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Abstract

In recent years, mechanical resonators based on graphene have attracted considerable
interest as nanoelectromechanical systems (NEMS). Graphene NEMSs allow for excep-
tional properties such as high mechanical strength, high frequencies and quality factors,
tunable mechanical properties, and ultra-low mass. As a consequence, these systems are
promising to investigate motion in the quantum regime, probe rich nonlinear phenomena,
sense minuscule masses and forces, and study surface science.

However, a central challenge in graphene NEMS research is the coupling of the me-
chanical vibrations to external systems for efficient read out and manipulation. In this
dissertation, we report on a novel approach, in which we employ a cavity optomechanical
scheme to investigate few-layer and multilayer graphene mechanical resonators at cryo-
genic temperatures (T = 15 mK). The capacitive coupling between graphene mechanical
systems and the microwave photons of a superconducting microwave cavity allows for
investigation of the mechanical properties with unprecedented accuracy and control.

In a first experiment, the coupling of circular, high-Q graphene mechanical resonators
(Qm ∼ 105) to a nearby cavity counter electrode results in a single-photon optomechanical
coupling of ∼ 10 Hz. The initial devices exhibit electrostatic tunability of the graphene
equilibrium position, strong tunability of the mechanical resonance frequency, and the
possibility to control the sign and magnitude of the observed Duffing nonlinearity. Com-
pared to optomechanical systems fabricated from bulk materials, the strong tunability of
the mechanical properties of graphene NEMS is unique.

In a second experiment, we quantitatively investigate the sideband cooling and force
sensing performance of multilayer graphene optomechanical systems. The strong cou-
pling to the microwave photons allows to achieve a mechanical displacement sensitivity
of 1.3 fm Hz−1/2 and to cool the mechanical motion to an average phonon occupation of
7.2. In terms of force sensing performance, we find that the force sensitivity is limited by
the imprecision in the measurement of the vibrations, the fluctuations of the mechanical
resonant frequency, and the heating induced by the measurement. Our best force sensi-
tivity, 390 zN Hz−1/2, is achieved by balancing measurement imprecision, optomechanical
damping, and Joule heating. These results hold promise for studying the quantum ca-
pacitance of graphene, its magnetization, and the electron and nuclear spins of molecules
adsorbed on its surface.

In a third experiment, we implement energy decay measurements to study mechan-
ical dissipation processes in multilayer graphene mechanical resonators. We study the
energy decay in two regimes. In the low-amplitude regime, the mechanical quality fac-
tor surpasses Qm = 106. This quality factor is larger than that obtained with spectral
measurements, because energy decay measurements are immune from dephasing. In the
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high-amplitude regime, the motion of atomically-thin mechanical resonators is radically
different from what has been observed in other resonators thus far. Instead of a smooth
exponential decay, energy decays discontinuously, that is, the dissipation rate increases
step like above a certain threshold amplitude. We attribute these phenomena to nonlin-
ear decay processes. These findings offer new opportunities for manipulating vibrational
states.
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Abstracto

Durante los últimos años resonadores mecánicos basados en grafeno han atráıdo un con-
siderable interés cómo sistemas nanoelectromecánicos (NEMS). Los NEMS de grafeno
permiten excepcionales propiedades como una gran estabilidad mecánica, altas frecuen-
cias de resonancia y factores de calidad, propiedades mecánicas ajustables y masas muy
pequeñas. Como consecuencia, estos sistemas son buenos candidatos para investigar el
movimiento mecánico en el régimen cuántico, indagar varios fenómenos no lineales, medir
minúsculas masas o fuerzas y estudiar los efectos de superficie.

Sin embargo, el mayor reto en la investigación de los NEMS de grafeno es el acoplamiento
de las vibraciones mecánicas con sistemas externos con el objetivo de hacer una ma-
nipulación y lectura eficiente. En esta tesis, presentamos un nuevo enfoque en el cuál
aprovechamos la interacción de la presión de radiación optomecánica para investigar res-
onadores mecánicos de grafeno compuesto de pocas capas y multicapas en temperaturas
criogénicas (T = 15 mK). El acoplamiento capacitivo entre el sistema mecánico de grafeno
y los fotones de microondas de una cavidad superconductora permite la investigación de
las propiedades mecánicas con una precisión y control sin precedentes.

En un primer experimento el acoplamiento de un resonador circular de grafeno con
un alto factor Q con un electrodo de la cavidad da como resultado un gran acoplamiento
optomecánico de 10 Hz. Los dispositivos iniciales muestran un ajustamiento electrostático
de la posición de equilibrio del grafeno, una fuerte variabilidad de la frecuencia de reso-
nancia mecánica y la posibilidad de controlar el signo y magnitud de la no linearidad de
tipo Duffing. Comparado con otros sistemas optomecánicos fabricados de materiales bulk,
la gran variabilidad de las propiedades mecánicas son únicas en los NEMS de grafeno.

En un segundo experimento investigamos cuantitativamente el enfriamiento fuera de
banda y sensibilidad de fuerzas usando un sistema optomecánico basado en grafeno mult-
icapa. El fuerte acoplamiento a los fotones de microondas nos permite conseguir una sen-
sibilidad del desplazamiento mecánico de 1.3 fm Hz−1/2 y también enfriar el movimiento
mecánico hasta una ocupación media de 7.2 fonones. En términos de sensor de fuerzas,
encontramos que la sensibilidad de fuerzas está limitada por la imprecisión en la medida
de las vibraciones, las fluctuaciones de la frecuencia de resonancia mecánica y en el calen-
tamiento inducido por la medida. Nuestra mejor sensibilidad de fuerzas 390 zN Hz−1/2

se consigue ajustando la imprecisión de la medida, el decaimiento optomecánico y el ca-
lentamiento Joule. Estos resultados son prometedores para el estudio de las capacidades
cuánticas del grafeno, su magnetización y los espines nucleares y electrónicos de moléculas
adsorbidas en la superficie del grafeno.

En un tercer experimento implementamos medidas del decaimiento de enerǵıa para
estudiar los procesos de disipación mecánica en resonadores de grafeno en multicapas.
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Estudiamos el decaimiento energético en dos reǵımenes. El primero, a baja amplitud de
movimiento donde el factor de calidad sobrepasa Q = 106. Este factor de calidad es mayor
que el obtenido con medidas espectrales, porque las medidas del decaimiento energético
son inmunes al desfase. En el segundo régimen, a altas amplitudes, el movimiento de los
resonadores que son solo de un átomo de grosor es radicalmente diferente de lo que se
ha observado en otros resonadores hasta ahora. En lugar de un decaimiento exponencial,
la enerǵıa se disipa discontinuamente, es decir, el ratio de disipación aumenta por pasos
sobre un cierto ĺımite de amplitud. Atribuimos este fenómeno a procesos de decaimiento
no lineales. Estos descubrimientos ofrecen nuevas oportunidades en la manipulación de
estados vibracionales.
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Gregor Hübl to serve as experts in my thesis committee and as well Maria Jose
Esplandiu and Romain Quidant for agreeing to serve as substitute members.

This PhD Thesis would not have been possible without the effort and encouragement
of many people, to whom I am very grateful.

I would like to thank my thesis advisor Adrian Bachtold to give me the opportunity
to pursue a PhD on optomechanics in his group. He gave me the amazing possibility to be
part of a team that successfully designed and developed a sophisticated experiment from
scratch and he provided me with the necessary support and enthusiasm. His scientific
instinct and close guidance were indispensable to my doctoral studies.

I want to thank Johannes Güttinger with whom I closely worked together for about
4 years of my PhD. His guidance and motivation have immensely contributed to my
professional development and his optimism and positive attitude have, moreover, made
it possible to overcome difficult moments and setbacks in the lab. I am grateful both to
Adrian and Johannes for always having had an open ear and time to discuss approaches
and difficulties, which was key to the results we have achieved.

I am also thankful to Adrien Noury, who joined the team during a very stressful
period. He was an enrichment to the team and he immensely helped in conducting the
experiment and in the data analysis process.

Further, I enjoyed the time working with the highly motivated master/semester stu-
dents Santiago Cartamil, Camille Lagoin and Jorge Vergara on our common
project. I also acknowledge Ioannis Tsioutsios, Kevin Schädler, Joel Moser, Maria
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Chapter 1

Introduction

1.1 Plenty of room at the bottom

This quote is the title of a talk of Richard Feynman, in which he first envisioned nan-
otechnology more than 50 years ago [1]. Nowadays, nanotechnology encompasses many
different areas of science and technology that share one common definition: understand-
ing, controlling, and manipulating matter on length scales down to the nanoscale. With
technologies like the scanning tunneling microscope, the atomic force microscope (AFM),
and the scanning electron microscope imaging single atoms or molecules is day-to-day
business in many laboratories around the world. Manipulation of matter on molecular
length scales also became a standard discipline involving technologies like electron-beam
and ion-beam lithography, atomic-layer deposition, and molecular-beam epitaxy. With
this improved level of control, almost every major field of science employs and exploits
nanotechnology in order to fit functional and more complex structures into smaller and
smaller spaces. The key example of this miniaturization process is the computer chip.
Due to steady improvement of fabrication capabilities, the predictions of Moore’s law [2]
have prevailed for over 40 years leading to computer chips with billions of transistors on
spaces as small as a few millimeters (see Fig. 1.1(a)).

Nanoelectronics is certainly the field of nanotechnology that had the largest impact
on human lives and on world economy. The ability to produce smaller, faster and cheaper
devices came along with the possibility to gather, store and process information in cheaper
and more efficient ways. The results of this revolution of information technology are con-
cepts like the ’Internet of things’ or ’Big data’, which most likely will govern the world
economy for the next decade. Another important outcome of recent technological devel-
opments are sensing applications such as ’Robotics’ and ’Analytics’ (biology/medicine).
The successful realization of these concepts and applications require a huge diversity of
different sensors that may detect any type of information on humans or their environ-
ment, devices with better energy efficiency, faster computers, and higher data transmission
rates. Holding up with the constant desire for higher performance and more functionality,
however, requires new device concepts pushing existing boundaries. In this sense, inte-
grating nanoscale devices not only with electronic, but also with optical (nanophotonics)
or mechanical (nanomechanics) functionality is a promising route to go (see Fig. 1.1(b,c)).
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1.2. NANOELECTROMECHANICAL SYSTEMS

 a  b  c

Figure 1.1: Example devices from different fields of nanotechnology. (a) IBM Power8
processor. The chip consists of 4.5 billion transistors on an area of 650 mm2. (b) Scanning
electron micrograph of IBM chip that transmits high-speed optical signals using waveguides
(blue) and high-speed electrical signals utlizing copper wires (orange). (c) NEMS device of
Sandia National Laboratories for multiple gear speed reduction. Panel is adapted from [3]

1.2 Nanoelectromechanical systems

The field of nanomechanics studies the mechanical properties of nanoelectromechanical
systems, which have emerged as the natural miniaturization step from microelectrome-
chanical systems (MEMS). These systems feature a broad range of applications in com-
mercial technologies. They are found in gyroscopes or as acceleration sensors in mobile
phones and car airbags. In research applications, NEMS become faster and they show ex-
traordinary sensitivity to external forces [4] as they shrink to even smaller dimensions, the
AFM being a key application of NEMS. The increased sensitivities allow for single-electron
spin detection [5] (Fig. 1.2(a)), and for single-molecule spectroscopy [6] (Fig. 1.2(b,c)),
both with applications in medical, biological, and chemical research. Furthermore, the
increased frequencies and the possibility to efficiently couple NEMS to quantum systems
make them promising candidates for future quantum information processing [7].

Nanoelectromechanical systems are fabricated using either the top-down or the bottom-
up approach. The traditional, the top-down approach, is based on lithographic processes
to pattern bulk materials into the desired nanoscale structures. While this allows for high
control during fabrication and is easily compatible with wafer-scale integration, litho-
graphic processes are reaching their resolution limit. Below a certain size non-crystalline
surfaces begin to dominate the material properties. One important figure of merit of
NEMS, the mechanical quality factor, in particular, suffers from losses attributed to fab-
rication induced surface defects [8].

The bottom-up approach utilizes intrinsically nanoscale materials, or molecular self
assembly of nanostructures, followed by subsequent integration into functional circuits.
This approach allows for the fabrication of smaller and potentially defect-free nanode-
vices as compared to the top-down approach, which comes at the cost of reduced control
over the fabrication process. The carbon allotropes, graphene and carbon nanotubes,
are particularly interesting candidates for the integration in NEMS devices. While car-
bon nanotubes represent the ultimate down scaling limit for NEMS devices, graphene
promises to combine the advantages of top-down and bottom-up devices. It is intrinsi-
cally nanoscale, but can be grown over large areas [9] and patterned at the wafer scale by
lithographic processes.
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1.3. THE RISE OF GRAPHENE

 a  b  c

Figure 1.2: Example devices for mass and spin detection. (a) Magnetic resonance force
microscopy of a single electron spin with a NEMS cantilever containing a magnetic tip [5]. (b)
NEMS-based mass spectrometer with single-molecule resolution [6]. This device is a typical
example of the top-down approach. (c) An atomic resolution mass sensor consisting of a carbon
nanotube [10]. This is an example of a bottom-up device.

1.3 The rise of graphene

Graphene is a two-dimensional, atomic-scale, material with exceptional electronic, me-
chanical and optical properties [11], which make it suitable for a number of interesting
applications. Graphene is regarded as a promising material for high-frequency electron-
ics with working frequencies well above 100 GHz [12] (Fig. 1.3(b)), which stems from its
high charge carrier mobilities [13]. Being an excellent conductor but at the same time
almost transparent with a wavelength independent light absorption of 2.3% [14], graphene
brings transparent electrodes within reach [15]. In optoelectronics, graphene may play a
decisive role in next generation photo detectors, in particular, when combined in hybrid
devices with other nanoscale materials [16, 17] (Fig. 1.3(a)). Graphene’s enormous me-
chanical strength with a Young’s modulus of 1 TPa [18] combined with its ultimately low
mass-density portrait graphene as the ideal material for nanoelectromechanical systems
both in basic research and in ultra-sensitive mass [19] and force sensing applications [20]
(Fig. 1.3(c)).

a b c

Figure 1.3: Artistic images of different realizations of graphene devices. (a) Photodetec-
tor made of graphene/WSe2/graphene heterostructures [17]. (b) Graphene transistors consisting
of single-layer and bilayer graphene [21]. (c) Doubly-clamped single-layer graphene mechanical
resonator [22].

In recent years, graphene NEMS have demonstrated several interesting properties
including mechanical frequencies as high as hundreds of MHz [23], extreme frequency
tunability [24], high mechanical quality factors [22] and nonlinear mechanical dissipa-
tion [22]. However, the enhanced sensitivity to external perturbations poses difficulties
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1.4. INTRODUCTION TO OPTOMECHANICS

to study the intrinsic mechanical properties, without perturbing the fragile mechanical
state. Therefore, one of the central challenges in graphene NEMS research has been the
efficient coupling of the vibrations to external systems in order to transduce the motion
into a detectable electrical [24, 25, 26, 22, 23] or optical [27, 25] output signal. Opti-
cal transduction utilizes a laser beam that forms a standing wave pattern perpendicular
to the suspended graphene membrane. The laser is reflected off from the substrate un-
derneath the graphene, such that the displacement of the graphene modifies the optical
absorption. The intensity modulation of the reflected beam encodes the mechanical mo-
tion. This technique has been successfully used to gain first photo-thermal control of the
graphene vibrations [28]. In electrical transduction schemes, the graphene vibrations are
capacitively actuated, and detected by exploiting the dependence of the conductance on
applied gate voltage [29]. While this method has been widely applied to low-dimensional
materials and is very powerful for carbon nanotubes [30], in general, it has limited capabil-
ities in detecting and controlling mechanical motion. For instance, detection of graphene
thermal vibrations has not been accomplished. In the context of larger mechanical sys-
tems, the field of optomechanics introduces yet another, very powerful, concept: detection
of mechanical motion by parametric coupling of the vibrations to the electromagnetic field
of a high-Q cavity resonance.

1.4 Introduction to optomechanics

In the last decades, the field of optomechanics has gained considerable popularity due
to the versatility of its potential applications ranging from metrology experiments such
as gravitational wave detection to quantum information processing and tests of quantum
theory on macroscopic objects. In the optical frequency range the canonical optomechan-
ical system consists of a Fabry-perot cavity with a mechanically compliant mirror [31, 32]
(Fig. 1.4(b)). In the microwave frequency range it is an inductor-capacitor (LC) cavity
with a mechanically movable capacitor plate [33, 34, 35, 36, 37, 38, 39] (Fig. 1.4(a)). The
mechanical element dispersively interacts with the cavity field i.e. the cavity resonance
frequency depends on the mechanical displacement. The generality of this parametrical
interaction has led to a variety of different realizations of optomechanical systems. Among
many others, these include microtoroid resonators that support whispering gallery modes
along with circular optical modes [40], photonic crystals that allow for the coexistence of
photonic and phononic modes [41], and dielectric objects inside an optical cavity. The
dielectric object can be a thin membrane [42], a nanoparticle [43], or an atomic cloud [44].

The dispersive optomechanical interaction has two main purposes. First, it is used to
ultra-sensitively monitor the mechanical position through interferometric detection tech-
niques [34]. As these systems approach better sensitivities, the uncertainty in the position
readout is fundamentally limited by the Heisenberg uncertainty principle [46, 47, 48].
Squeezing of the mechanical motion allows to circumvent these limits [49], which has
been applied in large-scale optomechanical experiments for gravitational wave detec-
tion [50] and mechanical quantum state squeezing [51, 49, 52]. Second, the optome-
chanical interaction allows for the control and manipulation of the mechanical eigenstate
through a retardation force of the electromagnetic field. Important milestones build-
ing upon this property are cooling of mechanical motion [33, 36, 40] eventually leading
to the quantum ground state [38, 41], quantum state transfer [53], generation of non-
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1.5. THESIS MOTIVATION AND OUTLINE

a b

Figure 1.4: Schematics of cavity optomechanics systems. (a) Microwave optomechanical
device consisting of an LC-cavity with a mechanically movable capacitor plate. The mechanical
motion modulates the cavity frequency by changing its total capacitance. (b) Optical fabry-
perot cavity with one mechanically compliant end-mirror. The mechanical motion modulates
the cavity frequency by modifying its length. Panel is adapted from [45].

classical states [54, 55], microwave amplification [37], and conversion of microwave to
optical light [56, 57].

1.5 Thesis motivation and outline

In this dissertation, we establish optomechanical readout and control of the motion of few-
layer graphene mechanical systems by integration into a microwave cavity optomechanics
scheme. The low mass density and the two-dimensional nature of graphene are promising
for strong capacitive coupling. By implementing this detection scheme we pursue two
main goals. First, we want to study mechanical motion of atomically thin membranes
and, second, we want to benchmark graphene optomechanical systems. The outline of
the thesis is the following:

• Chapter 2 provides a basic introduction of the electronic and mechanical properties
of single-layer and few-layer graphene.

• Chapter 3 introduces the linear and nonlinear harmonic oscillator. It further pro-
vides a model to quantitatively describe the mechanical properties of circular graphene
mechanical resonators under tension.

• Chapter 4 discusses the modeling of the microwave cavities and introduces the
optomechanical interaction.

• Chapter 5 describes the fabrication of both the cavities and the suspended graphene
mechanical resonators.

• Chapter 6 discusses the first implementation of few-layer graphene mechanical res-
onators with a superconducting microwave cavity.
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• Chapter 7 studies the radiation pressure cooling and force sensing performance of
multilayer graphene resonators coupled to microwave cavities.

• Chapter 8 describes the implementation of an energy decay setup to study mechan-
ical dissipation in multilayer graphene mechanical systems.
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Chapter 2

Graphene

In this chapter, we will give a brief introduction of the basic properties of graphene.
Taking its crystallographic structure as the starting point we introduce the peculiar elec-
tronic band structure followed by the mechanical properties of single-layer and multi-layer
graphene.

2.1 The structure of graphene

The discovery of graphene in 2004 by the scientists Andre Geim and Konstantin Novoselov
has triggered an enormous wave of research activities in graphene [11] and other two-
dimensional (2D) materials, and was rewarded by the Nobel prize in 2010. Despite the
belief of the scientific community that strictly 2D crystals were thermodynamically unsta-
ble [58], the researchers from Manchester were able to isolate free standing graphene by a
simple mechanical cleavage technique [59]. In their first experiments they confirmed the
exceptionally high crystalline and electronic quality of graphene, which has been known
for over 60 years from theoretical studies in graphite [60].

Graphene is a two-dimensional sheet of carbon atoms arranged in a hexagonal lattice
and is the central component of most carbon allotropes (see Fig. 2.1). The remarkable
electronic, mechanical, thermal and optical properties of graphene find their origin in
the electronic structure of the carbon atom [61]. Carbon has four energetically similar
valence electrons occupying the 2s, 2px, 2py and 2pz orbitals. In the graphene lattice,
each carbon atom forms 3 in-plane covalent bonds with its neighboring atom by sp2 hy-
bridization of the 2s, 2px and 2py orbitals. The bond length is 1.42 Å and its angular
spacing 120◦. These covalent bonds form the so-called σ-bands, which give graphene its
enormous mechanical strength. The remaining 2pz orbital of each atom is orthogonal to
the lattice plane and forms the electronic π-bands of the crystal. When stacking sheets of
graphene on top of each other one obtains graphite with an interlayer spacing of 3.35 Å. In
graphite, the π orbitals between different graphene layers interact via the van-der-Waals
interaction. The resulting interlayer coupling is weak.
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2.2. ELECTRONIC PROPERTIES OF GRAPHENE

Figure 2.1: Carbon allotropes of different dimensionality. (a) The 2D graphene lattice
is the central building block of several carbon allotropes including 0D buckyballs b, 1D carbon
nanotubes c, and 3D graphite d. Panel is adapted from [11].

2.2 Electronic properties of graphene

The first decade of graphene research was marked by an enormous interest in the peculiar
electronic properties of graphene, which arise from the crystallographic symmetries of
its lattice. The real space and the corresponding reciprocal space lattice of graphene
exhibit a hexagonal structure sketched in Figs. 2.2(a) and (b), respectively. In order to
fulfill the translational properties of a Bravais lattice with the unit vectors ~a1 and ~a2,
graphene has a two atomic basis A and B. This translates into two inequivalent high
symmetry points K and K ′ on the corners of the first Brillouin zone in reciprocal space.
While the electrons comprising the σ-bands are strongly bound and therefore have a large
energy separation between valence and conduction band, the π-bands form a delocalized
electron system that is relevant for electron transport. The low energy band structure is
illustrated in Fig. 2.2(c). The valence and the conduction band touch each other at the
charge neutrality point, the so called Dirac points K and K ′, making graphene a zero
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2.3. MECHANICAL PROPERTIES OF GRAPHENE

band gap semi-conductor.

a b c

Figure 2.2: Graphene lattice and electronic band structure. (a) Hexagonal real space
lattice of graphene with the two sublattices A and B. The unit cell is formed by the unit vectors
~a1 and ~a2 while the distance between adjacent carbon atoms is a0. (b) Corresponding lattice in
reciprocal space with the unit vectors b1 and b2. The two inequivalent high symmetry points K
and K′ located on the corners of the first Brillouin zone are the regions important for transport.
(c) Low energy band structure of graphene. The bonding π and the antibonding π∗-band touch
each other at the corners of the first Brillouin zone, where the fermi energy is zero. Panels a and
b are adapted from [62] and c from [63]

As early as in 1947 Wallace calculated the low energy band structure of graphene in a
nearest neighbor tight-binding approximation of linear combinations of the 2pz-orbitals
[60]. Close to the Fermi energy, his calculations yield a linear dispersion relation

E(~κ) = ~vF |~κ| (2.1)

with a cone like structure at the degeneracy points K, K’ where vF ≈ 106 m/s is the con-

stant Fermi velocity and ~κ = ~k− ~K(′). An important implication of the linear dispersion
relation is the fact that charge carriers in graphene behave like massless Dirac fermions.
Further, graphene features high mobilities (up to 106 cm2/Vs) and ballistic transport at
low temperatures over length scales up to 28µm [13, 64].

When increasing the number of graphene layers the dispersion relation transforms
progressively into the semi-metal like dispersion relation of graphite [65]. While bilayer
graphene already has a parabolic band dispersion around the K, K’ points and a small
band overlap on the order of ≈ 1 mV, all consecutively added layers increase the band
overlap. For >11 layers the difference to bulk graphite accounts for less than 10%.

2.3 Mechanical properties of graphene

The in-plane strength and the low mass density of graphene establish it as an excellent
material for nanoelectromechanical systems [27]. The two-dimensional mass density is

ρgraphene = 7.6× 10−19 kg/µm2. (2.2)

Graphene is the stiffest material ever measured with a 2D in-plane Young’s modulus of
E2D = 340 N/m. In graphene, the Young’s modulus is a 2D material property that relates
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2.3. MECHANICAL PROPERTIES OF GRAPHENE

in-plane stress σ with in-plane strain ε

σ = E2D · ε. (2.3)

The Young’s modulus of graphene was first measured in suspended graphene structures by
nanoindentation with an AFM [18] and by using graphene as an impermeable membrane
for gases [66], respectively. Similar results were obtained by utilizing a scanning electron
microscope to monitor the out-of-plane displacement of suspended few-layer graphene
sheets subject to an electrostatic force [67]. In order to compare single-layer graphene
with multi-layer graphene or bulk graphite, the 2D Young’s modulus is divided by the
interlayer spacing of graphite leading to E = 1 TPa. Nanoindentation experiments also
revealed that suspended graphene membranes are prestrained with an intrinsic breaking
stress of σint = 42 N/m and a maximum strain of εint = 25%. These properties lead to a
number of interesting consequences when implementing NEMS based on graphene.

b

c d

a

Figure 2.3: Mechanical properties of graphene. (a) Nanoindentation experiment using a
diamond AFM tip to determine intrinsic mechanical properties of graphene [18]. (b) Effective
Young’s modulus of graphene [18]. (c) Impermeable graphene membrane used as an atomically
thin balloon [66]. (d) Scanning electron microscope experiment of doubly-clamped suspended
graphene membranes [67]. Here an electrostatic force is applied to study the out-of-plane static
deflection.

The intrinsic resonance frequency of graphene mechanical resonators is determined
mainly by the tension of the membrane. This is a consequence of the negligible bending
rigidity and the prestrain usually found in suspended graphene membranes [27, 18, 68, 22].
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2.3. MECHANICAL PROPERTIES OF GRAPHENE

The bending rigidity is defined as the amount of energy per unit area that is needed
to curve an object [69]. It was shown that even for multi-layer graphene, for given
displacements, the energy associated to bending is much smaller than the one associated
to stretching [70]. Additionally, graphene can achieve high resonance frequencies that can
be tuned by an externally applied force [24, 71]. This makes graphene interesting for a
variety of radio-frequency applications [72, 73, 74, 75].
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Chapter 3

Nanomechanics

In this chapter, we develop the theory that is necessary to understand the mechanical
properties of circular graphene mechanical resonators. We start with the simplest model
of the linear harmonic oscillator, followed by modeling of the nonlinear vibrations. In the
second part, we derive the formalism of a membrane under tension subject to a static
electric field.

