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Abstract

The visual analysis of humans is one of the most active research topics in Computer Vision.
Several approaches for body pose recovery have been recently presented, allowing for better
generalization of gesture recognition systems. The evaluation of human behaviour patterns
in different environments has been a problem studied in social and cognitive sciences, but
now it is raised as a challenging approach to computer science because of the complexity
of data extraction and its analysis. The main difficulties of visual analysis in n RGB data
is the discrimination of shapes, textures, background objects, changes in lighting conditions
and viewpoint. In contrast to common RGB images used in Computer Vision, range images
provide additional information about the 3-D world, allowing to capture the depth informa-
tion of each pixel in the image. Furthermore, the use of depth maps is of increasing interest
after the advent of cheap multisensor devices based on structured light, or Time of Flight
(ToF) technology.

In this work we deal with the problem of analyzing human pose and motion in RGB-Depth
images, and in particular: 1) human pose recovery, 2) hand pose description, and 3) gesture
recognition. We will treated these three areas by using RGB-Depth data in order to take
profit from visual representation and 3-D geometric information. Using both channels of
information improves the efficiency of human pose and motion analysis methods. We also
present efficient use of the proposed methods in real areas of application, such as eHealth
and human computer interaction (HCI).

Principal objectives are establish the viability of depth map usage in human hand and body
pose estimation and, in other hand, for gesture recognition. The presented research is also
applied on real high impact applications.
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Resumen

El análisis visual de personas es uno de los temas de investigación más activos en Visión Com-
putacional. Varios enfoques para la recuperación de la postura corporal se han presentado
recientemente, que permiten una mejor generalización de los sistemas de reconocimiento de
gestos. La evaluación de los patrones de comportamiento humano en diferentes ambientes
ha sido un problema de estudio en las ciencias sociales y cognitivas, pero actualmente se
presenta como un reto para las ciencias informáticas, dada la complejidad de la extracción
de datos y su análisis. Entre las principales dificultades del análisis visual de los datos n RGB
está la discriminación de las formas, texturas, objetos de fondo, cambios en las condiciones
de iluminación y puntos de vista. En contraste con las imágenes RGB comunes utilizadas
en Visión Computacional, imágenes de rango aportan información adicional sobre mundo
3-D, lo que permite capturar la información de profundidad de cada pixel en la imagen.
Además, el uso de mapas de profundidad es de creciente interés después de la llegada de los
dispositivos multisensor baratos basados en luz estructurada, o la tecnoloǵıa de Tiempo de
Vuelo (TOF, por sus siglas en inglés).

En este trabajo analizaremos el problema de la postura y el movimiento humano en imágenes
RGB con profundidad, y en particular: 1) la actitud humana de recuperación de la postura,
2) descripción de pocisiones de la mano, y 3) el reconocimiento de gestos. Vamos a tratar
estas tres áreas mediante el uso de los datos RGB-Profundos con el fin de sacar provecho de
la representación visual y la información geométrica en 3-D. El uso de los dos canales de in-
formación mejora la eficiencia de los métodos de análisis de movimiento y postura humanos.
También presentamos un uso eficiente de los métodos propuestos en campos de aplicación
real, como la salud y la interacción persona-ordenador (HCI).

Nuestros principales objetivos son establecer la viabilidad del uso de mapa de profundidad en
la estimacin de pose de la mano y el cuerpo humano y, por otro lado, para el reconocimiento
de gestos. Adicionalmente se presenta el impacto de éstas en aplicaciones reales con alto
impacto social.
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Chapter 1

Introduction

The research in this memory is focused on human pose recovery and gesture recognition
from depth maps, including its applications. These are common topics in Computer Vision
and Artificial Intelligence fields, usually addressed by considering RGB images. However,
there is a growing wealth of information regarding the use of depth images in place or in
combination (multi-modal) with RGB images in order to deal with pose recovery and ges-
ture recognition problems. The purpose of this section is to provide background information
regarding these current depth-based approaches, current progress within the Computer Vi-
sion and Artificial Intelligence fields, our research problem and its significance, objectives,
potential applications, and motivations for research.

1.1 Background Information

The visual analysis of humans is currently one of the most active research topics in Computer
Vision. Several approaches for body pose recovery have been recently presented, allowing
for better generalization of gesture recognition systems. The evaluation of human behaviour
patterns in different environments has been a problem studied in social and cognitive sci-
ences, but now it is raised as a challenging approach to computer science because of the
complexity of data extraction and its analysis. The main difficulties of visual analysis in n
RGB data is the discrimination of shapes, textures, background objects, changes in lighting
conditions and viewpoint. In contrast to common RGB images used in Computer Vision,
range images provide additional information about the 3-D world, allowing to capture the
depth information of each pixel in the image, i.e. it is known the world coordinates of the
points in the scene. Furthermore, the use of depth maps is of increasing interest after the
advent of cheap multisensor devices based on structured light, or Time of Flight (ToF) tech-
nology. These RGB-Depth cameras are compact and portable, so it can be easily installed in
any environment to understand 3-D scenes. This way there are multiple applications which
can benefit from the analysis of 3-D objects in scenes. On the other hand, depth information
is invariant to color, texture and lighting objects, making it easier to differentiate between
the background and the foreground object of interest. The best-known depth-based device
is Kinect. The Kinect sensor from Microsoft Corporation was introduced in the market in
November 2010 as an input device for the Xbox 360 gaming console, achieving more than 10
million sells by March 2011. The Computer Vision society quickly discovered that the depth

1
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sensing technology of Kinect could be used for a large variety of Computer Vision problems
at a much lower cost than traditional 3D-cameras (such as time-of-flight based cameras). In
June 2011, Microsoft released a software development kit (SDK) for Kinect, allowing it to
be used as a tool for non-commercial products and spurring further interest in the product.
Nowadays, it has been published several works related to this topic because of the emergence
of inexpensive RGB-D devices, reliable and robust to capture the depth information along
with its corresponding synchronized RGB image. In Figure 1.1 several devices using the
described technology are shown.

(a) (b) (c)

Figure 1.1: Example of the variability of low-cost and compact RGB-D devices. (a) Kinect
first version launched in November 2010 by Microsoft Corp. RGB Resolution: VGA 640x480,
Depth resolution: 320x240 (b) RGB-D camera launched in July 2011. RGB Resolution: SXGA
1280x1024, Depth resolution: 320x240. (c) Kinect second version launched in July 2014 by Mi-
crosoft Corp. RGB Resolution: HD 1080x1920, Depth resolution: 620x480.

Examples of these low-cost depth sensors include Microsoft Kinect (aimed towards the Xbox
360) and ASUS Xtion, both of which have contributed significantly to research within this
area. For example, Microsoft Kinect involve RGB-D sensors, aimed towards determining
depth information through the use of structured light technology. The use of this type of
sensor and technology allows for the inference of “depth values by projecting an infrared light
pattern onto a scene and analysing the distortion of the projected light pattern” [36]. This
type of sensor has limitations. For example, these sensors can only be used indoors, have
low resolution, and have noisy depth information, all of which increases difficulties in the
estimation of human poses from depth images [36]. There are other options, such as GPU,
in order to increase frame rates and performance. Although this type of method has re-
markable performance, difficulties arise in the operation of algorithms, especially in low-cost
stems [36]. GPUs cannot be used in all methods, citing low frame rates and lack of ability
to run in real time. In fact, research shows that “model-based approaches require model cal-
ibration before pose estimation” [36]. Following the high popularity of Kinect and its depth
capturing abilities, there exists a strong research interest for improving the current methods
for human pose and hand/body gesture recognition. While this could be achieved by inter-
frame feature tracking and matching against predefined gesture models, there are scenarios
where a robust segmentation of the hand/arm/body regions are needed, e.g. for observ-
ing upper limb anomalies or distinguishing between finger configurations while performing
a gesture. In that respect, depth information appears quite handy by reducing ambiguities
due to illumination, colour and texture diversity. Many researchers have obtained their first
results in the field of human motion capture using this technology. In particular, Shotton et
al 2011 [41] presented one of the greatest advances in the extraction of the human body pose
from depth images, an approach that also forms the core of the Kinect human recognition
framework.

This Thesis deals with the problem of analyzing human pose and motion in RGB-Depth
images, and in particular: 1) human pose recovery, 2) hand pose description, and 3) gesture
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recognition. These three areas will be treated by using RGB-Depth data in order to take
profit from visual representation and 3-D geometric information. Using both channels of
information improves the efficiency of human pose and motion analysis methods. For this
reason, it has been also presented efficient use of the proposed methods in real areas of ap-
plication, such as eHealth and human computer interaction (HCI).

1.2 Research Problem

There is a significant gap regarding current technologies due to rapid advancement of com-
puter vision approaches and their abilities to relate to current population needs, especially
within the medical field. This is largely due to the differences in analysis methodologies,
suggesting that certain methodologies, such as RGB may result in higher costs, further sug-
gesting that it is beneficial for newer methodologies, such as depth technology to be utilized
in pose analyses and gesture recognition. It is also suggested that the gap is increasing due
to the advancing possibilities of available technologies, such as through the use of human
computer interactions [55]. Therefore, the research problem is established to be within the
lack of current studies in relating to changing abilities of use of depth images in place of RGB
techniques for pose analysis and gesture recognition. The research problem is significant for
a variety of reasons. For example, through the use of depth images, it is possible to create
cost effective technologies for non-invasive posture analysis and gesture recognition. It is
expected that through meeting changing needs, it is possible to create new technologies that
can be used in advanced situations, especially within the medical industry. Therefore, this
research is significant because it can provide methodologies to establish diagnostic accuracies
and verification, decreases in costs for diagnostic testing, and increases in quality of life. The
study will advance current information to provide new possibilities for analysis techniques.

1.3 Research Objectives

The research objectives are developed based on the background information provided within
this chapter, as well as considering the research problem and its significance. Based on this
information, the research objectives are as follows:

1) To establish the viability of depth map usage in human hand and body pose estimation;

2) To establish the viability of depth map usage for gesture recognition;

3) To demonstrate how depth map use in pose analysis and gesture recognition can impact
in real applications, including Human Computer Interaction and eHealth scenarios.



4 INTRODUCTION

1.4 Pose Analysis

Pose recovery and gesture recognition approaches are very common within the computer
vision and artificial intelligence field, particularly utilizing RGB images. However, there is
a growing wealth of information regarding the use of depth images in place of RGB im-
ages during pose recovery and gesture recognition approaches. Video-based human activity
analysis involves several research problems, such as recognition and detection/spotting, with
several potential applications, such as surveillance through smart technology, the assisted
living technologies, and human computer interaction [59]. Although the broad concept of
video-based human activity analysis is relatively simple, the actuality is challenging [59].
Hand poses (or gestures) can be utilized in a variety of ways, prompting the use of pose
analysis and gesture recognition. However, the use of hand poses suggests significant is-
sues, especially in the design and creation of hand gesture recondition systems [55]. Recent
research shows that these high costs are related to the different needs for new gesture intro-
ductions, such as the need for recording the new gestures through real subjects.

Pose analysis has shown to be useful in determining discriminative local features and their
contextual information for action recognition [59]. The most of pose recovery approaches
recover the human body pose in the RGB image plane. In order to update recent advances
in the field of human pose recovery, it has been provided standard taxonomy to classify the
State-of-the-Art of (SoA) model based approaches. The proposed taxonomy is composed
of five main modules: appearance, viewpoint, spatial relations, temporal consistence, and
behavior. Since this survey analyzes computer vision approaches for human pose recov-
ery, image evidences should be interpreted and related to some previous knowledge of the
body appearance. Depending on the appearance detected or due to spatio-temporal post
processing, many works infer a coarse or a refined viewpoint of the body, as well as other
pose estimation approaches restrict the possible viewpoints detected in the training dataset.
Since the body pose recovery task implies the location of body parts in the image, spatial
relations are taken into account. Figure 1.2 shows a possible human pose classification based
on anatomical categories. In the same way, when a video sequence is available, the motion of
body parts is also studied to refine the body pose or to analyze the behavior being performed.

Figure 1.2: Pose classification labels based on anatomical categories.
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Finally, the block of behavior refers, on the one hand, to those methods that take into account
particular activities or the information about scene to provide a feedback to the previous
modules, improving the final pose recognition. In recent years, Deep Learning techniques
have shown to perform well on a large variety of Computer Vision problems, reaching and
often surpassing the state of the art on many tasks. The rise of deep learning is also revolu-
tionizing the entire field of Machine Learning and Pattern Recognition pushing forward the
concepts of automatic feature extraction and unsupervised learning [87]. Deep Learning, or
hierarchical learning, is a branch of machine learning which comprises a set of algorithms at-
tempting to model high-level abstractions in data through model architectures with complex
structures or otherwise, composed of multiple non-linear transformations. Deep Learning is
part of a broader family of machine learning methods based on learning representations of
data. However, despite the strong success both in science and business, deep learning has its
own limitations. It is often questioned if such techniques are only some kind of brute-force
statistical approaches and if they can only work in the context of High Performance Com-
puting with tons of data. Inside this new disruptive field, recently emerged some novel pose
recovery methods using non-linear mapping based on hierarchical learning. Formulating the
pose estimation as a joint regression problem using Deep Learning Networks. The location of
each body joint is regressed ton using as an input the full RGB image [80]. Other approach
is using depth map sequences [82], in order to effectively extract the body shape and motion
information. In the following sections pose recovery problem is handled with both input
signals: RGB images and depth maps. There are two categorical classifications for human
pose estimation methods: model-based and learning-based. In the first classification (model-
based), it is necessary to have prior knowledge of a human body model and the human pose
estimation occurs through inverting kinematics or the resolution of optimization problems
[36]. In the second classification (learning-based), it is not necessary to consider a human
body model. Rather, human poses are directly estimated from input images with various
machine learning algorithms [36]. Thus, there are two different models utilized in human
pose estimation. One is a per-pixel classification method, showing classifications of each
pixel located on the human body through a trained classification random forest [36]. The
second is a joint position classification method through use of a regression random forest.
In this case, the pixels on the human body directly votes on all of the joint positions. The
classified pixels or the joint position votes are aggregated to estimate joint points by a mean
shift [36].

1.4.1 Body Poses and Gesture Recognition

Video-based human behavior analysis includes different research topics, such as action/gesture
recognition or detection/spotting. Its applications are countless, including surveillance
through smart technology, assisted living technologies, or human computer interaction [59].
Although the broad concept of video-based human activity analysis is relatively simple, its
automatic implementation is a complex task. Some of the involved challenges include in-
dividual variations of people in posture, motion and clothing, camera motion, view angle
changes, illumination changes, occlusions and self-occlusions, and background clutter [59].
However, spatio-temporal interest points and dense motion trajectories have been recently
proposed as spatio-temporal motion features that showed excellent performance in the con-
text of action recognition. Its main benefit is that spatio-temporal motion features are
extracted throughout the entire sequence of the video, allowing the occurrences of encoded
motion features to be accumulated for action representation, a phenomenon called feature
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pooling [59]. This particular study also found that for different categories of actions, mo-
tion features present distinctive spatio-temporal distribution patterns [59]. Different actions
are distinguished through certain spatio-temporal locations. At the same time, the pooling
scheme does not consider information regarding spatio-temporal location of motion features,
presenting two significant disadvantages [59]. The first disadvantage shows that informative
motion features are only responsible for a small spatio-temporal region, causing other fea-
tures that may be redundant and noisy to dominate the histogram representation, causing
the discriminative capability to be downgraded. The second disadvantage shows that the
pooling scheme’s performance is typically downgraded as a result of clutter and background
motion [59]. Commonly, image feature detection is performed by using image and object
classification through spatial pyramid matching, which also allows for the achievement of
geometrically invariant representation. This tactic is accomplished through “aggregating
statistics of local features over fixed subregions” [59]. Using spatial pyramid matching can
result in misalignment due to different object locations and screen layouts in image and ob-
ject classifications. This misalignment may also occur during action representation because
“informative motion features may occupy a small portion of the video volume with unknown
spatio-temporal positions” [59]. In order to counteract these issues, it has been proposed
to use object-centric spatial partition for image classification because this tactic determines
the location of the object of interest before pooling low level features. This pooling occurs
in separate locations (foreground and background) utilizing object-centric spatial partition
[59]. It is suggested that advanced pooling schemes are more demanding for use in action
representation due to the complexity of the video background and less description of individ-
ual motion features due to the larger inter-class variation [59]. Computer vision and robotic
researchers, among others, tend to research human pose estimation and gesture recognition
due to their increasing number of applications. Some of these applications include human
computer interaction, game control, and surveillance [36]. In fact, research has increased
within this context due to “the release of low-cost depth sensors” [36]. Dynamic gestures
are characterized by both the pose and the motion of the relevant body parts. Much effort
has traditionally be put into detecting first body parts and then tracking their motion. In
color videos, detecting hands can be quite challenging, although better performance can be
achieved by placing additional constraints on the scene and the relative position of the sub-
ject and the hands with respect to the camera (Cui and Weng, 2000; Isard and Blake, 1998;
Kolsch and Turk, 2004; Ong and Bowden, 2004; Stefanov et al., 2005; Stenger et al., 2003;
Sudderth et al., 2004). Commonly used visual cues for hand detection such as skin color,
edges, motion, and background subtraction (Chen et al., 2003; Martin et al., 1998) may
also fail to unambiguously locate the hands when the face, or other “hand-like” objects are
moving in the background. Dynamic gesture recognition methods can be further categorized
based on whether they make the assumption that gestures have already been segmented,
so that the start frame and end frame of each gesture is known. Gesture spotting is the
task of recognizing gestures in unsegmented video streams, that may contain an unknown
number of gestures, as well as intervals were no gesture is being performed. Gesture spotting
methods can be broadly classified into two general approaches: the direct approach, where
temporal segmentation precedes recognition of the gesture class, and the indirect approach,
where temporal segmentation is intertwined with recognition:

• Direct methods (also called heuristic segmentation) first compute low-level mo-
tion parameters such as velocity, acceleration, and trajectory curvature (Kang et
al., 2004) or mid-level motion parameters such as human body activity (Kahol
et al., 2004), and then look for abrupt changes (e.g., zero-crossings) in those
parameters to identify candidate gesture boundaries.



1.4. Pose Analysis 7

• Indirect methods (also called recognition-based segmentation) detect gesture
boundaries by finding, in the input sequence, intervals that give good recogni-
tion scores when matched with one of the gesture classes. Most indirect methods
(Alon et al., 2009; Lee and Kim, 1999; Oka, 1998) are based on extensions of Dy-
namic Programming (DP) e.g., Dynamic Time Warping (DTW) (Darrell et al.,
1996; Kruskal and Liberman, 1983), Continuous Dynamic Programming (CDP)
(Oka, 1998), various forms of Hidden Markov Models (HMMs) (Brand et al.,
1997; Chen et al., 2003; Stefanov et al., 2005; Lee and Kim, 1999; Starner and
Pentland, 1998; Vogler and Metaxas, 1999; Wilson and Bobick, 1999), and most
recently, Conditional Random Fields (Lafferty et al., 2001; Quattoni et al., 2007).
Also hybrid probabilistic and dynamic programming approaches have been re-
cently published (Hernandez-Vela et al., 2013a). In those methods, the gesture
endpoint is detected by comparing the recognition likelihood score to a thresh-
old. The threshold can be fixed or adaptively computed by a non-gesture garbage
model (Lee and Kim, 1999; Yang et al., 2009), equivalent to silence models in
speech.

When attempting to recognize unsegmented gestures, a frequently encountered problem is
the subgesture problem: false detection of gestures that are similar to parts of other longer
gestures. (Lee and Kim, 1999) address this issue using heuristics to infer the users com-
pletion intentions, such as moving the hand out of camera range or freezing the hand for a
while. An alternative is proposed in (Alon et al., 2009), where a learning algorithm explicitly
identifies subgesture/supergesture relationships among gesture classes, from training data.
Another common approach for gesture spotting is to first extract features from each frame of
the observed video, and then to provide a sliding window of those features to a recognition
module, which performs the classification of the gesture (Corradini, 2001; Cutler and Turk,
1998; Darrell et al., 1996; Oka et al., 2002; Starner and Pentland, 1998; Yang et al., 2002)).
Oftentimes, the extracted features describe the position and appearance of the gesturing
hand or hands (Cutler and Turk, 1998; Darrell et al., 1996; Starner and Pentland, 1998;
Yang et al., 2002)). This approach can be integrated with recognition-based segmentation
methods.

