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Abstract

High-Order Hybridizable Discontinuous Galerkin Method for Viscous
Compressible Flows

Mostafa Javadzadeh Moghtader

Computational Fluid Dynamics (CFD) is an essential tool for engineering design

and analysis, specially in applications like aerospace, automotive and energy indus-

tries. Nowadays most commercial codes are based on Finite Volume (FV) methods,

which are second order accurate, and simulation of viscous compressible flow around

complex geometries is still very expensive due to large number of low-order elements

required. One the other hand, some sophisticated physical phenomena, like aeroa-

coustics, vortex dominated flows and turbulence, need very high resolution methods

to obtain accurate results. High-order methods with their low spatial discretization

errors, are a possible remedy for shortcomings of the current CFD solvers. Discon-

tinuous Galerkin (DG) methods have emerged as a successful approach for non-linear

hyperbolic problems and are widely regarded very promising for next generation CFD

solvers. Their efficiency for high-order discretization makes them suitable for ad-

vanced physical models like DES and LES, while their stability in convection dom-

inated regimes is also a merit of them. The compactness of DG methods, facilitate

the parallelization and their element-by-element discontinuous nature is also helpful

for adaptivity.

This PhD thesis focuses on the development of an efficient and robust high-order

Hybridizable Discontinuous Galerkin (HDG) Finite Element Method (FEM) for com-

pressible viscous flow computations. HDG method is a new class of DG family which

enjoys from merits of DG but has significantly less globally coupled unknowns com-

pared to other DG methods. Its features makes HDG a possible candidate to be

investigated as next generation high-order tools for CFD applications.

The first part of this thesis recalls the basics of high-order HDG method. It is

presented for the two-dimensional linear convection-diffusion equation, and its accu-

racy and features are investigated. Then, the method is used to solve compressible

viscous flow problems modelled by non-linear compressible Navier-Stokes equations;

and finally a new linearized HDG formulation is proposed and implemented for that

problem, all using high-order approximations, which is p > 2 in this thesis. The ac-

curacy and efficiency of high-order HDG method to tackle viscous compressible flow
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problems is investigated, and both steady and unsteady solvers are developed for this

purpose.

The second part is the core of this thesis, proposing a novel shock-capturing

method for HDG solution of viscous compressible flow problems, in the presence of

shock waves. The main idea is to utilize the stabilization of numerical fluxes, via a

discontinuous space of approximation inside the elements, to diminish or remove the

oscillations in the vicinity of discontinuity. This discontinuous nodal basis functions,

leads to a modified weak form of the HDG local problem in the stabilized elements.

First, the method is applied to convection-diffusion problems with Bassi-Rebay and

LDG fluxes inside the elements, and then, the strategy is extended to the compressible

Navier-Stokes equations using LDG and Lax-Friedrichs fluxes. Various numerical

examples, for both convection-diffusion and compressible Navier-Stokes equations,

demonstrate the ability of the proposed method, to capture shocks in the solution,

and its excellent performance in eliminating oscillations is the vicinity of shocks to

obtain a spurious-free high-order solution.
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Chapter 1

Introduction

In the past decades, Computational Fluid Dynamics (CFD), has been established as

an essential tool for engineering design and analysis. This is mainly due to develop-

ments in computational power and algorithms available to workstations for scientists

and engineers. One of the fields in which CFD has been extensively used, is aerospace

industry. Improved solution strategies, combined with sophisticated physical models,

have made CFD a key technology in all stages of design and development in aerospace

and aeronautics, see Wang and Anderson [2012], Kroll [2006], Oliver [2008].

Current CFD solvers used in the industry, are mainly based on Finite Volume

(FV) Methods for Euler, Navier-Stokes or Reynolds Averaged Navier-Stokes (RANS)

and nominally second order accurate. After decades of development, these methods

have become robust and affordable for RANS simulations on small CPU clusters.

However, in most of real engineering applications, the degree of accuracy on ir-

regular and highly stretched meshes, falls between one and two. As a result, lots

of nodes are needed to capture flow around complex geometries, and large aerody-

namic simulations of viscous compressible flows around such configurations are still

very expensive, see Hartmann and Houston [2009]. On the other hand, difficulties

in some applications, like vortex dominated flows or aeroacoustics, lead to complex

multi-scale problems, like Large Eddy Simulation (LES) of turbulent flow, which re-

quire very high resolution to obtain accurate results, see Burgess [2011]. High-order

methods are more efficient than linear methods, see Huerta et al. [2013], and in recent

years, there have been significant efforts to design and develop them to reduce the

spatial discretization error, and to compare them with industrial solvers.
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1. Introduction

Such an effort can be seen, for instance, in the EU Framework 6 project called

ADIGMA (adaptive high-order variational methods for aerospace applications), in

which, a group of universities, research centres and industrial partners collaborated

to investigate on innovative adaptive higher-order methods for the compressible flow

equations, enabling reliable, numerical solutions for large-scale aerodynamic applica-

tions in aircraft design. Their results prove the competitiveness of high-order methods

compared to standard finite volume solvers for airfoil computations and for 3D invis-

cid and laminar flow around simple geometries. Besides the potential and capabilities

of high-order methods, the limitations were also identified: further research on high-

order adaptive methods for turbulent flows and better memory-efficient strategies, as

well as improvement in generation of coarse high-order meshes were recommended.

For more information see Hartmann and Houston [2009], Kroll [2006], Chalot and

Normand [2010], Kroll et al. [2010], Kroll [2010].

In another study, NASA CFD vision 2030 report by Slotnick et al. [2014], also

put a light on inadequate ability of current solvers for simulations of complex flow

phenomenon, like turbulent flows with significant regions of separations. It also recog-

nized mesh generation and adaptivity as significant bottlenecks for CFD simulations

and required revolutionary algorithmic improvement as a requisite for future advanced

simulations.

Overall, the required ingredients of the possible next generation CFD tools for

aerospace applications are not limited to, but include:

• high-order/low-dispersion discretizations for sophisticated physical phenomenon

(especially for DES, LES and transition to turbulence), and for higher computational

efficiency

• ability to handle complex geometries on unstructured meshes, as a necessary

requirement for real engineering problems

• error estimation and adaptation techniques to minimize computational efforts

and provide reliable solution

• efficient solution strategies, robustness and suitability for parallelization

Some of the most promising methods for this purpose are Discontinuous Galerkin

(DG) Finite Element Methods (FEM). These methods are finite element methods in

which the solution is approximated by means of element-by-element polynomial func-

tions, without global continuity requirement, and therefore the numerical solution is

discontinuous at element interfaces, see for example Bassi et al. [2005]. DG methods
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were first introduced by Reed and Hill [1973] for the neutron transport equation. In

the last decades, after successfully being applied to the solution of non-linear hyper-

bolic problems, they have emerged as an alternative to FV solvers on unstructured

meshes. The high-order accuracy in DG methods can be obtained by using higher

order polynomials for approximation. On the other hand, their element-by-element

definition provides compactness, hence makes them ideal for parallelization. They are

locally conservative and because of their built-in stabilization mechanism, they are

inherently stable in convection dominated regimes. In addition, their discontinuous

nature, facilitates the implementation of hp-adaptive schemes.

Besides all advantages, for the same mesh and order of approximation, the number

of globally coupled degrees of freedom of classical DG methods is significantly higher

than their Continuous Galerkin (CG) counterparts. As a result, classical DG methods

are computationally expensive for steady or implicit solvers and the big challenge is

to make them competitive and robust for realistic problems.

In recent years, a new DG method has been developed by Cockburn and Gopalakr-

ishnan [2004] called Hybridizable Discontinuous Galerkin (HDG) method. Among all

DG methods, HDG method outstands for steady and implicit schemes, mainly due

to its reduced number of degrees of freedom. Hence, while HDG maintains the ad-

vantages of DG methods, it is computationally much less expensive. In fact for high

degrees of approximations, HDG can be as efficient as traditional CG methods on tri-

angles and quadrilaterals, see for instance Kirby et al. [2011], Giorgiani et al. [2014].

In addition, HDG also has other promising feature; its superconvergence properties,

which is possible through a cheap element-by-element procedure. This is due to opti-

mal convergence rate for both primal variables and their derivatives, which makes it

somehow unique in DG families because of optimal convergence rate of viscous fluxes

in multi-dimensions, see Peraire et al. [2010].

Apart from discretization aspect, complex aerodynamic flow fields exhibit a wide

range of phenomena, like thin boundary layers, high streamlined curvature regions

and shock waves. This latter one puts one of challenges of high-order methods:

Gibbs phenomena, see Barter [2008]. That is, numerical oscillations appear when

non-smooth or discontinuous solutions are approximated with polynomials. HDG

method posses a built-in stabilization, which is enough for highly convective regimes,

but it is not enough to capture sharp gradients in high-order methods, hence needs

further treatments. These oscillations can be eliminated or damped with shock-
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1. Introduction

capturing techniques which introduce additional dissipation in the vicinity of shocks.

The best stabilization method to smooth out the spurious solution, but not damp the

discontinuity, is a current field of research for high-order methods, and main goal of

this thesis.

1.1 Objectives and outline

The overall goal of this thesis is to develop an efficient and robust high-order HDG

method for compressible Navier-Stokes equations modelling compressible viscous flows.

To deal with the shocks in transonic or subsonic regimes, a novel shock-capturing tech-

nique is developed, which uses flux stabilization inside the elements to capture the

shocks in large high-order elements. The main achievements of this thesis are:

• Implementation of a high-order HDG solver for compressible viscous

flow. The HDG discretization is implemented for compressible Navier-Stokes equa-

tions, either steady or unsteady. The weak form of the problem is recalled in section

2.2 and several examples are used to investigate the accuracy and convergence of

the method for a problem with known analytical solution. In addition, efficiency of

high-order elements versus low-order elements is investigated and proved for laminar

flow around NACA 0012 airfoil. Development of this part is based on the work of

Peraire et al. [2010], and more details of implementation aspects of the method are

presented in appendix C.2. Overall, high-order approximation allows usage of larger

elements, reducing the computational cost, and providing low spatial discretization

error, which is suitable for applications that need very high-resolutions like acoustics

or LES. The high-order HDG method, provides such a high-resolution we seek for

both convection-diffusion and compressible Navier-Stokes equations.

• Derivation and implementation of a linearized HDG method for com-

pressible viscous flow. Aiming to have a more robust solver, a new linearization

method for the unsteady compressible Navier-Stokes equations is considered. It is

expected to reduce the computational cost and improve the robustness in unsteady

problems, and facilitate the convergence to the steady state solution, which is a

challenge for high-order methods because of much reduced numerical dissipation as-

sociated with these methods, see Wang et al. [2013]. This linearization method is

based on a linear extrapolation of solution from previous time steps, and leads to a

linear system of equations to be solved in each time step. This linearization improves

4



1.1. Objectives and outline

the robustness of the solver and can be used interchangeably with Newton-Raphson

non-linear solver for HDG simulation of compressible viscous flow. The procedure

is explained in section 2.3 and successfully implemented. The applicability of the

proposed method to compute the solution of viscous compressible flow is shown in

results, and critical time-step size and computational cost of the method has been

studied. The details of the implementation are presented in appendix C.3.

• Development of a novel shock-capturing technique for HDG method.

The presence of shocks, as a common phenomena in compressible flows, or sharp

fronts in convection-diffusion problems, requires some kind of stabilization techniques

in such numerical simulations. One big challenge for high-order methods is preserving

high accuracy of approximations in the vicinity of the shocks, to properly resolve the

shock; because, in some cases, the low order of accuracy can pollute the solution, even

away from discontinuities, see Casoni et al. [2013]. An important goal of this thesis

is to reach highly accurate solution even when shocks appear in the flow field. Our

strategy, as explained in section 3.1, is to exploit the stabilization induced by DG

numerical fluxes to capture sharp fronts of the solution inside high-order elements.

To do so, a discontinuity sensor developed by Persson and Peraire [2006] is used

to detect the elements affected by sharp fronts. Based on the smoothness of the

solution, the approximation space inside each element is modified, from a standard

continuous representation of the solution to a piecewise constant approximation. As

a result of using this new space of approximation, the HDG weak form is modified

to account for discontinuities inside the elements. In the presence of shock, the

new discontinuities inside an element introduce the sufficient amount of stabilization

because of the numerical fluxes, and shock can be captured in one large high-order

element. In section 3.1 the method is developed for convection-diffusion equations

and in section 3.2 it is extended to compressible Navier-Stokes equations.

The outline of this thesis is as follows. First, literature review is presented for

both DG methods for viscous compressible flows and for shock-capturing for DG

methods, in sections 1.2.1 and 1.2.2, respectively. Chapter 2 is about high-order

HDG method, and it presents the method for convection-diffusion equation in section

2.1, which includes formulation and numerical examples. Later, high-order HDG for

compressible Navier-Stokes equations is discussed in section 2.2, which also contains

the formulation and numerical examples. And then, in section 2.3, the development

of a new linearization for compressible Navier-Stokes equations is covered, and the
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corresponding HDG formulation and numerical tests are also included. Chapter 3

develops and studies the performance of new shock-capturing strategy for HDG, which

starts with section 3.1, presenting the HDG with shock-capturing for convection-

diffusion problems with internal layers. This section includes the discretization space

and discontinuous shape functions, modified HDG formulation, discontinuity sensor,

and numerical examples. Then, section 3.2, presents high-order HDG with shock-

capturing for compressible Navier-Stokes equations with numerical simulations of

compressible viscous flows with shocks. Finally, the summary of the work is presented

in chapter 4 with ideas for future developments in section 4.1.

1.2 State of the art

In the last decades, the research in DG FEM for the numerical simulation of compress-

ible viscous flow problems has been a very active field in computational mechanics.

These problems have a wide range of applications, from aerodynamics and combustion

simulations, to climate modellings.

In the following sections, a survey of the DG approaches, for solution of compress-

ible Navier-Stokes equations, and shock-capturing techniques for compressible flow,

is presented.

1.2.1 Discontinuous Galerkin methods for viscous

compressible flows

At first, DG methods were proposed by Reed and Hill [1973] and analysed by La-

saint and Raviart [1974]. Later, DG methods were extended to non-linear hyperbolic

conservation laws by Cockburn et al. [1989, 1990], Cockburn and Shu [1989]. In next

decades, DG emerged as a family of powerful high-order accurate methods for the

solution of the different non-linear conservation laws and convection-dominated prob-

lems, see for instance Bassi and Rebay [1997a], Arnold et al. [2002], Cockburn [2003,

2004], Bassi et al. [2005], Cockburn et al. [2000], Cockburn and Shu [2001], Nguyen

et al. [2009a].

DG methods are suitable to construct robust and stable high-order schemes on

unstructured and non-conforming grids, and their compactness makes them ideal for

parallelization and adaptivity. As a result, there has been an increasing interest in

6



1.2. State of the art

DG methods in various disciplines of numerical modelling of physical phenomenon,

including compressible and viscous flow in aerodynamics, see for instance Hartmann

[2005a], Bassi and Rebay [1997a,b], Baumann and Oden [2000, 1999], Dolej [2004],

Hartmann and Houston [2002], Hartmann et al. [2010], Fidkowski et al. [2005], Drozo

et al. [1998], Klaij et al. [2006b,a], Lomtev and Karniadakis [1999], Cockburn [2004].

Despite all advantages of DG methods, their main challenge to enter the practical

and industrial application is the high computational cost in comparison with FEM,

FVM and FDM, see Nguyen et al. [2011c]. This is because of much higher number

of globally coupled degrees of freedom of classical DG methods, in comparison with

CG methods for the same mesh and same polynomial degree.

The new class of DG method, HDG method, offers a way to address the issue of

computational cost. Meanwhile HDG maintains the merits of DG, it uses a signifi-

cantly reduced number of degrees of freedom. Hence, it is less computationally costly

and needs less memory. HDG method, like other methods of DG family, enforces the

equations in an element-by-element manner, hence it is suitable for parallelization

and gives rise to a locally conservative method. HDG can handle meshes of different

element shapes, sizes and orders of approximation, so it is ideal for hp-adaptivity.

Its built-in stabilization does not degrade its high-order accuracy, and can be applied

to different systems of partial differential equations (PDE). Among all DG methods,

HDG stands for its reduced number of globally coupled degrees of freedom, and its

superconvergence. All of these interesting features make HDG an interesting high-

order alternative to current low-order solvers, particularly for applications in fluid

dynamics.

HDG was first developed for elliptic problems in a series of works by Cockburn

and Gopalakrishnan [2004, 2005], Cockburn et al. [2009c] and was used and anal-

ysed extensively for steady state diffusion equation in works of Cockburn et al. [2008,

2009e,d, 2014]. It was extended to time-dependent diffusion problem by Chabaud

and Cockburn [2012] and then, to convection-diffusion problems, by Cockburn et al.

[2009b], Nguyen et al. [2009a,b], Egger and Schberl [2010], Rhebergen and Cockburn

[2013], Oikawa [2014]. HDG method was applied to the wave equation by works of

Nguyen et al. [2011a], Griesmaier and Monk [2014], Feng and Xing [2013], Giorgiani

et al. [2013a,b] and it was developed for linear and non-linear elasticity, see Soon

et al. [2009], Kikuchi et al. [2009], Nguyen and Peraire [2012], and also for Timo-

shenko beams and biharmonic problems, by Celiker et al. [2012, 2010], Cockburn
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et al. [2009a]. HDG was developed and analysed for flow problems, first for solving

the Stokes equations, in works of Carrero et al. [2006], Cockburn and Gopalakrish-

nan [2009], Nguyen et al. [2010], Cockburn et al. [2011], Cockburn and Cui [2012].

Then, HDG was extended to incompressible Navier-Stokes equations, see Nguyen

et al. [2011b], Rhebergen and Cockburn [2012], Rhebergen et al. [2013], Giorgiani

et al. [2014], Montlaur and Giorgiani [2015], Qiu and Shi [2015]. And finally, the Eu-

ler and compressible Navier-Stokes equations of gas dynamics are getting attention

of HDG researchers in recent years in works of Peraire et al. [2010], Nguyen et al.

[2010], Nguyen and Peraire [2011], Schütz et al. [2012], Moro et al. [2012], Nguyen

and Peraire [2012], Roca et al. [2013], Woopen et al. [2014b], Jaust and Schtz [2014],

Woopen et al. [2014a], Woopen and May [2015].

Overall, HDG is still a novel DG method and its development and application

for CFD is an open and interesting field of study. The main task of this thesis is to

develop a robust and efficient HDG solver for compressible viscous flow problems in

presence of shocks and investigate its properties.

1.2.2 Shock-capturing for discontinuous Galerkin methods

Shock waves in fluids, are a type of propagation of disturbance that cause almost

abrupt changes in characteristics of the medium, see Anderson [2010]. Large ampli-

tude compression waves, such as that produced by an explosion, or by supersonic or

near supersonic motion of a body in a medium, are quite common phenomenon in

many problems of interest in compressible flows. In transonic, supersonic and hyper-

sonic flows the presence of normal, oblique or bow shocks have significant influence

on the lift, drag and heat conduction loads of the aircraft, and correct modelling and

simulation of shocks is an important issue in computational aero-thermodynamics.

