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Chapter 1

Introduction

Volatility plays an important role for asset pricing theory. The ”implied volatility” ob-
tained from the Black-Scholes model for pricing an European option has been by far the
most widely measure of future volatility, even when it was known that the assumptions for
the model to be valid were violated. However, after the October 1987 stock market crash,
the model has not adjusted reality so well and the ”implied volatility” seems to have little
predictive power relative to the historical volatility, Canina and Figlewski (1993). The
trend since then has been to search for models that were able to fit the main empirical
stylized facts and the model’s ability to reproduce them has been a criterion to dismiss or
not a particular specification. The empirical facts have been well documented in several
works such as: Bollerslev et al. (1994), Ghysels et al. (1995), etc., and among them we
consider: volatility clustering, periods of high volatility are usually followed by periods of
high volatility and vice-versa, thick tails of the distribution of asset returns, persistence
that it is characterized by the fact that shocks to volatility dissipate at a slow rate, small
first order autocorrelation of the squared returns and leverage effects that suggest that
stock price movements are negatively correlated with volatility. Therefore, several mod-
els have been proposed with the aim to capture these empirical facts. Two well known

examples are the original GARCH(1,1) model proposed by Bollerslev (1986) and Taylor



(1986) and the ARSV(1) also proposed by Taylor (1986). Later on in the nineties, several
other models emerged with the aim of capturing volatility persistence, including the long
memory stochastic volatility model of Harvey (1993) and the model of Breidt et al. (1994)
that incorporate in the original stochastic volatility specification a factor of volatility that
is fractionally integrated. Other examples are also the IGARCH, that is an extension of
the previous GARCH that allows the possibility of an unit root in the volatility specifi-
cation and the FIEGARCH that allows for long memory by considering that volatility is
a fractionally integrated process.

More recently, Ming Liu (2000) and Breidt et al. (2000) proposed regime switching
as another explanation for the observed long memory. As Ming Liu (2000) says, the
long memory pattern is present in the autocorrelation function of volatility whenever the
regime switches in a heavy-tail manner.

All these specifications were designed in discrete time,! though a majority of theoretical
works in Finance have modelled the logarithm of asset prices as a univariate diffusion,
Andersen et al. (2000). In order to solve this dilemma at the end of the nineties, some
financial econometric models started to be designed in continuous time. Examples are the
papers by Gallant and Tauchen (2001) and by Chernov et al. (2003) that present several
systems of stochastic differential equations for equity returns. In these works the equity
returns’ volatility is model as a function of variables denoted volatility factors, that try to
capture some of the stylized facts reported above. Both papers provide empirical evidence
that continuous stochastic volatility models with only one volatility factor are not able
to capture simultaneously the extra kurtosis and the volatility persistence of the data.
Their empirical results report that the introduction of a second factor of volatility allows
that one factor might be slow mean reverting and consequently persistent while the other

might accommodate the fat tails.

IThis procedure is justified by the event that financial time series are observed at discrete time

intervals.



The third chapter goes deep into the question: why stochastic volatility models with
one factor of volatility tend to fail specification tests and in which conditions, if any,
they are able to fit the main characteristics of the data? As a starting point, we use the
logarithmic stochastic volatility (with one factor) model of Gallant and Tauchen (2001), as
a benchmark and we change it slightly by introducing a feedback factor into the volatility
factor specification. This feedback factor reveals itself of extreme importance because it
captures volatility clustering by allowing that volatility is low when the factor itself is low.
The chapter also reports the importance of this feature as a possible imperfect substitute
of an increase in volatility caused by stock market crashes. In fact, if we observe the graph
of volatility we see a possible change in the volatility pattern at the very end of the sample.
This event, as it has been reported in several studies such as Beine and Laurent (2000),
Granger and Hyung (1999) and Diebold and Inoue (1999) increases volatility persistence
if we do not account for it. This extra persistence is captured by the feedback factor and
the model as it is described, is able to pass the specification test.

In this chapter, as well as in all the thesis, we use Efficient Method of Moments of
Gallant and Tauchen (1996) as an estimation method because of its testing advantages®.
In fact, the minimized criterion function scaled by the number of observations follows
asymptotically a chi-square distribution that allows us to test if the model is corrected
specified.

These stochastic volatility models in continuous time have been tested and the results

show that they are flexible and potent enough to describe the main features of the data

2Other estimation techniques are for instance: the procedure based on a spectral regression proposed
by Geweke and Porter-Hudak (1983) and a frequency-domain estimator for the fractionally integrated
stochastic volatility model (FISV) suggested by Breidt et al. (1998). They showed that it is consistent
but the asymptotic distribution is not known. Wright (1998) also proposed a new estimator of the FISV
model based on the minimum distance estimator (MDE) proposed by Tieslau et al.(1996). It consists
in minimizing a quadratic distance function. Wright (1998) showed that the estimator is T'*/2-consistent

and asymptotically normal, provided that d < %.



but there still remains a question to answer: are they able to forecast volatility accu-
rately? In fact, this is a crucial point since a good volatility model should be able to
describe and forecast volatility. In order to inquire if these models forecast as well as
they describe volatility, we evaluate, in the fourth chapter of this thesis, the volatility
forecasting performance of a continuous time stochastic volatility model. We use the two
factors stochastic volatility model of Gallant and Tauchen (2001) for the returns of Mi-
crosoft and we filter the underlying volatility using the reprojection technique of Gallant
and Tauchen (1998). Remember that under the assumption that the model is correctly
specified, we obtain a consistent estimator of the integrated volatility. Then, we compare
the forecasting performance of the stochastic volatility model in continuous time to the
forecasting performance of other well known models: the GARCH and the ARFIMA. The
evaluation procedure consists in using both the R*? of the individual regressions of real-
ized volatility® on a constant and on the volatility forecasts obtained from the estimated
models and using the t-statistics of the coefficients of the auxiliary regressions. If they
are not statistically different from zero and one, respectively, the volatility forecasts are
unbiased estimators of realized volatility.

Moreover, the realized volatility is calculated using 15-minutes intraday data instead
of tick-by-tick data in order to avoid using some forms of interpolation that could cause
negative correlation in the returns series and consequently contaminate this measure.
Finally, the empirical results indicate, without doubts, that the continuous time model in
the out-of-samples periods does perform better in comparison to the traditional GARCH
and ARFIMA that show difficulties in tracking the growth pattern of the realized volatility
at the very end of the sample.

Finally, in the fifth chapter we choose the statistical methodology in discrete time

justified by the fact that we still obtain an accurate approximation of the options’ payoffs

3Since realized volatility is considered a good measure of volatility. R*? is the corrected R? of Andersen

and Bollerslev (2002).



and because it is also interesting to compare the performance of specifications in discrete
time to the performance of models in continuous time. We also ask ourselves what will be
the effect of introducing a second volatility factor in the long memory stochastic volatility
model (LMSV) of Breidt et al. (1994); Will it allow the model to deal simultaneously
with kurtosis and persistence, as in the continuous time environment? Having in mind
these questions in this chapter, we start by extending the previous model by introducing
a volatility factor that in its simplest form is autocorrelated of order one, as the orig-
inal ARSV by Taylor (1986). Remember that we still model the volatility persistence
by assuming that the volatility of the returns shows a long memory feature captured by
a fractionally integrated process. The innovation is this extra short run volatility factor
that increases kurtosis and helps the model to capture volatility persistence, an effect that
can be seen in the autocorrelation function of the squared returns implied by the model.
Furthermore, considering some restrictions of the parameters it is possible to fit the em-
pirical fact of small first order autocorrelation of squared returns. All these results are
proved theoretically and the model is implemented empirically using the S&P 500 com-
posite index returns. Finally, the empirical results show us that: the short run volatility
factor improves the EMM criterion as in Ming Liu (2000) and the long memory stochastic
volatility model with two factors of volatility performs better than the two benchmark
models. Anyway, according to our results it seems that stochastic volatility models in
continuous time seems to fit better the main empirical facts. This occurs, certainly, be-
cause they are quite flexible, in the sense that we do not impose rigid specifications on

the volatility factors as in discrete time.
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Chapter 2

Methodology

In this chapter we explain the Efficient Method of Moments (EMM) estimation procedure
by Gallant and Tauchen (1996), since it is used in all the work that follows. It is based on
two compulsory phases. The first is projection, that consists of projecting the observed
data onto a transition density that is a good approximation of the distribution implicit
in the true data generating process. The simulated density is denominated the auxiliary
model and its score is called ”the score generator for EMM”. The advantage is that the
score has an analytical expression. The second phase consists of estimating the parameters
of the model with the help of the score generator. This score enters the moment conditions
in which we replace the parameters of the auxiliary model by their quasi-MLEs obtained
in the projection step and the estimates of the model proposed are obtained by minimizing
the GMM criterion function. Since the minimized criterion function scaled by the number
of observations asymptotically follows a chi-square distribution, it leads to diagnostic tests
that help explaining the reasons for the failure of the fitted model. Finally, the last step,
called reprojection, is a post-estimation simulation analysis that allows to filter volatility
encompassed by the model to evaluate the proposed models, to obtain the density and to
forecast.

We can not apply Maximum Likelihood estimation methods in our work because there
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are some unobserved variables in the proposed models. So, for this reason the likelihood
for the entire state vector is frequently not feasible. Nevertheless, the simulation of the
evolution of the state vector is quite possible and the EMM is based on this. Other
advantages of the EMM are the availability of diagnostic tests to assess the specification
of the model and graphs that suggest reasons for failure.

Ait-Sahalia (1996a, 1996b) also developed an alternative estimation strategy for es-
timation stochastic differential equations. The method of estimation proposed by this
author differs from the EMM because the moment functions are computed directly from
the data rather than simulated. Note that full observation of the state is necessary in
order to estimate all the parameters.

Recently, new methods of simulation have been developed Brandt and Santa-Clara
(1999) is one example. These authors apply the simulated likelihood estimation proce-
dures to multivariate diffusion processes. Nevertheless, these procedures have difficulties
to deal with latent variables and moreover, the simulations have to be performed for every

conditioning variable and for every parameter value.

Let {y:}° o, yr € ®M | be a multiple, discrete stationary time series and z; =
(Y4—p, .-, y¢) & stretch from the previous process with density p(y_r, ..., yo|p) defined over
R, 1= M(L+1). pis a vector of unknown parameters and {j&t}f:_ ;. the real data from
which it is to be estimated. The main problem that makes traditional methods of esti-
mation inviable is that this density is in general not available. However, expectations of

the forms

E,(g) :/.../g(yL,...,yg)p(yL,...,yo)dyL....dyo,

can be approximated quite well by averaging over a long simulation

N
1 ~ ~ ~
E,(9) = Nzg(yt—Lv Y1 Yp)-

t=1
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Let {g}t},fi_L denote the simulation from p(y| z,p), where z = z_1 = (y_r,...,y-1),
y = yo and p(y/ z,p) = p(y—r,--%lp)/P(y—L,..,y—1|p) . Notice that the length of
simulation should be large enough for the Monte Carlo error to be negligible.

Gallant and Tauchen (1996) proposed an estimator for the vector of parameters p in
the situation above. This method relies on a minimum chi-square estimator for the vector
of parameters, which permits the optimized chi-square criterion to be used to test the
specification adopted. The moment conditions entering the minimum chi-square criterion
come from the score vector % log f(yt|wi—1,0) of an auxiliary model f(y:|x—1,0) that
closely approximates the true density. If this is true, the EMM estimator will be nearly
as efficient as the ML estimator. One commonly used auxiliary model in applications is
the SNP density fx(y|z,0) that was proposed by Gallant and Nychka (1987). It has been
showed that the efficiency of the EMM estimator can be close to that of the ML estimator
if K is made large enough, Gallant and Long (1997).

The first step is to obtain the auxiliary model. Therefore, we use the SNP density that
is obtained by expanding in a Hermite expansion the square root of h(z), an innovation

density,
Vh(z) = Zeiza/w).

Here ¢(z) is the standard normal density function'. The reshaped density is given by

_ PAe))
[ P2 (u)p(u)du’

hx(2)
where
K
Py(z) = Zﬁizl,
=0
and hg(z) integrates to one since it is normalized. The SNP density is, according to the

following location-scale transformation y = oz + p,

IThis expansion exists because Hermite functions are dense in Ly and y/h(z) is an Lo function.
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Felolt) = ~hae(U L)

Following our notation, h(z) = p(z,y|p°) is the transition density and p° is the true

vector of parameters. Therefore, the location-scale transformation becomes

y = Rzz—i_/'l/x?

where z is an innovation and R, is an upper triangular matrix. R,, for a GARCH
specification which is the one that model the data used in this paper, is given by

Ly

L,
vech(Ry, ) = po + ZPi|yt—1—Lr — Hay_o—Lotil + deg(Gz‘)thz—LgH,

i=1 i=1
where vech(R) is a vector of dimension M (M + 1)/2 which contains the unique elements

of the matrix R, p, denotes a vector of dimension M (M + 1)/2, P, through P are
M(M +1)/2 by M matrices and Gy through G, are vectors of length M (M +1)/2 .

The density function of this innovation is

_ PR(z,2)9(2)
hclzlz) = [ P2 (u,z)¢p(u)du’

where P(z, ) is a polynomial in (z,z) of degree K and ¢(z) is the multivariate density of

M independent standard normal random variables. As before, the polynomial Pg(z, )

equals

K., K

Ptz ) = 3 (D agaa’)=",

a=0 =0

where o and 3 are multi-indexes with degrees K, and K, respectively. Since hg(z|z) is a
homogeneous function of the coefficients of Pk (z,x), it is necessary to impose a restriction

(ago = 1) to have a unique representation.
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The location function is linear
Hy = by + Bxy_q,

with b, a vector and B a matrix, both formed of parameters to be estimated.