1.4.2 Hand Poses

Hand poses (key feature for gesture recognition) can be utilized in a variety of ways, prompt-
ing the use of pose analysis and gesture recognition. For example, the use of hand gestures
offers an alternative to the commonly used human computer interfaces providing a more
intuitive way of navigating among menus and in multimedia applications [55]. However,
the use of hand poses suggests significant issues, especially in the design and creation of
hand gesture recondition systems. These issues are primarily related to high cost, or gesture
scalability, when the hand gesture recognition system is being developed to introduce new
detectable gesture patterns [55]. Recent research shows that these high costs are related to
the different needs for new gesture introductions, such as the need for recording the new
gestures through real subjects. Therefore, it is possible to utilize different components of
a training framework for hand posture detection systems based on a learning scheme fed
with synthetically generated range images [55]. Through the use of different configurations
in conjunction with a 3D hand model, it is possible to find sets of synthetic subjects. This
has proven to allow for the effective separation of gestures from several dictionaries. As
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a result, the training framework allows for learning new dictionaries, tested through real
subject recordings, resulting in gesture scalability [55]. This has created an accuracy rate
that is either comparable to or better than the established dictionaries. Figure1.3 shows a
representation of different signs based on hand poses.

Figure 1.3: Example of signs representation based on hand pose.

The use of hand pose is to provide optimal user experiences. As a result, the use of human
computer interaction can increase user experiences in a variety of ways [55]. This underlying
goal is a significant cause of the rapid evolution of this type of technology. Currently, the
most common capture technology is RGB cameras [55]. However, this is slowly changing
to the use of range data information. These changes can largely be attributed to the fast
establishment of 3D user interfaces in the last years: such kind of interfaces are becom-
ing more important in the console gaming scenario [55]. In other cases, such as the use of
desktop computers, hand usage is common through input devices, providing natural human
computer interactions. Based on this study, three capture solutions exist for obtaining 3D
information of a scene: by the use of markers or gloves; using RGB stereo-vision configu-
rations; and using ToF cameras [55]. However, there are disadvantages to these solutions.
For instance, marker usage can be intrusive for the user, whereas the use of stereo-vision
capture solutions is complex to set up and requires singular point presences for different view
registers [55]. Therefore, it is theorized that range cameras are a beneficial and increasingly
effective way for pose analysis and gesture recognition to be measured because the price of
range cameras does not stop decreasing even as the capabilities of these types of cameras
continue increasing. Although range cameras are deemed to be cost-effective in most cases,
it may be more important to recognize that the segmentation process that occurs with range
cameras becomes easier through the use of a simpler set up than can be accomplished with
stereo-vision solutions [55].
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Congress of Pattern Recognition. Tokyo, November 2012

4. Book Chapters

• M. Reyes, A. Clapés, J. Ramı́rez, J.R. Revilla, and S. Escalera. Static and
Dynamic Body Analysis in Physiotherapy and Rehabilitation. Converging Clin-
ical and Engineering Research on Neurorehabilitation. Converging Clinical and
Engineering Research on Neurorehabilitation, pages 793-797. Springer Berlin
Heidelberg.

5. Non Indexed Congress

• M. Reyes, J. Vitrià, P. Radeva, and S. Escalera, Real-Time Activity Monitoring
of Inpatients, Medical Image Congress of Catalonia, MICCAT, Girona, November
2011.

• L. Igual, A. Hernández, S. Escalera, M. Reyes, J. Moya, J. Soliva, J. Fa-
quet,O. Vilarroya, P. Radeva, Automatic Techniques for Studying Attention-
Deficit/Hyperactivity Disorder, II Jornada R+D+I TIC Salut, Girona, 04/05/2011-
05/05/2011, Girona, 2011.
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• M. Reyes, J, Ramı́rez, J.R. Revilla, and S. Escalera, Posture Analysis and Range
of Movement Estimation using Depth Maps. Automatic Techniques for Study-
ing Attention-Deficit/Hyperactivity Disorder, III Jornada R+D+I TIC Salut,
Girona, 2012.

6. Transfer Activity

• M. Reyes, S. Escalera, J. Ramrez, J. R. Revilla, and P. Radeva, Registered soft-
ware number B3342-11, ADiBAS Posture: Automatic Digital Biometry Analysis
System, 2012.

• Applications to the analysis of Medical Imaging and eHealth sector. Funder:
Ministerio de ciencia e innovación. Reference Number: TIN2009-14404-C02-02.
Headed by Petia Radeva. Associated from 2012 to 2013.

• Mediminder: Sistema autónomo doméstico asistencial para pacientes con demen-
cia y Alzhéimer. Funder: 6883 IMSERSO. Headed by Sergio Escalera. From
2012 to 2013.

1.6 Conclusions

Pose analysis and gesture recognition is becoming increasingly advanced as technology ad-
vances, prompting its increasing use within the medical field. Part of this is due to the
expansion of capabilities, such as human computer interaction. However, part of this is due
to changing needs within the human population. For example, humans are living longer,
requiring more technology and quality of life enhancing devices. It has also been theorized
that due to decreasing capabilities, such as low resolution, have impacted the ability to yield
effective results from pose analyses and gesture recognition [36, 52]. Therefore, there is a
significant gap regarding current technologies due to rapid advancement of aforementioned
technologies and their abilities to relate to current population needs, especially within the
medical field. This is largely due to the differences in analysis methodologies, suggesting that
certain methodologies, such as RGB may result in higher costs, further suggesting that it is
beneficial for newer methodologies, such as depth technology to be utilized in pose analyses
and gesture recognition. It is also suggested that the gap is increasing due to the advancing
possibilities of available technologies, such as through the use of human computer interac-
tions [55, 59]. It has been recommended that a different technique be used for static body
posture analysis, as well as the dynamic range of movement estimation of skeleton joints.
This technique is based on 3D anthropometric information, is computed from multi-modal
data, and combines RGB information obtained from a video camera and depth information
obtained from an infared sensor [52]. The user is able to provide a specific set of keypoints,
which allow for the alignment of RGB and depth data. Importantly, it is possible to deter-
mine range of movement for a set of joints. As a result, accurate measurements can be taken
regarding posture, spinal curvature, and range of movement, resulting in a non-invasive pro-
cedure for posture analysis [52]. Through the use of this analysis, especially as it is coupled
with gesture recognition, it is possible to determine physical exercise correctness through
observing joint movements.
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Chapter 2

Pose analysis in depth maps

Abstract

In this chapter it is presented a framework for object segmentation using depth maps based
on Random Forest and Graph-cuts theory, and apply it to the segmentation of human limbs.
First, from a set of random depth features, Random Forest is used to infer a set of label
probabilities for each data sample. This vector of probabilities is used as unary term in
α − β swap Graph-cuts algorithm. Moreover, depth values of spatio-temporal neighboring
data points are used as boundary potentials. Results on a new multi-label human depth
data set show high performance in terms of segmentation overlapping of the novel method-
ology compared to classical approaches. It is also presented a real application for human
body posture assessment using this approach. It has been proposed a novel tool for static
body posture analysis based on 3D anthropometric information computed from multi-modal
data. These data combine RGB information from a video camera and depth from an in-
frared sensor. Given set of keypoints defined by the user, RGB and depth data are aligned,
depth surface is reconstructed, keypoints are matching using a novel point-to-point fitting
procedure, and accurate measurements about posture and spinal curvature are computed.
Given a set of joints, range of movement measurements is also obtained. The system shows
high precision and reliable measurements, being useful for posture reeducation purposes to
prevent MSDs, such as back pain, as well as tracking the posture evolution of patients in
physical rehabilitation treatments.

2.1 Introduction

Human motion capture is an essential acquisition technology with many applications in com-
puter vision. However, detecting humans in images or videos is a challenging problem due to
the high variety of possible configurations of the scenario, such as changes in the point of view,
illumination conditions, and background complexity. An extensive research on this topic re-
veals that there are many recent methodologies addressing this problem [22, 33, 58, 83].
Most of these works focus on the extraction and analysis of visual features. These methods
have made a breakthrough in the treatment of human motion capture, achieving high perfor-

13
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mance despite the occasional similarities between the foreground and the background in the
case of changes in light or viewpoint. In order to treat human pose recovery in uncontrolled
scenarios, an early work used range images for object recognition or modeling [72]. This
approach achieved a straighforward solution to the problem of intensity and view changes
in RGB images through the representation of 3D structures. The progress and spread of
this method came slowly since data acquisition devices were expensive and bulky, with cum-
bersome communication interfaces when conducting experiments. Recently, Microsoft has
launched the Kinect, a cheap multisensor device based on structured light technology, capa-
ble of capturing visual depth information (RGBD technology, from Red, Green, Blue, and
Depth, respectively).

In this chapter it is presented a framework for human-limb segmentation using depth maps
based on RF and Graphcuts theory (GC) and apply it to the segmentation of human limbs.
The use of GC theory has recently been applied to the problem of image segmentation, ob-
taining successful results [15, 38, 48]. RF is used to infer a set of probabilities for each data
sample, each one indicating the probability of a pixel to belong to a particular label. Then,
this vector of probabilities is used as unary term in the α−β swap GC algorithm. Moreover,
depth of neighbor data points in space and time are used as boundary potentials. As a
result, is obtained an accurate segmentation of depth images based on the defined energy
terms. Moreover, as long as is obtained a priori likelihoods representing target appearance,
the presented method is generic enough to be applicable in any other object segmentation
scenario. The method is evaluated on a 3D dataset, obtaining higher segmentation accuracy
compared to standard segmentation approaches. This framework illustrates that exercise
recognition, based on human limbs segmentation, is reliable for physical rehabilitation pur-
poses.

World Health Organization has categorized disorders of the muscle-skeletal system as the
main cause for absence from occupational work and one of the most important causes of dis-
ability in elders in the form of rheumatoid arthritis or osteoporosis. It is estimated that 80%
of the world population will suffer from musculo-skeletal disorders or dysfunctions (MSDs)
during his life. As a result, MSDs lead to considerable costs for public health systems [29].

The body posture evaluation of a subject manifests, in different degrees, his level of physic-
anatomical health given the behavior of bone structures, and especially of the dorsal spine.
For instance, common MSDs such as scoliosis, kyphosis, lordosis, arthropathy, or spinal pain
show some of their symptoms through body posture. This requires the use of reliable, nonin-
vasive, automatic, and easy to use tools for supporting diagnostic. By the articulated nature
of the human body, the development of this kind of systems is still an open issue.

Given the difficulty of finding a tool for measuring the posture of the human body at different
configurations, digital biometry has become a very useful tool. Digital biometry is defined
by the American Society of Anthropometric data as “the technology to obtain reliable in-
formation of the physical objects or the environment through the recording of images, its
measurement or interpretation”. The systems based on this technology are capable to esti-
mate morphological or functional alterations, being a useful resource for health professionals.

The diagnostic evaluation of the anomalies follows through a careful study of musculo-skeletal
structure and receptorial aspects. These diagnostic tools are based on monitoring anthropo-
metric relationships with validated accuracy [11, 28, 30, 31, 37, 44, 63]. These kind of tools
are minimally invasive and obtain good accuracy results in terms of precision but require an
specific scene configuration, being necessary a camera calibration preprocessing due to use
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of two-dimensional cameras in different planes. Another common handicap of these systems,
is its reduced portability to perform a custom analysis for the therapist, these systems have
been built highly parameterized for a specific type of analysis. Most of these systems only
treat specific areas of the body, primarily the spinal deformities [3, 4, 24, 43, 44]. The
solution more frequently applied to measure body posture consists of the installation and
alignment of multiple cameras, applying stereo vision methodologies [45, 53]. This kind of
system uses to be expensive and require specific and restricted illumination conditions. The
main alternative is accelerometers [61], but these systems also use to be expensive and in-
vasive. Furthermore, the location of accelerometers on the body of a subject is difficult and
cannot obtain accurate results because of the spatial measurements of multi-axial articula-
tions. There is another type of diagnostic tools that perform a quantitative clinical analysis,
based on diagnostic predictions through analysis of anthropometric relations [5, 86]. These
systems are able to predict diseases in premature state. Using these tools are highly restricted
to a sector of the population, and its success rate is low for use in clinical diagnostics.

Regarding the postural and spinal analysis, compared to standard alternatives and sup-
ported by clinical specialists, the system shows high precision and reliable measurements to
be included in the clinical routine.

2.2 Method for Human Limb Segmentation based
on RGB-D

The depth-image based approach suggested in [75] interprets the complex pose estimation
task as an object classification problem by evaluating each depth pixel affiliation with a
body part label, using respective Probability Distribution Functions (PDF). The pose recog-
nition phase is addressed by re-projecting the pixel classification results and inferring the 3D
positions of several skeletal joints using the RF and mean-shift algorithms. The goal is to
extend the work of [75] and combine it with a general segmentation optimization procedure
to define a robust segmentation of objects in depth images. As a case study, are segmented
pixels belonging to the following seven body parts1: LU/LW/RU/RW for arms, (from Left,
Right, Upper and loWer, respectively), LH/RH for hands, and the torso. The pipeline of
the segmentation framework is illustrated in Fig. 2.1.

2.2.1 Random Forest

Considering the human body a priori segmented from the background in a training set of
depth images, the procedure for growing a randomized decision tree t is formulated over the
same definition of a depth comparison feature as defined in [75],

fθ(I,x) = dI

(
x +

u

dI(x)

)
− dI

(
x +

v

dI(x)

)
, (2.1)

1Note that the method can be applied to segment any number of labels of any object contained
in a depth image.
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Figure 2.1: Pipeline of the presented method, including the input depth information, Random
forest, spatio-temporal Graph-cuts optimization, and the final segmentation result.

where dI(x) is the depth at pixel x in image I, I is considered subspace of the Euclidean
space E2, θ = (u,v), and u,v ∈ R2 is a pair of offsets, the normalization of which ensures
depth invariance. Thus, each θ determines two new pixels relative to x, the depth difference
of which accounts for the value of fθ(I,x). Each tree consists of split and leaf nodes (the
root is also a split node), as depicted in the upper part of Fig. 2.1. The training procedure of
a given tree t over a unique set of ground truth images (avoid sharing images among trees),
runs through the following steps:

1. Define a set Φ of node splitting criteria φ = (θ, τ) , through the random selection of
θ = (u,v), and τ, τ ⊂ R (a set of splitting thresholds for each θ), with both θ and
τ lying within some predefined range limits. After training, each split node will be
assigned with its optimal φ value from Φ.

2. Define a set Q of training examples Q = {(I,x)|x ∈ I}, over the entire set of training
images for the tree, where I stands for an image x is a randomly selected pixel in I,
and the number of pixels x per image is fixed. Estimate the PDF of Q over the whole
set of labels C (for the data set |C| = 7),

PQ(c) =
hQ(c)

|Q|
, c ∈ C, (2.2)

where hQ(c) is the histogram of the examples from Q, associated with the label c ∈ C.
Each example from Q enters the root node, thus ensuring optimal training of the tree t.

3. At the currently being processed node (starting from the root), split the (sub)set Q,
entering this node, into two subsets QL and QR, obeying Eq. (2.1).

4. Estimate the best splitting criteria ϕ∗ at the current node (starting from the tree root
node), such that the information gain of partitioning the original set of pixels Q into
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left and right subsets is maximum. The partitioning decision is taken per pixel so that

QL(φ) = {(I,x) |fθ (I,x) < τ}, φ = (θ, τ)
QR(φ) = Q \Qleft,

(2.3)

and estimate the PDF of QL, PQL(c), as defined in Eq. (2.2). Compute the PDF of
QR, which may be speeded up by the following formulae,

PQR(c) =
|Q|
|QR|

PQ(c)− |QL||QR|
PQL(c), c ∈ C, (2.4)

QR = QR(φ), QL = QL(φ).

5. Estimate the best splitting criterion φ∗ for the current node, so that the information
gain GQ(φ∗) of partitioning set Q entering the node, into left and right subsets to be
maximum:

GQ(φ) = H(Q)− |QL(φ)|
|Q| H(QL(φ))− |QR(φ)|

|Q| H(QR(φ)), (2.5)

where φ = (θ, τ) ∈ Φ, and H(Q) = −
∑
c∈C

PQ(c) ln(PQ(c)) represents Shannon’s en-

tropy for the input (sub)set Q and its splits (QL and QR) over the set of labels C.
It is more or less obvious that GQ(φ) > 0, φ ∈ Φ, but it is difficult to make a more
analytical statement for the behaviour of GQ(φ). That is why is also used the full
search approach to evaluate φ∗ = arg maxφ∈Φ GQ(φ).

6. Recursively repeat step 3 and 4 over QL (φ∗) and QR (φ∗) for the left and right node
children respectively, until some preset stop conditions are met. The node where the
stop condition occurred is treated as a leaf node, where, instead of φ∗, the respective
PDF for the subset Q reaching the node, is stored (see Eq. (2.2)).

Once trained, each image pixel for recognition, i.e. an example (I,x), is run through the
tree, starting from the root and ending at a leaf node, taking a path that depends solely
on the value of fθ(I,x) < τ , using the splitting criterion φ = (θ, τ), stored at the current
tree node. The pixel acquires the PDF kept at the reached leaf node. The inferred pixel
probability distribution within the forest is estimated by averaging the PDFs over all trees
in the forest as follows,

P (c|I,x) =
1

T

T∑
t=1

Pt (c|I,x) , c ∈ C (2.6)

where P (c|I,x) is the PDF stored at the leaf, reached by the pixel for classification (I,x)
and traced through the tree t, t ∈ T .
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2.2.2 Spatio-Temporal Graph-cut optimization

GC is an energy minimization framework which has been considerably applied in image
segmentation –both binary and multi-label–, with highly successful results. In this work, we
extend the GC theory to be used in depth images and optimize the results obtained from
the RF approach in order to deal with automatic spatio-temporal multi-label segmentation.

Given I = {I1, ..., Is, ..., IS} the set of frames of the video sequence, and X = (x1, ...,xi, ...,x|P|)
the set of pixels of I, let us define P = (1, ..., i, ...|P|) the set of indexes of I; N the set of
unordered pairs {i, j} of neighboring pixels in space and time, under a defined neighborhood
system –typically 6- or 26-connectivity–, and L = (L1, ..., Li, ..., L|P|) a vector whose com-
ponents Li specify the labels assigned to pixels i ∈ P. This framework defines an energy
function E(L) that combines local and contextual information, and whose minimum value
corresponds to the optimal solution of the problem –in the dataset, the optimal segmentation:

E(L) = U(L) + λB(L) (2.7)

The first term of the energy function is called the “unary potential”. This potential encodes
the local likelihood of the data by assigning individual penalties to each pixel for each one of
the defined labels U(L) =

∑
i∈P Ui(Li). The second term or “boundary potential” encodes

contextual information by introducing penalties to each pair of neighboring pixels as follows
B(L) =

∑
{i,j}∈N B{i,j} Ω(Li, Lj), where Ω(Li, Lj) a function that introduces prior costs

between each possible pair of neighboring labels. Finally, λ ∈ R+ is a weight that specifies
the relative importance of the boundary term against the unary term.