After years of research, low-order methods for simulations of flow with shocks are

a mature field of study; however this is not the case for high-order methods. In case of

HDG method, like other DG methods, some inherent stability due to numerical fluxes

can be seen near discontinuities or sharp fronts; like the case of a linear convection-

diffusion equation with discontinuous boundary conditions, or compressible Navier-

Stokes equations with weak shocks on coarse meshes. As reported by Hartmann

[2005a], these types of problems can be discretized and solved without any additional

stabilization. However, solutions suffer from spurious oscillations near discontinuities

or very sharp front, with high-order approximation. This polluted solution may
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even affect the convergence of steady state solvers, and additional shock-capturing

methods have to be implemented for high-order HDG method to further stabilize the

numerical discretization, and to overcome local numerical oscillations (overshoots and

undershoots) in the vicinity of sharp fronts and shocks for high-order computations.

Hence, dealing with discontinuities is one of the big challenges of high-order methods

and although it has been an active field of research still there is great debate on the

most effective approach to compute flow with shocks in CFD community, see Burgess

[2011], Vincent and Jameson [2011].

In recent years, shock-capturing techniques for high-order methods have become

a rich and intense area of research and have been investigated by many authors, see

for instance Cockburn and Shu [2001], Hartmann and Houston [2002], Krivodonova

et al. [2004], Bassi et al. [2009], Wang and Mavriplis [2009], Hartmann [2006], Casoni

et al. [2013]. Some of traditional shock-capturing techniques have been developed

in the past decades; and many researchers have extended classical shock-capturing

methodologies of finite differences (FD) and finite volume (FV) schemes to high-

order DG and HDG methods, see for instance Zhu and Qiu [2009], Persson and

Peraire [2006], Nguyen and Peraire [2011], Barter [2008], Barter and Darmofal [2010],

Burgess and Mavriplis [2012].

One of the main techniques to capture the shock is artificial viscosity, which uses

additional dissipation. One may think of explicitly adding the dissipation term to

the equations, see Anderson [1995], Burgess [2011]. To ensure the consistency of the

method, artificial viscosity in the perturbed partial differential equation must vanish

as mesh size goes to zero and also in the regions of smooth solution. Artificial diffusion

was first introduced by von Neumann and Richtmyer [1950] and further developed

later by Jameson et al. [1981], Baldwin and MacCormack [1975]. It became popular

in context of Streamline Upwind Petrov-Galerkin (SUPG) finite element methods,

see Hughes et al. [1986], Hughes and Mallet [1986a,b], Hughes et al. [1987] and in

the last decades, it has been used in DG simulations of compressible flow, see for

instance Bassi and Rebay [1995], Baumann and Oden [2000], Hartmann and Houston

[2002], Hartmann [2005a, 2006], Bassi et al. [2009], Hartmann [2013]. As described by

Barter and Darmofal [2010], ”artificial viscosity expands the thickness of the shock

layer so that it safely exceeds the resolution length scales of the numerical method

and eliminates the spurious oscillations”. Hence, the amount of artificial viscosity

is of great importance and some authors propose a sub-cell based artificial viscosity

9



1. Introduction

to increase the accuracy of the solution in the vicinity of shocks, and impose as less

amount of artificial viscosity as possible, see for instance Persson and Peraire [2006],

Casoni et al. [2013]. Artificial diffusion techniques can capture shocks in a robust and

accurate manner, however, the amount of artificial viscosity is not straightforward due

to its non-linearity, and also it is quite difficult to incorporate directionality.

Some other classical shock-capturing methods are limiting techniques. The Total

Variation Diminishing (TVD) methods, bound the variations in solution so that no

new local extrema forms in the domain, see LeVeque [1992]. These methods were

initially designed in the context of FD and FV by van Leer [1974, 1977a,b, 1979],

and have been successfully developed in context of DG methods, namely Runge-

Kutta Discontinuous Galerkin (RKDG) methods by Cockburn et al. [1989, 1990],

Cockburn and Shu [1998, 2001]. RKDG, which are a class of explicit RK schemes,

use a combination of slope limiters and approximate Riemann solvers, and as a result,

they are Total Variation Bounded in the Means (TVBM). These limiters are specially

developed to damp the oscillations, but the order of the approximation is reduced to

linear or constant. As a result of this order reduction, accuracy can only be improved

by mesh refinement in the vicinity of the shock.

An alternative to maintain high-order accuracy, is adding degrees of freedom to

capture sharper shock transition. These methods are Essentially Non-Oscillatory

(ENO), developed by Harten et al. [1987]. An improvement to this method is

Weighted Essentially Non-Oscillatory (WENO) schemes, developed by Liu et al.

[1994]. These methods use a single or a non-linearly weighted multiple stencil to

reconstruct a high-order polynomial representation from a set of local cell average

values while eliminating spurious oscillations. ENO methods have been developed for

FD and FV methods and have been extended to DG methods, see for instance Qiu

and Shu [2004, 2005], Zhu and Qiu [2009, 2013], Jiang et al. [2012], Luo et al. [2007];

However, there are still difficulties in these approaches specially because an implicit

time marching to steady state solution has not been developed yet. The other issues

are robustness for high-order approximation and extension of the method to multi-

ple dimensions. Overall the compact implicit WENO methods for DG is an active

research field.

In a different approach, Huerta et al. [2012] proposed to use the stabilization

induced by DG numerical fluxes to capture sharp fronts of the solution inside high-

order elements for Euler equations of gas dynamics. By means of this shock-capturing
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technique, the order of the approximation is reduced only in the elements where the

solution is not smooth. Thus, the high-order accuracy of order p + 1 in the large

majority of the domain, is locally decreased to order h/p only in the elements where

the shock is contained, being p the degree of approximation, and h the element size.

As a results, no mesh adaptation is needed, and sharp fronts can be captured without

modifying the DOFs or mesh topology. In this thesis, this main idea is developed

for HDG method for convection-diffusion and Navier-Stokes equations. The shock-

capturing technique proposed for HDG method is inspired by the ideas of Huerta

et al. [2012] and uses DG fluxes inside elements to stabilize the method, which give

rise to a modification of the variational form of the local HDG problem in the vicinity

of shocks.
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Chapter 2

High-order hybridizable

discontinuous Galerkin method

In this chapter, HDG method for two-dimensional linear convection-diffusion equation

is introduced according to the work of Nguyen et al. [2009a], and then the method

is used to solve the compressible viscous flow problems for non-linear compressible

Navier-Stokes equations. Finally, a new linearized HDG method is proposed and

implemented for compressible Navier-Stokes equations.

In first part of this chapter, section 2.1, the model convection-diffusion equation is

presented, and the approximation spaces for the solution, derivation of formulations

of HDG discretization and local post-processing of the solution to obtain supercon-

vergence are also described. Convergence and accuracy of HDG method for solution,

gradient of solution and post-processed solution are investigated through numerical

tests, and the expected high-order accuracy is achieved. In section 2.2, HDG is used

to solve the compressible Navier-Stokes equations. The governing equations and the

variational form of the problem are presented. Again, accurate solutions are obtained

using high-order elements, and the efficiency of high-order HDG is also demonstrated

in comparison with low-order approximations. Then, in section 2.3, a new linearized

HDG method for compressible Navier-Stokes equations is developed and implemented

successfully for steady and unsteady test cases, and its accuracy is compared with

both steady and unsteady non-linear solver.
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2. High-order hybridizable discontinuous Galerkin method

2.1 The HDG method for convection-diffusion

equation

A linear convection-diffusion model is considered here as a model problem, because

it has both diffusive and convective operators like Navier-Stokes equations. In addi-

tion, there are numerous applications in science and technology, e.g., transport of a

contaminant in air or water, oil reservoir flow, electro-hydrodynamics or concentra-

tion of electrons in semiconductor devices, see for instance Egger and Schberl [2010].

HDG for convection-diffusion equation has been already developed by Nguyen et al.

[2009a], here we try to describe the main ideas and features of HDG method through

it.

Let Ω ∈ Rsd be an open bounded domain, where sd is the space dimension, with

boundary ∂Ω split in the Dirichlet, ∂ΩD, and Neumann, ∂ΩN , boundaries. The

steady convection-diffusion equation can be written as

∇ · (cu)−∇ · (k∇u) = f in Ω,

u = gD on ∂ΩD,

(−k∇u+ cu) · n = gN on ∂ΩN ,

(2.1)

where u is the unknown, k is a positive diffusion coefficient, c is a smooth convection

velocity field, f is a source term, and gD and gN are given values for essential and

natural boundary conditions respectively.

For DG approach the domain Ω is partitioned in nel disjoint elements, Ωe, with

boundaries ∂Ωe, such that

Ω̄ =

nel⋃
e=1

Ω̄e, Ω̄l ∩ Ω̄m = ∅ for l 6= m, (2.2)

and the union of all nfc faces, Γf , is denoted as

Γ =

nel⋃
e=1

∂Ωe =

nfc⋃
f=1

Γf (2.3)

The discontinuous setting now induces a new problem, equivalent to (2.1) corre-

sponding to a system of first order partial differential equations (mixed form) stated

element-by-element

q + k∇u = 0

∇ · (cu+ q) = f

}
in Ωe, e = 1, · · · , nel (2.4)
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2.1. The HDG method for convection-diffusion equation

and some global equations imposing continuity between elements and boundary con-

ditions

[[un]] = 0 on Γ \ ∂Ω, (2.5)

[[(cu+ q) · n]] = 0 on Γ \ ∂Ω, (2.6)

u = gD on ΩD, (2.7)

(cu+ q) · n = gN on ΩN , (2.8)

In equation (2.4), a new variable q is introduced, proportional to the gradient of the

solution (actually it is equal to −k∇u). The jump [[·]] and mean {·} operators are

defined at internal faces, i.e. on Γ \ ∂Ω using the values from the elements on the

right and left of the face, Ω+ and Ω−,

[[a]] = a+ + a−, (2.9)

{a} = (a+ + a−)/2, (2.10)

The main difference between the two is that the jump always involves the normal to

the interface, see more details in Giorgiani et al. [2014]. Note that equations (2.5)

and (2.6) impose the continuity of the solution and normal component of the flux

through element boundaries.

A major feature of the HDG method is that, unknowns are finally reduced to the

skeleton of the mesh, that is, to the union of all faces Γ. This is done via introduction

of a new variable û, corresponding to the trace of the solution Γ. The new variable

û allows to state the so-called local problem in each element, corresponding to the

convection-diffusion equations (2.4) with Dirichlet boundary conditions,

q + k∇u = 0 in Ωe,

∇ · (cu+ q) = f in Ωe,

u = û on ∂Ωe,

(2.11)

Note that the trace of the solution û acts as boundary condition in the local

problem (2.11) in each element, and as unknown for the so-called global problem,

that corresponds to the continuity condition (2.6), and the boundary conditions (2.7)

and (2.8). Note that the continuity of u in (2.5) is ensured by the fact that û is

single-valued on Γ, that is, in the local problems, the same value û is imposed on the

face shared by two elements. The approximation spaces for u, q and û, the HDG

weak form for local problems, and the weak form for the HDG global problem are

detailed in next sections.
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Mp
h

W p
h

Figure 2.1: Spaces of solutions

HDG formulation

For HDG discretization, two types of finite element spaces are defined, one for func-

tions in the elements interior and another for trace functions, as

W p
h = {v ∈ L2(Ω̄) : v|Ωe ∈ Pp(Ωe), for e = 1, ..., nel},

M p
h = {µ ∈ L2(Γ) : µ|Γf

∈ Pp(Γf ), for f = 1, ..., nfc},
(2.12)

where Pp(Ω̄) is the set of polynomials of degree at most p on the elements, and Pp(Γ)

is the space of polynomials of degree at most p on the faces. M p
h is the space for the

approximation of trace function on Γ, defined at the faces.

The HDG discretization of the local problem (2.11) in each element, is stated as:

given ûh on ∂Ωe, find uh ∈ W p
h and qh ∈ [W p

h ]sd such that

(k−1qh, z)Ωe − (uh,∇ · z)Ωe + 〈ûh, z · n〉∂Ωe = 0,

−(cuh + qh,∇r)Ωe + 〈( ̂cuh + qh) · n, r〉∂Ωe = (f, r)Ωe ,
(2.13)

for all r ∈ W p
h and all z ∈ [W p

h ]sd, where (·, ·)Ωe denotes the L2 scalar product in the

element Ωe and 〈·, ·〉∂Ωe
denotes the L2 scalar product in the element boundary ∂Ωe.

Numerical traces ûh and ̂cuh + qh are approximations to uh and cuh + qh over ∂Ωe

respectively. The trace ûh will be an unknown in the global problem, but the trace

̂cuh + qh is set as

̂cuh + qh = cûh + qh + τ(uh − ûh)n on Γ, (2.14)

where τ is the local stabilization parameter, which has a strong effect on the stability

and accuracy of the method, see Nguyen et al. [2009a] and remark 2.2. Replacing the
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definition of the numerical flux ûh , (2.14), the weak form of the local problem for

each element is: find uh ∈ W p
h and qh ∈ [W p

h ]sd such that

(k−1qh, z)Ωe − (uh,∇ · z)Ωe + 〈ûh, z · n〉∂Ωe = 0,

(∇ · qh, r)Ωe − (cuh,∇r)Ωe + 〈τuh, r〉∂Ωe + 〈(c · n− τ)ûh, r〉∂Ωe = (f, r)Ωe ,
(2.15)

for all r ∈ W p
h and all z ∈ [W p

h ]sd.

It is important to notify that the local problem can be solved in an element-by-

element manner, to express the solution at each element, uh and qh, in terms of the

trace of the solution, ûh. Thus, the actual unknown will be ûh on Γ.

The problem is then closed with the discretization of the conservativity condition,

(2.6), using (2.14), and the Neumann boundary condition (2.8): find ûh ∈M p
h such

that

nel∑
e=1

〈(cûh + qh) · n+ τ(uh − ûh), µ〉∂Ωe = gN , ∀µ ∈M p
h , (2.16)

where uh and qh are solutions of the local problem, (2.15). Note that the solution

of the local problems (2.15) can be replaced in the global problem (2.16), leading to

global system of equations that only involves ûh, as

Kûh = F, (2.17)

with an important reduction in DOFs.

Remark 2.1. In HDG method, the Dirichlet boundary condition can be enforced

weakly, setting ûh = P(gD) on Dirichlet part of boundary, ∂ΩD, where P(gD) is the

L2 projection of gD on the approximation space for the traces on ∂ΩD. On the other

hand, Neumann boundary condition is enforced on numerical flux in (2.16). This

methods proves to be an easy and effective way to impose the boundary condition in

convection-diffusion problems as used in different examples.

Once the linear system (2.17) is solved, the solution, uh and qh, in each element

can be computed from uh, with the local problem (2.15). A second element-by-

element post-process can be performed to obtain a super-convergent solution, u∗h:

find u∗h ∈ W p+1
h such that

(−k∇u∗h,∇r)Ωe = (qh,∇r)Ωe

(u∗h, 1)Ωe = (uh, 1)Ωe

(2.18)

17



2. High-order hybridizable discontinuous Galerkin method

for all w ∈ W p+1
h and e = 1, ..., nel. It should be noted that this post-process leads to

superconvergence of the solution due to optimal rate of convergence for both solution

and its gradient which is unique to HDG method between DG methods. For more

details, see Cockburn et al. [2008].

Remark 2.2. The local stabilization parameter, τ , is shown to have important effects

on the accuracy and convergence of the HDG method. Inappropriate choice of τ may

lead to significant deviation from accurate solution or loss of optimal convergence rates

for scalar variable or flux or superconvergence. Following Nguyen et al. [2009a], here

the stabilization parameter is considered as

τ = τd + τc (2.19)

where τd and τc represent the local stabilization parameter related to the diffusion and

convection, respectively. A good expression for τd and τc may be stated as

τd =
k

`
, τc = |c · n|, (2.20)

where ` is a representative value of diffusive length scale, typically of the order of unity

and independent of mesh size h. It is shown by Nguyen et al. [2009a] that the above

choices of the local stabilization parameter are useful and the optimal convergence rate

of p + 1 can be obtained for both approximate scalar variable and the flux, and also

superconvergence rate of p + 2 can be gained for post processed solution as shown in

next section.

Numerical results

In this section, numerical results for two-dimensional steady state convection-diffusion

problems are presented. The accuracy and convergence of the scalar solution and

flux are investigated, and also the superconvergence of the post-processed solution

is demonstrated. Computational meshes, obtained by splitting a regular Cartesian

grid of n2 quadrilaterals into a grid of 2n2 triangular elements, see Figure 2.2. The

stabilization parameter, τ , is defined according to (2.19), with l = 1, and the nodes

are distributed according to Fekete distribution in every element.

Example 1: Smooth convection-diffusion problem

The first example, from Cockburn et al. [2009b], is the solution of a steady convection-

diffusion problem in Ω = (0, 1)× (0, 1) with Dirichlet boundary condition gD = 0 on
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Figure 2.2: A typical triangular mesh

∂Ω. Convection and diffusion coefficients are c = (1, 1) and k = 1, respectively and

the source term f is chosen such that the exact solution is

u(x, y) = exp(x+ y) sin(πx) sin(πy) (2.21)

Figure 2.3(a) shows the smooth exact solution of the problem, while Figure 2.3(b)

shows the sparsity pattern of the HDG matrix on a coarse mesh with n = 8 and

polynomial of degree p = 3. The block structure of the HDG matrix can be seen in

this Figure.

Five different meshes and five different orders of approximation are used to com-

pute the approximated solution and the L2 norm of the error for entire domain.

These errors for the solution uh and for the post-process solution u∗h are presented in

Figures 2.3(c) and 2.3(d) respectively. These results demonstrate that the method

is capable of achieving optimal convergence rate for solution and superconvergence

for post-processed solution. The solution uh converges optimally with order p + 1

for p = 1, 2, 3, 4, 5 and the post-processed solution u∗h converges at the rate of p + 2

for polynomials of same degrees, proving the excellent agreement with expectations.

The decrement of L2-error with increase of degrees of freedom of the problem are

shown for both solution and post-processed solution in Figures 2.3(e) and 2.3(f). For

the same level of error, high-order approximations need less DOFs, hence are more

efficient than low-order approximations.
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Figure 2.3: Example 1: Smooth convection-diffusion problem
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2.1. The HDG method for convection-diffusion equation

Example 2: Convection-diffusion problem with boundary layer

Second example, from Cockburn et al. [2009b], is the solution of a steady convection-

diffusion problem in Ω = (0, 1) × (0, 1) with Dirichlet boundary conditions gD = 0

on ∂Ω. Convection and diffusion coefficients are c = (25, 25) and k = 1, respectively

and the source term f is chosen such that the exact solution is

u(x, y) = xy
(1− e(x−1)cx)(1− e(y−1)cy)

(1− e−cx)(1− e−cy)
(2.22)

where cx and cy are components of convection velocity. A boundary layer forms

Figure 2.4: Example 2: Solution
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Figure 2.5: Example 2: Convergence plots for the solution uh and post-process solution
u∗h

near top right corner, see Figure 2.4, which may not be captured correctly for coarse
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2. High-order hybridizable discontinuous Galerkin method

meshes. The convergence plots in Figure 2.5 (produced using the same five mesh

and orders of approximation as example 2.1), show that, although L2-norm errors of

the solution uh and post-processed solution u∗h are high for coarse meshes, for finer

meshes, the method is capable of obtaining optimal convergence rates of p+ 1 for uh

and superconvergence of order p+ 2 for post-processed solution u∗h.

