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Abstract

My dissertation consists of three chapters which are devoted to Game Theory. Game theory is a

discipline that studies mathematical models of con�ict and cooperation between rational individu-

als. I mainly focus on situations of con�ict, and my research consists of understanding the behavior

and interactions of individuals who participate in a contest. Competition in contests might be

mitigated for several reasons. For instance, individuals might exert less e¤ort when competing with

unskilled opponents. Also, in collective contests, individuals that belong to a group might reduce

e¤ort in the competition because they do not internalize the bene�ts that winning a public prize

yields to all members in the group. For another example, consider the case of a contest organizer

who fails to set the rules that maximize competition. My research focuses on �nding solutions

to the reduction of competition due to the previous reasons. Applications of my research include

litigation, �rms competing for market shares, job promotions or sport competitions among others.

The �rst chapter addresses con�icts between two groups when trying to win a group-speci�c

public good prize. We analyze how these contests are a¤ected when groups are led by an organizer

with the capacity to impose transfers to share the costs of individual e¤orts within the group.

Situations in which this problem is relevant abound. Consider the case of two law �rms that compete

to win a case. Winning a case is a public prize because lawyers increase their popularity when their

�rm wins cases. However, when individual e¤ort to win a case is costly, lawyers may exert less

e¤ort than the one the boss of the law �rm would like them to exert, causing underperformances.

In order to implement a required level of e¤ort, law �rms may set a pay system that promotes

e¤ort. In particular, law �rms may o¤er contracts in which lawyers that exert more e¤ort receive

a higher wage. Other examples are �rms competing for market shares; they can design a pay

system to implement optimal e¤ort by its employees. In this chapter, I describe centralized levels

of group e¤ort as those that organizers in each group wish to attain, and I de�ne underperformance

(overperformance) as the situation in which e¤ort exerted by individuals in a non-cooperative

v



vi Abstract

setting is smaller (larger) than the centralized levels of group e¤ort. I show �rst that the larger

group always underperforms, while the smaller one only does so if its size is su¢ ciently close to

the larger group. Second, I show that organizers implement the centralized levels of group e¤ort

when sharing the e¤ort costs in an egalitarian way. And third, I examine the game where organizers

compete strategically in setting the cost-sharing scheme of their group. I show that the cost sharing

rule set by the larger group is more egalitarian than the one of the smaller group.

In the second chapter I study the design of a contest between two possible budget constrained

individuals when the organizer of the contest is not informed about the actual size of budgets and

where the objective is to maximize competition. The problem of optimal contest design is relevant

in areas such as R&D. R&D contracts that an investor sets to a researcher are based on absolute

level of performance of the latter, which involves costly monitoring e¤ort and could be complicated

or even impossible to enforce. The use of contests solves the problem naturally, since a prize is

going to be awarded to one of the participants by law enforcement. Contests create competition and

eliminate costly monitoring e¤ort. Examples of R&D contests in the area of arti�cial intelligence

include the Net�ix Prize, which is awarded to the algorithm that predicts better the rating for

�lms or the Loebner prize, which is awarded to the most intelligent software. Researchers or �rms

that participate in the contest could be �nancially constrained. Spending resources is crucial to

create a good product and win the contest. In this context, contest e¤ort can also be understood as

investment of resources (monetary e¤ort) that the �rm or the researcher invests. In these kinds of

contests, organizers want to create a competitive environment to induce research in the particular

area of knowledge the contest is focused on. This is the reason why I assume that the contest

organizer wants to maximize competition. However, the existence of constraints is a problem for

competition, since �rms or researchers that are constrained cannot put competitive pressure on

the rivals. Also, constraints of participants are normally unknown for the organizer. Thus, the

problem of the organizer consists of designing the rules of the contests that increases competition

taking into account this lack of information. I �rst de�ne the optimal e¤ort as the maximum levels

of e¤ort or competition achievable in a situation of complete information. When the organizer has

complete information, competition is maximized when the contest is biased towards the constrained

individual in case they have di¤erent budgets. Afterwards, I study the case where the organizer

has incomplete information and asks individuals about their budgets. I show that the design of

complete information fails to maximize competition, since unconstrained individuals lie about their

budgets in order to ensure a favorable position in the contest. I show that there is a mechanism
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that implements the optimal e¤ort. This mechanism consists of o¤ering lower prizes to individuals

that claim to be constrained to induce unconstrained players to report their true budget.

In the third chapter I study contests form a di¤erent point of view that usually the literature

does. Most of the research on contests focuses on individuals competing for a desirable prize.

However, there are situations in which individuals compete to avoid a bad, burden or punishment.

To illustrate the problem suppose a government plans to develop a project that is useful and

necessary for society. However residents oppose the project for being developed close to their homes

because it causes a negative externality. Examples include airports, homeless shelters, prisons or

toxic waste dumps among others. In this chapter I use the reverse lottery contest model to study

such situations. I show �rst existence of equilibrium when individuals compete to avoid a bad

using the reverse lottery contest model. Then, I study an application in which a government needs

to allocate a dump in a region and wants to maximize lobbying. The government decides either

to divide this dump in smaller pieces or not, considering that lobbies in each region in�uence the

government to avoid such dumps. I show that lobbying is maximized when the government does not

divide the dump. I also compare the properties of the reverse lottery contest with the conventional

lottery contest. In a framework in which individuals compete to win many prizes and avoid many

bads, I show that aggregate e¤ort is higher using the conventional (reverse) lottery contest when

there are more (less) prizes than bads.
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Chapter 1

Sharing the e¤ort costs in group

contests

1.1 Introduction

This paper addresses con�icts between two groups when trying to win a group-speci�c public good

prize. We analyze how these contests are a¤ected when groups are led by an organizer with the

capacity to impose transfers to share the costs of individual e¤orts within the group. First we

describe centralized levels of group e¤ort - those that organizers wish to attain - and decentralized

levels of group e¤ort - those that individuals exert when they act non-cooperatively - and compare

them. Throughout the paper we refer to them as simply centralized and decentralized (group) e¤ort.

Second, we characterize cost sharing schemes that induce centralized levels of group e¤ort. And,

third, we examine the game in which organizers compete strategically in setting the cost-sharing

scheme of their group.

Economic situations such as sport competitions, R&D contests or litigation illustrate this prob-

lem. In all these situations, groups compete to win a prize that is public (or has a public component).

All athletes that belong to a winning sport team, members of a successful research group in an

R&D contest and all lawyers that belong to a winning law �rm increase their popularity. However,

in such situations group members might exert less e¤ort than the group organizer (president of the

sport team, head of the research group or boss of the law �rm) would like them to exert because

they expect their mates to compete more �ercely or because they do not internalize the bene�ts

that winning a public prize yields to the rest of members of the group. For another example, think

1



2 CHAPTER 1. SHARING THE EFFORT COSTS IN GROUP CONTESTS

of cities competing to get the Olympic Games. Di¤erent levels of government (local council, region,

State. . . ) spend resources to get the games. All levels of government bene�t from getting the

games for tax collection or economic growth. Also, di¤erent levels of government might spend less

resources to attract the games than what would be optimal for the country. Group organizers might

not be able to force a level of e¤ort. However, in many situations they have the authority to set

cost redistributive policies to increase e¤ort when it is observable. That is, sport team presidents,

heads of research groups and bosses of law �rms might pay higher wages to hardworking group

members in deterrence to those that exert less e¤ort. E¤ort can be observable and evaluated in

terms of comparisons to previous individual performances. In the case of cities competing for the

Olympic Games, transfers to the most investing level of government might take place. The Prime

Minister observes investment of the di¤erent levels of government and might has the authority to

set redistributive policies.

An important assumption of our model is that the prize is indivisible. We consider two types of

contests: centralized and decentralized contests. In centralized contests there is an organizer in each

group that chooses the e¤ort of each individual. The goal of the organizer is to maximize the group

payo¤s. In decentralized contests there are no organizers and every individual chooses her e¤ort

non-cooperatively. If the e¤ort exerted by a group in a centralized contest is larger than the e¤ort

exerted in a decentralized contest, the group underperforms with respect to the centralized contest

(or simply, underperforms). Otherwise, the group outperforms (with respect to the centralized

contest).

The objective of this paper is to determine when underperforming arises, and how we can

implement the centralized levels of group e¤ort through cost-sharing schemes. Also, we examine

the game in which organizers compete strategically in setting the cost-sharing scheme of their group

and compare these schemes with those that implement the centralized levels of group e¤ort. The

technology of con�ict that we use is the Tullock Contest Success Function (CSF ) because it re�ects

the applications that we study in this paper. Groups of athletes or lawyers that exert more e¤ort

do not necessarily win the match or the case. For tractability, we restrict our analysis to perfect

substitute impact functions.

Our results are as follows.

First, we show that the larger group always underperforms while the smaller one only does

so if its size is su¢ ciently close to the larger group. Otherwise, the smaller group outperforms.

Underperforming arises because individuals in a group do not internalize the collective bene�ts
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that winning a public prize yields to the group. Outperforming arises because individuals of the

smaller group take advantage of the underperformance of the larger group, thus exerting more e¤ort

than in the centralized setting.

Second, we examine situations where organizers, though observe e¤ort, cannot force their indi-

viduals to exert a given e¤ort but can design mechanisms to foster it. In particular, we assume that

organizers can impose transfers among individuals within a group that depend on e¤ort to promote

it. We call this situation a decentralized contest with transfers. These transfers are not contingent

on the outcome of the contest, might be positive or negative, and are balanced. We �nd that an

equal sharing of the total cost in a group induces individual e¤orts that deliver the centralized level

of group e¤ort. Note that an egalitarian cost-sharing scheme is meritocratic, since individuals that

exert low e¤ort must contribute to paying the costs of those that exert high e¤ort. We also show

that other more complex transfer schemes implement the centralized e¤ort.1

Third, we analyze a game in which organizers compete in the transfer they o¤er. Since in the

previous set up organizers set transfers so that they commit to the centralized e¤ort, in this game

organizers choose transfers to maximize the group payo¤s. This allows us to compare the e¤ects of

transfers that implement the centralized e¤ort and transfers used to compete strategically in the

contest. The game has two stages. In the �rst stage, organizers of both groups simultaneously set

transfers strategically and in the second stage individuals exert e¤ort. For analytical tractability,

we focus on linear transfers. We show that the larger group sets a transfer that shares the e¤ort

costs in an egalitarian way, as it is the case in the implementation setup. The smaller group does

not set an egalitarian cost-sharing scheme. It sets instead a less meritocratic transfer; that is, the

transfer of the larger group promotes e¤ort more than the transfer of the smaller group. With

this scheme, members are induced to lower levels of e¤ort, and the lower probability of winning is

compensated by lower total costs. Thus, the smaller group set transfers di¤erently. The reason is

that when organizers behave strategically, the larger group has the dominant strategy of sharing

the e¤ort costs of the contest in an egalitarian way, while the smaller group best responds to this

dominant strategy.

Though we �nd that transfers that implement the centralized e¤ort are not optimal when

organizers set transfers strategically in case groups di¤er in size, studying the implementation of

the centralized e¤ort still remains relevant for two reasons. First, aggregate e¤ort in the contest

1 In Appendix 1.C, we also provide a generalization to setups in which individual valuations of the public prize are

heterogeneous.
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is larger in the implementation case than in the strategic set up. Then, it is relevant from the

point of view of a contest designer whose objective is to maximize aggregate e¤ort and has the

capacity to force group organizers to set transfers among group members. If transfers are the only

tools that the contest designer has, the resulting transfers of the implementation case maximize

competition. Situations where the Estate or organizations pin up wages that depend on e¤ort or

results to achieve a level of competition illustrate this problem. Second, it allows us to understand

why the transfers that group organizers set in the strategic setting do not implement the resulting

e¤ort of a centralized contest.

Literature review

This paper is related to the literature in group contests. Group contests have been studied

from two di¤erent perspectives depending on the CSF used in the study: the Tullock CSF and

the all-pay auction. While the �rst one assigns a probability of winning to each group depending

on exerted e¤ort, the latter assigns the prize to the group that exerts more e¤ort. The following

research is focused on the Tullock CSF in group contests. Katz, Nitzan and Rosenberg (1990) study

a contest between two groups competing for a public prize, with perfect substitute impact function,

group-speci�c public good prize and linear costs. They �nd that the group size does not matter,

since both groups exert the same e¤ort. Baik (2008) analyzes the framework of Katz, Nitzan and

Rosenberg (1990) when individuals value the prize di¤erently, and shows that only those individuals

that value the prize the most in each group exert e¤ort in equilibrium. Lee (2012) analyzes the

weakest link impact function and shows that all individuals in a group exert the same e¤ort.

Kolmar and Rommeswinkel (2013) generalize the previous research using a constant elasticity of

substitution impact function. They �nd that the degree of complementarity does not a¤ect the

e¤ort exerted by the group when individuals in each group are homogeneous. When individuals are

heterogeneous, the higher the heterogeneity, the more similar the e¤ort among individuals is, even

though they are less likely to win the contest. Chowdhury, Lee, and Sheremeta (2013a) show that

only one individual in each active group, that is not necessarily the individual in the group who

values the prize the most, exerts e¤ort using the best shot impact function. Other research adresses

similar problems using the all-pay auction. The all-pay auction with an additive impact function

is studied in Baik, Kim, and Na (2001) and Topolyan (2014). Chowdhury, Lee, and Topolyan

(2013b) analyze a similar framework with the weakest link impact function. Barbieri, Malueg, and

Topolyan (2014) study the best shot impact function. Finally, Chowdhury and Topolyan (2015)

analyze the case in which one group uses a weakest link and the other group a best shot impact



1.1. INTRODUCTION 5

function. It is important to mention other research in group contests that focuses on the Tullock

CSF. Esteban and Ray (2001) generalize the model of Katz, Nitzan and Rosenberg (1990) assuming

groups compete for a prize with public and private characteristics and convex costs. They �nd that

the larger group performs better than the smaller one the more convex costs are and the more

public the prize is. See Cheikbossian (2008) and Nitzan and Ueda (2009,2013) for other papers in

group contests for a public prize.

The major concern in the previous research is the performance of each group in the contest and

the free riding problem within groups. Our contribution is to analyze group underperformances as

the di¤erence between the e¤ort exerted by the group in a centralized and decentralized contest,

to show how the centralized e¤ort can be implemented using transfers among individuals and to

analyze if these transfers are optimal for welfare maximizing organizers. We focus on the simplest

framework based on the Tullock CSF with perfect substitute impact function and a group-speci�c

public good prize. The analysis might become intractable with more complex impact functions.

Our research is also related to prize sharing in group contests. Nitzan (1991) assumes a prize

sharing rule based on a convex combination of an egalitarian distribution and a distribution de-

pending on the relative e¤ort exerted by each individual with respect to the whole group. Lee

(1995) generalizes Nitzan (1991) through the following two stage contest. In the �rst stage, an

organizer in each group determines the sharing rule proposed by Nitzan (1991), while in the second

stage the contest takes place, the rule being publicly known. Gürtler (2005) extends Lee (1995)

analyzing the case in which groups determine their sharing rules simultaneously or sequentially.

Nitzan and Ueda (2011) examine a general model in which the sharing rule is private information.

Baik and Lee (2012) study whether a group reveals the sharing rule.

The papers mentioned in the previous paragraph study the e¤ects of sharing a private and

divisible prize in the contest. By de�nition, a public prize is non rival and non exclusive. Therefore,

if a prize is public, it is non divisible. However, indivisible prizes may become somehow divisible

by cost sharing. Some papers introduce the term of cooperation by splitting the e¤ort costs of

the contest in an egalitarian way in order to solve other problems. Ursprung (2012) compares the

situations of incentives (as in prize sharing), cooperation and non incentives nor cooperation for a

private prize. He �nds that cooperation is preferred to incentives, though it is not maintainable

in the long run. For a similar paper see Epstein and Mealem (2012). As far as we know, there

is no previous research about deciding how to share the e¤ort costs of the contest. Nitzan and

Ueda (2014b), independently and simultaneously to our research, present a similar strategic set up
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but when sharing rules are private information, costs are convex and individual valuations of the

prize are heterogeneous. In their strategic setting, convex costs allow every individual to be active

in the contest and private information allows tractability, since the problem can be understood

as a one stage game. Our paper not only di¤ers to Nitzan and Ueda (2014b) with respect to

private information in the strategic set up, but also in our aim to analyze the di¤erence between a

centralized and decentralized contest, and the implementation of the centralized e¤ort.

An important di¤erence between prize sharing and cost sharing is that while the former only

allows for transfers among individuals within a group contingent on winning the contest, the latter

is not contingent on the outcome.

This paper is also related to delegation in contests. These models study a two individual con-

test in which both of them decide either to delegate or not to a third party and the reward she

should receive to overcome moral harzard. Warneryd (1998) shows that delegation is bene�cial for

individuals, at least if such delegation is compulsory. Baik (2007) focuses on the optimal contract

and shows that the equilibrium contract is a no-win-no-pay contract. Baik (2008) studies �xed fees

and contingent fees with caps for delegates, and shows that it is optimal to set a zero �xed fee and

a contingent fee equal to the cap of the legal system. For other papers that study delegation see

Schoonbeek (2002) and Brandauer and Englmaier (2006).

The main di¤erence of this paper with the literature is that the organizer chooses a payment

or transfer scheme to individuals to maximize the payo¤s of the group, while in the delegation

framework the objective of the principals is to maximize their own payo¤s and not those of the

delegates. Also, the main payment structure analyzed in these papers focuses on contingent fees,

while our transfer is set independently on the outcome of the contest and depends in the e¤ort of

each individual relative the group e¤ort.

The paper has the following structure. In the next section, the main framework is introduced.

Section 1.3 analyzes centralized and decentralized contests and when underperformances and out-

performances arise. Section 1.4 shows how organizers implement the centralized e¤ort through

transfers. Section 1.5 analyzes the case in which organizers set transfers strategically. Section 1.6

concludes. Proofs are relegated to the appendix.
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1.2 The model

Consider a contest between two groups l = 1; 2 that compete in order to win a public prize. Each

group is composed of nl individuals and without loss of generality, n1 � n2. In particular, let

n1 = an2, with a 2 [1;1). All individuals value the public prize v. Individuals of each group exert

e¤ort in order to win the prize. E¤ort exerted by individual i in group l is denoted by eli and the

total e¤ort exerted for the group is El =
nlP
i=1
eli. Let El�j =

nlP
i6=j
eli, El�jk =

nlP
i6=j;k

eli and so on. The

total e¤ort exerted in the contest is E =
2P
l=1

El.

The probability that group l wins the prize is:

pl(El; Em) =
El
E
for l = 1; 2: (1.1)

Note that pl(El; Em), which is known as the Tullock Contest Success Function,2 is twice continuously

di¤erentiable in R2++, strictly increasing in El, strictly decreasing in Em and satis�es homogeneity

of degree 0.3

E¤ort is costly and the cost function is convex:

c(eli) =
e�+1li

�+ 1
(1.2)

with � � 0. Thus, payo¤s of individual i in group l are:

�li =
El
E
v �

e�+1li

�+ 1
, i = 1:::nl; l = 1; 2, (1.3)

while group payo¤s are:

�l =

nlX
i=1

�li =
El
E
vnl �

nlX
i=1

e�+1li

�+ 1
, l = 1; 2: (1.4)

Note that individuals in both groups value equally the public prize and have the same cost

function. Groups only di¤er in size and its analysis is our main purpose. We distinguish between

two types of contests: centralized and decentralized contests.

De�nition 1.1 A contest is centralized if there is an organizer in each group that chooses and

forces the amount of e¤ort that individuals in her group are going to exert to maximize group

payo¤s.

2Skaperdas (1996) axiomatized the Tullock CSF. For the purposes of simplicity, we assume that e¤orts enter

additively in the CSF. See Kohlmar and Rommeswinkel (2013) for a generalization with a CES as impact functions.
3This property implies that the probability of winning the prize does not depend on units of measurement.
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We assume that organizers can force their individuals to exert such e¤ort. The goal of each

organizer is to maximize the payo¤s of her group. Therefore, organizers internalize the bene�ts

that winning a public prize yields to every individual in the group.

De�nition 1.2 A contest is decentralized if there are no organizers in groups and every individual

in every group chooses the amount of e¤ort that maximizes their own payo¤s.

In a decentralized contest individuals do not take into account the payo¤s of the rest of the

group. That is, individuals do not internalize the bene�ts that winning a public prize yields to

every individual in the group when exerting e¤ort.

Section 1.3 analyzes group underperformances and outperformances that arise in decentralized

contests taking the centralized contest as a benchmark.

In Section 1.4, we analyze decentralized contests with transfers.

De�nition 1.3 A contest is decentralized with transfers if organizers, though can observe e¤ort,

cannot force their individuals to exert an amount of e¤ort but can set transfers tl(eli; El) among

individuals within a group to provide incentives.

We make the following assumption:

Assumption 1.1. Transfers depend on e¤ort, are not contingent on the outcome of the contest,

might be positive or negative, are continuous and di¤erentiable in both arguments and are balanced:

nlX
i=1

tl(eli; El) = 0 for l = 1; 2. (1.5)

The problem facing the organizers is to choose the transfers that implement the e¤ort exerted in a

centralized contest.