Once the energy function is defined, a graph G =< V, E > is built following the neighborhood
system used in the boundary potential B(L). From a practical point of view, and considering
that computer memory resources are limited, is adopted a sliding-window approach. More
specifically, is defined a fixed size volume window V like the one depicted in the bottom of
Fig. 2.1. The sliding-window approach starts segmenting the first |V | frames, and covers all
the video sequence volume, with a one-frame stride. This means that all the frames except
the first and the last one are segmented at least twice, and |V | times at most. In order
to select the final hypothesis for each frame, is used the energy value resulting from the
minimization algorithm at each execution. Therefore, the execution with the lowest energy
value is the one trust as the best hypothesis. Once the graph is built with the energy function
values, two main algorithms can be applied in order to find not the minimum energy, but
a suboptimal approximation of it: α − β swap and α-expansion. While the first one is less
restrictive and can be applied in a broader range of energy functions, the second one has
been proven to obtain better results, as long as the energy function fulfills some conditions.
In the case of α−β swap, the boundary term B{i,j} must be semi-metric, which means that
the conditions in Eq. (2.8) and (2.9) must be fulfilled,

B(Li, Lj) = B(Lj , Li) ≥ 0 (2.8)

B(Li, Lj) = 0↔ Li = Lj (2.9)

B(Li, Lj) ≤ B(Li, Ln) +B(Ln, Lj), (2.10)

for any Li, Lj , Ln ∈ L, being B(Li, Lj) = B{i,j} Ω(Li, Lj). Additionally, if is wanted to ap-
ply α-expansion, the condition in Eq. (2.10) must also be fulfilled. In that case, the boundary
term B{i,j} is said to be metric.
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In this case, Eq. (2.10) is not true for all nodes in G, and so, is used α − β swap in the
segmentation methodology for depth maps. This way, the set of nodes V contains a node for
each pixel in I, plus two terminal nodes: α and β. Similarly, E is composed by two kinds of
edges: terminal links tαi and tβi , and neighbor links e{i,j}. The values assigned to the edges of
G are then assigned following Table 2.1. The following subsections define the specific energy
function potentials that is designed for the problem.

Unary potential. The unary potential encodes the local likelihood for each pixel to be-
long to each one of the labels Li of the problem. In this case, it has been used the log-
likelihood of the probabilities returned by the RF for the computation of the unary potential
Ui(Li) = − ln(P (c|I, x)), obtaining a unary cost potential for each class ci corresponding to
label Li in GC. This step is shown at the top of Figure 2.1, where the output probabilities
of the leafs of the RF trees are used to compute the unary potentials Ui(Li) at the input
edges of the GC graph.

Edge Weight (cost) For

tαi Ui(α) +
∑

j∈Ni
Lj /∈{α,β}

B(α,Lj) Li ∈ {α, β}

tβi Ui(β) +
∑

j∈Ni
Lj /∈{α,β}

B(β, Lj) Li ∈ {α, β}

e{i,j} B(α, β) {i,j}∈N
Li,Lj∈{α,β}

Table 2.1: Weights of edges in E.

Boundary potential. In the case of the boundary potential, is used the formulation

B{i,j} = 1
dist(i,j)

e−β||xi−xj ||2 , where β =
(
2〈(xi − xj)

2〉
)−1

, and dist(i, j) computes the Eu-
clidean distance between the cartesian coordinates of pixels xi and xj . The information
about the pixels xi and xj that is used in the exponential function is just the depth value,
although in the experimental section are tested other additional approaches. Finally, are
defined two different Ω(Li, Lj) functions in order to introduce some prior costs between dif-
ferent labels. On one hand, is considered the trivial case where all different labels have the
same cost,

Ω1(Li, Lj) =

{
0 for Li = Lj
1 for Li 6= Lj

(2.11)

On the other hand, is introduced some spatial coherence between the different labels, taking
into account the kinematic constraints of the human body limbs,

Ω2(Li, Lj) =



0 for Li = Lj
10 for Li = LU, Lj = RU

Li = LH, Lj = RH
5 for Li = LW, Lj = RH

Li = RW, Lj = LH
1 otherwise

(2.12)
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With this definition of the inter-label costs, is made it difficult for the optimization algorithm
to find a segmentation in which there exists a frontier between the right and left upper-arms,
right and left hands, or in the lower measure, between left hand and right lower-arm, and
vice-versa. Therefore, is assumed that poses in which the two hands are touching are not
probable2.

2.2.3 Experiments and preliminary results

This section starts with a brief description of the considered data and the different methods,
parameters, and validation protocol of the evaluation.

Data: Is defined a new data set of several sessions where the actors are performing different
gestures with their hands in front of the Kinect camera – only the upper body is considered.
Each frame is composed by one 24 bit RGB image of size 640×480 pixels, one 12 bit depth
buffer of the same dimension, and a skeletal graph describing important joints of the upper
human body. In order to label every pixel is designed an editing tool to facilitate labelling
in a semi-supervised manner. Each frame is accompanied with label buffer of the same
dimension as the captured images. The label buffer is automatically initialized through
rough label estimation algorithm. The pixels bounded by the cylinders between the enclosing
joints of the shoulder to elbow are labelled as upper arm (LU/RU). By analogy the pixels
inside the cylinder between the elbow and the joint of the hand are labelled as lower arm
(LW,RW). The palm is labelled by the pixels bounded by a sphere centered in the joint of
the hand (LH,RH). The RGB, depth, and skeletal data are directly obtained via the OpenNI
library [1]. Finally each frame is manually edited to correct the roughly estimated labels by
the initialization algorithm. The ground truth contains 2 actors in 3 sessions gathering 500
frames in total. An example of the developed interface is shown in Figure 2.14. It has been
also made an extra experiment for finger segmentation defining 6 labels per hand - one label
for each finger and one for the palm. In this case, are used coloured gloves and 63 frames
were generated.

Figure 2.2: Interface for semi-automatic ground-truth generation.

2This label coherence cost should be estimated for each particular problem domain. In the
particular data set of poses, the values of 1, 5, and 10 were experimentally computed.
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Methods and validation: Inspired by the reported test parameters and accuracy results
in [75], the experiments rest on the following setup: it performs a 5-fold cross-validation
over the available 500 frames by training random forest of 3 trees of depth 20, 130 unique
training images per tree, 1000 uniformly distributed pixels per image, 100 candidate features
θ, and 20 thresholds τ per feature. Each test set consists of 100 images. Are also compare
the results with another set of features: a mixture of depth Eq. (2.1) and gradient Eq. (2.13)
features,

gθ (I,x) = ]

(
OI

(
x +

u

dI (x)

)
− OI

(
x +

v

dI (x)

))
, (2.13)

where OI (x) is the gradient vector at pixel x, and the feature gθ (I,x) represents the angle
between the two gradient vectors at offsets u and v from x. When applying GC, the λ
parameter was set to 50 for all the performed experiments, the nodes of the graph are 10-
connected –8 spatial neighbors + 2 temporoal neighbors–, and the size of the sliding window
is set to |V | = 5. In order to do a richer comparison of the results, is performed an additional
Graph-cuts experiment removing the temporal coherence. In this frame-by-frame approach,
the α-expansion algorithm is used. Moreover, in this second experiment is also compare the
use of different pixel information for the computation of the boundary term. Apart from just
depth information, is also tested just RGB information, as in the standard GrabCut algo-
rithm [38], and both RGB and depth together, resulting in a 4-D RGBD vector. Finally, is
also apply the Friedman test [23] in order to look for statistical significance of the performed
experiments.

Table 2.2: Average per class accuracy in % calculated over the test samples in a 5-fold cross
validation. fθ represents features of the depth comparison type from Eq.1, while gθ - the gradient
comparison feature from Eq. (2.13). Omax indicates the maximum absolute value for the x, y
coordinates of the offsets u and v. Parameter dt stands for tree depth.

Torso LU
arm

LW
arm

L
hand

RU
arm

RW
arm

R
hand

Avg.
per
class

100 fθ, Omax=30, dt=20 92.90 73.29 71.42 57.75 74.25 76.26 59.38 72.18
100 fθ, Omax=60, dt=20 94.17 79.83 77.69 77.10 81.04 82.65 80.17 81.81
80 fθ, Omax=60, dt=20 94.22 79.08 76.46 74.19 81.24 83.26 79.05 81.07
60 fθ, Omax=60, dt=20 94.09 78.86 75.86 73.49 79.43 82.60 78.08 80.34
100 fθ, Omax=60, dt=15 94.06 79.81 78.69 76.59 81.18 83.10 80.23 81.95
100 fθ, Omax=60, dt=10 91.83 81.47 78.98 72.30 83.00 83.74 76.85 81.17
60 fθ+20 gθ, Omax=60, dt=20 94.04 77.73 74.93 71.97 77.62 81.22 76.64 79.17

2.2.4 Random forest results

Table 2.2 shows the estimated average classification accuracy for each of the considered la-
bels. Without claiming exhaustiveness of the experiments, the results from Table 2.2 allow
us to make the following analysis: The maximum offset Omax has the greatest impact on
the accuracy results at the hands regions, which are with the smallest area in the body part
definition. Doubling the size of Omax leads to an increase in the accuracy of 20% for the
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Table 2.3: Average per class accuracy in% obtained when applying the different GC approaches
–TC: Temporally coherent, Fbf: Frame-by-Frame– , and the best results from the RF approach,
in the first row.

Torso LU
arm

LW
arm

L
hand

RU
arm

RW
arm

R
hand

Avg.
per
class

RF results 94.06 79.81 78.69 76.59 81.18 83.10 80.23 81.95
TC, Depth, Ω2 (Li, Lj) 98.44 78.93 84.38 88.32 82.57 88.85 93.86 87.91
Fbf, Depth, Ω1 (Li, Lj) 98.86 75.05 82.87 91.45 77.57 87.35 93.96 86.73
Fbf, Depth, Ω2 (Li, Lj) 98.86 75.03 83.36 92.41 77.54 87.67 94.20 87.01
Fbf, RGB+Depth, Ω1 (Li, Lj) 99.02 72.02 81.86 90.29 76.56 86.84 92.14 85.53
Fbf, RGB+Depth, Ω2 (Li, Lj) 99.02 72.03 81.95 91.19 76.53 87.12 92.12 85.71

hands and 6% for the other body parts. In other words, Omax increases the feature diver-
sity and the global ability to represent spatial detail. The number of candidate features Q
would not have such a big impact on the accuracy as the Omax parameter, though a higher
number helps identifying the most discriminative features. Is also tested the impact of the
depth of the decision trees. Trimming the trees to depth 15 has a very little impact, showing
an improvement of 0.1% on the average accuracy that may weakly be attributed to better
classification at the lower arm regions. Trimming to depth 10 shows a 4% decrease in the
accuracy at the hands, i.e. the tree is not trained well enough. Final test includes compari-
son over combination of both features fθ and gθ. Since the depth data provided by Kinect is
noisy, is applied a Gaussian smoothing filter before calculating the image gradients and the
feature from Eq. (2.13). Is chosen the gradient feature since it complements the relations
of depth features with information about the orientation of local surfaces. In the test are
not found significant differences in the performance of the RF approach when including this
kind of features.

In order to show the generalization capability of the proposed approach, is carried out
another case study, consisting of segmenting the finger regions. The results applying the
same validation as in the previous case, show the best performance for the following setup: 1
tree of depth 15, 500 pixels per image, 100 candidate features Q, 20 thresholds τ per feature,
and Omax = 45. The estimated average per class accuracy was 58.5% mostly due to the
small number of training images. Fig. 2.3(e) displays a couple of test images comparing the
ground truth and the inferred labels.

2.2.5 Spatio-Temporal Graph-cuts results

The results are obtained when applying the GC proposal over the probabilities returned
by the RF are detailed in Table 2.3. Is possible to see how these results improve RF, and
also the one obtained in the frame-by-frame approach. Best results are obtained when us-
ing only depth information for the computation of the boundary potential. In this case of
study, adding RGB to the depth information reduce generalization of the boundary poten-
tial. Fig. 2.3(a)-(d) shows some qualitative results of the segmentations. Another interesting
result is the improvement because of the influence of the prior costs given by the different
Ω (Li, Lj) functions. Having a look at the qualitative results in Fig. 2.3(a)-(d), one can firstly
see how the spatial coherence introduced by the basic frame-by-frame Graph-cuts approach
–Fig. 2.3 (c)–, allows to recover more consistent regions than the ones obtained with just
the RF probabilities. Moreover, when introducing temporal coherence –Fig. 2.3 (d)–, the
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Figure 2.3: Qualitative results; Ground Truth (a), RF inferred results (b), frame-by-frame GC
results (c), and Temporally-coherent GC results (d). (e) Hand segmentation experiment. First
row shows the ground-truth for two examples. Second row shows the RF classification results.
Third row shows the final α-expansion GC segmentation results.

classification of certain labels like the ones corresponding to the arms is improved.

Finally, in order to reject the null hypothesis that the measured ranks differ from the mean
rank, and that the ranks are affected by randomness in the results, is used the Friedman
test [23]. The rankings are obtained estimating each relative rank rji for each test i and
each segmentation strategy j, and computing the mean ranking R for each strategy as
Rj = 1

N

∑N
i=1 r

j
i , where N is the total number of performed tests. The Friedman statistic

value is then computed as X2
F = 12N

k(k+1)

[∑
j
R2
j −

k(k+1)2

4

]
. In this case, with k = 6 segmenta-

tion strategies to compare and ranks R = [6, 2.5, 2.12, 4.12, 3.75, 2.12] in the order showed
in Table 2.3, X2

F = 20.06. Since this value is undesirable conservative, Iman and Daven-

port proposed a corrected statistic FF =
(N−1)X2

F

N(k+1)−X2
F

. Applying this correction is obtained

FF = 7.04. With six methods and ten experiments, FF is distributed according to the F
distribution with five and 35 degrees of freedom. The critical value of F (5, 35) for 0.05 is
2.45. As the value of FF is higher than 2.45 is possible to reject the null hypothesis, and
thus, looking at the best mean performance in Table 2.3, we can conclude that the spatio-
temporal GC proposal is the first choice in the presented experiments.

In the second experiment, labelling pixels from hands –in a frame-by-frame fashion–, is
achieved an average per class accuracy of 70.9%, which supposes even a greater improvement
than in the case of human limbs. Fig. 2.3(e) also shows some qualitative results of the GC
approach.

2.3 Material and methods

In this section, are provided the details about the sensors, data, and main methods involved
in the development of the system for posture assessment. It uses RGB-Depth information
to elaborate a semi-automatic postural and spinal analysis.
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2.3.1 Sensors

The data acquisition is done using the Microsoft Kinect
TM

device. The device bases on
a technology that combines a color camera sensor with a depth sensor. The depth sensor
consists of an infrared laser projector combined with a monochrome CMOS sensor, which
captures three-dimensional video data under any ambient light conditions, but it has a prac-
tical range limit of [1.2m - 3.5m] distance. The color video stream uses 8-bit VGA resolution
(640×480) with a Bayer color filter, while the monochrome depth sensing video stream is in
QVGA resolution (320×240 pixels) with 11-bit depth, which provides 2,048 levels of sensi-
tivity. The device outputs video, to then be processed, at a frame rate of 30Hz.

A specific validation method to evaluate the system using infrared LEDs has been designed

to assess the capabilities of Kinect
TM

as a measurement tool. Each infrared LED comprises
a rechargeable button cell IR2032, a microswitch and a cold white color LED, 6000-8000mcd,
3V-20mW (Figure 2.4).

(a) (b)

Figure 2.4: (a) Led sensor and infrared filter. (b) Validation of distances and angles.

2.3.2 Data and groundtruth definition

In order to measure the precision of the proposed methodology in the different modules of
the system, is created a novel data set consisting of two different parts.

A single multi-modal frame, comprising a still image and a depth map, is needed to perform
an analysis in both static posture and spine curvature analysis. Thus, a battery of 500 sin-
gle multi-modal frames has been labeled by three different observers (Figure 2.5), with an
inter observer correlation superior to 99% for all planes (X,Y, Z). Each frame contains a set
of angles and distances in order to simulate an analysis protocol for the study of posture,
placing twelve infrared led markers on subject’s skin. A total of 20 subjects participated
in the validation of the method. With the aim to perform an automatic validation of the
tests, infrared markers are detected by means of thresholding a HSV infrared-filtered image
(filtered at 850 nanometers).

Sequences of multi-modal frames containing exercises for physical rehabilitation have been
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Figure 2.5: Measuring spatial relations between infrared markers in order to manually label
the single multi-modal frames.

defined to validate range of motion analysis. For this purpose, a set of 25 sequences of
one minute each one has been recorded, in which 5 different subjects appear performing
repeatedly and correctly 5 exercises. This part of the data set contains approximately a
total of 37300 semi-supervised labeled frames.

2.3.3 Methods

The postural analysis is done through the examination of 3D anthropometric values. Given
a set of markers/keypoints defined by the user, the method performs the following steps: a)
RGB and depth data are aligned, b) noise is removed and depth surface is reconstructed,
c) user keypoints and predefined protocols are matched using a novel point-to-point fitting
procedure, d) static measurements about posture and spinal curvature are accurately com-
puted. The static measurements about posture consist of spatial relations between those
keypoints: pairwise distances, distances relative to a vertical or horizontal axis, and angles
among triplets of keypoints or angles between pairs relative to an axis. Regarding the spinal
measurements, it is interpolated a curve representing the spine and also clinical spatial rela-
tions (distances and angles) among vertebrae are computed.

In order to evaluate exercise recognition for rehabilitation purposes, is presented a generic
framework for object segmentation using depth maps based on RF and Graph-cuts theory
(GC) and apply it to the segmentation of human limbs. The use of GC theory has recently
been applied to the problem of image segmentation, obtaining successful results RF is used
to infer a set of probabilities for each data sample, each one indicating the probability of a
pixel to belong to a particular label. Then, this vector of probabilities is used as unary term
in the α−β swap GC algorithm. Moreover, depth of neighbor data points in space and time
are used as boundary potentials. As a result, is obtained a robust segmentation of depth
images based on the defined energy terms.

2.4 Practical Development

Is designed a full functional system devoted to help in the posture reeducation task with the
aim of preventing and correcting musculo-skeletal disorders, as well as tracking the posture
evolution of patients in physical rehabilitation treatments. The system is composed by three
main functionalities: a) static posture analysis (SPA), b) spine curvature analysis (SCA),
and c) range of movement analysis, including automatic gesture recognition (RMA). The
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architecture of the system is shown in Figure 2.6. First, a pre-processing step to remove
noise and reconstruct surfaces is performed. Next, is described each of these stages.

Figure 2.6: Posture analysis system.

2.4.1 Noise removal and surface reconstruction

After aligning RGB and depth data [64, 90], and even though the used depth information
is compelling it is still inherently noisy. Depth measurements often fluctuate and depth
maps contain numerous holes where no readings are obtained. In order to obtain a valid
and accurate depth map, is performed a depth preprocessing step to eliminate erroneous
information caused by noise and to reconstruct surfaces not well defined. Performing the
following methodology:

Noise removal : For each point, is computed the mean distance from it to all its neighbors.
By assuming that the resulted distribution is Gaussian with a mean and a standard devia-
tion, all points whose mean distances are outside an interval defined by the global distances
mean and standard deviation are considered as outliers.

Surface reconstruction: The surface reconstruction process rests on an inpainting image pro-
cessing adaptation for 3D point cloud, based on compactly supported radial basis functions
[84]. Radial basis function (RBF) interpolation is an important method for surface recon-
struction [17] from 3D scatter points. The 3D point cloud extracted from the scene is encoded
as a depth map. Then, the algorithm converts 2D image inpainting problem into implicit
surface reconstruction problem from 3D points set. By performing this reconstruction small
holes are reconstructed with high precision. Using compactly supported radial basis func-
tions decreases the computational complexity in comparison to other common resampling
approaches [88], which attempt to recreate the missing parts of the surface with higher order
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polynomial interpolation among the surrounding data points. Figure 2.7 shows an example
of this process 3.

(a) (b)

(c) (d)

Figure 2.7: (a)-(c) Original depth map. (b)-(d) Filtered and resampled.

Once the data is aligned and depth maps are filtered, the user can access to the main func-
tionalities of the system described below.