3.1 Linear and nonlinear mechanical resonators

3.1.1 The harmonic oscillator with coherent driving

The simplest model that captures the motion of a wide variety of mechanically resonat-
ing systems, with arbitrary size and geometry, is the damped harmonic oscillator. A
harmonically oscillating system is described by a linear relation between restoring force
and displacement. The two important quantities characterizing such a system are the
mechanical resonance frequency fm = ωm/2π, where ωm is the angular frequency, and the
quality factor Qm of the vibration. The mechanical resonance frequency is determined
by the elastic properties, the mass, and the boundary conditions of the respective sys-
tem. The harmonic oscillator is damped by its interaction with the environment and this
damping can be characterized by the quality factor. The quality factor is defined as the
ratio of the total energy to the energy lost per oscillation cycle

Qm = 2π
Etotal

∆Ecycle
. (3.1)

The equation of motion of the coherently driven damped harmonic oscillator is given by

meff z̈(t) +meffΓmż(t) + kz(t) = Fd(t) (3.2)

where meff is the effective mass, Γm the linear damping rate, and k the mechanical spring
constant. Assuming a weak sinusoidal drive Fd(t) = Fd · exp[iωdt], the equation can be
solved with the ansatz z(t) = z0 · exp[i(ωdt+ φ)] where φ is the phase difference between
the mechanical motion and the drive. The amplitude as well as the phase response to an
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3.1. LINEAR AND NONLINEAR MECHANICAL RESONATORS

external force depend on the driving frequency

z(ωd) =
Fd

meff

1√
(ω2

m − ω2
d)2 + (Γmωd)2

. (3.3)

φ(ωd) = arctan

(
Γmωd

ω2
m − ω2

d

)
(3.4)

with

ωm =

√
k

meff
(3.5)

the mechanical resonance frequency, in the small damping limit Γm << ωm. We plot
Eqs. 3.3 and 3.4 in Fig. 3.1. The amplitude response has a maximum at ωd ≈ ωm. At this
point the mechanical motion and the drive acquire a phase difference of φ(ωm) = π/2.
Importantly, the quality factor simplifies to

Qm =
ωm

Γm
. (3.6)
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Figure 3.1: Amplitude and phase response. Response as a function of drive frequency of the
coherently driven, damped, harmonic oscillator. Note that the mechanical dissipation is given
by the line width of the spectrum at the point where the squared normalized amplitude equals
1/2. Panel is adapted from [3].

3.1.2 The harmonic oscillator with incoherent driving

The coupling to the thermal bath of the mechanical resonator leads to dissipation of
mechanical energy quantified by the mechanical quality factor. However, the coupling also
leads to statistical random driving of the resonator with a fluctuating force δF (t). This
is quantified by the fluctuation-dissipation theorem [76], which relates the fluctuations
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3.1. LINEAR AND NONLINEAR MECHANICAL RESONATORS

of a physical system in thermal equilibrium to the response of the system to external
perturbations. To derive the mechanical response to thermal noise, we rewrite the Fourier
transform of Eq. 3.2 in frequency space

z(ω) = χ(ω) · δF (ω) (3.7)

in terms of the mechanical susceptibility

χ(ω) =
1

meff(ω2
m − ω2 − iΓmω)

. (3.8)

In contrast to coherent driving, the mechanical energy for a noise driven spectrum is
distributed over a frequency window that depends on the mechanical line width. This
requires a different approach to get access to the mechanical susceptibility. Experimentally
one records the power spectral density (PSD) Saa(ω) of a signal a(t), which can be
related to the mechanical trajectory z(t). This conversion depends on the experimental
transduction scheme. We introduce the autocorrelation function of a(t)

Ca(τ) = 〈a(t)a∗(t+ τ)〉 . (3.9)

Here 〈...〉 denotes the statistical average. According to the Wiener-Kinchin theorem, the
autocorrelation function of a signal a(t) is the Fourier transform pair of its PSD

Saa(ω) =

∫ ∞
−∞

dτ 〈a(t)a∗(t+ τ)〉 eiωτ . (3.10)

Knowing the Fourier transform1 of the signal we obtain

Saa(ω) =
〈
|a(ω)|2

〉
. (3.11)

By plugging 3.7 into 3.11 we relate the displacement spectrum to the power spectral
density of the force

Szz(ω) = |χ(ω)|2SFF(ω). (3.12)

This result is the equivalent of Eq. 3.7, but expressed in experimentally accessible quan-
tities.

Following linear response theory [77], the fluctuation dissipation theorem, in the clas-
sical limit, yields the power spectrum of the single-sided thermal force noise

Sth
F (ω) = −4kBT

ω
Im

(
1

χ(ω)

)
. (3.13)

Here, kB is the Boltzmann constant and T temperature. For weak damping, this equation
can be written as

Sth
F = 4kBTmeffΓm. (3.14)

The thermal force noise Sth
F is white and depends only on the bath temperature, the

mechanical dissipation rate and the effective mass of the mechanical resonator. We finally
state the displacement power spectrum by plugging Eq. 3.14 into Eq. 3.12

Sz =
4kBTΓm

meff [(ω2
m − ω2)2 + Γ2

mω
2]
, (3.15)

1We use the following conventions a(t) = 1
2π

∫∞
−∞ a(ω)e−iωt and a(ω) =

∫∞
−∞ dt a(t)eiωt.
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which we use to relate the bath temperature in thermal equilibrium to the variance of the
displacement

〈
z2

th

〉
. We know from the equipartition theorem

1

2
meff

〈
ż2

th

〉
=

1

2
k
〈
z2

th

〉
=

1

2
kBT (3.16)

and therefore 〈
z2

th

〉
=

kBT

meffω2
m

. (3.17)

It further can be shown that the variance is the area under the single-sided displacement
spectrum, from which we follow

〈
z2

th

〉
=

∫ ∞
0

1

2π
dωSz(ω) =

kBT

meffω2
m

. (3.18)

This result allows to characterize the temperature of a mechanical mode by integrating
over the experimental displacement noise, see Fig. 3.2.

ωm0 ω

Sz(ω)

2z T
area

mΓ

Figure 3.2: Thermal noise displacement spectrum versus frequency. The area under the
displacement power spectral density is proportional to the temperature of the mechanical mode.
Panel is adapted from [3].

3.1.3 The duffing oscillator with linear damping

The harmonic oscillator model is a good approximation for nanomechanical resonators
as long as the involved restoring forces scale linearly with the displacement. This is
satisfied for small motional displacements. When nanomechanical resonators are driven
to larger displacement amplitudes, nonlinear restoring forces become important. These
forces find their origin in geometrical nonlinearities or in nonlinear external potentials [78,
79]. Another source of nonlinear behavior is the intrinsic stress strain relationship of the
material, but this typically requires much larger oscillation amplitudes.

To model nonlinear behavior, we include the cubic nonlinear force in the driven equa-
tion of motion

meff z̈(t) +meffΓmż(t) +meffω
2
mz(t) + αeffz

3(t) = Fd cos (ωdt) (3.19)
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with αeff the duffing nonlinear constant. Note that we assume a conservative damping
term, and symmetry between z and −z, which is accounted for by the absence of a
quadratic nonlinear force. Non-linear damping and symmetry breaking are discussed
in Secs. 3.1.4 and 6.8, respectively. In analogy to the linear line shape we get for the
amplitude of motion

z(ωd) ≈ Fd/2meffω
2
m√(

ωd−ωm

ωm
− 3

8
αeff

meffω2
m
z2
)2

+ (2Qm)−2

(3.20)

in the limit of comparatively small oscillations where αeffz
3 < kz [78]. Due to the ap-

pearance of z2 terms on the right-hand side of the equation, the amplitude response is
a cubic polynomial in z2. As a consequence, one finds that above a critical amplitude
the equation has three solutions, of which two are stable. This leads to bistable and hys-
teretic behavior above a certain vibration amplitude close to the mechanical resonance
frequency. The onset of bistability is given by

zcrit =

√
8

3
√

3

meffω2
m

Qmαeff
= 1.24

√
meffω2

m

Qmαeff
. (3.21)

Thus, the duffing nonlinearity αeff can be calculated from the critical deflection amplitude
zcrit. Furthermore, the frequency for which the amplitude of vibration is maximum is
shifted by

∆ω =
3

8

αeff

meffωm
z2

max (3.22)

from the mechanical resonance frequency ωm. The frequency shift is positive (negative)
when αeff > 0 (αeff < 0), which corresponds to a hardening (softening) of the effective
mechanical spring constant (see Fig. 3.3).

3.1.4 The duffing oscillator with the dissipative force F = ηz2ż

Not only the resonance frequency but also the damping rate can depend on the vibrational
amplitude. This has only recently been verified in experiments using nanomechanical and
micromechanical resonators. It was observed in graphene and carbon nanotubes [22],
in a micromechanical beam [80], and in diamond nanoelectromechanical resonators [79].
Phenomenologically, nonlinear dissipation has been modeled by using a dissipation force
F = ηz2ż with η a constant [78]. The resulting equation of motion is given by

meff z̈(t) +meffω
2
mz(t) + [Γm + ηz2(t)]ż(t) + αeffz

3(t) = Fd(t). (3.23)

The amplitude response in the frequency domain is of the form

z(ωd) ≈ Fd/2meffω
2
m√(

ωd−ωm

ωm
− 3

8
αeff

meffω2
m
z2
)2

+
(

1
2Q
−1
m + 1

8
η

meffωm
z2
)2
. (3.24)

While the duffing constant αeff can be extracted from the frequency shift given by Eq. 3.22,
the determination of the nonlinear dissipation constant η is more involved. It is instructive
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ω /ωd m

Figure 3.3: Mechanical line shape of the duffing oscillator. Normalized mechanical os-
cillation amplitude as a function of drive frequency ωd. The driving force increases from blue
to purple. For large driving the point of maximum amplitude shifts towards higher frequency,
indicating αeff > 0. Panel is adapted from [79]

to plot the maximum amplitude zmax divided by the driving force Fd as a function of zmax

zmax

Fd
=

(
η · ωmz

2
max

4
+
meffω

2
m

Qm

)−1

. (3.25)

Fig. 3.4 shows the theoretically predicted spectra for η > 0, and reveals that the ratio
zmax/Fd decreases as the vibrational amplitude and the driving force increase. This is
directly linked to the increased damping for larger vibration amplitude, which can be
approximated by a displacement dependent dissipation of the form [79]

1

Qm
≈ 1

Q0
+
ηz2

4
. (3.26)

Here Q0 is the mechanical quality factor without nonlinear dissipation. However, in the
frequency domain, it is nontrivial to quantify the mechanical quality factor since the
mechanical line shape can not be approximated by a Lorentzian. It is therefore much
more direct to investigate the damping with a decay measurement in the time domain.

3.1.5 Mechanical energy decay

Recording mechanical vibrations in the time domain gives direct access to mechanical
energy dissipation processes. Experimentally, this consists of driving the resonator with
a capacitive driving force for time t < 0. At t = 0 the drive is switched off and the
vibration amplitude decays freely (t > 0) (see Fig. 3.5). The mechanical amplitude can
be described by solving the equation of the damped un-driven harmonic oscillator during
the ring-down

z̈(t) + Γmż(t) + ω2
mz(t) = 0 (3.27)
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ω /ωd m

Figure 3.4: Non-conservative damping for different driving force amplitudes. Spectra
of the vibration amplitude normalized by the driving force for different amplitudes. From blue to
green the maximum vibration amplitude and the driving force increase while their ratio decreases.
Panel is adapted from [79].

with the initial condition z(t = 0) = z0. A solution in the limit of weak damping
Γm << ωm is given by

z(t) ≈ z0 exp

[
− t

2τ

]
cos(ωt+ φ) (3.28)

where ω =
√
ω2

m −
Γ2
m

4 ≈ ωm and τ = 1/Γm. It can be shown that the total mechanical

energy E(t) = 1
2meff [ω2

mz
2(t) + ż2(t)] can be approximated by

E(t) ≈ 1

2
meffω

2
mz

2(t) (3.29)

with

z2(t) = z2
0 exp

[
− t
τ

]
. (3.30)

Here we note that this equation is valid for both the harmonic oscillator and the duffing
oscillator with linear damping. The case of the dissipative damping force F = ηz2ż is
theoretically captured by the approximation [80]

z2(t) = z2
0 ·

exp
[
− t
τ

]
1 + 2η

8meff
· τ · z2

0 ·
(
1− exp

[
− t
τ

]) . (3.31)

We plot the energy decay for both cases in Fig. 3.5. Energy decay measurements have a
decisive advantage compared to spectral measurements. As the total mechanical energy is
independent of the phase of the mechanical resonator they are immune to fluctuations of
the mechanical resonance frequency, which is in stark contrast to spectral measurements.
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Figure 3.5: Energy decay traces for varying η. Logarithmus of the squared amplitude as
a function of time. At time t = 0 the driving force is switched off. For t > 0 the mechanical
energy decays freely. For the blue trace η = 0. The dissipative force parameter η increases from
the blue trace to the green trace.

3.2 Circular graphene resonator in the membrane limit

In this section, we make the connection between the harmonic oscillator model introduced
above and the circular membranes used in our experiments. For this, we introduce the
effective mass that we obtain from the mode shape of the fundamental mechanical mode.
We model the mechanical resonators as membranes under tension and derive explicit ex-
pressions for the mechanical resonant frequency, and the static displacement as a function
of the electrostatic potential applied to a nearby gate electrode.

We model the local deflection ξ(x, y, t) of the graphene resonator as a thin plate
with negligible mechanical energy in bending compared to the energy resulting from the
stretching (membrane limit) [81]

ρ2D
∂2ξ

∂t2
= T∇2ξ + P (x, y) (3.32)

with ρ2D the sheet mass density, P (x, y) the local pressure in z-direction and T a stretching
force per unit length at the edge of the membrane (see Fig. 3.6). If we consider radially
symmetric modes ξ(r, t), the stretching force T is then related to a radial strain ε =
(R′ −R)/R with the elongated radius R′ by

T = Ehε = Etngε, (3.33)

with the 2D graphene Young’s modulus Et = 340 N/m, ng the number of graphene layers
and t = 0.335 nm [82] the interlayer spacing in graphite. The total sheet mass density
ρ2D = νngρgraphene includes the mass from the graphene layers, with the graphene mass
density ρgraphene, and a correction factor ν ≥ 1 to account for additional adsorbents on
the graphene.

The electrostatic pressure due to the gate voltage, which is applied between the mem-
brane and a nearby circular electrode, is modeled in a parallel plate approximation with
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z r R

d0Rg

Figure 3.6: Schematic cross-section of a suspended circular graphene membrane. The
graphene resonator with radius R is suspended above a circular counter electrode with radius
Rg and distance d0. The deflection of the central point of the membrane is denoted by z and the
radial distance of an arbitrary point of the membrane to the center by r =

√
x2 + y2 where x, y

are the cartesian in-plane coordinates. The deflection of an arbitrary point of the membrane at
time t is given by ξ(x, y, t), see text.

the capacitive energy given by U = 1
2CmV

2
g . If we expand the capacitance in terms of ξ

we get

U ≈
∫
dxdy

ε0V
2
g

2

1

d− ξ(x, y)

≈
∫
dxdy

ε0V
2
g

2d

(
1 +

ξ(x, y)

d
+
ξ(x, y)2

d2
+
ξ(x, y)3

d3
+ . . .

)
P (x, y) ≈

ε0V
2
g

2d2

(
1 +

2ξ(x, y)

d
+

3ξ(x, y)2

d2
+

4ξ(x, y)3

d3
+ . . .

)
.

The differential equation for the deflection is then given by

ρ2D
∂2ξ

∂t2
= T∇2ξ +

ε0V
2
g

2d2

(
1 +

2ξ(x, y)

d
+

3ξ(x, y)2

d2
+

4ξ(x, y)3

d3
+ . . .

)
(3.34)

To solve the equation, we decompose the deflection ξ(r, t) into a static displacement ξs(r)
and time-dependent (radial) modes k with amplitude ξk(r)

ξ(r, t) ≈ ξs(r) +
∑
k

ξk(r)e−iωt. (3.35)

3.2.1 Static displacement as a function of DC voltage

For the static displacement we have

0 = T∇2ξs(r) +
ε0V

2
g

2d2

(
1 +

2ξs(r)

d
+ . . .

)
(3.36)

by assuming 2ξs(r)/d� 1. The solution at lowest order in ξs(r)/d is given by

ξs(r) =
ε0V

2
g

8Td2

(
r2 −R2

)
(3.37)
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with the normalized center deflection

zs =
ε0R

2
g

8Td2
V 2

g = csV
2
g . (3.38)

The validity of this mode shape has been confirmed with numerical simulations.

3.2.2 Mechanical resonance frequency as a function of gate volt-
age

If we assume orthogonal modes and neglect mode coupling, we can project Eq. (3.34) on
the fundamental mode

− ρ2Dω
2ξf(r) = T∇2ξf(r) +

ε0V
2
g

d3
ξf(r) (3.39)

and solve for the fundamental mode amplitude ξf(r). Considering a clamped boundary
with ξf(R) = 0 we get

ξf(r) = z0J0

(
2.4

R
r

)
, (3.40)

where z0 = ξf(0) is the deflection amplitude at the center of the membrane and J0 is
the 0th Bessel function with J0(2.4) = 0. The resonance frequency as a function of gate
voltage is then given by

ωm(Vg) =

√
2.42T

R2ρ2D
− ε0
d3ρ2D

V 2
g . (3.41)

By taking into account the reduced radius of the gate electrode Rg with respect to the
membrane radius R, the electrical force gets reduced by a factor R2

g/R
2 and we obtain

ωm(Vg) =

√
2.42T

R2ρ2D
−
R2
g

R2

ε0
d3ρ2D

V 2
g (3.42)

for the resonance frequency as a function of Vg. At Vg = 0 V we get in agreement with
Ref. [83]

ωm(0) =
2.404

R

√
Ehε

ρ2D
. (3.43)

3.2.3 The effective mass and the effective driving force

Knowing the mode shape of the fundamental mode, we are one step closer to the harmonic
oscillator equivalent model introduced before. In particular, we are able to derive the
effective mass of the circular membrane and obtain the mechanical resonance frequency
as a function of Vg by solving the equation of motion for a point mass. From the total
kinetic energy

Ekin =
1

2
ρ2D2πω2

m

∫
rξ2

f (r)dr =
1

2
meffω

2
mz

2 (3.44)
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we obtain for the effective mass

meff = 0.27ρ2DπR
2, (3.45)

with

2π

∫ R

0

drJ2
0

(
2.4

R
r

)
r = 2π

R2

2.42

∫ 2.4

0

dr′J2
0 (r′)r′ = 0.27πR2.

We multiply all the terms of Eq. (3.34) by J0

(
2.4
R r
)

and integrate over the area. As a
result, we get the normalized equation of motion with higher order corrections for the
capacitive force

meffω
2z0 =

(
0.271πR22.42T − 0.271

ε0πR
2
gV

2
g

d3

)
z0 (3.46)

+0.196
3ε0πR

2
gV

2
g

2d4
z2

0

+0.125
2ε0πR

2
gV

2
g

d5
z3

0 + . . . .

Note that we obtain the same expression as Eq. 3.42 for the resonance frequency

ωm(Vg) =

√
4.92Ehε

meff
− 0.271

meff

ε0πR2
g

d3
V 2

g =

√
2.42T

R2ρ2D
−
R2

g

R2

ε0
d3ρ2D

V 2
g . (3.47)

The effective mass modeling also leads to a correction in the electrostatic driving force.
We obtain the correction factor similarly as the higher order corrections in Eq. 3.46 by
considering the capacitive term that scales as z0 in Eq. 3.34. Integration over the mode
shape yields the capacitive driving force

Fd = ∂zCmVg

√
2V AC

g = 0.433
ε0πR

2
g

d2
Vg

√
2V AC

g (3.48)

with V AC
g the rms-value of the oscillating driving voltage. The oscillating force drives the

central point of the membrane to a vibrational amplitude z0.
In conclusion, we have modeled the graphene mechanical resonators used in this dis-

sertation as circular membranes under tension. We first derived the fundamental mode
shape in the membrane limit, and then looked at static displacement and the mechanical
resonance frequency under the influence of a static voltage applied to a nearby gate elec-
trode. Finally, we linked the obtained mode shape to the harmonic oscillator model and
included the effective mass correction into the AC driving force amplitude.
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Chapter 4

Microwave optomechanics

In this chapter we introduce the system that we use to readout and manipulate graphene
mechanical motion. It consists of a graphene mechanical resonator capacitively coupled to
a Nb superconducting microwave cavity (SMC). This chapter is divided into two parts. In
the first part, we derive expressions for the cavity transmission and reflection coefficients,
respectively, neglecting the coupling to the mechanical resonator. Using transmission line
theory and idealized lumped-element models of the SMCs, we calculate the expected out-
put signal levels and their frequency dependence for a given input signal. In the second
part, we discuss the parametrical interaction between the nanomechanical resonator (NR)
and the electromagnetic mode of the SMC. We present the quantum mechanical formu-
lation of the optomechanical interaction, but also a classical analysis by incorporating
the NR as a moving capacitor into the lumped-element circuit. Although the classical
approach is satisfactory to describe the results in this dissertation, a quantum mechani-
cal description is necessary to describe, for instance, the limitations of sideband cooling
correctly [84, 85]. We conclude the chapter with a short discussion on measurement
limitations.

To motivate the derivations in this chapter, we show an example of a device and its
lumped-element equivalent in Fig. 4.1. The NR is embedded into the quarter-wavelength
reflection cavity at its open end where the electromagnetic field amplitudes are maximum.
The SMC is capacitively coupled to the cryogenic circuitry and its output signal is am-
plified by a cryogenic high-electron-mobility transistor (HEMT). The chip is mounted at
the mixing chamber of a dilution refrigerator with a base temperature of T = 15 mK.
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HEMT

m

Cext

a b

Cext

HEMT

input input

outputoutput

cavity

Figure 4.1: Device example and its lumped-element equivalent circuit. (a) On-chip
coplanar waveguide cavity (red line) capacitively coupled to a circularly clamped graphene me-
chanical resonator (black rectangle and inset). The device is measured at cryostat base tem-
perature through an external coupling capacitor Cext (white rectangle and inset). The cavity is
excited with a microwave signal generated by the radio-frequency source at room temperature.
The microwave signal is reflected from the cavity and amplified by a cryogenic HEMT amplifier.
(b) The cavity is modeled as a lumped-element RLC circuit where the mechanical resonator is
implemented as a position dependent capacitor Cm.

4.1 Superconducting microwave cavities

Superconducting microwave cavities are used as sensitive photon detectors in astron-
omy [86] as well as in cavity quantum electrodynamics [87, 88]. They are furthermore a
very promising platform for future quantum information processing [89] when combined
with different physical systems. Examples include artificial atoms in the form of super-
conducting quantum bits [90], quantum dots [91, 92], spin ensembles [93] and mechanical
resonators [94, 36, 38]. SMCs are often fabricated as coplanar waveguide or microstrip
resonators. These geometries are compatible with large scale on-chip microfabrication
techniques and with low-temperature environments.

4.1.1 Transmission line theory

We model both the coplanar waveguide and the meandered microstrip cavities (Sec. 5.1.2),
used in our experiments, by means of transmission line theory. Here we summarize the
main results and give a rough outline of how to derive them. For the details of the analysis
we refer to [95, 96]. A transmission line is a conductor line and a ground line/plane
in parallel (see central part of Fig. 4.3(a)). The equivalent circuit of a short piece of
transmission line dx of the conductor pair is characterized by a series inductor L′ and a
series resistor R′s per unit length, and by a shunt capacitor C ′ and a shunt conductor G′.
The ohmic losses of the system can be summarized by R′ = R′s + G′(Z ′0)2 [97]. Here we
define the characteristic impedance

Z ′0 =

√
L′

C ′
, (4.1)

for small losses.
Applying Kirchhoff’s laws for the propagating current and voltage along the line yields

the steady-state wave equations for both the current and the voltage for a transmission
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line of finite length. The solutions are given by

V (x) = V +
0 e−γx + V −0 eγx (4.2)

I(x) =
V +

0

Z0
e−γx − V −0

Z0
eγx (4.3)

where + (-) represents wave propagation in the positive (negative) x-direction and γ =
α+ iβ is the complex wave number. The attenuation constant for small losses, R′ � ωL′,
is α = R′

2Z′
0

= 1
2

√
L′C ′R

′

L′ and the propagation constant is β = ω
√
L′C ′ with ω the

frequency of the signal wave.

x0-l

Z`, α , β
0

V(x), I(x)

VL

+

-

ZL

IL

Z 0̀ Z 1̀

Γ T

x0

incoming

a b

Zin

Figure 4.2: Low loss transmission line with different terminations. (a) A transmission
line with characteristic impedance Z′0 is terminated by an arbitrary load at x = 0. Reflection
of an incoming wave with voltage reflection coefficient Γ at the load leads to a standing wave
pattern. (b) A transmission line with characteristic impedance Z′0 feeds a transmission line with
characteristic impedance Z′1. Part of the incoming wave is transmitted with voltage transmission
coefficient T .

Let us assume a finite length transmission line with characteristic impedance Z ′0 that
is terminated by an arbitrary load with impedance ZL, see Fig. 4.2(a). For an incoming
wave of the form V +

0 e−γx the boundary condition ZL = V (x = 0)/I(x = 0) needs to be
fulfilled, which, in general, leads to wave reflection at x = 0. The reflection coefficient is
defined as the voltage amplitude of the reflected wave normalized by the incident wave.
By plugging Eqs. 4.2 and 4.3 into the boundary condition we obtain

Γ =
V −0
V +

0

=
ZL − Z ′0
ZL + Z ′0

. (4.4)

When the impedances ZL and Z ′0 are equal, the load is said to be matched and we have
Γ = 0. When on the other hand the impedances are mismatched, the incident and the
reflected wave interfere and form a standing wave pattern along the transmission line. As
a result, the impedance along the line is a function of the distance from the load. The
expression for the input impedance at position −l of a transmission line terminated by
an arbitrary load is given by

Zin = Z0
ZL + Z0 tanh(γl)

Z0 + ZL tanh(γl)
. (4.5)

Since, in our experiments, we use transmission line cavities that are short circuited (ZL =
0) at one end the input impedance can be simplified to

Zin = Z0 tanh(γl). (4.6)
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We note that for a vanishing load impedance the voltage at the load vanishes, the current
is maximum and all the power is reflected with Γ = −1.