Taking in account the location-scale transformation the SNP density becomes at last

hi[R M (y — p1,)] ]
det(R,)

The maximal number of lags is L = max(L,, L, + L,, L,). L, denotes the number of lags

fr(ylz,0) =

in p1,, L, + L, is the number of lags in R, and finally L, denotes the number of lags that

go into the x part of the polynomial Pg(z, ).

The following step is estimation. In this phase the main aims are: first of all estimate
the vector of parameters p, test if the specification proposed for modeling the data is
adequate by using the minimum chi-square criterion, and finally analyze the reasons of
the system failure and shed light on the possible modifications that can better fit the
data.

The EMM estimator pn is determined as follows. First, we use the score generator

determined in the projection step

f(yt‘@’t—la ‘9) 0 € R

and the data {Z}t}?:, , in order to obtain the quasi-maximum likelihood estimate

~ 1 n _ _
f, = argmax— Y lo ri_1,0)].
g logl (o1

The information matrix is

~ 1 n 8 -~ -~ - a ~ - -
I = ﬁz[% log f(y|@i-1, 9n>][% log f(ys|we-1,0n)]"

t=0
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In the literature it is assumed that f(y|z,6,) is a good approximation to the true

density of the data. Otherwise, more complicated expressions for the weighting matrix

should be used?.

Defining the moment conditions by

0
m(p,0) = Ep{@ log f(y,|we—1,0)},

which are obtained by averaging over a long simulation

a NZ Ing yt|xt 1a )]a

the EMM estimator is obtained by

p, = argminm’(p, 0,)(I,.) " m(p, 0,). (2.1)

The asymptotic properties of the estimator are derived in Gallant and Tauchen (1996)
and presented below. Define p° as the true value of the parameter p and 6° as an isolated
solution of the moment conditions m(p°, 6) = 0. Then under regularity conditions it can

be shown that

lim/;n =" a.s.,

n—oo

Vilp, — %) 2 N{0, [(MOY (1) (M) 13,

2See Gallant and Tauchen (1996) and Gallant and Tauchen (2001). However, Gallant and Long (1997),

Gallant and Tauchen (1999) and Coppejans and Gallant (2002), proved if the auxiliary model corresponds

to the SNP density the information matrix above will be the adequate.
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lim M,, = M° a.s. and

n—oo

limlI, =1°a.s.,
n—oo

where M, = M(p,,0,), M° = M(p°,6°), M(p,0) = (-2 )m(p,0) and

0!

0 0
0 = Epo[% log f(yo|z_1, 90)][% log f(yolz_1,60°)].

These asymptotic results permit testing if the model is correctly specified. Under the

Hy that p(y_r,......, yo|p) is the correct model

Lo = nm!(p,, 00) (1) " 'm(p,., 6)

follows asymptotically a chi-square with py — p, degrees of freedom. It is also possible to

test restrictions on the parameters, i.e.,

Hy:h(p®) =0

where h is a mapping from R into R? and the test statistic is given by

and

bn = arg minm’(p, 0,) (1) "'m(p, 0,,).
h(p)=0
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Finally, it is also possible to obtain confidence intervals for the parameters by comput-
ing the standard deviations using numeric methods. These intervals present a drawback
because sometimes a parameter approaches a value for which the model is explosive and
this fact is not accompanied by an increase in the EMM objective function. Gallant and
Tauchen (1996) came up with a solution that consists of inverting the difference test L.
These ”inverted” intervals are not free of problems. In fact, it was shown that they do
not present more accurate coverage probabilities, especially when the degrees of freedom
are low.

Since

VA (pa ) <> N{O, 17 = (M)[(MO) (1%~ (M°)] 7 (M°)'},
the t-ratios are given by

T, = S /am(p,, 0,),

where S, = (diag{I, — (M,)[(M,) (I,)"'(M,)]"*(M,)'}). The characteristics of the data
are reflected in the different elements of score. If the model fails to fit these characteristics
this fact comes out in the large values taken by the t-ratios (of the elements of the score).

In this case, the failure can suggest alternative modelizations.

3In order to invert the test we select for the interval that values of p; for which the Hp: p) = p! is

not reject under the test Lyj,.
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Chapter 3

Are One Factor Logarithmic
Volatility Models Useful to Fit the
Features of Financial Data? An

Application to Microsoft Data

3.1 Introduction

A volatility model should be able to model the main characteristics of financial series of
returns such as volatility persistence, volatility clustering, leverage effects, fat tails and
small first order autocorrelation of squared returns. During the three last decades several
models have been proposed with the aim of capturing these empirical facts. Stochastic
volatility models, for instance, were designed to fit mainly volatility persistence but recent
empirical work has found that these models fail in capturing the fat tails of the returns’
distribution, Chernov and Ghysels (2000).

Gallant and Tauchen (2001) and Chernov et al. (2003) propose several models in con-

tinuous time and evaluate the importance of several volatility factors to the modelization
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of equity returns. Both papers provide empirical evidence that continuous-time stochastic
volatility models with only one volatility factor are not able to capture simultaneously
extra kurtosis and volatility persistence. The introduction of a second factor of volatility
allows that one might be slow mean reverting while the other might accommodate the fat
tails.

This chapter differs from previous works in that it provides empirical evidence that
continuous time models with one factor of volatility, in some conditions, are able to fit
the main characteristics of financial data. It also reports the importance of the feed-
back factor as a possible imperfect substitute of an increase in volatility caused by stock
market crashes. The estimated models are direct extensions of Gallant and Tauchen’s
(2001) model, by including the feedback feature. The paper of Chernov et al. (2003)
also presents logarithmic models in continuous time but our specifications differ from the
previous because they do not allow for stochastic instantaneous expected returns (the
drift of the return equation is not stochastic) and leverage effects. The advantage of these
modelizations compared to an affine specification is that they allow that the volatility be
dependent on state, although there are not closed-form solutions. However, pricing for-
mulas may be computed by simulation. Chernov et al. (2003) consider this an advantage
when compared to the risk-neutral measure transformations used by the affine models.

The empirical results report that the one factor logarithmic volatility model without
feedback does not fit the Microsoft data which confirms prior findings in the literature. A
new result comes out when we introduce the feedback factor. The model, now, does pass
the specification test. This feature is of extreme importance because it allows capturing
the low variability of the volatility factor when the factor is itself low (volatility clustering).
The feedback factor also allows capturing the increase in volatility persistence that occurs
when there is an apparent change in the pattern of volatility. The introduction of a second
factor of volatility with feedback does not seem relevant for the Microsoft data.

This chapter is organized as follows. Section two presents and characterizes the models
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we study. Section three covers the projection, estimation and reprojection steps and

reports the empirical results for the Microsoft data. Section four concludes the chapter.

3.2 Continuous Time Stochastic Volatility Logarith-
mic Models

Recently researchers tend to model volatility as stochastic. The literature is vast referring
to the estimation of models with or without stochastic volatility or with or without jumps,
see Bates (2000), Chernov et al. (2003), Gallant and Tauchen (2001), Ghysels et al.
(1995), for example.

Our model is the following;:

dP,
?t = anodl + exp(B1g + B12Ua + B13Us)dWr, (3.1)

t
dUQt - (0520 _'_ 0522U2t)dt + (ﬁ20 _'_ /822U2t>dW2t (3.2)
dUgt = (a30 + 0433U3t)dt + (ﬁSO + 533U3t)dW3t (33)

where P, is the Microsoft price series evolving in continuous time and W; with i = 1,2,3
are three independent wiener processes. This specification is an extension to Gallant
and Tauchen (2001) model since it includes the feedback features 55,Us and (53Us in the
equations 3.2 and 3.3, respectively.

In this system the instantaneous standard deviation of the rate of return is an expo-
nential function of the factors Uy, and Us,'. This specification nests two groups of models:

the first includes the logarithmic model with one volatility factor (L1), with 5,3 = 0 and

! As Chernov et al. (2003) refer, the logarithmic models with feedback violate the standard regularity
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Ba9 = 0, and the logarithmic model with two volatility factors (L2), with £15 # 0, 899 = 0
and 533 = 0 and the second group contains the one factor logarithmic volatility model
with feedback (L1F'), where ;3 = 0 and (45 # 0, and the logarithmic model with two
factors of volatility and feedback (L2F'), where 8,3 # 0, 855 # 0 and (53 # 0. One ad-
vantage of the feedback feature is to allow for volatility clustering. The empirical results,
later on, reveal that this feature may be quite relevant especially when there seems to
exist a change in the pattern of volatility. We could suspect that the increase in volatility
caused by stock market crashes and the feedback feature could be imperfect substitutes,
in the sense that the introduction of this feature could help in capturing the increase in
volatility caused by stock market crashes?’. We do not introduce jumps in the specifica-
tions because the possible change in the pattern of volatility occurs at the very end of
the sample. Moreover, the volatility factors of equation 3.1 present drifts and volatilities
that are linear functions of themselves, respectively and the drifts in equations 3.2 and 3.3
allow for mean reversion when «;; # 0 for ¢ = 2,3. A small value of «;; for ¢ = 2,3 means
that a shock to the volatility of the return takes time to dissipate. This is referred in the
financial econometrics literature as persistence or long memory and a large percentage
of the financial series seem to show this feature, Zaffaroni (2000). Finally, 3, is also an
important parameter since it takes care of the long-run mean of the volatility of the price

equation 3.1.

conditions. Hence, the solutions of the system of SDEs associated with these models and the stochastic
integrals are not defined. In order to solve this problem they propose a method that consists on splicing
the exp(.) function that models the volatility behavior of equation 3.1 with, as they say, ”...the linear
growth condition at the level of volatility is so high that it is unlike to be observed in the U.S. equity

index returns.” For more details please see the appendix A of their paper.
2We think to test this suspicion using a Monte Carlo experiment.
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Identification restrictions

To achieve identification it is necessary to impose some restrictions. In this concrete case

for the logarithmic specification we set

g0 = 0,30 = 0, g9 = 1, B35 = 1.
These restrictions are the minimum necessary to achieve identification.

Therefore the previous specification becomes, for the first group:

dP,
?t = anodl + exp(B1g + B1oUat + B13Use) AWy (3.4)
t
dUQt = OéQQUQtdt -+ dWQt (35)
dUgt = Oé33U3tdt + dWSt (36)

with 813 = 0 or 13 # 0 if we refer to L1 or L2, respectively.

For the second group:
dP,

B a1odt + exp(B1g + B1oUat + B13Us) AWy (3.7)
t

dUQt = OéQQUQtdt -+ (1 + 522U2t>dW2t (38)

dUgt = OéggUgtdt + (1 + 633U3t)dW3t (39)

with 8,53 = 0 or 3,5 # 0 if we refer to L1F or L2F, respectively. The first group of SDE
was already estimated by Gallant and Tauchen (2001) for a small sample of Microsoft
data.

We use these restrictions first because they are common in previous similar SDE and

second because they provide flexibility and numerical stability in the estimation phase.
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3.3 Empirical Results

3.3.1 SNP estimation results

In this subsection of the chapter we present the results of the projection step.

The auxiliary model that best fits the raw data is found using the SNP model described
in the second chapter. The data is composed of 3,778 observations on a daily price of
a share of Microsoft, adjusted for stock splits, from 13" of March, 1986, till 23" of
February, 2001 (see Figures 1, 2 and 3). The first 47 observations were reserved for
forming lags. The values taken by L., L,, L., L,, K, and K, were determined by going
along a expansion path and the selection criterion used was the BIC (Bayesian Information
Criterion), Schwarz (1978).

As always, models that present a small value for the BIC criterion are preferred to the
ones with higher values. The expansion path has a tree structure. As Gallant and Tauchen
(1996) suggested, better than expanding the entire tree structure is to start expanding
L, keeping L, = L, = K, = K, = 0 until the BIC increases value. The following step is
to expand in L, with L, = K, = K, = 0. Next, one expands K, with K, = 0 and finally
L, and K,. Sometimes it can happen that the smallest value of the BIC is somewhere
inside the tree. So, it is convenient for this reason to expand K, L, and K, at a few
intermediate values of L,.

The best model according to this procedure® has

Ly=1L =1L,=1L,=1K. =6and K, =0

and can be characterized as a Semiparametric GARCH.

3This strategy reveals itself reasonable in much applied work, Fenton and Gallant (1996b). Gallant

and Tauchen (2001) also arrived at the same specification.
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3.3.2 The estimation step

All the estimated results were obtained using the computer package EMM programmed by
Gallant and Tauchen (1996) with Fortran 77 available at ftp.econ.duke.edu. The global
minima of equations 3.4 and 3.9 were found through an exhaustive search grid of the
starting values and the help of randomization.