2.4.2 Static posture analysis (SPA)

This module computes and associates a set of three-dimensional angles and distances to
keypoints defined by the user. These keypoints correspond to the dermal markers placed
on the patient’s skin. These dermal markers have to be physically placed by a therapist
and, then, manually selected interacting with the RGB data displayed in the screen (which
internally is aligned with the corresponding depth data, providing real 3D information) by
the application to define the set of virtual markers (or keypoints). The keypoints could not
be directly placed in the virtual scenario, because they have to correspond to specific body
bone structures that need to be located by palpation.

The module also allows the therapist the possibility of designing a protocol of analysis.
That is, a predefined set of angular-distance measurements among a set of body keypoints,
all of them defined and saved by the user for a posterior automatic matching. The appli-
cation of these protocols makes possible static posture analysis performed quickly, being
highly customized, and done in an automatic way. Thus, when keypoints have been defined,
the user can choose the most appropriate protocol and the system will finally provide the
measurements automatically. Figure 2.8 shows an example of a predefined protocol (the
set of manual annotated keypoints together with the list of distance and angle relations to

3Experimentally found that our approach for noise removal and background reconstruction ob-
tained better results than standard approaches based on accumulating temporal images (e.g. 30
frames of a stationary subject) for noise reduction and hole filling.



28 POSE ANALYSIS IN DEPTH MAPS

be computed). Figure 2.9 shows an static posture analysis on 3D human body representation.

Figure 2.8: Static posture analysis example.

(a) (b)

Figure 2.9: (a) 3D representation of static posture analysis example.

In order to obtain an intelligent and automatic estimation of posture measurements, is
defined a correspondence procedure among manually placed virtual markers and protocol
markers. Formulating markers matching as an optimization problem. Suppose a protocol
analysis (template) T composed by L markers, T = {T1, T2, ..., TL}, Ti = (xi, yi, zi), and
the current analysis C composed by the same number of markers, C = {C1, C2, ..., CL}
(predefined template and current set of keypoints defined by the user, respectively). Our
goal is to make a one-to-one correspondence so that is minimized the sum of least square
distances among assignments as follows:

argminC′

L∑
i=1

∥∥C′i − Ti∥∥2
, (2.14)
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where C′ is evaluated as each of the possible permutations of the elements of C. For this
task, first, is performed a soft pre-alignment between C and T using Iterative Closest Point
(ICP) [26], and then, is proposed a sub-optimal approximation to the least-squares mini-
mization problem. ICP is based on the application of rigid transformations (translation and
rotation) in order to align both sequences C and T . This attempts to minimize the error of
alignment E(.) between the two marker sequences as follows:

E(R, T ) =

L∑
i=1

L∑
j=1

wi,j‖Ti −R(Cj)− T ‖2, (2.15)

being R and T the rotation matrix and translation vector, respectively. wi,j is assigned 1
if the i-th point of T described the same point in space as the j-th point of C. Otherwise
wi,j = 0. Two things have to be calculated: First, the corresponding points, and second, the
transformation (R, T ) that minimizes E(R, T ) on the base of the corresponding points. For
this task, is applied Singular Value decomposition (SVD). At the end of the optimization, the
new projection of the elements of C is considered for final correspondence. Then, Eq. 2.14
is approximated as follows: Given the symmetric matrix of distancesM of size L×L which
codifies the set of L·(L−1)/2 possible distances among all assignments between the elements
of C and T , is set a distance threshold θM to define the adjacency matrix A:

A(i, j) =

{
1 if M(i, j) < θM

0, otherwise.
(2.16)

Then, instead of looking for the set of L! possible assignments of elements of C and T that
minimizes Eq. 2.14, only the possible assignments (Ci, Tj) that satisfies A(i, j) = 1 are con-
sidered, dramatically reducing the complexity of the correspondence procedure4.

2.4.3 Spine curvature analysis (SCA)

The objective of this task is to evaluate sagittal spine curvatures (curves of the spine pro-
jected on the sagittal plane) by noninvasive graphic estimations in kyphotic and lordotic
patients. Kyphosis and lordosis are, respectively, conditions of over-curvature of the tho-
racic spine (upper back) and the lumbar spine (lower back). The methodology proposed by
Leroux et al [51] offers a three-dimensional analysis valid for clinical examinations of those
conditions. In order to perform this analysis is proceeded as follows. First, the therapist
places the virtual markers on the spine (an example of spine interaction and computation are
shown in Figure 2.10(a)). Then, a few markers are selected and the 3D curve that represents
the spine is reconstructed by linear interpolation (Figure 2.10(b)). Finally, the anthropo-
metric kyphosis Ka and lordosis La are obtained.

The geometric model to compute Ka is represented in the Figure 2.10(c). F divides the
curve representing the thoracic spine in two asymmetric arcs with different radius. hat the
F component begins at the farthest marker (apex, corresponding to T5) and it ends at the
intersection with the T2-to-T12 line. h1 and h2 are the distances from T2 to the intersection

4Experimentally found that high values of θM obtain optimal results and reduces then computa-
tional cost in comparison to other approaches, such as Shape Context [56].
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(a) (b) (c)

Figure 2.10: (a) Sample of analysis. (b) Automatically reconstructed 3D spinal cloud. (c)
Geometric model to obtain anthropometric kyphosis and lordosis value.

and the distance from the intersection to T12, respectively. Then, the summation of two
angles, ϕ1 and ϕ2, represents the kyphosis curve value, where:

ϕ1 = 180− 2 · arctan
(
h1
F

)
,

ϕ2 = 180− 2 · arctan
(
h2
F

)
.

(2.17)

La is calculated in a similar way, though the therapist should note the markers in the lumbar
spine region.

The capacity analysis of the spine is reinforced by a three-dimensional environment that can
be managed by the therapist for a thorough examination (Figure 2.11 and Figure 2.12).

Figure 2.11: Three-dimensional examination environment managed by the therapist.

2.4.4 Range of movement analysis (RMA)

Computer vision has many applications in relation to human motion capture. However, since
there are many different possible configuration possibilities, such as view point, conditions
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Figure 2.12: Spinal curvature analysis example.

of illumination, and complexity of background. Early studies utilized range image in order
to accommodate for uncontrolled scenarios within human pose. This allowed for resolving
intensity problems and view changes through RGB images. RGB images, in this context, are
developed through 3D structure representation. Data acquisition devices during this time
period, were exceedingly expensive and bulky. As a result, these data acquisition devices
had communication interfaces that were cumbersome.

RGB-D technology has been used for obtaining first results in capturing human motions.
The core of the Kinect human recognition framework allows for human body pose extraction
through depth images [41]. This is conducted through Random Forest (RF), allowing for
inferences to occur regarding pixel label probabilities. As a result, estimations of human
joints are made utilizing the mean shift. This allows the human body to be represented in
skeletal form. In fact, recent work conducted by researchers has used the skeletal model, as
well as computer vision techniques, so that complex poses can be detected in cases where
multiple actors are involved.

Human limb segmentation can effectively be done utilizing depth maps. These depth maps
may be based on both RF and Graph cuts theory (GC). These depth maps can be applied
to human limb segmentation. At the same time, GC theory has been applied to a host of
situations, including image segmentation problems. However, RF has been successfully used
in order to infer probability sets for unique data samples. As a result, each data sample has
a unique probability in consideration of individual pixels and labels. Following this, proba-
bilities are analyzed in the establishment of the GC algorithm. As a result of using boundary
potentials based on neighbor data points depth, especially in consideration of space and time,
it is possible to determine a robust segmentation of these depth images, significant because
of defined energy terms. This method is compared to RF and GC approaches for accuracy,
allowing for higher segmentation (Hernández-Vela et al., 2012[38]).

Utilizing the depth image approach allows for complex pose estimation to be interpreted
through object classification, resolved through the evaluation of depth pixel affiliation in
conjunction with a body part label, commonly using respective Probability Distribution
Functions (PDF) (Hernández-Vela et al., 2012[38]). At the same time, pixel classification
results are addressed by re-projection. This also allows for opportunities for the inferences of
3D positions using RF and mean-shift algorithms for several skeletal joints. The purpose of
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utilizing depth maps is to create a segmentation optimization procedure in a general manner
in order to allow for robust segmentation.

The depth difference accounts for the development of two new pixels. A given tree has split
and lead nodes, creating images of a set of ground truth.

The process involves the definition of node splitting criterion. This is conducted through
determining the random splitting thresholds. At the same time, range limits are predefined.

GC theory is applied in image segmentation and consists of a framework aimed at minimizing
energy. Successful applications have occurred in binary and multi-label segmentation. How-
ever, the GC theory can be utilized in conjunction with depth images for RF approach results
optimization (Hernndez-Vela et al., 2012[38]). This allows for automatic spatio-temporal
multi-label segmentation. This specific framework defines energy functions that focus on the
combination of local and contextual information. Furthermore, it is important to determine
the minimum value that corresponds to the problem’s optimal solution. The energy function
has different terms. The first of which is the unary potential, which assigns penalties to pixels
at defined labels, allowing for encoding of local likelihood (Hernndez-Vela et al., 2012[38]).
This is followed by the second term, known as the boundary potential, which allows for
encoding of contextual information for pairs of neighboring pixels (Hernndez-Vela et al.,
2012[38]). The sliding-window approach is used in order to adapt to limited computer mem-
ory resources. The fixed size volume window is defined through segmenting different frames,
covering all video sequence volumes through a one-frame stride. As a result, all frames,
with the exception of the first and last frames, are segmented in two different instances.
The lowest energy value is the one accepted for the best hypothesis. This is determined
from the minimization algorithm that occurs at each execution occurrence. The use of two
main algorithms, the minimum energy suboptimal approximation (swap and expansion) is
found. Swap is noted to be less restrictive, especially in context of edge weight, allowing for
energy functions to be analyzed in broader ranges. Expansion has better results, provided
the function meets certain conditions (Hernndez-Vela et al., 2012[38]).

In order to complement the posture analysis procedure, is computed the range of movement
of the different body articulations. This is a facility aimed to assist in diagnoses and physical
rehabilitation treatments. For this purpose, is performed human limb segmentation using
the RF - GC, approach described above [38] and, then, compute the skeletal model.

Computing the intersection borders among mean shift clusters estimated over the obtained
limb labels of the RF - GC, is obtained a three-dimensional skeletal model composed by nine-
teen joints. The physician then selects joint articulations and automatically obtains their
maximum opening and minimum closing values measured in degrees for a certain period of
time (Figure 2.13).

However, to provide a fully-automatic functional range of movement estimation, it has been
considered those cases in which a therapist is not present to operate with the system, for
instance, when the patient is performing the rehabilitation exercises at home. Obviously, it
would be useless obtaining range of movement measurements when an exercise is not well
performed. This problem was solved by including an action/gesture recognition framework
to the software.
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Figure 2.13: Skeletal model and example of selected articulations with computed dynamic
range of movement (maximum opening and minimum closing values of a joint measured in degrees
for a certain period of time).

2.5 Results

In order to present the results, are discussed the software details and validation procedures.

2.5.1 Software details

As a result of this work, it has been obtained a system that combines hardware - the Kinect
TM

device - and software.

Regarding the software implementation, it has been used the Kinect
TM

SDK framework.
Also used the Point Cloud Library (PCL) to treat cloud points, and to support a free and
three-dimensional visualization it has been used the Visualization Toolkit library (VTK).
The user interface has been developed in the multi-platform Digia Qt technology. The pro-
gramming language used was C++. The system runs fluently on a standard 2-CORE PC
with 4GB of RAM.

In Figure 2.14, it is shown an example of interaction with the system through its graphical
user interface.

(a) (b)

Figure 2.14: (a) Interaction with the system while performing an anatomic spine analysis.
(b) A patient is squatting in a physical rehabilitation treatment and receiving feedback from the
system.
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2.5.2 System validation

The data described previously, in material and methods section, has been defined and used
for the validation of the system.

Results for different distance of the device to the scene are shown in Table 2.4. AAV and ‘◦’
correspond to the average absolute value and degree, respectively. This analysis validates
the accuracy of the SPA and RMA in millimeters and degrees, respectively. Note the high
precision in both tests. In addition, in order to validate the curvature analysis of the spine
(SCA), it has been used a group of 10 patients and performed the Leroux protocol [51],
placing nine markers over the spine. The relationship between lateral radiographic and an-
thropometric measures was assessed with the mean difference. It has used Cobb technique
on the lateral radiograph in order to obtain the coefficients of kyphosis and lordosis. The
results of the SPA validation are shown in Table 2.5. Moreover, after discussing with spe-
cialists in physiotherapy they agreed that the accuracy of the results is more than sufficient
for diagnostic purposes.

Distance subject-device (m) 1,3 1,9 2,2
AAV (◦ movement) 2,2 3,8 5,2
AAV (mm) 0,98 1,42 2,1
AAV (◦ angles) 0,51 1,04 1,24
AAV (%) 0,46 0,77 1,3
Standard Error (%) 1,01 1,18 1,71

Table 2.4: Pose and range of movement precision.

Khyposis range Lordosis range

AAV (◦) 5 6

Table 2.5: Validation of spinal analysis.

2.5.3 Applications

The main scenarios of application of the system are posture analysis, physical rehabilitation,
and fitness conditioning. In Figure 2.15, some real examples where are tested the system are
shown.
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(a)

(b)

(c)

Figure 2.15: The system has been successfully applied in different real case scenarios: (a)
posture reeducation, (b) physical rehabilitation, and (c) fitness conditioning.
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2.6 Conclusions

It has been proposed a generic framework for object segmentation using depth maps based
on Random Forest and Graph-cuts theory in order to benefit from the use of spatial and
temporal coherence, and applied it to the segmentation of human limbs. Random Forest
estimated the probability of each depth sample point to belong to a set of possible object
labels, while Graph-cuts was used to optimize, both locally, spatially and temporally, the RF
probabilities. Results on two novel data sets showed high performance segmenting several
body parts in depth images compared to classical approaches.

It has been designed and built a system for semi-automatic static posture and spine cur-
vature analysis from 3D anthropometric data acquired by a low cost RGB-Depth camera.
The aim of the system is to assist in the prevention and treatment of musculo-skeletal dys-
functions. It has been integrated several frontier computer vision and artificial intelligence
techniques including three-dimensional visual data processing, statistical learning, and time
series analysis. Furthermore, the system is meant to be highly adaptable and customiz-
able to the needs of the therapist. The validation study shows high precision and reliable
measurements in terms of distance, degree and range of movement estimation. Supported
by clinical specialists, it is suitable to be included in the clinical routine, including posture
reeducation, rehabilitation, and fitness conditioning scenarios.

It is necessary to have effective body posture analysis and evaluation due to different physical
conditions, including “common MSDs such as scoliosis, kyphosis, lordosis, arthropathy, or
spinal pain”. Body posture analysis is needed to show the symptoms related to some of these
disorders, prompting the need for “reliable, noninvasive, automatic, and easy to use tools for
supporting diagnostic”. The development of these systems is still difficult due to continuous
changes in the human body. However, it is suggested that digital biometry is an effective
way to measure human body posture. Digital biometry is considered to be technology that
is used to obtain reliable information regarding physical objects through recording images,
measuring images, or interpreting images. The novel system uses RGB-Depth information
to elaborate a semi-automatic postural and spinal analysis, and to automatically estimate
the range of movement of the different limbs. Posture assessment and range of movement
estimation are also reliable for physical rehabilitation purposes.



Chapter 3

Gesture Recognition in Depth Data

Abstract

In this chapter it is presented a gesture recognition approach for depth video data based on
a novel Feature Weighting approach within the Dynamic Time Warping framework. Depth
features from human joints are compared through video sequences using Dynamic Time
Warping, and weights are assigned to features based on inter-intra class gesture variability.
Feature Weighting in Dynamic Time Warping is then applied for recognizing begin-end of
gestures in data sequences. The obtained results recognizing several gestures in depth data
show high performance compared with classical Dynamic Time Warping approach. In order
to promote the research advance on this field, it has been also organized in collaboration with
“ChaLearn Look at People”, a challenge on multi-modal gesture recognition. It has been
made available a large video database of 13, 858 gestures from a lexicon of 20 Italian gesture
categories recorded with a KinectTM camera, providing the audio, skeletal model, user mask,
RGB and depth images. The focus of the challenge was on user independent multiple gesture
learning. There are no resting positions and the gestures are performed in continuous se-
quences lasting 1-2 minutes, containing between 8 and 20 gesture instances in each sequence.
As a result, the dataset contains around 1.720.800 frames; 54 international teams partici-
pated in the challenge, and outstanding results were obtained by the first ranked participants.

3.1 Introduction

Visual analysis of human motion is currently one of the most active research topics in Com-
puter Vision. Several segmentation techniques for body pose recovery have been recently
presented, allowing for better generalization of gesture recognition systems. The evaluation
of human behavior patterns in different environments has been a problem studied in social
and cognitive sciences, but now it is raised as a challenging approach to computer science
due to the complexity of data extraction and its analysis.

In this chapter, is presented a system for gesture recognition using depth data. From the
point of view of data acquisition, many methodologies treat images captured by visible-

37
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light cameras. Computer Vision are then used to detect, describe, and learn visual fea-
tures [22, 57]. The main difficulties of visual descriptors on RGB data is the discrimination
of shapes, textures, background objects, changing in lighting conditions and viewpoint. On
the other hand, depth information is invariant to color, texture and lighting objects, mak-
ing it easier to differentiate between the background and the foreground object. The first
systems for depth estimation were expensive and difficult to manage in practice. Earlier
research used stereo cameras to estimate human poses or perform human tracking [72]. In
the past few years, some research has focused on the use of time-of-flight range cameras
(TOF) [42, 67, 81]. Nowadays, it has been published several works related to this topic
because of the emergence of inexpensive structured light technology, reliable and robust to
capture the depth information along with their corresponding synchronized RGB image.
This technology has been developed by the PrimeSense [65] company and marketed by Mi-
crosoft XBox under the name of Kinect. Using this sensor, Shotton et al. [76] present one
of the greatest advances in the extraction of the human body pose from depth images, rep-
resenting the body as a skeletal form comprised by a set of joints.

Once features are extracted from video data, the second step is the classification of gestures
with the aim of describing human behavior. This step is extremely challenging because of
the huge number of possible configurations of the human body that defines human motion.
In this case, is based on the fifteen joints extracted by the approach of [76] as the set of
features that will define the different gestures to recognize. A common approach for gesture
recognition to model sequential data is Hidden Markov Model (HMM) [21], which is based on
learning the transition probabilities among different human state configurations. Recently,
there has been an emergent interest in Conditional Random Field (CRF) [77] for the learning
of sequences. However, all these methods assume that is known the number of states for
every motion. Other approaches make use of templates or global trajectories of motion [18],
being highly dependent of the environment where the system is built. In order to avoid
all these situations, the proposal is focused within the Dynamic Time Warping framework
(DTW) [91]. Dynamic Time Warping allows to align two temporal sequences taking into
account that sequences may vary in time based on the subject that performs the gesture.
The alignment cost can be then used as a gesture appearance indicator.

The main contribution here is the introduction of a new method based on DTW for gesture
recognition using depth data. It is proposed a Feature Weighting approach within the DTW
framework to improve gesture/action recognition. First, it is estimated a temporal feature
vector of subjects based on the 3D spatial coordinates of fifteen skeletal human joints. From
a set of different ground truth behaviors of different length, DTW is used to compute the
inter-class and intra-class gesture joint variability. These weights are used in the DTW cost
function in order to improve gesture recognition performance. It has been tested the ap-
proach on several human behavior sequences captured by the Kinect sensor. It is showed the
robustness of the novel approach recognizing multiple gestures, identifying beginning and
end of gestures in long term sequences, and showing performance improvements compared
with classical DTW framework.

The rest of the chapter describes the Challenge organized, called “Multi-modal Gesture
Recognition Challenge”, in order to promote the research advance on gesture recognition
based on multi-modal data.
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3.2 Data Acquisition

This section describes the processing of depth data in order to perform the segmentation of
the human body, obtaining its skeletal model, and computing its feature vector.

