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Abstract
This thesis addresses several shortcomings on the current state of the
art methodologies in music information retrieval (MIR). In particular, it
proposes several computational approaches to automatically analyze and
describe music scores and audio recordings of Ottoman-Turkish makam
music (OTMM). The main contributions of the thesis are the music cor-
pus that has been created to carry out the research and the audio-score
alignment methodology developed for the analysis of the corpus. In addi-
tion, several novel computational analysis methodologies are presented in
the context of common MIR tasks of relevance for OTMM. Some exam-
ple tasks are predominant melody extraction, tonic identification, tempo
estimation, makam recognition, tuning analysis, structural analysis and
melodic progression analysis. These methodologies become a part of a
complete system called Dunya-makam for the exploration of large cor-
pora of OTMM.

The thesis starts by presenting the created CompMusic Ottoman-
Turkish makam music corpus. The corpus includes 2200 music scores,
more than 6500 audio recordings, and accompanying metadata. The data
has been collected, annotated and curated with the help of music experts.
Using criteria such as completeness, coverage and quality, we validate the
corpus and show its research potential. In fact, our corpus is the largest
and most representative resource of OTMM that can be used for compu-
tational research. Several test datasets have also been created from the
corpus to develop and evaluate the specific methodologies proposed for
different computational tasks addressed in the thesis.

The part focusing on the analysis ofmusic scores is centered on phrase
and section level structural analysis. Phrase boundaries are automatically
identified using an existing state-of-the-art segmentation methodology.
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Section boundaries are extracted using heuristics specific to the format-
ting of the music scores. Subsequently, a novel method based on graph
analysis is used to establish similarities across these structural elements
in terms of melody and lyrics, and to label the relations semiotically.

The audio analysis section of the thesis reviews the state-of-the-art
for analysing the melodic aspects of performances of OTMM. It proposes
adaptations of existing predominant melody extraction methods tailored
to OTMM. It also presents improvements over pitch-distribution-based
tonic identification and makam recognition methodologies.

The audio-score alignment methodology is the core of the thesis. It
addresses the culture-specific challenges posed by the musical charac-
teristics, music theory related representations and oral praxis of OTMM.
Based on several techniques such as subsequence dynamic time warping,
Hough transform and variable-length Markov models, the audio-score
alignment methodology is designed to handle the structural differences
between music scores and audio recordings. The method is robust to the
presence of non-notatedmelodic expressions, tempo deviations within the
music performances, and differences in tonic and tuning. The method-
ology utilizes the outputs of the score and audio analysis, and links the
audio and the symbolic data. In addition, the alignment methodology is
used to obtain score-informed description of audio recordings. The score-
informed audio analysis not only simplifies the audio feature extraction
steps that would require sophisticated audio processing approaches, but
also substantially improves the performance compared with results ob-
tained from the state-of-the-art methods solely relying on audio data.

The analysis methodologies presented in the thesis are applied to the
CompMusic Ottoman-Turkish makam music corpus and integrated into
a web application aimed at culture-aware music discovery. Some of
the methodologies have already been applied to other music traditions
such as Hindustani, Carnatic and Greek music. Following open research
best practices, all the created data, software tools and analysis results are
openly available. The methodologies, the tools and the corpus itself pro-
vide vast opportunities for future research in many fields such as music
information retrieval, computational musicology and music education.



Özet
Osmanlı-Türk Musikisinin Betimlenmesi
ve Keşfi için Ses Kayıtlarının ve Basılı
Notaların Hesaplamalı Analizi
Bu tez, müzik bilgi erişim alanının günümüzdeki en gelişkin yöntem-
lerinin çeşitli eksikliklerine odaklanmaktadır. Tez kapsamında özellikle
Osmanlı-Türk makam musikisi (OTMM) notalarının ve ses kayıtlarının
otomatik analiz edilebilmesi ve betimlenebilmesi için çeşitli hesaplamalı
yaklaşımlar önerilmiştir. Tezin başlıca katkıları arasında araştırmaların
yapılabilmesi için oluşturulan derlem ve derlemin analiz edilebilmesi için
geliştirilen icra-nota eşleme yöntemi yer almaktadır. Bunlara ek olarak,
OTMM ile ilişkili müzik bilgi erişim konuları için yeni hesaplamalı yön-
temler de önerilmiştir. Baskın ezgi analizi, karar perdesi tespiti, tempo
kestirimi, makam tanıma, perde analizi, yapısal analiz ve seyir analizi bu
konulara örnekler olarak verilebilir. Bu yöntemler, OTMM için hazır-
lanan derlemleri incelemek üzere geliştirilenDunya-makam adındaki sis-
temin bir parçası olmuştur.

Tez, oluşturulan OTMM derlemini tanıtarak başlamaktadır. Derlem,
bünyesinde 2200 basılı nota, 6500’den fazla ses kaydı ve bunlarla ilgili
meta-verileri barındırmaktadır. Tüm veriler sözü geçen müziğin uzman-
larının yardımlarıyla toparlanmış, işaretlenmiş ve düzenlenmiştir. Oluş-
turulan derlemin olası araştırmalar için uygunluğu bütünlük, kapsam ve
kalite gibi ölçütler göz önünde bulundurularak doğrulanmıştır. Esasında
OTMM derlemi hesaplamalı araştırmalar için hazırlanmış halihazırdaki
en kapsamlı ve kültürü en iyi biçimde yansıtan derlemdir. Ayrıca tez
kapsamında belirtilen hesaplamalı araştırma konuları için hazırlanan der-
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lemden yararlanarak birçok farklı deney veri kümesi oluşturulmuştur.

Basılı notalarının analizi ile ilgili kısım, cümle ve bölüm düzeyinde
yapısal analiz üzerinde yoğunlaşmıştır. Daha önce geliştirilmiş olan bir
bölütleme yöntemi ile cümlelerin sınırları otomatik olarak tespit edilmek-
tedir. Bölüm sınırları, basılı notalardaki kısmi işaretlemelerden otomatik
olarak çıkarılmaktadır. Ardından, grafiksel analize dayalı özgün bir yön-
tem, bu yapıların ezgisel ve güftesel benzerliklerini kurmak ve bu ilişkileri
göstergesel olarak etiketlemek için kullanılmaktadır.

Tezin ses kaydı analizi kısmı OTMM icralarının ezgisel yapılarına
yönelik var olan güncel yöntemlerin değerlendirilmesini içermektedir
ve mevcut baskın ezgi analizi yöntemlerinin OTMM için nasıl uygun
hale getirildiğini anlatmaktadır. Ayrıca bu bölümde, perde dağılımına
dayalı otomatik karar perdesi tespiti ve makam tanıma yöntemlerindeki
gelişmeler de açıklanmaktadır.