2.2 High-order HDG for compressible

Navier-Stokes equations

Navier-Stokes equations are the most fundamental equations of fluid dynamics and

aerodynamics. These equations describe the flow of Newtonian liquids and gases, see

Riedmann [2009], Cao [2005], and they describe the physics of so many problems from

weather and ocean currents, to flows in arteries and engines. In particular, solving

the compressible Navier-Stokes equations, is of great importance in lots of engineer-

ing fields, like aerospace applications. Although known for more then 100 years, in

their complete form, theses equations are very difficult to solve, see White [2005].

On the other hand, from mathematical point of view, the existence of solution and

smoothness of these equations is one of most important open problems of mathemat-

ics. Therefore, there is a big interest in finding and developing more efficient, more

robust, more accurate and faster methods, to solve them numerically.

In this section, the HDG formulation for unsteady compressible Navier-Stokes

equations in conservative form is presented and applied to several problems of com-

pressible viscus flow regime and its suitability to perform numerical simulations of

such physical phenomena is investigated.

Let Ω ∈ Rsd be an open bounded domain, where sd is space dimension, with

boundary ∂Ω. The dimensionless form of unsteady compressible Navier-Stokes equa-

tions, in conservative form and without body force in the domain Ω× ]0, T [, is

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂ρv

∂t
+ ∇ · (ρv ⊗ v)−∇ · σ = 0,

∂ρE

∂t
+ ∇ · (ρEv)−∇ · (σ · v − q) = 0,

(2.23)

The equations above are conservation of mass (continuity), momentum (Newton’s

second law) and energy (first law of thermodynamics) in which ρ, v and E are den-
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2.2. High-order HDG for compressible Navier-Stokes equations

sity, velocity and total energy density of the fluid respectively. σ and q are the

Cauchy viscous stress tensor and heat flux vector. To close the system, the following

constitutive equations are added

σ = −pI + τ , Cauchy stress tensor

p = (γ − 1)ρ(E − ‖v‖2/2), Eq. of state for perfect gas

τ =
1

Re∞
[µ(∇v + (∇v)T ) + λ(∇ · v)I], Viscous part of stress

q = − µ

Re∞Pr(γ − 1)M2
∞
∇T, Fourier law of heat conduction

T =
1

Cv
(E − ‖v‖2/2), Calorically perfect gas

(2.24)

where µ, λ, γ, Cv, Re, Pr and M are viscosity coefficient, bulk viscosity coefficient,

specific heats ratio, specific heat in constant volume, Reynolds number, Prandtl num-

ber and Mach number respectively, and∞ denotes free-stream conditions; see White

[2005], Anderson [2010] for more information. The compressible Navier-Stokes equa-

tions in our preferred applications (mainly external flows) have non-slip boundary

condition at wall, and inflow/outflow boundary conditions at far fields, see appendix

B for details.

2.2.1 HDG formulation

The time-dependent compressible Navier-Stokes, equations (2.23) with source term,

can be written in vector form as

∂U

∂t
+ ∇ · Fc(U)−∇ · Fd(U ,∇U) = f , in Ω× ]0, T [ , (2.25)

where U is the vector of conserved variables and Fc and Fd are the convective and

diffusive parts of flux respectively

U =

 ρ

ρv

ρE

 , Fc =

 ρv

ρv ⊗ v
ρEv

 , Fd =

 0

σ

σ · v − q

 (2.26)

and f is the possible body force. As one may notice, Fc is just function of solution

U , while Fd is a function of both solution U and it gradient ∇U .

Following the DG approach, the equations (2.25) can be rewritten as a system of

first order PDEs, introducing the new variable Q corresponding to the gradient of the
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2. High-order hybridizable discontinuous Galerkin method

vector of conserved variables U . Taking into the account the discontinuities of the

approximation spaces between elements, the compressible Navier-Stokes equations,

in a discrete domain with elements Ωe, can be expressed as

Q−∇U = 0

∂U

∂t
+ ∇ · Fc(U)−∇ · Fd(U ,Q) = f

 in Ωe × ]0, T [ , e = 1, · · · , nel (2.27)

[[U ⊗ n]] = 0 on Γ \ ∂Ω× ]0, T [ , (2.28)

[[(Fc − Fd) · n]] = 0 on Γ \ ∂Ω× ]0, T [ , (2.29)

where n is unitary outward normal vector. Equations (2.28) and (2.29) impose the

continuity of the conservative variables and the normal component of the flux across

the interior faces.

Again, the main idea of the HDG method for compressible Navier-Stokes equations

is the introduction of an approximation of the trace of conserved variables U on the

mesh skeleton Γ, which is

Û =

 ρ̂

ρ̂v

ρ̂E

 (2.30)

This new variable allows to express a local problem in each element Ωe, corresponding

to the compressible Navier-Stokes equations (2.27) with Dirichlet boundary conditions

U = Û on ∂Ωe (2.31)

According to the procedure for convection-diffusion equation in section 2.1, and

using the same finite element spaces defined in (2.12), the HDG discretization of the

local problem (2.27), becomes: find (Qh,Uh) ∈ [W p
h ](nsd+2)nsd × [W p

h ](nsd+2) such that

(Qh, z)Ωe + (Uh,∇ · z)Ωe − 〈Ûh, z · n〉∂Ωe = 0,

(
∂Uh

∂t
, r)Ωe − (Fc(Uh)− Fd(Uh,Qh),∇r)Ωe + 〈( ̂Fc(Uh)− Fd(Uh,Qh)) · n, r〉∂Ωe

= (f , r)Ωe ,

(2.32)
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2.2. High-order HDG for compressible Navier-Stokes equations

Figure 2.6: Spaces of solutions

for all (z, r) ∈ [W p
h ](nsd+2)nsd × [W p

h ](nsd+2), for e = 1, ..., nel,. In these equations, the

continuity of vector of conserved variables U , is weakly imposed by the fact that

trace variable Û is single valued on each face in the mesh skeleton Γ. The definition

of numerical flux is taken from the work of Peraire et al. [2010], as

( ̂Fc(Uh)− Fd(Uh,Qh)) · n = (Fc(Ûh)− Fd(Ûh,Qh)) · n+ S(Uh − Ûh), (2.33)

where S is the stabilization matrix, considered as

S =


0

1
Re

1
Re

1
(γ−1)M2

∞RePr

 (2.34)

Replacing the definition of the numerical flux (2.34), in the local problem (2.32),

and in the weak form of conservativity condition (2.29), the HDG discretization

of the compressible Navier-Stokes equations leads to the following problem: find

(Qh,Uh, Ûh) ∈ [W p
h ](nsd+2)nsd × [W p

h ](nsd+2) × [M p
h ](nsd+2) such that

(Qh, z)Ωe + (Uh,∇ · z)Ωe − 〈Ûh, z · n〉∂Ωe = 0,

(
∂Uh

∂t
, r)Ωe − (Fc(Uh),∇r)Ωe + (Fd(Uh,Qh),∇r)Ωe + 〈Fc(Ûh) · n, r〉∂Ωe

−〈Fd(Ûh,Qh) · n, r〉∂Ωe + 〈SUh, r〉∂Ωe − 〈SÛh, r〉∂Ωe = (f , r)Ωe ,


(2.35)
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2. High-order hybridizable discontinuous Galerkin method

for e = 1, · · · , nel, and

nel∑
e=1

〈(Fc(Ûh)− Fd(Ûh,Qh)) · n+ S(Uh − Ûh),µ〉∂Ωe\∂Ω = 0, (2.36)

for all (z, r,µ) ∈ [W p
h ](nsd+2)nsd × [W p

h ](nsd+2) × [M p
h ](nsd+2).

Implementing different boundary conditions for HDG discretization of compress-

ible Navier-Stokes equations can be tricky, and some decisions are made in this work.

In general, the boundary conditions are computed using the interior solution Uh, gra-

dient of solution Qh, and boundary condition information (free steam condition ∞),

and they are imposed on the trace of the solution on the boundary. For the purpose

of this thesis, different boundary conditions are implemented for HDG discretization;

inflow, outflow, no-slip wall and symmetry plane boundary conditions, and the details

are presented in appendix B.

The HDG discrete problem defined by (2.35) and (2.36) is a system of Differential

Algebraic Equations (DAE), which can be discretized in time with an implicit time

integrator, such as backward Euler or Crank-Nicolson method. Time discretization

of (2.35) and (2.36) leads to a non-linear system of equations at each time step, to

compute the solution at time tn+1 from the solution of time tn. Here, the non-linear

system has been linearized using the Newton-Raphson method.

To implement the Newton-Raphson method the residual form of the equations are

considered. To do so, the discretization of local problem (2.35), and global problem

(2.36), are written as

R(Qh,Uh, Ûh) =

RQ(Qh,Uh, Ûh)

RU(Qh,Uh, Ûh)

RÛ(Qh,Uh, Ûh)

 = 0 (2.37)

In every time step, the initial guess is the solution of the previous time, that is
0Qn+1

h

0Un+1
h

0Ûn+1
h

 =

Q
n
h

Un
h

Ûn
h

 (2.38)

Then, given the approximation (kQn+1
h ,kUn+1

h ,k Ûn+1
h ), the new approximation is

computed as

(k+1Qn+1
h ,k+1Un+1

h ,k+1 Ûn+1
h ) = (kQn+1

h ,kUn+1
h ,k Ûn+1

h ) + (δQn+1, δUn+1, δÛn+1)

(2.39)
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2.2. High-order HDG for compressible Navier-Stokes equations

where the increments in the values of unknowns, δQ, δU and δÛ are are the solution

of the system
∂RQ

∂Q

∂RQ

∂U

∂RQ

∂Û
∂RU

∂Q
∂RU

∂U
∂RU

∂Û
∂RÛ

∂Q

∂RÛ

∂U

∂RÛ

∂Û


δQ

n+1

δUn+1

δÛn+1

 =

−RQ(kQn+1
h ,kUn+1

h ,k Ûn+1
h )

−RU (kQn+1
h ,kUn+1

h ,k Ûn+1
h )

−RÛ (kQn+1
h ,kUn+1

h ,k Ûn+1
h )

 (2.40)

Note that superscripts k and n, correspond to the iteration of non-linear solver and

time steps, respectively.

In this linear system, the two first blocs of equations, corresponding to (2.35), can

be solved element-by-element to express the solution at each element Ωe in terms of

the increment of trace variable, δÛh. Then, replacing in (2.36) yields a global system

of equations involving only δÛh as

KδÛh = F (2.41)

So the final system only includes the DOFs of Û and the system is compact and with

usual block structure of HDG. Then the equations corresponding to the local prob-

lem, can be used for an element-by-element reconstruction of the vector of conserved

variables and its gradient. Figure 2.7 shows the effect of hybridization on the size

and structure of final linear system.

Some details of the implementation of HDG method and the boundary condition

for compressible Navier-Stokes can be found in appendices C.2 and B, respectively.

2.2.2 Numerical results

This section presents numerical results for the solution of steady compressible Navier-

Stokes equations with HDG. To solve the steady state problem, either a steady solver,

or an unsteady one (time relaxation) can be used. For the steady solver, the temporal

term in (2.35) is neglected and Newton-Raphson iterative solver is used. To reach the

solution far from initial guess, i.e. high Reynolds and high Mach numbers, usually

a continuation method is needed. On the other hand, the unsteady solver uses a

gradual change until it reaches the final solution, which needs more steps but is more

robust.

First, accuracy and convergence of the solver is studied and the ability of the

non-linear solver to reach of the solution is demonstrated. Then, a laminar viscous

flow around a NACA 0012 airfoil is considered in subsonic and transonic regimes and
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Figure 2.7: Condensation of HDG matrix

the efficiency of high-order methods is investigated. These test cases have been used

in literature to verify the solution of compressible viscous laminar flow, for instance

see Bassi and Rebay [1997a], Wang and Anderson [2012], Luo et al. [2010], Borrel

and Ryan [2012], Hartmann [2005b], Hartmann and Houston [2009]. Finally, in a

Carter plate example, the solutions from steady and unsteady solvers are compared

to assure their accuracy.

Viscous flow in a circle

The goal of this example, from Wang and Anderson [2012], is to verify the accuracy

of the HDG solver through convergence of error with respect to mesh size. To do

so, the two-dimensional steady compressible Navier-Stokes equations are solved in a

circular computational domain of radius 0.5, centred at (0.5, 0). An inhomogeneous

source term, and Dirichlet boundary conditions are set so that density, velocity and

total energy are

ρex = ρ0(1 + sin(πx) cos(πx) sin(πy) cos(πy))

uex = u0(1 + sin(κπx) cos(κπx) sin(κπy) cos(κπy))

vex = v0(1 + sin(κπx) cos(κπx) sin(κπy) cos(κπy))

(ρE)ex = E0(1 + sin(πx) sin(πx) sin(πy) sin(πy))

(2.42)
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2.2. High-order HDG for compressible Navier-Stokes equations

where κ is the frequency of the velocity, here considered κ = 2. The coefficients

(ρ0, u0, v0, E0) are set to (1, 0.5, 0, 5, 3) and Reynolds number is Re∞ = 1.

Figures 3.9(a) and 3.9(b) show density and x-component of velocity, respectively,

in a computational mesh of 1916 unstructured triangular elements of size h = 0.0317

and polynomials of degree p = 4. As expected, the frequency of the velocity is twice

of the frequency of density. Four different meshes of 28, 122, 484 and 1916 triangular

elements, with order of approximations p = 1, 2, 3 and 4 are computed, and evolution

is shown in Figure 2.9(a), showing optimal convergence rates are obtained. Figure

2.9(b), shows the evolution of error vs. square root of DOF for the same meshes

and degree of approximations. Here, again the efficiency of high-order approximation

can be seen: to reach the same accuracy, much less DOF are needed for p = 4 in

comparison with p = 2, 3, let alone p = 1.

(a) density (b) x-velocity

Figure 2.8: HDG solution of a viscous flow in a circle, 1916 elements and p = 4

Laminar flow around NACA 0012 airfoil

In this numerical test, from Hartmann [2005b], the goal is to investigate the ability of

HDG method to compute the solution for compressible viscous external flows using

large high-order elements. The steady state viscous laminar flow around NACA 0012

airfoil at the angle of attack α = 0 is computed with Reynolds number Re∞ = 5000,

(which is quite high for laminar range) and free stream Mach number of M∞ = 0.5.

The airfoil surface is no-slip boundary with adiabatic wall condition (zero heat flux).

The far-field boundary condition is implemented as subsonic inflow/outflow bound-

ary conditions of Euler equations. The rationale for using Euler far-field boundary
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Figure 2.9: Evolution of error

conditions is the uniformity of the flow characteristics far from the airfoil, which

leads to zero gradient of the conserved variables, hence to zero shear stress and heat

conduction. The schematic drawing of the problem is shown in Figure 2.10.

 
M1, Re1
↵

Figure 2.10: Schematic drawing of airfoil problem

The analytical expression for parametrization of upper and lower part of symmet-

ric NACA 0012 airfoil is

y = ± tk
0.2

(0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4), for x ∈ [0, 1]

(2.43)

where tk = 0.12 is the maximum thickness of the airfoil. The computational meshes

are defined following the procedure in Giorgiani et al. [2014], which leads to meshes
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2.2. High-order HDG for compressible Navier-Stokes equations

refined around the airfoil surface to capture boundary layer, and also refined near

leading edge and trailing edge of the airfoil.

First, Figure 2.11 shows the distribution of flow parameters over the airfoil with

a zoom of the mesh with 640 elements of degree p = 6 , used for the computations

in Figure 2.11(a). The computational domain is a circle with radius of 10 times the

airfoil cord. The steady solver is used here and the convergence of non-linear solver is

demonstrated in Figure 2.11(b), with the expected quadratic convergence. It should

be noted that for a steady problem, |dU |/|U | denotes the normalized increment of

the vector of conserved variable in each iteration of non-linear solver. Distribution

of Mach number and pressure are shown in Figures 2.11(c) and 2.11(d) respectively.

The flow around the leading edge and trailing edge are shown in Figures 2.11(e) and

2.11(f), respectively, showing the detachment of flow from airfoil surface.

Distribution of pressure coefficient on the airfoil is shown in Figure 2.12. It is

in good agreement with a reference solution of Hartmann [2005b] with even much

coarser mesh of 640 elements with degree p = 6.

Table 2.1, shows a comparison of errors of aerodynamic coefficients (lift and drag

coefficients) for four different meshes and degree of approximation: three meshes of

640 elements with degree p = 2, p = 4 and p = 6, and a mesh of 1944 elements

with degree p = 2. Lift and Drag coefficients of the airfoil are computed from dis-

tribution of pressure and shear stress over the upper and lower wall of airfoil, and

then compared with reference values from Hartmann [2005b]. It is important noting

that increasing the DOFs of the problem increases the accuracy of the method, but

high-order approximation of p = 6 produces more accurate solution than low-order

approximation of p = 2, despite having less DOFs than quadratic approximation on

a finer mesh.

Mesh Approx. Error
NofEl p DOF Cl Cd

640 2 11760 9.14e-03 2.53e-02
640 4 19600 5.83e-04 2.50e-03
640 6 27440 3.36e-05 7.34e-04
1944 2 35424 1.56e-04 3.27e-03

Table 2.1: Comparison of error of aerodynamics coefficients with HDG, Re = 5000,M∞ =
0.5, α = 0

To test the code for the steady state solution of transonic viscous laminar flow,

The far-field condition is changed to the angle of attack α = 5o, Reynolds number
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32



2.2. High-order HDG for compressible Navier-Stokes equations

x/c
0 0.2 0.4 0.6 0.8 1

C
p

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Ref.
640 el

Figure 2.12: Distribution of pressure coefficient over a subsonic airfoil

Re∞ = 1000 and Mach number M = 0.85. This high Mach number and angle of

attack leads to formation of some low supersonic flow regions specially over the airfoil.

The same NACA 0012 and the same geometry is considered with the computational

mesh of 640 elements with degree p = 6.

The Mach number distribution is shown in Figure 2.13 and it can be observed

that a supersonic region is starting to appear above the front part of the airfoil. The

pressure coefficient distribution is presented in Figure 2.14. Note that the angle of

attack leads to non-symmetric flow and higher pressure on the lower part of the airfoil

to produce the lift, as expected. In conclusion, numerical experiments in NACA 0012

airfoil example, demonstrate the applicability of high-order HDG for external laminar

viscous compressible flow computations.