For the acquisition of depth maps is use the public API OpenNI software[2]. This middle-
ware is able to provide sequences of images at a rate of 30 frames per second. The depth
images obtained are 340×280 pixels resolution. These features are able to detect and track
people to a maximum distance of six meters from multi-sensor device, as shown in Figure 3.1.

Figure 3.1: detection and tracking in uncontrolled environments.

It is used the method of [76] to detect the human body and its skeletal model. The approach
of [76] uses a huge set of human samples to infer pixel labels through Random Forest estima-
tion, and skeletal model is defined as the centroid of mass of the different dense regions using
mean shift algorithm. Experimental results demonstrated that it is efficient and effective for
reconstructing 3D human body poses, even against partial occlusions, different points of view
or no light conditions. The main problem of the skeletal representation is that it requires
from a reference pose for initialization. In this sense, is performed an automatic calibration
to fit human model and automatically obtain skeletal representation.

3.2.1 Automatic calibration

In order to define an automatic fitting of the human body without the need of detecting a
specific pose for calibration, is defined a set of silhouettes associated to plausible normalized
models of the skeletal form C. These models make possible initialization of the skeletal
model for a set of silhouettes. In order to find the model that best fits the subject of the
scene is used a similarity function of structure θ between consecutive frames. This similarity
function is based on the alignment of the consecutive skeletal joints to obtain their respective
Euclidean distance in two-dimensional space, using ζ as a similarity threshold value. Thus,
the initialization of silhouette is given by,

argminiθ(C,Ci), θ(C,Ci) < ζ (3.1)

being C the skeletal model at the current frame and Ci the i-th trained model.
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3.2.2 Feature Vector Extraction

The articulated human model is defined by the set of 15 reference points shown in Figure 3.2.
This model has the advantage of being highly deformable, and thus, able to fit to complex
human poses.

Figure 3.2: 3D articulated human model consisting of 15 distinctive points.

In order to subsequently make comparisons and analyze the different extracted skeletal mod-
els, is needed to normalize them. In this sense, it is used the neck joint of the skeletal model
as the origin or coordinates (OC). Then, the neck is not used in the frame descriptor, and the
remaining 14 joints are using in the frame descriptor computing their 3D coordinates with
respect to the OC. This transformation allows us to relate pose models that are at different
depths, being invariant to translation, scale, and tolerant to corporal differences of subjects.
Thus, the final feature vector Vj at frame j that defines the human pose is described by 42
elements (14 joints × three spatial coordinates),

Vj = {{v1
j,x, v

1
j,y, v

1
j,z}, ..., {v14

j,x, v
14
j,y, v

14
j,z}}

3.3 Feature Weighting in DTW

The original DTW algorithm [60] was defined to match temporal distortions between two
models, finding an alignment warping path between the two time series Q = {q1, .., qn} and
C = {c1, .., cm}. In order to align these two sequences, a Mm×n matrix is designed, where
the position (i, j) of the matrix contains the distance between ci and qj . The Euclidean
distance is the most frequently applied. Then, a warping path,

W = {w1, .., wT },max(m,n) ≤ T < m+ n+ 1

is defined as a set of “contiguous” matrix elements that defines a mapping between C and
Q. This warping path is typically subjected to several constraints:



3.3. Feature Weighting in DTW 41

Boundary conditions: w1 = (1, 1) and wT = (m,n).

Continuity: Given wt−1 = (a′, b′), then wt = (a, b), a− a′ ≤ 1 and b− b′ ≤ 1.

Monotonicity: Given wt−1 = (a′, b′), wt = (a, b), a− a′ ≤ 1 and b− b′ ≤ 1, this forces
the points in W to be monotically spaced in time.

The focus of interest is at the final warping path that satisfying these conditions minimizes
the warping cost,

DTW (Q,C) = min

 1

T

√√√√ T∑
t=1

wt

 (3.2)

where T compensates the different lengths of the warping paths. This path can be found
very efficiently using dynamic programming to evaluate the following recurrence which de-
fines the cumulative distance γ(i, j) as the distance d(i, j) found in the current cell and the
minimum of the cumulative distance of the adjacent elements,

γ(i, j) = d(i, j) + min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)} (3.3)

Given the nature of the system to work in uncontrolled environments, it is continuously
reviewing the stage for possible actions or gestures. In this case, the input feature vector Q
is of “infinite” length, and may contain segments related to gesture C at any part.

Next, it is described the algorithm for begin-end of gesture recognition and the Feature
Weighting proposal within the DTW framework.

3.3.1 Begin-end of gesture detection

In order to detect a begin-end of gesture C = {c1, .., cm} in a maybe infinite sequence
Q = {q1, .., q∞}, a Mm×∞ matrix is designed, where the position (i, j) of the matrix con-
tains the distance between ci and qj , quantifying its value by the Euclidean distance, as
commented before. Finally, the warping path is defined by W = {w1, .., w∞} as in the stan-
dard DTW approach. The aim is focused on finding segments of Q sufficiently similar to the
sequence C. The system considers that there is correspondence between the current block k
in Q and a gesture if satisfying the following condition,

M(m, k) < µ, k ∈ [1, ..,∞].
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for a given cost threshold µ. This threshold value is estimated in advance for each of the
categories of actions or gestures using leave-one-out cross-validation strategy. This involves
using a single observation from the original sample as the validation data, and the remaining
observations as the training data. This is repeated such that each observation in the sample
is used once as the validation data. At each iteration, it is evaluated the similarity value
between the candidate and the rest of the training set. Finally it is choosen the threshold
value which is associated with the largest number of hits within a category.

Once detected a possible end of pattern of gesture or action, the working pathW can be found
through backtracking of the minimum path from M(m, k) to M(0, z), being z the instant
of time in Q where the gesture begins. The algorithm for begin-end of gesture detection
for a particular gesture C in a large sequence Q using DTW is summarized in Table 3.1.
Note that d(i, j) is the cost function which measures the difference among the descriptors
Vi and Vj . An example of a begin-end gesture recognition for a model and infinite sequence
together with the working path estimation is shown in Figure 3.3.

Input: A gesture model C = {c1, .., cm}, its sim-
ilarity threshold value µ, and the testing se-
quence Q = {q1, .., q∞}. Cost matrix Mm×∞
is defined, where N(w), w = (i, t) is the set of
three upper-left neighbor locations of w in M .

Output: Working path W of the detected gesture,
if any

// Initialization
for i = 1 : m do

for j = 1 :∞ do
M(i, j) =∞

end
end
for j = 1 :∞ do

M(0, j) = 0
end
for t = 0 :∞ do

for i = 1 : m do
x = (i, t)
M(w) = d(w) + minw′∈N(w)M(w′)

end
if M(m, t) < µ then

W = {argminw′∈N(w)M(w′)}
return

end
end

Table 3.1: DTW begin-end of gesture recognition algorithm.
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Figure 3.3: Begin-end of gesture recognition of a model C in an infinite sequence Q.

3.3.2 Feature Weighting in DTW

Is proposed a Feature Weighting approach to improve the cost distance computation d(w)
of previous begin-end DTW algorithm.

In standard DTW algorithm, cost distances among feature vectors ci and qj (3D coordinates
of the skeletal models in this case) are computed equally for each feature of the descriptors.

However, it is intuitive that not all skeletal elements of the model participate equally for dis-
criminating the performed gesture. For instance, the movement of the legs when performing
hand shaking should not have influence, and thus, computing their deviation to a corre-
spondence model of the gesture adds noise to the cost similarity function. In this sense, the
proposal is based on associating a discriminatory weight to each joint of the skeletal model
depending on its participation in a particular gesture. In order to automatically compute
this weight per each joint, it is proposed an inter-intra gesture similarity algorithm.

First, it is performed a weight training algorithm based on a ground truth data of gestures.
Given the data composed by {n1, .., nN} gesture categories described using skeletal descrip-
tors, the objective is to obtain the inter-intra coefficient of the joints for the data set. This
estimation is performed per each joint using a symmetric cost matrix DN×N . Each matrix
element Dp(i, j) for the matrix of joint p contains the mean DTW cost between all pairs of
samples Ci, Cj , ∀Ci ∈ ni, ∀Cj ∈ nj only considering the features of the descriptor related to
the p-th joint, where ni and nj represent the set of samples for gesture categories i and j of
the data set.

The mean DTW value at each position of the matrix Dp represents the variability of joint p
between a pair of gestures. Note that the diagonal of D represents the intra-gesture variabil-
ity per joint for all the gesture categories, meanwhile the rest of the elements compare the
variability of joint p for two different gesture categories, codifying the inter-gesture variabil-
ity. Since gestures, as any other object recognition system, will be more discriminative when
increasing inter-distance and reducing intra-distance, a discriminative weight is defined as
shown in Algorithm 3.2, which assigns high cost to joints high high intra-inter difference
values and low cost otherwise. Moreover, the assigned weight is normalized in the same
range to be comparable for all joints. Note that at the end of this procedure it is obtained a
final global weight vector ν = {ν1, .., νz}, with a weight value νp for the p-th joint, which is
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included in the re-definition of the begin-end DTW algorithm cost function d(w) to improve
gesture recognition performance as follows,

d(ci, cj) =

√√√√ |ci|∑
p=1

((cpi − c
p
j ) · νp)2, (3.4)

where |ci| is the length of the feature vector ci. The Feature Weighting algorithm for com-
puting the weight vector ν = {ν1, .., νz} is summarized in 3.2.

Input: Ground-truth data formed by N sets of gestures
{n1, .., nN}.

Output: Weight vector ν = {ν1, .., νz} associated with
skeletal joints so that

∑z
i=1 ν

i = 1.
ν = ∅
for p = 1 : z do // Number of joints

for i = 1 : N do
for j = i : N do

Dp(i, j) = mean(DTW (Civ, C
j
w)),∀v, w

gesture samples of categories i and j.
end

end

νintra =
∑N−1
i=1

∑N
j=i+1D

p(i,j)

N×(N−1)
2

// Computer intra-class

variability
νinter = Trace(Dp)

m
// Computer inter-class variability

νp = max(0, νintra−νinter
νintra

)// Compute global weight
for joint p
ν = ν ∪ νp

end
Normalize ν so that

∑z
i=1 ν

i = 1

Table 3.2: Feature Weighting in DTW cost measure.

3.3.3 Results

Before the presentation of the results, first, are discussed the data, methods and parameters,
and validation protocol of the experiments.

Data: It is designed a new data set of gestures using the Kinect device consisting of five
different categories: jumping, bendding, clapping, greeting, and noting with the hand.
It has been considered 10 different actors, 10 different backgrounds, and 100 sequences
per subject for recording the data set. Thus, the data set contains the high variabil-
ity from uncontrolled environments. The resolution of the video depth sequences is
340×280 at 30 FPS. The data set contains a total of 1000 gesture samples considering
all the categories. The ground-truth of each sequence is performed manually by ex-
amining and noting the position in the video when some actor begin-ends a gesture.
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Some samples of the captured gestures for different categories are shown in Figure 3.4.

Methods and parameters: For the implementation of the system is used C/C++, ef-
ficiently using dynamic programming to evaluate the recurrence which defines the
cumulative distance between vectors of features on each frame. The people detection
system used is provided by the public library OpenNI. This library has a high accu-
racy in people detection, allowing multiple detection even in cases of partial occlusions.
The detection is accurate as people remain at a minimum of 60cm from the camera
and up to 4m, but can reach up to 6m but with less robust and reliable detection.
For automatically initialization of the system are used 20 calibration poses. These
calibration models are also obtained through the library OpenNI. This calibration set
has been built with high variability in order to automatically obtain the feature vector
in different human pose configurations. During the calibration process it is used a
structural coherence function θ from the fifth consecutive frame. This assures stabi-
lization to obtain a reliable ζ for a better fit of the skeletal model. In Figure 3.5 are
shown different initialization models.

Figure 3.4: Samples of gestures for different categories of the dataset.

Figure 3.5: Different calibration poses.
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Validation protocol: For the validation of the approach and classical DTW algo-
rithm, is computed the Feature Weighting vector ν and gesture cost threshold µ over
a leave-one-out validation. The validation sequences may have different length size
since they can be aligned using DTW algorithm and trained for the different esti-
mated values of µ. Is validated the begin-end of gesture DTW approach and compare
with the Feature Weighting methodology within the same framework. As a validation
measurement is computed the confusion matrix for each test sample of the leave-out-
out strategy. This methodology allows us to perform an exhaustive analysis of the
methods and data set. Adding all test confusion matrices in a performance matrix
Cm, final accuracy A is computed using the following formula,

A = 100 · Trace(Cm)

NC +
∑m
i=1

∑m
j=1 Cm(i, j)

(3.5)

Where NC contains the number of samples of the data set that has not been clas-
sified by any gesture since the classification threshold µ has not been satisfied. This
evaluation is pessimistic and realistic since both a sample which is not classified or is
classified more than once penalizes the final evaluation measurement.

The obtained results applying DTW begin-end gesture recognition and including the Feature
Weighting approach on the new data set are shown in Table 3.3. The results show the final
performance per gesture over the whole data set using both classification strategies. The
best performance per category is marked in bold. Note that for all gesture categories, the
begin-end DTW technique with Feature Weighting improves the accuracy of standard DTW.
Only in the case of the jump category the performance is maintained. An example of gesture
recognition in a sequence of the data set is shown in Figure 3.6.

Classification Results Feature Weighting DTW

Gesture Begin-end DTW Feature Weighting

Jump 68 68
Bend 63.4 68
Clap 42 55
Greet 64.2 73
Note 68 76

Table 3.3: Classification performance A over the gesture data set for the five gesture categories
using DTW begin-end approach and including the Feature Weighting methodology.
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Figure 3.6: Gesture recognition example in a sequence of the dataset.
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3.4 Multi-modal Gesture Recognition Challenge 2013:
Dataset and Results

Predictive modelling competitions or Challenges have been fostering progress in Computer
Vision in recent years. One of the most important challenges so far has been undoubtedly
the PASCAL Visual Object Classes Challenges1, organized by Everingham et al. [27], which
have contributed to push the state-of-the-art on image classification, detection and segmen-
tation.

These initial efforts concentrating on image understanding are now moving towards the
analysis of video data, in which recognizing human activities in visual data has received
much attention. Improving automatic recognition of human actions in visual data will allow
the development of novel applications useful in surveillance and security, new generation of
eHealth applications such as assisted living, the development of natural interfaces for Human
Computer Interaction, and improved control in leisure scenarios.

Several contests have been organized in activity recognition with applications in video surveil-
lance, for example the VIRAT Action Recognition Challenge2, the 3D human reconstruction
and action recognition Grand Challenge 3, the Human Activities Recognition and Localiza-
tion Competition 4 and the Contest on Semantic Description of Human Activities5.

Following this trend, it has been organized a challenge called “Multi-modal Gesture Recog-
nition Challenge”6 focusing on recognizing multiple gestures from a novel data set of videos
recorded with a Microsoft KinectTM camera. KinectTM has revolutionized computer vision in
recent years by providing an affordable 3D camera. The applications, initially driven by the
game industry [75], have been rapidly diversifying and include video surveillance, computer
interfaces, robot vision and control, and education [39].

Our previous one-shot learning challenge [35] was devoted to learning a gesture category from
a single example of gesture coming from a limited vocabulary, using RGB and depth data.
Our novel data set offers several gesture categories labeled from a dictionary of 20 Italian
sign gesture categories. Several features make this new competition extremely challenging,
including the recording of continuous sequences, the presence of distracter gestures (not in-
cluded in the dictionary), the relatively large number of categories, the length of the gesture
sequences, and the variety of users. To attack such a difficult problem, several modalities are
provided in the data set, including audio, RGB, depth maps, user masks, and user skeletal
model. The presentation of the data set and the results obtained in the Mutimodal Gesture
Recognition Challenge are explained in the next sections.

1http://pascallin.ecs.soton.ac.uk/challenges/VOC
2http://www.umiacs.umd.edu/conferences/cvpr2011/ARC
3http://mmv.eecs.qmul.ac.uk/mmgc2013/
4http://liris.cnrs.fr/harl2012/
5http://cvrc.ece.utexas.edu/SDHA2010/
6http://gesture.chalearn.org
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3.4.1 Problem setting and data

The focus of the challenge is on multiple instance, user independent learning of gestures
from multi-modal data, which means learning to recognize gestures from several instances
for each category performed by different users, drawn from a vocabulary of 20 gesture cat-
egories. A gesture vocabulary is a set of unique gestures, generally related to a particular
task. In this challenge it has been focused on the recognition of a vocabulary of 20 Italian
cultural/anthropological signs, see Figure 3.7 for one example of each Italian gesture.

(1) Vattene (2) Viene qui (3) Perfetto (4) E un furbo (5) Che due palle

(6) Che vuoi (7) Vanno
d’accordo

(8) Sei pazzo (9) Cos hai combi-
nato

(10) Nonme me fr-
iega niente

(11) Ok (12) Cosa ti farei (13) Basta (14) Le vuoi pren-
dere

(15) Non ce ne piu
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(16) Ho fame (17)Tanto tempo
fa

(18) Buonissimo (19) Si sono messi
d’accordo

(20) Sono stufo

Figure 3.7: Data set gesture categories.

In all the sequences, a single user is recorded in front of a KinectTM , performing natural com-
municative gestures and speaking in fluent Italian. The main characteristics of the dataset
of gestures are:

• 13.858 gesture samples recorded with the KinectTM camera, including audio, skeletal
model, user mask, RGB, and depth images.

• RGB video stream, 8-bit VGA resolution (640×480) with a Bayer color filter, and depth
sensing video stream in VGA resolution (640×480) with 11-bit. Both are acquired in 20 fps
on average.

• Audio data is captured using KinectTM 20 multi-array microphone.

• A total number of 27 users appear in the data set.

• The data set contains the following number of sequences, development: 393 (7.754 ges-
tures), validation: 287 (3.362 gestures), and test: 276 (2.742 gestures), each sequence lasts
between 1 and 2 minutes and contains between 8 and 20 gesture samples, around 1.800
frames. The total number of frames of the data set is 1.720.800.

• All the gesture samples belonging to 20 main gesture categories from an Italian gesture
dictionary are annotated at frame level indicating the gesture label.

• 81% of the participants were Italian native speakers, while the remaining 19% of the users
were not Italian, but Italian-speakers.

• All the audio that appears in the data is from the Italian dictionary. In addition, sequences
may contain distracter words and gestures, which are not annotated since they do not belong
to the main dictionary of 20 gestures.

This dataset, available at http://sunai.uoc.edu/chalearn, presents various features of
interest as listed in Table 3.4.

http://sunai.uoc.edu/chalearn
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Table 3.4: Easy and challenging aspects of the data.

Easy

Fixed camera
Near frontal view acquisition
Within a sequence the same user
Gestures performed mostly by arms and hands
Camera framing upper body
Several available modalities: audio, skeletal model,
user mask, depth, and RGB
Several instances of each gesture for training
Single person present in the visual field
Challenging

Within each sequence:
Continuous gestures without a resting pose
Many gesture instances are present
Distracter gestures out of the vocabulary may be
present in terms of both gesture and audio
Between sequences:
High inter and intra-class variabilities of gestures in
terms of both gesture and audio
Variations in background, clothing, skin color, light-
ing, temperature, resolution
Some parts of the body may be occluded
Different Italian dialects
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Figure 3.8: Skeleton joint positions.7

3.4.2 Data format and structure

Is provided the X audio.ogg, X color.mp4, X depth.mp4, and X user.mp4 files containing
the audio, RGB, depth, and user mask videos for a sequence X, respectively, see Figure 3.9.
Is also provided a script in order to export the data in Matlab, which contains the following
Matlab structures:

• NumFrames: Total number of frames.

• FrameRate: Frame rate of the video in fps.

• Audio: Structure that contains WAV audio data.

– y: Audio Data.

– fs: Sample rate for the data.