Nota-icra eşleştirme yöntemi tezin temelini oluşturmaktadır. Bu yön-
tem, OTMM’nin kültüre özgü olan müzikal karakteristiğine, müzik ku-
ramıyla ilişkili gösterimlerine ve sözel alışkanlıklarına dayalı zorluklara
uygun tasarlanmıştır. Dinamik zaman yamultması, Hough dönüşümü ve
değişken-uzunluklu Markov modelleri gibi birçok tekniğe dayandırılarak
geliştirilen yeni yöntem, farklı yapısal özelliklerde bulunan icralarla no-
taları eşleştirebilmektedir. Yöntem, basılı notalarda belirtilmeyen ezgisel
anlatımlardan, icra içerisindeki tempo değişimlerinden ve farklı ahenkler-
den etkilenmemektedir. Ayrıca, bu yöntem ses kaydı analiz sonuçların-
dan ve notalardan faydalanarak sembolik veriler ile ses kaydı arasın-
daki bağlantıları kurmaktadır. Bunlara ek olarak, eşleştirme yöntemi,
ses kayıtlarının notadan yararlanarak açıklanmasında da kullanılmaktadır.
Notadan yararlanarak elde edilen ses kaydı özellikleri, özelliklerin çıkarıl-
ması aşamasında karmaşık ses işleme yaklaşımlarına ihtiyaç duyabile-
cek adımları daha kolay hale getirmektedir. Aynı zamanda yürürlükteki
yalnızca ses verisine dayanan yöntemlerin verimini de gözle görülür bir
biçimde artırmıştır.

Bu tezde sunulan yöntemlerin tümü,CompMusic—OTMMderlemine
uygulanmış ve web tabanlı kültürel farkındalığı olan (culture-aware) bir
müzik keşif uygulamasıyla entegre edimiştir. Tez kapsamında sunulan
bazı yöntemler, Hindustani, Karnatik ve Yunan müziklerine de uygulan-
mıştır. Açık-araştırma kavramının en iyi uygulamalarını izleyerek tez
kapsamında derlenen tüm veriler, yazılım araçları ve analiz sonuçları pay-
laşıma açılmıştır. Sunulan yöntemler, araçlar ve derlem, müzik bilgi er-
işim, hesaplamalı müzikoloji ve müzik eğitimi gibi alanlarda yapılacak
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araştırmalara yararlı olabilecektir.

İngilizce’den Türkçe’ye Hasan Sercan Atlı tarafından çevrilmiştir.





Resum
Anàlisis Computacional
d’Enregistraments d’Àudio i Partitures
Musicals per a la Descripció i Exploració
de Música Makam Turca Otomana
Aquesta tesi adreça diverses deficiències en l’estat actual de les metodolo-
gies d’extracció d’informació de música (Music Information Retrieval o
MIR). En particular, la tesi proposa diverses estratègies per analitzar i des-
criure automàticament partitures musicals i enregistraments d’actuacions
musicals de música Makam Turca Otomana (OTMM en les seves sigles
en anglès). Les contribucions principals de la tesi són els corpus musicals
que s’han creat en el context de la tesi per tal de dur a terme la recerca i
la metodologia de alineament d’àudio amb la partitura que s’ha desenvo-
lupat per tal d’analitzar els corpus. A més la tesi presenta diverses noves
metodologies d’anàlisi computacional d’OTMMper a les tasques més ha-
bituals en MIR. Alguns exemples d’aquestes tasques són la extracció de
la melodia principal, la identificació del to musical, l’estimació de tem-
po, el reconeixement de Makam, l’anàlisi de la afinació, l’anàlisi de la
estructura musical i l’anàlisi de la progressió melòdica. Aquest seguit de
metodologies formen part del sistema Dunya-makam per a la exploració
de grans corpus musicals d’OTMM.

En primer lloc, la tesi presenta el corpus CompMusic Ottoman-
Turkish makam music. Aquest inclou 2200 partitures musicals, més de
6500 enregistraments d’àudio i metadata complementària. Les dades han
sigut recopilades i anotades amb ajuda d’experts en aquest repertori mu-
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sical. El corpus ha estat validat en termes de d’exhaustivitat, cobertura i
qualitat i mostrem aquí el seu potencial per a la recerca. De fet, aquest
corpus és el la font més gran i representativa de OTMM que pot ser uti-
litzada per recerca computacional. També s’han desenvolupat diversos
subconjunts de dades per al desenvolupament i evaluació de les metodo-
logies específiques proposades per a les diverses tasques computacionals
que es presenten en aquest tesi.

La secció de la tesi que tracta de l’anàlisi de partituresmusicals se cen-
tra en l’anàlisi estructural a nivell de secció i de frase musical. Els límits
temporals de les frases musicals s’identifiquen automàticament gràcies a
un metodologia de segmentació d’última generació. Els límits de les sec-
cions s’extreuen utilitzant un seguit de regles heurístiques determinades
pel format de les partitures musicals. Posteriorment s’utilitza un nou mè-
tode basat en anàlisi gràfic per establir semblances entre aquest elements
estructurals en termes de melodia i text. També s’utilitza aquest mètode
per etiquetar les relacions semiòtiques existents.

La següent secció de la tesi tracta sobre anàlisi d’àudio i en particular
revisa les tecnologies d’avantguardia d’anàlisi dels aspectes melòdics en
OTMM. S’hi proposen adaptacions dels mètodes d’extracció de melodia
existents que s’ajusten a OTMM. També s’hi presenten millores en me-
todologies de reconeixement de makam i en identificació de tònica basats
en distribució de to.

La metodologia d’alineament d’àudio amb partitura és el nucli de
la tesi. Aquesta aborda els reptes culturalment específics imposats per
les característiques musicals, les representacions de la teoria musical i
la pràctica oral particulars de l’OTMM. Utilitzant diverses tècniques tal
i com Dynamic Time Warping, Hough Transform o models de Markov
de durada variable, la metodologia d’alineament esta dissenyada per en-
frontar les diferències estructurals entre partitures musicals i enregistra-
ments d’àudio. El mètode és robust inclús en presència d’expressions
musicals no anotades en la partitura, desviacions de tempo ocorregudes
en les actuacions musicals i diferències de tònica i afinació. La metodo-
logia aprofita els resultats de l’anàlisi de la partitura i l’àudio per enlla-
çar la informació simbòlica amb l’àudio. A més, la tècnica d’alineament
s’utilitza per obtenir descripcions de l’àudio fonamentades en la partitura.
L’anàlisi de l’àudio fonamentat en la partitura no només simplifica les fa-
ses d’extracció de característiques d’àudio que requeririen de mètodes de
processament d’àudio sofisticats, sinó que a més millora substancialment
els resultats comparat amb altres mètodes d´ultima generació que només
depenen de contingut d’àudio.



xvii

Les metodologies d’anàlisi presentades s’han utilitzat per analitzar
el corpus CompMusic Ottoman-Turkish makam music i s’han integrat en
una aplicació web destinada al descobriment musical de tradicions cultu-
rals específiques. Algunes de les metodologies ja han sigut també aplica-
des a altres tradicions musicals com la Hindustani, la Carnàtica i la Grega.
Seguint els preceptes de la investigació oberta totes les dades creades, ei-
nes computacionals i resultats dels anàlisis estan disponibles obertament.
Tant les metodologies, les eines i el corpus en si mateix proporcionen àm-
plies oportunitats per recerques futures en diversos camps de recerca tal
i com la musicologia computacional, la extracció d’informació musical i
la educació musical.