Table 2 gives a summary of the specifications presented in section two and shows
the value of the diagnostic test which follows an asymptotic chi-square distribution with
po — pp degrees of freedom. From the table and in particular from the chi-square test,
we can infer that the results for the one factor volatility model without feedback confirm
prior findings in the literature. The model is sharply rejected at a 5% level of confidence.
A new result comes out when we introduce the feedback factor. It turns out not only
significant but also it is of vital importance for the good fit of the model that now passes
the specification test without violating any of the moment conditions (see Tables 2 and
4). When we analyze the estimates for this latter model, we see that all coefficients are
statistically significant. The feedback factor turns out to be very relevant, with a negative
value. This implies that if now the volatility factor Us is high its instantaneous volatility
decreases and in the future the volatility factor Us is expected to decrease. This combined
with the negative value of 3,5 (the coefficient of the volatility factor in (4)) makes perfect
sense and matches financial theory*. So this feature allows that the variability of the
volatility factor is low when itself is low (volatility clustering). Another characteristic
that comes out from the estimation is the value of the parameter that corresponds to the
mean reversion feature, asy. Its value is inferior to unity. Thus, shocks to volatility of
returns take time to dissipate - the long memory property. If we also observe the graph

of volatility we will see an increase in the volatility for the last period of the sample (see

4This is so because if the volatility factor is high now the instantaneous volatility of the return

decreases, implying an expected decrease of the return in the future.
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Figures 3 and 3.1) caused by stock market crashes. Recent studies, for instance: Beine
and Laurent (2000), Granger and Hyung (1999) and Diebold and Inoue (1999) report
that there is an increase in volatility persistence if we do not account for the possibility
of pattern changes. In order to investigate this, we consider the sample used in Gallant
and Tauchen (2001) that ranges from March 13, 1986 till November 16, 2000 and our
sample. We compute the autocorrelation functions (ACFE’s) of the squared returns of the
absolute values of returns and we observe specially for the latter that the ACF decays
slower towards zero (see Figures 5 and 6). We also compare their L1 model results with
ours and we observe that the parameter of mean reversion, as,, is abruptly greater than
one in absolute value, which means fast mean reversion and consequently low persistence
in volatility. In contrast, the same specification estimated considering the sample used
in this chapter reports an empirical result for that parameter of -0.902, which is much
smaller in absolute value than the previous one (see Table 3). Both pieces of evidence are
signals of an increase in persistence in the presence of structural changes in volatility. This
extra persistence leads to volatility clustering with periods of low volatility being followed
by periods of low volatility and vice-versa. Therefore, the estimation results may suggest
that change in the pattern of volatility and feedback factor may be imperfect substitutes
( the latter can capture the former by allowing for volatility clustering that results from
an increase in persistence).

Although the frequency of data is daily, it is scaled so that the coefficients are on an
annual basis. That is, a value of 0.4102 for ;¢ represents an annual average rate of return
equal to 41.02%. The step size is A = 1/6048, which corresponds to 24 steps per day and
252 trading days per year.

Since the feedback factor reveals itself of extreme importance, we estimate a two factors
logarithmic volatility model incorporating this feature. Analyzing the results we can say
that for all the lengths the parameter (3,5 is not significant, which means that for this

data and for this sample, the second factor of volatility is unimportant. We report its
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results for N = 100 000 in table 3.

Finally, we estimate the L2 specification as in Gallant and Tauchen (2001) and we
infer from the results that this model is another possible candidate to model the data.
We observe that one factor of volatility is extremely slow mean reverting while the other
is very fast mean reverting®.

Finally, the Table 4 summarizes the EMM quasi-t-ratios diagnostics for L1, L1F
and L2. There is evidence that these statistics are asymptotically downward biased.
Gallant and Tauchen (1996) presented some corrections to this t-ratios but recent evidence
showed that they might not be especially reliable when there are few degrees of freedom.
Consequently, in this chapter we present only the unadjusted t-ratios, without forgetting
the downward bias. Relatively to the one factor logarithmic volatility model without
feedback, it does not seem to fit the scores corresponding to the GARCH scale. This may
be due to the strong persistent stochastic volatility in the data. When we introduce the
feedback factor, none of the scores are violated, i.e., the model seems to fit the Hermite
parameters as well as the GARCH parameters. The same for model L2.

From the estimation step, two models come out, L1F and L2. It is not possible to
choose between them based on the diagnostics computed at this step. The reprojection

step will give us more tools that will help us to evaluate their performance.

3.3.3 The reprojection step

The reprojection step allows us to filter the volatility factors Us; and Us; for any desired
sampling frequency. In fact, as a by-product of the estimation step we obtain a long

simulation of the volatility factors {Us}Y, and {Us}Y ,. Having as the main aim to

®As in Gallant and Tauchen (2001). All the coefficients are statistically significant at a 5% significance
level, except g that is significant at a 10% significance level. We consider it different from zero, otherwise

the model would be similar to the L1 model, which has been sharply rejected by the specification test.



3.3 Empirical Results 27

obtain
E(Unl{y-}oo1),

and

E(U3t‘ {yT}i:1)>

we start generating simulations of {Uy }Y,, {Us}Y, and {§j;})Y, at the estimated vector
of parameters p and with N equal 100 000. Then, we impose the same SNP-GARCH
model founded in the projection step, on the simulated values ;. According to Gallant
and Tauchen (2001), this provides a good representation of the one-step ahead conditional
variance 67 of §j;41 given {g,}._,. We follow by running regressions of Uy and Us, on 67,

¢ and |7;| and lags of these series:

Ugt = g+ 041(3'? -+ az&f_l + .t Oépa'?_p + ngt + (92];1571 + ...

0, Ut—g + m1|G| + T2l G| + oo F TG +

Uy = By+ P67+ Ba07 4+ ..+ Bpa-?fp + 719t + Vol—1 +

oo VUi MG XaGea | A A |G| A e

With this procedure we obtain calibrated functions inside the simulation that gives pre-
dicted us values of Uy, and Uy, given {y,}._,. In fact, given the length of the simulation,
these regressions are, as Gallant and Tauchen (2001) say, analytic projections. Finally, we
evaluate these functions on the observed data series {7, }._; to obtain reprojected values
of the volatility factors, Uy, and U3t.

Figures 7.0, 7.1, 8 and 9 show the reprojected volatility factors of models L2 and
L1F, respectively. As to be expected Us; for the L2 is quite choppy and Us, is slightly
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slower moving than Us, as we can verify by figures 7.0 and 7.1%. Curiously, the increase in
volatility in the last part of the sample and the crash of 1987 are attributed in its majority
to the fast mean reverting factor, Us; . This suggests that both events were temporary.
Finally, the reprojected volatility factor from the L1F model is the most "alive” of the
three. It tracks quite well the patterns of both factors in the previous model L2 and
it captures some extra noise in the volatility. So, it seems, for the purpose of volatility

modelling , that the L1F specification works quite well.

3.4 Conclusion

This chapter studies four systems of SDE for modelling the daily return on the Microsoft
shares, L1, L1F', L2 and L2F. From the diagnostics at the estimation step two models
seem to fit the data well, L1F and L2. One possible reason for the failure of the model
with only one volatility factor could be its inadequacy to model the strong persistent
stochastic volatility caused by stock market crashes. This drawback, however, is over-
come by introducing the feedback factor. It allows for volatility clustering and it is able
to capture the strong persistence. The model, now, seems to fit all the score moment con-
ditions associated with the GARCH parameters as well as the score moment conditions
corresponding to the Hermite parameters responsible for the tail behavior. The second
valid model that comes out from estimation is the logarithmic with two volatility factors.

Reprojection assumes an important role in the model selection since it gives us more
tools for comparing models. By computing the reprojected volatility factors implied by

the previous specifications we see that there is no advantage in estimating the two factors

6775, could be much more slowly moving as in Gallant and Tauchen (2001) . The fact that it is not,
can be justified by the value of the t-statistic for asg, 1.86667 (that is not statistically significant at a 5%
significance level). We considered it significant due to the possibility of computational error in the wald
standard deviation justified by the relatively big amplitude of the confidence interval and its asymmetry

to the estimate.
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stochastic volatility model for this sample. The L1F model is able to reproject volatility
quite well. It even does not miss the crash of 1987.
For the more complicated specification L2F, the empirical results show that the second

factor is not significant.
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Series: MCS

Sample 1 3777
Observations 3777
Mean 0.182527
Median 0.000000
Maximum 19.56522
Minimum -30.11231
Std. Dev. 2.524706
Skewness -0.328318
Kurtosis 12.87857
Jarque-Bera  15425.46
Probability 0.000000

Figure 4: Histogram of the Returns on Microsoft, March 14, 1986 - February 23, 2001.

Parameters
L,=0|L,=0] L.=0 L,>0 K.,=0||K,=0 iid Gaussian
L,>0| L,=0] L.=0 L,>0 K.,=0|K,=0 Gaussian VAR
L,>0| L,=0] L.=0 L,>0 K.,>0|| K,=0 Semiparametric VAR
L,>0||Lyg=0||L,>0 L,>0 K.,=0||K,=0 Gaussian ARCH
L,>0||Ly=0||L,>0 L,>0 K.,>0|| K,=0 Semiparametric ARCH
L,>0||Ly>0||L,>0 L,>0 K.=0||K,=0 Gaussian GARCH
L,>0||Ly>0||L,>0 L,>0 K,>0| K;=0| Semiparmetric GARCH
L,>0| Ly,>0] L.>0 L,>0 K, >0 | K; > 0 || Nonlinear Nonparametric

Table 1: note:”

L, is the lag length of the location function. L, is the lag lenght

of the GARCH part of the scale function. L, is the lag lenght of the ARCH part

of the scale function. L, is the lag length of the polynomials in x. K, is the degree

of polynomials in x that determine the coefficients of the Hermite expansion of the

inovation density”, Gallant and Tauchen (2001). The table is similar to the table

in SNP guide, ftp:econ.duke.edu/get.




36

3.5 Figures and Tables

ACF's of Squared Returns

-.05

| B SGT Il SO |

Figure 5: SGT - ACF of Gallant and Tauchen (2001). SO - ACF of this paper.



37

3.5 Figures and Tables

ACF's ofthe Absolute Value of Returns

"aa a

AT ATATATATATA"AATATATATATAT|

TAvavavarara

ATATATATATATATATATATAT|

\araaaratatarararal

\vAvAvAvAvATATAYAY

rv.v.v.v.v|

AT AT AT AT ATATAT AT AT ATATATATATATATA

RAARARAAARARR R AR AARRRRARAAARAAR]

AR ARRRARARRRRRARRRRRRARRRRNRRIIIN

.20 -+

T T T T 1
© (a\} © < o
~— — o o o

35

o
™

20

15

| B AGT [l AO |

Figure 6: AGT - ACF of Gallant and Tauchen (2001). AO - ACF of this paper.



3.5 Figures and Tables 38
L1 * * * * 50k || 15.983 || 7 | 0.0253
L1 * * * * 100k || 16.650 || 7 | 0.0198
L1F * * * * * 50k 9.417 6 | 0.1514
L1F * * * * * 100k || 10.635 || 6 | 0.1003
L1F * * * * * 150k || 8.078 || 6 | 0.2324
L1F * * * * * 175k || 8.463 || 6 | 0.2061
L2 * * * * * * 100k || 6.704 || 5 | 0.2436
L2F * * * * * * * * 50k || 5.568 || 4 | 0.2338
L2F * * * * * * * * | 100k || 2.015 || 4 | 0.7330

Table 2: *is used for free parameters. 175k refers to a simulation of length

175,000 at step size A = 1/6048, corresponding to 24 steps per day and 252

trading days per year.
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Model Q10 Q22 Q33 Bio Bz Bis Bas B3
L1
Estimate 0.42 -0.902 -0.124 || 0.429
Std. Dev. | 0.073 0.097 0.003 0.038
95% Lower || 0.270 -1.048 -0.132 || 0.373
95% Upper || 0.571 -0.757 -0.116 || 0.485
L1F
Estimate 0.410 -0.159 -0.112 || -0.160 -0.224
Std. Dev. | 0.037 0.002 0.003 0.003 0.004
95% Lower | 0.326 -0.164 -0.119 || -0.166 -0.234
95% Upper | 0.499 -0.155 -0.104 || -0.153 -0.215
L2
Estimate 0.424 || -0.00028 -89.21 || -0.120 || 0.0063 || -4.628
Std. Dev. || 0.074 || 0.00015 3.932 || 0.0087 || 0.0010 || 0.076
95% Lower | 0.269 || -0.00049 || -97.154 || -0.123 || 0.0043 || -4.778
95% Lower | 0.579 || -0.000078 || -81.432 || -0.097 || 0.0083 || -4.480
L2F
Estimate 0.415 -2.161 0.214 -0.126 || 0.723 || -0.504 || 0.733 || 7.190
Std. Dev. || 0.084 0.077 2.691 0.089 0.035 || 6.668 || 0.623 | 0.635
95% Lower | 0.414 -2.162 0.172 -0.127 || 0.723 || -0.607 || 0.727 || 7.180
95% Lower || 0.415 -2.161 0.252 -0.124 || 0.727 || -0.408 || 0.740 || 7.199

Table 3: Estimates,

Standard Deviations and Confidence Intervals
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Coeflicient L1 L1F L2

Location Function:

bo psi(1) || 0.066 | 0.361 || 0.101

b, psi(2) || 1.685 | 0.839 || 1.239

Scale Function:

To tau(l) || 1.824 || 0.377 || 0.764

Tz tau(2) || 2.540 || 0.132 || 1.032

Toa tau(3) || 2.315 || 0.282 || 0.921
Hermite Polynomial:

0,1 A(2) | 0.081 || 0.453 || 0.358

0,2 A(3) || 1.868 | 1.212 || -0.018

a0,3 A(4) | -0.069 || 0.544 | 0.500

a0,4 A(5) || 1.809 | 1.981 | 0.146

a0,5 A(6) | -0.418 | 0.499 | 0.418

0,6 A(7) || 1.226 | 1.858 || -0.032

Table 4: Scores Diagnostic
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Chapter 4

Forecasting Volatility Using A

Continuous Time Model

4.1 Introduction

Volatility plays an important role for asset pricing theory as it is directly linked to the risk-
return relation. Good measures and forecasts of future volatility are of vital importance
for finance theory!'. One measure of volatility has been ”the implied volatility” obtained
from Black-Scholes model, but as empirical evidence has been showing, the performance
of this model is not the same in all periods. In fact, after the October 1987 stock market
crash, the model is not adjusting reality so well and the implied volatility seems to have
little predictive power relative to the historical volatility, Canina and Figlewski (1993).
On the other hand, the standard well known ARCH/GARCH models seem to perform
poorly in forecasting volatility (see Day and Lewis (1992), Jorian (1996), Pagan and
Schwert (1990), West and Cho (1995), etc).

