of 

agarose or polyacrylamide. The function of the resin is to bind the analytes of interest, 

and, for this reason, they contain beads of some binding agent incorporated into the 

hydrogel. The original DGT devices were developed for detection of trace metals and, 

in this case, Chelex are used as binding agent. Chelex beads are made of styrene 

divinylbenzene copolymers containing paired iminodiacetate ions acting as chelating 

groups in binding metal ions
16

. Other types of binding agents have been developed for 

the accumulation of anions such as: lanthanides, nanoparticles, antibiotics, phosphate, 

etc.
12-14

 

The diffusive gels were incorporated to the device with the idea of controlling the 

transport of species to the resin. If the resin were exposed directly to the sample 

solution, phenomena of convection would have strong influence on the measurements. 

The presence of the gel, guarantees that there won’t be transport of species to the resin 

by convection. On the other hand, there is a region in solution close to the filter/liquid 

interface, called the diffusive boundary layer (DBL), where the mass transport occurs 

only by diffusion. The thickness ( dbl ) of this layer (with typical values in the order of 

0.1 to 0.5 mm),
15

 will be dependent on both the velocity of the flow and the deployment 

geometry, but is normally small in comparison with the diffusive gel thickness (usually 

of the order of 0.8 mm).
15

 To reduce the DBL in laboratory measurements, the solution 

is stirred, producing transport of species by convection. For this reason, the presence of 

the diffusive gel guarantees that, most of the diffusion will occur in a region of known 

thickness.  

 

Finally, there is a membrane filter, between the gel and the solution, which can exclude 

some particles and protects the diffusive gel. The material used for the filter is 

polyethersulfone due to its resistance to biofouling, but cellulose acetate membranes 

and nitrate are also used. Their thickness varies from 0.13 to 0.15 mm and the standard 

pore size is 0.45 microns.
15
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Figure 2.1. DGT device scheme. 

 

 

 Physicochemical phenomena in DGT sensors 2.3

 

When the DGT device is deposited in a sample solution or in natural waters, some 

species pass the filter, move through the diffusive gel and reach the resin domain. There 

are different phenomena occurring in each region of the DGT sensor and in the solution.  

 

2.3.1 Chemical reactions 

 

Species contained in the sample solution can chemically react with each other in all 

regions of the device. These reactions can have a huge influence on the accumulation or 

in the bioavailability of the analytes since they modify their transport properties and 

their uptake characteristics. 

 

Although the processes here outlined can easily be extended to other analytes measured 

with DGT, we will restrict ourselves in this report to the case of metals which has been 

the most studied case in DGT using the Chelex resin as binding agent. 

 

Some of the simplest reactions of metal cations, M, in natural samples are the 

complexation reactions with a ligand L, to form, in the most simple case, a complex 

ML: 

Piston Outer sleeve 
with window

Resin 
layer

Diffusive 
gel

Membrane 
filter

Solution 
with 
analytes
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a

d

M L ML
k

k
   (2.1) 

 

Let ka and kd be the association and the dissociation rate constants between M and L, 

respectively. It is assumed that species in the bulk solution are in equilibrium, so it is 

possible to calculate the bulk concentrations of the species using the stability constant 

K, defined as: 

*
MLa

* *
d M L

ck
K

k c c
   (2.2) 

where the superscript * represents the concentration in the bulk solution. 

 

Complex processes with other stoichiometric metal-to-ligand ratios may also happen. 

For instance, a reaction between a species L and 1M Li , to form a complex MLi : 

a,

d,
1ML L ML

i

i

k

i ik   (2.3) 

 

With stability constant: 

1

*
MLa,

* *
d, M L

i

i

i

i

i

ck
K

k c c


   (2.4) 

 

It is also usual in natural systems to have mixtures of n different metals (
i
M) and k 

different ligands (
j
L) that can react according to: 

a,

d,

M+ L M L
ij

ij

ki j i j

k
       1...i n        1...j k       (2.5) 

In this complexation process, a,ijk  and d,ijk  are the association and the dissociation rate 

constants, respectively. The stability constant for these processes can be written as: 

*

a, M L

* *

d, LM

i j

i

ij

ij j

ij

ck
K

k c c
    (2.6) 

 

Some species in the system can also react with the functional groups R of the resin 

embedded in the resin layer. For some cases, only metals and protons can react with the 
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resin sites, a reaction that, in the simplest case, can be written as: 

a,MR

d,MR

M R MR
k

k
  (2.7) 

 

Here, a,MRk  and d,MRk  are the association and the dissociation rate constants between M 

and R, respectively, with stability constant defined as: 

a,MR

MR

d,MR

k
K

k
  (2.8) 

and MR is the metal bounded to the resin. 

 

2.3.2 Transport of species 

 

Mobile species can be subject to a three different transport mechanisms: diffusion, 

migration and convection
17

. In the DGT device, species diffuse from the bulk solution to 

the resin disc due to a difference of concentrations and the Brownian motion. According 

to the first Fick law, this contribution to the total flux ( iJ ) of species i is proportional to 

the magnitude of the concentration gradient of the diffusing species: 

( , )i i iJ x t D c     (2.9) 

 

being ic  the concentration and iD  the diffusion coefficient of species i, respectively. 

 

Migration is the second possible contribution to transport of species. It is due to an 

electric force experienced by charged species in presence of an electric field. In the 

DGT device, this field is produced by fixed charged species in the resin or in the gel, 

and charged mobile species in the solution. The migrational flux of species i will be: 

( , ) i i
i i

z Fc
J x t D

RT
    (2.10) 

 

where 196485.33 C molF   is the Faraday constant, 1 18.31 J mol  KR    is the 

Universal gas constant, T stands for the absolute temperature, zi is the charge (with 

sign),   labels the electrostatic potential  and   corresponds to the electric field. 
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The last contribution to the flux is convection, which consists in a species transport 

resulting from global motion of the fluid. It is limited inside the device, but may have 

importance in the deployment solution. The main function of the gel layer is the 

reduction of the convection influence on the metal accumulation in the resin by 

allowing the solute species being only transported by diffusion or migration.  

 

Assuming that there is no transport by convection, the total flux can be obtained by the 

addition of diffusion and migration contributions (Equations (2.9) and (2.10)): 

( , ) i i
i i i

z Fc
J x t D c

RT


 
     

 
 (2.11) 

 

The expression (2.11) is known as the Nernst-Planck Equation.  

 

Applying the law of conservation of mass to species i, and assuming that the liquid 

solution is incompressible 

Rate of Rate of 

( , ) production consumption 

of species of species 

i
i

c
J x t

t i i

   
    

      
       

  (2.12) 

 

Replacing (2.11) in (2.12) we obtain: 

 2

Rate of Rate of 

production consumption 

of species of species 

i i
i i i i

c z F
D c D c

t RT i i


   

    
         

       

 (2.13) 

 

Equation (2.13) describes the evolution of the concentration of species i in the DGT 

device, both in time and space.  

 

The solution of the system of partial differential equations described by Equation (2.13) 

requires a set of initial and boundary conditions. For metals, ligands, metal-ligand 

complexes and metal-resin complexes it is assumed that there is no species in the resins 

or in the gel at time 0t  :   

( ,0) 0ic x       in      0 r gx       (2.14)  
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R T,R( ,0)c x c   in regions with binding sites  (2.15)  

 

With r  being the thickness of the resin and g  the aggregate thickness of the diffusive 

gel layer +filter + DBL. Equation (2.15) implies that, initially, all the binding sites are 

free.  

 

The boundary conditions in x = 0 will be: 

0

0i

x

c

x 





  (2.16) 

 

Which implies zero flux of species i through this boundary. At the diffusive gel/solution 

interface, mobile species reach the bulk concentrations:  

*( ,0)r g

i ic c     (2.17) 

 

In the interface between the resin layer and the diffusive gel, ( rx  ) there is 

continuity of the concentration of species i: 

( , ) ( , )r r

i ic t c t      

 

Were superscripts – and + stand for both sides of the interface. Additionally, there is 

continuity of flux in the same positions: 

 
r r

R i i
i i

c c
D D

x x  

 


 
 (2.18) 

 

It applies to mobile species. In Eqn. (2.18) 
R

iD  and iD  represent the diffusion 

coefficient in the resin disc and in the diffusive gel, respectively. 
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 Regimes in the evolving metal accumulation 2.4

 

Once the DGT sensor is deposited in natural media or in laboratory solutions, species 

reacting with the resin start to accumulate in the sensor. The device provides the 

accumulated mass of the species of interest for different times. The time evolution of 

the metal accumulation (or the analyte of interest) in the DGT devices is shown in 

Fig.2.2. Four different regimes
18-20

 can be recognized during this process:  

 

2.4.1 Transient regime 

 

At short times, there is a transient regime (see inset in Fig.2.2) where the flux, which is 

proportional to the slope of the accumulation curve, increases as the metal reaches the 

resin layer and reacts with the resin sites. As indicated in Fig. 2.2, the accumulation, 

under these conditions bends upwards, this being a practical way to recognize this 

behavior. Without saturation effects, the time to reach steady-state, sst , for a single 

metal can be estimated by the Einstein-Smoluchowski expression,
18

  

 
2

SS

M

g

t
D




  (2.19) 

 

where g  is the thickness of the diffusion domain (also labeled g  or g   in previous 

works). For standard DGT devices sst  is of the order of 10 min in waters. Since 

deployment times are of the order of hours, this transient period has usually negligible 

information in the accumulation and the system can be well understood assuming that 

quasi steady-state conditions apply during all the deployment time. 

 

2.4.2 Steady-state regime 

 

A second regime corresponds to a linear accumulation of the metal as time increases. In 

this case, the flux is constant indicating that the system is in quasi steady-state 

conditions. We refer to this case as a quasi steady-state case to indicate that metals and 

ligands are in steady-state while the accumulated metal in the resin is monotonously 
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increasing and the free resin sites monotonously decreasing. Two cases can be 

recognized. The first one is fulfilled by most of the metals when Chelex is used as a 

binding layer. In this case, the association rate constant between the metal ion and the 

resin is so high that the binding is limited by the metal transport to the resin. 

Accordingly, the metal concentration at the resin-diffusive gel interface during this 

steady-state regime is zero and the penetration of free metal in the resin domain is 

negligible (as can be seen in Fig. 2.3). The second case arises when the kinetics of the 

metal association to the resin is limiting the accumulation. In this case there will be a 

measurable penetration of the metal in the resin layer and the metal flux will be lower 

than the one found in perfect-sink conditions. This situation will be discussed in Chapter 

6. 

 

2.4.3 Decreasing flux regime 

 

At longer times, the accumulation bends downwards, indicating a decreasing flux as 

time increases.  The decrease of the net rate of metal binding to the resin can be due to a 

non-negligible decrease of the free sites (due to competition or saturation effects) or to a 

significant increase of dissociation when equilibrium (of the bound metal with the metal 

concentration in the bulk solution) is approached. Manifestation of these effects on DGT 

measurements has been reported in previous development studies,
14,21-23

 and this 

regime, which will be discussed in Section 6, has also been termed "saturable" 
24

 or 

“mixed”.
19

 

 

2.4.4 Equilibrium/saturation regime 

 

Finally, at sufficiently long times, the accumulation reaches a plateau, indicating a 

negligible net metal binding (see the rightmost part of Figure 2.2). Accordingly, there 

are no metal concentration gradients, the free metal in the resin domain equals the bulk 

free metal concentration and, in the simplest case, the bound metal is in equilibrium 

with the free metal concentration in the resin domain. 
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Figure 2.2. Accumulation of metal as a function of time in a DGT device. Different regimes, separated 
by vertical dashed lines at somewhat arbitrary positions, can be recognized as indicated in the figure. 

Parameters: 
a,Rk =1 m3mol-1s-1, 

d,Rk =10-3 s-1, 
MD =4.94×10-10 m2s-1, r =4×10-4 m, g =1.1×10-3 m, T,Rc

=28mol m-3, 
*

Mc  =10 mol m-3.  

 

 

 Interpretation of results 2.5

 

With the experimental data of accumulations obtained with DGT devices it is possible 

to obtain information about average bulk concentrations, mean fluxes, lability of 

complexes and speciation. For the interpretation of these measurements, theoretical 

models that consider transport phenomena and chemical reactions of species on the 

media and on the device are required. The Mathematical models that describe these 

processes use systems of partial differential equations (Equation (2.13)). These 

equations are, in general, coupled and nonlinear and do not admit analytical solutions. 

For this reason, one manner to face this problem is using computational simulations. In 

this case, equations are solved using numerical methods. However, making some 

simplifications it is possible to find analytical solutions in some cases.  
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2.5.1 Simple systems and perfect-sink approximation 

 

Traditional analyses use a simple approach for the interpretation of the experimental 

results. This approach is based on the following assumptions: 

  

1. All the processes in the DGT device take place essentially in one relevant spatial 

dimension. 

2. There are steady-state conditions of flux, so the mass accumulated in the initial 

transient period is negligible compared to the total accumulated mass. 

3. There is fast and strong free metal ion binding by the resin, so that the free metal 

concentration inside the resin layer is negligible. 

4. Bound metal is negligible with respect to the concentration of resin sites, so 

there are not saturation effects.  

5. Ionic strength in the solution is high enough to screen electrostatic effects 

between charged species and the resin layer, the diffusive gel or the membrane 

filter. 

6. The diffusion coefficients are the same in the filter, diffusive gel and the resin 

disc. 

 

According to condition 5, there will be transport of species only by diffusion. In a 

system containing only the species M (a metal ion or the analyte of interest), the flux 

will be done by the first Fick’s law: 

M
M

c
J D

x





  (2.20) 

where 
MD  is the diffusion coefficient, Mc  the concentration and Mc

x




 the concentration 

gradient of the metal. 

In steady-state, the concentration profile of the metal in the perfect-sink approximation 

will be: 
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Figure 2.3. Concentration profile in perfect-sink and steady-state conditions. 

 

the flux takes the form: 

*

M
M g

c
J D


  (2.21) 

and the accumulation of metal M can be obtained with the expression: 

*

M M

M (t)dt
g

D c
n A J A t



 
    

 
  (2.22) 

Thus, the concentration of metal in the solution (
*

Mc ) can be obtained measuring the 

accumulation at a given time. Eqn. (2.22) is called the “perfect-sink” approximation. 

 

2.5.2 The lability degree 

 

In systems with ligands, the analyte will form complexes and the flux will result from 

the transport of free M and the contribution by transport and dissociation of complexes 

containing M. In these situations Eqn. (2.22) turns into: 

M DGT

M g

D c
n A t



 
   

 
  (2.23) 

 

where DGTc  represents the metal concentration needed in an only-metal system to obtain 

the same flux as in the system studied. In general, 
*

Mc  and DGTc  are different because the 

complexes may affect the flux by modifying the mobility of the metal species or 

kinetically limiting the dissociation process. When complexes containing M have 
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smaller diffusion coefficients than the one of free metal, it happens that 
*

DGT Mc c . On 

the other hand, when the diffusion coefficient of complexes are larger than the 

coefficient of free metal DGTc  could even be higher than 
*

Mc . 

 

The contribution of a complex to the metal flux (J) is known as lability degree. When 

the association/dissociation kinetics is very fast (full labile complexes), there is 

equilibrium between metal and complex at all relevant spatial positions and the 

resulting flux (Jlab) is named fully labile. For extremely slow rate constants (inert 

complexes), there is not dissociation and the flux is due only to the free metal (Jfree). For 

a given complex, the lability can be quantified through a parameter called lability 

degree of the complex which compares the actual contribution of the complex to the 

metal flux with the maximum contribution reached if the complex was labile. It is 

defined as: 

free

labile free

J J

J J






 (2.24) 

 

The lability degree takes values between 0 and 1. For labile systems (ξ=1), the kinetic 

processes are so fast that the metal and complex are in equilibrium at any relevant 

spatial position in the gel, except in a layer of negligible thickness at the resin disc-

diffusive gel interface (the reaction layer in the diffusive gel). For inert systems (ξ=0), 

dissociation of the complex is so slow that the complex concentration profile in the gel 

domain is flat.
18

 Partially labile complexes are between these two limits (0<ξ<1).  

 

As shown in references
25,26

, for systems with only one ligand and in perfect-sink 

conditions, the lability degree can be calculated as: 

ML

*

ML

1
rc

c
     (2.25) 

where 
ML

rc  indicates the concentration of ML at rx  . According to Eqn. (2.25) the 

value of 
ML

rc  must increase as the lability degree of the complex decreases, as shown in 

Figure 2.5. The normalized concentration profile of a labile complex (panel a) is 
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ML

*

ML

0
rc

c
 , which implies 1   in Eqn. (2.25).  For inert complexes (panel d) ML

*

ML

1
rc

c
 , 

corresponding to 0  . 

 

In measurements of trace metals, the amount of free metal is very low and the lability 

degree can be estimated as: 

M M M

labile ML MML
M

M

/ ( )

/ ( )
no ligand

no ligand

J n At D n

J D nD
n At

D






  
 
 
 

 (2.26) 

 

where Mn  and M

no ligandn 
 are the accumulations of metal in the same system, with and 

without ligand respectively. According to Eqn. (2.26), the lability degree can be 

interpreted as a normalised flux.
20

 The labile flux has been estimated from the 

accumulation of M without ligand and taking into account the different diffusion 

coefficients of the complex ( MLD ) and of the metal (
MD ). 

 

2.5.3 Penetration of species in the resin volume 

 

Concentration profiles (normalized with respect to the concentration in solution) for 

different values of a,Rk  are shown in Figure 2.4 for an only metal system. Panel a) 

corresponds to a low value of a,Rk . In this case metal diffuses from the bulk solution 

through the device until the concentration in all the layers is the same. Profiles show the 

way the resin is filled. Equilibrium is almost reached at 2h in this example. Panel c) 

shows the evolution of the concentration profile for a species that binds strongly to the 

resin. For this kinetic constant a steady-state condition is reached. The concentration 

profile is a straight line in the gel layer, with zero value in the resin/diffusive gel 

interface, indicating perfect-sink conditions. In panel b) there is a species that partially 

binds to the resin. This is an intermediate situation between a) and c). A similar situation 

to steady-state can be reached, but there will be a penetration of the metal profile inside 

the resin domain.
27

 This case will be discussed in Chapter 6. 
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(a) 

 

(b) 

 

(c) 

Figure 2.4. Time-evolution of normalized concentration profiles in a DGT device with only metal. a) 
7 3 -1 -1

a,R 1.7 10 m mol sk   , b) 2 3 -1 -1

a,R 1.0 10 m mol sk    y c) 3 -1 -1

a,R 44 m mol sk  . In all cases:

4 -1

d,R 1.0 10 sk   , 10 2 -1

M 4.94 10  m sD    (common in all layers), 44 10 mr   , 31.1 10 mg   . 
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In presence of complexes, earlier models maintained the perfect-sink hypothesis and 

also assumed that the complexes did not penetrate the resin domain. These models could 

accurately reproduce labile complexes, but they could not explain the experimental 

results for other cases.
28

 Improved models include the diffusion of species in the resin 

domain. As an example, we can analyze the system defined by Eqn. (2.1), constituted by 

one metal M and a ligand L, forming the complex ML. When the rate constant between 

M and the resin sites ( a,Rk ) is high enough, free metal is negligible in the resin domain 

although metal complexes can penetrate and dissociate in the resin domain. Fig. 2.5 

depicts the M and ML normalized concentration profiles for different lability degrees. 

The consumption of metal in the resin phase requires in steady-state a decreasing metal 

concentration profile from the solution to the resin, reaching the metal concentration a 

null value in the resin/diffusive gel interface due to the high value of a,Rk . The decrease 

of the metal concentration induces the dissociation of the complex. If this dissociation is 

fast enough equilibrium is reached. When the M and ML normalized concentration 

profiles converge, there is local equilibrium between these species.
18

 The thickness of 

the layer where both profiles diverge is called the reaction layer.
29

 The part of the 

reaction layer in the diffusive gel can be estimated from the disequilibration parameter 

m, which can be calculated as: 

 

 
ML

* *

d ML M1

D
m

k c c



  (2.27) 

 

The rest of the reaction layer in the resin domain can be estimated through the complex 

penetration parameter, ML , which can be calculated as:  

 

ML
ML

d

D

k
   (2.28) 

So the reaction layer is ML

ML

coth
r

m





 
 

 
 for 

ML

ML

coth
r

r
 



 
 

 
. When 

ML

ML

coth
r

r
 



 
 

 
, the reaction layer will be r m  . 
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Penetration of complexes has an important impact on the reaction layer and therefore, in 

the lability of the complexes. Figure 2.5 (a) shows the profile of a labile complex (ξ=1). 

The normalized concentration profiles for both, M and ML, are superimposed all along 

the diffusive gel, indicating that the dissociation of ML is fast enough to maintain the 

equilibrium with M. It implies that the entire complex has dissociated when it arrives to 

the resin (as reflected in the profile) and its contribution to the flux is maximum: 

 

* *

M M ML ML
labile g g

D c D c
J J

 
      (2.29) 

 

When the lability of the complex decreases, its contribution to the total flux can be 

calculated as: 
29,30

  

* *

M M ML ML

g g

D c D c
J 

 
   (2.30) 

 

Concentration profiles for partially labile complexes (0<ξ<1) are presented in Figs 2.5 

(b) and (c). It can be seen that the convergence of both lines is shorter as the lability 

degree decreases. ML concentration profile penetrates in the resin, being different from 

0 at rx  . 

 

Finally, inert complexes (ξ=0) don’t contributibute to the metal flux (see panel (d) in Fig 

2.5). In this case, the flux will be:                                                                

*

M M
free g

D c
J J


   (2.31) 
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                                              (a)                                                                   (b) 

 

  

                                              (c)                                                                   (d) 

Figure 2.5. Normalized concentration profiles of metal (continuous lines) and complex (dashed lines) 
species for: (a) ξ=0.98 and 3 -1 -1

a 10 m mol sk  ; (b) ξ=0.83 and 3 -1 -1

a 0.1 m mol sk  ; (c) ξ=0.48 and 
2 3 -1 -1

a 10  m mol sk  ; (d) ξ=0.0 and 5 3 -1 -1

a 10  m mol sk  . In all cases: 2 3

T,M 10 mol mc   , 

1 3

T,L 10 mol mc   , 3

T,R 28 mol mc  , 3 -1m10 molK  , 10 2 -1

M ML 5.0 10  m sD D     (common in all 

layers), 44 10 mr   , 31.1 10 mg   . 

 

 

 

When the metal flux is time independent, the accumulation is linear with time and Eqn. 

(2.22) applies. Otherwise the linearity of the metal accumulations with time is distorted 

and further refinements in the analysis are required. Some of these cases will be 

discussed in the following chapters.  
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CHAPTER 3 
 

 

 

 

 

3. NUMERICAL SIMULATION OF DGT DEVICES 
 

 

 Introduction 3.1

 

Many problems of practical importance, which often appear in engineering, have 

associated mathematical equations that are in many cases very difficult or impossible to 

solve analytically. In order to study the properties of the solution or to simply evaluate 

the solution under some conditions it is then necessary to develop numerical procedures 

to solve the equations of the system.
1-3

 This is the case of the equations corresponding to 

many electrochemical systems. A pioneering work related to the numerical treatment of 

electrochemical systems was developed by Feldberg and Auerbach.
4
 Since then, many 

authors have applied different techniques for the numerical solution of these systems. 

The most widely used approach has been the finite difference method (FDM).
5,6

 The 

original idea was to change the continuous physical space into a set of discrete points, 

equally spaced, which allows converting a differential problem into an equivalent 

system of algebraic equations.
7
 FDM is very intuitive and easy to implement for simple 

problems. However, they are not suitable for a great deal of systems, for example with 

complicated geometries or with moving boundaries. Some variants of the method have 

been introduced to make it applicable to a wider range of problems, like adaptive 

intervals, in space or in time.
8-12  This method has been applied to the particular case of 

DGT devices.
13

 Nevertheless, even with the improvements, the application of FDM 

often leads to very long simulation times.  

 

A more efficient strategy for treating this type of problem is the Finite Element Method 

that will be discussed in the next section. 
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 The Finite Element Method 3.2

 

The Finite Element Method (FEM) is a numerical technique to solve problems that are 

described by partial differential equations. The main idea of this method is to divide the 

domain, on which the equations are defined, in a set of discrete parts with some 

privileged points, not necessarily equally spaced, called nodes. The equations governing 

the behaviour of continuous domain also govern the discrete domain. From a 

mathematical point of view, the objective is to move from a continuous system with 

infinite degrees of freedom (governed by a set of differential equations) to a discrete 

system with a finite number of degrees of freedom (whose behaviour is modelled by a 

set of algebraic equations). The idea behind this process is that any continuous function 

of the element can be represented by a linear combination of polynomic functions, 

which are built in every finite element. The problem is solved on each element to obtain 

the solution on specific points called nodes. This solution, calculated over the nodes, is 

combined for building the total solution. Therefore, the objective of the method is to 

compute an approximate solution rather than an exact solution of the problem. 

 

3.2.1 Application of the FEM 

 

The use of the FEM typically involves the following steps: 

a. Definition of the problem 

b. Discretization of the domain 

c. Construction of the interpolation basis 

d. Formulation of the system of equations 

e. Solution of the system of equations 

 

a. Definition of the problem 

 

The first step is to define the problem to solve. It implies to make a model of the 

physical reality. A model is a theoretical construction that reproduces the behaviour of 

some aspects of a physical system. According to Fritzson
14

 a model of a system can also 

be defined as: “anything an experiment can be applied to in order to answer questions 

about that system”. The type and complexity of the model depend primarily on the type 
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of results required. With a model we can obtain information about the system without 

doing real experiments. The kind of experiments that we develop in the model is what 

we call simulations.
14

  

 

To perform numerical simulations, mathematical models are required. In this case, the 

behaviour of the system is represented by a set of equations, and then relationships 

between variables of the system are expressed in mathematical form.  

 

b. Discretization of the domain 

 

One advantage of FEM is that it can be applied to domains with irregular geometry. In 

this method we seek to represent a complex domain, where the phenomena to study 

occur in a collection of subdomains of regular form (let’s name them elements for the 

moment). Depending on the dimension of the problem, these elements can be parts of a 

line (e.g. truss or beam), an area (e.g. plane stress or membrane) or a volume (e.g. 

tetrahedral or hexahedral). The process of construction of this discrete space is called: 

meshing. Due to the importance of this discretization, there have been developed 

different strategies of meshing such as Delaunay triangulation or Adaptive grids. 

 

The first step is to define the shape of the elements. Then, a certain number of nodes in 

each of these elements must be defined. The solutions for the equations will be found in 

these nodes. From a practical point of view, it is convenient to generate a new finite-

dimensional space, with a high number of nodes in regions where the solution functions 

have large gradients and few nodes in regions where these variables show small 

changes. It is also important to avoid sudden changes in the size of the elements. 

 

The mesh must have sufficient number of nodes to have good results with a 

computational precision and without excessive investment in resources and 

computational time. The shape of the elements is often related with the physical 

characteristics of the problem.
15

 For example: in a problem of heat transmission in a bar, 

a unidimensional treatment can be enough. In this case, one-dimensional elements, with 

two nodes (one at each end of the element) can be used. If the problem involves two 

independent spatial coordinates, two-dimensional elements must be used. In this case, 
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triangles or trapezoids can be used with different possibilities for the nodes placement. 

In the case of three-dimensional problems, elements like tetrahedron or hexahedron are 

typically employed. These forms of discretization introduce certain approximations 

(e.g., curved lines replaced by straight lines or curved elements for flat surfaces). 

However, using a sufficient number of elements, the domain may be reproduced as well 

as desired. 

 

Figure 3.1 shows an example of one possible discretization for a given domain. It was 

discomposed in ten triangles and there are also ten nodes.  

 

Figure 3.1.  Example of discretization for a specific domain. 

 

c. Construction of the interpolation basis 

 

The application of the FEM gives us an approximate solution of the problem in the 

nodes. But the solution in other points of each element must be interpolated using an 

appropriate set of functions. Each interpolation function must have a value of 1 in one 

of the nodes and 0 in the others. Polynomials are typically chosen as interpolation 

functions over the nodes, mostly because they are easy to differentiate and integrate.  

 

For the one-dimensional problems, the polynomials have the general expression: 

  2

1 2 3

m

mx x x x        
  (3.1) 

 

In the case of two dimensions:  

  2 2

1 2 3 4 5 6, m

mx y x y x y xy y                 (3.2) 

6
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and in the three-dimensional case: 

  2 2 2

1 2 3 4 5 6 7 8 9 10, , n

mx y z x y z x y z xy yz zx z                         

  (3.3) 

 

Where n is the degree and 1 2, ,  m    are the coefficients of the polynomial. In most 

cases, one-degree polynomials are used.  

 

Figure 3.3 shows two finite elements corresponding to nodes 9 and 10 of the 

discretization of the domain plotted in Figure 3.1. Each finite element is made up by the 

polygon, its nodes and the corresponding no null fragments of the i  functions.  

 

 

Figure 3.2.  Example of two interpolation functions in the domain drawn in Fig 3.1. 