Flow passing over Carter plate

In this test case, compressible viscous flow passing over an infinitely thin flat plate,

at zero angle of attack, is modelled. The goal of this test case is to compare the

solution of steady and unsteady solver for the same steady problem. The domain is a

rectangle of [−1, 1]× [0, 1.25], and the first part, {x ∈ [−1,−0.8], y = 0}, is a slip wall,

and the rest of the surface, {x ∈ [−0.8, 1], y = 0} is the plate, where the boundary

is no-slip. This change of boundary condition causes a boundary layer formation,
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2. High-order hybridizable discontinuous Galerkin method

Figure 2.13: Mach over a transonic airfoil
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Figure 2.14: Distribution of pressure coefficient over a transonic airfoil

which develops further downstream. The top part of horizontal the domain, y = 1.2,

is a symmetry boundary, and inflow is at the left, x = 0, and outflow is on the right

side of domain, x = 1. A mesh of 480 element and cubic approximation is used to

calculate the solution from both steady and unsteady solver. The Mach number is

0.75 and Reynolds number is 800 for this problem. For the unsteady solver a time

step of ∆t = 2.5× 10−2 is considered.
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2.3. A new linearization for compressible Navier-Stokes equations

Figure 2.15: flow passing over Carter plate

Figure 2.15 shows the distribution of Mach number, and the boundary layer over

the flat plate is clear in the solution. Figure 2.16 shows the comparison between

steady solver and unsteady one. The convergence of the solution is presented for

steady solver in Figure 2.16(a) and for unsteady solver in Figure 2.16(b), and it can

be seen that steady state solver needs just few iterations to converge, while using

the transient solver although more robust, needs much more CPU time to reach the

steady state solution. In the plots, |dU |/|U | represents the normalized increment in

each iteration or time step, for steady or unsteady solver, respectively. Then, the

normalized difference in the solution for density and pressure are shown in Figures

2.16(c) and 2.16(d) respectively, between two solutions of steady or unsteady solvers.

As expected, the solution is the same for the level of accuracy of the solutions, with

repetitive error of 10−4.

2.3 A new linearization for compressible

Navier-Stokes equations

The compressible Navier-Stokes equations contain several non-linear terms. The

Newton-Raphson non-linear solver presented in section 2.2 has quadratic conver-

gence, but fro steady solutions, it is very sensitive to initial guess, and may diverge
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2. High-order hybridizable discontinuous Galerkin method
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Figure 2.16: Comparison of steady and unsteady solver

for initial guess far from the solution. Thus, to solve the problem at high Reynolds

numbers and high Mach numbers, a continuation method must be used, i.e. sev-

eral intermediate problems are solved by increasing the Reynolds and Mach number,

step by step to reach the final solution. However, a more robust approach would be

very welcomed to reach final solution, and there are open issues towards development

of stable, robust and feasible methods to approximate the solution for compressible

Navier-Stokes equations.

Other usual strategy is to use a relaxation method, e.g. to solve the transient

problem, to reach the steady state solution. But as seen in numerical examples of

section 2.2.2, it may be costly and non-linear solver in each time step may diverge.

By solving a transient problem with linearized HDG for compressible Navier-Stokes

to avoid solving the non-linear system in each time step, a better approach may be
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2.3. A new linearization for compressible Navier-Stokes equations

achieved.

In this section, a method to linearize the unsteady compressible Navier-Stokes

equations is proposed, aiming to implement a more robust solver. The strategy is

mainly to use an approximated solution from previous time steps in order to reach

a linear set of equations in current time step. Even for steady problems, the tran-

sient solver is utilized, which relaxes in time, and finally converges to the steady state

solution. The idea has been first proposed by Baker [1976] and has been applied to in-

compressible Navier-Stokes, see for instance Baker et al. [1982], Yang et al. [2009], He

and Sun [2007], Liu and Hou [2010], Labovsky et al. [2009] and is known as Linearly

Extrapolated Crank-Nicolson time-stepping methods (CNLE). Here the same idea is

applied to the solution of compressible Navier-Stokes equations, taking into the ac-

count that now the non-linearity is due to convective term, but also due to non-linear

terms in both momentum and energy equations. The goal of this section, is to develop

such a solver for HDG spatial discretization of compressible Navier-Stokes equations

and investigate its ability to perform compressible viscous flow computations.

Let Ω ∈ Rsd be an open bounded domain, where sd is spatial dimension, with

boundary ∂Ω. We start by replacing the constitutive equations (2.24), in the Navier-

Stokes equations (2.23), leading to the following form of the equations for unsteady

compressible viscous flow

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂ρv

∂t
+ ∇ · (ρv ⊗ v + (γ − 1)(ρE − 1

2
ρv · v)I)−∇ · ( λ

Re∞
(∇ · v)I + 2

µ

Re∞
∇sv) = 0,

∂ρE

∂t
+ ∇ · (γρEv − (γ − 1)

1

2
(ρv · v)v)

−∇ · ( λ

Re∞
(∇ · v)v + 2

µ

Re∞
∇sv · v +

k

cv
∇E − k

cv
(v∇) · v) = 0,

(2.44)

in domain Ω× ]0, T [, where ∇sv is the strain rate tensor, i.e. ∇sv = 1
2
(∇v+(∇v)T ),

and I is identity matrix. Following the HDG approach, new variables, L and E

are introduced in order to rewrite the system into a system of first order PDEs.

However, note that, here, gradient of velocity and total energy are considered as new

variables, instead of the gradient of whole vector of conserved variables, which is used
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2. High-order hybridizable discontinuous Galerkin method

in standard HDG method. The equations are then

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂ρv

∂t
+ ∇ · (ρv ⊗ v + (γ − 1)(ρE − 1

2
ρv · v)I)−∇ · ( λ

Re∞
tr(L)I +

µ

Re∞
(L+LT )) = 0,

∂ρE

∂t
+ ∇ · (γρEv − (γ − 1)

1

2
(ρv · v)v)

−∇ · ( λ

Re∞
tr(L)v +

µ

Re∞
(L+LT ) · v +

k

cv
w − k

cv
LT · v) = 0,

L−∇v = 0,

w −∇E = 0,

(2.45)

in domain Ω× ]0, T [. In equations (2.45) the non-linearities of the equations in terms

of the solution can be detected easily and equations (2.45) can be rewritten as

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂ρv

∂t
+ ∇ · (ρv ⊗ v̄ + (γ − 1)(ρE − 1

2
ρv · v̄)I)−∇ · ( λ

Re∞
tr(L)I +

µ

Re∞
(L+LT )) = 0,

∂ρE

∂t
+ ∇ · (γρEv̄ − (γ − 1)

1

2
(ρv · v̄)v̄)

−∇ · ( λ

Re∞
tr(L)v̄ +

µ

Re∞
(L+LT ) · v̄ +

k

cv
w − k

cv
LT · v̄) = 0,

ρ̄L−∇(ρv) + v̄∇ρT = 0,

ρ̄w −∇(ρE) + Ē∇ρT = 0,

(2.46)

where ρ̄,v̄ and Ē are the new variables introduced, for which an explicit approximation

with values from previous time steps will be used. Using a discretization in time, this

approximation will lead to a linear system of equations, (2.46), and no need for

non-linear solver. From now on these equations are called linearized compressible

Navier-Stokes equations.

ān+1 =
3

2
an − 1

2
an−1 (2.47)
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2.3. A new linearization for compressible Navier-Stokes equations

2.3.1 HDG formulation

The linearized compressible Navier-Stokes equations (2.46), with body force, can be

written in the vector form on continuous domain as

∂U

∂t
+ ∇ ·Afc(v̄)U + ∇ ·Afd1(v̄)L+ ∇ ·Afd2w = f , in Ω× ]0, T [

ρ̄L−∇(ρv) + v̄∇ρT = 0, in Ω× ]0, T [

ρ̄w −∇(ρE) + Ē∇ρT = 0, in Ω× ]0, T [

(2.48)

where U is vector of conserved variables, Afc(v̄)U , Afd1(v̄)L and Afd2w are lin-

earized versions of compressible Navier-Stokes fluxes and are linearized using the v̄,

which is approximated from previous time steps with (2.47). Note that here, the

equations are solved for U , L and w, so vector of conserved variables, gradient of

velocity and gradient of total energy are the unknowns in the equations (2.48). In

2D, the fluxes for the linearized equations are given by

Afc(v̄) =



v̄1 0 0 0

v̄2 0 0 0

0 v̄1 − γ−1
2
v̄1 −γ−1

2
v̄2 γ − 1

0 v̄2 0 0

0 0 v̄1 0

0 −γ−1
2
v̄1 v̄2 − γ−1

2
v̄2 γ − 1

0 −γ−1
2
v̄1 · v̄1 −γ−1

2
v̄2 · v̄1 v̄1 + γ−1

2
v̄1

0 −γ−1
2
v̄1 · v̄2 −γ−1

2
v̄2 · v̄2 v̄2 + γ−1

2
v̄2



Afd1(v̄) =



0 0 0 0

0 0 0 0
4
3
κ1 0 0 −2

3
κ1

0 κ1 κ1 0

0 κ1 κ1 0

−2
3
κ1 0 0 4

3
κ1

(4
3
κ1 + κ2)v̄1 κ1v̄2 (κ1 + κ2)v̄2 −2

3
κ1v̄1

−2
3
κ1v̄2 (κ1 + κ2)v̄1 κ1v̄1 (4

3
κ1 + κ2)v̄2


, Afd2 =



0 0

0 0

0 0

0 0

0 0

0 0

−κ2 0

0 −κ2


(2.49)

where κ1 = − µ
Re∞

and κ2 = µ
Re∞Pr(γ−1)M2

∞Cv
.

Taking into the account the discontinuities of the approximation spaces between

elements, the linearized compressible Navier-Stokes equations, in a discrete domain,
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2. High-order hybridizable discontinuous Galerkin method

can be expressed as

∂U

∂t
+ ∇ ·Afc(v̄)U + ∇ ·Afd1(v̄)L+ ∇ ·Afd2w = f ,

ρ̄L−∇(ρv) + v̄∇ρT = 0,

ρ̄w −∇(ρE) + Ē∇ρT = 0,

 in Ωe, e = 1, · · · , nel

(2.50)

[[U ⊗ n]] = 0, on Γ \ ∂Ω,

[[(Afc(v̄)U +Afd1(v̄)L+Afd2w) · n]] = 0, on Γ \ ∂Ω,
(2.51)

The equations (2.50) are defined in each element, and the equations (2.51) impose

the continuity of the conserved variables and normal component of the flux across

the interior faces.

Following the HDG approach, an approximation of the trace of conserved vari-

ables U on the mesh skeleton Γ is introduced, which is Û = [ρ̂, ρ̂v, ρ̂E]T . This new

variable allows to express a local problem in each element Ωe, corresponding to the

compressible Navier-Stokes equations (2.50) with Dirichlet boundary conditions pre-

cisely as trace variable Û . According to the procedure we did for convection-diffusion

equation in section 2.1, and compressible Navier-Stokes in 2.2, and using the same

finite element spaces as in (2.12), the HDG discretization of the local problem (2.50)

and global problem (2.51) leads to the following problem: to find approximation

(Uh,Lh,wh, Ûh) ∈ [W p
h ]sd+2 × [W p

h ]sd+2 × [W p
h ]sd × [M p

h ]sd+2 such that

(
∂Uh

∂t
, r)Ωe − (Afc(v̄)Uh,∇r)Ωe − (Afd1(v̄)Lh,∇r)Ωe − (Afd2wh,∇r)Ωe

+〈Afc(v̄)Ûh · n, r〉∂Ωe + 〈Afd1(v̄)Lh · n, r〉∂Ωe + 〈Afd2wh · n, r〉∂Ωe

+〈SUh, r〉∂Ωe − 〈SÛh, r〉∂Ωe = (f , r)Ωe ,

(ρ̄Lh, z)Ωe + (ρhvh,∇ · z)Ωe − 〈ρ̂hvh, z · n〉∂Ωe + (v̄∇ρh, z)Ωe = 0,

(ρ̄wh, g)Ωe + (ρhEh,∇ · g)Ωe − 〈ρ̂hEh, g · n〉∂Ωe + (Ē∇ρh, g)Ωe = 0,


(2.52)

for e = 1, · · · , nel, and

nel∑
e=1

〈
(

̂Afc(v̄)Uh +Afd1Lh +Afd2(v̄)wh

)
· n,µ〉∂Ωe\∂Ω = 0, (2.53)
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2.3. A new linearization for compressible Navier-Stokes equations

for all (r, z, g,µ) ∈ [W p
h ]sd+2 × [W p

h ]sd+2 × [W p
h ]sd × [M p

h ]sd+2, and as usual, (., .)Ωe

denotes the L2 scalar product in the element Ωe and 〈., .〉∂Ωe
denotes the L2 scalar

product in the element boundary ∂Ωe. Note that S is the stabilization matrix and

the definition of numerical flux is

(
̂Afc(v̄)Uh +Afd1(v̄)Lh +Afd2wh

)
· n =

(
AfcÛh +Afd1Lh +Afd2wh

)
· n+ S(Uh − Ûh),

(2.54)

The HDG discrete problem defined by (2.52) and (2.53) is a system of equations,

which can be efficiently discretized in time with an implicit time integrator, such as

backward Euler or Crank-Nicolson method. Time discretization of (2.52) and (2.53),

combined with extrapolation of new terms (v̄, ρ̄ and Ē), leads to a linear system of

equations at each time step. In this linear system, the equations corresponding to

local problem (2.52) can be solved element-by-element to express the solution at each

element Ωe in terms of the trace of conserved variables, Û . Then these expressions

are replaced in global problem (2.53) yielding the global system of equations that

only involves Û , with an important reduction in DOFs. More details are presented

in appendix C.3. Steady state computations are also considered here and they follow

the same procedure, relaxing in time toward the steady state solution.

2.3.2 Numerical results

In this part, the solver for linearized compressible Navier-Stokes with HDG spatial

discretization and Crank-Nicolson time discretization is used to test the ability of the

method for computations of compressible viscous flow problems. It should be noted

that backward Euler time marching is also possible and it is implemented in the code.

However, the examples are computed with Crank-Nicolson time marching.

Three numerical examples are considered here. First, the unsteady viscous com-

pressible flow in a circle is considered to test the accuracy of the method. The second

numerical example is the steady laminar flow around airfoil, and the ability of the

method to reach the steady state solution and critical time step size are investigated

and the results are also compared with non-linear steady solver. Finally in a vor-

tex convection problem, the performance of the method is tested for an unsteady

problem, and this time a comparison with non-linear unsteady solver is presented.
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2. High-order hybridizable discontinuous Galerkin method

Unsteady viscous flow in a circle

In first example, two-dimensional unsteady compressible Navier-Stokes equations are

solved in a circular computational domain of radius 0.5. This test case is an unsteady

version of the example in section 2.2.2. An inhomogeneous source term has been

imposed on right hand side of the equations to ensure the analytical solution of the

form

U(x, y, t) = Ust(x, y)[1− e−κ(t+t0)], (2.55)

Ust(x, y) =

 ρst

ρstvst

ρstEst

 (2.56)

where

ρst = ρ0(1 + sin(πx) cos(πx) sin(πy) cos(πy))

ust = u0(1 + sin(κπx) cos(κπx) sin(κπy) cos(κπy))

vst = v0(1 + sin(κπx) cos(κπx) sin(κπy) cos(κπy))

ρstEst = E0(1 + sin(πx) sin(πx) sin(πy) sin(πy))

(2.57)

in which κ is the frequency of the velocity solution and Ust is the solution at steady

state. Like the example in section 2.2.2, the coefficients (ρ0, u0, v0, E0) are set to be

(1, 0.5, 0, 5, 3), Reynolds number is set to Re = 1, and on the boundary, Dirichlet

boundary condition is imposed according to the exact solution. Parameters κ and

t0 determine the rate of movement toward steady state solution and initial solution

respectively. As stated before, a Crank-Nicolson time marching is used for the dis-

cretization in time.

First, to linearize the equations, the exact solution is used, i.e. ρ̄ = ρex, v̄ = vex

and Ē = Eex. This is done to eliminate the extrapolation error for linearization

of parameters from previous time steps. Remember that here, the error includes

spatial discretization error, temporal discretization error and extrapolation error. A

computational mesh of 1916 elements and polynomial degree p = 4 is used with big

time step sizes of ∆t = 0.5, 1, 2, 4s, so temporal discretization error dominates the

error. The convergence of error in time is shown in Figure 2.17. It is second order

accurate, as expected for Crank-Nicolson method.

Then, in Figure 2.18, density and x-component of velocity are shown for the

unsteady solutions on a mesh of 122 elements with degree p = 3, at t = 4s. It can
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be seen that the frequency of the velocity is twice of the frequency of density. These

solutions are obtained with extrapolation ān+1 = 3
2
an − 1

2
an−1 for ρ̄, v̄ and Ē and

∆t = 1× 10−3. The proposed method is able to solve the compressible Navier-Stokes

problems without a non-linear solver.
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Figure 2.17: Convergence of error in time for linearized HDG method with exact solution
for extrapolated values, ρ̄, v̄ and Ē

(a) density (b) x-velocity

Figure 2.18: Solution with the linearized HDG method for a viscous flow in a circle for
mesh of 122 elements degree p = 3, at t = 4s
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2. High-order hybridizable discontinuous Galerkin method

Laminar flow over NACA 0012 airfoil

In this part, the steady state solution of viscous compressible flow over NACA 0012

airfoil is presented. The angle of attack is α = 0, Reynolds number is Re∞ = 1500 and

Mach number is M = 0.5. The far-field boundary condition is Euler inflow/outflow

boundary condition for subsonic flow and the airfoil surface is no-slip boundary with

adiabatic wall condition. The computational mesh is coarse and the computational

domain is a circle with radius 10 times the airfoil cord. Here extrapolation from

previous time steps is used for linearization, and a Crank-Nicolson time marching is

used for temporal discretization.

Figures 2.19(a) and 2.19(b) show the Mach number and pressure distribution for

mesh of 448 cubic elements and Figure 2.20 shows the time history of the convergence

of solution toward steady state solution. δU
U

is the normalized increment in vector

of solution, at each time step. The critical time step is ∆tcr = 1 × 10−4 and any

time step size bigger than this leads to divergence of the code. This example shows

that the proposed method is able to reach the steady state solution of compressible

Navier-Stokes equations with sufficiently small time step size. Given that the time

integration is done with Crank-Nicolson, that is unconditionally stable, the critical

time step size is forced by the extrapolation.

(a) Mach (b) Pressure

Figure 2.19: Laminar subsonic flow over NACA 0012, mesh of 448 elements p = 3

The distribution of pressure coefficient of the airfoil is presented in Figure 2.21,

for solutions from linearized solver, as well as non-linear solver in section 2.2. A

good agreement between solutions of two different solvers for steady problems can be
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Figure 2.20: Convergence of solution

observed, even on a coarse mesh, so non-linear solver and linearized solver with time

relaxation can be used interchangeably.

x/c
0 0.2 0.4 0.6 0.8 1

C
p

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Distribution of C
p

on airfoil

Nonlinear CNS
Linearized CNS

Figure 2.21: Comparison of solutions of linear unsteady and non-linear steady solvers,
mesh of 448 elements p = 3
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2. High-order hybridizable discontinuous Galerkin method

One of motivations to develop a linearization method for compressible Navier-

Stokes is to improve the robustness of the solver, and avoid continuation method.

The non-linear Newton-Raphson solver is quadratic and converges in a few iterations

but if the initial guess is far from the solution, it may diverge and small steps in

continuation method may be needed, while using the linearized solver the solution

of compressible problems in high Reynolds and high Mach numbers can be achieved

easier (without intermediary steps). The linear solver uses data from previous time

steps to linearize the compressible Navier-Stokes equations, and given the high num-

ber of non-linearities to deal with, it is only natural that the time step size should be

small enough to ensure the stability of the method.