Similarly to the reflection coefficient, we can define a transmission coefficient T that
quantifies the transmitted voltage amplitude. For this, we consider a transmission line
with characteristic impedance Z ′0 feeding a transmission line with characteristic impedance
Z ′1 at x = 0. Let V (x) = V +

0 (e−γx + Γeγx) be the wave at x < 0 and V (x) = V +
0 Te−γx

the wave at x > 0. Equating these voltages at x = 0 yields the transmission coefficient

T = 1 + Γ =
2Z ′1

Z ′1 + Z ′0
. (4.7)

The quarter-wavelength transmision line

C L R

L`dx R`dxs

C`dx

G`dx

Zλ/4

a b

ZRLC

Figure 4.3: Representation of the quarter-wavelength transmission line as a parallel
RLC circuit. (a) Finite length transmission line composed of a cascade of several elements of
length dx. The boundary conditions with one open-end and one short-circuited end define a
resonant cavity with l = λ/4 (see text). The input impedance is Zλ/4. (b) Equivalent parallel
RLC circuit of the transmission line of a. The circuit has input impedance ZRLC.

Terminating the transmission line at both ends transforms it into a resonant cavity
(Fig. 4.3(a)). For the second termination we choose the open end at x = −l, so that the
resonance condition for a particular frequency is given by l = λ/4 with λ the wavelength.
As a reminder, for the first boundary condition we chose the short-circuited end at x = 0.
Here we only want to consider the fundamental resonance and find the expression for
the input impedance Zλ/4 close to resonance ωλ/4. We write the frequency as a small
deviation from resonance ω = ωλ/4 + ∆ω and state the resonance condition in terms of

the propagation constant βl = π/2(1+∆ω/ωλ/4) = (ωλ/4 +∆ω)
√
L′C ′l). For small losses

Eq. 4.6 can be approximated by [96, 95]

Zλ/4 ≈
Z ′0

αl + iπ ∆ω
2ωλ/4

=
1

R′C′

2L′ l + iC ′l∆ω
. (4.8)

On the other hand, it is convenient to model the quarter-wavelength transmission line
as a parallel lumped-element RLC circuit with effective resistance R, effective inductance
L, and effective capacitance C (see Fig. 4.3(b)). The input impedance of the parallel RLC
circuit is given by

ZRLC =

(
1

R
+ iωC +

1

iωL

)−1

. (4.9)

The circuit is resonant when the impedance associated to the inductance is equal to the
impedance of the capacitance (Im(Zin(ωRLC)) = 0). This is equivalent to

ωRLC =
1√
LC

. (4.10)
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Using the relation ω2 − ω2
RLC = (ω − ωRLC)(ω + ωRLC) = ∆ω(2ω − ∆ω) ≈ 2ω∆ω the

input impedance, near resonance, can be approximated by

ZRLC ≈
1

1/R+ 2iC∆ω
≈ R

1 + 2iQint∆ω/ωRLC
. (4.11)

Here we have used the definition of the quality factor of the parallel RLC circuit

Qint =
R

Z0
= R

√
C

L
= ωRLCRC. (4.12)

Comparing the input impedance of the quarter-wavelength transmission line (Eq. 4.8)
with the input impedance of the parallel RLC circuit (Eq. 4.11) we can state the following
relations

ωλ/4 =
π

2l
√
L′C ′

(4.13)

R =
2

l

L′

R′C ′
(4.14)

C =
l

2
C ′ (4.15)

L =
8l

π2
L′. (4.16)

The quality factor then takes on the simple form

Qint =
β

2α
. (4.17)

Plugging the obtained relations into equation 4.8 we obtain the input impedance of the
quarter-wavelength transmission line, near resonance,

Zλ/4 =
4Z ′0Qint

π

1

1 + 2iQint
∆ωλ/4
ωλ/4

. (4.18)

Hereafter, we will use the expression cavity when referring to the quarter-wavelength
transmission line.

Zλ/4,load

Figure 4.4: Capacitively coupled parallel RLC circuit. Lumped-element circuit coupled to
transmission line (external circuitry) with external coupling capacitor Cext.
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Capacitively coupled transmission line

So far, we assumed that both ends of the cavity are perfectly terminated. We modify this
concept by allowing a small part of the signal leaking out of the open end, or in other
terms, we couple the cavity to our measurement lines with real characteristic impedance
RL. The coupling is capacitive and quantified by the external coupling capacitor Cext

(see Fig. 4.4). In order to obtain the input impedance of the entire circuit, we model it
as a series combination of the coupling capacitor with the cavity [98]

Zλ/4,load = Zλ/4 +
1

iωCext
≈ π

4Z ′0ω
2
cC

2
extQint

(
1 +

2iQint∆ωc

ωc

)
(4.19)

where, in the last step, we demand that the impedance on resonance ωc is real
(Im[Zλ/4,load(ω0)] = 0). This requirement yields a relation between ωλ/4 and ωc, which is
recursively plugged into the equation for the impedance. Also, we define ∆ωc = ω − ωc.
The input impedance of the loaded cavity is going to be the basis for the determination
of the scattering parameters of the cavities used in our experiments, as discussed in the
following two subsections.

Reflection measurement of a λ/4 cavity

A schematic of the measurement circuit for a quarter-wavelength cavity measured in
reflection is shown in Fig. 4.5(a). The signal is generated at the radio frequency source.
It travels down the cryostat lines with characteristic impedance RL. A fraction of the
microwave power is transmitted through the coupling capacitor into the cavity. The
coupling rate κext = ω/Qext is defined over the external quality factor Qext. Inside the
cavity, the electromagnetic wave resides for Qtot round trips before it is either dissipated
with rate κint = ω/Qint or leaves the cavity with rate κext. A microwave circulator is
used to separate input from output lines.

2V0

Cext
RL

a

I0,eq Cext,eq RL,eq

b

HEMT

RL

Figure 4.5: Lumped element representation of reflection cavity coupled to external
circuitry. (a) Reflection cavity in series with radio-frequency source, cryostat lines with char-
acteristic impedance RL and cryogenic circulator (all inside the dotted rectangle). The output
line with the cryogenic amplifier is shown for completeness. (b) Norton equivalent model of the
circuit inside the dotted rectangle shown in a.

In order to quantify the external quality factor, we apply Norton’s theorem [97]. We
transform the source voltage being in series with the components RL and Cext (dotted
rectangle in Fig. 4.5(a)) into the equivalent current I0,eq being in parallel with Cext,eq and
RL,eq, Fig. 4.5(b). The equivalent, parallel, lumped-element components are then given
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by

I0,eq =
2V0

RL + 1
iωCext

≈ 2iV0ωCext (4.20)

RL,eq =
1 + (ωCextRL)2

RL(ωCext)2
≈ 1

RL(ωCext)2
(4.21)

Cext,eq =
Cext

1 + (ωCextRL)2
≈ Cext. (4.22)

We note that the voltage applied with the radio frequency source is doubled for the
modeling of the equivalent current I0,eq. This is attributed to the reflection of the input
signal at the coupling capacitor. Additionally, in our experiments, we have ωc ≈ 2π ·
7.5 GHz, Cext ≈ 10−15 F and RL = 50 Ω, which validates the approximations in Eqs. 4.20-
4.22. We introduce the total quality factor as the parallel combination of the intrinsic
quality factor of the RLC circuit and the external quality factor

1

Qtot
=

1

Qint
+

1

Qext
= Z0

(
1

R
+

1

RL,eq

)
. (4.23)

Here we have neglected the shift in Z0 arising from Cext, because Cext << C. We obtain
the external quality factor

Qext =
RL,eq

Z0
=

π

4Z ′0RL(ωcCext)2
(4.24)

by using Z0 =
√

L
C = 4

πZ
′
0 (see Eqs. 4.15 and 4.16). According to Eq. 4.4, the probability

for a signal to be reflected from the cavity expressed in terms of the reflection matrix
scattering element S11 = Γ [96] is given by

|S11|2 =

∣∣∣∣Zλ/4,load −RL

Zλ/4,load +RL

∣∣∣∣2 =
(κint − κext)

2 + 4∆ω2
c

(κint + κext)2 + 4∆ω2
c

. (4.25)

Interestingly, the reflection coefficient on resonance

|S11,min| = |1− 2
κext

κ
| (4.26)

is solely determined by the coupling efficiency κext/κ with κ = κext + κint.

Transmission measurement of a λ/4 cavity

In analogy to the reflection cavity we model the cavity measured in transmission in a
lumped-element fashion using Norton’s theorem. The lumped-element model and its
Norton equivalent are shown in Fig. 4.6. For the equivalent circuit quantities

I0,eq ≈ iV0ωCext (4.27)

RL,eq ≈
2

RL(ωCext)2
(4.28)

Cext,eq ≈ Cext (4.29)
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V0

Cext

RL

I0,eq Cext,eq RL,eq

a b

HEMT

RL

Figure 4.6: Lumped element representation of λ/4 cavity measured in transmission.
(a) Cavity in parallel with radio-frequency source, cryostat lines with characteristic impedance
RL and cryogenic amplifier with load impedance RL. (b) Norton equivalent model of the circuit
shown in a.

we perform similar approximations as in the previous subsection. The external quality
factor

Qext =
RL,eq

Z0
=

π

2Z ′0RL(ωcCext)2
(4.30)

differs by a factor two from the external quality factor when measuring in reflection. We
obtain the forward matrix scattering element S21 = T [96] by calculating the parallel
sum of the impedances Zλ/4,load and RL that an incoming signal encounters at the point
marked as the red circle in Fig. 4.6(a)

1

Ztot
=

1

RL
+

1

Zλ/4,load
. (4.31)

According to Eq. 4.7, the probability for a signal to be transmitted is given by

|S21|2 =

∣∣∣∣ 2Ztot

Ztot +RL

∣∣∣∣2 =
S2

21,min + 4(Qtot
∆ωc

ωc
)2

1 + 4(Qtot
∆ωc

ωc
)2

(4.32)

where on resonance S21 = S21,min = Qext

Qext+Qint
.

4.1.2 Transmitted power

We are interested in the frequency dependence and in the magnitude of the output power
Pout when applying a power Pin at the input port of the cryostat. In order to quantify
the transmitted power, we note that the signal is attenuated by the loss coefficient loss
from the input port to the cavity and amplified by the gain coefficient gain by the HEMT
amplifier from the cavity to the output port. Consider the voltage

Vcav = I0,eq

(
iωC +

1

iωL
+

1

R
+

1

RL,eq

)−1

(4.33)

in the cavity, which can be related to the voltage V0 at the radio-frequency source by
plugging the previously obtained expressions for the individual lumped-element compo-
nents, both for the reflection and for the transmission cavity. Further, the cavity voltage
can be related to the voltage at the amplifier Vamp by taking into account that Vamp is
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by the amount RL/(RL + 1
iωCext

) smaller than Vcav. A derivation analogue to the one
given in [97], section 2.2, yields the relations between the voltages. From the total energy
stored in the reactive components of the cavity

E =
1

2
CV 2

cav,rms +
1

2
LI2

cav,rms =
1

2
CV 2

cav, (4.34)

we establish the relation between the energy inside the cavity and the input power

Ecav = Pin · loss ·
2A

κext

κ2
ext

κ2 + 4∆ω2
. (4.35)

Here, the subscript rms denotes time-averaged magnitudes and A = 2 (A = 1) applies
for the reflection (transmission) cavity. The equivalent relation for the output power

Ecav =
B

κext

Pout

gain
(4.36)

results from the consideration that the SMC emits the power Ecavκext/B from the cou-
pling capacitor into the output mode of the transmission line. B = 1 (B = 2) corresponds
to the reflection (transmission) cavity. The output power as a function of the input power
is given by

Pout = Pin · gain · loss ·
D · κ2

ext

κ2 + 4∆ω2
(4.37)

with D = 4 (D = 1) for the reflection (transmission) cavity.

4.2 Mechanical interaction with the cavity field

4.2.1 Electromechanical interaction

In the microwave domain, the interaction between the cavity mode and the motion of the
nanomechanical resonator is modeled by including a position dependent capacitance into
the lumped-element model. For small displacements compared to the distance d0 between
the cavity electrode and the circular mechanical resonator (parallel plate approximation)
we can approximate

Cm(z) = Cm(0) +
∂Cm

∂z
z0 cos(ωmt+ φ). (4.38)

The modulation of the capacitance translates into a modulation of the cavity resonance
frequency due to Ctot = C + Cext + Cm and ωc = 1/

√
LCtot, and we have

∂ωc

∂z
= − ωc

2Ctot

∂Cm

∂z
. (4.39)

This results in a time-dependent cavity frequency

ωc(t) = ωc · (1−
1

2Ctot

∂Cm

∂z
z0 cos(ωmt+ φ)) (4.40)

suggesting a time-domain measurement of the oscillation, which should map the oscillation
of the nanomechanical resonator. However, in our experiment, the mechanical frequency
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Figure 4.7: Electromechanical interaction in the frequency domain. (a) The cavity pump
tone is applied on the blue sideband at ωp = ωc + ωm. The interaction between the mechanical
mode and the cavity mode creates sidebands at ωc and ωc + 2ωm. Due to the cavity line shape
the sideband at ωc is resonantly enhanced and the upper sideband is suppressed (in the resolved
sideband limit). (b) The cavity is pumped on the red sideband at ωp = ωc − ωm. Similar to a,
the sideband at ωc is enhanced and the sideband at ωc − 2ωm is suppressed.

is much larger than the cavity line width κ� ωm (sideband resolved limit) and thus the
cavity can not follow the mechanical motion.

The analysis of the nanomechanical resonator motion is performed in the frequency do-
main. Our analysis assumes that the system response contains terms ∼ cos(ωmt) cos(ωpt)
with ωp the frequency of the cavity pump tone. This leads to the generation of sidebands
at ωp±ωm. We want to restrict the pump frequency to values ωp = ωc− (+)ωm since, in
this case, the upper (lower) sideband of the pump falls onto the cavity frequency and thus
is resonantly enhanced (see Fig. 4.7). The sidebands at ωc ± 2ωm are suppressed due to
the cavity line shape. A simple circuit analysis as the one presented in [97], section 2.4,
yields the output power at ωc

Pout(ωc) = Pin(ωp) · loss(ωp) · gain(ωc) ·
(

1

κ

∂ωc

∂z

)2

· 2
〈
z2
〉 D · κ2

ext

κ2 + 4(ωp − ωc)2
(4.41)

where, as before, D = 4 (D = 1) for the reflection (transmission) cavity. This equation can
be used to precisely relate the measured output power to the time averaged mechanical
deflection

〈
z2
〉

of the effective mass motion.

4.2.2 Radiation pressure interaction

The modulation of the cavity frequency by the mechanical resonator leads to modulation
of the circulating intra cavity power [99] (see Fig. 4.8). Let us consider an optical cavity
whose one end mirror is oscillating. The intra cavity field exerts a radiation pressure force
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Frad = −∂Ĥint

∂z onto the mechanical resonator, with Ĥint describing the optomechanical
interaction (see below). The cavity decay time 1/κ introduces a retardation between the
modulation of the intra cavity power and the mechanical motion. The in-phase component
changes the frequency of the mechanical resonator, also called optical spring effect, and
the out-of-phase component changes the mechanical damping [97]. When ωp < ωc the
work on the mechanical resonator over one oscillation cycle is negative. The mechanical
motion is damped and cooled. When on the other hand ωp > ωc the work is positive and
the motion is amplified and heated. We discuss both phenomena using a Hamiltonian
formulation in the following.

z

z

Figure 4.8: Force-displacement diagram of the radiation pressure force. The work done
by the radiation force on the mechanical mode is denoted as the path integral over one oscillation
cycle. The Lorentzian denotes the cavity resonance. On the red side of the resonance the work
is negative and on the blue side positive (see text). The panel is adapted from [45].

In the quantum mechanical description, the radiation mode and the mechanical mode
are approximated by harmonic oscillators. The Hamiltonian of the dispersively coupled
system is given by [100, 38, 45]

Ĥ0 = ~ωcâ
†â+ ~g0â

†â(b̂† + b̂)︸ ︷︷ ︸
Ĥint

+~ωmb̂
†b̂ (4.42)

where â† (â) denote the raising (lowering) operator of the electromagnetic mode and

b̂† (b̂) the operators of the mechanical mode. Here, we have introduced the vacuum
optomechanical coupling strength g0 = G0zzp with G0 = ∂ωc/∂z, and the mechanical
zero-point motion amplitude

zzp =

√
~

2meffωm
. (4.43)

The second term in the sum of the Hamiltonian represents the interaction Ĥint. This is
the general formulation of the radiation pressure interaction both for an optical cavity
with one vibrating end mirror and for a microwave cavity whose capacitance is modulated
by a mechanical resonator. In order to linearize the Hamiltonian, we choose to work in a
frame rotating at the detuned frequency ∆ = ωp − ωc. Additionally, we shift the normal
coordinates â = ᾱ + δâ by a steady state value ᾱ =

√
np, which is parametrized by the

intra cavity photon number np. For
√
np >> 1 we have

Ĥ ′ = −~∆δâ†δâ+ ~g0
√
np(δ̂a

†
+ δ̂a)(b̂† + b̂) + ~ωmb̂

†b̂. (4.44)
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In the sideband resolved limit (κ� ωm), we essentially distinguish between three different
detuning regimes ∆ = 0 and ∆ ≈ ±ωm. For ∆ = 0 the cavity field acquires a phase shift
due to the mechanical motion. This is not practical for κ � ωm, as the cavity field can
not follow the mechanical motion instantaneously.

anti-stokes

st
ok

es

nm

nm

 n -1m

n -1m

n +1m

n +1m

κ

κ

0

1

Figure 4.9: Energy level diagram for anti-Stokes and Stokes scattering between cavity
mode and mechanical mode. The energy levels from left to right represent energy levels with
mechanical occupation from nm − 1 to nm + 1. The lower three energy levels correspond to the
cavity ground state |0〉 and the upper three to the cavity excited state |1〉.

When choosing ∆ = −ωm the two harmonic oscillators can interchange quanta of
energy since their frequencies are comparable. The Hamiltonian simplifies to a ”beam-
splitter” interaction

Ĥint = ~g0
√
np(δâ†b̂+ δâb̂†). (4.45)

This is at the heart of quantum state transfer [101, 53, 57], and sideband cooling [36,
38, 41, 40]. The cooling mechanism is related to the anti-Stokes scattering, that is, the
energy up-conversion of a microwave photon from ~ωp to ~ωc (in the lab frame) by the
absorption of a phonon with the energy ~ωm (see red arrow in Fig. 4.9). The emission
of the photon leaves the cavity in the ground state while the phonon occupation of the
mechanical resonator has decreased by one phonon. As expected, the rate of this process
is proportional to the effective optomechanical coupling strength g = g0

√
np.

For ∆ = ωm we obtain the ”two-mode squeezing” Hamiltonian

Ĥint = ~g0
√
np(δâ†b̂† + δâb̂). (4.46)

Again, we have two harmonic oscillators with similar frequencies, but instead of exchang-
ing energy they both absorb quanta leading to parametric amplification and to entan-
glement, respectively, between the mechanical mode and the radiation mode [37, 102,
103, 54]. In the lab frame, this process can be understood as Stokes scattering of a mi-
crowave photon from ~ωp to ~ωc by emitting a mechanical phonon with the energy ~ωm

(see blue arrow Fig. 4.9). Both the mechanical mode and the cavity are found in their
excited state, before either of them decay. If the scattering rate exceeds the mechanical
dissipation rate, coherent amplification of the mechanical motion leads to self-induced
mechanical oscillations.
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4.2.3 Optomechanical scattering rates and transduction

In analogy to section 4.2.1, we wish to formulate the cavity output power as a function
of the input power, but in terms of Stokes (-) and anti-Stokes (+) scattering between the
photon population in the cavity and the mechanical resonator. The scattering rates can be
derived from the linearized Hamiltonian (Eq. 4.42) using the input-output formalism [38,
45]. Solving the obtained equations of motion for the cavity field â and the mechanical

amplitude b̂ in the presence of the optomechanical interaction yields a modified mechanical
susceptibility with the effective mechanical line width

Γeff = Γm + Γopt. (4.47)

The optomechanical scattering rates are given by

Γopt = 4npg
2
0 ·
( κ

κ2 + 4(∆ + ωm)2
− κ

κ2 + 4(∆− ωm)2

)
. (4.48)

From these two equations it is evident that the optomechanical scattering leads to positive
damping (anti-Stokes) or to negative damping (Stokes) depending on the detuning ∆. In
the case of ∆ = −ωm (∆ = ωm) anti-Stokes (Stokes) scattering is resonantly enhanced
and we have Γopt ≈ ±4npg

2
0/κ in the resolved sideband limit.

When the detuning is small compared to the cavity frequency (∆ � ωc, ωp) we may
relate the energy inside the cavity to the photon population over Ecav ≈ ~ωpnp. Using
Eq. 4.35, we obtain the photon population in our setup as a function of Pin

np =
2A

~ωp
Pin · loss ·

κext

κ2 + 4(ωp − ωc)2
. (4.49)

Note A = 2 (A = 1) for the reflection (transmission) cavity.
The anti-Stokes (Stokes) scattering leads to an equilibrium cavity population nc at ωc

determined by ncκ ≈ Γoptnm (ncκ ≈ Γopt(nm + 1) ≈ Γoptnm for nm � 1) [84] where we
have assumed negligible thermal population of the cavity mode. The number of phonons
nm is related to the zero-point motion zzp by nm ≈

〈
z2
〉
/2z2

zp. The cavity mode leaks
into the output mode of the transmission line with a rate κext/B, which results in the
detectable output power Pout = nc~ωcκext/B, Eq. 4.36, and we recover Eq. 4.41. Note
B = 2 (B = 1) for the transmission (reflection) cavity.

Additionally, we can characterize the transduction scheme of our setup i.e. convert
the power spectral density Sout = gain(ωc) · SN measured at the output of the cryostat
(SN is the PSD at the input of the HEMT) into the displacement spectral density Sz. We
simplify Eq. 4.41 to

Pout(ωc) = A · gain(ωc) · ~ωc ·
κext

κ2
G2

0

〈
z2
〉
· np (4.50)

by substituting np and using the approximation ωc ≈ ωp. We use the single-sided defini-
tions of the output power Pout =

∫∞
0
Sout

dω
2π and the averaged mechanical displacement〈

z2
〉

=
∫∞

0
Sz

dω
2π to establish the relation between the PSD and the displacement noise

Sz =
1

A

SN

~ωc

z2
zpκ

2

κextg2
0

1

np
. (4.51)

A takes the value 2 (1) for a reflection (transmission) cavity.
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4.2.4 Sideband cooling

The thermo-mechanical occupation of a mechanical mode at frequency ωm and bath
temperature Tbath is given by the Bose-Einstein distribution

nth
m =

1

exp( ~ωm

kBTbath
)− 1

. (4.52)

Typical mechanical mode frequencies in the MHz range require temperatures in the sub
millikelvin range to enter nth

m < 1. Therefore, the mechanical mode must be brought out
of equilibrium with its environment.

Classical analysis

Classically, sideband cooling can be understood as the modification of the average me-
chanical energy k

〈
z2
〉

due to the enhanced mechanical damping for red sideband detuned
pumping ∆ ≈ −ωm. The radiation pressure force modifies the mechanical susceptibility

χeff(ω) ≈ 1

meff · (ω2 − ω2
m − iωΓeff)

(4.53)

where we have neglected the shift of the mechanical frequency due to the optical spring [45].
Integration of the displacement spectrum (see for comparison Sec. 3.1.2)

Sz(ω) =
4kBTbath

meff
· Γm

(ω2 − ω2
m) + ω2Γ2

eff

(4.54)

yields

Teff = Tbath ·
Γm

Γm + Γopt
. (4.55)

This simple relation quantifies the final temperature Teff of the mechanical mode as a
function of the initial temperature Tbath ≈ ~ωm

kB
nth

m sufficiently well as long as the mode
occupation is well above one.

nanomechanical
mode ωm

Thermal bath Cavity bath
ΓoptΓm

Figure 4.10: Energy balance between the mechanical mode and its environment. The
mechanical mode emits and absorbs energy from its environment, which is comprised of the
thermal bath and a cavity bath. The coupling to the thermal bath is quantified by the intrin-
sic mechanical dissipation rate Γm and the coupling to the cavity bath by the optomechanical
scattering rate Γopt. The panel is adapted from [97].
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Quantum mechanical analysis

In the quantum mechanical description of radiation pressure cooling, the lower bound of
the achievable minimum phonon occupation is set by the quantum back-action of the elec-
tromagnetic vacuum of the cavity mode onto the mechanical mode [104]. The quantum
mechanical approach formalizes the cooling process in terms of energy transition rates
between the mechanical mode and its environment [84, 85]. The environment is decom-
posed of the thermal bath and a cavity bath. The energy absorption of the mechanical
mode from a specific bath is given by the energy of the respective bath times the coupling
rate to the bath, see Fig. 4.10. The energy emission of the mechanical mode is given by
kBTeffΓeff . In the weak coupling regime g < κ, detailed balance of the rate equations
yields the final phonon occupation

nm =
Γmn

th
m + Γoptnc

Γm + Γopt
(4.56)

where nc = nmin + nth
c (1 + 2nmin) represents the theoretical lower bound for a given

setup [36]. The limit given by nc is essentially composed of two terms. First, the the-
oretical back-action limit, which for sideband detuned pumping ∆ = −ωm is given by
nmin = ( κ

4ωm
)2. This expression represents the main difference to the classical result as

it predicts that, in a dispersive coupling scheme, ground-state cooling requires sideband
resolution. The second term is the finite thermal occupation nth

c of the cavity. For opti-
cal cavities this occupation is negligible at room temperature, while microwave cavities
require dilution refrigeration in order to fulfill nth

c � 1. Thermal occupation can also be
caused by a noisy signal source, which makes careful filtering of the input lines necessary.

4.2.5 Imprecision versus backaction

In this section, we discuss fundamental quantum mechanical measurement limits of con-
tinuous displacement detection. This discussion includes the evaluation of measurement
imprecision noise versus quantum back-action noise at zero temperature (kBT � ~ωm).
Although a discussion in the classical limit (kBT � ~ωm) is sufficient to describe the
results in this dissertation, we provide the quantum mechanical formulation, because our
devices are, in principle, capable to reach the quantum back-action limit. Both these
limits affect the ability to sense minuscule forces with mechanical resonators, which is
discussed in detail in chapter 7.