 

d. Formulation of the system of equations  

 

Suppose that we want to find the function u , which is the solution for the following 

problem:  

2u cu f                     in    (3.4) 

u g                             on D   (3.5) 

ˆu n h                       on N  (3.6) 

 

Where   is a domain in n  which is limited by a closed curve  . This boundary is 

divided in two sections: D  and N . The solution is found in a linear space of 

1
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functions (i.e. Hilbert or Sobolev spaces). Equations (3.5) and (3.6) are Dirichlet and 

Neumann boundary conditions, respectively.  

 

 

Figure 3.3.  The domain   with Dirichlet and Neumann boundaries. 

 

The first step consists in expressing the problem in its variational form:  

   2 ˆ dΩ +  d 0 ,          u cu f u n g V   
 

                (3.7) 

 

Being V the set of functions defined as: 

 2piecewiseis and 0 on      =    DV C      (3.8) 

 

The next step is the introduction of the weak formulation of the problem. The main 

advantage of this form is that decreases continuity and differentiability requirements on 

the potential solutions to the equation. To introduce this formulation, it is necessary to 

use the divergence theorem, which states: 

   ˆ dΩ =  ddiv  A A n
 

     (3.9) 

 

replacing A u    in Equation (3.9) we obtain: 

     2 ˆ dΩ +  dΩ =  d u u u n  
  

           (3.10) 

 

where we have used: 

   2
div u u u          (3.11) 

 

N



D
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Splitting the boundary   in two parts, Equation (3.10) takes de form: 

       2 ˆ ˆ dΩ +  dΩ =  d  d  

D N

u u u n u n   
   

                (3.12) 

 

In the boundary N , we are going to impose the condition: 

0                           on D   (3.13) 

 

Using Equations (3.4), (3.6) and (3.13) in Equation (3.12) we have:   

        dΩ +  dΩ -  dΩ - d 0

N

u f c u h   
   

        (3.14) 

 

Expression (3.14) together with the condition (3.5) constitute the weak formulation of 

the problem. 
16,17

 In this formulation the solution function is not required to be derivable 

twice. 

   

The solution of the problem is being found in a linear space of functions V. This allows 

the use of basis (which have an infinite number of functions) of these spaces.  

 

If  1 1 2, ,..., ,...iB     is a basis of V, the problem can be written as: 

        dΩ +  dΩ -  dΩ - d 0

N

i i i iu f c u h   
   

        (3.15) 

 

On the other hand, each function of the solution can be expressed as a linear 

combination of elements of another basis  2 1 2
ˆ ˆ ˆ, ,..., ,...jB     as follows: 

  
0

ˆ
j j

j

u u 




   (3.16) 

 

Substituting Equation (3.16) in the weak formulation of the problem, Equation (3.14), 

we obtain:  
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   
0 0

ˆ ˆ( )  dΩ +  dΩ - ( )  dΩ - d 0

N

j j i i j j i i

j j

u x f c u x h     
 

    

   
      
   
      (3.17) 

 

that turns into: 

       
0

ˆ ˆ dΩ -  dΩ d  dΩ

N

j j i j i i i

j

u c h f     


    

 
    

 
       (3.18) 

 

To solve it numerically, it is useful to write this problem in its matrix form: 

A u = t   (3.19) 

Here, the elements of the matrix A can be written as: 

   ˆ ˆ dΩ -  dΩij j i j iA c   
 

        (3.20) 

Elements of vector t  are defined as: 

   d  dΩ

N

i i it h f 
 

    (3.21) 

Being vector u : 

1

2

u

n

u

u

u

 
 
 
 
 
 
 
 

  (3.22) 

 

It is important to clarify that no approximation has been made until now and the 

formulation remains rigorous. It is at this point when we will actually apply the FEM, 

passing the weak formulation from a continuous to a discrete form. To do this, the 

function   will be selected from a discrete basis B1 of the space V where the solution is 

being found. This approach is called the Petrov-Galerkin method,
16,17

 if the basis of 

functions 1B  and 2B  are different. When the two basis are taken equal the approach is 

named Galerkin method. 

 

Another important thing is that, in a linear space, the computation du 


  has 
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properties of a scalar product: is bilinear, commutative and positive defined. It means 

that, applying the Galerkin method, matrix A will be symmetric and positive defined 

and accordingly, the problem has only one solution. 

 

As an example let’s assume that we want to solve Equation (3.18) in a one-dimensional 

given domain (see Fig 3.4).  Due to the fact that the value of every ˆ
j  function is 1 at 

nodes, the coefficients ju  correspond to the values of u  at these points. Additionally, 

since each ˆ
j  is a continuous piecewise linear function of x , their linear combination 

will also be continuous and piecewise linear. Thus, once the values of the ju  have been 

found, we have an approximation to the analytical function all over the domain of the 

problem. One possible basis of functions ˆ
j  is: 

1

1

1

1

1

1

if

ˆ ( ) if

0 otherwise

j

j j

j j

j

j j j

j j

x x
x x x

x x

x x
x x x x

x x















 



 

  






  

    (3.23) 

These type of functions are different from zero only in the interval  1 1,j jx x 
, i. e., on 

the two finite elements containing the node j. Figure 3.4 shows the aproximation of a 

continuous function using this basis. It is easy to see that in the interval  1,j jx x
 the 

aproximate linear piecewise function will be constructed as: 

  1 1
ˆ ˆ( ) ( )j j j ju x u x u x     (3.24) 
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Figure 3.4.  Approximation of a continuous function using a basis of linear interpolation functions. 

 

 

e. Solution of the system of equations 

 

Typically, matrices resulting from the finite element analysis are sparse 
18

. Techniques 

used for solving the system of equations try to take advantage of these characteristics to 

reduce the required memory and the computational time. These techniques can be 

separated in two types: direct and iterative.
18

 The first group produce the exact solution 

in a finite number of elementary arithmetic operations. The maximum error, for a given 

independent matrix and term, is usually associated with the number of operations of 

each method. Since computers have finite precision, rounding errors are propagated and 

the numerical solution obtained always differs from the exact solution. Therefore, it is 

an objective to obtain methods with the minimum number of possible operations. For 

these reasons, direct methods are usually used for problems of moderate size. Cholesky 

method and Gaussian elimination are examples of direct methods.  

 

For large systems, iterative methods require less computing time, in part, because they 

do not require the construction of the matrix. An iterative method progressively 

calculates approximations to the solution of a problem. They begin with an initial value 

and then an algorithm is applied to obtain a new approximate solution. It is expected 

that the new solution obtained is a solution more approximate than the initial one. The 

process is repeated until the most recent result satisfies certain requirements. The main 

3jx  2jx  1jx  jx 1jx  2jx 

1

( )u x

x

3ju 

2ju 
1ju 

ju

1ju 
2ju 
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advantages of the iterative methods are the simplicity and uniformity of the operations 

to be done. Examples of them are Gauss-Seidel, Jacobi and Newton-Raphson 

methods.
18

 

 

3.2.2 Transient problems 

 

Until now, we have been working with stationary problems. But the FEM can also be 

used in time-dependent problems. In these cases, one useful strategy is to separate the 

solution function in two parts: one depending on time and the other on the spatial 

coordinates. Then, we can apply a FDM to the temporal part and the FEM to the spatial 

part of the problem.  

 

To better explain this strategy, we can use an unidimensional diffusion problem: 

2

2

u u
D

t x

 


 
    (3.25) 

 

with the initial condition: 

 ,0 ( )u x q x   (3.26) 

 

and a boundary value problem: 

0x

u
h

x 





 (3.27) 

 , tu L g  (3.28) 

 

This problem can be analysed in similar way to the stationary example defined in 

Equations (3.4), (3.5) and (3.6) if we replace f by 
u

t




 and take 0c  . The weak 

formulation turns into: 

    dΩ +  dΩ - d 0

N

u
u h

t
  

  

 
    

 
    (3.29) 
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Using the same 1B  and 
2B  basis to develop the spatial part of the function, the 

approximate solution function can be expressed as: 

0

( ) ( )
N

j j

j

u u t x


   (3.30) 

 

And the weak formulation (3.29) becomes: 

0 0

( ) ( ) ( ) dΩ + ( ) ( ) ( ) dΩ - ( ) d 0

N

N N

j j i j j i i

j j

u t x x u t x x h x
x t

    
   

           
    
       

 (3.31) 

After some reordering: 

   
0 0

( )
ˆ ˆ( ) ( ) ( )  dΩ + ( ) ( )  dΩ - ( ) d 0

N

N N
j

j j i j i i

j j

u t
u t x x x x h x

t
    

   


    


       

 (3.32) 

which can be written in matrix form as: 

0B u + A u - t    (3.33) 

 

where the elements of the matrices are: 

 ˆ ( ) ( )  dΩij j iA x x 


     (3.34) 

 ˆ ( ) ( )  dΩij j iB x x 


   (3.35) 

 

The elements of the vector t  are defined as: 

 d
N

i it h


   (3.36) 

 

and the vectors u  and u  are: 
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1

2

u

n

u

u

u

 
 
 
 
 
 
 
 

 (3.37) 

1

2

u

n

u

t

u

t

u

t

 
 
 
 

 
   

 
 
 
 

 
 

 (3.38) 

 

The solution of Equation (3.33) requires a time discretization. This can be done using a 

 -Scheme
19

: 

    
( ) ( )

1 ( ) ( ) ( ) ( ) 0
u u

B + A u t + A u t =
t t t

t t t t t t
t

 
  

        
 

 (3.39) 

 

which can be written as: 

          
1 1

( ) 1 ( ) 1 ( ) ( )B A u B A u t tt t t t t t
t t

   
   

           
    

 (3.40) 

 

That is an expression for the values of u in all the nodes in the time t+∆t, as a function 

of the values of u at time t. Here,   is a parameter whose selection originates different 

methods
19

: 

 

0                Euler Explicit 

1                 Euler Implicit 

1 2             Crank-Nicolson 

0 1           Other implicit methods 

 

In explicit methods a direct computation of the dependent variables can be made in 

terms of known quantities. These methods are of order 1 and have low computation 
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times, but need smaller time intervals for accuracy and stability.
19

  

 

A numerical method is said to be implicit when the dependent variables are defined by 

coupled sets of equations and either a matrix or iterative technique is needed to obtain 

the solution. The matrices originated are normally tridiagonal, which allows solving the 

system very efficiently. On the other hand, the increase in the number of operations is 

compensated by the possibility of using larger increments of time in each step. Euler 

implicit is an unconditional stable method of order 1. Crank-Nicolson is unconditional 

stable of order 2 and it is the most precise method.
20

   

 

 

 DGT device with N species 3.3

 

3.3.1 Definition of the problem 

 

Let us describe the simulation tool developed to solve the transport and reaction 

processes in a DGT device. The model is similar to those used in references 
13,21,22

 but 

here, the FEM will be used.  

 

The physical domain has planar symmetry with only one relevant spatial dimension 

labelled x. To be more general, the device was simulated with two resin discs. 

Additionally, each resin disc is allowed to have a binding agent only in part of the disc. 

We will call front resin disc the one that is in contact with the gel and back resin disc, 

the disc located at the bottom as shown in Figure 3.5. The DGT devices are deployed in 

solutions containing various species, metals, ligands, or combinations of both species. 

Species diffuse in the sensor both along the diffusive gel and the resin domain. Only 

free metals can react with the binding agents dispersed in the resin discs. Ligands and 

complexes do not react with the resin sites.  
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Figure 3.5.  Scheme of the DGT device for the simulation 

 

We are going to consider only reactions of the form:  

A B C   (3.41) 

 

Any other reaction is essentially composed of reactions of this type. 

 

The balanced equations for species i are: 

2
R

2
Reaction terms     In regions 2 and 4.i i

i

c c
D

t x

 
 

 
   (3.42) 

2

2
Reaction terms     In regions 1, 3 and 5. i i

i

c c
D

t x

 
 

 
  (3.43) 

 

The term on the left hand side in both equations represents the change in concentration 

of species i per unit time. The first term on the right hand side describes the change in 

concentration of the species i by diffusion. Source terms describe the variation of the 

concentration due to homogeneous chemical transformations. These terms are 

polynomial and depend on the concentration.  Diffusion coefficients are labelled as 
R

iD  

for species i in the regions with binding agent (regions 2 and 4 in Figure 3.5), while iD  

labels the corresponding diffusion coefficient in regions without binding agent (regions 

1, 3 and 5 in Figure 3.5). Species bound to the resins remain immobile so that the 

corresponding diffusion coefficient is 
R 0iD  .  

Diffusive gel                   Filter   

B
u

lk
 s

o
lu

ti
o

n

with 
Chelex

without 
Chelex

with 
Chelex
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Chelex
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Region 1    Region 2   Region 3   Region 4                                     Region 5

Back resin            Front resin

x



CHAPTER 3 – Numerical simulation of DGT devices 

 

 46  
 

a. Change of Variables 

 

Some changes of the variables were made in order to obtain more suitable scales. We 

used the same normalization as in reference 
13

. The concentrations of species with a 

diffusion coefficient different from zero (the species not attached to the resin) are 

transformed into dimensionless functions by dividing by its bulk concentration: 

*

i
i

i

c
q

c
  (3.44) 

 

This is done in order to easily compare the values of the concentrations of the different 

species, even though they take different orders of magnitude. In the case of species with 

diffusion coefficients equal to zero, concentrations are made dimensionless normalizing 

by the total concentration of sites on the corresponding resin ( TR, jc ). This normalization 

applies to resin sites and resin-metal complexes: 

T,R,

j

j

j

c
q

c
  (3.45) 

 

The spatial dimensions are divided by the square root of the highest diffusion 

coefficient: 

max

x
z

D
 , *

max

r

r
D


 , *

max

g

g
D


  (3.46) 

 

Diffusion coefficients are also normalized relative to the highest diffusion coefficient: 

max

i
i

D
d

D
   (3.47) 

 

b. Initial conditions  

 

At time 0t   it is assumed that there is no species in the resins or in the gel and all the 

binding sites are free. The initial conditions are: 

( ,0) 0ic x       in      0 r gx       (3.48) 
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for metals, ligands, metal-ligand complexes, and metal-resin complexes. For resin sites 

the initial conditions are: 

R T,R( ,0)c x c   in the regions 2 and 4   (3.49) 

R ( ,0) 0c x       in the regions 1, 3 and 5. (3.50) 

 

Initial conditions in terms of the dimensionless variables rewrite  

( ,0) 0iq z        in      * *0 z r g    (3.51) 

 

for metals, ligands, metal-ligand complexes, and metal-resin complexes. 

R ( ,0) 1q z        in the regions 2 and 4 (3.52) 

R ( ,0) 0q z       in the regions 1, 3 and 5 (3.53) 

 

c. Boundary Conditions 

 

Boundary conditions can be written as: 

0

0i

x

c

x 





  (3.54) 

because there is no flow of any species through the boundary 0x  . 

*( ,0)r g

i ic c    (3.55) 

which means that, at the gel-solution interface, the species reach the bulk concentrations 

(only applied to species with 0iD  ) .  

 

In the positions of interfaces between regions with and without binding agent ( x a , 

2

r

x


 , x b  and rx  ) there is continuity of the concentration of species i: 

( , ) ( , )i ic x t c x t    (3.56) 

 

Were superscripts – and + stand for both sides of the interface. Additionally, there is 

continuity of flux in the same positions: 
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 R i i
i i

x x

c c
D D

x x 

 


 
 (3.57) 

It applies to species that do not involve resins. 

 

In terms of the dimensionless variables, the boundary conditions become: 

0

0i

z

q

z 





   (3.58) 

* *( ,0) 1iq r g   (3.59) 

( , ) ( , )i iq z t q z t   (3.60) 

R i i
i i

z z

q q
d d

z z 

 


 
 (3.61) 

 

being *

max

a
z a

D
  , 

*

max
2 2

rr
z

D


  , *

max

b
z b

D
   and 

*

max

r

z r
D


  , 

dimensionless positions of interfaces. 

 

3.3.2 Discretization of the domain  

 

We expect that the most relevant events happen near the interfaces. For this reason, the 

density of points on the grid is bigger close to these interfaces. There are five regions. 

The discretization of every region has been done using the same idea. As an example, 

let’s assume that one of these regions whose boundaries are denoted as  1 2,l l  has a 

length equal to L (after the change of variables), and we want to discretize the space in 

N parts. For the discretization of the space we can use the following function: 

 1 1 cos
2 N

k

L k
z l

  
     

  
   (3.62) 

As a particular case we assume two identical resins, with binding agent only in half of 

their volumes. Figure 3.6 shows the number of divisions of every region. The 

workspace is divided in N parts, from the point 1z  to the point 1Nz   (where 

N=NG1+NR1+ NG2+NR2+NG). 
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Figure 3.6.  Discretization of the domain. 

 

3.3.3 Construction of the interpolation basis 

 

The basis of linear interpolators k  is defined as follows: 

1
1

11

for 0
( )

0    in other points

z z
z z

zz


 

 

  

1 1

1

1 1

1

for < < 

for < < 
( )

0 in other points

i i i

i i

i i i
k

i i

z z z z z

z z

z z z z z
z

z z


 



 




 



 






  (3.63) 

N
N N 1

N 1 NN 1

for 

0 in other points

z z
z z z

z z





 

 



 

is used. In ( )k z , k can take values between 1 and N+1, whereas in ( )n z , n  can take 

values between 1 and N.  A graphic representation of this basis can be seen in Figure 

3.7.  

 

Figure 3.7.  Graphical representation for the basis of interpolators. 
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3.3.4 Formulation of the system of equations 

 

a. Terms of reaction 

 

Equations (3.42) and (3.43) contain a series of terms not explicitly shown, that 

correspond to the different chemical reactions in which the species i is involved. 

Remembering that only reactions of the type A+B C  are considered in this work, the 

source terms depend on the role of the species i in each reaction, with the following 

possibilities: 

 

If species i correspond to A or B in the reaction (i.e., if species i is a reactant), kinetic 

terms of the form a B d Cik c c k c   or a A d Cik c c k c   will appear in Equations (3.42) and 

(3.43). If species i corresponds to case C of the reaction (i.e., if species i is a product), a 

kinetic term of the form a A B d ik c c k c   will appear. 

 

Equations (3.42) and (3.43) include the sum of all the kinetic terms corresponding to 

each reaction where the species i participates. After changing the variables every term of 

the form a A B d Ck c c k c  becomes    * * *

a A B A B d C Ck c c q q k c q . 

 

b. Matrices of equations and the kinetic coefficients 

 

Three matrices are defined: mreac, kreac and meq. The first contains the information of 

the species involved in every reaction, kreac contains the information related to the 

kinetic association and dissociation constants for all the reactions. Finally meq stores 

information about all reactions where each species is involved.     

 

3.3.5 Solving the equations 

 

The balance equation for each species written in a compact form is:  

 
2

( ,1) ( ,1) ( ,2) ( ,2) ( ,3)2

R

ii i
j mreac j mreac j j mreac j

ji

Dc c
kreac c c kreac c

t xD

  
   

  
  (3.64) 

In this equation, the summation scans all the reactions in which species i participates, 
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( ,1)mreac jc , ( ,2)mreac jc  and ( ,3)mreac jc  are the concentrations of the species involved in the 

reaction j . ( ,1)jkreac  and ( ,2)jkreac  are the kinetic constants of the reaction j . The 

signs of reaction terms depend on the role of the species i in each reaction. After making 

the change of variable indicated in Section 3.3.1., these equations become: 

 
R 2

( ,1) ( ,2) ( ,3)2

ii i
ij mreac j mreac j ij mreac j

j
i

dq q
F q q G q

t zd

  
   

  
 (3.65) 

 

Where:      

* *

( ,1) ( ,2) ( ,1)

*

mreac j mreac j reac j

ij

i

c c k
F

c
      and    

*

( ,3) ( ,2)

*

mreac j reac j

ij

i

c k
G

c
   

 

The system will be solved iteratively in time and using the finite element method (FEM) 

for the spatial dependence. One advantage of the FEM method is that it allows the use 

of a spatial grid with unequal distribution of the spatial points. Thus, a higher density of 

points will be used in regions where it is expected a fast change of the physical 

properties in order to reduce the numerical error, reaching the maximum accuracy with 

the minimum computational requirements. This procedure also allows a reduction of the 

CPU time.  

 

The application of the FEM method requires the variational or weak formulation of the 

problem. In this formulation, it must be satisfied that: 

 
* *

2

( ,1) ( ,2) ( ,3) 2

0

0

r g R

ii i
ij mreac j mreac j ij mreac j n

j i

dq q
F q q G q dz

t zd


    
     

    
  (3.66) 

 

for a complete basis of n  functions of the space of solutions. Integration of the 

previous equation leads to:  

 
* *

* *
* *

( ,1) ( ,2) ( ,3)

0

00

0

r g

i
ij mreac j mreac j ij mreac j n

j

r g
r gR R

i ii i
n n

i i

q
F q q G q dz

t

d dq q
dz

z zd d



 






 
   

 

                      





 (3.67) 
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The second term of the equation (3.67) is zero in 0z   because the flux of all species at 

this point is zero. Likewise, the second term of the equation (3.67) is also zero in 

* *z r g   because the solution is already known at this point, then 0n  . Equation 

(3.67) becomes: 

 
* * * *

( ,1) ( ,2) ( ,3)

0 0

0

r g r gR

ii i

ij mreac j mreac j ij mreac j n n

j i

dq q
F q q G q dz dz

t zd
 

                  
   

 (3.68) 

In order to discretize the spatial part of the problem, the following approaches are 

proposed: 

 

 

( ,1) ( ,2) ( ,3)

N

( ,1) ( ,2) ( ,3)

1

i
ij mreac j mreac j ij mreac j

j

ik
ij mreac j k mreac j k ij mreac j k k

jk

q
F q q G q

t

q
F q q G q

t





  



 
  

 




 (3.69) 

 

and  

N

1

i
ik k

k

q
q

z




 


  (3.70) 

 

 where  ( ,1) ( ,2) ( ,3)
ik

ij mreac j k mreac j k ij mreac j k

j

q
F q q G q

t


 


  and ikq  depends only on time, 

while k  depends only on the spatial positions. With these changes, Equation (3.69) 

becomes: 

   
* *

* *

N

( ,1) ( ,2) ( ,3)

1 0

N

1 0

0

r g

ik
ij mreac j k mreac j k ij mreac j k n k

jk

r gR

i

ik n k

ki

q
F q q G q dz

t

d
q dz

d

 

 









 
   

 

 
      

 

 

 

  (3.71) 

 

In Equation (3.71), the integration results depend only on the basis used. Let us define 
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 

* *

0

r g

nk n kA dz 


   and 

* *

0

r g

nk n kB dz 


  
   where n and k vary between 1 and N. With 

the definition of ( )n z  given by Equation (3.63), A and B become tridiagonal matrices 

and take the values: 

 

1 1

1 2

2 2 3 3

0 0 0

3 6

0 0

6 3 6

0 0 0

3 3

NG NG NG

h h

h h h h

h h h
 

 
 

 
  

 
 
 
 

 
 

A   (3.72) 

 

1 1

1 1

1 1 2 2

1 1 0 0 0

1 1 1 1 0 0

0 0 0 1 1 1

NG NG NG

h h

h h h h

h h h
 

 
 

 
 
   

  
 
 
  
  

B    (3.73) 



where 1i i ih z z   , as seen in Figure 3.7. Equations (3.71) for the species i can then be 

rewritten as: 

 
N

( ,1) ( ,2) ( ,3)

1

0

R

iik
ij mreac j k mreac j k ij mreac j k nk ik nk

jk i

dq
F q q G q A q B

t d

   
      

     
  (3.74) 

 

The system obtained is nonlinear and, depending on the spatial grid used, it can contain 

a large number of unknowns. Accordingly, the simultaneous solution of all the equations 

takes prohibitive times. Instead, the system will be solved iteratively, assuming known 

values for all the concentrations of all the species except one which is solved at this 

iteration step. This scheme is repeated iteratively until all the concentrations have been 

calculated up to consistency. In this way, the system is broken down into several smaller 

systems, each of them easier and faster to solve.
23

 This allows the use of tridiagonal 

matrices, which represent a computational cost of order n. 
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Time is discretized into equal intervals of value t . Using the forward difference 

method, the unknowns are the values of ( )ikq t t   and to estimate these values, we use 

the values of the concentrations at time t for all the species still not updated at this 

iteration time step while provisional estimations at time t t   are used for those 

concentrations already updated in the iteration: 

 

 
N

( ,1) ( ,2) ( ,3)

1

N

1

( ) ( )

( ) 0

ik ik
ij mreac j k mreac j k ij mreac j k nk

jk

R

i

ik nk

k i

q t t q t
F q q G q A

t

d
q t t B

d





    
    

   

  
    

   





 (3.75) 

 

Iteration proceeds until all concentrations converge at all the spatial positions at the time 

considered. As a convergence criterion, it is required that the norm of the difference of 

concentrations between two consecutive iterations is less than a small preset value ε:  

 

  
number 

of species N 2
m-1 th iterationmth iteration

1

1
( ) ( )

N
ik ik

i k

q t t q t t 


 
     

 
   (3.76) 

 

Once this convergence is reached, the next interval of time is considered.  
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 The Program  3.4

 

3.4.1 General view of the program 

 

The program works using the scheme showed in figure 3.8. Some details of the program 

are: 

1. The program begins with the declaration of the variables used and the reading of 

the inputs. 

2. Then the mreac, meq and kreac matrices are calculated, and with them the problem 

of equilibrium is solved.  

3. The spatial grid and the matrices A and B are built with a careful selection of the 

spatial positions so that intervals with lengths shorter than the reaction layer were 

included in the mesh. 

4. The concentrations of all species are stored in two vectors: qact and qsig. In the first 

vector species concentrations at each point of the grid are stored. The first N values 

of the vector are the concentrations of the first species at time t, the following N 

values are for species 2 and so on, so that the length of the vector will be N 

multiplied by the number of species. The values at the position N+1 are already 

known, so that the concentrations are not calculated at this point. The second vector 

works with the same way but it stores the concentrations at t +t. The two vectors 

are initialized in the same way according to the initial conditions discussed above. 

5. At each time, the program calculates the concentration of each species at each grid 

point. Time intervals between the initial and final time are considered. 

6. Using the concentrations, the program calculates the accumulation of metal at the 

resin, the back percentage of accumulation and the lability.  
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Figure 3.8.  General scheme of program operation 

 

 

 

3.4.2 Details on the resolution process  

 

Solving the reaction-diffusion equations for a set of species requires the finding of the 

concentrations at each spatial point at a specific time. For species that diffuse, the 

concentration at each point depends on its value at t t   and the concentration of the 

same species in neighbouring positions. For this case, the FEM is used. In species with 

diffusion coefficients equal to zero, the concentration at each point only depends on its 
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previous value and the concentrations of the other species, but not on the concentrations 

of the same species at neighbouring points. The solution is obtained directly by a simple 

rearrangement. A solution scheme for all species can be seen in figure 3.9.  

 

Figure 3.9.  Scheme of the solution for all species 

 

The model deals with chemical reactions of the form A+B C . If only the 

concentration of one of the species A or B is unknown, the problem becomes linear. For 

species with 0id   the finite element method, discussed above, is used. The equation 

for each point can be represented as follows: 

 

( )ikq t t T     (3.77) 
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If ( ,1)i mreac j  the reaction diffusion equation (for position k) becomes: 

* *

( ,1) ( ,2) ( ,1) ( ,2)

*

*

( ,3) ( ,2) ( ,3)

*

( )

( )

R

mreac j mreac j reac j nk mreac j ki

nk nk ik

ii

mreac j reac j nk mreac j k

nk ik

i

tc c k A qd
A t B q t t

cd

tc k A q
A q t

c

  
       

   




 (3.78) 

 

If ( ,2)i mreac j  the reaction diffusion equation becomes: 

* *

( ,1) ( ,2) ( ,1) ( ,1)

*

*

( ,3) ( ,2) ( ,3)

*

( )

( )

R

mreac j mreac j reac j nk mreac j ki

nk nk ik

ii

mreac j reac j nk mreac j k

nk ik

i

tc c k A qd
A t B q t t

cd

tc k A q
A q t

c

  
       

   




 (3.79) 

 

If ( ,3)i mreac j the reaction diffusion equation becomes: 

*

( ,3) ( ,2)

*

* *

( ,1) ( ,2) ( ,1) ( ,1) ( ,2)

*

( )

( )

R
mreac j reac j nki

nk nk ik

ii

mreac j mreac j reac j nk mreac j k mreac j k

nk ik

i

tc k Ad
A t B q t t

cd

tc c k A q q
A q t

c

  
       

   




 (3.80) 

The terms are initialized with the common terms for the three options: 

R

i

nk nk

i

d
A B

d

 
    

 

  and  ( )nk ikT A q t  

 

After completing   and T  the tridiagonal matrix is solved obtaining the values 

( )iq t t  for all grid points in a vector called RES; then, the difference between this 

vector and qsig values corresponding to the species i is calculated, and this difference is 

used to analyse the convergence of the solution; RES is finally replaced in the proper 

positions for qsig. 