Vortex convection problem

In this section, an unsteady laminar problem is addressed in order to evaluate the

performance of the linearized HDG method for compressible Navier-Stokes equations

in time-dependent problems, and to compare with the transient non-linear solver.

The test is a 2D vortex convection in a laminar flow regime from Birken et al. [2012].

The initial condition is the free stream condition (ρ∞, v1∞ , v2∞ , T∞) = (1, v1∞ , 0, 1)

with a perturbation at time t0. The perturbation is a vortex of (δv1, δv2, δT ) centred

at (x̄1, x̄2), with

δv1 = − ε

2π
(x2 − x̄2)eφ(1−r2),

δv2 =
ε

2π
(x1 − x̄1)eφ(1−r2),

δT = −ε
2(γ − 1)

16φγπ2
(x1 − x̄1)e2φ(1−r2),

(2.58)

where ε and φ are parameters which determine the tweak and size of the speed of the

flow in vortex, respectively; and r is the distance from center of vortex. For this test,

the center of vortex is (x̄1, x̄2) = (0, 0), in the domain [−7, 7]× [−3.5, 3.5]. Parameters

are chosen as ε = 4, φ = 1, v1∞ = 0.5 and tend = 4.0, while the Reynolds number is

set to Re = 100.

Figures 2.22(a) and 2.22(b) show the pressure and density of the flow, respectively,

after 4 seconds. These results are computed on a mesh of 196 elements of degree p = 4

and time step size of ∆t = 10−3 is used. For this example, critical time step for the

linearized HDG method is found out to be around ∆tcr = 2 × 10−3 and bigger time

step size leads to divergence of the solution.
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2.4. Conclusions

The non-linear unsteady solver, presented in section 2.2, is employed to compute

the solution with the same mesh and degree of approximation. It should be noted

that non-linear solver utilize a backward Euler time marching, hence, it is stable

and we can use big time step sizes. Here for this test case, two time step sizes of

∆t = 10−2 and ∆t = 10−1 are considered. To compare the results, the normalized

difference between the solution of linear solver and non-linear solver is calculated;

first for ∆t = 10−2, pressure and density differences are shown in Figures 2.22(c) and

2.22(d), respectively, and then for ∆t = 10−1, pressure and density differences are

presented in Figures 2.22(e) and 2.22(f), respectively.

These results show that there is a great agreement between the solution of linear

and non-linear solver for unsteady problems. For time step sizes of ∆t = 10−2, the

differences are of the order 10−4, while for time step sizes of ∆t = 10−1, the differences

are of the order 10−3. As expected, using bigger time step size leads to less accurate

solution. The main conclusion is both linear and non-linear solvers are capable of

computing the unsteady compressible Navier-Stokes problem, however, while non-

linear solver can utilize bigger time step sizes and produce relatively accurate results

with less computational time (here 40 and 400 time steps have been calculated for

∆t = 10−1 and ∆t = 10−2 respectively), the linear solver needs much smaller time

step sizes, due to extrapolation, hence, it has bigger computational time (here 4000

time steps were required to reach the final time).

2.4 Conclusions

The HDG method is presented for 2D steady linear convection-diffusion equation.

The basic features of the method, like optimal convergence of the solution and super-

convergence of the post-processed solution are investigated through numerical results.

So the HDG method for convection-diffusion is tested and proved numerically to be

optimal for solution, and super-optimal for post-processed solution.

Then, HDG method is applied to both steady and unsteady compressible Navier-

Stokes equations, with a Newton-Raphson non-linear solver. The optimal accuracy

of the method is studied for a synthetic problem with exact solution. The ability

of the method, in computing the viscous compressible flow around NACA 0012 air-

foil is investigated by comparing distribution of pressure coefficient on the airfoil,

and the error of aerodynamic coefficients have been utilized to check the efficiency
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2. High-order hybridizable discontinuous Galerkin method

(a) pressure (linear solver with ∆t = 1× 10−3) (b) density (linear solver with ∆t = 1× 10−3)

(c) pressure difference (non-linear solver with
∆t = 1× 10−2)

(d) density difference (non-linear solver with
∆t = 1× 10−2)

(e) pressure difference (non-linear solver with
∆t = 1× 10−1)

(f) density difference (non-linear solver with
∆t = 1× 10−1)

Figure 2.22: Vortex convection, mesh of 196 elements, p = 4, after 4 seconds
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of high-order approximation versus low-order one. Implicit time integration is also

implemented in straightforward manner, and solutions of both steady and transient

solvers are also compared for flow over flat plate to ensure the accuracy of both solvers.

Thus, the HDG method is proved to be accurate and capable for compressible viscous

flow problems, and it also demonstrated its high-order efficiency to compute accu-

rate solutions in comparison with low-order approximations, since it can obtain more

accurate solution with less DOFs.

A linear solver for compressible Navier-Stokes is developed based on linear ex-

trapolation from previous time steps. The accuracy and convergence of the method,

are studied, and its ability to obtain solution of laminar compressible flow problems

are proved. The linear solver is compared to non-linear solver, for steady NACA

0012 airfoil problem, and for unsteady vortex convection problem. In both cases, the

accuracy of the linear solver is in good agreement with non-linear solver. Overall

the linearized HDG for compressible Navier-Stokes equations is proved to be a novel

approach for computation of viscous compressible flow problems, and it is proved to

be accurate and capable, however, using the extrapolation from previous time steps,

takes its tools on the limitation it imposes on the time step size, and as a results, for

steady problem it may be too computationally costly.

Overall in this chapter, the HDG method is proved to be a good candidate for

computations of highly convective flows and it is demonstrated to be both accurate

and high-order efficient for these problems.
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Chapter 3

A new shock-capturing strategy for

HDG method

This chapter deals with the presence of shocks and sharp fronts in the solution, for

both convection-diffusion and Navier-Stokes equations. Here, based on the idea in

work of Huerta et al. [2012], the strategy is to exploit the stabilization induced by DG

numerical fluxes to capture sharp fronts of the solution inside high-order elements.

First, a discontinuity sensor developed by Persson and Peraire [2006] is used to detect

the elements affected by sharp fronts. This discontinuity sensor is based on the rate of

decay of the coefficients of the approximated solution, and quantifies the smoothness

of the solution with an elemental scalar. Based on the smoothness of the solution,

the approximation space inside each element is modified, with nodal basis functions,

to a discontinuous approximation. The basis of discontinuous shape functions inside

the elements is based on a division of the element in non-overlapping sub-cells, such

that each sub-cell contains one elemental node. The weak form corresponding to the

HDG local problem in the element is modified to take into account the discontinuities

inside element, introducing DG numerical fluxes across sub-cells boundaries. As a

result, the numerical fluxes inside elements provide additional stabilization with no

addition to DOFs. By means of this shock-capturing technique, the order of the

approximation is reduced only in the elements where the solution is not smooth.

Thus, the high-order accuracy, of order p + 1 in the large majority of the domain,

is locally decreased to order h/p only in the elements where the shock is contained,
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3. A new shock-capturing strategy for HDG method

being p the degree of approximation, and h the element size. As a result, no mesh

adaptation is needed, and sharp fronts can be captured without modifying the DOFs

or mesh topology.

The outline of this chapter is as follows. First, section 3.1, presents the stabilized

HDG method for convection-diffusion equations. The continuous and discontinuous

nodal basis for standard and stabilized elements respectively, are presented in section

3.1.1. The weak form of the HDG local problem, for standard and stabilized elements,

and for the HDG global problem are stated in section 3.1.2. The shock sensor is

detailed in section 3.1.3. Finally, numerical examples in section 3.1.4, demonstrate the

ability of the method to capture shocks in the solution, and its excellent performance

in damping oscillations is the vicinity of shocks to obtain a spurious-free high-order

solution of two dimensional steady convection-diffusion equations. Next, in section

3.2 the strategy is extended to the compressible Navier-Stokes equations. First in

section 3.2.1, the HDG local problem and modified HDG local problem are developed

for standard and stabilized elements respectively, and the proper DG flux for inter-

sub-cell stabilization is presented. Finally in section 3.2.2, numerical examples show

the ability of the method to capture shocks in compressible viscous flow problems.

3.1 High-order HDG with shock-capturing for

convection-diffusion problems

The convection-diffusion equation, and its HDG formulation are presented in section

2.1 and here the same definitions and notations are used. The convection-diffusion

equation in a discrete domain, presented by (2.4) is considered as a starting point

and the difference between the standard HDG, presented in section 2.1 and modified

HDG for shock-capturing is described in the following sections.

3.1.1 Discretization space and discontinuous shape

functions

For HDG discretization, two types of finite element spaces must be defined; one

for functions in the elements interior and another for trace functions on the mesh
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3.1. High-order HDG with shock-capturing for convection-diffusion problems

skeleton, Γ. The approximation space for elemental variables u, q is

W p
h = {v ∈ L2(Ω) : v|Ωe ∈ Pp(Ωe) for e /∈ ES ,

v|Ωe ∈ P̃p(Ωe) for e ∈ ES }
(3.1)

where ES is the set of index of the elements detected by shock detector, i.e. stabilized

elements.

At standard elements, e /∈ ES , the standard p-th degree polynomial approximation

space Pp(Ωe) is considered, with nodal basis

Pp(Ωe) = span{N e
1 (x), N e

2 (x), ..., N e
nen

(x)} (3.2)

where nen is number of element nodes.

For stabilized elements, e ∈ ES , which are detected by the discontinuity sensor,

a discontinuous space of approximation, is considered inside the element and on its

faces. The detected element is arbitrarily divided into nen non-overlapping partitions

{V k
e }nen

k=1 such that

Ω̄e =
nen⋃
k=1

V̄ k
e , V k

e ∩ V m
e = ∅ for k 6= m, (3.3)

and each sub-cell V k
e contains only one elemental node, see an example in Figure

3.1. Then new shape functions Ñ e
i (x; β) are defined as a convex combination with

parameter β ∈ [0, 1] of standard polynomials, N e
i (x), and a set of piecewise con-

stant functions (constant within each sub-cell of the element), φei (x). That is the

approximation space in an stabilized element is

P̃p(Ωe) = span{Ñ e
1 (x; β), Ñ e

2 (x; β), ..., Ñ e
nen

(x; β)} (3.4)

with

Ñ e
i (x; β) : = (1− β)N e

i (x) + βφei (x), (3.5)

φei (x) = φki for x ∈ V k
e , k = 1, ..., nen, (3.6)

for i = 1, ..., nen, where parameter β characterizes the smoothness of the approxima-

tion, and it is given by shock sensor, and φi(x) are the piecewise constant functions.

The constants φki are here defined as

φki =
1

meas(V k
e )

∫
V k
e

Ni(x)dV , k = 1, ..., nen (3.7)
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3. A new shock-capturing strategy for HDG method

Other definitions for φki can be used such as, for instance, φki = δik, provided that

they always lead to a partition of unity, see Huerta et al. [2012] for more details. The

numerical experiments show that, non-delta functions work better for convergence of

non-linear solver, while using delta functions may cause divergence of the solution for

non-linear problems. It is worth noting that in the limit case of β = 1, a piecewise

constant approximation is obtained over the cub-cells, Ñi(x; 1) = φi.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5
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0.5
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(a) Sub-cells for p=3 −1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(b) Sub-cells for p=4

Figure 3.1: Cell partitions for cubic and fourth order approximations

The parameter β in equation (3.5) controls the magnitude of the jump across the

sub-element interfaces. This parameter benefits from a major feature of DG methods

in flexibility in modifying the approximation space element by element. The value

of β is adapted to adequately capture the different discontinuities in the solution.

Thus, without modifying the mesh topology, nor the number of DOFs, nor the node

position, nor the structure of the matrices, the space of the approximation is adapted

in space and time to the regularity of the solution.

As it is clear in equation (3.5), the extreme values of β (β = 0 or 1) can lead to

totally continuous or discontinuous solutions inside the element. Intermediate values

of β allow to calibrate the amount of stabilization introduced in the solution. There-

fore, β is a function of discontinuity sensor, Se, which is indicator of the smoothness

of the solution, and will be introduced in section 3.1.3.

The expression of β in term of Se can take different forms. The simplest choice is

to model it as a switch function. That is, β = 0 if discontinuity sensor does not detect

a discontinuity and β = 1 when a discontinuity is detected. Thus, functions Ñi are

prescribed to be either piecewise constant or smooth pth-order approximations. Here

a linear variation is proposed to introduce a smooth transition between piecewise
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3.1. High-order HDG with shock-capturing for convection-diffusion problems

constant or smooth pth-order approximations. In this manner when the discontinuity

sensor clearly detects a discontinuity, the parameter is β = 1, and when the solution

is clearly smooth, the parameter is β = 0, and pth-order approximation is recovered.

In between, a linear variation progressively introduces larger stabilization.

Similarly, the approximation space for trace variable û, is

M p
h = {µ ∈ L2(Γ) : µ|Γf

∈ Pp(Γf ) for f /∈ FS ,

µ|Γf
∈ P̃p(Γf ) for f ∈ FS , }

(3.8)

where FS is the set of index of the faces shared by two stabilized elements; and

Pp(Γf ) = span{N f
1 (x), N f

2 (x), ..., N f
nfn

(x)},

P̃p(Γf ) = span{Ñ f
1 (x; β), Ñ f

2 (x; β), ..., Ñ f
nfn

(x; β)},
(3.9)

where nfn is number of face nodes, {N f
i (x)}nfn

i=1 are standard polynomial nodal basis

functions on the face Γf and {Ñ f
i (x)}nfn

i=1 are discontinuous basis functions obtained

the same way as (3.5) and (3.6).

Remark 3.1. If face Γf is shared by two elements, ΩL and ΩR, with different β, the

smaller β is considered at the face.

βf = min(βL, βR) on Γf = ΩL ∩ ΩR (3.10)

Note that standard elements correspond to β = 0; thus, for the faces between con-

tinuous and discontinuous elements, a continuous representation of basis functions is

used as illustrated in Figure 3.2.

With the defined finite element spaces (3.1) and (3.8), the HDG local and global

problem can be discretized for both standard and stabilized elements, as explained

in next section.

3.1.2 HDG formulation with shock-capturing

This section presents the novel modified HDG weak form for the local problem in

stabilized elements. For standard elements, e /∈ ES , standard HDG discretization of

the local problem in each element (2.15) is used here. This standard HDG formulation

is not appropriate for the stabilized elements, because of the discontinuities across

sub-cells boundaries, hence there is a need for modified HDG formulation.
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Mp
h

W p
h

Figure 3.2: Representation of spaces for elements with and without sub-cells for degree
p = 3

For stabilized elements, e ∈ ES , the modified approximation space with discon-

tinuities inside the element, between sub-cells (3.1) is considered, see section 3.1.1.

Discretization of the local problem in kth sub-cell of eth element is: given ūh on ∂V k
e ,

find uh ∈ P̃p(V k
e ) and qh ∈ [P̃p(V k

e )]sd such that

(k−1qh, z)V k
e
− (uh,∇ · z)V k

e
+ 〈ūh, z · n〉∂V k

e \∂Ωe
+ 〈ūh, z · n〉∂V k

e ∩∂Ωe
= 0,

(∇ · (cu+ qh), r)V k
e

+ 〈c · n(ūh − uh) + (q̃h − qh) · n, r〉∂V k
e \∂Ωe

+〈(τ − c · n)(uh − ūh), r〉∂V k
e ∩∂Ωe

= (f, r)V k
e
,

(3.11)

for all r ∈ P̃p(V k
e ) and all z ∈ [P̃p(V k

e )]sd. It should be noted that here the boundary

of sub-cell is divided into interior, ∂V k
e \ ∂Ωe , and exterior part, ∂V k

e ∩ ∂Ωe. On the

exterior part, which is part of the boundary of the element as well, the trace ūh is set

to the standard trace of the HDG, ûh (which is considered as a variable in the global

problem), while on the interior part, new fluxes, ūh = ũh and q̃h are introduced.

These numerical fluxes transfer information across the inter-sub-cells boundaries and

can be defined as a function of elemental unknowns, uh and qh, as in standard DG

methods.

Summing equation (3.11) over sub-cells of the element, leads to a modified weak

form for the local problem: given û in ∂Ωe, find uh ∈ P̃p(Ωe) and qh ∈ [P̃p(Ωe)]
sd
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such that

(k−1qh, z)Ωe−(uh,∇ · z)Ωe + 〈ũh, [[z · n]]〉Γe + 〈ûh, z · n〉∂Ωe = 0,

−(qh,∇r)Ωe+〈qh · n, r〉∂Ωe + 〈q̃h, [[rn]]〉Γe − (cuh,∇r)Ωe + 〈τuh, r〉∂Ωe

+〈ũh, [[r(c · n)]]〉Γe + 〈(c · n− τ)ûh, r〉∂Ωe = (f, r)Ωe,

(3.12)

for all r ∈ P̃p(Ωe) and all z ∈ [P̃p(Ωe)]
sd, where the set of inter-sub-cells boundaries

inside element Ωe is defined as

Γe =

[
nen⋃
k=1

∂V k
e

]
\ ∂Ωe (3.13)

Comparing equations (3.12) and (2.15), one can see that, there are three additional

terms in the stabilized weak form. All additional terms, which add extra stabilization,

contain jumps, and therefore if a continuous basis of shape functions is used, then

standard HDG formulation is recovered. Those jumps appear because in summing

over sub-cells of the element, the interior boundary of sub-cell is involved twice, once

from left, and once from right, hence, results in a jump over inter-sub-cell boundary.

In this section, for ũh and q̃h, the definitions for numerical flux of the Bassi-Rebay

method, from Bassi and Rebay [1997a], and of the LDG method, from Cockburn et al.

[2002], are considered and presented in Table 3.1, where the coefficients C11, C12 and

C22 have effects on the stability and the convergence of the methods, for more details

see Cockburn et al. [2002], Castillo et al. [2001].

Method ũh q̃h
BR {uh} {qh}
LDG {uh} −C12 · [[uhn]] {qh} − C11[[uhn]] +C12[[qh · n]]

Table 3.1: Some possible definition for inter-sub-cells fluxes

The local problems (2.15) and (3.12), allow to express the approximation of solu-

tions uh and qh element-by-element, in the whole domain in terms of approximation

of the trace of the solution ûh. The solution is fully determined using the global equa-

tions defined on Γ, (2.6). The first one (2.5) is already imposed and the remaining

global condition which must be imposed is (2.6). So the global problem is the same

as (2.16), and it imposes the continuity of normal component of the numerical flux.

It is important to know that while the weak form of global problem is the same for

standard HDG and stabilized HDG, the difference is that, basis of shape functions

change to discontinuous ones in stabilized elements and also on their faces.
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The HDG discrete problem defined by either (2.15) or (3.12), and (2.16), is a

system of equations. In this system, the equations corresponding to (2.15) or (3.12)

can be solved element-by-element to express the solution at each element, Ωe in

terms of the trace of the solution, ûh. Then, these expressions are replaced in (2.16),

yielding the global system of equations that only involves ûh, keeping the standard

HDG DOFs.