Nowadays with the availability of high-frequency data and the advances of compu-

I'Notice that volatility is used as a measure of risk. The higher is the volatility, the higher is the risk

and consequently the higher is going to be the expected return.
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tational tools it is possible to improve volatility forecasting. There are two main ways
of forecasting volatility. The first way treats volatility as observed and uses intra-period
data to get the so called "realized volatility” obtained basically by summing intra-period
squared returns and fitting to them models that incorporate the main features of this data,
for instance, the long-memory property. Since much theoretical work assumes that the
logarithm of asset prices follows a continuous time model, like a diffusion, one advantage
of this procedure is that the realized volatility can be made arbitrarily close to the integral
of instantaneous volatility over the period by reducing the intra-period. However, if we
choose tick-by-tick prices we might have to use some forms of interpolation since these
prices are not generally available at regular time intervals. Empirical evidence shows that
this can cause negative correlation in the returns series and consequently lead to poor
forecasts of models using this data. Other problems are related with changes of patterns
in volality due to market microstructures, for instance the existence of lunch periods, the
close of the market, etc.. To attempt to avoid these drawbacks, in this chapter, we use
15-minutes intraday data. The second way of forecasting volatility treats volatility as
latent in the sense that it can be filtered after estimation. Getting a correct specification
is pivotal since volatility estimates are model dependent. In this chapter, we follow this
second alternative and we fit the continuous time model with two factors of volatility of
Gallant and Tauchen (2001) to the returns of Microsoft.

To sum up, the aim of this chapter is to evaluate the volatility forecasting performance
of the continuous time stochastic volatility model comparatively to the ones obtained
with the traditional GARCH and ARFIMA models. In order to inquire into this, we
estimate using the Efficient Method of Moments (EMM) of Gallant and Tauchen (1996)
a continuous time stochastic volatility model for the logarithm of asset price and we
filter the underlying volatility using the reprojection technique of Gallant and Tauchen
(1998). Under the assumption that the model is correctly specified, we obtain a consistent

estimator of the integrated volatility by fitting a continuous time stochastic volatility
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model to the data. The forecasting evaluation for the three estimated models is done
with the help of the R*? of the individual regressions of realized volatility on a constant
and on the volatility forecasts obtained from the estimated models.? The empirical results
show evidence that the performance of the continuous time model in the out-of-sample
periods is better compared to the ones of the traditional GARCH and ARFIMA models.
Further, these two last models show difficulties in tracking the growth pattern of the
realized volatility for the sample considered. This probably is due to the increase in
volatility caused by stock market crashes in this last part of the sample.

The plan of the chapter is as follows. Section 2 introduces the concept of realized
volatility and the way to calculate it. Section 3 presents the continuous time model
and the estimation results. Section 4 evaluates the forecasting performance of the three

estimated specifications and section 5 concludes the chapter.

4.2 Realized Volatility

4.2.1 Theoretical relation between realized volatility and inte-

grated volatility

Let r;j, 0 < j < n, represent a set of n + 1 intraday returns for day t. j = 0 refers to
the closed market period that ranges from day ¢ — 1 until the open on day t. j = 1 is
the fifteen minutes commencing at the open and j = n is the last fifteen minutes return
before market closes.

Much theoretical work models the logarithm of asset prices (py) as a univariate diffu-

sion, Andersen et al. (2000),

dpy = pdt + opdW

where W is a Wiener process. So the daily return of asset £ is given by

2R*2 is the corrected R? of Andersen and Bollerslev (2002).
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t t

pr(t) — pe(t — 1) = ri(t) = /uk(s)ds+/ak(s)dW(s). (4.1)

t—1 t—1

n
These authors proved that under innocuous regularity conditions, the realized volatility > Tt% j
—

J
t

converges to the integrated volatility [ o7(s)ds as n converges to co. So, the performance
of the realized volatility estimator di;ends only on the number of observations. For a
given sample period the higher the frequency of the data and the larger the number
of observations, the better the approximation of the realized volatility estimator to the

integrated volatility.

4.2.2 Data

Realized volatility has been calculated from the intraday 15-minutes price of a share of
Microsoft®, from 10" of April, 1997, till 23"¢ of February, 2001, according to Nelson and
Taylor (2000).

The models, GARCH, ARFIMA and the continuous time model with two factors of
volatility described below use daily data on Microsoft, adjusted for stock splits, from 13"

of March, 1986, till 23" of February, 2001 for 3,778 observations (see Figure 1).

Calculating the realized volatility

In this chapter the realized variance for the trading day t (the period ranges from the
close on day t-1 to the close on day t) is calculated as a weighted average of the intraday

squared returns. Accordingly to Nelson and Taylor (2000) it is given by

~2 n
o, = ijrij, (4.2)
=0

3The data was obtain freely from www.Price-data.com
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n

and we must impose the constraint ) A\;w; = 1 in order to ensure conditionally unbiased
j=0

estimates when intraday returns are uncorrelated. \; represents the proportion of a

trading’s day total return variance that is attributed to period j. They assume that the
.2
N's are equal for all days ¢. In order that o, is a consistent, unbiased and efficient (with

the least variance) estimate of the integrated volatility, Nelson and Taylor (2000) deduced
that

1

In particular, because the weight wy for the closed market return is much less than for

the other returns (because \q is very big) they specify w, as

1
= — 1< <
W (1—)\0)71/{7]" =J =0

w; = 0 j:O,

where k; is the proportion of the open-market variance given by

A <
k; = e with ki =1.
) 1_)\0 ]; J

Natural estimates of these variance proportions are:

> Th DT
n ) - n 27
1= 1=

where the sums over days ¢ can be for all days or for particular days (see Figure 3).*

)‘j = and kj

4.3 The Model

Recently, researchers tend to model volatility as stochastic. The literature is vast referring

to the estimation of models with or without stochastic volatility or with or without jumps,

4For more about these estimates, see Taylor and Xu (1997).
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see Bates (2000), Gallant and Tauchen (2001), Chernov et al. (2003), Ghysels et al.
(1995), etc.
This chapter estimates the stochastic volatility model with two factors of volatility®

given by:

dP,
?t = Oélodt + exp(ﬁlo + 512[]215 + 513U3t)dW1t (44)
t
dUQt = (CYQ() -+ aggUgt)dt -+ dWQt (45)
dUs; = (g0 + aug3Usy)dt + dWa, (4.6)

where P; is the Microsoft price series evolving in continuous time and W; with ¢ = 1,2,
are three independent Wiener processes.

In this system the instantaneous standard deviation of the rate of return is an expo-
nential function of the factors Uy; and Us;. The drifts in equations 4.5 and 4.6 allow for
mean reversion when asgs # 0 and ass # 0. Small values of s and aigg mean that a shock
to the volatility of the return takes time to dissipate. This is referred as persistence in
the financial econometrics literature, and a big percentage of the financial series seem to
show this feature, Zaffaroni (2000). f3;, is also an important parameter since it takes care

of the long-run mean of the volatility of the price equation 4.4.

Identification restrictions

To achieve identification it is necessary to impose some restrictions. In this concrete case

for the logarithmic specification we set

®Gallant and Tauchen (2001) already estimated this model for a subsample of the data used in this

paper.
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az =0, azp =0.

Hence the previous specification becomes:

dP,
?t = aqodt + exp(B1g + B12Ua2¢ + B13U3)dWiy (4.7)
t
dUQt = OéQQUQtdt -+ dWQt (48)
dUgt = Oé33U3tdt + dWSt (49)

We use these restrictions, as do Gallant and Tauchen (2001), first because they are com-
mon in previous similar SDE and second because they provide flexibility and numerical

stability in the estimation phase.

4.4 Forecasting

Forecasting using the continuous time stochastic volatility model requires the reprojection
step®. It allows us to filter the volatility factors Uy, and Us, and consequently to obtain
a forecast of the underlying integrated volatility for any desired sampling frequency. In
fact, as a by-product of the estimation step we obtain a long simulation of the volatility

factors {Uy Y, and {Us},. Having as the main aim to obtain

E(Uzl{y-}m),

E(Us:{y-}r—1)

6Notice that we use the same data as chapter three. In this way, the projection and estimation part

are similar (see Tables 1 and 2).
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we start generating simulations of {Uy}N |, {Us}¥, and {4}, at the estimated param-
eter p and with N equal 100000. Then we impose the same SNP-GARCH model founded
in the projection step, on the simulated values ¢;. According to Gallant and Tauchen
(2001), this provides a good representation of the one-step ahead conditional variance &?

of §41 given {9, }._,. Then, we run regressions of Uy, and Us, on lags of 62, 9y, |9].

Ugt = g + al&?,l + ...+ Oépa'?fp + ngt—l + ...+ HQgt_q + Wl‘gt—l‘ + ...+ Wr‘g)t—r| + Uy

Use = By + 8167 4 + oo + /Bpa-?fp + Y1001+ o Vgle—g T MlG—1] + o+ Al G| +

With this procedure we obtain calibrated functions inside the simulation that give pre-
dicted values of Uy, and Us; given {y, 3;11. In fact, given the length of simulation, these
regressions are as Gallant and Tauchen (2001) say analytic projections. Finally, we evalu-
ate these functions on the observed data series to obtain forecasts of the volatility factors,

Uzt and Ugt. The volatility forecast, for day t +1 will be

eXp(BlO + B12U2(t+1) + 31303(#1))-

We are going to split the sample in two subsamples, the first subsample is used to
estimate the models and the second part (the out-of- sample period) is used to evaluate
the models’ forecasts. We use three out-of-sample periods. The first out-of-sample period
ranges from the 11%* of January 2001 till the 23" February 2001. This out-of-sample is
quite short because we compute one-day-ahead forecasts. The second ranges from the
37 of January 2000 till the 23" February 2001. Our intention in this case is to test
the forecasting performance of the models at longer forecasting horizons (around three
months). Finally, the third out-of-sample ranges from the 4" of January 1999 till the 31°
of December 1999. In this case, we try to answer the question: is still there evidence that
the SV2F model forecasts better than the benchmark models, in a horizon that does not

seem to show an increase in volatility caused by stock market crashes?.
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4.4.1 Alternative models

We also tried two different specifications. The first one is the traditional GARCH model.
The parameters of this model are estimated with the historical daily data to build out-
of-sample volatility forecasts (see Table 3).”

There is strong empirical evidence that the volatility has long memory, in the sense
that the effect of a shock to volatility persists for a long number of periods. The second
specification is the ARFIMA model and it tries to fit this feature by modelling volatility

as a fractionally integrated process.

Definition 4.1. A stationary process {y} is said to be long memory if its ACF (auto-

correlation function 7y) decays toward zero so slowly that

S @l Toc as oo,

u=—-n

Zaffaroni (2001).

In order to make inferences about the long memory characteristic of the volatility
series we will use a formal test.
Testing the existence of long memory

There are many tests that we can apply to check for long memory of volatility. In this
chapter, we first use the traditional R/S method.

Consider Y7, Y5, ..., Y,, the observations in n successive periods and Y the empirical

average. The adjusted range R is defined as

R(n) = maX{ZY ZY} — mln {ZY lY}

0<i<n

"We use the GARCH package for Ox, Doornik and Oons (2001), to estimate the model available at

Jurgen A. Doornik’s web page.



4.4 Forecasting 53

and an estimate of the variance of the process underlying the data is

S2mq) = Y wali)0),

Jj=—q
where v(j) is an estimate of the autocovariance function at lag j and w,(j) are weights.

Finally the R/S statistic is then defined as

R(n)
S(n,q)’
Helms et al.(1984) set ¢ = 0 and wy(0) = 1. The R/S statistic with these restrictions

Qn,q) =

suffers from two disavantages: first its distribution is not known and secondly it can be
affected by short-memory components. Lo (1991) modified this statistic by putting ¢ # 0
in order to deal with these problems. His weights were given by
wq(j):]-_ia q<n
q+1

and ¢ was chosen as the greatest integer less than or equal to

w

COHEELDIE
1—p (1)
with p(l) as an estimate of the first order autocorrelation of the process.
For short memory processes the values of Q(n, q) converge to n”. d is the long memory
parameter and J is related to it by J = d+1/2. Mandelbrot and Taqqu (1979) also proved

that the process has long memory when J > 1/2 and their estimator for J was

7 _ log(R(n)/S(n))

logn
According to the correlogram and the long memory test it seems that the series of

squared returns (see Figure 4 and Table 4) is fractionally integrated, that is
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Definition 4.2. A stationary process {y } is said to be fractionally integrated with long

memory if it can be written as
(1= L)"¢(L)y, = O(L)er,

where L is the lag operator, ¢p(L) and O(L) are polynomials in the lag operator with roots

inside the unit circle, ¢; are independently and identically distributed as N(0,02) and

1
d< —.
0< <2

Therefore, we can think of an ARFIMA model as a quite good description of the

volatility dynamics.