 

If 0id  the equation for i  at every position (Equation (3.75)) becomes:  
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 ( ,1) ( ,2) ( ,3)( ) ( )ik ij mreac j mreac j ij mreac j ik

j

q t t t F q q G q q t       (3.81) 

As we have seen before, in this case it is not necessary to apply the FEM. It can be 

written as:  

( )ikq t t     (3.82) 

 

Since in this case there is no diffusion of the considered species, we only need to 

evaluate  and   to calculate ( )ikq t t . The contribution of each reaction in these two 

terms depends on the role of the species i in it. If i=mreac(j,1) the equation becomes: 

* *

( ,1) ( ,2) ( ,1) ( ,2)

*

*

( ,3) ( ,2) ( ,3)

*

1 ( )

( )

mreac j mreac j reac j mreac j k

ik

i

mreac j reac j mreac j k

ik

i

tc c k q
q t t

c

tc k q
q t

c

 
    

  




  (3.83) 

 

If i=mreac(j,2)  the equation becomes: 

* *

( ,1) ( ,2) ( ,1) ( ,1)

*

*

( ,3) ( ,2) ( ,3)

*

1 ( )

( )

mreac j mreac j reac j mreac j k

ik

i

mreac j reac j mreac j k

ik

i

tc c k q
q t t

c

tc k q
q t

c

 
    

  




  (3.84)  

 

If i=mreac(j,3)  the equation becomes: 

*

( ,3) ( ,2)

*

* *

( ,1) ( ,2) ( ,1) ( ,1) ( ,2)

*

1 ( )

( )

mreac j reac j

ik

i

mreac j mreac j reac j mreac j k mreac j k

ik

i

tc k
q t t

c

tc c k q q
q t

c

 
    

  




 (3.85) 

 

 and   will be initialized as 1    and  ( )ikq t  . After completing  and , the 

value of  ( )ikq t t  is found and stored in qsig. The procedure is repeated for all the grid 
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points. The convergence criterion is then checked; if the convergence criterion is 

satisfied these concentrations are taken as the solution at this time. When we have a 

converged solution the vector qsig is recorded in the vector qact, the time is increased and 

the procedure is repeated until reach the final time. 

 

3.4.3 Metal accumulation 

 

The total metal flux (as free metal and complexes) entering the resin layer is: 

M M L
M M L

1

j

j

r r

h

jx x

cc
J D D

x x  

 
      

   (3.86) 

 

In transient regime, part of this flow is bound to the resin and another part produces a 

change in free and complex metal concentrations. The metal flux bound to the resin 

layer will be: 

M M L

10 0

( , )( , )
r r

j
h

bound

j

c x tc x t
J J dx dx

t t

 



  
     

    
    (3.87) 

 

Then, the total metal accumulated in the resin, in time t, will be: 

T

0

M M M L M L
M M L

10 0 0

( )

( , ) ( , )( , ) ( , )
  = 

r r

j j

j

r r

t

bound

t h

jx x

n t A J dt

c x t c x tc x t c x t
A D dx D dx dt

x t x t

 

  



    
    

       



  

(3.88) 

 

In the program, terms with spatial derivatives are evaluated using concentrations at 

points NG1+NR1+NG2+NR2z  and NG1+NR1+NG2+NR2+1z : 

* *

*
*i

max max i

max

*  NG1+NR1+NG2+NR2+1  NG1+NR1+NG2+NR2
max i

NG1+NR1+NG2+NR2+1 NG1+NR1+NG2+NR2

                

r

z r

i i i
i i i

x
z r

i i
i

c c q q
D D d d D c

x zD z

q q
d D c

z z







  
 

 

 
  

 

 (3.89) 

 

Terms with temporal derivatives in Eqn. (3.91) are calculated as: 
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   
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1 1* 1
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1
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1 1
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
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

  
 

  

       
   

      

  
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 (3.90) 

 

3.4.4 Lability degree 

 

According to references 
24,25

, the lability degree of a complex M Lj  can be written as: 

M L

*

M L

1
j

j

r

j

c

c
    (3.91) 

 

where, 
M Lj

rc  stands for the concentration of M Lj  in the resin layer/diffusive gel 

interface. In the program, 
M Lj

rc corresponds to the concentration of the complex at the 

position NG1+NR1+NG2+NR2z . The lability degree for species i is calculated as: 

 NG1+NR1+NG2+NR2
 NG1+NR1+NG2+NR2*

1- 1-i
i i

i

c
q

c
    (3.92) 
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CHAPTER 4 
 

 

 

 

 

4.  INFLUENCE OF SETTLING OF THE RESIN BEADS 
ON DGT MEASUREMENTS 

 

 

Part of the material of this chapter has been published in: 

 

Jimenez-Piedrahita, M.; Altier, A.; Cecilia, J.; Rey-Castro, C.; Galceran, J.; Puy, J. 

Influence of the settling of the resin beads on diffusion gradients in thin films 

measurements. Anal. Chim. Acta 2015, 885, 148-155.  

 

 

 Introduction 4.1

 

DGT devices were developed for the in situ measurement of trace metals in waters.
1,2

 

They have two main parts: the resin gel layer (which binds the metal ions) and the 

diffusive gel (that controls the transport of species). Recently, different publications 

have highlighted the important role played by the resin disc thickness in determining the 

metal accumulation in systems with partially labile complexes.
3-8

 The argument starts 

by assuming a fast and strong binding of the metal to the resin sites. Accordingly, the 

complexation equilibrium shifts towards dissociation, so that complexes release free 

metal in the gel domain which binds to the resin. In this way, the thickness of the 

reaction layer (the layer where there is net dissociation, as explained in Chapter 2) 

extends into both the gel and resin domains. Since the thickness of the resin disc is 

usually larger than the reaction layer in the gel domain, almost all metal accumulated 

originates from dissociation of the complex in the resin domain. Dissociation in the 

resin domain has allowed to justify the labile behaviour of the complex of Cd with  

nitrilotriacetic acid (NTA) 
3
 while, without penetration into the resin, it was expected to 

be only partially labile.  

 

Interesting additional information on the resin role can be gained when DGT devices 

with two resin discs are used. Thus, the essentially perfect-sink behaviour of the resin 

was tested in a work with only metals (i.e., in absence of ligands) and DGT devices with 
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two or three resin discs.
9
 This work demonstrated that a kinetic association constant 

between the metal and the resin sites could, in principle, be obtained from the 

distribution of the metal bound to two resin discs, whenever this distribution lies within 

a meaningful sensitive window of kinetic constants. In the presence of complexes, both, 

the metal accumulation and the distribution of the metal in the stack of resin discs have 

been used to fit the parameters of the system Ni-NTA.
7,10

 Notice that the availability of 

complementary information to that of the total accumulation in DGT experiments is of 

high interest, since it helps in fitting the parameters or even allows the direct 

determination of some of them. 

 

All these works, and the derived analytical expressions, assumed a homogeneous 

distribution of the resin sites in the resin domain. This assumption can be considered as 

a first approximation, since the resin beads partially settle during casting of the gel.
7,11

 

In this chapter, we check the influence of the inhomogeneous distribution of the resin 

sites in the resin disc on the total accumulation, on the distribution of metal 

accumulation in a stack of resin discs and on the accuracy of the fitted parameters 

obtained assuming homogeneous binding site distribution. We compare results for 

devices with binding beads appearing only in half of the resin disc (Figure 4.1b), 

denoted as R/2, with devices with homogeneously distributed resin disc (Figure 4.1a), 

denoted as R. Section 4.2 outlines the mathematical formulation and solution of this 

problem. Section 4.3 compares the performance of DGT devices containing one R or 

R/2 resin disc, and Section 4.4 compares the behaviour of DGT devices with a stack of 

two homogeneous or of two discs containing half-dispersed beads.  

 

 Theoretical model 4.2

 

Let us consider a system containing  in solution a metal M and a ligand L which react as 

a

d

M+L ML
k

k
 (4.1) 

where ak  and dk  are the association and dissociation rate constants, 

*

ML

* *

M L

c
K

c c
  is the 
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corresponding stability constant, 

*

ML

*

M

c
K

c
   is the effective stability constant, and 

*

ic  is 

the concentration of species i in the bulk solution. When a DGT device is introduced in 

this solution, all these species diffuse and react through the diffusive gel 

(
r r gx     ) until reaching the resin domain ( 0 rx   ) where, due to the 

presence of the binding beads, another reaction takes place: 

a,R

d,R

M+R MR
k

k

  (4.2) 

 

In this chapter we are going to work with DGT devices with two types of resin discs: 

one with resin beads homogeneously distributed throughout the resin volume (named R 

resins and showed in Figure 4.1a) and another with beads homogeneously distributed in 

only half of the resin volume (denoted as R/2 resins and showed in Figure 4.1b). 

 

  

(a)                                                                    (b) 

Figure 4.1. Schematic  representation of a DGT device with a) one R resin disc and b) one R/2 resin 
disc. 

 

The mathematical formulation of all these processes is given elsewhere.
3,4,6,12

 A 

simulation code allowing the numerical solution of these equations has been explained 

in Chapter 3. It has been written using the Finite Element Method which allows the use 

of a spatial grid with unequal distribution of spatial positions, reducing CPU time and 

hardware requirements in comparison to algorithms based on Finite Differences. The 

numerical solution for the concentration profiles can be used to calculate the flux of 

metal bound to the resin, J, as well as the metal accumulation, 
Mn , both in R and R/2 

devices. Details are given in the section 4.6.3.  
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In practice, the most interesting cases in DGT are those where the association rate 

constant a,Rk  between the metal and the resin sites and the stability constant of the 

metal-resin complex are so high that the resin can be considered as a perfect-sink for the 

metal. Accordingly, we will consider as a good approximation the existence of zero 

metal concentration in the resin domain, whenever the accumulation is far from 

saturation, while L and ML undergo diffusion and reaction along both gels. The 

restriction to perfect-sink, together with the assumption of ligand excess conditions 

leads to an approximate analytical solution for the concentration profiles of metal and 

complex. 

 

4.2.1 Analytical expressions for concentration profiles of metal and 

single ligand complexes in homogeneous (R) DGT devices 

 

Analytical expressions for the free metal and the complex in DGT devices with 

homogeneous distribution of binding agent are deduced in references 
4,5

. In the resin 

disc, 0 rx    (see Figure 4.1a), the concentration profiles of metal (
Mc ) and complex 

(
MLc ) can be written as: 

M ( ) 0c x    (4.3) 

 

 

*

ML ML

ML

ML ML ML

cosh
1

( )
1
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gg g r r

x

c K
c x

K
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m m

 
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  

 
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 
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       

     

  (4.4) 

 

And in the diffusive gel (of thickness 
g  which also includes the filter and the DBL), 

r r gx     : 

 
 

 
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  (4.5) 
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  (4.6) 
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where the value for the concentration of the complex at 
rx   can be computed as:  

 

 

*

ML

ML

ML ML

1

1
coth tanh

r

gg g r

c K
c

K
K

m m m
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 
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

   
     
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  (4.7) 

 

  is the normalized diffusion coefficient: 

ML

M

D

D
    (4.8) 

 

m is a distance related to the thickness of the layer in the gel where the metal and the 

complex are not in equilibrium: 

 
ML

d 1

D
m

k K



  (4.9) 

 

and the penetration parameter ML, can be calculated as: 

ML
ML

d

D

k
    (4.10) 

 

4.2.2 Analytical expressions for concentration profiles of metal and 

single ligand complexes in (R/2) DGT devices 

 

In this section, DGT devices with an inhomogeneous distribution of the binding beads 

on the resin disc will be studied. Due to the settle of the binding beads during casting, it 

will be assumed that they are present only on half of the resin thickness. This 

inhomogeneous resin disc will be labelled as R/2 from now on. In this case there are 

two regions in the resin: the first one without binding agent ( 0 2rx   ) and another 

with this agent ( 2r rx   ). Notice that all the processes in the DGT device take 

place essentially in one relevant spatial dimension, quoted here as x axis, since there is 

planar symmetry. If diffusion coefficients of the species are not far different in the DBL, 

the filter and the diffusive gel, these three layers can be treated as a region of the device 

( r r gx     ) so that Figure 4.1b shows the scheme DGT device used in simulation. 
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Two main assumptions are made to deduce an analytical expression for the 

concentrations of the species:  

1. There is excess of ligand (L), so that the ligand concentration profile ( Lc ) can be 

assumed constant along all the DGT device;  

2. The layer of the resin containing the binding agent acts as a perfect-sink for free 

metal and other species do not bind to it.  

 

The system is solved for three regions: 

 

Region I ( 0 2rx   ) 

It is the part of the resin without binding beads. Since there is excess of ligand we 

define 
*

a a Lk k c  , in order to have linear equations. The transport equations at steady-

state are: 

For the free metal: 

2

M
M a M d ML2

0
c

D k c c
x

d
k

d
    (4.11)          

For the complex: 

2

ML
ML a M d ML2

0
c

D k c k c
dx

d
    (4.12) 

The boundary conditions in this region are: 

M ML

0 0

M 2 ML ML2 2

0 0

( ) 0 ( ) ( )
r

r r

x x

dc dc

dx dx

c c c
  

 

 

 

 

      (4.13) 

 

The first two conditions are due to no flux of any species at 0x  . Due to the perfect-

sink behaviour of the layer where there is binding agent, at / 2rx   the metal 

concentration falls to zero. The last boundary condition is the continuity of ML( )c x  at 

/ 2rx  . 

Combining Equations (4.11) and (4.12) an uncoupled system of equations is obtained: 

 
2

M M ML ML2
0

d
D c D c

dx
   (4.14) 
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*2

d a L

ML M ML M2

ML M

0
k k cd

c K c c K c
D Ddx

 
      

 

  (4.15) 

 

Integration of Equation (4.14) leads to: 

M M ML ML( ) ( )D c x D c x Ax B      (4.16) 

 

and applying the boundary conditions at / 2rx  : 

2

ML ML
2

r
rD c A B

 
  

 
  (4.17) 

 

Where 
2

ML

rc  is the complex concentration at / 2rx  . 

 

Using the boundary conditions at 0x  : 

   M M ML ML

0 0

0
x x

d d
D c D c A

dx dx 

    (4.18) 

 

Being A=0, a solution for B follows from equation (4.17). Equation (4.16) becomes: 

2

M M ML ML ML ML( ) ( ) rD c x D c x D c    (4.19) 

 

The solution of the Equation (4.15) is: 

ML M( ) ( ) sinh cosh
r g r gx x

c x K c x A B
m m

         
     

   
              (4.20) 

 

With the boundary conditions at / 2rx  : 

2

ML

2 2
sinh cosh

g r g r
rc A B

m m

       
    

   
 (4.21) 

and at 0x  : 

   ML M

0 0

sinh cosh 0
r g r g

x x

d d
c K c A B

dx dx m m

   

 

    
      

   
 (4.22) 



CHAPTER 4 – Influence of settling of resin beads on DGT measurements 

 

 72  
 

we obtain: 

2

MLtanh

/ 2 / 2
cosh sinh tanh

r g
r

g r g r r g

c
m

A

m m m

 

     

 
  

 


       
     

     

  (4.23) 

2

ML

/ 2 / 2
cosh sinh tanh

r

g r g r r g

c
B

m m m

     


       
     

     

 (4.24) 

 

and replacing A and B in Equation (4.20) we obtain: 

2 2

ML ML

ML M

cosh tanh sinh

( ) ( )
/ 2 / 2

cosh sinh tanh

r g r g r g
r r

g r g r r g

x x
c c

m m m
c x K c x

m m m

     

     

         
     

      
       

     
     

  (4.25) 

 

Using equations (4.19) and (4.25) we have: 

2

M ML

cosh

( ) 1
1

cosh
2

r

r

x

m
c x c

K

m



 

  
  

   
   
   

  

  (4.26) 

2

ML ML

cosh
1

( )
1

cosh
2

r

r

x

m
c x K c

K

m


 

  
  

   
   
   

  

 (4.27) 

 

Where   by Eqn. (4.8) and m is given by Eqn. (4.9). 
2

ML

rc  and ML

rc  are the values of the 

complex concentration at / 2rx   and rx   respectively. Analytical expressions for 

these concentrations are reported below. 

 

Region II ( 2r rx   ) 

In this region, all the free metal is bound to the resin, so for the free metal concentration 

is zero:  

M ( ) 0c x    (4.28) 
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The transport equation for the complex is: 

2

ML
ML d ML2

0
c

D k c
dx

d
    (4.29) 

 

At / 2rx   and rx   the boundary conditions for the complex concentration are: 

2 2

ML ML
ML ML2 2

ML MLML ML

( ) ( )

( ) ( )

r r

r r

r r

x x

r r

x x

dc dcc c

dx dx

dc dcc c

dx dx

 

 

 

 

 

 

 

 

 

 

 




  (4.30) 

 

These boundary conditions follow from the continuity of the function ML( )c x  and its 

derivative at / 2rx   and rx   (we are assuming that the diffusion coefficient of ML 

do not change at / 2rx  ). 

 

A general solution of Equation (4.29) is: 

ML ML

ML ( ) x xc x Ae Be    (4.31) 

Applying the continuity of the function at / 2rx  : 

ML ML2 22

ML

r rrc Ae Be       (4.32) 

and using the continuity of the derivative at the same point: 

 

ML ML

2

ML 2 2

ML

tanh
2

1

r r

r
rc

m Ae Be

m K

   



 



 
 

 



 (4.33) 

Finally, using the condition of continuity of the function at rx  : 

ML ML

ML

r rrc Ae Be       (4.34) 

 

Equations (4.32), (4.33) and (4.34) determine A, B and 
2

ML

rc  which become: 
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    ML ML

ML M

ML

Ltan

1 1 1 tanh
2

h
2

r r
r

r
r

m e

m m K

m

c
m

A

K e
   


 


 

  
 

 
 

   
  



   
 

 (4.35) 

    

ML

ML ML

ML ML

ML

tanh
2

1 1 1 tanh
2

r

r r

r

r

rm m K c
m

B

e

m e K e
m

 

    
 


 

  
    

  


 
     

 

 (4.36) 

 

    

ML

ML ML

2

ML2

ML

ML

2 1

1 1 1 tanh
2

r

r r

r

r

r

m K e c
c

m e K e
m

 

   




 




 
     

 

 (4.37) 

 

The complex concentration, Equation (4.31), becomes: 

    

ML ML ML

ML ML

ML ML

ML ML

ML

tanh tanh
2 2

( )

1 1 1 tanh
2

r

r r

r r
x x

r

r

m m K e e m m K e
m m

c x c

m e K e
m

   

   

 
   


 


       

               
       

   
         

  

 (4.38) 

Region III ( r r gx     ) 

 

for the free metal, the transport equations can be written as: 

2

M
M a M d ML2

0
c

D k c c
x

d
k

d
    (4.39) 

 

and for the complex: 

2

ML
ML a M d ML2

0
c

D k c k c
dx

d
    (4.40) 

 

The boundary conditions in this case are: 

ML MLM ML ML

* *

M M ML ML

( ) 0 ( ) ( )

( ) ( )

r r

r r r

x x

r g r g

dc dcc c c

dx dx

c c c c

 

  

   

 

 

 

 


   

 (4.41) 
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The first three conditions were already discussed in the previous region. The last two 

conditions follow from considering bulk concentrations at r gx    . 

 

As in the region I, Equations (4.39) and (4.40) can be combined to obtain a new set of 

uncoupled equations: 

 
2

M M ML ML2
0

d
D c D c

dx
   (4.42) 

   
*2

d a L

ML M ML M2

ML M

0
k k cd

c K c c K c
D Ddx

 
      

 

 (4.43) 

 

Integration of Equation (4.42) leads to: 

M M ML ML( ) ( )D c x D c x Ax B    (4.44) 

 

Applying the boundary conditions at rx  : 

ML ML

r rD c A B   (4.45) 

 

and at r gx     

 * *

M M ML ML

r gD c D c A B      (4.46) 

 

and solving for A and B, Equation (4.44) becomes: 

 
 

* *

M M ML ML ML ML

M M ML ML ML ML

r

r r

g

D c D c D c
D c D c D c x 



 
      (4.47) 

 

The general solution of equation (4.43) can be written as: 

ML M( ) ( ) sinh cosh
g r g rx x

c x K c x A B
m m

         
     

   
  (4.48) 

 

Using the boundary conditions at rx  : 
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ML sinh cosh
g g

rc A B
m m

    
    

     (4.49) 

and at r gx    : 

   * *

ML M sinh 0 cosh 0c K c A B    (4.50) 

we have: 

0B   (4.51) 

ML

sinh

r

g

c
A

m




 
 
 

 (4.52)  

Accordingly: 

ML

ML M

sinh

( ) ( )

sinh

g r
r

g

x
c

m
c x K c x

m

 



  
 
  
 
 
 

  (4.53) 

 

and using Equations (4.47) and (4.53) we obtain: 

 
 

 

ML* *

ML M ML ML

M

sinh

( )
1 1

1 sinh

g r
r

r r

r

g g

x
c

mc c c c
c x x

K K
K

m

 


  


   


  
 

    
             

 

 (4.54) 

 
 

 

ML* *

ML M ML ML

ML

sinh

( )
1 1

1 sinh

g r
r

r r

r

g g

x
c

mK c c c c
c x K x

K K
K

m

 

  


   


  
 

                  
 

 (4.55) 

 

where: 

 

      

    

ML ML

ML ML

* *

M ML

ML

ML

ML ML

1 1 1 1 tanh
2

coth

1 1 1 tanh
2

r r

r r

r

r
g

g g

r

K c c
c

K m e K e
m

K
m m

m e K e
m

   

   




   

 



  

 


  
                   

     
      

  

 

 (4.56) 
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4.2.3 Metal accumulation and % back 

 

To obtain the flux of metal bound to the resin, J, and the metal accumulation, 
Mn , the 

numerical solution for the concentration profiles can be used, both in R and R/2 devices: 

M ML M ML

M ML

0 0

( , ) ( , ) ( , ) ( , )
r r

r rx x

dc x t dc x t c x t c x t
J D D dx dx

dx dx t t

 

  

    
      

    
   (4.57) 

 

M

0

t

n A Jdt   (4.58) 

 

Alternatively, assuming instantaneously reached steady-state conditions, the analytical 

solutions for the concentration profiles can be used to calculate 
Mn  as: 

M ML

M M ML

( ) ( )

r rx x

dc x dc x
n tA D D

dx dx
  

    
          

 (4.59)                                                     

or 

M

M d ML M

0

( )
( )

r

rx

dc x
n tA k c x dx tAD

dx





 
   

 
   (4.60)                                                  

 

Expressions (4.59) and (4.60) can be used for both the R and R/2 devices. In the case of 

R devices, using Equations (4.4), (4.5) and (4.7), the total accumulation becomes: 

 

   

ML* *

M ML ML

M d ML ML M

ML

coth

tanh
11

g
r

rr
r

g

c
mc c c

n tAk c tAD
m KK




 


  

  
  

             
 
 
 

 (4.61) 

 

In systems with two resin discs, the accumulation in moles on the back resin (at a given 

time t) can be calculated as: 
13

  

 
/2

Back

M d ML
0

r

n tA k c x dx


   (4.62) 

 

where A is the effective area of the gel-solution interface.  
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For homogeneous resins (R), the concentration profiles given by Equations (4.4) and 

(4.5) can be used in Equations (4.60) and (4.62) to obtain the back and total 

accumulations.  

 

Complementary information can be gained when DGT devices with two resin discs are 

used. Metal accumulation in the back resin disc will indicate the presence of partially 

labile complexes that penetrate into the resin by diffusion. The percentage of the total 

mass that is accumulated in the back resin disc (for 2 disc stacks of R devices)
13

 are: 

M

Back

M

L

ML ML ML

M

%

2 (1 )cosh cosh coth csch
2 2

r r g r

m K
back

m
m

n
K

n

   


  




      
       

   



  

 (4.63) 

 

The first term of the right side of Equation (4.60) corresponds to the metal released 

from dissociation inside the resin layer. The second term is the free metal arriving from 

the gel. The contribution of this second term is negligible for typical cases. Using only 

the first term in Equation (4.60), Equation (4.63) can be simplified as: 

 

ML

1
% Sech

2 2

r

back




 
  

 
 (4.64) 
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 DGT devices with one resin disc 4.3

 

4.3.1 Concentration profiles  

 

Normalized concentration profiles (
*( )i ic x c ) for M, L and ML computed from 

numerical simulation and analytical solutions (as described in sections 4.6.1 and 4.6.2) 

are shown in Figures 4.2, 4.3 and 4.4 for cases where the complexation equilibrium 

constant takes the values K = 10 m
3 

mol
-1

,  K = 10
2
 m

3 
mol

-1
 and K = 10

3
 m

3 
mol

-1
, 

respectively. The agreement between the analytical and numerical concentration profiles 

for these parameters is excellent and the curves are almost identical. For this reason 

only one single line for M and one for ML are shown in Figures 4.2 to 4.4. Free metal 

concentration profiles are almost zero along the resin domain for the R devices (see 

Figures 4.2a, 4.3a and 4.4a), in agreement with the fast and strong metal binding to the 

resin sites considered. Recalling that, when the total concentration of M is negligible in 

front of the total concentration of L (i.e.: excess of ligand conditions), the divergence of 

the normalized metal and complex concentration profiles indicates disequilibrium 

between both species, i.e., net dissociation, Figures 4.2a, 4.3a and 4.4a indicate that the 

reaction layer in the R devices extends along the resin domain plus an extra layer in the 

gel domain whose thickness m can be computed with Equation (4.9). In the R/2 devices, 

the metal concentration is non-negligible in the volume region without binding sites 

(see Figures 4.2b, 4.3b and 4.4b), as a consequence of the release of M by complex 

dissociation and the absence of binding agent in those regions. Under some conditions, 

this dissociation can be fast enough for the system M+L to reach equilibrium, as shown 

in the leftmost part of Figure 4.4b. 
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                                              (a)                                                                   (b) 

Figure 4.2. Normalized concentration profiles of metal and complex species for (a) R resin (beads 
homogeneously distributed) and (b) R/2 resin (beads in one half of the resin disc), with K=10m3 mol-1, 

dk = 5×10-4 s-1, 
T,Mc  =0.01mol m-3, 

T,Lc =1.0 mol m-3, 
MD =7.07×10-10 m2 s-1, 

MLD =4.95×10-10 m2 s-1, r  

=4×10-4 m, g =8.52×10-3 m  and t=24h. 

 

 

  

                                              (a)                                                                   (b) 

Figure 4.3. Normalized concentration profiles of metal and complex species for (a) R resin and (b) R/2 
resin, with K=102 m3 mol-1. The rest of parameters as in figure 4.2. 

 

 

 

   

                                              (a)                                                                   (b) 

Figure 4.4. Normalized concentration profiles of metal and complex species for (a) R resin and (b) R/2 
resin, with K=103 m3 mol-1. The rest of parameters as in figure 4.2. 
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There is an important influence of K   (
* * *

L ML MK Kc c c   ) on the metal profiles 

(compare Figures 4.2b, 4.3b and 4.4b), even when a fixed value of dk  is used. The 

expression for m helps in justifying this influence. Equation (4.9) indicates that 

 when K   increases, thinner reaction layers are obtained, so that rm   in Figure 4.4b, 

while 
rm   in Figure 4.2b. In other words, small values of m  indicate that the 

dissociation of the complex is quite effective in buffering the metal consumption at 

2rx  . For instance, the normalized metal concentration increases and merges with 

the normalized complex concentration profile in a part of the layer without binding 

agent ( 0 2rx   ) in Figure 4.4b ( K =10
3
) and thus, very little dissociation is 

expected in this volume. 

 

4.3.2 Influence of the inhomogeneous binding site distribution on the 

total metal accumulation  

 

Since larger differences in the concentration profiles were found for high values of K  , 

K =10
3
 was used in Figure 4.5 to analyse the influence of the homogeneity of the resin 

site distribution on the accumulation and lability degree of complexes measured in the 

DGT devices. As expected, the total accumulations in both DGT devices increase as the 

dissociation constants of the complexes increase. It also indicates that the accumulation 

for R/2 device is always less than for R device. 
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(a) 
 

 

   
(b) 

 

   
                                                                              (c) 

Figure 4.5. Total accumulation of metal and Lability degree of the complex (ξ) as functions of 
dk  for: 

(a) K=10 m3 mol-1, (b) K=102 m3 mol-1 and (c) K=103 m3 mol-1. The rest of parameters as in figure 4.2. 
Markers: Red square for R device, blue diamond for R/2 device. Lines represent a guide to the eye. 
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Moreover, the total accumulations in R and R/2 devices are very close for low or high 

enough values of dk , while they diverge for intermediate dk  values. As noted above, 

when the complex is very labile, the entire complex dissociates at the resin disc-

diffusive gel interface (
rx  ) so that the absence of reactive sites at the bottom of the 

resin layer is irrelevant with respect to the accumulation. A similar situation arises for 

inert complexes: dissociation is negligible (both in the gel or the resin layers) and the 

inhomogeneity of the binding bead distribution has no impact on the metal 

accumulation.  

 

For intermediate values of dk , dissociation inside the resin disc is the main mechanism 

of metal accumulation. In this situation the inhomogeneous resin site distribution has 

the highest influence on metal accumulation. A similar behaviour is observed for the 

lability degree in Figure 4.5b, which can also be understood using the same arguments 

as for the accumulation. In order to assess an extreme situation with a large discrepancy 

between results of R and those of R/2, calculations for a set of K values by changing ak  

and dk  were done. Table 4.1 shows the percentages of largest discrepancy between the 

accumulation and lability in R and R/2 devices. The maximum influence of the 

inhomogeneity of the resin disc increases as K increases until the lability reaches an 

almost fixed value close to 0.25. Notice that this lability degree corresponds to a fixed 

dk  of the complex (see column 3 in Table 4.1) which indicates that, for 
g r  , the 

lability degree essentially depends on dk  but not on ak  and K, as stated in reference 
4
. 