3.1.3 Discontinuity sensor and parameter β

Detecting the sharp front is necessary to switch from continuous shape functions

to discontinuous ones in a small region close to the sharp gradients. Here a shock

sensor based on the rate of decay of the approximated solution is considered, which

is proposed by Persson and Peraire [2006]. It is based on an element-by-element non-

linear projection leading to a single scalar measure of the smoothness of the numerical

approximation, Se(s) : Ωe → R, depending only on the sensing variable s, which is

here the approximated solution uh.

The solution is expressed in terms of hierarchical orthonormal polynomials

s(x) =

nen(p)∑
i=1

siPi(x) (3.14)

where Pi is a set of orthonormal polynomials of degree p and nen is the number

of element nodes. For smooth functions the coefficients in the expansion, si, are

expected to decay rapidly, while in the regions of sharp gradients the rate of decay of

the expansion coefficients lower. A truncated expansion of the same solution without

the highest order of approximation is considered.

ŝ(x) =

nen(p−1)∑
i=1

siPi(x) (3.15)

Then for each element Ωe, an smoothness indicator can be defined as

Se = 2 log10(
‖ s− ŝ ‖2

‖ s ‖2

) (3.16)

where ‖ · ‖2 is the standard L2(Ωe) norm.The smoothness indicator Se is a normalized

measure of the highest frequencies in the approximation.
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3.1. High-order HDG with shock-capturing for convection-diffusion problems

The relationship between smoothness indicator, Se, and parameter β is not unique.

One may easily think of a switch between β = 0 and β = 1, to turn it off in the re-

gions of smooth solution, and enable it in the detected elements. However, a more

practical approach is to smoothly change from standard pth-order continuous shape

functions to piecewise constant ones. Here, a linear relation between parameter β

and smoothness indicator is chosen, which is shown in figure 3.3.

Se
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Figure 3.3: Variations of parameter β with smoothness indicator, Se

3.1.4 Numerical results

Here some numerical results are presented for several test cases, all two dimensional

linear convection-diffusion problems in Ω = (0, 1)2. First, a problem with smooth

solution is considered to check the ability of modified approximation space to converge

toward the solution and the convergence rate of the solution with different values of β.

Then, a convection-diffusion problem with sharp front is solved to check the ability of

the method to eliminate spurious regions of the solution in the vicinity of the layers.

Finally, a complex non-constant convection dominated problem with two inner layers

is presented to check the ability of the method to deal with sophisticated oblique

shocks.

Diffusion dominated problem with a source term: convergence test

In this section, according to an example in Nguyen et al. [2009a], the Dirichlet bound-

ary condition and source term are such that exact solution is

uex(x, y) = exp(x+ y) sin(πx) sin(πy) (3.17)
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The convection velocity is c = (1, 1)T , and diffusion coefficient is k = 1, hence

the solution is diffusion dominated. The numerical experiments are conducted for

uniform distribution of β with values β = 1, 0.5, 0.1 over all elements, to test the

ability of modified approximation space to converge toward the solution. Note that

using the discontinuous shape functions inside elements means that the solution is

not approximated with standard polynomials of degree p, hence reducing the order

of approximations. Figure 3.4 shows the solution, with Bassi-Rebay and LDG flux,

approximated with p = 3 on uniform mesh of 2n2 triangle elements, where n = 32.

Tables 3.2 and 3.3 show the convergence rate of the errors for discontinuous shape

functions with both options for the numerical flux between the sub-cells. The stabi-

lized formulation with Bassi-Rebay flux converges with rate of order O(h). This rate

is optimal for the stabilized formulation, because the approximation can reproduce

only constant function exactly. On the other hand, the LDG flux under-performs with

slightly lower rates due to 0th-order convergence of gradient of solution in LDG with

piecewise constant approximations. It is worth noting that, for smaller stabilization,

β ≈ 0, better convergence is achieved in comparison with higher stabilization, β ≈ 1.

(a) Solution with Bassi-Rebay flux (b) Solution with LDG flux

Figure 3.4: Diffusion dominated problem: approximated solution for uniform β = 1, p = 3

and h = 0.031

Overall, both choices of fluxes between the sub-cells lead to stable and reasonable

results, and both demonstrate ability of modified approximation space to converge

toward the solution.
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mesh β = 0.1 β = 0.5 β = 1
h p L2 error order L2 error order L2 error order

0.5 2 1.22e-01 4.05e-01 6.61e-01
0.25 2 3.29e-02 1.89 1.48e-01 1.45 2.69e-01 1.29
0.125 2 1.54e-02 1.09 7.26e-02 1.03 1.32e-01 1.03
0.0625 2 7.50e-03 1.04 3.54e-02 1.04 6.60e-02 1.00
0.03125 2 3.71e-03 1.01 1.77e-02 1.00 3.42e-02 0.95

0.5 3 4.56e-02 2.34e-01 5.01e-01
0.25 3 1.98e-02 1.20 9.88e-02 1.25 1.98e-01 1.34
0.125 3 1.03e-02 0.95 5.10e-02 0.95 9.98e-02 0.99
0.0625 3 5.10e-03 1.01 2.55e-02 1.00 5.00e-02 1.00
0.03125 3 2.55e-03 1.00 1.29e-02 0.99 2.60e-02 0.95

Table 3.2: Diffusion dominated problem: rates of convergence using discontinuous shape
functions with Bassi-Rebay flux

mesh β = 0.1 β = 0.5 β = 1
h p L2 error order L2 error order L2 error order

0.5 2 1.38e-01 5.09e-01 7.43e-01
0.25 2 4.50e-02 1.61 2.76e-01 0.88 4.19e-01 0.82
0.125 2 2.23e-02 1.01 1.85e-01 0.57 2.83e-01 0.57
0.0625 2 1.16e-02 0.94 1.28e-01 0.54 2.02e-01 0.49
0.03125 2 6.48e-03 0.84 9.86e-02 0.37 1.60e-01 0.34

0.5 3 6.70e-02 3.81e-01 6.97e-01
0.25 3 3.14e-02 1.09 1.98e-01 0.94 3.98e-01 0.81
0.125 3 1.70e-02 0.89 1.28e-01 0.63 2.83e-01 0.49
0.0625 3 9.20e-03 0.89 8.39e-02 0.61 2.12e-01 0.42
0.03125 3 5.28e-03 0.80 6.15e-02 0.45 1.79e-01 0.25

Table 3.3: Diffusion dominated problem: rates of convergence using sub-cell discontinuous
shape functions with LDG flux

Convection dominated problem with an inner layer: stabilization test

This is a problem with convection skew to the mesh, with unidirectional ‖c‖ = 1 and

angle θ, and a very low diffusion of k = 10−7, hence a highly convection-dominated

regime, without a source term. The inflow boundary condition is discontinuous which

introduces a sharp front into the domain, and outflow boundary condition is a ho-

mogeneous natural boundary condition, e.g. ∂u/∂n = 0. This problem is taken

from Brooks and Hughes [1982] in order to evaluate the ability of the continuous-

discontinuous shape functions approach to capture a oscillation free solution in the

vicinity of the shock.

For a solution with angle θ = π/4, the problem is solved on a 10 by 10 mesh
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of equal size triangular elements with Peclet number Pe = 106. In the results,

HDG solutions with shock-capturing, with different fluxes, are approximated with

quartic polynomials and presented in Figure 3.5. The solutions at outflow (y = 1) are

presented in Figure 3.6. The solutions in Figure 3.5 show that the LDG flux is more

successful than Bassi-Rebay flux in removing the overshoots and undershoots of the

spurious oscillations of high-order solutions in the vicinity of sharp fronts. However,

the LDG flux is seen to be over diffusive and it is not able to accurately capture the

sharp front. In order to address this issue, a less discontinuous shape function is used;

e.g. instead of β ∈ [0, 1] for the discontinuous shape function, β ∈ [0, 1/p] is used.

This option yields the best solution, and as it can be seen in 3.5(d), the overshoots

and undershoots are diminished while the sharp front is captured. The cross section

of the solutions at outflow and at y = 0.5 in Figure 3.6, also show the ability of the

method to significantly improve the solution of the HDG method. Again, the best

solution is obtained with LDG flux β ∈ [0, 1/p], and from now on this flux is used if

no other flux is mentioned.

In the second part of the test, an angle θ = 3π/8 is considered. The standard HDG

solutions at outflow have been compared with HDG solutions with shock-capturing

in order to further investigate the effect of continuous-discontinuous shape functions

approach. The undershoots and overshoots of the shock at outflow are presented

in table 3.4 for different orders of approximation and for a coarse and a fine mesh.

For these numerical investigations, k = 10−7 is used, therefore a very convection-

dominated regime is studied. The results demonstrate the capabilities of the method

to eliminate the oscillations in the vicinity of shocks and spurious parts of the solutions

are diminished significantly.

mesh HDG HDG-SC
h p undershoot overshoot undershoot overshoot

0.1 2 1.92e-02 5.51e-02 0 4.00e-03
0.1 3 3.95e-02 1.16e-01 0 3.55e-05
0.1 4 4.31e-02 9.25e-02 2.40e-05 1.25e-05
0.1 5 8.91e-02 4.74e-02 3.88e-04 8.16e-06

0.0312 2 5.70e-02 8.69e-02 2.04e-04 1.92e-02
0.0312 3 5.86e-02 7.32e-02 1.00e-03 2.30e-03
0.0312 4 3.51e-02 1.04e-01 9.68e-05 5.01e-06
0.0312 5 6.38e-02 8.99e-02 8.75e-05 2.62e-05

Table 3.4: Convection dominated problem with θ = 3π/8: comparison of undershoots and
overshoots before and after shock-capturing at outflow
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3.1. High-order HDG with shock-capturing for convection-diffusion problems

(a) Map of β (b) uh, sub-cell flux of Bassi-Rebay

(c) uh, sub-cell flux of LDG (d) uh, sub-cell flux of LDG, β ∈ [0, 1/p]

Figure 3.5: Convection dominated problem: HDG with shock-capturing, θ = π/4, p = 4,
h = 0.1

In Figure 3.7, a comparison between the results of Brooks and Hughes [1982]

and our results is presented. The HDG solutions for θ = π/8, π/4 and 3π/8

are obtained with 4th-degree approximations with LDG flux and β ∈ [0, 1/p]. Like

the reference, a mesh of 10 by 10 is used and Pe = 106, hence a very convective

regime. The HDG solution with shock-capturing presents the best approximation

of the inner layer without typical oscillations of high-order methods. The ability of

the continuous-discontinuous shape functions approach to capture the discontinuity

is fully demonstrated.
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Figure 3.6: Convection dominated problem: standard HDG vs. stabilized HDG, θ = π/4,
p = 4, h = 0.1

Variable convection problem with 2 inner layers

This sophisticated test case for linear convection-diffusion equations is an example

from John and Knobloch [2007]. Here the convection velocity is c(x, y) = (−y, x)

while k = 10−4 and f = 0. Dirichlet boundary condition is prescribed to u(x, y) = 1

for 1/3 ≤ x ≤ 2/3,y = 0 and u(x, y) = 0 on the remaining parts of lower boundary as

well as right and upper boundaries. And on the left boundary a homogeneous natural

boundary condition is imposed, e.g. ∂u/∂n = 0. In this example the LDG flux with

β ∈ [0, 1/p] is used with mesh size of h = 0.002 and 3rd order approximation.

The solution in Figure 3.8 shows that the method is able to capture the oblique

discontinuity with variable convection velocity for this problem and two inner layers

are approximated accurately. Figure 3.8 shows the comparison between our solution

and the reference solution from John and Knobloch [2007]. Note that DOFs for our

method is 2 998 000 and the reference solution is a p2 FEM with 16 785 409 DOFs.

Thus, high-order HDG with the proposed strategy provides an accurate solution with

less DOFs. Finally, table 3.5 compares the maximum overshoot and undershoot in

the solution, with and without shock-capturing, and it demonstrates the reduction

of the spurious overshoots and undershoots in the whole domain as a result of shock-

capturing.
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SU2	
  

SU1	
  

QU	
  

G	
  

HDG4	
  

✓ = ⇡/8 ✓ = ⇡/4 ✓ = 3⇡/8

Figure 3.7: Convection dominated problem: Comparison between Reference [Brooks and
Hughes, 1982] and 4th order HDG and with h = 0.1, shock-capturing with
LDG flux β ∈ [0, 1/p]

HDG HDG-SC
undershoot overshoot undershoot overshoot

0.1424 0.1417 0.0525 0.0522

Table 3.5: Variable convection problem: comparison of undershoot and overshoot
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Figure 3.8: Variable convection problem: The HDG solution with shock-capturing and
cross-section of the solution at outflow, for p = 3 approximation

3.2 High-order HDG with shock-capturing for

compressible Navier-Stokes

In this section, the shock-capturing technique is extended to viscous compressible

flow problems. The compressible Navier-Stokes equations, and the HDG formulation

for them are presented in section 2.2 and here the same definitions and notations

are used. The compressible Navier-Stokes equations in a discrete domain, stated in

(2.27) are considered as a starting point here. The difference between the standard

HDG, presented in section 2.2 and modified HDG for shock-capturing is described

in the following sections. The same spaces of approximations and shape functions

as in 3.1.1 are used to develop the shock-capturing for compressible Navier-Stokes

equations.

3.2.1 HDG formulation with shock-capturing

Following the procedure in section 3.1.2, we need two different weak forms for HDG

local problem: standard HDG weak form in standard elements, where no shock is

detected, and modified HDG weak form in stabilized elements, detected by shock

sensor. First, for standard elements, e /∈ ES , standard HDG discretization of the

local problem in each element is presented in (2.35) in section 2.2.1.

For stabilized elements, e ∈ ES , the modified approximation space with disconti-

nuities inside the element (3.1) is considered, see section 3.1.1. Discretization of the
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local problem in kth sub-cell of eth element is: given Ūh on ∂V k
e , find approximation

(Qh,Uh) ∈ [P̃p(V k
e )](nsd+2)nsd × [P̃p(V k

e )](nsd+2) such that

(Qh, z)V k
e

+ (Uh,∇ · z)V k
e
− 〈Ūh, z · n〉∂V k

e \∂Ωe
− 〈Ūh, z · n〉∂V k

e ∩∂Ωe
= 0,

(
∂Uh

∂t
, r)V k

e
− (Fc(Uh),∇r)V k

e
+ (Fd(Uh,Qh),∇r)V k

e
+

〈(Fc(Ūh)− Fd(Ūh,Qh)) · n, r〉∂V k
e ∩∂Ωe

+ 〈S(Uh − Ūh), r〉∂V k
e ∩∂Ωe

+

〈 ˜(Fc(Uh)− Fd(Uh,Qh)) · n, r〉∂V k
e \∂Ωe

= (f , r)V k
e
,

(3.18)

for all (z, r) ∈ [P̃p(V k
e )](nsd+2)nsd × [P̃p(V k

e )](nsd+2). It should be noted that here the

boundary of sub-cell is divided into interior, ∂V k
e \∂Ωe , and exterior part, ∂V k

e ∩∂Ωe.

On the exterior part, which is part of the boundary of the element as well, the trace

Ūh is set to the standard trace of the HDG solution Ûh, (which is considered as a

variable in the global problem), and the definition of numerical flux (2.32) is utilized.

On the interior part, the trace Ūh is set to a new flux Ũh, and also a new total flux,
˜(Fc(Uh)− Fd(Uh,Qh)) is introduced. These numerical fluxes transfer information

across the inter-sub-cells boundaries and can be defined as a function of elemental

unknowns, Uh and Qh, which will be discussed later.

Equation (3.18) is written for each sub-cell, and it should be summed over all

sub-cells of the element to represent the local problem at each element. Summing

equation (3.18) over sub-cells of the element, leads to a modified weak form for the

local problem: given Ûh on ∂Ωe, find approximation (Qh,Uh) ∈ [P̃p(Ωe)]
(nsd+2)nsd ×

[P̃p(Ωe)]
(nsd+2) such that

(Qh, z)Ωe+(Uh,∇ · z)Ωe − 〈Ũh, [[z · n]]〉Γe − 〈Ûh, z · n〉∂Ωe = 0,

(
∂Uh

∂t
, r)Ωe−(Fc(Uh),∇r)Ωe + (Fd(Uh,Qh),∇r)Ωe + 〈Fc(Ûh) · n, r〉∂Ωe

−〈Fd(Ûh,Qh) · n, r〉∂Ωe + 〈SUh, r〉∂Ωe − 〈SÛh, r〉∂Ωe

+〈F̃c(Uh), [[n⊗ r]]〉Γe − 〈 ˜Fd(Uh,Qh), [[n⊗ r]]〉Γe = (f , r)Ωe ,

(3.19)

for e = 1, · · · , nel, and for all (z, r) ∈ [P̃p(Ωe)]
(nsd+2)nsd× [P̃p(Ωe)]

(nsd+2). It should be

remembered that Γe is defined in (3.13). Like for the convection-diffusion equation,

utilizing the stabilized HDG formulation for compressible Navier-Stokes equations

leads to some additional terms which can be detected by comparing equations (2.35)
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and (3.19). All additional terms, which add extra stabilization, contain jumps, and

if a continuous basis of shape functions is used, then standard HDG formulation,

(2.35) is recovered. Those jumps appear because in summing over sub-cells of the

element, the interior boundary of sub-cell is involved twice, once from left, and once

from right, hence, results in a jump over inter-sub-cell boundary.

Here, the definition for numerical flux of the LDG method from Persson [2012]

is considered for diffusive part of the flux, while a Lax-Friedrichs flux is used for

the convective part of the flux, see Atkins and Helenbrook [2009]. These definitions

are presented in (3.20), where the coefficients C11, C12 and C22 have effects on the

stability and the convergence of the methods, for more details see Cockburn et al.

[2002], Castillo et al. [2001]. The parameter λ in Lax-Friedrichs flux is the maximum

absolute eigenvalue of the Jacobian of the convective part of flux.

Ũh = {Uh} −C12 · [[Uh ⊗ n]]

F̃c(Uh) = {Fc(Uh)} − λ[[Uh ⊗ n]]/2

˜Fd(Uh,Qh) = {Fd(Uh,Qh)} − C11[[Uh ⊗ n]] +C12 ⊗ [[Fd(Uh,Qh) · n]]

(3.20)

It is important to note that, the weak form of the global problem is the same for

standard elements and for discontinuous elements, which is presented by equation

(2.36). The only difference is that basis of shape functions on the faces change from

continuous ones to discontinuous ones and for continuous approximations, it is exactly

the same as standard HDG method.

The HDG discrete problem, defined by either (2.35) or (3.19), and (2.36) is a sys-

tem of Differential Algebraic Equations (DAE), with the same structure as standard

HDG and, as usual, it can be efficiently discretized in time with an implicit time

integrator, such as backward Euler or Crank-Nicolson method. Time discretization

of local and global problems leads to a non-linear system of equations at each time

step, that can be solved with an iterative scheme. Here, the non-linear system is

solved using the Newton-Raphson method, like in 2.2.1.

3.2.2 Numerical results

In this section, numerical examples are presented for the HDG solution of compress-

ible Navier-Stokes equations with the proposed shock-capturing technique. First, a
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problem with smooth solution is considered, to check the ability of the shape func-

tions to capture the solution and the convergence rate. Then, in a supersonic viscous

flow around NACA 0012 airfoil, presence of shocks is studied and the ability of the

method in stabilizing the oscillations in the vicinity of shocks is investigated.