In Section 1.5, organizers set transfers strategically. We study the following two stage game.

In the �rst stage, organizers choose non-cooperatively and simultaneously the transfer tl(eli; El)

to maximize the group payo¤s. In the second stage, individuals exert e¤ort. There is perfect

information and the problem is solved by backward induction.

1.3 Underperforming and outperforming in decentralized contests

This section analyzes conditions for underperforming and outperforming in groups. To do so, we

analyze two di¤erent types of contests: centralized and decentralized contest.
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Let Ecl and E
d
l be the e¤ort exerted by group l = 1; 2 in a centralized and a decentralized contest

respectively. Throughout the paper we refer to them as simply centralized and decentralized (group)

e¤ort.

De�nition 1.4 Group l = 1; 2 underperforms with respect to the centralized contest (or simply

underperforms) if Ecl > E
d
l . Group l = 1; 2 outperforms with respect to the centralized contest (or

simply outperforms) if Ecl < E
d
l .

We will see next that underperforming in one group might induce outperforming in the other

group.

We start by analyzing a centralized contest. In a centralized contest, payo¤s of organizers are

given by equation (1.4). The following �rst order conditions are necessary:

Em
E2
vnl = e

�
li, i = 1:::nl; l = 1; 2. (1.6)

Note that since the left hand side is equal for every individual in the same group and the right hand

side is endogenous, every individual in each group exerts the same amount of e¤ort in equilibrium

when � > 0, so that eli = elj = el for every i 6= j.4 Now, using the �rst order conditions of a

representative individual for each group, it follows that el = em = e for m 6= l. When introducing

these conditions in equation (1.6), it follows that the e¤ort exerted by any individual evaluated at

the equilibrium is

ec = [
vnlnm

(nl + nm)2
]

1
�+1 ; (1.7)

and the total e¤ort of the group evaluated at the equilibrium is:

Ecl =

nlX
i=1

ecli = nl[
vnlnm

(nl + nm)2
]

1
�+1 for l = 1; 2: (1.8)

It is straightforward to see that since every individual in a centralized contest exerts the same

amount of e¤ort, the larger group exerts more e¤ort and is therefore more likely to win the contest

than the smaller group. Payo¤ function (1.4) exhibits a maximum since the second order condition

is negative:
�2Emvnl
E3

� �e��1l < 0 for l = 1; 2. (1.9)

4 In case � = 0, the marginal cost becomes unity. Then, there is a continuum of equilibria of e¤ort exerted

by individuals within the group. The sum of e¤orts of individuals in a given group are the same across all these

equilibria, as the equilibrium winning probabilities are. For the remaining of the paper, in case � = 0, we will refer

to the symmetric equilibrium within the group, in which every individual exerts the same amount of e¤ort.
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In a decentralized contest, there are no organizers and every individual chooses the amount of

e¤ort that maximizes her own payo¤s, which are given by equation (1.3). The following �rst order

conditions are necessary:5

Em
E2
v = e�li, i = 1:::nl; l = 1; 2. (1.10)

Again, when � > 0 individuals within the same group exert the same amount of e¤ort so that

eli = elj = el for every i 6= j. Using the �rst order conditions of a representative individual for each

group, it follows that:
el
em

= (
nm
nl
)

1
�+1 . (1.11)

Then, the e¤ort exerted by individuals depends on the size of both groups. Moreover, individuals

in the larger group exert less e¤ort than individuals in the smaller group. Multiplying both sides

of equation (1.11) by nl=nm, we get:

El
Em

= (
nl
nm
)

�
�+1 . (1.12)

It is easy to see that the larger group exerts more e¤ort than the smaller group, being more likely

to win the contest when � > 0. Otherwise, both groups exert the same amount of e¤ort. Using

equations (1.11) and (1.10) yields individual e¤ort in each group:

edl = [v
nm(

nl
nm
)

1
�+1 )

(nl + nm(
nl
nm
)

1
�+1 )2

]
1

�+1 ; (1.13)

and group e¤ort is:

Edl =

nlX
i=1

edli = nl[v
nm(

nl
nm
)

1
�+1 )

(nl + nm(
nl
nm
)

1
�+1 )2

]
1

�+1 : (1.14)

The following proposition states conditions for underperforming and outperforming.

Proposition 1.1 The larger group always underperforms with respect to the centralized contest,

while the smaller one does only if its size is su¢ ciently close to the larger group, and otherwise

outperforms. That is, there exists an �a 2 [1;1) such that for a < �a, both groups underperform

while for a > �a, Group 2 outperforms.6

5Note that payo¤s exhibit a maximum by condition (1.9).
6The results in Proposition 1.1, 1.2 and 1.3 can be extended to the general case in which the CSF has a general

form pl(El; Em) for l = 1; 2. This function must be twice continuously di¤erentiable in R2
++, pl(0; Em) = 0 for Em > 0

with m 6= l, strictly increasing in El, decreasing in Em and must satisfy homogeneity of degree 0. The probability

that group m 6= l wins the prize is pm = 1�pl(El; Em), and the function must be symmetric, i.e. pl(x; y) = pm(y; x).
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Underperforming and outperforming arise because in a decentralized contest individuals do not

internalize the bene�ts that winning a public prize yields to the group, while organizers do in a

centralized setting. In case a < �a, both organizers force their individuals to exert more e¤ort

than the one exerted in a decentralized contest since they take into account the bene�ts that every

individual in the group obtains in case of winning the prize. Now analyze the case in which a > �a.

In a centralized contest, the organizer in Group 2 knows that the e¤ort that organizer in Group

1 chooses is high since her membership is larger. Then, the organizer in Group 2 chooses a small

amount of e¤ort, since lower costs compensate the smaller probability of winning of her group.

However, in a decentralized contest, individuals in Group 2 take advantage of the lower amount

of e¤ort exerted in Group 1 due to the lack of internalization of the properties of the public prize

and exert more e¤ort than in the centralized contest, which yields outperforming. From a more

technical point of view, the best replies of both groups shitf outwards in the centralized contest

relative to the decentralized contest. The shift of the best reply of Group 1 is larger than the one of

Group 2. It yields that for Group 1 (2), e¤ort of Group 2 (1) is a strategic complement (substitute).

In case the shitf of Group 1 is too large relative to the shift of Group 2, the best replies intersect

in a point where e¤ort of Group 2 is smaller in a centralized contest, which yields overperforming.

Otherwise, underperforming arises.

1.4 Implementation of centralized e¤ort

In the previous section, we assumed that individuals follow the instructions of their organizer

obediently. In this section, we assume that organizers, though can observe e¤ort, cannot force their

individuals to exert an amount of e¤ort, but can design mechanisms in order to implement the

e¤ort exerted in a centralized contest. In particular, we assume that organizers can set transfers

among individuals within a group. We call this situation a decentralized contest with transfers.

This case is specially relevant in situations that involve �rms that cannot force their workers to

exert a level of e¤ort, but can design pay systems that implement it.

In a decentralized contest with transfers, individuals in each group might receive (pay) a transfer

We need to assume that @pl(x; x)=@El tends to 0 when x tends to in�nity, and it tends to a number greater than 1=v

when x tends to 0. Finally, it is also necessary to assume that 0 < y(@2pl(x; y)=@El@Em)=(@pl(x; y)=@El) < 1 for all

x > y > 0. To see the analysis with the general form, see previous versions of this paper.
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tl(eli; El) from (to) other individuals in the same group. Payo¤s of individual i in group l become:

�li =
El
E
v �

e�+1li

�+ 1
+ tl(eli; El), i = 1:::nl; l = 1; 2. (1.15)

By condition (1.5), it follows that the group payo¤s are the same as in equation (1.4).

Transfers redistribute the cost of the contest among individuals in a group. Organizers can

compensate individuals that exert more e¤ort in the contest and penalize those who exert less.

Throughout the paper, we will refer to meritocracy of transfers set by organizers, de�ned as

follows:

De�nition 1.5 Transfer t(eli; El) is meritocratic if @t(eli; El)=@eli > 0. For any given vector of ef-

forts (el1; :::; eln), transfer t
1(eli;El�i) is more meritocratic than transfer t2(eli;El�i) at (el1; :::; eln)

if @t1(eli;El�i)=@eli > @t2(eli;El�i)=@eli.

The problem facing each organizer is to set a transfer tl(eli; El) that implements the centralized

e¤ort under the assumption that the organizer in the other group does likewise.7

Proposition 1.2 The following transfer implements the e¤ort exerted in a centralized contest:8

ttl(eli; El�i) = c(eli)�
nlX
i=1

c(eli)

nl
for i = 1:::nl ; l = 1; 2: (1.16)

This transfer is meritocratic. The organizer in Group 1 sets a more meritocratic transfer than

the organizer in Group 2.

The upper-script t denotes a decentralized contest with transfers scenario. The proof consists of

introducing (1.16) in (1.15) and checking that the transfer implements the e¤ort of the centralized

contest. The transfer that every individual in a group obtains is the di¤erence between her cost of

e¤ort and the average of the cost of e¤ort in the group.9 This transfer is meritocratic and therefore
7 In Appendix 1.B we show why this assumption is plausible. There, we study a game in which each organizer

chooses either to monitor individuals or not.
8Transfers may not be the unique mechanism that implements the centralized e¤ort. In particular, a severe

punishment to individuals who deviate from the required e¤ort would also implement the centralized e¤ort. In

equilibrium, the punishment would not be used since individuals would exert the required e¤ort. However, such

severe punishments would not be credible for individuals since the purpose of the organizer is to maximize group

payo¤s. Punishments, if they are not credible, might not achieve their main goal. We have only focused on continuous

transfers for simplicity.
9 If groups compete for a private prize, costs can also be shared. In case the prize were completely private and

assuming that the prize is divided in per capita terms among the individuals of the group, the transfer that implements

the e¤ort in the centralized contest would be exactly the same. The intuition is the same as for the public prize case.
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induces individuals to exert more e¤ort than they would do without the transfers. Furthermore,

the larger group sets a more meritocratic transfer than the smaller one, since the marginal cost of

individuals decreases in the size of the group.

Although transfers are meritocratic and induce individuals in both groups to exert more e¤ort,

these transfers avoid the outperforming that might arise in the small group. The main reason is

that by setting these transfers, the larger group is induced to exert a large amount of e¤ort. In

absence of transfers, the smaller group would exert less e¤ort than in a centralized contest, since

they are disincentivized by the agressivity of the larger group. Therefore, in order to implement

the centralized e¤ort the smaller group also needs meritocratic transfers.

Inserting transfer (1.16) in payo¤s (1.15), it follows that:

�li =
El
E
v �

nlX
i=1

c(eli)

nl
, i = 1:::nl; l = 1; 2. (1.17)

Therefore, the cost of any individual depends on the average of the cost of e¤ort exerted by her

group. By setting these transfers, organizers have introduced an egalitarian rule in the distribution

of the costs of the contest. That is, every individual in the group pays exactly the same costs

independently on the amount of e¤ort made by the rest of the individuals in the group. The

intuition is simple. In case one individual exerts more e¤ort than another one in the group, the

individual that exerts less e¤ort obtains higher payo¤s since every individual in the group bene�ts

equally from a public prize. However, by setting this transfer, the individuals that exert less e¤ort

during the contest are forced to send a transfer to the hard-workers so that every individual obtains

the same payo¤s.

It is easy to see that with this transfer, the marginal cost of every individual is being substituted

with the group marginal cost, implementing the centralized e¤ort.

The transfer presented in Proposition 1.2 implements the centralized e¤ort in case individuals

within a group value the prize equally.10 However, other transfers might implement the e¤ort of the

centralized contest. We show now the existence of other transfers that implement the centralized

e¤ort.

We �rst solve the problem of the decentralized contest with transfers. To do so, take the �rst

order condition for every individual in each group of (1.15):

Em
E2
v = e�li �

@tl(eli; El�i)

@eli
for m 6= l, i = 1:::nl: (1.18)

10Other transfers are also needed when individuals value the prize di¤erently. This case is analyzed in Appendix

1.C for linear costs.
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Denote f(eli; El�i) � e�li � @tl(eli; El�i)=@eli. Using (1.18) for any individual of both groups, we

obtain the e¤ort exerted in the group evaluated at the equilibrium in a decentralized contest with

transfers:

Etl = v
f(etmj ; E

t
m�j)

(f(etli; E
t
l�i) + f(e

t
mj ; E

t
m�j))

2
, l = 1; 2, m 6= l. (1.19)

The organizer of each group implements the centralized e¤ort choosing the transfer tl(eli; El�i)

such that Ecl = E
t
l .

Proposition 1.3 The following transfer implements the e¤ort of a centralized contest:

ttl(eli; El�i) = c(eli)�
nlX
k 6=i

c(elk)

(nl � 1)
+Al(

nlX
k 6=i

elk
nl � 1

� eli), for l = 1; 2; i = 1:::nl : (1.20)

where Al =
vnm

(nl + nm)2
(
vnlnm

(nl + nm)2
)
�1
�+1 (1.21)

This transfer is meritocratic for eli > A
1
�

l . The organizer in Group 1 sets a more meritocratic

transfer than the organizer in Group 2.

The proof consists of introducing (1.20) in (1.15) and checking that the transfer implements the

e¤ort of the centralized contest. In the appendix, we show how to construct the transfer function.

This complex functional form can be decomposed in two parts. First of all, the transfer that an

individual obtains depends positively on the distance between her cost of e¤ort and the average

cost of the rest of individuals in the group. Additionally, it depends negatively on the distance

between her e¤ort and the average e¤ort of the rest of individuals in the group, since Al is positive.

Therefore, Al can be understood as a disincentivizing parameter. Parameter Al is decreasing in nl

since organizers want their individuals to exert more e¤ort the larger the group is. It is increasing

in nm, since the rival group becomes stronger and disincentivizes the organizer of the group.

Note also that the transfer is meritocratic for eli > A
1=�
l . The reason is that the organizer of

the smaller group sets a non meritocratic transfer to avoid outperforming.

Finally, note that contrarily to transfer (1.16), it is necessary to assume that the organizer of

each group knows both the value of the prize and the size of the rival group when using (1.20).

Thus, (1.16) is more useful in case that organizers are not aware of these parameters.

1.5 Strategic transfer setting by organizers

In this section, organizers choose transfers strategically in order to maximize the group payo¤s. This

analysis is interesting to determine under which circumstances the implementation of the e¤ort of
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the centralized contest developed in the previous section is optimal for organizers. For analytical

tractability, we assume organizers are constrained to use linear transfer functions as follows:

tl(eli; El�i) = aleli + blEl: (1.22)

We also assume that � = 0. Linearity in costs allows the possibility of obtaining closed form

solutions for e¤orts and the parameters of the transfer functions in this setting.

The game has two stages. In the �rst stage, each organizer chooses the parameters al and

bl simultaneously and non-cooperatively with the other group to maximize group payo¤s. In the

second stage, individuals in each group exert e¤ort and the contest takes place.

Before solving the game, it is interesting to understand some properties of the linear transfer

function. First of all, using equation (1.5) on the linear transfer function it follows that bl = �al=nl.

Likewise, call �l = (1 � al), and assume �l 2 [0; 1] for l = 1; 2.11 Introducing these equalities in

equation (1.22), and introducing the resulting transfer function in payo¤s (1.15) yields:

�li =
El
E
v � �leli � (1� �l)

El
nl
for i = 1:::nl; l = 1; 2: (1.23)

Therefore, payo¤s of individuals in the contest are given by the expected value of winning the prize

minus a convex combination between two rules of sharing the costs of the contest, where �l is the

parameter of the convex combination. In case �l = 1, each individual in a group faces her own

cost, while in case �l = 0 each individual assumes the average e¤ort cost of the group. Mixed rules

are allowed, since �l 2 [0; 1] for l = 1; 2.

It is necessary to �nd the values of �l that each organizer chooses in order to solve the game.

We proceed using backward induction. Then, we start solving the second stage of the game. In

the second stage, every individual in the contest chooses the e¤ort that maximizes payo¤s (1.23)

taking parameters �l for l = 1; 2 as given.

The following �rst order condition for any individual in group l = 1; 2 is necessary:

Em
E2
v = �l for m 6= l, (1.24)

where �l = �l(nl � 1)=nl + 1=nl. The marginal cost depends on the sharing rule chosen by the

organizer of the group. The lower �l is, the lower the marginal cost of each individual of group l

for l = 1; 2 is (and viceversa). Note also that for a given �l > 0, the higher the size of group l,

11We assume �l 2 [0; 1] for l = 1; 2 to ensure an equilibrium in pure strategies. If we eliminate the lower bound of

�l, an equilibrium in pure strategies does not exist.
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the lower the marginal cost of individuals is since part (or all) of the cost is shared among all the

individuals in the group.

Using the �rst order conditions of any two individuals of di¤erent groups yields:

Em
El

= � where � =
�l
�m
. (1.25)

Equation (1.25) relates the e¤ort exerted by group m relative to group l, which depends on para-

meter �. This parameter depends on �l for l = 1; 2 and the size of both groups. Other things equal,

the group whose � is lower is the group that exerts more e¤ort; and again other things equal, the

group whose size is larger exerts more e¤ort than the other group for �l > 0.

Introducing equation (1.25) in (1.24) yields the e¤ort exerted by each group as a function of �l

and �m:

El =
v�m

[�l + �m]2
, l = 1; 2, m 6= l. (1.26)

We compute easily the probability of winning the contest of each group as a function of �l and �m:

pl =
�m

�l + �m
, l = 1; 2, m 6= l. (1.27)

Note that the equilibrium has not yet been characterized. The problem has been solved as a

function of the decision rules that need to be set in the �rst stage of the game. Solving backwards,

organizers set in a non-cooperative way the rules �l such that they maximize their group payo¤s.

Introducing equations (1.27) and (1.26) in equation (1.23), and summing across individuals, we

obtain the group payo¤s as a function of �l and �m:

�l(�l; �m) = pl(�l; �m)nlv � El(�l; �m). (1.28)

Taking the �rst derivative of payo¤s (1.28) with respect to �l and making some algebraical arrange-

ments:

@�l
@�l

=
v(nl � 1)�m
[�l + �m]2

[�1 + 2

nl[�l + �m]
] for l = 1; 2; l 6= m: (1.29)

Studying the properties of the group payo¤s allows us to determine the decision rule set by each

group and consequently characterize the equilibrium in the �rst and second stages. The following

proposition shows the main results.

Proposition 1.4 Suppose � = 0 and organizers set transfers strategically.
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a) If n1 = n2, then ��l = 0 and

t�l (eli; El�i) = eli �
El
nl

for l = 1; 2: (1.30)

Therefore, both groups in the contest exert the same amount of e¤ort and are equally likely to

win.

b) If n1 > n2, then ��1 = 0 and �
�
2 = (n1 � n2)=((n2 � 1)n1). Therefore, organizer of Group 1

chooses the transfer (1.30), while organizer of Group 2 chooses:

t�2(e2i; E2�i) =
n1n2 � 2n1 + n2
n1(n2 � 1)

e2i �
n1n2 � 2n1 + n2
n1(n2 � 1)

E2
n2

: (1.31)

The transfer set by Group 1 is more meritocratic than the transfer set by Group 2. Therefore,

Group 1 exerts more e¤ort than Group 2 and is more likely to win the contest. Also, the larger the

di¤erence of size between groups is, the less meritocratic the transfer set by Group 2 is.

The upper-script � denotes the strategic transfer setting by organizers scenario. If groups have

the same size, organizers split the e¤ort costs of the group among individuals in an egalitarian way.

This decision is a dominant strategy for both organizers. By setting this rule, individuals have a

lower marginal cost, which induces them to exert more e¤ort to be more likely to win the contest.

Since groups are equal in size and have chosen the same rule, both groups exert the same e¤ort in

equilibrium and are equally likely to win. Furthermore, the transfers chosen by organizers when

they behave strategically coincide with the implementation case when groups have the same size.

E¤ort is higher than in case the rule is �l = 1 (i.e. when there are no transfers) for both groups

because the marginal cost of every individual in each group is lower due to the cost sharing rule.

Since �l = 0 induces the same transfer as in Proposition 1.2, the best responses and the equilibrium

when organizers set transfers strategically coincide with the case of decentralized contest with

transfers.