Although the decrease of accumulation in the R/2 devices increases as K increases, it 

remains below 13% for K =10
2
 m

3
 mol

-1 
(i.e. K =10

5 
L mol

-1
) in the worst scenario 

(Table 4.1). Notice that stronger complexes could increase this error, but it should also 

be taken into account that such strong complexes will distort the linear accumulation in 

the DGT due to their similar (or higher) affinity for the metal to that of the resin.
14
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Table 4.1. Discrepancies in lability degree (ξ) and total accumulation (nM)  between a DGT device 
with a homogeneous resin (R) and another DGT device with an inhomogeneous disc where resin 
beads are in just in one half of the volume (R/2). Parameters: cT,M=0.01mol m-3, cT,L=1.0 mol m-3, 
DM=7.07×10-10 m2s-1, DML=4.95×10-10 m2s-1  and t=24h. 

K     
(m

3
mol

-1
) 

ak           

(m
3
mol

-1
s

-1
) 

dk          

(s
-1

) 

ξ 
(R) 

Mn  (R)  

(nmol) 

Discrepancy ξ 
(%) 

Discrepancy 
Mn   

(%) 

10 5×10
-3

 5×10
-4

 0.34 54.8 1.8 1.5 

10
2
 5×10

-2
 5×10

-4
 0.29 43.0 12.2 13.1 

10
3
 5×10

-1
 5×10

-4
 0.26 39.7 28.8 29.9 

10
4
 5 5×10

-4
 0.25 38.4 41.1 41.2 

(Discrepancy ξ ) =
( ) ( / 2)

( )

R R

R

 




;  (Discrepancy Mn  ) = M M

M

( ) ( / 2)

( )

n R n R

n R


  

 

4.3.3 Influence of the system parameters on the measurements made 

with R and R/2 DGT devices 

 

Metal complexes with simple ligands have diffusion coefficients close to those of the 

hydrated metal ions, since the sizes of both species are not very different. For 

macromolecular metal complexes like those with humic matter, the diffusion 

coefficients can be one order of magnitude smaller than the diffusion coefficient of the 

free metal ion.
15

  

 

Figure 4.7 shows the influence of the diffusion coefficient of the complex on the metal 

accumulation in R and R/2 devices. The accumulation decreases as MLD  decreases, 

since the transport of M from the solution to the resin domain decreases. The system is 

not fully labile since both, the R and R/2 curves are not linear as it would be expected 

for a labile system (
*

ML ML
M,labile g

D c
n At


  whenever ' 1K  ). For fixed values of K and 

dk , Figure 4.7 shows a decreasing divergence of the accumulation in the R and R/2 

devices as the diffusion coefficient of the complex decreases, a result of interest when 

complexes with natural macromolecular ligands are present in the system. Actually, the 

increase of 
MLD in Figure 4.7 is concomitant to an increase of the lability degree which 

approaches 0.25, the value corresponding to the maximum influence of the 

inhomogeneous distribution of the reactive sites (see Table 4.1). 
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                                              (a)                                                                   (b) 

Figure 4.6. (a)Total accumulation and (b) lability degree as functions of the diffusion coefficient of the 
complex. DML=0.7×DM. K=103 m3 mol-1. The rest of parameters as in figure 4.2. Markers: Red square for 
R device, blue diamond for R/2 device. Lines represent a guide to the eye. 

 

Increasing the resin layer thickness increases both the metal accumulation and the 

lability degree (data not shown). As explained elsewhere 
4,5

, an increase of the resin 

thickness increases the volume where there is net dissociation. This is true whenever 

partially labile complexes are present in the system, can penetrate in the resin domain 

and they do not reach full dissociation in the resin domain. Divergences between R and 

R/2 devices decrease as the thickness of the resin layer decreases (e.g. in ultra-thin 

DGT),
16

 until convergence to a common value for devices with negligible resin 

thickness, or whenever penetration of complexes was prevented. In the other limit, 

reduction of the differences between R and R/2 devices is also expected when the resin 

is thick enough to reach full dissociation of complexes in the layer 2r rx   . 

 

  

                                              (a)                                                                   (b) 

Figure 4.7. (a)Total accumulation and (b) lability degree as a function of the thickness of the resin disc. 
Parameters as in figure 4.2. Markers: Red square for R device, blue diamond for R/2 device. Lines 
represent a guide to the eye 
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4.3.4 Inhomogeneity effects in commercial DGT devices when 

sampling metal availability in natural waters 

 

Commercial DGT devices use a binding-bead concentration in large excess to avoid 

saturation effects under typical working conditions. Thus, small fluctuations in the resin 

distribution do not influence the accumulation. However, it is well known that the resin 

beads of Chelex 100 tend to settle to one side of the resin disc while casting. The 

average diameter of these beads is 100 m. The amount of resin beads used per disc is 

close to that corresponding to a packed single layer of beads at the surface of the resin 

disc, as schematically depicted in reference 
11

. If the settling was total, only ¼ of the 

resin volume would contain resin beads. An imperfect settling renders reasonable that 

around half of the volume of the resin disc may contain Chelex beads in a standard resin 

disc (thickness 400 m). Thus, results reported in this work can be straightforwardly 

applied to commercial DGT devices.  

 

Table 4.1 indicates the highest percentage of decrease in the accumulation due to 

settling for different values of the stability constant. Notice that this percentage applies 

only to the contribution of partially labile complexes, while free metal and labile 

complexes are not influenced by the settling of the resin. Assuming Eigen ideas (i.e. a 

fixed ak ), the lability decreases as the stability of the complex increases. As a rule of 

thumb, inorganic complexes tend to be labile in DGT so that the main influence of the 

resin settling is mostly linked to complexes with organic ligands.  Some strong organic 

metal complexes, partially labile in DGT, have stabilities in the range of the values 

reported in Tables 1 and 2. For instance, Visual MINTEQ uses a stability constant for 

Ni-NTA at 25ºC of log K=9.39 and DGT experiments in systems with T,Nic  = 0.01mol 

m
-3

 and T,NTAc =1.0 mol m
-3

 indicate that Ni-NTA behaves as partially labile with log K 

=6,3. NTA can be found in natural waters due to anthropogenic activities,
17

 and it is also 

studied as model of natural organic matter. Thus, metal accumulation from such 

complexes could also be influenced by the settling of the resin in the DGT although 

other phenomena like accumulation of humic acid on the diffusive gel have also been 

described.
18

 In any case, the reduction of accumulated mass due to the resin settling is 

always below the percentage of volume of the resin domain without resin beads (50%), 

since part of the metal released there still binds to the resin after travelling back by 
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diffusion.   

 

 Study of DGT devices with two resin discs 4.4

 

The use of DGT devices with a stack of resin discs has been suggested as a way of 

obtaining complementary information on the behaviour of the system.
7,9,10

 By eluting 

and analysing each resin disc separately, these devices allow assessing whether the resin 

acts as a perfect-sink for the free metal. The condition of perfect-sink is necessary to 

support the application of the simplest formula to describe the metal accumulation in 

DGT, i.e.: 

 M

DGT

M

gn
c

AtD


     (4.65) 

 

The use of disc stacks can also help to elucidate if complexes are partially labile and can 

penetrate into the resin domain. Recently, it has been highlighted that the knowledge of 

the metal distribution in the front and back resin discs can be used to fit the kinetic 

dissociation constant of the complex in the resin domain.
10,13

 For all these reasons, it is 

of interest to assess the influence of the inhomogeneity of the binding sites within the 

resin disc on the accumulation, lability degree of the complex, distribution of the 

accumulated mass (between front and back resin discs) and the retrieval of the kinetic 

dissociation constant from this distribution. 

 

DGT devices with two homogeneous (R) or two half occupied resin discs (R/2) were 

studied by numerical simulation. Standard resin discs of 4×10
-4

m thickness and 

diffusive gel of 8.52×10
-4

 m thickness were considered. Figure 4.8 shows very different 

concentration profiles of metal for both types of resin discs. The physical explanation 

outlined in Section 4.3.1 can be extended here to rationalize this behaviour.  
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                                              (a)                                                                   (b) 

Figure 4.8. Normalized concentration profiles of metal and complex species for (a) two R resins and (b) 
two R/2 resins, with K=10m3 mol-1, 

dk = 5×10-4 s-1, cT,M=0.01mol m-3, cT,L=1.0 mol m-3, DM=7.07×10-10 m2 

s-1, DML=4.95×10-10 m2 s-1,  δr =4×10-4 m for each resin, δg =8.52×10-3 m  and t=24h 

 

Parallel to Table 4.1, Table 4.2 reports (for each K value) the metal accumulations in 

DGT devices that accommodate two R or two R/2 resin discs. Only data corresponding 

to the kinetic constants that lead to the maximum discrepancies between both devices 

are reported. The lability degree of complexes obtained in Table 4.2 is quite constant, 

but higher than the lability degree of the complexes reported in Table 4.1 for just one 

resin disc. The maximum discrepancy between both types of resins (Table 4.2) arises for 

complexes with lability degree below 0.5. As in the case with only one resin device, the 

maximum discrepancy increases as K increases, but the relative difference remains 

lower than the fraction of volume without binding agent.  

Table 4.2. Lability  degree (  )  and total accumulation ( Mn ) in DGT devices with two R or two R/2 

resin discs. Parameters as in Table 4.1. 

K    
(m

3
mol

-1
) 

ak           

(m
3
mol

-1
s

-1
) 

dk               

(s
-1

) 
ξ (R) Mn  (R) 

(nmol)  

% back 
(R) 

ξ (R/2) Mn  (R/2) 

(nmol)  

% back 
(R/2) 

10 5×10
-3

 5×10
-4

 0.44 72.0 33.3 0.43 70.2 40.1 

10
2
 5×10

-2
 5×10

-4
 0.40 64.0 40.8 0.38 55.4 49.2 

10
3
 5×10

-1
 5×10

-4
 0.38 62.2 44.1 0.31 48.4 47.7 

10
7
 5×10

3
 5×10

-4
 0.36 56.2 46.1 0.24 37.4 47.9 

10
9
 5×10

5
 5×10

-4
 0.36 56.2 46.1 0.24 37.4 47.9 

 

 

DGT devices with two resin discs can be used to find dk  of the complex by fitting the % 

of back accumulation using the analytical expression (4.63) or, alternatively, by fitting 

the total accumulation with the analytical expression (4.61). In order to check the 

influence of the inhomogeneous distribution of the binding beads on the recovered dk  
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values, numerical simulations of DGT devices with two R/2 resin discs with partially 

labile complex in excess of ligand were conducted. These were used to compute the % 

back and total accumulation. Subsequently these values were used to recover dk  using 

the analytical expressions (4.61) or (4.63). The results are reported in Table 4.3. dk  

values fitted from %back are of the same order of magnitude than the one used in the 

simulation (10
-2

 s
-1

), but systematically modified by a factor close to 1/2 (i. e., recovered 

values tend to be half of the correct ones). The agreement of the values recovered from 

the total accumulation is better, with relative errors around 25%. The consistency of 

these errors for all the K values examined suggests the use of this empirical factor as a 

way to improve the estimation.  

 

Table 4.3.  Recovered kinetic dissociation constant of a complex species  when data from two R/2 
devices are interpreted with the analytical expressions for homogeneous resins (equations (4.61) 

and (4.63)). Simulations run with dk =10-2 s-1. The rest of parameters as in Table 4.1. 

K 
(m

3
mol

-1
) 

% back Mn        

(mol) 
dk  (s

-1
)  Fitted 

from  % back 

dk  (s
-1

)                   

Fitted from 
Mn   

10
2
 26.2% 1.20×10

-7
 4.80×10

-3
 6.85×10

-3
 

10
3
 26.3% 1.21×10

-7
 4.85×10

-3
 7.46×10

-3
 

10
4
 26.3% 1.21×10

-7
 4.83×10

-3
 7.50×10

-3
 

10
5
 26.3% 1.21×10

-7
 4.83×10

-3
 7.46×10

-3
 

 

To check the applicability of this correction factor, new simulations in DGT devices 

with two R/2 resin discs were conducted for systems with a fixed equilibrium constant 

(K=10
4
 m

3
/mol) and with values of dk  scanning the range of lability degrees from inert 

complexes to labile complexes. Results are listed in Table 4.4, which confirms that the 

errors in recovering dk  from the %back data assuming a homogeneous distribution of 

the resin beads are also quite independent of the actual dk . The simulated values 

indicate that a factor of 2 is suitable to improve the value of dk   (assuming 

homogeneous distributions of the binding agent) estimated from %back measurement. 

For other fractions (f) of volume in the resin disc being occupied by the binding agent, a 

better estimate of dk  is f 
-1

 d,Recoveredk ,  when data from %back is used (data not shown). 

In the case of the values recovered using the total accumulation as input information, 

the error depends on dk , so one cannot suggest a general correction factor. 
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Table 4.4. Recovered kinetic dissociation constants from simulated data of two R/2 resin discs, with 
K=104m3mol-1. The rest of parameters as in Table 4.1. 

dk    (s
-1

) % back Mn        

(mol) 
dk  (s

-1
)                  

Recovered from % back 

dk  (s
-1

)                   

Recovered  from 
Mn  

5.0×10
-4

 47.9 3.76×10
-8

 2.45×10
-4

 2.51×10
-4

 

1.0×10
-3

 46.1 5.84×10
-8

 4.99×10
-4

 5.18×10
-4

 

5.0×10
-3

 35.0 1.07×10
-7

 2.47×10
-3

 3.25×10
-3

 

1.0×10
-2

 26.4 1.21×10
-7

 4.83×10
-3

 7.50×10
-3

 

5.0×10
-2

 6.7 1.40×10
-7

 2.26×10
-2

 4.31×10
-2

 

1.0×10
-1

 2.4 1.45×10
-7

 4.25×10
-2

 9.03×10
-2

 

3.0×10
-1

 0.2 1.51×10
-7

 1.18×10
-1

 3.57×10
-1

 

 

Notice, however, that the accuracy decreases for both low and high % back, especially if 

we also include the experimental measurement uncertainty, which is not considered 

here. Actually, for a given thickness of the resin disc there is a window of sensitive dk  

values.
13

 Too high dk values lead to negligible accumulation in the back resin disc, since 

the complex has been fully dissociated in the diffusive gel and the adjacent resin disc. 

Conversely, dk  values below a given threshold lead to a % back close to 50% and thus 

no information on the decrease of the complex concentration along the resin domain is 

obtained.  Therefore, only intermediate values of %back contain significant information 

on the complex dissociation.
13

  

 

 

 Conclusions 4.5

 

It has been studied the influence of the distribution of resin beads on the concentration 

profiles of the species, the total metal accumulation and the lability of the complexes in 

DGT devices. For very labile or inert complexes, this distribution does not show 

influence on the concentration profiles, on the total accumulation of metal and on the 

lability degree of complexes. For partially labile complexes, the influence of this 

distribution increases with the value of the equilibrium constant K  and the diffusion 

coefficient of the complex. In these cases, the assumption of binding site homogeneity 

always leads to underestimation of both DGTc  and the accumulation, but the present 
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results indicate that only 13% decrease of accumulation arises in both i) inhomogeneous 

devices where resin beads are only dispersed in half of the resin volume and ii) 

complexes with stability constant 210K 
 
m

3
 mol

-1
 dominating the metal speciation.  

 

Analytical expressions for the concentration profiles in an inhomogeneous resin layer 

have been derived. It was assumed excess of ligand and perfect-sink conditions in the 

layer of the resin containing the binding. Predictions obtained with the analytical 

expresions agree with the rigorous numerical simulations. 

 

The complex dissociation rate constant, dk , can be determined from the percentage of 

back accumulation in a DGT with a stack of two resin discs. This determination is a 

direct measurement of the kinetic dissociation constant in the resin domain, which can 

differ from the value in the diffusive gel or bulk solution as has recently been 

suggested.
10

 However, the application of this procedure is restricted to a meaningful 

window of kinetic constants values.
13

 The relative error values (due to inhomogeneity of 

the resin layer) found in recovering dk  from the %back are quite independent of K and 

dk . In R/2 devices, there is a ratio of 2 between the real value and the recovered one 

assuming homogeneous distributions of binding resin beads. 

 

Finally, tests were performed with different thickness of resin. Differences in 

accumulations and lability degrees between devices with resins R and R/2 are very 

small, when r  tends to zero. Differences in these magnitudes increase when r  

increases, but it is expected to decrease again when r  is so large that the complexes 

reach full dissociation in the layer 2r rx   .  
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CHAPTER 5 
 

 

 

 

 

5.  KINETIC AND THERMODYNAMIC EFFECTS OF 
THE IONIC STRENGTH IN ONLY-METAL SYSTEMS 

 

 

Part of the material of this chapter has been published in: 

 

Altier, A.; Jimenez-Piedrahita, M.; Rey-Castro, C.; Cecilia, J.; Galceran, J.; Puy, J. 

Accumulation of Mg to Diffusive Gradients in Thin Films (DGT) Devices: Kinetic and 

Thermodynamic Effects of the Ionic Strength. Anal. Chem. 2016, 88 (20), 10245-10251  

 

 

 Introduction 5.1

 

In the last years many studies have been devoted to analyse both the theoretical basis 

and the applications of the DGT devices. However, there are still many issues that need 

clarification for a proper interpretation of the DGT data. As an example we can mention 

the influence on the measurements of the electric interactions between charged species 

inside the sensor. When we are interested in measuring species that are electrically 

charged in solution, electrical interactions between them and the charges of the active 

groups in the resin layer, or the interactions with residuals charges in the gel layer can 

affect the transport and the kinetics of the chemical reactions inside the sensor. In 

laboratory measurements a supporting electrolyte is sometimes used to reduce the 

electrical influence of the resin sites over the ions in the solution. The ions of the salt 

background screen the electrical field produced by the charges of the resin beads by 

creating an opposite field.  

 

As a measurement of the concentration of electrical charges in a solution it is used the 

Ionic strength (I), which is defined as: 

21

2
i i

i

I c z    (5.1) 

Where ci and zi are the concentration and the electrical charge of species i. The bigger 



CHAPTER 5 – Kinetic and thermodynamic effects of the ionic strength in only-metal systems 

   

96 
 

the Ionic strength the lower the electrical forces between the reacting ions of the 

solution and the resin sites.  

 

There are controversial results in previous studies of the electrostatic effects in DGT. 

Some authors have reported no influence of the ionic strength on the metal 

accumulation in simple systems with only metal or in systems in presence of 

complexes.
1-3

 In other cases, an increase or a decrease of the metal accumulation has 

been reported.
4
 The effects of the ionic strength on the accumulation have been 

explained by different authors through a varying “effective” diffusion coefficient that 

includes ion migration phenomena,
5
 by the use of an electrostatic partitioning at the 

gel−solution interface,
6-8

 or by the combination of electrostatic partitioning and changes 

on the resin−metal binding rate constants.
9
 To clarify the influence of the ionic strength 

it seems convenient to start with the simplest systems made up by metal cations without 

any ligand being present in the system. The standard treatment of DGT considers that 

the metal ions bind immediately and irreversible to the Chelex as soon as they contact 

the front of the resin layer. This approximation is referred to as perfect-sink and it 

corresponds to the limiting case where the metal association with the resin is so fast that 

the accumulation is limited by the transport. By using DGT devices with a stack of two 

resin discs, this approximation has proved to be useful for many cations for which the 

accumulated mass in the back resin disc is negligible.
10

 However, other cations diverge 

from this behaviour due to slow binding. In these cases, a steady-state is also reached 

but there is a non-null metal profile in the resin domain and the metal accumulation flux 

is not the maximum possible. These are the cases of interest to look at the effect of the 

ionic strength on the kinetics of reactions, since any change in the kinetic constants will 

be reflected in the accumulation. 

 

In this chapter we are going to discuss theoretical models that allow to study the effects 

of the ionic strength in DGT devices. Additionally, numerical tools based in these 

models are discussed and compared. Mg accumulations are used as a particular example 

of these electrical effects.  
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 Theoretical models 5.2

 

Two theoretical models to analyse the DGT metal accumulation in a simple system will 

be discussed. The system contains the target metal cation in a solution with a low 

concentration of supporting electrolyte. The first model explicitly takes into account the 

migration term in the transport equation, considering that the electrical field is 

determined by the supporting electrolyte, i. e., the concentration of the target metal 

cation is still negligible in comparison to the supporting electrolyte even at low ionic 

strength. An analytical approximate expression for the electrical field produced by the 

resin charges and the background electrolyte will be used. In the second one, the 

electrical effect is restricted to a plane at the interfaces of regions with and without resin 

beads and is modelled as a discontinuity in the concentrations according to a 

partitioning Boltzmann factor. 

 

5.2.1 A model based on the Nernst-Planck equations  

 

Let us consider a DGT device with two resin discs immersed in an electrolyte solution. 

It is assumed that both resin gels can be seen as a continuous ion-penetrable region, 

with a homogeneous distribution of immobile charged resin sites, under planar 

symmetry with only one relevant spatial dimension labelled x (i.e., neglecting edge 

effects).
11

 We are not going to take into account the settling of the Chelex beads during 

casting, because this effect is almost negligible in our system as commented elsewhere. 

12
  This model neglects, then, the effects of the particulate nature of the resin beads, an 

approximation that can be justified when the diffusion layers around the beads overlap. 

Fig. 5.1 is a magnification picture of a resin disc where we can see the Chelex beads as 

a collection of small spherical drops. As seen in the picture, the distance between the 

resin beads and their radius are of the same order. As the radius of the bead equals the 

thickness of the diffusion layer, the picture suggests that there is superposition of the 

diffusion layer around each individual bead so that the diffusive problem approaches 

planar geometry towards the whole resin disc. The main advantage of this model is a 

reduced computational cost, since it allows a 1-D simulation while the explicit 

consideration of the beads would require a 3-D simulation as well as a large set of 

parameters describing the position and structure of the beads and diffusion inside them. 
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A more detailed treatment of the electrostatic influence of the bead charges, modelled as 

soft particles, on the kinetics of the reaction with cations is given in references 
13

 and 
14

. 

However, such treatment, for a dispersion of beads, requires 3-D mapping of the 

domain, as indicated above. As a first approximation, we restrict ourselves here to a 

mean field approximation. The kinetic constants ka,R and kd,R of this work can be 

regarded as effective values that include the influence of diffusion and spatial 

heterogeneity of the binding sites on the rate of reaction with the Chelex particles. A 

detailed discussion of this effect to only one particle is given in. 
15

 

 

 

Figure 5.1. Imagen of Chelex beads in the resin gel taken with an optical microscope (magnification: 
100x).  

 

Let us consider that metal cations (M) diffuse along the gel domain and penetrate into 

the resin where they bind to free resin sites (R) to form occupied sites (MR) according 

to:  

a,R

d,R

M R MR
k

k
  (5.2) 

 

where charges are omitted for simplicity, and ka,R and kd,R are the association and 

dissociation rate constants of the binding process, respectively. Since we could find 

cases where the accumulation approaches equilibrium, the kinetics of both association 

and dissociation processes from the resin sites have to be considered in the model. 

 

Additionally, since we are interested in analysing data corresponding to different ionic 

strengths, electrostatic effects due to the poor screening of the resin sites have also to be 

considered. To model the transport by migration, we will assume that there is an electric 

potential produced by the fixed charges of the resin sites and the background electrolyte. 

100μm
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It is also assumed that M does not modifies this potential (it’s concentration is in general 

negligible in comparison with the background electrolyte or the concentration of resin 

sites)
16

. The potential can be calculated using the Poisson-Boltzmann equation: 

 

 
2

2
,j j

j

F
z c x t

x






 


  (5.3) 

Where jc  and jz are concentration and charge of species j, F is the Faraday constant 

and ɛ is the permittivity of the medium. 

 

An analytical solution for Eqn. (5.3) (when the fixed charges of the resin follow a 

Heaviside step function) was given by Ohshima.
17

 As the charge of the functional 

groups of Chelex is negative, cations of the background electrolyte tend to accumulate 

while the concentration of anions tends to decrease. The electric potential in the resin 

layer ( 0 rx   ) becomes: 

    m

D 0 D e
k x

x


       (5.4) 

 

and in the gel layer (
r r gx     )  

  B2 1 e
ln

1 e

x

x

k T
x

e













 
   

 
  (5.5) 

 

where 

B R TR
D ArcSinh

2

k T z c

ze zn

   
     

   
  (5.6) 

 

and 

B D
0 D

B

Tanh
2

k T ze

ze k T

  
     

     (5.7) 

 

stand for the Donnan potential and the resin-gel interface potential respectively, with: 
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2

0 B

2

r

ne

k T


 
    (5.8) 

1
42

R TR
m 1

2

Z c
k

zn

  

      

  (5.9) 

and 

0

B

Tanh
4

e

k T


 
  

 
  (5.10) 

 

In these equations Bk  is the Boltzmann constant, e is the elementary electric charge, 0  

is the permittivity of free space, r
 is the relative permittivity, T is the absolute 

temperature, n is the concentration of electrolyte, z is electric charge of the symmetric 

background electrolyte, 
TRc  is the total concentration of free resin sites and RZ  is the 

electric charge of free resin sites.  

 

The Debye-Hückel parameter   in Eqn. (5.8) is the reciprocal of the Debye length 

(1  ), which is directly related with the thickness of the layer where the potential 

changes. A representation of this potential is given in Figure 5.2. 

 

 

Figure 5.2. Ohshima electric potential for a negatively charged resin disc in presence of an electrolyte 
solution. 

 

This expression indicates that the potential is almost constant in both phases: resin and 

diffusive gels. Since the transient regime is short in comparison to the deployment time 

r

 x

x

D

0

r g 

1



1


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(the electrolyte rapidly reaches equilibrium with the resin), Eqns. (5.4) and (5.5) will be 

used to describe the electrostatic potential independent of time. The potential drop, 

given by Eqn. (5.6), takes place in a layer of thickness of the order of the Debye length 

located at the interface resin-gel. M is subjected to diffusion, migration and reaction 

with the resin sites.  

 

The transport equations for the free metal (M), the bound metal (MR), and free resin 

sites (R) in the resin layer ( 0 rx    ) can be written as: 

2
M M M

M M M d,R M R a,R M R2

( )c c z F x
D D c k c k c c

t RT x xx

    
    

    
 (5.11) 

MR
d,R M R a,R M R

c
k c k c c

t


  


 (5.12) 

R
d,R M R a,R M R

c
k c k c c

t


 


 (5.13) 

 

and in the gel layer (
r r gx     ) 

2
M M M

M M M2

( )c c z F x
D D c

t RT x xx

    
   

    
 (5.14) 

 

where the first term in the r.h.s. of Eqns. (5.11) and (5.14) corresponds to the diffusive 

transport, the second term corresponds to migration and the third and fourth ones in 

Eqn. (5.11) to the reaction of M with the resin sites in the resin domain.  

 

The boundary conditions for M (the mobile species) will be: 

M

0

0
x

c

x 

 
 

 
 (5.15) 

 

for x = 0, indicating absence of flux and negligible migration effects. For 
rx  we 

have:
 

M M M M
M M M M M M

r r r rx x x x

c z F c z F
D D c D D c

x RT x x RT x         

          
         

          
 (5.16) 
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   M M, ,r rc t c t    (5.17) 

indicating continuity in the flux of metal and in the concentration profile. 

 

For 
r gx      

*

M M( , )r gc t c       (5.18) 

 

Here,   is given by Eqns. (5.4) and (5.5). 

 

The initial conditions will be: 

for 
r gx     

M ( , 0) 0c x t    (5.19) 

 

for 
r gx     

*

M M( , 0)r gc t c     (5.20) 

 

This formulation holds independently of the ratio of the pertinent time scales of both 

steps, the transport to the resin domain given by  
2

M

g D   and the association 

reaction given by  
1

a,R Rk c


. 

 

The system of Eqns. (5.11) – (5.20) has been numerically solved using a simulation 

code based on the PDEPE function in MATLAB.
18

 Details of the implementation are 

explained in section 5.5.1. 

 

Simulations were run to check the influence of the thickness of the layer along which 

the potential changes ( 2   in Figure 5.2) on the accumulation of metal. The results 

are shown in table 5.1. Since the thickness of the resin is of the order of 10
-4 

m, higher 

values of   are not of interest.  
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 Table 5.1. Total metal accumulation and %back accumulation obtained by simulation for different 

values of  the potential transition layer (1/κ). Parameters used: 
*

Mc  = 10-2 mol m-3, ΨD=44,3 mV, 

a,Rk  = 10-3 m3 mol-1s-1,  d,Rk  = 10-4 s-1, DM = 6.0 × 10-10 m2 s-1, A=3.8× 10-4 m2, 
g  =1.1× 10-3 m and 

two resin discs with 
r  =4.0× 10-4 m.  

