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Abstract

Interface metaphors are often used in Human Computer Interaction (HCI) to exploit
knowledge that users already have from other domains. A commonly used one in Digital
Musical Instruments (DMIs) is the conductor metaphor. The simple idea behind it is to
turn the computer into an orchestra that the user conducts with movements that resemble
those of a real orchestra conductor. So far, many refinements have been proposed to
provide more accurate or expressive control over di�erent musical parameters. However,
even though the orchestra conducting metaphor o�ers a good case for investigating
several aspects of gesture-based interaction, the way in which users interact with these
interfaces has not been explored in depth to improve their usability. The availability of
commercial depth-sense cameras, which has stimulated the apparition of new DMIs based
on this metaphor, also makes this missing in-depth exploration easier. This dissertation
o�ers such analysis.
We theorize that part of the knowledge that users have from the domain that the interface
metaphor replicates is user-specific. In this context, we argue that systems using an
interface metaphor can see their usability improved by adapting to this user-specific
knowledge. We propose strategies to design motion-sound mappings for DMIs that draw
upon the conductor metaphor by adapting to personal nuances that can be automatically
computed from spontaneous conducting movements.
For this, we first analyze the performance of a professional conductor in a concert,
identifying descriptors than can be computationally extracted from motion capture data
and that describe the relationships between the movement of the conductor and specific
aspects of the performance potentially controllable in an interactive scenario. Then, we
use these same techniques to build two systems that adapt to user-specific tendencies
in two contexts. The first one allows to control tempo and dynamics with adaptations
learned from analyzing conducting movements performed on top of fixed music. The
second one provides control over articulation through gesture variation, the mapping
being defined by each user through gesture variation examples. In both cases, we perform
observation studies to guide the interface design and user studies with participants of
di�erent musical expertise to evaluate the usability of the systems.
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In addition to the above, we study the potential of the conductor metaphor in a gaming
context as a mean to raise interest for classical music. We developed Becoming the
Maestro, a game that exploits state-of-the-art technologies that allow to interact with
symphonic music content in new ways. We also perform a user study which shows the
potential of the game to increase curiosity for classical music.

In summary, this thesis o�ers an in-depth exploration of interaction with interfaces based
on the conductor metaphor, proposing strategies to improve their usability that span
to other interface metaphor cases and to gesture-based interaction in general. These
contributions are complemented by the data collected in all observation studies, which
is made publicly available to the community.
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Sinopsis

Las metáforas de interfaz se utilizan habitualmente en Interacción Persona-Ordenador
(HCI, por sus siglas en inglés) para explotar el conocimiento que los usuarios ya tienen de
otros dominios. Una comúnmente utilizada en la construcción de Instrumentos Musicales
Digitales (DMIs, por sus siglas en inglés) es la metáfora del director. Básicamente,
la idea en este caso es convertir el ordenador en una orquesta que el usuario dirige
utilizando movimientos similares a los de un director de orquesta real. Hasta ahora, se
han propuesto distintas mejoras para proveer de control más preciso y expresivo sobre
distintos parámetros musicales. Sin embargo, a pesar de que la metáfora del director
ofrece un buen caso de uso para investigar distintos aspectos de la interacción basada
en gestos, la manera en que los usuarios interactúan con estas interfaces no ha sido
aún explorada en profundidad para mejorar su usabilidad. La disponibilidad actual de
cámaras con sensores de profundidad, que han estimulado la aparición de DMIs basados
en esta metáfora, también hace más sencillo realizar esta exploración en profundidad.
Esta disertación ofrece tal análisis.
Teorizamos que parte del conocimiento que los usuarios tienen del dominio replicado
por la metáfora es específico para cada usuario. En este contexto, sugerimos que un
sistema que hace uso de una metáfora puede mejorar su usabilidad si se adapta a dicho
conocimiento específico del usuario. Proponemos estrategias para diseñar mapeos entre
movimiento y sonido para DMIs construidas sobre la metáfora del director mediante la
adaptación a los matices personales que se pueden analizar a partir de movimientos de
dirección espontáneos, hechos sin instrucciones concretas.
Para esto, primero analizamos la actuación de un director profesional en un concierto,
identificando descriptores que se pueden obtener a partir de datos de captura de movimi-
entos y que describen la relación entre el movimiento del director y aspectos específicos
de la actuación potencialmente controlables en un escenario interactivo. A continuación,
utilizamos estas mismas técnicas para constuir dos sistemas que se adaptan a tendencias
específicas de los usuarios en dos contextos. El primero permite controlar el tempo y la
dinámica con adaptaciones aprendidas de movimientos de dirección realizados sobre una
música fija. El segundo permite controlar la articulación musical mediante variaciones
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expresivas de gesto, siendo el usuario quien explícitamente define el mapeo mediante
ejemplos de sus gestos. En ambos casos, comenzamos con estudios observacionales que
guían el diseño de la interfaz y realizamos estudios de usuario para evaluar la usabilidad
de los sistemas propuestos.

Además de lo anterior, estudiamos el potencial de la metáfora del director en un contexto
de juego como un medio para incrementar el interés por la música clásica. Hemos desar-
rollado Becoming the Maestro, un juego que explota las últimas tecnologías desarrolladas
en el ámbito de este tipo de música para interactuar con ella de nuevas maneras. En
este caso también realizamos un estudio de usuario que muestra el potencial del juego
para incrementar el interés por la música clásica.

En resumen, esta tesis ofrece un estudio en profundidad de la interación con interfaces
basadas en la metáfora del director, proponiendo estrategias para mejorar su usabilidad
que son de aplicabilidad en otras metáforas de interfaz y, en general, en interaccción
basada en gestos. Estas contribuciones se complementan con los datos recopilados en
los estudios observacionales, que se ponen a disposicion pública para la comunidad.
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Chapter 1

Introduction

1.1 Motivation

The notion of metaphor is central in the human-computer interaction (HCI) discipline.
An interface metaphor is a representation created to help the user understand the ab-
stract operation and capabilities of the computer (Blackwell, 2006). In this representa-
tion, elements in the user interface (UI) mimic elements from a real-world scenario from
which the user can transfer her knowledge. Probably, the most ubiquitous example is
the desktop metaphor, which has been present in almost all PC operating systems since
its apparition in the Xerox Alto and Star models developed in Xerox Palo Alto Research
Center, and its popularization with Apple’s Macintosh in 1984. In this metaphor, the
representation and behavior of elements in the Graphical User Interface (GUI) mimic
elements in an o�ce desktop. For example, files are represented by paper icons that can
be moved into directories represented by folder icons or deleted if moved to a paper bin
icon. While files are not actually moved from one place to another, the metaphorical
representation o�ers the user a way to identify the a�ordances (understood as the pos-
sible ways in which an element can be used) of elements represented in the metaphor1.
In this sense, a good interface metaphor must give the user expectations that indeed
correspond with the functioning of the system. As Erickson (1995) summarizes:

To the extent that an interface metaphor provides users with realistic expec-
tations about what will happen, it enhances the utility of the system. To the
extent it leads users astray, or simply leads them nowhere, it fails. Erickson
(1995, p. 73)

The way in which a system using an interface metaphor is expected to work is represented
1The “metaphor” and “a�ordance” concepts, central to HCI, are vastly discussed in the literature.

It is out of the scope of this dissertation to discuss the terms in depth. Readers interested in such
discussion may refer to Gaver (1991), Erickson (1995), McGrenere and Ho (2000) or Blackwell (2006).
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systemuserreal world element

control interface operation

Figure 1.1: Representation of interaction with a system presenting an interface
metaphor.

in Figure 1.1. The user interacts with the system through the control interface. This
interface includes a representation of the state of the system (represented in the figure by
a screen) and an input device (illustrated in the figure by a joystick). The actions that
the user performs through the interface have an e�ect on the operation of the system,
which in turn is reflected in the representation seen by the user. The e�ect that the
user’s actions have on the system is represented by the triangle that connects both parts.
When an interface metaphor is used, the representation displayed to the user imitates
elements of a real-world scenario, with the aim that the user can transfer her knowledge
of this real-world scenario to the interaction with the system. The behavior that the
user expects is represented by the triangle inside the bubble. In this representation, the
interface metaphor succeeds when the shape of both triangles coincide, i.e. when the
expected and actual behaviors match.

Interface metaphors are also extensively used in the design of digital musical instruments
(DMIs). In traditional musical instruments, particularly before the piano, it is many
times di�cult to separate the control interface from the sound-generating mechanism
(Wanderley, 2001; Jordà, 2005). For example, in wind instruments, the vibrating air
that generates the sound is produced by the performer. In a violin, the performer
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1.1 Motivation

directly excites the string to make it vibrate and produce sound. DMIs completely
break this physical dependency. The control interface and the sound-generating system
are separated, and the possibilities in both sides become unlimited. This separation
makes mapping a central concept in DMIs. This term is used to define how the input
(the movements or actions performed by the user) and output (the control parameters
for the resulting sound) are connected (Paradiso, 1997; Rovan et al., 1997). In Figure
1.1, mapping would be illustrated by the shape of the triangle connecting the control
interface and the inner functioning. In the context of DMIs, then, the goal of an interface
metaphor is to correctly communicate the mapping to the user, i.e. the sonic results
that her actions will have. Imagine, for example, a DMI consisting on a control interface
with two sliders controlling an oscillator. The position of one of them is mapped to the
frequency of the oscillator, and the velocity of the other is mapped to the amplitude.
While this mapping is of course easy to learn through experimentation, we could expect
a user to have an immediate intuition of it if we indicate her that the instrument is
controlled as a violin: the first slider corresponding to the position of the left hand on
the fingerboard, the second one replicating the action of the bow.

The possibilities of mapping in DMIs are however not limited to replicate the schemes
of traditional instruments. Actions can also be mapped to control high-level properties
of music (e.g. key, tempo, timbre, instrumentation...). In addition, actions can have
di�erent e�ects depending on the moment, either because the instrument allows the
user to switch between di�erent control modes, or because it reacts di�erently depending
on the musical context. Considering this, the possible ways to interact with DMIs go
beyond what traditionally has been understood as “playing an instrument” (Jordà, 2007).
Pressing (1990) identifies four traditional music making metaphors that can describe
these di�erent ways to interact with DMIs:

• playing a musical instrument

• conducting an orchestra

• playing together with a machine

• acting as a one man band

Note that the “metaphors” Pressing refers to do not correspond to interface metaphors
as defined above. These metaphors describe di�erent ways to interact with DMIs in
terms of what the user controls. For example, the aforementioned example of the DMI
consisting on two sliders controlling an oscillator would be equivalent to playing a mu-
sical instrument. Another DMI where the user controlled the tempo and dynamics
of a performance with a predefined score would fall in the “conducting an orchestra”

3
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metaphor category. The reason why we mention these metaphors introduced by Press-
ing is precisely because, in many occasions, these traditional music making metaphors
greatly influence interface metaphors used in the design of control interfaces for DMIs.
Coming back again to the toy example of the DMI with two sliders and one oscillator, a
possible interface metaphor could be as simple as labeling each slider as “fingerboard”
and “bow”. In this case, the interface metaphor would work, similarly to the case of the
desktop metaphor, through iconic representations. A paper bin icon indicates the user
that elements moved there will be eliminated; two sliders labeled as “fingerboard” and
“bow” indicate that moving the second one will produce sounds whose pitch depends on
the position of the first. The interface metaphor can be however more explicit, mimick-
ing the real-world element. In the case of the example, we could imagine a violin-shaped
object with both sliders placed in the locations corresponding to the fingerboard and
the bridge. Here, we would not only expect the user to have an intuition on the e�ect of
both sliders, but also to grab the instrument in a specific way. As we see, the purpose
of interface metaphors is to work as a sort of implicit instructions manual.

The design of new musical controllers is the central interest of the New Interfaces for
Musical Expression (NIME2) community, gathered around the homonymous annual in-
ternational conference since 2001. So far we have talked about interface metaphors
inspired in traditional music making activities. However, before moving forward and
focusing on the conductor metaphor, we would like to point out that there are other
possible uses of interface metaphors for DMIs. NIME researchers have, for example,
used everyday objects as control interfaces. This option not only helps the user to have
an intuition on how to interact with the instrument, it also opens novel music perfor-
mance paradigms. Browsing through the proceedings of the NIME conference, we can
find control interfaces that use real-world objects as di�erent as soap bubbles (Berthaut
and Knibbe, 2014) or sponges (Marier, 2014), as well as interfaces inspired by other
real-world activities such as drawing (Barbosa et al., 2013).

1.1.1 Why the conductor metaphor?

In this dissertation, we focus on the specific case of systems using the conductor interface
metaphor. And, more specifically, we deal with the case where the control interface
allows the user to perform conducting movements (i.e. the metaphor is not presented
iconically, but explicitly). There are di�erent reasons why we consider worth studying
this case in depth.

2http://www.nime.org/
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First of all, it provides a scenario where most users have some knowledge that they can
turn into expectations about how to interact with the system. For the metaphor to be
successful, these “expectations” should match the actual functioning of the system. A
challenge appears when part of the knowledge from the real-world domain that guides
the user’s expectations is user-specific. We believe that systems based on the conductor
metaphor are precisely a good use case to tackle this problem.

Second, there is a growing interest for using state-of-the-art technologies to enrich ex-
periences around classical music. This interest was at the heart of the PHENICX3

project, within which most of the work of this thesis was carried out. The project fo-
cused on symphonic classical music, where the figure of the conductor is essential. In
this context, exploring the conductor interface metaphor becomes particularly relevant
“to devise ways of directly interacting with performances via gestures”, as introduced in
the paper presenting the project (Gómez et al., 2013).

Third, the apparition of new easily-accessible sensors for motion tracking, and partic-
ularly depth-sense cameras (popularized by Microsoft Kinect), makes an in-depth ex-
ploration of interaction with this kind of systems easier. In fact, these sensors have
stimulated the apparition of new systems based on this metaphor, which also reinforces
the relevance of this work.

In the following, we discuss these three ideas in greater depth.

“Anyone can conduct”

This claim, without any nuances, would be highly controversial and, surely, highly in-
accurate. Of course, musical conducting is a very complex art that requires years of
training. However, the idea that “anyone can conduct” is sometimes implicit in popu-
lar culture. One of the most popular recent examples of this might be the 2013 viral
video Conduct Us4 by the comedy collective Improv Everywhere. A picture from this
action is shown in Figure 1.2a. In the video, the Carnegie Hall orchestra appears in
the middle of the street in New York with an empty podium in front of the musicians
reading “Conduct Us”. Then, di�erent people (clearly not professional conductors) take
the baton and just start conducting. The orchestra, which had previously made some
specific rehearsals for the shooting, is interestingly able to play in a way that, even if
probably not musically interesting, is coherent with the performed movements and fun
for the conductor. It is not the only example. The exact same idea appears in actions

3Performances as Highly Enriched aNd Interactive Concert Experiences. http://phenicx.upf.edu/
4https://improveverywhere.com/2013/09/24/conduct-us/
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(a) Conduct Us, by Improv Everywhere (b) Conduct your MSO

(c) Conduct Us, by Gloucestershire Symphony Or-
chestra

(d) El conciertazo

Figure 1.2: Di�erent examples of promotional activities by orchestras or institutions
based on allowing random people to conduct a real orchestra.

by some orchestras such as the Melbourne Symphony Orchestra5 or the Gloucestershire
Symphony Orchestra6, as shown in Figures 1.2b and 1.2c, respectively. As a more lo-
cal reference, we also mention the Spanish public TV educational show for children El
conciertazo7 (“The great concert”), which aired 2000-2009. This show, presented by the
late classical music disseminator Fernando Argenta, often had a section where children
were allowed to conduct the orchestra8. Figure 1.2d shows a child conducting during the
show.

5http://www.producermike.com/conduct-your-mso/
6http://www.gloucestershiresymphony.org.uk/conduct-us-gso-flashmob/
7http://www.rtve.es/alacarta/videos/el-conciertazo/
8As a matter of fact, the show previously existed as a school activity in Madrid National Auditorium.

I attended once and was not chosen to conduct even though I firmly raised my hand.
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In 2008, BBC Two started airing Maestro9, a talent-show with celebrities competing
during eight weeks to conduct the BBC Concert Orchestra at the Proms in the Park
concert after a week-long preparation in a “Baton Camp”. The show had new versions
in Sweden and the Netherlands, with particularly great success in the latter.

In all these cases, the underlying idea that “anyone can conduct” (either immediately
or with little practice) is somehow present. This notion is what, in our opinion, makes
systems based on the conductor metaphor a particularly interesting use case to investi-
gate aspects about interaction with systems that use interface metaphors. The idea that
“anyone can conduct”, in this context, can be nuanced and developed in more detail.
What is relevant to the case at hand is the fact that most people, if given the chance
to conduct, have some intuitive idea on what actions they can perform and what e�ects
they can expect from them. Accordingly, systems that replicate the conducting activity
(i.e. where the user guides the performance of a virtual orchestra through conducting
movements) will succeed at providing a large amount of users with expectations about
how it works.

Now, as we have discussed above, these expectations must correspond to the actual
functioning of the system for the metaphor to succeed in improving usability. A challenge
arises when these expectations can have specific nuances for each user. For example, we
can expect that most users interpret that they must indicate the tempo to the orchestra
with their movements. But will they use exactly the same gesture to communicate the
beat? Or, if they want to give indications for loudness variations, will they do it in the
same way? Putting it in the terms mentioned above in the context of interaction with
DMIs: will the expected mapping vary across users? Throughout this dissertation we
show specific scenarios with systems using the conductor metaphor where this is the
case, and we investigate strategies to tackle the problem.

Attracting new audiences to classical music: this thesis in the context of the
PHENICX project

The PHENICX project (Gómez et al., 2013) (2013-2016) aimed at enriching traditional
concert experiences by using state-of-the-art multimedia and internet technologies. The
focus was on Western classical music in large ensemble settings, and the main motiva-
tion was to make this kind of music appealing to broader audiences. Classical music
su�ers from very strong audience stereotypes, and is usually perceived as a complex
and possibly boring genre. The idea of the project, in this context, was to use state-

9http://www.bbc.co.uk/musictv/maestro/
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of-the-art technologies to fight these stereotypes by providing appealing experiences to
broader audiences. There were mainly four areas of development: multimodal musical
piece analysis, multimodal musical performance analysis, profiling and personalization,
and exploration and interaction. The main focus of this thesis is the interaction area,
dealing with “interactive systems for conductor impersonation” (Gómez et al., 2013, p.
801). In addition, this thesis also contributes to multimodal performance analysis since,
as we see in Chapter 3, we analyze conducting movements during performance.

Precisely because one of the main motivations of PHENICX was to attract new audiences
to classical music, the work developed in this thesis is influenced by the concrete use
cases envisioned for this purpose: mainly public installations for museums or concert
halls and games to interact with classical music content via conducting movements.

Other outcomes of PHENICX can be explored in the project’s academic and commercial
websites: http://phenicx.upf.edu/ and http://phenicx.com/.

The irruption of the Kinect depth sensor

Microsoft Corp. released the Kinect sensor to the market in November 2010 as an input
device for the Xbox 360 console. It soon became a great success, selling over 8 million
units in its first two months in the market10. It was the first successful commercial
device that allowed to interact with video games without the need to touch a controller.
The popularity of the Kinect comes, in great part, from its ability to perform human
skeletal tracking, i.e. tracking the 3-D position of several body joints.

The Kinect was not only a great success in the gaming industry. It has also been
extensively used in a wide variety of domains such as language recognition (Zafrulla
et al., 2011), therapy (Cornejo et al., 2012; Abdur Rahman et al., 2013; Huang and Jun-
Da, 2011), remote learning (Trajkova and Cafaro, 2016) or traditional computer vision
tasks. Jungong Han et al. (2013) o�er a comprehensive review of the use of Kinect in this
domain. It is also commonly used for artistic purposes, either as a sensor for performance
analysis (Alexiadis et al., 2011; Hadjakos and Grosshauser, 2013) or as an input device
(Rodrigues et al., 2013; Lewis et al., 2012; Diakopoulos et al., 2015; Bacot and Féron,
2016). To illustrate the impact of the Kinect in research, we checked the number of
entries that a search for the term “kinect” produces in the Association for Computing
Machinery (ACM) Digital Library11. At the moment of publication of this dissertation,
10“Microsoft’s Kinect Selling Twice As Fast As The iPad”.

http://www.hu�ngtonpost.com/2010/11/30/kinect-selling-twice-as-fast-as-ipad_n_789752.html,
accessed April 3rd 2017

11http://dl.acm.org/
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the search returns 695 papers (397 within the “interaction” category). Searching for
“kinect” in Google Scholar12 gives 77900 results.

The Kinect also made an impact on the NIME community, and has been present in its
annual conference through di�erent works since 2011. For example, it has been used
in ways that resemble the interaction with video games: facing a screen and using the
tracked hand positions to move elements represented on it. One of the earliest examples
of this is Crossole, by Sentürk et al. (2012), where the performer controls the music by
manipulating crossword blocks represented on the screen. It is also common to use the
Kinect for augmenting traditional instruments. For instance, Trail et al. (2012) track the
position of mallets for an augmented pitched percussion instrument, while Yang and Essl
(2012) augment a piano keyboard tracking hand positions away from the keys. Finally,
there are cases where the user can interact with imaginary “objects”, either following the
air-instruments scheme (Fan and Essl, 2013) or creating more abstract virtual objects
(Jensenius, 2007).

In the following Chapter, where we provide a comprehensive review of systems using the
conductor metaphor (Section 2.5.2), we see how the Kinect has led to the emergence of
new systems of this kind.

In summary, not only the availability of this kind of sensor makes an in-depth exploration
of interaction with systems based on the conductor metaphor easier. Also, its influence
on the emergence of such systems reinforces the relevance of this exploration.

During the course of this work, Microsoft released the second version of the Kinect,
for the Xbox One console. This new version provides some improvements in terms of
resolution, tracking accuracy and latency. We used both devices during this time, and in
this dissertation we indicate which one is used in each case referring to them as Kinect
V1 and Kinect V2.

1.2 Objectives and methodology of the thesis

The objectives of this thesis can be divided into three areas: learning from real conduc-
tors, adapting to user-specific expectations, and attracting new audiences to classical
music. In the following, we discuss in more detail the objectives of each area and we
introduce the overall methodology followed in each case.

12https://scholar.google.com/

9

https://scholar.google.com/
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1.2.1 Learning from real conductors

A detailed analysis of music conducting is out of the scope of this thesis. However,
we must not lose sight of the fact that this is the activity that inspires the metaphor
that is the center of our research. For this reason, one of our objectives is to establish
which computational analysis of conductor task during a performance can be relevant
and useful for interactive systems based on this metaphor. In addition, by performing
this analysis with the same device used during the interaction, we can identify relevant
descriptors that can be computed from the data it provides in a conducting scenario.

During the PHENICX project, this work was developed at ESMUC (Escola Superior
de Música de Catalunya - Catalan Higher School of Music). This allowed us to attend
rehearsals and lessons, as well as to interview conducting teachers and students.

Taking advantage of this, we follow two steps:

• First, we conduct an interview with professional conductors and students to get
their impression in this regard. More specifically, we ask them about the causal
relationships that can be established and analyzed during a performance between
the conductor’s movements and the resulting music.

• Then, we carry out a multimodal recording of a real performance, including the
movements of the conductor captured by a Kinect. Based on the conclusions of
the interview, we computationally analyze the recording focusing on two aspects:
the musicians’ synchronization with conductor’s hand movements and the rela-
tionship between some body movement descriptors and the overall loudness of the
performance.

1.2.2 Adapting to user-specific expectations

As discussed in the previous section, one of the central problems addressed in this thesis
is that of user-specific expectations that may arise when an interface makes use of a
metaphor. DMIs based on the conductor metaphor o�er a good use case for investigating
such problem.

We illustrate this problem in Figure 1.3. In the right-hand side, a system with a control
interface using an interface metaphor is represented. This system has a given mapping
from user’s actions to the outcome. As in Figure 1.1, this mapping is represented by the
shape of the green triangle connecting the control interface and the system’s operation.
The goal of the metaphor is to make users expect a mapping as close as possible to
the actual one. However, the expectations that each user creates from transferring their

10
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systemusers

control interface operation

...

real world element

Figure 1.3: User-specific expectations from an interface metaphor.

knowledge of the real-world element represented in the metaphor may di�er. In the
figure, this is represented by the di�erently-shaped triangles for each user.

In this work, we deal with this problem in two di�erent scenarios of DMIs using the
conductor metaphor. In both cases, detailed below, we follow two steps. First, we
perform observational studies to identify whether these specific user expectations exist
and, if so, how they are concretely reflected in the captured data. Second, we develop
concrete strategies to allow the system to exploit these di�erences, and carry out user
tests to evaluate its performance.

Controlling tempo and dynamics: parameter-tuning from spontaneous
movements

The first case we investigate is a DMI where the user can control tempo and dynamics by
means of conducting movements. Following the method and conclusions of professional
conductor analysis, we conduct a study where we present di�erent musical fragments to
a group of participants, and ask them to perform the conducting movements that they
would perform to make the orchestra sound as in those fragments.

The results of the study, as we will see in detail, suggest that what is observed in these

11
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pre-tuned system
user Areal world element

user A system

pre-tuned system
user Breal world element

user B system

info from 
real-world activity

info from 
real-world activity

parameter tuning

parameter tuning

Figure 1.4: User-specific parameter tuning from observation of the real-world activity
mimicked by the interface metaphor.

spontaneous (without any instructions) movements can be incorporated into the system
to adapt the mapping to user-specific tendencies. Accordingly, the strategy we follow
is that illustrated by Figure 1.4. The system is designed with a mapping in which
some parameters can be adjusted in a specific way for each user. For this, in the first
place, the user performs the activity that the metaphor replicates. In our case, the user
makes spontaneous conducting movements on top of fixed music. The information of
this activity is used to tune the system parameters, which results in a specific mapping
for each user.

Controlling articulation: explicitly learning user expectations

The next case we investigate is a DMI that allows to control musical articulation through
conducting movements. In a similar way to the previous case, we start with an obser-
vational study where we ask participants to perform conducting movements on top of
fragments of the same melody interpreted with di�erent articulation.

Following the conclusions of the study, we propose a di�erent strategy. Instead of in-
ferring the concrete parameters for each user from information obtained by observing
spontaneous movements, we allow the user to explicitly define her own mapping by pro-
viding movement examples to the system. Figure 1.5 illustrates this strategy. In this
case, the system has no predefined mapping, and needs to be trained. It is the user who,
according to her expectations, explicitly defines the desired mapping.

12
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untrained system
user Areal world element

user A system

untrained system
user Breal world element

user B system

explicit mapping 
definition

explicit mapping 
definition

system training

system training

Figure 1.5: User-specific system training.

Learning about music-related movement

Investigating how users interact with DMIs based on the conductor metaphor also helps
to understand certain aspects of music-related movement. We are interested in finding
out how di�erent musical parameters (beat, dynamics, articulation) are reflected in con-
ducting movements performed by people with di�erent musical expertise. The proposed
methodology allows to study this from spontaneous movements performed following fixed
music as well as in an interactive context.

1.2.3 Attracting new audiences to classical music

As we stated when introducing this project within the framework of PHENICX, one of
the objectives of this thesis is to create experiences that can attract new audiences to
classical music. In a way, this objective is transversal throughout the work presented in
this dissertation, since the strategies discussed above are directly applicable in contexts
such as museum installations.

However, we also pursue this goal in a more explicit way by investigating the potential
of the conductor metaphor in a gaming context. For this, we developed Becoming the
Maestro, a game specifically designed to create an attractive experience for these new
audiences to which the project was intended, using the result of technologies developed
during the project. According to this idea, the game is evaluated precisely in relation to
its ability to provide the user with a fun experience and to raise interest for the music
contained in the game.

13
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1.3 Outline of the dissertation

In this section, we detail the structure of the rest of the dissertation in relation to the
presented objectives.

In Chapter 2, Background, we o�er a review of relevant literature for the di�erent aspects
covered in the thesis. First, we review feature extraction techniques from motion capture
(MoCap) data and di�erent strategies for motion-sound mapping. We also briefly discuss
the operation of the capture devices used in this work (Kinect V1 and V2). Then, we
focus on the case of the conductor. For this, we first o�er a brief historical introduction to
the figure of the conductor in Western classical music and we review relevant works that
have computationally studied the e�ect of conducting movements on the performance
and its perception by the audience. Finally, we make a comprehensive review of systems
that have made use of the conductor metaphor.

Chapter 3, Learning from real performances, deals with the first area of the thesis: learn-
ing from real conductors. In this chapter, therefore, we present in detail the results of
the interview with conductors and the analysis performed on the recorded performance.
Also, we discuss some technical issues encountered when making multimodal recordings
with Kinect, and we explain the strategy we followed to solve them.

The second part, adapting to user-specific expectations, is treated in the following two
chapters, corresponding to each of the scenarios previously introduced.

Chapter 4, Adapting to user-specific tendencies for beat and dynamics control, focuses
on the case of the system that allows to control tempo and dynamics. The first half
of the chapter presents the observational study and its results. In the second half, the
proposed system, whose mapping is adapted to each user, is explained together with the
results of an experiment that compared its usability with a baseline with no user-specific
mapping adaptation.

Chapter 5, Learning user-specific gesture variations for articulation control, deals with
the use of conducting movements to control articulation. This chapter follows a structure
similar to the previous one: the first half of the chapter presents the observational study
and its results; in the second one, the proposed system and the user study performed to
evaluate it are explained in detail.

Becoming the Maestro, the game developed to attract new audiences to classical music, is
presented in Chapter 6, Becoming the Maestro: a conducting game to enhance curiosity
for classical music. More specifically, the chapter frames the game within the PHENICX
project, explains its mechanics and presents the results of the user evaluation carried
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out with its first prototype.

The document ends with chapter 7, Conclusions, where we summarize the work carried
out in the thesis, its main contributions, and the possible directions for future research
in these areas.
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Chapter 2

Background

Throughout this chapter we review works relevant to the topics covered in the thesis. We
begin by focusing on feature extraction techniques for Motion Capture (MoCap) data.
Next, we see di�erent techniques used for motion-sound mapping. We also assess some
relevant technical aspects of the capture devices used in this work (Kinect). After that,
we focus on the case of the conductor. For this, we first make a short historical review
of the conductor figure within Western classical music and review some works that have
analyzed the e�ect of conducting movements in performance and their perception from
a computational point of view. Finally, we o�er a comprehensive review of DMIs that
have used the conductor metaphor.

2.1 MoCap feature extraction

Many of the works reviewed throughout this chapter use motion capture (MoCap) de-
vices. In some of these works, they are used to record the movements of the conductor for
its later analysis. In others, as input devices for DMIs. Feature extraction from this raw
data is useful in both cases, as these features/descriptors1 provide useful information. In
the case of analysis, features help to interpret the results; in the case of interaction with
DMIs, they o�er greater possibilities for the mapping between movements performed by
the user and the outcome of the system.

An important source for inspiration in the definition of body movement descriptors
is Laban Movement Analysis (LMA). LMA is a theoretical system for the observation,
description and interpretation of human movement developed by the dance artist, chore-
ographer and theorist Rudolf Laban (Newlove and Dalby, 2004). LMA is based on four
components:

1In this dissertation, we use “feature” and “descriptor” indistinctly.
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• The body component describes the spacial characteristics of the movement in terms
of the body parts that are moving.

• The space component describes how the body moves in relation with the environ-
ment.

• The shape component describes how the shape of the body changes over time.

• The e�ort component describes the dynamics and energy of the movement. E�ort
is comprised of four subcategories in a bipolar scale: weight (strong-light), time
(sudden-sustained), space (direct-indirect) and flow (fluid-bound).

In this section we review some of the most commonly used MoCap features. Even
in cases where these features have not been defined explicitly based on LMA, it is
possible to situate them in some of its categories. This will help us to understand
the kind of information provided by each descriptor. In the following, we first define
the representation used in this section and throughout the thesis for raw MoCap data.
Next, we list some descriptors that can be obtained from the position of a single point or
body joint and some others that can be obtained by combining information from several
joints. We refer to them as joint descriptors and body descriptors, respectively. At
the end of the section, we discuss some issues about real-time computation of MoCap
descriptors and we briefly review some existing frameworks for MoCap data analysis,
also introducing our own framework developed during this work.

2.1.1 MoCap data representation

MoCap devices provide the position of K body joints at regular time intervals. The
device sampling rate, fs, establishes the number of data frames contained in 1 second.
For example, Kinect devices work at fs = 30 Hz or frames per second (fps). The time
corresponding to a frame i is denoted ti. Accordingly, two consecutive frames appear at
times ti≠1

and ti and are separated by the sampling period �t = 1/f
s

= ti ≠ ti≠1

.

Body movement is represented by a sequence of joint positions2 of the skeleton over a
period of time. The position of the body at a time ti (commonly referred to as pose) is
defined by the position of a joints set K of size K:

x(ti) = {p

1, p

2, ..., p

K}(ti) (2.1)
2Some MoCap devices also provide the orientation of joints. Since this is not the case in most reviewed

works, and to make our work generalizable to a greater number of cases, we focus on descriptors
computed from positional data. See Larboulette and Gibet (2015) for a comprehensive review of
MoCap descriptors including some based on joint orientation.
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2.1 MoCap feature extraction

where p

k(ti) corresponds to the position of the kth joint at time ti, composed by 3
components for each dimension, x, y, z:

p

k(ti) = {xk, yk, zk}(ti) (2.2)

The pose of the body at a time ti, x(ti), is thus represented by a 3 ◊ K dimensional
vector. Consequently, a motion is represented by a sequence of poses during n frames
by a vector of 3 ◊ K ◊ n dimensions:

X = {x(t
1

), x(t
2

), ..., x(tn)} (2.3)

In some representations, a particular body joint is defined as the root joint. Its position
is represented in absolute values, while the rest of the joints are represented in relative
positions from it. See Müller (2007, p. 195) for a formal definition of this kind of
representation.

The amount of time, in seconds, that n frames represent, depends on the sampling rate
of the capture device. For example, 1 second captured by the Kinect V1 or V2, which
operate at 30 fps, contains 30 frames.

In the following, we use superscript to indicate the joint to which the descriptor corre-
sponds. Bold symbols are used for vectors and non-bold for scalar values.

2.1.2 Joint descriptors

Amongst the most usually computed descriptors we find the instantaneous velocity,
acceleration, and jerk, and their magnitudes:

• Velocity: v

k(ti) = {vk
x, vk

y , vk
z }(ti)

• Velocity magnitude / speed: vk(ti) =
Ò

vk
x(ti)2 + vk

y (ti)2 + vk
z (ti)2

• Acceleration: a

k(ti) = {ak
x, ak

y , ak
z}(ti)

• Acceleration magnitude: ak(ti) =
Ò

ak
x(ti)2 + ak

y(ti)2 + ak
z(ti)2

• Jerk: j

k(ti) = {jk
x , jk

y , jk
z }(ti)

• Jerk magnitude: jk(ti) =
Ò

jk
x(ti)2 + jk

y (ti)2 + jk
z (ti)2

These descriptors correspond to the first three time derivatives of the position and de-
scribe the dynamics of the movement. In terms of LMA, velocity, acceleration and jerk
can be associated to the weight e�ort, time e�ort and flow e�ort categories, respectively

19



Chapter 2 Background

(Kapadia et al., 2013). Faster movements are stronger than slow ones; sustained move-
ments show low acceleration values; fluid movements are reflected in low jerk values.
The magnitudes describe these dynamics ignoring the direction of the movement.

Time derivatives can be computed in a variety of ways, the most straightforward con-
sisting on taking the di�erence between consecutive values and dividing by the sampling
period, �t. For example, the velocity of the kth joint at time ti can be computed as

v

k(ti) = p

k(ti) ≠ p

k(ti≠1

)
�t

(2.4)

Acceleration and jerk can be computed with similar calculations:

a

k(ti) = p

k(ti+1

) ≠ 2 · p

k(ti) + p

k(ti≠1

)
�t2

(2.5)

jk(ti) = p

k(ti+2

) ≠ 2 · p

k(ti+1

) + 2 · p

k(ti≠1

) ≠ p

k(ti≠2

)
2 · �t3

(2.6)

These di�erentiations however amplify noise present in the signal (Skogstad et al., 2012).
This noise can be reduced considering samples in a wider time frame. For example, in
the case of velocity, by considering the previous and next samples:

v

k(ti) = p(ti+1

) ≠ p(ti≠1

)
2 · �t

(2.7)

However, this computation introduces one more sample delay, which is problematic for
real-time applications. For higher order derivatives, reducing noise implicates adding
even more delay. In subsection 2.1.4 we discuss these issues (handling noise and delay)
for real-time computation of these descriptors with more detail.

For o�ine computation, delay is not an issue and noise can be dealt with in di�erent
ways. One common strategy in this scenario is to perform polynomial approximation
to the data points centered around the point of interest, then analytically computing
the derivative of the obtained polynomial (Luck and Toiviainen, 2006). Polynomial
approximation consists on finding the coe�cients wm, wm≠1

, ..., w
0

of a polynomial of
order m, p(x) = wmxm + wm≠1

xm≠1 + ... + w
1

x + w
0

that for a combination of n points
(xj , yj), 0 < j < n minimize

qn
j=0

|p(xj) ≠ yj |2.

These descriptors can also be combined to compute others. For example, the acceleration
along the movement trajectory at can be obtained by projecting the acceleration vector
on the direction of the velocity vector (Luck and Sloboda, 2008):
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2.1 MoCap feature extraction

at(ti) = a(ti) · v(ti)
v(ti)2

v(ti) (2.8)

As we will see throughout this literature review, these descriptors are also commonly
used to detect events in conducting movements. For example, using changes of sign in
vertical velocity or maxima and minima in vertical acceleration to detect changes from
downward to upward movement or vice versa.

The curvature c measures the rate at which the curve defined by the trajectory changes
its direction. It can be computed from the magnitude of the cross product of velocity
and acceleration and the velocity magnitude, as proposed by Camurri et al. 2004:

ck(ti) = |ak(ti) ◊ v

k(ti)|
vk(ti)3

(2.9)

This descriptor is commonly associated with the smoothness of the movement (Camurri
et al., 2004; Larboulette and Gibet, 2015): sharp movements are reflected in high curva-
ture values, while movements with trajectories approaching a straight line approach zero
curvature. In this sense, this descriptor would also fall in the flow e�ort LMA category.

Statistics of all these descriptors can also provide meaningful information and be consid-
ered as descriptors themselves. For example, the mean and standard deviations of the
velocity magnitude can be computed as:

vk
mean(ti, N) = 1

N

N≠1ÿ

j=0

vk(ti≠j) (2.10)

vk
std(ti, N) =

ı̂ıÙ 1
N

N≠1ÿ

j=0

(vk(ti≠j) ≠ vk
mean(ti, N))2 (2.11)

where N is the number of frames over which the mean and standard deviation values
are computed. In the case of the velocity magnitude, for example, the mean value gives
an idea of how fast the movement is in average during those frames (i.e. it is related to
weight e�ort), while the standard deviation is related to the stability of the movement,
with stable movements showing low standard deviation (i.e. it is related to time e�ort).
Note that the formulas above compute the statistics at time ti considering the N ≠ 1
previous frames. For real-time computation, this would be the only option. For o�ine
computation, it is preferable to use values before and after ti, so that the computation
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reflects tendencies centered at the time of interest.

Some descriptors can also be computed describing the movement of a joint during a
period of time. For example, the length or size of the movement trajectory from time tS

to tE is related to the shape category, and it can be computed as the cumulative distance
travelled by the joint during that time:

sizek(tS , tE) =
i=E≠1ÿ

i=S

Ò
(xk(ti+1

) ≠ xk(ti))2 + (yk(ti+1

) ≠ yk(ti))2 + (zk(ti+1

) ≠ zk(ti))2

(2.12)

The directness of a trajectory between times tS and tE , D(tS , tE), is related to the space
e�ort category in LMA, which describes movements in terms of being direct or indirect.
It can be computed as the ratio between the euclidean distance between starting and
end points, p(tS) and p(tE) and the size of the trajectory:

Dk(tS , tE) =

Ò
(xk(tE) ≠ xk(tS))2 + (yk(tE) ≠ yk(tS))2 + (zk(tE) ≠ zk(tS))2

sizek(tS , tE) (2.13)

2.1.3 Body descriptors

There is an unlimited number of descriptors that can be calculated by combining in-
formation from various joints. A very simple descriptor could be the distance from one
joint to another (e.g. the distance between both hands or the distance between one hand
and the torso). We denote this as dl

k, for the distance between joints k and l. While
simple, these descriptors can be suitable for particular applications. Here we mention
some of the most commonly found descriptors in the works reviewed in this chapter, and
thus most relevant for our own work.

The Quantity of Motion (QoM) of a joints set K of size K can be computed by averaging
the velocity magnitude of all joints:

QoM(ti) = 1
K

ÿ

kœK
vk(ti)

This descriptor is related to the weight e�ort category, describing the overall energy of
the set. It is usually calculated on all tracked joints, and it can also be computed as a
weighted average, where di�erent joints have di�erent relative importance.
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In the same way, the acceleration and jerk information are combined to compute de-
scriptors related to the categories of time e�ort and flow e�ort for the whole body
(Hachimura et al., 2005; Kapadia et al., 2013):

Time E�ort(ti) = 1
K

ÿ

kœK
ak(ti)

Flow E�ort(ti) = 1
K

ÿ

kœK
jk(ti)

Di�erent bounding shapes are commonly used for descriptors related to the LMA shape
component. For example, the bounding box corresponds to the smallest rectangular
parallelepiped containing all joints. Other shapes are used in an analogous way, as in
the case of the bounding sphere and bounding ellipsoid (Larboulette and Gibet, 2015).