Traducció d’anglès a català per Oriol Romaní Picas.





Resumen
Análisis Computacional de Grabaciones
de Audio y Partituras para la Descripción
y Descubrimiento de Música de Makam
Turco-Otomana
Esta tesis aborda varias limitaciones de las metodologías más avanzadas
en el campo de recuperación de información musical (MIR por sus si-
glas en inglés). En particular, propone varios métodos computacionales
para el análisis y la descripción automáticas de partituras y grabaciones
de audio de música de makam turco-otomana (MMTO). Las principales
contribuciones de la tesis son el corpus de música que ha sido creado
para el desarrollo de la investigación y la metodología para alineamien-
to de audio y partitura desarrollada para el análisis del corpus. Además,
se presentan varias metodologías nuevas para análisis computacional en
el contexto de las tareas comunes de MIR que son relevantes para MM-
TO. Algunas de estas tareas son, por ejemplo, extracción de la melodía
predominante, identificación de la tónica, estimación de tempo, reconoci-
miento de makam, análisis de afinación, análisis estructural y análisis de
progresión melódica. Estas metodologías constituyen las partes de un sis-
tema completo para la exploración de grandes corpus de MMTO llamado
Dunya-makam.

La tesis comienza presentando el corpus de música de makam turco-
otomana de CompMusic. El corpus incluye 2200 partituras, más de 6500
grabaciones de audio, y los metadatos correspondientes. Los datos han
sido recopilados, anotados y revisados con la ayuda de expertos. Utilizan-
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do criterios como compleción, cobertura y calidad, validamos el corpus
y mostramos su potencial para investigación. De hecho, nuestro corpus
constituye el recurso demayor tamaño y representatividad disponible para
la investigación computacional de MMTO. Varios conjuntos de datos pa-
ra experimentación han sido igualmente creados a partir del corpus, con el
fin de desarrollar y evaluar las metodologías específicas propuestas para
las diferentes tareas computacionales abordadas en la tesis.

La parte dedicada al análisis de las partituras se centra en el análisis
estructural a nivel de sección y de frase. Los márgenes de frase son iden-
tificados automáticamente usando uno de los métodos de segmentación
existentes más avanzados. Los márgenes de sección son extraídos usan-
do una heurística específica al formato de las partituras. A continuación,
se emplea un método de nueva creación basado en análisis gráfico para
establecer similitudes a través de estos elementos estructurales en cuanto
a melodía y letra, así como para etiquetar relaciones semióticamente.

La sección de análisis de audio de la tesis repasa el estado de la cuesti-
ón en cuanto a análisis de los aspectos melódicos en grabaciones de MM-
TO. Se proponen modificaciones de métodos existentes para extracción
de melodía predominante para ajustarlas a MMTO. También se presen-
tan mejoras de metodologías tanto para identificación de tónica basadas
en distribución de alturas, como para reconocimiento de makam.

La metodología para alineación de audio y partitura constituye el gru-
eso de la tesis. Aborda los retos específicos de esta cultura según vienen
determinados por las características musicales, las representaciones re-
lacionadas con la teoría musical y la praxis oral de MMTO. Basada en
varias técnicas tales como deformaciones dinámicas de tiempo subsecu-
entes, transformada de Hough y modelos de Markov de longitud variable,
la metodología de alineamiento de audio y partitura está diseñada para tra-
tar las diferencias estructurales entre partituras y grabaciones de audio. El
método es robusto a la presencia de expresiones melódicas no anotadas,
desviaciones de tiempo en las grabaciones, y diferencias de tónica y afi-
nación. La metodología utiliza los resultados del análisis de partitura y
audio para enlazar el audio y los datos simbólicos. Además, la meto-
dología de alineación se usa para obtener una descripción informada por
partitura de las grabaciones de audio. El análisis de audio informado por
partitura no sólo simplifica los pasos para la extracción de características
de audio que de otro modo requerirían sofisticados métodos de procesa-
do de audio, sino que también mejora sustancialmente su rendimiento en
comparación con los resultados obtenidos por los métodos más avanzados
basados únicamente en datos de audio.
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Las metodologías analíticas presentadas en la tesis son aplicadas al
corpus de música de makam turco-otomana de CompMusic e integradas
en una aplicación web dedicada al descubrimiento culturalmente espe-
cífico de música. Algunas de las metodologías ya han sido aplicadas a
otras tradiciones musicales, como música indostaní, carnática y griega.
Siguiendo las mejores prácticas de investigación en abierto, todos los da-
tos creados, las herramientas de software y los resultados de análisis está
disponibles públicamente. Las metodologías, las herramientas y el corpus
en sí mismo ofrecen grandes oportunidades para investigaciones futuras
en muchos campos tales como recuperación de información musical, mu-
sicología computacional y educación musical.

Traducción de inglés a español por Rafael Caro Repetto.
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music score or an audio recording); an element
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events) of the object (x).

tini(x) Initial timestamp of the object (x).
tfin(x) Final timestamp of the object (x).
d(x) Duration of the object (x).
f̄ (x) An arbitrary fragment selected from an object,
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seconds of an audio recording.
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Symbol Description

f (x) The label of an arbitrary fragment selected from
an object, e.g. interval between the 50th and 70th
seconds of an audio recording.

F̄
(x) The set of fragments in an object (x).

N(x) Note symbol sequence in the object (x).
S(x) Section symbol sequence in the object (x).

n
(x)
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ith note symbol in the note symbol sequence
N(x).

s
(x)
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ith section symbol in the note symbol sequence
S(x).

N̄(x) Note sequence in the object (x).
M̄(x) Measure sequence in the object (x).
S̄(x) Section sequence in the object (x).
P̄(x) Phrase sequence in the object (x).
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(x)
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ith note in the object (x).

m̄
(x)
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ith measure in the object (x).
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(x)
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ith section in the object (x).

p̄
(x)
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ith phrase in the object (x).
Ss(x) Set of section symbols in the object (x). Equals
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{
S(x)

}
.

S(x) Set of section symbols in the object (x) plus an
unrelated element.

λ(x) The lyrics (sequence) associated with the object
(x).

G A graph.
N (G) Nodes of a graph G.
E(G) Edges of a graph G.
ei→j An edge from the ith to the jth node.
P(G) Set of paths extracted from the graph G.
p A path formed by a sequence of nodes and

connecting edges.
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Research Corpus

AAA (R) The subjected attribute set (makams, forms
or usuls) of the collectionR.

α
(R)
k

An attribute (makam, form or usul) in the
collectionR.

O
(
AAA (R)

)
The overlap of the set of the subjected attribute
setAAA (SymbTr) of the SymbTr collection with
respect to the set of the subjected attribute
setAAA (R) of the reference collectionR.

o
(
α
(R)
k

)
The occurence count of the attribute
α
(R)
k ∈AAA (R).

ô
(
α
(R)
k

)
The occurence count ratio of the attribute
α
(R)
k ∈AAA (R).

Ô
(
α
(R)
k

)
The cumulative occurrence ratio of the attribute
α
(R)
k ∈AAA (R).