In case groups di¤er in size, the organizer in the larger group splits the total costs among her

individuals while the organizer in the smaller one sets a mixed rule. Furthermore, the higher the

di¤erence of size between groups, the less egalitarian the rule set by the smaller group is because

the larger group has the dominant strategy of setting the egalitarian rule. The egalitarian rule

for the larger group is more meritocratic than the egalitarian rule for the smaller one, since the

marginal cost depends on the size of the group. Then, the smaller group sets a less meritocratic rule

because the higher probability of winning that a more meritocratic rule yields does not compensate

the cost of e¤ort. Therefore, the transfer chosen by the organizer of the larger group coincides with
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the implementation case, while the transfer set by the organizer of the smaller group di¤ers. It

yields that the larger group exerts more e¤ort than the smaller one and it is more likely to win the

contest. In particular, for the larger (smaller) group, the e¤ort of the smaller (larger) group is a

strategic complement (substitute).12

While the transfers chosen by organizers when they behave strategically coincide with the

implementation case when groups have the same size, they di¤er in case the size is di¤erent. The

main reason is that when organizers set transfers strategically, the organizer in Group 1 has a

dominant strategy of setting the transfer given in (1.30) while the organizer in Group 2 maximizes

her payo¤s subject to this dominant strategy. Then, the contest becomes sequential. However,

in case organizers choose the transfer that implements the centralized e¤ort, they are choosing a

transfer restricting to a given e¤ort which is the result of a simultaneous contest.13

A natural question is how setting transfers strategically a¤ects group welfare comparing with

transfers that implement the centralized e¤ort. The answer to this question is that both groups

would be better o¤ in the case of organizers behaving strategically. The main reason is that the

smaller group sets a less meritocratic transfer since the lower probability of winning the contest is

compensated by a lower cost of e¤ort. Furthermore, since the smaller group is weaker, the larger

group exerts less e¤ort in equilibrium. Therefore, both groups would obtain higher payo¤s in case

of setting transfers strategically. In a similar fashion, both groups would be better o¤ in case both

of them would agree not to set transfers. Transfers reduce the marginal cost of both groups and

induce individuals to increase e¤ort. This fact causes a reduction in individual and group payo¤s.

All the results of this section are based on di¤erences in group size. We might do a similar

analysis assuming that all members in a group value the public prize equally but groups di¤er

in how they value the prize. Let v1 and v2 be the valuation of each member of Group 1 and 2

12As in the previous sections, the problem has been solved for a public prize, but costs can also be shared with

private prizes. Should the prize be private and divided in per capita terms among the individuals in the group in case

of winning, the results would change. In particular, both groups would split the e¤ort costs of the contest with the

egalitarian rule. This is the case since, by dividing the private prize among individuals, the valuation of individuals of

the prize falls. Then, the dominant strategy of the larger group is vanished, since the lower marginal cost by setting

the egalitarian rule is compensated by a lower expected prize for each individual of the group. Then, both groups

have the dominant strategy of splitting the e¤ort costs in an egalitarian way. Should the prize have both public and

private components, the larger group still has the dominant strategy, while the smaller one chooses a rule closer to

the egalitarian rule the more private the prize is.
13 Indeed, if the centralized contest solved in Section 1.3 were sequential, the resulting transfers that implement the

centralized e¤ort would coincide with the transfers of Proposition 1.4.
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respectively, and assume v1n1 > v2n2. In this case, Group 1 splits the e¤ort costs of the contest

in an egalitarian way and exerts more e¤ort than the other group, that sets a mixed rule of cost

sharing. The main reason is that the group that sets an egalitarian rule is the one that has a larger

valuation of the prize or smaller marginal costs (which are equivalent), while the other group sets a

mixed rule. Thus, the combination of prize valuations and group sizes determines the cost sharing

rules. 14

1.6 Final remarks

This paper studies how to avoid over and underperforming in contests when the organizer has the

capacity to impose transfers among individuals, and analyzes if these transfers are optimal when

the objective of the organizer is to maximize group payo¤s.

When organizers set transfers strategically, the model becomes intractable if costs are convex.

Intuition suggests that cost convexity induces organizers to set meritocratic transfers to avoid the

e¤ects of higher marginal costs and induce individuals to exert more e¤ort.

In Appendix 1.C, we study the implementation setup in which individual valuations of the

public prize are heterogeneous. In the strategic setup with linear costs, only top individuals �

those who value the public prize the most �exert e¤ort. If costs are convex, the problem becomes

intractable.

It is interesting to compare the e¤ects of cost sharing presented in this paper with the literature

of prize sharing. The problem of prize sharing consists of determining previously to the contest,

how a divisible prize is shared among the individuals of the winning group according to a convex

combination between two rules: divide the prize in per capita terms or depending on the e¤ort

of each individual relative the group e¤ort. We compare it with Lee (1995) for being the original

setting and for using similar assumptions to our model. He �nds that when groups have the same

size, organizers decide to share the prize depending exclusively on the relative e¤ort. This result is

in line with the results obtained in this paper, since groups set a rule that induces individuals to

exert more e¤ort in equilibrium.

However, in case groups di¤er in size, Lee (1995) �nds that the organizer in the smaller group

has the dominant strategy of choosing a rule based on relative e¤ort, which induces to increase

e¤ort, while the organizer in the larger group chooses a mixed rule, such that both groups exert

14Previous versions of this paper develop the analysis.
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the same e¤ort in equilibrium. Thus, the rule set by the smaller group is more meritocratic than

the rule of the larger group. This is because the organizer of the larger group, by setting a less

meritocratic rule, reduces costs by inducing her individuals to reduce e¤ort, and also induces their

rivals to exert less e¤ort, since e¤orts are strategic complements. These results constrast with our

�ndings in cost sharing, since the smaller group is the one that sets a less meritocratic rule to

induce the larger group to reduce e¤ort by the strategic complementarity.

In general, the main di¤erence between cost sharing and prize sharing in contests is the nature

of transfers. In cost sharing, transfers are set independently on the result of the contest, while

prize sharing could be considered as transfers that are contingent on winning the contest.15 The

interpretation is the following. When transfers are set independently on winning the contest or not,

what is being set is a contract for every individual. However, when transfers are set contingent on

the result of the contest, what is being decided is a premium for each individual.

In order to illustrate the problem recall again the case of sports. Sport teams pay the more

hardworking athletes a higher wage, regardless of whether a match is won or not. In addition to

this, in case of winning the match, athletes in the winning team obtain a premium which may

likewise depend on the e¤ort exerted by each athlete relative to the total e¤ort exerted in the team,

if this is the chosen rule.

Additionally, both problems di¤er since prize sharing can only be applied to the case in which

the prize is divisible, while cost sharing applies both for divisible and indivisible prizes.

It is interesting to relate the results of Esteban and Ray (2001) to those found in this paper.

Their purpose is to analyze the group size paradox in a decentralized contest framework, and they

determine that the smaller group performs better in the contest the more private the prize is and

the less convex costs are. When the prize is private and divisible, individuals in the larger group get

a smaller part of the prize in case of winning, which induces them to decrease e¤ort. Cost convexity

reduces the incentives to exert large individual e¤ort levels, which bene�ts the larger group. In this

paper, we �nd that the larger group performs better in the contest both in the centralized setting

and in the strategic scenario. In the �rst case, organizers internalize the bene�ts that winning a

public prize yields to all individuals in the group so that the organizer in the large group induces

her individuals to behave �ercely relative the small group. In the second case, the small group sets

a less meritocratic transfer than the large group so that lowers costs of e¤ort compensate the lower

15 In previous versions of this paper we show how to derive the formulation of Lee (1995) from transfers contingent

on winning the contest.
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probability of winning the contest.

Finally, we relate the transfers of our framework with those of the Clark-Groves mechanism.

These mechanisms are di¤erent because in the Clark-Groves case the planner does not know how

individuals value the prize and in our set up organizers do. It would be interesting to study our

framework in case individuals value the prize di¤erently and organizers have incomplete information

about it. We leave this for future research.
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Chapter 2

Optimal contest design with budget

constraints

2.1 Introduction

This paper studies the design of a contest between two possible budget constrained players when

the organizer of the contest is not informed about the actual size of budgets and where the objective

is to maximize aggregate e¤ort. First we de�ne the optimal e¤ort as the maximum levels of e¤ort

achievable in a situation of complete information. We then propose a mechanism that implements

the optimal e¤ort when the organizer ignores the budget of players.

To illustrate the problem, suppose a research contest is held with the possibility of winning

a prize. Some organizations hold contests in order to provide an incentive for research in certain

speci�c �elds of science. For instance, in the area of arti�cial intelligence, the Loebner prize is

awarded to the most intelligent software, or the Net�ix prize is awarded for the best algorithm for

predicting user ratings for �lms. Competing �rms may be �nancially constrained, and may not

spend as much resources as desirable. Moreover, it may reduce the resources that unconstrained

�rms allocate to research.

For another application, suppose employees in a �rm competing for a wage bonus. Employees

may be constrained in the e¤ort they can exert for having di¤erent abilities. The goal of the boss

of the �rm is to establish a contest in a way that encourages employees to exert as much e¤ort

as possible, since unconstrained employees may reduce e¤ort in the �rm when they compete with

constrained employees.

23
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While constrained players cannot exert more e¤ort than their budget, unconstrained players

reduce their e¤ort when competing with a constrained opponent, since they �nd it easier to win

the contest. To overcome this problem, we focus on the design of contests to maximize aggregate

e¤ort when the organizer ignores the budget of players.

In our model, two players compete by exerting costly e¤ort in an imperfectly discriminating

contest to win a prize. We focus on an imperfectly discriminating contest because in the proposed

applications, the player that exerts more e¤ort does not necessarily win the contest with probability

1.1 We assume players have a budget constraint, which can be either high or low. If it is high,

we assume the player does not face any constraint. Otherwise, she does. The contest is designed

by an organizer whose objective is to maximize aggregate e¤ort. To do so, the organizer can bias

the contest in favor of any player, or set an unbiased contest. She also decides the prize each

player competes for. We assume that the organizer is constrained in the prize she o¤ers. In the

application of employees competing for bonuses, the �rm may be constrained in terms of the wages

it o¤ers. The organizer is not informed about the budget of players, but players know both their

own budget and the budget of their opponent. In the application of employees competing for a

wage bonus, bosses may not know the abilities of their employees, whereas employees normally

know the abilities of their colleagues. In addition, in research contests, the organization may be

unaware of the �nancial situation of the competing �rms, although �rms normally now the situation

of their rivals in small markets. The game has three stages. In stage one, the organizer designs

the contest by choosing and announcing a contest bias and a prize for each player for each possible

vector of types of players. In stage two, each player sends a message to the organizer regarding her

budget. In this stage, their strategy is either to report their true budget or to lie. In stage three

players exert e¤ort and the contest takes place.

We �rstly analyze the benchmark case in which the organizer has complete information (i.e.

when the organizer knows the type of players) and when the prize is not costly for the organizer.

We �rst argue that the organizer o¤ers to each player the highest possible prize. This is the

case for two reasons. First, e¤ort of players is increasing in the prize they compete for. Second,

we assume the prize is not costly for the organizer and her objective is to maximize the sum of

e¤orts. We show that the organizer maximizes aggregate e¤ort by biasing the contest in favor of

1The �rm that spends the greatest amount of resources on research does not necessarily achieve the best con-

tribution to science. However, there is a positive relationship between expenditure and the probability of success.

Something similar happens when employees compete in a �rm for bonuses.
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the constrained player if the players di¤er in type. This bias makes the e¤ort of the constrained

player more productive than the e¤ort of the unconstrained player in the contest. This bias does

not provide an incentive to the constrained player to increase the amount of e¤ort (since she is

constrained), but does encourage the unconstrained, which increases aggregate e¤ort. When both

players are either constrained or unconstrained, the organizer maximizes aggregate e¤ort by setting

an unbiased contest.

The previous set up fails to achieve optimal e¤ort when the planner is incompletely informed.

In particular, in stage two both players report they have a low budget in equilibrium regardless

of their type. This is because reporting a low budget ensures that the contest is never biased

against them. Thus, the organizer always sets an unbiased contest. This is not a problem if both

players have the same budget, since e¤ort maximization in these cases requires an unbiased contest.

However, aggregate e¤ort is not maximized if players have di¤erent budgets because the contest

should be biased towards the player with a low budget.

We then propose a mechanism for implementing the optimal e¤ort. We show that the organizer

can implement the optimal e¤ort by o¤ering a lower prize to the players who report to be constrained

and using the bias applied when there is complete information. The value of this prize and the

bias depend on the type both players report to be in stage two. We �nd an interval of prizes that

implement the optimal e¤ort. When designing the contest, the organizer plays with two driving

forces that a¤ects the decision of players in stage two. The contest is potentially biased in favor of

the player that reports to be constrained. However, she competes for a lower prize. The opposite

happens for the player that reports to be unconstrained.

Using this mechanism, players report their true type in the case where both players have a high

budget or in the case where they di¤er in type. In the event of both of them having a low budget,

two equilibria arise depending on the prizes set by the organizer: both players report that they have

a high budget or both report that they have a low budget. The �rst equilibrium always arises under

this mechanism. The second one only does so if the prize the organizer sets is su¢ ciently large in

the event of both of them reporting that they have a low budget. In both equilibria, the optimal

e¤ort is implemented because if both players spend their whole budget when they compete for a

small prize, they do the same when competing for a higher prize. Though there is an equilibrium

in which both players lie about their type, the organizer achieves her goal of maximizing aggregate

e¤ort.

We extend the problem when there is a continuum of possible budgets that players can have.
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The problem becomes more complicated and additional assumptions must be made to implement

the optimal e¤ort using a similar mechanism. In particular, we assume that a player reports her

true budget in case she is indi¤erent between reporting her true type and lying.

We then analyze the case in which the prize is costly for the organizer. In the application

of employees competing for a bonus, the position that the winner gets may involve monetary

rewards that are costly for the �rm. The same may happen in research contests. Given complete

information, the organizer maximizes e¤ort subject to minimizing the costs of prizes o¤ering the

unconstrained players the highest possible prize, and a lower prize to the constrained players. Given

incomplete information, we show that in order to implement the optimal e¤ort, the organizer must

o¤er a higher prize to players that claim to be constrained than when there is complete information.

Thus, the �rst best, which corresponds to the optimal levels of e¤ort and minimum prizes o¤ered

when there is complete information, cannot be achieved when there is incomplete information.

Other solutions exist to overcome the problem of constraints, for instance, giving transfers to

constrained players. The use of transfers induces greater e¤ort in the contest. This is because the

constrained player is willing to use the resources of the transfer to exert e¤ort, and it induces the

unconstrained player to be more aggressive in the contest. However, transfers involve two problems.

Firstly, unconstrained players may claim they are constrained in order to obtain a transfer, which

they will not use in the contest, when the organizer ignores the budget of players. Secondly, transfers

involves costs for the organizer and she may �nd that applying such a scheme is not cost-e¤ective.

For these reasons we do not focus on transfers, although we devote a section to discussing their

implications.

Relationship to the literature

This paper is closely related to research that focuses on the optimal design of an imperfectly

discriminating contest success function to maximize aggregate e¤ort. Dasgupta and Nti (1998)

study a contest in which the organizer designs the contest success function when she values the

prize. They �nd that if the contest organizer is an expected utility maximizer, she uses a linear

homogeneous contest success function. Nti (2004) designs the optimal contest success function

when two players value the prize di¤erently. He �nds that it is optimal to give advantage to the

player with a lower valuation in order to induce e¤ort to both players. Franke (2012) obtains

similar results for a contest among n-players, under an a¢ rmative action perspective. He concludes

that setting a¢ rmative action to low-skilled players increases e¤ort incentives of every player. His

model is generalized by Franke et al. (2013), proving the existence of a contest success function that
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maximizes e¤ort when players are heterogeneous, and also determining the set of active players.

To the best of our knowledge, this paper is the �rst one in analyzing the imperfectly discrimi-

nating contest success function that maximizes aggregate e¤ort when players are constrained. We

relate our results to this literature. The literature suggests that favoring the player with a lower

valuation fosters e¤ort of every player, which maximizes aggregate e¤ort. When constraints are

present, the optimal design also consists in favoring the low-skilled player (in this case, low-skilled

is equivalent to be constrained). By doing so, the e¤ort of the constrained player is more productive

than the e¤ort of the unconstrained. However, the constrained player cannot exert more e¤ort than

her budget. Then, this policy encourages only the unconstrained player to increase e¤ort. Also,

while previous research focuses on the case in which the contest organizer knows all the charac-

teristics of players, this paper also di¤ers in dealing with incomplete information. In particular,

we assume that the contest organizer does not know the budget of players. Then, she designs a

mechanism that implements the aggregate e¤ort of complete information.

The literature of optimal contest design is vast and contains di¤erent areas. Some research

has focused on the optimal prize structure in contests. This paper does not deal with more than

one prize, but does with di¤erent prizes depending on the winner. In particular, we show that it

is necessary to discriminate players depending on their budgets o¤ering them di¤erent prizes to

maximize aggregate e¤ort under incomplete information. For a survey on optimal prize structure

in contests, see Sisak (2009).

Some other research analyzes the role of information in contests and how a¤ects aggregate

e¤ort. Wärneryd (2003, 2009) analyzes a contest for a prize of common but uncertain value, in an

individual and group setting. He shows that asymmetric information reduces aggregate e¤ort. Fey

(2008) and Wasser (2011) analyze the role of private information regarding marginal costs. They

focus on existence of closed form solutions, and the latter concludes that complete information

maximizes aggregate e¤ort. Serena (2014) studies a model in which a contest organizer decides

either to reveal or not to contestants information regarding the marginal cost of their oponent.

He �nds that the organizer maximizes aggregate e¤ort revealing private information when the

distribution of types is skewed towards the low type.

While previous research focuses on how to use information to maximize aggregate e¤ort, this

paper deals with information as a problem the contest organizer faces. In particular, we show that

when the contest organizer does not have information about the budget of players, she implements



28 CHAPTER 2. OPTIMAL CONTEST DESIGN WITH BUDGET CONSTRAINTS

the e¤ort of complete information by discriminating players using di¤erent prizes.2

This paper is also related to research on contests with budget constraints. Che and Gale (1997)

show that when players are constrained, e¤ort exerted in a Tullock contest is larger than in an

all pay auction. Grossmann and Dietl (2012) show that in a two player contest, aggregate e¤ort

diminishes if at least one player is constrained.3

This paper contributes to the literature by designing a contest success function that overcomes

the problem of budget constraints. In particular, by favoring the constrained player in the contest

success function, the unconstrained player increases e¤ort.

The problem of optimal design with constrained players is a concern in auctions since bidders

with low budgets cannot put competitive pressure on bidders with high budgets. The optimal design

of an auction involves setting an allocation rule and the payment each bidder faces to maximize

revenue. Auctions are analyzed when there is incomplete information regarding the types of players;

i.e. valuation and/or budget.

La¤ont and Robert (1996) generalize the classical paper by Myerson (1981) by considering an

auction in which all bidders face the same known constraint. They �nd that the probability of

being allotted the good of each bidder must be increasing in the reported valuation of the good up

to a point. From this point on, the probability of being allotted the good remains constant. This

is called "pooling at the top".

Pai and Vohra (2014) study the case in which both valuation and constraints are private

information. They de�ne two thresholds vH and vL for the case in which there are two possible

budgets bH and bL, where subscripts H and L denote high and low respectively.4 They �nd that

it is optimal to pool players and assign the same probability of being allotted the good to bidders

with high budgets and a valuation higher than vH and also to pool and assign the same probability

of being allotted the good to bidders with low budgets and a valuation higher than vL. Also, it is

necessary to assign the same winning probability to bidders with a high budget whose valuations are

slightly higher than vL, which is strictly necessary to make low budget bidders to put competitive

pressure on high budget bidders.

2 It is worth comment some research that focuses on optimal timing structure of contests, as Gradstein (1999) and

Fu and Lu (2009). Our set up is a one shot contest, but the organizers share the goal of maximizing aggregate e¤ort.

Also, for a survey of optimal sport contest design, see Szymanski (2003).
3Other research focuses on how players in a contest use a �x amount of resources. Matros (2006) studies an

elimination tournament where players have �xed resources.
4Their model is general for k budgets, but for simplicity we refer here to the case of k = 2.
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This paper transfers the problem analyzed in auctions to contests. However, the approach is

quite di¤erent. We consider that the organizer does not know the types of players, but players

know the type of their rival.

The paper is organized as follows. In Section 2.2 we present the model. In Section 2.3 we

solve the problem under complete information. Section 2.4 proposes the mechanism to implement

the optimal e¤ort with incomplete information. In Section 2.5 we assume the prize is costly for

the organizer. Section 2.6 discusses the use of transfers as an alternative mechanism. Section 2.7

concludes.

All the proofs are relegated to the Appendix.

2.2 Model

Consider an organizer that designs the rules of a contest between two players i = 1; 2 to maximize

aggregate e¤ort. The rules consist in biasing or not the contest in favor of any player and choosing

the prize each player competes for.

Players exert e¤ort ei to win a prize �iV . Let pi be the probability that player i = 1; 2 wins

the contest. We assume that:

p1 =
�e1

�e1 + e2
and p2 =

e2
�e1 + e2

, � 2 (0;1). (2.1)

Functions in (2.1), which are called Contest Success Functions (CSF)5, are increasing in own

e¤ort, decreasing in the rival e¤ort and homogeneous of degree 0. Parameter � measures the bias

of the CSF towards any player. In case � >(<)1, the contest is biased favoring player 1 (2). In

case � = 1, the contest is unbiased.

The contest organizer chooses the value of � and the prize each player competes for to maximize

the sum of e¤orts. We assume that the organizer cannot o¤er a prize higher than V . Think that a

higher prize may not exist or that the organizer is constrained in the prize she o¤ers. However, we

assume that the organizer could o¤er lower prizes. In particular, we allow the organizer to modify

parameter �i for i = 1; 2, where �i 2 [0; 1]. We assume that the prize is not costly for the organizer,

though we relax this assumption in Section 2.5.