Camurri et al. (2000) define the Contraction Index (CI), that uses the bounding box
and applies normalization to make values range from 0 (when all joints are kept tightly
together) to 1 (when body limbs are fully stretched).

In fact, both Quantity of Motion and Contraction Index are descriptors which are also
used to describe body movement from video recordings instead of MoCap data (Camurri
et al., 2000; Jensenius, 2007). In the case of video, these can be computed by tracking the
body silhouette. For QoM , by looking at the number of moving pixels in the silhouette;
for CI, by comparing the total number of pixels inside the bounding region of the
silhouette with the number of pixels covered by the silhouette itself (Camurri et al.,
2004).

A common descriptor related to the LMA body component is the Center of Mass (CoM),
which describes the unique point around which the body mass is equally distributed in all
directions. It is estimated computing a weighted average of all joints positions, with the
weights of each joint k, wk, assigned according to an anthropomorphic model (Kapadia
et al., 2013):

CoM(ti) =
q

kœK wkp

k(ti)q
kœK wk

Descriptors related to the space component inform about the movement in relation with
the surrounding space. This is relevant for dancing movements (or other more general
movements such as walking, running...) but not so much for conducting movement anal-
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ysis. Aristidou and Chrysanthou (2014), for example, review a set of space descriptors
related to the distance and area covered by the body.

Müller (2007) defines a set of binary descriptors3 that are particularly suitable for retriev-
ing movement templates stored in a database. These descriptors are based on relations
between joints and work independently of the global position and orientation of the body,
which is desirable for the mentioned retrieval application. The descriptors have a generic
form, which is concreted by choosing specific joints and parameters. For example, one of
the descriptors proposed by Müller, F

(j1,j2)

◊,touch, determines whether the distance between
two joints j1 and j2 is less than a value ◊. For instance, F

(LH,RH)

0.01,touch takes value 1 when the
distance between the two hands (denoted LH and RH, respectively) is less than 0.01 m,
and 0 otherwise. This descriptor would fall in the shape LMA category, as it describes
the relative position between two joints. Another example feature is F

(j1,j2;j3)

◊,move , which
looks at the velocity of joint j3 relative to joint j1 and takes value 1 if the component
of this velocity in the direction determined by (j1, j2) is above ◊. Müller mentions the
example of F

(belly,chest;RH)

◊,move , which tests whether the right hand is moving upwards or
not. This descriptor falls in the body LMA category, since it describes which parts of
the body are moving. Müller proposes a concrete combination of 39 descriptors of this
kind to build a feature matrix to identify MoCap data recordings in a database.

Table 2.1 contains a summary of some of the mentioned descriptors and their correspon-
dences to LMA categories.

Throughout this literature review we see works that make use of some of these descrip-
tors. In our work, we use mainly those that allow to detect events in the movement of
the hands to study conductor-orchestra synchronization and for event triggering in in-
teraction, but we also explore in general descriptors that can provide information related
to other aspects relating body movement and musical parameters.

2.1.4 Real-time computation of MoCap features

As we have seen, descriptors computed from joints position time derivatives are very
relevant, since they are the basis of other descriptors related to dynamic aspects of the
movement. However, real-time computation of these descriptors has some issues, since
di�erentiation can introduce delay and amplify noise.

Di�erentiation acts as a high pass filter (Skogstad et al., 2012), which is a problem
due to the fact that MoCap signal is concentrated in the lower part of the spectrum.

3Binary descriptors can take only two values: 0 or 1.
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Table 2.1: Examples of reviewed MoCap descriptors for di�erent LMA categories.
Joint descriptors Body descriptors

LMA cat. Name Symbol Name Symbol

Body Joint moving in
given direction

F
(j1,j2;j3)

◊,move

Center of Mass CoM

Shape Movement size size
Joints touching F

(j1,j2)

◊,touch

Distance between
joints k and l

dl
k

Contraction Index CI

Weight e�ort Velocity v

k

Quantity of Motion QoMVelocity magnitude vk

Time e�ort
Acceleration a

k

Time E�ort Time E�ortAcceleration
magnitude ak

Acceleration along
trajectory at

k

Space e�ort Directness Dk

Flow e�ort
Jerk j

k

Flow e�ort Flow E�ortJerk magnitude jk

Curvature ck

Skogstad et al. asked a group of participants to perform 2 types of movements with their
hands: first, moving as fast as they could (to determine the highest frequency reached
in extreme cases); second, simulating they were controlling some application “with more
articulated and controlled motion” (to determine the frequency band of interest in the
general case). From these recordings, they identified that most of the content for normal
movements is below 10 Hz, and below 15 Hz for the take with fast movements.

Raw MoCap data contains noise whose frequency content depends mainly on the device.
For most cases, though, it is evenly distributed in all frequencies as white noise. In
this sense, it is desirable to get rid of the noise above the frequencies containing actual
MoCap data. Low pass filters can be applied to the data for this purpose. Di�erentiation
from this filtered data would result in a less noisy signal. However, it is actually more
optimal in terms of delay to use low pass di�erentiators (digital filters that perform
di�erentiation and attenuate high frequency content) than to first perform filtering and
then di�erentiating. Throughout this thesis, we use the filters proposed by Skogstad et al.
for real-time computation of time derivatives. These filters are specifically designed for
filtering MoCap data for musical applications, minimizing delay in the computation.
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2.1.5 Existing MoCap feature extraction frameworks

The MoCap Toolbox is a set of functions for Matlab4 developed at the University of
Jyväskylä (Burger and Toiviainen, 2013). It was developed for research on music-related
movement but is suitable for other areas as well. The toolbox includes a set of MoCap
feature extraction routines including some of the aforementioned and others. Interest-
ingly, it includes algorithms for computing the eigenmovements of a full body motion
capture segment using principal component analysis (PCA). PCA is a data dimension-
ality reduction method that consists on projecting the original data onto orthogonal
components that explain as much of the variance in the data as possible. PCA analysis
has proved to be useful both for MoCap data analysis (Toiviainen et al., 2010; Tits et al.,
2015) and musical performance (Bevilacqua et al., 2002).

EyesWeb, by Camurri et al. (2004), is a software that supports a wide number of input
data streams including MoCap, video, audio or other analog inputs (e.g. physiological
signals). The software includes modules that perform feature extraction from these
di�erent streams, including QoM and CI (available from video, 2D and 3D MoCap
data). It includes modules that specifically support some devices such as the Kinect V1
and supports a variety of standards including OpenSound Control (OSC) and MIDI.

Jensenius (2007) developed the Musical Gestures Toolbox including some of the features
in EyesWeb as a set of Max5 modules for the Jamoma framework (Place and Lossius,
2006). This toolbox, which includes several modules for visualizing motion, is however
limited to work with video data.

Two more platforms were released during the realization of this thesis. Mova (released
as a prototype), by Alemi et al. (2014), is an interactive movement analytics framework
for feature extraction, feature visualization, and analysis of human movement data.
Interaction with the platform mainly consists in choosing the features to visualize. It is
in this sense a platform more oriented to online movement visualization and exploration.

More recently, Tilmanne and D’Alessandro (2015) released MotionMachine, a C++ soft-
ware toolkit for rapid prototyping of MoCap features particularly targeted for motion-
based interaction design. It includes a layer for visualization based on the OpenFrame-
works6 environment. It allows to provide input data in a flexible format, working both
in o�ine and real-time scenarios.

4https://www.mathworks.com/products/matlab.html
5https://cycling74.com/products/max/
6http://openframeworks.cc/
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MoDe: a real-time MoCap feature extractor for creative applications

As we have seen, there are di�erent libraries to compute features from MoCap data. Also,
we have seen that real-time di�erentiation involves some issues which are particularly
relevant in this kind of data. Filters proposed by Skogstad et al. (2012) o�er an optimal
solution both in terms of noise reduction and introduced delay. In this sense, we consider
it is desirable for our work to have a software that implements these filters and allows an
easy integration for musical applications. Based on these needs, we implemented MoDe,
an open-source C++ library for real-time MoCap feature extraction.
There are other reasons that motivated the implementation of this library, which became
the requirements for its design:

• Easy integration with creative toolkits. The library can be compiled as an Open-
Frameworks addon. OpenFrameworks is a cross-compatible, open source C++
creative toolkit widely used by the creative community. Applications developed
throughout this thesis are in fact built with this toolkit.

• Compatibility with any MoCap device. The library Application Programming
Interface (API) allows to provide positional data using standard C++ containers,
so it does not require to use any specific device or library.

• Easy handling of temporal events. The library allows to subscribe to events de-
tected in the descriptors. For example: it is possible to get notifications when a
given descriptor reaches a local maxima or changes its sign. This can be useful for
triggering actions based on such events.

The library architecture and its API are explained with more detail in Annex C.

2.2 Motion-Sound Mapping

In Chapter 1 we already introduced the concept of mapping referring to how actions
performed by the user and control parameters are connected in a DMI. In motion-
controlled DMIs, such as those of interest in this thesis, we speak of motion-sound map-
ping (Schacher and Stoecklin, 2011; Jensenius, 2012; Françoise, 2015). In this section,
we review di�erent strategies and approaches for motion-sound mapping.

2.2.1 Explicit mapping and event triggering

Hunt and Kirk (2000) introduced a terminology to classify mapping approaches into dif-
ferent categories. They distinguish between explicit mapping, for strategies where move-
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ment parameters are directly wired to sound control parameters; and implicit mapping,
for strategies that use some model to encode more complex behaviors at the interface
between motion and sound parameters.

For explicit mappings, they identify di�erent approaches depending on the way in which
input control dimensions are connected to output control parameters. The simplest
case is one-to-one mapping, where one input control dimension is wired to one output
control parameter. The problem of this kind of setting is that, usually, it is desirable
to control more dimensions than those provided by the input device. In this sense,
di�erent authors such as Rovan et al. (1997) and Wanderley et al. (1998) point out
that this kind of mapping makes more sense from the performer perspective when the
controlled parameter is associated to some perceptual quality. For example, we could
have a DMI whose synthesis engine allows to control the relative amplitude of di�erent
harmonics in the sound. While accurately controlling the amplitude of each harmonic
would require as many input dimensions as harmonics, a single dimension at the input
could be connected to di�erent combinations of these amplitudes, which in e�ect would
be controlling the timbre or brightness of the sound.

Alternative options to one-to-one mapping are one-to-many and many-to-one mappings.
Hunt and Kirk (2000) illustrate both ideas with the example of a violin. In this instru-
ment, the bow controls a variety of sonic parameters, such as the volume, timbre or
articulation. In this sense, it is an example of one-to-many mapping. The control of vol-
ume in the violin is an example of many-to-one mapping; it is not influenced by a single
control, but by a “combination of inputs such as the bow speed, bow pressure, choice of
string and even finger position”. Rovan et al. (1997) refer to one-to-many and many-to-
one mappings as divergent and convergent mappings, respectively. Following the same
idea, many-to-many mappings involve associations between multiple input dimensions
and control parameters.

An important aspect in the interaction with DMIs is the control of temporal events.
Accordingly, it is common for the input device to allow triggering events, and in most
applications it is desirable to do it with high temporal precision. Systems based on the
conductor metaphor are an example where this is particularly relevant. As we see in
section 2.5, where we make a comprehensive review of systems based on this metaphor,
there are di�erent strategies for this. These can be as simple (and e�ective) as detecting
changes in hand movement direction, or may involve more elaborate strategies such as
the detection of specific gestures.
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2.2.2 Mapping gestures: from recognition to temporal and dynamical
modeling

With the term gesture we refer to movements that extend for a certain time (have a
beginning and an end) and express a meaning7. Gesture recognition and characterization
have been extensively used for interaction with DMIs.

As “movements with a meaning”, a common paradigm for musical interaction consists on
triggering musical events when a particular gesture is recognized. For example, Sawada
and Hashimoto (1997) use features computed from accelerometers data describing the
projection of the acceleration in di�erent planes to recognize gestures such as swings
and rotations in di�erent directions, which are associated to actions such as starting and
stopping the performance or adjusting the volume. Bevilacqua et al. (2002) used dimen-
sionality reduction based on PCA to detect dancing gestures such as jumps in di�erent
directions, triggering di�erent sample sounds. There are also examples that we explore
later in Section 2.5.2 for the specific case of systems based on the conductor metaphor.
For example, Kolesnik (2004) uses gesture recognition based on Hidden Markov Mod-
els (HMM) to detect expressive conducting gestures, which are associated with specific
indications for the virtual orchestra (crescendo, diminuendo, fermata...).

Artificial Neural Networks (ANN) have also been used to classify input gestures, mapping
this classification for sound control. ANN connect input and output variables through
hidden layers. In the case of motion-sound mapping, input variables are di�erent gestures
captured by the input device, and output variables are the classification. ANN are
powerful to learn non-linear relationships between both. For example, Modler (2000)
and Mitchell and Heap (2011) used ANN to classify hand postures performed with sensor
gloves, mapping the classification to control parameters.

Gestures however are not always performed in the same way. The same gesture can
be executed, for instance, with di�erent speeds or sizes. Incorporating this information
about not only what gesture is executed but how it is executed opens new possibilities
for interaction. The Gesture Follower by Bevilacqua et al. (2010) allows precisely to
perform continuous gesture recognition and following. It is built upon a template-based
implementation of HMM and it can learn a gesture from a single example. What makes
the system interesting in regards to interaction is that it is able to classify the gesture
while being executed and estimate its time progression with respect to the corresponding
template.

7Readers interested in the use of the term gesture in NIME might refer to the analysis that Jensenius
(2014) performed on such use through the NIME conference proceedings.
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Caramiaux et al. (2014b) use particle filtering to extend this approach with an adaptive
system. The Gesture Variation Follower (GVF) is a template-based method that allows
to track several movement features from a gesture in real time, during execution. These
features include the time progression (as the Gesture Follower) but also other variations
such as the o�set position, the gesture size, and the orientation. Caramiaux et al. present
an example application where the gesture recognition is used to select di�erent sounds
and the estimated variations are used for sound “manipulation”: the gesture speed
execution controlling the playback speed, and the gesture size modifying the volume.

2.2.3 Mapping through examples

Machine Learning (ML) techniques allow to analyze motion-sound mapping or to explic-
itly design mappings through examples. Di�erent algorithms have specific advantages
and disadvantages, so they are generally selected depending on the particular applica-
tion.

Canonical Correlation Analysis (CCA) has for example been used by Caramiaux et al.
(2010) and Nymoen et al. (2011) to deduce intrinsic motion-sound mappings from ges-
tures performed while listening to some stimuli. CCA allows to extract features from
each modality that are the most correlated over time. As Caramiaux and Tanaka (2013)
point out, the main drawback of CCA is that it assumes that the temporal evolution of
movement and sound are synchronous and that the relationship between gestural and
sonic features remains linear over time.

Bevilacqua et al. (2011) introduce the temporal mapping paradigm taking advantage of
the capabilities of the Gesture Follower (Bevilacqua et al., 2010). Temporal mapping
focuses on the temporal dimension of the sound. As explained by the authors, temporal
mapping can be understood as a synchronization procedure between “input gesture
parameters and sound process parameters”, for which the progression index provided by
the Gesture Follower is used. The system can be trained performing a gesture while
listening to an audio file, setting a direct correspondence between the gesture and audio
time progressions. In the cited paper, the authors already identify the potential of
temporal mapping for a “conducting scenario”, with a conducting gesture (or, in fact,
any gesture) controlling the playback speed of a recording.

Beyond classification and temporal modeling of gestures, ML allows modeling of cross-
modal relationships between movements and sound parameters through regression. The

30



2.2 Motion-Sound Mapping

Wekinator8, by Fiebrink (2011), is a toolkit based on Weka9 that implements a variety
of supervised learning methods including ANN, K-nearest neighbors, decision trees, Ad-
aboost and Support Vector Machines (SVM). The Wekinator allows to explore di�erent
regression analysis methods to design mappings between performer’s movements and
sound synthesis parameters (or, in general, control parameters for other domains). The
user can choose an algorithm and a di�erent combinations of control parameters, for
which she can provide examples of the gestures she wants to associate to those parame-
ters.
Caramiaux et al. (2014a) introduce a design principle they call Mapping through Listen-
ing, which considers embodied associations between gestures and sounds as the essential
component of mapping design. They enumerate three categories of mapping strate-
gies: instantaneous, temporal, and metaphoric. Instantaneous refers to the translation
of magnitudes between instantaneous gesture and sound features or control parameters.
Temporal refers to the same idea introduced by Bevilacqua et al. (2011), translating and
adapting temporal structures between gesture and sound data streams. Metaphorical
refers to relationships determined by metaphors or semantic aspects. In all cases, the
interaction of the user with the system starts in its training stage, in its mapping design.
Similar to this idea is play-along mapping as introduced by Fiebrink and Cook (2009).
In this paradigm, the user pretends to play along with a musical score in real-time. As
the user “performs”, the underlying machine learning system builds a training dataset
looking at the user’s gestures and the concurrent audio synthesis parameters. From this
training data, the algorithm learns a mapping from user inputs to synthesis parameters.
For this, Fiebrink and Cook implemented a specific functionality in the Wekinator to
allow the user to perform this “play-along” training, controlling the parameters and
behavior of the play-along mapping process.
This idea of integrating the user into the mapping design is in line with the HCI sub-
domain of Interactive Machine Learning (IML). IML, as introduced by Fails and Olsen
(2003), investigates ways to make ML more usable by end users by putting them in
the training loop, providing training data for training and iteratively evaluating ML
models. This human-centered approach to ML has also been explored in DMI design.
Fiebrink and Caramiaux (2016) report how learning algorithms can indeed be used in a
creative way by allowing users to convey concepts and intentions to the machine through
examples, the approach being of particular interest in DMI building.
Françoise (2015) introduces a framework that he calls Mapping by Demonstration. Fol-

8http://www.wekinator.org/
9Weka is a widely used suit of ML algorithms for data mining. http://www.cs.waikato.ac.nz/ml/weka/
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lowing the principles of Mapping through Listening, this framework considers listening
as the starting point for the design of the mapping. The mapping is learnt from a set
of demonstrations that explicitly show the relationship between motion and sound as
an acted interaction. Françoise uses joint recordings of gestures and sounds to learn a
mapping model using statistical modeling. In this sense, following the principles of IML,
the user is involved in the design loop, creating training examples and (iteratively) eval-
uating the designed motion-sound relationship. As a result of this research, Françoise
et al. (2014) released XMM10, a cross-platform library that implements Gaussian Mix-
ture Models and Hidden Markov Models for recognition and regression. The library is
specifically targeted at movement interaction in creative applications and implements
an IML workflow with fast training and continuous, real-time inference.

2.2.4 Conclusion

As we have seen, there are multiple motion-sound mapping strategies, ranging from the
simplest connections between input and output dimensions to frameworks and paradigms
that involve the end user in the design of the mapping itself. We believe that these later
trends that place the user at the center of the mapping design are particularly relevant
to our case, where we want to explicitly exploit the possible di�erent expectations that
users may have when using a DMI based on the conductor metaphor.

2.3 The Kinect devices

2.3.1 Kinect V1

The hardware of the Kinect V1 was licensed by Israeli company PrimeSense. It is
depicted in the left-hand side of Figure 2.1, and consists on a color camera, an infrared
(IR) projector, an IR camera, and a four-microphone array. The color camera delivers
video at 30 fps and 640◊480 pixels. The IR projector and camera together form the
depth sensor, which works with structured light technology. The IR projector casts an
IR speckle dot pattern, invisible to the eye and the color camera, that is captured by
the IR camera. The dot pattern itself is comprised of local unique patterns which are
perceived di�erently depending on the depth (distance to the plane of the camera lens)
of the surface where they are projected. This allows to infer this depth, via software,
from the IR image. The IR camera delivers video also at 30 fps at 320◊240 pixels.
10https://github.com/Ircam-RnD/xmm
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Figure 2.1: Kinect V1 sensor hardware and sample RGB and RGB-D images.

There are di�erent options for software that allow to get the depth image (usually
called RGB-D) from the IR video, and that also provide skeletal tracking from it. The
most commonly used ones have been Microsoft’s o�cial Kinect Software Development
Kit (SDK)11 and Primesense’s OpenNI (NI standing for Natural Interaction). OpenNI
must be used in compliance with a middleware called NITE in order to perform skeletal
tracking (while OpenNI is open source, NITE is not). Both options are comparable in
performance (Jungong Han et al., 2013), although the Microsoft SDK is only available for
Windows operating system and the OpenNI+NITE option is available in other platforms
and works with other devices similar to the Kinect. Examples of these sensors are
Asus Xtion12 and Primesense Carmine13. Even though OpenNI ceased to be o�cially
developed when PrimeSense was acquired by Apple in 2014 and the o�cial sites of the
library were closed, it is still possible to find the library in sites that maintain it available
for the community14.

A disadvantage that derives from the method that the Kinect V1 uses to perform skeleton
tracking is that it introduces a high latency, which is particularly inconvenient in musical
applications. Livingston et al. (2012) report minimum latencies of 106 ms that are
increased with the number of tracked users.

2.3.2 Kinect V2

The Kinect v2 sensor, o�cially released as Kinect for Xbox One, o�ers some improve-
ments over the capabilities of the first version. Details on its capture methods can be
11https://www.microsoft.com/en-us/download/details.aspx?id=40278
12https://www.asus.com/3D-Sensor/Xtion_PRO/
13http://xtionprolive.com/primesense-carmine-1.09
14https://structure.io/openni
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found in Sell and O’Connor (2014). The depth-sensing mechanism is based on the time-
of-flight (ToF) measurement principle. The IR emitter illuminates the scene and the
light is reflected by obstacles. The IR camera captures the reflected light and wave mod-
ulation and phase detection are used to estimate the distance to obstacles. The Kinect
V2 o�ers higher resolution images than its predecessor. Color image has 1920◊1080
pixels, and the depth image has 512◊424 with better depth resolution (Gonzalez-Jorge
et al., 2015). In any case, the most important improvement of this version with respect
to its predecessor for musical applications is its highly reduced latency. The Kinect V2
performs skeleton tracking with a minimum latency of 20 ms (Sell and O’Connor, 2014).

Regarding the software, the only reliable option to use this sensor for skeletal tracking
during the realization of this work was the o�cial Microsoft’s Kinect for Windows SDK15.
Open source drivers for the device such as libfreenect216 have been developed, but do
not provide skeletal tracking.

2.4 Music Conducting

After reviewing MoCap feature extraction techniques and motion-sound mapping strate-
gies, we can move on to focus on the case of the conductor. In this section, we review
works that computationally analyze the role of the conductor during performance. Be-
fore that, we provide a short historical introduction to the figure of the conductor in
Western classical music.

2.4.1 A short historical introduction

Conductors play a special, vital role in orchestral and choral music. During performance,
conductors lead the ensemble by coordinating all musicians, evaluating the performance
and providing additional instructions on how it must be carried out. However, perfor-
mance is only a very tiny fraction of the work that conductors do nowadays, which also
includes analyzing and interpreting the (full) score, communicating this interpretation to
the orchestra and practicing the performance. In some orchestras, conductors also carry
managing tasks such as defining the repertoire, scheduling rehearsals or even casting
new orchestra members.

The purpose of this Section is not to provide a complete historical overview of the figure
of the conductor, and we stick to its most immediate predecessors within western classical
15https://developer.microsoft.com/en-us/windows/kinect
16https://github.com/OpenKinect/libfreenect2
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music. Readers interested in a complete overview are referred to Galkin (1988). Shorter,
yet very complete, overviews of music conducting can also be found in Platte (2016);
Gambetta (2005).

The reason why we say nowadays when we talk about these tasks beyond performance
is because the role of the conductor has greatly evolved during time. The figure of
the conductor as we currently understand it was not stablished until the end the 19th

century (Galkin, 1988). Up until then, the conducting tasks in instrumental music were
usually done by the Kapellmeister, who reinforced the harmony and rhythm playing an
instrument, usually the cembalo -specially for basso continuo in the first half of the 18th

century- or the violin, which ended up being more used as it can be played while standing.
It was actually a common practice for composers themselves to lead performances of their
pieces while playing. For choral music, there was usually a dedicated time beater, who
used rolls of paper or wooden sticks to indicate the time visually or audibly (by beating
the ground).

However, the higher complexity of music in the romantic period, with increasing orches-
tra sizes, required new strategies for maintaining precision and synchrony. This is when
it became common to see composers (e.g. Mendelsohn, Berlioz, Brahms, Wagner) lead-
ing the performances of their pieces without an instrument, using gestures, and when
the conducting technique started to become established. Berlioz, in Le chef d’orchestre:
théorie de son art (1856), gave detailed technical instructions for beating patterns us-
ing diagrams. Wagner, in Über das Dirigieren (1870), concentrated on more aesthetic
aspects about the execution. Here, we confirm the increasing relevance of the conductor
as a performer : he is not just supposed to lead the performance or to maintain temporal
consistency, but also to embody the expressivity of the musical piece and to augment the
perception of this expressivity by the audience. Section 2.4.2 discusses how this aspect
has been studied in existing literature.

The last step in the evolution of the conductor towards what we know today was forced by
the taste of the public, which had an increasing interest on music by deceased composers.
The conductor was not necessarily the composer of the piece, but a musician that was
able to interpret a score, communicate this interpretation to the orchestra and develop
the right technique to make this communication with gestures.

Although the art of conducting allows each conductor to develop his own style and
technique, conducting is highly codified and taught in many institutions. Traditional
schools of orchestral conducting have developed a well-defined and structured grammar
of conducting gestures. There is a vast literature in the field of musical conducting, but
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probably the most relevant and commonly cited reference is The Grammar of Conducting
by Rudolf (1980). The book argues that most conducting information can and should
be communicated with gestures of the right hand with or without a baton. Accordingly,
even though in some cases we find that the tasks of both hands are divided (the right
hand for time beating, the left hand for expressive communication) (Kolesnik, 2004), it
is more common to consider that the same hand can indicate other expressive aspects
that are translated into modifications with respect to the dynamics or articulation of
the performance. Rudolf describes gestures with illustrations of two-dimensional shapes
covering di�erent musical expression as well as time-beating.
In the rest of this dissertation (and as usual in related works) we focus on the most
visible and recognizable task of conductors: silently leading performances with gestures.
However, it is important to keep in mind that this vision of the conductor as a musician
who can just stand in front of an orchestra and start performing is clearly reductionist.

2.4.2 The effect of conducting movements in performance

The way in which the movements of the conductor influence the performance has been
studied from two main points of view. One set of works try to establish causal rela-
tionships between the movement execution and specific aspects of the resulting musical
outcome (mainly timing), either by recording and analyzing the performance itself or by
studying how performers perceive specific aspects of the conducting movements, which
are assumed to a�ect how they would perform (e.g. perception of beat in the move-
ment). Other works assess, usually through questionnaires, whether the conductor’s
movements a�ect the perception of subjective performance qualities, such as its interest
or expressivity.

Objective assessment of the effect of conducting movements

Existing literature dealing with the objective analysis of conducting movements e�ects
has focused on timing, usually trying to establish the concrete moment of the (hand)
gesture in which musicians perceive the ictus or beat. Clayton (1986) examined the
contribution of di�erent factors in string instrument players timing during performance
of orchestral music: the rest of the ensemble players, the conductor, the score, and the
player’s own sense of rhythm. He found that the most important source of timing in-
formation was the sound of the rest of the ensemble players, followed by the conductor.
From the results, he suggested that the role of the conductor was to provide general tim-
ing information to the ensemble by, for example, setting the initial tempo or monitoring
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Figure 2.2: Correlation vs lag plot for one of the “high-clarity” excerpts studied by Luck
and Toiviainen (2006). The position of each variable corresponds to the lag
at which its correlation with the pulse was maximum and the value of this
correlation. Image from Luck and Toiviainen (2006), p. 194.

the tempo during the performance and keeping the whole ensemble together. He also
investigated which part of the conductor’s gesture communicated the ictus by taking
recordings of string instrument players playing and tapping their foot in synchrony with
two-beat conducting gestures. He found that the lowest part of the trajectory in the
vertical axis corresponded to the perceived beat. However, Luck (2000) questioned the
accuracy of this definition of the beat after asking participants with di�erent musical ex-
pertise to tap the beat in synchrony with recordings of a conductor performing di�erent
gestures. He found that musical expertise was negatively correlated with synchronization
accuracy following that definition and suggested that the beat in conducting gestures
may need to be defined in more complex terms.

In order to explore the phenomenon of conductor-ensemble synchronization in a more
ecologically-valid way, Luck and Toiviainen (2006) recorded the movements of an expert
conductor with a high-precision MoCap optical system while directing an ensemble of
expert musicians, together with the performance audio. They examined the features of
the conductors’ gestures with which the ensemble performance was synchronized. More
concretely, they extracted twelve MoCap features from the position of a marker attached
to the tip of the baton and cross-correlated them with the pulse of the performance, for

37



Chapter 2 Background

which they used the spectral flux computed from audio of the orchesta. They manually
annotated short (close to 10 seconds) excerpts where the conductor communicated the
beat with high and low clarity. For each of the descriptors, they found the lag that pro-
duced the highest correlation with spectral flux. This way they could establish, for each
descriptor, the delay between the feature occurring and the ensemble playing. For the
high clarity excerpts, they found that the ensemble performance tended to be highly syn-
chronized with periods of maximal deceleration along the trajectory. This is suggested
by the descriptor at (acceleration along the trajectory, computed by projecting the ac-
celeration in the direction of the velocity vector) having a high negative correlation at a
short lag. Periods of high vertical velocity (vy) showed higher correlation with a longer
delay. Figure 2.2 shows, for one of the “high-clarity” excerpts considered in this study,
the correlation and lag values for each of the twelve descriptors under consideration17.
More recently, Platte (2016) proved a direct correlation between the movement qual-
ities of conductor’s gestures and the reactions of musicians to those with respect to
sound qualities. For one of the experiments she performed, a professional conductor
was recorded performing the three di�erent conducting patterns shown in Figure 2.3
(concave, convex and mixed, a combination of both) which were expected to produce
di�erent reactions. The patterns were recorded in di�erent sizes and tempi. Then, she
asked participants in the study to perform a set of beat-tapping tasks by pressing a touch
sensor while watching the recordings. The output of the touch sensor was associated,
during the analysis, to di�erent musical qualities. The applied pressure was associated
to volume, while the length of the touch was associated to articulation. In addition to
the output of the touch sensor, she also recorded physiological data to measure stress
levels. The requested tasks involved playing the touch sensor following the presented
video: first, without specific instructions, in order to observe di�erences between intu-
itive reactions to di�erent patterns and sizes; then, by giving coherent and incoherent
tasks to the participants (e.g. asking to play loud with a big and a small gesture, respec-
tively). The experiment showed, for example, that loudness was mainly influenced by
the size of the gesture, while articulation was influenced by di�erent shapes, being the
convex gesture the one evoking significantly longer pressure duration over the concave
one. It was also shown that convex gestures showed the highest predictability in terms
of beat communication.
Karipidou (2015) performed MoCap recordings of a conductor directing a piece for string
quartet with di�erent expressive intentions. From these recordings, she explored di-
mensionality reduction techniques based on Gaussian Process Latent Variable Model
17We use the same naming convention for these descriptors in Subsection 3.2.3.
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Figure 2.3: Concave (left), convex (middle) and mixed (right) conducting patterns used
by Platte in her experiment. Red circles represent the beat points. Image
from Platte (2016), p. 36.

(GP-LVM) to represent these expressive variations, being able to classify conducting
movements based on the expressive intent. Following this work, Ahnlund (2016) looked
for correlations between these representations of conducting expressivity and expressive
features computed from audio. While some correlations are found, the conclusion of her
work is that the utilized representations of conducting gesture do not capture musical
expression to a su�cient extent.

Influence of conducting gestures in performance perception

During performance, conductors embody expressive elements of the music being played.
Even if this can be considered as something they need to do in order to correctly com-
municate with the orchestra and achieve the best sonic result, their movements also
influence the overall perception of the performance by the audience.

Previous research has widely shown that there is a link between visual and auditory
perception of music performance. Davidson (1993) showed that visual information plays
an important role in conveying expressivity. She presented observers with excerpts of
recordings of deadpan, projected and exaggerated performances in sound only, sound
and vision, and vision only modes. She found coherence between performer intention
and audience perception in all conditions, with the vision-only recording providing more
information about expressive intention. Thompson et al. (2005) asked listeners to rate
the perceived dissonance and emotional valence of two recordings by Judy Garland
and B. B. King (known for being particularly expressive in their facial gestures) and
found significant di�erences when those recordings were presented with and without
the video. Dahl and Friberg (2004) investigated wether emotional intentions could be
conveyed through musicians’ movement. They recorded a marimba player playing the
same piece with the intentions Happy, Sad, Angry and Fearful and found that the first
three were correctly identified by observers who watched the recordings without sound.
Platz and Kopiez (2012) performed a meta-analysis of fifteen studies on audiovisual
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music perception, concluding that the visual component is an important factor in the
communication of meaning.

A number of works have studied the perception of conducting gestures and their influence
in the overall perception of the performance. Bender and Hancock (2010) performed a
study to analyze the influence of the conductor’s intensity and ensemble performance
in the rating of the conductor, for which they combined high and low intensity gestural
conducting with high and low performance qualities. As expected, the high intensity
conductor was rated higher, but the quality of the performance also influenced the
conductor assessment. Price and Mann (2011) found out that the conductor also had an
e�ect on the rating of the performance. They asked participants (undergraduate music
students and music education majors) to rate the recordings of seven performances with
di�erent conductors for which the audio was actually the same. Not only conductors were
rated di�erently, but performances as well. More recent studies started to address this
e�ect with more detail. For instance, Morrison et al. (2014) found that the perception of
articulation and dynamics in gesture was strongly correlated with evaluations of overall
ensemble expressivity.

Kumar and Morrison (2016) recently analyzed whether the e�ect of the conductor in
the performance perception could be due to the gesture as they delineate and amplify
some specific aspects in the music. They recorded two conductors focusing on di�erent
musical elements for two musical excerpts, one consisting on an ostinato paired with a
lyric melody, and another one with long chord tones paired with rhythmic interjections.
They asked participants to rate the performances according to a number of musical
elements (articulation, rhythm, style and phrasing). For the first excerpt, they found
out that listeners were sensitive to how the conductors delineated musical lines as an
indication of overall articulation and style. According to the authors, the same e�ect
was not observed in the second excerpt probably due to listeners’ preconceptions on the
importance of melody over rhythm or some instruments versus others.

Following a di�erent strategy, Luck et al. (2010) investigated the relationships of con-
ductors’ gestures kinematics and ratings of perceived expression. They recorded two
professional conductors with a MoCap system and presented participants with point-
light representations of those recordings, asking them to provide continuous ratings of
perceived valence, activity, power and overall expression. They performed regression
from movement features, extracted from the MoCap data, to the provided ratings. They
found out that higher levels of expressivity seemed to be conveyed by gestures with high
amplitude, variance and speed of movement.
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2.4.3 Conclusion

In this section we have seen several works that analyze conductor-orchestra interaction
from a computational point of view. In most cases, these studies are performed in
controlled settings, which is necessary when trying to observe and analyze a particular
phenomenon. There is however a lack of studies dealing with actual performances and,
in our work, we want to approach this analysis trying to see whether it can inform the
design of DMIs based on the conductor metaphor.

We have also seen studies that analyze how the conductor movements a�ect the audi-
ence’s perception of a performance. We have included these works since, as we have
been saying, the purpose of an interface metaphor is allowing the user to transfer the
knowledge she has from the activity replicated by the metaphor to the interaction with
the system. In this sense, it is relevant to know how the conducting activity is perceived
by those who see it. Something we do not find in the literature, however, is studies that
investigate how people understand the role of the conductor by turning this approach.
That is, instead of analyzing how conducting movements are perceived, asking the per-
son to perform these conducting movements. We believe that, with methods similar to
those used to analyze the movement by real conductors, there is an interesting unex-
plored opportunity to analyze how people with di�erent musical backgrounds perform
conducting movements.

2.5 The Conductor Metaphor in Digital Musical Instruments

The conductor metaphor has been widely used in DMIs. For this review, we consider
that a DMI belongs to this category when:

• The control consists on the modification of an existing musical piece (which can
be stored either as a score to be synthesized or as audio to be modified). This
modification can consist on controlling the performance tempo, the overall volume
or balance between di�erent sections, the articulation, etc.

• The interaction occurs in real-time, with the user being able to hear the e�ects of
her gestures on the outcome.

As we will see immediately below, this type of interaction motivated the creation of
control devices that allowed to use movements that resemble those of a real conductor
during performance. For this review, we focus on works that also include this charac-
teristic.
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2.5.1 Immediate predecessors and first works

Even though we could trace the predecessors of conductor-based musical interfaces to
many works in the Computer Music field, here we just mention the most immediate
ones.
The first of them is GROOVE, a system developed by Mathews and Moore (1970) which
allowed to compose, store and edit functions of time interactively. They defined a file
system to store functions of time generated by human actions and, very importantly,
they included feedback on the performed actions during the interaction as a key element
of their system, as depicted in Figure 2.4. In fact, the authors already talk about the
conductor metaphor when they discuss the first application for which they had used the
system (which was designed to be used for a wide range of applications), an electronic
music synthesizer:

The desired relation between the performer and the computer is not that be-
tween the player and his instrument, but rather that between the conductor
and the orchestra. The conductor does not personally play every note in
the score; instead he influences (hopefully controls) the way in which the in-
strumentalists play the notes. The computer performer should not attempt
to define the entire sound in real-time. Instead, the computer should have a
score and the performer should influence the way in which the score is played.
(Mathews and Moore, 1970, p. 716)

Mathews (1976) used GROOVE to develop the Conductor Program. The Conductor
Program was motivated by Mathews’ conversations with composer and conductor Pierre
Boulez. As Mathews said in an interview with Richard Boulanger:

The Conductor concept was actually the result of a request from Pierre Boulez.
In 1975 he asked me for a flexible way of playing back a tape so that the tempo
of the music would be controlled. [...] Boulez wanted to be able to change the
timing of the playback without changing the pitches or timbres. [...] I began
asking myself, “What do conductors do during a performance?” Clearly, they
control the tempo. (Boulanger et al., 1990), p. 34.

The Conductor Program allows to perform music with a synthesizer and a computer
that has a score stored in a file. In its first version, the Conductor Program allowed to
control the performance in real time using the same input devices that GROOVE used
to record gestures (i.e. typewriter, switches and knobs).
Inspired by the Conductor Program, Buxton et al. (1980) developed the conduct system
in the late ’70s. It consisted on a digital synthesizer controlled with a graphics tablet,
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Figure 2.4: Feedback loop for composing functions of time in GROOVE. Image from
Mathews and Moore (1970), p. 715.

switches and sliders. It had prerecorded scores for which pitch, tempo, articulation,
amplitude and richness (timbre) could be controlled in real time. This was done using
the graphics tablet to select the desired parameter to change on the screen and changing
its value directly, either by inputting it through the keyboard or moving it up and down
using sliders.

These works, as we see, are explicitly based on the conductor metaphor. However, the
interaction was still done with input devices that were not meant to be used with gestures
that resembled those of a real conductor.

Mathews kept developing the Conductor Program looking for more natural ways to
interact with it. As a result, he developed a mechanical baton called Daton (Mathews
and Barr, 1988), which consisted on a plate mounted on gauges that generate electrical
pulses when struck with a drumstick. The Daton was used to control the performance of
the stored score by triggering beats and controlling other qualities such as loudness and
balance of di�erent voices (in these cases, in a less natural way, by varying the position of
the hit). It was also possible to control these other qualities using a joystick and knobs,
keeping the Daton for tempo control. Figure 2.5 shows the hardware configuration of
the Conductor Program when the Daton was included.
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Figure 2.5: Diagram of the Conductor Program hardware in the version using the Daton.
Image from Mathews and Barr (1988), p. 12.

Mathews, together with Bob Boie, later developed the famous Radio Baton (Boie et al.,
1989; Mathews, 1991) to allow a more natural control of the Conductor Program. The
Radio Baton consists in a low-frequency radio transmitter in the end of a baton, whose
3D position over a plate is measured by an array of receiving antennas. Using two Radio
Batons, the beat is triggered when the distance of one of them (usually the one held
with the right hand) to the plate is lower than a certain threshold. The position of
the other baton is used to control dynamics, as it was done with the joystick in the
previous version. This makes the interaction with the Conductor Program more natural
and similar to real conducting. Figure 2.6 shows Mathews using the Radio Baton.

These works can be (and very commonly are) considered the first conductor-based musi-
cal interfaces that fulfill all the aforementioned criteria. They have a stored score whose
performance can be controlled in real-time using conductor-like movements as, in this
case, beating with a baton.

2.5.2 Relevant DMIs using the Conductor Metaphor

The works included in this subsection fulfill the criteria stablished at the beginning of
this section. They are considered relevant for their novel contributions with respect to
di�erent aspects such as the motion capture procedure (the first works usually make
contributions in novel input devices) or the motion-sound mapping strategy. However,
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Figure 2.6: Max Mathews using the Radio Baton to control the Conductor Program.
Image from Marrin (2000), p. 44.

the contributions of many works are multiple, which makes di�cult to establish a clas-
sification based on the kind of contribution. For this reason, we review these works in a
chronological order, grouping those that were created by the same person or group.