Viscous flow in a circle: convergence test

The goal of this example is to investigate the ability of the discontinuous shape

function approximation inside stabilized elements, and the corresponding modified

HDG formulation, to capture the solution of compressible viscous flows. In a circular

computational domain of radius 0.5, centred at (0.5, 0), two-dimensional steady state

solution of compressible Navier-Stokes equations is computed, with an inhomogeneous

source term on right hand side of the equations, so that the analytical solution is

provided by (2.42), with κ = 2.

The coefficients are set to be ρ0 = 1, u0 = 0.5, v0 = 0.5 and E0 = 3. Reynolds

number is set toRe = 1 and on the boundary, Dirichlet boundary condition is imposed

according to the exact solution, for more information see Wang and Anderson [2012].

The density and x-component of velocity are shown in Figure 3.9. For this nu-

merical simulations, a computational mesh with 1916 elements of characteristic size

h = 0, 032 and polynomials of degree p = 4 is used. It can be seen that the frequency

of the velocity is twice of the frequency of density.

(a) HDG-SC solution: density (b) HDG-SC solution: x-velocity

Figure 3.9: HDG solution with LDG inter-sub-cell flux of a viscous flow in a circle, h =
0.0317 and p = 4

To check the convergence of the stabilized formulation, LDG flux is used on inter-
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sub-cells boundaries with uniform β = 1/p all over the domain. The L2 norm of the

error of the solution is compared for five different meshes, with degree p = 3 and 4.

Table 3.6 shows the convergence of the solution and the convergence rate of HDG

method with LDG inter-sub-cell flux. The results show that convergence is achieved

and discontinuous shape functions are able to approximate the solution of non-linear

compressible Navier-Stokes equations correctly.

mesh Uh

h p L2 error order
0.33 3 4.17e-01
0.17 3 1.01e-02 5.65
0.10 3 4.40e-03 1.53
0.05 3 1.30e-03 1.81
0.03 3 3.43e-04 1.93
0.33 4 2.46e-02
0.17 4 3.00e-03 3.20
0.10 4 1.40e-03 1.40
0.05 4 4.23e-04 1.77
0.03 4 1.16e-04 1.88

Table 3.6: L2 errors and rates of convergence using discontinuous shape functions with
LDG flux with β = 1/p for Navier-Stokes

Supersonic viscous flow around a NACA 0012 airfoil

In this section, supersonic viscous flow around a NACA 0012 airfoil is considered,

hence, the presence of a bow shock in the solution can be studied. Like former ex-

amples of NACA 0012, in sections 2.2.2 and 2.3.2, for computational mesh, a circular

domain with the radius ten times the cord of the airfoil is subdivided into triangles.

First, for Re∞ = 1000, M∞ = 1.2 and α = 0, as the test case in Hartmann

[2005a], the shock-capturing is used to calculate the supersonic viscous flow on the

computational mesh of 640 elements with degree p = 4. The unsteady code is used

to solve this problem, with backward Euler time marching and time step size of

∆t = 2.5 × 10−2. A subsonic steady state solution of Re∞ = 1000 and M∞ = 0.9 is

employed as initial condition. Then, the unsteady solver is marched for 20s in time,

with a linearly increasing Mach number and one iteration of non-linear solver per time

steps, to compute the final supersonic solution. The mesh is shown in Figure 3.10(a),

and the convergence of the solution is demonstrated in Figure 3.10(b), where |dU |/|U |
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represents the normalized increment solution at each time step. The distribution of

Mach number and density are presented in Figures 3.10(e) and 3.10(f) respectively.

The shock in the solution can be detected at a distance in front of the airfoil, in both

Mach and density. It should be noted that, to compute this solution, discontinuous

shape functions are used in detected elements, as presented in Figure 3.10(d), which

is based on the smoothness of the solution, as presented in 3.10(c).

In the work of Hartmann [2005a], which uses DG for compressible Navier-Stokes

with shocks, it is reported that DG discretization for this problem can be solved even

without any shock-capturing as long as numerical dissipation is sufficiently large. So

an effort has been done to compute the solution without shock-capturing, and as

expected, HDG can also be applied to solve this problem without shock-capturing,

but not for very strong shocks. Figure 3.11, shows the cross section of the pressure

and density, at line y = 0, in front of airfoil, where the bow shock is located. Figures

3.11(a) and 3.11(b), show the pressure and density, respectively, for mesh of 640

elements of degree p = 4 and Figures 3.11(c) and 3.11(d), show the same for mesh

of 560 elements of degree p = 5. It can be noted that in both cases, employing the

shock-capturing reduces the oscillations in the vicinity of the shock.

The computation of supersonic viscous flow around NACA 0012 on the same

domain is repeated for different far-field conditions. This time, Re∞ = 2000, M∞ =

1.2 and and α = 0 is chosen to see a sharper, stronger shock. The unsteady code is

used to solve this problem, with backward Euler time marching and time step size of

∆t = 2.5× 10−2. A supersonic steady state solution of Re∞ = 1000, M∞ = 1.2 and

and α = 0 is employed as initial condition. Then, the unsteady solver is marched

for 10s in time, with a linearly increasing Mach number and one iteration of non-

linear solver per time step, to compute the final supersonic solution. This time, HDG

without shock-capturing is not able to capture the solution and utilization of shock-

capturing is mandatory. Figures 3.12(a) and 3.11(d) show the Mach number and

density around the airfoil and the presence of strong shock is clear in both solutions.

This example of NACA 0012 airfoil shows that, the proposed method is able to

capture the shock in supersonic viscous flow, and it either improves the solution on

shocks by reducing the oscillations, or provides extra stabilization to capture the

sharp solution in case of strong shocks.
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Figure 3.10: Supersonic flow around a NACA 0012 airfoil, M∞ = 1.2, Re∞ = 1200 and
α = 0, computational mesh of 640 elements of degree p = 4

72



3.3. Conclusions

x
-1 -0.8 -0.6 -0.4

p

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
Cross section of pressure at y=0

HDG-SC
HDG

(a) Cross section of pressure, mesh of 640 ele-
ments of degree p = 4

x
-1 -0.8 -0.6 -0.4

;

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45
Cross section of density at y=0

HDG-SC
HDG

(b) Cross section of density, mesh of 640 elements
of degree p = 4

x
-1 -0.8 -0.6 -0.4

p

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
Cross section of pressure at y=0

HDG-SC
HDG

(c) Cross section of pressure, mesh of 560 ele-
ments of degree p = 5

x
-1 -0.8 -0.6 -0.4

;

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45
Cross section of density at y=0

HDG-SC
HDG

(d) Cross section of density, mesh of 560 elements
of degree p = 5

Figure 3.11: Comparison of solution with and without shock-capturing

3.3 Conclusions

In this chapter, a new shock-capturing technique is proposed for the HDG method.

Based on the work of Huerta et al. [2012], a new space of approximation is considered

for discretization, in stabilized elements and their faces, which requires a proper

modified weak form of HDG local problem at stabilized elements. This new space of

approximation allows utilization of discontinuous shape functions, hence, imposing

additional stabilization inside high-order elements. The extra stabilization is in form

of inter-sub-cell fluxes, and it varies with level of smoothness of the local solution,

and works via a shock detector.

First, the method is applied to linear convection-diffusion equations with inner
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(a) Mach

(b) Density

Figure 3.12: Supersonic flow around a NACA 0012 airfoil, M∞ = 1.2, Re∞ = 2000 and
α = 0, computational mesh of 2560 elements of degree p = 3
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layers, and the numerical results show that shock-capturing with LDG type of inter-

sub-cell flux works very well in reduction of oscillations in the vicinity of sharp fronts,

for different meshes and degree of approximations. Thus, the method proves to enable

usage of high-order approximations on coarse meshes, even for convection-diffusion

problems with sharp fronts, without need for adaptation of mesh or additional DOFs.

Then, the method is extended to compressible Navier-Stokes equations, in which

we may encounter shocks in transonic or supersonic regimes. The proposed method

is proved to be able to capture the shock in supersonic viscous flow problems. In the

presence of not so sharp fronts, for which HDG without shock-capturing converges,

HDG with shock-capturing improves the results and reduces the oscillations in the

vicinity of shocks. In the presence of strong shocks, when HDG without shock-

capturing can not converge, HDG with proposed shock-capturing technique is able to

provide a stable solution. Overall, again, the novel shock-capturing strategy enables

usage of coarse high-order elements without additional change in mesh topology, for

compressible viscous flow computations.
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Chapter 4

Summary and future developments

This thesis presents the HDG method for compressible viscous flow computations with

shocks. The HDG discretization is applied to convection-diffusion and compressible

Navier-Stokes equations in sections 2.1 and 2.2 respectively, and in both cases, the

accuracy of the method, and efficiency of high-order approximation versus low-order

one are studied. For compressible Navier-Stokes equations, both steady and unsteady

solvers are developed using a Newton-Raphson non-linear solver, and a continuation

method or time relaxation can be employed to reach the steady state solution at

high Reynolds numbers. Development of the code for these parts of the work, is a

necessary platform for the contributions of this thesis.

In addition, a linearization method, based on the linear extrapolation from solu-

tions of previous time steps, is proposed. It is developed for unsteady compressible

Navier-Stokes equations with HDG discretization in space, and Crank-Nicolson dis-

cretization in time, as presented in section 2.3. The numerical results for NACA 0012

problem and unsteady vortex convection show that, the proposed method is capable

of computing accurate solution of compressible viscous flow, for both steady and tran-

sient problems, and the results are compared to the non-linear steady and transient

solvers. However, the extrapolation from previous time steps, imposes a limitation

on time step size, and for bigger time step sizes, convergence of the method may

be lost. Thus, even using an implicit time discretization can not grantee freedom of
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choice for time marching, and high number of time steps are necessary, and hence,

computational cost is considerably high, specially for steady problems.

The main contributions of this thesis can be summarized as follows.

• Shock-capturing HDG for convection-diffusion problems: High-

order HDG for steady convection-diffusion problems with sharp fronts is devel-

oped in section 3.1. The discretization space and discontinuous shape functions,

for both standard elements and stabilized elements are developed, and those

two types of elements are distinguishable by employment of a shock detector,

which is based on the work of Persson and Peraire [2006]. Discontinuous shape

functions are produced by utilization of non-overlapping sub-cells, resulting in

piecewise constant functions over sub-cells, φei . Then, a linear combination of

these piecewise constant functions, and standard pth order continuous shape

functions (with p being the order of approximation), N e
i , over the element,

leads to a modified shape functions, Ñ e
i . This combination, depends on a scalar

elemental parameter, β, which is based on the local smoothness of the solution,

the higher the β, the more discontinuous shape functions, and more stabiliza-

tion inside the element. For shape functions on faces, the minimum value of β of

the two neighbouring element are considered, hence, less stabilization is added.

The employment of these new shape functions, leads to a modified weak form

of the HDG local problem, with new terms on the inter-sub-cells boundaries,

which contain numerical fluxes and jumps. For convection-diffusion problems,

Bassi-Rebay and LDG fluxes are used for these fluxes inside the elements.

The discontinuous shape functions are tested for a smooth convection-diffusion

problem, and convergence is obtained for uniform distribution of discontinuous

shape functions. Then, problems with one and tow inner layers in very convec-

tive regimes are studied. The results show that, the proposed shock-capturing

technique is able to substantially reduce the oscillations of high-order approxi-

mations in the vicinity of sharp layers, without increasing DOFs of the problem

or changing the mesh topology. It worth mentioning that, the LDG flux with

β ∈ [0, 1/p] yields best results, while higher values lead to over-stabilization and

damping the sharp front.

• Shock-capturing HDG for compressible Navier-Stokes equations:

The strategy of utilizing discontinuous shape functions for extra stabilization, is

extended to the compressible Navier-Stokes equations in the presence of shocks,
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and it is developed in section 3.2. Again, discontinuous shape functions are

built based on the local smoothness of the solution and employment of these

discontinuous shape functions leads to a modified weak form of the HDG local

problem, while the global problem remains the same as standard HDG. New

terms in the local problem are on the inter-sub-cells boundaries, and contain

numerical fluxes and jumps. Based on the DG fluxes used in the literature, for

compressible Navier-Stokes, here we consider LDG type flux for diffusive part

of the flux, and Lax-Friedrichs type for convective part.

A test case of smooth viscous compressible flow with exact solution is used

to study the possible convergence of discontinuous shape functions. The result

of this example demonstrates that, convergence can be obtained for uniform

distribution of β over all domain, while the accuracy of the proposed method

can beat first order accuracy of slope limiting techniques. Then, the supersonic

viscous flow around NACA 0012 airfoil is studied, and the shock-capturing tech-

nique is proved to be able to produce non-oscillatory solutions in presence of the

bow shock in front of the airfoil. It should be noted that the inherent stability

of HDG method provides enough dissipation to capture not so strong shocks

in lower Reynolds numbers and on coarser meshes. Even in these cases, the

proposed shock-capturing can improve the solution and reduce the oscillations

in the vicinity of shocks. Finally, for higher Reynolds numbers, when HDG

method can not capture the solution in the presence of a strong shock, the

shock-capturing technique obtains the solution and stabilizes the method. This

novel approach, doesn’t need any tuning, and choice of shape functions is au-

tomatically performed. On the other hand, no mesh adaptivity is required and

large high-order elements can be utilized even in the vicinity of strong shocks

and they can be captured inside the element.

4.1 Future developments

• Study of piecewise linear shape functions inside the sub-cells: In

order to add extra stabilization inside the elements, piecewise constant shape

functions are combined with normal continuous ones. The numerical tests for

both convection-diffusion and Navier-Stokes equations show that the extreme

case of piecewise constant shape functions are not needed, and instead less
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stabilization of β ∈ [0, 1/p] is better fitted for the purpose of shock-capturing.

Piecewise linear shape functions in the sub-cells, instead of piecewise constant

shape functions, provide another option to introduce extra stabilization inside

elements, which can even increase the accuracy of the method in the vicinity

of shocks. The idea can be implemented quite easily, and the changes will be

minimum, hence, worth being considered.

• Extension to turbulent compressible flows: The compressible vis-

cous flow problems, tackled in this thesis, can be extended to more realistic

engineering problems of high-speed high-Reynolds flows, where strong shocks

are more frequent. In order to do that, including turbulence will be a vital

step to accurately capture important flow features, like shocks and boundary

layers. The RANS models are the first candidates, which can be handled by

adding extra equations to the system. Some work has been done to include

Spalart-Allmaras model in the work of Moro et al. [2011], but this is a new field

of research and many more models can be employed, and also one can consider

LES and DES, specially for strong separations or off-design situations.

• Parallelization and Extension to 3D: Another important step, which

can enhance the current work is 3D implementation of the method. This will

enable more complex geometries of real engineering problems, like 3D wings

and bodies to be considered. The codes for this thesis are written in Matlab

and they are optimized substantially, however, further boost of performance

needs a change of the existing codes from Matlab to Fortaran or C++. The

parallelization of codes will allow to compute the compressible viscous flow

problems within a suitable computational cost.

•Adaptivity: Complex flow features in compressible viscous flow problems,

like shocks, boundary layers and wakes require different mesh sizes and order

of approximations for efficient numerical simulations. The computational cost

of complex simulations can be optimized by adapting the mesh or polynomial

degrees, in different regions of solution, which is easier to achieve in DG families,

because discontinuous space of approximation between the elements allows local

adaptivity with ease.

On the other hand, goal oriented adaptivity by defining quantities of in-

terests, can be implemented to improve the performance of the method and

reduce user defined parameters. In compressible Navier-Stokes problems, out-
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puts of interests, for instance aerodynamics coefficients of an airfoil, which are

functions of the solution, are used to estimate the error of numerical simulations

and providing bound for it. In context of DG, works of Hartmann [2005a] is an

example which can be extended to HDG.
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Appendix A

Importance of stabilization

parameter for HDG method

The stabilization parameter, τ , is reported to be important for the stability and

accuracy of the HDG method, see for instance Nguyen et al. [2009a]. Here an example

for convection-diffusion is presented to demonstrate the importance of stabilization

parameter. For smooth diffusion dominated problems, no significant difference is

observed, but an example of convection dominated problem, with very high Peclet

number, shows the effect of correct stabilization parameter on the stability of the

solution.

The example considered here is the solution of steady highly convection dominated

linear convection-diffusion problem in Ω = (0, 1) × (0, 1), with Dirichlet boundary

condition gD |x=0=
√

0.04− (y − 0.5)2 and Neumann boundary condition gN |x=1= 0

and gD = 0 elsewhere on the boundary. So the solution enters the domain from left

and goes out from right. Two different stability parameters are used, τ1 = k
l
+ | c ·n |

and τ2 =| 1
h2 | singlefaced, with h being the mesh size, the latter is used in some

examples and seems to work well for diffusive regions. Peclet number is Pe = 1000

(where normal finite element methods blow up), and cubic approximation is used on

a triangular mesh of the type of Figure 2.2 with n = 32.

Comparison of results presented in Figures A.1(a) and A.1(b) show that, for τ1 the

method is stable and able to get the correct result, while for single-faced stabilization

parameter of τ2, the method is unstable and blows up, hence, the importance of the
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(a) uh (b) uh

Figure A.1: Example 3: Numerical results and importance of the stability parameter

stabilization parameter is demonstrated.
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Appendix B

Boundary conditions for

compressible Navier-Stokes

equations

This appendix describes different boundary conditions used for compressible Navier-

Stokes equations in this work. Implementing different boundary conditions for HDG

discretization can be tricky, and here some decisions are made which are detailed in

this section. In general, the boundary conditions are computed using the interior

solution Uh, gradient of solution Qh, and boundary condition information. It should

be noted that, in following description, the ()in and ()out notations, denote the trace

values taken from interior and exterior of domain, respectively.

First, in HDG for compressible Navier-Stokes equations, the boundary conditions

are imposed weakly, on the trace of the solution on the boundary, Û∂Ω, hence, Û =

[ÛΓ\∂Ω,U
b
∂Ω]T , where U b

∂Ω is boundary state vector, and it is simply referred as Ub

afterwards. The Figure B.1, shows this distinction between traces on the interior and

boundaries.

For the purpose of this thesis, different boundary conditions are implemented

for HDG discretization; inflow, outflow, no-slip wall and symmetry plane boundary

conditions. The calculation of boundary state vector for various boundary conditions

are presented below.
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B. Boundary conditions for compressible Navier-Stokes equations

U

Û�\@⌦

Ub

Figure B.1: Boundary condition for HDG

No-slip wall

At no-slip wall, the desired condition is that velocity of fluid is equal to velocity of the

wall. For energy equation, either adiabatic or isothermal wall can be considered. In

adiabatic case, gradient of temperature is zero, ∇T = 0, and for isothermal case, the

wall temperature is considered for fluid at the boundary, T = Tw. For aerodynamic

simulations, usually the first one is employed, while the second one is used for aero-

thermodynamic simulations of hypersonic flows. For adiabatic wall, pressure is taken

from interior and total energy is computed from it. The important issue is where to

choose interior? Here we consider the value of solution Uh at the same coordinate, as

interior for Ub. In Figure B.1, this can be seen as choosing the blue point as interior

for the boundary condition at the green point, which are at the same coordinate. So

the boundary state vector is

Ub =
pin
γ − 1


1

cvTin
vw

cvTin

1 + |vw|2
2cvTin

 (B.1)

if the wall is stationary, then vw = 0 and the boundary state vector is reduced to

Ub =


pin

cvTin(γ−1)

0
pin
γ−1

 (B.2)
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Symmetry

The Symmetry plane boundary condition imposes that, the solution to be symmetric

about the boundary. The normal derivative of solution, at the boundary is continuous,

and velocity is imposed to be tangential to the boundary. Hence, the boundary state

vector is set to the values from interior and only difference is that, the normal velocity

is subtracted.