Ok

(
AAA (R)

)
The overlap of the SymbTr collection against
the cumulative occurrence ratio Ô

(
α
(R)
k

)
of

the attribute α(R)
k ∈AAA (R) of the reference

collectionR.
C (AAA (R)) Attribute coverage of the collectionR

by SymbTr collection.

Score Analysis

Ψ̂
(b) Synthetic melody computed from a music score

fragment (b).
ψ̂
(b)
i

ith pitch sample in the synthetic melody
Ψ̂

(b)computed from the score fragment (b).

Ω̂
(x) Synthetic harmonic pitch class profiles (HPCPs)

(Gómez, 2006) computed from the score
fragment (x) in MIDI format.

ω̂
(x)
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ith bin of the synthetic HPCPs computed from
the score fragment (x) in MIDI format.

U The set of unique cliques.
V The set of similar cliques.
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Symbol Description

W The set of all intersections between
different similar cliques.

u A unique clique.
v A similar clique.
w An intersection between different similar

cliques.
L (x, y) Levenshtein distance between two strings x and

y.
L̂ (x, y) Normalized Levenshtein distance between two

strings x and y.
l Similarity threshold used in score structural

analysis.
Λ
(x)
mel

Semiotic melody label of an arbitrary clique or
structural element (x) in a music score.

Λ
(x)
lyr

Semiotic lyrics label of an arbitrary clique or
structural element (x) in a music score.

Audio Analysis

ϱ(a) Predominant melody extracted from an audio
fragment (a).

ρ
(a)
i

ith pitch sample of the predominant melody
ϱ(a)extracted from the audio fragment (a).

ϱ̂x,(a) Predominant melody extracted from an audio
fragment (a) and normalized with respect to the
reference frequency x.
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x,(a)
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ith pitch sample of the predominant melody
ϱ̂x,(a), extracted from the audio fragment (a)
and normalized with respect to the reference
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x,(a) Harmonic pitch class profile (Gómez, 2006)

(HPCP) extracted from an audio fragment (a).
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γ̂
x,(a)
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ith bin of the HPCPs extracted from an audio
fragment (a). The first bin is centered around
the pitch-class of x.
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Symbol Description

△(x, y) “Octave-wrapped” cent distance from the
frequency x to y.

▲(x, y) Shortest “octave-wrapped” cent distance
between the frequencies x to y.

H(a) Pitch distribution (PD) or pitch-class distribution
(PCD), extracted from the audio fragment (a).
The bins of the distribution are in Hertz.

H
(a)
P Pitch distribution (PD) extracted from the audio

fragment (a). The bins of the distribution are in
Hertz.

H
(a)
PC Pitch-class distribution (PCD) extracted from

the audio fragment (a). The bins of the
distribution are in Hertz.

h
(a)
n The value to the nth bin of the pitch distribution

(PD) or pitch-class distribution (PCD)H(a),
extracted from the audio fragment (a).

h
(a)
P,n

The value to the nth bin of the pitch distribution
(PD)H(a)

P , extracted from the audio fragment
(a).

h
(a)
PC,n

The value to the nth bin of the pitch-class
distribution (PCD)H(a)

PC , extracted from the
audio fragment (a).

Ĥ
x,(a) Pitch distribution (PD) or pitch-class

distribution (PCD), extracted from the audio
fragment (a). The bins of the distribution are in
cents with the 0th bin centered around the
reference frequency x.

Ĥ
x,(a)
P Pitch distribution (PD) extracted from the audio

fragment (a). The bins of the distribution are in
cents with the 0th bin centered around the
reference frequency x.

Ĥ
x,(a)
PC Pitch-class distribution (PCD) extracted from

the audio fragment (a). The bins of the
distribution are in cents with the 0th bin centered
around the reference frequency x.
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Symbol Description

ĥ
x,(a)
n The value to the nth bin of the pitch distribution

(PD) or pitch-class distribution (PCD) Ĥx,(a),
extracted from the audio fragment (a) with the
distribution having its 0th bin centered around
the reference frequency x.

ĥ
x,(a)
P,n

The value to the nth bin of the pitch distribution
(PD) Ĥx,(a)

P , extracted from the audio fragment
(a) with the distribution having its 0th bin
centered around the reference frequency x.

ĥ
x,(a)
PC,n

The value to the nth bin of the pitch-class
distribution (PCD) Ĥx,(a)

PC , extracted from the
audio fragment (a) with the distribution having
its 0th bin centered around the reference
frequency x.

ℓn Accumulator function of the nth bin of a pitch
distribution (PD) or pitch-class distribution
(PCD).

ℓP,n Accumulator function of the nth bin of a pitch
distribution (PD).

ℓPC,n Accumulator function of the nth bin of a
pitch-class distribution (PCD).

b
(
Ĥ
)

Bin size of the pitch distribution (PD) or
pitch-class distribution (PCD).

σ
(
Ĥ
)

The width in the standard deviations of the
Gaussian kernel used to “smooth” the pitch
distribution (PD) or pitch-class distribution
(PCD).

µ(a) (Estimated) makam of an audio fragment (a).
m(a) “True” makam of an audio fragment (a).
M The set of all makams.
κ(a) Tonic pitch or pitch-class of an audio fragment

(a).
k(a) “True” tonic pitch or pitch-class of an audio

fragment (a).
Φ(a) Set of stable pitches or pitch classes in an audio

fragment (a).
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Symbol Description

ϕ
(a)
i

A stable pitch or pitch class in an audio
fragment (a).

Φ
(a)
P Set of stable pitches in an audio fragment (a).

ϕ
(a)
P,i A stable pitch in an audio fragment (a).

Φ
(a)
PC Set of stable pitches in an audio fragment (a).

ϕ
(a)
PC,i A stable pitch in an audio fragment (a).
δ(H) Minimum ratio between the value of a peak and

the highest value in a pitch distribution (PD) or
pitch-class distribution (PCD), for the peak to be
selected as a stable pitch or pitch-class.

T The training model obtained for tonic
identification and/or makam recognition using
the either of the training schemes explained
in (Gedik & Bozkurt, 2010) or (Chordia &
Şentürk, 2013).

♢(x,y) Distance or dissimilarity between two pitch
distributions (PDs) or pitch-class distributions
(PCDs) x and y.

Φ̂
κ(a),(a)
P Set of performed scale degrees in an audio

fragment (a).

ϕ̂
κ(a),(a)
P,i A perfomed scale degree in an audio fragment

(a).

Joint Audio and Score Analysis

S̄(a) “True” audio section sequence in an audio
fragment (a).

S(a) “True” audio section symbol sequence in an
audio fragment (a).

s̄
(a)
i

ith “true” section in the s̄(a)i .

s
(a)
i

ith “true” section symbol in the S(a).

N̄

(
s̄
(a)
i

)
“True” audio note sequence in the “true” section
s̄
(a)
i .

n̄

(
s̄
(a)
i

)
k

kth “true” note in the ith “true” section of the
s̄
(a)
i .
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Symbol Description

N

(
s̄
(a)
i

)
“True” audio note symbol sequence in the
“true” section s̄(a)i .

n

(
s̄
(a)
i

)
k

kth “true” note symbol in the ith “true” section of
the s̄(a)i .