Quantum mechanical limitations for continuous displacement detection are best il-
lustrated for an optomechanical system that fulfills ωm � κ. When the pump is res-
onant with the cavity ∆ = 0, one typically detects the phase shift of the light field
that is reflected or transmitted from the cavity in a homodyne and heterodyne detection
scheme [46, 48, 45], respectively. The photon shot-noise induces uncertainty on the phase
measurement and results in an imprecision proportional to 1/

√
np. In a weak, continuous

measurement the Heisenberg principle poses the limit

∆X ·∆Y ≥ z2
zp (4.57)

where X and Y are the quadratures of motion of the trajectory z(t) = X cos(ωmt) +
Y sin(ωmt) of the mechanical resonator. An increasingly large photon number decreases
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the measurement imprecision but at the same time imparts random momentum on the me-
chanical resonator associated to the photon shot-noise. This force noise is called quantum
back-action noise. Rephrasing the Heisenberg uncertainty principle in terms of impreci-
sion and back-action noise

Simp
z (ω)Sba

F (ω) ≥ ~2 (4.58)

and denoting Sadd
z as the total noise added by the measurement one arrives at the fun-

damental inequality
Sadd

z (ω) ≥ Szp
z (ω), (4.59)

which is called the standard quantum limit (SQL). At the mechanical frequency the SQL
fulfills the equality. This highlights the fundamental limit of weak continuous displace-
ment detection. In a quantum non-demolition or back-action evasion measurement this
limitation can be overcome by detecting one quadrature with arbitrarily high precision,
while placing the increased uncertainty in the other quadrature [49, 51, 52].

We wish to formulate explicit expressions for the noise contributions in our system,
that is, for a sideband resolved optomechanical system (reflection cavity) being pumped on
the red sideband. For this, we first quantify the white noise background of a displacement
measurement (see cf. Eq. 4.51)

Simp
z =

nadd + 1
2

~ωc

z2
zpκ

2

2κextg2
0

1

np
=
nadd + 1

2

~ωc

~
meffωm

κ

κext

1

Γopt
. (4.60)

The first fraction is a measure for the noise added by the measurement. It includes the
vacuum noise of the electromagnetic field and the noise of the amplifier. Typical, com-
mercial amplifiers (HEMT) add about 20-30 quanta at the detection frequency of a few
GHz. In the context of cavity QED, the necessity of detecting the state of superconduct-
ing quantum bits with no added noise has led to the use of quantum-limited amplifiers
with nadd ≈ 0.5 [105, 106]. These amplifiers are based on Josephson junction arrays
incorporated into superconducting microwave cavities. Typically they are operated in a
phase-insensitive mode with nadd ≈ 0.5. Phase-sensitive detection alternatively allows to
squeeze the electromagnetic vacuum [107].

We use the mechanical susceptibility at the mechanical frequency
|χeff(ωm)|2 = 1/(meffωmΓeff)2 to derive the imprecision force noise

Simp
F = Simp

z /|χeff(ωm)|2 = ~ωmmeff
κ

κext

Γ2
eff

Γopt
(nadd +

1

2
). (4.61)

It is instructive to compare the quantum back-action force noise and the imprecision
force noise for large photon number. For red sideband detuned pumping, the quantum
back-action force noise

Sqba
F = 2~ωmmeffΓeff ≈ 2~ωmmeffΓopt (4.62)

is obtained from the quantum fluctuation dissipation theorem [108, 109] by setting the
effective mechanical mode occupation to zero (the approximation is valid for large np).
At zero temperature, the force sensitivity is approximated by the sum of the imprecision
force noise and the quantum back-action force noise Stot

F = Simp
F + Sqba

F . In the limit
np →∞ we obtain

Simp
F

Sqba
F

=
1

2

κ

κext
(nadd +

1

2
). (4.63)
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We conclude, that in an optomechanical system with an overcoupled cavity (κ ≈ κext)
and a small nadd the quantum back-action force noise is detectable despite of the increase
of the imprecision force noise at high np (see Fig. 4.11).

pump photons np

S
F
(N

2 /
H

z)

SFimp
SFtot

SFqba

Figure 4.11: Comparison between imprecision and back-action for ∆ = −ωm. Force
sensitivity Stot

F = Simp
F + Sqba

F (dark grey). The individual components are the imprecision force
noise Simp

F (turquois) and the quantum back-action force noise Sqba
F (dark yellow). The plots are

done for a hypothetical device with κext = 4
5
κ, nadd = 0.5 and Tbath = 0 (see cf. Fig. 7.1). Note

that we have neglected the force noise associated to the zero-point fluctuations, which is much
smaller than Stot

F for the entire np range.
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Chapter 5

Fabrication and cavity
engineering

In this chapter we present the fabrication and microwave engineering for the supercon-
ducting cavities used in this work. We employ two types of microwave cavities: meandered
microstrip (Fig. 5.1) and coplanar waveguide (CPW) (Fig. 5.2). We first discuss the prin-
ciple design ideas and then proceed to the advantages and disadvantages of the respective
cavity design. We also give detailed insight into the fabrication of the structure of the
suspended graphene mechanical resonator.

5.1 Superconducting structure

5.1.1 Cavity fabrication and PCB

We use a highly resistive silicon wafer (6 kΩcm) with a 295 nm thick, dry chlorinated
thermal oxide from NOVA wafers. The wafers are sputtered with 200 nm Nb, followed
by optical lithography and ion-milling to define the superconducting cavity, the feed lines
and the coarse part of the graphene contact electrodes. These process steps, and the
subsequent wafer dicing, are carried out by STAR cryoelectronics. The chip dimensions
are chosen to be 4.1×7.2 mm2. We use Nb as a cavity material because of the high critical
temperature Tc = 9.2 K that allows the cavity to be tested at liquid helium temperature
and to sustain large pump fields.

For the experiment, the chips are glued (with poly(methyl methcrylate)(PMMA)) into
a printed circuit board (PCB) that is copper coated and contains impedance matched vias
to access the input and output ports of the chip. An excavation on the PCB with the
height and lateral dimensions of the chip guarantees impedance matching between the
PCB and the chip. We adapted the technology of the group of Prof. Andreas Wallraff at
ETH Zurich. For further details on the PCB see [110, 111].

5.1.2 Microwave cavity design

When employing superconducting microwave cavities as detectors for nanomechanical
motion, the main goal is the maximization of the coupling between the cavity mode
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and the mechanical mode. The magnitude of the coupling is governed by the cavity
parameters, but also by geometrical aspects and properties of the mechanical resonator.
We simulate the cavity parameters including resonance frequency ωc, total capacitance
Ctot and coupling capacitance Cext by performing electromagnetic simulations using the
software Microwave Officer from NI AWR. The frame for the simulations is set by the
thickness h = 500µm of the chip, the dielectric constant εr ≈ 11.6 of Si, the thickness
of the thermal oxide, the dielectric constant εr ≈ 3.8 of SiO2 [110], the thickness of the
Nb film and the boundary conditions for a quarter-wavelength cavity. The conductive
back-plane of the chip is defined by the PCB.

To optimize the coupling, we wish to minimize the cavity capacitance C and to maxi-
mize the cavity frequency ωc = 1/

√
LCtot, as can be seen from the single-photon coupling

g0 = zzp
ωc

2Ctot

∂Cm

∂z
. (5.1)

For our devices, we have Ctot = C+Cext +Cm ≈ C. When choosing the cavity frequency,
one needs to find the right trade-off between frequency and practical operability of the
radio-frequency setup. In general, the higher the frequency the higher the requirements for
the used materials and the electronic equipment, and the stronger the signal loss between
different components due to impedance mismatching. We target a cavity frequency of
7.5 GHz, which is directly related to the amplification band (4− 8 GHz) of our cryogenic
HEMT amplifier.

In order to investigate the dependence of the cavity capacitance on different parameters
we simulate different cavity geometries. Here we restrict ourselves to microstrip and CPW
cavities. We obtain the capacitance

C = ∆C · (ωc −∆ωc)2

2ωc∆ωc −∆ω2
c

(5.2)

from the induced cavity frequency shift ∆ωc when inserting a lumped-element capacitor
∆C between the open end of the cavity and ground. The lumped-element capacitor is
chosen much smaller than the cavity capacitance, typically ∆C = 1 fF.

Meandered microstrip cavity

In Fig. 5.1 we show an optical micrograph of a quarter-wavelength meandered microstrip
transmission cavity. The cavity conductor is w = 2µm wide, the distance between con-
ductor lines is 8µm and the ground plane is designed to have a distance of s = 200µm
to the outermost conductor lines (see Fig. 5.1(a)). We choose a narrow cavity conductor
to increase the total inductance and reduce the total capacitance for a given resonant
frequency. The minimum conductor width is limited by the reliability of the fabrication
process. For a desired cavity frequency of ωc/2π = 7.5 GHz we obtain a length of about
L = 9.5 mm, which results in a total capacitance of C ≈ 85 fF and a capacitance per
length C ′ = 18 pF/m.

The cavity is coupled over a capacitive finger to a transmission line, which is con-
nected to our measurement circuitry (see Fig. 5.1(b)). The transmission line is impedance
matched to RL = 50 Ω with dimensions w = 10µm and s = 8µm. We choose two different
external quality factors Qext = 2000 and Qext = 5000, respectively. To accomplish these
values, the capacitive finger has a length of 190µm, a distance to the transmission line
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Figure 5.1: Meandered microstrip transmission cavity. (a) Meandered microstrip cavity
(orange) with Nb graphene contacts (yellow) and capacitive coupling to a transmission line
(blue/purple). The bright grey areas represent the ground plane of the chip, and the dark grey
area the electrically insulating part. The scale bar is 100µm. (b) Zoom-in into region marked by
black dashed rectangle in a. The capacitive finger (orange) couples the cavity to the transmission
line. In this example, the finger has a width of 6µm corresponding to an external quality factor
of Qext = 2000. The scale bar is 10µm.

of 14µm, and a width of 6µm and 2µm, respectively. The main motivation for choosing
these rather low values for Qext [36, 108, 37] is justified by the goal to fabricate devices
that are better than critically coupled Qint > Qext. Testing the cavities before graphene
deposition at T = 4 K, in liquid helium, we obtain Qint ≈ 3000. Although this value is
expected to improve when cooling the cavity to millikelvin temperatures, we use it as an
indicator whether a particular cavity has suffered damage during the fabrication process.

While meandered microstrip cavities achieve low cavity capacitance compared to
coplanar waveguide cavities [112, 34, 35, 36, 39], CPW features distinct advantages. The
electromagnetic field between cavity conductor and ground plane is very well confined at
the surface of the device and CPW is more robust against imperfections in the center
conductor. These imperfections can be caused during the fabrication of the graphene fine
structure and subsequent graphene deposition. The fabrication steps for the graphene
structure are carried out on the cavities after the cavity structure is finished (see below).
Both the imperfections and the worse confinement of the electromagentic field cause the
internal cavity quality factor to strongly vary between samples.

Coplanar waveguide cavity

In Fig. 5.2 appears a microscope image of a coplanar waveguide quarter-wavelength re-
flection cavity (for a discussion on the additional ports, see below). The center conductor
measures a width of w = 10µm, distance to the ground plane of s = 100µm and a length
of L = 4 mm. Compared to standard CPW cavities [112, 35, 39], we choose a large gap
between center conductor and ground plane. Although this reduces some of the bene-
fit of using CPW, the cavities experience only a minimum increase in their capacitance
C ≈ 130 fF (C ′ = 65 pF/m) compared to meandered microstrip. In general, one has to
find the right trade-off between low cavity capacitance and a well defined electromagnetic
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Au graphene contacts

Nb cavity

strongly coupled port

200μm

Nb ground plane

weakly coupled port (A)

weakly coupled port (B)

CLP CLP

Cweak

Cstrong

Figure 5.2: Coplanar waveguide reflection cavity. (c) Superconducting CPW cavity (red
line) with coupling ports and graphene contact electrodes (yellow). On-chip capacitors CLP ≈
1− 2 pF between the graphene contact electrodes and the ground reduce the internal loss of the
cavity. In a reflection measurement, the cavity is probed using the strongly coupled port (blue).
In a transmission measurement, the weakly coupled port is used as the input (Cweak) and the
strongly coupled port as the output (Cstrong). Depending on the particular device the weakly
coupled input port is either the purple or the green port.

field distribution between center conductor and ground plane, which is usually accompa-
nied by an improved internal cavity quality factor. Another advantage of choosing a large
gap manifests itself in the fact that the final cavity-graphene device is immune against
short-circuiting by graphene flakes. This is a crucial advantage as our graphene trans-
fer technique involves transferring not only the target graphene flake, but also several
neighboring flakes that are nearby on the PMMA membrane (see below).

Coplanar waveguide chip layout

We have implemented a few modifications to the design of the CPW to ensure compati-
bility with a Josephson parametric amplifier (JPA) readout and to improve the internal
quality factor of the cavity. For a JPA compatible readout, the cavity is capacitively
connected to both a weakly coupled input port and a strongly coupled output port 5.2.
This layout prevents the saturation of the amplifier by the strong pump tone typically at
ωp = ωc − ωm in a transmission measurement configuration. That is, the pump signal is
attenuated by the cavity by ≈ 40 dB. We choose the coupling rate of the weakly coupled
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port much smaller than the coupling rate of the strongly coupled port so that we can ne-
glect the output signal loss over the weakly coupled port (see Sec. 8.6.3). The separation
between the weak port (green in Fig. 5.2(c)) and the strong port (blue) is large in order
to reduce residual coupling between the input and output ports.

In order to reduce internal losses of the cavity over the graphene electrodes, we fab-
ricate capacitors with CLP ≈ 1 − 2 pF to the ground plane of the chip at the end of the
graphene electrodes. The coupling capacitors are necessary, because parasitic capacitive
coupling between the cavity counter electrode and the graphene contacts causes additional
internal cavity loss once the graphene contacts are connected to resistive DC electronics
outside the chip. These capacitors effectively convert the graphene contacts into a ground
plane for the cavity for frequencies above a certain threshold. We choose the threshold to
be on the order of 1 GHz in order not to loose the ability to drive the mechanical motion
with frequencies on the order of 10 − 100 MHz. With this modification we observe an
improvement of Qint by a factor up to 10 for coupled graphene-cavity devices resulting in
internal quality factors of up to Qint = 10, 000.

In conclusion, the cavities that have shown the best performance when operated with
graphene are CPW cavities with a center conductor-ground plane distance of 100µm and
with capacitor pads at the graphene contacts.

5.2 Graphene structure

5.2.1 Fabrication of graphene contacts and counter electrode

The fine structure of the device, shown in Figs. 5.3(a,b), consists of the cavity counter
electrode and the support electrodes used later on to anchor the graphene flake. The
fabrication of this fine structure is carried out with electron-beam lithography (EBL)
and reactive-ion etching (RIE). In a first EBL/RIE step, the cavity counter electrode is
separated from the support electrodes. As a mask for etching, we use 50-60 nm aluminum
(Al). The Al-mask is structured with EBL using PMMA and etched in 0.2% Tetra-
Methyl-Ammonium-Hydroxide (TMAH) diluted in H2O. Unmasked areas are cleaned
from Al-residues with 30 s ion-milling in an argon (Ar) atmosphere. The Nb is etched
with RIE in a 10 mTorr SF6/Ar atmosphere with a radio frequency (RF) power of 100 W.
In a second EBL/RIE step the cavity counter electrode is thinned down, such that the
height difference between the cavity counter electrode and the support electrodes equals
d0. Optionally, we evaporate 3/40 nm of Cr/Au onto the Nb lines to connect the graphene
flake to normal metal contacts (yellow in Fig. 5.2).

5.2.2 Graphene transfer

To position the graphene flake on the fine structure of the superconducting cavity we em-
ploy a PMMA supported transfer technique pioneered at Columbia [113] (see Fig. 5.4).
For this, we exfoliate graphene sheets from large graphite crystals onto a Si chip covered
by a polymer film consisting of 100 nm polyvinyl alcohol (PVA) and 200 nm PMMA
495K (Fig. 5.4(b)). For the exfoliation of the devices we use either Scotch Tape or poly-
dimethylsiloxane (PDMS) (see device parameters summary in chapters 6-8). PDMS exfo-
liated graphene flakes show less residues on the graphene surface after exfoliation, as we
have observed by AFM imaging. The thickness of the PVA/PMMA film is optimized to
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Figure 5.3: Graphene contacts and cavity counter electrode. (a) False-color optical
micrograph of the fine structure of the device marked by the white dotted rectangles in Figs. 5.1
and 5.2, respectively. The graphene contacts are marked as yellow areas and the cavity electrode
is marked in orange. Dark grey and dark green areas are electrically insulating. The scale bar
is 10µm. (b) AFM image of the fine structure of the device. The circle defined by the edge of
the contact electrodes (beige) defines the suspended area of the graphene membrane. The step
height between the contacts and the cavity counter electrode (light brown) is d0.

give the largest optical contrast of graphene flakes in an optical microscope (Fig. 5.4(b)).
In particular, it allows to calibrate the number of layers of the graphene flake [114, 115].
The solvability of PVA in water is used to separate the Si chip from the PMMA with the
graphene (Figs. 5.4(c-e)). Using a brass slide with a volcano-shaped hole, the membrane
is fished from the water and dried on a hotplate (Fig. 5.4(f)). When drying, the PMMA
membrane gets uniformly stretched across the volcano hole (Fig. 5.4(g)). By mounting the
slide upside down into a micromanipulator, the graphene sheet can be aligned and trans-
ferred onto the pre-patterned superconducting cavity structure (Figs. 5.4(h) and 5.5(a)).
To improve the attachment of the graphene flake to its support, it was shown that it is
important to clamp the graphene membrane on the two sides of its surface [67]. For this,
we crosslink part of the transferred PMMA with a 10, 000 µC/cm2 electron beam dose
(Fig. 5.5(b)). The unexposed PMMA is removed in 80◦C hot N-Methyl-2-pyrrolidone
(NMP), followed by critical point drying of the device. As a result, the graphene is firmly
sandwiched between the support electrode and the cross-linked PMMA (Fig. 5.5(c)). Us-
ing this technique the graphene sheet is less likely to collapse against its counter electrode.
This allows us to increase the yield of the device fabrication. We have successfully low-
ered the separation to d0 = 85 nm for a 3.5 µm diameter graphene resonator, which is
among the best diameter-separation ratios reported for graphene resonators [117, 118].
In addition, the strong attachment between the graphene and its support allows us to
electrostatically tune the equilibrium position by a large amount, as we will see in the
following chapters.
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Figure 5.4: PVA-PMMA based graphene transfer process. (a) Schematic of PMMA
membrane removal from Si chip by dissolving PVA in water. The graphene flake is on top of
the PMMA membrane. Panel is adapted from [113]. (b) Si chip with 100 nm PVA and 200 nm
PMMA layer. The thickness of both polymers is chosen such that the color contrast is similar to
285 nm SiO2. (c) The chip with both polymers and graphene on top is put into water. As long
as the PVA is not dissolved the chip keeps floating. (d) The PVA is slowly dissolving and the
PMMA separates from the chip. (e) Floating PMMA membrane (4 blue points) on the water
surface. (f) Fishing of the PMMA membrane using a brass slide with a volcano shaped hole.
(g) Stretched PMMA membrane over volcano hole. (h) Transfer setup with optical microscope,
micromanipulator and copper-block heater. Figure is adapted from [116]
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c

a b

Figure 5.5: Fabrication process for PMMA-clamped graphene mechanical resonator.
(a) Transfer of graphene with PMMA (blue) onto predefined structure (yellow/green, gray). (b)
Cross-linking part of the transfered PMMA by electron-beam overexposure (red). (c) Schematic
of the final device.
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Chapter 6

Coupling graphene mechanical
resonators to superconducting
microwave cavities

Thid chapter is published in parts in:

Coupling graphene mechanical resonators to superconducting microwave
cavities

P. Weber1, J. Güttinger1, I. Tsioutsios, D. E. Chang and A. Bachtold
Nano Letters 14, 2854 (2014)

In this chapter, we study high-Q graphene mechanical resonators coupled to super-
conducting microwave cavities. After a short introduction on optomechanical systems we
motivate the implementation of graphene into a microwave cavity optomechanics scheme.
We provide a discussion on the parameter engineering of coupled graphene-cavity de-
vices followed by the characterization of the microwave cavity. We study the mechanical
properties of the circular graphene resonators by investigating the driven mechanical vi-
brations. This includes the gate voltage dependence of the resonant frequency, of the
static equilibrium position, and of the optomechanical coupling. Before we conclude the
chapter, we study the non-linear mechanical properties of graphene mechanical resonators
whose static equilibrium position is tuned by an applied gate voltage.

6.1 Introduction

Mechanical resonators based on individual nanotubes and graphene flakes have outstand-
ing properties. Their masses are ultra-low, their quality factors can be remarkably high,
the resonance frequencies are widely tunable, and their equilibrium positions can be var-
ied by a large amount. As a result, the resonators can be used as sensors of mass [119, 19]
and force [27, 20, 120] with unprecedented sensitivities, and they can be employed as
parametric amplifiers [74] and as tunable oscillators [121, 74, 75]. Thus far, all these
scientific applications are accomplished in the classical regime.

1Equal contribution
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Reaching the quantum regime with mechanical resonators has attracted considerable
interest [122, 45]. So far, a handful of groups have been successful in this quest by
demonstrating that the number of vibrational quanta nm can be lowered below one. While
the first demonstration was achieved by cooling a piezoelectric gigahertz resonator in a
dilution refrigerator to millikelvin temperatures [7], the majority of the approaches used
radiation pressure cooling of the mechanical mode [38, 41, 49, 51, 52, 104]. The first, and
two most prominent examples used (i) a superconducting LC-cavity whose capacitance
consists of a mechanically vibrating aluminum membrane [38], and (ii) a photonic crystal
that allows for the coexistence of optical and acoustic modes in a nanobeam cavity [41].
Additionally, there is a rich variety of new types of optomechanical and electromechanical
devices, the goal being to explore new scientific and technological applications when these
devices will enter the quantum regime. These include levitating particles [123, 124, 125],
optically trapped cantilevers [126], and heavy pillars [127] to test the foundations of
quantum mechanics; metal coated silicon nitride membranes to coherently convert radio-
frequency photons to visible photons [101, 57]; microdisks and nanopillars to boost the
single-photon coupling and to enter the ultra strong coupling regime [128, 129]. In this
context, the unique properties of nanotube and graphene resonators are very interesting.

Although nanotubes and graphene have exceptional properties, an outstanding chal-
lenge in approaching the quantum regime has been the development of efficient coupling
to external elements, which would enable motional readout and manipulation. For exam-
ple, while graphene has been coupled to an optical cavity [28], the 2.3% optical absorption
of graphene makes it extremely challenging to reach the quantum regime, due to heating
of the graphene and quenching of the optical cavity finesse. Here, we employ a different
strategy, which is to couple the mechanical resonator capacitively to a superconducting
cavity [34, 35, 36, 108, 37, 39]. This is a promising approach with graphene resonators,
because the two-dimensional shape of graphene is ideal for large capacitive coupling.

In this chapter, we report on the integration of a circular graphene resonator with a
superconducting microwave cavity. We use a transfer technique to precisely position a
high-quality exfoliated graphene flake with respect to a predefined superconducting cavity,
as described in detail in Sec. 5.2.2. We develop a reliable method to reduce the separation
between the graphene membrane and the cavity by tightly clamping the graphene sheet
in between a support electrode and a cross-linked Polymethyl methacrylate (PMMA)
structure. We show that this technique allows us to improve the mechanical stability and
to achieve high mechanical quality factors. By pumping the cavity on a motional sideband,
we are able to sensitively readout the graphene motion. Importantly, by applying a
constant voltage Vg to the graphene, the properties of the optomechanical device can
be dramatically tuned. Namely, large static forces can be produced, allowing to tune
the steady-state displacement, the mechanical resonance frequency, the optomechanical
coupling, and the mechanical nonlinearities. Such a tunability cannot be achieved in other
optomechanical systems.

6.2 Device and setup

Our device (see Figs. 6.1(a-d)) consists of a superconducting microwave cavity, modeled as
a LC-circuit with angular frequency ωc = 1/

√
LCtot ≈ 6.7 GHz, capacitance Ctot ≈ 90 fF,

inductance L ≈ 6.3 nH, and characteristic impedance Zc =
√
L/Ctot ≈ 260 Ω. The

total capacitance Ctot = C + Cext + Cm(z) effectively consists of a cavity capacitance
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6.2. DEVICE AND SETUP

Figure 6.1: Device and measurement setup. (a) False color SEM image of a circular graphene
resonator capacitively coupled to a cavity electrode. The graphene sheet is clamped in between
cross-linked PMMA and graphene support electrodes. (b,c) Optical microscope images of the
superconducting cavity, two electrodes contacting the graphene flake, and a capacitively coupled
transmission line. (d) Schematic cross-section of the mechanical resonator and the cavity counter
electrode. (e) Schematic of the measurement circuit. A coherent pump field at ωp is applied
to the transmission line. The graphene mechanical resonator is driven by a field at ωd and a
constant voltage Vg. The microwave signal from the cavity is amplified at 3 K with a HEMT
amplifier and recorded at room temperature with a spectrum analyzer. The impedance RL is
50 Ω.
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C ≈ 85 fF, a contribution Cext ≈ 5 fF from the external feedline, and importantly, a
contribution Cm(z) ≈ 0.3− 0.4 fF that depends on the graphene position z, which arises
from the graphene acting as a moving capacitor plate. A small displacement z therefore
produces a shift in ωc quantified by the coupling parameter G0 = ∂ωc

∂z , or more general,
by the vacuum optomechanical coupling strength g0 = G0zzp. As a result, the interaction
between the mechanical resonator and the superconducting cavity can be described by
the Hamiltonian Ĥint = ~G0npz [38]. Central to this work is (i) that the low mass of
graphene boosts zzp and thus g0, and (ii) that Cm and g0 can be tuned electrostatically
with Vg.

We start with engineering considerations in order to maximize the coupling g0. When
describing Cm by a plate capacitor and noting that C � Cext � Cm(z) in our device,

we have g0 ≈ ωc

2C
∂Cm(z)
∂z zzp ∝

√
A
ωm

ωc

Cd20
using ∂Cm(z)

∂z ∝ A/d2
0 and zzp ∝ 1/

√
Aωm. Here

A is the area of the suspended graphene region and d0 is the separation between the
graphene membrane and its cavity counter electrode. In order to optimize the coupling
g0, it is crucial to minimize both C and d0. To this end, we utilize a narrow cavity
conductor structured in a meander to increase L, while minimizing the capacitance to
the ground for a given ωc. In order to be able to tune d with Vg, we use a cavity that is
shorted to ground on one side, allowing for a well defined electrical DC potential. The
fundamental mode of the cavity is a quarter wavelength standing wave, with a voltage
node at the shorted end and the largest voltage oscillation amplitudes at the open end.
The graphene membrane is coupled close to the open end of the cavity to harness the
largest cavity fields (see Figs. 6.1(b,c)) [86, 34, 46]. Using this geometry, we achieve a
cavity capacitance of C ≈ 90 fF. This compares favorably with C = 18 fF-1 pF in previous
studies [34, 35, 36, 38, 37, 39]. Note that the lowest values for C have been achieved in
closed-loop cavities, where the mechanical capacitance is incorporated between the two
ends of a half-wavelength cavity [38, 37]. In this geometry the two electrodes of the
mechanical capacitance are shorted over the cavity, so that no static DC potential can be
applied. Compared to the capacitance of a gated half-wavelength cavity [91, 92, 130], the
capacitance of a quarter wavelength cavity is lowered by a factor of two.