• Labels: Structure that contains the data about labels contained in the sequence,
sorted in order of appearance. The labels considered to the 20 gesture categories as
shown in Figure 3.7.

7Image from
http://msdn.microsoft.com/en∼us/library/microsoft.kinect.jointtype.aspx
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– Name: The name given to this gesture.

1. vattene 11. ok
2. vieniqui 12. cosatifarei
3. perfetto 13. basta
4. furbo 14. prendere
5. cheduepalle 15. noncenepiu
6. chevuoi 16. fame
7. daccordo 17. tantotempo
8. seipazzo 18. buonissimo
9. combinato 19. messidaccordo
10. freganiente 20. sonostufo

• RGB: This matrix represents the RGB color image, expressed in 8-bit VGA resolution
(640×480) with a Bayer color filter.

• Depth: The Depth matrix contains the pixel-wise z component, VGA resolution
(640×480) represented with 11 bits. The value of depth is expressed in millimeters.

• UserIndex: The user index matrix represents the player index of each depth pixel.
A non-zero pixel value means that a tracked subject occupies the pixel, and a value
of 0 denotes that no tracked subject occupies the pixel..

• Skeleton: An array of Skeleton structures is contained within a Skeletons array. It
contains the joint positions, and bone orientations comprising a skeleton. The format
of a Skeleton structure is:.

– JointType: Skeleton joints that make up a tracked skeleton. Figure 3.8 visual-
izes these joint types.

1. HipCenter 9. HipLeft
2. Spine 10. KneeLeft
3. ShoulderCenter 11. AnkleLeft
4. Head 12. FootLeft
5. ShoulderLeft 13. HipRight
6. ElbowLeft 14. KneeRight
7. WristLeft 15. AnkleRight
8. HandRight 16. FootRight

– JointPosition: It contains the joint positions in the next three coordinates:

∗ WorldPosition: The world coordinates position structure represents the
global position of a tracked joint. The format is X, Y, Z which represents
the x, y, and z components of the subject´s global position (in millimeters).

∗ PixelPosition: The pixel coordinates position structure represents the po-
sition of a tracked joint. The format of the Position structure is X, Y which
represent the x and y components of the joint location over the RGB map
(in pixels coordinates).

∗ WorldRotation: The world rotation structure contains the orientations of
skeletal bones in terms of absolute transformations and is formed by a 20×4
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matrix, where each row contains the W, X, Y, Z values of the quaternion
related to the rotation. The world rotation structure provides the orienta-
tion of a bone in the 3D camera space. The orientation of a bone is relative
to the child joint and the Hip Center joint still contains the orientation of
the player/subject.

RGB Depth User mask Skeletal model

Figure 3.9: Different data modalities of the provided data set.

3.4.3 Protocol and evaluation

The timeline of the competition was as follows:

• April 30th, 2013: Beginning of the challenge competition, release of first data examples.

•May 20th, 2013: Full release of training and validation data. Training data with ground
truth labels.

• August 1st, 2013: Encrypted Final evaluation data and ground truth labels for the
validation data are made available.

• August 15th, 2013: End of the challenge competition. Deadline for code submission.
The organizers start the code verification by running it on the final evaluation data and
obtaining the team scores.

• August 25th, 2013: Deadline for fact sheets.

• September 1st, 2013: Release of the verification results to the participants for review.

The challenge consisted of two main components: a development phase (April 30th to Aug
1st) and a final evaluation phase (Aug 2nd to Aug 15th). The submission and evaluation
of the challenge entries was via the Kaggle platform 8. The official participation rules were
provided on the website of the challenge. In addition, publicity and news on the ChaLearn
Multi-modal Gesture Recognition Challenge were published in well-known online platforms,
such as LinkedIn, Facebook, Google Groups and the ChaLearn website.

During the development phase, the participants were asked to build a system capable of
learning from several gesture samples a vocabulary of 20 Italian sign gesture categories. To
that end, the teams received the development data to train and self-evaluate their systems.

8https://www.kaggle.com/c/multi-modal-gesture-recognition
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In order to monitor their progress they could use the validation data for which the labels
were not provided. The prediction results on validation data could be submitted online to
get immediate feed-back. A real-time leaderboard showed to the participants their current
standing based on their validation set predictions.

During the final phase, labels for validation data are published and the participants per-
formed similar tasks as those performed in previous phase, using the validation data and
training data sets in order to train their system with more gesture instances. The partici-
pants had only few days to train their systems and upload them. The organizers used the
final evaluation data in order to generate the predictions and obtain the final score and rank
for each team. At the end, the final evaluation data was revealed, and authors submitted
their own predictions and fact sheets to the platform.

3.4.4 Evaluation metric

For each unlabeled video, the participants were instructed to provide an ordered list of labels
R corresponding to the recognized gestures. It has been compared this list with the truth
labels T i.e. the prescribed list of gestures that the user had to play during data collection.
It has been computed the Levenshtein distance L(R, T ), that is the minimum number of
edit operations (substitution, insertion, or deletion) that one has to perform to go from R
to T (or vice versa). The Levenhstein distance is also known as “edit distance”. For ex-
ample: L([124], [32]) = 2, L([1], [2]) = 1, L([222], [2]) = 2. The overall score is the sum of
the Levenshtein distances for all the lines of the result file compared to the corresponding
lines in the truth value file, divided by the total number of gestures in the truth value file.
This score is analogous to an error rate. For simplicity, in what follows, called it Error
Rate, although it can exceed 1.0. A public score appeared on the leaderboard during the
development period and was based on the validation data. Subsequently, a private score for
each team was computed on the final evaluation data released at the end of the development
period, which was not revealed until the challenge was over. The private score was used to
rank the participants and determine the prizes.

3.4.5 Results

The challenge attracted high level of participation, with a total of 54 teams and near 300
total number of entries. This is a good level of participation for a computer vision challenge
requiring very specialized skills. Finally, 17 teams successfully submitted their prediction in
final test set, while providing also their code for verification and summarizing their method
by means of a fact sheet questionnaire.

After verifying the codes and results of the participants, the final scores of the top rank
participants on both validation and test sets were made public: these results are shown in
Table 3.5, where winner results on the final test set are printed in bold. In the end, the final
error rate on the test data set was around 12%.
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Table 3.5: Top rank results on validation and test sets.

TEAM Validation score Test score

IVA MM 0.20137 0.12756
WWEIGHT 0.46163 0.15387

ET 0.33611 0.16813
MmM 0.25996 0.17215
PPTK 0.15199 0.17325
LRS 0.18114 0.17727

MMDL 0.43992 0.24452
TELEPOINTS 0.48543 0.25841

CSI MM 0.32124 0.28911
SUMO 0.49137 0.31652
GURU 0.51844 0.37281

AURINKO 0.31529 0.63304
STEVENWUDI 1.43427 0.74415

JACKSPARROW 0.86050 0.79313
JOEWAN 0.13653 0.83772

MILAN KOVAC 0.87835 0.87463
IAMKHADER 0.93397 0.92069

3.4.6 Statistics on the results

Figure 3.11 shows the correlation of the validation and test error scores obtained by the top
ranked participants of the challenge. One can see that most of them obtain similar results
in both sets. However, there exist a few outliers that show non-correlated results among
validation and test scores. Most of the participants that achieved top positions in test scores
also achieved high recognition rates on the validation set. However, some participants that
achieved low error on validation, considerably increased their error on the test set. It could
be mainly related to overfitting of method parameters on the validation data, which could
not be able to generalize to the variability of new users present on the test set. On the other
hand, the final scores on the test set are in general lower than in the validation set. This
may be produced because more data is trained by the participants when testing for final
evaluation set, and thus, if propertly trained, this small final improvement is expected. The
best public score on the validation set achieved during the period of the challenge taking
into account all team submissions over time is summarized in Figure 3.10.
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Figure 3.10: Best public score obtained in the validation set during the Challenge.

Figure 3.11: Correlation results among the validation and test results of the top ranked
participants.

In Figure 3.12, is showed the histograms of validation and test scores based on the best score
achieved by each team on each of the two sets. One can see that the scores on the validation
set become more sparse, and the teams that finally submitted their predictions to the test
set, except for two cases, achieved scores inferior to 1 Levenstein score error.

Figure 3.12: Validation and test scores histograms.
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3.4.7 Fact sheets

It has been asked the participants to fill out a survey about the methods employed. The top
ranked 17 test participants filled out this survey. It has been briefly summarize the results
next.

From the questions within the survey, the most relevant aspects for the challenge where: the
modalities considered for the methods, the temporal segmentation methodology applied, the
considered fusion strategy, as well as the recognition techniques considered. The information
about modalities, segmentation strategy, fusion, classifier, and programming language are
summarized in Figures 3.13, 3.14, 3.15, 3.16, and 3.17, respectively. The details of each
particular team strategy are shown in Table 3.6.

Figure 3.13: Modalities considered.

Figure 3.14: Segmentation strategy.
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Looking at the considered modalities in Figure 3.13, one can see that none of the teams
considered only audio information, and most of them used multiple modalities for describing
the data. In particular, skeleton was the most considered feature when no multiple modali-
ties were used. In general, combining audio plus skeleton information was the predominant
strategy among the participants, and the one considered by the first three ranked teams on
the test set.

The considered temporal segmentation strategies are shown in Figure 3.14. One can see that
two strategies were mainly applied: based on features and based on temporal windows or
classifiers (such as Dynamic Time Warping). For the first case, audio information and joint
positions were the most considered information to split the continuous sequence into gesture
candidates. In the second case, Sliding-Windows technique was the preferred choice of the
participants.

Regarding the fusion strategy (Figure 3.15), several authors did not apply any, since only
one cue was used in their approach or different cues were independently used in different
stages, such as one for temporal segmentation and the other one for describing segmented
candidate gestures and final classification. Regarding the participants that fused different
modalities, few of them combined feature vectors in an early fusion fashion before training
a classifier. The preferred strategy was to train classifiers on different feature sets from dif-
ferent modalities and fuse the weighted outputs of classifiers in a late fusion fashion.

Regarding the classifiers (Figure 3.16), it is interesting to see the broad variety of strategies,
covering most of the state-of-the-art Machine Learning strategies. Both discriminative and
generative classifiers were considered, in all cases applying supervised learning. The pre-
ferred strategy was Hidden Markov Models. On the other hand dynamic programming, and
in particular Dynamic Time Warping, which of often one of the preferred methods for gesture
recognition, was not widely applied in our challenge (fourth choice). In particular, Random
Forest and Neural Network variants were the second and third choice of the participants,
respectively.

Figure 3.15: Fusion strategy.
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Figure 3.16: Learning strategy.

Figure 3.17: Programming language.

Finally, Figure 3.17 summarizes the programming languages: mainly Matlab/Octave and
Python languages were used, and in few cases the codes were speeded up by means of GPU
programming.

Table 3.6 shows the particular strategy from these statistics applied for each team of the top
ranked positions of the challenge. Interestingly, the three top ranked participants agree in
the modalities and segmentation strategy considered, although they differ in the final applied
classifier.

3.4.8 Summary of the winner methods

Table 3.6 shows the summary of the strategies considered by each of the top ranked par-
ticipants on the test set. Next, it has been briefly described in more detail the approach
designed by the three winners of the challenge.

The first ranked team IV AMM on the test set used a feature vector based on audio and
skeletal information, and applied late fusion to obtain final recognition results. A simple
time-domain end-point detection algorithm based on joint coordinates is applied to segment
continuous data sequences into candidate gesture intervals. A Gaussian Hidden Markov
Model is trained with 39-dimension MFCC features and generates confidence scores for each
gesture category. A Dynamic Time Warping based skeletal feature classifier is applied to
provide complementary information. The confidence scores generated by the two classifiers
are firstly normalized and then combined to produce a weighted sum. A single threshold ap-
proach is employed to classify meaningful gesture intervals from meaningless intervals caused
by false detection of speech intervals.
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Table 3.6: Team methods and results. Early and late refer to early and late fusion of fea-
tures/classifier outputs. HMM: Hidden Markov Models. KNN: Nearest Neighbor. RF: Random
Forest. Tree: Decision Trees. ADA: Adaboost variants. SVM: Support Vector Machines. Fisher:
Fisher Linear Discriminant Analysis. GMM: Gaussian Mixture Models. NN: Neural Networks.
DGM: Deep Boltzmann Machines. LR: Logistic Regression. DP: Dynamic Programming. ELM:
Extreme Learning Machines.

TEAM Test
score

Rank Modalities Segmentation Fusion Classifier

IVA MM 0.12756 1 Audio,Skeleton Audio None HMM,DP,KNN
WWEIGHT 0.15387 2 Audio,Skeleton Audio Late RF,KNN
ET 0.16813 3 Audio,Skeleton Audio Late Tree,RF,ADA
MmM 0.17215 4 Audio,RGB+Depth Audio Late SVM,Fisher,

GMM,KNN
PPTK 0.17325 5 Skeleton,RGB,Depth Sliding w. Late GMM,HMM
LRS 0.17727 6 Audio,Skeleton,Depth Sliding w. Early NN
MMDL 0.24452 7 Audio,Skeleton Sliding w. Late DGM+LR
TELEPOINTS 0.25841 8 Audio,Skeleton,RGB Audio,Skeleton Late HMM,SVM
CSI MM 0.28911 9 Audio,Skeleton Audio Early HMM
SUMO 0.31652 10 Skeleton Sliding w. None RF
GURU 0.37281 11 Audio,Skeleton,Depth DP Late DP,RF,HMM
AURINKO 0.63304 12 Skeleton,RGB Skeleton Late ELM
STEVENWUDI 0.74415 13 Audio,Skeleton Sliding w. Early DNN,HMM
JACKSPARROW 0.79313 14 Skeleton Sliding w. None NN
JOEWAN 0.83772 15 Skeleton Sliding w. None KNN
MILAN KOVAC 0.87463 16 Skeleton Sliding w. None NN
IAMKHADER 0.92069 17 Depth Sliding w. None RF

The second ranked team WWEIGHT combined audio and skeletal information, using
both joint spatial distribution and joint orientation. The method first searches for regions
of time with high audio-energy to define 1.8-second-long windows of time that potentially
contained a gesture. This had the effect that the development, validation, and test data were
treated uniformly. Feature vectors are then defined using a log-spaced audio spectrogram
and the joint positions and orientations above the hips. At each time sample the method
subtracts the average 3D position of the left and right shoulders from each 3D joint position.
Data is down-sampled onto a 5 Hz grid considering 1.8 seconds. There were 1593 features
total (9 time samples × 177 features per time sample). Since some of the detected windows
can contain distracter gestures, an extra 21st label is introduced, defining the ‘not in the
dictionary’ gesture category. Python’s scikit-learn was used to train two models: an en-
semble of randomized decision trees (ExtraTreesClassifier, 100 trees, 40% of features) and a
K-Nearest Neighbor model (7 neighbors, L1 distance). The posteriors from these models are
averaged with equal weight. Finally, a heuristic is used (12 gestures maximum, no repeats)
to convert posteriors to a prediction for the sequence of gestures.

Figure 3.18: ExtraTreesClassifier Feature Importance.
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Figure 3.18 shows the mean feature importance for the windows size of 1.8 seconds for the
three sets of features: joint coordinates, joint orientations, and audio spectogram. One can
note that features from the three sets are selected as discriminative by the classifier, although
skeletal features becomes more useful for the ExtraTreesClassifier. Additionally, the most
discriminative features are those in the middle of the windows size, since begin-end features
are shared among different gestures (transitions) and thus are less discriminative for the
classifier.

Figure 3.19: Recognition of test sequence by the three challenge winners. Black bin means
that the complete list of ordered gestures has been successfully recognized.

Figure 3.20: Deviation of the number of gesture samples for each category by the three winners
in relation to the GT data.

The third ranked team ET combined the output decisions of two designed approaches.
In the first approach, they look for gesture intervals (unsupervised) using the audio files and
extracts features from this intervals (MFCC). Using these features, authors train a random
forest and gradient boosting classifier. The second approch uses simple statistics (median,
var, min, max) on the first 40 frames for each gesture to build the training samples. The
prediction phase uses a sliding window. The authors create a weighted average of the output
of these two models [62]. The features considered were skeleton information and audio signal.

Finally, it has been extracted some statistics from the results of the three challenge winners
in order to analyze common points and difficult aspects of the challenge. Figure 3.19 shows
the recognition of the 276 test sequences by the winners. Black bin means that the complete
list of ordered gestures was successfully recognized for those sequences. Once can see that
there exists some kind of correlation among methods. Taking into account that consecutive
sequences belong to the same user performing gestures, it means that some some gestures
are easier to recognize than others. Since different users appears in the training and test
sequences, it is sometimes difficult for the models to generalize to the style of new users,
based on the gesture instances used for training.

It has been also investigated the difficulty of the problem by gesture category, within each
of the 20 Italian gesture categories. Figure 3.20 shows for each winner method the deviation
between the number of gesture instances recognized and the total number of gestures, for
each category. This was computed for each sequence independently, and adding the devi-
ation for all the sequences. In that case, a zero value means that the participant method
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recognized the same number of gesture instances for a category that was recorded in the
ground truth data. Although is not possible to guarantee with this measure that the order
of recognized gesture matches with the ground truth, it gives us an idea of how difficult the
gesture sequences were to segment into individual gestures. Additionally, the sum of total
deviation for all the gestures for all the teams was 378, 469, and 504, which correlates with
the final rank of the winners. The figure suggests a correlation between the performance
of the three winners. In particular, categories 6, 7, 8, 9, 16, 17, 18, and 19 were the ones
that achieved most accuracy for all the participants, meanwhile 1, 2, 3, 5, and 12 were the
ones that introduced the highest recognition error. Note that the public data set provides
accurate label annotations of end-begin of gestures, and thus, a more detailed recognition
analysis could be performed applying a different recognition measurement to Leveinstein,
such as Jaccard overlapping or sensitivity score estimation, which will also allow for confu-
sion matrix estimation based on both inter and intra user and gesture category variability.

3.5 Conclusion

In this chapter, it was proposed a fully-automatic general framework for real time ac-
tion/gesture recognition in uncontrolled environments using depth data. The system an-
alyzes data sequences based on the assignment of weights to gesture descriptors so that
DTW cost measure improves discrimination. The feature vectors are extracted automat-
ically through a calibration set, obtaining 3D coordinates of skeletal models with respect
an origin of coordinates, making description invariant to translation, scale, and tolerant to
corporal differences among subjects. The final gesture is recognized by means of a novel
Feature Weighting approach, which enhance recognition performance based on the analysis
on inter-intra class variability of vector features among gesture descriptors. The evaluation
of the method has been performed on a novel depth data set of gestures, automatically de-
tecting begin-end of gesture and obtaining performance improvements compared to classical
DTW algorithm.

The second part of this chapter describes the “ChaLearn Multi-modal Gesture Recognition
Challenge”. For this purpose, it has been designed a large data set, including several people
that perform gestures from a vocabulary 20 Italian sign gesture categories. Data also in-
clude distracter gestures to make the recognition task challenging. The modalities provided
included audio, RGB, depth maps, user masks, and skeletal model. The datasets has been
manually annotated to provide ground truth of temporal segmentation of the signal into
individual gestures. The dataset has been made publicly available.

Different classifiers for gesture recognition were used by the participants. The preferred one
was Hidden Markov Models (used by the first ranked team of the challenge), followed by
Random Forest (used by the second and third winners). Although several state of the art
learning and testing gesture techniques were applied at the last stage of the methods of the
participants, still the feature vector descriptions are mainly based on MFCC audio features
and skeleton joint information. This supports the use of complementary source of informa-
tion, but it is expected that the use of more sophisticated features in a near feature will be
useful to reduce the current error rate achieved in the data set. For instance, is concluded
that structural hand information around hand joint could be useful to discriminate among
gesture categories that may share similar trajectories of hand/arms.
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Although the current error rate on the data set is about 12% using de Levenshtein edit
distance among order of predicted gestures, it still offers range for improvement and test
for other metrics given the provided ground truth, such are Jaccard overlapping index or
sensitivity.