Ub =

 ρin

ρinvb

ρinEin

 (B.3)

where vb = vin − (vin · n)n. So the normal components of ρ, ρE, and normal

component of velocity are all zero.

Inflow/Outflow

Characteristic Euler boundary condition is used here to implement at the inflow and

outflow boundaries. For most of our applications, like external flow problems, putting

boundary of domain far enough from flow features leads to a uniform flow at far-fields,

hence, the utilization of Euler boundary condition is justified.

In this approach, Reimann invariants are used, and at each point of boundary,

the number of prescribed boundary conditions corresponds to the number of negative

eigenvalues. Without entering the details of the method, just a brief description is

presented here for 2D flows.

Subsonic flow

For subsonic inflow, one characteristics comes from domain, while the rests come from

far-field, hence, one parameter is taken from flow field, and all others are imposed

based on the free-stream conditions, that is Uout = U∞. The boundary state vector

is

Ub =

 ρb

ρbvb

ρbEb

 (B.4)
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B. Boundary conditions for compressible Navier-Stokes equations

where

ρb =
(ρout)

γ(γ − 1)2

16γpout
(w1

in − w5
out)

2

vb = vtout +
1

2
(w1

in + w5
out)n

Eb =
γ − 1

16γ
(w1

in − w5
out)

2 +
1

2
|vb|2

(B.5)

where the Reimann invariants are

w1
in = n · vin +

2cin
γ − 1

w5
out = n · vout −

2cout
γ − 1

(B.6)

where c is speed of sound, which is

c =

√
γp

ρ
(B.7)

For subsonic outflow, one characteristics comes from far-field, while the rests come

from domain, hence, one parameter is taken from boundary, usually pressure, and all

other variables are from flow field. The boundary state vector isUb = [ρb, ρbvb, ρbEb]
T ,

where

ρb = ρin(
pout
pin

)(1/γ)

vb = vin +
2

γ − 1
(cin −

√
γpout
ρb

)

Eb =
pout

ρb(γ − 1)
+

1

2
|vb|2

(B.8)

Supersonic flow

For supersonic inflow, all characteristics are from boundary, hence, it corresponds to

Dirichlet boundary condition.

Ub =

 ρout

ρoutvout

ρoutEout

 (B.9)
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For supersonic outflow, all characteristics come from flow field, hence, it corre-

sponds to Neumann boundary condition.

Ub =

 ρin

ρinvin

ρinEin

 (B.10)
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Appendix C

Implementation of HDG method

This appendix presents main indications on the implementation of the HDG method

for different equations; first convection-diffusion equation, then compressible Navier-

Stokes equations, and finally linearized compressible Navier-Stokes equations.

C.1 Implementation of HDG for

convection-diffusion equation

We start HDG implementation of convection-diffusion equation, presented in section

2.1, by recalling the local and global problems, 2.15 and 2.16,

(k−1qh, z)Ωe − (uh,∇ · z)Ωe + 〈ûh, z · n〉∂Ωe = 0,

(∇ · qh, r)Ωe − (cuh,∇r)Ωe + 〈τuh, r〉∂Ωe + 〈(c · n− τ)ûh, r〉∂Ωe = (f, r)Ωe ,
(C.1)

for e = 1, · · · , nel,
nel∑
e=1

〈(cûh + qh) · n+ τ(uh − ûh), µ〉∂Ωe = gN , ∀µ ∈M p
h , (C.2)

On one hand, equation C.1 is a local system for each element Ωe, which is inde-

pendent of other elements. Thus, an element-by-element procedure can be employed

to express both qh and uh, in terms of ûh. In addition, there is equation C.2, which

is global, and coupled for all elements and traces. Replacing qh and uh, as solution
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C. Implementation of HDG method

of C.1 in terms of ûh, in the global problem, C.2, yields a global system on the whole

mesh skeleton, Γ.

Elemental unknowns, qh and uh, are presented with 2D nodal shape functions Nj,

as

qh =
nse∑
i=1

NiI{Qe}i,

uh =
nse∑
i=1

Ni{Ue}i,
(C.3)

where nse is number of shape functions in the element Ωe, and I is identity matrix of

sd×sd, where sd is number of spatial dimensions. The vector of nodal values in each

element for variable qh and uh are shown by Qe and Ue, respectively, which include

contributions from each shape function of the elements, {Qe}i and {Ue}i. For the

trace unknown, ûh, in the face f of the element e is denoted as

ûh =

nsf∑
i=1

N̄i{Ûe,f}i, (C.4)

where, nsf is the number of shape functions at the face f of element Ωe, and N̄i is

the ith 1D basis function in that face. For the whole element, vector of nodal value

of ûh, is sum of the all faces of that element. It’s also important to know that since

each face is shared by two elements, Ûe,f has contributions from both elements and

is single valued.

Summing up the local problem, C.1, over all elements, with the global problem,

C.2, lead to discretization in the following form.

A(qh, z)−B(uh, z) +C(ûh, z) = 0,

B(r, qh) +D(uh, r) +E(ûh, r) = F (r),

C(µ, qh) +G(µ, uh) +H(µ, ûh) = 0,

(C.5)
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C.1. Implementation of HDG for convection-diffusion equation

where the bilinear forms and linear functionals are given by

A(q, z) = (k−1q, z)Ωe ,

B(u, z) = (u,∇ · z)Ωe ,

C(û, z) = 〈û, z · n〉∂Ωe ,

D(u, r) = −(cu,∇r)Ωe + 〈r, τu〉∂Ωe ,

E(û, r) = 〈r, (c · n− τ)û〉∂Ωe ,

G(µ, u) = 〈µ, τu〉∂Ωe ,

H(µ, û) = 〈µ, (c · n− τ)û〉∂Ωe ,

F (r) = (f, r)Ωe

(C.6)

Now, using the definitions of unknowns, C.3 and C.4, and replacing in C.5, gives

rise to the matrix form of local and global equations as

A −BT CT

B D E
C G H


QU
Û

 =

0

F
0

 (C.7)

where matrices in C.7 correspond to the bilinear forms in C.6, in the order they

appear in the equations.

As stated before, the local problem, can be used to eliminate both qh and uh in

an element-by-element fashion and the system C.7 can be expressed as

[
Q
U

]
=

[
A −BT

B D

]−1

(

[
0

F

]
−

[
CT

E

]
Û), (C.8)

and

CQ + GU +HÛ = 0, (C.9)

Once computing, the system C.8 is used for each element, and it’s replaced in C.9,

hence, for triangular elements, each element contributes to 3 faces in the final global

system which only includes the DOFs of trace of the solution and is solved for DOFs

of trace of the solution, Û.
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C.2 Implementation of HDG for compressible

Navier-Stokes equations

Here, some insight for implementation of HDG for compressible Navier-Stokes equa-

tions are presented. The overall idea is extension of section C.1, but the differ-

ence is compressible Navier-Stokes equations are non-linear, thus, a Newton-Raphson

method is employed and the system is solved for the increments of the solution, until

convergence, as explained in section 2.2.

The weak form of the HDG local and global problems for unsteady compressible

Navier-Stokes equations are recalled here.

(Qh, z)Ωe + (Uh,∇ · z)Ωe − 〈Ûh, z · n〉∂Ωe = 0,

(
∂Uh

∂t
, r)Ωe − (Fc(Uh),∇r)Ωe + (Fd(Uh,Qh),∇r)Ωe + 〈Fc(Ûh) · n, r〉∂Ωe

−〈Fd(Ûh,Qh) · n, r〉∂Ωe + 〈SUh, r〉∂Ωe − 〈SÛh, r〉∂Ωe = (f , r)Ωe ,


(C.10)

for e = 1, · · · , nel, and

nel∑
e=1

〈(Fc(Ûh)− Fd(Ûh,Qh)) · n+ S(Uh − Ûh),µ〉∂Ωe\∂Ω = 0, (C.11)

System C.10 represents a local problem for each element, Ωe and it allows elemen-

tal unknown Qh and Uh as a function of the trace unknown, Ûh. Then, replaced in

C.11, and as a result, a global system is set up in terms of just the trace unknown.

Following the procedure in C.1, unknowns are represented with nodal shape func-

tions Nj in each element, Ωe, or in each face, Γf , as

Qh =
nse∑
i=1

NiI{Qe}i,

Uh =
nse∑
i=1

NiI{Ue}i,

Ûh =

nsf∑
i=1

N̄iI{Ûe,f}i,

(C.12)

where the identity matrix, I is has dimension of (sd + 2)× (sd + 2) for Uh and Ûh,

and (sd + 2)sd × sd(sd + 2) for Qh, while N̄i is 1D basis function in face f of the
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element Ωe. For the whole element, vector of nodal value of Ûh, is sum of the all

faces of that element.

Summing up the local problem, C.10, over all elements, with the global problem,

C.11, and using backward Euler time marching, leads to discretization in the following

form.

A(Qh, z) +B(Uh, z)−C(Ûh, z) = 0,

T1(Uh, r)−D(Uh, r) +E(Uh,Qh, r) +G1(Ûh, r)−H1(Ûh,Qh, r)

+L1(Uh, r)−M1(Ûh, r) = O(r) + T2(r),

G2(Ûh,µ)−H2(Ûh,Qh,µ) +L2(Uh,µ)−M2(Ûh,µ) = 0,

(C.13)

where the bilinear forms and linear functionals are given by

A(Q, z) = (Qn, z)Ωe ,

B(U , z) = (Un,∇ · z)Ωe ,

C(Û , z) = 〈Ûn, z · n〉∂Ωe ,

D(U , r) = (Fc(U
n),∇r)Ωe ,

E(U ,Q, r) = (Fd(U
n,Qn),∇r)Ωe ,

G1(Û , r) = 〈Fc(Ûn) · n, r〉∂Ωe ,

H1(Û ,Q, r) = 〈Fd(Ûn,Qn) · n, r〉∂Ωe ,

L1(U , r) = 〈SUn, r〉∂Ωe ,

M1(Û , r) = 〈SÛn, r〉∂Ωe ,

G2(Û ,µ) = 〈Fc(Ûn) · n,µ〉∂Ωe ,

H2(Û ,Q,µ) = 〈Fd(Ûn,Qn) · n,µ〉∂Ωe ,

L2(U ,µ) = 〈SUn,µ〉∂Ωe ,

M2(Û ,µ) = 〈SÛn,µ〉∂Ωe ,

O(r) = (f , r)Ωe ,

T1(U , r) =
1

dt
(Un, r)Ωe ,

T2(r) =
1

dt
(Un−1, r)Ωe ,

(C.14)

Note that, the last two terms are from backward Euler time discretization and utiliza-

tion of other time marching would change these two, but the other remain untouched.
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Now, using the definitions of unknowns, C.12, and replacing in C.13, give rise to the

residual form of local and global equations as

RQ(Q,U, Û) = A+ B − C,

RU(Q,U, Û) = T 1−D + E + G1−H1 + L1−M1− T 2,

RÛ(Q,U, Û) = G2−H2 + L2−M2,

(C.15)

where matrices in C.15 correspond to the bilinear forms in C.14, in the order they

appear in the equations. In order to compute the Jacobian for non-linear solver, the

derivatives of of residuals with respect to the nodal values are needed, and using

definitions in C.15 lead to

∂RQ

∂Q
=
∂A
∂Q

,

∂RQ

∂U
=
∂B
∂U

,

∂RQ

∂Û
= − ∂C

∂Û
,

∂RU

∂Q
=
∂E
∂Q
− ∂H1

∂Q
,

∂RU

∂U
=
∂T 1

∂U
− ∂D
∂U

+
∂E
∂U

+
∂L1

∂U
,

∂RU

∂Û
=
∂G1

∂Û
− ∂H1

∂Û
− ∂M1

∂Û
,

∂RÛ

∂Q
= −∂H2

∂Q
,

∂RÛ

∂U
=
∂L2

∂U
,

∂RÛ

∂Û
=
∂G2

∂Û
− ∂H2

∂Û
− ∂M2

∂Û
,

(C.16)

Using C.16 and C.15, one can set up the Jacobian and residual for non-linear solver

as presented in 2.40. Then, the HDG procedure to eliminate the local unknowns in

terms of the trace unknown, as presented in C.1, can be repeated and as a result,

system can be solved for the increments in the trace of solution, and update it until

convergence.
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C.3 Implementation of HDG for linearized

compressible Navier-Stokes equations

This section, provides the basic details, for implementation of linearized HDG for

compressible Navier-Stokes equations, which is presented in section 2.3 of this thesis.

The weak form of HDG local and global problem for linearized unsteady com-

pressible Navier-Stokes equations, 2.52 and 2.53 are recalled here.

(
∂Uh

∂t
, r)Ωe − (AfcUh,∇r)Ωe − (Afd1Lh,∇r)Ωe − (Afd2wh,∇r)Ωe

+〈AfcÛh · n, r〉∂Ωe + 〈Afd1Lh · n, r〉∂Ωe + 〈Afd2wh · n, r〉∂Ωe

+〈SUh, r〉∂Ωe − 〈SÛh, r〉∂Ωe = (f , r)Ωe ,

(ρ̄Lh, z)Ωe + (ρhvh,∇ · z)Ωe − 〈ρ̂hvh, z · n〉∂Ωe + (v̄∇ρh, z)Ωe = 0,

(ρ̄wh, g)Ωe + (ρhEh,∇ · g)Ωe − 〈ρ̂hEh, g · n〉∂Ωe + (Ē∇ρh, g)Ωe = 0,


(C.17)

for e = 1, · · · , nel, and
nel∑
e=1

〈
(

̂Afc(v̄)Uh +Afd1Lh +Afd2(v̄)wh

)
· n,µ〉∂Ωe\∂Ω = 0, (C.18)

System C.17 represents a local problem for each element, Ωe and it allows elemen-

tal unknown Uh, Lh and wh as a function of the trace unknown, Ûh. Then, replaced

in C.18, and as a result, a global system is set up in terms of just the trace unknown.

Following the HDG procedure in C.1, and C.2, unknowns are represented with

nodal shape functions Nj in each element, Ωe, or in each face, Γf , as

Uh =
nse∑
i=1

NiI{Ue}i,

Lh =
nse∑
i=1

NiI{Le}i,

wh =
nse∑
i=1

NiI{We}i,

Ûh =

nsf∑
i=1

N̄iI{Ûe,f}i,

(C.19)

where the identity matrix, I is has dimension of (sd + 2)× (sd + 2) for Uh, Lh and

Ûh, and sd×sd for wh, while N̄i is 1D basis function in face f of the element Ωe. For

the whole element, vector of nodal value of ûh, is sum of the all faces of that element.
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C. Implementation of HDG method

Summing up the local problem, C.17, over all elements, with the global problem,

C.18, and using backward Euler time marching, leads to discretization in the following

form.

T1(Uh, r)−A(Uh, r)−B(Lh, r) +C(wh, r) +An1(Ûh, r)

+Bn1(Lh, r) +Cn1(wh, r) +D1(Uh, r)−D2(Ûh, r) = S(r) + T2(r),

G1(Lh, z) + F1(Uh, z)−H1(Ûh, z) +N1(Uh, z) = 0,

G2(wh, g) + F2(Uh, g)−H2(Ûh, g) +N2(Uh, g) = 0,

An2(Ûh,µ) +Bn2(Lh,µ) +Cn2(wh,µ) +D3(Uh,µ)−D3(Ûh,µ) = 0,

(C.20)

where the bilinear forms and linear functionals are given by

T1(U , r) = 1
dt

(Un, r)Ωe , A(U , r) = (AfcU
n,∇r)Ωe ,

B(L, r) = (Afd1L
n,∇r)Ωe , C(w, r) = (Afd2w

n,∇r)Ωe ,

An1(Û , r) = 〈AfcÛ
n · n, r〉∂Ωe , Bn1(L, r) = 〈Afd1L

n · n, r〉∂Ωe ,

Cn1(w, r) = 〈Afd2w
n · n, r〉∂Ωe , D1(U , r) = 〈SUn, r〉∂Ωe ,

D2(Û , r) = 〈SÛn, r〉∂Ωe , G1(L, z) = (ρ̄Ln, z)Ωe ,

F1(U , z) = (ρvn,∇ · z)Ωe , H1(Û , z) = 〈ρ̂vn, z · n〉∂Ωe ,

N1(U , z) = (v̄∇ρn, z)Ωe , G2(w, g) = (ρ̄wn, g)Ωe ,

F2(U , g) = (ρEn,∇ · g)Ωe , H2(Û , g) = 〈ρ̂E
n
, g · n〉∂Ωe ,

N2(U , g) = (Ē∇ρn, g)Ωe , An2(Û ,µ) = 〈AfcÛ
n · n,µ〉∂Ωe ,

Bn2(L,µ) = 〈Afd1L
n · n,µ〉∂Ωe , Cn2(w,µ) = 〈Afd2w

n · n,µ〉∂Ωe ,

D3(U ,µ) = 〈SUn,µ〉∂Ωe , D4(Û ,µ) = 〈SÛn,µ〉∂Ωe ,

S(r) = (fn, r)Ωe , T2(r) = 1
dt

(Un−1, r)Ωe ,

(C.21)

Now, using the definitions of unknowns, C.19, and replacing in C.20, give rise to

the matrix form of local and global equations as


(T 1−A+D1) (−B + Bn1) (−C + Cn1) (An1−D2)

(F1 +N 1) G1 −H1

(F2 +N 2) G2 −H2

D3 Bn2 Cn2 (An2−D4)



Un

Ln

Wn

Ûn

 =


Sn−1 + T 2n−1

0

0

0


(C.22)
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C.3. Implementation of HDG for linearized compressible Navier-Stokes equations

where matrices in C.22 correspond to the bilinear forms in C.21, in the order they

appear in the equations. So, the HDG procedure to eliminate the local unknowns

in terms of the trace unknown as presented in C.1, can be repeated and as a result,

system can be solved for the trace of solution. It should be noted that, the system

C.22, is linear system, hence, no need for non-linear solver. A part from that, in the

thesis, most of examples are solved using a Crank-Nicolson time discretization. One

can follow the same procedure as presented above for Crank-Nicolson and the final

system is


T 1 + (−A+D1)

2
(−B+Bn1)

2
(−C+Cn1)

2
(An1−D2)

2

(F1 +N 1) G1 −H1

(F2 +N 2) G2 −H2

D3 Bn2 Cn2 (An2−D4)



Un

Ln

Wn

Ûn

 =


Sn−1/2 + T 2n−1

0

0

0



−


(−A+D1)

2
(−B+Bn1)

2
(−C+Cn1)

2
(An1−D2)

2

(F1 +N 1) G1 −H1

(F2 +N 2) G2 −H2

D3 Bn2 Cn2 (An2−D4)



Un−1

Ln−1

Wn−1

Ûn−1


(C.23)
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