E¤ort is costly, and the marginal cost of e¤ort is 1. To a¤ord the cost of e¤ort each player has

a budget bi 2 fbL; bHg, where bL < bH . This budget determines the type of each player ti = bi. We
5Skaperdas (1996) axiomatizes this function. In the Appendix we give microfoundations to this function.
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assume that in case ti = bH , the budget of player i is so large that she is unconstrained (thus, the

restriction can be omitted). Otherwise, she is constrained. Let s 2 S be a state of the world, and

s = (t1; t2). The set of states of the world is S = f(bH ; bH); (bH ; bL); (bL; bH); (bL; bL)g.6

The payo¤s of each player are:

�i = �iV pi � ei for i = 1; 2. (2.2)

We assume that the contest organizer does not know the type of players but is aware of the

values of bL and bH .

While the organizer does not know the types of players, we assume that players know both their

own type and their rival type.

The game has three stages.

In the �rst stage, the organizer announces for each posible vector of types a contest bias � and

a prize for each player �iV .

In the second stage, each player reports a message mi to the organizer regarding her type,

where mi 2 fbL; bHg, m 2M is a message pro�le and m = (m1;m2). The set of message pro�les is

M = f(bH ; bH); (bH ; bL); (bL; bH); (bL; bL)g. Thus, the strategy set of players in this stage is either

reporting their true type or lying.

In the third stage, players exert e¤ort and the contest takes place.

The equilibrium concept of the game is Nash equilibrium.

2.3 Equilibrium with complete information

In this section, we assume that the contest organizer knows the type of each player and therefore

the state of the world. Thus, stage two of the game is omitted. We use this section as a benchmark.

Denote as x(t1; t2) variable x when the state of the world is s = (t1; t2). W.l.o.g. assume that if

players di¤er in type, t1 = bH and t2 = bL. Before solving the problem, we simplify it arguing that

the organizer setting ��i (s) = 1 for all s 2 S and i = 1; 2 is an equilibrium. This is the case for two

reasons. First, e¤ort of players is increasing in the prize they compete for. Second, we assume the

prize is not costly for the organizer and her objective is to maximize the sum of e¤orts. This is

not the only equilibrium for �i(s). We characterize all the equilibria in the next section, where the

chosen prize takes a key role in the contest design. Studying the case where ��i (s) = 1 for all s 2 S
6 In Section 2.4.1 we relax this assumption and assume a continuum of budgets (types).
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and i = 1; 2 simpli�es the following analysis, where the only remaining decision of the organizer is

to set �.

We solve the problem backwards. Let us begin by analyzing the third stage. Setting @�i=@ei = 0

for i = 1; 2, we get:

e1 =

r
V e2
�
� e2
�
and e2 =

p
V �e1 � �e1. (2.3)

When no player is constrained, the solution to (2.3) is:

ei(bH ; bH) =
V �

(�+ 1)2
for i = 1; 2. (2.4)

Then, for a player to be constrained it is necessary that bL=V < �=(�+1)2. Let us analyze the

�rst stage for each state of the world. When deciding �, the organizer needs to set a bias such that

players of type ti = bL remain constrained. Otherwise, players of type ti = bL exert less e¤ort than

their budget and induce players of type ti = bH to reduce e¤ort.7

2.3.1 State of the world s = (bH ; bH)

In the �rst stage, the contest organizer chooses � that maximizes the sum of e¤orts:

Max�
2V �

(�+ 1)2
. (2.5)

The �rst order condition is:

2V
(�+ 1)2 � 2�(�+ 1)

(�+ 1)4
= 0: (2.6)

Solving for �, we get that ��(bH ; bH) = 1.8 The contest organizer maximizes aggregate e¤ort

when the contest is unbiased. Finally, insert ��(bH ; bH) = 1 in e¤ort and payo¤s to get e�i (bH ; bH) =

��i (bH ; bH) = V=4 for i = 1; 2.

2.3.2 State of the world s = (bH ; bL)

Since player 2 is constrained, she exerts e2(bH ; bL) = bL, while e1(bH ; bL) =
p
V bL=�� bL=�. The

contest organizer chooses � that maximizes the sum of e¤orts:

Max�

r
V bL
�

� bL
�
+ bL. (2.7)

7This happens since e¤ort of the constrained player is an strategic complement for e¤ort of the unconstrained

player.
8Note that the second derivative of (2.5) with respect to � is negative for � < 2, which ensures a maximum

at ��(bH ; bH) = 1. Note that the objective function is decreasing in � for � > 1 and there is a minimum at

��(bH ; bH) =1.
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The �rst order condition is:

��
�3
2
p
V bL
2

+
bL

�2
= 0: (2.8)

Solving for �, we get that ��(bH ; bL) = 4bL=V .9 Using ��(bH ; bL), we get that e�1(bH ; bL) = V=4,

e�2(bH ; bL) = bL, �
�
1(bH ; bL) = V=4 and �

�
2(bH ; bL) = V=2�bL. Finally, note that bL <

p
V �e1�V �e1

whenever V > (�e1+bL)2=�e1. Introducing ��(bH ; bL) and e�1(bH ; bL) in such condition we get that

player 2 is constrained whenever bL=V < 1=4. Then, the organizer biases the contest in favor of

player 2.

2.3.3 State of the world s = (bL; bL)

The organizer chooses any value of � such that bL=V < �=(�+ 1)2. Assume the organizer chooses

��(bL; bL) = 1. By doing so, the contest remains unbiased and both players are constrained

whenever bL=V < 1=4. It follows that e�i (bL; bL) = bL and ��i (bL; bL) = V=2 � bL for i = 1; 2.

Both players compete for prize V .10

All these results are gathered in the following proposition.

Proposition 2.1 Suppose there is complete information. If t1 = t2, the contest organizer sets an

unbiased contest; i.e. ��(t1; t2) = 1. Otherwise, the organizer biases the contest in favor of the

constrained player; i.e. ��(bH ; bL) = 4bL=V < 1. Both players compete for prize V .

When the organizer biases the contest in favor of one player, the e¤ort of this player becomes

more productive in the contest relative to the e¤ort of her rival. We learn from Proposition 2.1

that under complete information, the organizer does not favor any player if both have the same

type, while favors the constrained player in case of being di¤erent. In the �rst case, favoring one

player would yield lower aggregate e¤ort. In the second case, by favoring the constrained her

e¤ort becomes more productive in the contest relative to the e¤ort of her rival. This bias does not

incentivize her to increase e¤ort, since she is constrained. However, it incentivizes the unconstrained

to make more e¤ort because she competes with a more productive player. Therefore, biasing the

9Note that the second derivative of (2.7) with respect to � is negative for � < (64=9)bL=V , which ensures a

maximum at ��(bH ; bL) = 4bL=V . Note that � < (64=9)bL=V is the important range of �. While o¤ering higher �

keeps player 2 constrained, it induces the player 1 to reduce e¤ort.
10Any value of � that satis�es bL=V < �=(�+1)2 yields the same aggregate e¤ort. We assume ��(bL; bL) = 1 since

there is no reason to discriminate ex-ante between players.
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contest increases aggregate e¤ort relative to an unbiased contest when players di¤er in type.11 In

particular, players of type ti = bL (bH) exert e¤ort e�i = bL (V=4) and get payo¤s �
�
i = V=2 � bL

(V=4). Then, players of type ti = bL make less e¤ort than players of type ti = bH and get larger

payo¤s, since the contest is biased in their favor.

Before analyzing the incomplete information case, we de�ne these levels of e¤ort as a benchmark:

De�nition 2.1 For any state of the world s 2 S, e¤ort in state s is optimal if players exert e¤ort

e�i (s).

2.4 Incomplete information

In this section we assume that the contest organizer does not know the type of players. First,

we explain that the optimal e¤ort cannot be implemented with incomplete information under the

contest design of Proposition 2.1. That is, if the organizer sets the contest bias according to the

messages received in stage two, players may have incentives not to report their true type. In

particular, player i = 1; 2 has incentives to report mi = bL independently of her type.

This is a problem when players di¤er in type. To see this, suppose �rst that s = (bH ; bL). Both

players reporting their true type is not an equilibrium. In this case, player 2 has the dominant

strategy of reporting her true type, since in case of lying, the contest may be unbiased or biased

against her. Given that, the best reply of player 1 is reporting m1 = bL to play an unbiased contest.

11We have done the analysis for a very speci�c functional form of the CSF. In particular, this analysis can be

generalized using the following CSF :

pi =
fi(ei)

fi(ei) + fj(ej)
for i = 1; 2, j 6= i. (2.9)

Function fi(ei) is called impact function, f 0i(ei) > 0, f
00
i (ei) � 0. Since the analysis becomes very complicated for

a general impact function, the following linear form is normally used: fi(ei) = �iei+
i. For instance, see Nti (2004).

We encourage the reader to check that the results of Proposition 2.1 would not change using the linear form.

In particular, in every state of the world, the organizer maximizes e¤ort by setting 
i = 0 for i = 1; 2 and the

corresponding � = �1=�2 set in Proposition 2.1. For the analysis when s = (bH ; bH), see Nti (2004). The more

complex scenario is when players di¤er in type. Suppose s = (bH ; bL). Then, there is a continuum of equilibria

regarding �1, �2 and 
2. In particular, the organizer can implement the e¤ort of Proposition 2.1 by combining �1,

�2 and 
2 such that �1=(bL�2 + 
2) = 4=V . Note that by setting 
2 = 0, and isolating �, we get the same CSF that

in Proposition 2.1, which is a particular equilibrium of this general form. The intuition for the rest of states of the

world is similar. The complete analysis is similar to the one done in Section 2.3, and thus omitted. We restrict to

our simplest CSF to make clearer the analysis in the next sections.
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By doing so, she reduces e¤ort in equilibrium and her payo¤s increase. Since by both players

reporting the same type the contest is unbiased, aggregate e¤ort is not maximized (maximization

of aggregate e¤ort requires that the contest is biased in favor of player 2).

However, both players lying when s = (bH ; bH) implements the optimal e¤ort. Note �rst that

both players reporting their true type is not an equilibrium. W.l.o.g. take player 2. Player 2 has

incentives to deviate and report m2 = bL since by lying, the contest organizer biases the contest in

her favor choosing � < 1. Since she is still unconstrained, she gets larger payo¤s. Indeed, there is

only one equilibrium in which players report mi = bL. If one player deviates, the contest organizer

would bias the contest in favor of her rival. Note that both lying about their types is not a problem

for the organizer in this state of the world, since an unbiased contest is set and the optimal e¤ort

is implemented.

Trivially, for s = (bL; bL), both players report their true type and aggregate e¤ort is maximized.

We propose another contest design such that the optimal e¤ort is implemented. For the rest of

this section, denote by x(m) variable x when the message pro�le is m = (m1;m2). Without loss of

generality, assume that when m1 6= m2, (m1;m2) = (bH ; bL).

In this design, the value of �i(m) that the organizer chooses is important. It is straightforward

to see that if a player ti = bH competes for a prize �iV , with �i < 1, she always makes less e¤ort

than when competing for V . This is because the best reply of an unconstrained player is increasing

in the prize for any e¤ort of her rival. However, a player ti = bL may not reduce her e¤ort when

competing for a prize lower than V , since she may be still constrained. Thus, the organizer must

always o¤er a prize V to players that report mi = bH and restrict to o¤er a prize �iV to players

that report mi = bL. Thus, from this point on and to ease notation, we remove the subscript of �i.

When the organizer sets di¤erent prizes she does not want to distort the decisions of e¤ort.

Also, in equilibrium it must be the case that �(m1;m2) are those set in Proposition 2.1. That

is, in case m1 = m2 the contest is unbiased and in case m1 6= m2 the contest is biased in favor of

the player that reports mi = bL. Otherwise, aggreagate e¤ort is reduced.

By doing so, note that on the one hand, players of type ti = bH may report mi = bL to be

favored in the CSF though competing for a lower prize if she gets larger expected payo¤s. On the

other hand, players of type ti = bL may lie about their type to compete for a higher prize in case

the organizer o¤ers them a very small prize in case of winning though losing her favoritism in the

CSF. The organizer has to design prizes to compensate these e¤ects and consequently implement

the optimal levels of e¤ort.
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To see the intuition of the e¤ect of a prize reduction of player ti = bL, assume complete

information. For a su¢ ciently small reduction in the prize the constrained player is competing

for, she still spends her whole budget and the optimal levels of e¤ort are achieved. This is due to

two reasons. First, one player is constrained when she values the prize so much in relation to her

budget. Then, a su¢ ciently small reduction of the prize does not deter her to spend her whole

budget. Second, the best reply of the unconstrained player does not depend on the prize that the

constrained player is competing for, but on her e¤ort. Since a su¢ ciently small reduction in the

prize of the constrained player does not induce her to reduce e¤ort, the unconstrained player still

exerts the same e¤ort. The following Lemma shows under which conditions a reduction of the

prizes for which constrained players compete does not a¤ect the e¤ort exerted in the contest.

Lemma 2.1 Assume complete information. For any � 2 [4bL=V; 1], if players ti = bH compete for

prize V and players ti = bL compete for prize �V , the contest organizer sets ��(t1; t2) according to

Proposition 2.1 and the resulting levels of e¤ort are optimal.

The following proposition explains the main result of this paper.

Proposition 2.2 Suppose there is incomplete information. There exists ��(bH ; bL) < 1 and ��(bL; bL) <

1 such that the following mechanism implements the optimal e¤ort:

a) If (m1;m2) = (bH ; bH), both players compete for prize V and ��(bH ; bH) = 1.

b) If (m1;m2) = (bH ; bL), player 1 competes for prize V , player 2 competes for prize ��(bH ; bL)V

and ��(bH ; bL) = 4bL=V .

c) If (m1;m2) = (bL; bL), both players compete for prize ��(bL; bL)V and ��(bH ; bH) = 1.

Recall that the contest design depends on the messages of players regarding their type in stage

two, and the design must be such that players exert the optimal levels of e¤ort, independently if

they report their true budget. Parameter ��(bH ; bL) must be su¢ ciently small to make players of

type ti = bH report their true type when s = (bH ; bH), and su¢ ciently large to make player of type

ti = bL report her true type when players di¤er in type. Also, ��(bL; bL) must be su¢ ciently small

to make m = (bH ; bH) be the unique Nash equilibrium when s = (bH ; bH) (otherwise, m = (bL; bL)

is another equilibrium) and to make player of type ti = bH report her true type when players

di¤er in type. Then, when s = (bH ; bH) or s = (bH ; bL), there is only an equilibrium under this

mechanism which is truthtelling.
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As we show in the Appendix, we prove that the mechanism of Proposition 2.2 implements the

optimal e¤ort for ��(bL; bL) = 0. When s = (bL; bL), the only Nash equilibrium is m = (bH ; bH),

excluding m = (bL; bL). Obviously, m = (bL; bL) cannot be an equilibrium. They get zero payo¤s

if both report their true budget, but positive payo¤s if one of them deviates unilaterally since

��(bH ; bL) = �
�(bL; bH) > 0. The only Nash equilibrium is that both players report mi = bH . No

player has incentives to deviate since a positive bias in the CSF does not compensate the lower

prize. Thus, both players compete for V and the contest is unbiased. However, the optimal e¤ort

is implemented. Just note that if both players spend their whole budget when they compete for a

small prize �V , the same happens when they compete for a higher prize V .

We choose value ��(bL; bL) = 0 for simplicity and to avoid a tedious analysis. However, we can

extend the analysis to the case in which ��(bL; bL) > 0. Indeed, when s = (bL; bL), the number of

equilibria depend on the chosen value of ��(bL; bL). In particular, if ��(bL; bL) is su¢ ciently large,

there are two Nash equilibria, m = (bH ; bH) and m = (bL; bL). If ��(bL; bL) is su¢ ciently small,

the only Nash equilibrium is m = (bH ; bH). The complete analysis is provided by the author under

request.

This mechanism implements the optimal e¤ort for any distribution of types. Only in case both

players are ti = bL players may get information rents. This is because in equilibrium both players

report mi = bH , they compete for a prize V and thus their payo¤s are larger than in case both

players report their true type.

2.4.1 Incomplete information with a continuum of types

We now generalize the model when there is a continuum of types. That is, players are endowed

with a budget bi 2 (0;1) and the type of each player is ti = bi.

In stage two, the set of strategies of players expands to mi 2 (0;1).

Player i is constrained if bi=V < �=(�+1)2 = �b. We assume that if both players are constrained,

then
b1 + b2p
V

< maxf
p
b1;
p
b2g. (2.10)

This assumption ensures that in case both players have a low budget, both players are constrained.

That is, we assume that in case players have a low budget, their budgets are su¢ ciently similar.

We require this assumption to ensure that our mechanism maximizes e¤ort.

The optimal e¤ort levels are the same than those of the two-type case. That is, optimal e¤ort

of players of type ti = bi < �b are e�i = bi and optimal e¤ort of player of type ti = bi > �b are
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e�i = V=4. Indeed, bL and bH are particular values below and above �b respectively. Also, for the

same reasons as in the two type case, the organizer o¤ers prize V if both players are unconstrained.

Then, �(m) = 1 if m = (b̂1; b̂2) where b̂i > �b.

Finally, we assume that a player reports her true budget in case she is indi¤erent between

reporting her true type and lying.

The following proposition shows that there is an equilibrium in which e¤ort is optimal when

there is a continuum of types. Since the problem becomes very tedious, we show it for a reduced

version of the mechanism in Proposition 2.2.

Proposition 2.3 Suppose there is incomplete information, bi 2 (0;1), and (2.10) holds. There

exists ��(m1;m2) such that the following mechanism implements the optimal e¤ort:

a) If (m1;m2) = (b̂1; b̂2), where b̂i > �b for i = 1; 2, both players compete for prize V and

��(b̂1; b̂2) = 1.

b) If (m1;m2) = (b̂1; b̂2), where b̂1 > �b and b̂2 < �b, player 1 competes for prize V , player 2

competes for prize ��(b̂1; b̂2)V and ��(b̂1; b̂2) = 4b̂2=V .

c) If (m1;m2) = (b̂1; b̂2), where b̂i < �b for i = 1; 2, the contest is cancelled (the prize is 0).

As we show in the Appendix, the constrained player is indi¤erent between reporting her true

type or any other type below her treshold �b when competes with an unconstrained player. The

organizer fails to set the required value of � if this player reports a false budget. We assume that a

player reports her true budget in case she is indi¤erent between reporting her true type and lying

to overcome this problem. This assumption avoids the equilibria in which � does not maximize

aggregate e¤ort.

Again, this mechanism does not induce a Nash equilibrium in which both players report their

true type when both are constrained. However, the optimal e¤ort is still implemented.

As in the previous section, players get information rents if both are constrained.

2.5 Costly prize

In this section, we assume that the prize the organizer o¤ers in the contest is costly. In the

application of employees competing for a wage bonus, the position that the winner gets involve

monetary rewards that are costly for the �rm.12 The same may happen in research contests. For
12The assumption that the prize is not costly is still defensible. We may suppose that the organizer o¤ers a prize

which is not costly. For instance, in the application of employees competing for a bonus, we could consider they
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the remaining of the paper, let qs be the probability that the state of the world s arises. This will

be useful to compare expected e¤orts and costs when the prize is costly with respect to the previous

sections.

For simplicity, we assume that the payo¤s of the organizer are

�o = a(
2X
i=1

ei)� p1�1V � p2�2V , (2.11)

where a > 4. This assumption ensures that the organizer values e¤ort more than the prize.13

Since the organizer values more e¤ort than the prize, she will o¤er prize V to players ti = bH

to maximize e¤ort because e¤ort of the unconstrained player is increasing in the prize. Thus, the

objective of the organizer consists in implementing the optimal e¤ort and minimizing the cost that

supposes the prize of players ti = bL.

We start the analysis when there is complete information. We describe the design of the contest

that implements the optimal e¤ort and minimizes costs as follows.

Corollary 2.1 Suppose there is complete information and the prize is costly. The organizer im-

plements the optimal e¤ort and minimizes costs when players ti = bH compete for prize V , players

ti = bL compete for prize �V = 4bL and sets ��(t1; t2) according to Proposition 2.1.

The proof follows from Lemma 2.1 and consists in choosing the minimum value of � that

implements the optimal e¤ort. The expected e¤ort is E(e1 + e2) = qHHV=2 + qHL(V=2 + bL) +

qLH(V=2+ bL)+ qLL2bL and expected costs are E(V +�V ) = qHHV + qHL(V +4bL)=2+ qLH(V +

4bL)=2 + qLL4bL.

Now suppose there is incomplete information. We show that the organizer cannot implement

the �rst best in Corollary 1. That is, using the mechanism of Proposition 2.2 and o¤ering the lowest

possible prizes that implement the optimal e¤ort, she incurs in higher costs than in the complete

information case.

Corollary 2.2 Suppose there is incomplete information and the prize is costly. There exists values

��(bH ; bL) and ��(bL; bL) such that the following mechanism implements the optimal e¤ort and

minimizes costs:

a) If (m1;m2) = (bH ; bH), both players compete for prize V and ��(bH ; bH) = 1.

compete for the opportunity of enjoying a facility which is property of the �rm.
13Otherwise, the problem may involve not holding a contest when the organizer is risk neutral. This assumption

ensures that the contest is always desirable for the organizer.
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b) If (m1;m2) = (bH ; bL), player 1 (2) competes for prize V (��(bH ; bL)V ) and ��(bH ; bL) =

4bL=V .

c) If (m1;m2) = (bL; bL), both players compete for prize ��(bL; bL)V and ��(bH ; bH) = 1.