Haflich and Burnds (1983) developed the Conductor Follower with a particular focus
on the input device. They used ultrasonic rangefinders developed by Polaroid for their
automatic cameras. Two sonar devices on the floor with their beams positioned upward
toward the conductor’s arm tracked its position in two dimensions to an accuracy of
about one inch. It was the first system that tracked the arm position in a completely
unobtrusive way. Following Mathews’ advice (according to Marrin (2000)), they built a
baton consisting on a passive device with a reflector attached to its tip that was better
traced by the rangefinders.

Keane and Gross (1989) designed the MIDI Baton to enable a conductor to coordinate,
in real time, live performers and a computer or sequencer. In this sense, it is only meant
to control timing. It consists on a metal tube with a metal ball inside, separated by a
spring. When accelerated with su�cient strength, they make contact and generate an
electrical signal. Some post-processing is done to discard false positives and detected
beats are sent to a sequencer. Refinements to the system were done in the following
years, with the basic concept for interaction and the device being the same (Keane and
Wood, 1990, 1991).

The first computer vision based interface using the conductor metaphor was the Com-
puter Music System that Follows a Human Conductor by Morita et al. (1989). It used a
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CCD camera and specific hardware to track the 2D position of the baton or a white glove
on the conductor’s hand. Tempo and volume were computed from the turning points of
the tracked trajectory and used to control a MIDI sequencer. In later versions (Morita
et al., 1991), the baton incorporated an infrared light on its tip and a VPL Research
DataGlove (Zimmerman et al., 1987) for the left hand, which allowed to include new ac-
tions such as instrument selection. In addition, the system included a database mapping
gestures to musical expression information which could be altered by the conductor by
telling the system how good the gestures had been interpreted. In this sense, this system
is also the first to incorporate some sort of supervised learning stage to gain information
from how users interacted with it.

The Conductor Follower18 by Brecht and Garnett (1995), which builds on the Adaptive
Conductor Follower by Lee et al. (1992), used a Mattel Power Glove and a Buchla
Lightning baton as input devices. The 2D position of the baton was processed in the
Max/MSP environment with di�erent methods for the beat analysis. The first method
used the time between the last two detected beats to predict the time of the following one.
The second looked for six characteristic points in a beat curve, using zero crossings in
velocity and acceleration of the baton. The third method used an ANN trained from the
relationship between these six characteristic points and time, estimating the probability
of the next beat happening. This ANN was previously trained by a conductor conducting
along with a metronome at di�erent tempo. The synthesis was done by controlling MIDI
output.

Guy Garnett (coauthor in the aforementioned works) also coauthored the Virtual Con-
ducting Practice Environment (Garnett et al., 1999), which in this case was not meant
for performance but to be used by student conductors to get proper audiovisual feedback
on the goodness of their gestures. Similarly to the previous systems, it used a Buchla
Lighting baton. It was able to provide graphic representations of specific aspects like
the position of recognized beats or the articulation (from legato to staccato). However,
the authors stated that it could not be used as a successful substitute of a real teacher
or practice with musicians.

The Interactive Virtual Ensemble (Garnett et al., 2001) is an evolution of the previous
Adaptive Conductor Follower and Conductor Follower systems that replaces the Buchla
Lightning baton by a MotionStar sensor that is able to recognize not only the position of
the baton, but also the orientation of the hand holding it. The system used one computer
to process sensor input and another one for synthesis getting the required output from
18Not to be confused with the system with the same name by Haflich and Burns (1983) explained

previously in this Subsection.
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the first computer. Also, the synthesis used an analysis/resynthesis paradigm instead of
MIDI, with a dedicated algorithm to deal with the artifacts caused by transients when
slowing down the resynthesized music.

Teresa Marrin’s contributions in the creation of musical interfaces is highly influenced by
her experience as a conductor. The Digital Baton (Marrin and Paradiso, 1997) included
three acceleration sensors to sense the movement, five pressure sensors to sense the
pressure of each finger of the hand, and a LED at its tip to track its position with a
camera. It could track conducting gestures (Marrin, 1996) but it also ended up being
used as an input device for other sort of interactions such as triggering samples and
placing them in the stereo panorama.

A very di�erent an innovative approach is the Conductor’s Jacket (Marrin and Picard,
1998) which, for the first time, uses physiological sensing to track conducting gestures, as
opposed to just tracking the position of the hands or the baton. The jacket incorporated
four electromyogram (EMG) sensors for muscles in the arms, a respiration monitor, a
heart rate monitor, a temperature sensor and a Galvanic skin response sensor. In its
second version (Marrin, 2000), it only included the EMG and respiration sensors. The
processing software detected beats based on maxima in muscle tension from the biceps,
as well as cuto�s or pauses, allowing the conductor to control tempo. The system also
allowed to perform other actions on the synthesis beyond those commonly associated to
conductors, such as changing the pitch or panning of specific voices.

The first system that used Hidden Markov Models (HMM) to follow right hand conduct-
ing patterns was the Multi-Modal Conducting Simulator by Usa and Mochida (1998b). It
used acceleration sensors to track the movement of the baton in two dimensions. HMMs
in their case were used in combination with fuzzy logic based on the current tempo to
estimate the probabilities of a detected beat to correspond to the di�erent beats within
a measure. In addition, the system also allowed to control dynamics and articulation
based on the movement trace between beats (e.g. mapping the movement size to the
loudness and its smoothness to the articulation). The gaze and breath of the user was
also detected with an eye camera and a breath sensor, which allowed to couple previously
marked parts in the score with the breathing of the user.

The Virtual Orchestra by the Digital Interactive Virtual Acoustics (DIVA) consisted on
3D models of musicians in a band whose movements were rendered from the notes in a
MIDI score. The system included a conductor following system by Ilmonen and Takala
(1999) to control the interpretation of these virtual musicians using MotionStar sensors
as input device, mounted on both hands and the conductor’s neck (as a reference). The
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sensors provided three-dimensional positions of the hands relative to the neck. These
positions were inputted to ANNs to predict beats similarly to Brecht and Garnett (1995).

The Personal Orchestra series is a set of works by the RWTH Aachen University’s Media
Computing Group (Borchers et al., 2002; Lee et al., 2004, 2006; Borchers et al., 2006).
They made a number of installations which are based on providing control over ad-hoc
recordings of orchestras.

The Virtual Conductor (Borchers et al., 2002) is the main attraction of the House of
Music in Vienna. It consists on an audiovisual recording of the Vienna Philharmonic,
with manual annotations of the beat positions. An infrared baton is used as the input
device. Its position is tracked in 2D by a receiver under the screen that the user faces,
as shown in Figure 2.7. The downward-turning points are detected as beats and used to
control the tempo of the playback, applying low-pass filtering to avoid sudden unnatural
tempo changes. As opposed to the case of the Conductor Program, this system does
not provide control over a synthesizer, but over a recording (which, in a sense, is closer
to Boulez’s original idea about controlling the tape). This requires to perform time-
stretching on the recordings, in a way that changes the playback speed without a�ecting
the pitch or timbre of the original sound. At the time of development of the first version,
state-of-the-art algorithms did not allow to do this in an e�cient way, so it was solved
by cross-fading between tracks at di�erent speeds and changing the playback speed of
the video. The installation was upgraded in 2009 with new recordings, an electronic
music stand, high-quality time stretching and some improvements in the robustness of
the interaction (Borchers et al., 2006).

A time-stretching system based on the phase-locked phase vocoder was first used in a
version for children called You’re the Conductor (Lee et al., 2004), which was installed
in the Children’s Museum of Boston. Regarding the interaction, the mapping was made
intentionally simple for children, with the speed of the movement controlling the tempo
(avoiding the necessity to follow beats) and the size controlling the dynamics.

Maestro! (Lee et al., 2005) and iSymphony (Lee et al., 2006), installed at the Betty Brinn
Children’s Museum in Milwaukee, incorporated a gesture analysis framework (conga,
Conducting Gesture Analysis framework (Grull, 2005)) that allows the system to detect
if the user is performing one of two possible gestures or none, thus being able to switch
its behavior depending on what the user is doing.

The Conducting Gesture Recognition, Analysis and Performance System by Kolesnik
(2004) used two USB cameras as input devices. A computer processed the input using
the EyesWeb software (Camurri et al., 2004) to track the two-dimensional position of the
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Figure 2.7: The Virtual Conductor installation at the House Music in Vienna.

hands. A second computer received this tracked position to compute, using a dedicated
set of HMM tools in Max/MSP, control information from both hands (right hand for
tempo control, left hand for expressive control). A pair of HMM (one for each camera)
was trained for each of the gestures to be recognized by the system. This allowed to
recognize the most likely gesture for the input at each moment, controlling the playback
of an audio file. Phase vocoder was used to control the tempo, for which the controlled
sound needed to have beat annotations.

Another set of works use the KTH19 rule system for music performance (Friberg et al.,
2006). This system models principles of interpretation used by musicians in performance.
It takes a score as input and outputs a expressive rendering of it by applying contextual
modifications on the low-level performance parameters (tempo, note duration, dynam-
ics...). For example, a rule called Overall articulation is used to change the articulation
of all notes in the score by changing the ratio between the note duration and the inter-
onset-interval. In Home Conducting, Friberg (2005) used the KTH rule system as a
means to provide indirect control of expressive musical details on the note level. It uses
a webcam as input device, but instead of directly extracting the position of the hands, it
computes parameters such as the quantity of motion, position of the overall motion, and
the size and velocity of horizontal and vertical gestures. These features are mapped to
values of the KTH rules to guide the performance. Interestingly, Friberg envisions three

19KTH is the acronym for the Kungliga Tekniska Högskolan (Royal Institute of Technology) University
in Stockholm.
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possible levels of interaction depending on the complexity of the mapping. A first level
(listener level) would allow to map semantic descriptors such as emotions (e.g. happy
movements result in happy-sounding music); a second one (simple conductor level) would
use kinematic descriptors to directly control the music expression (e.g. a fast movement
results in faster music); and a third one (advanced conductor level) would combine the
previous ones with explicit control of the beat.

Fabiani (2011) focused on the listener level (or naïve level, in his publication) in Per-
MORFer and MoodifierLive. PerMORFer is similar to Home Conducting, except in
that it is based on the manipulation of audio recordings instead of using MIDI, which
requires a complex audio analysis and transformation stage in order to apply note-level
modifications to the original audio. MoodifierLive is a version using mobile phones as
input devices (concretely, their accelerometers) and, again, using MIDI to generate the
resulting audio. In both cases, the movements do not need to resemble those of a real
conductor. Instead, the input is processed to obtain high level descriptors which are
mapped to performance parameters, as illustrated in the block diagram of PerMORFer
shown in Figure 2.820.

In VirtualPhilharmony, Baba et al. (2010) deal with the specific problem of previous
interfaces not satisfying users with conducting experience. It is, thus, meant for pro-
fessional conductors. They use three sensors to track conducting movements: a glove
with an accelerometer, a Wii Remote held as a baton and a capacitance sensor (a MIDI
theremin). It introduces heuristics of conducing an orchestra based on expert knowledge.
They make some interesting considerations, such as considering that musicians in the
orchestra do not always obey the directions of the conductor and also have their own
musical intentions. They introduced the “Concertmaster Function” imitating the role
of a concertmaster (usually the first violin), who conveys instructions from the conduc-
tor to the orchestra, and communicates the orchestra members’ will to the conductor.
Basically, the “Concertmaster Function” adapts he behavior of the system in terms of
beat prediction to the musical style or the tempo. They made an interview with an
expert conductor and got some feedback from a few public demonstrations which seems
to indicate that the system feels like having “musical persuasiveness”. However, it is
di�cult to tell wether the heuristics have any particular e�ect on this, provided that the
evaluation is solely based on informal feedback provided by users who used the system
with this heuristics activated.

The Conductor Follower21 by Bergen (2012) uses a Kinect V1 as input device. It is
20Note that the block diagram for MoodifierLive would be the same, excluding the audio analysis part.
21Not to be confused with the systems with the same name by Haflich and Burnds (1983) and Brecht
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Figure 2.8: Block diagram of PerMORFer. Image from Fabiani (2011), p. 11.

developed as a VST plugin that takes a MIDI score as input and it allows to control
the beat. The beat detection algorithm uses only the vertical position of the hand and
some heuristics to determine whether a change from downward to upward movement is
actually a beat. It also includes some heuristics to deal with very sudden changes in
tempo or the conducting pattern (e.g. switching from marking all 4 beats in a 4/4 bar
to marking just the first and third beats).

The Interactive Conducting System Using Kinect by Toh et al. (2013) allows to control
tempo, adjust volume and emphasize instrument sections of a virtual orchestra. It uses
a Kinect V1 as input sensor, and the interaction is based on a priori knowledge gained
from interviews with conductors. To detect beats, the system looks at the trajectory of
the right hand movement and finds down-turning points between two consecutive up-
turning points. Volume is controlled by raising or lowering the left hand at a certain
distance from the rest of the body. Instrument emphasis is achieved by looking at the
position of the head and the depth information (distance to the camera) of the trajectory
(e.g. if the head moves more than a certain threshold to the left and the conducting
trajectory moves towards the camera - towards the orchestra - the instrument section

and Garnett (1995), explained previously in this Subsection.
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placed on upper left position is emphasized).
Similarly to the previous example, the Virtual Ensemble by Rosa-Pujazon and Barbancho
(2013) allows to control the beat and the volume of di�erent instrumental sections using
a Kinect V1. In their case, beats are detected from direction changes in horizontal hand
movement22, and the volume can be adjusted with the left hand by first pointing at the
instrumental section of interest and then raising or lowering the hand. Visual feedback
helps to understand the interaction by, for example, drawing a red arrow on top of the
instrumental section being pointed at each time, if any.
With a very di�erent approach, Diakopoulos et al. (2015) used a Kinect V2 to allow a
professional conductor to control a prepared grand piano. In this case, the conductor can
make “grabbing” gestures with the right hand at di�erent positions in space to activate
di�erent modes of control, waving the other hand to modify di�erent parameters. In
this case, the gestures controlled the behavior of the actuators in the piano.
Diesbach et al. (2013) propose an original installation using a Kinect V1 where the
orchestra to be controlled is actually formed by up to 24 laptops arranged in space
similarly to a symphonic orchestra. Each laptop is associated to a di�erent sample,
and the performer can just move her hands through the space to make di�erent laptops
sound. Holding a hand in one area makes the sound of the corresponding computer
increasing in volume. Tsui et al. (2014) followed the same idea using mobile phones, but
in this case using Leap Motion23 as input device.
More recently, Bacot and Féron (2016) report the creative process on the creation of
a piece where a conductor used two Kinect sensors to interact with Gestrument24, an
application initially conceived for the iPad. Here, two Kinects are used to provide
the performer with two “immaterial” touch screens, one for each hand, to control the
application.

2.6 Conclusions

In this chapter, we have reviewed works relevant to this thesis in several areas. First, we
have seen common techniques for feature extraction from MoCap data. Next, we have
reviewed di�erent mapping paradigms that have been used for DMI design. Then, we
22According to the authors, the decision of using horizontal movement is based on previous explorative

tests asking non-conductors to perform conducting gestures. This is something we have not found
elsewhere in the literature, nor something we have observed in our own observation studies of the
sort (see Chapter 4).

23https://www.leapmotion.com/
24http://www.gestrument.com/
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have reviewed studies that computationally analyze conducting movements. Finally, we
made a comprehensive review of DMIs based on the conductor metaphor.

Having done this review, we can identify some opportunities for research with DMIs
based on the conductor metaphor.

Regarding the conclusions from existing studies analyzing conducting movements, we
identify two problems with respect to their applicability in the design of DMIs. First,
most of these studies are performed under conditions other than those found in a per-
formance. This is desirable in some cases if what is desired is to have a controlled
environment where a particular phenomenon is observed. However, when designing a
DMI based on the conductor metaphor, we must keep in mind that the idea that the
average user has about what a conductor does (and, therefore, what she will tend to
imitate) is associated with what she can see in a performance. For this reason, it is
desirable to observe conductors in actual performances, although this implies that the
observed e�ects should be treated with greater caution. Second, most of these studies
have been performed for areas other than the design of DMIs. We also think it is ade-
quate to perform this analysis with such use case in mind. For this, we must consider
what parameters can be controlled in a DMI based on this metaphor and observe the
performance looking for causal relations between the movements of the director and
these parameters.

Regarding the design of DMIs based on the conductor metaphor, we believe that the
progress in motion-sound mapping paradigms o�ers new opportunities for exploration.
We have seen how the vast majority of the revised DMIs o�er important improvements
in many aspects (more precise control of the tempo, extension of the dimensions under
control, etc.). However, in a scenario where users may have di�erent expectations about
how to interact with the system or where they may even wish to develop their own style,
this aspect has not been explored in depth. Recent motion-sound mapping paradigms
encourage to involve the user in the design of the DMI. Following this idea, we believe
that the case of the conductor metaphor o�ers a good use case for investigating the
adaptation to user-specific styles or specificities.

Finally, it is di�cult to find cases where, even when the instrument has been designed
with the goal to attract new audiences to classical music, the extent to which this
objective is achieved is discussed. Accordingly, in a context such as that of the PHENICX
project in which this thesis is developed, it is important that this is not left aside. For
this reason, we believe that it is relevant to design experiences where not only this goal
is key but also where, accordingly, its success in this matter is thoroughly evaluated.
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Chapter 3

Learning from real performances

Music conducting is a highly complex musical art. It involves many di�erent aspects.
Among the many tasks for which conductors are responsible, leading the ensemble using
gestures during musical performance is probably the most characteristic and prominent
one. In this context, conductors use gestures to establish the tempo, indicate entries to
di�erent sections in the orchestra (or voices in a choir) or convey expressive intentions
that get reflected in variations in, for example, dynamics and articulation. Although
the goal of this work is not to build a realistic model for virtual conducting targeted to
professional conductors or students, a better understanding of the causal relationships
between conducting gestures execution and the resulting performance informs the design
of interactive systems based on the conductor metaphor. In this context, we made an
interview with professional conductors and students to identify which specific aspects
of a performance could be observed and automatically analyzed. Motivated by the
conclusions of this interview, we recorded and analyzed specific parts of a conductor
performance focusing on two aspects: the musicians’ synchronization with conductor’s
gestures and the relationship between some body movement descriptors and the overall
loudness of the performance. This analysis provides the basis for the subsequent parts
of this thesis in terms of the methods to estimate movement-music synchronization and
estimate correlations between body movement and loudness.

3.1 Introduction

There are roughly two strategies to follow when designing interactive applications based
on the imitation of an already established activity as orchestral music conducting.
The first one is to build a system that replicates as closely as possible the real scenario.
This is useful in cases where the application is meant to be used as a teaching or ed-
ucational tool. In the case of conducting, we could think of applications for di�erent
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contexts. One could replicate the performance scenario and would consist on a virtual
orchestra that interprets and responds to the gestures of the conductor in the same way
a real orchestra does. Another application could replicate a teacher during a lesson. In
this case, the system should be able to properly identify the correctness of performed
gestures and to provide coherent instructions accordingly. These applications could be
particularly useful for conductors (professional or students). Obviously, designing this
kind of applications requires an extensive knowledge of the replicated scenario and thus
can be significantly improved by studying the scenario to be replicated in situ.

The second strategy consists on taking the real activity just as a metaphorical inspiration.
This is, the interaction is designed taking elements from the original activity but in a
way that does not try to maximize realism. This is is the case of our work, where we
look for strategies to make virtual conducting applications more intuitive and appealing
to non-conductors and classical music outsiders. Here, there is total flexibility regarding
how close or far we want to be from the actual conducting scenario. For example, a
virtual conducting application can consist on a DMI where the user performs just one of
the tasks that a real conductor does (e.g. indicating tempo). In this sense, it is possible
to decide whether to use knowledge from the replicated activity or not. For instance,
in the case of indicating tempo, there are di�erent options. One would be to observe
and analyze how real conductors communicate tempo and how orchestras react and to
replicate this accurately in the system. Another one would be to predefine a simple rule
to trigger beats. And yet another one would be to allow the user to define how she wants
to indicate tempo.

As we advanced in the Introduction, this work has been developed, within the PHENICX
project, at ESMUC, the Catalan Higher School of Music. Thanks to this, we had
the chance to work with professional conductors in di�erent scenarios. We attended
conducting lessons, rehearsals and concerts. The availability of commercial contactless
unobtrusive motion capture (MoCap) devices such as the Microsoft Kinect allowed us to
take recordings of conductors without a�ecting their performance with an easy setup. An
analytical approach of the motion-sound relationships taking place in real performances
can help to identify the body movement descriptors that are more useful in the design
of DMIs based on the conductor metaphor. Considering that the device used for the
recordings is suitable to be used in interactive applications, we ensure that what we learn
about these descriptors is applicable.
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Figure 3.1: Kinect setup for recording in a rehearsal of ESMUC students orchestra.

3.2 Analyzing conducting movements during performance

In this Section, we explain the strategy we followed to computationally analyze the
movements of a conductor during an actual performance and present the results of this
analysis. First, we briefly explain the very first tests we carried out to address technical
issues. Then, we report an interview we had with professional conductors and students
to get their feedback about how to face the analysis. Finally, we explain how we built
the publicly available multimodal recording of the Orquestra Simfònica del Vallès and
the conclusions we got from its analysis.

3.2.1 Initial tests

As a first step, we performed some tests in order to identify technical issues to be solved
for posterior recordings.
One of the goals of the PHENICX project was to perform and share multimodal record-
ings including multichannel audio, video and MoCap from the conductor (also enriched
with metadata such as the aligned score). The challenge in this kind of recordings is to
have all streams aligned in time. In order to test the concrete issues we would face using
a Kinect V1 as a MoCap device, we attended two rehearsals of the student orchestra
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in ESMUC and made recordings including audio from a ZOOM H4n hand recorder and
video, audio and MoCap from the Kinect.

For the Kinect data, we developed KinectVizz1, an OpenFrameworks2 application that
uses OpenNI for skeleton tracking. The application allows to record up to four data
streams: audio from the Kinect microphone array or laptop built-in microphone, RGB
video, RGB-D video and MoCap. The MoCap information is stored in a Tab-Separated-
Values (TSV) file where each line contains the information of a frame, including its ID
(which increases by 1 at each frame), a timestamp and the x, y and z positions of the
fifteen joints provided by OpenNI+NITE skeleton tracking (i.e. forty five position values
per frame in total). The application includes functionality to export the recorded data
to Repovizz3, an integrated online system developed by Mayor et al. (2011) capable of
structural formatting and remote storage, browsing, exchange, annotation, and visual-
ization of synchronous multi-modal, time-aligned data. Repovizz in this sense has been
not only a platform that we used for sharing data recorded during this work, but also
as a visualization tool for all recorded streams.

To avoid the need to have a person close to the conductor running the application, we
used RealVNC4 for remote control through a local network. This way, we can have a
laptop capturing the Kinect data close to the conductor’s podium and control it from out-
side the orchestra. Figure 3.2 shows a laptop controlling another one running KinectVizz
during the recording of a rehearsal by Orquestra Simfònica del Vallès. These recordings
are explained below, in Section 3.2.3.

Provided that all the streams captured by KinectVizz are aligned, our assumption was
that a simple manual alignment of the audio stream to the audio captured by the hand
recorder would allow to have all streams aligned. These rehearsals were useful to test the
application and to make sure that the setup was easy and unobtrusive for all musicians,
including the conductor. The location of the Kinect camera during one of these rehearsals
is shown in Figure 3.1.

The posterior analysis of these recordings showed that, for long recordings, some frames
were dropped in the recorded Kinect streams5. This shortens the duration of the re-
sulting recorded data and dramatically a�ects the alignment to other streams recorded

1https://github.com/asarasua/KinectVizz
2http://openframeworks.cc/
3https://repovizz.upf.edu/
4https://www.realvnc.com/
5We tested this with di�erent computers and operative systems and the e�ect persisted. The laptop

we used for all reported recordings has a 2,9 GHz Intel Core i7 processor and 8GB RAM, which is
quite beyond the Kinect requirements.
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Figure 3.2: Laptop remotely controlling another laptop on stage, running KinectVizz for
recording aligned multimodal data during a rehearsal by Orchestra Simfònica
del Vallès.

externally, such as the audio from the hand recorder in this case. The way we overcame
this issue was using the information stored in the MoCap TSV file. If no frames are
dropped, the ID of consecutive frames are consecutive numbers. When the ID of two
consecutive frames stored in the TSV file are not consecutive we can tell how many
frames were dropped between them by inspecting the di�erence between their IDs. Us-
ing this information, we generate corrected video and MoCap streams with the process
illustrated in Figure 3.3:

• For video, we use �mpeg6 to decompose the original video into frames. The cor-
rected video is generated, also using �mpeg, by locating the times were frames
were dropped and repeating the frame previous to the dropping as many times
as frames were dropped. For example, if the TSV file has two consecutive rows
with IDs 100 and 106, frame 100 is repeated 5 times in the resulting video. This
video freezes for a moment in times were frames had been dropped, but it can be
perfectly aligned with other streams and we can automatically annotate where the
freezing occurs.

• For MoCap, we follow a similar procedure but perform linear interpolation for the
position of joints where frames were dropped. This way, the resulting MoCap file

6https://www.�mpeg.org/
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Figure 3.3: Recording setup scheme. Video and MoCap streams recorded from Kinect
cannot be directly aligned to other streams due to dropped frames. Informa-
tion about dropped frames is used to generate corrected video and MoCap
data.

does not freeze as the video. However, the interpolation might di�er from the
actual performed motions during recording, specially if these movements were fast
(and increasingly with the number of dropped frames).

3.2.2 Interview with conductors

The interaction between the conductor and the orchestra is highly complex. When we
approach the analysis of real conductors during performance we do not want to model
all its complexity, but to learn specific insights to later be used in interactive conducting
applications. In this context, we carried out an interview with professional conductors
and their students, in an educational context, to get their feedback about how to get
the most from analyzing a real performance. We made participants discuss about the
following questions:

• What actions of the conductors have a causal and measurable e�ect on the resulting
performance by the orchestra?

• Are there useful insights to learn from actual performances to apply in DMIs based
on the conductor metaphor for non-conductors?

Seven participants (all male) attended the interview, which took place in ESMUC. Three
of them were professional conductors who teach the Bachelor of Music Degree in the
Orchestra Conducting speciality, as well as the Master Degree in Advanced Conducting.
The other four were students of this Master program.
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The interview was organized by asking these two questions to the participants followed
by open discussion. We started the meeting by showing the test recordings we already
had from rehearsals to explain the kind of recordings we were planning to make and the
sort of descriptors that could be extracted from motion. The session was recorded for
later analysis of verbal responses. Below we detail the conclusions of such analysis.

Causality and measurability of conductors actions during performance

Conclusion 1 Causal relationships and correlations between conductors gestures and
resulting performance are not always present. Participants identified a number of reasons
for this:

1. Conductors sometimes decide not to make any actions at specific moments if not
required, specially with experienced orchestras.

• “You can get great results performing very few gestures. It is sometimes better
to leave the orchestra play if it is a good one and they are performing the way
you want.” [Teacher 1]

• “I saw Bernstein live once. He made a gesture for the orchestra to start
and nothing else. When we feel the orchestra gets to a certain feel, we stop
conducting and the orchestra sounds better. Not to conduct is also to conduct”.
[Teacher 2]

2. As suggested by one participant, some gestures contrast to the music in order to
express a desired change in the performance. This means that the observed gesture
could be seen as contradictory with the concurrent outcome.

• “You might find that an orchestra is playing an exaggerated staccato and the
conductor performs a legato gesture only to correct the performance. The
gesture does not always have to be directly related to the sound, he can just be
making corrections”. [Teacher 2]

3. The indication of some intention might just appear at the beginning of a phrase
and disappear for the rest of it if the orchestra plays as intended.

• “You cannot expect, for example, to see that the conductor makes forte ges-
tures all the time that the music is forte. If you want to indicate forte you
just indicate it at the beginning of the phrase, there is no need to be constantly
communicating it.”. [Teacher 3]

Conclusion 2 The personal style of the conductor and the experience of the orchestra
a�ects the way in which the interaction occurs.
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• “This is all very relative. Even with professionals, every conductor has his own
style.” [Teacher 1]

• “It is not the same to conduct a young orchestra or a professional one, which is
able to immediately react to your gestures.” [Teacher 2]

Insights to be learned for virtual conducting applications

Conclusion 3 Whatever a user will do with an interactive application is not conducting
but something else. In this sense, the analysis of the conductor movements during
performance has to focus on the specific set of tasks that the user will have in the
application (e.g. controlling tempo). One participant (Student 4), who had used an
existing interactive conducting application7, suggested that it could actually benefit
from a better knowledge of real conducting gestures in terms of becoming more realistic.

• “Whatever a non-conductor will do in front of an application will not ever be
conducting: it is a game. Here we have students who spend six years studying and
even so they do not get enough information.” [Teacher 2]

• “Conducting is just something too complicated to be replicated in an application.
As we mentioned, it really depends on the orchestra.” [Student 2]

• “Conducting is not just communicating the pulse. This is something we realize now
as students. It is so complex that I do not think you can automatically measure all
its complexity.” [Student 1]

• “There is this application in Vienna where you can conduct an orchestra. The
funny thing is that if you use actual conducting gestures it does not work properly.
The gestures you have to use are very hieratic. I guess that could be improved if
you actually look at what conductors do”. [Student 4]

Conclusion 4 There are mainly three aspects of conducting movements to observe on
an automatic or semiautomatic analysis: synchronization (beat induction), dynamics
and articulation.

• “Generally speaking, it is true that if you do a gesture like this [waves his hands
strongly] it is forte and this other way [waves his hands softly] it is piano.” [Teacher
1]

• “I think there are a number of things you could see. For example, legato and
staccato gestures are clearly di�erent and you most likely can see that reflected

7The application this participant referred to is the Virtual Conductor (Borchers et al., 2002), to which
we referred in Section 2.5.2.
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on automatic descriptors. However, you must be careful when relating that to the
resulting audio.” [Teacher 3]

• “There are orchestras that follow exactly your gesture and others that take a while
to react. You might be able to measure this.” [Teacher 2]

Summary

Even though at the beginning of the interview participants seemed quite skeptic about
any kind of computational analysis of conductors movements during performance, they
ended up identifying some elements that could be subject to this kind of study. How-
ever, always having in mind the considerations that derive from the aforementioned
conclusions:

• We can encounter parts where there is no direct correlation between the conductor’s
movement and the resulting performance.

• The conclusions of the analysis of a conductor with an orchestra might not be
applicable to other conductors or orchestras.

• Any analysis trying to get insights for the design of virtual conducting applications
has to be focused on the specific tasks that users will have. Good candidates in
this sense are synchronization (beat induction), dynamics and articulation.

3.2.3 Performance analysis

Having in mind the previous conclusions from the interview, we recorded a performance
of Beethoven’s 9th Symphony played by the Orquestra Simfònica del Vallès and con-
ducted by Rubén Gimeno8. The concert took place on May 25th 2014 at the Kursaal
theatre in Manresa, Spain. This recording was made in the frame of the PHENICX
project and includes data for other tasks such as automatic score alignment and source
separation9. It is publicly available at http://mtg.upf.edu/download/datasets/phenicx-
conduct and includes the following data:

• From the Kinect V1 facing the conductor (all at 30 fps):
– MoCap with 3D position of nine joints: head, neck, torso, shoulders, elbows

and hands. Because of the position at which the conductor stood with respect
to the camera (see Figure 3.4a), the six joints below the torso (hips, knees
and feet) were occluded by the lectern and could not be correctly tracked.

8http://www.rubengimeno.es/
9Readers interested in other analyses resulting from this recording are referred to the project academic

website http://phenicx.upf.edu.
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(a) RGB stream from the Kinect camera. (b) Video from the orchestra.

Figure 3.4: Snapshots of RGB Kinect Stream (a) and orchestra video (b) of the OSV
recording analyzed in this Section.

– RGB video (640◊480 pixels).

– RGBD video (320◊240 pixels).

• 32 channels audio, with microphones placed close to each of the instrument sec-
tions.

• Video and audio from a videocamera capturing the whole orchestra.

Figure 3.4 shows snapshots of the RGB Kinect video and orchestra video streams.

The beats in the 4th movement of the Symphony were manually annotated by a musi-
cologist following the score and thus the dataset also provides aligned score information
for this movement.

Following the conclusions from the interview, we analyze the performance with two
specific goals:

• First, to examine which MoCap descriptors are best synchronized with the available
beat annotations and with which delay, and whether this varies depending on the
excerpt.

• Second, to examine whether there is a correlation between certain MoCap descrip-
tors and loudness, and whether this correlation varies depending on the excerpt.

Articulation, which was also mentioned by the participants in the interview as a potential
aspect to be observed, was left out of this analysis. The reason for this is that we could
not identify excerpts in the performance where we could clearly establish di�erences in
articulation for the whole orchestra.

We also recorded, for internal support and testing, the main rehearsal that took place
three days before in the orchestra’s regular rehearsal space in Sabadell, Spain. In this
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Figure 3.5: Ode to Joy melody simplified score.

case, a Zoom H1 digital recorder was used to record stereo audio (instead of the 32
channels available in the concert). This recording is not analyzed here, but is also
available online10.

Excerpts under study

We decided to restrict the analysis to the eight excerpts of the 4th movement where the
usually known as “Ode to Joy” theme appears. Figure 3.5 shows a simplified score of the
main melody of this theme. All eight excerpts under study are 24-bars long and have the
same A1-A2-B-A2-B-A2 structure shown in the score. Other parts in the piece where
the theme appears partially or with di�erent structures were left out of the analysis.
Having a number of excerpts that share their length (in bars) and structure allows us
to look for di�erences that depend on other elements such as the instrumentation. All
excerpts sum 294.44 seconds in total and their complete scores, in PDF and electronic
format can be found in the online repository. Table 3.1 contains information about the
position of these excerpts in the score and their respective durations along with overall
information about the musical content.

10http://mtg.upf.edu/download/datasets/phenicx-conduct
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Table 3.1: Information about analyzed excerpts from Beethoven’s 4th movement. SB:
starting bar. D(s): duration of the excerpt (in seconds)

ID SB D (s) Musical information
I1 93 37.00 Cellos and doublebass playing the melody.

I2 117 37.11 Violas play the melody, accompanied by doublebass and
bassoons.

I3 141 37.31 Violins play the melody, accompanied by doublebass, viola
and bassoons.

I4 165 36.67 Melody played by winds, accompanied by strings and
percussion.

V1 242 33.60
A1-A2-B-A2 sung by bass with strings, oboes and clarinets;
second B-A2 louder, sung by choir with strings, oboes,
clarinets, horns, trumpets and percussion.

V2 270 35.37
A1-A2-B-A2 sung by four soloists with cellos, horns, flutes and
bassoons; second B-A2 louder, sung by choir with strings,
oboes, clarinets, horns, trumpets, basoons and percussion.

C 376 41.35
A1-A2-B-A2 melody played o�beat by winds with tenor
singing a di�erent variation; choir and string join in B-A2 as
music gets louder.

T 544 41.14 Constantly loud with choir singing the melody accompanied
by strings, horns, flutes, bassoons, trumpets and percussion.

Beat analysis

The goal of this part of the analysis is to examine how musicians synchronized with
MoCap descriptors extracted from the conductor. This is very similar to the analysis
by Luck and Toiviainen (2006) we referred to in section 2.4.2. However, there are some
specific details that are di�erent in our case:

• Luck and Toiviainen used a Qualisys ProReflex optical MoCap device, which is
able to record at 120 fps with high precision. We were using a Microsoft Kinect,
which is not designed to be used as a high precision recording device, but for real-
time full-body interaction in video games. While the Kinect is in this sense not
ideal in terms of tracking precision and time resolution, we were actually interested
in using the same device we would use in an interactive scenario. In addition, it
is interesting to test how reliable this sort of device is to perform an analysis of
this kind, provided that it is much less intrusive and thus more prone to be used
in real performances.

• The recording under study corresponds to an actual public performance in front
of an audience. This makes the recording more ecologically valid, but above all
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it is particularly necessary in our case, as we want to analyze the movements
conductors do in the situation that users of DMIs based on the conductor metaphor
will imitate.

• Instead of focusing on some short excerpts selected by the clarity of the commu-
nication of the beat by the conductor, we analyze all the occurrences of a specific
theme in a movement and look for di�erences among them.

• Our ground truth is not automatically computed from the audio; it consists on
manual annotations of beat positions.

Ground truth The manual annotation of the beat positions in time were used as ground
truth. These annotations were manually created by a musicologist following the score
with quarter-note precision (i.e. 4 annotations per bar for the 4/4 parts under study).

Motion capture descriptors For the beat analysis, we only considered the position
of the right hand, which the conductor used to hold the baton and indicate the beat.
The 3D-position of the hand, as well as the rest of the joints, is tracked by the Kinect
camera at 30 fps. From this position data, we extracted the same descriptors used in
the study by Luck and Toiviainen using a similar procedure. Velocity and acceleration
along the three dimensions were extracted from the raw position data using numerical
di�erentiation. More concretely, for each point, we fitted a second-order polynomial
to the 7 consecutive points centered at it and computed the derivative of the obtained
polynomial. For this, we used Python’s polyfit11 function from scientific tools package
SciPy (Jones et al.). We also computed the instantaneous speed and acceleration as the
length of the vector for both velocity and acceleration and the acceleration along the
trajectory by projecting the acceleration vector on the direction of the velocity vector.
This results on a total of 12 descriptors. The naming convention for these descriptors,
introduced in Section 2.1, is an agreement with Luck and Toiviainen’s. In summary, the
following 12 variables were used: x, y, z (position; with x = left-right, y = up-down,
and z = forward-backward); v

x

, vy, v
z

(velocity components); a
x

, a
y

, a
z

(acceleration
components); v (speed); a (magnitude of acceleration); and a

t

(magnitude of acceleration
along the movement trajectory).

Analysis procedure Provided that our ground truth consists on manual annotations
of beat positions, we based the analysis on, for each descriptor, (1) evaluating its ability
11https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
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input : b

a, Ground-truth Annotated beats; b

p, Predicted beats
output: e, Error distribution
IBI Ω mean(diff(b

a));
e Ω Empty array;
e

≠ Ω Empty array;
e

+ Ω Empty array;
for b

a
n in b

a do
d Ω Closest(b

a
n, b

p) - b

a
n;

d≠ Ω ClosestPrevious(b

a
n, b

p) - b

a
n;

d+ Ω ClosestPosterior(b

a
n, b

p) - b

a
n;

Append(e, d);
Append(e

≠, d≠);
Append(e

+, d+);
end
if abs(mean(e)) > 0.2 ◊ IBI then

if abs(mean(e

≠)) < abs(mean(e

+)) then
e Ω e

≠

end
else

e Ω e

+

end
end
Algorithm 1: Procedure to build the error distribution. b

a and b

p consist on arrays with
the annotated and predicted positions of beats in seconds, respectively.

to correctly estimate these beat positions and (2) estimating its delay with respect to
them. For every excerpt, we followed the same procedure for each descriptor:

1. Extract positions of local maxima and minima as predicted positions of beats,
respectively b

p
M and b

p
m .

2. For both b

p
M and b

p
m , compute the error distributions e

M and e

m with respect to
the annotated beats b

a. To build the error distribution, an error value ‘n is stored
for every annotated beat b

a
n corresponding to the di�erence to the closest value in

the predicted beats vector (bp
M or b

p
m , respectively). In cases where the lag of a

descriptor with respect to the annotated beat positions is close to half the Inter-
Beat Interval (IBI), this process could end up building a bimodal distribution, as
a little di�erence can change the beat to which the predicted position is closest.
To avoid this, we consider two cases. (1) If the mean absolute value of e

M (em)
is smaller than 0.2 times the mean IBI for the excerpt, we do not apply any
corrections. (2) If the mean absolute value of e

M (em) is greater than 0.2 times
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the mean IBI for the excerpt, we compute two candidate distributions, e

≠ and e

+,
using only beats appearing before and after the annotations, respectively. Then,
the distribution for which the absolute value of the mean is lower is chosen. This
process to build the error distribution is illustrated in detail in Algorithm 1. The
mean of the chosen distribution is stored as an estimation of the lag between the
descriptor and the annotated beats. For each descriptor, then, we have lagM and
lagm for b

p
M and b

p
m , respectively.

3. For both b

p
M and b

p
m , compute the F-measure to determine the quality of the beat

estimation. The F-measure is computed as the harmonic mean of the precision and
recall values: F = 2·precision·recall

precision+recall . precision refers to the proportion of estimated
beats that are correct; recall corresponds to the proportion of annotated beats that
are correctly estimated. In our case, we consider that an annotated beat b

a
n has

been correctly detected if the closest predicted beat is closer than 66 ms (equivalent
to 2 frames at 30fps). This F-measure is inspired on the evaluation for audio beat
trackers proposed by Dixon (2001), who uses 70 ms for tolerance. Note that we
need to take the estimated lag into consideration. Otherwise, a descriptor for
which we detected beats consistently at time positions 70 ms from the annotated
beats would get 0 precision and recall. For this reason, we correct b

p
M and b

p
m ,

by adding lagM and lagm respectively before computing the F-measure.