Chapter 4

Spherical Blurred Shape Model for
3D Object and Pose Recognition

Abstract

The use of depth maps is of increasing interest after the advent of cheap multisensor devices
based on structured light, such as KinectTM . In this context, there is a strong need of pow-
erful 3D shape descriptors able to generate rich object representations. Although several
3D descriptors have been already proposed in the literature, the research of discriminative
and computationally efficient descriptors is still an open issue. We propose a novel point
cloud descriptor, called Spherical Blurred Shape Model (SBSM), which successfully encodes
the structure density and local variabilities of an object based on shape voxel distances and
a neighborhood propagation strategy. The proposed SBSM is proven to be rotation and
scale invariant, robust to noise and occlusions, highly discriminative for multiple categories
of complex objects like the human hand, and computationally efficient since the SBSM com-
plexity is linear to the number of object voxels. Experimental evaluation in public depth
multi-class object and a novel hand poses data sets show significant performance improve-
ments in relation to state-of-the-art approaches. Moreover, the effectiveness of the proposal
is also proved for object spotting in 3D scenes and for real-time automatic hand pose recog-
nition in Human Computer Interaction scenarios.

4.1 Introduction

Computer vision research on 3D point cloud analysis has recently received a lot of attention
because of the availability of cheap multisensor devices based on structured light, such as
KinectTM . This RGB-Depth camera is compact and portable, so it can be easily installed in
any environment to understand 3D scenes. This way there are multiple applications which
can benefit from the analysis of 3D objects in scenes [34]. However, recognition of 3D ob-
jects is still a challenging problem: in addition to the typical issues tackled by 2D object
recognition approaches (such as robustness to noise and occlusions, discriminate power and
computational complexity), the captured sequences are usually sampled at discrete points,

65
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so the finer details of the 3D object are usually lost.

Under these assumptions, there exists a strong interest for designing new 3D object descrip-
tors [7, 40, 68, 78]. Is revisited the literature by dividing the existing approaches into those
descriptors based on pure 3D geometric properties and those extended from already existing
2D object descriptors.

Describing 3D geometric information has been proven to be useful when classifying every-
day objects like cans, glasses or doors, and for 3D scene analysis. For example, some ap-
proaches take into account the set of normals of the surface defined by a given point and its
neighbors [6, 54]. As an example, the SHOT descriptor proposed in [79] defines a surface
representation based on point normals. It is based on counting the points that fall into bins
according to a function of the angle between the normal at each point within the corre-
sponding part of the grid and the normal at the feature point. However, in this case the
descriptor is local and uses to require from a previous keypoint detection step, which difficult
its adaptation to recognize non-rigid shapes. The use of normals are useful to recognize 3D
objects since they encode the implicit surface that neighboring points define, although they
depend on the density of the underlying points and the smoothness of 3D object surfaces to
give accurate results. Also, spherical harmonics [16] have been used to design 3D descrip-
tors invariant to rotation [46] or have been considered directly as features [73]. Conformal
factors have also been considered [10], measuring the relative curvature of a vertex given the
total curvature. The result can be viewed as a vector which is not only invariant to rigid
body transformations, but also to changes in the pose. The Point Feature Histogram (PFH)
local descriptor proposed in [71] is used to recognize points conforming planes, cylinders and
other geometric primitives. As an extension, the Fast PFH (FPFH) descriptor [69] is based
on codifying angle relations among 3D points. FPFH optimizes the PFH computation to
make it usable in real time 3D registration applications. The Viewpoint Feature Histogram
(VFH) [70] combines an extended version of FPFH with statistics between the viewpoint and
the surface normals on the 3D object. Recently, authors in [85] have presented an Ensem-
ble of Shape Functions (ESF) approach to describe 3D objects, which benefits from several
combinations of histograms for codifying 3D object relations of angles, areas and distances
among points.

Unfortunately, point clouds captured from KinectTM -like devices usually contain “holes”,
since data are sampled at discrete points. Consequently, in all the aforementioned approaches
(which rely on an accurate computation of 3D geometric primitives) their performance is usu-
ally downgraded. Alternatively, some recent 3D regional descriptors have been defined as an
extension of classical derivative-based 2D features, such as HOG, SIFT, and SURF [47, 66].
For example, as a generalization of the 2D shape context descriptor presented in [9], the
authors of [32] propose a 3D shape context descriptor which is compared with a classical
spin-image representation and a novel Harmonic Shape Context (HSC) descriptor for 3D
car model classification. Despite the excellent results reported, these methods require the
computation of a large number of shape points relations.

In this chapter, it has been proposed a novel 3D object descriptor, called Spherical Blurred
Shape Model (SBSM). SBSM is inspired in the Blurred Shape Model (BSM) descriptor pre-
sented in [25]. The novel SBSM descriptor codifies the object structure density and local
variabilities in the 3D space. Similar to the Zoning descriptor and 3D shape histograms
of [8], SBSM bases on a linear computation of spatial relation of shape points to 3D bin
centroid, but including a propagation blurring degree to define a compact and discrimina-
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tive 3D object descriptor. In this sense, Zoning and [8] can be seen as an instance of the
proposed descriptor when the defined blurring degree is null. As it is reported in the results,
when increasing the blurring factor the overall classification rate of the system is improved.
In addition to provide a 3D generalization of BSM, SBSM introduces the following enhance-
ments:

(i) A 3D spherical grid which partitions the 3D space into 3D shape bins,

(ii) A 3D Gaussian-based weight propagation schema controlling the blurring level based
on shape voxel distances, and

(iii) A quaternion-based rotation strategy based on sphere axis densities to define a 3D
rotation invariant descriptor.

As a result, the proposed SBSM is a global descriptor that encodes the shape of an object,
being rotation and scale invariant, computationally efficient, and highly discriminative.

it has been evaluated the descriptor on public and novel 3D object and hand poses data set,
showing significant performance improvements in comparison to state-of-the-art approaches.
It has been tested the descriptor in front of deformation in depth coordinates and noise point
removal. As a result it is shown that SBSM copes with the noise and occlusions typically
present in the point clouds acquired by range scanner sensors. Additionally, are shown four
real applications where is applied the descriptor. In the first, we perform object spotting in
public 3D scenes. The last three applications correspond to Human Computer Interaction
scenarios (HCI). In the second, is presented a real-time fully-automatic HCI system for med-
ical image volume navigation, segmenting human hands and classifying multiple hand poses
using the proposed SBSM descriptor. In the third, the same approach is applied in a multi-
camera setup to perform intelligent retail. Finally, we present a prototype for intelligent
navigation through a repository of books in a living lab which may represent the library of
the future. Although pointing recognition and gaze tracking in multi-camera setups for HCI
has been previously addressed in literature [20, 89], here is shown how complex multi-camera
setups can be avoided and recognition for interaction can be improved within different HCI
application contexts using the proposed approach.

4.2 Method
In this section, is presented the novel Spherical Blurred Shape Model to describe 3D objects.

4.2.1 Spherical Blurred Shape Model

The Spherical Blurred Shape Model is inspired in 3D grid approaches and in the discrimi-
native power of SIFT and HOG descriptors to codify object information based on the distri-
bution of object gradients and orientations. However, instead of performing computation of
3D object derivatives, SBSM just requires the computation of object shape voxel distances
between neighbors in order to codify the object structure density and local variabilities in
the 3D space. As a result, SBSM is a computationally efficient descriptor, with a complexity
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linear to the number of object voxels O(|P |), with an upper bound of 27 · |P | simple opera-
tions for a point cloud P of |P | shape points (defined based on a 26-connectivity of regions
in the 3D space of bins).

(a) (b) (c) (d)

Figure 4.1: Illustration of SBSM descriptor computation. (a) Sphere bins. (b) Example of
neighbor bins. (c) and (d) example of the estimation of two main quaternion to rotate feature
vector in the 3D space.

As in the case of 2D and 3D object descriptors, an initial grid is fitted to contain the region of
interest to describe. In this case, to describe 3D regions, an spherical grid containing a set of
3D bins is defined, which contain the set of voxels P of the point cloud to be described. The
description methodology computes for each voxel P contained in the grid a set of voxel-bin
spatial relations, which are include in a global region descriptor. Next, is described in detail
each step of the description procedure.

In the first step, a discrete spherical grid partitions the 3D space in a set of bins, as shown
in Fig. 4.1(a). Let P = {pi|pi ∈ R3}, C, NL, Nθ, Nφ, R, and σ define the set of voxels of the
point cloud, point cloud centroid, number of layers, number of angular divisions for θ, number
of angular divisions for φ, radius length, and sigma value for the gaussian distance metric,
respectively. Some of these parameters are illustrated in Fig. 4.1(b). Then, dR = R/NL,
dθ = 2π/Nθ, and dφ = 2π/Nφ are computed as the distance between consecutive layers and
the degrees in θ and φ polar coordinates between consecutive sectors, respectively. Using
this division, next is defined the set B of sphere bins b{i,j,k} as follows:

B = {b{0,0,0}, ..., b{i,j,k}, ..., b{NL−1,Nθ−1,Nφ−1}},

∀i ∈ {0, 1, .., NL − 1},∀j ∈ {0, 1, .., Nθ − 1},

∀k ∈ {0, 1, .., Nφ − 1}, (4.1)

where bin b{i,j,k} is the 3D bin defined as the cartesian product of intervals [i ·dR, (i+1) ·dR),
[j ·dθ, (j+1) ·dθ), and [k ·dφ, (k+1) ·dφ) for de distance between consecutive layers in relation
to the center of the spherical grid, θ, and φ, respectively. This way B defines a partition in
R3 of the object of interest. Then, the centroid coordinates for all each bin b∗{i,j,k} ∈ B∗ are
computed as follows:

b∗{i,j,k} = (i · dR +
dR
2
, j · dθ +

dθ
2
, k · dφ +

dφ
2

),

∀i ∈ {0, 1, .., NL − 1}, ∀j ∈ {0, 1, .., Nθ − 1},

∀k ∈ {0, 1, .., Nφ − 1}. (4.2)
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An example of some 3D bin neighbors of the spherical descriptor is shown in Fig. 4.1(b).
Once the 3D spatial bins are defined, the SBSM feature vector is initialized as:

Wi = 0, ∀i ∈ {1, 2, .., NL ·Nθ ·Nφ}. (4.3)

Subsequently, for each voxel in the point cloud pz ∈ P |P ⊂ B, the distance of that voxel
to its neighbor bins is estimated based on a Gaussian distance metric, and the normal-
ized weights are added to the corresponding descriptor bin locations. For this task, let
bz = b{i,j,k}|pz ⊂ b{i,j,k} be the bin containing voxel pz. First, the lists containing bin
weights and index bins for pz are initialized to W ∗ = {1} and I∗ = {{i, j, k}}, respectively.
Then, the iterative procedure updates W ∗ and I∗ for each b{i,j,k} ∈ N(bz), where N(bz) is the
set of neighbors bins of bz in a 27-neighborhood for inner sphere bins and 18-neighborhood for
external sphere surface bins (including the reference bin). So the list of weights is updated as:

W ∗ = W ∗ ∪

{
e−
||pz−b∗{i,j,k}||

R·σ

}
, (4.4)

and the list of indexes as:

I∗ = I∗ ∪ {{i, j, k}}. (4.5)

As a result, the normalized weights for pz are added to its corresponding positions of W as
follows:

WI∗i
= WI∗i

+
W ∗i∑|W∗|
j=1 W ∗j

,∀i ∈ {1, 2, .., |I∗|}. (4.6)

In this way, a new shape point of the point cloud will include a weight to its belonging bin
centroid and neighbor centroid based on a Gaussian function of the distance and a blurring
level defined by σ. This values defines the degree of influence of each neighbor bin for each
point cloud voxel. Note that when σ parameter is set to zero, the descriptor is equivalent
to a dense sampling of the point cloud as in the classical state-of-the-art Zoning descriptor,
but defined in the 3D space [25]. It is important to remark that the voxels that are not
contained within the spherical grid bins are not considered in the descriptor computation.
On the other hand, the voxels that intersect with the spherical surface are considered as
inner voxels, and thus, considered in the descriptor estimation. Figure 4.2 shows an example
of an hypothetical sphere slice for θ = k and the analysis of a point cloud voxel to update
the SBSM descriptor.
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Figure 4.2: Example of point cloud voxel for an hypothetical sphere slice for θ = k. Voxels
of the point cloud visible on that slice are shown as red dots. An example of a voxel estimation
pz is shown in green. For this point, neighbor bins centroids are shown as black dots. For
each of these relations (note that in the 3D space a total of 27 relations will be computed),
equation 4.4 is computed, and the estimated value is added to descriptor position corresponding
to its corresponding bin.

Once the procedure is repeated for all points pz ∈ P , the final feature vector W is normalized
as follows:

Wi =
Wi∑NL·Nθ·Nφ

j=1 Wj

, ∀i ∈ {1, 2, .., NL ·Nθ ·Nφ}. (4.7)

Given that all the voxels within the point cloud where the descriptor is computed contribute
with the same cost and that the final vector is normalized, it becomes scale invariant. Thus,
if different instances of a 3D object category are fitted with the spherical descriptor, even
with different sizes, all the descriptors are comparable and can be trained with the same
classifier.

Figure 4.3: (a) Initial hand point cloud and computed center. (b) Sphere including a point
cloud corresponding to a 3D hand pose. (c) The same sphere where SBSM descriptor has been
computed. The density of the green dots represents the centroid bin values, and the whole de-
scriptor has been rotated based on the quaternion codified by two main descriptor axis densities.
(d) Alternative view of the computed SBSM descriptor.
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4.2.2 3D rotation invariant SBSM

Once SBSM is computed based on the predefined number of layers, bin orientations, and
σ value for the Gaussian function, the descriptor is able to encode the local density and
spatial relations of 3D shape points for a particular granularity degree. Rotation invariance
is achieved by considering the main spherical axis densities to compute the main vector ori-
entations in quaternion coordinates as a reference axis that rotates feature vector bins. As a
result, this feature vector reordering step makes the descriptor rotation invariant for similar
3D objects.

The use of unit quaternion instead of rotation matrices provides a fast computation for ro-
tation invariance and, at the same time, it is simpler to enforce that quaternions have unit
magnitude than constrain rotation matrices to be orthogonal [74]. The procedure is detailed
next.

First, it is computed the density of the descriptor for each axis defined by the angles θ and
φ as follows:

f(θ, φ) =

NL∑
r=1

W{r,θ,φ}, (4.8)

and the two maximum axis densities are found:

−→
T 1 = arg max

θ,φ
f(θ, φ),

−→
T 2 = arg max

θ,φ\
−→
T 1

f(θ, φ). (4.9)

Back to Cartesian coordinates, it is computed the component of
−→
T 2 vertical to

−→
T 1 by

projecting
−→
T 2 onto the plane perpendicular to

−→
T 1 as follows:

−→
T 2yz =

−→
T 2 −

−→
T T

1

−→
T 2
−→
T 1 (4.10)

Subsequently, it is computed the rotation that aligns the axis
−→
T 1,
−→
T 2 with âx and ây, re-

spectively. Where âx = [100]T and ây = [010]T . The rotation quaternion q can be computed

as the combination of two quaternions q = q2q1, where q1 rotates
−→
T 1 to âx and q2 aligns

−→
T 2

with ây (see Fig. 4.1(d)).

Finally, values of the bin locations are rotated based on the quaternion q, such that each bin
b∗ri,j,k ∈ B∗ is computed as:

b∗ri,j,k = qb∗i,j,kq
∗, (4.11)

using the Hamilton product, where q∗ is the conjugate of the quaternion q. Abusing of
notation, b∗ and b∗r also denote the corresponding pure quaternion to each bin. So it has
been taken advantage of this rotation order to obtain the rotation invariant feature vector
W r
{i,j,k} = W{i,j,k}.

An example of the two main quaternions for an hypothetical spherical toy problem is shown
in Fig. 4.1(c) and (d), respectively. In Fig. 4.3(a) a real example of a 3D hand pose is
shown. Figure 4.3(b) shows the centered point cloud within the 3D correlogram containing
SBSM bins. The result after computing the SBSM descriptor from hand point cloud and
performing rotation invariance is shown in Fig. 4.3(c) and (d) for two different points of view.
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4.3 Quantitative analysis of SBSM

In order to present the results, first it is described the training data and settings of the
experiments.

4.3.1 Data sets

It has been tested the methodology on two data sets: a public 3D object category data set
and a new 3D hand pose data set.

The RGB-D Object Data set

The RGB-D Object data set is a large collection of 300 common household objects [49]. All
these objects are organized into 51 categories arranged using WordNet hypernym-hyponym
relationships (similar to ImageNet). This data set was recorded using a KinectTM style 3D
camera that recorded a set of synchronized and aligned 640×480 RGB-D images at 30 Hz.
Each object was placed on a turntable and the video sequences were captured for a single,
whole rotation. For each object, 3 video sequences were recorded with the camera mounted
at different heights so that the object can be viewed from different angles w.r.t. the horizon.
Example of segmented objects are shown in Fig. 4.4.

Figure 4.4: RGB-Depth object data set category samples [49].

The American Signal Language Data set

It has been recorded a novel 3D hand poses data set based on the American Sign Language
vocabulary. The data set is composed of 23 categories with around 47K instances of both
hands. The KinectTM device was used to extract the hands and their point clouds data using
standard segmentation and detection algorithms. Also, both hands were captured not only
considering a frontal view but also including variabilities in terms of scale, hand orientation,
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and finger joint articulations. This way, the complexity and variability of the overall data
set was enriched.

4.3.2 Settings and evaluation metrics

A multi-class classifier is trained using the proposed SBSM descriptor. Specifically, feature
vectors are trained in a one-versus-one SVM classifier using a RBF kernel, and optimizing
the parameters C and γ by means of cross-validation using LibSVM [19]. SBSM descriptor
size was experimentally set to NL = 8, Nθ = 8, Nφ = 8 for all the experiments, with a
total descriptor length of 512. 1 It has been compared the SBSM descriptor with different
state-of-the-art methods on the different experiments [12, 13, 49, 50]. It is also included in
the comparative the VFH [70] and ESF [85] descriptors by also training the feature vectors
with one-versus-one SVM classifier using a RBF kernel and optimizing the parameters as in
the case of SBSM. VFH and ESF have been selected since they are recent, representative,
and robust well-known descriptors for shape estimation and codification of normal vectors
distribution.

It has been validated the object classification experiments by means of recognition rate
applying stratified ten-fold cross-validation and estimating the confidence interval with a
two-tailed t-test. We also test and compare the descriptors against depth distortions and
noisy data to compute their statistical significance based on Friedman and Nemenyi statis-
tics [23].

4.4 Experiments

Next it is presented the multi-class 3D object categorization performance using SBSM in the
RGB-D Object and Sign Language data sets. Once it has been demonstrated the perfor-
mance of the proposed descriptor, it has been tested against different 3D object distortions.

4.4.1 Analysis of classification performance

For the RGB-D Object Data set, it has been used the turntable data for both training
and evaluation, thus classifying 51 different 3D object categories using depth information
only. For the object recognition experiments on cropped images, it is applied a leave-one-out
strategy as described in [49]. For comparison with the state-of-the-art, it has been compared
SBSM performance with the previous results provided on the same data set using the same
data partitions for evaluation [12, 13, 49, 50] and ESF [85] and VFH [70] descriptors, as
shown in Table 4.1.

Subsequently it is shown the importance of the weight propagation strategy in the SBSM
descriptor by setting σ = 1 and σ = 0. These two values define the presence or absence of the

1The SBSM descriptor code is included as supplemental material.
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propagation step, respectively. 2 Based on the mean data set samples volume radius length,
it has been set R = 0.15. Results reported in Table 4.1 show that the SBSM descriptor clearly
outperforms previous state-of-the-art results on this data set. In particular, it is concluded
that using neighbor propagation, the performance improves by more than 16% the best result
reported in [13] for this data set. This experiment shows that when a neighboring measure of
the shape point is taken into account to update neighbor bins, the local variations of shape
objects are better learnt by the classifier. Consequently, intra-class variability is reduced
without the need of increasing the computational complexity of the descriptor.