Expected costs will be higher than in the complete information case.

The mechanism consists in choosing the minimum values of ��(bH ; bL) and ��(bL; bL) that

implement the optimal e¤ort. In the proof we choose value ��(bL; bL) = 0. This value induces

the only equilibrium that both players report mi = bH in case s = (bL; bL). This equilibrium

induces higher costs that in case we chose a value of ��(bL; bL) that induces also the equilibrium in

which both players report truthtelling when s = (bL; bL). We choose ��(bL; bL) = 0 for two reasons.

First, because when both players report mi = bH they get higher payo¤s, making the truthtelling

equilibrium non-credible. Second, to avoid equilibria in mixed strategies.

Expected costs are always larger under incomplete information for several reasons. First, when

s = (bH ; bL), the value of ��(bH ; bL) is larger in incomplete information, which is necessary to satisfy

incentive compatibility and then implement the optimal e¤ort, than in the complete information

case. Also, when s = (bL; bL), both players lie in equilibrium and compete for a higher prize, which

increases the costs of the organizer.

Thus, a �rst best cannot be achieved under incomplete information when the prize is costly.

2.6 Transfers as a mechanism

Another tool to maximize aggregate e¤ort when players are constrained are transfers. In a two

player contest, when one of them is constrained, aggregate e¤ort is reduced for two reasons. First,

the constrained player cannot exert more e¤ort than her budget. Second, the unconstrained player

makes less e¤ort when competes with a constrained player.

A possibility to overcome this problem is the use of transfers. If the contest organizer gives

a transfer to the constrained player, she uses these resources to exert e¤ort. This encourages the

unconstrained player to increase e¤ort, and then aggregate e¤ort increases.

The use of transfers is costly, and the organizer may �nd no pro�table to set transfers in case

she does not value e¤ort enough. For simplicity, we assume there is a one to one equivalence

between a unit of e¤ort and a unit of transfer. An example that illustrates the problem is rent

seeking. Suppose two lobbies bribe the government to in�uence a policy. The government wants to

maximize the money she receives from lobbies. It is pro�table to give a transfer to the lobby that
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is constrained, since it induces the unconstrained lobby to spend more resources. It is reasonable

to assume that a unit of money spent in lobby and transfer are equivalent.

We study now the use of transfers as an alternative method to the contest bias. Then, we study

the model in Section 2.2 when the contest is unbiased and the organizer sets a transfer instead of

a bias in stage one. We also assume that the prize V is exogenously given. First, we analyze the

problem under complete information.

When t1 = t2, the organizer does not set any transfer. Note that when s = (bH ; bH), players

are unconstrained and exert the maximum amount of possible e¤ort ei = V=4. Therefore, giving a

transfer is costly and does not induce players to increase e¤ort. When s = (bL; bL), players exert

their whole budget. Giving a transfer to one player induces her to make more e¤ort, but does not

fosters e¤ort of the other player. For the assumption of the one to one equivalence, a transfer is

not useful. The same happens when giving a transfer to both players.

Finally, we need to analyze the problem when only one player is constrained. Assume s =

(bH ; bL). For player 2 to be constrained, it is necessary that bL < V=4. In case transfers are not set,

e¤ort of player 1 and 2 are respectively e1 =
p
V bL � bL and e2 = bL. We denote Ri transfer given

by the organizer to player i and ri transfer spent by player i. To implement the optimal e¤ort,

the organizer must give a transfer of resources R2 = V=4� bL to player 2. In such a case, e¤ort is

e1 = V=4, e2 = bL, and player 2 spends additionally her whole transfer r2 = V=4� bL.

To see that setting transfers is optimal to the organizer, de�ne the following payo¤ function:

�o =
X
i

(ei + ri �Ri). (2.12)

In case no transfers are set, �o =
p
V bL. Otherwise, �o = V=4+bL. Giving a transfer is optimal

since V=4 + bL >
p
V bL for bL < V=4.

Now, assume incomplete information. Obviously, the optimal e¤ort is implemented by setting

transfers to the player that claims to be constrained. Since the organizer cannot distinguish between

types, both constrained and unconstrained players report mi = bL in stage two. In such a case, the

constrained player always exerts e¤ort V=4 and the unconstrained bL, in addition to the transfer

received. Then, the optimal e¤ort is implemented. However, incentive compatibility is not satis�ed

and the organizer incurs in unproductive costs when gives a transfer to unconstrained players.

We analyze two di¤erent policies the organizer can set and compare them. In the �rst policy,

the organizer does not set transfers. In the second policy, every player receives a transfer.
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In case the organizer does not set transfers, her payo¤s are:

�o = qHH
V

2
+ (qHL + qLH)

p
V bL + qLL2bL: (2.13)

In case she gives a transfer to every player, independently of the state of the world, players of

type ti = bH exert e¤ort ei = V=4 and players of type ti = bL exert e¤ort ei = bL and spend their

transfer. Then, unconstrained players get a transfer that they do not use. In this case, the payo¤s

of the organizer are:

�o = 2bL: (2.14)

Then, we compare the payo¤s in both cases to determine either to set transfers or not. Transfers

are set if 2bL=V > qHH
1
2 + (qHL + qLH)

p
bL=V + qLL2bL=V . For any value of qs or bL=V , this

inequality is not satis�ed. Then, the organizer prefers not setting transfers.

This discussion illustrates the problem of using transfers. Designing a mechanism in which

transfers implement the optimal level of e¤ort is easy if we do not ask incentive compatibility.

However, the problem becomes very complicated when designing a mechanism to reduce the cost

of transfers. We cannot play with prizes or contest biases since a¤ects the levels of e¤ort.

Even in the case in which we derive a mechanism that implements the optimal e¤ort through

transfers, the organizer would be better o¤ designing the contest through a contest bias since

transfers are costly.

2.7 Conclusions

In this paper we studied the design of a contest between two possible budget constrained players

when the organizer of the contest does not have information regarding their budgets and whose

objective is maximizing aggregate e¤ort. First we de�ned the optimal levels of e¤ort as the max-

imum e¤ort achievable under a complete information setting. We showed that aggregate e¤ort is

maximized when the contest is biased in favor of the constrained player in case they di¤er in type,

and unbiased in case their types coincide. Second, we proposed a mechanism that implements the

optimal e¤ort when the organizer ignores the budget of players. This mechanism consists in setting

lower prizes to players that report to be constrained.

The resulting equilibria of the mechanism implement the optimal e¤ort, but not necessarily

satisfy incentive compatibility. In particular, incentive compatibility is satis�ed when both players

have a high budget or when they di¤er in type. When both players have a low budget, both report
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a high budget in equilibrium. Then, when players have a low budget they can earn information

rents since compete for larger prizes.

With this mechanism, when players di¤er in type, players with a low budget prefer to compete

for a smaller prize and being positively discriminated in the contest, while players with a high

budget prefer the opposite.

We also consider the case in which the prize is costly for the organizer. Suppose employees in a

�rm competing for a wage bonus. O¤ering a higher wage may be costly for the boss of the �rm. We

found that the prizes that implement the optimal levels of e¤ort under incomplete information are

higher than the prizes that minimizes costs under complete information. Thus, a �rst best cannot

be achieved.

Finally, we discussed the use of transfers as a possible mechanism to maximize aggregate e¤ort.

We show that though the use of transfers implement the optimal levels of e¤ort, the organizer deals

with adverse selection problems and costs. Thus, we kept the design of the contest as our main

objective.



Chapter 3

Contests for bads and applications

3.1 Introduction

Contests are situations in which individuals compete by spending resources or exerting e¤ort to

win a prize. Contests include several applications (litigation, political competition, wars, sports...)

and for this reason they have been a main topic in economic research over the last two decades

(see Konrad, 2009 for a survey). However, there are cases in which individuals compete to avoid

a bad, burden or penalty. For instance, suppose a government plans to develop a project that is

useful and necessary for society, but residents do not want the project to be developed close to their

homes. Examples include airports, homeless shelters, prisons or toxic waste dumps among others.

Negative reactions of residents are usually called "Not in my backyard". No research focuses on

this view of contests. This paper studies situations in which individuals compete to avoid a bad,

burden or penalty, using the reverse lottery contest model introduced by Fu et al. (2014).

Real life examples abound. For instance, a project in 2007 to build permanent terminal and

passenger facilities in the Coventry airport, in the United Kingdom, was cancelled by the govern-

ment because of public pressure. Also, in Hong Kong in 1998, the correctional school for drug

addicts Christian Zheng Sheng College faced public opposition when was inaugurated for fear of an

increase in delinquency around the area. These projects are good for society. An airport improves

communications of the region and contributes to economic development. Also, a correctional school

for drug addicts makes people aware of drug problems and contributes to reduce drug consumption

in the area. Although these projects are good for society, they cause a negative externality to

people whose homes are around the physical facilities of the project. Then, people tend to support

these projects if they are not located around their homes but complain if they are developed in their

43
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neighborhood. Thus, competition to avoid the development of the project in their neighborhood

naturally arises.

Most of the research in contests in which individuals compete to win a prize relies on the Tullock

Contest Success Function (CSF), which is the conventional lottery contest model. This CSF says

that the probability of winning the contest of one individual depends on the e¤ort this individual

makes relative to the sum of e¤ort exerted by all individuals in the contest. This CSF is based

on a proportional sharing rule. Now suppose individuals exert e¤ort to avoid a burden of negative

value. It seems that the idea of a proportional sharing rule fails to give proper probabilities of

getting the burden of each individual. To study these situations we use the reverse lottery contest

model. Using this function, the probability of each individual of getting the burden is based on an

inverse proportional sharing rule such that the probability of getting the burden for an individual

is decreasing in her e¤ort. Fu et al. (2014) present the model as a Contest Elimination Function

(CEF). They use the reverse nested lottery contest model, which is considered as the mirror image

of the model of Clark and Riis (1996a), to study situations where individuals compete to win prizes

of positive values. Using this model, they are able to determine the winner by selecting losers

through a hypothetical sequence of lotteries based on e¤ort that individuals make in a unique

stage. Through the sequence of lotteries, each loser gets a prize and is excluded from competing

in the next lottery, where the prize has more value. Our work di¤ers since our focus is to study

situations in which individuals compete to avoid a burden (prizes of negative value). To see the

di¤erence clearly, think that the reverse lottery contest fails to analyze situations where there is an

only positive prize individuals compete for, while succeeds to study situations where there is only

one burden to avoid.

We �rst present the game in which individuals compete to avoid a bad through the reverse

lottery contest and show existence of equilibrium.

Afterwards, we analyze the e¤ects on competition of dividing the bad of the contest in di¤erent

pieces. To do so, we study an application where a central government decides either to set a big

dump in one area or divide the dump in small pieces in di¤erent areas. We assume that there is

an in�uence group in each area that lobbies the government to avoid the dump. The objective

of the government depends on its nature. If it is corrupt, the objective is to maximize lobbying.

Otherwise, the objective is to minimize lobbying and confrontation. We show that lobbying e¤ort is

maximized by setting a big dump. If the government divides the dump, lobbying e¤ort diminishes

for two reasons. First, the expected burden of getting one of the dumps is smaller. Second, if the
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number of dumps increases it is more likely that a region receives one dump, so the incentives of

making lobbying e¤ort decreases. This problem is related to multi-prize lottery contests, which

have been studied in Clark and Riis (1996a,1998), Amegashie (2000), Yates and Heckelman (2001),

Szymanski and Valletti (2005), Fu and Lu (2009,2012a,b), Fu et al. (2014) among others.1 This

work mainly di¤ers from the previous literature since our purpose is to study multi-prize lottery

contests with prizes of negative values, using the reverse nested lottery contest.

We also relate the reverse and the conventional lottery contest when competing to avoid bads.

In a contest to avoid a bad only one individual gets the bad, which is considered as the loser,

while the others are the winners. Indeed, a contest to avoid a bad among n individuals could be

understood as a contest among n individuals that compete to win one of the n � 1 prizes. The

same happens with the conventional lottery contest when n individuals compete to win a prize.

There is one winner of the prize and n�1 losers. We analyze which contest induces more aggregate

e¤ort under the same prize structure. That is, we study aggregate e¤ort using the two models

under two di¤erent scenarios: with two winning prizes and one losing penalty, and with two losing

penalties and one winning prize. We show that in the �rst case aggregate e¤ort is maximized under

the conventional model while in the second case, with the reverse lottery contest. This is because,

when there are two (one) winning prizes and one (two) losing penalty, the hypothetical sequence of

lotteries is larger in the conventional (reverse) nested lottery contest model. The main di¤erence

between the formulations of the problem are based on where we focus the outcome of the contest.

When we design the contest according to the conventional lottery contest, we focus on the e¤ort

that is required to win a prize, and indirectly, on avoiding a penalty. In other words, we focus

on choosing the winner. The contrary happens under the reverse lottery contest. This study is

relevant to determine the optimal contest design when competing both to win prizes and avoid

penalties.

Finally, we propose a formulation that might be used as a tool to analyze tax competition when

countries compete with taxes to attract �rms. We show that using our formulation the race to the

bottom does not happen.

1Sisak (2009) surveys the literature in multi-prize contests.
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3.2 Reverse lottery contest and bads

We �rst study the usefulness of the reverse lottery contest to analyze situations where individuals

compete to avoid a bad, burden or penalty.

Suppose a central government needs to allocate a dumping site for nuclear waste in one region.

Let N = f1; :::; ng be the set of lobbies, each of them allocated in one region, that compete to

avoid the dump in their area. To do so, lobbies exert costly e¤ort ei, i 2 N . Let e = (e1; :::; en)

be a vector of e¤orts. E¤ort can be understood as monetary resources that lobbies might use to

in�uence the government.

Denote by pi(�) the probability of each lobby i 2 N of getting the dump in its region. Function

pi(�) depends on e. We use the reverse lottery contest introduced by Fu et al. (2014):

pi =
e�1iP
j2N e

�1
j

if ej > 0 for all j. (3.1)

To avoid discontinuities, if ej = 0 for all j, every lobby gets the dump with probability 1=n. If only

one lobby, w.l.o.g. lobby j, exerts ej = 0, it gets the dump with probability 1. If k lobbies, k 2 N

exert 0 e¤ort, these lobbies get the dump with probability 1=k.

Note that pi is based on an inversely proportional sharing rule according to the e¤ort exerted

by each lobby. Then, the probability of getting the dump is decreasing (increasing) in own (rival)

e¤ort. It is also homogenous of degree 0 and it does not depend on the structure of the contest;

i.e. the structure of the dump which lobbies try to avoid.

We study now the equilibrium e¤ort when n lobbies compete to avoid a dump of value �B < 0.

Cost of e¤ort is linear. Payo¤s of lobby i are:

�i = �
e�1iP
j2N e

�1
j

B � ei. (3.2)

We show the following.

Proposition 3.1 There exists a symmetric Nash equilibrium, e� = B(n�1)=n2. Individual payo¤s

are ��i = B(1� 2n)=n2.

Proof. The �rst derivative of payo¤s (3.2) with respect to ei is:

@�i
@ei

= B[
e�2i

P
j 6=i e

�1
j

(
P
j2N e

�1
j )

2
]� 1: (3.3)
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Equate (3.3) to 0. By symmetry, it follows that e� = B(n � 1)=n2. We need to show now that

payo¤s of each lobby are concave in its own e¤ort. The second derivative of (3.2) with respect to

ei is:
@2�i
@e2i

=
2B

e3i (
P
j2N e

�1
j )

[
�1

e2i (
P
j2N e

�1
j )

2
+

2

ei(
P
j2N e

�1
j )

� 1]: (3.4)

This expression is negative if and only if (1� ei
P
j2N e

�1
j )

2 � 0, which is always the case.

Insert e� in (3.2) to get ��i . Finally, note that not participating in the contest yields payo¤s

�B, which are strictly smaller than ��i .

The equilibrium e¤ort is the same that in the conventional lottery contest for a positive prize.

Intuitively, equilibrium e¤ort is increasing in the size of the dump and decreasing in the number

of lobbies. Also, equilibrium payo¤s are decreasing in the size of the dump and increasing in the

number of lobbies. They di¤er from the conventional lottery contest due to the nature of the prize,

which in this case takes a negative value.

It is important to remark that we have restricted our analysis to the symmetric case; i.e. lobbies

value the dump equally and the e¤ort of each lobby has the same impact in the reverse lottery

contest function. Because of the functional form of the reverse lottery contest, there is not a Nash

equilibrium in pure strategies when at least three lobbies di¤er to others in their characteristics.

3.3 Application: Division of a dump

In this section we analyze the e¤ects on competition of dividing the bad of the contest in di¤erent

pieces. We do so through the following application. Suppose a central government needs to allocate

a dumping site for nuclear waste of value �B in one region. The dump is divisible and the central

government can divide it in k � 1 pieces of value �b, with k 2 f1; n � 1g, such that B = kb.

The dump is necessary for society, but is a burden for the habitants of the region where is �nally

allocated. Suppose there is a lobby in each of the n regions that makes money contributions ei to

in�uence the central government not to allocate the dump in its place. The problem of the central

government is to decide either to allocate just one dump in one region or to allocate several smaller

dumps in di¤erent regions.

The objective of the central government depends on its nature. In case it is a corrupt govern-

ment, its objective is to maximize revenue. Note that this application is the opposite of rent-seeking.

Rent-seeking consists in a situation where entities want to get rents from the manipulation of a

political environment. Political corruption is a phenomenon that arises naturally in this context,
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since lobbies might brive corrupt governments to get rents or in�uence a policy. Since we are

dealing with bads, we might assume the same application with the di¤erence that lobbies brive the

corrupted government to in�uence a policy that does not hurt them. Contrarily, if the government

is not corrupt, the objective is to reduce lobbying and confrontation. Clearly, if one policy is better

to increase lobbying, the contrary is better to counteract it.

Assume that the dump is allocated according to the reverse lottery contest (3.1).

In case it allocates one dump of value �B in one of the regions, using the general problem in

equation (3.2), by Proposition 3.1, it follows that aggregate money contributions are E = B(n �

1)=n.

Suppose it divides the dump in k pieces of value �b, with k 2 f1; n � 1g, such that B = kb.

Lobbies send money contributions to avoid getting one of the k dumps. We use the formulation

of Clark and Riis (1998) with the reverse lottery contest. That is, the probability of getting one

of the dumps is the probability of getting one dump in the �rst place, plus the probability of not

getting the dump in the �rst place times the probability of getting the second dump and so on.

Cost of e¤ort is linear. We focus on the symmetric Nash equilibrium. Assume that the payo¤s of

one lobby are:

�i = �
e�1i

e�1i + (n� 1)e�1
b�

k�1X
j=1

[�js=1(1�
e�1i

e�1i + (n� s)e�1
)]

e�1i
e�1i + (n� j � 1)e�1

b� ei. (3.5)

Straightforward maximization yields the aggregate money contribution, which coincides with the

one of Clark and Riis (1998)2, and is the following:

E = maxf0;
kX
s=1

b(1�
s�1X
t=0

1

n� t)g. (3.6)

Individual e¤ort is e = E=n.

Proposition 3.2 Aggregate contributions are larger when the central government allocates only

one dump.

It is straightforward to check Proposition 3.2. If the government divides the dump, aggregate

contributions diminish for two reasons. First, the expected burden of getting one of the dump is

smaller. Second, an increase in the number of dumps makes more likely getting one dump, so that

decreases incentives of contributing.
2 In Clark and Riis (1998), the contest consists of n individuals and k prizes of positive values using the conventional

nested lottery contest.
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A similar nested reverse lottery contest was used in Fu et al. (2014) and Lu et al. (2015a). The

problem di¤ers since they used the function to analyze the allocation of di¤erent positive prizes,

and compare the results with the conventional nested lottery contest used in Clark and Riis (1998).

In the Appendix we show the conditions for equilibrium e¤ort (3.6) to be a maximum.

3.4 Choosing a technology: reverse vs conventional lottery contest

In this section we study which lottery contest (reverse or conventional) implies higher aggregate

e¤ort when the number of prizes and bads is the same. Choosing the conventional or reverse lottery

contest when the prize and bad structure is the same are two di¤erent ways of promoting the same

contest. In a contest that takes place according to the conventional lottery contest, we focus on the

e¤ort that is required to win a prize, and indirectly, on avoiding a penalty. In other words, we focus

on choosing the winners. Contrarily, in a contest that takes place according to the reverse lottery

contest, we are putting more emphasis on the e¤ort that is required to avoid a bad, and indirectly,

on winning a prize. In other words, we focus on choosing the losers. We study two scenarios. In the

�rst scenario, there are two winning prizes of value W > 0 and one losing penalty of value �L < 0.

In the second scenario, there is only one winning prize W and two losing penalties �L. In both

scenarios, we assume there are only three individuals. This simple model allows us to study easily

which contest structure implies higher aggregate e¤ort. We focus on these simple cases because a

generalization involves complicated algebra that does not add any new insight to the results.