Results Table 3.2 shows a summary of the results across all excerpts under study. More
concretely, it shows the estimated lags and computed F-measures of every descriptor and
for every excerpt. The results highlighted in bold in Table 3.2 correspond to cases where
the obtained F-measure is higher than 0.5. Analogous tables with the results for each
of the excerpts can be found in Appendix B.
As an example, if we look at the results for the vy descriptor in the I2 excerpt, the
F-measure of the estimation using its local maxima is 0.84 with an estimated lag of -75
ms. The next two rows show the equivalent results when using local minima to predict
beat positions. In this case, the estimated lag is 299 ms and the computed F-measure
is 0.73. This means that local maxima of vy occur closer to actual beats (75 ms before)
than local minima do (209 ms after). Figure 3.6a shows how indeed, for the I2 excerpt,
local maxima of vy consistently appear very close before the annotated beats, while local
minima appear a while after.
Looking at the results across all excerpts, we observe that the information in the y axis
is clearly the most relevant: y, vy and ay are the descriptors that consistently get the
best results for beat estimation. However, the lag of descriptors with respect to the beat
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Table 3.2: Lags and F-measures for each of the 12 MoCap descriptors for each of the eight
excerpts. “max” and “min” indicate the use of local maxima and minima as
beat position candidates, respectively. Results in bold correspond to cases
where the F measure is higher than 0.5.

ID x y z vx vy vz ax ay az v a at

I1

max lag (s) -.477 .162 -.179 .342 -.126 .330 .046 -.355 .087 -.476 .384 .274
F .08 .72 .44 .34 .69 .51 .23 .64 .28 .31 .21 .24

min lag (s) .239 -.266 .318 -.312 .214 -.094 -.272 .050 -.223 .279 -.021 .258
F .27 .62 .23 .09 .63 .48 .47 .65 .44 .17 .33 .19

I2

max lag (s) -.396 .220 -.155 -.375 -.075 -.381 .215 -.277 .230 .349 .308 .311
F .14 .83 .36 .44 .84 .27 .50 .72 .41 .12 .19 .22

min lag (s) .227 -.177 .379 -.047 .299 .010 -.219 .120 -.272 .256 .223 .286
F .36 .77 .42 .51 .73 .56 .41 .74 .30 .21 .22 .19

I3

max lag (s) .785 .194 -.458 .356 -.088 .259 .220 -.319 .177 .373 .401 .282
F .17 .80 .17 .40 .82 .33 .39 .64 .37 .27 .19 .31

min lag (s) .440 -.200 .781 .034 .267 -.331 -.242 .094 .334 .226 .008 .276
F .10 .72 .19 .30 .71 .15 .37 .79 .37 .39 .22 .17

I4

max lag (s) -.389 .335 -.172 -.347 .031 .356 .203 -.239 .262 .433 .356 .282
F .11 .33 .23 .31 .43 .28 .42 .44 .32 .27 .09 .34

min lag (s) .365 -.069 .478 .031 .345 .020 -.278 .196 -.248 .292 -.252 -.326
F .26 .44 .10 .41 .55 .28 .24 .58 .36 .24 .17 .20

V1

max lag (s) -.317 .210 -.566 .308 -.055 -.318 .178 -.230 .230 .229 .210 -.251
F .24 .91 .15 .40 .96 .45 .31 .78 .32 .42 .34 .24

min lag (s) .202 -.127 .377 -.022 .277 -.010 -.228 .109 -.180 .208 .233 .296
F .37 .90 .24 .43 .84 .42 .37 .87 .37 .38 .23 .24

V2

max lag (s) -.480 .175 -.525 .273 -.094 .340 .073 -.263 .161 .341 .242 .207
F .13 .91 .10 .39 1.00 .33 .45 .83 .51 .23 .19 .28

min lag (s) .225 -.180 -.205 -.179 .251 -.289 -.274 .070 -.295 .209 -.296 .304
F .22 .93 .21 .26 .79 .04 .28 .83 .34 .33 .16 .22

C

max lag (s) .303 -.264 .267 -.098 .295 -.082 -.243 .084 -.273 -.094 -.294 -.266
F .15 .73 .29 .29 .61 .44 .21 .32 .33 .35 .29 .27

min lag (s) -.434 .207 -.290 .318 -.162 .333 .067 -.372 .058 .231 -.038 .307
F .27 .55 .20 .36 .57 .34 .36 .57 .37 .27 .26 .24

T

max lag (s) .327 -.211 .488 -.045 .421 .051 -.210 .238 -.308 -.502 -.402 .032
F .27 .42 .17 .21 .54 .24 .29 .40 .28 .11 .10 .27

min lag (s) -.461 .328 -.337 -.375 -.012 -.340 .331 -.234 .259 -.266 .209 -.324
F .08 .52 .19 .29 .48 .29 .21 .50 .23 .23 .31 .16
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3.2 Analyzing conducting movements during performance

(a) Excerpt I2.

(b) Excerpt C.

Figure 3.6: Fragments of velocity component in the vertical axis (vy) for the I2 (a) and
C (b) excerpts. Solid vertical lines are annotated beat positions (ground
truth); dotted vertical lines are estimated beat positions using vy maxima;
dashed lines are estimated beat positions using vy minima.

is not consistent. If we take again vy as an example, we can observe that while the lag
of the beats estimated taking its maxima is relatively small for most excerpts (e.g. -126
ms for I1, -75 ms for I2 and -88 ms for I3), it is larger for others (e.g. 295 ms for C, 421
ms for T). Looking at Figure 3.6 again, we can compare vy for excerpts I2 (Figure 3.6a)
and C (Figure 3.6b). In the case of I2, local maxima appear very close to the annotated
beats (solid vertical lines), while in the case of C they appear later. The Figure also
shows the estimated positions of beats using maxima (dotted vertical lines) and minima
(dashed vertical lines). Note that the estimated position of beats takes the estimated
lag into consideration.
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(a) Excerpt I2.

(b) Excerpt C.

Figure 3.7: F-measure vs lag plots for excerpts I2 (a) and C (b). Only descriptors for
which F-measure > 0.5 are shown.

For the sake of comparison with Figure 2.2 by Luck and Toiviainen, Figures 3.7a and 3.7b
show equivalent representations for excerpts I2 and C, respectively, with descriptors for
which the computed F-mesaure was higher than 0.5. Cases using maxima and minima are
mirrored with respect to the y axis (F-measure) for better comparison with Figure 2.2,
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where the y axis corresponds to the correlation (a high negative correlation corresponds
to a high F-measure using minima, in our case). In these figures, the farther points are
from 0 in the y axis, the better the beat estimation is; the closer they are from 0 in the
x axis, the lower the lag. For the descriptors that appear in both Figures 3.7a and 3.7b
such as y, vy and ay, it is clearly noticeable the shift in the x axis between both graphs.
This shift reflects the aforementioned di�erence in the lag between both excerpts.

It is interesting to notice that, in our case, at was not a good descriptor to predict the
beats in any of the excerpts under analysis, as opposed to the case of the study we
are comparing with. Further inspection of the complete data (available in Appendix B)
reveals that the low F-measure values are not the result of low recall only (a combination
of high precision and low recall values could correspond to a descriptor that, for example,
correctly predicts half of the beats). It is however the result of at being quite noisy. In
this sense, our results for this descriptor are not necessarily in contradiction with those
by Luck and Toiviainen. Instead, this shows that the correct computation of at, which
results from projecting the acceleration vector in the direction of the velocity vector, is
not reliable using a device like the Microsoft Kinect, which operates at 30 fps.

Dynamics analysis

In this part, we examine which MoCap descriptors are best correlated with the loudness
of the performance.

Ground truth Loudness computed directly from the audio is used as ground-truth. We
used a stereo mix of the whole orchestra as input audio and computed its loudness using
Essentia’s (Bogdanov et al., 2013) Loudness12 algorithm. This algorithm computes the
loudness of the audio signal using power law by Stevens (1975), as the energy of the
signal raised to the power of 0.67.

Motion capture descriptors For this part of the analysis, we computed three features
describing the general characteristics of the body movement: Quantity of Motion (QoM),
Contraction Index (CI) and highest hand position (Ym). To compute QoM , we averaged
the mean velocity of all nine available joints. For CI, we looked at maximum and
minimum values along every axes and empirically derived an equation to make its value
approximately 1 when arms are completely stretched out and 0 for a very contracted
pose:
12http://essentia.upf.edu/documentation/reference/std_Loudness.html
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Where h = (xhead(ti) ≠ xtorso(ti))2 + (yhead(ti) ≠ ytorso(ti))2 + (zhead(ti) ≠ ztorso(ti))2

denotes the squared distance between the head and torso joints, which is proportional
to the participant’s height and imax(ti) and imin(ti) denote the maximum and minimum
values along i axis across all joints at time ti.

Ymax is a simple descriptor that takes at each time the highest y position of both hands:

Ymax(ti) = max(yLH(ti), yRH(ti)) (3.2)

Analysis procedure In this analysis we are interested in studying the overall rela-
tionship between MoCap descriptors and loudness. In order to emphasize this overall
relations as opposed to doing a frame-by-frame analysis, we followed this procedure for
every excerpt:

1. Compute the average IBI for the excerpt.

2. Low-pass filter the three descriptors and the computed loudness at (4 · IBI)≠1 Hz.
4 · IBI corresponds to the average length of a bar in the excerpt, so by low-pass
filtering the descriptors at the frequency corresponding to this time interval, the
signals are softened to represent variations at the bar time scale.

3. Compute a linear regression model through least squares regression using MoCap
features as predictors and loudness as the independent variable. From the com-
puted model, we look at the Pearson correlation values between each feature and
loudness, and at the adjusted coe�cient of determination, R2

adj , which measures
the proportion of the variance in the dependent variable (loudness) that the inde-
pendent variables (the MoCap descriptors) account for.

In addition, we computed another linear regression model taking the data from all ex-
cerpts together with the same procedure, in order to test how generalizable the MoCap
descriptors - loudness relationship was across excerpts.
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Variables P corr. p value
Intercept <0.001

QoM 0.400 <0.001
CI 0.505 <0.001

Ymax 0.408 <0.001
R2

adj : 0.358
(a) I1

Variables P corr. p value
Intercept <0.001

QoM 0.432 <0.001
CI 0.212 >0.1

Ymax 0.097 <0.05
R2

adj : 0.191
(b) I2

Variables P corr. p value
Intercept <0.001

QoM 0.544 <0.001
CI 0.093 <0.001

Ymax 0.373 <0.001
R2

adj : 0.399
(c) I3

Variables P corr. p value
Intercept <0.001

QoM 0.281 <0.001
CI 0.167 <0.001

Ymax 0.334 <0.001
R2

adj : 0.164
(d) I4

Variables P corr. p value
Intercept <0.01

QoM 0.693 <0.001
CI 0.352 <0.001

Ymax 0.803 <0.001
R2

adj : 0.816
(e) V1

Variables P corr. p value
Intercept <0.001

QoM 0.795 <0.001
CI 0.412 >0.1

Ymax 0.524 <0.001
R2

adj : 0.789
(f) V2

Variables P corr. p value
Intercept <0.001

QoM 0.553 <0.001
CI 0.416 <0.001

Ymax 0.551 <0.001
R2

adj : 0.404
(g) C

Variables P corr. p value
Intercept <0.001

QoM 0.340 <0.001
CI -0.073 <0.05

Ymax -0.157 <0.001
R2

adj : 0.158
(h) T

Table 3.3: Statistics from computed linear regression models for each excerpt. Pearson
correlation (P. corr) values with absolute value greater than 0.5 are highlighted
in bold.

Results Tables 3.3a to 3.3h show statistics from the computed regression models for
the eight excerpts. Taking the coe�cient of determination, R2

adj , of each of the models as
a measure of their quality for loudness estimation, we observe that the excerpts where the
best models are computed are V1 and V2 (R2

adj = 0.816 and R2

adj = 0.789, respectively),
followed by C (R2

adj = 0.403). The first two are precisely the excerpts where the clearest

75



Chapter 3 Learning from real performances

Table 3.4: Statistics from computed linear regression model using all excerpts. Pearson
correlation (P. corr) values with absolute value greater than 0.5 are highlighted
in bold.

Variables P corr. p value
Intercept <0.001

QoM 0.593 <0.001
CI 0.194 <0.001

Ymax 0.342 <0.001
R2

adj : 0.390

variations in loudness occur, as already pointed out in Table 3.1. In these excerpts, the
second repetition of B-A2 in the theme is much louder than the rest, with the whole
choir singing the melody and most instrument sections playing. In excerpt C, the choir
also joins in the second repetition of B-A2 but loudness increases less and more gradually
than in V1 and V2. The rest of the excerpts do not contain clear variations in loudness.

In V1, V2 and C, QoM and Ymax show high (>0.5) positive correlation with loudness.
This suggests that the conductor performs more energetic movements with the hands
in a higher position in loud parts of these excerpts, and less energetic movements with
hands in a lower position in soft parts. In the case of the position of the hands, this
correlation is very likely due to the fact that the choir (standing at the farthest position
from the conductor) sings in loud parts, so these loud parts coincide with parts where
the conductor gives instructions to the choir raising his hands.

The statistics from the regression model that results when using all excerpts together
are shown in Table 3.4. In this case, only QoM shows a high (>0.5) positive correlation
with loudness.

To better illustrate the results, Figures 3.8 (excerpts I1, I2, I3 and I4) and 3.9 (excerpts
V1, V2, C and T) show the time series of MoCap descriptors and loudness together with
the predicted loudness by the models of each excerpt and the general one. In excerpts
I1, I2 and I3 (Figures 3.8a, 3.8b and 3.8c), where loudness remains mostly constant, the
general model fails at correctly predicting the loudness for excerpts. In the case excerpts
I4 and T (Figures 3.8d and 3.9d), which contain some more fluctuations in loudness, the
general model fails at predicting the correct values, but succeeds in replicating these
fluctuations. The best performance of the general model occurs in excerpts V1, V2 and
C (Figures 3.9a, 3.9b and 3.9c), although it overestimates the influence of QoM in the
latter.
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3.2 Analyzing conducting movements during performance

(a) Excerpt I1

(b) Excerpt I2

(c) Excerpt I3

(d) Excerpt I4

Figure 3.8: MoCap descriptors, loudness and loudness estimations for excerpts I1, I2, I3

and I4. All time series are normalized with 0 and 1 corresponding to the
minimum and maximum values taken by each variable. 77
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(a) Excerpt V1

(b) Excerpt V2

(c) Excerpt C

(d) Excerpt T

Figure 3.9: MoCap descriptors, loudness and loudness estimations for excerpts V1, V2,
C and T. All time series are normalized with 0 and 1 corresponding to the
minimum and maximum values taken by each variable.78
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3.3 Conclusions

We analyzed a performance with the same kind of device we planned to use to build
DMIs based on the conductor metaphor; in this case, a Kinect V1. We did so to identify
which MoCap descriptors are best to describe the relationships between the movement
of the conductor and specific aspects of the performance potentially controllable in an
interactive scenario.

In this context, we proposed a technical solution to make long recordings with this device
and align them with other data streams. This tool, which allows to generate a Repovizz
datapack that can be uploaded and visualized in this platform, is publicly available
online13.

Before actually doing the recording and its analysis, we carried out an interview with
professional conductors and their students, in an educational context, to get their feed-
back about how to plan and what to expect from the analysis. The interview led to the
conclusion that the analysis of a live performance in our context needs to be done focus-
ing on the specific tasks that users of the application will have, and that good candidates
for this are the synchronization, the dynamics and articulation. Also, participants in
the interview warned that causal relationships between the conductor’s movement and
the resulting performance are not always present.

We recorded and made public14 a live performance of Beethoven’s 9th Symphony by
the Orquestra Simfònica del Vallès. For this analysis, we selected the excerpts in the
4th movement where the usually known as Ode to Joy theme appears. We examined
which MoCap descriptors were best synchronized with the available beat annotations and
which are best correlated with the loudness of the performance. Regarding the beat,
we saw that descriptors related to the movement of the hand holding the baton in the
y (up-down) axis were best to correctly estimate the beat in the performance. We also
observed that the lag between these descriptors and the beat was not the same across
all excerpts. The analysis of the relationship between MoCap descriptors and loudness
revealed that there are excerpts in which this relationship can be very clear, while in
others it is hard to establish, in accordance with the warning raised in the interview.
For the excerpts where the relationship existed, the quantity of motion, which averages
the velocity measuring the general movement intensity, was the best correlated with
loudness. The height at which the conductor raised his hands was also correlated with
loudness, although in this case this could be an e�ect of the specific excerpts under
13https://github.com/asarasua/KinectVizz
14http://mtg.upf.edu/download/datasets/phenicx-conduct
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Chapter 3 Learning from real performances

study, where the choir sang in loudest parts. The scores of the analyzed fragments are
also available in the online repository, and the beat analysis summary tables for each
excerpt are available in Annex B.

Beyond the concrete conclusions of this analysis, the most useful outcome of this part is
the methodology we used. It allowed us to determine the relationships between the move-
ment of the conductor and the beat and loudness of the performance in specific excerpts.
In subsequent chapters, we use the same approach to study how people with di�erent
musical expertise, potential users of a virtual conducting application, embody the beat
and loudness when performing conducting movements. We also apply it to articulation,
which was left out of this analysis due to the lack of excerpts in the performance where
we could clearly establish di�erences in articulation.
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Chapter 4

Adapting to user-specific tendencies for
beat and dynamics control

In this Chapter, we move to the exploration of strategies to adapt the mapping of a
DMI based on the conductor metaphor by explicitly exploiting the value of this interface
metaphor. As we advanced in the Introduction, interface metaphors are used so that
the user can transfer her knowledge from the activity replicated by the metaphor to the
interaction with the computer or DMI. Following this idea, in this Chapter we begin by
observing what di�erent users do when asked to “conduct” spontaneously, i.e. without
specific instructions. With the methods used in Chapter 3 to analyze a conductor during
performance, we analyze the di�erent tendencies of users in terms of beat anticipation
and loudness communication. Next, we apply this in an interactive context, with a
DMI that allows to control beat and loudness with a predefined mapping, but where
some parameters are adjusted specifically for each user according to the analysis of their
spontaneous movements. We refer to this strategy as Mapping by Observation.

4.1 Introduction

As we saw in Section 2.5.1, the commonly considered first DMI using the conductor
metaphor is the Conductor Program by Mathews (1976). In the version using two Radio
Batons (Boie et al., 1989; Mathews, 1991), one of them (usually the one held in the right
hand) is used to trigger beats when its vertical position is below a certain threshold. The
position of the other baton can continuously control other parameters, most commonly
loudness, or balance of di�erent instruments. The same strategy of using information
directly derived from the hand or hand-held device position to trigger beats is commonly
found in systems that came after Mathews’ (Haflich and Burnds, 1983; Keane and Gross,
1989; Morita et al., 1989; Borchers et al., 2002; Lee et al., 2004; Bergen, 2012; Toh et al.,
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2013; Rosa-Pujazon and Barbancho, 2013). Other systems exploit machine learning
techniques such has Hidden Markov Models (HMMs)(Usa and Mochida, 1998a; Kolesnik,
2004) or Artificial Neural Networks (ANNs) (Brecht and Garnett, 1995; Ilmonen and
Takala, 1999) to deal with temporal information from the gesture. Regarding loudness
control, there are some cases where it is performed through specific gestures like raising
and lowering one hand (Toh et al., 2013; Rosa-Pujazon and Barbancho, 2013). However,
it is more common to find cases where descriptors computed from the movement (most
commonly its size) are directly wired to loudness control (Morita et al., 1989; Usa and
Mochida, 1998a; Lee et al., 2004; Toh et al., 2013).

An important aspect in systems where tempo is controlled by triggering beats is to pro-
vide accurate control on the exact time when the orchestra plays following the performed
movement. In most cited works, it is commonly assumed that the “beat induction” in-
stant in the movement (the ictus) corresponds to the change from downward to upward
hand motion, so beats are triggered when this change is detected. However Lee et al.
(2005) identified some usability breakdowns when qualitatively analyzing how people
performed with their systems in public spaces (Borchers et al., 2002; Lee et al., 2004),
and decided to analyze with more detail the temporal relationship between users’ con-
ducting gestures and the beat on a musical piece. In order to do so, they asked conductors
and non-conductors to “conduct” a fixed musical clip from the Radetzky March using
up-down movements making them aware that they were not a�ecting the resulting sound
in any way. They found that conductors tended to lead the music beat by an average of
150 ms, while it was 50 ms for non conductors, who also showed larger variance in the
placement of the gesture beat with respect to the music beat. Lee et al.’s hypothesis,
following the conclusions from their study, was that incorporating this knowledge to
conducting systems could improve their usability.

However, in a context where the target application is a public installation, as in their
case, we believe it is potentially better to perform user-specific rather than profile-
specific interface adaptations. The problem in this case is that this user-specific tailoring
must be done just before or during the interaction. With this in mind, we performed
an observation study, presented in Section 4.2, where we analyzed the movements of
di�erent participants when asked to “conduct” on top of a musical excerpt. In our case,
we did not ask to perform any specific gesture like up-down movement or to focus on
any specific aspect of the performance like the beat. Instead, as introduced above, we
are interested in analyzing spontaneous (i.e without instructions) movements. Later, in
Section 4.3, we explore whether, as we hypothesize, this kind of analysis is useful in an
interactive context. We present a DMI with a predefined mapping to control beat and
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loudness with some parameters that are adjusted specifically for each user analyzing
spontaneous movements. We refer to this strategy as mapping by observation, as the
mapping adaptation is done by observing the user perform the activity that inspires the
interface metaphor.

4.2 Observation study

4.2.1 Objectives

In this study, we analyze how di�erent people perform spontaneous (i.e. without in-
structions) conducting movements on top of fixed musical excerpts. More concretely,
the specific goals are:

• To investigate if participants move following the beat of the music, and whether
the anticipation to the beat is di�erent across participants.

• To identify if the loudness of the music is reflected in the participants’ body move-
ment, and whether it does in similar or di�erent ways across participants.

For this analysis, we use a similar strategy to the one followed in Chapter 3 with a
real conductor. For beat analysis, we examine whether beats extracted from the same
descriptor are aligned with the musical beat di�erently for each participant. For loudness
analysis, we investigate whether di�erent descriptors extracted from body movement can
predict loudness, and whether there are di�erences across participants.

4.2.2 Materials and methods

Materials

We used KinectVizz1 for the recordings. For this, we incorporated a new functionality
to the application which allows to select an audio file and play it while recording video
and motion capture from the Kinect aligned with this audio. For the analysis, we only
used information from the nine upper-body joints: head, neck, torso, shoulders, elbows
and hands.

We selected excerpts from a performance of Beethoven’s 3rd Symphony (Eroica) 1st
Movement performed by the Royal Concertgebouw Orchestra2 for which multimodal
data (including high quality audio for every section, multi-perspective video and aligned

1https://github.com/asarasua/KinectVizz
2http://www.concertgebouworkest.nl/
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score) were made available within the PHENICX project3. This movement, Allegro con
brio, is in 3/4 time.

We selected 35 seconds fragments so we have enough data while allowing users to mem-
orize them in a short time period. Fragments were chosen to have some dynamics and
tempo variations. All files were converted to mono so participants did not have to pay at-
tention to spatialization. Beat annotations are available in the dataset and were used as
ground truth beats location. Loudness values were computed from audio using Essentia’s
(Bogdanov et al., 2013) Loudness4 algorithm. This algorithm computes the loudness of
the audio signal using power law by Stevens (1975), as the energy of the signal raised to
the power of 0.67. Computed values were resampled to 30 Hz (the rate of the MoCap
data) in order to make a frame-by-frame comparative analysis with respect to MoCap
descriptors.

During the study, participants used over-ear headphones and stood approximately two
meters from the Kinect sensor, placed on a flat speaker stand, approximately 1.4 m
from the floor. The experimenter read instructions to participants and controlled the
application from a laptop to which the Kinect sensor and headphones were connected.

The recorded data and the scores of the fragments used in the study are available online5.

Methods

Motion Capture descriptors Here we detail all MoCap descriptors that were extracted
from raw position data (x, y, z) of the nine upper-body joints. They are classified into
joint descriptors, computed for every joint, and body descriptors, describing general
characteristics of the whole body movement.

• Joint descriptors:

– (vx,vy,vz), (ax,ay,az): Velocity and acceleration components, computed by fit-
ting a second-order polynomial to 7 subsequent points centered at each frame
and taking the derivative of the polynomial. We used Python’s polyfit6

function from scientific tools package SciPy (Jones et al.) for this.

– v, a: Velocity and acceleration magnitudes.

– vmean, vstd: Velocity magnitude mean and standard deviation, computed from
31 (1.03 seconds) values around each frame. They are expected to account

3https://repovizz.upf.edu/phenicx/datasets/
4http://essentia.upf.edu/documentation/reference/std_Loudness.html
5http://mtg.upf.edu/download/datasets/phenicx-conduct
6https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html

84

https://repovizz.upf.edu/phenicx/datasets/
http://essentia.upf.edu/documentation/reference/std_Loudness.html
http://mtg.upf.edu/download/datasets/phenicx-conduct
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html


4.2 Observation study

for the “quantity” and “regularity” of the joint movement, respectively.

– (xtor, ytor, ztor): Relative position with respect to the torso components. These
are computed from the position of the joint and the position of the torso. For
the x axis, points to the left (from the subject perspective) of the torso are
positive and points to the right are negative. In the y axis, points over the
torso are positive and points below are negative. In the z axis, points in front
of the torso are positive and points behind are negative. Appropriate weights
were empirically estimated to make the values approximately 1 for the case
of hands completely extended in the corresponding axis.

– dtor: Distance to torso, computed from the position of the torso and joint of
interest.

These last two sets of descriptors, (xtor, ytor, ztor) and dtor, are related to the shape
component in LMA (see Section 2.1). Even though they are computed using information
from two di�erent joints, we list them as joint descriptors as they inform about how
stretched a joint is with respect to the torso.

• Body descriptors:
– QoM : Quantity of Motion. It is computed as the average magnitude velocity

of all tracked joints.

– CI: Contraction Index. Is is computed by looking at maximum and minimum
values along every axis. We used equation 3.1, empirically derived to make
its value approximately 1 when arms are completely stretched out and 0 for
a very contracted pose.

– Ymax: maximum hand height. This is a simple descriptor that takes at each
time the highest y position of both hands.

Loudness analysis In order to study the relationship between the participants move-
ment and the loudness of the fragments, we performed least squares linear regression,
using movement descriptors as predictors and the computed loudness as the independent
variable. As opposed to the case of the real conductor in the performance studied in Sec-
tion 3.2.3, where we preselected three descriptors based on expert knowledge (QoM , CI

and Ym), we now follow a blind approach with a larger set of descriptors and allowing the
model to identify the relevant ones. We created di�erent linear models for di�erent levels
of specificity (general to subject-specific). In all cases, we started from maximal models
including all descriptors and kept simplifying by removing non-significant explanatory
variables until the resulting model only contained descriptors with a significant e�ect on
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loudness, to get the minimal adequate model.

Beat analysis We took maxima in vertical acceleration of the hand, ay, as beat po-
sition estimates. For each participant, we automatically selected her hand by looking
at which of the two of them showed more activity, estimated as the total energy of ay

for each hand during the n frames under analysis: E =
q

n ay(tn)2. We then used the
manual annotations of beat positions as ground truth to build an error distribution7

e,
following the procedure detailed in Algorithm 1. The mean of the distribution is used
as an estimation of the lag between the detected and the annotated beats.

We compute the F-measure as the harmonic mean of the precision and recall values: F =
2·precision·recall

precision+recall . precision refers to the proportion of estimated beats that are correct;
recall corresponds to the proportion of annotated beats that are correctly estimated. In
our case, we consider that an annotated beat an has been correctly detected if its closest
predicted beat is closer than 66 ms (equivalent to 2 frames at 30 fps). The estimated lag

is used to correct the position of detected beats before computing F . An F-measure of
1 indicates that the position of annotated music beats can be perfectly estimated from
hand movement acceleration with a ±66 ms precision.

Participants

Participants were recruited via convenience sampling through department members and
their students. They subsequently signed an informed consent form informing about
the type of data being recorded and the intention of making it publicly available, filled
out a brief pre-questionnaire, performed the tasks of the study, and filled out a post-
questionnaire. The study involved approximately 10 minutes per participant.

Procedure

For each of the 35 seconds fragments, participants were allowed to listen to them twice
(so they could focus on learning the music). Then, they were asked to “conduct” the
fragment three times (so they could keep learning the music while already practicing
their conducting). For each of the fragments, the analysis was only performed in the
last of the three takes, where participants are assumed to be able to better anticipate
changes (i.e. this way being closer to “conducting” and not just “reacting” to changes).

7Although we speak of "error distribution", a beat estimated from hand movement appearing far from an
annotated beat does not imply that there is anything wrong, participants did not have to accomplish
any task.
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Also, to get rid of the e�ects of initial synchronization, the analysis was done on the 30
seconds from second 4 to second 34. This makes a total a total of 90 seconds (30 seconds
per fragment) of conducting data for each participant.

At the end of the recording, participants filled another questionnaire with Yes/No ques-
tions about how they had faced the study and the problems they had encountered.
Concretely, the questions we asked were the following:

• Were you able to recognize the time signature (3/4) in the excerpts?

• In general, did you use rhythm information to guide your conducting movements?

• In general, did you use loudness information to guide your conducting movements?

• Were you able to anticipate changes in the last take of each excerpt?

4.2.3 Results

Twenty five participants participated in the study, of which six were female. Ages were
distributed as 21-25 (2), 26-30 (9), 31-35 (8), 36-40 (5) and > 40 (1). Their musical
background was distributed as “no musical training” (4), “some non formal training”
(4), “less than 5 years of formal musical training” (4) “and more than 5 years of musical
training” (13). Of these, one was an expert conductor and 5 had some basic notions of
conducting technique.

Loudness analysis

In the post-recording questionnaire, participants where asked about whether they had
consciously conducted according to loudness variations. Eight participants indicated
that they had actually not used this information. In preliminary observations, partici-
pant by participant, we looked for descriptors showing a high (> 0.5) correlation with
loudness, finding none for the aforementioned participants. For this reason, we left these
participants out of the analysis. The resulting set of participants (n = 17) is composed
by 2 non musicians, 3 non-formal musician, 3 trained musicians and 9 expert musicians.

Grouping participants by tendencies In this preliminary observations where we
looked for features correlated to loudness by more than 0.5, we observed a tendency
that is also clearly noticeable when playing back the 3D models of the MoCap record-
ings: while for most participants QoM appears as highly correlated with loudness, for
some others we observe a strong correlation between Ymax and loudness.
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Figure 4.1: Participants in the space formed by cor(QoM, loudness) and
cor(Ymax, loudness). The shaded area corresponds to points where
neither cor(QoM, loudness) nor cor(Ymax, loudness) are > 0.5. Participants
are divided into the two groups corresponding to areas at both sides of
the line: in red, cor(QoM, loudness) > cor(Ymax, loudness); in black,
cor(Ymax, loudness > cor(QoM, loudness).

Following this observation, we split participants into two separate clusters according to
the correlation of these two descriptors with loudness: “QoM cluster” (n = 12) and
“Ymax cluster” (n = 5), respectively, depending on which of the two correlations is
higher. Participants falling into each of the two groups are illustrated in Figure 4.1.
Then, we created linear regression models for each of these two clusters.

The statistics from the models that resulted for each of the clusters, illustrated in Table
4.1, are coherent with the rationale applied when splitting participants. For the case of
the “QoM cluster”, none of the variables relating to the position in the y axis of the
hands appeared as significant. QoM does not show in any of the two models, but this
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Table 4.1: Statistic from linear regression Models for QoM and Ymax clusters. (LH = left
hand, RH = right hand). “-” indicates that the descriptor did not appear as
significant for the correspondent model. Pearson correlation (P corr) values
with absolute value greater than 0.5 are highlighted in bold.

QoM cluster Ymax cluster
Variables P corr pvalue P corr pvalue

(Intercept) <0.001 <0.001
aLH 0.388 <0.05 0.296 <0.001
aRH 0.431 <0.001 0.293 <0.001
dLH

tor 0.142 <0.001 0.293 <0.001
dRH

tor 0.183 <0.01 0.348 <0.001
yLH

tor - - 0.480 <0.001
yRH

tor - - 0.482 <0.001
vLH

mean 0.519 < 0.001 0.389 <0.001
vRH

mean 0.585 < 0.001 0.393 <0.001
vRH

dev 0.552 < 0.001 - -
Ymax - - 0.593 <0.001

is not contradictory looking at other descriptors that do appear: vmean values for both
hands are correlated to QoM by definition (the latter is calculated as the mean vmean

for all joints). In this sense, the fact that we observe no significant e�ect of QoM on
loudness when vLH

mean and vRH
mean are included in the model, means that QoM does not

account for more variability than what is already explained by vLH
mean and vRH

mean. In
terms of LMA, as we explained in Section 2.1, they are all related to the weight e�ort
category. The same applies to CI, which is correlated to dtor, being both related to the
shape LMA component.

The R2

adj statistic computed from the models gives an indication of how much loudness
variability is explained by the descriptors. In both cases, R2

adj is greater than 0.4, while it
is 0.350 when trying to build a model for all participants. This increment in R2

adj was not
due only by the reduced number of participants in each cluster. We performed random
splits of participants into reduced groups of 5 participants (the size of the “Ymax cluster”)
and checked that the improvement was smaller when these groups contained participants
from both “QoM cluster” and “Ymax cluster”; the improvement was maximized with this
particular way of splitting participants.

Beyond this, we observed how subjects in the “QoM cluster” did not have the same
dynamic range, meaning that while all of them performed movements with di�erent
amplitudes for soft and loud parts, the amplitude of these movements was not the same
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Figure 4.2: Di�erent model predictions for the first fragment. Black: loudness extracted
from audio, Red: average predicted values.

for all of them. In order to balance this e�ect, we normalized the values of QoM and
vmean compressing or expanding them so all participants had the same dynamic range.
This supposes a clear improvement in the “QoM cluster” (R2

adj = 0.455 vs R2

adj = 0.413
without normalization) and some improvement in the “Ymax cluster” (R2

adj = 0.470 vs
R2

adj = 0.459 without normalization).

Creating user-specific models We also created user-specific models for each of the
participants. As expected, these models are capable of better predicting the loudness
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from the movement, with an average R2

adj = 0.620 (‡ = 0.08). Nevertheless, although
this suggests that the descriptors are able to learn better for specific subjects, the clear
improvement in the statistical score of the models is also influenced by the fewer ob-
servations from which these models are created. In any case, in the same way that the
descriptors we are using can identify di�erent tendencies among participants, it was ex-
pected that when a model is created from a single participant it is able to predict the
loudness from her movements more accurately.

Figure 4.2 illustrates the average predicted values for the di�erent regression models we
have presented in this Section. While the models learned for the di�erent clusters are
useful in the sense of observing which descriptors appeared as relevant, the quality of the
fit clearly shows that they are not adequate as good predictors. The average behavior
of user-specific models is far better in terms of being able to approximate the original
loudness curve.

We performed a one-way ANOVA on the quality of the fitted models (R2

adj) to analyze
the e�ect of musical expertise. No significant e�ects were found. This indicates that for
all participants who claimed to have reflected the loudness variations in their movements,
the prediction of the loudness from MoCap descriptors was equally good. However, this
result must be taken cautiously, since the number of participants for each of the levels
for musical expertise is unbalanced.
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Table 4.2: Analysis results for all participants. Participants unable to recognize the
time signature are marked with †; participants unable to anticipate changes
in the last recording are marked with ‡; participants who claimed not to have
used rhythmic information in their movement are marked with. F > F ú are
highlighted in bold.

Participant lag(s) ‡(s) F p r F ú

1 -0.016 0.21 0.54 0.58 0.51 0.50
2 -0.002 0.27 0.26 0.32 0.22 0.26
3 -0.032 0.16 0.55 0.58 0.53 0.40
4 -0.058 0.09 0.85 0.86 0.84 0.64

5‡ı -0.057 0.67 0.43 0.55 0.38 0.37
6‡ı -0.027 0.18 0.43 0.46 0.40 0.42
7 -0.041 0.21 0.61 0.68 0.57 0.44
8 -0.051 0.21 0.58 0.62 0.56 0.53
9 -0.070 0.14 0.71 0.73 0.70 0.39

10† -0.014 0.20 0.45 0.49 0.42 0.47
11‡ 0.004 0.28 0.40 0.47 0.34 0.39
12 -0.044 0.14 0.71 0.74 0.69 0.53
13 0.003 0.14 0.74 0.74 0.73 0.74
14 -0.012 0.19 0.45 0.48 0.42 0.39
15† 0.015 0.19 0.34 0.38 0.31 0.40
16 -0.016 0.12 0.63 0.63 0.62 0.58
17 -0.084 0.20 0.60 0.63 0.57 0.37
18‡ -0.094 0.43 0.37 0.42 0.34 0.36
19† -0.054 0.21 0.45 0.47 0.44 0.36
20 -0.041 0.13 0.61 0.62 0.59 0.51
21 0.016 0.13 0.67 0.68 0.66 0.61
22† -0.020 0.14 0.57 0.59 0.56 0.57
23† -0.042 0.09 0.78 0.78 0.77 0.64
24† -0.017 0.27 0.49 0.54 0.45 0.45
25†‡ -0.034 0.19 0.34 0.35 0.33 0.38

Beat analysis

Table 4.2 contains the analysis results for all participants, averaged across the three
excerpts. More concretely, the Table shows, for each participant, the estimated lag

values (and corresponding standard deviation ‡) and computed F values. precision and
recall, as well as the value of the F-measure when the correction of the estimated lag is
not applied (F ú) are also presented for completeness. Problems indicated by participants
in the post-recording questionnaire are also highlighted in the table: participants unable
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Figure 4.3: Distribution of time di�erences between beat annotations and beat estima-
tions for each participant.

to recognize the time signature are marked with †; participants unable to anticipate
changes in the last recording are marked with ‡; participants who claimed not to have
used rhythmic information in their movement are marked with ı. The error distribution
of each participant is also illustrated in Figure 4.3.

Results show that good beat positions estimations are achieved from hand movement for
some participants (e.g. F = 0.85 for participant 4, F = 0.71 for participant 9 or F = 0.78
for participant 23), while in other cases the estimation is quite poor (e.g. F = 0.26 for
participant 2, F = 0.34 for participant 15 or F = 0.34 for participant 25). In general,
worst cases correspond to participants who indicated some issue in the post-recording
questionnaire, with the exception of participants 2 and 14. The average F-measure for
participants who did not raise any of these issues was F = 0.61 (‡ = 13.54), which
suggests that, in general, beat information was indeed reflected in their movement.

Beyond the quality of beat estimation from body movement, which informs us about this
idea of beat being reflected in hand movement, we are more interested in di�erent antic-
ipation tendencies of participants reflected in the estimated lag values. In most cases,
estimated beats tend to appear before annotated beats, as reflected in negative lag val-
ues. However, we observe big di�erences across participants. As an illustrative example,
lag estimated for participant 13 is almost 0 (3 ms), while it is -58 ms for participant 4.
High F-measure values of 0.74 and 0.85, respectively, indicate that this estimated lag

values are indeed indicative of a consistent tendency. In cases like participant 18, with a
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Figure 4.4: Distribution of time di�erences between beat annotations and beat estima-
tions for participants 4 (red), 13 (green) and 18 (blue).

low F = 0.37, the estimated lag of -94 ms is less likely to reflect an actual tendency. The
error distributions of these three participants is shown in Figure 4.4 as an illustrative
example of these di�erent tendencies: participants 4 (red curve) and 13 (green) show
narrow distributions centered at di�erent points representing di�erent lag values, while
participant 18 (blue curve) shows a wide distribution whose mean is less likely to be
reflecting an actual tendency.
We performed a one-way ANOVA on the quality of the beat estimation (F ) to analyze
the e�ect of musical expertise. No significant e�ects were found in this case either.
Again, this result must be taken cautiously, since the number of participants for each of
the levels for musical expertise is unbalanced.

4.2.4 Additional considerations

The study shows some limitations that need to be considered. First, the group of partic-
ipants was unbalanced in terms of musical training. In this sense, the e�ect of musical
expertise on the observed di�erences could not be thoroughly analyzed. Also, we took
di�erent excerpts from the same piece. Extending the analysis to more pieces with more
variations in tempo, dynamics, articulations, instrumentation, etc. might help to better
analyze these tendencies in depth.
In terms of beat anticipation, our results are in agreement with those by Lee et al. (2005)
in the sense of finding di�erent tendencies. However, in our case we found that these
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are user-specific, while in their case they found general trends for conductors and non-
conductors. However, their study was also di�erent in the sense that they did not look
at spontaneous movements, but they asked participants to perform a specific up-down
gesture following the beat.

In any case, our purpose in this study was to check whether participants moved di�er-
ently when asked to “conduct” on top of classical music fragments. We intentionally
decided to make this analysis asking participants to move on top of fixed pieces of music
being aware that their movements were not changing the performance in any way. While
this implicates that the observed conclusions are not directly applicable in an interac-
tive scenario, we were indeed interested in observing intuitive, spontaneous conducting
movements performed without instructions. In the broader context of this thesis, the
relevant issue following the conclusions of this study is whether the analysis we perform
of spontaneous conducting movements can be used to improve the usability of a DMI
based on the conductor metaphor that learns its mapping from these movements. This
is explored in detail in the following Section.