Estimating the ARFIMA model

We use the ARFIMA package for Ox® in order to estimate the parameters of the ARFIMA
model. The best model according to the BIC criterion does not have a moving average

part and the autoregressive part is of order one (see Table 5).

4.4.2 Evaluating and comparing alternative volatility forecasts

In this subsection we assess the performance of the volatility forecasts generated from the
continuous time stochastic volatility model and compare it with the performance of the
GARCH and ARFIMA forecasts for the three out-of-sample periods’.

For the first out-of-sample period we are going to use one-day-ahead volatility forecasts
and then we compare them to the estimate of realized volatility determined before. For
this, we proceed following the analysis in Andersen and Bollerslev (1998) by regressing

the realized volatilities on a constant and on the various model forecasts. In this case, the

8 Available at Jurgen A. Doornik web page: www.nuff.ox.ac.uk/Users/Doornik.
9The first out-of-sample period ranges from the 11" of January 2001 till the 23"¢ February 2001,

the second ranges from the 3"¢ of January 2000 till the 23"¢ February 2001 and the third out-of-sample
ranges from the 4" of January 1999 till the 31¢ of December 1999.



4.4 Forecasting 55

models and the filters have been estimated and computed 27 times. Tables 6 to 8 report
the estimated regressions for the one-day-ahead out-of-sample forecasts that assumes the

following form:

—

rvolatility, .y = By + B107 1 )y agprara + et (4.10)
rvolatility, ., = By + 8107, 1 garcm + Wt (4.11)

—

rvolatility, ., = By + 510?+1/t,SV2F + Ut

The analysis of the results is based on the R*? of the regressions above!” and on the t-
statistics for the hypothesis of 5, = 0 and/or 5, = 1. We use both OLS and instrumental
variables (IV) methods of estimation. The use of IV can be justified by the existence of
a possible error in the forecast of future volatility that would lead the OLS estimates to
be inconsistent. The instruments that were used are the past volatility forecasts for the
two first equations and the squared return for the last equation because it seemed more
correlated to the volatility forecast than to its past value.

For the considered out-of-sample period we find that the hypothesis of 3, = 0 and
B, = 1 are both rejected at a 5% significance level for the GARCH and ARFIMA models.

10 Andersen and Bollerslev (2002) show that there is a bias in empirical realized volatility measures
built directly from high- frequency data due to the existence of market microstructure frictions. This
leads to a downward bias in the R? obtained from the above regressions. In fact, they show that these
R? will under-estimate the true R*? by the multiplicative factor, that is R*?=8 x R?:

B = Var[RVy(h)]/Var[IV;] = Var|RV;(h)]/{Var[RV;(h)] — hE[RQ:(h)]} where RV, is the realized
volatility, IV; is the integrated volatility and

with 1/h = 96 corresponding to the use of ”15-minute” returns. For more details please check Andersen

and Bollerslev (2002).
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Moreover the coefficients of volatility forecasts of both regression models 4.10 and 4.11
show negative signs, which could lead us think that both models are inappropriate to
forecast volatility (however both variables are statistically insignificant). These strange
results may be explained by a an increase in volatility (caused by stock market crashes)
observed in the out-of-sample period and not taken in to account in both specifications.

Contrarily, the SV2F model seems to forecast much better in the out-of-sample period
of 28 days. The empirical results report that the variable volatility forecast is probably an
unbiased estimator of future volatility since the hypothesis of 3, = 0 and(or) 5, = 1 are
not reject at a 5% significance level (see Tables 6 and 7). The R*? is equal to 0.235883,
which is larger than the ones observed for the GARCH and the ARFIMA.

The better performance of the continuous stochastic volatility model is due probably
to its flexibility and ability to capture volatility persistence. As it has been reported
in several papers, for instance, Diebold and Inoue (1999), Granger and Hyung (1999),
Kim and Kon (1999) and Beine and Laurent (2000), changes in volatility and persistence
are imperfect substitutes. By this we mean that the persistence captured in a model
is strongly reduced when we include jumps. Since we do not allow for jumps, since the
increase in volatility occurs over a short period at the very end of sample, and thus cannot
be explicitly modeled, the SV2F tries to accommodate the "missing” shifts by allowing
that one factor of volatility be extremely slow mean reverting (a sign of strong persistence
in volatility). The GARCH and ARFIMA models are not able to account for the apparent
switch in volatility.

Next, we use the second out-of-sample period to investigate the forecasting perfor-
mance of the SV2F model at longer horizons. We denote the whole out-of-sample period
as [t, T, where t corresponds to the 3"¢ of January 2000 and T to the 23"¢ February 2001.
We split the out-of sample period [t, T| into the subsets [t, t1], [t14+1, t2] and [t41, 7] which
are used for volatility forecasting. Notice that ¢; corresponds to the 18" of May 2000 and
ty to the 4" of October 2000. In other words, we estimate the SV2F model and calculate
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the volatility factors Uy, and Us, three times, at ¢t — 1 (12“‘ of December 1999), ¢; and t,.

Therefore, the volatility forecast for day t + 7 is for example

eXP(Blo + 31202(t+7) + BIBUB(HH))-

Remember that the B\/s and the calibrated coefficients of U, and Us remain the same till
the next estimation date.!!

Table 8 reports the forecasting results for the SV2F, GARCH and ARFIMA models.
Once more the GARCH and the ARFIMA models perform poorly. The hypothesis of
By = 0 and/or B, = 1 are both rejected at a 5% significance level for these two models
and the coefficients of volatility forecasts of both regression models 4.10 and 4.11 show
negative signs as before.

The volatility forecasting performance based on the stochastic volatility model seems
to improve over the other two although we can no longer claim that the volatility forecast
could be an unbiased estimator of future volatility. Observing once more Figure 3, we see
that the out-of-sample period of 289 periods corresponds exactly to the part of sample
where volatility pattern seems to change. This probably explains the poor performance of
both GARCH and ARFIMA. In fact, if we observe the graphs of the series of residuals of
equations 4.10 and 4.11, respectively, we see evidence that the forecasts from GARCH and
ARFIMA are not able to assimilate this increase in the volatility (see Figures 5 and 6).
The correlogram of the residuals of GARCH also shows evidence that they are not white
noise (see Figures 7 and 8). The SV2F model performs better due, as it was explained

before, to its ability of capturing volatility persistence.

Finally, we also evaluate the forecasting performance of the continuous time model
in the out-of-sample period that ranges from the 4" of January 1999 till the 315 of
December 1999. We choose this period because it precedes the period during which

'Note that it would be possible to update coefficients at each day or at 10 days, but this would be

very demanding computationally. In this way, our forecasts are not optimal.
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volatility’s pattern changes. As before, we denote the whole out-of-sample period as
[t, T], where t corresponds to the 4" of January, 1999 and T to the 31 December, 1999.
We split the out-of sample period [t, T| into the subsets [t, 1], [t1+1, t2] and [t241, 7] which
are used for volatility forecasting. We use, this time, 10-day-ahead forecasts. Notice
that t; corresponds to the 4" of May 1999 and t, to the 2"¢ of September 1999. In
other words, we estimate the SV2F model and calculate the volatility factors Us; and
Us; three times, at t — 1 (31°% of December 1998), ¢; and t,. Considering this out-of-
sample period we observe, for the continuous time model, that the hypothesis of 3, = 0
is not rejected at a 1% significance level and the hypothesis of 3; = 1 is not rejected at
any conventional significance levels (see Table 9). The GARCH and ARFIMA models
perform worse accordingly to R*? and the previous hypothesis of 3, = 1 is rejected at all
conventional significance levels.

Moreover, following the analysis in Andersen et al. (2001), we also focus our forecasting
evaluation on regressions of the realized volatility on a constant, on the SV2F model

forecasts and on the other benchmark model’s forecasts:

—_— —_

rvolatility, ., = By + B107,1 )y syar + B20t1 jcancu T U (4.12)
rvolatility, 1= By + 8107,y syor + B20t1 i arpiwa T Uit (4.13)

Table 10 reports the empirical results. When including both the SV2F and the
GARCH or the ARFIMA forecasts in the same regression, the estimates of the coefficients
B4 in equations 4.12 and 4.13 are not different from zero statistically and the hypothesis of
By = 0and/or 5, = 1 in both regressions are not rejected at any conventional significance
levels. Futhermore, the inclusion of the GARCH or ARFIMA forecasts does not improve
significantly the R*? relatively to the one based only on the SV2F forecasts. So, according
to these results, when there is not an increase in volatility’s pattern, it seems that any

bias in the SV2F volatility forecast is of future volatility, is minor and not statistically
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significant.

4.5 Conclusion

In this chapter we evaluate the predictive ability of the continuous time stochastic volatil-
ity model with two factors of volatility (SV2F) and compare its volatility forecasts to the
forecasts obtained from the traditional GARCH model and ARFIMA models. We choose
as a proxy of ex-post volatility the realized volatility obtained from the intraday returns.
We argue that this is a good measure of ex-post volatility because much theoretical work
models the logarithm of asset prices as a univariate diffusion and it has been shown that
under innocuous regularity conditions, the realized volatility converges to the integrated
volatility. We have been careful to avoid microstructures problems by considering only
observations at 15 minute intervals.

The main contributions of this chapter include: First, the computation of the real-
ized volatility accordingly to Nelson and Taylor (2000) in order to ensure conditionally
unbiased estimates when intraday returns are uncorrelated. Secondly, we apply the repro-
jection technique proposed by Gallant and Tauchen (1998) to obtain volatility forecasts
from the SV2F model and finally, we compare the forecasting performance of this last
model with two others. The empirical results show evidence that the volatility forecast-
ing performance of the stochastic volatility model is significantly better than that of the

other two models, which both perform poorly in short and mid-ranges forecast horizons.



4.5 Bibliography 60

Bibliography

1]

2]

[5]

[9]

[10]

Andersen, T. G. and Bollerslev, T. (1998): Answering the Skeptics: Yes, Standard
Volatility Models do Provide Accurate Forecasts, International Economic Review,

Vol. 39, no. 4, pp. 885-905.

Andersen, T. G.and Bollerslev, T. (2002): Correcting the Errors: A Note on Volatil-
ity Forecast Evaluation Based on High-Frequency Data and Realized Volatilities,

Discussion paper, Duke University.

Andersen, T. G., Bollerslev, T.,Diebold, F.X. and Labys, P. (2000): Exchange Rate
Returns Standardized by Realized Volatility are (nearly) Gaussian, Multinational
Finance Journal, 4, 159 -179.

Andersen, T. G., Bollerslev, T.,Diebold, F.X. and Labys, P. (2001): Modeling and
Forecasting Realized Volatility, Working paper 8160, NBER.

Bates, D. (2000): Post-’87 Crash Fears in the S&P 500 Futures Option market,
Journal of Econometrics, 94, 181-238.

Beine, M. and Laurent, S. (2000): Structural Change and Long Memory in Volatility:

New Evidence from Daily Exchange Rates, Discussion Paper, Université of Liege.

Canina and Figlewski (1993): The Informational Content of Implied Volatility, Re-

view of Financial Studies.

Chernov, M., Gallant, A. R., Ghysels, E. and G. Tauchen (2003): Alternative Models

for Stock Price Dynamics, Journal of Econometrics, 116, 225-257.

Day, T. E. & Lewis, C. M. (1992): Stock Market Volatility and the Information
Content of Stock Index Options, Journal of Empirical Finance 5, 131-154.

Diebold, F.X., Inoue, A. (1999): Long Memory and Structural Change, Manuscript,
Departmant of Finance, Stern School, NYU, May 1999.



BIBLIOGRAPHY 61

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

Doornik, J.A. and Ooms, M. (2001): A Package for Estimating, Forecasting and
Simulating ARFIMA Models: ARFIMA Package 1.01 for Ox, Guide, Erasmus Uni-

versity.

Fenton, V.M. and Gallant, A. R. (1996): Qualitative and Asymptotic Performance
of SNP Density Estimators, Journal of Econometrics, 74, 74 -118.

Gallant, A. R. and G. Tauchen (1996): Which Moments to Match?, Econometric
Theory, 12, 657- 681.

Gallant, A. R. and G. Tauchen (1998): Reprojecting Partially Observed Systems with
Application to Interest rate Diffusions, Journal of American Statistical Association,

93, 10-24.

Gallant, A. R. and G. Tauchen (2001): Efficient Method of Moments, Discussion

paper, University of North Carolina at Chapel Hill.

Granger, C.W.J., Hyung, N. (1999): Occasional Structural Breaks and Long Memory,
UCSD, Discussion paper 99-14, June 1999.

Ghysels, E., Harvey, A. and Renault, E. (1995): Stochastic Volatility, in Handbook of
Statistics, 14, Statistical Methods in Finance, G.S. Maddala and C. Rao (eds), North
Holland, Amsterdam.

Helms, B., Kaen, F., and Rosenman, R. (1984): Memory in Commodity Futures
Contracts, Journal of Futures Markets, 4, 559-567.

Jorion, P. (1996): Risk and Turnover in the Foreign Exchange Market, in J.A.
Frankel, G. Galli & A. Giovannini, eds, ”The Microstruture of Foreign Exchange
Markets”, The University of Chicago Press, Chicago.