In order to detect the vibrations of the graphene resonator, we couple the open end of
the superconducting cavity to a microwave transmission line through the capacitance Cext.
The transmission line is used to pump the superconducting cavity at frequency ωp/2π with
the power Pp,in applied at the cavity input. This relates to the power applied with the
radio-frequency source using the loss coefficient Pp,in = Pin · loss. The transmission line is
also employed to measure the output power Pc,out of the cavity at frequency ωc/2π. Pc,out

is amplified at 3 K by a HEMT with a noise temperature of about 2 K and Pout = Pc,out ·
gain is measured in a spectrum analyzer (see schematic in Fig. 6.1(e) and Sec. 6.10.2).

We use a graphene resonator with a circular shape. This geometry improves the
attachment of the graphene sheet to its support when compared to the doubly-clamped
resonator geometry. As further discussed below, a strong attachment of the graphene
to its support is crucial to be able to lower d0. Another advantage of circular graphene
resonators over doubly-clamped resonators is that the quality factor tends to be larger [68].
In addition, the mechanical eigenmodes of circular resonators are well defined [68, 131].
In particular, it avoids the formation of modes localized at the edges, which were observed
in doubly-clamped resonators [132]. Here we would like to comment as well on the gap
between the two support electrodes, which contact the graphene (Figs. 6.1(a,b)). On the
one hand this gap allows measuring electrical transport through the graphene, on the
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other hand it helps in preventing the collapse of the graphene against the cavity counter
electrode during fabrication of the suspended graphene membrane (see Sec. 5.2.2). The
openings did not show a significant influence on the mechanical behavior in numerical
simulations carried out by Andreas Isacsson and Martin Eriksson at Chalmers.

In this chapter, we present results measured at 15 mK for two different graphene
devices, hereafter called devices 1 and 2. Device 1 is a three layer graphene resonator
with radius R = 1.75 µm and with d0 = 95 nm. The number of layers is determined
from optical contrast measurements [114, 115]. The radius of the counter electrode is
Rg = 1.1 µm (see Fig. 6.1(d)). Device 2 is a four layer graphene resonator with the same
membrane radius, d0 = 135 nm and Rg = 1.25 µm.

6.3 Characterization of the superconducting cavity

We first characterize the properties of the superconducting cavities, that is, the external
coupling and the internal loss by measuring the line shape of the resonance of the cavity.
According to Eq. 4.32, the normalized transmission is given by

S21(∆ωc) = 1− κext/κ

1 + 2i∆ωc/κ
. (6.1)

with κ the total cavity decay rate and κext the external coupling rate of the cavity to the
feedline. By measuring the depth and the width of the transmission dip, κ, κext and κint

are extracted. In Fig. 6.2 we show the measured transmission spectrum of device 1. For
this plot we subtract the background of the measurement containing contributions from
the input and the output lines. From a fit of the spectrum to Eq. (6.1) we extract the
resonance frequency of the cavity ωc/2π = 6.73 GHz and the external κext/2π = 2 MHz
and internal κint/2π = 13.2 MHz decay rates for Vg = −0.434 V.

6.3.1 Influence of graphene resistance on internal cavity loss

A detailed analysis of the circuit, which includes a resistance to describe the losses in
the graphene flake and the DC connections, shows that this additional resistance con-
tributes roughly 20% to κint. In Fig. 6.3(a) we show the equivalent circuit of our mea-
surement setup. In order to model dissipation we include a resistor Rm for the loss in
the graphene and the DC connection. By using a Norton equivalent circuit [112] we con-
vert all contributions into a parallel equivalent RLC circuit (Fig. 6.3(b)) with 1/Rtot =
1/Rext,eq +1/R+1/Rm,eq and Ctot = Cext +C+Cm. We obtain 1/Rext,eq ≈ ω2C2

extRL/2,
I0,eq = VpiωCext, 1/Rm,eq ≈ ω2C2

mRm and we have made use of the fact that in our circuit
ωCextRL � 1 and ω2R2

mC
2
m � 1. The line width of the equivalent parallel RLC circuit

is then given by

κ =
1

CtotRtot
=

1

CtotRL,eq︸ ︷︷ ︸
κext

+
1

CtotR︸ ︷︷ ︸
κcavity

+
1

CtotRm,eq︸ ︷︷ ︸
κm

(6.2)

By substituting the equivalent resistances we get

κext =
ω2

cC
2
extRL

2Ctot
and κm =

ω2
cC

2
mRm

Ctot
.
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Figure 6.2: Cavity characterization. Power transmission |S21|2 through the feedline around
the cavity resonance frequency ωc for two different static voltages applied between the graphene
flake and the cavity electrode.
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Figure 6.3: Modelling the graphene resistance. (a) Equivalent circuit of the measurement
scheme. (b) Norton equivalent circuit where all the contributions are converted into a parallel
RLC circuit.

From the measured external line width we estimate the coupling capacitance using the
above expression to be

Cext =

√
2Ctotκext

ω2
cRL

. (6.3)

Using Ctot = 90 fF, κext/2π = 2 MHz, ωc = 6.7 GHz and RL = 50 Ω we get Cext = 5 fF
in good agreement with the simulated values of Cext = 4 fF for device 1 and Cext = 6 fF
for device 2.

The measured increase of κ with Vg in Fig. 6.2 allows to estimate the resistance Rm

in device 1. Here we note that increasing the voltage Vg statically deflects the graphene
resonator towards the cavity counter electrode and thus increases the graphene-cavity
capacitance. This effect is studied in detail in Sec. 6.6. If we assume that the whole change
of the cavity line width is due to the static displacement of the resonator (∆κ = ∆κm)
we have

Rm =
∆κmCtot

ω2
c (C2

m − C2
m0)

(6.4)

where Cm0 and Cm are the capacitances of the graphene for Vg ≈ 0 V and Vg ≈ −6 V,
respectively. Using ∆κ = ∆κm, ∆κm/2π = 0.8 MHz, Cm = 0.4 fF and Cm0 = 0.35 fF
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(see Eq. 6.8) we obtain Rm ≈ 6 kΩ. Here, the change in the capacitance Cm is derived
from the measured change of the cavity resonance frequency ∆ωc. By inserting the
value for Rm in equation (6.2) we obtain κcavity/2π = 10.8 MHz and κm/2π = 2.4 MHz
with κint = κcavity + κm. The high value of κint is therefore mainly attributed to the
contamination and imperfections of the cavities. Indeed, we have tested the cavity of
devices 1 and 2 at T = 4.2 K before the transfer of the graphene flakes, and we observed
larger κint than what we usually observe in devices processed in the same way.

6.4 Readout of driven mechanical motion

We drive the graphene resonator by applying a constant voltage Vg and an oscillating
voltage V AC

g at a frequency ωd/2π close to ωm/2π so that ωd = ωc − ωp. As a result, the
graphene resonator vibrates at z(t) = z0 cos (ωdt+ φ) with φ the phase difference between
the displacement and the driving force. The cavity output power at ωc, when pumping
the cavity on the red sideband, is (see cf. Eq. 4.41)

Pc,out = Pp,in
κ2

ext

κ2 + 4(ωc − ωp)2
4
g2

0

κ2

〈
z(t)2

〉
2z2

zp

. (6.5)

Figures 6.4(b,c) show the resonance of the driven vibrations for the fundamental modes
of devices 1 and 2. Modes at higher frequencies are observed as well, but they are
hardly detectable. For device 1 we extract the mechanical quality factor Qm = ωm/Γm ≈
105 from the line width of the resonance Γm/2π = 575 Hz. This Qm is comparable
to the largest values reported thus far for graphene resonators [22], showing that our
fabrication process does provide us with mechanical resonators of excellent quality. We
used np = 8000 photons for this measurement, so that Γopt/2π ≈ 0.12 Hz (with g0/2π ≈
8 Hz, see Fig. 6.4(f) and Sec. 6.7). With these parameters, the measurement imprecision,
estimated to be Simp

z = (2.55 pm/
√

Hz)2, is limited by the noise of the low-temperature
HEMT amplifier. With a stronger pump tone np = 106 we are able to achieve Simp

z =

(230 fm/
√

Hz)2. We estimate these values from the detection limit of our readout circuit

SN = −192 dBm/Hz (see Sec. 6.10.3) using Simp
z = SN

~ωc

z2zpκ
2

κextg20

1
np

. For comparison, the

height of the resonance in the power spectral density of the thermal motion at 1 K is
(42 fm/

√
Hz)2 and (5 fm/

√
Hz)2 at 15 mK. We will improve our displacement resolution (i)

by reducing the loss in the cavity (up to a factor 8 improvement in
√
Sz,imp), (ii) by using

a quantum limited amplifier [107] (up to a factor 10 improvement in
√
Sz,imp) and (iii)

by increasing the coupling (with a factor 5 improvement in
√
Sz,imp for g0/2π = 40 Hz).

In device 2, we measure a quality factor ofQm = 17.7×103. We attribute this lowerQm

to the fact that the device was imaged in a scanning electron microscope (SEM) before the
measurements, where the graphene surface got contaminated by amorphous carbon. This
measurement was done with np = 4500 photons, corresponding to Γopt/2π ≈ 0.01 Hz.
If we further increase the pump power we observe a reduction of the quality factor. In
Fig. 6.5(a) we show a measurement of the quality factor in device 2 as a function of the
number of pump photons in the cavity. While the quality factor is roughly constant for
np < 6000, Qm decreases for higher pump fields. Upon increasing the temperature of our
cryostat Qm also decreases, as shown in Fig. 6.5(b). From the comparison between the
two figures we conclude that a pump power of np = 106 has the same influence on the
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Figure 6.4: Graphene device characterization. (a) Measurement scheme: If the pump
frequency is detuned such that ωp = ωc − ωm, anti-Stokes scattering with phonons at rate Γopt

leads to a detectable photon population at ωc. (b,c) Sideband measurement of the mechanical
motion for device 1 with Vg = −2.894 V and V AC

g = 190 nV, and for device 2 with Vg = 3.405 V
and V AC

g = 4.3 µV. Red lines are Lorentzian fits to the data which yield a mechanical quality
factor of Qm = 105 in device 1 and Qm = 17.7 × 103 in device 2. The calculated motional rms
amplitude z is plotted on the right scale. (d,e) Mechanical resonance frequency as a function
of Vg. We have compensated Vg by an offset of 0.434 V for device 1 and 0.395 V for device 2.
In addition to capacitive softening, the static deflection zs of the resonator towards the cavity
counter electrode is considered in order to account for the measurement (red line). (f,g) Single-
photon coupling rate g0 = G0zzp. By including the static displacement zs we are able to model
the single-photon coupling as a function of Vg (red line).
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6.5. GATE DEPENDENCE OF MECHANICAL RESONANCE FREQUENCY

mechanical resonator as heating the cryostat to 200 mK. In order to minimize the heating
it is beneficial to reduce the resistance of the graphene and to improve the heat flow away
from the mechanical resonator.
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Figure 6.5: Heating of the mechanical mode in device 2. (a) Mechanical quality factor
as a function of cavity pump photon number. (b) Mechanical qualtiy factor versus cryostat
temperature.

6.5 Gate dependence of mechanical resonance frequency

The resonance frequency decreases upon increasing |Vg| (see Fig. 6.4(d,e)). This reduction
of the resonance frequency has been observed previously in graphene resonators under
tension [24, 22, 23]. This softening of the resonator is attributed to the change of the
restoring potential of the resonator by the capacitive energy [133, 24, 22, 23]. We model
the mechanical resonator with a circular membrane under tension [81] to quantify the
observed dependence. When neglecting static deflection, the frequency dependence is
given by (see Eq. 3.47)

ωm(Vg) =

√
4.92Ehε

meff
− 0.271

meff

ε0πR2
g

d3
0

V 2
g , (6.6)

with ε the strain in the graphene sheet, E ≈ 1 TPa the Young’s modulus of graphite,
h = ng × 0.34 nm the graphene thickness, and ng the number of graphene layers. From
a fit to the measurements around Vg = 0 (in Fig. 6.4(d,e)), we extract the effective mass
meff = 13 · 10−18 kg and the strain ε = 0.036% for device 1, and meff = 36 · 10−18 kg and
ε = 0.024% for device 2. The obtained mass for device 1 is ν = 2.2 times larger than the
total effective mass of a three-layer graphene device and the mass for device 2 ν = 4.5
times larger than the total effective mass of a four-layer graphene device. The larger ν for
device 2 might be attributed to the amorphous carbon deposited during SEM inspection.
The tension is intermediate compared to previous measurements, where ε ranges from
0.002% to 1% [27, 68, 22, 29].
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6.6 Static deflection of the graphene membrane

In order to account for the variation of ωm for large Vg in Fig. 6.4(d,e), the static deflection
of the graphene sheet towards the cavity counter electrode has to be considered. The static
displacement of the center of the membrane zs is given by (see cf. Eq. 3.38)

zs ≈
ε0R

2
g

8Ehεd2
0

V 2
g = csV

2
g (6.7)

for small displacement compared to d0. Although the renormalization of the mechanical
frequency due to static displacement cannot be solved exactly, as an approximation we
can include zs in Eq. (6.6) using d = d0 − zs, with d0 the separation for Vg = 0. We get
a good agreement for ωm(Vg) between the measurements and theory without any fitting
parameter over the Vg range shown in Fig. 6.4(d,e). The effect of zs on the shift in ωm

is 42% at Vg = −6 V for device 1 and 10% at Vg = 4 V for device 2. The expected
variation of zs is plotted in Fig. 6.6(a). For device 1, the approximation of small static
deflections is well valid up to Vg ≈ 3.5 V where zs = 5 nm and 2zs/d = 0.1� 1. At large
Vg we underestimate the static displacement by not including higher order corrections of
the electrostatic force. On the other hand we also underestimate the mechanical force
when neglecting nonlinear effects as described below. In device 2 zs ≈ 7.5 nm with
2zs/d = 0.1 � 1, which corresponds to Vg ≈ 5 V. The assumption of constant strain at
moderate gate voltages is justified by analysing the strain induced by the static deflection.
At Vg ≈ 6 V the additional strain induced by the static deflection of 10 nm (in device 2)
is given by εs = 2 · 10−5 � εinit, significantly smaller than the initial strain.

a b
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2 2

Figure 6.6: Static displacement and extrem electrostatic softening in device 2. (a)
Static displacement of the center of the membrane calculated from Eq. (3.38) with constants
cs = 0.405 nm/V2 for device 1 and cs = 0.287 nm/V2 for device 2. (b) Mechanical resonance
frequency as a function of Vg.

The softening of the graphene resonator becomes enormous upon further increasing Vg,
with a reduction of ωm by a factor of three down to ≈ 10 MHz as shown in Fig. 6.4(b) for
device 2. This reduction of ωm is large compared to that measured in previous works [133,
24, 23]. Such a large reduction is expected when the capacitive force becomes comparable
to the restoring force of the resonator. When the two forces are equal, ωm drops to
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zero and the resonator collapses against the counter electrode [134]. Even though further
work is needed to understand the quantitative dependence of ωm on Vg, it reveals that the
graphene resonators we fabricate can bend by a large amount without being ripped apart
due to the large induced strain and without sliding with respect to the anchor electrodes.

The static displacement of the graphene sheet also changes the resonance frequency
of the microwave cavity upon varying Vg. As the graphene moves closer to the cavity
counter electrode, the total capacitance of the cavity increases, so that the cavity fre-
quency decreases. For ∆Vg = 6 V the observed decrease in the resonance frequency
∆ωc/2π ≈ 2 MHz (see Fig. 6.3) is equivalent to a change in cavity capacitance of
∆C ≈ 50 aF. The change in resonance frequency can be well explained with an increased
graphene-cavity capacitance due to static displacement

∆Cm =

∫ 2π

0

dφ

∫ Rg

0

rdr
ε0

d0 − ξs(r)
− Cm0 (6.8)

where ξs(r) = zs(Vg) · (1− r2/R2) is the static mode shape of the pulled down graphene.
If we calculate the capacitive change using zs(Vg) = 15 nm for Vg ≈ 6 V (Fig. 6.6(a)) we
obtain ∆Cm = 49 aF. This value is in excellent agreement with the value of ∆C estimated
from the change in ωc.

6.7 Optomechanical coupling

Our device layout allows us to get large couplings g0 between the mechanical resonator
and the superconducting cavity (Figs. 6.4(f,g)). We extract

g0 = zzp

√
Pc,out(ωc)

κ2

np~ωcκext 〈z2〉
(6.9)

from the measurements of the response of driven vibrations at ωd = ωm using Eqs. (4.49)
and (6.5) where

〈
z(t)2

〉
= [∂zCm ·VgV

AC
g Qm/(meffω

2
m)]2. Remarkably, g0 gets larger upon

increasing |Vg| for device 1. This tunability of g0 is attributed to the static deflection of
the graphene sheet. To model the dependence of g0 = G0zzp on the voltage Vg, we have
to account for the Vg dependence of both G0 and zzp. For the estimation of G0(Vg) we
use the calculated value of the equilibrium position zs (Fig. 6.6(a)) to substitute d0 by
d = d0 − zs in the calculated graphene-cavity capacitance Cm

G0(Vg) =
ωc

2Ctot

∂Cm(Vg)

∂z
≈ ωc

2C

0.433ε0πR
2
g

[d0 − zs(Vg)]2
. (6.10)

The factor 0.433 is a correction factor that arises from the effective mass modeling when
calculating the capacitance Cm (see Sec. 3.2.3). The increase of the zero-point motion is
accounted for by calculating zzp as a function of Vg from the measurement of the resonance
frequency ωm as a function of Vg in Figs. 6.4(c,d)

zzp(Vg) =

√
~

2meffωm(Vg)
. (6.11)

When incorporating the effect of the static displacement into Cm, we get a good agreement
between the expected g0 = ωc/(2C) · ∂zCm and the measurements, using C = 75 fF and
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100 fF for devices 1 and 2, respectively (red lines in Fig. 6.4(f,g)). These values of C
agree well with C = 90 fF estimated from simulations. The obtained coupling rates
g0 compare favorably with previous experiments carried out with mechanical resonators
made from other materials. Indeed, the coupling was g0/2π ∼ 1 Hz in works with cavity
geometries similar to ours [94, 36, 39]. Larger values were achieved with closed-loop
cavities (g0/2π = 40 and 210 Hz) but this geometry does not allow one to apply Vg between
the mechanical resonator and a counter electrode as discussed above [38, 37].

6.8 Nonlinearities, symmetry breaking

Now, we investigate in device 2 how the strong tunability of the graphene equilibrium
position affects the nonlinear response of the mechanical resonator. For this, we mea-
sure Pout as a function of ωd as in Figs. 6.4(b,c) in order to obtain the response of the
vibrational amplitude z0(ωd) for large driving forces at different Vg (Figs. 6.7(a-c)). In-
terestingly, we are able to tune the sign of the Duffing nonlinearity from a hardening
behavior at low Vg (Fig. 6.7(a)) to a softening behavior at high Vg (Fig. 6.7(c)). At an
intermediate Vg of about 3.4 V, we are able to cancel the Duffing nonlinearity, that is, the
resonant frequency remains roughly constant upon varying the driving force (Fig. 6.7(b)).
We quantify the Duffing nonlinearity from the critical displacement amplitude zcrit above
which the response gets bistable. For a Duffing resonator with linear damping, the ef-
fective Duffing constant αeff is related to zcrit by αeff = 8

3
√

3
meffω

2
m/(Qmzcrit) (see cf.

Eq. 3.21). Figure 6.7(d) shows that αeff is positive at low Vg and becomes negative at
large Vg. This dependence can be attributed to the symmetry breaking of the mechanical
motion induced by static deflection [135, 136].

To prove this, we consider quadratic and cubic nonlinear terms in the equation of
motion (without dissipation and drive)

meff z̈(t) = −meffω
2
mz(t)− β0z

2(t)− α0z
3(t) + Fel (6.12)

with β0 and α0 two constants, and Fel = 1
2∂zCmV

2
g the electrostatic force. With the

separation ansatz z(t) = zs + zf(t) and the Taylor-expansion of Fel we get

meff z̈f(t) = −
[
meffω

2
m,0zs + β0z

2
s + α0z

3
s −

1

2
∂zCm(zs)V

2
g

]
−
[
meffω

2
m,0 + 2β0zs + 3α0z

2
s −

1

2
∂2
zCm(zs)V

2
g

]
︸ ︷︷ ︸

ktot

zf(t)

−
[
β0 + 3α0zs −

1

4
∂3
zCm(zs)V

2
g

]
︸ ︷︷ ︸

βtot

z2
f (t)

−
[
α0 −

1

12
∂4
zCm(zs)V

2
g

]
︸ ︷︷ ︸

αtot

z3
f (t)

From the first bracket we can estimate the static displacement by neglecting the nonlinear
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0

Figure 6.7: Control of nonlinear behaviour of mechanical vibrations. (a-c) Dependence
of the vibrational amplitude z0 in device 2 on the drive frequency for different V AC

g in each plot.
In a and c, V AC

g = 3 µV - 31 µV. In b V AC
g = 1.9µV − 31µV . The onset of bistability is

determined to be at zcrit = 360 pm for (a) and at zcrit = 900 pm for c. (d) Effective Duffing
parameter αeff as a function of Vg. The red line is a plot of Eq. (6.13) with cs = 0.65 nm/V2

and α0 = 1.9 · 1015 kg·m−2s−2.
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contributions and assuming a similar deflection profile as the fundamental oscillation

zs ≈ 1

2meffω2
m,0

∂zCmV
2
g

≈ 0.433

2meffω2
m,0

ε0πR
2
g

d2
V 2

g

=
ε0R

2
g

7.21Td2
V 2

g .

Compared to the result of the direct calculation with the static modeshape in Eq. (3.38)
there is a small difference with a factor 7.21 instead of 8 in the denominator. For small
nonlinear amplitudes we transform the quadratic and cubic nonlinear terms in a single
cubic term [137]

αeff ≈ αtot −
10

9

β2
tot

meffω2
m

≈ α0 −
1

12
∂4
zCmV

2
g −

10

9meffω2
m

(
3α0zs −

1

4
∂3
zCmV

2
g

)2

≈ α0 −
1

12
∂4
zCmV

2
g −

10

144meffω2
m

∂3
zC

2
mV

4
g −

10

meffω2
m

α2
0z

2
s

where α0 is the duffing nonlinear constant when Vg = 0 V; α0 could have a geometrical
origin [78]. We assumed that ∂nz Cm(zs) ≈ ∂nz Cm(zs = 0) and that β is small (no symmetry
breaking visible at small Vg). With α0 ∼ 2 × 1015 kg s−2m−2 and Vg = 5 V, the second
and the third terms of the last equation are ∼ −6 × 1012kg s−2m−2 and ∼ −6 × 1011kg
s−2m−2, respectively. This is much smaller than the fourth term (∼ −4×1015kg s−2m−2).
Hence we can write

αeff ≈ α0 −
10

meffω2
m

α2
0z

2
s . (6.13)

The fit of Eq. (6.13) to the measurement yields cs = 0.65 nm/V2 and α0 = 1.9 ·
1015 kgm−2s−2 (red line in Fig. 6.7(d)). This value of cs is consistent with that ex-
pected from Eq. (3.38). With the obtained α0 it is also possible to analyze the nonlinear
contribution in ktot. For zs = 17 nm, in device 2, the nonlinear contribution equals the
linear contribution as 3α0z

2
s = meffω

2
m = 1.6 kg·s−2. The measured values for the Duffing

nonlinearities are within the range of αeff = 1.74 ·1012 kg·m−2s−2 to 7.16 ·1017 kg·m−2s−2

observed in other graphene resonators [22, 23] and are compatible with the observation of
intermediate strain. The sign change of the Duffing nonlinearity due to static deformation
is a unique property of graphene and nanotube resonators [138].

6.9 Conclusions and outlook

The prospects to reach the quantum regime with graphene resonators are promising. For
this, it is illustrative to compare the figures of merit achieved here to those reported by
Teufel et al. [38], which demonstrated ground-state cooling with a superconducting cavity.
In the device 1 of our work, we measure g0/2π ≈ 15 Hz with np = 8000, ωm/2π ≈ 57 MHz,
Qm = 105 and κint/2π = 13 MHz, while the parameters of Teufel et al. are g0/2π ≈
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200 Hz, np = 4000, ωm/2π ≈ 10 MHz, Qm = 3.5×105 and κint/2π = 40 kHz. As discussed
above, an obvious way to improve κint is to fabricate cavities with less contamination
and imperfections. κint can then be further reduced by lowering the resistance of the
graphene flake. This can be achieved for instance by selecting thicker graphene flakes or
electrostatically doping the graphene. Minimizing the graphene resistance, together with
increasing the area of the interface between the graphene and the electrodes, is beneficial
for diminishing Joule heating at high pump power. In order to increase g0, we will reduce
d further by fabrication and graphene pulling. We should reach g0/2π ≈ 250 Hz with
d = 30 nm. An alternative route to increase g0 is to enhance the coupling using a cooper-
pair box [139, 140].

In conclusion, we have reported devices where a graphene resonator is coupled to a
superconducting cavity. The tunability of these devices, in combination with the large
graphene-cavity coupling, constitutes a promising approach to study quantum motion.
The large reduction of the resonance frequency of the graphene resonator observed here
is interesting to enhance the zero-point motion and to increase the effect of mechanical
nonlinearities [141, 142, 143]. The tunability of the resonance frequency with Vg is suitable
for parametric amplification and quantum squeezing of mechanical states [144]. In these
graphene-cavity devices, the optomechanical coupling can be varied not only with the
number of pump photons but also with Vg. Interestingly, the tuning of the coupling with
Vg can be made faster than that with np, since the inverse of the cavity line width poses
an upper limit on how fast the photon number inside the cavity can be changed. Because
the mass of graphene is ultra-low, its motion is extremely sensitive to changes in the
environment. It will be interesting to couple the quantum vibrations of motion to other
degrees of freedom, such as electrons and spins.

6.10 Additional information

6.10.1 Device Parameters

Important parameters of the measured devices are summarized in Table 6.1.