 
51

10 m


  71
10 m



  101
10 m



  

t(h) nT (nmol) %back nT (nmol) %back nT (nmol) %back 

4 28 14.6 28 15.2 27 15.5 

8 56 19.5 55 20.2 55 20.4 

12 83 23.3 83 23.9 83 24.3 

16 111 26.7 110 27.3 110 27.7 

20 138 29.6 137 30.2 137 30.6 

24 164 32.1 164 32.7 163 33.1 

28 191 34.2 190 34.7 189 35.2 

32 217 36.0 216 36.5 216 37.0 

36 243 37.5 242 38.0 241 38.5 

40 269 38.7 268 39.2 267 39.7 

44 294 39.8 293 40.3 292 40.8 

48 320 40.7 319 41.2 317 41.7 

 

 

As seen in Table 5.1, the thickness of the potential transition layer (whenever it is lower 

than 10
-5

m) has small impact on the accumulations of metal calculated with the fitted 

kinetic constants. However, the concentration profile of free M ions does actually 

depend on the thickness of this layer and the slope of the potential at the resin-gel 

interface, as seen in Fig 5.3 for three different values of 1/κ. This can be explained as 

follows: in steady-state conditions, the metal profile is linear in the diffusive gel region 

away from the transition layer. But close to the gel-resin interface, where migration 

effects take place, the electrical influence is compensated by a reduction in the slope of 

the concentration profile (as can be seen in the insert of Fig 5.3) to keep the flux 

constant. When the electrical influence is high enough (the electrical force is 

proportional to the slope of the electrostatic potential) the slope of the M concentration 

profile reverses its sign. The limiting case is the electrostatic potential discontinuity 

(Donnan model).  
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Figure 5.3. Concentration profiles of metal for different thickness of the potential transition layer 
(1/κ). Red dotted line corresponds to 1/κ=1×10-5 m, orange dashed line to 1/κ=2×10-5 m and blue 
continuous line to 1/κ=3×10-5 m. t=24h. Other parameters as in table 5.1.  

 

 

5.2.2 The Partition model 

 

Since the thickness of the region where the potential changes is well below the 

thickness of the resin domain (1 r  ), and since this thickness does not affect the 

accumulations once it is below a certain threshold (see Table 5.1), a model that reduces 

the electrostatic effects to a partitioning factor at the resin-gel interface is also used. In 

this model the change of the electrostatic potential between the gel and resin phases is 

just given by a step function instead of being described by the continuous function 

defined in Eqns. (5.4) and (5.5). Notice that this approximation has an important impact 

on the transport equations since it reduces the migration effects to take place only in a 

plane. The electrostatic potential is then given by: 

 

   D 1 H rx x      
 

  (5.21) 

 

where 
D  is given by Eqn. (5.6) and  H rx   is the Heaviside function centered in 

rx  .  
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The system of equations to be solved in this case can be written as: 

 

in the resin layer ( 0 rx    ) 

2
M M

M d,R M R a,R M R2

c c
D k c k c c

t x

 
  

 
  (5.22) 

MR
d,R M R a, R M R

c
k c k c c

t


  


  (5.23) 

R
d,R M R a, R M R

c
k c k c c

t


 


  (5.24) 

 

in the gel layer (
r r gx     ) 

2
M M

M 2

c c
D

t x

 


 
  (5.25) 

 

with the same initial conditions (Eqns. (5.19) - (5.20)) than the Nernst- Planck model 

and the following boundary conditions: 

 

for x = 0 

 

M

0

0
x

c

x 

 
 

 
 (5.26) 

 

for 
rx  (see Fig. 5.4 ) 

M M
M M

r rx x

c c
D D

x x   

    
   

    
 (5.27) 

 

   M M M,  ,r rc t c t    (5.28) 

 

for  
r gx      

*

M M( , )r gc t c       (5.29)                                 
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Notice that the new boundary condition at the resin-gel interface, Eqn. (5.28), has been 

introduced to model the effects of migration. This condition implies a discontinuity in 

the metal concentration at x=
r  which is given by the Boltzmann factor: 

M D
M exp

z F

RT

 
   

 
 (5.30) 

 

 

Figure 5.4. Concentration profile of metal and electric potential in the partition model.  

 

 

This assumption is an approximation, since Donnan conditions can only be fulfilled by 

species whose flux is null.
19

 Indeed, the condition of null flux of a species i can be 

written as 

0i i
i i i

xx

c z F
D D c

x RT x

    
   

   
 (5.31) 

 

so that  

ln i
i

z Fd d
c

dx RT dx


   (5.32) 

 

Integration of eqn. (5.32) in an infinitesimal region that includes 
rx   leads to 

M Dexpr r

i i

z F
c c

RT

   
  

 
 (5.33) 
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as assumed in the Eqn.(5.28) for the metal, with the Boltzmann factor defined in Eqn. 

(5.30). 

 

The numerical solution of this model has been carried out in FORTRAN as explained in 

section 5.5.2.   

 

Ions not consumed at the resin domain can be considered in equilibrium with the 

electrostatic potential along the time of measurement, because they reach the 

equilibrium partitioning between the solution and the resin domain in a short transient 

time in comparison to the deployment time. Accordingly, their concentration profile will 

show a discontinuity determined by the Boltzmann factor at the resin-gel interface. On 

the other hand, for the cations consumed at the resin domain, the binding process 

competes with the free metal accumulation required for the equilibrium partitioning. In 

this case, the Boltzmann conditions are just limiting conditions corresponding to 

equilibrium which might not be reached during the deployment, especially when the 

kinetic binding process becomes fast enough for the metal accumulation being 

determined by the transport. Despite Donnan partitioning is strictly applicable to species 

with a null flux, in many cases it is possible to obtain accurate results with this model.  

 

 

 Study of the influence of the Ionic Strength on 5.3

accumulation of Magnesium in DGT devices 

 

Availability of Mg is a subject of environmental concern, where topics like interactions 

with DOM 
22

 as well as uptake mechanisms 
23

 have received attention recently. In terms 

of environmental aquatic toxicology, the bioavailability and the affinity of metals to 

accumulate on surfaces of organisms depend on the site-specific water quality including 

parameters such as pH, hardness and DOM concentration. DGT data reported in 

literature for Mg
2
 in an only metal system show linear accumulations with time, 

indicating that the process happened in conditions of perfect-sink. However, these 

measurements were made at low ionic strength and, the behaviour at other salt 

concentrations is explored in this work. Measurements of accumulations of Mg are 

shown in this section to check the suitability of perfect-sink approximation at different 
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Ionic strengths. The model based on the Nernst-Planck equations and the partition 

model discussed in the previous section will be applied to analyse the Mg binding. 

 

5.3.1 Experimental details 

 

Accumulations of Mg reported in reference 
20

 are used below. Briefly, Mg 

accumulations were measured at four different Ionic strength (in the range from 0.01 to 

0.5 mol·L
-1

) and at different times (Figs 5.6 and 5.7). A solution containing 9×10
-5

 

mol·L
-1

 Mg and at pH= 7.5 was employed. The DGT sensors consisted of DGT holders 

(piston type, 2 cm diameter window), polyacrylamide gel discs (diffusive disc, 0.8 mm 

thick, and Chelex resin disc, 0.4 mm thick). To obtain additional information on the 

spatial distribution of the accumulated metals, DGT devices with 2 resin discs were 

used 
21

. Rubidium (2.5×10
-4

 mol·L
-1

) was added to the deployment solutions to measure 

the Boltzmann factors at different ionic strengths. 

 

5.3.2  Boltzmann factors 

 

Rb and Na (the last one already present in the supporting electrolyte) were assumed to 

show a negligible chemical binding with the resin sites, so that their accumulation in the 

resin domain with respect to bulk concentration in the solution can be understood as due 

to the electrostatic partitioning. For this reason they were employed to measure the 

Boltzmann factor at different ionic strength. The concentration profiles for these ions 

will be homogeneous in both resin and gel phases. An example of these profiles is 

shown in Fig 5.5.  
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Figure 5.5. Concentration profile of no reacting species in the partition model for a specific value of 
ionic strength.  

 

It is possible to obtain i  from the accumulation of species i using the expression: 

*r

i i i in Arc Ar c     (5.34) 

Experimental values (obtained with Eqn. (5.34)) and theoretical values of  (obtained 

with Eqns. (5.6) and (5.30)) are reported in Table 5.2. A noticeable good agreement 

between theoretical and experimental values is deduced from the values reported in 

Table 5.2. 

Table 5.2 Boltzmann factor values,  , estimated from Eqns. (5.6) and (5.30), and from the 
experimental accumulations (with Eqn. (5.34)) of Rb or Na at pH= 7.5. 

I (mM) Π  RbΠ  NaΠ  

10 5.77 5.84 5.71 

50 1.71 1.89 2.07 

100 1.32 1.27 1.36 

500 1.06 1.06 1.08 

 

 

5.3.3 Accumulation of Mg  

 

Results for the accumulation of Mg at different times and ionic strengths are shown in 

Fig. 5.6. It can be seen that accumulations as a function of time gradually approximate 

the perfect-sink behaviour. It can also be seen a decrease in the %back as I decreases. It 

shows that perfect-sink conditions only apply for the Mg binding at low enough ionic 

strength (I < 10
-2

 mol L
-1

). Additionally, at short times the slope of the accumulation 
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depends on I, which also means that the accumulation does not follow perfect-sink 

conditions since this would imply a common slope for all ionic strengths. The different 

slopes point towards a dependence of the association rate constant on the ionic strength, 

but they could also reflect a faster accumulation due to an increasing partitioning of the 

metal at the resin-diffusive gel interface as the ionic strength decreases.  

 

Figure 5.6. Time evolution of the total accumulation of Mg in DGT devices with two resin discs. Markers 
correspond to experimental accumulations at salt background concentrations of 0.5 mol·L-1 (1, orange 
square), 0.1 mol·L-1 (2 green triangle), 0.05 mol·L-1 (3, red bullet) and 0.01 mol·L-1 (4, blue diamond). 
Continuous lines correspond to the numerical simulations at pH = 7.5 and the corresponding ionic 
strengths. Other parameters for the numerical simulations are listed in Table 5.3. Dashed black line 
corresponds to Mg accumulation assuming perfect-sink conditions.  

 

 

Figure 5.7. Percentage of Mg accumulated in the back resin disc. Markers and experimental conditions 
as in Fig.5.. Continuous lines correspond to results obtained by numerical simulations.  
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The non-linearity of accumulation with time, at high ionic strength, indicates the 

absence of steady-state conditions due to the approaching to saturation or equilibrium 

conditions. For I= 0.5 mol·L
-1

 the accumulation approach a value around 500 nmol (the 

capacity of the resin is bigger that this value) so that the distortion of the linearity at 

high ionic strength is not due to saturation of the resin disc. Instead, we can say that the 

accumulations are arriving to an equilibrium value. We refer to this accumulation as 

thermodynamically limited. Under these conditions, the concentration of bound Mg is 

homogeneous all along the resin domain (which justifies that %back has raised up to 

50%) while the free Mg concentration in the resin domain reaches equilibrium with that 

in the bulk solution.  

 

The dependence of the stability constant of the Mg binding to the resin on the ionic 

strength is also clear in Fig. 5.6. That influence is responsible of the increase of the 

limiting bound Mg that would be obtained at long times for each ionic strength. 

 

5.3.4  Dependence of kinetic and thermodynamic constants on the 

ionic strength 

 

Numerical simulations based on the models explained in section 5.2 were used to 

estimate the values of the kinetic constants for the chemical reaction of Mg with the 

resin sites. They were found from the simultaneous fitting of the numerical models to 

both sets of experimental measurements (Mg accumulation and %back) shown in Fig. 

5.6 and Fig. 5.7. As both, metal cation and resin sites, have charges of opposite sign, 

increasingly attractive forces will arise between Mg and the resin sites, so that the 

kinetic association constant will increase as I decreases. Thus, a fitted value of a,Rk  for 

each ionic strength has to be considered. As seen in Fig. 5.6, the bending of the 

accumulation line is especially important at I=0.5M, this indicating that the 

accumulation is close to the equilibrium value, so that this curve is the most sensitive to 

d,Rk . According to Eigen approach,
24,25

 the influence of the ionic strength only applies 

to the association kinetic constant, so that the value of d,Rk  fitted at I=0.5M will be used 

for all ionic strengths considered. The increase of the association rate constant as I 

decreases is then parallel to the increase of the stability constant since a,R d,RK k k . 
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The values of the kinetic constants fitted with the Nernst–Planck model are reported in 

Table 5.3 and the agreement between predicted and measured accumulations can be 

seen in Fig. 5.6. The agreement is also quite reasonable in Fig. 5.7, especially if we 

consider the moderate reproducibility of the experimental %back measurements. 

 

Table 5.3. Recovering of the kinetic association constant a,Rk  using a numerical simulation with 

experimental values of Boltzmann factor and d,Rk  = 1.0×10-4 s-1. 

I     
(mM) 

IR (mM) 
*

Mgc     

(mol m-3) 

K             
(m3 mol-1) 

a,R
k   

 (m3 mol-1s-1) 

10 30 9.2×10-2 20.5 2.0×10-3 

50 62 9.0×10-2 4.4 4.4×10-4 

100 108 9.0×10-2 1.7 1.7×10-4 

500 500 9.3×10-2 0.7 7.0×10-5 

 

 

The values of the kinetic constants reported in Table 5.2 are used in the simulation tool 

developed with the Partition model. In that case, partition factors  
Rb

2

Mg   are used 

according to the values reported in Table 5.2. The accumulation and %back merge 

perfectly with those reported in Figs. 5.6 and 5.7.  

 

It is possible to see that Mg  increases with decreasing I, indicating a tendency of the 

free Mg concentration to the territorial binding in the resin domain to achieve 

electrostatic equilibrium consistent with the potential drop at the resin-gel interface. 

This effect has a negligible influence on the %back, as supported by the numerical 

simulation (Table 5.4). Thus, the decrease of the %back as the ionic strength decreases 

is an evidence of the increase of the kinetic association and accordingly, the increase of 

the stability constant, which reduces the penetration of the Mg in the resin domain.  
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Table 5.4. Time dependence of percentages of accumulations of metal in the back resin obtained by 

simulation for different values of the Boltzmann factor. Conditions for the numerical simulation: 
*

Mc  

= 10-2 mol m-3, a,Rk = 5 × 10-4 m3 mol-1s-1, d,Rk = 1.0 × 10-4 s-1, DM = 4.94 × 10-10 m2 s-1. 

t(h) M 1.0   
M 2.3   

M 4.0   
M 6.3   

1.0 13.2% 13.2% 13.2% 13.2% 

2.0 15.4% 15.4% 15.4% 15.4% 

3.0 17.3% 17.3% 17.3% 17.3% 

4.0 19.1% 19.1% 19.1% 19.1% 

5.0 20.8% 20.8% 20.8% 20.8% 

6.0 22.4% 22.4% 22.3% 22.3% 

7.0 23.9% 23.8% 23.8% 23.8% 

8.0 25.3% 25.2% 25.1% 25.1% 

9.0 26.6% 26.5% 26.4% 26.4% 

10.0 27.8% 27.7% 27.6% 27.6% 

 

 

5.3.5 Corresponding concentration profiles of Mg  

 

Although the experimental setup only allows the measurement of the mass accumulated 

in the back and front resin discs, an estimation of the metal concentration profile in the 

whole resin domain can be obtained taking advantage of the numerical simulation tools 

developed in this work. Figure 5.8 depicts the Mg concentration profiles expected at a 

deployment time of 8 h corresponding to the measurements presented in figures 5.6 and 

5.7. Values of partition coefficients and kinetic constants were taken from tables 5.2 and 

5.3. The software based on the partition model (explained in section 5.5.2) was used for 

simulations. 

 

Notice the jump of the metal concentration at the resin-diffusive gel interface and how 

this jump increases as the ionic strength decreases, in agreement with the   values 

reported in Table 5.2. Moreover, the slope of the metal concentration profile in the resin 

domain at the interface grows as I decreases indicating an increase in the association 

rate constant and a larger metal accumulation.  
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Figure 5.8  Concentration profiles of Mg at different values of ionic strength. Time of deployment 8h. 
Other parameters for the numerical simulations are listed in Table 5.3. 

 

 

5.3.6 Influence of the Donnan factor on the metal accumulation 

 

It seems also interesting to discuss the relative importance of the “territorial” (i.e., 

purely electrostatic) and specific binding mechanisms in the overall metal accumulation. 

Accumulations depicted in Fig 5.6 are split in Table 5.5 into two fractions, namely: the 

moles of free Mg
2+

 ions within the resin volume (column 8 in Table 5.5) and the moles 

of Mg chemically bound (column 9 in Table 5.5). As can be seen, the amount of free Mg 

is, at any I, negligible in comparison to the amount of Mg specifically bound to the resin 

groups. Notice also that, in contrast to what is expected from equilibrium arguments, the 

amount of free Mg accumulated in the resin disc decreases as ionic strength decreases, 

indicating that equilibrium conditions with the bulk Mg concentration are far to be 

reached since the system has approached perfect-sink conditions. However, the 

electrostatic effects are not only responsible for the territorial accumulation, but also for 

an increase of the accumulation due to a faster transport. This influence can be 

estimated by just comparing the total accumulation with the hypothetical accumulation 

calculated with M  = 1.0 (i.e., without electrostatic partitioning), as reported in Table 

5.5, column 5.  
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For a 24 h deployment, the influence of the electrostatic partitioning is similar in all the 

range of ionic strengths and remains around 22% at the lowest I (see column 7 in Table 

5.5 which reports the percentage with respect to column 6 of the differences between 

column 6 and 5 in Table 5.5). Under the conditions of this work, the increase of the 

association rate constant (and that of the corresponding equilibrium value) is, then, the 

most relevant phenomena responsible for the increase of Mg accumulation as I 

decreases. 

 

 Table 5.5. Comparison of total metal accumulation with and without the Donnan factor. Values 
obtained by simulation. Deployment time =24h. 

I (mM)   a,Rk         

(m
3
 mol

-1
s

-1
) 

d,Rk      

(s
-1

) 

Tn  (nmol) 

with 1   

Tn  (nmol) 

with Mg  

Percentage 
of the 

Influence of  

Mg  

Mn  

(nmol) 
Free metal 
in the resin 

domain 

MRn  (nmol) 

Bound metal 
in the resin 

domain 

0.01 34.1 2.05×10-3 1.0×10-4 1093 1395 21.6% 3 1392 

0.05 3.6 4.4×10-4 1.0×10-4 880 1129 22.1% 12 1117 

0.10 1.6 1.7×10-4 1.0×10-4 672 853 21.2% 21 832 

0.50 1.1 7.0×10-5 1.0×10-4 446 483 7.6% 27 456 
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 Conclusions 5.4

 

Two theoretical models for the interpretation of metal accumulations at different ionic 

strengths have been studied. Both models consider the transport and complexation 

reactions of the metallic cations in the gel and the resin domain. Electrostatic effects due 

the resin charges and the background electrolyte are also included. Numerical 

simulation tools for the previous models have been implemented.  

 

The models and numerical tools developed in this work have been used to analyse the 

experimental results for Mg accumulations. It has been found that, the main 

phenomenon that increases the Mg availability is the dependence of the kinetic 

association constant and the stability constant between the cation and the resin sites on 

the ionic strength. The accumulation of Mg at high ionic strength is thermodynamically 

limited by Mg binding to the resin at pH 7.5. However, as ionic strength decreases, the 

thermodynamic limitation is lower due to the increase of the stability and kinetic 

association constants.  

 

The electrostatic effects on DGT devices can be approximated using a partition factor at 

the resin-gel interface. This factor was here determined experimentally for different 

values ionic strength by adding a small concentration of Rb to the system and has a 

smaller influence on Mg accumulation. 

 

Using numerical simulation has been shown that the thickness of the potential transition 

layer (1/κ) has an impact on the concentration profiles, but its influence on the total 

accumulation and percentage of accumulation in the back resin is negligible, in the 

range of values here studied. 
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 Supporting Information 5.5

 

5.5.1 Numerical solution for the model based on the Nernst-Planck 

equations 

 

The numerical solution of this model, described by Eqns. (5.11) – (5.20), has been done 

using the solver pdepe in MATLAB 5. The spatial domain was meshed with a 

logarithmic grid in both resin and gel phases, with a fine grid (one tenth of the Debye 

length) only near the resin-gel interface to improve computational efficiency.  

 

We can see an outline of the program in Figure 5.9 which contains the following general 

elements: 

1. The program begins with the declaration of the variables used and the reading of the 

inputs. 

2. Construction of the spatial grid with a careful selection of the spatial positions so that 

intervals with lengths shorter than the reaction layer were included in the mesh. 

3. pdepe function of Matlab has one input named options. It is used to set some 

parameters of the simulation as error tolerance or step size in time. This is important 

for the convergence of the solution and must be settled before calling pdepe function. 

4. pdepe function is used to solve the system of equations (5.11) – (5.14) on a 1-

dimensional domain. Details of this function will be discussed below. 

5. Results for concentrations of different species are obtained. 

6. Using the concentrations, the program calculates the total accumulation and the 

percentage of accumulation on the back resin disc.  
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Figure 5.9.  General scheme of the simulation tool in Matlab. 

 

pdepe function allows us to solve a system of partial differential equations (PDE) in one 

Space variable x and a time variable t. The standard form of the equations that can be 

solved is: 

, , , , , , , , ,m mu u u u
c x t u x x f x t u s x t u

x t x x x

           
       

          
  (5.35) 

 

for t0 ≤ t ≤ tf and a ≤ x ≤ b, being the interval [a,b] finite. 

 

In Eqn. (5.35) the coefficient c is a diagonal matrix (which is specified as a vector) that 

multiplies the derivative with respect to t. The parameter m is associated with the 

geometry of the problem: m = 0, 1,2 corresponds to corresponding to slab, cylindrical, 

or spherical symmetry, respectively. The term , , ,
u

f x t u
x

 
 

 
 is a flux and , , ,

u
s x t u

x

 
 

 
 

is a source term.  

 

Initial conditions for this problem have the form: 

   0 0,u x t u x   (5.36) 

 

and boundary conditions at x = a and x = b have the form of the expression: 
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   , , , , , , 0
u

p x t u q x t f x t u
x

 
  

 
  (5.37) 

 

The function is called and the solutions saved in a matrix u: 

u = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)  (5.38) 

 

where: 

 

 xmesh defines the spatial mesh and the special boundaries a and b. 

 

 tspan is a vector that defines the interval of simulation time, i.e. t0 and tf. 

 

 m is the parameter of symmetry previously discussed. 

 

 pdfun is a function that computes the terms c, f, and s in Eqn. (5.35). It has the form: 

[c,f,s] = pdefun(x,t,u,dudx)  (5.39) 

 

where x and t are scalars, and u and dudx are vectors with np dimension. This function 

returns three vectors c, f, s with np dimension, corresponding to the diagonals elements 

of the matrix , , ,
u

c x t u
x

 
 

 
, the flux , , ,

u
f x t u

x

 
 

 
 and the source , , ,

u
s x t u

x

 
 

 
 . 

 

 icfun is a function which evaluates the initial conditions. It has the form: 

ui = icfun(x)  (5.40) 

    

with x being a scalar and ui being a np dimension vector. 

 

 bcfun  is a function which evaluates the boundary conditions and is expressed as: 

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)  (5.41) 
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where ul is the approximate solution at pl, ql are np dimension column vectors 

corresponding to functions   , ,p x t u  and  ,q x t in Eqn. (5.37)  evaluated in x=xl. The 

same for pr and qr in x=xr. ul and ur are the approximate solution at x=xl and x=xr 

respectively.   

 

In the particular case of the system described by Eqns. (5.11) – (5.20) we have: 

 

The parameter m=0 in Eqn. (5.38), corresponding to a flat symmetry.  

, , , 1
u

c x t u
x

 
 

 
  (5.42) 

 

for all the species.  

, , ,
u c z F

f x t u D D c
x x RT x

       
      

       

M M
M M M

  (5.43) 

 

for the metal and 

, , , 0
u

f x t u
x

 
 

 
  (5.44) 

 

for R and MR 

d,R M R a,R M R, , ,
u

s x t u k c k c c
x

 
  

 
  (5.45) 

for M and R. 

d,R M R a,R M R, , ,
u

s x t u k c k c c
x

 
   

 
  (5.46) 

 

for MR. 
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5.5.2 Implementation of a numerical tool based on the partition model 

 

A numerical tool based on the Finite Element Method has been described in Chapter 3. 

The partition model allows us to adapt this program easily to take into account effects of 

migration. To adapt the program to this model, it is only necessary to make some 

modifications in the interfaces between regions with and without resin beads. In these 

points there will be discontinuities in the concentration profiles (as seen in Fig 5.10), 

but continuity of flux is still a condition at these points.  

 

 

Figure 5.10. Discontinuity in the concentration profile of species i 

 

Boundary conditions at this point (x=
r ) can be written as: 

   , ,r r

i ic t c t     (5.47) 

 

which relates the concentration of species i at both sides of the interface. This condition 

works at the interfaces connecting regions with and without binding agent.  

r r

R i i
i i

x x

c c
D D

x x   

    
   

    
 (5.48) 

 

describes the continuity of the flow at the interface located at spatial position rx  . It 

applies to mobile species. 

 

In terms of the dimensionless variables, the boundary conditions become: 

ZNR-1 ZNR ZNR+1

qiNR-1 qiNR+1

qiNR

ΠqiNR

Volume with 
resin beads

Volume without 
resin beads
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   , ,r r

i iq t q t     (5.49) 

R i i
i i

z z

q q
d d

z z 

 


 
 (5.50) 

  

The discretization of Eqn. (5.51) in the point k=NR of the mesh, which coincides with 

x=r, needs to incorporate some changes: 

 

NR NR-1 NR+1 NR

NR-1 NR

R i i i i
i i

q q q q
d d

h h

     
   

   
 (5.51) 

 

A   has been introduced in Eqn (5.51), to fulfil Eqn. (5.49). Then, Eqn. (5.51) can be 

rewritten as: 

NR NR
NR-1 NR NR+1

NR-1 NR-1

1 0
R R

i i
i i i

i i

d h d h
q q q

d h d h

   
       
   

  (5.52) 

 

Which indicates that, at the point NR, the system equation that defines qi is tridiagonal 

(See Chapter 3, section 3.4.2)  

 

In the equation corresponding to the point NR-1, it is necessary to change the value 
NRiq  

for the value NRiq  to take into account the discontinuity in the concentration of qi at 

point NR (see Fig 5.10).  

 

Finally, in the matrix   (Chapter 3, Eqn. (3.80)) it is necessary to change the term:  

sup sup( 1) ( 1)NR NR     (5.53) 

  

For the rest of points the program remains as described in Chapter 3. 
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CHAPTER 6 
 

 

 

 

 

6.  COMPETITION, SATURATION AND KINETIC 
EFFECTS IN DGT DEVICES 

 

 

Part of the material of this chapter has been published in: 

 

Jiménez-Piedrahita, M;  Altier, A; Cecilia, J; Puy, J; Galceran, J; Rey-Castro, C; Zhang, 

H; Davison, W. Extending the Use of Diffusive Gradients in Thin Films (DGT) to 

Solutions Where Competition, Saturation, and Kinetic Effects Are Not Negligible. Anal. 

Chem. Publication Date (Web): May 16, 2017. DOI: 10.1021/acs.analchem.7b00704. 

 

 

 Introduction 6.1

  

The original idea of DGT devices was a time-averaged measurement of trace metals in 

soils and waters.
1-5

 The set-up and the experimental deployment conditions were 

established to allow interpretation of a linear accumulation of metal with time using a 

simple expression based on a steady-state flux under perfect-sink conditions. However, 

the extension of DGT to a wide range of analytes 
6-11

 and its use in varied conditions 

6,12-14
 has shown that, in some situations, accumulations with time are non-linear. There 

are different causes for this type of accumulations. In the perfect-sink regime, the 

association rate constant between the resin and the analyte, is assumed to be very high, 

but: what happens this is not true? Analogously, in perfect-sink conditions saturation or 

equilibrium effects are neglected, but what happens when the amount of bound metal is 

not negligible? There have been examples of linear accumulations with time, but with 

less than theoretical slopes 
15

 and of the accumulation rate declining with time.
16-18

 

Some competition effects are observed when the effective capacity of the binding layer 

is approached, as in the case of  Fe competing with the measurement of Mn 
19

 and Ca 

competing with the measurement of Sr.
20

 For ions at high concentrations, such as the 

major cations Ca and Mg, the capacity issue may become a problem 
21

 especially when 

the ionic strength reduces noticeably the affinity of the binding to the Chelex.  
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This chapter aims to discuss the patterns of DGT accumulations that can arise, to 

provide a check of the accuracy of the simple DGT expression and to suggest new 

simplified, approximate expressions to determine the solution concentration for three 

situations: i) kinetic limitations in the binding to the resin, ii) saturation or equilibrium 

effects or iii) non-negligible competitive effects. We show how the accumulations can 

be quantified in terms of the required kinetic and thermodynamic constants and provide 

practical guidance for their use to obtain reliable estimates of solution concentrations. 

We focus on systems where the analyte does not react with other dissolved species (e.g. 

a metal in a solution without ligand). Solutions containing Mg or Mn, where all three 

situations can prevail, are used as examples.  