τ (x) The tempo of an audio recording or a music
score fragment (x) in beats per minute (bpm).

τ̂ b,(x) The tempo of an audio recording or a music
score fragment (x) in bpm relative to the
nominal tempo indicated in the relevant music
score fragment (b).

Dx,(a,f̄ (b)) Distance matrix between the audio recording (a)
and the score fragment (f̄ (b)). The feature
extracted from (a) (predominant melody
or HPCPs) is normalized with respect to the
reference pitch or pitch class x.

Bx,(a,f̄ (b)) Binary similarity matrix between the audio
recording (a) and the score fragment (f̄ (b)). The
feature extracted from (a) (predominant melody
or HPCPs) is normalized with respect to the
reference pitch or pitch class x.

β(B) Binarization threshold used to convert a distance
matrix to a binary similarity matrix.

Ax,(a,f̄ (b)) Accumulated cost matrix between the audio
recording (a) and the score fragment (f̄ (b)). The
feature extracted from (a) (predominant melody
or HPCPs) is normalized with respect to the
reference pitch or pitch class x.

πx
(
f̄ (a), f̄ (b)

)
A link estimated between the audio fragment
(f̄ (a)) and the score fragment (f̄ (b)). The
feature extracted from (a) (predominant melody
or HPCPs) is normalized with respect to the
reference pitch or pitch class x. Here, the
fragments have the same label, i.e. f (a) = f (b).
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Symbol Description

Πx(a, b, y) The set of links between the fragments in the
audio recording (a) and the music score (b) with
the label y. The feature extracted from (a)
(predominant melody or HPCPs) is normalized
with respect to the reference pitch or pitch class
x.

ϖx
(
f̄ (a), f̄ (b)

)
Path followed by the link, πx

(
f̄ (a), f̄ (b)

)
,

estimated between the audio fragment (f̄ (a))
and the score fragment (f̄ (b)). The feature
extracted from (a) (predominant melody
or HPCPs) is normalized with respect to the
reference pitch or pitch class x.

ϖx
i

(
f̄ (a), f̄ (b)

)
ith point in the path followed by the link,
πx
(
f̄ (a), f̄ (b)

)
, estimated between the audio

fragment (f̄ (a)) and the score fragment (f̄ (b)).
The feature extracted from (a) (predominant
melody or HPCPs) is normalized with respect to
the reference pitch or pitch class x.

νx
(
f̄ (a), f̄ (b)

)
The similarity between the audio fragment
(f̄ (a)) and the score fragment (f̄ (b)). The
feature extracted from (a) (predominant melody
or HPCPs) is normalized with respect to the
reference pitch or pitch class x.

ν
(
ϕ
(a)
PC,i

)
Weight of the ith stable pitch class ϕ(a)PC,i in
score-informed tonic identification applied to
the audio recording (a).

Nmax Maximum order of a variable-length Markov
model (VLMM).

ξi→j Transition probability associated with an edge
ei→j from the ith to the jth node.

ν(p) Total weight of a path p.
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Chapter 1
Introduction

Automatic content analysis and description have been two of the
most instrumental areas of information technology. From spam
filters to automatic face recognition, the applications of these areas
have been showing an incredible progress in the last decade in terms
of performance, usability and accessibility. Recently, analysis of
large-scale data has also opened up new horizons for acquisition
and en masse summarization of relevant content along with rela-
tional discovery of studied corpora in a wide variety of use cases.
These technologies have been a major stimuli on shaping how we
interact, manipulate and exploit information in our daily lives, and
consequently influencing the contemporary human society.

Content analysis methodologies typically employ data-driven
approaches designed with the type of information source, the ad-
dressed task and the content itself in mind. In this regard, music
content analysis presents numerous challenges brought by the prop-
erties (e.g. melody, rhythm and structure) of the studied music cul-
ture in various domains such as audio recordings, music scores and
textual information. Furthermore each music style has its peculiar
musical characteristics, which has the interpretations inclusive to
its own cultural context. Therefore, any technology that attempts
to extract, process, describe and discover the musical content has to
be designed with an awareness on the culture-specific properties of
the studied music tradition in order to obtain a coherent, musically
meaningful and culturally relevant information.

Music is a complex phenomenon and there are many types of

1



2 Introduction

data sources that can be used to study it, such as audio record-
ings, scores, videos, lyrics and social tags. At the same time, for
a given piece there might be many versions for each type of data,
for example we find cover songs, various orchestrations and di-
verse lyrics in multiple languages. Each type of data source offers
different ways to study, experience and appreciate music. If the
different information sources of a given piece are linked with each
other (Thomas, Fremerey, Müller, & Clausen, 2012), we can take
advantage of their complementary aspects to study musical phe-
nomena that might be hard or impossible to investigate if we have
to study the various data sources separately.

The linking of the different information sources can be done at
different time spans, e.g. linking entire documents (Ellis & Poliner,
2007; Martin, Robine, & Hanna, 2009; Serrà, Serra, & Andrze-
jak, 2009), structural elements (Müller & Ewert, 2008), musical
phrases (Wang, 2003; Pikrakis, Theodoridis, & Kamarotos, 2003),
or at note/phoneme level (Niedermayer, 2012; Fujihara & Goto,
2012). Moreover there might be substantial differences between
the information sources (even among the ones of the same type)
such as the format of the data, level of detail and genre/culture-
specific characteristics. Thus, we need content-based (Casey et al.,
2008), application-specific and knowledge-driven methodologies
to obtain meaningful features and relationships between the infor-
mation sources. The current state of the art in music information
research (MIR) is mainly focused on Eurogenetic1 styles of mu-
sic (Tzanetakis, Kapur, Schloss, & Wright, 2007) and we need to
develop methodologies that incorporate culture-related knowledge
to understand and analyze the characteristics of other musical tra-
ditions (Holzapfel, 2010; Şentürk, 2011; Serra, 2011).

The thesis proposes several computational approaches to auto-
matically analyze and describe music scores and audio recordings
of Ottoman-Turkish makam music (OTMM). The main contribu-
tions of the thesis are themusic corpus that has been created to carry
out the research and the audio-score alignment methodology devel-
oped for the analysis of the corpus. In addition, several novel com-
putational analysis methodologies are presented in the context of

1We apply this term because we want to avoid the misleading dichotomy of
Western and non-Western music.
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common MIR tasks of relevance for OTMM. Some example tasks
are predominant melody extraction, tonic identification, tempo es-
timation, makam recognition, tuning analysis, structural analysis
and melodic progression analysis.

The goals of the thesis are:

• Create a research corpus representative of the studied aspects
of OTMM

• Develop novel audio-score alignment based analysismethod-
ologies, which address the culture-specific challenges posed
by the musical characteristics of OTMM

• Integrate the existing state-of-the-art in music score analy-
sis and audio analysis algorithms with the implementations
of the developed methodologies for the automatic automatic
description and discovery of large-scale corpora, consisting
of music scores and audio recordings.