6.10.2 Measurement setup

Figure 6.8 shows a detailed schematic of the measurement setup. We perform the mea-
surements in a Triton 200 dilution refrigerator from Oxford instruments with a base
temperature of 15 mK. The RF-lines are UT85-SS-SS coaxial cables from room temper-
ature to the 700 mK stage and superconducting UT85-Nb-Nb coaxial cables from 700 to
15 mK. The input lines are attenuated by cryogenic attenuators to decrease the thermal
electromagnetic noise from room temperature. The attenuation is 10 dB at T = 47 K,
20 dB at T = 3 K, 6 dB at T = 700 mK and 20 dB at T = 15 mK where we use for the
last attenuation step an Arra 5191-20 20 dB directional coupler to physically interrupt
the central part of the coaxial line [38]. The circulators are CTH0408KC from Quinstar.
We use two circulators at the output line to shield the sample from the thermal noise of
the higher temperature stages.

The source used to apply the constant voltage Vg is a Keithley 2400. The DC line is
filtered with π-filters at room temperature and a custom made RC filter at the mixing
chamber. A bias tee ZFBT-6GW from Minicircuits connects the Vg line with the coaxial
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Device 1 Device 2

Cavity microstrip meander microstrip meander
ωc/2π (0 V) 6.73 GHz 6.62 GHz
κtot/2π (0 V) 15.2 MHz 17 MHz
κext/2π (0 V) 2 MHz 2.1 MHz
κint/2π (0 V) 13.2 MHz 14.9 MHz
Graphene device
Exfoliated with Scotch tape Scotch tape
Drum radius 1.75 µm 1.75 µm
Cavity electrode radius 1.1 µm 1.25 µm
Graphene cavity- 95 nm 135 nm
electrode separation
Graphene contacts Nb Nb
ωm/2π 58 MHz (0 V) 33.9 MHz (0 V)
Effective mass 6.6×meff,0 18×meff,0

Coupling
g0/2π 7 Hz (0 V) 3 Hz (0 V)

Table 6.1: Device parameters. The cavity is characterized by its resonance frequency ωc and
its total coupling rate κtot, which is composed of the external coupling rate κext and the internal
loss rate κint. The voltage in brackets is the DC electrode voltage Vg at which the parameter
is measured. The dimensions of the mechanical resonators are measured with an atomic force
microscope. The initial separation of the graphene drum and the gate electrode is estimated
from the height difference between the graphene contact electrodes and the gate electrode. The
resonance frequency of the lowest mechanical mode is ωm/2π. The effective mass meff of the
few layer graphene drums is given in terms of the effective mass of a single layer graphene drum
meff,0 ≈ 2 fg. The single photon coupling g0 is calibrated from the driven motion as described
in Sec. 6.7.

cable used to apply the low frequency drive. In contrast to the directional coupler em-
ployed for the thermalization of the pump line, we use a 20 dB cryogenic attenuator at
15 mK on the drive line.

The cavity pump tone at frequency ωp is generated with an Agilent E8257D PSG
microwave source. An Agilent N5181A microwave source is used to generate the MHz
frequency drive at ωd. The HEMT is a LNF-LNC4 8A from Low Noise Factory. We use an
Agilent MXA N9020A with integrated preamplifier to measure the output spectrum. We
characterize the properties of the superconducting cavity with a vector-network analyzer
(VNA) ZVB14 from Rohde&Schwarz.

6.10.3 Calibration

To relate the externally applied RF power and the measured RF power to the actual fields
at the sample, a careful calibration of the attenuation and gain in the setup is needed. The
RF-input lines are attenuated at different temperature stages in the cryostat to shield the
device from electromagnetic noise and to thermalize the lines. The total loss in the lines
is the sum of the contributions from the attenuators and the loss in cables and connectors.
In the input lines of the cold cryostat we measure a total attenuation of loss(ωd) = 57 dB
in the 10-100 MHz range and loss(ωc) = 64 dB around ωc/2π = 6.7 GHz. The output of
the cavity is shielded by two circulators that are operated as isolators at 15 mK, and then
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3 K

Figure 6.8: Measurement setup with cryogenic wiring.

amplified by a low-noise amplifier at 3 K with gain G(ωc) = 43 dB and noise temperature
Tnoise ≈ 2 K measured by the factory at 10 K.

We measure a detection limit of SN,SA = −157 dBm/Hz in our spectrum analyzer
(SA). This noise floor is limited by the input noise of the amplifier. From kBTnoise(G −
loss4K−SA) = −157 dBm we can extract G − loss4K−SA = 38.5 dB and loss4K−SA =
4.5 dB. The total measured gain of the output line is gain = G−loss4K−SA−losssample−4K ≈
35 dB with losssample−4K ≈ 3.5 dB which is reasonable considering the losses in the two cir-
culators and the line at the level of the sample. Hence we are able to resolve noise powers
of SN > −157 dBm/Hz−35 dB= −192 dBm/Hz in the transmission line of the sample. We
measure a total transmitted power of |S21|2 = −29.5 dB in device 1 and |S21|2 = −28.5 dB
in device 2, from the output of the RF source to the input of the spectrum analyzer around
ωc. This values agree well with our calibration, |S21|2 = −loss+ gain = −29 dB.
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Chapter 7

Force sensitivity of multilayer
graphene optomechanical
devices

This chapter is be published in parts in:

Force sensitivity of multilayer graphene optomechanical devices
P. Weber, J. Güttinger, A. Noury, J. Vergara-Cruz and A. Bachtold

Nature Communications 7, 12496 (2016)

In this chapter, we quantitatively investigate the force sensing performance of multi-
layer graphene mechanical resonators coupled to superconducting microwave cavities. We
study how the measurement imprecision in the measurement of the vibrations affects the
capability to sense small thermal forces. In particular, we illustrate the interplay between
thermal force noise and imprecision force noise as a function of pump power when the
superconducting cavity is pumped on the red sideband. In order to precisely study these
effects we perform a thorough characterization of the optomechanical device properties,
including the thermal calibration of the mechanical phonon occupation, the optomechani-
cal single-photon coupling, and the tunability of the single-photon coupling by an applied
static gate voltage. Additionally, we use the enhanced single-photon coupling at high gate
voltage to perform sideband cooling experiments. We conclude the chapter with a discus-
sion on thermal heating of the graphene resonators by cavity photons and the influence
of mechanical resonance frequency fluctuations on the force sensing performance.

7.1 Introduction

Considerable effort has been devoted to developing mechanical resonators based on low-
dimensional materials, such as carbon nanotubes [145, 10, 119, 146, 147, 148, 19, 20,
149, 30, 150, 151], semiconducting nanowires [121, 152, 153, 154, 155, 156, 157, 158, 159,
160], graphene [27, 24, 22, 161, 162, 163, 164], and monolayer semiconductors [117, 165,
109]. The specificity of these resonators is their small size and their ultra-low mass,
which enables sensing of force and mass with unprecedented sensitivities [30, 19]. Such
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high-precision sensing capabilities hold promise for studying physical phenomena in new
regimes that have not been explored thus far, for instance, in spin physics [5], quantum
electron transport [166, 167], light-matter interaction [157] and surface science [168, 169].
However, the transduction of the mechanical vibrations of nanoscale mechanical systems
into a measurable electrical or optical output signal is challenging. As a result, force and
mass sensing is often limited by the imprecision in the measurement of the vibrations,
and cannot reach the fundamental limit imposed by thermo-mechanical noise.

A powerful method to obtain efficient electrical readout of small resonators is to am-
plify the interaction between mechanical vibrations and the readout field using a supercon-
ducting microwave cavity [163, 162]. Increasing the field in the cavity improves the read-
out sensitivity and eventually leads to dynamical back-action on the thermo-mechanical
noise. This effect has been studied intensively on comparatively large micro-fabricated
resonators, resulting for instance in enhanced optomechanical damping [31, 170], ground-
state cooling of mechanical vibrations [108, 41], and displacement imprecision below the
standard quantum limit [46, 47]. Another phenomenon often observed when detecting
and manipulating the motion of mechanical resonators is the induced heating that can
occur through Joule dissipation and optical absorption [163, 171]. Heating is especially
prominent in tiny mechanical resonators because of their small heat capacity. An ad-
ditional difficulty in characterizing mechanical vibrations is related to the fluctuations
of the mechanical resonant frequency, also called frequency noise, which are particularly
sizable in small resonators endowed with high quality factors Q [30].

In this chapter, we study the force sensitivity of multilayer graphene mechanical res-
onators coupled to superconducting cavities. In particular, we quantify how the force
sensitivity is affected by dynamical back-action, Joule heating, and frequency noise upon
increasing the number of pump photons inside the cavity. We demonstrate a force sensi-
tivity of (Stot

F )1/2 = 390± 30 zN Hz−1/2, of which ≈ 50% arises from thermo-mechanical
noise and ≈ 50% from measurement imprecision. The force sensitivity tends to be limited
by measurement imprecision and frequency noise at low pump power, and by optome-
chanical damping and Joule heating at high pump power.

7.2 Thermal force noise and imprecision force noise

A fundamental limit of force sensing is set by the thermo-mechanical noise of the eigen-
mode that is measured. According to the fluctuation-dissipation theorem, the associated
thermal force noise is white and is quantified by

Smode
F = 4kBTmodemeffΓspectral

eff (7.1)

where Tmode is the temperature of the mechanical eigenmode, and meff is its effective
mass [4, 20]. This force noise is transduced into a mechanical resonance with line width

Γspectral
eff and height Smode

z in the displacement spectrum (Fig. 7.1). Importantly, Eq. 7.1
shows that the low mass of graphene decreases the size of the thermo-mechanical force
noise. However, a drawback of tiny resonators with high Q-factors is their tendency to
feature sizable frequency noise that broadens the resonance and, therefore, increases the
size of the force noise [30, 172].

Measuring mechanical vibrations with high accuracy is key to resolving small forces,
since the imprecision in the measurement contributes to the force sensitivity. The force
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Figure 7.1: Mechanical displacement and force sensitivity. (a) Mechanical displacement
spectrum Sz close to the mechanical resonance frequency ωm/2π. The total displacement spec-
tral density Stot

z at ωm is the sum of the displacement noise Smode
z (ωm) and the displacement

imprecision Simp
z . (b) Corresponding force sensitivity Stot

F = Smode
F + Simp

F (dark grey). The
individual components are the thermal force noise Smode

F (dark yellow) and the imprecision force
noise Simp

F (turquois), given by Eqs. 7.1 and 7.2, respectively. The quantum back-action noise is
neglected for simplicity. For the plots most of the parameters are those of device B, but we esti-
mate the mass assuming that the graphene flake is a single layer. Further we choose nadd = 0.5,
Tbath = 0.015 K, and np = 2 · 105 in a (see text).

sensitivity Stot
F is given by the sum of the thermal force noise Smode

F and the impreci-

sion force noise Simp
F , where the latter is the result of the white noise background with

strength Simp
z in the displacement spectrum (Fig. 7.1(a)). The challenge with mechanical

resonators based on low-dimensional systems is to reach the limit Simp
F < Smode

F . When
detecting the motion of graphene resonators with microwave cavities, one typically oper-
ates in the resolved sideband limit [163, 162], where the cavity decay rate κ is significantly
smaller than the mechanical resonance frequency ωm. This is interesting for force sensing,
because pumping on the red sideband allows to enhance the mechanical damping rate,
and therefore to reduce the harmful effect of frequency noise, as we will discuss below. In
addition, this allows to increase the measurement bandwidth, as is often done in magnetic
resonance force microscopy experiments [5] while keeping Smode

F constant. The drawback
of red sideband pumping compared to pumping at the cavity resonant frequency is an
increased imprecision force noise at high pump powers. In the red-detuned pump regime,
the measurement imprecision contributes to the force sensitivity by the amount

Simp
F = ~ωmmeff

κ

κext

(
Γspectral

m + 4npg
2
0/κ
)2

4npg2
0/κ

(
nadd +

1

2

)
, (7.2)

with Γspectral
m the intrinsic line width of the resonator. Figure 7.1(b) shows the pump

power dependence of the force sensitivity Stot
F expected in the absence of Joule heating

and frequency noise. The increase of Stot
F at high np is due to the dynamical back-action,

which enhances the mechanical line width by Γopt = 4npg
2
0/κ.
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7.3 Device and setup

Our devices consist of a suspended graphene mechanical resonator capacitively coupled
to a superconducting Nb cavity (see Fig. 7.2(a-c)). The graphene resonators are circular
with a radius of R ≈ 1.6µm. Here we present data of 2 devices. The fundamental mode
of devices A and B vibrates at ωm/2π = 67 MHz and ωm/2π = 46 MHz at Vg = 0 V,
respectively. Here Vg is the constant voltage applied between the graphene flake and the
superconducting cavity. The separation between the graphene resonator and the cavity
counter electrode at Vg = 0 V is assumed to be equal to the hole depth, which is typically
d0 ≈ 85 nm in our devices as measured with AFM. For the superconducting cavity we
choose a single-port, quarter wavelength, coplanar waveguide reflection geometry. We
characterize the cavity by plotting the coefficient |S11|2 and the phase of the reflected
signal when sweeping the frequency over the cavity resonance at ωc/2π = 7.416 GHz (see
Figs. 7.2(d,e)). The external coupling rate κext and the internal loss rate κint are extracted
by fitting the measurement with the line shape expected for a one-port reflection cavity
(see cf. Eq. 4.25)

S11 =
κint − κext − 2i(ω − ωc)

κint + κext − 2i(ω − ωc)
, (7.3)

which yields κint/2π = 950 kHz and κext/2π = 850 kHz at Vg = 3.002 V for device A.
The rates of Device B are κint/2π = 800 kHz and κext/2π = 1700 kHz at Vg = 0 V (see
Sec. 8.6.3).

We detect the vibrations of the graphene resonator with high precision by pumping
the cavity with an electromagnetic field, and probing its mechanical sideband. We usually
set ωp = ωc − ωm and probe the electromagnetic field that exits the cavity at ωc. We
measure the device at the cryostat base temperature of 15 mK if not stated otherwise. The
cavity output field is amplified with a high electron-mobility-transistor (HEMT) mounted
at the 3 K stage of the cryostat. Mechanical noise spectra are detected with a spectrum
analyzer at room temperature. For a detailed description of the measurement setup see
Sec. 7.10.2. In addition, we perform ring-down measurements to determine the mechanical
dissipation rate Γdecay

eff of the graphene resonator. Spectral measurements are not suitable

for quantifying reliably Γdecay
eff because of the potentially substantial frequency noise of

graphene resonators. The implementation of ring-down measurements is described in
Sec. 8.6.2.
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Figure 7.2: Device and characterization. (a) False-color SEM image of the device. The
cavity is coloured in dark yellow. The graphene flake is clamped in between niobium support
electrodes (grey) and cross-linked PMMA (turquois). The scale bar is 5µm. (b) Schematic
cross-section of the graphene resonator along the white dashed dotted line in a. (c) Schematic of
the measurement circuit. The graphene mechanical resonator is coupled to the superconducting
LC cavity through the capacitance Cm. The separation d between the suspended graphene flake
and the cavity counter electrode is controlled by the constant voltage Vg. The cavity is pumped
with a pump tone at ωp and the output signal is amplified at 3 K. (d) Reflection coefficient
|S11|2 and (e) reflected phase ∆φ11 of the superconducting cavity of device A at Vg = 3.002 V.
The dark yellow lines are fits to the data using κint/2π = 950 kHz and κext/2π = 850 kHz using
Eq. 7.3. (f) Driven vibration amplitude of the graphene resonator of device A as a function
of drive frequency. The driving voltage is 22 nV and Vg = 3.002 V. The dark yellow line is a
lorentzian fit to the data.
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7.4 Gate dependence of mechanical frequency

Deflecting the graphene membrane by tuning |Vg| results in the reduction of both ωc and
ωm (Figs. 7.3(a,b)). The reduction of ωm/2π is particularly large as it decreases from
67 MHz at Vg = 0 V to below 40 MHz at Vg = 3.055 V for device A. This decrease is
attributed to the electrostatic softening of the graphene spring constant [22, 133]. From
the comparison between the measurement and the expected electrostatic softening for
weak resonator deflection [71]

ωm =

√
ωm,0 −

1

2meff
(∂2

zCm)V 2
g (7.4)

with ∂2
zCm obtained by differentiating Eq. 7.8 (see Sec. 7.6 for details), we get meff =

3.3 · 10−17 kg (solid line of Fig. 7.3(b)). This value differs from meff = 4.9 · 10−17 kg
estimated from the dimensions of the resonator measured by AFM. Both methods may
lead to an error in the estimation of meff , as AFM in air can overestimate the graphene
thickness due to electrostatic forces induced by humidity adsorbed on the surface [173],
while the mass estimated from electrostatic softening depends on the assumed mode
shape, which is not well known. Therefore, we use meff = (4.1± 0.8) · 10−17 kg for device
A, which corresponds to approximately 25 layers. For device B we obtain consistently
5-6 layers (meff = (9.6± 0.8) · 10−18 kg), both by measuring the dependence of ωm on Vg

and by optical contrast measurements [114, 115].
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a

Δ

b

Figure 7.3: Gate dependence of cavity frequency and mechanical frequency. (a) Change
∆ωc of the resonant frequency of the superconducting cavity. The frequency at Vg = 0 V is
ωc,0/2π = 7.42 GHz. (b) Resonant frequency ωm/2π of the graphene resonator as a function of
Vg. The black line is the Vg dependence of ωm expected from electrostatic softening.

7.5 Optomechanical device properties

In order to calibrate the phonon occupation nm, the single-photon optomechanical cou-
pling g0, and the cavity pump photon number np, we perform the following three charac-
terization measurements on both devices. (i) The measurement of the thermal resonance
as a function of cryostat temperature Tcryo. This allows for the calibration of nm by relat-
ing the integrated area of the thermal resonance to Tcryo. (ii) The measured transmitted
power between the input port and the output port of the cryostat several MHz away from
the cavity resonance frequency, which quantifies the product of loss · gain. The product
loss · gain together with the measurement in (i) yield g0. (iii) Knowing g0, the measured
mechanical decay rate of the graphene resonator as a function of the pump power applied
at the input port of the cryostat allows us to precisely calibrate np.

7.5.1 Mechanical mode occupation

In order to calibrate the mechanical phonon occupation nm and the mode temperature
Tmode, we measure the mechanical thermal motion spectrum while varying the cryostat
temperature [108]. This is done by pumping the cavity with a weak pump tone on the
red sideband (so that the optomechanical scattering rate Γopt is much smaller than the
intrinsic dissipation rate Γ decay

m of the graphene resonator), and measuring the area of
the thermal mechanical resonance at ωc. In thermal equilibrium, the area is linearly
proportional to the motional variance

〈
z2
〉

and thus directly linked to the temperature

of the mode Tmode through the equipartition theorem 1/2meffω
2
m

〈
z2
〉

= 1/2kBTmode.
In Fig. 7.4(b) we show such a calibration measurement at Vg = 3.002 V for device A.
Tmode is linearly proportional to Tcryo for temperatures above 100 mK so that we assign
Tmode = Tcryo and extract the resonator phonon occupation nm = kBTmode

~ωm
. Below 100 mK
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500 mK
250 mK
40 mK

Figure 7.4: Thermal calibration of fundamental mechanical mode with red-detuned
pumping. (a) Selected thermo-mechanical noise spectra for different temperatures and np =
6 ·104. (b) Plot of the measured mechanical mode temperature of device A, expressed in phonon
occupation nm, as a function of cryostat temperature at Vg = 3.002 V where ωm/2π = 53.7 MHz
and np = 6 · 104. On the right y-axis, we display the variance of the vibration amplitude

〈
z2
〉
,

which is obtained by integrating the thermal resonance, as is shown in a. The phonon occupation
is quantified with

〈
z2
〉

= ~
meffωm

nm. The error bars are given by the standard deviation of 5
spectral measurements.

the mechanical mode does not thermalize well with the cryostat. The origin of this poor
thermalization at low temperature may be related to the heating induced by the pump
field (see Sec. 7.8) [163], and a non-thermal force noise [36] such as the electrostatic force
noise related to the voltage noise in the device.

7.5.2 Single-photon optomechanical coupling

The measurement described in the previous subsection also allows to accurately calibrate
g0. It is inferred from the area of the thermal resonance measured as the output power
Pout =

∫
Soutdω/2π at the level of the spectrum analyzer and the input power Pin applied

at the input port of the cryostat. The ratio Pout/Pin for a λ/4 cavity measured in
reflection, in the resolved sideband regime and for red-detuned pumping, reads (see cf.
Eq. 4.41)

Pout

Pin
= 4g2

0 · gain · loss ·
κ2

ext

κ2

1

ω2
m

kB

~ωm
Tcryo. (7.5)

We determine the product loss · gain = −32.1 dB by measuring the transmitted power
between the input port and the output port of the cryostat at a frequency ωp = ωc−ωm.
From the data shown in Fig. 7.4(a) we extract g0/2π = 42.6 Hz, which is the largest value
achieved so far with graphene optomechanical systems [162, 163]. For this calibration to
be precise, we verify that the response of the transmitted power through our input and
output lines remains constant over the frequency range between ωc and ωp. For device B
we perform the calibration in the same manner and obtain g0/2π = 7.3 Hz at Vg = 0 V.

We check with device B that the aforementioned calibration procedure yields the same
g0 as that obtained with the procedure based on the frequency modulation (FM) of the
pump field [162, 39]. In the latter, g0 is inferred by pumping the cavity with a FM sig-
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nal with known modulation index φ0 and modulation frequency ωmod/2π, see Fig. 7.5.
The modulation frequency is chosen close to the mechanical frequency, but outside the
mechanical line width. When applying the FM signal additionally to the red sideband
pump, the single-photon optomechanical coupling can be extracted by measuring the ra-
tio of the area under the mechanical sideband to the area under the modulation peak using

g2
0 =

(
φ0

2

)2
ω2

m

nm

Sout(ωm) · Γspectral
m /4

Sout(ωmod) ·RBW
. (7.6)

Here, RBW is the measurement resolution band width. Both Γspectral
m andRBW are taken

in units of frequency. Performing this analysis in thermal equilibrium at T = 220 mK we
obtain g0/2π = 8.4 Hz, which is in agreement with the value g0/2π = 7.3 Hz obtained
from the first calibration method discussed in this section.
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Figure 7.5: Output spectrum of mechanical sideband and FM signal at T = 220 mK for device
B. The mechanical resonance frequency is ωm/2π = 46.06 MHz and the modulation frequency
ωmod/2π = ωm/2π + 13.1 kHz. The data is taken in a regime where backaction is negligible.
The modulation depth φ0 is measured by extracting the ratio between pump signal and the first
sideband signal Sout(ωp + ωout)/Sout(ωp) = φ0/2 for φ0 << 1. We use φ0 = 10−116.7 dB/20 · 2 =
2.9244 · 10−6 for this measurement. Note that we have subtracted the measurement imprecision
in the figure.

7.6 Tunability of single-photon coupling and static de-
flection

For device A, we show that the single-photon optomechanical coupling at Vg = 3.002 V is
significantly enhanced by the deflection of the membrane towards the cavity electrode. For
this, we first relate Pin to np by calibrating the loss coefficient loss over the mechanical
decay rate. Having calibrated loss, we then extract g0 for different gate voltages to
confirm the tunability of g0. In Fig. 7.6(b) we measure the mechanical decay rate Γdecay

eff

at Vg = 3.002 V with the ring-down technique as a function of Pin. The measurement is

well described by Γdecay
eff = Γdecay

m +Γopt where Γdecay
m is the intrinsic mechanical dissipation
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Figure 7.6: Effective mechanical energy decay rates extracted from ring-down mea-
surements. Mechanical dissipation rate Γdecay

eff measured on device A with the ring-down tech-
nique as a function of the number np of pump photons in the cavity at Vg = 0 V and Vg = 3.002 V
where np is proportional to the microwave power Pin applied at the input of the cryostat. Red
and blue data points correspond to red and blue detuned pumping, respectively. The measure-
ments are well described by Γdecay

eff = Γdecay
m ± Γopt (red and blue lines) using g0/2π = 9.7 Hz in

a and g0/2π = 42.6 Hz in b. The inset in b shows a ring-down measurement for np = 1.4 · 106.
We plot the normalized vibration amplitude as a function of time t. The resonator is driven
with a capacitive driving force for t < t0. At t0 the drive is switched off and the vibration
amplitude decays freely (t > t0). We fit the data with an exponential decay (black line) using
z2(t) = z2

0 exp(− t−t0
τ

) with a decay rate Γdecay
eff = 1/τ = 2π · 8.4 kHz.

rate, Γopt = ±4npg
2
0/κ, ± corresponds to red and blue detuned pumping at ωp = ωc∓ωm,

respectively, and

np =
1

~ωp
· Pin · loss(ωp) · 4κext

κ2 + 4(ωp − ωc)2
. (7.7)

From the fit to the data with the previously obtained value of g0/2π = 42.6 Hz we estimate
loss = −63.7 dB, which additionally yields gain = 31.6 dB from the product loss · gain.
In order to get g0 at Vg = 0 V, we use the gate voltage independent calibration of np to

fit the measured np dependence of Γdecay
eff in Fig. 7.6(a). We obtain g0 = 2π × 9.7 Hz.

This confirms that increasing Vg from 0 to 3.002 V results in a strong increase of the
optomechanical coupling by more than a factor four due to the static deflection of the
graphene membrane.

We infer the deflection of the graphene flake of device A from the variation of the
single-photon coupling when varying the voltage Vg. We assume that the shape of the
static graphene deformation depends on the radial coordinate r as ξs(r) = zs(1− r2/R2).
With this deflection profile we evaluate the derivative of the capacitance with respect to
displacement using a local plate capacitor approximation

∂zCm = ε0

∫ 2π

0

dφ

∫ Rg

0

rdr
∂

∂zs

1

d0 − zs(1− r2

R2 )
. (7.8)

Here Rg is the radius of the cavity counter electrode. Using the measured g0 and ωm
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values (Figs. 7.3(b) and 7.6(a,b)) in g0 ∝ ∂zCm

√
1/ωm, we estimate that the separation

between the membrane and the cavity counter electrode is reduced from 88 nm to 33 nm
when varying Vg from 0 to 3.002 V.

An alternative method to determine the separation as a function of Vg relies on the
change of the total capacitance Ctot = C + Cext + Cm measured from the dependence
of the cavity resonance frequency ωc = 1/

√
LCtot on Vg (see Fig. 7.3(a)). We assume

∆Cm = ∆Ctot upon varying Vg and compare the measured ∆Ctot to ∂zCm from which
we obtain a reduction of d from 88 nm to 53 nm for Vg = 3.002 V.