 

The numerical simulation code explained in Chapter 3 is used to illustrate the processes 

that take place in the DGT device. This code is also used to check the accuracy of the 

analytical approximate expressions reported and the agreement of all these results with 

the experimental ones. 

 

 

 Kinetic limitations in the metal accumulation in simple 6.2

metal systems 

 

It is usually assumed that the reaction of trace metals with the binding phase is so fast 

and strong that the resin acts as a perfect-sink whenever saturation or equilibrium 

effects are negligible. Under these conditions, the accumulation can be calculated using: 

*

M M

M g

D c
n A t



 
   

 
  (6.1) 

 

This model was already discussed in Chapter 2. Eqn. (6.1) has been tested using stacks 

of two different binding layers in DGT devices. The separate analysis of the two binding 

layers 
22

 indicate that, in simple metal solutions at pH 7, metal penetration to the back 

layer was very low and similar for many metals (Mn, Co, Ni, Cu, Cd, Pb). However, as 

pH decreases, the percentage of Mn, Cd and Co accumulated in the back resin layer 

(%back) increases up to 34.2%, 10.9% and 25.4%, respectively at pH 4. These results 

suggest that the binding of metals to Chelex-type resins may sometimes be kinetically 
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or thermodynamically limited as was also observed elsewhere.
17,23

   

 

6.2.1 An approximate analytical expression for the DGT accumulation 

of a metal when there is penetration of the metal into the resin layer 

 

We aim to find an approximate analytical expression for the accumulation when the 

association kinetic constant between the metal and the resin sites is not high enough to 

assume perfect-sink conditions. In this situation the metal can penetrate into the resin 

layer, and the metal concentration profile inside the resin will be different from zero. 

 

Let us adhere to the following assumptions: 

1. Only a metal M is present in the solution (i.e. complexation with ligands or 

competition effects with other  cations are negligible) that is strongly bound to the 

resin sites 

2. There is a large excess of resin sites (R) with respect to the metal bound (MR) 

during the deployment time of interest so that saturation effects and dissociation of 

MR are negligible in comparison with the metal association to the resin. 

3. There are steady-state conditions (i.e. transient effects are neglected). 

4. Electrostatic effects across the resin /diffusive gel interface located at rx  , if 

present, can be described by a partition factor. Let 
M  be the Boltzmann factor that 

relates the metal concentration at both sides of the resin-diffusive gel interface:  

 
 

M

M

M

r

r

c x

c x










 


 (6.2) 

The balance equation of M in the resin layer can be written as: 

2

M M
M,R a,R M R d,R MR2

0
c c

D k c c k c
t x

 
   

 
  (6.3) 

 

where M,RD  stands for the metal diffusion coefficient in the resin layer.  

 

According to assumption 2, there is an excess of resin sites with respect to the metal 

bound for all deployment times, so that Rc  is essentially constant in space and time and:  
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d,R MR a,R M Rck k c c   (6.4) 

In these conditions, Eqn. (6.3) reduces to 

'2
a,RM M

M2 2

M M

kd c c
c

dx D 
    (6.5) 

 

with 
'

a,R a,R Rk k c  and  

M,R

M '

a,R

D

k
    (6.6) 

 

The boundary conditions for Eqn. (6.5) are 

M

0

0
x

c

x


 
 

 
  (6.7) 

and 

M M( )r rc x c      (6.8) 

 

Solving Eqn. (6.5) and applying the boundary conditions: 

  M

M M

M

cosh

cosh

r

x

c x c
r







 
 
 
 
 
 

  (6.9) 

 

In steady-state, the concentration profile of MR is given by  

    M' '

M R a,R M a,R M

M

cosh

,

cosh

r

x

c x t k c x t k c t
r







 
 
  
 
 
 

  (6.10) 

And neglecting the transient, the metal accumulation can be found by integration:  

  '

MR a,r M M
0

M

( ) tanh
r r

rn t Ac t dx tAk c
 




  
   

 
   (6.11) 

 

In steady-state, the metal profile in the gel domain is linear and:  
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 
*

M M M( )rD c c
n t At

g


   (6.12) 

 

Being 
MD  the diffusion coefficient in the gel layer and:  

M
M

M

r
r c

c


 


 (6.13) 

 

Since in steady-state, the metal arriving to the resin (Equation (6.12)) must be equal to 

the metal bound (Equation (6.11)): 

*
' M M M M
a,r M M

M

( )
tanh

rr
r D c c

tAk c At
g







    

 
 

 (6.14) 

 

And solving for M

rc 
: 

*

M
M

M,R

M M M M

1
tanh

r c
c

Dg r

D 

 
    

     
     

 (6.15) 

 

Replacing Eqn. (6.15) in Eqn. (6.11) we have an expression for the accumulation of 

metal: 

 
*

M,R M

M,R M

M M M

coth
r

g

D c
n t At

D

D

 





   

   
   

 (6.16) 

 

When M,R MD D , equation (6.16) reduces to  

 
*

M M

M

M M

coth
r

g

D c
n t At

 





 

  
  

  (6.17) 

 

The term 
M

M M

coth
r 



 
 

    

is just a measure of the effective distance of penetration of M 

corresponding to the distance necessary for the metal concentration to drop to zero in 

the resin domain by linear extrapolation of the metal profile at the resin/diffusive gel 

interface. Accordingly, Eqn. (6.17) is parallel to Eqn. (6.1) when g  is replaced with 
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M

M M

coth
r 



 
 

  
, Eqn. (6.17) can be used to determine the metal concentration in 

solution whenever  M  or 
a,Rk  are known.  

6.2.2 Accumulation of Mg with thermodynamic limitations 

 

Experimental accumulation of Mg in DGT devices, with a stack of two resin discs 

deployed in a solution at pH 7.5 and ionic strength 100mM, serves as an example of 

accumulation under kinetic limiting conditions. Indeed, as can be seen in Fig. 6.1, the 

accumulation in a solution with 
*

Mgc  = 0.09 mol m
-3

 is almost linear for times smaller 

than 10 h, with a slope smaller than that of the perfect-sink case (dotted line). For longer 

deployment times, the accumulation bends downwards, indicating that equilibrium 

effects are non-negligible and steady-state conditions are lost. 

 

Figure 6.1. Time evolution of the total accumulation of Mg in DGT devices with two resin discs. Markers 
correspond to experimental accumulations at salt background concentrations of 100 mol·m-3 at pH 
7.5. Dashed line corresponds to results obtained with Eqn.(6.17) when 

a,Rk =1.7×10-4 m3 mol-1 s-1 and 

d,Rk =10-4 s-1. Dotted line corresponds to accumulation of Mg obtained with Eqn. (6.1). Other 

parameters: 
M =1.7, 

MD =4.94×10-10 m2s-1, r =8×10-4 m (corresponding to two resin discs), g

=1.1×10-3 m, T,Rc =28mol m-3 and *

Mgc =0.09 mol m-3. 

 

The use of Eqn. (6.17) to calculate a,Rk  requires the determination of the slope at short 

times before downward bending starts. Using the first data point, we obtained a,Rk

=1.7×10
-4

 m
3 

mol
-1

s
-1

, which introduced in Eqn. (6.17) yields the dashed line in Fig. 6.1. 

 

Normalized concentration profiles for Mg obtained by simulation (with the conditions 
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of Fig. 6.1) are presented in Fig. 6.2. It is possible to see a jump in the concentration of 

Mg at the resin layer/diffusive gel interface. This effect was studied in Chapter 5, and is 

produced by electrostatic interactions between the metal cation and the charges in the 

resin and the supporting electrolyte. The effect of electrical migration on the 

concentration of metal can be approximated using a partition factor at the resin-gel 

interface. For the ionic strength of this experiment (100mM), a partition factor M  

=1.6, was used. This value was experimentally measured as explained in Chapter 5. Fig. 

6.2 also shows the penetration of free Mg in the resin domain, which means that 

accumulation is kinetically controlled for this ionic strength. Finally, changes on the 

concentration profiles with time are further evidence that metal accumulation does not 

occur under steady-state conditions. 

 

 

Figure 6.2. Normalized Mg concentration profiles at different times for the conditions of Fig. 6.1. 
Vertical dashed lines indicate the frontiers of each resin gel disc.   

 

 

 Saturation and equilibrium effects 6.3

 

The net binding rate of metal to the resin can be written as: 

MR
a,R M R d,R MR

c
k c c k c

t


 


 (6.18) 

 

where 
Mc  and Rc  are the local concentrations of free M and free resin sites at the 

spatial position considered and 
d,Rk  is the kinetic dissociation rate constant. The first 

term in the right hand side of Eqn. (6.18) stands for the association rate, while the 
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second one quantifies the dissociation. For a sufficiently large amount of bound metal, 

the net metal binding rate decreases as time increases. This decrease arises from both 

the increase of the rate of dissociation and the decrease of the association rate, as Eqn. 

(6.18) indicates. Dissociation becomes non-negligible when equilibrium (or “effective 

capacity”) between bound and bulk free metal is approached and the decrease of the 

association term becomes non-negligible when equilibrium is closely approached or 

when competitive effects are relevant as will be commented in the next Section.  

 

6.3.1 An approximate analytical expression for the DGT accumulation 

of a metal when saturation or equilibrium effects are non-negligible 

 

An approximate analytical expression able to reproduce the data when equilibrium 

between the bound metal and the bulk metal is approached requires that both the 

association and dissociation processes of metal to the resin sites have to be considered.  

 

Let us derive an approximate analytical expression for the accumulation in DGT devices 

when equilibrium effects between free and bound metal to the resin sites are non-

negligible. Let us assume: 

 

1. A metal concentration profile homogeneous (flat) in the resin domain and linear in 

the diffusive disc. Disregarding the diffusion of free M in the resin (by assuming a 

flat profile of free metal) is equivalent to assuming an infinite MD  value in the resin, 

while a finite value of MD  is used in the gel domain 

2. A homogeneous concentration profile (flat) of the bound metal in the resin disc. 

3. A concentration of free resin sites homogeneous and time independent as a first 

approximation which will be later refined. 

4. Electrostatic effects across the resin /diffusive gel interface located at rx  , if 

present, can be described by a partition factor. Let 
M  be the Boltzmann factor that 

relates the metal concentration at both sides of the resin-diffusive gel interface:  
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 
 

M

M

M

r

r

c x

c x










 


 (6.19) 

 

Let us denote as 
M

rc  and 
MR

rc  the concentrations of free and bound metal in the resin 

domain (  M M

r rc c x    ). The flux of metal through the plane rx   can be written as: 

*

M M M M M
M M

1

r

r

g

x

dc dn c c
J D D

dx A dt





   
     

   
 (6.20) 

 

Where 
Mn  stands for the total accumulation of metal, *

Mc  is the concentration of metal 

in the bulk solution, 
M M

rc   the free metal concentration in the gel side of the resin-

diffusive gel interface, g  represents the thickness of the diffusive gel, 
MD  is the 

diffusion coefficient of metal ion (common to all phases) and A and r  are the effective 

area and the thickness of the resin disc, respectively.  

 

Figure 6.3.  Schematic representation of the concentration profiles of free and bound metal. 

 

The balance equation for free metal inside the resin ( 0 rx   ) can be written as: 

*

M M M M
M a,R M d,R MR

r r
r r r r r

g

dc c c
A AD A k c A k c

dt
  



  
   

 
 (6.21) 

where: 

a,R a,R Rk k c   (6.22) 

 

a,Rk  and 
d,Rk  stand for the association and dissociation rate constants of metal with the 
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resin sites, respectively. Eqn. (6.21) indicates that the time variation of the free metal in 

the resin domain is equal to the entering metal through the diffusive flux minus the free 

metal that gets complexed during the time unit and plus the free metal that appears by 

dissociation.  

Likewise, for the bound metal: 

MR
a,R M d,R MR

r
r r r r rdc

A A k c A k c
dt

     (6.23) 

 

The initial conditions are: 

  M 0 0rc   and  MR 0 0rc     (6.24) 

 

If we provisionally assume, according to hypothesis 3, that Rc  is time independent (i.e. 

excess of resin sites), 
a,Rk   is a constant and Eqns. (6.21) - (6.23) form a system of 

coupled ordinary differential equations of first order with constant coefficients that 

allow to determine  M

rc t  and  MR

rc t  with the help of the initial conditions (6.36). A 

general solution of this system can be obtained by uncoupling the system defining an 

appropriate combination of the unknowns. 

 

The solutions are given by 

   
 

 
d,R d,RM

M

1 1*
( )

M 2 2
a,R d,R a,R d,R e

2
2 2 e 2

F H k F H t
r

t kc
H H F k k H F k

H
c t k

   
 

 
         

 
 

 (6.25) 

and 

   
 

 
 d,R d,R

1 1*

R MM 2 2
d,R d,

R M
MR R2 e e

2

F H k t F H k t
r c c

H F H k F H k
H

K
c t

    
        





   

 (6.26) 

where: 

 M
a,R

M

r g

D
F k

 

 
   

 
  (6.27) 

 

2 2

d,R d,R d,R Ra,2 4kH F Fk k k     (6.28) 
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and 
MRK  is the stability constant between the metal and the resin sites: 

a,R

MR

d,R

k
K

k
  (6.29) 

The term  
 d,R

1

2
a,R d,R2 e

F H k t

H F k k
 

    in Eqn. (6.25) and the term 

 
 d,R

1

2
d,R e

F H k t

F H k
 

    in Eqn. (6.26) are negligible for almost all the deployment 

time in comparison to the terms  
d,R

1
( )

2
a,R d,R2 e

F H k t

H F k k
 

    and 

 
 d,R

1

2
d,R e

F H k t

F H k
 

   . Indeed, assuming 
a,R d,Rk k  for the cases of interest 

( MR 1K   ), we have 
a,RH F k    , so that d,R d,RF H k F H k     . The exponential 

terms with the highest exponent suffer a faster decay with time so that they can be 

neglected for most of the deployment time. Neglecting the corresponding exponential 

terms and assuming 
a,RH F k     in Eqns. (6.25) and (6.26) (except in the exponential 

term) the concentrations of free and bound metal in the resin domain become: 

 

   *

M M M 1 e btrc t c    (6.30) 

 

and 

     
*

M M a,R *

MR MR M M R

d,R

1 e 1 e br bt t
c k

c t K c c
k

   


  (6.31) 

with 

 d,R 2b k F H    (6.32) 

 

As saturation could be approached for high metal concentrations, it would be 

convenient to overcome the condition that Rc  remains time-independent during the 

accumulation. A rough estimate of a time dependent expression for Rc , can be derived 

assuming local equilibrium between M, R and MR,  

a,R M R d,R MRk c c k c   (6.33) 

 

Using Eqn. (6.29), Eqn. (6.30) and MR R TRc c c  , Eqn. (6.33) turns into: 
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1 1 1 e bt

c c
c t

K c t K c 
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 (6.34) 

 

Replacing Eqn. (6.34) in Eqn. (6.31), the concentration of bound metal becomes 

 

 
 
 

*

M MR TR M
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1 e

1 1 e
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b

r

t
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
 (6.35) 

 

Finally, the total accumulation of metal can be written as 

 

   
 

 

*

M MR TR M
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M

T M

MR M

R
1

1 e

1 e
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A
n t A

c
c t









 






 (6.36) 

 

Figures 6.4 and 6.5 show a comparison between the accumulations of metal calculated 

using numerical simulation (continuous lines) with those predicted with Eqn. (6.36) 

(dotted lines), for different values of the stability and the association rate constant 

between the metal and the resin sites. The agreement of both curves for all evaluated 

cases suggests that Eqn. (6.36) can replace numerical simulation in approaching non-

linear accumulations in DGT. 

 

As Figure 6.4 shows, the accumulation is thermodynamically limited, as the bending 

indicates. When the stability constant increases, the thermodynamic limitation is less 

severe and the equilibrium concentration of bound metal increases which leads to the 

increase of the plateau in the accumulation plot. 

 

The increase of the kinetic constants, instead, does not modify the plateau, whenever the 

stability constant is fixed, see Fig. 6.5, but the plateau is reached at shorter times until 

convergence to a limiting curve were kinetic constants cease to have an impact, 

indicating that the accumulation is controlled by transport or equilibrium. 

 

A simple equation for the limiting curve can be obtained if 
MR

rc

 

in Eqn (6.21) is replaced 

with 
MR MR R M

r rc K c c , which indicates that the metal binding has proceed in the resin 

domain until equilibrium is reached. Eqn (6.21) becomes then an equation to determine  
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M

rc  and the accumulation can be written as:  
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1 e
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




 (6.37) 

 

Eqn. (6.37), plotted in Fig. 6.5 as dashed red line, shows good agreement with 

numerical simulation results obtained for high enough kinetic constants. 

 

 

 

Figure 6.4. Accumulation of metal in a standard DGT device from a solution with *
M

c = 0.01 mol m-3 for 

different values of 
MRK (see label above the lines). Continuous lines correspond to numerical 

simulation and dotted lines correspond to Eqn. (6.36.) Parameters used: 
d,Rk =1×10-4  s-1, MD =4.94 

×10-10 m2 s-1 ,
TRc =28,  =1.0, effective area of the sensor 3.80×10-4 m2, thickness (

r ) of the resin disc 

equal to 4.0×10-4m and aggregated thickness (
g ) of the gel, filter and DBL, 1.1×10-3m. 
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Figure 6.5. Accumulation of metal in a standard DGT device from a solution with *
M

c = 0.01 mol m-3, 

MRK =0.3 m3 mol-1 and 
a,Rk =3×10-5 m3 mol -1 s-1 (blue lines),

a,Rk =3×10-4 m3 mol -1 s-1 (black lines) 

and 
a,Rk =3×10-3 m3 mol -1 s-1 (orange lines) . Continuous lines correspond to numerical simulation, 

dotted lines correspond to Eqn. (6.36.) and dashed red line was obtained with Eqn. (6.37). Other 
parameters as in Fig 6.4.   

 

A final comment can be devoted to the initial slope of the accumulation plot. When the 

binding to the resin is fast enough to reach local equilibrium, Eqn. (6.37) indicates that 

the initial slope is  
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 (6.38) 

 

For 
MR TR 1K c  , the binding is fast and complete and Eqn. (6.38) reduces to  

0

*

MM
t g

AD
sl pe

c
o


   (6.39) 

which corresponds to the perfect-sink behaviour. 

 

If the kinetics of the metal binding is not fast enough to reach equilibrium in the resin 

domain, the initial slope of the accumulation plot has to be obtained from Eqn. (6.26). 

Eqn. (6.36) could not be a good approximation due to the cancellation of the first 

exponential term in Eqn. (6.26) according to the faster decay of this term in comparison 

to the second exponential one.  
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Alternatively, a simpler way to obtain an analytical expression for the initial slope of the 

accumulation plot under kinetic influence consists in considering  Eqn. (6.17). This 

equation has been obtained neglecting the dissociation term in the balance equation of 

the metal which could be a reasonable approximation for 0t  . Using Eqn. (6.17), the 

initial slope of the accumulation plot can be written as: 

M
0

*

M

M

M M

coth

t r
g

e
cAD

slop
 




 
 

  
 

 (6.40) 

 

For M

r  ,  r

Mcoth 1    and the slope becomes  

M

*

M

M M

0t g

AD
slope

c

 
 

 
 (6.41) 

 

which is a very simple approximate expression for the initial slope.  

 

Conversely, when M

r  ,  r

Mcoth     and the slope tends to zero indicating that 

there is no accumulation in agreement with the fact that 
a,R 0k   when M

r  . Eqn. 

(6.41) indicates that the slope is mainly dependent on the kinetic association constant 

while the dissociation constant plays the main role in the bending of the accumulation 

curve and in the plateau which is determined by the affinity. 

 

The initial slope of the accumulation plot can, then, be helpful in assessing if there is 

kinetic or thermodynamic influence in the accumulation. The largest slope that could be 

reached is proportional to 
MD

 

and corresponds to the perfect-sink expression. If the 

slope is smaller, the accumulation is thermodynamically limited and given by Eqn. 

(6.38). If the slope is smaller than predicted by Eqn. (6.38), the accumulation is 

kinetically limited and given by Eqn. (6.41). 

 

6.3.2 Accumulation of Mg with thermodynamic limitations 

 

Fig. 6.6 shows a clear case where thermodynamic limitations due to equilibrium have 

been observed. It corresponds to the Mg binding to DGT devices with a stack of two 
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resin discs in a solution at pH 7.5 and ionic strength of 500 mM.  (Details of the 

experimental setup can be found in Chapter 5, section 5.3.1). 

 

Figure 6.6. Evolution of Mg accumulation at salt background concentration (NaNO3)= 500 mol m-3. 
Markers: experimental accumulations (both discs) in DGT devices with a stack of two resin discs at 
pH=7.5. Continuous line stands for numerical simulation, dashed lines for results obtained with Eqn. 
(6.36) and dotted line for results obtained with Eqn. (6.1), i.e. corresponding to perfect-sink conditions. 

a,Rk =7.0×10-5 m3 mol-1 s-1, MRK =0.7 m3 mol-1, 
M =1.1,

 
*

Mc  =0.093 mol m-3. Other parameters as in 

Figure 6.1. 

 

 

As explained in Chapter 5, the Mg accumulation is kinetically controlled for ionic 

strength above 10 mM. The influence of the ionic strength can be explained by a salt 

effect on the kinetic association constant of Mg, which increases as ionic strength 

decreases due to the increase of the electrostatic attraction between positive Mg cations 

and negative resin sites. This explanation is also consistent with the decrease of 

the %back as ionic strength decreases, since a faster metal binding reduces the 

penetration of the free Mg in the resin disc. Concomitant to the dependence of the 

kinetic association constant on ionic strength, there is an influence on the stability 

constant of the Mg binding to the Chelex beads. Indeed, within the Eigen model, the 

kinetic dissociation constant will be independent of ionic strength, so that the 

dependence of a,Rk  of Mg on ionic strength is the same as that of the stability constant. 

At high ionic strength, the stability constant of the Mg binding to the Chelex beads 

takes the smallest value and, accordingly, equilibrium phenomena can easily be seen at 

earlier accumulation times since the bound metal in equilibrium with the bulk 

concentration takes lower values.  
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Fig. 6.6 shows the bending of the experimental values for metal accumulation (see 

markers) approaching equilibrium conditions for long times (notice the decrease of the 

slope of the accumulation). Fig. 6.6 also shows, in continuous line, the accumulation 

calculated with numerical simulation after fitting the equilibrium and kinetic association 

constants to the experimentally obtained total accumulation and to the percentage in the 

back resin disc 
24

. These results have been used to plot concentration profiles 

corresponding to different times in Fig. 6.7. The approach to equilibrium is confirmed 

by the increase of the average free metal concentration in the resin domain as time 

increases as Fig. 6.7 indicates. When the concentration of unbound metal in the resin 

approaches the bulk solution concentration, at t>40h (See Fig. 6.7), there is almost no 

net accumulation (the rate of association is close to that of dissociation) as seen at the 

rightmost part of Fig. 6.6. 

 

 

Figure 6.7. Normalized Mg concentration profiles at time 10, 20, 30 and 40 h for the conditions of Fig. 
6.6. Vertical dashed lines indicate the frontiers of each resin gel disc.   

 

A good agreement between Eqn. (6.36), plotted with dashed line, with numerical 

simulation results and experimental accumulations can be seen in Fig. 6.6 using the Mg 

binding parameters estimated in 
24

 and reported in the caption of Fig. 6.6. Experimental 

values of the Boltzmann factor   reported in Chapter 5, Table 5.2, were used.  
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 Competition effects  6.4

 

Now we are going to study the influence of other metal cations on the accumulation 

evolution of a metal cation of interest. This influence can also lead to a departure of the 

linear accumulation regime and to an underestimation of the actual species 

concentration in solution if Eqn. (6.1) is used.  

 

6.4.1 Competition between two metals 

 

In general, in probing metals with DGT, competition effects will arise between a major 

concentration cation and a trace metal. No competition effects are expected between 

trace metals themselves given the large amount of Chelex used per disc. As an example 

we can study the total accumulation of a trace metal (
1
M) in presence of a second metal 

(
2
M) at a higher concentration than that of 

1
M, for different values of the association 

rate constant of 
2
M, 2, MRa

k . Both metals compete to bind to the resin sites. The reactions 

for these metals with resin sites will be: 

 

1 1M R M R   (6.42) 

 

2 2M R M R  (6.43) 

 

Using the numerical simulation program described in Chapter 3, and assuming that the 

interaction between metals is only through the occupation of the resin sites, we can 

obtain the accumulation for both metals at different times. Accumulations of 
1
M and 

2
M, for different values of 2, MRa

k  can be seen in Figure 6.8. In panel (a), the 

accumulation of 
1
M in absence of 

2
M (line 1) does not correspond to perfect-sink 

conditions (dotted line), but is very close. The addition of a big concentration of 
2
M to 

the sample causes a decreasing on the accumulation of 
1
M. The influence of 

2
M on the 

accumulation of 
1
M increases as the value of 2, MRa

k  increases, because the occupation of 

the resin sites by 
2
M is faster.  
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Panel (b) of Figure 6.8 depicts the accumulation of 
2
M. Since 1 2

* *

M M
c c , 

2
M 

requires less time to reach the binding equilibrium than 
1
M. Comparing both panels of 

Figure 6.8 it is clear that as bigger is the accumulation of 
2
M, lower is the accumulation 

of 
1
M, for a constant value of 1

*

M
c . This is an evident case of competition. 

 

   

                                    (a)                                                                 (b) 

Figure 6.8. Accumulations of  1M panel (a) and 2M panel (b), in a standard DGT device using numerical 

simulations. (1) is the accumulation of 1M without 2M. In both panels: (2) 2, MRa
k =1.0×10-4 m3mol-1s-1, 

(3) 2, MRa
k =1.0×10-3 m3mol-1s-1and (4) 2, MRa

k =5.0×10-3 m3mol-1s-1.  Other parameters used: 
1

*

M
c =0.01 

mol m-3, 
2

*

M
c =5.0 mol m-3, 

TRc =28 mol m-3,  =1.0, 1, MRa
k =1.0×10-2 m3mol-1s-1, 

1d, MR
k =1.0×10-4 s-1, 

2d, MR
k =1.0×10-4 s-1, 1 M

D =5.0×10-10 m2 s-1, 2 M
D =5.0×10-10 m2 s-1, 

r =4×10-4 m, 
g =1.1×10-3 m. 

Dashed line stands for accumulation in perfect-sink conditions. 

 

 

6.4.2 Analytical approximate expression for the DGT accumulation of 

a metal when competitive effects are non-negligible 

 

We aim at finding an approximate analytical expression for the accumulation of a trace 

metal (
1
M) in presence of a second metal (

2
M) at a higher concentration than that of 

1
M. 

Both metals compete to bind to the resin sites in a set of parallel reactions: 

1 1M R M R   (6.44) 

 

2 2M R M R  (6.45) 
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Assumptions: 

 

1. The concentration profiles of the free and bound metal for both 
1
M and 

2
M are 

homogeneous in the resin domain and the concentration profiles of both free metals 

are linear in the diffusive gel. 

2. The interaction between metals is only through the occupation of the resin sites.  

3. Electrostatic effects derived by low ionic strength can be described by a partitioning 

of the charged species at the resin-diffusive gel interface. 

 

An equation parallel to (6.21) can be written for each metal 
1
M and 

2
M which indicates 

that interaction effects are just due to the free resin sites. With assumptions 1, 2 and 3, 

and a time independent concentration of free resin sites, Eqns. (6.30) and (6.31) hold for 

each metal.  

 

The concentrations of bound 
1
M or 

2
M can then be written as  

   *

M RMR MR MR
1 ei i

i
i

tr b
c t K c c


   (6.46) 

 

and the accumulation of 
1
M 

   1
1

11 1

*

M RT, M M MR MR
( ) 1 e

b tr r rn t A c A K c ct  
    (6.47) 

 

where 
1

*

MR
c  and 

2

*

MR
c  are the bulk concentrations of the metals, 

1b  and 2b  are given by 

Eqn. (6.32), and 1MR
K and 2 MR

K  are the respective stability constants between 
1
M or 

2
M 

and R. 

 

Due to the high concentration of 
2
M, its time to reach equilibrium can be much shorter 

than the deployment time. The metal concentration in the resin domain can then be 

approximated by 2 2

*

M M

rc c  and since 2 2 1 1

* *

MR M MR MR
K c K c , Rc  can be written as  

2 2

TR
R *

MMR MR
1

c
c

K c


 
 (6.48) 
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Finally, if 2 2

*

MR M
1K c   and 

1

2

M

a, MR
M

r g

D
k

 
 


, the approximation (6.47) becomes 

   1
d, MR

11 1

*

R M MR M

2

T, M
1 e

k trcn cA Kt 


    (6.49) 

Alternatively, when a time independent Rc  is not a good approximation during the 

accumulation of 
1
M, Rc  could be written as  

   1
1 1 2

2
2

TR
R * *

M MMR MR MR M
11 1

)
e e

(
b t b t

c
c t

K c K c
 

 


   
 (6.50) 

 

Which considers that the occupied sites decrease as time increases due to the 

accumulation of both 
1
M and 

2
M. 

 

To check the accuracy of the analytical expressions deduced in section 2.1, comparisons 

between accumulations of metal 
1
M obtained using numerical simulations (continuous 

blue line) and using Eqns. (6.47)-(6.48) (dashed green line), Eqns. (6.48)-(6.49) (dotted 

black line) and Eqns. (6.47)-(6.50) (dashed dotted red line) have been done. Different 

values of the stability constant between 
1
M and the resin sites have been used in the 

different panels. The stability constant of 
1
M in Panel a) corresponds to the Mn stability 

constant under the conditions of Fig. 6.10. 