1.1 Outline
The thesis is organized into seven chapters, wherein the main con-
tributions are contained in Chapters 3–6.

Chapter 2 gives a review of their musical and scientifica back-
ground relevant to the thesis work. The Chapter starts with a brief
introduction to OTMM and identifies several computational chal-
lenges brought by its musical characteristics. Next, the state-of-
the-art in automatic description and audio-score alignment. For or-
ganizational purposes, the rest of the state-of-the-art is discussed in
relevant sections, in which each computational task is introduced.

Chapter 3 is about the CompMusic OTMM corpus created in
the scope of the CompMusic project in collaboration with several
other researchers in the project. The Chapter presents the statis-
tics of the music score collection, audio collection, metadata etc. It
also validates the corpus according to some criteria such as com-
pleteness, coverage and quality. Then, the test datasets, which are
drawn out of the CompMusic OTMM corpus to evaluate specific
computational methodologies, are showcased. The Chapter also in-
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cludes a brief explanation of progress in the creation of the makam
ontologies, which has started as part of this thesis.

Chapter 4 explains the developed score analysis methodologies.
It starts by describing how the metadata related to music scores are
parsed. Next the extracted melodic and lyrics features are intro-
duced. Using these features, structural organization of the music
scores are analyzed. The proposed structure analysis methodology
presents a novel semiotic labeling scheme based on the melodic
and lyrics similarities between the sections and the phrases. From
the metadata and the structural analysis, an automatic description
of the score collection is obtained. The Chapter also highlights the
automatic score converters and validators developed for the music
collection.

Chapter 5 makes an overview of the melody-related audio anal-
ysis methodologies applied to OTMM. It proposes several general-
izations and improvements on the existing state-of-the-art, specifi-
cally in predominant melody extraction and joint makam-tonic es-
timation. The developed analysis algorithms are used to obtain an
automatic description of the whole audio collection.

Chapter 6 presents the core contribution of the thesis, which
is the joint audio-score analysis. The joint analysis is based on a
novel audio-score alignment, which is robust to many performance
aspects of OTMM such as tonic transpositions, tempo variations,
tuning and intonation deviations, non-notated embellishments and
heterophony. The automatic description obtained from joint anal-
ysis links the audio and the symbolic data. Moreover, the resultant
score-informed analysis improves the performance compared with
results obtained from the state-of-the-art methods solely relying on
audio data.

Chapter 7 showcases the web application developed for the dis-
covery of CompMusic OTMM corpus, presents an overall sum-
mary of the thesis and discussfuture directions, which could be un-
dertaken.

There are several Appendices in the thesis. Appendix A de-
scribes the preliminary experiments in section-level audio score
alignment. Appendix B presents the applications of the developed
methodologies on different music cultures. Appendix C the contri-
butions to open and reproducible research Throughout the thesis.
Appendix D provides a mirror of content in the companion web
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page. Appendix E lists my publications. The glossary for the ab-
breviations and terms used throughout the thesis is in Appendix F.





Chapter 2
Background

2.1 Ottoman-Turkish Makam Music

In a large geographical region of Asia, north Africa and east Eu-
rope, there are numerousmusic traditions described around the con-
cepts “makam/maqam/mugam” etc., which share similar practice
and terminology. The thesis focuses on the makammusic tradition,
which proliferated in the Ottoman Empire and continues its legacy
principally in Turkey (Tanrıkorur, 2011; Behar, 2015). I term the
music as Ottoman-Turkish makam music (OTMM) throughout the
text for consistency’s sake. This name is derived from “Osmanlı-
Türk Musikisi” (Ottoman-Turkish Music) coined by Behar (2015)
with an added emphasis on makam, the melodic structure of this
music culture.

Themusical terminology presented in this Section is mainly use
to describe the classical/art (“klasik/sanat” in Turkish) repertoire.
Nevertheless, the concepts (albeit, with slightly different wording)
also hold for folk and some popular music (Signell, 1986; Tan-
rıkorur, 2011), which are also represented in the studied corpus
(Section 3.1). For a more indepth review of OTMM in the con-
text of computational studies, the readers are referred to (Bozkurt,
Ayangil, & Holzapfel, 2014).

7
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2.1.1 Performance Practice
OTMM has been predominantly an oral tradition for centuries. For
this reason, the performance practice is the fundamental unit of
OTMM (Ederer, 2011). In many cases, the compositions have been
modified through oral propogation to a degree such that the original
musical intend may have been diminished (Behar, 2015). In par-
alel, some pieces have numerous versions, which are a consequence
of the divergences between transmissions from different masters.

The performers typically perform simultaneous variations of
the same melody in their own register, a phenomenon commonly
referred to as heterophony (Cooke, accessed April 5, 2013). They
are supposed to show their virtuosity by adding embellishments,
inserting/repeating/omitting notes, altering timings, and changing
the tuning and intonation. The intonation of some intervals in a per-
formance might differ from the “theoretical” intervals as much as
a semi-tone (Signell, 1986). There is typically no lead instrument
in instrumental performances. Vocals typically lead the melody;
nonetheless heterophony is retained.

The musicians are flexible in playing with the structural organi-
zation. They might insert phrase or section repetitions, insertions
or omissions. In addition, they may improvise before, after and
within the performance of a composition.

There is no definite reference frequency (e.g. A4 = 440Hz)
to tune the performance tonic. Moreover, there are a number of
different transpositions (ahenk in Turkish), any of which might be
favored over others due to instrument/vocal range or aesthetic con-
cerns (Ederer, 2011).

Due to the expressive decisions explained above, there may be
high degrees of variance between different interpretations of the
same piece.

2.1.2 Theory and Notation
There are several theories attempting to explain the makam prac-
tice (Karadeniz, 1984; Özkan, 2006; Yarman, 2008). The main-
stream theory is AEU theory (Arel, 1968). AEU theory argues
that there are 24 equal intervals. A whole tone is divided into
9 equidistant intervals, each of which is termed as a Holderian
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Name Flat Sharp Hc
Koma (en. Comma) 1
Bakiye 4
Küçük mücennep 5
Büyük mücennep 8

Table 2.1: The accidental symbols defined in extended Western
notation used in OTMM and their theoretical intervals in Hc ac-
cording to the AEU theory.

comma (Hc) (Ederer, 2011). Tura (1988) states that these inter-
vals can be approximated from 53-tone-equal-tempered (TET) in-
tervals (i.e. 1 Hc = 1200

53
≈ 22.64 cents). Bozkurt, Yarman, Ka-

raosmanoğlu, and Akkoç (2009) analyzed several performances of
renowned musicians to assess the tunings in different makams, and
showed that the current music theories are not able to explain the
intervallic relations well.

Since early 20th century, a score representation extending the
traditional Western music notation has been used as a complement
to the oral practice (Popescu-Judetz, 1996; Ayangil, 2008). The ex-
tendedWestern notation typically follows the rules of AEU theory.
Table 2.1 lists the accidental symbols specific to OTMM defined
in this notation.

The music scores tend to notate simple melodic lines and they
do not indicate the heterophonic interactions. Most of the scores
are transcriptions, and they are written sometimes centuries after
the pieces were composed. As a result, it is common to observe
several music scores for a certain composition, each of which de-
picts an interpretation of the composition within the oral tradition.
The musicians may follow a particular music score as a guideline.
Nevertheless, they considerably extend the notated “musical idea”
during the performance as described in Section 2.1.1.