Scenario 1. Two winning prizes and one losing penalty.

We study �rst the problem when the contest takes place according to a conventional nested

lottery contest. We assume that, as in Clark and Riis (1998), the prize allocation is sequential

given a vector of e¤orts exerted by individuals. We focus on the symmetric Nash equilibrium.

Payo¤s of one individual are:

�i =W
ei

ei + 2e
+W (1� ei

ei + 2e
)
ei

ei + e
� L(1� ei

ei + 2e
)(1� ei

ei + e
)� ei. (3.7)

The �rst derivative with respect to ei yields:

@�i
@ei

= �e
4
i + 6e

3
i e+ 13e

2
i e
2 � 4ei(L+W � 3e)e2 + 2e3(�3L� 3W + 2e)

(ei + e)2(ei + 2e)2
. (3.8)

Equate to 0 and by symmetry, ei = e. Thus, isolating e we get that:

e =
5(W + L)

18
. (3.9)
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Note that e¤ort is increasing in both the winning prize and losing penalty. Note also that this

function exhibits a maximum since the second derivative of (3.7) is negative:

@2�i
@e2i

= �4(L+W )e
2(3e2i + 9eie+ 7e

2)

(ei + e)3(ei + 2e)3
. (3.10)

Individual payo¤s are �i = (7=18)W � (11=18)L. In case of making 0 e¤ort, individual payo¤s are

�i = �L. Thus, the participation constraint is satis�ed.

We study now the problem when the contest takes place according to the reverse lottery contest.

We focus on the symmetric Nash equilibrium. Assume that the payo¤s of one individual are:

�i = �L
e�1i

e�1i + 2e�1
+W (1� e�1i

e�1i + 2e�1
)� ei. (3.11)

The �rst derivative with respect to ei yields:

@�i
@ei

= �4e
2
i + 4eie+ (2L+ 2W � e)e

(2ei + e)2
. (3.12)

Equate to 0 and by symmetry, ei = e. Thus, isolating e we get that:

e =
2(W + L)

9
. (3.13)

Note that again e¤ort is increasing in both the winning prize and losing penalty. Note also that

this function exhibits a maximum since the second derivative of (3.11) is negative:

@2�i
@e2i

= �8(L+W )e
(2ei + e)3

. (3.14)

Individual payo¤s are �i = (4=9)W � (5=9)L. In case of making 0 e¤ort, individual payo¤s are

�i = �L. Thus, the participation constraint is satis�ed.

Then, we see that the aggregate e¤ort in a conventional nested lottery contest is larger than

when using the reverse lottery contest. This is because individuals have to put e¤ort to compete in

two allocations of the winning prize when competing under a conventional nested lottery contest,

while only in one allocation of the penalty when competing under a reverse lottery contest. Because

of this, individual payo¤s are larger under the reverse lottery contest.

Scenario 2. Two losing penalties and one winning prize.

Again, we study �rst the problem when the contest takes place according to a conventional

lottery contest. Assume that the payo¤s of one individual are:

�i =W
ei

ei + 2e
� L(1� ei

ei + 2e
)� ei. (3.15)



3.4. CHOOSING A TECHNOLOGY: REVERSE VS CONVENTIONAL LOTTERY CONTEST51

The �rst derivative with respect to ei yields:

@�i
@ei

= �e
2
i + 4eie� 2(L+W � 2e)e

(ei + 2e)2
. (3.16)

Equate to 0 and by symmetry, ei = e. Thus, isolating e we get that:

e =
2(W + L)

9
. (3.17)

Note that e¤ort is exactly the same that when the contest takes place according to a reverse lottery

contest and there are two winning prizes and one penalty. Note also that this function exhibits a

maximum since the second derivative of (3.15) is negative:

@2�i
@e2i

= �4(L+W )e
(ei + 2e)3

. (3.18)

Individual payo¤s are �i = (1=9)W � (8=9)L. In case of making 0 e¤ort, individual payo¤s are

�i = �L. Thus, the participation constraint is satis�ed.

We study now the problem when the contest takes place according to a reverse nested lottery

contest. Assume that the payo¤s of one individual are:

�i = �L
e�1i

e�1i + 2e�1
�L(1� e�1i

e�1i + 2e�1
)

e�1i
e�1i + e�1

+W (1� e�1i
e�1i + 2e�1

)(1� e�1i
e�1i + e�1

)�ei. (3.19)

The �rst derivative with respect to ei yields:

@�i
@ei

=
�4e2i � 12e3i e+ e2i (6L+ 6W � 13e)e+ 2ei(2L+ 2W � 3e)e2 � e2

(ei + e)2(2ei + e)2
. (3.20)

Equate to 0 and by symmetry, ei = e. Thus, isolating e we get that:

e =
5(W + L)

18
. (3.21)

Note that e¤ort is exactly the same that when the contest takes place according to a conventional

nested lottery contest and there are two winning prizes and one penalty. Note also that the second

derivative of (3.19) is negative if and only if:

@2�i
@e2i

=
4(L+W )e(�6e3i � 6e2i e+ e3)

(ei + e)3(2ei + e)2
< 0, (3.22)

which is the case if and only if e3 < +6e3i + 6e
2
i e. Note that it holds in equilibrium. Individual

payo¤s are �i = (1=18)W � (17=18)L. In case of making 0 e¤ort, individual payo¤s are �i = �L.

Thus, the participation constraint is satis�ed.

Then, we see that the aggregate e¤ort in a conventional lottery contest is smaller than when

using the reverse nested lottery contest. This is because individuals have to put e¤ort to compete
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in two allocations of penalties when competing under the reverse nested lottery contest, while only

in one allocation of the penalty when competing under a conventional lottery contest. Because of

this, individual payo¤s are larger under the conventional lottery contest.

We have proved the following.

Proposition 3.3 When there are two winning prizes and one losing penalty, aggregate e¤ort is

maximized when the contest takes place according to a conventional nested lottery contest. When

there are two losing penalties and one winning prize, aggregate e¤ort is maximized when the contest

takes place according to a reverse nested lottery contest.

In this section we have shown that though we can express the same problem using both a

conventional lottery contest and a reverse lottery contest, the e¤ort outcomes are di¤erent. We

remark that the main di¤erence between the formulations of the problem are based on where we

focus the outcome of the contest. When we design the contest according to a conventional lottery

contest, we focus on the e¤ort that is required to win a prize, and indirectly, on avoiding a penalty.

Then, we focus on choosing the winners. The contrary happens under the reverse lottery contest.

We also praise the utility and importance of the reverse lottery contest because of its tractability

and its simplicity to solve problems that would be more tedious under a conventional lottery contest.

3.5 Related CSF and applications to tax competition

A general version of the reverse lottery contest used in the previous sections is:

pi(e) =
f(ei)

(
P
j2N f(ej))

for all i 2 N , (3.23)

where f(�) is a decreasing function in its argument. Note that if f(ei) = �eri , with � = 1 and

r = �1, the formulation used throughout the paper arises.

Function (3.23) can be easily axiomatized using four out of �ve axioms from Skaperdas (Proba-

bility, Anonimity, Consistency and Independency of Irrelevant Alternatives) and changing Monotonic-

ity by Inverse Monotonicity. Inverse Monotonicity says that the probability of getting the bad is

decreasing in own e¤ort and increasing in the rival e¤ort. Also, using Homogeneity of Degree Zero

the reverse lottery contest used throughout the paper arises. The reader can �nd the details in
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previous versions of this paper and in Lu and Wang (2015b).34

We now introduce another form of CSF that is useful to analyze tax competition and follows

from the previous general form in (3.23).

Application: Tax competition

In this application we explain that from the formulation in (3.23) we can get other functions that

are useful to analyze problems outside the classical scope of contest theory, such as tax competition.

Suppose a CEO plans to allocate her �rm of value V in one of the i = 1; :::; n countries. Countries

compete among them to attract the �rm by setting a tax rate ti 2 (0; 1) that taxes V . Let

t = (t1; :::; tn) be a vector of tax rates. Let pi(t) be the probability that county i attracts the �rm,

with
Pn
i=1 pj(t) = 1 The contest takes place according to pi(t) = f(ti)=(

Pn
j=1 f(tj)) for all i 2 N ,

where f(ti) = 1� ti. The CEO allocates the �rm according to the following CSF:

pi(t) =
1� tiPn

j=1(1� tj)
. (3.24)

We assume that the decision of the CEO is noisy. That is, the CEO may take into account other

factors than taxes when deciding where to allocate the �rm, such as average wage or weather. We

assume the expected tax income of one country is:

�i = V
1� tiPn

j=1(1� tj)
ti. (3.25)

That is, expected tax income of one country is the probability of attracting the �rm times the tax

rate that taxes it, times the value of the �rm. See that we are not dealing with a contest to avoid

a bad. Indeed, we are dealing with a situation in which a reduction of the country tax rate, on the

one hand, reduces the expected revenue from the tax base, but on the other hand, increases the

probability of attracting the �rm.

It is easy to show that this function has a maximum. Take the �rst derivative and equate to 0

to see that the symmetric equilibrium is t� = n=(2n � 1). Such a formulation could explain why

taxes in equilibrium does not goes to 0 in absence of inmobile capital. Note that the payo¤ function

has a maximum since the second derivative is negative:

@2�i
@t2i

=
2V (

P
j 6=i(1� tj))(1 +

P
j 6=i(1� tj))

(�
Pn
j=1(1� tj))3

< 0. (3.26)

3This work has been developed simultaneously by Lu and Wang (2015b). They axiomatize the reverse lottery

contest and the reverse nested lottery contest. For this reason, we have omitted the complete analysis of the axiom-

atization.
4We also remark that we can derive the reverse lottery contest through similar microfundations used in other

research as in Corchón and Dahm (2010) for the conventional lottery contest.
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3.6 Conclusions

This paper studies situations in which individuals compete to avoid a bad, burden or penalty, using

the reverse lottery contest model. We show existence of equilibrium when individuals compete to

avoid a bad. We also show that a contest organizer decreases competition when individuals compete

to avoid several divisions of the original bad through a reverse nested lottery contest.

We argue that a contest among n individuals to avoid a bad can be understood as a contest

among n individuals to win one of the n � 1 prizes. This is because in a contest to avoid a bad

only one individual gets the bad, which can be considered as the loser, while the others are the

winners. Then, we analyze which contest structure induces more aggregate e¤ort under the same

prize and bad structure: the conventional or reverse lottery contest. That is, we study aggregate

e¤ort using the two contest models under two di¤erent scenarios: with two winning prizes and one

losing penalty, and with two losing penalties and one winning prize. We show that in the �rst case

aggregate e¤ort is maximized under the conventional lottery contest while in the second case, with

the reverse lottery contest.
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A.1 Appendix 1.A

Proof of Proposition 1.1. Recall that Ecl = nl[vnlnm=(nl+nm)
2]1=�+1; Edl = nl[vnm(nl=nm)

1=�+1)=(nl+

nm(nl=nm)
1=�+1)2]1=�+1 and n1 = an2 with a 2 [1;1). First of all, we show that Group 1 always

underperforms. Note that Ec1 > E
d
1 if and only if 1 > (1 + a)

2=n2a
�=�+1(a1=�+1 + a)2. Let

h1(a) = 1�
1

n2

(1 + a)2

a
�

�+1 (a
1

�+1 + a)2
. (A.1)

Note that h1(a) is increasing for all a 2 [1;1) because:

@h1(a)

@a
=
a
�2+ 1

1+� (1 + a)[a
1

1+� (2 + �(1� a)) + a(2 + (3 + a)�)]
n2(a+ a

1
1+� )3(1 + �)

> 0 for all a 2 [1;1). (A.2)

See now that for all a 2 [1;1), h1(a) is positive, which implies that the larger group always

underperforms. Take the limit of h1(a) when a! 1. It follows that h1(a) tends to 1� 1=n2, which

is positive. Now, take the limit when a ! 1. It follows that h1(a) tends to 1, which is positive.

Since h1(a) is increasing for all a 2 [1;1), it follows that h1(a) is positive for all a 2 [1;1), which

implies that the larger group always underperforms.

We now show that there exists an �a 2 [1;1) such that for a < �a, the smaller group underper-

forms, while for a > �a, the smaller group outperforms. To do so, note that Ec2 > E
d
2 if and only if

1 > (a+ 1)2=n1a
�

�+1 (a
��
�+1 + 1)2. Let

h2(a) = 1�
1

n1

(a+ 1)2

a
�

�+1 (a
��
�+1 + 1)2

. (A.3)
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Note that h2(a) is decreasing for all a 2 [1;1) since:

@h2(a)

@a
= � 1

n1

(a+ 1)

�
2a+ �+ 3a�+ a

(2�+1)
�+1 �� a

�
�+1�+ 2a

(2�+1)
�+1

�
a
(3�+1)
�+1 (�+ 1)

�
a
��
�+1 + 1

�3 < 0 for all a 2 [1;1).

(A.4)

See now that for all a 2 [1;1), there exists an �a such that h2(�a) = 0. Take the limit of h2(a)

when a ! 1. It follows that h2(a) tends to 1 � 1=n1, which is positive. Now, take the limit when

a ! 1. It follows that h2(a) tends to �1. Since h2(a) is decreasing for all a 2 [1;1), by the

intermediate value theorem, there exists an �a such that h2(�a) = 0. Thus, for all a < �a, h2(a) is

positive which implies that Group 2 underperforms, while for a > �a, h2(a) is negative which implies

that Group 2 outperforms.

Proof of Proposition 1.2. For the �rst part, insert equation (1.16) in (1.15). The �rst order

condition for every group coincides with (1.6).

For the second part, just note that @tl(eli; El�i)=@el = 1�1=nl > 0. Now suppose that n1 > n2.

It follows that 1� 1=n1 > 1� 1=n2, which implies that @t1(e1i; E1�i)=@e1i > @t2(e2i; E2�i)=@e2i.

Proof of Proposition 1.3. For the �rst part, equate (1.8) and (1.19) for both groups and solve

the system of equations with unknowns f(etli; E
t
l�i) for l = 1; 2. We obtain that

f(eli; El�i) = e�li �
@tl(eli; El�i)

@eli
= Al, l = 1; 2, (A.5)

where Al =
vnm

(nl + nm)2
(
vnlnm

(nl + nm)2
)
�1
�+1 . (A.6)

Isolate and integrate @tl(zli; El�i)=@zli with respect to zli in the interval [0; eli]. It follows that the

transfer function of individual i in group l is given by:

tl(eli; El�i) =
e1+�li

1 + �
�Aleli +Q(El�i): (A.7)

Since
Pnl
i=1 tl(eli; El�i) = 0, it follows that:

ElAl �
nlX
i=1

e1+�li

1 + �
=

nlX
i=1

Q(El�i): (A.8)

In order to �nd the function Q(El�i), it is necessary to solve this functional equation. To do so,

consider the vector of e¤orts in which every individual in the group exerts 0 e¤ort. It follows that

Q(0) = 0. Now, consider all the possible vectors of e¤orts in which all the components are 0 except

for 1 individual, namely j. If follows that:

AlEl�12:::(j�1)(j+1):::nl �
e1+�lj

1 + �
= (nl � 1)Q(elj) +Q(0); j = 1:::nl. (A.9)
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which can be rewritten as:

Q(elj) =
1

nl � 1
[eljAl �

e1+�lj

(1 + �)
]; j = 1:::nl. (A.10)

Now consider all the possible vectors of e¤orts in which every individual in the group exerts 0 e¤ort

except 2 individuals, namely j and k. It yields that:

AlEl�12:::(j�1)(j+1):::(k�1)(k+1):::nl �
e1+�lj

1 + �
�
e1+�lk

1 + �
= (nl � 2)Q(elj + elk) +Q(elj) +Q(elk) +Q(0):

(A.11)

Introducing equation (A.10) for j and k and rearranging it is obtained that:

Q(elj + elk) =
1

nl � 1
[(elj + elk)Al �

e1+�lj

(1 + �)
�

e1+�lk

(1 + �)
]: (A.12)

Repeating this process, it is obtained that

Q(El�i) =
1

nl � 1
[(

nlX
k 6=i

elk)Al �
nlX
k 6=i

e1+�lk

(1 + �)
]: (A.13)

and introducing it in equation (A.7) the required transfer function arises.

The transfer is meritocratic if @tl(eli; El�i)=@eli > 0, which is the case if and only if e
�
li�Al > 0.

For the last part of the proposition, suppose that n1 > n2. It follows that A2 > A1, which implies

that the transfer function of Group 2 penalizes e¤ort more than the transfer function of Group 1.

Proof of Proposition 1.4. a) It is necessary to show that payo¤s �l(�l; �m) are decreasing

in �l for all �m, for l = 1; 2. This is the case if the derivative of �l(�l; �m) with respect to �l

is negative in the interval �l 2 [0; 1] for all �m 2 [0; 1] . The derivative is negative if and only if

2 � nl[�l + �m]. Since the right hand side of the last expression is minimal if �l = 0, for l = 1; 2,

it follows that nl[1=nl + 1=nm] � nl[�l + �m]. Making some computations, it follows that 2 =

nl[1=nl + 1=nm] � nl[�l + �m]. Therefore �l(�l; �m) is decreasing in the interval �l 2 [0; 1], with

a maximum at ��l = 0. Then, the dominant strategy of both groups is to set ��l = 0. Insert the

equilibrium rules ��l in al and bl for l = 1; 2 in the linear transfer functions to obtain the transfers.

For the second part of the proof, since ��l = 0, from equation (1.26) it can be deduced that

E�l = nlv=4 for l = 1; 2. It follows that p
�
l = 1=2 and �

�
l = nlv=4.

b) First, it is necessary to show that �1(�1; �2) is decreasing in �1 for all �2. This is the case if

the �rst derivative of �1(�1; �2) with respect to �1 is negative for all �2. The derivative is negative

if and only if 1=n1 � 1=n2 +�2(n2 � 1)=n2 +�1(n1 � 1)=n1. The right hand side is minimal in our
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domain of �l if �l = 0, l = 1; 2. Then, under these rules, it follows that the derivative is negative

if and only if 1=n1 � 1=n2 � 1=n2 + �2(n2 � 1)=n2 + �1(n1 � 1)=n1, which holds since n1 > n2.

It follows that �1(�1; �2) is decreasing in �1 for all �2, with a maximum at ��1 = 0, which is the

dominant strategy of Group 1. Now, it is necessary to show that �2(�1; �2) has a maximum at

��2 = (n1�n2)=((n2�1)n1). Given that ��1 = 0, equating @�2=@�2 to 0 and isolating �2 yields that

��2 = (n1 � n2)=((n2 � 1)n1). In order to show that it is a maximum, it is su¢ cient to show that

�2(�1; �2) is increasing (decreasing) in �2 for all �2 < (>)��2. Payo¤s of Group 2 are increasing

(decreasing) in �2 if and only if @�2=@�2 is positive (negative). This is the case if and only if

(�2(n2 � 1)=n2 + =n2 + �1(n1 � 1)=n1 + 1=n1)�1 > (<)n2=2. Since we know from previous results

that ��1 = 0, isolating �2 we obtain from the previous inequality that this is the case if and only if

�2 < (>)�
�
2. Thus, �

�
2 = (n1�n2)=((n2� 1)n1) is the mixed rule chosen by the organizer of Group

2. Insert the equilibrium rules ��l in al and bl for l = 1; 2 in the linear transfer functions to obtain

the transfers.

For the second part, introducing ��1 = 0 and �
�
2 = (n1�n2)=((n2�1)n1) in equation (1.25) and

making some arrangements, it follows that E�2=E
�
1 = n2=(2n1 � n2), which is clearly lower than 1

since n1 > n2. Then, E�1 > E
�
2 and as a result p

�
1 > p

�
2. Finally, introducing the equilibrium values of

��1 and �
�
2 in equation (1.26), it follows that the e¤ort exerted by Group 1 is E

�
1 = n2v(2n1�n2)=4n1,

while the e¤ort of Group 2 is E�2 = v(n2)
2=4n1. It is straightforward to see that the transfer set by

Group 1 is more meritocratic than the transfer set by Group 2, since Group 1 exerts more e¤ort

because its transfer yields a smaller marginal cost than Group 2. It is also straightforward to see

that the larger the di¤erence of size between groups is, the less meritocratic the transfer set by

Group 2 is, because the resulting marginal cost is larger.

A.2 Appendix 1.B

In Section 1.4, we assume that each organizer sets a transfer that implements the centralized e¤ort

under the assumption that the organizer in the other group does likewise. In this appendix we

show under which conditions this assumption is plausible. In particular, we assume that organizers

decide either to monitor individuals or not.

For simplicity, assume linear costs. Suppose the following game. In the �rst stage each organizer

decides either to monitor (M) or not (N) her individuals. Let s = (s1; s2) be a vector of strategies

of organizers, and sl = fM;Ng for l = 1; 2. In the second stage, the contest takes place.
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In case that both organizers monitor individuals, the centralized contest takes place. In case

both organizers do not monitor individuals, the decentralized contest takes place. Otherwise, one

group behaves as in a centralized contest and the other group as in a decentralized contest.