Table 4.1: Classification performance on the RGB-depth data set [49].

Method Depth performance

SIFT + Texton + Color + Spin [49] 64.7%

Sparse Distance Learning [50] 70.2%

VFH + SVM 77.5%

RGB-D Kernel Descriptors [12] 80.3%

Hierarchical Matching Pursuit [13] 81.2%

ESF + SVM 84.9%

SBSM, σ = 0 + SVM 96.7%

SBSM, σ = 1 + SVM 97.9%

It has been also showm the performance of the VFH, ESF and SBSM on the novel ASL data
set. The final performance is obtained by applying a stratified ten-fold cross-validation and
testing the confidence interval with a two-tailed t-test. In this case, the spherical grid size
is fitted to the minimum spherical grid size containing all the voxels for each data sample.
Results are shown in Table 4.2. One can see how the descriptor obtains better performances
than using VFH or ESF, and that the best performance is achieved when weight propagation
is taken into account.

Method Depth performance

VFH + SVM 88.7%±0.2

ESF + SVM 92.3%±0.2

SBSM, σ = 0 + SVM 97.1%±0.6

SBSM, σ = 1 + SVM 99.3%±0.4

Table 4.2: Classification performance and confidence interval of the different descriptors on the
novel American Sign Language data set.

4.4.2 Robustness to noise and deformations

In this section it is demonstrated the robustness of the SBSM when describing and classi-
fying 3D objects that suffer from noisy captures and deformations due to different ambient

2It has been also tested for different values of σ and experimentally found σ = 1 to obtain the
best results.
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conditions or deviations captured by the sensor, as well as partial occlusions. To achieve
this goal, are designed two different settings. In the first one it is analyzed the robustness of
the descriptor when objects suffer from deviations in the depth dimension in a range from 0
up to 20 millimeters in both directions of the z-axis (Fig. 4.5(a)-(c)). This distortion simu-
lates non-accurate “reading” errors of the sensors because of distance precision and ambient
conditions. In the second test we progressively remove shape points from the point cloud
from 0 up to 50% of the voxels for each object sample (Fig. 4.5(d)-(f)). This distortion
simulated local occlusions and “reading” errors that may produce the removal of some voxel
points of the region of interest. Thus, in the depth distortion, the resulting point cloud has
the same number of available voxels, though they are distorted in the z-axis, meanwhile in
the removing distortion, the resulting point cloud contains less voxel points based on the
percentage defined by the distortion percentage. It has been fixed this range of distortions
to be representative of the maximum distortion that is possible to find on recorded samples
in real scenarios under different conditions and errors produced by different kind of sensors.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: (a) Input point cloud for a hand pose instance. (b) Example of distortion in the
depth axis for (a). (c) For this distortion each voxel is randomly displaced in the z-axis with a
maximum distortion of 20mm in both directions of the axis. (d) Input point cloud for a hand pose
instance. (e) Example of cloud removal distortion for (d). (f) For this distortion each voxel of
the original point cloud (top) is removed based on a probability value defined by the distortion
(down).

In order to perform these analysis, are selected those five categories from the novel 3D hu-
man poses data set that achieved the highest confusion in the previous section. The chosen
hand categories are displayed in the confusion matrix of Fig. 4.6. In this image the confusion
matrix is the mean computed for SBSM on that particular data set.

Recognition rate results are shown when applying distortion in the depth axis in Fig. 4.7:
for each degree of distortion, the mean recognition rate and confidence interval for 10 runs
of ESF, VFH, and SBSM σ = 1 descriptors are computed. At each iteration, the percentage
of distortion is randomly computed for each object voxel within different depth ranges in
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Figure 4.6: Mean confusion matrix of the ASL data set using the SBSM descriptor σ = 1.
Five most confused categories are displayed.

millimeters. The maximum value was set to 20 mm since it is hard to obtain higher defor-
mations produced by the sensor. As expected, the recognition rate for all three descriptors
decrease w.r.t. the depth distortion. One can see that for all the different tests of this
experiments and descriptors, SBSM still obtains the best performance and VFH suffers the
worst decrease in recognition (around 4%).

In Fig. 4.8 the results are shown when applying cloud removal. For each percentage of
removed voxels, the mean recognition rate and confidence internal are shown. At each it-
eration, a percentage of distortion is randomly generated, and different voxels are removed
at each time satisfying the percentage of information to be removed. One can see that the
general performance ranking in recognition is SBSM, VFH and finally ESF descriptor. More-
over, independently of the percentage of removed number of shape points, the recognition
rate for the three methods is maintained in a small range of performance.

Figure 4.7: Classification performance of different classification strategies under different de-
grees of distortion in the depth axis on the 5 selected categories in the ASL data set.

4.4.3 Statistical significance

In order to compare the performances computed by the different experiments considered,
Table 4.3 shows the mean rank for each descriptor considering 14 different experiments (2
data sets and 6×2 distortion experiments). The rankings are obtained by estimating each
particular ranking rji for each data set and experiment i and each descriptor strategy j, and
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Figure 4.8: Classification performance of different classification strategies under different de-
grees of cloud removal on the 5 selected categories in the ASL data set.

computing the mean ranking R for each configuration as Rj = 1
J

∑
i r
j
i , where J is the total

number of tests.

Table 4.3: Mean rank for the compared descriptors considering all the experiments.

VFH ESF SBSM

Mean rank 2.14 2.85 1.00

In order to reject the null hypothesis, i.e. measured ranks may differ from the mean rank
and these may be also affected by randomness in the results, it has been used the Friedman
test [23]. The Friedman statistic value is computed as follows:

X2
F =

12J

K(K + 1)

[∑
j

R2
j −

K(K + 1)2

4

]
. (4.12)

In this case, since K = 3 descriptors are compared, X2
F = 24.57. This value is undesirable

conservative, so Iman and Davenport proposed a corrected statistic instead:

FF =
(J − 1)X2

F

J(K − 1)−X2
F

. (4.13)

Applying this correction it is obtained FF = 93.17. With 3 methods and 14 experiments, FF
is distributed according to the F distribution with 2 and 26 degrees of freedom. The critical
value of F (2, 26) for 0.05 is 3.37. As the value of FF = 93.17 is clearly higher than 3.37, it
is possible to reject the null hypothesis.

Once it has been checked for the non-randomness of the results, it is performed a post ad-hoc
test to check if one of the configurations could be statistically singled out. For this purpose
it is used the Nemenyi test, in which the Nemenyi statistic is obtained as follows:

CD = qα

√
K(K + 1)

6J
. (4.14)
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(a) (b) (c) (d)

Figure 4.9: Object spotting in 3D scenes. (a) Example of RGB image of a multi-modal Berkeley
data set. (b) Depth image of the same scene. (c) Computed point cloud from the scene. (d) Bowl
spotting using SBSM (first positive 3D object prediction is shown based on minimum Euclidean
distance).

(a) (b) (c) (d)

Figure 4.10: (a) Original 3D Heart volume of http://thefree3dmodels.com. Automatic inter-
action with the volume with (b) translation, (c) rotation and (d) zoom manipulation.
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In this case with K = 3 description strategies to compare and J = 14 tests, the critical
value for a 95% of confidence (qα = 2.35) is CD = 0.88. As the ranking of the proposed
SBSM approach does not intersect with any rank for that value of the CD, it is possible to
state that for the reported experiments the results are statistically significant w.r.t. VFH
and ESF results. In the case of VFH and ESF descriptors, since their rank intersect with
the CD value is not possible to state that there exists statistical differences between both
strategies.

4.5 Qualitative analysis of SBSM

In this section it is presented four real applications that use the proposed SBSM descriptor,
object spotting in 3D scenes and three fully-functional applications for a real-time HCI:
3D medical volume navigation, intelligent retail, and living labs: the library of the future.
For this task, an additional novel set of hand poses for the Human Computer Interaction
navigation applications was designed.

Figure 4.11: HCI hand poses data set categories.

4.5.1 Object spotting in 3D scenes

After showing the discriminative power and robustness of our proposed descriptor, next it
is illustrated the generality of SBSM when applied in real scenarios. To achieve this end,
it has been considered a single scene obtained in the public 3D Berkeley data set. 3 The
public RGB and corresponding depth map for the selected 3D scene are shown in Fig. 4.9(a)
and (b), respectively. Using these data, it is computed the point cloud scene shown in
Fig. 4.9(c). In this particular case, are selected one bowl object to describe it and perform
object spotting within the whole scene. It has been manually selected one bowl from a
training image, computed its SBSM descriptor, and performed sliding window search over
the three dimensions of the point cloud shown Fig. 4.9(c) for different scale hypotheses of
the target object. SBSM descriptor size was set to NL = 8, Nθ = 8, Nφ = 8, and σ = 1,
with a total descriptor length of 512. The radius of the sphere is set in the range 5 to 20
cm, with an increment of 1 centimeter, and 2 voxel displacement increments in the three
axis among iterations of the sliding windows approach. The first matched region of interest
based on the best score obtained by the minimum Euclidean distance among the computed
descriptors in the scene is shown in Fig. 4.9(d). Note the accurate fitting of the captured 3D
bowl object in the test 3D scene. Moreover, the system spends 13 seconds in a conventional
2.7GHz 2Core 4Gb RAM computer to run this experiment for the tested scene. Given the
performed exhaustive search and that it has been ran the experiment iteratively without any

3http://kinectdata.com/
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kind of parallelism, this experiment show the generality of the descriptor to be applied for
scene analysis purposes.

4.5.2 HCI Application for medical navigation

Given the high discriminative power and fast computation of the proposed descriptor in
comparison to state-of-the-art approaches, it has been also designed different fully-functional
applications to take benefit from it. The first application is an automatic HCI system for
medical volume navigation, which is able to detect user, hands, poses, and gestures, manip-
ulating a medical volume of interest.

(a) (b) (c)

Figure 4.12: HCI for retail. (a) Designed 3D retail scenario using Unity engine. (b) User
interaction with the scenario. (c) User manipulation by 3D rotation.

(a) (b) (c)

Figure 4.13: Hand reconstruction (c) using two KinectTM views of point clouds, right (a) and
left (b).

The application was developed based upon the MS KinectTM SDK to capture the RGB-D
data stream from the depth sensor. The depth maps were converted into world coordinates
projecting the registered 3D image by means of pin-hole model and intrinsic camera param-
eters. Then, Point Cloud Library (PCL) is used to work with the point cloud, and VTK
framework is used for medical image visualization purposes. The hand detection algorithm
takes advantage of the Body Pose Skeleton to find the hand wrist joints. Using this infor-
mation, a fixed radius of interest of 15cm centered in each joint is defined to segment hand
point clouds. The usage of the skeleton also enables us to define a heuristic to discard false
positive hand poses in the cases that the hands are near the body, or below the waist line. In
a later step, the detected hand point clouds within the sphere are used to refine sphere center
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by computing center of mass and relocating sphere center, and points are classified using the
proposed SBSM methodology. A reduced data set of 18K samples for the six classes shown
in Fig. 4.11 were recorded and trained with SBSM and SVM for this purpose.

The detected pose label is then combined with the hand movement (3D object displacements
in real coordinates), and used as input of a Hidden Markov Model to obtain a hand gesture
classification. The system is able to recognize and control zoom, rotation, and translation
operations. In the user interface, the user can visualize its detected hand point clouds in real-
time, having a feed-back with the displayed prototypes of both recognized hand poses. Also,
the user can visualize the volumetric medical model and the real-time interactions caused
by the hand gestures. The overall application enables a powerful and automatic volumetric
medical model interaction and visualization. Figure 4.10 shows some examples of detected
poses, gestures, interactions, and visualizations on a public 3D heart volume. 4

4.5.3 HCI Application for Intelligent retail

Based on the same procedure for hand pose recognition than in the medical volume nav-
igation approach, it has been designed a fully-functional application for intelligent retail.
In this scenario, hands are tracked in a multi-device setup and two main poses (open and
close hand) are recognized. The user can automatically interact with a set of products in
an interface designed with the Unity engine 5 so that information about the product and
manipulation by 3D rotation based on hand trajectories on two main object axis can be
performed. In this scenario, given that it works with bigger displays and and only one
Kinect may not cover most part of the pointcloud related to one hand, is included an ex-
tra Kinects in order to recover voxels of the same hand from “near complementary” views
and reconstruct a new hand with more voxel information. Thanks to the fusion of two
views, more information about the tracked hand is available, and thus it has been made the
descriptor more discriminative to classify multiple hand poses useful for interaction purposes.

In order to achieve registration of two KinectTM cameras, we have mounted two cameras
in a rigid setup with a baseline of 1.30 meters and an angle of 18 degrees. In this way
it is possible to acquire depth images and convert each pixel to real-world coordinates by
applying the intrinsic parameters of the cameras. In order to complete the registration, are
necessary the extrinsic parameters between both depth cameras, represented by a rotation
matrix and a translation vector that allows us to convert Kinect2 depth points to Kinect1
depth coordinate system. Intrinsic and extrinsic parameters can be obtained by doing a
stereo calibration. In this case, it has been used the Camera Calibration Toolbox [14], that
gives us a rotation vector related through the rodrigues formula and a translation vector.
For this procedure are only necessary few images from both depth cameras looking at the
same planar checker-board pattern. Once the calibration is performed are related Kinect1
and Kinect2 depth points as follows:

Preference = RP + T ,
being Kinect1 be the camera reference, Preference = (Xref ,Yref ,Zref ) a point in the camera
reference coordinate system, R the rotation matrix obtained in calibration step, P a point
of the Kinect2, and T = (X ,Y,Z) the translation vector obtained in calibration step.

4See the supplemental material video for a system demonstration.
5http://unity3d.com/
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Figure 4.13 shows an example of a hand reconstruction by two different views. From the 3D
reconstructed hand, SBSM is computed, and the automatic interactive process is performed.
The designed 3D scenario and real-time use case scenarios are shown in Fig. 4.12. In this
case is found that increasing the point of view of the hand because of the use of two cameras
allowed for a more natural movements of the user while keeping the recognition rate of the
system 6.

4.5.4 HCI Application in Living labs

For this last scenario, it is designed a first prototype for intelligent interaction in a virtual
repository of books within a Smart Environment or Libing Lab corresponding to a new
generation of libraries (VL3 ’Volpelleres Library Living Labs’ project). For this scenario, a
one KinectTM camera setup was designed, and the same recognition procedure than in the
retail scenario was performed. The 3D scenario was designed with the Unity engine. The
real environment to implement the prototype is shown in Fig. 4.14, which is located in the
region of Volpelleres in Barcelona. In this prototype the user is able to navigate through a
catalogue of books and read the selected ones. The designed 3D scenario and real-time use
case scenarios are shown in Fig.4.15.

Finally, it is important to remark that the Kinect acquired a variable frame rate between
the range 20-30 FPS. The procedure works real time for all the presented HCI applications,
and thus, it has been able to process (segment, describe, and classify segmented point clouds
from the region of interest) for all the frames acquired by the Kinect device.

Figure 4.14:

4.6 Conclusions

We presented the Spherical Blurred Shape Model descriptor. SBSM is computationally ef-
ficient and highly discriminative. The computed descriptor codifies the spatial relations
among object voxels and spherical bins given a granularity degree and a blurring factor de-
fined by a Gaussian-based weight propagation function. The descriptor is rotation invariant
by re-locating descriptor bins using the two main quaternion based on the two major 3D

6See the supplemental material video for a system demonstration.



4.6. Conclusions 83

Figure 4.15:

descriptor axis densities. In our experimental evaluation, we found that our methodology
outperformed state-of-the-art results up to 16.7% on public depth multi-class object recogni-
tion data. Moreover, we tested the descriptor against different 3D data distortions, obtaining
high recognition rates and significant performance improvements in relation to standard ap-
proaches.

We also tested the descriptors in four real scenarios: object spotting in 3D scenes, within
a probabilistic gesture recognition pipeline for real-time Human Computer Interaction in
medical volume navigation scenarios, HCI for intelligent retail in a multi-camera setup, and
within a prototype for catalogue navigation in a living lab library, showing the high dis-
criminative power, efficiency and generality of the proposed descriptor to be applied in new
generation of HCI applications and smart environments.
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Chapter 5

Conclusions

Pose Analysis and Gesture recognition are becoming increasingly advanced as technology
advances, and with them widen horizons for the analysis of humans. Part of this is due to
the expansion of capabilities, such as human computer interaction and the changing needs
within the human population. In this thesis it has been studied on the problem of analyzing
human pose and motion in RGB-Depth images. In this sense are obtained interesting results,
which is not idle modes review to conclusions.

It has been proposed a generic framework for object segmentation using depth maps based
on Random Forest and Graph-cuts theory in order to benefit from the use of spatial and
temporal coherence, and applied it to the segmentation of human limbs. Our results with
the data sets in this point showed high performance segmenting several body parts in depth
images compared to classical approaches.

It has been designed and built a system for semi-automatic static posture and spine curva-
ture analysis from 3D anthropometric data (with a low cost RGB-Depth camera) with the
aim of providing assistance in the prevention and treatment of musculoskeletal dysfunctions.
It has been integrated several frontier computer vision and artificial intelligence techniques
including three-dimensional visual data processing, statistical learning, and time series anal-
ysis. The system is meant to be highly adaptable and customizable to the needs of the
therapist. The validation study shows high precision and reliable measurements in terms of
distance, degree and range of movement estimation. Supported by clinical specialists, it is
suitable to be included in the clinical routine, including posture reeducation, rehabilitation,
and fitness conditioning scenarios.

It has been proposed a fully-automatic general framework for real time action/gesture recog-
nition in uncontrolled environments using depth data. The system analyzes data sequences
based on the assignment of weights to gesture descriptors so that DTW cost measure im-
proves discrimination. The feature vectors are extracted automatically through a calibration
set, obtaining 3D coordinates of skeletal models with respect an origin of coordinates, mak-
ing description invariant to translation, scale, and tolerant to corporal differences among
subjects. The final gesture is recognized by means of a novel Feature Weighting approach,
which enhance recognition performance based on the analysis on inter-intra class variability
of vector features among gesture descriptors. The evaluation of the method has been per-
formed on a novel depth data set of gestures, automatically detecting begin-end of gesture

85
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and obtaining performance improvements compared to classical DTW algorithm.

On the other hand, it has been presented the Spherical Blurred Shape Model descriptor.
SBSM is computationally efficient and highly discriminative. Experimental evaluation, it
has been found that our methodology outperformed state-of-the-art results up to 16.7% on
public depth multi-class object recognition data. Moreover, it has been tested the descriptor
against different 3D data distortions, being able to deal with multiple deformations in data,
obtaining high recognition rates and significant performance improvements in relation to
standard approaches.

It has been also tested the descriptors in four real scenarios: object spotting in 3D scenes,
within a probabilistic gesture recognition pipeline for real-time Human Computer Interaction
in medical volume navigation scenarios, HCI for intelligent retail in a multi-camera setup,
and within a prototype for catalogue navigation in a living lab library, showing the high
discriminative power, efficiency and generality of the proposed descriptor to be applied in
new generation of HCI applications and smart environments.

From the review of the Pose Analysis and Gesture recognition topic, one can observe that
still it is possible that progress will also be made in feature extraction by making better use of
the multimodal development data for robust transfer learning. Also recent approaches have
shown that Random Forest and Deep Learning, such as considering Convolutional Neural
Networks, are powerful alternatives to classical Posture Analysis and Gesture recognition
approaches, which still open the door for future design of new posture descriptors and ges-
ture recognition classifiers.

In the case of using Convolutional Neural Networks for image classification, most of the
methods are still based on sliding windows approaches, which makes recognition a time-
consuming task. Thus, the research on methods that can generate multimodal human body
posture descriptors candidates, or gestures/actions, from data in a different fashion are still
an open issue.
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