Kim, D., Kon, S.J (1999): Structural Change and Time Dependence in Models of
Stock Returns, Journal of Empirical Finance, 6, 283-308.



BIBLIOGRAPHY 62

[21]

[26]

[27]

[28]

Laurent, S. and Peters, J.P (2002): A Tutorial for GQrch 2.3, a Complete Ox Package
for Estimating and Forecasting ARCH Models,

www.crest.fr /pageperso/lfa/sebastien.laurent /sebatien.laurent.htm.

Lo, AW. (1991): Long Term Memory in Stock Market Prices, FEconometrica 59,
1279-1313.

Mandelbrot, B.B. and Taqqu, M (1979): Robust R/S Analysis of Long-Run Serial
Correlation, Proceedings of the 42™ Session of the International Statistical Institute,

International Statistical Institute.

Nelson, A. and Taylor, S. J.(2000): The Realized Volatility of FTSE -100 Future
Prices, Discussing paper, Department of Accounting and Finance, Lancaster Univer-

sity.

Pagan, A. R. and Schwert, G.W. (1990): Alternative Models for Conditional Stock

Volatility, Journal of Economics and Business Statistitcs 9, 63-71.

Taylor, S. J. and Xu, X. (1997): The Incremental Volatility Information in One

Million Foreign Exchange Quotations, Journal of Empirical Finance 4, 317-340.

West, K. D. and Cho, D. (1995): The Preditive Ability of Several Models of Exchange
Rate Volatility, Journal of Econometrics, 69, 367-391.

Zaffaroni, P. (2000): Time Series Models of Changing Volatility, Lecture notes.



4.6 Figures and Tables

4.6 Figures and Tables

Daily Price of a Share of Microsoft
140 -

120 -+
100 -+

80

Index

60 -

40

20 +

86 88 90 92 94 96 98

Date

Figure 1



4.6 Figures and Tables

64

Daily Volatility
14 -

12 1

10 4

%

86 88 90 92 94 96 98 00

Date

Figure 2

Daily Volatility

4 -
34

-
14
0

86 88 90 92 94 96 98 00

Date

Figure 2.1: Different Scale



4.6 Figures and Tables

65

%

.24 -

.20

.16

124

.08

.04

.00 -

1.0 4

0.8

0.6

0.4

0.2

0.0 4

1997

1998

Realized Volatility

1999

Date

Figure 3

2000

ACF of Squared Returns

10

15 20

Lags

Figure 4

25

30

2001

35



4.6 Figures and Tables

66
Model 10 99 Q33 610 612 /813 N X2 df p-Val
SV2F * * * * * * 100k || 6.704 || 5 || 0.2436
Table 1:*is used for free parameters. 100k refers to a simultion of length 100 000 at
step size A = 1/6048,corresponding to 24 steps per day and 252 trading days per
year.
Speficication Q10 (99 (/33 B1o B Bis
SV2F
Estimate 0.42419 || -0.00027568 || -89.2101 -0.1099 || 0.006289 || -4.6277
Std. Dev. 0.0736671 || 0.00014924 || 3.932837 | 0.008741 || 0.001034 0.0755
95%Lower || 0.2693015 || -0.00049470 || -97.15399 || -0.123322 || 0.004320 | -4.77841
95% Upper || 0.5793685 || -0.00007876 || -81.432454 || -0.097090 || 0.008299 | -4.480246

Table 2: Estimates, Standard Deviations and Confidence Intervals

Estimates || Std. Error || t-value || Prob

Cst(M) 0.186230 0.035534 5.241 || 0.000
Cst(V) 0.267139 0.062602 4.267 | 0.000
GARCH(betal) || 0.864093 0.020700 41.74 | 0.000
ARCH(alphal) | 0.096255 0.013620 7.067 || 0.000

Table 3
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Long Memory Test q=0

q=q
Q 1116.861 | 680.330
J 0.852075 || 0.79189
d 0.352075 || 0.291894

Table 4

67
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Estimates || Std. Error || t-value || Prob BIC
ARFIMA(0,d,0)
d parameter 0.126917 0.01142 11.1 0.000 || 3.178017
ARFIMA(1,d,0)
d parameter 0.233008 0.01821 12.8 0.000 || 3.163838
AR-1 -0.186391 0.02271 -8.21 || 0.000
ARFIMA(2,d,0)
d parameter 0.240679 0.02533 9.50 0.000 || 3.165289
AR-1 -0.195044 0.03005 -6.49 || 0.000
AR-2 -0.009916 0.02259 -0.439 || 0.661
ARFIMA(0,d,1)
d parameter 0.265111 0.02659 9.97 | 0.000 || 3.164190
MA-1 -0.216276 0.03214 -6.73 || 0.000
ARFIMA(0,d,2)
d parameter 0.243477 0.03137 7.76 0.000 || 3.165364
MA-1 -0.197413 0.03562 -5.54 || 0.000
MA-2 0.0227693 0.01933 1.18 0.239
ARFIMA(1,d,1)
d parameter 0.242072 0.02843 8.51 0.000 || 3.165280
AR-1 -0.138536 0.1095 -1.27 || 0.206
MA-1 -0.057881 0.1298 -0.446 | 0.656

Table 5
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Dependent variable RV n = 28 || Estimates || Std. Error | T-value || Prob R*?

ARFIMA 0.054

Bo 6.018 2.135 2.819 || 0.0091

54 -0.219 0.180 -1.212 || 0.2362
GARCH 0.028

Bo 5.129 1.944 2.6378 || 0.0139

B4 -0.148 0.171 -0.866 || 0.3946

SV2F 0.24
Bo 0.634 1.127 0.562 || 0.5786
B4 2.668 0.942 2.833 || 0.0088

Table 6: OLS estimation
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Dependent variable RV n = 28 || Estimates || Std. Error || T-value || Prob
ARFIMA
Bo 7.710 2.944 2.619 | 0.0148
p1 -0.370 0.254 -1.458 || 0.1574
GARCH
Bo 6.928 2.933 2.944 | 0.0069
B4 -0.318 0.212 -1.503 || 0.1455
SV2F
Bo -5.225 2.951 -1.770 | 0.0884
£1 8.097 2.648 3.057 || 0.0051

Table 7:

IV Estimation
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Figure 5: These are the residuals of the regression of the realized volatility on
a constant and on the ARFIMA forecasts for the period that ranges from the
37 of January 2000 to the 23"¢ of February 2001.
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Figure 6: These are the residuals of the regression of the realized volatility on
a constant and on the GARCH forecasts for the period that ranges from the
3¢ of January 2000 to the 23"¢ of February 2001.



4.6 Figures and Tables

73
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Figure 7: This is the correlogram of the residuals of the regression of the
realized volatility on a constant and on the ARFIMA forecasts for the period
that ranges from the 3" of January 2000 to the 23" of February 2001. *

means that the autocorrelation is significative.
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Figure 8: This is the correlogram of the residuals of the regression of the
realized volatility on a constant and on the GARCH forecasts for the period
that ranges from the 3" of January 2000 to the 23" of February 2001. *

means that the autocorrelation is significative.
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Dependent variable RV n = 289 || Estimates || Std. Error || T-value || Prob R*?
GARCH 0.004
Bo 10.601 4.726 2.243 || 0.0257
B4 -1.027 0.733 -1.401 || 0.1622
ARFIMA 0.03
Bo 10.66 2.396 4.450 | 0.0000
B4 -0.933 0.292 -3.194 || 0.0016
SV2F 0.12
Bo -14.79 0.731 -20.23 || 0.0000
B4 18.86 0.234 80.63 | 0.0000

Table 8: OLS estimation with Newey-West HAC Standard Errors



4.6 Figures and Tables

76
Dependent variable RV n = 252 || Estimates || Std. Error || T-value || Prob R*?
GARCH (10 days ahead) 0.01
Bo 1.016 0.833 1.220 | 0.2237
B4 0.176 0.154 1.144 || 0.2539
ARFIMA (10 days ahead) 0.041
Bo -0.179 1.267 -0.142 || 0.8876
B4 0.385 0.231 1.667 || 0.0968
SV2F (10 days ahead) 0.10
Bo 0.947 0.460 2.059 || 0.0405
B4 0.940 0.484 1.942 | 0.0533
Table 9: OLS estimation with Newey-West HAC Standard Errors
Dependent variable RV n = 252 || Estimates || Std. Error || T-value | Prob || Adj.R*2
regression 4.12 0.103
Bo 0.406 0.926 0.438 || 0.6618
B4 0.948 0.485 1.957 || 0.0516
By 0.098 0.134 0.727 || 0.4679
regression 4.13 0.114
Bo -0.685 1.281 -0.535 || 0.5929
B4 0.870 0.453 1.920 | 0.0560
B 0.306 0.190 1.608 | 0.1091

Table 10: OLS estimation with Newey-West HAC Standard Errors




Chapter 5

A Two Factor Long Memory
Stochastic Volatility Model

5.1 Introduction

A volatility model should be able to model the main characteristics of financial series of
returns such as volatility persistence, volatility clustering, leverage effects, fat tails and
small first order autocorrelation of squared returns. Many models have been proposed with
the aim of capturing these empirical facts. Two examples are the original GARCH(1,1)
model proposed by Bollerslev (1986) and Taylor (1986) and the ARSV(1) also proposed
by Taylor (1986). Later on in the nineties, several other models emerged in the field of
stochastic volatility like the Long Memory Stochastic Volatility model of Harvey (1993)
and the model of Breidt et al. (1994) that incorporate in the original stochastic volatility
specification a factor of volatility that is fractionally integrated. Both papers try to model
the fact that the volatility of the series of returns decays slowly towards zero (the long
memory property).

More recently, Ming Liu (2000) and Breidt et al. (2000) proposed regime switching

as another explanation for observed long memory. As Ming Liu (2000) says, the long
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memory pattern is present in the autocorrelation function of volatility whenever the regime
switches in a heavy-tail manner.

In this chapter we model volatility persistence by assuming that the volatility of the
returns has a long memory feature captured by a fractionally integrated model as in
Breidt et al. (1994). The innovation is that we introduce a short run volatility factor that
allows the model to generate extra kurtosis and simultaneously to accommodate better
the volatility persistence. Moreover, for some restrictions of the parameters it is possible
to fit the empirical fact of small first order autocorrelation of squared returns.

A motivation for our second factor derives from the empirical results on estimation of
continuous time models. Models with only one factor of volatility fail to fit the main fea-
tures of the data. Chernov et al. (2003) show that the problem is overcome by introducing
an extra volatility factor. So, it is expected that the introduction of this second factor
contributes to a better explanation of data. Moreover, Ming Liu (2000) also estimates a
Regime Switching Model with an AR(1) volatility factor and finds that the introduction
of this short memory dynamics seems to be helpful.

We test the performance of our model empirically by fitting it to the returns of the
S&P 500 Composite Index. The empirical results show us evidence (for the S&P 500),
that the long memory stochastic volatility model with two factors of volatility performs
better than the two benchmark models, the ARSV (the autoregressive stochastic volatility
model) of Taylor (1986) and the LMSV (the long memory stochastic volatility model) of
Breidt et al. (1994) in capturing volatility persistence and fat tails of the unconditional
distribution of returns.

The chapter is organized as follows: Section two covers the empirical facts of the
financial series of returns. Section three describes the Long Memory Stochastic Volatil-
ity model (LMSV) and presents the two factor LMSV model (2FLMSV) and its main

properties. Section 4 reports the estimation results and Section 5 concludes the chapter.



5.2 Empirical Facts of The Financial Series of Returns 79

5.2 Empirical Facts of The Financial Series of Re-
turns

Many empirical analyses of financial time series have been realized in the last three decades
and in particular for the financial time series of returns, it has been observed that they

exhibit:

e Volatility persistence - The sample autocorrelation function (ACF) of the squared
returns is large and statistically significantly different from zero, which implies that
the effect of a shock to volatility persists for a long number of periods, Ghysels et

al. (1995).

e Leverage effect - The effect of shocks to volatility is not symmetric. A negative
shock has a larger effect than a positive shock on the future volatility of the asset.
This can be explained by the fall of the price of a stock leading to a rise of the
debt-to-equity, ratio which increases the returns volatility to the equity holders. On
the other hand, the expected increase in volatility reduces the demand of the stock
due to risk aversion and the consequent decrease in the stock value gives rise to an

increase of volatility, Zaffaroni (2000).

e Mean reversion in volatility - we understand that there exists a normal value of

volatility to which it will return.

e Thick tails - The unconditional distribution of assets returns presents high kurtosis
ranging from 4 to 50 as was reported by Engle and Patton (2001). If the model is
to capture the main characteristics of data this feature should be introduced in the

model.

e Small first order autocorrelation of squared returns, Carnero et al. (2001).
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5.3 The LM Models

5.3.1 The LMSYV model

Breidt et al. (1994) extended the traditional stochastic volatility model by assuming that

the volatility component is a stationary long-memory process, such as:

yy = 0y¢, with o, = oexp(hy/2),

where {h;} is independent of {(,}, ¢, is 4.i.d(0,1) and {h:} is the fractionally integrated

Gaussian noise process

(1— L)% = ¢, n, ~ iidN(0,0?), (5.1)

that is weakly stationary in the range d € (0,0.5). L stands for the lag operator.