4.3 Building a user-tailored DMI from spontaneous
movements: mapping by observation

Following the conclusions of the study, we propose a system that explicitly exploits the
knowledge that users have from the metaphor that inspires the interface (in our case,
music conducting). As we saw in Chapter 2, Mapping through Listening (Caramiaux
et al., 2014a) considers listening as the starting point for mapping design. The mapping
is learned from a set of demonstrations where the user explicitly shows the relationship
between motion and sound as an acted interaction. In our case, taking advantage of
the fact that the instrument is based on a metaphor, we propose to learn the mapping
by observing each user making spontaneous conducting movements such as those in the
observation study presented above. This is preferable in public installations than to
allow each user to explicitly define her own mapping, as far as the learning is simple and
fast. In this sense, our approach is also similar to play-along mapping as introduced by
Fiebrink and Cook (2009), since the user performs gestures while listening to the music
which are used to train the system. Again, the di�erence in our case is that we focus
on movements performed without this training purpose. For this reason, we refer to this
approach as mapping by observation.

We explore the idea anticipated in the Introduction and illustrated in Figure 1.4. We
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propose to have a system where the mapping is roughly predefined, but where some
parameters can be adjusted in a specific way for each user. For this parameter tuning,
we analyze how the user performs the activity that the metaphor replicates. In our
case, the user makes spontaneous conducting movements on top of fixed music. The
predefined mapping in the proposed system consists on controlling tempo by triggering
beats in changes from downward to upward hand movement and controlling loudness
with the gesture size. The adaptation learned from spontaneous movements consists on
incorporating the tendency of the user to anticipate or fall behind the beat, compensating
the e�ect, and analyzing which descriptors, apart from the gesture size, are correlated
with loudness.

We evaluate the usability and intuitiveness of the proposed system in a setup where the
user does not receive instructions on how the system works and instead just learns by
experimenting. For comparison, we consider the system with the predefined mapping,
which does not adapt to user-specific tendencies, as a baseline. The experiment includes
a series of tasks to compare both systems using both subjective feedback and objective
measures about the participants’ ability to control loudness and the exact time of beats
in the resulting music. In addition, we recruited both musicians and non musicians to
study possible di�erences caused by musical expertise.

4.3.1 Proposed system

Here we explain in detail the functioning of the proposed system. As we said, it has a
predefined mapping which is tuned specifically for each user. Accordingly, we first explain
the system without adaptation, to which we refer as BASELINE (since we compare the
proposed approach with it). Then, we continue with the proposed system, to which we
refer as TRAINED, highlighting the aspects in which they di�er.

Both allow to control loudness and tempo on a musical piece using body movements
captured by a MoCap device, in this case a Kinect v2.

BASELINE

Inspired by previous approaches (Haflich and Burnds, 1983; Keane and Gross, 1989;
Morita et al., 1989; Borchers et al., 2002; Lee et al., 2004; Bergen, 2012; Toh et al., 2013;
Rosa-Pujazon and Barbancho, 2013), the system allows to control tempo by triggering
beats in changes from downward to upward hand movement. For this, we use the
vertical velocity (vy) of both hands, computed with low-pass di�erentiators of degree
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one proposed by Skogstad et al. (2013), as implemented in MoDe

8. The ictus is detected
whenever a change from negative to positive sign in vy occurs (change from downward to
upward movement), as illustrated by the red circles in Figure 4.5. Notes falling between
beats are played according to the tempo estimated from the time interval between the
last two beats. Two extra rules are applied to avoid false positives in beat detection:

• If the last local minimum before the current change of sign of vy is not below a
threshold vth, the beat is not triggered. This avoids detecting beats from almost-
still movement.

• Two consecutive beats must be detected separated by at least a certain number of
frames nth from each other. This is done to avoid detecting beats closer in time
than musically meaningful, and is particularly necessary to avoid triggering two
beats from simultaneous movements from both hands.

Loudness is controlled by means of the gesture size, similarly to Morita et al. (1989);
Usa and Mochida (1998a); Lee et al. (2004); Toh et al. (2013). When a beat is detected
at time tB, the size is computed as the cumulative squared distance traveled by the
hand where the beat has been detected since the detection of the previous beat, tP B

9:

size(tP B, tB) =
i=Bÿ

i=P B

(xk(ti+1

)≠xk(ti))2 +(yk(ti+1

)≠yk(ti))2 +(zk(ti+1

)≠zk(ti))2 (4.1)

The mapping from size to MIDI velocity values is set in preliminary user tests, in order
to cover the whole MIDI velocity range. We used MIDI velocity values provided that,
as we explain below, we are considering a MIDI sound engine. MIDI velocity values can
range from 0 to 127. In the following, we refer to MIDI velocity units (mvu) for loudness
values represented in this scale.

TRAINED

The proposed system adapts its mapping individually to each user by performing a
previous analysis of spontaneous conducting movements. By “spontaneous” we refer to
conducting movements that the user performs on top of a musical excerpt without having
received any specific instructions. In this sense, the system needs the user to “conduct”
on top of a musical piece for which there is available information on the loudness and
location of beats, just as in the case of previous observation studies by Lee et al. (2005)

8https://github.com/asarasua/MoDe
9We use the squared distance instead of the distance as it requires less computation.
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or the one previously presented in this Chapter. More concretely, this system takes into
consideration how the user tends to anticipate or fall behind the beat, and which body
movement descriptors are best correlated with loudness. For this, we need to store the
time position of beats in the music and beats detected from hand movement (using the
same method we detailed for the BASELINE system), as well as the value of di�erent
body movement descriptors together with the corresponding loudness values at di�erent
instants.

The mean di�erence in seconds between beats in the music and beats detected in hand
movement, lag, provides an estimation of the tendency of the user to anticipate or fall
behind the beat. Negative values indicate that beats detected in hand movement tend
to appear before the beat in the music, while positive values indicate that beats detected
in hand movement tend to appear after the music beat. From lag, we compute nant as
the number of frames at the device sampling rate, fs, (in the case of the Kinect V2, 30
fps) that corresponds to the time closest to lag:

nant = round(lag · fs) (4.2)

Tempo in the TRAINED system is controlled exactly the same way as in the BASELINE

system, but including this additional parameter nant. If nant = 0, there is no di�erence
with respect to the BASELINE. If nant < 0, the beat is triggered ≠nant frames after the
change of sign in vy. Figure 4.5 illustrates the method for for nant = ≠2 (green circles). If
nant > 0, beats are no longer detected looking at changes of sign in vy. Instead, beats are
triggered when two consecutive values of vy are, respectively, smaller and greater than
a new threshold vtrigger ”= 0. vtrigger corresponds to the value that vy takes nant frames
after the last change from positive to negative sign (upward to downward movement).
In Figure 4.5, blue circles illustrate the samples where the beat would be triggered in
the case of nant = 2, while blue crosses show the samples that determine the di�erent
values of vtrigger.

Loudness is controlled through a linear combination of three di�erent MoCap descriptors:

loudness = Ês · size + ÊQ · QoM + ÊY · Ymax + — (4.3)

• Gesture size, as defined in Equation (4.1) for BASELINE.

• Quantity of Motion QoM , computed by averaging the mean speed values of all
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Figure 4.5: Beat triggering from vy with BASELINE (red circles) and TRAINED systems
(green circles, nant = ≠2; blue circles, nant = 2). Samples highlighted as
blue crosses set the vtrigger values for nant = 2 in the TRAINED system.

tracked joints J during N frames as

QoM(tn) = 1
N

N≠1ÿ

i=0

1
J

ÿ

jœJ

Ò
vj

x(ti)2 + vj
y(ti)2 + vj

z(ti)2, (4.4)

vj
x(ti), vj

y(ti), vj
z(ti) are the x, y and z components of the velocity of joint j, i

frames before n, and J is the number of tracked joints. We use N = 30 (1 second
at 30 fps).

• Highest hand position Ymax, a simple descriptor that in every frame looks at the
vertical position y of both hands and takes the maximum value.

The descriptors and loudness values recorded during the execution of spontaneous move-
ments are later used to compute the weights assigned to each descriptor (ÊS for size,
ÊQ for QoM , ÊY for Ymax and — for the intercept) using least squares linear regression.

4.3.2 Experiment

Materials

We built a dedicated Windows application with OpenFrameworks10 to be used with a
Kinect v2. It uses ofxKinectForWindows211 (an OpenFrameworks wrapper for Kinect
for Windows SDK) to track skeleton data and MoDe for real-time feature extraction and
event triggering.
10http://openframeworks.cc/
11https://github.com/elliotwoods/ofxKinectForWindows2
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Figure 4.6: Excerpt from Beethoven’s 9th symphony used in the experiment.

The application allows to control the experiment procedure using a set of keyboard com-
mands and records all necessary data (training results, tasks results and MoCap data)
into text files. It implements the previously presented conducting systems, BASELINE

and TRAINED, to conduct a musical piece using movements captured by the Kinect v2.
For synthesis, it reads a music score in MusicXML or MIDI format and outputs MIDI
events which can be rendered by any external software. For the experiment, we used Na-
tive Instrument’s Kontakt with Session Strings library and a simplified 8-bar long score
for strings from the Ode to Joy theme from the fourth movement in Beethoven’s 9th

Symphony, shown in Figure 4.6. We chose this excerpt for two reasons: first, it is a very
popular melody that all participants in the study knew in advance (as they later con-
firmed); second, the selected melody mostly contains quarter notes. This makes the beat
and rhythm of the melody equivalent and avoids possible confusions with participants
tending to conduct to the onsets of the predominant melody instead of the beat (this
e�ect was observed by Lee et al. (2005)). The application also provides visual feedback
consisting on the mirrored image captured by the Kinect v2 and specific visualizations
for each of the phases in the experiment. The content and design of these visualizations
is explained with more detail below.

During the experiment, participants used over-ear headphones and stood approximately
two meters from a 46-inch TV screen showing the visual feedback from the application.
The Kinect v2 sensor was placed below the screen, using a flat speaker stand, approxi-
mately 1.4 m from the floor. The experimenter read instructions to the participants and
controlled the application from a laptop to which the screen, Kinect v2 sensor and head-
phones were connected. Another laptop was placed close to the participants for them to
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provide some demographic information and feedback after each task on a Google Form.

Hypothesis and Experiment Design

As previously indicated, we hypothesize that observed user-specific tendencies in spon-
taneous conducting movements can be used to build user-specific mappings in a DMI
based on the conductor metaphor, improving its usability. Provided that we deal with
the concrete case of loudness and beat control, this main hypothesis can be separated in
two:

• H1: Computational analysis of spontaneous conducting movements can be used to
design user-specific mappings between motion and loudness in a DMI based on the
conductor metaphor, the resulting system having better usability and being more
intuitive than one where the mapping is fixed.

• H2: Computational analysis of spontaneous conducting movements can be used
to build a DMI based on the conductor metaphor where tempo control considers
user-specific tendencies to anticipate or fall behind the beat, the resulting sys-
tem providing more precise control over beat than a system not considering these
tendencies.

To test these hypotheses, we designed an experiment to compare the TRAINED and
BASELINE conducting systems. The concrete procedure of the experiment is explained
with detail below, but we first enumerate the factors we controlled.

In the experiment, participants use both systems to perform a series of tasks in which we
retrieve objective measures of the performance, as well as subjective feedback provided
by participants. The most relevant factor we investigate in the experiment is thus the
System (TRAINED / BASELINE) being used for each of the tasks. All participants use
both systems, so the order in which they use them is counterbalanced to compensate the
possible e�ect of learning. Because of this, we also consider the System Index (first /
second) factor.

We retrieve objective measures and subjective feedback related to the control over loud-
ness and beat separately. In addition, we created tasks that challenge participants to
only control loudness, beat, and both at the same time. More specifically, participants
are presented with the following tasks:

• Loudness tasks. The participant is asked to make the orchestra play following a
pattern of loudness variation (e.g. “first play loud, then soft, then loud...”).

– Objective measure: Loudness error, ÁL. At each beat, we define ÁL as the
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di�erence between the target and achieved loudness levels, both represented
in MIDI velocity units (mvu).

– Subjective feedback: Loudness control rating, rL. At the end of the task,
the participant rates her ability to control loudness in a 5-point scale ranging
from 1 = “Could not control loudness at all” to 5 = “Could perfectly control
loudness”.

• Metronome tasks. The participant listens to a metronome at a fixed tempo and
has to make the orchestra play in synchrony with it.

– Objective measure: Beat error, ÁB. Every time a beat is triggered, ÁB cor-
responds to the di�erence in seconds with respect to the closest metronome
beat.

– Subjective feedback: Beat control rating, rB. At the end of the task, the
participant rates her ability to control the exact moment in which the in-
struments sound in a 5-point scale ranging from 1 = “Instruments played
much sooner than I intended” to 5 = “Instruments played much later than I
intended”, with 3 = “Instruments played exactly when I intended”.

• Combined tasks. A combination of the previous tasks (i.e. the participant listens
to a metronome and has to make the orchestra play in synchrony with it while
following a loudness variation pattern).

In order to test our hypotheses, we investigate the following e�ects:
• For H1, we expect significantly lower values of |ÁL| and significantly higher values

of rL for the TRAINED system with respect to the BASELINE system.
• For H2, we expect significantly lower values of |ÁB| and values of rB (beat control

rating) significantly closer to 3 (which corresponds to “Instruments played exactly
when I wanted”) for the TRAINED system with respect to the BASELINE system.
In this case, however, we only expect to observe this e�ect when the number
of frames for anticipation nant estimated for the user is di�erent to 0. Recall
that the BASELINE and TRAINED systems are equivalent for beat control when
nant = 0. We explore this with an additional factor Anticipation that codes, for
each participant, whether nant = 0 or nant ”= 0.

Tasks with a di�erent Target are presented. In the case of loudness tasks, the Target

corresponds to di�erent loudness levels, coded by the corresponding MIDI velocity. In the
case of metronome tasks, the Target corresponds to di�erent tempi. We also investigate
the influence of the Task Type (simple or combined). Finally, we investigate whether
the musical Expertise of participants influences the results.
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Participants

Participants were recruited via convenience sampling through department members and
their students. They signed an informed consent which contained the approximate du-
ration of the experiment (30 minutes), as well as the type of data being recorded.

Procedure

After signing the consent form, participants were informed about the general setup for
the experiment.

Once the participant agrees to start, she fills a form with information about her age
and musical expertise. Then, a procedure consisting on three phases is repeated twice,
once for each System (BASELINE and LEARNED), counterbalancing the order across
participants. These phases are (1) Warm up: the parameters for the LEARNED system
are adjusted and the participant familiarizes with the set up; (2) Adaptation: the par-
ticipant is allowed to explore how the System works; (3) Tasks: the experimenter asks
the participant to perform the tasks introduced above. The concrete procedure was the
following:

• Warm up phase. In this phase we learn the parameters for the TRAINED system.
We only use the information from the first time this phase appears (regardless
of the order in which the systems are presented to the participant). We do this
because we are interested in learning from “spontaneous movements”, and these
only occur at the beginning of the experiment. In this sense, the information from
the second Warm up phase is not considered, but we still make it to provide the
same set up for both systems. There are two steps:

1. The experimenter informs the participant that she will listen to the musical
excerpt used throughout the experiment, preceded by four metronome counts.
In this phase, the excerpt (8 bars, 32 beats) is played once at a fixed tempo
(90 Beats Per Minute or BPM) and with loudness changing on every bar,
following the pattern MID-LOUD-MID-LOUD-MID-SOFT-MID-SOFT. The
MIDI velocities corresponding to each of the loudness levels is 60 mvu for
“MID”, 127 mvu for “LOUD” and 30 mvu for “SOFT”. The visualization of
the pattern consists on a set of red parallel lines separated proportionally to
the loudness. The space between the lines is filled with red color as the music
advances. This visualization, for which a snapshot is shown in Figure 4.7,
is designed to be self-explanatory and to allow participants to memorize and
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Figure 4.7: Visualization shown during warm up phase.

anticipate loudness changes. The excerpt is played as many times as necessary
until the participant correctly understands the visualization.

2. The experimenter asks the participant to imagine she has to conduct this
excerpt exactly as it sounded, and to perform those conducting movements
while listening again to the same excerpt. The fact that no actual conducting
is occurring during this phase and the excerpt plays exactly the same way
it did before is remarked to avoid confusion. After allowing the participant
to rehearse her movements as many times as needed to feel comfortable, the
experimenter asks her to perform it again. Here, the application computes the
necessary information to compute the parameters for the LEARNED system.
More specifically, it stores the exact time at which beats occur in the played
excerpt and, for each beat detected in the participant’s movement, the exact
time at which it is detected, the MIDI velocity at which the music plays,
and the MoCap descriptors (size, QoM and Ymax) values at that time. This
information is used to determine the parameters of the TRAINED system as
explained in Section 4.3.1.

• Adaptation Phase. During this phase, the participant is allowed to experiment
with the conducting system. The experimenter does not give any information
about possible motion-sound mappings; he only indicates that the system should
allow to control tempo and loudness using conducting gestures and that these are
not necessarily related to what the participant did in the warm up phase (and,
in the case of it being the second tested system, also not necessarily similar to
the previous one). A maximum of three trials (each of them consisting of two
repetitions of the excerpt) is given to the participant to optimize her control of the
performance.
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• Tasks Phase. Here, the participant performs the tasks introduced above. For
all tasks, the participant must conduct the excerpt twice in a row (16 bars, 64
beats). The order in which the loudness and metronome tasks are presented is
counterbalanced across participants; the combined tasks always come last. After
every task, the participant rates the perceived sense of control over loudness and/or
beat. The specifics of the presented tasks are the following:

– There is one single Loudness task where the participant must make the or-
chestra play with the same loudness variations from the Warm up phase
(represented in Figure 4.7) at any tempo. The application shows an equiv-
alent visualization during the task. The red parallel lines now illustrate the
target loudness on every bar, and the color fill between the red parallel lines
is green and corresponds to the loudness at which the participant is actually
making the orchestra sound. Note that in a single loudness task there are
three di�erent Target levels (LOUD, MID and SOFT). For every loudness
task, we have 64 values of ÁL and one rL rating.

– There are two Metronome tasks at 80 and 100 BPM. In this case, the only
visualization is a red progress bar. For each task, we have 64 values of ÁB

and one rB rating.

– There are also two Combined tasks, at 80 and 100 BPM, and with the same
pattern of loudness variations and visualization from Loudness tasks. For
each task, we have 64 values of ÁL, 64 values of ÁB, one rL rating and one rB

rating.

After completing these three phases with both systems, the participant is allowed to
freely perform with each system. Then, she provides feedback about her preferred one
(“first” or “second”, as the participant does not know about the di�erence between both)
by answering three questions: “Did you feel any di�erence between both systems?”,
“Which one did you prefer in terms of loudness control?” and “Which one did you
prefer in terms of your ability to make instruments sound exactly when intended?”.
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(a) Correlation of MoCap descriptors with loudness.
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0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Participant

R
ad
j

2

(c) Coe�cient of determination (R2
adj

) of linear regression models.

Figure 4.8: Correlation with loudness, dynamic range of MoCap descriptors, and coef-
ficient of determination for each participant computed from first Warm up
phase.
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Results

Twenty four people (6 female) participated in the experiment. Their average age was
27.79 years (‡ = 5.84), with ages ranging from 19 to 41. Half of them were musi-
cians (considering musicians participants with any musical training) and the other half
were non-musicians. The experiment was carried out during four di�erent days, taking
approximately 35 minutes for each participant.

We first analyze the results from the first Warm up phase, where the parameters of
the TRAINED system are learned. In this phase, participants performed spontaneous
conducting movements on top of fixed music.

First, we focus on the results that determine the loudness control. Figure 4.8a shows,
for each participant, the correlations found between each of the three MoCap descrip-
tors (size, QoM and Ymax) and loudness (MIDI velocity). In most cases, as expected,
MoCap descriptors show a positive correlation with loudness. There are a few excep-
tions where negative correlations appear, with only two cases where the absolute value
of these correlations are greater than 0.5 (QoM for participants 4 and 15). In most cases
(70%), QoM is the most correlated descriptor, with an average absolute correlation of
0.48, followed by Ymax (0.38) and size (0.29). Correlation is not the only factor influenc-
ing the computed linear models. Figure 4.8b shows, for each participant, the dynamic
range of the three MoCap descriptors. For consistent visualization across descriptors,
the dynamic range for a participant and descriptor is computed by dividing the di�er-
ence between the maximum and minimum descriptor values for that participant by the
di�erence between the maximum and minimum descriptor values across all participants.
As an illustrative example, participants 11 and 21 show a similar positive correlation
between QoM and loudness, but the former has a larger dynamic range. This positive
correlation indicates that the mapping for loudness control with the TRAINED system
would assign louder output for more energetic movements for both participants. The
di�erent dynamic ranges indicate that the di�erence in QoM of movements resulting in
soft and loud output would be larger for participant 11 than for participant 21. From
the computed linear regression models, we compute the adjusted coe�cient of determi-
nation R2

adj as indicative of how much loudness variability is explained by the MoCap
descriptors. Computed values for each participant are depicted in Figure 4.8c. We use
these values below to check whether results during the tasks are a�ected by the quality
of the learned models.
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Figure 4.9: Distribution of di�erences between beats in music and beats detected in hand
movement during the first Warm up phase for each participant. The resulting
estimated number of frames for anticipation (nant) for each participant is
indicated between parenthesis.

Regarding beat control, Figure 4.9 shows, for each participant, the distribution of the dif-
ferences in seconds between beats in the music and beats detected from hand movement.
In the figure, we also indicate the number of frames for anticipation nant estimated from
the mean of this distribution for each participant. There were 6 participants (2, 6, 12,
14, 17 and 24) for whom nant = 0, i.e. BASELINE and TRAINED systems were equiva-
lent in terms of beat control. nant values range -4 to 4. For participants with nant = 4,
beats are triggered 9 frames (300 ms) before than for participants with nant = ≠4. From
these distributions, we also computed F-measure values for each participant following
the same method from preceding parts of this thesis. In this case, this measure is an
indication of how consistent is the anticipation e�ect that the TRAINED system uses for
user-specific adaptation. We use these F-measure values below to check whether this
a�ects the results.

Both for loudness and beat control, the results indicate that the TRAINED system was
quite di�erent across participants. In the following, we analyze the results from the
Tasks Phase.

Loudness control Regarding the objective measures taken from the tasks, Figure 4.10
shows the distributions of absolute loudness error (|ÁL|) for each participant across all
loudness and combined tasks, with 64 values of ÁL per task (one per beat). In most
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Figure 4.10: Absolute loudness error (|ÁL|) for both systems, averaged across tasks, for
each participant.

cases, we observe the expected tendency of lower ÁL values with the TRAINED system.
Participant 8, however, shows clearly worse results with the TRAINED system than in
any other case. Coming back to the results from training (Figure 4.8), we see that
actually this participant showed a very strong correlation between QoM and loudness.
Also, the R2

adj metric of the fitted regression model is 0.98, which is very close to ideal in
terms of the loudness variability explained by the MoCap descriptors. The low dynamic
range suggests that what may have happened is that the observed correlation is spurious;
the participant performed with very little variations in QoM that just happened to be
very correlated with loudness, resulting in a model whose functioning the participant
was not able to learn. Given that this is an outlier case, we removed this participant for
the overall statistical analysis presented below.

We fitted a linear model to System, System Index, Expertise, Task Type, Target

and their two-factor interactions, and ran an ANOVA to study their e�ect on the absolute
value of ÁL.

A strong e�ect was observed for System, F
(1,8784)

= 644.11, p < 0.001. As expected,
the absolute value of the loudness error was significantly lower using the TRAINED

system than using the BASELINE, the average error being of 5.70 mvu for the former
and 10.14 mvu for the latter. System Index does not cause any main e�ect, nor does
its interaction with System, indicating that the observed e�ect of System does not
depend on the order in which the systems were presented to the participants.

Results reveal that the performance varies depending on the Target, F
(2,8784)

= 563.8, p <
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Figure 4.11: Ratings for loudness control (rL) provided by participants at the end of
loudness and combined tasks.

0.001. Absolute error is higher for parts where the target was to play “LOUD”. How-
ever, this e�ect is mostly caused by tasks performed using the BASELINE system. The
interaction between System and Target also has a significant e�ect on the absolute
error, F

(2,8784)

= 394.80, p < 0.001. The errors were similar in the case of the TRAINED

system (4.98 mvu for “SOFT”, 5.74 mvu for “MID” and 6.37 mvu for “LOUD”), but
participants had more di�culties to achieve louder levels using the BASELINE system,
with 3.49 mvu for “SOFT”, 9.27 mvu for “MID” and 18.53 mvu for “LOUD”. This sug-
gests that the better performance of the TRAINED system is due to its ability to provide
accurate control over the whole range of loudness levels. The BASELINE system, where
the gesture size is mapped to loudness, was problematic for loudest levels.

The e�ect of Expertise also shows that musicians achieve significantly better control
over loudness than non-musicians, F

(1,8784)

= 394.54, p < 0.001. This di�erence is how-
ever significantly reduced when using the TRAINED system. The di�erence between
musicians and non musicians using the BASELINE was 4.30 mvu, while it was 2.64
mvu using the TRAINED system. This suggests that even though both groups achieved
better performance with the TRAINED system, musicians were more able to learn the
functioning of the BASELINE and adapt in order to complete the tasks.

Finally, no e�ect is observed for the Task Type, but its interaction with Expertise

indicates that musicians performed slightly better in combined tasks, while the opposite
happened for non musicians, F

(1,8784)

= 12.08, p < 0.001. Recall that combined tasks
always come after simple ones. In this sense, the improvement in combined tasks for
musicians can be due to learning. In the case of non musicians, the e�ect might be
explained by the higher complexity of combined tasks.
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Figure 4.12: Control over loudness rating (rL) and absolute loudness error (|ÁL|) of all
loudness and combined tasks.

Regarding the subjective feedback provided by participants at the end of each task, Fig-
ure 4.11 shows the distribution of ratings in a 5-point scale ranging from 1 = “Could not
control loudness at all” to 5 = “Could control loudness perfectly”. With the TRAINED

system, participants rated their ability to control loudness with 4 in most cases, followed
by 5. With the BASELINE, ratings were in most cases evenly distributed between 2 and
4. This suggests that participants felt they had better control over loudness when using
the TRAINED system.

Again, we fitted a linear model to System, System Index, Expertise, Task Type

and their two-factor interactions, this time running an ANOVA to study their e�ect
on rL. Note that here we do not investigate Target, provided that the three targets
appear in all tasks and we obtained one rating per task.

Results confirm that the reported sense of control over loudness is better using the
TRAINED system, with an average rating of 4.14, than using the BASELINE, with 2.74,
F

(1,128)

= 91.39, p < 0.001. The analysis revealed no other significant e�ects.

We also examine the correlation between the subjective feedback provided by participants
and the objective measures reflected in the values of ÁL. We expect a negative correlation
(lower error for higher ratings). In Figure 4.12, every point corresponds to the average
absolute value of ÁL and the rating provided by the participant for a task, with the
color indicating the System being used. The correlation between rL and |ÁL| is -0.66.
This indicates that, as expected, participants were able to achieve a better performance
in the tasks when they had a better sense of control over loudness. One-way ANOVA
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Figure 4.13: Average evolution of absolute loudness error (|ÁL|) for di�erent combinations
of System and Expertise.

shows that the di�erence of absolute values of ÁL for di�erent ratings is significant,
F

(4,139)

= 37.32, p < 0.001.

We also investigate whether the quality of the linear models computed to adjust the
mapping of the TRAINED system for each participant influences the results. For this,
we take the R2

adj statistic of each participant’s model, which gives a measure of how
much loudness variability is explained by the MoCap descriptors. We then compute �Á

L

for each participant as the di�erence between average |ÁL| values for the BASELINE and
TRAINED systems. Accordingly, �Á

L

measures how much improvement the TRAINED

system introduces in comparison with the BASELINE. We have thus one R2

adj and �Á
L

value for each participant. The correlation between both variables across participants is
0.49. This positive correlation indicates that, as expected, better models result in higher
improvement introduced by the proposed system.

Another interesting aspect we investigated is the learning e�ect that occurs during the
realization of each task. Figure 4.13 shows the evolution of the absolute loudness error
along the 64 beats each task lasted, averaged across all participants. A di�erent curve
is shown for each combination of System and Expertise. One of the visible e�ects in
the graph is that the error is in general higher for every first beat with a new target. In
the curves, this is reflected by the peaks appearing every 4 beats.

It is also clearly visible that the afore-mentioned e�ect of the Target using the BASE-

LINE system is particularly higher in the first two appearances of the “LOUD” target
(beats 5-8 and 13-16). This is most likely caused by the fact that these are the first loud-
ness changes that participants had to perform. Having observed this e�ect, we repeat the
ANOVA by only using the information from the second half of every task (i.e. from beat
33), to check that the observed e�ects are consistent along the task. Indeed, the largest
e�ect is the one caused by the System used in the task, F

(1,4404)

= 588.22, p < 0.001.
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Figure 4.14: Beat error for both systems, averaged across tasks, for each participant.

The absolute loudness error is still significantly lower with the TRAINED system (3.43
mvu) than with the BASELINE (6.84 mvu). The e�ect of musicians performing better
than non musicians is also preserved, F

(1,4404)

= 185.98, p < 0.001. The e�ect of the
Target and its interaction with the System also appears when looking at the sec-
ond half of the tasks, but much more mitigated than when considering the whole task
duration.

Beat control We now focus on beat control, by analyzing metronome and combined
tasks. Regarding the objective performance measures in these tasks, Figure 4.14 shows
the distributions of beat errors (distance in time between metronome and performed
beats) for each participant across all metronome and combined tasks, with 64 values of
ÁB per task (one per beat). As for the case of loudness, we observe that the general
tendency is to find these distributions closer to 0 when the TRAINED system is used.

In the case of beat control, both systems work equivalently if the estimated number of
frames for anticipation nant = 0. For this reason, the analysis has one more factor than
in the case of loudness control: Anticipation. This factor has just two levels (nant = 0
-no di�erence expected between systems- and nant ”= 0). We fitted a linear model to
System, System Index, Expertise, Task Type, Target, Anticipation and their
two-factor interactions, and ran an ANOVA to study their e�ect on the absolute value
of ÁB.

A strong e�ect is in fact caused by Anticipation, F
(1,12232)

= 100.06, p < 0.001. The
absolute beat error for participants with nant ”= 0 (n=18) is 0.009 seconds higher than
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Figure 4.15: Ratings for beat control provided by participants at the end of metronome
and combined tasks.

for participants with nant = 0 (n=6). The underlying e�ect is better explained by the
interaction between Anticipation and System (F

(1,12232)

= 50.84, p < 0.001). In the
case of participants with nant ”= 0, the absolute beat error is 0.013 seconds smaller
using the TRAINED system. For the 6 participants for whom nant = 0, the error is
slightly smaller (0.003 seconds) using the BASELINE system. These results indicate
that the compensation introduced by the TRAINED system is indeed useful to improve
the performance of participants who tended to anticipate or fall behind the beat during
the Warm up phase (nant ”= 0), i.e. when they performed spontaneous conducting
movements.

The results also indicate that the error di�ered depending on the musical Exper-

tise. Musicians show 0.009 seconds less absolute error than non musicians, F
(1,12232)

=
160.09, p < 0.001. Interestingly, the Target also a�ects the absolute beat error,
F

(1,12232)

= 96.69, p < 0.001. However, this only occurs for participants with nant ”= 0
using the BASELINE system. This indicates that the correction that the TRAINED

system applies is particularly necessary for slower tempi. Indeed, focusing on the 18
participants with nant ”= 0, the TRAINED system outperforms the BASELINE by reduc-
ing the absolute beat error in 0.007 seconds for 100 BPM tasks and 0.019 seconds in 80
BPM tasks.

Figure 4.15 shows the results of subjective ratings of beat control, where participants
rated in a 5-point scale ranging with 1 = “Instruments played much sooner than I
intended”, 3 = “Instruments played exactly when I intended”, 5 = “Instruments played
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much later than I intended”. In this case, the best rating is thus 3 (“exactly when
intended”). The Figure shows the tendency of participants to give a better rating when
using the TRAINED system.

In order to statistically analyze the e�ect of the di�erent factors on the ratings, we
perform the following analysis. We define rú

B = 3 ≠ |rB ≠ 3|, which ranges from 1 to
3, being 1 = “Instruments played much sooner/later than I intended”, 2 = “Instrument
played a bit sooner/later than I intended” and 3 = “Instruments played exactly when I
intended”. rú

B, then, gives a measure of how good or bad the participant felt the system
was in providing accurate control of beats, independently of whether a possible bad
behavior was caused by instruments playing sooner or later than intended.

Again, we fitted a linear model on the factors of the analysis and performed an ANOVA to
study their e�ect on rú

B. Participants rated their ability to make instruments play when
intended with an average 2.71 for the TRAINED system and 1.97 for the BASELINE,
being this di�erence significant, F

(1,136)

= 743.5, p < 0.001. As expected, the perceived
di�erence was bigger for participants with nant ”= 0. They rated the BASELINE with
an average 1.72 and the TRAINED system with 2.72. The 6 participants for whom both
systems were equivalent gave slightly better rating to the BASELINE (2.75 vs 2.67 for
TRAINED). The interaction between Target and System (F

(1,136)

= 11.84, p < 0.001)
shows that the reported sense of control was significantly worse for 80 BPM tasks using
the BASELINE. As we saw before, this is the case where the highest values for absolute
beat error appeared. This suggests that the ability to correctly perform the task (to
make the orchestra play in synchrony with the metronome) influenced the perceived
ability to make instruments play when intended.

As in the case of loudness, we examined the correlation between the subjective and
objective measures. In this case, we expect a positive correlation, with negative values
of ÁB for low ratings, positive values of ÁB for high ratings, and ÁB values close to 0 for
rB = 3. Every point in Figure 4.16 corresponds to the average value of ÁB and the rating
provided by the participant for a task, with the color indicating the System being used.
The correlation in this case is weaker (0.48), but still in the expected direction. This
indicates that those participants who felt that instruments came too early with respect
to their gesture tended to make the orchestra play in anticipation to the metronome,
while those who felt that instruments came too late tended to make the orchestra beats
fall behind the metronome. One-way ANOVA shows that the di�erence of values of ÁB

for di�erent ratings is significant, F
(4,187)

= 9.912, p < 0.001.

As we indicated earlier, we computed F-measure values from the training data as indica-
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Figure 4.16: Control over beat rating (rB) and beat error (ÁB) of all metronome and
combined tasks.

tive of the consistency of participants to anticipate or fall behind the beat during the
Warm up phase. In order to test whether this had an e�ect on the results, we compute
�Á

B

for each participant as the di�erence between average |ÁB| values for the BASELINE

and TRAINED systems, i.e. �Á
B

measures how much improvement there is using the
TRAINED system in comparison with the BASELINE. Then, we compute the correla-
tion between �Á

B

and F-measure values across participants, obtaining a high value of
0.81. This indicates that after the Warm up phase, just by looking at the data used
for adapting the TRAINED system, we can guess whether the adaptation will introduce
an improvement or not. To put it another way: if time di�erences between beats in
the music and beats detected from hand movement are not consistent in the warm up
phase, then the adaptation introduced by the TRAINED system does not guarantee an
improvement.

Finally, we explore the possible learning and adaptation e�ects during tasks. Figure 4.17
shows the evolution of the absolute beat error along the 64 beats each task lasted,
averaged across all participants. A di�erent curve is shown for each combination of
System and Expertise. We observe a more stable tendency than in the case of loudness
control. The error is higher during the first bars, where participants seem to adapt to
make the orchestra synchronize with the metronome. The error looks much more stable
in the second half (from beat 33), so we also ran the ANOVA again to check if the
observed e�ects also appear in the moment where participants seem to have adapted.

The results indicate that there is still a di�erence of 0.003 seconds between musicians
and non musicians, F

(1,6140)

= 35.98. This di�erence is however smaller than when con-
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Figure 4.17: Average evolution of absolute beat error (|ÁB|) for di�erent combinations of
System and Expertise.

sidering the full task (0.009 seconds), which indicates that part of the better performance
of musicians is due to their ability to adapt faster. A greater di�erence is still observed
for the System: the performance is still notably better (0.008 seconds improvement)
with the TRAINED system than with the BASELINE, F

(1,6140)

= 203.42, p < 0.001.

Overall evaluation As we indicated, participants were able to freely perform with both
systems again at the end of the experiment, after which they were asked whether they
have found di�erences between both systems and whether they preferred any of them in
terms of loudness and beat control.

All participants indicated that they had indeed noticed di�erences between both systems.
Regarding loudness control, all participants preferred the TRAINED system, except for
participants 22 and 8 (the outlier), who preferred the BASELINE. Regarding beat con-
trol, three participants (2, 6 and 14) indicated that they did not have any preference
between both systems, and one (12) showed preference for the BASELINE system. All
these four participants were amongst those with nant = 0 (i.e. both systems were equiv-
alent in terms of beat control). The rest of the participants showed preference for the
TRAINED system.

4.3.3 Discussion

In this section, we proposed a DMI based on the conductor metaphor that allows to con-
trol tempo and dynamics and adapts its mapping specifically for each user by observing
spontaneous conducting movements. We refer to this as mapping by observation given
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that, even though the system is trained specifically for each user, this training is not done
explicitly and consciously by the user. More specifically, the system adapts its mapping
based on the tendency of the user to anticipate or fall behind the beat and observing
the MoCap descriptors that best correlate to loudness during spontaneous conducting.

For evaluation, we compared the proposed approach with a baseline that does not per-
form this user-specific adaptations. We compared both systems in a context where the
user does not receive instructions and, instead, is allowed to discover by playing. We
consider this an interesting use case, particularly for public installations. We designed
tasks where participants had to make the orchestra play at di�erent loudness levels or
in synchrony with a metronome in order to objectively evaluate the usability of both
systems. We also asked participants to report their sensations using both systems and
to compare them.

Results suggest that both hypothesis are confirmed: the usability of the proposed system,
which adapts its mapping using the analysis of spontaneous conducting movements, is
better both in terms of providing a more intuitive control over loudness (H1) and a more
precise control over beat timing (H2). In both cases, results of objective evaluation and
subjective feedback provided by participants are coherent.

We believe that the proof of these hypotheses is particularly relevant considering that
parameters were learned from spontaneous movements, i.e.: participants were not mak-
ing a conscious training of their personalized systems when the parameters for control
were learned. This is important for public installations where, if the interaction designers
want to take advantage of user customization, it is preferable to make it in a way that is
transparent to the user. Beyond the concrete scope of systems for music conducting, this
is relevant for other interaction design scenarios using metaphors: the knowledge of the
user from the original activity can be explicitly exploited in the system. For example,
user-specific tendencies are also observed in “air instrument” performance (Godøy et al.,
2006) and sound-tracing (Glette et al., 2010), which suggests that DMIs based on these
activities could benefit from adapting their mapping for each user, analyzing how the
original activity is performed.

Precisely because the focus of this work was to test whether the information observed in
spontaneous movements is useful to be applied during interaction, the parameters under
control and the systems under comparison were kept simple. The learned parameters
are applied, in the end, to modify the rules of the system used as baseline (by using
appropriate descriptors and weights to control loudness and by compensating for the ob-
served anticipation for beat). However, as we pointed out in the introduction, previous
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conducting systems have used more sophisticated techniques to deal with temporal infor-
mation from the gesture (Usa and Mochida, 1998a; Kolesnik, 2004; Brecht and Garnett,
1995; Ilmonen and Takala, 1999). We believe that the conclusions from this experiment
are not restricted to the case of simple rule-based systems, nor to just the control of beat
and loudness. Particularly suitable for more sophisticated and complex gesture-sound
mappings to be learned from few observations would be real-time gesture recognition and
following systems such as the Gesture Follower by Bevilacqua et al. (2010), dynamical
models that adapt dynamically to variations such as de Gesture Variation Follower by
Caramiaux et al. (2014b) or probabilistic models that learn spatio-temporal variations
from gesture (Françoise et al., 2014).

In the field of NIME, it is often hard to establish a criterion for evaluating the quality
or usability of musical interfaces. In the concrete case of systems using the conduc-
tor metaphor, evaluations, when provided, are most of the times based on subjective
feedback provided by participants (Lee et al., 2004; Bergen, 2012; Rosa-Pujazon and
Barbancho, 2013) or are focused on evaluating technical aspects specific to the method
being used (Brecht and Garnett, 1995; Toh et al., 2013). The warm up and learning
phases of the procedure we followed in our experiment are specific to the scenario where
the user receives no instructions and observation from her spontaneous movements is
required. However, we believe that the kind of tasks we used are suitable to other cases
where it is necessary to objectively assess the suitability of a musical interface to control
some specific parameters.

In our experiment we also were interested in the e�ect of musical expertise in the in-
teraction. We observed that, in general, musicians achieved better performance than
non musicians. However, focusing on loudness control, this di�erence was reduced with
the proposed system. This suggests that musicians were better at learning how to con-
duct with the BASELINE system, while non musicians probably tried to stick to their
intuitions and were less able to learn by playing. Provided that this e�ect (greater im-
provement for non musicians) was not observed for beat control, this might also indicate
that non musicians, when using the BASELINE system, tended to focus more on beat
control and “forget” about loudness. In accordance with this idea, non musicians got
worse results in combined tasks than in simple ones for loudness control, while the op-
posite happened for beat control. Results also seem to reveal that this di�culty of non
musicians to control loudness with the BASELINE system was particularly noticeable in
louder parts. This might indicate that they were unable to discover that loudness was
controlled with the size of the gesture or that they were probably unable to perform big
enough gestures at a given tempo.
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In the analysis of loudness control, we removed participant 8, whose results were causing
spurious e�ects for a number of factors and interactions. However, the case of this par-
ticipant must be carefully considered, as it shows the problems that can be encountered
when applying knowledge extracted from analyzing spontaneous movements on top of
fixed music. Even though the results from the warm up phase, where the parameters for
the TRAINED system are learned, indicated that the learned model could be expected
to be good, it was clearly not intuitive for this participant to control loudness. In most
cases, mappings learned by the TRAINED system were more intuitive, but the possibility
of learning wrong clues is present and should be considered.