 

The accuracy of Eqns. (6.49)-(6.48) (dotted black line) with respect to values computed 

with  numerical simulation is quite good, justifying its use from now on. Increasing the 

stability constant, panels b) and c), the accuracy of Eqns. (6.48)-(6.49) decreases, but 

the approximation based on the use of (6.47)-(6.48) (dashed green line) maintains a 

good agreement with the numerical simulation results. This suggests that a good 

approximation for a general case could be based on Eqns. (6.47)-(6.48). 
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                                    (a)                                                                 (b) 

 
(c) 

Figure 6.9. Accumulation of trace metal (1M) in presence of a second metal (2M) in a standard DGT 
device using numerical simulations (continuous blue line), Eqns. (6.47)-(6.48) (dashed green line), 
Eqns. (6.48)-(6.49) (dotted black line) and Eqns. (6.47)-(6.50) (dashed dotted red line). Values used for 

the stability constant were: Panel (a) 1MR
K =2.3 mol m-3, panel (b) 1MR

K =5.0 mol m-3 and panel (c) 

1MR
K =50.0 mol m-3.  Other parameters used: 

1

*

M
c =0.01 mol m-3, 

2

*

M
c =60.0 mol m-3, 

TRc =28 mol m-3, 

M =1.0, 1d, MR
k =1.7×10-4 s-1, 2d, MR

k =1.5×10-4 s-1, 2 MR
K =0.13 mol m-3, 1 M

D =5.39×10-10 m2 s-1, 2 M
D

=4.94×10-10 m2 s-1. Rest of parameters as in Fig 6.4. 

 

 

6.4.3 Accumulation of Mn in presence of Mg 

 

Markers in Fig. 6.10 correspond to the DGT accumulation of Mn in presence of 

different concentrations of Mg at fixed ionic strength, 155 mol m
-3

, and pH 5.5. In data 

reported in reference 
15

, Mn accumulation follows the trend of perfect-sink conditions 

when the ionic strength in the system is 10 mol m
-3

. The experimental accumulation of 

Mn when  Mg is absent (square markers in Fig. 6.10) is lower than the perfect-sink 

expectation. This is an effect of the ionic strength which has been increased from 10 to 

155 mol m
-3

. Thus, the decrease and the bending of the Mn accumulation reflect the 
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decrease of the stability constant of the Mn binding to the Chelex due to the screening 

of the electric charge by the salt background.  

 

Fig. 6.10 also shows that, when the concentration of Mg increases keeping fixed the 

ionic strength, the accumulation of Mn decreases, which is an evidence of the 

competing effects between Mg and Mn. As in the previous case (Fig. 6.8) the binding of 

Mg reduces Rc  and, the association rate of Mn (first term in Eqn. (6.18)) decreases. 

Accordingly, both the slope of the Mn accumulation at short times and the plateau 

reached by the Mn accumulation decrease as the Mg concentration increases.  

 

The simulation tool described in Chapter 3 was used to fit the kinetic and stability 

constants of Mn and Mg. In order to reduce the numbers of unknowns to be 

simultaneously fitted, in a first step, the Mn kinetic constants (
a,MnRk  and 

d,MnRk ) were 

fitted using the accumulation data for only Mn (red markers in Fig. 6.10). These 

parameters were then kept fixed and (
a,MgRk  and 

d,MgRk ) were obtained by fitting the Mn 

accumulations in the presence of Mg. The values of these constants are reported in 

Table 6.1 while continuous lines in Figure 6.10 show the accumulation predicted by 

numerical simulation with these values.   

 

Table 6.1. Kinetic parameters of Mn and Mg obtain by numerical simulation fitting accumulations of 
Mn (in presence of different concentrations of Mg) to experimental results. Experimental details in 
Figure 6.10.  

 

ka,MR                     

(m
3
 mol

-1
·s

-1
) 

kd,MR                                  

(s
-1

) 

KMR                     

(m
3
 mol

-1
) 

Mn 4.0×10
-4

 1.7×10
-4

 2.35 

Mg 1.9×10
-5

 1.5×10
-4

 0.13 
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Figure 6.10. Mn accumulation in a standard DGT device from a solution with *
Mn

c = 3.64×10-3 mol m-3 

in the presence of different concentrations of Mg. Dashed line corresponds to perfect-sink 

approximation. Markers correspond to experimental values for: only Mn (squares), *
Mg

c =5.5 mol m-3 

(triangles), *
Mg

c =27.7 mol m-3 (circles) and *
Mg

c =60.8 mol m-3 (diamonds). Continuous lines were 

obtained with numerical simulation and parameters of table 6.1. Dotted lines were calculated with 

Eqn. (6.51) and kinetic constants of table 6.2. Labels stand for: only Mn (label 1), *
Mg

c =5.5 mol m-3 

(label 2), *
Mg

c =27.7 mol m-3 (label 3) and *
Mg

c =60.8 mol m-3 (label 4). Other parameters used: ionic 

strength 155 mol m-3 , M =1.1, a,MnRk  =4.0×10-4 m3 mol-1 s-1, MnRK  = 2.35 m3 mol-1, a,MgRk =1.9×10-5 m3 

mol-1 s-1, 
MgRK =0.13 m3 mol-1, MnD =5.39×10-10 m2 s-1and MgD =4.94 ×10-10 m2 s-1.  

 

 

The above obtained analytical expressions  (6.47)-(6.50) can also be used to fit the Mn 

accumulations in presence of Mg. Assuming that the Mg occupation is in equilibrium 

along the binding of Mn, the number of free sites that the Mn can occupy is given by 

Eqn.(6.48)  so that Eqn. (6.47) becomes:  

   1*TR
M MnR Mn*

M

r

MgR Mg

T,Mn 1 e
1

b tc
K c

K c

A
n t

 






 (6.51) 

 

where 
1b  is given by Eqn. (6.32) with the parameters corresponding to Mn.  

 

As done above in fitting the experimental data with the numerical simulation code, in 

order to reduce the number of unknowns to be simultaneously fitted with Eqn. (6.51), 

the kinetic parameters of Mn can be determined from the Mn accumulation in absence 
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of Mg, while the stability constant of Mg is then obtained from the accumulations in 

presence of Mg in the system. The results are reported in Table 6.2, while Fig. 6.10 

depicts in dotted line the corresponding calculated accumulations. The agreement with 

experimental data is quite reasonable and similar to that of the numerical simulation 

reported in the same figure. It could, then, be concluded that for this system, the simple 

Eqn. (6.51) is able to reach a good agreement with the experimental data using kinetic 

and thermodynamic values in the order of those obtained by using more sophisticated 

numerical methods.  

 

Table 6.2. Kinetic parameters of Mn and stability constant of Mg derived using Eqn (6.51) to fit the 
accumulation data at ionic strength 155 mol m-3 and pH 5.5 reported in Fig. 6.10. Parameters used 
are those reported in the caption of Fig. 6.10. 

 ka,R                      

(m
3 

mol
-1

 s
-1

) 

kd,R                  

(s
-1

) 

KMR                

(m
3
 mol

-1
) 

Mn 7.0 × 10
-5

 3.0 × 10
-5

 2.19 

Mg - - 0.07 

 

 

The application of Eqn. (6.51) to determine 
*

Mnc , requires the knowledge of *

Mgc , 
MgRK , 

MnRK , d,Mnk , 

 

 and the geometrical parameters of the DGT device.. These parameters 

have to be determined in dedicated experiments at the pH, temperature and ionic 

strength of the sample. In the present case, it has been quite simple, since Mn and Mg 

parameters could be determined in separate experiments with only one metal in the 

system. Once these parameters are known, 
*

Mnc  can be calculated from the 

accumulation. Applying this process to the accumulations shown in Fig 6.10, one 

obtains the *
Mn

c  values reported in Table 6.3, which are in reasonable agreement with the 

experimental ones, significantly improving the estimations based on perfect-sink 

conditions. The highest error arises for the highest Mg concentration since the 

accumulation is, then, the lowest one, this increasing the relative error of Eqn. (6.51). 
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Table 6.3. Calculation of 
*

Mnc  using the perfect-sink approximation (Eqn. (6.1)) or the competition 

approximation, Eqn. (6.51), in the Mg/Mn competing system with parameters and Mn experimental 
accumulations reported in Fig. 6.10 at 24 h.  

Experimental bulk 
concentrations (mol m-3) 

*
Mn

c  calculated (mol m-3) 

*
Mn

c  *
Mg

c  
From Eqn. (6.1) 

(Perf. Sink) 

From Eqn. (6.51) 
(competition explicitly 

included) 

3.64×10
-3

 

5.3 9.02×10-4 2.49×10-3 

25 5.22×10-4 3.87×10-3 

53 3.68×10-4 5.27×10-3 

 

 

 Conclusions 6.5

  

There are some situations in which steady-state and perfect-sink conditions are not 

fulfilled in DGT deployments. Equilibrium or competition effects may produce non-

linear accumulations with time. These situations have been analysed in this chapter.  

 

There have been developed a set of analytical approximate expressions to reproduce the 

DGT accumulations when there are kinetic limitations in the metal binding to the resin, 

saturation or equilibrium influence or non-negligible competition effects. The binding of 

Mg or Mn have been used to exemplify the use of these expressions.  

 

Values of concentrations obtained with the simple approximate expressions reported in 

this work significantly improve the estimations based on perfect-sink conditions. Such 

an approach opens up the possibility of using DGT more widely in challenging systems 

and allows DGT data to be interpreted more fully.  

 

For the studied conditions, accumulations of Mg or Mn in single metal systems have 

provided examples of equilibrium effects.  

 

In a mixed system, the accumulation of Mg reduces the accumulation rate of Mn, due to 

competition between Mg and Mn for the resin sites. 
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CHAPTER 7 
 

 

 

 

 

7.  MIXED LIGAND SYSTEMS 
 

 

 

 Introduction 7.1

 

The knowledge of the lability degree of the complexes in natural systems is a key issue 

to know which species contribute to the metal flux and, in this way, to improve our 

knowledge of the functioning of the natural systems. The lability degree quantifies the 

contribution of a complex to the metal flux arising in a consuming limiting surface, 
1
 

labile

free

free

J J

J J






 (7.1) 

In this definition, J is the current flux, 

*

M
Mfree

c
J D

g
  is the flux in the system if the 

complex was inert and labileJ  labels the flux in the system if the complex was labile, i. e., 

if dissociation was fast enough to reach equilibrium with the metal at any relevant 

position of the diffusion domain.  

 

For single ligand systems (SLS), the lability degree can be experimentally measured as 

a normalized flux. If the speciation is known, freeJ  can be computed, but for the case 

where almost all the metal is complexed, the determination of   is still simpler since  

M

labile ML
M

M

no ligand

nJ

J D
n

D




 
 
 
 

 (7.2) 

where nM is the current accumulation and M

no ligandn 
 is the accumulation in absence of 

ligand. However, it should be recalled that the lability degree is not a characteristic of a 

complex since it depends on the sensor as well as on the composition of the system. The 

analysis of this dependence is of special interest when the system contains a mixtue of 

ligands. 
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In mixed ligand systems, complexes can mutually influence their lability degrees.
2-4

 The 

difference between the measured metal flux in a system that contains a mixture of 

ligands and the value predicted using the lability degree of each complex in a SLS is 

called the mixture effect.
4
 This effect has been studied previously in conditions of 

excess of ligand.
4,5

 In these cases it has been found that the addition of a complex in the 

solution tends to increase the lability of complexes more inert than the added one and to 

decrease the lability of those more labile than the added one. However, the assumption 

of ligand excess could be unrealistic since strong ligands can exhibit low concentrations 

in natural systems or, alternatively, the complex with the strongest ligand can dominate 

the speciation reducing the mixture to a single complex.  

 

It seems then timely to examine the mixture effect in non-ligand excess conditions, and 

this will be the subject of this chapter.  

 

 Dependence of the total accumulation and the lability 7.2

degree on the ligand concentration in a single ligand system 

 

Let us consider a system with a metal M and a ligand L, which react according to the 

simplest reaction: 

a

d

M L ML
k

k
  (7.3) 

The metal can also be accumulated in the resin domain according to the reaction: 

a,MR

d,MR

M R MR
k

k
  (7.4) 

 

As starting point, the dependence of the lability degree on the concentration of ligand is 

studied using numerical simulations. For systems with only one ligand and where the 

metal profile falls to zero at the resin layer/diffusive gel interface, the lability degree can 

be calculated as: 
1,6,7

 

ML

*

ML

1
rc

c
     (7.5) 

where, ML

rc  labels the concentration of ML  in the resin layer/diffusive gel interface. 
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For 
TL TMc c  it is expected that, in DGT, labilities are almost independent of the ligand 

concentration. In references 
1,5,8

, an analytical expression for the lability under excess of 

ligand conditions is reported: 

 

 

'

' '

ML ML

1
1

coth 1 tanh

K

g g g r
K K

m m




 
 


 

  
     

   

 (7.6) 

 

which can approximately be reduced to:  

ML ML

1
1

1 tanh
g r



 

 
 

  
 

 (7.7) 

a value independent of the ligand concentration and only dependent on the parameters 

characterizing the dissociation in the resin domain since ML , the complex penetration 

parameter, can be calculated as: 

ML
ML

d

D

k
   (7.8) 

 

Eqn. (7.7) was obtained assuming that almost all the metal accumulation comes from 

dissociation of the complex in the resin domain whenever 1K    as in the cases of 

interest.  

 

According to Eqn. (7.7), the lability degree of a complex in a SLS is almost independent 

of the ligand concentration. Thus, the measurement of the lability degree in these 

systems can be done at any ligand concentration without influence of these conditions 

on the mixture effect, when this lability degree is used to predict the accumulation in a 

mixture.  

 

Figure 7.1a shows the lability degree obtained with numerical simulation, for complexes 

with different stabilities. As shown at the rightmost part of the figure, when TL TMc c , 

the lability degree tends to a constant that coincides with the result obtained with Eqn. 

(7.7) (see Table 7.1). The almost independence of the lability degree on TLc  supports 

that almost all the metal accumulated in the device comes from dissociation of the 
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complex inside the resin layer. In this layer there is not free metal concentration when 

the resin acts as a perfect-sink and then, the ligand concentration is useless for shifting 

the dissociation process.  

 

  

                                              (a)                                                                                (b) 

Figure 7.1.  Lability degree of the complex (ξ) and total accumulation of metal ( Mn  ) as functions of 

TLc in a single ligand system. Results obtained using numerical simulation for different values of 

stability constant. Parameters used:  
TMc = 10-2 mol m-3, 

MD = 6.09 × 10-10 m2 s-1, 
LD = 4.26 × 10-10 m2 s-1, 

MLD = 4.26 × 10-10 m2 s-1, r =4×10-4 m, g =1.1×10-3 m, 
T,Rc =28 mol m-3, 

ak =104 m3 mol-1 s-1, t=10h. 

Perfect-sink conditions between M and the resin sites have been used. 

 

Table 7.1. Lability degree of the complex (ξ) (calculated with Eqn. (7.7)) and total accumulation of 
metal (calculated with Eqn. (7.14)) for different values of stability constant. Parameters used as in 
Figure 7.1. 

K (m
3
 mol

-1
) 10

6
 10

7
 10

8
 

ξ 0.09 0.48 0.84 

Tn  (nmol) 4.9 25.4 44.3 

 

However, for TL TMc c , the lability degree decreases as TLc  decreases. When ligand 

excess conditions are not valid, the ligand concentration profile is not flat. Instead, the 

free ligand concentration is higher inside the resin than in the diffusive gel, as shown in 

Fig. 7.2b since there is a net flux of free ligand from the resin to the diffusive gel, in 

order to reach steady-state conditions. The increasing ligand concentration that finds the 

free metal and the complex in their diffusion towards the resin disc, leads to a shift of 

the complexation process towards association. Accordingly, the lability degree of the 

complex and the concentration of free metal (Fig. 7.2a) decrease. Notice that, the 

lability degree tends to a constant value, when TLc  tends to zero.  
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                                              (a)                                                                                (b) 

Figure 7.2. Normalized concentration profiles of species in a single ligand system. Panel (a) metal and 

complex. Panel (b) ligand.  Parameters used: 
TMc = 10-2 mol m-3, 

TLc =9.8×10-2 mol m-3 , ak =104 m3mol-1s-

1 and K =106 m3mol-1. Other parameters as in Fig. 7.1. 

 

Conversely, the accumulation increases as TLc decreases (see the leftmost part of Fig. 

7.1b). This growth is due to the increasing concentration of free metal in the bulk 

solution. The accumulation reaches a maximum value when there is no metal 

complexed in the bulk solution and all the metal transported to the resin is free. The 

maximum accumulation value in Fig. 7.1b is 75.7 nmol, a value that can be calculated 

as:  

 
TL TL

*

M M
M 0 0 gc c

D c
n J At At

 

 
   

 

  (7.9) 

 

The results of this section indicate that under non ligand excess conditions, the 

concentrations used in the SLS to measure the lability degree can be very important 

when this lability degree has to be used in a system mixture. The dependence of the 

lability degree on the ligand concentration is especially important for weak complexes, 

see curve K= 10
6
 m

3
 mol

-1
 in Figure 7.1a, which tend to be labile in excess of ligand 

conditions and can drop to almost inert in non-excess of ligand conditions. Lability of 

strong ligands shows a more reduced dependence on the ligand concentration since they 

tend to be already inert or partially labile even in excess of ligand conditions (see curve 

K= 10
8
 m

3
 mol

-1
 in Figure 7.1a). 

 

 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.4 0.8 1.2 1.6

x(mm)

*

i

i

c

c

*

ML

ML

c

c

*

M

M

c

c

Resin disc                               Diffusive gel

B
u

lk
 s

o
lu

ti
o

n

0

50

100

150

200

250

0.0 0.4 0.8 1.2 1.6

x(mm)

Resin disc                               Diffusive gel

B
u

lk
 s

o
lu

ti
o

n

*

L

L

c

c
*

i

i

c

c



CHAPTER 7 – Mixed ligand systems 

 

160 
 

 System with one metal and h ligands 7.3

 

Let us consider a solution containing one metal M and h ligands 1L , 2 L ,… Lh , which  

react according to the general scheme: 

a,

d,

M L M L
j

j

kj j

k
  (7.10) 

where: 

*
a, M L

* *
d, M L

j

j

j

j

j

k c
K

k c c
   (7.11) 

 

is the stability constant of the above reaction and 
a, jk  and 

d, jk  stand for the association 

and the dissociation rate constants between M and Lj , respectively. 

 

As shown in references 
4,5

, the lability degree of a complex M Lj  under perfect-sink 

conditions can be written as: 

M L

*

M L

1
j

j

r

j

c

c
    (7.12) 

where, 
M Lj

rc  labels the concentration of M Lj  in the resin layer/diffusive gel interface.  

When the DGT device is deployed in the solution, the total metal flux can be computed 

as: 
9
 

* ** *

M M M L M L M M M L M L M L

*
1 1 M L

1
j j j j j

j

rh h

jg g g g
j j

D c D c cD c D c
J

c


    

  
      

  
  

   (7.13) 

 

Eqns. (7.13) is a general expression that applies even without excess of ligand. 

However, the use of this expression requires the knowledge of the labilities of the 

complexes in the mixed system. Reference 
5
 suggests that the accumulation of the metal 

in the mixture can be assessed using the labilities of the complexes measured in the 

single ligand systems as: 
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**
1M M M L M L

M

1

j j
h

h

jg g
j

D cD c
n At 

 





 
   

 
  (7.14) 

where 1h

j
  is the lability of M Lj in the SLS.  

 

The accuracy of Eqn. (7.14) in predicting the accumulation is also assessed in reference 

5
 concluding that Eqn. (7.14) is a good approximation for the DGT accumulation, with 

errors smaller than 10% which can even be reduced to less than 4% when DGT devices 

when a stack of two resin discs are used. However, there could be important differences 

between 
j  and 1h

j
 . Despite, these differences are of opposite sign for different 

complexes and their influence on the total flux tends to cancel as explained below. 

 

 System with one metal and two ligands 7.4

 

Let us now study in detail a mixed system made by a metal (M) and two ligands ( 1L  

and 2 L ) that lead to simple complexes 1M L  and 2M L . All the results presented in this 

section have been obtained by simulation. Two different cases are studied, having in 

common that the strongest ligand is below the total metal concentration and differing in 

the affinity of the strongest ligand. Table 7.2 shows the parameters used in both cases. 

 

Table 7.2. Concentrations, kinetic and stability constants used for simulations in the mixed system. 

 TMc       

(mol m
-3

) 

1T L
c       

(mol m
-3

) 
2T L

c        

(mol m
-3

) 
,1ak        

(m
3
mol

-1
s

-1
) 

,2ak        

(m
3
mol

-1
s

-1
) 

1K       

(m
3
mol

-1
) 

2K       

(m
3
mol

-1
) 

Case 1 0.1 1.0 0.01 – 0.08 10
4
 10

4
 10

6
 10

7
 

Case 2 0.1 1.0 0.01 – 0.08 10
2
 10

4
 10

4
 10

8
 

 

 

Firstly, the systems with the metal and each one of the ligands were studied separately 

to compare the results with those of the mixed system. In the single ligand systems the 

ligand concentration was selected so that the resulting free ligand concentration in the 

bulk solution was equal to that of the mixture. Simulation results for the SLS and of the 

mixture allow to check how the lability degree in a single ligand system is influenced by 

the mixture. 
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7.4.1 Results for case 1 

 

Fig. 7.3. shows the dependence of the lability degree of 1M L  and 2M L  in the mixture 

(continuous lines) on the concentration of the ligand ( 2 L ), which is not in excess with 

respect to the metal (
* -3

T,M 0.1 mol mc  ) while 1L  is in excess with respect to the metal 

concentration. The lability degrees in the SLS are also depicted in Figure 7.3 (markers). 

The lability degree in the mixture of the most inert complex increases with respect to 

the value in the SLS (orange markers and lines) while it slightly decreases for the most 

labile one (blue markers and lines). This pattern coincides with what was previously 

identified for the mixture effect in excess of ligand conditions. 
5
 

 

 

Figure 7.3. Lability degree of the complexes (ξ) as functions of 2

*

L
c  for case 1. Markers represent the 

labilities of complexes 1M L  and 2M L in a SLS. Continuous lines denote the labilities of complexes 1M L  

and 2M L  in the mixed system. Parameters used: MD = 6.09 × 10-10 m2 s-1, LD = 4.26 × 10-10 m2 s-1, MLD = 

4.26 × 10-10 m2 s-1, r =4×10-4 m, g =1.1×10-3 m, 
T,Rc =28 mol m-3, t=5h. Other parameters are 

presented in table 7.2. There were used perfect-sink conditions between M and the resin sites. 

 

 

Equilibrium between M, Lj and M Lj  can be analysed using the relation: 

 
 

MM L L

* * *

MM L L

j j

j j

j

j

c c cQ

K c c c
  (7.15) 

According to the second principle of the Thermodynamics, when 1j jQ K   the system 

is not in equilibrium but tends to increase the complex concentration, M Lj . 
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Analogously, when 1j jQ K   the complex tends to dissociate to reach equilibrium 

while 1j jQ K   means equilibrium situation. Fig.7.4a depicts the ratio 
j jQ K  for 

complexes 1M L  and 2M L in the single ligand systems for case 1, when 
2T L

c = 0.08 mol 

m
-3

.  

  

                                         (a)                                                                                  (b) 

Figure 7.4. Ratios 
j jQ K  in (a) single ligand systems and (b) mixed system, for case 1. Continuous 

orange lines correspond to 1 1Q K  and dotted black lines represent 2 2Q K . 
2T L

c =0.08 mol m-3. Other 

parameters as in Table 7.2 and Fig 7.3. 

 

In the resin domain, none of the complexes are in equilibrium, since 1j jQ K , and 

they tend to dissociate because the concentration of free metal is almost zero. 

Dissociation is also the trend in the reaction layer located in the gel domain close to the 

resin-gel interface. M and 
1M L  are in equilibrium in the rest of the gel domain out of 

the reaction layer, as shown in Fig 7.4a. (continuous orange line). The same is true for 

the complex 
2M L  (see dotted black line in Fig 7.4a).  

 

In the mixed system, both reactions are coupled by the free metal and the concentration 

profiles tend to evolve to a new steady-state. In the new state, the ratio 
1 1Q K  (Fig. 

7.4b) is slightly below 1 in the gel domain, near the resin/gel interface, which means 

that 
1M L  tends to associate.  Fig.7.4b also shows 

2 2 1Q K   in part of the diffusive 

gel, indicating dissociation of 
2M L . This is corroborated in Fig. 7.5a, by comparing the 

profiles of the free metal and those of the complexes in the single ligand systems and in 

the mixture. Let us comment on this comparison with some more detail. We see, for 

instance in Fig. 7.5c that the concentration profile of free M in the single M
2
L system is 

higher than in the single
1M L . In the mixture, the metal profile should accommodate 
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the tendencies of both complexes. Thus a profile in between those in the SLS will 

appear indicating that M
2
L will tend to dissociate to increase the free metal profile up to 

the corresponding SLS system while an opposite behaviour will be exhibited by 
1M L . 

Thus, 
1M L  slightly rises in the mixture (dotted and continuous red lines) and the 

profile of 
2M L goes down (dotted and continuous green lines) in comparison to the 

respective profiles in the SLS. As the lability degree is defined in Equation (7.12), these 

changes in the profiles (at 
rx  ) explain why the lability decreases for 

1M L  

( 1

1 1

h   ) and increases for 
2M L ( 1

2 2

h   ). Notice that although 
2M L  is stronger 

than 
1M L , 

2M L  tends to dissociate along the gel domain.  

  

  

                                         (a)                                                                                  (b) 

 
(c) 

Figure 7.5. Normalized concentration profiles for (a) complexes, (b) ligands and (c) metal, in case 1.  
Dotted lines stand for values in the single ligand systems and continuous lines denote values in the 
mixed system. 

2T L
c =0.08 mol m-3. The rest of parameters as in Table 7.2 and Fig 7.3. 

 

Finally, we have used Eqn. (7.14) to estimate the accumulation in the mixture, using the 

information of the single ligand systems. Results are shown in Table 7.3.  
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Table 7.3. Percentage of metal bounded to 
2 L  in the mixed system and total accumulation of metal 

for different values of 2

*

L
c , obtained with simulation and using Eqn. (7.14) for case 1. Parameters 

used as in Table 7.2 and Fig 7.3. 

2

*

L
c  (mol m

-3
) 0 4.9×10

-3
 1.5×10

-2
 2.1×10

-2
 2.7×10

-2
 4.0×10

-2
 4.6×10

-2
 

% 2M L  0.0% 5.1% 14.5% 18.8% 22.8% 30.1% 33.3% 

Mn  (nmol) 

obtained with 

simulation 

213 208 200 197 193 187 184 

Mn  (nmol) 

calculated with 

Eqn. (7.14) 

 217 208 204 200 193 190 

Discrepancy (%)  4.3 4.0 3.6 3.7 3.4 3.4 

 

 

Table 7.3 indicates that the error in the prediction of the accumulation using the lability 

degree in the single ligand system is smaller than 4% at any ratio 
1 2T L T L

c c  scanned in 

the Table 7.2, which covers the concentration range where both complexes are relevant 

in the mixture.  

 

7.4.2 Results for case 2 

 

Lability degrees for both complexes in the mixture and in the single ligand systems, for 

case 2, are depicted in Figure 7.6. In case 2, a pattern opposite to case 1 appears: the 

lability degree for the most labile complex slightly increases in the mixture with respect 

to the value in the SLS while it decreases for the most inert complex. Thus, results 

obtained for cases 1 and 2 ( Figs. 7.3 and 7.6), indicate that, without excess of ligand, at 

least two different patterns in the mixture system can be identified.  
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Figure 7.6. Lability degree of the complexes (ξ) as functions of 2

*

L
c  for case 2. Markers represent the 

labilities of complexes 1M L  and 2M L in a single ligand system. Continuous lines denote the labilities of 

complexes 1M L  and 2M L  in the mixed system. Parameters used: MD = 6.09 × 10-10 m2 s-1, LD = 4.26 × 

10-10 m2 s-1, MLD = 4.26 × 10-10 m2 s-1, r =4×10-4 m, g =1.1×10-3 m, 
T,Rc =28 mol m-3, t=5h. Other 

parameters are presented in table 7.2. There were used perfect-sink conditions between M and the 
resin sites. 

 

Let us comment on the results of case 2 with some more detail. Fig. 7.7 shows the ratio 

j jQ K  for complexes 1M L  and 2M L  in the single ligand systems, when 
2T L

c = 0.08 

mol m
-3

.  In the resin domain and the reaction layer the ratio 1j jQ K , indicating that 

then  complexes tend to dissociate. In the rest of the gel domain, M+
1
L is in equilibrium 

in the SLS as show in Fig. 7.7a (continuous orange line). For the system 2M L  there 

is a layer near the gel/bulk solution interface, where 
2 2 1Q K   and accordingly, there 

is association between M and 2 L . This result follows from the fact that ligand excess is 

not a good approximation for this system. Indeed, Fig. 7.8b shows an increasing 

concentration profile of the free ligand as the resin disc is approached indicating that the 

metal travelling to the resin disc will tend to associate with this increasing free ligand. 