2.1.3 Melodic, Rhythmic, and Formal Structure
Most of the melodic aspects of OTMM can be explained by the
term makam. Makams constitute the melodic structure of most
of the traditional music repertoires in Turkey. Makams are modal
structures, where the melodies typically revolve around an initial



10 Background
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Figure 2.1: The scales of four makams sharing the same key sig-
nature: a) Hüseyni, b) Neva, c) Muhayyer, d) Rast. The diamond
shaped note, the filled note and the triangle shaped note depict the
initial tone (başlangıç), final tone (karar) and the seventh (yeden),
respectively.

tone (“başlangıç” or “güçlü” in Turkish) and a final tone (karar
in Turkish) (Ederer, 2011; Bozkurt, Ayangil, & Holzapfel, 2014).
The karar is typically used synonymous to tonic. Each makam
has a particular scale, which gives the “lifeless” skeleton of the
makam (Signell, 1986). A makam is gains its character through its
melodic progression (seyir in Turkish) (Tanrıkorur, 2011). Ayan-
gil (2001) describes makam as “descriptions of seyir rules as road
maps” (Bozkurt, Ayangil, & Holzapfel, 2014).

Figure 2.1 shows the scales of four makams, which share the
same key signature. In addition, Hüseyni, Neva and Muhayyer
have the same scale. Hüseyni, Neva and Rast may be distinguished
from the karar and güçlü notes. On the other hand, Hüseyni and
Muhayyer makams only differs from each other with their seyirs,
which are theoretically explained as ascending-descending and de-
scending, respectively. Bozkurt (2015) conducted a computational
analysis of seyir (the procedure will be described in Section 5.10),
and discussed that the computed seyir feature can be used to dis-
criminate makams.

Themetric structure is explained by usul. A certain usul roughly
defines the cyclic meter, and it can be described by a group of
strokes with different velocities, which imply the beats and down-
beats in the rhythmic pattern (Marcus, 2001). Nevertheless, usul is
a wider concept, which is not limited to metric implications, since
a change in usul can disrupt the seyir, and even change the percep-
tion of the makam (Tura, 1988). The number of pulses (“zaman”
in Turkish) in an usul cycle might vary from 2 up to 120. An u-
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sul might have different variants with respect to tempo, which are
called mertebes.1

The overall structural organization of OTMM is described by
form. Each form is described by its distinct structural characteris-
tics. For example, peşrev, sazsemaisi (the two most common in-
strumental forms in the classical repertoire) commonly consists of
four distinct hanes and a teslim section, which typically follow a
verse-refrain-like structure. Nevertheless, there are peşrevs, which
have no teslim, in which case the second half of each hane strongly
resembles each other (Karadeniz, 1984). The 4th hane in the sazse-
maisi form is usually longer, includes rhythmic changes, and it
might be divided into smaller substructures. Each of these sub-
structures might have a different tempo with respect to the overall
tempo of the piece. Similarly, a şarkı (themost common vocal form
in the classical repertoire) is typically divided into sections called
aranağme, zemin, nakarat and meyan. The typical order of the sec-
tions is aranağme, zemin, nakarat, meyan and nakarat. Except of
the instrumental introduction aranağme, all the sections are vocal
and determined by the lines of the lyrics. Each line in the lyrics
is usually repeated, but the melody in the repetition might be dif-
ferent. Some şarkıs have a gazel section (vocal improvisation), for
which the lyrics are provided in the score, without any melody.

The forms may be also classified into several categories such as
compositional/improvisational, classical/folk, vocal/instrumental,
religious and military. Nonetheless, the categorization should not
be considered as an absolute, as there are many transitive examples
(Tanrıkorur, 2011; Behar, 2015).

2.2 Computational Challenges
Bozkurt, Ayangil, and Holzapfel (2014) discussed the computa-
tional challenges brought by the musical characteristics of OTMM.
Below, I recapitulate some of these challenges, which are addressed
throughout the thesis:

1A consice explanation of usul with audio examples are given in the Comp-
Music website: http://compmusic.upf.edu/examples-usul-mmt.

http://compmusic.upf.edu/examples-usul-mmt
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• Melody extraction algorithms might not perform well in record-
ings of OTMMdue to the heterophonic interactions (Section 5.2).

• Tonic identification is necessary for almost all types of melodic
analysis (Sections 5.7 and 6.4).

• SinceOTMM is inherentlymicrotonal, many computational anal-
ysis steps (e.g. Sections 5.2, 5.7 and 6.8) need to provide a high
pitch precision.

• A performance might be realized by taking another performance
(e.g. of an indisputable master) or another music score as the
reference; or it may be a genuinely “original” interpretation.2
Therefore, the audio-score alignment methodologies should be
able to find inexact matches between the information sources
(e.g. in score-informed composition identification described in
Section 6.6).

• Even if we know that the performance takes the music score as
the reference, audio-score alignment method has to incorporate
a flexible matching scheme due to the interpretative freedom in
the performances and the simplicity of the music notation (Chap-
ter 6).

• In addition, audio-score alignment methodologies should be de-
signed to handle structural differences between music scores and
audio performances (Section 6.7).3

2.3 Relevant Works
There has been an increasing interest in (comparative) computa-
tional studies on manymusical cultures across the world such as In-
dian Art Musics (IAM), European folk music, Persian music and
Africanmusics (Tzanetakis et al., 2007; Moelants et al., 2007; Tzane-
takis, 2014). In parallel, most of the academic studies on the com-

2Take Kudsi Erguner Ensemble’s interpretation of Tanburi Cemil Bey’s
composition, Şedaraban Peşrevi as an example of original interpreta-
tion: http://dunya.compmusic.upf.edu/makam/recording/97be5bdd
-cef0-4103-bbb7-bff77d6b0a30

3In Neva and İhsan Özgen’s performance of Uşşak Sazsemaisi
(http://dunya.compmusic.upf.edu/makam/recording/0756f4f9
-7fe2-48a8-b1c8-47ef8be9377f), the performers repeat the fourth hane
twice and also repeat the teslim twice after the third and the fourth hane. In
addition Neva Özgen performs a taksim between the fourth hanes.

http://dunya.compmusic.upf.edu/makam/recording/97be5bdd-cef0-4103-bbb7-bff77d6b0a30
http://dunya.compmusic.upf.edu/makam/recording/97be5bdd-cef0-4103-bbb7-bff77d6b0a30
http://dunya.compmusic.upf.edu/makam/recording/0756f4f9-7fe2-48a8-b1c8-47ef8be9377f
http://dunya.compmusic.upf.edu/makam/recording/0756f4f9-7fe2-48a8-b1c8-47ef8be9377f
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putational analysis of OTMM has also been realized in the last
decade. Bozkurt, Ayangil, and Holzapfel (2014) presents a com-
prehensive survey of computational studies on OTMM. To avoid
repetition, this Section discusses previous works relevant to the the-
sis, which are either outside the context of OTMM or was not ad-
dressed in (Bozkurt, Ayangil, & Holzapfel, 2014) extensively.