Latencies around 20-30 ms are commonly considered acceptable for most musical appli-
cations (Lago and Kon, 2004). The Kinect v2 has a ≥20 ms latency (Sell and O’Connor,
2014), and the computation of velocity from raw positional data using low-pass di�er-
entiators introduces two samples of delay (Skogstad et al., 2013). This means that this
latency is implicit in observed di�erences in anticipation to the beat. In this sense, the
observed improvement introduced by compensating for di�erent tendencies to anticipate
or fall behind the beat is also compensating for the device and computation latencies.

Having this consideration in mind, we can further explore the results for beat control.
BASELINE and TRAINED systems were equivalent for beat control for participants for
whom the estimated anticipation was nant = 0. Results show how a strong di�erence in
the performance for beat control between both systems was just observed in participants
with nant ”= 0. Strictly speaking, however, there is a di�erence between both systems
when nant = 0: the mapping for loudness control is di�erent. This could have caused a
better performance for beat control of the TRAINED system, specially in combined tasks,
but this e�ect was not observed. Interestingly, the results also show how participants
with nant ”= 0 had special di�culties with the slowest tempo (80 BPM) task that were
mitigated when the estimated anticipation was compensated (i.e. when they used the
TRAINED system). This is unlikely to be caused by the time granularity limitations of
the input device, which in fact would penalize the faster task. At 80 BPM (750 ms)
there are 22.5 Kinect frames between two consecutive beats, while there are 18 at 100
BPM (600 ms)12. In this sense, the results suggest that observed di�erences in terms of
anticipation of the beat are particularly relevant for slower tempos.

12We can assume that the input device limitations would start to harm the performance for faster tempo,
even though it was not observed for the selected tempos in our tasks.
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4.4 Conclusions

Throughout this chapter we have proposed a strategy to exploit, in a DMI based on
the conductor metaphor, the expectations that the user has when using the system.
To this end, we have carried out a study that has allowed us to observe how, indeed,
there are specific tendencies in the way people make spontaneous conducting movements.
Specifically, we have used an analysis with descriptors extracted from body movement
to observe two e�ects: the tendency of each user to anticipate or fall behind the beat
and the way in which loudness changes are reflected in this movement. The recordings
of this observation study are available online13.
In this regard, the findings are mainly two. First, the position of the musical beat with
respect to the beats that can be extracted from hand conducting movements tends to
vary among users, with some tending to anticipate and others to fall behind or be in syn-
chrony. Second, regarding loudness variations, there are certain general tendencies. For
example, there are some participants who tend to move more energetically in louder parts
(as suggested by a strong correlation between loudness and Quantity of Motion) while
others tend to raise their hands higher (as suggested by a strong correlation between the
maximum hand height and loudness). However, each person shows particularities that
are reflected not only in the descriptors most correlated with loudness but in the “dy-
namic range” of these descriptors. Also, there are participants for whom no correlations
between MoCap descriptors and loudness are found.
The question that follows these observations is whether they are applicable in an inter-
active context. For example, will a user tending to anticipate moving over fixed music
continue to do it when his gesture controls the music? And, accordingly, will she be able
to better control a system that compensates for that e�ect?
Following this idea, we have proposed a DMI based on the conductor metaphor that
allows to control beat and loudness in a way similar to those most commonly found in
previous systems, but adapting to these user-specific tendencies. The mapping of the
system is predefined, but some of its parameters are adjusted from what is observed in
spontaneous movements. That is, the user does not consciously and explicitly train her
own mapping. We refer to this strategy as Mapping by Observation. To verify that what
the system learns from these spontaneous movements is useful, we have performed an
experiment where we have compared it with a baseline that does not adapt to each user.
The experiment has been carefully designed and we have studied the e�ect of di�erent
factors to verify, in a reliable way, that the knowledge incorporated by the proposed
13http://mtg.upf.edu/download/datasets/phenicx-conduct
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system is indeed useful.

We have not dealt with the underlying mechanisms that may cause di�erences between
participants. We did not analyze whether the di�erent tendencies to anticipate or fall
behind the beat are intentional, caused by di�erent sensorimotor synchronization to
the beat (Aschersleben, 2002) or by di�erent hand gestures. In the experiment, we
could even expect di�erent results if the music material or chosen sound engine had
been di�erent. Observation studies of sound-accompanying movements by Jensenius
(2007) show that these movements are influenced, among other things, by action-sound
types (impulsed, sustain, iterative) that depend on the instrument and articulation with
which it is played. In any case, the way in which the proposed system compensates
di�erent tendencies for anticipation is by compensating an observed e�ect, regardless of
the mechanisms causing it. Also, we selected a musical excerpt where the main melody
mostly contains quarter notes, avoiding possible problems with participants conducting
to the rhythm instead of the beat, as observed by Lee et al. (2005). This is something
to take into consideration, particularly when the goal is to create a system that users
can learn to use by themselves.

While this learning from spontaneous movements may be particularly useful in public
installations or similar settings, it would obviously be possible to involve the user explic-
itly in the mapping design. In the next chapter we explore this idea in a context where
the user can control the musical articulation.
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Chapter 5

Learning user-specific gesture variations
for articulation control

As we have seen in Chapter 4, the usability of a musical interface based on the con-
ductor metaphor can improve by making user-specific adaptations built upon knowledge
extracted from the analysis of spontaneous conducting movements. So far, we focused
on the control of most commonly found parameters of tempo and loudness, but other
aspects of the performance can be communicated through conducing gestures. In this
Chapter, we introduce articulation, understood as the performance quality that defines
the transition and continuity between consecutive notes. For example, legato articula-
tion refers to notes played with smooth, connected transitions, while staccato refers to
the case where notes are played with short duration and detached from each other.

5.1 Introduction

Some existing DMIs based on the conductor metaphor provide articulation control. For
example, Garnett et al. (1999) estimate the degree of legato or staccato based on the ratio
of the maximum acceleration to the overall acceleration during a beat period: staccato
beats are reflected in high acceleration peaks around the beat ictus, while legato beats
tend to show a more uniform velocity. Usa and Mochida (1998b) also derive articulation
from conducting gestures based on two parameters: the gesture smoothness (computed
from the sharpness of acceleration peaks) and the “degree of halt”, which measures the
proportion of time that the baton is stopped between consecutive beats. Curved and
smooth gestures without halts are considered legato, while straight gestures with clear
halts are considered staccato. In both cases, the approach is based on expert knowledge
that is in accordance with conducting technique theory. Figure 5.1 shows two standard
beat patterns at 4/4 with legato and staccato articulations from Rudolf (1980). For
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Figure 5.1: 4/4 conducting patterns with staccato (left) and legato (right) articulation
according to Rudolf (1980).

staccato, the shape of the gesture is straight and pauses occur at every beat. For legato,
the gesture is curved and continuous.

This musical theory is in agreement with the results from the experiment by Platte
(2016) (see Section 2.4.2). In the experiment, participants were asked to perform beat
tapping on a touch sensor while watching gestures with di�erent shapes and sizes. The
length of the touch during the task was associated to articulation (short touch, staccato;
long touch, legato). Significantly shorter touch lengths for concave gestures (Figure 2.3,
left) than for convex ones (Figure 2.3, middle) prove that subjects perceived di�erent
articulations for di�erent gesture shapes. The fact that the di�erence was clearer and
more coherent for musicians than for non musicians suggests that, at least in part, this
shape-articulation association is learnt.

In this Chapter, we also study how di�erent subjects intuitively associate gesture vari-
ation and musical articulation. However, we do it in the opposite direction. Instead
of presenting them with di�erent gestures and studying which articulation these ges-
tures convey, we present them with sound stimuli played with di�erent articulation and
ask them to perform the same gestures with the variations they feel better correspond
to the perceived sonic di�erences. As a starting point, in Section 5.2, we perform an
observation study where we investigate how articulation a�ects conducting gestures in
terms of timing (i.e. whether beats detected in hand movement are lagged di�erently
with respect to the musical beat depending on the articulation) and movement dynamics
(i.e. whether the articulation is reflected in dynamic descriptors computed from hand
movement). Then, in Section 5.3, we propose a model based on the conclusions of this
study where the user can control musical articulation through dynamic variations of the
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same gesture. Our approach follows the Mapping through Listening scheme proposed by
Caramiaux et al. (2014a). Listening is conceived as the first step in the design of the
motion–sound relationship. In the proposed approach, the user first listens to variations
of a melody played with di�erent articulations and then teaches the system how she
embodies these articulations by performing the same gesture with expressive dynamic
variations. As opposed to the case of the previous chapter, where we mapped by observa-
tion (i.e. the mapping was designed analyzing spontaneous movements without the user
being aware of the training), here the user explicitly defines the relationship between
dynamic gesture variation and articulation. In this sense, the approach we follow in this
case is closer to Mapping by Demonstration (Françoise, 2015).

5.2 Observation study

In this observation study, we investigate how articulation is reflected in conducting ges-
tures performed by di�erent participants in terms of timing (i.e. whether beats detected
in hand movement are lagged di�erently with respect to the musical beat depending
on the articulation) and dynamics (i.e. whether the articulation is reflected in dynamic
descriptors computed from hand movement). Specifically, we compare two articulations:
legato, with smooth and connected notes, and staccato, characterized by short and de-
tached notes.

5.2.1 Objectives

We are interested in analyzing the di�erences in the execution of conducting gestures
due to articulation from two points of view:

• First, we analyze whether gesture execution is unconsciously influenced by per-
forming conducting gestures on top of melodies played with di�erent articulations
(legato, staccato).

• Second, we analyze how gesture execution changes when trying to convey di�erent
articulations (legato, staccato).

In both cases, we analyze the gesture variations from two perspectives:

• Timing, i.e. how beats detected from the gesture are lagged with respect to beats in
music. In this case, we concretely focus on analyzing whether beats detected from
hand movement appear at a di�erent distance from the musical beat depending on
the articulation.
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• Dynamics, i.e. variations in movement speed and acceleration.

In summary, the general and concrete hypotheses we test in the study are the following
ones:

• H1. Conducting gestures performed on top of melodies synthesized with di�erent
articulations (legato, staccato) show variations that can be automatically identi-
fied from motion capture data, even if the gestures are not consciously performed
di�erently.

– H1a. Conducting gestures performed on top of melodies synthesized with
di�erent articulations di�er in their timing.

– H1b. Conducting gestures performed on top of melodies synthesized with
di�erent articulations di�er in their dynamics.

• H2. Conducting gestures performed trying to convey di�erent articulations (legato,
staccato) show variations that can be automatically identified from motion capture
data.

– H2a. Conducting gestures performed trying to convey di�erent articulations
di�er in their timing.

– H2b. Conducting gestures performed trying to convey di�erent articulations
di�er in their dynamics.

– H2c. Di�erences are more noticeable if performed on top of melodies played
with the articulation being conveyed.

5.2.2 Materials and methods

Materials

We used KinectVizz1 for the recordings. The application allows the experimenter to
control the procedure of the study using a GUI and keyboard commands. This control
consists on selecting an audio file and playing it while recording aligned video and MoCap
from Kinect. In addition, images with the appropriate conducting patterns (Figure 5.3)
are shown on screen. Details on the moments of appearance of each of the patterns are
given below, when we detail the procedure of the study.

For the study, we use two simple melodies with two di�erent time signatures: 3/4 and
4/4. The scores for each time signature are shown in Figures 5.2a and 5.2b, respectively.
We synthesized two versions of each melody, with violin sounds played with legato and

1https://github.com/asarasua/KinectVizz

126

https://github.com/asarasua/KinectVizz


5.2 Observation study

(a) Score 3/4

(b) Score 4/4

Figure 5.2: Scores of melodies synthesized for observation study.
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(a) Gesture 3/4
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(b) Gesture 4/4

Figure 5.3: Gesture patterns shown to participants in the observation study.

staccato articulations. We used Native Instrument’s Kontakt with Session Strings library
for the synthesis.

During the study, participants used over-ear headphones and stood approximately two
meters from a 46-inch TV screen showing appropriate conducting patterns at each mo-
ment. The Kinect sensor was placed below the screen, using a flat speaker stand, ap-
proximately 1.4 m from the floor. The experimenter read instructions to participants
and controlled the application from a laptop to which the screen, Kinect sensor and
headphones were connected.

The recordings of this observation study are available online2.

2http://mtg.upf.edu/download/datasets/phenicx-conduct
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Methods

Timing We focus on analyzing how far beats detected in hand movement tend to
be from actual beat positions in the music. For this, we take ay maxima as estimates
for beat positions and build the error distribution e following the same procedure of
preceding chapters and detailed in Algorithm 1 on page 68. Since in this case we focus
on analyzing how far detected beats are from beats in the music, we take the mean
of the absolute value distribution |e| as an estimation of the lag between the beats
detected from MoCap data and the actual instants when beats appear in the played
music. Accordingly, lag here only takes positive values.

Dynamics We compute two-dimensional velocity and acceleration values in the frontal
plane (where participants drew the gesture) from the position of the hand used by the
participant. We use numerical di�erentiation from aligned x and y raw position data.
At each frame, we fit a second-order polynomial to the 7 consecutive points centered at
it and compute the derivative of the obtained polynomial. Instantaneous speed v(ti) and
acceleration a(ti) are computed as the length of the two-dimensional vectors for both
velocity and acceleration at each frame i. For the analysis, we use averaged values of v(ti)
and a(ti) over 30 frames (1 second) in consecutive, non-overlapped windows. In previous
Chapters, we have denoted this averaged values vmean(ti, 30) and amean(ti, 30), with 30
indicating the number of frames used for averaging. In the following, for simplification,
we denote these variables v and a, respectively. These are the variables we use for the
gesture dynamics representation space.

Separability In addition to studying the e�ect of di�erent factors in the aforemen-
tioned variables, we are interested in evaluating the concrete potential of the representa-
tion space formed by dynamic descriptors we used in the study (v and a) to discriminate
between articulations. For this, we compute the separability S between both classes (ar-
ticulations) in this representation space. A low separability indicates that articulations
are ambiguous in the representation space, while a high value suggests that it is possible
to discriminate between classes. The separability is a common criterion in machine learn-
ing, and it is implemented in well-know classification techniques such as Fisher Linear
Discriminant Analysis (LDA) (Zhao et al., 2012). The separability measure S is defined
as the distance ratio between the data belonging to di�erent classes (articulations) to the
variance of data within each class. More concretely, it is computed as the ratio between
the norms of the “between classes scatter matrix” SB and the “within classes scatter
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matrix” SW :

S = ÎSBÎ
ÎSW Î , (5.1)

with both matrices defined as

SB =
ÿ

c

Nc(µc ≠ x̄)(µc ≠ x̄)T (5.2)

SW =
ÿ

c

ÿ

iœc

(xi ≠ µc)(xi ≠ µc)T (5.3)

where,

µc = 1
Nc

ÿ

iœc

xi (5.4)

x = 1
N

ÿ

i

xi (5.5)

and N is the total number of cases, and Nc the number of cases in class c.

Participants

Participants were recruited via convenience sampling through department members and
their students. They signed an informed consent which contained the approximate du-
ration of the study (around 15 minutes per participant) and its general objectives, as
well as the type of data being recorded and the intention of making it publicly available.

Procedure

The study was divided in two parts. In the first one, all participants follow the same
procedure. In the second one, participants are randomly split in two groups, depending
on the sound stimuli used as background.

Part 1 The experimenter asks the participant to perform the gesture shown on screen
(Figures 5.3a and 5.3b for 3/4 and 4/4, respectively) following the tempo of the played
melody. Before actually recording, the participant is first allowed to listen to the melody
as many times as necessary to memorize it. Finally, the melody is played twice preceded
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by two meters of metronome and the application records aligned video and MoCap data
from the Kinect.
This process is repeated four times, once for each of the two melodies and articulations
(4/4 legato, 4/4 staccato, 3/4 legato, 3/4 staccato), counterbalancing the order of appear-
ance across participants. The di�erence between both versions (articulations) of each
melody is not mentioned, and no instructions on how to execute the gesture are given
beyond the pattern image shown on screen.

Part 2 The experimenter explains to the participant that the di�erence between both
versions of each melody in Part 1 is due to the articulation with which they have been
synthesized. This time, the participant is asked to repeat the process but trying to
convey those articulations with the variations in gesture execution that she feels best
match the variations in articulation. Half of the participants perform the gestures on
top of the melodies (as in Part 1); the other half perform the gestures on top of a
metronome, receiving instructions on the gesture to execute and articulation to convey
for each case. Again, the process is repeated four times (4/4 legato, 4/4 staccato, 3/4
legato, 3/4 staccato).

5.2.3 Results

Twenty four people (5 female) ranging in age from 21 to 50 years old (µ=31.1, ‡=5.9)
volunteered to participate in the study. Participants had di�erent musical expertise
levels: 5 had no musical training, 7 had some non-formal training, 5 had less than
5 years of musical training, and 7 were expert musicians with more than 5 years of
training. No conductors were recruited for the study.
All results presented in this section consider data from the takes with both time signa-
tures (3/4 and 4/4).
Tables 5.1 and 5.2 show a summary of the results for Parts 1 and 2 of the study, respec-
tively. In both cases, each row shows mean and standard deviation values of the absolute
value of the error distribution |e|, v and a with each articulation (legato, staccato) for a
participant. Values in every column are computed from data with both time signatures,
4/4 and 3/4. Recall that the mean of the absolute value of the error distribution is
our estimation of the lag between beats detected from hand movement and beats in the
music. Accordingly, the mean of |e| is denoted as lag in the tables.
Figure 5.4 shows the absolute value of the error distributions for di�erent conditions and
articulations.
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Table 5.1: Summary of results in Part 1.
Legato Staccato

|e| (s) speed (m/s) acc. (m/s

2) |e| (s) speed (m/s) acc. (m/s

2)
lag ‡ µ ‡ µ ‡ lag ‡ µ ‡ µ ‡

1 .077 .06 1.37 .11 11.07 .94 .076 .05 1.32 .11 10.74 1.25
2 .237 .13 1.11 .11 8.88 1.07 .159 .11 1.14 .07 9.64 .58
3 .114 .06 1.10 .19 9.14 1.64 .053 .06 1.09 .15 9.54 1.27
4 .100 .08 .94 .07 7.78 1.01 .052 .04 .93 .04 7.79 .48
5 .090 .05 .96 .07 7.46 .56 .045 .03 .80 .11 6.66 .86
6 .170 .08 .86 .06 6.42 .77 .068 .05 .79 .05 6.55 .54
7 .246 .12 .85 .15 5.86 1.61 .139 .09 .79 .15 5.71 1.46
8 .078 .07 .54 .07 3.74 .50 .061 .07 .53 .07 3.91 .55
9 .092 .08 .87 .09 7.01 .96 .169 .09 .83 .05 6.60 .62
10 .169 .07 1.09 .11 8.85 1.12 .066 .04 1.13 .19 9.66 1.68
11 .130 .08 .92 .05 7.36 .86 .053 .05 .88 .09 7.11 1.06
12 .268 .18 1.20 .19 9.01 1.30 .204 .19 1.24 .33 9.94 2.47
13 .177 .09 1.09 .18 8.43 1.70 .065 .04 1.05 .18 8.22 1.58
14 .065 .06 .93 .11 7.02 .77 .097 .06 .81 .08 6.34 .56
15 .129 .13 .83 .08 6.08 1.04 .262 .19 .79 .06 5.57 .51
16 .093 .08 1.09 .09 8.41 .83 .087 .09 1.02 .15 8.16 1.30
17 .072 .06 .73 .13 5.06 2.16 .068 .06 .68 .07 5.25 .93
18 .138 .10 1.35 .17 12.10 1.78 .155 .14 1.18 .18 10.56 2.12
19 .108 .08 1.42 .34 11.28 3.26 .084 .08 1.43 .24 11.87 2.15
20 .145 .10 .74 .05 5.35 .48 .111 .11 .77 .05 5.71 .50
21 .104 .11 .91 .08 6.70 .72 .073 .06 .73 .08 5.32 .62
22 .232 .11 1.05 .13 7.41 1.25 .167 .10 .94 .14 6.79 1.34
23 .187 .07 1.30 .22 10.98 2.37 .097 .06 1.23 .13 10.67 1.76
24 .253 .15 .71 .09 5.07 1.02 .221 .13 .79 .16 5.89 1.68

Part 1

The average values across all participants for lag are 0.142 s (‡ = 0.11) and 0.108 s (‡ =
0.11) for legato and staccato articulations, respectively. An independent-samples t-test
confirmed these di�erences due to Articulation are significantly di�erent; t(5079.2) =
11.076, p < 0.001. These results suggest that, in general, beats detected from hand
movement vertical acceleration fall closer to the actual beat positions when participants
perform on top of melodies played with staccato articulation. An F test comparing the
variances of both distributions indicated no significant di�erences, which suggests that
the tendencies are equally consistent.

Significant di�erences are also observed for v, t (3405.9) = 4.97, p < 0.001. Average
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Table 5.2: Summary of results in Part 2.
Legato Staccato

|e| (s) speed (m/s) acc. (m/s

2) |e| (s) speed (m/s) acc. (m/s

2)
lag ‡ µ ‡ µ ‡ lag ‡ µ ‡ µ ‡

1 .091 .06 1.48 .20 11.76 1.84 .050 .07 1.55 .13 13.73 1.48
2 .074 .08 1.22 .13 10.46 1.10 .069 .04 1.45 .11 13.33 1.24
3 .087 .06 1.31 .16 10.64 1.26 .060 .06 .99 .22 8.80 2.00
4 .047 .04 .96 .10 7.38 1.12 .073 .08 1.06 .13 9.59 1.39
5 .084 .08 1.19 .14 9.19 1.26 .038 .03 1.00 .07 8.40 .66
6 .079 .08 .81 .05 6.13 .71 .042 .04 .75 .06 6.56 .53
7 .202 .08 .94 .15 6.78 1.63 .079 .06 1.07 .16 8.55 1.63
8 .080 .06 .65 .04 4.31 .37 .045 .07 .53 .05 4.49 .46
9 .099 .08 1.04 .14 7.98 1.37 .074 .07 .86 .16 7.71 1.27
10 .104 .05 1.35 .13 11.24 1.09 .083 .06 1.07 .09 8.85 .86
11 .137 .12 .93 .06 7.42 .69 .054 .07 .73 .11 6.15 .98
12 .227 .20 .93 .07 6.05 .69 .180 .16 1.12 .09 9.76 1.05
13 .184 .07 1.11 .11 8.57 1.13 .059 .10 1.04 .07 8.77 .65
14 .078 .05 .98 .12 7.33 1.35 .085 .04 .79 .06 6.32 .64
15 .068 .05 1.10 .25 8.27 1.85 .112 .12 .76 .28 5.97 1.90
16 .119 .08 1.14 .10 8.10 .84 .052 .08 1.18 .12 9.83 .90
17 .220 .21 .64 .06 3.75 .52 .072 .10 .66 .06 5.10 .67
18 .220 .07 1.48 .11 12.95 1.04 .302 .06 1.29 .15 12.17 1.36
19 .106 .06 1.73 .11 14.22 1.19 .057 .07 1.69 .11 14.39 1.02
20 .179 .11 .93 .07 6.15 .61 .090 .10 .81 .11 6.13 .84
21 .067 .05 1.03 .06 7.38 .72 .067 .07 .78 .07 6.24 .69
22 .207 .08 1.09 .07 7.44 .87 .094 .06 1.04 .10 8.46 1.21
23 .085 .06 1.69 .20 14.78 1.99 .050 .04 1.59 .17 14.76 1.94
24 .258 .12 .86 .08 6.28 .89 .082 .05 .89 .07 7.20 .67

values are v = 1.00 m/s (‡ = 0.26) for legato and v = 0.95 m/s (‡ = 0.26) for staccato.
No significant di�erences are observed in the case of a.

Musical Expertise, introduced as a factor with 4 levels corresponding to the 4 groups
previously identified, did not yield any significant e�ects on the dependent variables. No
significant e�ect was observed for the time Signature (3/4 or 4/4) either. Recall that
a a di�erent melody and gesture were used for each time signature.

Part 2

In this part, participants were split into two di�erent groups depending on whether
they performed the gestures on top of a metronome, or again on top of the synthesized
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Figure 5.4: Beat error distributions for di�erent conditions and articulations.

melodies. We perform 2x2 ANOVA to analyze the e�ect of Articulation (legato or
staccato) and the Background (metronome or synthesized melody) on the values of
lag, v and a.

For lag, the strongest e�ect is caused by the Articulation, with average values of 0.131
s (‡ = 0.11) for legato and 0.082 s (‡ = 0.09) for staccato, F

(1,4469)

= 267.76, p < 0.001.
Significant di�erences were also observed for Background, with average lag values of
0.088 s (‡ = 0.10) when the gestures were performed on top of a metronome, and 0.120 s
(‡ = 0.12) performing on top of the synthesized melodies, F

(1,4469)

= 114.37, p < 0.001.
The interaction between both factors also had a significant e�ect, F

(1,4469)

= 59.89, p <

0.001. The di�erences between average lag values for di�erent articulations were bigger
with gestures performed on top of the melodies (0.154 s (‡ = 0.10) for legato and 0.086
s (‡ = 0.11) for staccato) than on top of the metronome (0.099 s (‡ = 0.11) for legato
and 0.077 s (‡ = 0.09) for staccato). These results indicate that the melody on top of
which the gestures are performed has a stronger e�ect on the timing than the intention
to convey one or other articulation.

We perform an F test comparing the variances of both distributions in the cases of
metronome and melodies for background. Only in the case of participants performing
the gestures on top of melodies we observe a significant di�erence between the standard
deviations, F (2212) = 1.36, p < 0.001. This indicates that, in this case, the observed
tendency is more consistent for staccato than for legato, with a wider distribution.

Only Articulation has an e�ect on v values, F
(1,2948)

= 50.54, p < 0.001. Average
values are v = 1.05 m/s (‡ = 0.29) for legato and v = 0.99 m/s (‡ = 0.29) for staccato.
The same is observed for a, with average values of a = 8.54 m/s

2 (‡ = 2.96) for legato
and a = 8.81 m/s

2 (‡ = 3.04) for staccato, F
(1,2948)

= 5.98, p < 0.05.
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As in Part 1, musical Expertise does not cause any significant e�ects on the dependent
variables. No significant e�ects are observed for the time Signature (3/4 or 4/4) either.

Idiosyncrasy of gesture variations

The results presented so far evaluate how values of lag, v and a vary across all partici-
pants throughout the di�erent conditions of the study. However, participants were not
given any instructions on how to perform depending on the articulation. In this context,
it is interesting to study whether these variations are similar across participants, or if
they are idiosyncratic.

For this reason, we included the Participant as a new factor in the analysis, and
evaluated the e�ect of its interaction with Articulation on lag, v and a performing
2x24 ANOVA for each of these variables.

In Part 1, the interaction between Articulation and Participant yielded signifi-
cant e�ects on lag (F

(23,5045)

= 20.75, p < 0.001), v (F
(23,2904)

= 8.45, p < 0.001) and
a(F

(1,2904)

= 8.19, p < 0.001).

Significant and stronger e�ects of this interaction appear in Part 2: lag (F
(23,4425)

=
25.88, p < 0.001), v (F

(23,2904)

= 45.32, p < 0.001) and a (F
(1,2904)

= 52.51, p < 0.001).

The results in Tables 5.1 and 5.2 help to understand where the e�ect of this interaction
comes from. As an example, we observe di�erent variations of lag in Part 1 (Table
5.1). For instance, some participants show similar lag for both articulations, such as
participants 1 (lag = 0.077 s for legato and lag = 0.076 s for staccato) and 17 (lag = 0.072
s for legato and lag = 0.068 s for staccato). Others, however, show very di�erent values
depending on the articulation, such as participants 3 (lag = 0.114 s for legato and
lag = 0.053 s for staccato) and 6 (lag = 0.170 s for legato and lag = 0.139 s for staccato).

Discriminating articulations from gesture variations

Figures 5.5 and 5.6 illustrate all v and a values for each participant in Parts 1 and
2, respectively, and the computed separability values. These figures show how clusters
corresponding to each articulation (red = legato and blue = staccato) are more sepa-
rated in the case of Part 2 (where participants where indeed trying to convey di�erent
articulations through gesture variations). An independent-samples t-test confirmed that
the separability values of Part 1 (S = 0.32 , ‡ = 0.59) and 2 (S = 1.28, ‡ = 1.36) are
significantly di�erent ; t(31.264) = ≠3.14, p < 0.01.
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Figure 5.5: v vs a values for each participant in Part 1 of the study. red = legato,
blue = staccato. Computed Separability between articulations (S) values are
indicated for each participant. 135
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Figure 5.6: v and a values for each participant in Part 2 of the study. red = legato,
blue = staccato. Computed Separability between articulations (S) values are
indicated for each participant.136
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Discussion

In Part 1 in this study, we investigated whether conducting gestures performed on top of
melodies synthesized with di�erent articulations (legato, staccato) show variations that
can be automatically identified from MoCap data. Our hypothesis (H1) was that these
variations would appear and would be reflected in di�erent timing (H1a) and dynamics
(H1b) for each articulation. H1a is confirmed by the results, with a tendency to detect
beats in hand motion closer to beats in the music for staccato articulation. Dynamics
between both articulations reflected in values of v and a tend to di�er, particularly
when considering separately cases for each participant. However, these di�erences seem
to be weak, specially compared with the case of the second part of the study, where
participants tried to actually convey di�erent articulations through gesture variations.
For this reason, we consider that H1b is not completely backed up by the results.

Di�erences between both articulations were much clearer in Part 2 of the experiment,
where participants were asked to convey articulations through gesture variations. The
hypothesis H2 tested in this second part is that the aforementioned di�erences also ap-
pear in this case. In this sense, H2 was confirmed both in terms of di�erent timings
(H2a) and dynamics (H2b). Interestingly, participants who performed gestures on top
of a metronome showed smaller di�erences in timing. This suggests that observed di�er-
ences between both articulations might me mainly due to di�erent sensory-motor syn-
chronization to melodies played with di�erent articulations. In any case, H2c (di�erences
are bigger for gestures performed in top of the melodies than on top of a metronome)
was only confirmed in terms of timing.

The confirmation of H2b is particularly relevant in terms of its potential to be applied
in real-time control of articulation. Simple descriptors extracted from hand movement
such as v and a, which can be computed in real-time, can be used to discriminate
between di�erent articulations conveyed by the user. It is also relevant to point out
that, in this study, participants were not given instructions on how to convey these
articulations, so the observed gesture variations are the result of their intuitive motion-
sound mappings having listened to examples with di�erent characteristics associated to
articulation (note length, connection between consecutive notes). As the results suggest,
the variations introduced by each participant were idiosyncratic and, accordingly, a
model that provides control over articulation through these gesture variations should be
able to adapt to these idiosyncrasy.
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5.3 Controlling articulation with idiosyncratic gesture
variations

Motivated by the conclusions of the observation study, we developed a system where
users train their own models to control music articulation with conducting gestures. As
opposed to the case explored in Chapter 4, where we learned the mapping by observing
spontaneous conducting movements, here the user explicitly designs her own mapping
through gesture variation examples. This follows the idea we introduced in Chapter 1
and illustrated in Figure 1.5. The approach presented in this Section is more aligned
with Mapping by Demonstration as defined by Françoise (2015). Listening is the first
step in the mapping design, and the mapping is explicitly defined by the user through
gesture variation examples performed while listening to sound stimuli.

5.3.1 Proposed system

The system is depicted in Figure 5.7. First, the user teaches the system how she embodies
music articulations by performing the same gesture with expressive dynamic variations.
For this, the user first listens to a melody synthesized with di�erent articulations, and
then performs the example gestures while listening to the di�erent stimuli. Phrase
articulation can range from totally legato to totally staccato. The system is however not
constrained to these particular articulations, nor limited to two or three articulations.
In this sense, the system is generic.

During performance, the user starts to execute a new gesture with a given dynamic vari-
ation. The trained model takes this gesture as input and infers which articulation the
user is doing. The inferred articulation may be one of the learned articulations (from
the training dataset), but it may also be a combination of learned articulations. In other
words, the articulation space is not discrete, but continuous. The inferred articulation
then controls the way the synthesized melody is rendered. For the aforementioned ex-
ample, the sound engine creates long notes with long attack and release for legato and
short notes with short attack and release for staccato.

Learning a model of articulations

The computational design can be formulated as a supervised learning problem: the
user provides a set of data input, each one representing an articulation of the same
gesture, paired with outputs encoding the articulations. This is classification. In the
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Figure 5.7: System diagram. During training, the user teaches the system how she em-
bodies di�erent articulations. During following, the model estimates the
inferred articulation from gesture dynamic variations, driving the sound syn-
thesis.

interaction scenario described above, we are specifically interested in having continuous
output informing the proportionate level of each articulation within a given gesture. One
solution is to interpolate between classes, achieving a form of soft classification.

The learning procedure is represented in Figure 5.8 with actual data from the user study
presented in Subsection 5.3.2. From the gesture (a shape drawn by the user), we ex-
tract dynamic features (velocity and acceleration). These features feed a probabilistic
model based on a Gaussian Mixture Model (GMM). We chose GMM for di�erent rea-
sons. Firstly, as a generative model, it can be used either for soft classification or as
regression model. Secondly, GMM is a probabilistic model that can handle (gaussian)
noise e�ciently. We use GMM in a supervised mode, by providing the algorithm with
the training dataset and a code for each articulation. The articulation code is an inte-
ger index, incremented for each new articulation added to the training dataset. In this
sense, for best performance, training instances should be provided in a meaningful order
from which the system can infer a continuum. We initialize the model by providing
the means of each class (see Figure 5.8, bottom-right). An Expectation-Maximization
(EM) (Dempster et al., 1977) algorithm iteratively adapts the covariance matrices, cre-
ating a model of each articulation. At test time, incoming gestures are analyzed online.
The model will then assign a continuous value to it, representing the relative distance
between each articulation.

More concretely, in the GMM model, the dataset is represented by a mixture of C

(number of trained articulations) Gaussian components defined by the probability den-
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sity function

p(xi) =
Cÿ

j=1

wjp(xi|Aj) (5.6)

where xi œ RD is a D-dimensional datapoint, wj is the prior probability (or weight) of
the jth component (wj Ø 0,

qC
j=1

wj = 1) and p(xi|Aj) is the conditional probability
function:

p(xi|Aj) = N (xi; µj , �j) = 1
Ò

(2fi)D|�j |
e≠ 1

2 ((x
i

≠µ
j

)

T

�

≠1
j

(x
i

≠µ
j

)) (5.7)

with Aj denoting the jth articulation, and µj œ RD and �j the mean and D ◊ D

covariance of the jth gaussian component, respectively.
For training, each articulation Ac is represented by a set of N inputs x

c
i , i = 1..N (note

that the number of inputs per articulation can vary). For each articulation, the mean of
the N inputs is computed and denoted µc. The training process then finds the value of
the weights wj , j = 1..C and the covariances �j , j = 1..C, using EM. The EM algorithm
estimates the values of these parameters that maximize the likelihood of the training
data. See Dempster et al. (1977) for a complete derivation of the algorithm.
The posterior likelihood is then given by

p(Ac|x) = wkN (x; µc, �c)qC
j=1

wjN (x; µj , �j)
(5.8)

Having coded each articulation in the dataset by an integer index incremented for every
new articulation, we can use the posterior likelihoods for an input x to derive a value
for articulation A(x) in a continuum via soft classification as previously introduced:

A(x) = p(A
1

|x) + 2 · p(A
2

|x) + ... + C · p(AC |x) (5.9)

5.3.2 User study

We carried out a user study to evaluate if users’ gesture articulations can be learned
with the proposed model and if users can subsequently use this model to control music
articulation by varying gesture. We also inspect the e�ect of musical expertise and,
in addition, we use two input devices to capture gestures: a Kinect v2 and a mouse.
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Figure 5.8: Learning procedure for participant 5 with mouse as input device. Input
examples are represented in the velocity-acceleration feature space and asso-
ciated to an articulation label. The representation feeds a GMM initialized
with the means of each class and adapted using Expectation-Maximization.

We do this to test possible di�erences in the ability to control articulation through
expressive gesture variation using a MoCap device such as the Kinect, where movements
are performed freely, or a mouse, which restricts movements to a certain plane and space.

Materials

We built a Windows application to be used with a Microsoft Kinect v2 or mouse with
OpenFrameworks. It uses ofxKinectForWindows23 (a wrapper for Microsoft’s o�cial
SDK) to track skeleton data and Maximilian4 (Grierson and Kiefer, 2011) for sound
synthesis. Maximilian is an MIT-licensed C++ library for audio synthesis and signal
processing, particularly suitable for applications built with OpenFrameworks. The ap-
plication allows the experimenter to control the procedure of the study using keyboard
commands. During training, it plays back the melody with articulations legato, normal,
and staccato (respectively coded 1, 2 and 3) and records v and a values computed in real

3https://github.com/elliotwoods/ofxKinectForWindows2
4https://github.com/micknoise/Maximilian
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time to form the training set. Normal refers to a melody synthesized with parameters in
between the ones used for legato and staccato. Two-dimensional position is also recorded
for posterior visualization. During performance, the application determines the articu-
lation value (from 1 to 3) from v and a values computed in real time, controlling the way
the synthesized melody is rendered. The hand position and the estimated articulations
by the model are recorded frame by frame for analysis.

For the study, we use the simplified score of Beethoven’s Ode to Joy also used in the
observation study and depicted in Figure 5.2b. Participants used over-ear headphones.
When using the Kinect v2, they stood approximately two meters from a 46-inch TV
screen showing the trace of the tracked hand (left or right depending on participant’s
preference); when using the mouse, they sat in front of the laptop showing the trace of
the mouse position. In both cases, during performance, a slider shows the fixed target
articulation value together with the one being inferred in real time. Figure 5.9 shows a
snapshot of the application during performance, with target articulation normal5. The
Kinect v2 sensor was placed below the screen, using a flat speaker stand, approximately
1.4 m from the floor.

Regarding the sound synthesis, we use simple sine waves and ADSR modulation. The
concrete parameters being modified depending on the articulation were the attack and
release times (also a�ecting the duration) of each note. For articulation A = 1 (legato),
values were set as 600 ms for attack and 3000 ms; for articulation A = 3 (staccato), they
were 50 ms for attack and 50 ms for release. Intermediate values for attack and release
were linearly interpolated according to the value of A.

The experimenter read instructions to participants and controlled the application from
a laptop to which the screen, Kinect v2 sensor, mouse and headphones were connected.

Methods

The method for training the model for articulations and computing the resulting artic-
ulation value during performance is the one explained in Subsection 5.3.1.

We compute two-dimensional velocity and acceleration values. In the case of the Kinect,
we use values in the frontal plane (where participants draw the gesture) from the position
of the hand used by the participant. We use Low Pass Di�erentiators (LPD) proposed
by Skogstad et al. (2012) to compute instantaneous velocity (v(ti)) and acceleration
(a(ti)). For the representation space, we compute a running average to smooth the

5The snapshot was not taken during the actual study: video from the Kinect was not recorded to
minimize performance issues.
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Figure 5.9: Snapshot of the application during performance using a Kinect v2 as input
device. Here, target articulation AT = 2 (normal) is indicated by a yellow
line on the slider; the white line indicates the inferred articulation at the
moment.

values, considering the last second (i.e. 30 frames for the Kinect V2, 60 frames for the
mouse). As in the case of the observation study, we denote these variables v and a for
velocity and acceleration, respectively. Every datapoint is thus composed by two values
xi = {vi, ai}.

Participants

Participants were recruited via convenience sampling through department members and
their students. They signed an informed consent which contained the approximate du-
ration of the study (around 25 minutes per participant) and its general objectives, as
well as the type of data being recorded.
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Procedure

The study procedure is repeated twice, once for each input device, counterbalancing the
order across participants. The participant is briefed that she will control the articulation
of a melody (a excerpt from Beethoven’s Ode to Joy from the 9th Symphony) using
figure-eight gestures.

In the Training Phase, the experimenter plays the stimulus melody with articulations
legato, normal, and staccato (respectively coded 1, 2 and 3). Normal refers to a melody
synthesized with parameters in between the ones used for legato and staccato. The
participant is encouraged to perform these gestures with the variations she feels best
match the articulations. She can rehearse until she feels confident and then records the
training examples (one gesture variation for each articulation).

In the Task Phase, the participant is presented with one of the melody versions used for
training, the articulation of the version being the target articulation. After listening to
it, she is asked to start drawing a figure eight in order to control the melody articulation
such as to reach the articulation target, as close to the example as possible until the
melody ends. Two bars with a metronome are played before the melody starts. This
process is repeated twice for each of the 3 target articulations appearing in random
order. As visual feedback, a screen shows the trace of the gesture. During performance,
a slider shows the fixed target articulation value together with the inferred one, as
shown in Figure 5.9. The hand position and the estimated articulations by the model
are recorded frame by frame for analysis.