The long memory property

According to Baillie (1996), a discrete time series process y; with autocorrelation function

(ACF), p, at lag k, possesses long memory if

lim Y [p| = cc.

k=—o00

This means that the ACF takes far longer to decay towards zero than the ACF of a strict
stationary ARMA process, which decays at an exponential rate. In a more formal way,

we can say that:

Definition 5.1. A weakly stationary process has long memory if its ACF p(.) has a

hyperbolic decay, 1.e.,

p(k) ~ f(R)F*™ as k— oo,
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1
0<d< 3 and f(k) is slow varying at infinity.!

One example of a long memory process is the process represented by equation 5.1.
In 1981, Hosking showed for d < % that h; is not only stationary but also it has a

M A(o0) representation given by:

. U(k+d
he=(1—L)"% =Y & i with W:fw%i%ﬂ
k=0

where I'() is the Gamma function?. Moreover, the coefficients 1, converge hyperbolically
to zero. Another interesting point is the behavior of the ACF of h,. After some computa-
tions Baillie (1996) obtains that the variance and the autocovariance functions are given
respectively by:

o I'(1—2d)

and
9 ['(1 —2d)(k +d)

k) = if k>1.
) = o g ra At r =g k2
Consequently, the autocorrelation function is:
p(k):F(l—d)F(k+d)_ I i+d-1 for k> 1

DdI(k+1—d) 1<i<k i—d

LA function f(x) is defined as being regularly varying at infinity with index « if . lim %%Z =z Vx >
—00
0. It is slow varying at infinity if o = 0. Therefore, asymptotically it becames a constant. An example of

a slowly varying function at infinity is f(z) = log(x).
2For d > —1 the binomial expansion of (1 — L) is given by:

(1—L)d:i(Z)(_L)kzl_dL_da?Td)Lz_d(l—d)(2_d)L3_

|
Z 3!

kd7 1

Remember that [11:(((;;05))]95%17 So when k — oo, wkm'
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and we can write it as
M1 —d); 00
k) ~ ————k
pk) ~ —F @ ,
when k& — oo. Although a shock to volatility takes a quite long time to dissipate this last

expression shows that the volatility converges slowly to a normal value (mean reversion).

5.3.2 The 2FLMSV

In this Subsection, we propose a long memory stochastic volatility model with two factors
of volatility (2FLMSV). The first factor accounts for the persistence in the stochastic
volatility since it is assumed to be a stationary fractionally integrated process, while the
second factor accommodates the short run dynamics and generates extra kurtosis. Let
y; denote, for instance, the return in percentage of a financial asset traded on a financial

market. Then the 2FLMSV model for y; is:

h h
o= Coexp(“IT02) (53)

with ¢, 7.i.d (0,1) and oy and as constants. Futhermore, the first volatility factor follows

the process:
(1= L) (hy — p) = €, (5.4)

where ¢; is i.1.d (0,0?). The second factor of volatility follows an AR(1):

hos = ¢hgy 1 +m,, with 1, ~ id(0,02) and |¢| < 1. (5.5)

U
This last condition guarantees the stationarity of hy. Moreover, n,, € and ¢, are mutually
independent for all ¢, and h; and h, are unobservable latent variables. The use of a
second factor of volatility that is autorregressive of order one is in agreement with the

first modelizations in this area, such as the ARSV(1) by Taylor (1986).
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Statistical properties

Given that ¢, has a standard normal distribution, ¥; is a martingale difference, the sta-
tionarity of which depends on the stationarity of its volatility factors, hy and hs. After

some computations, we can obtain that the variance® of v, is equal to:

2 9 2 9
a0}, + 50},
2

var(y;) = o exp(

)

and the excess kurtosis displayed by ; is

E(y;)
E(y?)?

which is larger than 3 for a; # 0 and ay # 0. Moreover, for a; = as = 1, the two

-3 = 3[exp(a%a,%1 + a%aiz) —1],

factor long memory stochastic volatility model is able to generate higher kurtosis than
the LMSV of Breidt et al. (1994).

The autocorrelation function of the returns is:
corr(ys, Yprx) = 0 Yk #£ 0.
Proceeding the same way for the series of the squared returns, we obtain that:

2 2 2 2
aq10%, + 050},

2

E(y}) = 0% exp( ),

la) — 9

2.2 2
Qi0}, + 050

2

3
var(y) = 0" exp(3(eior, + a5, ))[B(CF) exp(

and

3Given the properties of the lognormal distribution and the fact that the normal distribution is re-
2
producible with respect to its arguments; E(exp(bh)) = exp(b*%), where b is a constant and o7 is the

variance of h;.
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cov(yy, i) = 0 B(GC ) Elexp(aihy + ashay) exp(aihipy + ashariy)]

4 2 2 2 2
—o"exp(a10},, + @307, ),

for k # 0. These properties fit the empirical fact that the correlation between the squared
returns is different from zero.
It is more straight forward to analyze these properties if we rewrite model 5.3 in the

following way:

vy, = Iny? =Ino + ajhy + ashy +1n CtZ (5.6)
= Ino+ EIn¢; + athy + aghy +In ¢} — Eln(}

= w+ Oélhlt + Oéghgt + Zt,

where w and z are respectively equal to Inc + Eln¢} and In¢? — Eln¢?. Since , is
standard normal, E'ln(? = —1.27 and 02 = 72/2. So, the process {7} is a sum of a long

- memory process, an AR(1) process and a non- Normal error. Furthermore,

E(x) =w

and

cov(@r, Tox) = a3y, (k) + 0y, (k) + 021(k = 0), (5.7)

where 7(.) are the autocovariance functions of hy; and hy and I(k = 0) is 1 if £ = 0
and zero otherwise. Consequently, the autocorrelation function of the squared returns is
going to depend on two autocorrelation functions: one that decays slowly towards zero
and other that decays faster towards zero.

Notice that for the LMSV model of the previous Section the ACF is given by:
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cov(xs, Teix) = (k) + 021 (k = 0),
which implies that the autocorrelations of order 1 of the logarithm of the squared returns,

pravsy (1) and pyprasev (1), are respectively:

_ ’Yh(1>
o2 + 02

PLMSV ( 1)

and

afyy, (1) + gy, (1)
a%a%l + a%a,%z +02°

P2rLMmSv ( 1) =

As 7,(1) = ~,,(1) because h; = hy Vt, the pypparg(1) can be lower or bigger than
prusy (1), depending on the values of a; and «ay. Hence, for the restriction a; = ag = 1,
the poprasy (1) is smaller than p;,,61(1), considering that hy is a stationary AR(1)
process. Therefore, for this case our model is able to fit the main empirical facts reported

above and to generate higher kurtosis.

5.4 An Empirical Example

In this Section we evaluate the performance of our model in capturing the empirical
features of financial data. For this purpose, we use daily close price data on the S&P 500
Composite Index over the period January 3, 1928 to February 19, 2002, representing 18
609 observations.

Figures 1 and 2 plot the price level and the returns on the index (adjusted for dividends

and splits) over the sample period.

5.4.1 Summary of data

Figure 3 shows some summary statistics of the data. The average return is about one-

thirtieth of a percent per day and the daily variance is 1.3631. Moreover, the distribution
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of returns is negatively skewed and the kurtosis is also quite high.

Finally, we have also computed the correlograms of the returns and the squared returns
series (Figures 4 and 5 respectively). We find that the autocorrelation function of the first
converges quickly towards zero while the autocorrelation function of the squared returns
tends more slowly towards zero (a symptom of long memory) and the p(1) is smaller than

the p(2).

Detecting the existence of long memory

Once observed the ACFE’s of volatility, we may suspect that the data exhibits the long
memory property.

There are many tests we can apply to check this suspicion. In this chapter, we first
use the traditional R/S method.

Consider Y7, Y, ..., Y, the observations in n successive periods and Y the empirical
average. The adjusted range R is defined as

0<i<n

l _ l _
R(n) = max{) V; = IV} — 01213”{21@ — 1Y}
i=1 - =1

and an estimate of the variance of the process underlying the data is

S2(n.q) = > wy(i)10),

Jj=—q
where v(j) is an estimate of the autocovariance function at lag j and w,(j) are weights.

Finally the R/S statistic is then defined as

R(n)
S(n,q)
Helms et al. (1984) set ¢ = 0 and wy(0) = 1. The R/S statistic with these restrictions

Q(n,q) =

suffers from two disavantages: first its distribution is not known and secondly it can be



5.4 An Empirical Example 87

affected by short-memory components. Lo (1991) modified this statistic by putting ¢ # 0
in order to deal with these problems. His weights were given by
wq(j)zl—i, qg<n
q+1

and ¢ was chosen as the greatest integer less than or equal to

2/;(1) 2
(——=—)3,

1—p (1)

with p(1) as an estimate of the first order autocorrelation of the process.

3n
2

Wl

(=)

For short memory processes the values of Q(n, q) converge to n”. d is the long memory
parameter and J is related to it by J = d+1/2. Mandelbrot and Taqqu (1979) also proved

that the process has long memory when J > 1/2 and their estimator for J was

7 _ log(R(n)/S(n))
logn

Table 1 reports the results of the test that suggest a possible fractionally integrated
process for the volatility since J > %

We also compute a Wald type test in time domain similar to the Dickey-Fuller ap-
proach, Dolado et al. (2002). In their paper, they test the null hypothesis of a fractional
integrated process of order dy, F'I(dy) versus a fractional integrated process of order dj,
FI(dy) with d; < do. The test is the t-statistic associated to the coefficient of Aby,
in a regression of A%y, on A%y, ; and some lags of A%y,. In our case we consider
two different null hypotheses: dy = 0.3 and dy = 0.4. The t-statistics are normally dis-
tributed because under the null the process is stationary and d; is estimated by fitting
an ARFIMA(1,d,0) to the squared returns series. Fractional integration is not rejected at

5% significance level for the squared returns (see Table 2).



5.4 An Empirical Example 88

5.4.2 Empirical results

Projection step

Here we present the results of the projection step.

The auxiliary model that best fits the raw data is found using the SNP model described
in the chapter 2. The first 50 observations were reserved for forming lags. The values
taken by Ly, Ly, L,, L,, K, and K, were determined by going along a expansion path
and the selection criterion used was the BIC (Bayesian Information Criterion), Schwarz
(1978).

As always, models that present a small value for the BIC criterion are preferred to the
ones with higher values. The expansion path has a tree structure. As Gallant and Tauchen
(1996) suggested, better than expanding the entire tree structure is to start expanding
L,, keeping L, = L, = K, = K, = 0 till the BIC increases value. The following step is
to expand in L, with L, = K, = K, = 0. Next, we expand K, with K, = 0 and finally
L, and K,. Sometimes it can happen that the smallest value of the BIC is somewhere
inside the tree. So, it is convenient for this reason to expand K, L, and K, at a few
intermediate values of L,.

The best model according to this procedure has

Ly=2L =28L,=0,L,=1K.=8and K, =0

and can be characterized as a semiparametric ARCH.

Estimation step

We start by estimating the first benchmark model: the ARSV model of Taylor (1986)
supposing that the errors are Gaussian. Table 3 reports the results of the specification
test. The ARSV model fails to approximate the distribution of data. The hypothesis

null of correct specification is sharply rejected. Next, we analyze the EMM quasi-t-ratios
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7/"\” since they provide suggestive diagnostics for the failure of the model. Figure 6 shows
these EMM quasi-t-ratios as a bar graph for the ARSV model. As we can see from the
graph, the possible reason for the failure of the model is its difficulty in matching the
features of the polynomial part of the SNP score, such as: agy till agg. This means that

either the specification exp(h;) is incorrect or (, is not Gaussian.

We consider the second possibility since the exponential transformation does not seem
to be a problem in Gallant et al. (1997). We choose a spline error transformation to the

Gaussian innovation. Therefore, the model becomes:

Ye — py = c1(ye—1 — py,) + ca(ye—2 — p,) +exp(has/2)0Te,((,),

T, (Cp) = bo + b1, + baCG + b3 I (C,)CF

and

hot = dhor—1 + 14,

where ¢, is i.i.d (0,1), 1, is 1.4.d(0,02), |¢| < 1 and 7, and ¢, are mutually independent
for all t.

In this way, we are allowing a deviation from the Gaussian specification by permitting
¢, to be a spline error and consequently we are generating extra kurtosis and introducing
an asymmetry. We have to impose some restrictions on the b parameters for identification
issues: the expected value of T¢(() and its variance are restricted to be respectively, 0 and
1.

The EMM objective function value is overwhelming reduced, as it may be seen from
Table 5, and the moments of the polynomial part of the SNP score are better fitted (see
Figure 7). In spite of this, the ARSV model still fails the scores of the ARCH specification

(ro¢ and rog) and rg is also quite close to the critical value 2, which may indicate that
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there is a possible misspecification in the conditional variance process due to the statistical
significance of ry6 and ro9. Notice that the lags order of the ARCH part decreases with

the order of r, we mean that ryg corresponds to lag 1 of the ARCH part and r3 to lag 27.

Next, we investigate the long memory stochastic volatility model by Breidt et al.
(1994), that models volatility as a fractional integrated process. The estimated model is
a sightly modified version of the model presented in Section 5.3. We introduce a constant
and two lags of 1; due to the fact that financial series usually show some autocorrelation.

Consider
Ye — py, = c1(Ye—1 — 1) + oy — p,) + 0C,exp(hie/2),

(1 - L)dhlt = €4, € ~ sz(O, O'?)