In Section 1.3 we analyze both centralized and decentralized contest. Recall that when both

organizers monitor their individuals, both organizers maximize group payo¤s:

�l =
El
E
vnl � El, l = 1; 2: (A.14)

In equilibrium, EMM
l = vn2l nm=(nl + nm)

2 and �MM
l = vn3l =(nl + nm)

2. Superscript MM denotes

that both organizers monitor their individuals.

Also recall that when both organizers do not monitor their individuals, they maximize their

payo¤s:

�li =
El
E
v � eli, l = 1; 2: (A.15)

In equilibrium, ENNl = v=4 and �NNl = v(2nl�1)=4. Superscript NN denotes that both organizers

do not monitor their individuals.

Without loss of generality, suppose Organizer 1 monitors their individuals and Organizer 2 does

not. Organizer in Group 1 maximizes (A.14) and individuals in Group 2 maximize (A.15). In

equilibrium EMN
1 = vn21=(n1 + 1)

2, EMN
2 = vn1=(n1 + 1)

2, �MN
1 = vn31=(n1 + 1)

2 and �MN
2 =

v(n1n2 + n2 � n1)=(n1 + 1)2. The upper-script MN denotes the scenario in which Organizer 1

monitors her individuals and Organizer 2 does not.

We show now that there exists an�a 2 [1;1) such that for a <�a, the strategy pro�le s = (M;M)

is an equilibrium and for a >�a, s = (M;N) is an equilibrium.

To do so, we show �rst that Organizer 1 has the dominant strategy of monitoring her individuals.

Her payo¤s in case both organizers monitor their individuals can be rewritten as �MM
1 = va3n2=(1+

a)2. In case Organizer 1 deviates and sets s1 = N , her payo¤s are �NM1 = v(an22 + n2(a� 1))=(1 +

n2)
2. De�ne

g1(a) �
a3

(1 + a)2(a(1 + n2)� 1)
� 1

(1 + n2)2
, (A.16)

and note that �MM
1 > �NM1 whenever g1(a) > 0. Note that g1(a) is increasing for all a 2 [1;1)

since:
@g1(a)

@a
=

a2 (a+ 2an2 � 3)
(a+ 1)3 (a+ an2 � 1)2

> 0: (A.17)

Take the limit of g1(a) when a ! 1. It follows that g1(a) tends to 1=4n2 � 1=(1 + n2)2, which is

positive. Now, take the limit when a!1. It follows that g1(a) tends to 1=(1 + n2)� 1=(1 + n2)2,
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which is positive. Since g1(a) is increasing for all a 2 [1;1), it follows that g1(a) is positive for all

a 2 [1;1).

Now, see that payo¤s of Organizer 1 in case both organizers do not monitor their individuals

can be rewritten as �NN1 = v(2an2 � 1)=4. In case Organizer 1 deviates and sets s1 = M , her

payo¤s are �MN
1 = va3n32=(1 + an2)

2. De�ne

g2(a) =
a3n32

(1 + an2)2(2an2 � 1)
� 1
4
; (A.18)

and note that �MN
1 > �NN1 if and only if g2(a) > 0. Note that g2(a) is increasing for all a 2 [1;1)

since:
@g2(a)

@a
=

3a2n32(an2 � 1)
(an2 + 1)

3 (2an2 � 1)2
> 0: (A.19)

Take the limit of g2(a) when a! 1. It follows that g2(a) tends to n32=(1+n2)
2(2n2�1)�1=4, which

is positive. Now, take the limit when a!1. It follows that g2(a) tends to 1=2, which is positive.

Since g2(a) is increasing for all a 2 [1;1), it follows that g2(a) is positive for all a 2 [1;1).

As a result, the organizer in the larger group has the dominant strategy of monitoring her

individuals.

We show now that given the dominant strategy of Organizer 1, Organizer 2 monitors her

individuals if and only if a <�a. To see this, note that payo¤s of Organizer 2 in case both organizers

monitor their individuals can be rewritten as �MM
2 = vn2=(1 + a)

2. In case Organizer 2 deviates,

she get payo¤s �MN
2 = v(an22 + n2(1� a))=(1 + an2)2. De�ne

g3(a) �
(1 + an2)

2

(1 + a)2(a(n2 � 1) + 1)
� 1, (A.20)

and note that �MM
2 > �MN

2 if and only if g3(a) > 0. Note that g3(a) is decreasing for all a 2 [1;1)

since:
@g3(a)

@a
=
(n� 1)

�
a2n2(1� a) + 2na(1� 2a)� 3a+ 1

�
(a+ 1)3 (a(n� 1) + 1)2

< 0: (A.21)

We show that there exists an �a 2 [1;1) such that g3(�a) = 0. Take the limit of g3(a) when a! 1.

It follows that g3(a) tends to (1+n2)2=4n2�1, which is positive. Now, take the limit when a!1.

It follows that g3(a) tends to �1. Since g3(a) is decreasing for all a 2 [1;1), by the intermediate

value theorem, there exists an �a such that g3(�a) = 0. Thus, for all a <�a, g3(a) is positive which

implies that Organizer 2 sets s2 =M , while for a >�a, g3(a) is negative which implies s2 = N .
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This result explains that Organizer 1 always monitors her individuals while Organizer 2 does

so only if the size of both groups is su¢ ciently similar. Otherwise, she does not monitor her

individuals. Organizer 1 has the dominant strategy of monitoring her individuals because by doing

so, her group becomes stronger. Also, since the size of her group is larger than the size of Group

2, Group 1 is always the strongest. Organizer 2 monitors her individuals only if the size of her

group is su¢ ciently close to Group 1. In such a case, by monitoring her individuals, she encourages

them to exert more e¤ort and compete �ercely with Group 1. In case the size of both groups di¤er

enough, Organizer 2 does not monitor her individuals and induces them to reduce e¤ort. This is

because the higher probability of winning that Group 2 obtains by exerting more e¤ort does not

compensate the cost.

A.3 Appendix 1.C

This appendix analyzes the implementation of the centralized e¤ort setting when individuals have

di¤erent valuations of the prize, and discusses the implications of this heterogeneity when organizers

set transfers strategically at the end of the section. Assume that vli is the valuation that individual

i in group l has for the public prize. Assume without loss of generality that vl1 > vl2 > ::: > vln.

Assume also that Vl =
Pnl
i=1 vli. We assume linear costs for tractability.

We start the analysis by obtaining the e¤ort that groups exert in a centralized contest when

individuals in a group have di¤erent valuations of the prize. Payo¤s of each organizer are:

�l =
El
E
Vl � El for l = 1; 2, (A.22)

Each organizer chooses the amount of e¤ort that maximizes the group payo¤s given that she is

competing with the other group. It follows that the centralized e¤ort when individuals value the

prize di¤erently is:

Echl =
V 2l Vm

(Vl + Vm)2
for l = 1; 2. (A.23)

The upper-script ch denotes the centralized scenario where individuals value the prize di¤erently.

Therefore, the group whose sum of valuations is larger exerts more e¤ort in equilibrium and is more

likely to win the contest.

Now, we solve the decentralized contest with transfers with heterogeneous individuals. Payo¤s

of each individual are:

�li =
El
E
vli � eli + tli(eli; El�i) for i = 1:::nl; l = 1; 2, (A.24)



62 APPENDIX A. APPENDIX OF CHAPTER 1

Every individual chooses the e¤ort that maximizes equation (A.24). The set of �rst order conditions

are:
Em
E2

=
1� @tli(eli;El�i)

@eli

vli
= wli(eli; El�i) for m 6= l, i = 1:::nl: (A.25)

Denote wli(eli; El�i) � (1 � @tli(eli; El�i)=@eli)=vli. Note that in case that there are no transfers,

only individuals whose valuation is larger in each group exert e¤ort. In order to let the equilibrium

be such that every individual in the contest exerts a positive amount of e¤ort, let us use a transfer

that allows that the �rst order condition of every individual is binding. Then, the right hand side

of the equation for every individual is the same value. Using the �rst order condition of every

individual in both groups, we obtain the group e¤ort evaluated at the equilibrium:

Ethl =
wmj(e

th
mj ; E

th
m�j)

(wli(e
th
li ; E

th
l�i) + wmj(e

th
mj ; E

th
m�j))

2
for l = 1; 2. (A.26)

The upper-script th denotes the decentralized contest with transfers scenario where individuals

value the prize di¤erently. The organizer of each group implements the e¤ort of the centralized

contest when individuals value the prize di¤erently choosing the transfer tl(eli; El�i) such that

Echl = Ethl .

Proposition A.1 When individuals have di¤erent valuations of the prize, the following transfer

implements the e¤ort of a centralized contest:

tthli (eli; El�i) = eli[1�
vli
Vl
] +

nlX
j 6=i

elj
nl � 1

[
vlj
Vl
� 1], for l = 1; 2; i = 1:::nl : (A.27)

Proof. To check that this transfer implements the centralized e¤ort, insert transfer (A.27) in (A.24)

and see that the e¤ort of the decentralized contest with transfers coincides with the centralized

contest. To construct the transfer, equate (A.23) and (A.26) for both groups and solve the system

of equations with unknowns wli(ethli ; E
th
l�i) for l = 1; 2. We obtain that

wli(eli; El�i) =
1� @tli(eli;El�i)

@eli

vli
=
1

Vl
, for i = 1:::nl, l = 1; 2. (A.28)

Isolate and integrate @tli(zli; El�i)=@zli with respect to zli in the interval [0; eli]. It follows that the

transfer of individual i in group l is given by:

tli(eli; El�i) = eli �
vli
Vl
eli +Q(El�i): (A.29)

Since
Pnl
i=1 tli(eli; El�i) = 0, it follows that:

nlX
i=1

elivli
Vl

� El =
nlX
i=1

Q(El�i): (A.30)
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In order to �nd the function Q(El�i), it is necessary to solve this functional equation. To do so,

consider the vector of e¤orts in which every individual in the group exerts 0 e¤ort. It follows that

Q(0) = 0. Now, consider all the possible vectors of e¤orts in which all the components are 0 except

for one individual, namely j. If follows that:

elj
vlj
Vl
� elj = (nl � 1)Q(elj) +Q(0); j = 1:::nl. (A.31)

which can be rewritten as:

Q(elj) =
elj

nl � 1
[
vlj
Vl
� 1]; j = 1:::nl. (A.32)

Now, consider all the possible vectors of e¤orts in which every individual in the group exerts 0

e¤ort except two individuals, namely j and k. It yields that:

elj [
vlj
Vl
� 1] + elk[

vlk
Vl
� 1] = (nl � 2)Q(elj + elk) +Q(elj) +Q(elk) +Q(0): (A.33)

Introducing equation (A.10) for j and k and rearranging we obtain that:

Q(elj + elk) =
elj

nl � 1
[
vlj
Vl
� 1] + elk

nl � 1
[
vlk
Vl
� 1]: (A.34)

Repeating this process, we obtain that

Q(El�i) =

nlX
j 6=i

elj
nl � 1

[
vlj
Vl
� 1]: (A.35)

And introducing it in equation (A.29) we get the transfer (A.27).

Individuals with lower valuations of the public prize have a more meritocratic transfer than

individuals with higher valuations of the prize. By setting a more meritocratic transfer to individ-

uals with lower valuations, these individuals are induced to exert the same amount of e¤ort as the

individuals with a higher valuation do. In particular, with these transfers every individual has the

same marginal cost. It is worthy to note that although every individual in the group has the same

marginal cost and since this problem is dealing with linear costs, the main importance falls in the

aggregate of the e¤ort exerted in the group. By setting these transfers, the marginal cost of every

individual is being substituted with its valuation relative to the aggregate valuation of the group,

implementing the centralized e¤ort.

In the symmetric equilibrium in which every individual in the group exerts the same amount

of e¤ort, those individuals who have a higher valuation of the public prize face higher costs. Then,

although these transfers induce all individuals to exert e¤ort, they redistribute the cost in deterrence

to those who value the public prize the most.
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We �nish by discussing the implications of heterogeneity when organizers set transfers strate-

gically. Given the similarities with Section 1.5, we omit the analysis. First, the problem becomes

excessively complicated if we allow a di¤erent transfer function for every individual. Then, if we

focus on the same transfer function, only top individuals exert e¤ort. The organizer of each group

decides the transfer depending on the aggregate prize value of the group. In particular, an organizer

has the dominant strategy of setting �l = 0 (1) if Vl is su¢ ciently large (small), independently on

the rival group. This is because the organizer cares about the group payo¤s and �nds it convenient

to set a meritocratic transfer function or not depending on this aggregate value. In case only one

organizer has a dominant strategy, the rival group chooses a mixed rule �l 2 [0; 1]. This is because

the rival organizer maximizes her payo¤s subject to this dominant strategy. Finally, if none of the

organizers have a dominant strategy (their aggregate prize value is neither su¢ ciently large nor

small), there is no equilibrium in pure strategies.
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Appendix of Chapter 2

Proof of Lemma 2.1. In the state of the world s = (bH ; bL), player 1 is unconstrained and

maximizes her payo¤ function (2.2). Her best reply is:

e1 =

r
V e2
�
� e2
�
. (B.1)

Note that the best reply of player 1 does not depend on �. Player 2, who is constrained,

maximizes her payo¤s (2.2). The �rst derivative of (2.2) with respect to e2 is:

@�2(bH ; bL)

@e2
=

�V �e1
(�e1 + e2)2

� 1. (B.2)

Note that the �rst derivative is positive if �V � (�e1 + bL)2=�e1 and hence e2 = bL .

Inserting e2(bH ; bL) = bL in the best reply of player 1, e1(bH ; bL) =
p
V bL=�� bL=�.

In the �rst stage, the contest organizer chooses � that maximizes the sum of e¤orts. See that

the aggregate e¤ort does not depend on �. Then, choosing � that maximizes the sum of e¤orts

we get that ��(bH ; bL) = 4bL=V . Introducing ��(bH ; bL) in the condition for player 2 for being

constrained, it follows that is necessary that � � 4bL=V . Insert ��(bH ; bL) in e¤ort and payo¤s to

get that e�1(bH ; bL) = V=4, e
�
2(bH ; bL) = bL, �

�
1(bH ; bL) = V=4 and �

�
2(bH ; bL) = �V=2� bL.

Finally, suppose s = (bL; bL). To ensure that players expend their whole budget, the organizer

chooses a � such that both of them are still constrained, which happens when � � bL(�+ 1)2=V �.

The organizer chooses ��(bL; bL) = 1. By doing so, the previous restriction is rewritten as

� � 4bL=V . It follows that e�i (bL; bL) = bL and ��i (bL; bL) = �V=2� bL for i = 1; 2.

Proof of Proposition 2.2

The proof of Proposition 2.2 uses the following lemmas. To carry on this analysis, denote by

�(s;m) payo¤s � when the state of the world is s = (t1; t2) and the message pro�le ism = (m1;m2).

65



66 APPENDIX B. APPENDIX OF CHAPTER 2

Also, � depends on m (i.e. �(m)) and �(bH ; bL) = �(bL; bH). The structure of the proof is as

follows. First we derive conditions for �(bH ; bL) and �(bL; bL) such that implement the optimal

e¤ort in each state of the world separately. Then, we show that there exists values for �(bH ; bL)

and �(bL; bL) that implement the optimal e¤ort independently on the state of the world.

Lemma B.1 Suppose s = (bH ; bH). There exists a value �a such that for �(bH ; bL) 2 [0; �a) and

�(bL; bL) = 0 both players revealing their true type is the unique Nash equilibrium.

Proof. We need a unique equilibrium in which both players report their true type. Since both

players are unconstrained, di¤erent prizes a¤ect the equilibrium e¤orts.

There exists a value �a such that both players reporting their true type is a Nash equilibrium

for �(bH ; bL) 2 [0; �a]. To see this, recall that payo¤s of players when both of them report their

true type are �i(bH ; bH ; bH ; bH) = V=4 for i = 1; 2. Without loss of generality, suppose player 2

deviates from both players reporting their true type and reports m2 = bL. In such a case, player

2 competes for prize �(bH ; bL)V and player 1 for prize V , � = 4bL=V < 1 and both of them are

unconstrained. Solving the game, we get that payo¤s of player 2 become �2(bH ; bH ; bH ; bL) =

(�(bH ; bL)V )
3=(4bL + �(bH ; bL)V )

2. Then, player 2 reporting her true type is part of the Nash

equilibrium if and only if �2(bH ; bH ; bH ; bH) � �2(bH ; bH ; bH ; bL), which holds if and only if V=4 �

(�(bH ; bL)V )
3=(4bL + �(bH ; bL)V )

2. Solving this inequality for �(bH ; bL) we get that this is the

case for �(bH ; bL) 2 [0; �a], where

�a � A(bL
V
)+

2bL
3V +

1
144

A( bLV )
+
1

12
, with A(

bL
V
) � 3

s
bL
12V

+

r
(
bL
3V
)3 + 4(

bL
V
)4 + 2(

bL
V
)2 +

1

1728
. (B.3)

It follows that equilibria in which one player reports her true type and the other player lies

are impossible for �(bH ; bL) 2 [0; �a). Note that we do not include �a in the interval to avoid

multiplicity of equilibria.

If both players report mi = bL, they get �i(bH ; bH ; bL; bL) = 0 because �(bL; bL) = 0. This

cannot be an equilibrium since they get positive payo¤s by an unilateral deviation.

Thus, both players lying, or only one player lying and other reporting her true type, cannot be

an equilibrium for �(bH ; bL) 2 [0; �a) and �(bL; bL) = 0. The only Nash equilibrium consists in

both players reporting mi = bH , and aggregate e¤ort is maximized.

Lemma B.2 Suppose s = (bH ; bL). There exists values �b and �c such that for �(bH ; bL) 2 (�b; �c)

and �(bL; bL) = 0 both players revealing their true type is the unique Nash equilibrium.1
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Proof. We �rst �nd the values of �(bH ; bL) and �(bL; bL) that makes truthtelling an equilibrium and

afterwards we restrict to those values where truthtelling is the unique equilibrium. There exists a

value �b such that both players reporting their true type is a Nash equilibrium for �(bH ; bL) 2 [�b; 1]

and �(bL; bL) = 0. To see this, recall from Lemma 2.1 that payo¤s of players when both of them

report their true type are �1(bH ; bL; bH ; bL) = V=4 and �2(bH ; bL; bH ; bL) = V �(bH ; bL)=2� bL. We

�rst derive the payo¤s in case one player deviates from truthtelling and then prove that truthtelling

is an equilibrium.

Suppose player 1 deviates from both players reporting their true type and reports m1 = bL.

Then, player 1 gets payo¤s �1(bH ; bL; bL; bL) = 0. Thus, she does not have incentives to deviate.

Suppose player 2 deviates from both players reporting their true type and reports m2 =

bH . Then, both players compete for prize V and � = 1. Solving the game, it follows that

�2(bH ; bL; bH ; bH) =
p
V bL � bL. Player 2 is constrained if V > 4bL, which is always the case.

Then, both players reporting their true type is an equilibrium if and only if �1(bH ; bL; bH ; bL) �

�1(bH ; bL; bL; bL) and �2(bH ; bL; bH ; bL) � �2(bH ; bL; bH ; bH).

It is straightforward to see that �1(bH ; bL; bH ; bL) � �1(bH ; bL; bL; bL) = 0.

Note that �2(bH ; bL; bH ; bL) � �2(bH ; bL; bH ; bH) if and only if V �(bH ; bL)=2� bL �
p
V bL� bL.

Solving for �(bH ; bL) we get that this is the case for �(bH ; bL) 2 [�b; 1], where

�b � 2
r
bL
V
. (B.4)

Note that �b > 4bL=V is always the case since bL < V=4.2

Thus, both players reporting their true type is a Nash equilibrium for �(bH ; bL) 2 [�b; 1] and

�(bL; bL) = 0.

For all the analysis above, both players reporting mi = bH or mi = bL cannot be an equilibrium

for �(bH ; bL) 2 (�b; 1] and �(bL; bL) = 0. Note that we do not include �b in the interval to avoid

precisely these equilibria.

We need to de�ne the conditions that ensure that both players reporting their true type is the

unique Nash equilibrium. Then, we need to �nd additional conditions for �(bH ; bL) that ensure that

both players lying about their type is not a Nash equilibrium. When both players lie about their

types, player 1 competes for prize �(bH ; bL)V , player 2 for V and � = V=4b > 1. Solving the game,

we get that �1(bH ; bL; bL; bH) = �(bH ; bL)V � 4bL
p
�(bH ; bL) + 4b

2
L=V and �2(bH ; bL; bL; bH) =

1The same applies for s = (bL; bH).
2Recall that bL=V 2 [0; 1=4] is the relevant range. For bL=V > 1=4, player 2 becomes unconstrained. Thus, this

is the range we study for the rest of the proof.
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2bL=
p
�(bH ; bL)�bL. Player 2 is constrained if and only if V > �(bH ; bL)V �bL=(

p
�(bH ; bL)V �bL�

bL), and solving for �(bH ; bL) we get that this is the case if and only if �(bH ; bL) > �4bL=V �

2
p
�4bL=V + 1 + 2 � �d. Player 1 deviates from both players reporting a false type if and only if

�1(bH ; bL; bH ; bH) > �1(bH ; bL; bL; bH), where �1(bH ; bL; bH ; bH) = V � 2
p
V bL + bL, which holds if

and only if V � 2
p
V bL+ bL > �(bH ; bL)V � 4bL

p
�(bH ; bL) + 4b

2
L=V . Solving for �(bH ; bL) we get

that this is the case if and only if �(bH ; bL) < �c, where

�c � 5bL
V
+ 4(

bL
V
)2 � 2

r
bL
V
� 4(bL

V
)
3
2 + 1: (B.5)

See that �(bH ; bL) � �b implies �(bH ; bL) � �d. To see this, de�ne f1(bL=V ) = 2
p
bL=V �

(�4bL=V �2
p
�4bL=V + 1+2) and see that this is the case whenever f1(bL=V ) � 0. See �rst that

f1(bL=V ) = 0 only at bL=V = 0 and bL=V = 1=4 in the interval bL=V 2 [0; 1=4]. Evaluate the �rst

derivative of f1(bL=V ) at bL=V = � and bL=V = 1=4��, with �! 0+ to see that @f1(�)=@(bL=V ) > 0

and @f1(1=4 � �)=@(bL=V ) < 0.3 Since f1(bL=V ) is continuous at bL=V 2 [0; 1=4], it follows that

f1(bL=V ) � 0 in bL=V 2 [0; 1=4].