At the end of the study, participants are asked to rate the following aspects of the task
on a scale from 1 (total disagreement) to 7 (total agreement):

• Globally, do you think you managed to fulfill the tasks asked during the study?

• When you were controlling the music, was the audiovisual feedback of your move-
ment variations what you were expecting?

In addition, they are asked whether, during control, they focused on audio and visual
feedback, only audio feedback, or only visual feedback.

Evaluation metrics

The accuracy of the estimated articulation compared to the intended one is assessed by
computing ‘, the mean error between the running articulation estimation (along time)
and the given target, during the Task Phase. Figure 5.10 reports an example of estimated
articulation for participant 19, target 2, using Kinect v2. ‘ is the mean di�erence between
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Figure 5.10: Inferred articulation (black curve) for participant 19, target AT = 2 (nor-
mal), using Kinect v2. Colored straight lines represent the three possible
target articulations in the study. In this case, the target articulation is
represented by the yellow line (AT = 2; normal).

the black curve and the yellow straight line. For a sequence of n frames it is computed
as:

‘ = 1
n

n≠1ÿ

i=0

|AT ≠ A(ti)|, (5.10)

where AT is the target articulation (1 for legato, 2 for normal and 3 for staccato) and
A(ti) the inferred articulation in frame i.

Results

Twenty participants (7 female, 13 male) aged between 22 and 38 (µ = 29.7, ‡ = 4.2) vol-
unteered to participate. Half of them were musicians (considering musicians participants
with any musical training) and the other half were not.

Analysis of articulation performance The questionnaire revealed that participants,
in general, felt that they had fulfilled the task according to their answer to “Do you think
you managed to fulfill the tasks asked during the study?” (µ=5.3; ‡=0.9 in a scale from
1 to 7). They also replied positively to “When you were controlling the music, was the
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audiovisual feedback of your movement variations what you were expecting?” (µ=5.2;
‡ = 0.8). There was no significant di�erence between musicians and non-musicians in
response to these questions.

The questionnaire also asked participants about which element(s) of the audiovisual
feedback they focused on during the Task Phase. 9 out of the 10 musicians reported to
have used both audio and visual feedback; the other one used audio feedback only. In
the case of non musicians, 6 out of 10 reported to have focused on visual feedback only,
while the other 4 used both audio and visual feedback.

We averaged the mean error across participants, devices and target articulations. The
resulting global error is ‘ = 0.31 (‡ = 0.21). To compare with subjective measures,
we computed the correlation coe�cient between each participant’s rating of their per-
ception of task fulfillment and the mean accuracy values over all of that participant’s
performances. We found that subjective ratings and objective measure are correlated
with a coe�cient of 0.6.

We then inspect how the accuracy given by the mean error is a�ected by three factors:
the Target articulation, the participants musical Expertise and the Device used
for the task. A repeated-measure analysis of variance (ANOVA) showed that there is
a significant e�ect of Target (F

(2,108)

= 3.992, p < 0.05) and Expertise (F
(1,108)

=
7.264, p < 0.01), while there is no e�ect of Device. A Tukey’s HSD (Honestly Significant
Di�erence) post-hoc analysis shows that the accuracy is higher for Target 2 and 3
compared to Target 1 (p < 0.05), while there is no significant di�erence between
Target 2 and 3. For Expertise, the analysis shows that the accuracy is significantly
better (p < 0.01) for musicians (‘m = 0.26, ‡ = 0.19) than for non-musicians (‘nm =
0.36, ‡ = 0.24).

Analysis of the model training From the Training Phase, we examine the quality
of training by computing the separability S between articulations in the representation
space (Figure 5.8, top-right), following the same method used in the observation study.
ANOVA reveals that the Expertise does not a�ect separability, while the Device

does (F
(1,36)

= 5.911, p < 0.05). Also, we found that articulation separability is not
correlated to model accuracy (correlation coe�cient is 0.12). Figure 5.11 illustrates, for
each participant (using the Kinect), the articulations in the representation space formed
by v and a and the computed separability values.

We finally examine an important aspect of the gestures considered in the study: the id-
iosyncrasy of articulations performed by users. For that, we perform cross-validation on
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the training data: for each participant i, we train the model with the articulations from
that participant and test with training data from the other participants j = 1..20, j ”= i.
From these tests, we compute the average error between the estimated articulation value
given by the model and the expected articulation. We found that the global error is
‘idiosyn = 0.80. We then computed an “individual error”’ by training the model and
testing with the training data from the same participant i, for each participant. The
global individual error is ‘indiv = 0.46. A statistical test (t-test) shows that the two
errors ‘idiosyn and ‘indiv are significantly di�erent (p < 0.001).

5.3.3 Discussion

According to the questionnaire results, the model succeeds at providing sense of control
over articulation. Also, objective measures provide acceptable errors for both kind of
users (although significantly better for musicians). Importantly, the model managed to
learn intended articulations even if the way participants performed the articulations to
train the system embedded idiosyncratic elements that were not shared across partic-
ipants. Indeed, while we imposed a particular base gesture (figure-eight) and tempo,
users were not told how to vary their gesture to achieve the di�erent articulations. In-
stead, variations in execution were free, but asked that they be coherent with the sound
stimuli. As a result, a model learned on a user’s set of data may not be transferable to
another user, but embeds a given user’s own expressive gesture qualities.

We saw that musicians performed significantly better than non musicians. Although no
significant di�erences were found for the training quality for participants of di�erent mu-
sical expertise, the di�erences during performance might be due to the musicians’ better
ability to better understand the task from a musical perspective. We think that their
musical ability allows them to concentrate on dynamic variations and to better interpret
the synthesized sonic di�erences representing staccato and legato articulations. This is
supported by the fact that most non-musicians reported that they focused exclusively
on visual feedback during performance.

Interestingly, the individual error of the model (‘indiv), obtained when training and test-
ing o�ine on a participant’s data from the Training Phase (so considering the same data
for the training and the testing) is higher than the average accuracy error of the model
obtained from the Task Phase, ‘ (where participants trained the system and performed
through it online). We believe that online task execution with audiovisual feedback in-
volves an action-perception loop which helps users adapt their gesture to achieve the
task. This could indicate that participants deliberately adapted to the outcome of the
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system during the task phase with unnatural gesture variations. However, the results
from the questionnaire reveal that the audiovisual feedback was consistent with par-
ticipants’ expectations, indicating that this was not the case, and that the audiovisual
feedback was a reinforcing confirmation to the user on her actions. Such aspects of sen-
sorimotor learning that may enter into play constitute an important direction for future
research.
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Figure 5.11: v and a values for each participant during the Training Phase. red = legato,
green = normal, blue = staccato. Axes limits are set di�erently for each
participant. Computed separability (S) values for each participant are also
indicated. 149
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5.4 Conclusions

We have analyzed the way in which subjects intuitively embody musical articulation
when performing conducting gestures. For this, we performed a study with twenty four
participants with di�erent musical expertise. The study was divided in two parts: in
the first one, participants performed gestures on top of melodies played with di�erent
articulations but did not get any indications; in the second one, they were asked to ac-
tually convey di�erent articulations with expressive gesture variations. The results show
that musical articulation a�ects gesture timing in both cases, with beats estimated from
hand acceleration data falling closer to the beat with staccato articulation. Dynamic
variations reflected in speed and acceleration computed from the hand movement are
particularly noticeable when subjects actually try to convey di�erent musical articula-
tions. Interestingly, the results suggest that the variations introduced by each participant
were idiosyncratic. The recordings of this observation study are available online6.

Based on this, we proposed a model to control musical articulation where the user first
listens to music played with di�erent articulation and then explicitly tells the system
how she embodies it through examples of gesture variations. We tested the model in
a user study with twenty participants of di�erent musical expertise. The results of the
study show satisfactory results in terms of the ability of participants to control music
articulation. Also, the results are in agreement with those from the observation study
indicating that performed variations are idiosyncratic, which reinforces the need for
user-specific mappings. Interestingly, we found that the quality of the trained models,
computed as the separability of di�erent articulations in the representation space, did
not have a significant e�ect on the results during performance. This, combined with the
fact that musicians achieved better performance, suggests that participants were able to
adapt their performance in an action-perception loop during the execution of the tasks.

The proposed model has some limitations that are worth discussing. The scheme con-
siders a single gesture at a fixed tempo, and the descriptors we used can be a�ected by
changes in, for example, tempo, that should not a�ect articulation. The main strategies
we foresee to address this issue are two. The first possible direction would be to build a
representation space with descriptors that are more robust to these variations (for exam-
ple, descriptors related to the shape of the gesture). Then, we believe that incorporating
a temporal model of gesture could also be useful in this case. For example, combining
this model with gesture recognition that tracks variation based on dynamical systems
(as proposed by Caramiaux et al. (2014b)) could a�ord the user the possibility to train

6http://mtg.upf.edu/download/datasets/phenicx-conduct

150

http://mtg.upf.edu/download/datasets/phenicx-conduct


5.4 Conclusions

the system to recognize di�erent gestures and a set of potential variations which could
then be dynamically explored, in performance, by the user. Likewise, the e�ects seen in
the observational study regarding how gesture timing varies with articulation, combined
with the results of the experiment in the previous chapter, suggest that articulation
should also be considered as a factor that can interact with the beat detection from
hand movement.
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Chapter 6

Becoming the Maestro: a conducting
game to enhance curiosity for classical
music

In preceding chapters we explored techniques to adapt or learn the mapping of DMIs
based on the conductor metaphor to user-specific tendencies or expectations. Lessons
learned in these chapters are useful in the case, for example, of installations in museums
or, in general, contexts where it is desirable to provide an intuitive interaction that does
not require too much training. Also, adapting to user’s expectations is not only useful
in terms of reducing the learning curve, but also in terms of allowing a more expressive
control of the musical outcome.

These advances are aligned with the transversal goal of this thesis and the PHENICX
project of finding means to attract new audiences to classical music through technology.
However, we also wanted to pursue this goal in a more explicit way. In this context,
we explore the potential of a game using the conductor metaphor to attract these new
audiences. In this chapter, we present Becoming the Maestro, the game we developed
with this objective.

6.1 Introduction

6.1.1 Becoming the Maestro in the context of PHENICX

Becoming the Maestro was developed as one of the demonstrators of PHENICX. In this
project, state-of-the-art technologies were used to enrich the classical music concert ex-
perience before, during and after the performance. The game falls into the last category
in this division: it is designed to be played after the concert.
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(a) Orchestra layout visualization. Active instruments are filled with color.

(b) Conductor visualization.

Figure 6.1: Exponential Prometheus visualizations, during a performance in Teatro de la
Maestranza, Seville (Spain) in March 12, 2015.
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Also, in agreement with the general objectives of the project, the game tries to appeal
classical music outsiders and boost their interest for this kind of music. Observation
of and interviews with first-time attendees demonstrate that classical music novices
often feel a lack of sense of belonging (Dobson and Pitts, 2011), whereas novices point
out the importance of having a certain level of knowledge before they can enjoy the
music (Dobson and Pitts, 2011; Kolb, 2000). A user-requirements study for classical
music applications made within PHENICX by Melenhorst and Liem (2015) showed that
creating experiences that provide opportunities for learning can be a successful strategy
to motivate users for classical concerts, and that active, physical engagement with the
music increases enjoyment. The game thus tackles the problem of appealing classical
music outsiders by providing an experience that involves physical engagement and raises
attention about specific aspects of the performance which might be unnoticed when
attending one as audience.

Children have been the target audience of many educational games released by orches-
tras such as the Dallas Symphony Orchestra1, the New York Philarmonic Orchestra2

or the San Francisco Symphony3. Other systems we have already referred to in previ-
ous chapters also introduce game-like elements, particularly when targeted at children
(Lee et al., 2004). There are also commercial video games that employ the conductor
metaphor. Nintendo’s Wii Music4 includes di�erent game modes, including one where
the player controls the tempo of a virtual orchestra using the Wii remote controller as
a baton. Fantasia: Music Evolved5 by Harmonix for Xbox, uses Kinect and takes inspi-
ration from the Sorcerer’s Apprentice segment in Disney’s 1940 classic Fantasia. Even
though classical music played a key role in the film (in fact, it features music performed
by the Philadelphia Orchestra conducted by Leopold Stokowski), the game focuses on
pop music. Here, we did not want to limit ourselves to a game focused on children,
and we designed the game following the aesthetics and using the technologies of other
PHENICX project demonstrators.

6.1.2 Relation with other PHENICX demonstrators

The game can be played and enjoyed separately, but its design, coherent with other
PHENICX demonstrators, is meant to make it more appealing when used as part of the

1http://www.dsokids.com
2http://www.nyphilkids.org
3http://www.sfskids.org
4http://wiimusic.com
5http://www.harmonixmusic.com/games/disney-fantasia-music-evolved/
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whole before, during and after PHENICX concert experience.

Two demonstrators were developed to be enjoyed during the performance. The first
one consists on a tablet/smartphone application to be used and controlled by a concert
attendee, while the other consists on visualizations projected on stage. Both exploit real-
time score following (Arzt et al., 2015) to show synchronized visualizations of di�erent
aspects of the piece or the performance, including the score, the structure of the piece
(at di�erent levels of detail), the instruments that are currently playing, etc.

Becoming the Maestro was designed to be coherent particularly with two visualiza-
tions from the second demonstrator6 (projections on stage). All visualizations from
this demonstrator were pictured by the same designer to have coherent aesthetics. The
first of these visualizations used in Becoming the Maestro is the Orchestra layout (Figure
6.1a), in which di�erent instrument sections in the orchestra are represented as silhou-
ettes with the shapes of the instruments. The silhouettes are arranged on the screen
with the same disposition of the orchestra on stage. Then, during performance, the
silhouettes of instrumental sections which are playing are highlighted by filling the sil-
houette with color. The second one is the Conductor visualization (Figure 6.1b). It
consists on a simplified torso of the conductor (head and arms only) enriched with in-
formation extracted in real-time using MoDe from the position of body joints tracked
with a Microsoft Kinect. For example, every time a beat is detected in any of the two
hands as a change from negative to positive sign in vertical velocity, the animation shows
some particles coming from the hand with speed and direction related to those of the
hand movement. Also, the skeleton leaves a trace whose intensity is proportional to the
quantity of motion computed from all tracked joints. Next to the figure, the values of
the involved descriptors (velocity and acceleration of both hands, quantity of motion,
etc.) are shown as text strings in the background in order to reinforce the sensation of
the visualization being computed in real time.

In this context, even though the game was developed such that it can be enjoyed sepa-
rately, its design was highly influenced by the afore-mentioned visualizations. The reason
for this was to make the game more appealing when played after attending a concert
with those enriched visualizations: the user re-enjoys the same visualizations, this time
interactively, by Becoming the Maestro.

6http://phenicx.upf.edu/SUPrometheus
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6.2 Game description

In the game, the user employs her body position (mainly the position of her hands and
arms in space) to interact with presented challenges using a Microsoft Kinect v2 as
input device. A stick figure representing the user, similar to the one in the Conductor
visualization from the PHENICX live demonstrator (Figure 6.1b), is displayed on the
screen, mirrored to match the users’ expectations. Its arms are used as cursors, and
most interaction consists in making the projection of the arms intersect with circles that
appear on screen, or moving hands following a particular pattern.

Two di�erent tasks are presented in the game: giving entrance to the di�erent instru-
ment sections in the orchestra and performing the appropriate conducting gestures with
the right timing. They appear separately in the first levels and combined when the
player progresses to higher levels. Points are awarded (or lost) according to the player
performance. Score events and the total score are shown on the screen, giving a per-
formance cue to the user. Textual messages are also temporally displayed in order to
give the sense of how well the user is doing, from praising messages (“Maestro!”) to
complaints (“Can’t hear the Oboe!”).

6.2.1 First task: giving entrance to instrument sections

This task is inspired in the mechanics of games like Guitar Hero7, where the user has
to perform guitar notes from a popular song, according to the visual annotations pro-
gressively appearing on the screen. The correct sound plays when the user plays the
right notes in time; incorrect performance results in awkward sounds and silences. In
this sense, the game needs to have separated stems from the performance (either from
a multitrack recording or achieved through source separation) and annotations for the
moments where each of the sections are playing. A snapshot of the game during this
task is shown in Figure 6.2.

In Becoming the Maestro, the player has to indicate the entrance to the di�erent instru-
ment sections of the orchestra when needed (and displayed on the screen). As in the
Orchestra layout visualization from the PHENICX live demonstrator (Figure 6.1a), the
sections are represented by the instrument silhouettes spatially arranged as they would
be in a real concert. Whenever a section has to be quiet, its image disappears. If the
section is playing correctly, its shape is displayed vibrating at the tempo of the music
and filled with a light color; if it should be playing but it is not, the shape is filled with

7https://www.guitarhero.com/
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Figure 6.2: Becoming the Maestro; first task screenshot.

a dark color and it vibrates very fast.

A circle is displayed over the instrument section whenever an action is required from the
user. A number of beats (dependent of the di�culty level) before the instrument section
is supposed to play, a countdown starts showing the remaining number of beats until
the entrance. The user can give the entrance to the section by touching this circle (i.e.
making the projection of her forearms intersect with them). If she fails to do so in time,
the separated audio of this section fails to play, resulting in an incomplete and awkward
audio mix. The circle also will remain (this time pulsating) over the section until the
user gives the entrance.

The number of instrument sections that the user needs to give entrance to depends on
the di�culty level. The best score (20 points) is achieved when the user is able to give
the entrance to the section just before it is supposed to play (i.e. 1 beat before). Lower
scores are given if the entrance is given some beats before. Then, if the instrument
should be playing but is not, the score is decreased by 1 point at each beat. Animations
are shown on top of the corresponding silhouette every time a score event occurs.
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Figure 6.3: Becoming the Maestro; second task screenshot.

6.2.2 Second task: performing beat pattern gesture

In order to communicate rhythm information, conductors employ a set of gestures that
depend on the meter of the music. For example, a 3/4 gesture appears in the screenshot
of this task shown in Figure 6.3. This task challenges the player to perform these gestures
with the correct timing. The gesture is introduced as a virtual hand that follows a trace
in the screen. A trace is also drawn by the hand of the user, allowing her to check if the
gestures match.
The performed gesture is evaluated and rated using the Gesture Variation Follower,
a template-based real-time gesture recognition method based on particle filtering by
Caramiaux et al. (2014b). This system can be trained with a single instance per gesture.
Then, during gesture execution, it updates estimated parameters of the gesture. In this
case, the procedure to rate gestures using this method is the following:

• First, the system is pre-trained with the gesture templates the player will have to
match. For example, in the case of the implemented prototype, we used the same
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3/4 gesture pattern we used for the study presented in Section 5.2 and shown in
Figure 5.3a. During the game, it is displayed as in Figure 6.3). The 2-d position
of 99 points in the line describing the gesture (33 between every two consecutive
beats) was sampled and used as the template for training.

• Then, for every new MoCap frame during the game task, the projected 2-d position
of the hand is used as input for the recognizer. The recognizer estimates the
alignment in the gesture (between 0 and 1). The absolute di�erence between the
estimated alignment and the time progression in the current bar is used to rate the
correct timing of the gesture. As an example, if a frame arrives in the first beat of
the current bar (0.33 progression), and the recognizer estimates that the current
alignment of the performed gesture is 0.40, the resulting error at the frame is 0.07.
Once the bar concludes, the cumulative error of all frames is mapped to the final
score of the bar. The gesture scores go from -1 (bad gesture) to 20 (perfect gesture
timing).

6.3 User evaluation

We evaluated a prototype of the game in order to assess its potential to increase engage-
ment with classical music and get feedback for possible future improvements. Since the
use case we have in mind is public installations, we evaluated the game in a setup where
participants were not giving any indications on the game mechanics. This was done to
investigate possible necessary improvements in the intuitiveness of the game interface.
A picture from the user study is shown in Figure 6.4.

In this sense, the evaluation of this game is quite di�erent to the evaluation of other
prototypes presented in preceding chapters. We wanted to thoroughly assess the ability
of the game to create a joyful experience and to enhance curiosity for classical music. In
this context, we used some standard metrics for this purpose.

Venkatesh et al. (2003) formulated a model called Unified Theory of Acceptance and
Use of Technology (UTAUT) that has been later extended in Venkatesh et al. (2012).
The model provides a framework for systematically assessing user acceptance of new
technologies and is commonly used to assess their probability to succeed. We used this
framework to measure the fun of use and e�ort expectancy of Becoming the Maestro.
E�ort expectancy is defined as the degree of ease associated with the use of the system.
We also used the AttrakDi�2 questionnaire proposed by Hassenzahl (2008) to measure
hedonic stimulation when playing the game.
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Figure 6.4: Becoming the Maestro demonstrator; participant in the user study playing
the game.

6.3.1 Materials and methods

The game needs separate audio tracks for each of the instrumental sections and infor-
mation about whether each section is playing on every bar. Both were available in a
performance of Beethoven’s 3rd Symphony (Eroica) by the Royal Concertgebouw Orches-
tra8 that was recorded within the PHENICX project and is publicly available online9.
Accordingly, the game prototype used in the evaluation was implemented using the 1st

movement from this performance. We had individual stems for each of the instrument
sections achieved with source separation (Miron et al., 2015), as well as aligned score
(Miron et al., 2014). Both techniques (source separation and score alignment) can be
used to adapt the game to any performance. In the case of source separation, to avoid
needing multichannel recordings; in the case of score alignment, to minimize the manual
work for annotation.

Participants were recruited via convenience sampling through department members and
their students. They subsequently signed an informed consent form, filled out a brief
pre-questionnaire, played the game prototype for nine minutes, and filled out the post-
questionnaire. The 30-minute session was concluded with a brief interview.

The pre-questionnaire included the following questions:
8http://www.concertgebouworkest.nl/
9https://repovizz.upf.edu/phenicx/datasets/
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• Attitude towards classical music: 9 items

• Behavioral intention to attend classical music concerts in the next three months:
2 items

In the post-questionnaire, the following questions were asked:

• AttrakDi�2, hedonic quality-stimulation (Hassenzahl, 2008): 7 semantic di�erential
items

• E�ort expectancy (Venkatesh et al., 2003): 4 UTAUT Likert items

• Fun of use (Venkatesh et al., 2012): 3 UTAUT Likert items

• Engagement with the game: 3 Likert items

• Expected impact on attitude towards classical music and classical music concert
attendance: 3 Likert items

In the post-interview, questions were asked about aspects that appealed and did not
appeal to the participants, suggestions for improvement, and the impact on the attitude
towards classical music. We recorded the scores and levels achieved by each of the
participants, as well as the time spent in each level, to test whether the ability to
succeed at the game a�ects the participants attitude towards it.

6.3.2 Results

Twenty participants participated in the test, of which five were female. Ages were
distributed as 21-25 (2), 26-30 (4), 31-35 (10), 36-40 (1) and > 40 (3). Following Mül-
lensiefen et al. (2014), classical concert attendance in the last year was measured on a
seven-point scale ranging from 0 (coded as 1) to more than 11 times a year (coded as
7). Thus, values could range from 1 to 7. The average classical concert attendance score
was 2.9 (s.d. 1.8). Years of musical instrument training was measured in a similar vein,
ranging from 0 (coded as 1) to 10 years or more (coded as 7). Average musical training
score was 4.0 (s.d. 2.3).

Attitude towards classical music

Attitudes towards classical music was measured with seven seven-point semantic di�er-
entials, and two seven-point Likert scale items. Results are shown in Table 6.1.

In general, apart from learnability, participants had a relatively positive attitude towards
classical music. Important to note is the potential of classical music for mood regulation,
as evidenced from the results on the items about escapism, coming in the right mood, and
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Table 6.1: Attitude towards classical music. Seven-point semantic di�erentials and Lik-
ert scale items.

Semantic di�erentials µ ‡

Beautiful - Awful 1.9 .9
Stimulating - Boring 2.6 1.2
Tiresome - Relaxing 5.6 1.2
Hard to understand - Easy to understand 3.9 1.3
Easy to enjoy - Hard to enjoy 2.8 1.2
Easy to learn - Hard to learn 5.1 1.4
Something to enjoy with others - Something to enjoy alone 4.8 1.2

Likert items µ ‡

Classical music helps me to escape from my daily worries 4.2 1.5
Classical music helps me to come in the right mood 4.8 1.1

the tiresome-relaxing continuum. These participant characteristics and their attitudes
suggest that the participants can be considered as classical music outsiders, in the sense
that they are not regular consumers of this kind of music, but with a general positive
attitude towards it. Their answers also suggest that they identify the genre as more
prone to be enjoyed individually.

Hedonic quality, fun of use, and effort expectancy

As a first step in the analysis of the dependent variables, reliability analyses were con-
ducted on the scales that were administered. The Cronbach’s alpha levels represent the
internal consistency of the scales that were used. The alpha levels for hedonic quality
(stimulation), fun of use, and e�ort expectancy demonstrated good internal consistency
(alpha > .85).

Scale means and standard deviations for hedonic quality, fun of use and e�ort expectancy
are displayed in Table 6.2.

Table 6.2: Hedonic quality, fun of use, e�ort expectancy.
µ ‡

Hedonic quality (stimulation) [1 to 7] 4.3 .6
Fun of use [1 to 5] 4.2 .7
E�ort expectancy [1 to 5] 3.4 .9
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Hedonic simulation was measured with AttrakDi�2 (Hassenzahl, 2008) 7 semantic di�er-
ential items with values ranging from 1 to 7. The average results for each of the elements
in the questionnaire is shown in Table 6.3. An average of 4.3 suggests that the game
was moderately stimulating.

Table 6.3: Hedonic quality measurement.
µ ‡

Typical - Original 4.4 .9
Standard - Creative 4.4 .9
Cautious - Courageous 4.1 .7
Conservative - Innovative 4.4 .8
Lame - Exciting 4.3 .9
Harmless - Challenging 4.4 .7
Commonplace - New 4.2 .9

Fun of use was measured following Venkatesh et al. (2012) with three five-point Likert
scale items with values ranging from 1 to 5. The average results for each element are
shown in Table 6.4. The average of 4.2 shows that participants liked playing Becoming
the Maestro. The results for fun of use were confirmed by the results for engagement,
which are shown in Table 6.5. As can be seen from the table, participants in general
would like to continue playing the game at home. Additionally, the results suggest that
the game succeeds in appealing to the user’s motivation to engage in competition.

Table 6.4: Fun of use measurement.
µ ‡

Playing Becoming the Maestro is fun 4.3 .9
Playing Becoming the Maestro is enjoyable 4.2 .8
Playing Becoming the Maestro is very entertaining 4.0 .7

Table 6.5: Engagement with the game measurement.
µ ‡

I would like to continue playing Becoming the Maestro at home 3.7 1.2
I expect Becoming the Maestro to become boring after a while 3.0 1.0
Becoming the Maestro motivates me to achieve the highest score possible 4.0 1.1

E�ort expectancy was measured with four five-point Likert scale items with values rang-
ing from 1 to 5, as proposed by Venkatesh et al. (2003). Table 6.6 shows the aver-
age results for each of the items. Even though participants were in most cases not
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Table 6.6: E�ort expectancy measurement.
µ ‡

Learning how to play Becoming the Maestro is easy for me. 3.5 1.0
My interaction with Becoming the Maestro is clear and understandable 3.4 1.2
I find Becoming the Maestro easy to use 3.5 1.1
It is easy for me to become skillful at playing Becoming the Maestro 3.2 1.2

usual consumer of classical music, the e�ort expectancy levels are still close to the scale
average of 3. Further inspection of the data reveals that the items on the learnabil-
ity (µ = 3.5, ‡ = 1.0), ease of use (µ = 3.5, ‡ = 1.1), and the interaction design
(µ = 3.4, ‡ = 1.2) yielded positive values around 3.5, while the item “It is easy for me
to become skillful at playing Becoming the Maestro” yielded an average of 3.2 (‡ = 1.2).
When we relate this result to the high joy of use measures, we can conclude that the
tasks the users had to do were di�cult enough to keep them engaged, but not so di�cult
that it compromised the joy of use they experienced. At the same time, the results also
suggest that, at least for some participants, some tasks might be di�cult to understand.
Some participants did in fact raise this point during the interview. In particular, some
took some time to understand that di�erent points were awarded depending on when
the entrance to the instrument was given during Task 1.

During the interview, participants usually raised the educational aspect of the game as
its most interesting aspect. They appreciated how they could realize the e�ect of not
giving the entrance to a section in the resulting audio, thus helping them to be more
conscious about what di�erent sections in the orchestra are playing. More related to
the second task, participants also liked the way in which the game taught them how to
perform the 3/4 gesture. That part was specially challenging for some participants, who
often commented how the fast tempo of the song made it more di�cult.

Independent samples t-test revealed no significant e�ects of gender. A one-way ANOVA
test was used to analyze the e�ect of age. No significant e�ect of age was found on any
of the scales either.

No significant correlations were found between the measured variables and game perfor-
mance (i.e. final score, level achieved, time spent in levels).

Correlations with musical training and classical concert attendance

Engagement with classical music was expected to impact the perception of the game.
To assess this hypothesis, we computed correlations between on the one hand fun of
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use, hedonic stimulation, e�ort expectancy, and on the other hand musical training and
classical concert attendance. The results revealed however no significant correlations.

Estimated motivational impact on attitude and concert attendance

Participants were asked to report on the e�ects of playing the game, in terms of their
attitude towards classical music, and their intention to attend a concert in the near
future. Three five-point scale Likert items were used for this purpose. The results are
shown in Table 6.7.

Table 6.7: Estimated motivational impact on attitude and concert attendance.
µ ‡

Becoming the Maestro makes me curious about the piece
(Beethoven’s 3rd Symphony)

3.6 .9

Becoming the Maestro makes me more enthusiastic about
classical music in general

3.8 1.0

Becoming the Maestro motivates me to attend a classical
music concert in the following 3 months

3.1 1.0

The averages above the neutral point in the scale point to the potential for the game to
increase engagement with classical music. The game increases curiosity, and enthusiasm
for classical music in general. In contrast, participants responded neutrally on the impact
of the game on the intention to attend a classical concert.

No significant correlations were found between the three items on participants’ estimated
motivational impact and game performance (i.e. final score, level achieved, time spent
in levels).

6.3.3 Discussion

The evaluation shows the potential of the game to engage people who are not regu-
lar consumers of classical music but show a moderately positive attitude towards the
genre. For this group of users, the game succeeds at o�ering an engaging experience
and increasing their curiosity for classical music. Although it did not have an immediate
impact on their intention to attend a concert in the near future, the positive attitude of
the players towards the game makes us believe that it could have an impact on classical
music consumption in the long run, in the same way Guitar Hero increased the sales of
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records by older artists appearing in the game10.

During the interview, participants often mentioned how the game made them pay more
attention to the role of the di�erent sections in the orchestra, which indicates that the
game gave them a new way of looking at orchestral music and a way to appreciate and
better understand one of the roles of the conductor. Following this idea, it seems that
it would be positive to include more educational aspects in the game.

6.4 Conclusions

In this Chapter we have presented Becoming the Maestro, the game developed within
the PHENICX project to attract new audiences to classical music. In the game, the
player takes the role of a conductor in a concert. The game does not try to realistically
replicate the role of the conductor during performance, but to provide the user with
an entertaining and joyful experience. As we have seen, the game is greatly inspired in
other PHENICX demonstrators and prototypes, as it is coherent with the whole before,
during and after concert experience envisioned in the project. It is, in any case, designed
so that it can also be played and enjoyed separately.

In this part of the work we have thus moved from exploring motion-sound mappings
in the context of DMIs based on the conductor metaphor to using this metaphor in
a gaming scenario. As explained throughout the Chapter, the motivation for this was
to explicitly pursue the transversal goal of attracting new audiences to classical music,
which in the rest of the chapters was present implicitly. Following this motivation, we
have evaluated the game precisely in terms of its ability to create a joyful experience and
to enhance curiosity for classical music. The evaluation was done with participants who
are not regular consumers of classical music but show a moderately positive attitude
towards the genre. For them, the game succeeds at providing this joyful experience, and
it also has a positive impact in terms of engaging their curiosity for classical music.

A pending challenge is to evaluate the game with groups of users more reluctant to
classical music, as well as in certain age groups such as children. After the evaluation of
the prototype presented in this chapter, the game has been presented in public venues,
and our feeling is that its acceptance has always been positive. Something that we have
observed in these presentations is that children are often those who show greater interest
in interacting with the game, and are also those who, generally, obtain higher scores. In
10Cultural impact of the Guitar Hero series, in Wikipedia:

https://en.wikipedia.org/wiki/Cultural_impact_of_the_Guitar_Hero_series
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any case, it is still necessary to evaluate the game with groups of di�erent profiles and
to study if it would be appropriate to adapt it depending on the venue.

Participants in the study also indicated that it would be interesting to find levels where
they take control of other aspects of the music. According to this idea, one possibility
to extend the game is to take advantage of the prototypes for beat, dynamics and
articulation control and gamify the tasks used for their evaluation turning them into
challenges within the game.
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Conclusions

Throughout this thesis we have made an in-depth study of interaction with systems
based on the conductor metaphor. The proposed approach for this analysis has been to
focus on the very fact that motivates the use of interface metaphors: providing the user
with a control interface to which she can transfer her knowledge of a real world activity;
in this case, conducting. We hypothesized that part of the knowledge that users have
from the domain that the interface metaphor replicates is user-specific and that this can
be exploited for DMI mapping design. As we have seen in our literature review, current
trends in motion-sound mapping, which place the user at the center of the mapping
design, have practically not been used in DMIs based on the conductor metaphor when,
in fact, it is a very suitable use case for this.

In this context, we have dealt with the problem from di�erent perspectives. In the first
place, we have analyzed the performance of a conductor in order to identify to what
extent this analysis can inform the design of instruments based on this metaphor. Then,
using the methods developed for this analysis, we have performed observational studies
with di�erent participants to observe whether there are indeed user-specific tendencies
in terms of how they embody the beat, loudness variations or articulation. Based on the
observed di�erences, we have proposed specific strategies to design the mapping of DMIs
that adapt to each user and we have performed experiments and user studies to evaluate
their usability. At the same time, there is a transversal objective to the thesis which is
to use this knowledge to develop applications that can attract new audiences to classical
music. This goal has been explicitly pursued with the development of Becoming the
Maestro, a game focused on these potential new audiences. We evaluated a prototype of
the game precisely in terms of its ability to create a joyful activity that enhances interest
in this type of music.

The development of these areas has resulted in a number of concrete contributions. In
the following sections, we discuss these contributions, their limitations, and possible
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directions for future work in this area.

7.1 Contribution 1: Kinect for long, multimodal recordings

Devices such as Kinect are suitable for making recordings in a non-obstructive way.
However, there are some drawbacks that may arise when aligning data recorded with
this device to other data streams. In our recordings of rehearsals and performances we
noted that one of these problems is that some frames (from both video and MoCap) can
be dropped, especially in long recordings. To counter this e�ect, we have developed an
application that annotates the frames in which this occurs and generates the missing
frames by applying linear interpolation in the case of MoCap and repeating the previous
frame to the loss in the video case. This application, KinectVizz, records aligned MoCap,
audio and video, and allows to directly export the data in a format compatible with the
Repovizz platform. Following the needs from our own observation studies, the application
also allows to load an audio file and play it while recording aligned data from the Kinect.
KinectVizz is available online at https://github.com/asarasua/KinectVizz.

7.1.1 Limitations and future work

Regenerating lost frames by linear interpolation can result in unrealistic body movement
reconstructions. One way to perform better reconstructions would be to consider kinetic
models that impose rules on the relative position of joints, or to consider the dynamics
of movement before and after the part to be reconstructed to infer the most adequate
reconstruction. There are available solutions for MoCap data post-processing that could
also be used for this purpose, such as MotionBuilder1.

7.2 Contribution 2: Library for real-time MoCap feature
extraction

During this work we implemented and released MoDe, an open-source C++ library for
real-time MoCap feature extraction. It computes di�erentiation from positional data
using nearly optimal filters proposed by Skogstad et al. (2013), and has some features
that make it suitable for creative applications using MoCap. It can be compiled as
an OpenFrameworks2 addon and is compatible with any MoCap device that provides

1http://www.autodesk.com/education/free-software/motionbuilder
2http://openframeworks.cc/
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positional data. In addition, its API includes functionality to handle temporal events
from MoCap features, such as local maxima and minima or zero crossings.

The library is publicly available under a LGPL License online at

https://github.com/asarasua/MoDe

Its architecture and API are briefly explained with more detail in Annex C.

7.2.1 Limitations and future work

The library allows to extract a number of descriptors from positional data. In the
future, it is desirable to include features computed from orientation data, as well as to
include the ability to compute features from other kinds of devices (e.g. accelerometers,
gyroscopes). In addition, we have plans for future updates in the library to allow the
creation of new features through the API, as combination of the existing ones.

7.3 Contribution 3: Dataset of conductor movement during
performance

Using the aforementioned software, we recorded a live performance of Beethoven’s 9th

Symphony played by the Orquestra Simfònica del Vallès. It includes audio from 32
microphones, 2 video streams (1 of the whole orchestra, 1 of the conductor captured by
the Kinect), MoCap data of the conductor captured by the Kinect, and aligned score.
This dataset is, as far as we are aware of, the first public one to include MoCap data
from the conductor in an actual performance.

This recording is publicly available online, through the Repovizz platform, at

http://mtg.upf.edu/download/datasets/phenicx-conduct.

7.3.1 Limitations and future work

Even though the recording is publicly available, we still need to devote specific e�ort to
draw the attention of the academic community to it and propose concrete ways in which
the data can be utilized, also providing easier ways to access the data beyond visualizing
and downloading it from Repovizz.
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7.4 Contribution 4: Further understanding of
conductor-orchestra interaction

In our literature review, we have seen numerous works that computationally analyze the
interaction between the conductor and the orchestra. In all cases, however, this analysis
is done in controlled environments and focusing on some particular aspect, such as the
synchronization of the orchestra with the movements of the conductor. In our case,
since the analysis is motivated by the activity that users will replicate in conducting
systems, we wanted to take this analysis to a real performance. This, of course, implies
some problems, since there are no variables under control and we must limit ourselves
to observing possible relations between conductor’s movements and music.

For this reason, we wanted to approach the analysis knowing those specific aspects
on which we could expect some correlation between the conductor’s movement and
the resulting music. From an interview with professional conductors and students, we
concluded that the possible aspects to be analyzed were the communication of tempo,
dynamics and articulation; being aware that the conductor is not necessarily constantly
conveying information of these parameters.

Accordingly, we performed an analysis of the afore-mentioned recording focusing on
repetitions of the same motif (the Ode to Joy from the 4th movement in Beethoven’s
9th symphony) that appears with di�erent variations throughout the piece. The main
conclusions of the analysis, presented in Chapter 3, were the following:

• The descriptors that best capture the synchronization between the movements of
the conductor’s right hand and the music beat are those obtained from vertical
movement.

• The lag observed between di�erent descriptors computed from hand movement
and musical beat varies across di�erent fragments. This suggests that automatic
beat estimation from the conductor’s movement must incorporate contextual in-
formation.

• As suggested in the interview, it is not always possible to find correlations between
conductor’s movements and music.

• In terms of loudness, when this correlation exists, the quantity of motion seems to
be the feature that best describes it.

The scores of the analyzed excerpt are included in the online repository. The complete
results for beat analysis of each excerpt can be found in Annex B.

172



7.4 Contribution 4: Further understanding of conductor-orchestra interaction

7.4.1 Limitations and future work

The first limitation of our analysis to keep in mind is that it is focused on a specific
performance, with one conductor and one orchestra. In this sense, works that seek to
approximate a general model of the director-orchestra interaction, should do so from data
that represent greater variability. Focusing on specific aspects of our analysis, there are
also some limitations that must be mentioned.
First, although it had appeared in the interview as one of the possible aspects to analyze,
we have not dealt with articulation. The reason is that it is di�cult to find similar
fragments in the symphony where articulation varies. In this respect, one aspect to be
taken into account when planning new recordings for this type of analysis is to, as far
as possible, select the repertoire according to what is going to be observed.
Second, regarding the observation that the lag between di�erent descriptors computed
from hand movement and musical beat varies across di�erent fragments, we have not
explored the possible mechanisms that may help to predict this e�ect. This is, in fact,
an area open to future research: is there any way to determine, from the context, how
beat must be predicted from motion? The context in this sense can be the musical one,
i.e. the instruments that are playing at that moment, the current tempo, the possible
changes of tempo that are going to occur, etc. But the context can also refer to how the
conductor’s body is moving, i.e. the speed at which the arms are moving, the amplitude
of the gesture, etc. We believe that a more detailed analysis that takes into account
these factors can help to better understand the observed phenomenon.
Third, in our analysis relative to loudness we have used audio descriptors as ground truth.
The loudness is however a complex perceptual phenomenon, particularly in classical
music. For example, in our analysis we have observed parts where the height at which
the director placed his hands was correlated with loudness. However, it is possible that
this e�ect is due to the fact that, in those fragments, the conductor was giving indications
to the choir, placed in the back part of the orchestra. In this context, we believe that
potentially interesting analyses can be made using other information than the loudness
extracted from audio. For example, having aligned score, it is possible to know how
many musical sections are playing at any given moment. Also, scores usually include
dynamic annotations on how they should be played (e.g. fortissimo, pianissimo).
The shared dataset is a good resource for such analyses.
In any case, a general caution that must be taken when analyzing a performance is
that it is very di�cult to determine whether the observed correlations involve causality.
We are not here discussing that the conductor actually controls the orchestra during
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the performance. What we are referring to is that, according to our observations and
suggested by the conductors in the interview, actions performed by conductors during
performance are influenced by a high number of factors di�cult to determine. Something
that we have observed during this project, although it has not been part of the presented
computational analysis, is that the aspects that conductors emphasize during pre-concert
rehearsals are also emphasized during the concert. For example, when a conductor asks
to repeatedly rehearse a part where there is something he does not like, it is more likely
that in the concert he will emphasize the requested correction with his gesture. Also,
regarding the loudness analysis, one of the indications we got in the interview with
conductors was that sometimes a conductor may make an indication (e.g. play forte) at
a point, not needing to give that indication again for the time that indication applies
(and as long as the orchestra plays according to the conductor intention). We believe
in this sense that both ideas suggest that a potentially useful approach for this kind of
analysis might focus on these key points where concrete significant actions occur.