Consequently, the free metal decreases steeply until there is almost no metal in the 

system and 2 2Q K  recovers a value close to 1. 
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                                   (a)                                                          (b) 

Figure 7.7. Ratios 
j jQ K  in (a) single ligand systems and (b) mixed system, for case 2. Continuous 

orange lines correspond to 1 1Q K  and dotted black lines represent 2 2Q K . 
2T L

c =0.08 mol m-3.  Other 

parameters as in Table 7.2 and Fig 7.3. 

 

In the mixture, 1 1 1Q K   and 2 2 1Q K   in almost all the gel (see Fig. 7.7b) indicating 

that 
1M L  tends to dissociate while 

2M L tends to associate. This trend is expected 

from the free metal profiles depicted in Fig. 7.8c. Notice that now, the metal profile in 

the single 
2M L  system is below that of 

1M L  (against what is depicted in case 1). 

Thus in the  mixture, the metal will follow a compromise between both profiles in the 

SLS so that now, the more inert complex (
2M L ) tends to be more inert as it tends to 

associate to reduce the profile of free metal. We could say that the affinity of the metal 

for 2 L  is stronger than for 1L  so that 
1M L  acts as a source of metal to be bound to the 

increasing 2 L  concentration found approaching the resin domain. If we compare the 

concentration profile for 
2M L  in the SLS (dotted green line in Fig.7.8a) with the 

profile in the mixture, we can see that it has increased, and for this reason 1

2 2

h   . The 

concentration profile of 
1M L  slightly decreases (although it is hardly seen in the plot), 

and so there is a mild increment of the lability of 1M L  ( 1

1 1

h   ). 
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                                            (a)                                                                               (b) 

 
(c) 

Figure 7.8. Normalized concentration profiles for (a) complexes, (b) ligands and (c) metal, in case 2.  
Dotted lines stand for values in the single ligand system and continuous lines denote values in the 
mixed system. 

2T L
c =0.08 mol m-3. The rest of parameters as in Table 7.2 and Fig 7.3 

 

Eqn. (7.14) was used to estimate the accumulation in the mixture, using the information 

of the single ligand systems for case 2. Results are presented in table 7.4. It indicates 

that the mixture error can rise up to 24% when 80% of the metal in the mixture system 

corresponds to 2M L . 

 

Table 7.4. Percentage of metal bounded to 
2 L  in the mixed system and total accumulation of metal 

for different values of 2

*

L
c , obtained with simulation and using Eqn. (7.14), for case 2. Parameters 

used as in Table 7.2 and Fig 7.3 

2

*

L
c  (mol m

-3
) 0 

1.01×10
-

5
 

3.98×10
-

5
 

6.25×10
-

5
 

9.46×10
-

5
 

2.24×10
-

5
 

3.83×10
-

5
 

% 2M L  0 10.0% 30.0% 39.9% 49.9% 69.8% 79.6% 

n (nmol) obtained 

with simulation 
215 190 150 130 110 71 53 

n (nmol) 

calculated with 

Eqn. (7.14) 

 202 163 143 123 84 65 

Discrepancy   6.4% 8.6% 10.1% 12.3% 18.7% 22.4% 
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 Study of a system with Ni, NTA and EtDiam  7.5

 

In this section, a system with Ni, Nitrilotriacetic acid (NTA) and Ethylenediamine 

(EtDiam), as a practical case of mixed systems, is studied. Experimental values for 

accumulations and %back are obtained for Ni-NTA and Ni-EtDiam in single ligand 

systems, in order to estimate labilities and kinetic constants. With these parameters, 

predictions for the accumulations in the mixed system are made. These predictions are 

compared with experimental values of accumulations and with values obtained by 

numerical simulation.  

 

7.5.1 Ni-NTA system 

 

DGT devices with two resin discs were deployed in a solution containing 9.2×10
-3

 mol 

m
-3

 of Ni and 10
-2

 mol m
-3

 of NTA. The Ionic strength of the solution was maintained 

constant at 51 mol m
-3

 and the pH at 8.0. Experimental results for total and %back 

accumulations of Ni in Ni-NTA system are presented in Table 7.5. 

 

Table 7.5. Total accumulations of Ni ( Nin ), percentages of Ni accumulated on the back resin (%back) 

and labilities ( 1

Ni-NTA h ) in the Ni-NTA system for different times.  pH=8.0, Ionic strength= 51 mol m-3. 

 
Ni-NTA system 

t (h) %back  Ni
n  (nmol) 

1

Ni-NTA h
 

8 39.7% 24 

0.51 16 40.8% 40 

24 50.0% 63 

 

The lability degree of the Ni-NTA complex is also presented in Table 7.5. It was 

calculated as: 

 

M M

*
labile MLML

MLM

M

/ ( )

/ ( )no ligand

n At n AtJ

J cD
Dn At

gD




  
   
   

  

 (7.16) 
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where Mn  and 
M

no ligandn   are the accumulations of metal in the same system, with and 

without ligand respectively. This expression can be used whenever the amount of free 

metal is very low, as shown previously. 

 

The main reactions for this system are: 

a,Ni-NTA

d,Ni-NTA

Ni + NTA Ni-NTA
k

k
 (7.17) 

a,H-NTA

d,H-NTA

H + NTA H-NTA
k

k
 (7.18) 

 

Reaction (7.17) is the complexation reaction between the metal and NTA to form the 1:1 

stoichiometric complex Ni-NTA. Ni does not form complexes of higher stoichiometry 

with NTA within the range of concentrations analysed in this work. Reaction (7.18) is 

the protonation of NTA.  

 

There is an additional reaction, because Ni can be accumulated in the resin domain 

according to:  

 

a,NiR

d,NiR

Ni R Ni-R
k

k
  (7.19) 

 

Values for the kinetic constants were estimated using numerical simulation to predict 

the Ni accumulations presented in Table 7.5. Details of the fitting procedure are 

explained in the supporting information. Values for the estimated kinetic constants are 

presented in Table.7.9. 

 

Assuming that protonation reactions are fast enough to be considered that reach 

equilibrium instantaneously at any spatial position and assuming that the diffusion of 

protons is so fast that there is an homogenous proton concentration profile,  Ni- NTA 

system can be reduced to a system where Ni reacts with only one species that we can 

call as the effective ligand NTAeff . 
10

 Thus,  

 

a,Ni-NTA

d,Ni-NTA

Ni NTA Ni-NTA

eff

eff

k
eff

k

  (7.20) 
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With: 

NTA NTA H NTA
effc c c    (7.21) 

Where: 

NTA NTA H NTA
effc c c    (7.22) 

a,Ni-NTA

a,Ni-NTA

H-NTA H1

eff
k

k
K c




 (7.23) 

d,Ni-NTA d,Ni-NTA
effk k  (7.24) 

a,Ni-NTA

Ni-NTA

d,Ni-NTA

eff

eff

eff

k
K

k
  (7.25) 

 

7.5.2 Ni-EtDiam system 

 

This system was studied using DGT devices with two resin discs deployed in a solution 

containing  with 2.4×10
-2

 mol m
-3

 of Ni and 1.0 mol m
-3

 of EtDiam. The Ionic strength 

of the solution was maintained constant at 51 mol m
-3

 and the pH at 8.0. Table 7.6 

shows the results for total and %back accumulations of Ni in this system. 

 

Table 7.6. Total accumulations of Ni ( Nin ), percentages of Ni accumulated on the back resin (%back) 

and labilities in the Ni-EtDiam system for different times.  pH=8.0, Ionic strength= 0.051 mol L-1. 

 
Ni-EtDiam system 

t (h) %back Ni
n  (nmol) 

1

Ni-EtDiam h
 

8 4.9 116 

1.0 16 7.3 243 

24 3.9 362 

 

In both the resin layer and diffusive gel, the species present in the Ni-EtDiam system are 

involved in the following set of reactions: 

a,Ni-EtDiam

d,Ni-EtDiam

Ni + EtDiam Ni-EtDiam
k

k
 (7.26) 

a,Ni-EtDiam2

d,Ni-EtDiam2

2Ni-EtDiam + EtDiam Ni-EtDiam
k

k
 (7.27) 
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a,Ni-EtDiam3

d,Ni-EtDiam3

2 3Ni-EtDiam + EtDiam Ni-EtDiam
k

k
 (7.28) 

a,H-EtDiam

d,H-EtDiam

H + EtDiam H-EtDiam
k

k
 (7.29) 

a,H -EtDiam2

d,H -EtDiam2

2H + H-EtDiam H -EtDiam
k

k
 (7.30) 

 

EtDiam is involved in two acid-base equilibria, Eqns. (7.29) and (7.30). Additionally, Ni 

can form Ni-EtDiam , 2Ni-EtDiam  and 3Ni-EtDiam  complexes.  Eqn. (7.19), for the 

reaction of Ni with the resin sites, is also present in this system.  Association and 

dissociation kinetic constants were estimated using numerical simulation to fit the 

experimental Ni accumulation data presented in Table 7.6. Details of the fitting 

procedure are reported in the supporting information. Values for the kinetic and stability 

constants used in simulations are presented in Table.7.9. 

 

Since the experimental setup for this system uses excess of ligand conditions, assuming 

that protonation is a fast process that instantaneously reaches equilibrium, and assuming 

that Ni-EtDiami  are in equilibrium (for i >1), Ni-EtDiam system can also be reduced to 

a simpler equivalent system: 
10

 

a,Ni-EtDiam

d,Ni-EtDiam

Ni EtDiam Ni-EtDiam

eff

eff

k
eff eff

k

  (7.31) 

with: 

2EtDiam EtDiam H EtDiam H -EtDiam
effc c c c    (7.32) 

2 3Ni-EtDiam Ni-EtDiam Ni-EtDiam Ni-EtDiam
effc c c c    (7.33) 

a,Ni-EtDiam

a,Ni-EtDiam
eff

k
k

B
  (7.34) 

2

d,Ni-EtDiam

d,Ni-EtDiam

Ni-EtDiam EtDiam
1

eff

eff

k
k

K c

B





 (7.35) 

2

2

H-EtDiam H H-EtDiam H -EtDiam H1B K c K K c     (7.36) 

a,Ni-EtDiam

Ni-EtDiam

d,Ni-EtDiam

eff

eff

eff

k
K

k
  (7.37) 
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The experimental lability degree presented in Table 7.6 was calculated using Eqn. (7.16) 

and corresponds to Ni-EtDiameff  complex.  

 

7.5.3 Ni-NTA-EtDiam system 

 

Values of the labilities obtained in the SLS and Eqn. (7.14) can be used to predict 

accumulations in a mixed system. In the case of mixed systems composed by Ni, NTA 

and EtDiam, Eqn. (7.14) turns into: 

*  *
1 1Ni-NTA Ni-NTA Ni-EtDiam Ni-EtDiam

Ni Ni-NTA Ni-EtDiam

eff eff
h h

g g

D c D c
n At  

 

  
  

 
 (7.38) 

 

where it was taking into account that the amount of free metal is negligible and effective 

species have been used. 

  

Mixture and SLS experiments were made using total concentrations that lead to a 

common bulk concentration of each free ligand in both, the SLS and the mixture 

system. This procedure looks for an estimation of the lability of the complex measured 

in the SLS pertinent for the mixture. The accuracy of this procedure was studied using 

some examples in section 7.2. Accumulations obtained with Eqn. (7.38) can be 

compared with values obtained experimentally and with the values predicted by 

numerical simulation of the mixture using for the reactions (7.17), (7.18) and (7.26-

7.30), the physicochemical parameters fitted from the data of the SLS and gathered in 

table 7.9. The resulting accumulations are reported in Table 7.7.  
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Table 7.7. Total accumulations of Ni for different times in the mixed system. Values obtained by 

simulation, with Eqn. (7.38) and experimentally. Parameters used: 
*

Ni-NTAc = 9.74×10-3 mol m-3, 

 *

Ni-EtDiam

effc = 1.32×10-2 mol m-3, 
1

Ni-NTA

h 
=0.50, 

1

Ni-EtDiam

h 
=0.99, Ni-NTAD = 3.99 × 10-10 m2 s-1, 

Ni-EtDiam

effD = 4.40 × 10-10 m2 s-1, pH=8.0,   =2.0. Values for kinetic and stability constants used for 

simulations are presented in Table 7.9.  

t (h) %back 
Nin  (nmol) 

Experimental 

values 

Nin  (nmol) 

predicted with 

Eqn. (7.38) 

Nin  (nmol) 

Obtained by 

simulation 

Discrepancy 

between 

predicted and 

simulated 

results 

Discrepancy 

between 

predicted and 

experimental 

results 

8 13.3% 72 89 80 10% 19% 

16 15.4% 137 177 162 8% 23% 

24 11.6% 232 266 243 9% 13% 

 

 

Accumulations obtained with Eqn. (7.38) are close to the values obtained with 

simulation, with discrepancies below 10%. This discrepancy can be used as an 

assessment of the accuracy of Eqn. (7.38) in predicting the accumulation. In other 

words, this discrepancy can be interpreted as a measurement of the error due to 

replacing the lability degree in the mixture with the lability degree of the SLS computed 

as indicated above. The difference between the accumulations calculated with Eqn. 

(7.38) and the experimental values are bigger, in the order of 13% for 24h, since they 

include the experimental error in the determination of 1h

i
 . 

 

Concentration profiles for effective species, in both single ligand and mixed systems, 

are presented in Figure 7.9. Concentration profiles show that this case is similar to the 

case 2 analysed in section 7.4.2, but there is a discontinuity of the concentration profile 

of charged species at the resin layer/diffusive gel interface, due to the Boltzmann factor.  

 

For the Ni+EtDiameff  system, there are excess of ligand conditions and the 

concentration profile of EtDiameff  is flat (homogeneous) in the resin and diffusive gel 

domains both for the SLS and the mixture with the discontinuity associated to   =2.0 

at the interface. Additionally, Fig. 7.9a shows that the concentration of Ni-EtDiameff  is 

higher in the SLS system (dotted red line) than in the mixed one (continuous red line) 

indicating that there is more dissociation of Ni-EtDiameff  in the mixed system than in 

the SLS.  
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Concerning the Ni+NTA  system, non-excess of ligand conditions are considered. The 

NTA
eff

 concentration profile shows that there is a flux of ligand from the resin to the 

bulk solution (orange lines in Fig. 7.9b). The concentration profile of Ni-NTA  is 

higher when the complex change from SLS (dotted green line in Fig. 7.9a) to the mixed 

system (continuous green line in Fig. 7.9a) indicating that the rate of association 

increases when the complex changes from the SLS to the mixed system.     

 

 

(a) (b) 

 

 
(c) 

Figure 7.9. Normalized concentration profiles for (a) complexes, (b) ligands and (c) free Ni.  Dotted 
lines stand for values in the SLS and continuous lines denote values in the mixed system. Parameters 

used: 
T,Nic  = 2.5 ×10-3 mol m-3, 

T,EtDiamc = 1.0 mol m-3, 
T,NTAc = 10-2 mol m-3, NiD = 6.08 × 10-10 m2 s-1, 

Ni-NTAD = 3.97 × 10-10 m2 s-1, 
Ni-EtDiam

effD = 4.37 × 10-10 m2 s-1 , pH=8.0, Ionic strength= 0.051 mol L-1. 

 

 

This behaviour can be easily understood considering the concentration profile of free Ni 

as shown in Fig. 7.9c. In the SLS, the free Ni in the Ni+EtDiameff  system is higher than 

in the single Ni+NTA  system. In the mixture, the concentration profile of free Ni has 

to accommodate the effects of both complexes evolving to a new intermediate profile as 

seen in Fig. 7.9c. As in this new profile the free Ni is smaller than in the single 

Ni+EtDiameff , the complex Ni-EtDiameff  will tend to dissociate in the mixture to 
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increase the free metal profile up to the corresponding SLS system while Ni+NTA  will 

tend to associate. It means that, in the mixture, the concentration of Ni-EtDiameff  

decreases, and the concentration of Ni-NTA increases in the gel with respect to the 

corresponding values in the SLS as seen in Fig. 7.9a. Consequently Ni-EtDiameff  will 

be more labile and Ni-NTA will be more inert in the mixture than in the single ligand 

system. Labilities calculated with the simulation program for both single ligand and 

mixed system can be seen in Table 7.8.  

 

Table 7.8. Labilities in SLS (
1h 

) and in the mixed system ( ) of species Ni-NTA  and 

Ni-EtDiameff . 

 1h 
     

Ni-NTA  0.52 0.33 

Ni-EtDiameff  0.99 0.99 

 

Both effects are opposite and tend to compensate when the accumulation is considered. 

Notice that although the mixture influence in 
Ni-NTA  is higher than the influence on 

Ni-Etdiam , the main species in the mixture is Ni-EtDiameff  due to the abundances of both 

ligands. This explains why the accumulation calculated with Eqn. (7.38) is higher than 

the value obtained by numerical simulation as reported in Table 7.7. 

 

Finally, it is worthwhile to comment that the back accumulation (Tables 7.5 and 7.7) 

supports the results of Table 7.8. Due to the differences of lability shown by both 

complexes, the Ni accumulation on the back resin disc can be seen as coming from the 

Ni-NTA dissociation. In the single ligand Ni+NTA system, around 32 nmol of Ni are 

accumulated in the back resin. In the mixed system, only 27 nmol of Ni, coming from 

dissociation of Ni-NTA, are accumulated in the back resin. It implies that Ni-NTA is 

more inert in the mixed system than in the SLS. 
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 Conclusions 7.6

 

The dependence of the lability degree of a complex on the ligand concentration was 

studied for any ligand to metal ratio. In excess of ligand conditions, the dependence is 

quite mild but the lability degree decreases when non ligand excess conditions are 

reached. The decrease is more important for weak complexes which tend to be labile in 

excess of ligand conditions.  

 

Systems containing a mixture of ligands were studied with the aim of assessing the 

influence of the concentration of the ligands in the mixture on the lability degree of each 

complex. Different situations can arise: while in excess of ligand conditions the addition 

of a labile ligand tends to increase the lability degree of the more inert complexes, in 

non-excess of ligand conditions, an inert ligand can become more inert after the addition 

of a labile ligand. A physical explanation of this phenomenon is provided based on the 

metal profile in the single ligand systems. 

 

A system with Ni, NTA and EtDiam was studied as a practical case. In the conditions 

here studied, the inert complex, Ni-NTA, decreases its lability in presence of a labile 

complex Ni-EtDiam.  

 

Differences in labilities in the SLS and in the mixed systems are of opposite sign for 

different complexes and their influence on the accumulation tends to cancel. For the 

case 1 studied in section 7.4, when the concentrations of both ligands are quite constant 

along the device, discrepancies on the predictions of accumulations in a mixed system 

based on information about labilities in the SLS are below 5%.  For the case 2 studied in 

section7.4 and for the system Ni, NTA and EtDiam studied in section 7.5, when there is 

a huge increase in the concentration of the strong ligand in the resin, discrepancies in 

predictions are below 23%.  
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 Supporting information 7.7

 

7.7.1 Obtaining the kinetic constants by fitting the experimental 

accumulations 

 

For the simulations it was assumed that diffusion coefficient of ligands, protonated 

ligands and complexes are equal. The diffusion coefficient of Ni was taken from 
11

. 

Diffusion coefficients for Ni-NTA and Ni-EtDiameff  used in simulations and in Eqn. 

(7.38) have been measured experimentally using a homemade diffusion cell device 

described elsewhere. 
12,13

 

 

Whenever the ionic strength is low, migration effects were considered using the 

partition model explained in Chapter 5. The Boltzmann factor was measured with Rb 

and Na for different ionic strengths. For I=50 mol m
-3

, a value of 2.0   was taken 

from Table 5.2 and used in simulations. 

 

Values for the kinetic constants (
a,Ni-NTA

k  and 
d,Ni-NTA

k ) were estimated using numerical 

simulation to fit the experimental Ni accumulation presented in Table 7.5. Values of the 

stability constants for reactions (7.17), (7.18) were obtained from Visual MINTEQ 3.1. 

For reaction (7.19) it was used a high value of stability constant to assume perfect-sink 

conditions between Ni and the resin sites. The reaction of protonation, described for 

Eqn. (7.18), was assumed fast enough to reach always equilibrium. For this reason, high 

values for the kinetic constants were used in this reaction. Association and dissociation 

kinetic constants (
a,Ni-EtDiam

k  and 
d,Ni-EtDiam

k ) for Eqn. (7.26) were estimated using numerical 

simulation to fit the experimental data for Ni accumulation presented in Table 7.6. 

Stability constants for reactions (7.27) - (7.30) were obtained from Visual MINTEQ 3.1. 

Kinetic constant for these reactions were assumed high enough to reach always 

equilibrium. Values for kinetic and stability constants used in simulations are reported in 

Table.7.9.  
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Table 7.9. Kinetic and stability constants for reactions used in simulations for systems with Ni, NTA 
and EtDiam. 

Reaction 
ka               

(m
3
mol

-1
s

-1
) 

kd           
(s

-1
) 

K           
(m

3
 mol

-1
) 

a,Ni-NTA

d,Ni-NTA

Ni + NTA Ni-NTA
k

k
 1.32×10

6
 2.29×10

-3
 5.76×10

8
 

a,H-NTA

d,H-NTA

H + NTA H-NTA
k

k
 7.29×10

6
 1.00 7.29×10

6
 

a,Ni-EtDiam

d,Ni-EtDiam

Ni + EtDiam Ni-EtDiam
k

k
 7.00×10

4
 3.29 2.13×10

4
 

a,Ni-EtDiam2

d,Ni-EtDiam2

2Ni-EtDiam + EtDiam Ni-EtDiam
k

k
 1.53×10

3
 1.00 1.53×10

3
 

a,Ni-EtDiam3

d,Ni-EtDiam3

2 3Ni-EtDiam + EtDiam Ni-EtDiam
k

k
 12.74 1.00 12.74 

a,H-EtDiam

d,H-EtDiam

H + EtDiam H-EtDiam
k

k
 1.05×10

7
 1.00 1.05×10

7
 

a,H -EtDiam2

d,H -EtDiam2

2H + H-EtDiam H -EtDiam
k

k
 1.28×10

4
 1.00 1.28×10

4
 

a,NiR

d,NiR

Ni R NiR
k

k
  10

15
 1.00 10

15
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CHAPTER 8 
 

 

 

 

 

8. CONCLUSIONS 
 

 

(Bio)availability is a key issue to understand the toxicity or nutritional effects of 

chemicals in the environment. Diffusive Gradients in Thin films (DGT) technique 

provides an in-situ assessment of metal availability in waters. Many studies have been 

devoted to understand the theoretical basis of these samplers, but there are still many 

phenomena that need clarification for a proper interpretation of the DGT data. 

Computational tools and analytical methods for the interpretation of DGT 

measurements, have been developed in this work.  

 

The main conclusions of this Thesis are: 

 

 Numerical simulation tools based on iterative schemes and used in previous works, 

were here improved by incorporating the Finite Element Method to the spatial 

discretizations. The developed programs were used for the study of the spatio-

temporal evolution of the concentrations of chemical species and other relevant state 

variables inside a DGT device considering diffusion, chemical reactions in volumic 

phases and migration of charged species at low salt background. The results obtained 

were accurate to the tolerance limits. In addition, the flexibility in the selection of 

meshes allowed: i) to simulate multiple domain problems with no greater difficulty 

than to specify boundaries between these domains and to input discrete expressions 

of boundary conditions. ii) to define meshes with a high density of points near the 

interfaces and with lower density in other regions, since the concentration profiles of 

some the species have abrupt changes in some regions of the device, especially near 

the resin / gel interfaces. iii) to work with meshes with a number of points lower than 

in simulators based on Finite Difference Method, increasing the computation speed 

and, consequently, decreasing the computational cost. 
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 The influence of the distribution of resin beads on the concentration profiles of the 

species, the total metal accumulation and the lability of the complexes in DGT 

devices has been studied. For very labile or inert complexes, this distribution does 

not show an influence on the concentration profiles, on the total accumulation of 

metal and on the lability degree of complexes. For partially labile complexes, the 

influence of this distribution increases with the value of the equilibrium constant K   

and the diffusion coefficient of the complex. In these cases, the assumption of a 

homogeneous distribution of binding sites always leads to underestimate both DGTc  

and the accumulation. However, the present results indicate that only a 13% decrease 

of accumulation arises when both i) inhomogeneous devices where resin beads are 

only dispersed in half of the resin volume and ii) complexes with stability constant 

K <100 m
3
 mol

-1
 dominate the metal speciation.  

 

 Analytical expressions for the concentration profiles in an inhomogeneous resin layer 

have been derived. Excess of ligand and perfect-sink conditions in the layer of the 

resin containing the binding agent, have been assumed. Predictions obtained with the 

analytical expresions agree with the rigorous numerical simulations. 

 

 The dissociation rate constant of the complex, dk , can be determined from the 

percentage of back accumulation in a DGT with a stack of two resin discs. The 

relative error values (due to inhomogeneity of the resin layer) found in recovering dk  

from the %back are quite independent of K and dk . In devices with binding agent 

only in half of the resin, there is a ratio of 2 between the real value and the recovered 

one assuming homogeneous distributions of binding resin beads. 

 

 Differences in accumulations and lability degrees between devices with resins R and 

R/2 are very small when r  tends to zero or is so large that the complexes reach full 

dissociation in the layer 2r rx   . For intermediate thickness of the resin, 

differences in these magnitudes increase when r  increases.  
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 Two theoretical models for the interpretation of metal accumulations at different 

ionic strengths have been studied. The corresponding simulation tools have been 

used to analyse the accumulation of Mg. It has been found that, the main 

phenomenon that increases the Mg availability is the dependence of the kinetic 

association constant and the stability constant between the cation and the resin sites 

on the ionic strength. The accumulation of Mg at high ionic strength is 

thermodynamically limited by Mg binding to the resin at pH 7.5. However, as ionic 

strength decreases, the thermodynamic limitation is lower due to the increase of the 

stability and kinetic association constants.  

 

 The electrostatic effects on DGT devices can be approximated using a partition 

factor at the resin-gel interface. This factor was here determined experimentally for 

different values of ionic strength by adding a small concentration of Rb to the 

system. 

 

 The influence of the ionic strength on the stability constant of the Mg binding to the 

resin beads has a stronger influence on Mg accumulation than the Donnan partition at 

the resin-gel interface, in the range of ionic strength studied. 

 

 There are some situations in which steady-state and perfect-sink conditions are not 

fulfilled in DGT deployments. It was found that equilibrium or competition effects 

can produce accumulations smaller than those predicted by the perfect-sink model 

and following a non-linear pattern with time.  

 

 A set of analytical approximate expressions have been developed to reproduce the 

DGT accumulations when there are kinetic limitations in the metal binding to the 

resin, saturation or equilibrium influence or non-negligible competition effects. The 

binding of Mg or Mn have been used to exemplify the use of these expressions.  
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 Values of concentrations obtained with the simple approximate expressions reported 

in this work significantly improve the estimations based on perfect-sink conditions. 

Such an approach opens up the possibility of using DGT more widely in challenging 

systems and allows DGT data to be interpreted more fully.  

 

 For the studied conditions, accumulations of Mg or Mn in single metal systems have 

provided examples of equilibrium effects.  

 

 In a mixed system, the high accumulation of Mg reduces the accumulation rate of 

Mn, due to competition between Mg and Mn for the resin sites. 

 

 The dependence of the lability degree of a complex on the ligand concentration was 

studied for any ligand to metal ratio. In excess of ligand conditions, the dependence 

is quite mild, but the lability degree decreases when non ligand excesss conditions 

are reached. The decrease is more important for weak complexes which tend to be 

labile in excess of ligand conditions.  

 

 Systems containing a mixture of ligands were studied with the aim of assessing the 

influence of the concentration of the ligands in the mixture on the lability degree of 

each complex. Different situations can arise: While in excess of ligand conditions the 

addition of a labile ligand tends to increase the lability degree of the more inert 

complexes, in non-excess of ligand conditions, an inert ligand can become more inert 

after the addition of a labile ligand. A physical explanation of this phenomenon is 

provided based on the metal profile in the single ligand systems.  

 

 A system with Ni, NTA and EtDiam was studied as a practical case. In the conditions 

here studied, the inert complex, Ni-NTA, decreases its lability in presence of a labile 

complex Ni-EtDiam.  

 

 Differences in labilities in the singe ligand and in the mixed systems are of opposite 

sign for different complexes and their influence on the accumulation tends to cancel. 
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For the case 1 studied in section 7.4, when the concentrations of both ligands are 

quite constant along the device, discrepancies on the predictions of accumulations in 

a mixed system based on information about labilities in the SLS are below 5%.  For 

the case 2 studied in section7.4 and for the system Ni, NTA and EtDiam studied in 

section 7.5, when there is a huge increase in the concentration of the strong ligand in 

the resin, discrepancies in predictions are below 23%.  
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