7.7 Sideband cooling and displacement imprecision

We can take advantage of the enhanced g0 in order to cool the mode temperature. When
increasing the power of the pump tone on the red sideband and keeping the temperature
of the cryostat constant at T = 15 mK the measured resonance gets broader and its area
smaller (Fig. 7.7(a)), showing that the mechanical mode is damped and cooled [31, 170].
At the largest available pump power, the phonon occupation reaches nm = 7.2 ± 0.2
(Fig. 7.7(c)). This is the lowest phonon occupation obtained in a mechanical resonator
based on graphene [163, 28, 162]. The error in the estimation of nm is given by the
standard error obtained from 5 successive spectral measurements.

a b c

Figure 7.7: Sideband cooling and displacement imprecision of device A. (a) Mechanical
displacement spectral density Sz measured with red-detuned pumping. The cryostat temperature
is 15 mK. (b) Displacement imprecision as a function of cavity pump photon population. The
line is a fit of Eq. 7.9 with nadd = 32. (c) Average phonon number nm as a function of np.

The improved coupling allows us to achieve also an excellent displacement sensitivity
Simp

z (Fig. 7.7(b)). At the largest pump power, we obtain (Simp
z )1/2 = 1.3±0.2 fm Hz−1/2,

which compares favorably to previous works [28, 162, 174]. The error in Simp
z is given

by the uncertainty in the estimation of meff . We obtain Simp
z from the noise floor of

the measured power spectral density SN using Simp
z = SN

~ωc

κ2

2κext

z2zp
g20

1
np

. The displacement

sensitivity scales as 1/np (Fig. 7.7(b)). By comparing the measurement to the expected
displacement sensitivity [38]

Simp
z =

(
nadd +

1

2

)
κ2

2κext

z2
zp

g2
0

1

np
, (7.9)
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we obtain that the equivalent noise added by the amplifier chain is nadd = 32. This is a
reasonable value for a HEMT amplifier mounted at 3 K [107, 46].

7.8 Force sensitivity

We now quantify the force sensitivity as a function of the microwave pump power (Figs. 7.8(a,c)).
Since the mechanical resonances in the measured displacement spectra are well described
by Lorentzian line shapes, the thermal force noise is quantified using Smode

F = Smode
z (ωm)/|χeff(ωm)|2

with the effective mechanical susceptibility |χeff(ωm)|2 = 1/(meffωmΓspectral
eff )2. Similarly,

we obtain the imprecision force noise with Simp
F = Simp

z /|χeff(ωm)|2. The best force
sensitivity we achieve for device A is (Stot

F )1/2 = 5.8 aN Hz−1/2 with a mechanical band-
width of 20 kHz (Figs. 7.8(a) and 7.9(b)). In device B we reach a force sensitivity of
(Stot

F )1/2 = 390± 30 zN Hz−1/2 with a mechanical bandwidth of 0.2 kHz (see Figs. 7.8(c)
and 7.9(d)). The error in the estimation of the force sensitivity is obtained from both
the uncertainty in the mass and the fluctuations in the measurement of Stot

F , which we
evaluate by calculating the standard error of 10 measurements. This force sensitivity
compares favorably with the best sensitivities obtained with micro-fabricated resonators
((Stot

F )1/2 = 510 zN Hz−1/2) [4, 46], albeit it is not as good as that of resonators based
on carbon nanotubes [20, 30]. Compared to previous devices, the mechanical bandwidth
of graphene resonators is much higher, which enables faster detection of sudden force
changes.

We plot both Smode
F and Simp

F as a function of cavity pump photon population in
Fig. 7.8(b). As expected, the imprecision force noise decreases at low np and increases
at high np due to the enhanced damping caused by the optomechanical back-action. The
thermal force noise Smode

F appears roughly constant when varying np as a result of the
competing effects of Joule heating and frequency noise. Joule heating is caused by the
microwave current in the graphene flake induced by the pump field. This results in the
increase of the temperature Tbath of the thermal bath coupled to the mechanical mode as
well as the mechanical dissipation rate [163, 161]. We can infer the product Tbath ·Γdecay

m

from the measurements of nm and Γdecay
eff in Figs. 7.6(b), 7.7(c) using

TbathΓdecay
m = TmodeΓdecay

eff = nmΓdecay
eff · ~ωm

kB
. (7.10)

When increasing the pump power, Joule heating significantly increases the product TbathΓdecay
m

(Fig. 7.9(a)), and therefore the size of the thermal force noise (Eq. 7.1). We see next that
the effect of frequency noise leads to the opposite dependence of the thermal force noise
on pump power. Frequency noise enhances the spectral line width by the amount δΓnoise,

Γspectral
eff = Γdecay

eff + δΓnoise, (7.11)

when the fluctuations of the resonant frequency are described by a white noise [20]. The

measurements of Γspectral
eff and Γdecay

eff as a function of pump power can be well described
by Eq. 7.11 with δΓnoise/2π = 8.7 kHz (Fig. 7.9(b)). Importantly, Fig. 7.9(b) shows

that Γspectral
eff is comparable to Γdecay

eff at large pump power, showing that the relative

contribution of δΓnoise to Γspectral
eff gets negligible upon increasing np. As the cooling
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Figure 7.8: Characterization of the imprecision force noise, the thermal force noise
and the total force sensitivity. (a) Force sensitivity Stot

F = Simp
F + Smode

F as a function of
cavity pump photon population measured when pumping the cavity on the red sideband. (b)
Imprecision force noise Simp

F (turquois) and thermal force noise Smode
F (dark yellow) versus np.

The data in a,b are fitted to Eqs. 7.2, 7.12. (c,d) Equivalent to (a,b) but for device B. The
lowest value for the force sensitivity in c is (Stot

F )1/2 = 390± 30 zN Hz−1/2. In c and d the data
are fitted with nadd = 22. All the measurements on device A are performed at Vg = 3.002 V and
on device B at Vg = 0 V. The cryostat temperature is 15 mK.
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Figure 7.9: Characterization of thermal heating and frequency fluctuations. (a) Prod-
uct of the bath temperature Tbath and the intrinsic mechanical decay rate Γdecay

m as a function of
cavity pump photon occupation. The line is a fit to the data. (b) Effective spectral mechanical
line width Γspectral

eff as a function of np. The data are fitted to Γspectral
eff = Γdecay

eff + δΓnoise with
δΓnoise/2π = 8.7 kHz. (c,d) Equivalent to (a,b) but for device B. In d we use g0/2π = 7.3 Hz,
κ/2π = 2.5 MHz and δΓnoise/2π = 0.145 kHz. All the measurements on device A are performed
at Vg = 3.002 V and on device B at Vg = 0 V.
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efficiency described by Eq. 7.10 remains unaltered by frequency noise (see chapter 7
in [175]), the thermal force noise is quantified by

Smode
F = 4kBmeffTbathΓdecay

m

Γspectral
eff

Γdecay
eff

. (7.12)

Taking into account the measured effects of Joule heating and frequency noise in Eq. 7.12,
the thermal force noise Smode

F is expected to remain roughly constant as a function of np

(dark yellow line in Fig. 7.8(b)), in agreement with the measurements. Overall, the
best force sensitivity we achieve in this device is (Stot

F )1/2 = 5.8 aN Hz−1/2 at np ≈
4 · 106 (Fig. 7.8(a)). While the force sensitivity in this device is primarily limited by
the measurement imprecision, the thermal force noise is affected to a large extent by
frequency noise at low np and by Joule heating at high np.

In device B, the graphene resonator has a lower mass and a narrower mechanical line
width, two assets for high force sensitivity (Figs. 7.8(c,d) and 7.9(c,d)). The spectral line
width corresponds to a mechanical quality factor of Q ≈ 200, 000. In this device we reach
a force sensitivity of (Stot

F )1/2 = 390±30 zN Hz−1/2 at np ≈ 4 ·105 (see Figs. 7.8(c)). In an
attempt to improve the thermal anchoring of device B compared to device A, the graphene
contact electrodes contain an additional Au layer between the graphene and the Nb
layer [176, 163]. The normal metal layer is expected to increase the thermal conductance
between the graphene flake and the contact electrodes through electron diffusion, which
allows for better heat dissipation into the contacts. However, device B is still strongly
affected by Joule heating, which substantially increases the value of Smode

F when increasing
the pump power (Figs. 7.8(d) and 7.9(c)). The heating is so strong that we are not able
to reduce the phonon occupation nm with sideband cooling. We attribute the strong
heating to the fact that the resonator is significantly thinner than the one of device A
and therefore has a smaller heat capacity. The effect of frequency noise on the spectral
line width is negligible for pump powers above np ≈ 4 ·105. We do not know the origin of
the frequency noise but it might be related to charged two-level fluctuators in the device.
The force sensitivity is here primarily limited by the measurement imprecision at low np,
and by the thermo-mechanical force noise and Joule heating at high np.

7.9 Conclusions and Outlook

In the future, the force sensitivity of graphene optomechanical devices can be further
improved using a quantum-limited Josephson parametric amplifier [107]. This readout

will improve the measurement imprecision, by lowering nadd in Simp
F . In addition, it will

be possible to resolve the thermal vibrations with lower pump power, which is crucial
to reduce Joule heating while working with low-mass graphene resonators. A quantum-
limited amplifier with nadd = 0.5 may allow to achieve 47 zN Hz−1/2 force sensitivity at
15 mK taking the mass of a single-layer graphene resonator with the diameter and the
quality factor of device B (Fig. 7.1(b)). With only modest device improvements, it may be
possible to probe the fundamental limit of continuous displacement detection imposed by
quantum mechanics, since the force noise associated to quantum back-action (Sqba

F )1/2 =

(2~ωmmeffΓ decay
eff )1/2 = 1.1 aN Hz−1/2 is approaching (Smode

F )1/2 = 4.3 aN Hz−1/2 mea-
sured at np = 1.4·107 for device A. Force sensing with resonators based on two-dimensional
materials hold promise for detecting electron and nuclear spins [5] using superconducting
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cavities compatible with relatively large magnetic fields [177], and studying the thermo-
dynamic properties of two-dimensional materials, such as the quantum capacitance and
the magnetization [167].

7.10 Additional information

7.10.1 Device Parameters

Important parameters of the measured devices are summarized in Table 8.1.

7.10.2 Measurement setup

Figure 7.10 shows a detailed schematic of the measurement setup for device A (for device B
see Sec. 8.6.2). The experimental setup used in this chapter is slightly modified compared
to the configuration in the previous chapter (Sec. 6.10.2).

Due to the fact that the cavity is measured in reflection we connect the sample to the
radio frequency lines of the cryostat by using a circulator. Further, the source used to
apply the constant voltage Vg is a SIM928 from Stanford Research Systems. This source
features better voltage noise characteristics than the Keithley 2400.

We cancel the pump signal at the output of the device in order to avoid saturation
of the cryogenic HEMT amplifier, mounted at 3 K, when pumping the cavity with a
strong pump tone. For this, we divide the signal of the pump source with a power
splitter into a cavity pump signal and a cancellation signal. The cancellation signal
interferes destructively with the pump signal after the pump signal is reflected from the
cavity. On the cancellation line we use a Krytar 120420 20 dB directional coupler and an
additional circulator. We adjust the cancellation signal with a digitally variable attenuator
TEA13000-12 and a variable phase shifter TEP8000-6 from Telemakus to cancel the pump
tone by ≈ 40 dB.

We amplify and filter the pump and the cancellation signals at room temperature.
Careful filtering of the input signal is necessary to avoid populating the cavity with
source phase noise or with noise of the amplifier. We use tunable bandpass filters. The
bandpass filter BPF1 (Wainwright WBCQV6) at the output of the pump source has
a pass band attenuation of −6 dB and reduces the phase noise of the pump signal by
−50 dB at ±50 MHz from its pass band frequency. The amplification is done with Mini-
circuits ZVE-3W-83+ amplifiers. We reduce the amplifier white noise by a second set
of bandpass filters BPF2 and BPF3 (both wainwright WTBCQV3). They attenuate the
signal by −2 dB on the pass band frequency range and by −20 dB at ±50 MHz away from
it. Without this filtering scheme we populate the superconducting cavity at the highest
pump powers.

The cancellation and the amplification of the pump signal requires recalibration of
the cryostat input power. This is done by measuring Pin as a function of the power PRF

applied with the radio-frequency source for all available pump powers.
We can measure the output either in the frequency or the time domain. The scheme

to measure the energy decay of the graphene resonator is described in detail in Sec. 8.6.2.
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3 K

open

Figure 7.10: Measurement setup with cryogenic wiring for device A.
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Device A Device B

Cavity CPW CPW
ωc/2π (0 V) 7.42 GHz 7.49 GHz
κtot/2π (0 V) 1.6 MHz 2.5 MHz
κext/2π (0 V) 850 kHz 1.7 MHz
κint/2π (0 V) 750 kHz 850 kHz
Graphene device
Exfoliated with Scotch tape PDMS
Drum radius 1.6 µm 1.65 µm
Cavity electrode radius 1.2 µm 1.1 µm
Graphene cavity- 88 nm 85 nm
electrode separation
Graphene contacts Nb Nb and Au
ωm/2π 67 MHz (0 V) 46 MHz (0 V)
Effective mass 25×meff,0 5.5×meff,0

Coupling
g0/2π 9.7 Hz (0 V) 7.3 (0 V)

Table 7.1: Device parameters. The effective mass is obtained with different techniques includ-
ing optical contrast measurements, thickness measurements by AFM and from the electrostatic
softening of the graphene resonators (Sec. 7.4) where meff,0 ≈ 1.6 fg. The single-photon coupling
is calibrated from thermal motion measurements (Sec. 7.5.2).
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Chapter 8

Energy decay measurements in
multilayer graphene mechanical
resonators

In this chapter, we present mechanical energy decay measurements of multilayer graphene
mechanical resonators coupled to superconducting cavities. By comparing the energy de-
cay with spectral measurements, both in the linear and nonlinear vibration regimes, we
illustrate the importance of energy decay measurements for gaining insight into mechan-
ical dissipation processes. After a short description of the requirements for the imple-
mentation of the detection scheme, we study the linear energy decay as a function of
several parameters including the cryostat temperature, the pump photon number, and
the gate voltage. Additionally to the decay of the vibrational amplitude, we study the
frequency evolution during the decay when driving the mechanical vibrations to larger
amplitudes. In the nonlinear vibration regime we discover peculiar features. These can
partly be explained by nonlinear dissipation processes.

8.1 Introduction

Energy decay plays a central role in a wide range of phenomena, such as optical emission,
nuclear fission, and dissipation in cavities and quantum bits. In mechanical resonators,
the energy decay rate is important since it is a key figure of merit for many applications,
such as mass, force, and spin sensing [152, 6, 19, 5, 30]. Understanding the physics of
the energy decay remains however a challenge. There are many different processes that
lead to energy decay in mechanical resonators [178]. They can result from the coupling
of the vibrational eigenmodes of the resonator to phonons, electrons, and photons [8, 45].
Such decay processes are usually linear (Fig. 8.1(a)). The role of nonlinear processes
is thought to become relevant in small resonators [179]. However, measuring energy
decay in nanomechanical resonators remains difficult because of the lack of appropriate
experimental tools. Most previous works relied on power spectrum measurements, but
this method can suffer from dephasing, which broadens the mechanical resonance line
width used to determine the energy decay rate [30, 180, 181, 182, 161, 183].
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In this chapter, we report energy decay measurements in graphene resonators by
directly recording the vibration amplitude as energy freely decays. Such decay measure-
ments are immune from dephasing, as in population decay measurements of atomic, spin,
and circuit quantum bits. For low-amplitude vibrations, we find that the amplitude de-
creases exponentially in time, as it is the case for a typical energy decay measurement
(Fig. 8.1(a)). The decay rate is comparatively low and can correspond to quality factors
surpassing 1 million. In the large vibration amplitude regime, the amplitude decays dis-
continuously (Fig. 8.1(b)). This comes as a surprise, since such a behavior has thus far
never been observed nor predicted. This finding is robust as it is measured consistently
in all the studied devices. This behavior shows that the energy decay is governed by
nonlinear decay processes. We show that it can be related to the energy transfer to a
higher energy eigenmode.

8.2 Device and setup

In order to perform high-precision energy decay measurements, also called ring-down
measurements, we capacitively couple the graphene mechanical resonator to a supercon-
ducting microwave cavity (Fig. 8.1(c)). This allows us to detect the mechanical vibrations
with a short time resolution, a high displacement sensitivity, and over a broad range of
vibrational amplitudes [46, 163, 162]. The time resolution is limited by the inverse of
the coupling rate of the cavity to the external readout circuit, which is on the order of
κext/2π ≈ 1 MHz in our devices. High displacement sensitivity with minimal heating is
demonstrated by resolving thermal motion at about 50 mK, corresponding to nm ≈ 25
quanta of vibrations (see Fig. 8.1(d)). In order to reduce heating from the pump field
used to detect the vibrations, we use multilayer graphene which has a higher electrical
conductance and a higher heat capacity than single layer graphene (see Sec. 7.8), and
we evaporate gold onto the superconducting contacts to improve the heat flow out of the
graphene membrane [176, 163]. The displacement sensitivity can be further improved
using a near quantum-limited Josephson parametric amplifier (JPA) [46, 184]. We use a
double cavity JPA [184] for the readout of devices with comparatively low signal output.
In energy decay measurements, we typically record vibrations with amplitudes ranging
from 1 pm to 1 nm.

Energy decay measurements are carried out by preparing the resonator in an out-of-
equilibrium state with a capacitive driving force, then switching the drive off and mea-
suring the vibrational amplitude as the mechanical energy freely decays (Fig. 8.2(a)). We
measure the decay with a time-resolved acquisition scheme combined with real-time digital
signal processing (dashed box in Fig. 8.1(c)). Specifically, we record the two quadratures
of motion, which are digitally squared to compute the vibrational energy. Energy decay
traces are obtained by averaging typically 1000 measurements and subtracting a time in-
dependent noise background that is related to the amplifier chain. All the measurements
presented in the following are carried out at 15 mK. We choose to display decay traces in
terms of vibration amplitude instead of energy. We present data of 3 devices.
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Figure 8.1: Energy decay measurement: Setup and device characterization. (a) Time-
resolved energy decay measurement governed by linear decay processes. (b) Energy decay mea-
surement in the presence of nonlinear decay processes as observed in this work (red trace). The
gray dashed line corresponds to the decay expected from previous spectral measurements and
theoretical works. The energy decay measurements in a and b are unaffected by dephasing and
conservative nonlinear forces. (c) Measurement setup with schematic cross-section of a circular
graphene drum vibrating as z ·cos(ωmt+φ). φ can vary in the course of the decay. The motion is
detected with the superconducting microwave cavity. After cryogenic amplification, the output
signal of the cavity is recorded and digitally computed to obtain the energy and the frequency of
the vibrations as a function of time. (d) Average number nm of vibration quanta as a function
of the cryostat temperature. We obtain nm from the integrated area of thermal resonances in
spectral measurements.
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8.3 Linear energy decay

This measurement scheme allows us to observe record high quality factors in graphene-
based resonators (Fig. 8.2(b)). The measured amplitude z decays exponentially in time

as z2 ∝ e−Γdecay
eff t with an energy decay rate Γdecay

eff ≈ 1/(3.6 ms) (gray dashed line). This
value corresponds to a quality factor Qm exceeding 1 million. This Q-factor measured
in a resonator made of graphene with 5-6 layers is 10 times larger than that with 1
to 3 layers [22] (see chapter 6) and 5 times larger than that with ≈ 30 layers [162]. By
collecting energy decay traces using different drive frequencies near the resonant frequency
ωm, we show that the mechanical Q-factor is independent of the drive frequency and the
vibrational amplitude induced by the driving force (Fig. 8.2(c)). The traces in Fig. 8.2(b)
are shifted in time to show that they have the same decay rate.
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Figure 8.2: Energy decay measurements in the low vibrational amplitude regime in
device B. (a) Measurement principle. At time t = 0 the mechanical driving force is switched
off and the vibrational amplitude starts to decay. (b) Measured energy decay of the vibrational
amplitude of device B as a function of time for different drive frequencies (see colors in c). The
lower amplitude traces are shifted in time so all decaying curves overlap. The dashed grey line
indicates an exponential decay corresponding to a Q-factor of 1 million. (c) The quality factor
as a function of drive frequency. We apply Vg = 0.6 V and pump the cavity with np ≈ 1200
photons.

What makes the observation of such high Q-factors possible is (i) the fact that our
technique is immune from dephasing, (ii) the thermalization of the sample with the cryo-
stat down to base temperature, and (iii) our ability to resolve small displacements without
heating. Further, it is crucial to measure the energy decay at small voltages Vg applied
between the graphene flake and the superconducting cavity. We discuss these points in
detail for device B in the following.

8.3.1 Comparison between Γdecay
m and Γspectral

m

Comparing the energy decay rate Γdecay
eff obtained from ring down measurements with the

line width Γspectral
eff of spectral thermal motion measurements reveals that dephasing is
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significant (Fig. 8.3(a)). Thermal spectra are fitted with a Lorentzian (red lines) to extract

Γspectral
eff . For comparison, the black dotted lines correspond to Lorentzian resonances with

the width Γdecay
eff that is obtained from energy decay measurements. Figure 8.3(a) shows

resonances at the cryostat base temperature, which is Tcryo = 15 mK. Γspectral
eff ≈ 2π ×

300 Hz is more than twice as large as Γdecay
eff ≈ 2π×130 Hz. Dephasing accounts for about

50% of the spectral line width. Spectral measurements and energy decay measurements
are both obtained with np = 1.9 · 105 and Vg = 0 V. This value of np leads to heating as
we will discuss below in section 8.3.3.

eff

eff

eff

eff

a

b

Figure 8.3: Comparison of spectral line-width and energy decay rate in device B.
(a) Power spectral density at the output of the cavity (SN ) and displacement spectral density
(Sz) of a typical thermal motion spectrum measured at Tcryo = 15 mK (light red data points),
yielding Γspectral

eff /2π = 300 Hz. Using the same np and Vg, we obtain Γdecay
eff /2π = 130 Hz

from energy decay measurements. The corresponding spectrum is plotted as a black dotted
Lorentzian. We set np = 1.9 · 105 and Vg = 0 V. (b) Thermal spectrum at Tcryo = 270 mK,
yielding Γspectral

eff /2π = 800 Hz. We get Γdecay
eff /2π = 760 Hz from energy decay measurements.

These measurements are recorded with np = 3.8 · 105 and Vg = 0 V.

The difference between Γspectral
eff and Γdecay

eff is greatly reduced at higher temperature.
For instance, the difference is suppressed to 40 Hz at 270 mK (Fig. 8.3(b)). Dephasing
accounts for about 5% of the spectral line width.

8.3.2 Temperature dependence of the energy decay rate

The ability to probe the decay rate of device B down to 15 mK allows us to reveal an
intriguing temperature (T) dependence of the decay rate. Figure 8.4(a) shows that the T
dependence of 1/Qm is stronger at low temperature than at high temperature. Comparing
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8.3. LINEAR ENERGY DECAY

the measured T dependence of 1/Qm to a power law, as often done with mechanical
resonators, the data can be described by 1/Q1 ∝ T below 300 mK and 1/Q2 ∝ T 1/3

above 300 mK. The behavior above 300 mK is similar to that reported by other groups in
the same temperature range [24, 25, 8].

These data cannot be accounted for by two independent dissipation channels with
decay rates proportional to 1/Q1 and 1/Q2. Indeed, in such a scenario, the total decay
rate would be proportional to 1/Qtot = 1/Q1 + 1/Q2, so that the exponent of the power
law below 300 mK should be lower than that above 300 mK. This is just the opposite
of what is observed in Fig. 8.4(a), indicating that this scenario where each power law
corresponds to a different dissipation channel is not possible.
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Figure 8.4: Energy decay as a function of different parameters in the low vibrational
amplitude regime in device B. (a) Temperature dependence of energy decay rate. The
measurement is recorded at np = 1200 and Vg = 0 V. For temperatures below Tcryo = 300 mK
the data is in agreement with a linear temperature dependence. Above Tcryo = 300 mK the
dependence is 1/Qm ∝ T 1/3. (b) Dependence of the energy decay rate on cavity pump photons,
when pumping the cavity either on the red sideband (light red points) or on cavity resonance
(black points). This measurement is performed at Tcryo = 15 mK and Vg = 0 V. The dashed-
dotted red line corresponds to Γdecay

eff = Γdecay
m + Γopt where Γdecay

m is the intrinsic decay rate
obtained at low np. The continuous red line is obtained by including the effect of Joule heating,
that is, by taking into account the np dependence of Γdecay

m (black line). (c) Energy decay as
a function of Vg. This measurement is recorded with np = 1200 at Tcryo = 15 mK. The dashed
black line is a fit to the data including motion induced displament currents in the graphene
membrane.

This measured T dependence of 1/Qm might be related to the coupling of the graphene
resonator to two-level systems (TLS) [185, 186, 187, 8]. Indeed, TLSs can lead to a tem-
perature variation of 1/Qm that is large at low temperature and weak at high temperature,
in agreement with the observed T dependence of 1/Qm in Fig. 8.4(a). The microscopic
origin of the TLS is not clear, but it might be related to contamination adsorbed at the
surface of the graphene flake or charge fluctuators localized at the surface of the bottom
electrode.
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8.3.3 Pump photon number dependence of the energy decay rate

In order to detect the highest mechanical quality factors it is essential to resolve the me-
chanical motion with a very weak pump field to avoid heating of the mechanical resonator
(see Fig. 8.4(b)). We plot Γdecay

eff as a function of the number np of pump photons in the
cavity for device B at the cryostat temperature Tcryo = 15 mK (light red data points in
Fig. 8.4(b)). For np < 105, we observe that the decay rate Γdecay

m /2π ≈ 50 Hz remains

constant over a large range of np. Upon increasing np above 105, Γdecay
eff gets larger. We

show below that the increase of Γdecay
eff is due both to optomechanical damping and to

Joule heating induced by the pump electromagnetic field. These data are recorded by
pumping the cavity on the red detuned sideband ωp = ωc − ωm. The resulting optome-
chanical damping Γopt = 4npg

2
0/κ, shown with the red dashed-dotted line in Fig. 8.4(b),

is lower than the measured Γdecay
eff . This indicates that optomechanical damping alone

cannot account for our data.
We quantify the effect of Joule heating by pumping the cavity at ωp = ωc and recording

energy decay traces at both ωc−ωp and ωc+ωp. Pumping at ωp = ωc leads to Γopt = 0 Hz.

We observe that Γdecay
eff gets larger upon increasing np (black data points in Fig. 8.4(b)).

This increase of Γdecay
eff is attributed to Joule heating. This measurement can be described

by Γdecay
eff ∝ n0.43

p (black line in Fig. 8.4(b)). By adding this np dependence of Γdecay
eff

due to Joule heating together with Γopt = 4npg
2
0/κ, we quantitatively reproduce the

measurement of Γdecay
eff as a function of np (red line in Fig. 8.4(b)).