In accordance with these ideas, and also based on the outcomes and conclusions from
other parts of the thesis, we believe that in terms of DMI mapping design it is better to
focus on the final user than trying to transfer knowledge from the analysis of conducting
performances. It is highly complicated to find causal relationships between conductor
movements and music in an uncontrolled environment. Also, what users of a conducting
system will do will always be very di�erent from what a conductor does at the concert.

Finally, we would like to point out that conductor-orchestra communication is not con-
fined solely to body gestures. Gaze and facial gestures also play an important role in
expressive communication. Future works that deal with this aspect might refer to Poggi
(2002), who describes a “lexicon of the conductor’s face” including gaze, head movement
and facial expression gestures.

7.5 Contribution 5: Analysis of user-specific tendencies in
conducting movements

We hypothesize that part of the knowledge that users have from the domain that the
conductor interface metaphor replicates is user-specific, and that this is reflected in user-
specific tendencies in spontaneous (i.e. without instructions) conducting movements. In
order to corroborate this hypothesis, we have performed observational studies where
we have asked di�erent participants to perform conducting movements and we have
analyzed whether there are indeed di�erences across participants.
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In our first study, presented in the first half of Chapter 4, we have focused on di�erences in
beat and loudness. We asked participants to perform spontaneous conducting movements
on top of di�erent audio fragments. Regarding the beat, we analyzed whether there were
user-specific tendencies to anticipate or fall behind the beat. For loudness, we analyzed
the MoCap descriptors that were most correlated with it for each participant. The main
conclusions of the analysis were the following:

• Users show di�erent tendencies in terms of anticipation to the musical beat. Beats
estimated from hand movement appear totally synchronized with the beat for some
users, while for others they tend to appear sooner or later.

• In the case of some participants, no particular tendency is observed. In our study,
this was the case of participants who indicated some issue (not having recognized
the measure of the piece, not having been able to memorize the fragment to antic-
ipate the changes...) or of those who stated that they had ignored tempo during
the recording.

• Regarding loudness variations, there are certain general tendencies. For example,
there are some participants who tend to move more energetically in louder parts
(as suggested by a strong correlation between loudness and quantity of motion)
while others tend to raise their hands higher (as suggested by a strong correlation
between loudness and the maximum hand height).

• Even though there are general trends, there are also user-specific tendencies which
are particularly reflected in di�erent “dynamic ranges”. This is, even if two users
show the same correlation between quantity of motion and loudness, one might
show wider di�erences between soft and loud parts than the other.

This analysis has resulted in two peer-reviewed conference papers (Sarasúa and Guaus,
2014a,b).

In the second study, presented in the first half of Chapter 5, we have dealt with di�erences
related to musical articulation. In this study, we asked participants to perform specific
gestures on top of melodies synthesized with di�erent articulation in order to study how
articulation is reflected in gesture variations. The study included two parts: in the
first one, participants were asked to perform the gestures on top of these melodies with
di�erent articulation, but were not given indications on whether they should vary their
gesture according to the variations in sound; in the second one, they were specifically
asked to convey the perceived sonic di�erences through dynamic gesture variations (half
of the participants on top of the melodies, the other half on top of a metronome). In
this case, we studied whether beats detected from hand movement appear at a di�erent
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distance from the musical beat depending on the articulation, and whether articulation
a�ects gesture dynamics reflected in hand movement velocity and acceleration. The
conclusions of the study were the following:

• Di�erent articulations cause di�erent tendencies in terms of distance beats de-
tected from hand movement and musical beat, even if the user does not intend to
convey articulation through gesture. More concretely, beats estimated from hand
movement acceleration appear closer to the beat with staccato articulation. This
suggests that the greater clarity of the beat in staccato helps to perform the gesture
in synchrony with the beat.

• These di�erences increase when users try to convey articulation through gesture
variation. This suggests that dynamic gesture variations also a�ect beat detection
from hand motion. At the same time, the fact that these di�erences are smaller
in the case of the participants who did the gestures on top of metronome instead
of the melodies with di�erent articulations indicates that the main mechanism
causing the di�erences is the one mentioned previously (greater beat clarity for
staccato).

• No dynamic variations are observed in gestures performed on melodies synthesized
with di�erent articulations when the user does not try to convey these articulations.

• Gestures performed trying to convey di�erent musical articulation present signif-
icant di�erences in dynamics, reflected in hand velocity and acceleration. In this
case, di�erences were not greater for participants who performed the gestures on
top of the melodies and those who performed them on top of the metronome.
What this suggests is that, in a non-interactive context where the user knows that
her movements are not a�ecting the resulting sound, a sound consistent with the
variation transmitted by the gesture does not necessarily reinforce the user in her
actions.

• Dynamical variations observed in gestures trying to convey di�erent articulations
are idiosyncratic, i.e. specific to each user.

The data from both studies are available online at

http://mtg.upf.edu/download/datasets/phenicx-conduct

7.5.1 Limitations and future work

The analysis of these studies has been done with the eyes on the applications for which
we made them. In this sense, we have focused on observing and identifying di�erences
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between users that are potentially useful in an interactive context. Accordingly, we have
not analyzed in depth the causes for the observed e�ects.

For example, regarding observed di�erences in beat anticipation, we have limited our-
selves to verifying and quantifying these di�erences and we have not studied their pos-
sible causes. In our analysis, we have not attempted to relate these di�erences in beat
anticipation to other aspects of movement that can be reflected in di�erent descriptors
(e.g. we did not check whether the size of the gesture a�ects the detected beat location).
Also, we have looked for general tendencies for each user. However, the fact that in
the second study we have seen that articulation a�ects beat anticipation, reinforces the
idea that this tendency is not constant for each user. This is an interesting direction
for future research: studying beat embodiment from a dynamic point of view, not as-
suming a constant tendency for each user, but evaluating if there are changes and what
mechanisms cause them.

We used loudness computed from audio as ground truth for our loudness analysis. How-
ever, there are di�erent aspects that a�ect perceived loudness. In the case of the pro-
fessional conductor we mentioned that some observed correlations could be due to the
arrangement of the orchestra on the stage. This may also be happening here; in this
case, with the disposition that each person imagines when listening to the fragment on
top of which she conducts. In our study, we left this aside and did not ask participants
about it. A possible direction for future research in this area would be to conduct similar
studies where participants conduct not only “following” audio but also video. It is very
probable that the movements in this case were di�erent, since the user would be able to
see the physical layout of the instrumental sections in the orchestra, identifying which
of them are playing in each moment.

Regarding dynamic articulation variations, we focused on two gestures (4/4 and 3/4)
and a fixed tempo. The descriptors we used for the representation space were valid
for this scenario, but are however likely to be a�ected by gesture variations related to
other parameters such as tempo and dynamics. In this sense, other possible more robust
representation spaces might use descriptors related to, for example, the shape of the
gesture or its temporal evolution.
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7.6 Contribution 6: Adaptation to user-specific tendencies
by observation

We hypothesized that the conclusions of observational studies with movements performed
on top of fixed music have applicability in an interactive context. This, however, is not
trivial. As opposed to the case of the studies, where the user is aware that her movements
do not a�ect the result, during interaction there is an action-perception loop through
which the user adapts her actions according to the perceived e�ects that they have. In
this context, it is necessary to test, for example, whether a user that tends to anticipate
the beat on top of fixed music will prefer a system that compensates for this.

Following this idea, in the second half of Chapter 4 we have proposed a DMI based on the
conductor metaphor that allows to control beat and loudness in a way similar to those
most commonly found in previous systems, but adapting to user-specific tendencies.
We refer to the strategy that the system uses to adapt to user-specific tendencies as
Mapping by Observation. The basic idea is that the mapping is predefined, but some
parameter tuning is done for each user based on analysis of spontaneous movements
similar to those from the observational study. That is, the user does not consciously
and explicitly train her own mapping. We performed an experiment where we compared
the proposed approach with a baseline that does not adapt its parameters for each user,
confirming that this strategy serves to create a more intuitive mapping. We believe this
is particularly relevant in relation to beat control. The proposed system incorporates
a strategy to estimate the beat before there is a change from downward to upward
hand movement. This, even without considering user-specific tendencies, is relevant for
systems that use input devices with a low frame rate and non-optimal latencies such as
Kinect.

There is another relevant conclusion from the experiment. From the analysis of spon-
taneous movements that we use to adjust the parameters of the mapping, we obtain
measures on the reliability of such analysis (the F-measure for the tendency to antic-
ipate the beat and the R2

adj of the regression model for loudness). In the experiment,
these measures are correlated with the improvement that the proposed system intro-
duces with respect to the baseline, which suggests that we can estimate in advance if
the adjustment introduced by the system will actually improve its usability.

The proposed system and the experiment for its evaluation have lead to a journal paper
in preparation at the moment of deposit of this dissertation (Sarasúa et al., 2017).
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7.6.1 Limitations and future work

The proposed strategy of adapting mapping to each user observing their spontaneous
movements has only been tested in the concrete scenario of conducting. We believe this
is a good use case for this type of research. However, it would be interesting to see
to what extent the proposed strategy can be extrapolated to other similar cases. For
example, Jensenius (2007) performed observation studies looking for “music-movement
correspondences” in three di�erent activities: air instrument performance, free dance to
music, and sound-tracing. While these studies showed that users with di�erent musical
expertise seem to associate similar body movement with features in the musical sound,
some user-specific tendencies also appeared. Following this idea, we believe that the
mapping by observation scheme can be explored in these cases. Just as we have analyzed
spontaneous conducting movements to build user-specific mappings, a similar use could
be explored in these other activities that can serve as an interface metaphor in a DMI.
In our case, the proposed implementation is focused on our concrete use case. We have
some predetermined rules that are adapted, after observation, to each user. However,
this makes the implementation not directly applicable to other use cases. We believe
that supervised learning techniques are suitable for a more generalizable approach to this
mapping by observation scheme. In fact, as we stated when introducing this approach,
the idea is very similar to play-along mapping as proposed by Fiebrink and Cook (2009),
the di�erence being that in our case the user does not explicitly and consciously teach
the system the desired mapping. In any case, supervised machine learning techniques as
those proposed by Fiebrink and Cook could be applied in scenarios similar to ours.

7.7 Contribution 7: Articulation control through idiosyncratic
gesture variation

In the second half of Chapter 5 we propose a system for control of articulation through
idiosyncratic gesture variations based on the observations from the observation study.
The proposed approach follows the principles of Mapping by Demonstration as defined
by Françoise (2015): listening is the first step in the mapping design, and the mapping
is explicitly defined by the user through gesture variation examples performed while
listening to sound stimuli. We used soft classification based on GMM to achieve a sort
of regression that allows the user to explore the whole space of articulation, from legato
to staccato, through dynamic gesture variations.
Results from the user study with the system indicate that the model succeeds at pro-
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viding control over articulation. Importantly, the model managed to learn intended ar-
ticulations even if the way participants performed the articulations to train the system
embedded idiosyncratic elements that were not shared across participants. Even though
we imposed a particular base gesture (figure-eight) and tempo, variations in gesture ex-
ecution were free. The results indicate that these variations were indeed idiosyncratic,
meaning that a model learned on a user’s set of data embeds her own expressive gesture
qualities and may not be transferable to another user.

Interestingly, we found that the quality of the trained models, computed as the separabil-
ity of di�erent articulations in the representation space, did not have a significant e�ect
on the results during performance. This, combined with the fact that musicians achieved
better performance, suggests that participants were able to adapt their performance in
an action-perception loop during the execution of the tasks.

This part of the work was done during a research stay at the Embodied Audiovisual
Interaction (EAVI)3 lab at Goldsmiths University of London and resulted in a joint
peer-reviewed conference publication (Sarasúa et al., 2016a).

7.7.1 Limitations and future work

The fact that the quality of the models did not significantly a�ect the results during
performance suggests that the continuous action-perception loop during execution al-
lowed users to adapt their performance in order to achieve the task. The results from
the questionnaire reveal that the audiovisual feedback was consistent with participants’
expectations, indicating that they did not need to perform unnatural gestures to achieve
the task, and that the audiovisual feedback was a reinforcing confirmation to their ac-
tions. Such aspects of sensorimotor learning that may enter into play constitute an
important direction for future research. Note that in the case of the system for beat
and loudness control the observation was in the opposite direction: the quality measures
computed from the training stage were correlated with the performance during task ex-
ecution. This suggests that investigating these aspects of sensorimotor learning during
execution might need to consider the nature of the underlying model used for mapping
as a factor a�ecting how users interact with the system.

Regarding the specific implementation of the proposed system, there are some limitations
that are worth discussing. The scheme considers a single gesture at a fixed tempo, and
the descriptors we used can be a�ected by changes in, for example, tempo, that should
not a�ect articulation. The main strategies we foresee to address this issue are two.

3http://eavi.goldsmithsdigital.com/
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The first possible direction would be to build a representation space with descriptors
that are more robust to these variations (for example, descriptors related to the shape
of the gesture). Then, we believe that incorporating a temporal model of gesture could
also be useful in this case. For example, continuous gesture recognition schemes based
on dynamical systems as proposed by Caramiaux et al. (2014b) could a�ord the user
the possibility to train the system to recognize di�erent gestures and a set of potential
variations which could then be dynamically explored, in performance, by the user. In this
context, dynamic gesture variations estimated by the model could be used as a di�erent
representation space for variation, as opposed to using descriptors directly computed
from positional data.

Also, the observational study revealed that articulation itself a�ects gesture timing. This
is something we did not consider in our approach, where we focused on dynamic vari-
ations to drive articulation. Following this idea, future research should deal with how
these techniques can be used to learn more complex many-to-many mappings. This is,
while here we focused on learning a model for articulation, it would be desirable to learn,
with as few training examples as possible, a model for a wider range of musical param-
eters. Human-centred approaches of machine learning, as discussed by Fiebrink and
Caramiaux (2016), are particularly suitable to design such complex mappings through
examples.

7.8 Contribution 8: Becoming the Maestro

Becoming the Maestro, the game developed during this work, has shown its potential to
attract new audiences to classical music. In a context where it seems di�cult for classical
music to adapt to new music consumption habits, new technologies can help to create
attractive experiences around this music genre. The PHENICX project has resulted in
numerous applications pursuing this goal. In this context, the game exploits some of
the technologies developed in this project, creating an experience that is not oriented to
realistically replicate the role of the conductor during performance, but to provide the
user with an entertaining experience that puts her in contact with this type of music.
The game has been evaluated with a group of users who are not regular consumer of
classical music, but who show a moderately positive attitude towards classical music.
The game and the results form this evaluation have been presented in a peer-reviewed
conference publication (Sarasúa et al., 2016b).

181



Chapter 7 Conclusions

(a) Real-time MoCap feature visualizer. (b) Presenter of the show controlling articulation.

Figure 7.1: Snapshots from De Kennis van Nu TV show.

7.8.1 Limitations and future work

The game has been developed to a prototype stage, so it is still necessary to take it
to a more mature phase that allows its installation in possible institutions interested in
it, or its commercialization through di�erent platforms. Also, deploying the game in a
public installation will allow us to better evaluate its possible real impact, beyond the
user tests we can do in a lab environment. In addition, participants recruited for the
presented evaluation generally showed a moderately positive attitude toward classical
music. A challenge of the game is to be attractive to audiences with a more negative
attitude towards the genre, so its deployment in a real environment will also allow to
supplement information in this regard.

In addition, the game must incorporate some of the improvements indicated by users,
such as including levels where they take control over di�erent aspects of the performance.
For this, the conclusions of the other prototypes developed in this work will be applicable,
creating similar challenges to the tasks that we have used for their evaluation, and where
the score is given depending on how the task is performed.

7.9 Non-academic impact

The work carried out throughout this thesis has not only resulted on the aforementioned
contributions. It has also contributed to dissemination tasks, mostly related to the
PHENICX project, sometimes gaining media attention. Here we mention some relevant
events or media apparitions around this work:

• Exponential Prometheus at Singularity University (SU). The PHENICX consor-
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tium participated at the SU Summit in Seville (Spain), on March, 2015. In this
event, we created real-time visualizations for a concert performed by the young
Sinfonietta de San Francisco de Paula4 playing the Overture to Beethoven’s The
Creatures of Prometheus. MoDe was used for the Conductor visualization, which
we already mentioned in 6.1 as inspiration for the Becoming the Maestro visual de-
sign. Information about this event is available at the PHENICX project academic
website5.

• Exponential Prometheus at the 2015 International Society for Music Information
Retrieval (ISMIR) conference. The same real-time visualizations were shown again
in another concert with the same piece and orchestra, this time in ISMIR conference
in Málaga (Spain), on October 2015.

• Appearance on De Kennis van Nu. On January 21st, 2016, the National Dutch
TV science show De Kennis Van Nu (“current knowledge”) aired a program about
music conducting. They analyzed the figure of the conductor from di�erent points
of view, and we were invited to provide a scientific explanation of conducting move-
ments. For this, we used MoDe to build a real-time MoCap descriptor visualizer
that allowed to navigate through di�erent joints and descriptors while discussing
them. Figure 7.1a shows a snapshot of this visualizer during the show. Also, the
presenter of the show demonstrated the system for articulation control through
gesture variation presented in Chapter 5. A snapshot of this part of the show is
depicted in Figure 7.1b. The program is available online6, and the MoCap descrip-
tor visualizer we developed is available as one of the examples in the MoDe library
online repository.

• Public installation of Becoming the Maestro at Arts Santa Mònica. The final
event of the PHENICX project was held at Santa Mònica arts centre in Barcelona
(Spain). Assistants to this event could play Becoming the Maestro. Figure 7.2
shows a girl playing the game during this event.

• Appearance on DeuWatts. On March 10th, 2017, the Barcelona public TV science
show Deuwatts featured Becoming the Maestro as an example of state-of-the-art
technologies around music. The program is available online7.

• Becoming the Maestro demonstration at Fira Recerca en Directe 2017. Becoming
the Maestro will be shown at the Fira Recerca en Directe (“live science fair”) on

4http://www.sinfoniettadesanfranciscodepaula.com/
5http://phenicx.upf.edu/SUPrometheus
6http://dekennisvannu.nl/site/media/De-Kennis-van-Nu—De-wetenschap-achter-dirigeren/5811
7http://beteve.cat/clip/deuwatts-tecnologia-musical/
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Figure 7.2: A girl plays Becoming the Maestro at Arts Santa Mònica (Barcelona).

May 2017 at Caixaforum, Barcelona (Spain). This fair is an exhibition of disrupting
technologies from catalan research institutions, open to the public.

7.10 Closing remarks

This dissertation has presented an in-depth study of interaction with systems based on
the conductor metaphor. We have faced this analysis focusing on the potential that
interface metaphors o�er for interaction. We have analyzed the activity that inspires
the metaphor (music conducting) and we have proven that users show idiosyncratic
tendencies when they perform conducting movements. Accordingly, we have exploited
this fact for user-specific DMI mapping design. During this research, done in the frame
of the PHENICX project, we pursued the goal of creating applications attractive to
potential new audiences of classical music. We have pursued this goal implicitly, by
proposing these mapping strategies, but also explicitly, developing and evaluating a
game with this goal in mind.

It is our belief that the outcomes of this thesis bring better understanding on how people
with di�erent musical expertise perform conducting movements, and that the proposed
strategies allow to exploit this knowledge e�ciently in an interactive context. We also
believe that some of the outcomes of this thesis are useful for other interaction schemes
using interface metaphors, as well as for gesture-based interaction. The good reception
that the public demonstrations of the technologies developed in this project had makes us
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confident that we will be able to see applications beyond prototypes for a wide audience
in the short and mid term.
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Appendix A

Complete beat analysis results from
Chapter 3

Table A.1: Beat analysis from excerpt I1. p = precision; r = recall; F* = F-measure
without considering lag.

Descriptor Max / Min lag (s) ‡ p r F F*

x max -0.232 0.13 0.50 0.29 0.37 0.00
min -0.019 0.35 0.26 0.19 0.22 0.22

y max 0.149 0.11 0.78 0.67 0.72 0.13
min -0.261 0.09 0.67 0.60 0.64 0.00

z max -0.058 0.32 0.48 0.33 0.40 0.17
min 0.219 0.11 0.47 0.29 0.36 0.08

v
x

max 0.301 0.14 0.30 0.29 0.29 0.06
min 0.026 0.25 0.31 0.29 0.30 0.37

vy
max -0.082 0.32 0.69 0.65 0.67 0.11
min 0.209 0.10 0.62 0.60 0.61 0.08

v
z

max 0.327 0.15 0.51 0.54 0.53 0.08
min -0.014 0.28 0.33 0.33 0.33 0.29

a
x

max -0.115 0.26 0.18 0.21 0.19 0.23
min -0.249 0.15 0.40 0.40 0.40 0.04

ay
max -0.348 0.12 0.65 0.67 0.66 0.02
min 0.047 0.15 0.62 0.62 0.62 0.48

a
z

max -0.049 0.26 0.20 0.25 0.22 0.30
min -0.220 0.13 0.40 0.44 0.42 0.02

v max 0.162 0.22 0.26 0.23 0.24 0.18
min 0.169 0.23 0.25 0.31 0.28 0.19

a max -0.061 0.23 0.21 0.21 0.21 0.21
min 0.021 0.21 0.26 0.33 0.29 0.33

a
t

max -0.135 0.22 0.25 0.31 0.28 0.15
min 0.128 0.21 0.22 0.27 0.24 0.13
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Appendix A Complete beat analysis results from Chapter 3

Table A.2: Beat analysis from excerpt I2. p = precision; r = recall; F* = F-measure
without considering lag.

Descriptor Max / Min lag (s) ‡ p r F F*

x max -0.267 0.22 0.28 0.21 0.24 0.12
min 0.166 0.15 0.49 0.35 0.41 0.12

y max 0.220 0.06 0.83 0.83 0.83 0.00
min -0.174 0.06 0.77 0.77 0.77 0.06

z max -0.011 0.33 0.40 0.33 0.36 0.30
min 0.354 0.11 0.54 0.42 0.47 0.00

v
x

max -0.365 0.21 0.44 0.44 0.44 0.08
min -0.039 0.18 0.50 0.48 0.49 0.32

vy
max -0.075 0.05 0.85 0.83 0.84 0.32
min 0.299 0.07 0.73 0.73 0.73 0.00

v
z

max -0.366 0.16 0.31 0.31 0.31 0.00
min -0.004 0.18 0.52 0.58 0.55 0.55

a
x

max 0.165 0.12 0.47 0.54 0.50 0.21
min -0.218 0.12 0.39 0.44 0.41 0.06

ay
max -0.277 0.08 0.71 0.73 0.72 0.02
min 0.070 0.31 0.63 0.65 0.64 0.23

a
z

max 0.200 0.16 0.33 0.38 0.35 0.16
min -0.181 0.19 0.28 0.31 0.30 0.16

v max 0.193 0.20 0.23 0.25 0.24 0.22
min -0.168 0.24 0.20 0.23 0.21 0.27

a max -0.160 0.22 0.17 0.21 0.19 0.21
min 0.171 0.18 0.23 0.29 0.26 0.26

a
t

max 0.091 0.24 0.20 0.25 0.22 0.15
min -0.064 0.20 0.20 0.25 0.22 0.21
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Table A.3: Beat analysis from excerpt I3. p = precision; r = recall; F* = F-measure
without considering lag.

Descriptor Max / Min lag (s) ‡ p r F F*

x max 0.234 0.28 0.22 0.10 0.14 0.14
min 0.192 0.18 0.47 0.31 0.38 0.10

y max 0.193 0.06 0.83 0.81 0.82 0.02
min -0.199 0.11 0.75 0.69 0.72 0.02

z max -0.207 0.22 0.24 0.17 0.20 0.17
min 0.144 0.24 0.31 0.17 0.22 0.19

v
x

max 0.316 0.19 0.40 0.40 0.40 0.06
min -0.084 0.21 0.21 0.23 0.22 0.24

vy
max -0.086 0.16 0.83 0.81 0.82 0.19
min 0.267 0.07 0.71 0.71 0.71 0.00

v
z

max 0.226 0.14 0.39 0.44 0.41 0.10
min 0.169 0.24 0.15 0.15 0.15 0.23

a
x

max -0.138 0.29 0.13 0.15 0.14 0.20
min 0.137 0.28 0.10 0.12 0.11 0.22

ay
max -0.319 0.10 0.63 0.65 0.64 0.02
min 0.069 0.28 0.75 0.75 0.75 0.33

a
z

max -0.089 0.30 0.18 0.21 0.19 0.19
min 0.286 0.19 0.24 0.27 0.25 0.06

v max 0.170 0.22 0.25 0.25 0.25 0.21
min -0.144 0.27 0.13 0.15 0.14 0.25

a max -0.133 0.24 0.22 0.21 0.21 0.19
min -0.094 0.22 0.11 0.15 0.13 0.22

a
t

max 0.119 0.25 0.11 0.12 0.12 0.23
min -0.103 0.19 0.20 0.25 0.22 0.11
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Table A.4: Beat analysis from excerpt I4. p = precision; r = recall; F* = F-measure
without considering lag.

Descriptor Max / Min lag (s) ‡ p r F F*

x max -0.109 0.24 0.23 0.19 0.21 0.34
min 0.232 0.15 0.43 0.27 0.33 0.05

y max 0.264 0.08 0.60 0.38 0.46 0.03
min -0.004 0.28 0.40 0.40 0.40 0.38

z max -0.040 0.31 0.50 0.33 0.40 0.23
min 0.208 0.18 0.29 0.19 0.23 0.10

v
x

max -0.306 0.18 0.33 0.33 0.33 0.10
min -0.008 0.28 0.37 0.38 0.37 0.41

vy
max -0.008 0.21 0.46 0.44 0.45 0.47
min 0.336 0.13 0.55 0.54 0.55 0.04

v
z

max 0.292 0.18 0.27 0.29 0.28 0.10
min 0.073 0.18 0.25 0.27 0.26 0.26

a
x

max 0.185 0.14 0.36 0.44 0.40 0.08
min -0.174 0.22 0.29 0.31 0.30 0.18

ay
max -0.216 0.15 0.42 0.46 0.44 0.08
min 0.186 0.14 0.52 0.52 0.52 0.12

a
z

max 0.161 0.15 0.28 0.33 0.30 0.19
min -0.183 0.18 0.26 0.29 0.28 0.20

v max 0.232 0.19 0.28 0.23 0.25 0.14
min -0.111 0.25 0.20 0.25 0.22 0.24

a max -0.111 0.24 0.19 0.17 0.18 0.11
min 0.122 0.22 0.15 0.19 0.17 0.13

a
t

max 0.119 0.23 0.19 0.25 0.22 0.16
min -0.152 0.19 0.25 0.31 0.28 0.19
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Table A.5: Beat analysis from excerpt V1. p = precision; r = recall; F* = F-measure
without considering lag.

Descriptor Max / Min lag (s) ‡ p r F F*

x max -0.217 0.21 0.32 0.25 0.28 0.09
min 0.145 0.20 0.56 0.40 0.46 0.15

y max 0.208 0.03 0.95 0.88 0.91 0.00
min -0.093 0.31 0.88 0.88 0.88 0.02

z max 0.014 0.29 0.35 0.25 0.29 0.29
min 0.278 0.15 0.35 0.25 0.29 0.07

v
x

max 0.293 0.14 0.38 0.38 0.38 0.04
min -0.013 0.19 0.37 0.35 0.36 0.38

vy
max -0.055 0.07 0.96 0.96 0.96 0.94
min 0.276 0.04 0.85 0.83 0.84 0.00

v
z

max -0.271 0.13 0.47 0.48 0.47 0.10
min -0.019 0.18 0.45 0.44 0.44 0.42

a
x

max 0.137 0.14 0.43 0.44 0.43 0.21
min -0.199 0.17 0.32 0.33 0.33 0.14

ay
max -0.229 0.06 0.78 0.79 0.78 0.00
min 0.084 0.28 0.89 0.85 0.87 0.09

a
z

max 0.204 0.13 0.45 0.44 0.44 0.11
min 0.113 0.26 0.16 0.17 0.16 0.22

v max 0.223 0.13 0.40 0.44 0.42 0.12
min 0.184 0.17 0.37 0.40 0.38 0.30

a max 0.141 0.16 0.24 0.25 0.24 0.28
min 0.067 0.18 0.23 0.27 0.25 0.27

a
t

max 0.118 0.21 0.19 0.21 0.20 0.08
min -0.154 0.21 0.21 0.23 0.22 0.28
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Appendix A Complete beat analysis results from Chapter 3

Table A.6: Beat analysis from excerpt V2. p = precision; r = recall; F* = F-measure
without considering lag.

Descriptor Max / Min lag (s) ‡ p r F F*

x max -0.291 0.17 0.28 0.17 0.21 0.08
min -0.031 0.34 0.21 0.15 0.17 0.20

y max 0.175 0.13 0.95 0.88 0.91 0.00
min -0.167 0.03 1.00 0.88 0.93 0.00

z max 0.009 0.27 0.16 0.10 0.13 0.15
min 0.178 0.26 0.19 0.10 0.13 0.19

v
x

max 0.233 0.16 0.42 0.44 0.43 0.06
min -0.101 0.17 0.43 0.42 0.43 0.26

vy
max -0.094 0.01 1.00 1.00 1.00 0.02
min 0.251 0.06 0.79 0.79 0.79 0.00

v
z

max -0.243 0.21 0.10 0.10 0.10 0.19
min 0.023 0.23 0.38 0.38 0.38 0.44

a
x

max 0.005 0.23 0.33 0.38 0.35 0.29
min -0.214 0.16 0.33 0.35 0.34 0.10

ay
max -0.263 0.05 0.83 0.83 0.83 0.00
min 0.065 0.22 0.83 0.83 0.83 0.46

a
z

max 0.137 0.20 0.49 0.48 0.48 0.08
min -0.193 0.19 0.31 0.33 0.32 0.12

v max 0.200 0.20 0.29 0.29 0.29 0.19
min 0.180 0.18 0.32 0.33 0.33 0.37

a max 0.074 0.20 0.32 0.31 0.32 0.29
min -0.164 0.21 0.34 0.38 0.36 0.26

a
t

max 0.107 0.18 0.31 0.33 0.32 0.26
min -0.103 0.20 0.19 0.21 0.20 0.24
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Table A.7: Beat analysis from excerpt C. p = precision; r = recall; F* = F-measure
without considering lag.

Descriptor Max / Min lag (s) ‡ p r F F*

x max -0.065 0.29 0.23 0.20 0.22 0.19
min -0.333 0.14 0.33 0.27 0.29 0.02

y max -0.263 0.07 0.74 0.71 0.73 0.02
min 0.206 0.09 0.60 0.55 0.57 0.04

z max 0.202 0.12 0.46 0.39 0.42 0.09
min -0.200 0.14 0.44 0.29 0.35 0.00

v
x

max 0.009 0.26 0.27 0.33 0.29 0.29
min 0.294 0.16 0.35 0.37 0.36 0.12

vy
max 0.295 0.08 0.61 0.61 0.61 0.02
min 0.066 0.37 0.06 0.06 0.06 0.18

v
z

max -0.033 0.32 0.36 0.41 0.38 0.32
min 0.313 0.13 0.31 0.37 0.34 0.04

a
x

max -0.239 0.17 0.19 0.24 0.21 0.12
min 0.002 0.26 0.23 0.29 0.25 0.25

ay
max 0.035 0.26 0.36 0.41 0.38 0.38
min -0.367 0.14 0.52 0.59 0.55 0.04

a
z

max -0.265 0.17 0.27 0.37 0.31 0.03
min -0.032 0.24 0.17 0.20 0.19 0.26

v max 0.128 0.29 0.08 0.10 0.09 0.14
min 0.191 0.18 0.29 0.41 0.34 0.09

a max 0.241 0.19 0.26 0.37 0.30 0.08
min -0.095 0.19 0.19 0.29 0.23 0.20

a
t

max -0.223 0.24 0.20 0.29 0.24 0.10
min -0.112 0.21 0.18 0.24 0.21 0.17
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Appendix A Complete beat analysis results from Chapter 3

Table A.8: Beat analysis from excerpt T. p = precision; r = recall; F* = F-measure
without considering lag.

Descriptor Max / Min lag (s) ‡ p r F F*

x max -0.249 0.33 0.07 0.06 0.07 0.11
min -0.203 0.21 0.35 0.23 0.28 0.18

y max -0.066 0.40 0.33 0.21 0.26 0.05
min 0.319 0.16 0.46 0.45 0.45 0.00

z max 0.314 0.20 0.29 0.21 0.24 0.05
min -0.122 0.20 0.22 0.17 0.19 0.19

v
x

max 0.033 0.24 0.29 0.36 0.32 0.36
min -0.318 0.21 0.29 0.34 0.31 0.04

vy
max 0.419 0.18 0.54 0.57 0.56 0.06
min -0.001 0.19 0.52 0.57 0.55 0.55

v
z

max -0.027 0.21 0.15 0.19 0.17 0.22
min -0.318 0.22 0.26 0.32 0.29 0.13

a
x

max -0.179 0.21 0.22 0.30 0.25 0.16
min 0.180 0.21 0.27 0.34 0.30 0.19

ay
max -0.085 0.31 0.07 0.09 0.08 0.25
min -0.218 0.13 0.42 0.47 0.44 0.12

a
z

max -0.173 0.20 0.19 0.23 0.21 0.23
min 0.189 0.18 0.26 0.32 0.29 0.17

v max 0.085 0.27 0.20 0.19 0.20 0.22
min -0.190 0.23 0.18 0.26 0.21 0.14

a max 0.132 0.24 0.13 0.15 0.14 0.18
min -0.093 0.23 0.14 0.21 0.17 0.12

a
t

max 0.092 0.23 0.21 0.32 0.25 0.20
min 0.105 0.22 0.12 0.17 0.14 0.17
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Appendix B

Summary of published data

The following datasets are available online at

http://mtg.upf.edu/download/datasets/phenicx-conduct

B.1 Dataset of conductor movement during performance

• Correspondence in dissertation: Chapter 3

• Included data:
– 32 microphones audio

– Video and audio from a videocamera capturing the whole orchestra

– From Kinect V1 facing the conductor (all at 30 fps):

� MoCap with 3D position of nine joints: head, neck, torso, shoulders,
elbows and hands.

� RGB video (640◊480 pixels).

� RGBD video (320◊240 pixels).

– Aligned score

– Audio descriptors computed by Essentia

– Scores of fragments analyzed in this thesis
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B.2 Dataset of spontaneous conducting movements

• Correspondence in dissertation: Chapter 4

• Included data (for each participant):

– Audio and scores of excerpts from Beethoven’s 3rd Symphony (Eroica) 1st
Movement performed by the Royal Concertgebouw Orchestra

– MoCap data captured by Kinect V1 with 3D position of fifteen joints: head,
neck, torso, shoulders, elbows, hands, hips, knees and feet.

– Beat annotation (ground truth)

– Beat prediction from hand acceleration data

– Loudness prediction from body movement

– Computed MoCap descriptors

B.3 Dataset of conducting movements performed with
different articulation

• Correspondence in dissertation: Chapter 5

• Included data (for each participant):

– Audio of synthesized musical excerpts

– MoCap data captured by Kinect V1 with 3D position of fifteen joints: head,
neck, torso, shoulders, elbows, hands, hips, knees and feet.

– Beat annotation (ground truth)

– Beat prediction from hand acceleration data

– Computed MoCap descriptors
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Appendix C

The MoDe library

MoDe is an open-source, LGPL-licensed C++ library for real-time MoCap feature ex-
traction meant for creative purposes. As such, it has been developed to be easily com-
patible with OpenFrameworks1, and it can be compiled as an addon for this creative
suite.

It is available online at https://github.com/asarasua/MoDe/, where di�erent examples
for Mac OSX and Windows using Kinect V1 and V2 devices are provided. Its main
characteristics are:

• Real-time di�erentiation from positional data using optimal filters proposed by
proposed by Skogstad et al. (2012).

• Compatibility with any MoCap device. The library Application Programming
Interface (API) allows to provide positional data using standard C++ containers,
so it does not require to use any specific device or library.

• Easy handling of temporal events. The library allows to subscribe to events de-
tected in the descriptors. For example: it is possible to get notifications when a
given descriptor reaches a local maxima or changes its sign. This can be useful for
triggering actions based on such events.

C.1 API description

All MoDe classes and constants are accessible within the MoDe namespace.

C.1.1 MoDeExtractor

The MoDeExtractor class is used to compute descriptors for a body or set of joints.

MoDe :: MoDeExtractor modeExtractor ;

1http://openframeworks.cc/
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Appendix C The MoDe library

MoDeExtractor computes a number of features from all joints. It does not only give
access to the current value of descriptors, but also to statistics such as the mean, standard
deviation and RMS values. The number of stored frames from which this computation
is done can be defined using the setup method. Default is 30 (1 second at 30 fps).
modeExtractor . setup (30);

Every time a new MoCap data frame arrives from the device, the update method must
be called passing a map<int, MoDePoint> as argument. This map contains pairs of
joints IDs and positional data for the received frame. The MoDePoint class is built
on top of the ofVec3f class in OpenFrameworks2. It has has three member variables,
x, y, and z, which allow to conveniently store 3D data such as position, velocity, or
acceleration. It can cast vector<double> and vector<float> objects. Assuming
we have an object device where the position of the jth joint at the current frame
can be accessed through device.getJoint(j).getPosition(), the way to make
ModeExtractor compute the descriptors for the current frame would be:
map <int , MoDe :: MoDePoint > joints ;

for ( int j = 0; j < device . getNumJoints (); j ++) {

joints [j] = device . getJoint (j). getPosition ();

}

modeExtractor . update ( joints );

C.1.2 MoDeJoint

The MoDeJoint class objects contain all information from a joint, including the com-
puted descriptor. If, for example, the right hand joint is associated with a constant
RIGHT_HAND, it can be accessed using getJoint as:
MoDe :: MoDeJoint rh = modeExtractor . getJoint ( RIGHT_HAND );

C.1.3 MoDeDescriptor

Descriptors can correspond to a single joint (joint descriptors) or can be computed
combining information from di�erent joints (body descriptors).

Body descriptors

Body descriptors can be accessed directly from the MoDeExtractor object using con-
stants defined in the MoDe namespace:

2http://openframeworks.cc/documentation/math/ofVec3f/
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C.1 API description

MoDeDescriptor qom = modeExtractor . getDescriptor ( MoDe :: DESC_QOM );

Joint descriptors

Joint descriptors are computed from a single joint. These can be accessed with get-

Descriptor from the corresponding MoDeJoint using constants defined in the MoDe

namespace:

MoDe :: MoDeDescriptor rh_vel = rh. getDescriptor ( MoDe :: DESC_VELOCITY );

This MoDeDescriptor object now contains di�erent information accessible for the
right hand velocity descriptor:

// MoDePoint with current value of the descriptor

rh_vel . getCurrent ();

// double with current velocity in the y axis

rh_vel . getCurrent (). y;

// MoDePoint with mean value during the configured nr of frames

rh_vel . getMean ();

// double with current magnitude of the velocity vector

rh_vel . getMagnitude ();

C.1.4 Event subscription: MoDeEvent and MoDeListener

MoDe provides easy handling of temporal events based on the values of the descriptors.
This is done using two classes: MoDeEvent and MoDeListener.

MoDeListener is an abstract class. If we want a class MyListener to get events from
a MoDeExtractor it must be declared as:

class MyListener : public MoDe :: MoDeListener {

public :

void newEvent ( MoDe :: MoDeEvent event ){

// do something with event

}

}

When an object of class MyListener is instantiated, it can subscribe to the events of
a MoDeExtractor object:

MoDe :: MoDeExtractor modeExtractor ;

MyListener listenerObject ;

listenerObject . setExtractor ( modeExtractor );
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Appendix C The MoDe library

Once it is subscribed to the events, the newEvent method in MyListener will be
called every time there is an event (local maxima, local minima, zero cross) on any of
the descriptors computed by modeExtractor. The passed MoDeEvent object contains
information about the detected event (type, joint, axis, value, feature). For instance, if
we want MyListener to print a message every time the vertical velocity in the right
hand joint reaches a local maximum, it must be declared as:

class MyListener : public MoDe :: MoDeListener {

public :

void newEvent ( MoDe :: MoDeEvent event ){

if ( event . joint == RIGHT_HAND &&

event . axis == MoDe :: AXIS_Y &&

event . type == MoDe :: EVENT_MAXIMUM ){

cout << " Max at RH: " << event . value << " m/s" << endl ;

}

}

}
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