See also that �c � �b. To see this, de�ne f2(bL=V ) = (5bL=V + 4(bL=V )
2 � 2

p
bL=V �

4(bL=V )
3
2 +1)�2

p
bL=V and note that this is the case whenever f2(bL=V ) � 0. See that f2(0) = 1

and f2(bL=V ) = 0 only at bL=V = 1=4 in the interval bL=V 2 [0; 1=4]. Since f2(bL=V ) is continuous

in bL=V 2 [0; 1=4], f2(bL=V ) � 0 for bL=V 2 [0; 1=4].

The analysis for s = (bL; bH) is analogous. Then, for �(bH ; bL) 2 (�b; �c) and �(bL; bL) = 0

both players reporting their true type is the unique Nash equilibrium when s = (bH ; bL). Note that

we do not include �b and �c in the intervals to avoid multiplicity of equilibria.

Lemma B.3 Suppose s = (bL; bL). There exists values �e and �f such that for �(bH ; bL) 2 (�e; �f )

and �(bL; bL) = 0, both players reporting mi = bH is the unique Nash equilibrium

Proof. There exists values �e and �f such that both players reporting mi = bH is a Nash

equilibrium for �(bH ; bL) 2 [�e; �f ]. To see this, note �rst that when both players report mi =

bH , both compete for prize V , � = 1 and both are constrained. Payo¤s of every player are

�i(bL; bL; bH ; bH) = V=2�bL. Without loss of generality, suppose player 1 deviates from both players

reporting mi = bH and reports mi = bL. Then, player 1 competes for prize �(bH ; bL)V , player 2

competes for prize V and � = V=4bL. Payo¤s of player 1 are �1(bL; bL; bL; bH) = �(bH ; bL)V 2=(V +

3Note that f1(bL=V ) is not well-de�ned for bL=V < 0 and bL=V > 1=4.



69

4bL)� bL. Player 1 remains constrained if �(bH ; bL) � �e, where

�e �
(1 + 4 bLV )

2

4
; (B.6)

and player 2 remains constrained if 4 � (1+bL=V )2. This last inequality always holds since bL=V <

1=4. Then, both players reporting mi = bH is an equilibrium if and only if �1(bL; bL; bH ; bH) �

�1(bL; bL; bL; bH) and �2(bL; bL; bH ; bH) � �2(bL; bL; bH ; bL), and both inequalities hold if and only

if V=2� bL � �(bH ; bL)V 2=(V +4bL)� bL. Solving the inequality for � we get that this is the case

if and only if �(bH ; bL) � �f , where

�f �
1 + 4 bLV
2

. (B.7)

It is necessary to show that �e � �f . De�ne f3(bL=V ) � (1+4bL=V )=2� (1+4bL=V )2=4. Note

that �e � �f whenever f3(bL=V ) � 0. See that f3(0) = 0:25 and f3(bL=V ) = 0 only at bL=V = 1=4

in the interval bL=V 2 [0; 1=4]. Since f3(bL=V ) is continuous in bL=V 2 [0; 1=4], f3(bL=V ) � 0 for

bL=V 2 [0; 1=4].

Only one player lying and other reporting her true type cannot be an equilibrium for �(bH ; bL) 2

(�e; �f ). Note that the interval is open to avoid these equilibria.

If both players reportmi = bL they get �i(bL; bL; bL; bL) = 0 because �(bL; bL) = 0. This cannot

be an equilibrium since they get positive payo¤s by an unilateral deviation.

Thus, both players lying, or only one player lying and other reporting her true type, cannot be

an equilibrium for �(bH ; bL) 2 (�e; �f ) and �(bL; bL) = 0. The only Nash equilibrium consists in

both players reporting mi = bH , and aggregate e¤ort is maximized.

Lemma B.4 Condition �(bH ; bL) < �a implies �(bH ; bL) < �c and �(bH ; bL) < �f . Parameter

�a � maxf�b; �eg for bL=V 2 [0; 0:25].

Proof. We show �rst that �(bH ; bL) < �a implies �(bH ; bL) < �c. To see this, de�ne f4(bL=V ) =

5bL=V +4(bL=V )
2�2

p
bL=V �4(bL=V )

3
2 +1� (A(bL=V )+((2=3)bL=V +1=144)=A(bL=V )+1=12).

Note that �(bH ; bL) < �a implies �(bH ; bL) < �c whenever f4(bL=V ) > 0. See that f4(0) = 0:75,

f6(0:25) = 2: 524 4� 10�29 and there does not exist bL=V 2 [0; 1=4] such that f4(bL=V ) = 0. Since

f4(bL=V ) is continuous in bL=V 2 [0; 1=4], f4(bL=V ) > 0 for bL=V 2 [0; 1=4].

We show now that �(bH ; bL) < �a implies �(bH ; bL) < �f . To see this, de�ne f5(bL=V ) =

(4bL=V + 1)=2 � (A(bL=V ) + ((2=3)bL=V + 1=144)=A(bL=V ) + 1=12). Note that �(bH ; bL) < �a

implies �(bH ; bL) < �f whenever f5(bL=V ) > 0. See that f5(0) = 0:25, f5(0:25) = 2: 524 4� 10�29
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and there does not exist bL=V 2 [0; 1=4] such that f5(bL=V ) = 0. Since f5(bL=V ) is continuous in

bL=V 2 [0; 1=4], f5(bL=V ) > 0 for bL=V 2 [0; 1=4].

We show now that �(bH ; bL) > �e implies �(bH ; bL) > �b if and only if bL=V 2 [0; 0:0218445)

while �(bH ; bL) > �b implies �(bH ; bL) > �e if and only if bL=V 2 (0:0218445; 0:25]. To do so, we

need to solve the following inequality, �b > �e, which can be rewritten as 2
p
bL=V > (1+4bL=V )

2=4.

Solving, we �nd that this is the case whenever bL=V 2 (0:0218445; 0:25]. Otherwise, �e > �b.

Finally, we need to show that �a � maxf�e; �bg for bL=V 2 [0; 0:25]. To do so, de�ne �rst

f6(bL=V ) = (A(bL=V )+((2=3)bL=V +1=144)=A(bL=V )+1=12)�(1+4bL=V )2=4. Note that �a � �e

whenever f6(bL=V ) � 0. See �rst that f6(bL=V ) = 0 in bL=V 2 [0; 0:0218445] only for bL=V = 0.

See also that f6(0:0218445) = 8: 308 4�10�2. Since f6(bL=V ) is continuous in bL=V 2 [0; 0:0218445],

it follows that f6(bL=V ) � 0 in this interval.

De�ne now f7(bL=V ) = (A(bL=V )+((2=3)bL=V +1=144)=A(bL=V )+1=12)�2
p
bL=V . Note that

�a � �b whenever f7(bL=V ) � 0. See �rst that f7(0:0218445) = 8: 308 4 � 10�2 and f7(bL=V ) =

0 in bL=V 2 (0:0218445; 0:25] only for bL=V = 1=4. Since f7(bL=V ) is continuous in bL=V 2

(0:0218445; 0:25], it follows that f7(bL=V ) � 0 in this interval.

With the previous Lemmas, we have already set a family of mechanisms that implement the

optimal e¤ort.

Proof of Proposition 2.2. By Lemmas B.1, B.2, B.3 and B.4, the organizer implements the

optimal e¤ort by setting �(bH ; bL) 2 (maxf�b; �eg; �a) and �(bL; bL) = 0. When s = (bH ; bH) or

s = (bH ; bL), players report their true type. When s = (bL; bL), players report m = (bH ; bH).

We choose value ��(bL; bL) = 0 for simplicity and to avoid a tedious analysis. However, we can

extend the analysis to the case in which ��(bL; bL) > 0. Indeed, when s = (bL; bL), the number of

equilibria depend on the chosen value of ��(bL; bL). In particular, if ��(bL; bL) is su¢ ciently large,

there are two Nash equilibria, m = (bH ; bH) and m = (bL; bL). If ��(bL; bL) is su¢ ciently small,

the only Nash equilibrium is m = (bH ; bH). The complete analysis is provided by the author under

request.

Proof of Proposition 2.3

Throughout Lemmas B.2 to B.4 we set a family of mechanisms that implements the optimal

e¤ort. We restrict to a simpler mechanism to prove Proposition 2.3. We �rst extend Lemma B.4,

again for the two type case, to show that the lowerbound �e is not strictly necessary to implement

the optimal e¤ort. We set threshold �e in Lemma B.4 to keep players constrained in equilibrium
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when s = (bL; bL) in case they report di¤erent types not to confuse the reader; i.e. both players are

constrained when they have low budgets. We show in the following Lemma that this threshold is

not necessary to implement the optimal e¤ort when s = (bL; bL) for an speci�c value of �(bH ; bL)

and �(bL; bL).

Lemma B.5 Suppose s = (bL; bL) and let �(bH ; bL) = �b + 0+ and �(bL; bL) = 0. Both players

reporting mi = bH is the only Nash equilibrium. Also, the mechanism described in Proposition 2.2

works for these values.

Proof. We prove �rst that when s = (bL; bL), both players reporting mi = bH is the only Nash

equilibrium for �(bH ; bL) = �b + 0+ and �(bL; bL) = 0.

Recall from Lemma B.4 that �b > �e for bL=V 2 (0:0218445; 0:25]. For this interval, from

Lemma B.3 and Lemma B.4, the only Nash equilibrium is that both of them report mi = bH .

Suppose now bL=V 2 [0; 0:0218445] so that �e > �b. Since �(bL; bL) = 0, both players reporting

mi = bL is never an equilibrium. We show that the only equilibrium is both players reporting

mi = bH . Recall from Lemma B.3 that when both players report mi = bH they get payo¤s

�i(bL; bL; bH ; bH) = V=2 � bL for i = 1; 2. Without loss of generality, suppose player 1 reports

mi = bL and player 2 reports mi = bH . Then, player 1 competes for �(bH ; bL)V , player 2 competes

for V and � = V=4bL. It is su¢ cient to show that �1(bL; bL; bH ; bH) is strictly larger than �(bH ; bL)V

for bL=V 2 [0; 0:0218445]. Obviously, the payo¤s of player 1 are strictly smaller than �(bH ; bL)V ,

since she does not win the prize with probability 1 in equilibrium and she exerts a positive amount

of e¤ort in equilibrium. Note payo¤s of player 2 are strictly positive. Note that �1(bL; bL; bH ; bH) �

�(bH ; bL)V if f8(bL=V ) = 1=2� bL=V � 2
p
bL=V is positive for this interval. To see that this is the

case, note that f8(0) = 0:25, f8(0:0218445) = 0:18256 and @f8(bL=V )=@(bL=V ) = �1 � 1=
p
bL=V

is decreasing. Thus, no player has incentives to deviate from both reporting mi = bH .

The second part of the proof follows from Lemmas B.1, B.2, B.3 and B.4.

Proof of Proposition 2.3. Let �(b1; b2) = �b + ", with "! 0+ when b1 > �b and b2 < �b.

Suppose s = (b1; b2) such that bi > �b for i = 1; 2. By Lemmas B.1 and B.4, in stage two, the

only equilibrium consists of both players reporting messages f(m1;m2) : mi = b̂i > �b for i = 1; 2g.

Thus, the optimal e¤ort is implemented in this case.

Suppose s = (b1; b2) such that b1 > �b and b2 < �b. By Lemma B.2, both players reporting

mi = bi < �b cannot be an equilibrium since they get zero payo¤s. Also, by Lemma B.2, both players

reporting mi = bi > �b, or player 1 reporting m1 = b1 < �b and player 2 reporting m2 = b2 > �b
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cannot be an equilibrium. We de�ne and show now the set of possible equilibria, which consists of

f(m1;m2) : m1 = b̂1 > �b and m2 2 (0;�b)g. By Lemmas B.2 and B.4, player 1 in stage two reports

m1 = b̂1 > �b and does not have incentives to deviate and report a lower budget. By Lemmas B.2

and B.4, player 2 does not report m2 = b̂2 > �b. Suppose player 2 reports any m2 = b̂2 < �b, then

she gets payo¤s �2(b1; b2; b1; b̂2) = 2
p
b2=V � b2 for all b̂2 2 (0;�b). There is only one equilibrium

that maximizes e¤ort. Since we focus on truthtelling equilibria, e¤ort is maximized.

Suppose s = (b1; b2) such that bi < �b for i = 1; 2. By Lemma B.3, B.4 and B.5, the only set of

Nash equilibria in stage two is f(m1;m2) : mi = b̂i > �b for i = 1; 2g. Thus, the optimal e¤ort is

implemented in this case.

Proof of Corollary 2.2. Let ��(bH ; bL) = 2
p
bL=V + 0

+ and ��(bL; bL) = 0. These values

implement the optimal e¤ort and minimizes costs.

It follows from Proposition 2.2 and consists in choosing the minimum value of � that implements

the optimal e¤ort. The expected e¤ort coincides with the complete information case since the

optimal e¤ort is implemented. The expected costs are E(V +�V ) = qHHV +qHLV (1+2
p
bL=V )=2+

qLHV (1+2
p
bL=V )=2+qLLV . From Lemmas B.2 and B.3, it is straightforward to see that expected

costs are larger than in the complete information case.

Microfoundations of the Tullock CSF

In this appendix we give two microfoundations to the biased Tullock CSF we use throughout

the paper. There is some critiscism towards the literature of the optimal design of the CSF arguing

that it cannot be designed. In what follows, we describe two procedures that explain that giving

advantage to a player with respect to another one is equivalent to design the value of � of the

Tullock CSF. We take the �rst microfoundation from Hillman and Riley (1987) and the second

from Dahm and Porteiro (2005) and Corchón and Dahm (2010). The main di¤erence between these

microfoundations is that while in the former the organizer does not observe e¤ort, in the latter

she does. Each microfoundation consists of an additional stage (stage four) in the game described

in Section 2.2 to motivate the use of our biased Tullock CSF. This additional stage consists of

describing the procedure the organizer uses to allocate the prize.

Noise in the performance

We follow closely the microfoundation of Hillman and Riley (1987). Consider the model de-

scribed in Section 2.2, with the additional assumption that there is an stage four in which the

organizer awards the prize to the player whose performance is better. We assume that the orga-
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nizer does not observe e¤ort ei but outcome zi of each player. We assume that:

zi = ei"i. (B.8)

That is, we assume that the outcome of each player depends on e¤ort and a noise "i, with cumulative

distribution function H("i) and density h("i). Funcion H("i) is strictly increasing and di¤erentiable

if and only if "i 2 (0; a). The noise has a lower support of 0 since only positive impact can produce

a victory. The structure of the outcome is the product of e¤ort and noise such that higher e¤ort

involves higher uncertainty.

The organizer can bias the contest giving di¤erent weights to the outcome of players. Let

�i 2 (0;1) and �j 2 (0;1) be the weights the organizer gives to the outcome of player i and j

respectively. Player i wins the contest if zi�i > zj�j . This can be rewritten as:

"j <
�iei
�jej

"i, (B.9)

and the probability that it happens is H(�iei"i=�jej). The probability of winning of player i is:

pi =

Z a

0
H(

�iei
�jej

")h(")d". (B.10)

Suppose h("i) = exp(�"). Then, the previous expression can be rewritten as:

pi =

Z a

0
(1� exp(�" �iei

�jej
) exp(�")d", (B.11)

which can be rewritten as:

pi =
�iei

�1e1 + �2e2
. (B.12)

If �1=�2 = �, we get our formulation. Thus, the organizer biasing the outcome zi of players is

equivalent to the organizer biasing the Tullock CSF.

Noisy organizer

We follow closely the microfoundations of Dahm and Porteiro (2005) and Corchón and Dahm

(2010).

Consider the model described in Section 2.2, with the additional assumption that there is an

stage four in which the organizer decides the winning player. The organizer gets payo¤s U(w = i)

if she awards the prize to player i, where w denotes the winning player. The organizer chooses the

winning player that maximizes her payo¤s.

Each player exerts costly e¤ort ei to in�uence the payo¤s of the organizer, who observes these

e¤orts. The impact of e¤ort of each player is �iei, being �i a parameter that measures how the
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organizer values e¤ort of each player. The organizer has preferences over players but players ignore

them. We assume there is a parameter ki 2 [0; 1] that determines the preferences of the organizer

for each player i = 1; 2 from the point of view of contestants, and it is distributed according to

some distribution function F . De�ne k1 = k and k2 = (1� k). The payo¤s of the organizer if she

awards the prize to player i are U(w = i) = ki�iei. Player 1 wins the contest if:

U(w = 1) = k�1e1 � (1� k)�2e2 = U(w = 2) (B.13)

, k � �2e2
�1e1 + �2e2

= �k: (B.14)

Then, the winning probability of player 1 is

p1(e1; e2) = 1� F (�k): (B.15)

Assuming dF (�k) is symmetric, we have that 1� F (�k) = F (1� �k). This implies:

pi(e1; e2) = F (
�iei

�1e1 + �2e2
). (B.16)

If F is linear and �1=�2 = �, we get (2.1).
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Appendix of Chapter 3

We show now the conditions for function (3.5) to have a maximum. We follow a similar analysis

used in Clark and Riis (1998) and Fu et al. (2014). De�ne � = e�1i =e
�1. Then, equation (3.5) can

be rewritten as:

�i = � �

�+ (n� 1)b�
(n� 1)

�+ (n� 1)
�

�+ (n� 2)b (C.1)

� (n� 1)
�+ (n� 1)

(n� 2)
�+ (n� 2)

�

�+ (n� 3)b� ::: (C.2)

� (n� 1)(n� 2):::(n� (k � 1))�
(�+ (n� 1))(�+ (n� 2)):::(�+ (n� k))b (C.3)

� e
�
. (C.4)

Introducing e = E=n, where E is given in equation (3.6), the previous function can be rewritten

as:

�i =
�b
n

kX
s=1

[�

s�1Y
t=0

n� t
n� t+ �� 1 + (1�

s�1X
t=0

1

n� t)�
�1] (C.5)

The �rst and second order condition for a local maximum are:

@�i
@�

=
�b
n

kX
s=1

f
s�1Y
t=0

n� t
n� t+ �� 1(1�

s�1X
t=0

�

n� t+ �� 1)� (1�
s�1X
t=0

1

n� t)�
�2] (C.6)

@2�i

@�2
=

�b
n

kX
s=1

f(
s�1Y
t=0

n� t
n� t+ �� 1)(

s�1X
t=0

1

n� t+ �� 1)(�1 +
s�1X
t=0

�

n� t+ �� 1) (C.7)

+(

s�1Y
t=0

n� t
n� t+ �� 1)[�(

s�1X
t=0

1

n� t+ �� 1) + �
s�1X
t=0

1

(n� t+ �� 1)2 ] (C.8)

+2(1�
s�1X
t=0

1

n� t)�
�3)g: (C.9)
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Note that � = 1 satis�es the �rst order condition. Evaluate the second order condition at � = 1

and see that there is a locat maximum whenever:

�b
n

kX
s=1

f(
s�1X
t=0

1

n� t)(�1 +
s�1X
t=0

1

n� t)� (
s�1X
t=0

1

n� t) +
s�1X
t=0

1

(n� t)2 + 2(1�
s�1X
t=0

1

n� t)g < 0: (C.10)

The participation constraint requires that:

�b
n

kX
s=1

(1 + (1�
s�1X
t=0

1

n� t)) > �b, (C.11)

where the left hand side of the inequality are individual payo¤s in the symmetric equilibrium when

participating in the contest and the right hand side are the individual payo¤s in case of making 0

e¤ort. This expression can be rewritten as:

n >
kX
s=1

(1 + (1�
s�1X
t=0

1

n� t)). (C.12)

Now, we show an example that satis�es these conditions.

Example C.1 Let n = 3, k = 2 and b = 1. Then, individual symmetric e¤ort is e = 5=18

and aggregate e¤ort E = 15=18. The value of the second derivative evaluated at the symmetric

equilibrium is: �2: 64 < 0. Individual payo¤s are �i = �17=18, while in case they do not participate,

individual payo¤s are �i = �1.
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