8.3.4 Gate dependence of energy decay rate

Figure 8.4(c) shows 1/Qm as a function of the DC voltage Vg applied between the graphene
flake and the cavity for device B. The mechanical quality factor decreases from Qm ≈ 106

at Vg = 0 V down to Qm ≈ 2 × 104 at Vg = 4 V. We attribute this reduction of Qm to
electronic Joule dissipation [23, 146], a mechanism which arises from the motion-induced
displacement current through the graphene flake. Indeed, the data can be quantitatively
described by 1/Qm = 1/Q0 + 1/QJoule with a Vg independent contribution Q0 = 106 and

1

QJoule
=

Reff

meffωm

(∂Cm

∂z

)2

V 2
g . (8.1)

Here, Reff is an effective electrical resistance. We take into account an offset in Vg of
0.25 V observed in the Vg dependence of ωm. This offset is attributed to the work
function difference between the graphene flake and the cavity counter-electrode. In order
to evaluate the derivative of the capacitance with respect to displacement as a function
of Vg, we calculate ∂Cm/∂z using a local plate capacitor approximation (see Eq. 6.8)
and compare the obtained values with ∆Cm measured from the dependence of the cavity
resonance frequency ωc = 1/

√
LCtot on Vg where we use ∆Cm = ∆Ctot.

From a comparison of the measurement in Fig. 8.4(c) to Eq. 8.1 we obtainReff = 220 Ω.
This value is comparable to the sheet resistance 0.3− 1 kΩ of few-layer graphene at low
temperatures [188]. We emphasize that a direct comparison between Reff and the sheet
resistance is nontrivial, because of the difficulty to reflect the exact geometry associated
with Reff . By doing the same analysis for device A, the Vg dependence of 1/Qm can be
described by electron Joule dissipation using Reff = 480 Ω.
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8.4 Nonlinear energy decay

In the high vibrational amplitude regime, our high-precision measurements reveal that
energy decays discontinuously (Fig. 8.5(a,b)). This behavior is strikingly different from
what is commonly expected for mechanical resonators. This finding is robust, since it
is observed in all the studied resonators. The discontinuous decay does not depend on
the initial amplitude nor the frequency of the driving force. However, what strongly
affects the vibration amplitude associated with the discontinuity of the decay is the static
voltage Vg applied between the graphene resonator and the cavity. This suggests that the
discontinuity of the decay is related to ωm, since the variation of Vg strongly modifies the
resonant frequency of mechanical modes.

During the decay in the high amplitude vibrational regime, we also monitor the contin-
uous variation of the resonance frequency induced by the nonlinearity of the restoring force
(Fig. 8.5(c)). The frequency is computed using the short time Fourier transformation of
the vibrations recorded during the decay. After the drive is stopped, the frequency decays
smoothly to the natural, i.e. un-driven, resonance frequency ω0. When comparing the
smooth frequency decay and the vibrational amplitude decay (red trace in Fig. 8.5(a)), we
find that the frequency depends quadratically on the vibrational amplitude (Fig. 8.5(d)).
This is the behavior expected from the nonlinearity of the restoring force at low-amplitude
vibrations, which scales as Fnl ∝ z3 [78]. This shows that the bandwidth of our signal
filtering is wide enough to let us record the frequency-dependent vibrations during the
decay.

In addition to the smooth decay of the eigenfrequency, we observe a jump in frequency
from ωd to ωmax in Fig. 8.5(c). The jump is faster than the time resolution of the Fourier
transformation. Furthermore, the jump is consistent with the dynamics of a resonator
when it undergoes the transition between the driven and the non-driven regime (see inset
in Fig. 8.5(c)). In the driven regime, the resonator is forced to oscillate at ωd, whereas
the eigenfrequency ωm(z) of a resonator in the non-driven regime only depends on the
vibrational amplitude, as indicated by the red line in the inset of Fig. 8.5(c). The jump
from ωd to ωmax is expected to be quasi-instantaneous, as the motion during the free decay
has no frequency memory and depends only on the initial displacement and velocity at
t = 0. Since the total energy of the resonator Em = 1

2meffω(t)2z(t)2 remains constant
over t� 1/Γdecay, the observed jump in ω should in principle be associated with a change
in z. For the observed 15 kHz jump in ω, the corresponding 50 fm change in z is however
below the resolution of our measurement.

The abrupt variations in the decay contrasts with expectations from previous works on
nonlinear dissipation [22, 80, 189, 190]. Recent spectral measurements have shown that
dissipation in nanomechanical resonators can depend on the vibration amplitude. Follow-
ing the abundant theoretical literature on the subject [179, 78, 191], these measurements
have been interpreted in terms of a smooth dependence of the energy decay rate on the
vibrational amplitude, which scales as Γdecay ∝ z2 (dashed gray line in Fig. 8.1(b)). Here
we show that the measured energy decay cannot be described by the energy decay pre-
dicted by the dissipative force F = ηz2ż. For this, we extract η and the duffing parameter
α from spectral measurements and compare the obtained prediction of the energy decay
(see cf. Eq. 3.31)

z2(t) = z2
0 ·

exp
[
− t
τ

]
1 + 2η

8meff
· τ · z2

0 ·
(
1− exp

[
− t
τ

]) (8.2)
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Figure 8.5: Energy decay in the high vibrational amplitude regime. (a,b) Energy decay
measurements at different Vg for devices A, B, and C. In all cases, the decay is discontinuous.
The bandwidth of the bandpass filter in a is 150 kHz for the violet and red traces and 200 kHz
for the blue trace. The bandwidth is 400 kHz and 200 kHz for devices B and C in b, respectively.
(c) Time dependence of the short time Fourier transform of the vibrations corresponding to
the red amplitude decay trace in a. Inset, Schematic showing the relation between the driven
spectral response (black) and the free decay (red). The two black curves correspond to the
driven spectral response for high and low driving force amplitudes. When the driving force is
stopped, the vibration frequency switches from ωd to ωmax and then evolves during the decay
along the amplitude dependent eigenfrequency towards ω0. (d) Frequency shift as a function of
vibrational amplitude. The quadratic dependence (red line) is in agreement with the frequency
pulling expected from the nonlinear restoring force at low vibration amplitude.
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Figure 8.6: Spectral measurements compared to energy decay measurements in device
C. (a) Spectral response of the driven motion for increasing drive voltage V AC

g with ωd swept
from high to low frequency. The measurement is recorded at intermediate vibration amplitude
with Vg = −3.3 V. (b) Plot of fmax as a function of zmax. From the fit with a nonlinear Duffing
restoring force, we extract α = −5 · 1016 kg/m2s2 and ω0 = 44.135 MHz. (c) Plot of zmax/Fd

as a function of zmax. The data can be fitted with η = 6 · 106 kg/m2s and Qm = 55 000. (d)
Comparison between energy decay measurement (red line) and prediction with the dissipative
force F = ηz2ż (blue dashed line).

with the measurement (Fig. 8.6). Here, z0 = z(t = 0) and τ = Qm/ωm. Figure 8.6(a)
shows the driven spectra of device C recorded for different driving force amplitudes Fd.
We extract zmax and ∆ωm for each spectrum. From the plots of ∆ωm and zmax/Fd

as a function of zmax (Figs. 8.6(b,c)), we get that α = −5 · 1016 kg/m2s2, η = 6 ·
106 kg/m2s, and Q = 55 000 using Eqs. 3.22 and 3.25. Here we use meff = 60 fg from
section 8.6.1. Figure 8.6(d) shows that the measurement of the energy decay is not
described by Eq. 3.31 using the values of α, η, andQm determined above. To conclude, this
analysis indicates that spectral measurements have to be used with care when quantifying
nonlinear dissipation. While spectral measurements can be described with F = ηz2ż in
a satisfactory way, energy decay measurements show a strong deviation from such a
dissipation process.

8.4.1 Mode-mode coupling

The physical origin of the observed discontinuous decay can be related to a nonlinear
decay process. Figures 8.7(a,b) show that the first discontinuity in the decay is related to
a peculiar saturation in the spectral response of the vibrational amplitude to the driving
force. This saturation is a phenomenon occurring in nanomechanical resonators due to
mode-mode coupling over a so-called internal resonance [192, 138]. Indeed, we observe
a higher eigenmode with resonance frequency ωhigh = 3 × ωm at the Vg value for which
the saturation occurs. Figure 8.8(a) shows the resonant frequency of the lowest energy
mechanical modes of device C as a function of the DC voltage Vg applied between the
graphene flake and the cavity. The resonant frequencies are extracted from driven spectra
recorded with a high driving force amplitude and a high pump power (Vg = 120µV,
Ppump = 13 mW at the input of the cryostat). We identify 7 mechanical modes. Six
of them can be clearly resolved from spectral measurements, whereas the mode labeled
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Figure 8.7: Relation between kink in energy decay and plateau in spectral mea-
surement in device C. (a) Decay trace with an extreme change of the energy decay rate
(τ2 ≥ 30 × τ1). The initial decay time is limited by the digital filter bandwidth of 200 kHz.
Shifting the center frequency of the band-pass filter by 30 kHz does not affect the measurement
as indicated by the purple and blue traces that are on top of each other. (b) Driven spectra
for different mechanical driving voltages V AC

g recorded with the same Vg as in a. The spectra
show a saturation in the vibrational amplitude. This amplitude is the same as that of the abrupt
change of the energy decay in a.

(4) is inferred from the anti-crossing behavior observed in the Vg dependence of the
resonant frequency of the modes labeled (5) and (6). In the anti-crossing region shown in
Fig. 8.8(b), the vibrations are the result of the hybridization of mode (4) and mode (6).
At Vg = −3.3 V the resonant frequency of this hybridized mode (indicated by the red
point in Fig. 8.8(b)) is three times larger than the resonant frequency of the fundamental
mode, labeled (1) and shown in Figs. 8.7(a,b).

The abrupt variation of the decay rate is related to nonlinear mode coupling. This
can be explained by a model where the fundamental mode hybridizes with other modes
of the resonator at high energy [193]. This nonlinear mode-coupling has the peculiarity
of enabling energy transfer between vibrational modes even if resonant frequencies are
far apart and the coupling strength depends on the vibrational amplitude. For this to
happen, the ratio of resonant frequencies ωn/ω1 (ωn is the frequency of a higher order
mode) has to be close to an integer n [137, 138, 192]. At high vibrational amplitude,
the modes hybridize, and decay in unison with (Γ1 + Γn)/2 (Γ1 (Γn) is the decay rate of
the mode at low (high) frequency). At low amplitude, the two modes are decoupled and
decay with their individual decay rates. As a result, the flow of energy takes different
paths during an energy decay measurement of the fundamental mode. At high amplitude,
the energy of the vibrations is transferred into the bath of the fundamental mode directly,
and into the vibrations and the bath of the higher order mode and at low amplitude, the
dissipation channel to the bath of the higher order mode is closed.
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Figure 8.8: Mode spectrum and internal resonance in device C. (a) Fundamental and
higher mechanical mode spectrum extracted from driven measurements. (b) Zoom of area marked
in a. Around 132.2 MHz and Vg = −3.3 V, the resonance frequency of the mode at ωhigh/2π ≈
132.3 MHz is commensurate with 3 × ωm of the fundamental mode at high driving (red line).
The extent of the red data point at Vg = −3.3 V indicates the frequency range of the saturation
in the driven spectrum of the fundamental mode multiplied by three (Fig. 8.7(b)). By detuning
Vg the saturation frequency of the first mode shifts according to the red line. (c) Dissipation
channels of mode (1). The dissipation channel through the higher mode (4-6) opens up above a
threshold vibration amplitude when ωm = ωhigh/3.
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8.5 Conclusions and outlook

The energy decay measurement at the highest vibrational amplitudes in Fig. 8.7(b) can
be associated to nonlinear mode-mode coupling. The energy of the first eigenmode is
transferred to the higher eigenmode, which is subsequently dissipated into the thermal
bath of the higher eigenmode. Below the vibrational amplitude of the saturation, this loss
channel is switched off because of the nonlinear nature of the mode-mode coupling [137],
resulting in the observed abrupt change of the energy decay. We note that many dis-
continuities of the decay are observed without any noticeable saturation in the response.
Some of these discontinuities might be attributed to nonlinear decay processes involving
the coupling between multiple quanta of vibrations of the fundamental mode and other
degrees of freedom, such as graphene charge carriers and two-level systems, which we con-
clude from measurements in the low-amplitude regime [23, 8] (see Secs. 8.3.4 and 8.3.2,
respectively).

The unexpected nonlinear energy decay opens up new possibilities to tune dissipation
by electrostatic means and to manipulate vibrational states coherently [194, 195]. It
will be interesting to study other systems, such as mechanical, electrical, and optical
resonators, in order to test the universality of the nonlinear decay process reported in
this work.

8.6 Additional information

8.6.1 Device Parameters

Important parameters of the measured devices are summarized in Table 8.1.

8.6.2 Measurement setup and energy decay

Figure 8.9 shows a detailed schematic of the measurement setup. Compared to the previ-
ous chapter, the setup is modified by an additional transmission input and by a Josephson
parametric amplifier mounted at T = 15 mK. The JPA is connected at the directional
coupler on the cancellation line, which is used to pump the JPA. The transmission mea-
surement configuration, that is, coupling the cavity capacitively to both a weakly coupled
input port and a strongly coupled output port ensures JPA compatible readout (for de-
tails on the device design see Sec. 5.1.2). In this configuration, the strong pump tone
at ωp = ωc − ωm, at the input of the JPA, is attenuated by ≈ 40 dB by the cavity line
shape and additionally attenuated by the cancellation, which prevents saturation of the
JPA. On the weakly coupled transmission input line we use a 10 dB Pasternack PE2204
directional coupler. We do not need to cancel the JPA pump tone as the double cavity
design [184] allows to pump the JPA with a detuning of ≈ 200 MHz from the signal. An
additional SIM928 DC voltage source is used to generate a current through a flux coil
underneath the JPA and thereby tune the frequency of the JPA amplification band.

Energy decay setup and methods

A detailed schematic of the energy decay measurement setup is shown in Fig. 8.10. To stop
the mechanical drive signal and initiate the energy decay, we use a ZASW-2-50DR+ RF
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Device A Device B Device C

Cavity CPW CPW CPW
Weak port, transmission No Yes Yes
JPA read out No No Yes
ωc/2π (0 V) 7.42 GHz 7.49 GHz 7.44 GHz
κtot/2π (0 V) 1.6 MHz 2.5 MHz 3.25 MHz
κext/2π (0 V) 850 kHz 1.7 MHz 1.32 MHz
κint/2π (0 V) 750 kHz 850 kHz 1.93 MHz
Graphene device
Exfoliated with Scotch tape PDMS Scotch tape
Drum radius 1.6 µm 1.65 µm 1.6 µm
Cavity electrode radius 1.2 µm 1.1 µm 1.1 µm
Graphene cavity- 88 nm 85 nm 90 nm
electrode separation
Graphene contacts Nb Nb and Au Nb
ωm/2π 70 MHz (0 V) 46 MHz (0 V) 47 MHz (-2.6 V)
Effective mass 25×meff,0 5.5×meff,0 35×meff,0

Graphene resistance 480 Ω 220 Ω -
Coupling
g0/2π 9.7 Hz (0 V) 7.3 (0 V) 2.95 Hz (-3.3 V)

Table 8.1: Device parameters. The effective mass meff of the few layer graphene drums is
given in terms of the effective mass of a single layer graphene drum meff,0 ≈ 1.6 fg. The effective
graphene resistance is estimated from the measured mechanical decay rate induced by electron
Joule dissipation. The single photon coupling g0 is calibrated from thermal motion measurements
in device A and B. For device C the coupling is calibrated from the driven motion as described
in Sec. 6.7. Note that devices A and B correspond to devices A and B from chapter 7, but the
parameters for device A given here are from a different cool down.
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switch from Mini-Circuits. The switch is triggered with a square-wave signal generated
with a NI PXI 5451 AWG from National Instruments. Because of the optomechanical
coupling, the mechanical response is frequency up-converted to the cavity resonance fre-
quency ωc. At the output of the cryostat, the signal at the pump frequency is attenuated
with a tunable bandpass-filter WBCQV 7000/8000-6SSSD from Wainwright Instruments.
This is to avoid saturation during amplification of the signal with the subsequent low-
noise amplifiers AMF-4F-04000800-07-10P and AMF-3F-04000800-07-10P from MITEQ.
To damp reflections from the amplifiers, isolators D3I6012 from Ditom are used in front
of the amplifiers. The signal is down-mixed using an I-Q mixer IQ-4509LXP from Marki
Microwave to the intermediate frequency ωIF = 500 kHz. The mixing tone is generated by
a ZVB-14 from Rhode and Schwarz. The I and Q quadratures are independently filtered
with a 1.9 MHz lowpass filter BLP 1.9+ from Mini-Circuits and amplified by a SR-560
preamplifier from Stanford Research. The preamplifier has an additional high pass filter
at 10 kHz and a low pass filter at 1 MHz. We record the two quadratures using a two
channel digitizer NI PXI 5114 from National Instruments. The digitizer and the trigger
generator are synchronized with the internal PXI bus.

To record energy decay measurements we pump the cavity with an electromagnetic
field with frequency ωp = ωc − ωd. Here, ωc ≈ 7.5 GHz and ωd ≈ ωm. The optomechan-
ical coupling leads to an anti-Stokes scattered field around frequency ωc. The signal is
then down-mixed from ωc to 500 kHz using an I/Q frequency mixer. The down-mixed
signal is then digitized, digitally band-pass filtered around 500 kHz with bandwidth BW ,
squared and eventually low pass filtered with bandwidth BW/2. We set BW ≈ 2 kHz
for measurements with low vibrational amplitudes (Fig. 8.2), and BW = 150− 400 kHz
for measurements with large vibrational amplitudes in order to account for changes in
the vibrational frequency of the mechanical resonator (Figs. 8.5 and 8.7). In order to
subtract the amplifier noise contribution from the mechanical signal, we compute the
time-averaged signal at the end of each decay traces (when the vibration amplitude is
suppressed to zero). This noise subtraction has been applied for all amplitude ring-down
measurements presented throughout this chapter.

The vibration frequency during the decay is obtained with short time Fourier transform
(STFT). This method is suitable for the analysis of signals with time-varying frequency
spectrum. We use a Hamming apodization function to segment the signal in temporal
windows. Such a process allows us to reduce spectral components that are due to the
temporal window itself, while keeping a good frequency resolution of the analyzed signal.
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For a time varying signal z(t), its STFT is expressed as

Z(t, ω) =

∫ +∞

−∞
z(t′) ·Ham(t− t′) · e−j·ω·t

′
dt′. (8.3)

We use a Hamming apodization function Ham(t) with a window width of 200 µs. The
STFT is calculated with a frequency resolution of 610 Hz. The plotted STFT at time t
is the average of the STFT of 1000 individual energy decay traces (Fig. 8.5(c)).

8.6.3 Calibration of cavity transmission

We formally treat cavities that contain a weakly coupled input port and a strongly coupled
output port as cavities with a single port, because we do not have the possibility to
determine precisely the coupling rate κweak of the weak port. To justify this treatment, we
make use of the fact that the external cavity loss over the weak port is negligible κweak <
2π · 60 kHz� κstrong, which is determined by prior measurement of the respective cavity
at T = 4 K. In this case, κext = κweak + κstrong can be approximated by κext ≈ κstrong

and we can extract the cavity parameters from a reflection measurement using only the
strongly coupled port.

In Fig. 8.11 we plot the reflected |S11|2 and transmitted |S12|2 power as well as the
phase shift of the reflected signal at T = 15 mK of device B. To extract the internal loss
rate κint and the external coupling rate κext we fit the line shape expected for a single-port
reflection cavity (see cf. 4.25)

S11 =
κint − κext − 2i(ω − ωc)

κint + κext − 2i(ω − ωc)
(8.4)

to the reflected power and to the phase shift of the reflected signal, respectively. We
obtain κint = 0.8 MHz and κext = 1.7 MHz.
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Figure 8.11: Transmission and reflection measurement of the superconducting cavity
in device A. The measurements include the cryostat wiring and the cryogenic HEMT amplifier.
The strongly coupled port is denoted with 1 and the weakly coupled port with 2.

Regarding the estimation of the intra-cavity photon number, we calibrate the trans-
mission measurement configuration against the reflection measurement configuration. To
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Figure 8.12: Improvement of measurement quality with the Josephson parametric
amplifier (JPA). The figure shows the decay trace of Fig. 8.7(a) with the JPA turned on (red)
and the measurement with the JPA pump switched off (blue).

estimate np in the transmission configuration, we use

np =
1

~ωp
· Pin · lossweak ·

4κext

κ2 + 4(ωp − ωc)2
(8.5)

where lossweak is the effective loss coefficient when pumping the cavity at the weakly cou-
pled port. We precisely determine lossweak = loss+ 2.5 dB with three different methods.
All methods consist of comparing one particular output quantity for the two signal input
configurations. In the first method, we measure the product gain · loss both for reflection
and transmission. In transmission, we obtain gain · loss by measuring the transmitted
power through the cryostat at ωc (green curve in Fig. 8.11). This is compared with
gain · loss from the reflection measurement at ωp. The second and third methods com-
pare the driven mechanical vibration amplitude and the total mechanical dissipation rate
Γdecay

eff obtained from energy decay, respectively, when pumping the cavity red detuned,
both for reflection and transmission.

8.6.4 Noise reduction with the JPA

The JPA significantly improves the detection efficiency of energy decay measurements, as
illustrated in Fig. 8.12. The red trace is recorded with the JPA turned on, while the blue
trace corresponds to the measurements with the JPA switched off (same measurement as
Fig. 8.7(a)). For the chosen gain of 26 dB we observe a noise rise of 15 dB in spectral
measurements when turning on the JPA. As a result, the effective system noise is domi-
nated by the noise of the JPA with only a small contribution from the HEMT noise and
cable losses after the JPA. The JPA used in our setup has been demonstrated to operate
close to the quantum limit [184].

116



Chapter 9

Conclusions

9.1 Summary

In this dissertation, we investigated few-layer and multilayer graphene mechanical res-
onators capacitively coupled to superconducting microwave cavities. We showed that this
coupling scheme is a very powerful approach to study graphene mechanical resonators,
both in terms of the mechanical properties, but also for force and mass sensing applica-
tions.

In chapter 6, we presented the first proof-of-principle implementation of coupled
graphene-cavity devices and confirmed that the optomechanical Hamiltonian can be ap-
plied to this system. Although the devices in this chapter suffered from high internal
decay rate of the superconducting cavity, the obtained results demonstrate state-of-the-
art readout of graphene nanomechanical motion. In particular, engineering of strongly
clamped circular graphene membranes with a small distance to the cavity counter elec-
trode allowed for the detection of high mechanical quality factors (105), comparatively
large single-photon coupling, strong tunability of the static graphene equilibrium position,
and for the demonstration of symmetry breaking in graphene mechanical resonators.

In chapter 7, we benchmarked multilayer graphene optomechanical systems by per-
forming sideband cooling and force sensing experiments. We found that sideband cooling,
with a minimum phonon occupation of 7.2, is limited by Joule heating of the graphene res-
onator at high microwave power, which is attributed to the finite resistance of graphene.
Force sensing with a microwave pump on the red sideband revealed that the force sensi-
tivity of coupled graphene-cavity devices has different limiting factors depending on the
microwave pump power. The best force sensitivity, 390 zN/Hz−1/2 was achieved when bal-
ancing measurement imprecision, optomechanical damping, and heating. The obtained
force sensitivity compares favorably with top-down nanoelectromechanical systems with
the potential to be further improved.

In chapter 8, we studied the mechanical dissipation performing energy decay mea-
surements in graphene. Energy decay measurements are immune from dephasing, which
allowed for the detection of record high mechanical quality factors of Qm ≈ 106, in the
linear vibration regime. In the nonlinear regime, energy decay measurements revealed
that energy is released discontinuously, that is, instead of a smooth exponential decay,
sharp kinks were observed during the decay. These kinks indicate that certain dissipation
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channels are suddenly switched off at some threshold energies. We attributed this phe-
nomenon to nonlinear decay processes, as for instance, nonlinear mode-mode coupling of
the fundamental mode to a higher order mode.

9.2 Outlook

The work presented in this thesis has substantially contributed to the understanding of the
mechanical properties of graphene mechanical resonators. In particular, the implementa-
tion of energy decay measurements allowed for the investigation of mechanical dissipation
with unprecedented accuracy. Our study lead to several interesting experimental results
(linear temperature dependence of the dissipation at low temperatures potentially due to
two-level fluctuators, motion-induced Joule dissipation, nonlinear mode-mode coupling)
setting the basis for more involved experimental and theoretical investigations of the
physics governing graphene mechanical resonators at low temperatures. For instance,
covering the cavity counter electrode with a thin metal film would allow for the investi-
gation of the influence of two-level fluctuators in the electrodes’ oxide on the mechanical
dissipation.

Regarding the optomechanical device performance, coupled graphene-cavity devices
are promising for sensing applications. However, the finite graphene resistance poses
limitations on the ability to sideband cool graphene membranes to the quantum ground
state. Therefore, current device concepts and manipulation techniques have to be revised.
One possible scenario relies on pulsed pumping schemes [196]. For this scheme to work,
the rate for Joule heating of the mechanical resonator must be smaller than the rate
associated to the optomechanical interaction. A second, and more promising, option
consists of utilizing a mechanical heterostructure involving a monolayer superconductor
such as NbSe2 [197, 198]. Here, encapsulating NbSe2 in between impermeable membranes
is necessary since the monolayer superconductor is not stable in air. Possible devices may
utilize the electrically insulating hexagonal boron nitride or graphene as the encapsulation
material. In the latter, the superconducting proximity effect may lead to a very promising
device realization, an all superconducting graphene-NbSe2-graphene heterostructure.

In conclusion, the employed optomechanical readout and control of graphene NEMS
in combination with energy decay measurements represents an extremely powerful tool
to study motion at the ultimate two-dimensional limit. This is not restricted to graphene
NEMS and can, in principle, be applied to any conducting 2D material.
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ing Optomechanical Coupling via the Josephson Effect. Physical Review Letters,
112(20):203603, 2014.

[140] A. J. Rimberg, M. P. Blencowe, A. D. Armour, and P. D. Nation. A cavity-Cooper
pair transistor scheme for investigating quantum optomechanics in the ultra-strong
coupling regime. New Journal of Physics, 16(5):055008, 2014.

[141] A. Voje, J. M. Kinaret, and A. Isacsson. Generating macroscopic superposition
states in nanomechanical graphene resonators. Physical Review B, 85(20):205415,
2012.

[142] S. Rips and M. J. Hartmann. Quantum Information Processing with Nanomechan-
ical Qubits. Physical Review Letters, 110(12):120503, 2013.

[143] S. Rips, I. Wilson-Rae, and M. J. Hartmann. Nonlinear nanomechanical resonators
for quantum optoelectromechanics. Physical Review A, 89(1):13854, 2014.
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