The same properties for the errors described in Section 5.3 apply here and we use the same
estimation procedure of Gallant et al. (1997). Since the fractionally integrated process

can be written as a moving average of infinite order for | d | < 1, that is

L E o ea
ht _ (1 L) € = kz_;¢k€t_k with ¢k - F(d)r(k‘ + 1)’

and the Cholesky factorization of the covariance matrix of h; is impossible to compute,
we truncate the infinite moving average at £k = 1000 and we trim off the first 10 000
realizations. As is noted by Gallant et al. (1997), some people would say that this
procedure does not generate realizations from a long-memory process. Remember that
the generated process is going to be stationary for |d| < 1 due to the truncation procedure.
Nevertheless, Bollerslev and Mikkelson (1996) prove that this procedure still generates a
process with high volatility persistence.

From Table 3 we can see that the value of the specification test decreased substantially

but the model still does not accommodate all the features of the data. When we use the
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spline transformation (see Table 5), we can observe that the model does not fit the scores
of the ARCH lags of higher order, which means that volatility persistence is still not well
approximated with this stochastic specification. Also, the moments associated with the
terms in the polynomial approximation are non-zero. Certainly, we need to transform
the model in order to capture the extra kurtosis and the strong volatility persistence of
data. As it has been showed in Subsection 5.3.2, the introduction of an extra factor of
volatility might allow the model to generate extra kurtosis and simultaneously might help
in accommodating the volatility persistence. Having in mind this purpose, we estimate

the following specification

Dy + hoy

2 )?

Yo — My = c1(ye1 — My) + co(Yr—2 — My) + 0T¢,(¢) exp(

Te, () = bo + b1, + 0o} + b3 1 (C,)C5

Le
(1—L)Yhy =¢, € = Zaiet_i +ey, & ~1id(0,0?) and Le=0 or Le=1

i=1

and

hat = ¢rhat—1 + n,, with 1, ~ N(0,02) and || < 1.

We impose to T¢,((;) the same restrictions as before, for identification purposes.

The 2FLMSV is a combination of two models: the ARSV of Taylor (1986) and the
LMSV of Breidt et al. (1994). The empirical results reported in Table 5 and Figure 9
suggest us that the fit has improved and the fatness of the tails appears to be somewhat
better accommodated. Furthermore, the volatility persistence generated by the model
seems to approximate better the persistence in the data. In fact, if we look at the pa-
rameter estimates in Table 6 for the second variant of the 2FLMSV, we observe that the

estimate of d, the fractional integrated coefficient, is 0.561. This means that the first
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volatility factor is quite persistent and consequently shocks to volatility are going to take
time to dissipate. Notice that the h; process is still stationary due to the truncation
procedure. The second volatility factor is, as expected, fast mean reverting. The estimate
for ¢, is -0.208, smaller than 1 in absolute value. Moreover, since h; is very slowly mean
reverting, if volatility is high today, tomorrow it is going to be high as well, given the
value of hy. So, the 2FLMSV model also allows for cycles of high volatility and vice-versa
- volatility clustering.

Finally, the estimates of the variances of the volatility factors, 0727 and o2, allow us
to obtain an estimate of kurtosis. Considering the Gaussian case as an indicator of the
spline case, the kurtosis estimated with the 2FLMSV model is around 30% higher than the
kurtosis estimated with the LMSV model. So, empirically the 2FLMSV model generates
higher kurtosis than the LMSV.

Although the 2FLMSV model seems to capture the main empirical facts (if we observe
Figure 9 once more, we observe that the quasi t-ratios of the mean scores are in majority
smaller than 2) the hypothesis null of correct specification is still rejected at all relevant
significance levels.

Chumacero (1997) studies the small sample properties of EMM estimators of the
ARSV model and he confirms the previous findings for the y? specification test, using a
Monte Carlo experiment. Inference based on the over identifying restrictions test as well
as other x? statistics shows important over rejections. So, if this is the case for the ARSV
model, there is a high probability that the same happens with the 2FLMSV model.

A doubt remains: Is the model corrected specified, or shall we disbelieve on the abil-
ity of stochastic volatility models (in discrete time) to model the stock returns as the
specification test suggests? Gallant et al. (1997) arrived to pessimistic results. In par-
ticular, they have shown that the introduction of several modifications to the models
produce models that are quite elaborate but ”...they still can not accommodate features

that could be described as "nonlinear nonparametric”.
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Finally, we increase the order of the short run process (now ar(2)) and the improvement
is almost inexistent. Another possible extension is to include in the model leverage effects.

For this, the SNP polynomial part of the auxiliary model should include asymmetry.

5.5 Conclusion

In this chapter we reported some empirical facts of financial time series and we propose a
two factor long memory stochastic volatility model as an alternative to the LMSV model
of Breidt et al. (1994). We still model the volatility persistence by assuming that the
volatility of the returns shows a long memory feature captured by a fractionally integrated
process. The innovation is that we introduce a short run volatility factor that allows the
model to generate extra kurtosis and simultaneously to accommodate better the volatility
persistence.

The estimation method that we use in this chapter is the EMM (efficient method of
moments) by Gallant and Tauchen (1996) because of its testing advantages. In fact, the
minimized criterion function scaled by the number of observations follows asymptotically
a chi-square distribution which allows us to test if the model is corrected specified. Finally,
there is empirical evidence that the short run volatility factor seems to improve the EMM
criterion as in Ming Liu (2000) and the long memory stochastic volatility model with
two factors of volatility performs better than the two benchmark models in terms of the
specification test but it is still rejected in its original form and its extensions as in Gallant
et al. (1997). Since it is known that the x? specification test tends to over reject the null
of correct specification, we face a dilemma; Is the model appropriate to describe financial
data or shall we doubt about the ability of stochastic volatility models (in discrete time)
in modelling the stock returns? Gallant et al. (1997) emphasis the disability of stochastic
volatility models to fit the main features of data. In particular, they have shown that
the introduction to the models of several modifications produce models that are quite

elaborate but ”...they still can not accommodate features that could be described as
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“nonlinear nonparametric”.
In future research, we think of computing a Monte Carlo experiment in order to infer if
the specification test is over rejecting when we use the 2FLMSV model and in affirmative

case we think of testing the model further by studying its forecasting performance.
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T-ratios of Mean Score (ARSV model)

Figure 6

T-ratios of Mean score (ARSV model-spline)
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T-ratio of Mean Score (LMSV spline)

Figure 8

T-ratios of Mean Score (2FLMSV-spline-Le=1)
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T-ratios of Mean Score (2FLMSV-spline-Le=1-ar(2))
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R/S|q=0 | q=q*
Q | 143263 | 592.93
J 0.739 0.649
d 0.239 0.149
Table 1
S&P 500 tHo:do=03 || tHo:do=0.4 | di
Squared Returns || -1.649476 || -4.049* 0.2632

Table 2: * means that the null hypotheses is rejected
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Model X2 df || p — value || Le
ARSV, Gaussian error 144.1972 || 27 || <0.0001 || O
LMSV, Gaussian error 122.1446 || 28 || <0.0001 0
2FLMSV, Gaussian error || 116.7419 || 26 | <0.0001 0
2FLMSV, Gaussian error || 110.4044 || 25 | <0.0001 1

Table 3: x? is the value of the EMM criterion, which follows a y2statistic with

degree of freedom of df. Le is the autocorrelation order of the error of the fractional

integrated process for the volatility factor.
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Hy c1 Ca oy oy 10) aq O, d Le
Gaussian
ARSV 0.041 || 0.109 || -0.054 || 0.756 || 0.130 || 0.990 0
LMSV 0.036 || 0.104 || -0.051 || 0.652 0.427 || 0.541 || O
2FLMSV || 0.036 || 0.105 || -0.051 || 0.661 | 0.121 || -0.453 0.408 || 0.555 || O
2FLMSV || 0.037 || 0.106 || -0.051 || 0.691 || 0.175 || -0.421 || 0.571 || 0.191 || 0.562 || 1

Table 4: Fitted parameter values (Gaussian errors). Not all the parameters are

free due to identification restrictions across parameters.

Table 5:

Model X2 df || p — value || Le
ARSV, spline error 70.9361 || 23 || <0.0001 | O
LMSYV, Spline error 62.7775 | 24 || 0.00026 0
2FLMSV, spline error 56.5525 || 22 || <0.0001 0
2FLMSV, spline error 51.3086 || 21 || 0.00024 1
2FLMSV ;. (2), spline error | 45.5148 || 20 || 0.001 1

degree of freedom of df.

x? is the value of the EMM criterion, which follows a 2statistic with
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Ly c1 Ca oy oy o) o3 O

spline
ARSV 0.109 | 0.113 || -0.047 || 1.131 || 0.099 | 0.992
LMSV -0.218 || 0.09 -0.065 || 0.686 0.426
2FLMSV -0.284 || 0.08 -0.07 0.816 || 0.219 || -0.219 0.405
2FLMSV -0.360 | 0.07 || -0.087 || 0.754 || 0.309 || -0.208 0.177
2FLMSV 4,2y || -0.209 || 0.09 -0.062 || 0.708 || 0.111 || -1.13 -0.697 || 0.19

Table 6: Fitted parameter values (spline errors).

Not all the parameters are free

due to identification restrictions across parameters.

aj bo b1 by b3 d Le
spline
ARSV 0.000 || 0.723 || -0.120 || 0.156 0
LMSV 0.420 || 1.058 || -0.073 || 0.0075 || 0.56 | O
2FLMSV 0.449 || 0.882 | -0.051 || -0.025 || 0.572 || O
2FLMSV 0.601 || 0.618 || 0.964 || -0.056 || -0.051 || 0.561 | 1
2FLMSV,, 2y || 0.567 || 0.396 || 1.062 || -0.043 || -0.039 | 0.576 || 1

Table 6 (cont.)



Chapter 6

Conclusions and Future Research

The main purpose of this thesis has been to model and forecast the volatility of the
financial series using specifications either in continuous or discrete time.

In the third chapter, we study why stochastic volatility models with one factor of
volatility in continuous time fail to fit the main features of data. The main reason,
considering our sample, is that they are not able to accommodate all the persistence of
data. In order to capture this strong volatility persistence, we introduce a feedback feature
into the factor volatility specification that allows the volatility of the volatility factor to
be high when itself is high and vice-versa. Under these conditions, the model with one
factor and feedback is able to capture simultaneously the kurtosis and the persistence of
data, without even missing the stock crash of October 1987.

Several authors as: Beine and Laurent (2000), Granger and Hyung (1999) and Diebold
and Inoue (1999) report that there is a correlation between volatility persistence and
changes of pattern, if we do not account for the latter. In our case the existence of
this strong persistence can be perhaps explained, in some degree, by this evidence and
consequently the feedback could be seen as an imperfect or indirect substitute of a jump.

In future research, we would like to investigate deeply this question by considering a

sample with a visible volatility change. The idea would be to fit a stochastic volatility
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model with a jump and the stochastic volatility model with both, one factor of volatility
and feedback. If the second performs similar to the first, the feedback factor could be seen
as a substitute of a jump, with the advantage of avoiding some estimation difficulties. We
would also compute a Monte Carlo experiment to generalize the conclusions.

In the fourth chapter we ask the question: Is there evidence that stochastic volatility
models in continuous time forecast volatility, accurately? Are their forecasting perfor-
mances better than the forecasting performances of other well known models? And the
answer is yes for our sample.

The evaluation procedure adopted is the following: we regress the realized volatility,
computed using 15-minutes data, on a constant and on the volatility forecasts of several
models. If the volatility forecast is an unbiased estimator of realized volatility, considered
a good measure of ex-post volatility, the constant is statistically insignificant and the
coefficient of the volatility forecast is statistically equal to one. We observe for the out
of sample periods that the benchmark models: GARCH and ARFIMA, face problems
in tracking the growth pattern of the realized volatility. This occurrence is due to the
volatility increasing at the very end of the sample. Remember we are using the same
data of the third chapter. In order to avoid this phenomenon we consider the year before
its occurrence and we observe that the continuous time model still performs better than
the benchmarks. In future research, would be interesting to observe if these results are
repeated for other financial series or if they are a particular feature of the Microsoft data.

Finally, in the fifth chapter we propose a model in discrete time with two factors of
volatility. Our main purpose with this work is to ask the question: Is there evidence
that two volatility factors in discrete time are enough to fit the features of data, as in
continuous time? Theoretically we prove, by introducing a second factor of volatility
whose aim is to capture the short-run dynamics, that the model is able to generate extra
kurtosis and to accommodate better the volatility persistence. Furthermore, we are also

able to prove that the autocorrelation of first order of the squared returns implied by our
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model is smaller than the one implied by the benchmark model: LMSV. Empirically, we
test the performance of our model by fitting it to the returns of the S&P 500 composite
index. The results show us that the long memory stochastic volatility model with two
factors of volatility performs better than the two benchmark models. However, it is still
rejected in its original form and extensions, as in Gallant et al. (1997).

Chumacero (1997) studies the small sample properties of EMM estimators of the
ARSV model and he confirms the previous findings for the y? specification test, using a
Monte Carlo experiment. Inference based on the over identifying restrictions test as other
x? statistics shows important over rejections. So, if this is the case for the ARSV model,
there is a huge probability that the same happens with the 2FLMSV model.

A doubt remains: Is the model corrected specified? or shall we disbelieve on the
ability of stochastic volatility models (in discrete time) in modelling the stock returns as
the specification test suggests?

In future research, we think of computing a Monte Carlo experiment in order to infer if
the specification test is over rejecting when we use the 2FLMSV model and in affirmative

case we think of testing the model further by studying its forecasting performance.
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