2.3.1 Research and Test Corpora
As Serra (2014) discussed, one of the most important facets of mu-
sic information research is the creation, organization and usage of
music corpora representative of the studied musical phenomenon.
Such corpora can be utilized further to create test corpora (datasets),
which are aimed for the evaluation of computational methodologies
proposed for specific tasks. There are numerous test corpora, which
have been used extensively in MIR such as GTZAN Genre Collec-
tion (Tzanetakis & Cook, 2002), RWC dataset (Goto, Hashiguchi,
Nishimura,&Oka, 2003),Mazurka Project4 andMusic-Net (Thickstun,
Harchaoui, & Kakade, 2016). These datasets are typically anno-
tated and/or curated bymusic experts. The creation of these datasets
are time-consuming and require extensive music knowledge, there-
fore these types of corpora are typically small to medium in size.

Currently, most of the music corpora belong to the Euroge-
netic music genres/cultures. One of the biggest aims of the Comp-
Music project by creating large and high-quality music corpora
for the studied music traditions (Serra, 2014). Currently, Comp-
Music hosts the largest corpora of OTMM (Uyar, Atlı, Şentürk,
Bozkurt, & Serra, 2014) (explained in Chapter 3 in detail), IAM
(Srinivasamurthy, Koduri, Gulati, Ishwar, & Serra, 2014), Beijing
opera (Rafael&Serra, 2014), Arab-Andalucianmusic (Sordo, Chaa-
choo, & Serra, 2014). Other relevant music corpora include the
Meertens Dutch folk song collection (van Kranenburg, Janssen,
& Volk, 2016) and the COFLA flamenco corpus (Kroher, Díaz-
Báñez, Mora, & Gómez, 2016).

Currently, Million Song dataset (Bertin-Mahieux, Ellis, Whit-
man,&Lamere, 2011) andAcousticBrainz (Porter, Bogdanov, Kaye,
Tsukanov, & Serra, 2015) are the largest audio recording reposito-

4http://www.mazurka.org.uk/

http://www.mazurka.org.uk/
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ries for MIR. The data in both repositories are linked with other rel-
evant information sources such as MusicBrainz, 7digital.5 In both
cases, only the automatic description of the audio recordings are
due to copyright reasons. Due to computational and storage rea-
sons, both Million Song dataset and AcousticBrainz provide either
limited temporal information on the analyzed tracks. Moreover,
they do not represent many music genres/traditions adequately.

2.3.2 Audio-Score Alignment
Audio-score alignment aims to synchronize the musical events in
the score of a composition with the corresponding (generally la-
tent) events in the audio recording of the same composition. The
alignment can be applied to in different granularities (Thomas et
al., 2012) such as notes (Cont, 2010; Niedermayer, 2012), mea-
sures (Fremerey, Müller, & Clausen, 2010), phrases (Nakamura,
Nakamura, & Sagayama, 2016) or sections (Şentürk, Holzapfel,
& Serra, 2014; Holzapfel, Şimşekli, Şentürk, & Cemgil, 2015).
Generally, if score and audio recording of a piece are aligned on
the note or measure level, section borders in the audio can be in-
ferred from the time stamps of the linked notes/measures in the
score and audio (Thomas et al., 2012). Likewise, a method might
output a fine-grained result when the aim is aligning higher-level
structures (Holzapfel et al., 2015).

As a result of the alignment, the time-series data in the sym-
bolic and audio domains are linked with each other (Thomas et
al., 2012). The linked data could facilitate many additional com-
putational tasks such as automatic accompaniment (Cont, 2010;
Arzt, Böck, & Widmer, 2012), music discovery (Şentürk, Ferraro,
Porter, & Serra, 2015) and computational musicology (Devaney,
Mandel, & Fujinaga, 2012; Abesser, Frieler, Cano, Pfleiderer, &
Zaddach, 2016). Audio-score alignment might simplify several
tasks such as audio transcription (Benetos & Holzapfel, 2015), me-
ter tracking (Srinivasamurthy, Holzapfel, Cemgil, & Serra, 2016)
and structural analysis (Paulus, Müller, & Klapuri, 2010), which
would require sophisticated audio analysis techniques.

5https://www.7digital.com/

https://www.7digital.com/
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The current state-of-the-art on audio-score alignment follows
twomain approaches: dynamic time warping (DTW) (Dixon &Wid-
mer, 2005; Niedermayer, 2012; Rodriguez-Serrano, Carabias-Orti,
Vera-Candeas, & Martinez-Munoz, 2016; Prätzlich, Driedger, &
Müller, 2016) andHiddenMarkovmodel (HMM) (Peeling, Cemgil,
&Godsill, 2007; Cont, 2010; Maezawa, Itoyama, Yoshii, &Okuno,
2014; Nakamura et al., 2016), though there also exists methods
based on Conditional Random Fields (CRFs) (Joder, Essid, &Mem-
ber, 2010), audio fingerprinting (Arzt,Widmer,&Sonnleitner, 2014),
and (deep) neural networks (Dorfer, Arzt, & Widmer, 2016). Typ-
ically the alignment methodologies are specialized to address the
specific task by enhancing/adapting the basic method according to
the properties of the studied music corpus (Fremerey et al., 2010;
Devaney et al., 2012; Rodriguez-Serrano et al., 2016).

Table 2.2 lists numerous audio-to-audio and audio-score align-
ment methodologies, which are relevant to the in terms of the com-
putational problems and challenges (Section 2.2. Str., Tra., Mic.
and Exp, indicate if the proposed method is designed to address
structural differences, transpositions, microtonality and “expres-
sive” interpretations, respectively. The green and yellow colors in
the Str. column illustrate whether the alignment handles all struc-
tural insertions, repetitions, deletions, and unrelated event (e.g. im-
provisation, speech) additions, or not. The rest of this Section will
mainly discuss these methodologies. Note that the last two rows of
Table 2.2 show the alignment methodologies partially developed
in the context of the thesis for comparison. These methodologies
will be explained more in detail in (Chapter 6).

Structure

In general, approaches of audio-score alignment assumes that the
score and the target audio recording are structurally identical, i.e.
there are no phrase repetitions and omissions in the performance.
(Fremerey et al., 2010) extended the classical DTW and introduced
JumpDTW, which is able to handle such structural non-linearities.
However, due to the its level of granularity, audio-score alignment
is computationally expensive.

Since section linking is aimed at linking score and audio record-
ings on the level of structural elements, it is closely related to audio



16 Background
T
able

2.2:
A
n
overview

ofrelevantalignm
entm

ethodologies.
N
am

e
M
ethod

M
usic

C
orpus

Feature
T
arget/Setting

Q
uery

Str.
T
ra.

M
ic.

E
xp.

(Tekin,A
nagnostopoulou,&

Tom
ita,

2005)
Linked

Lists
W
estern

C
lassical

Sym
bolic

O
nline

Piano
M
ID
IO

utput
C
om

plete
M
usic

Score
✓

N
/A

✓

(Pardo
&
B
irm

ingham
,2005)

H
M
M

Jazz
Sym

bolic
C
om

plete
(Syn-

thesized)
A
udio

R
ecording

C
om

plete
M
usic

Score
✓

(M
üller&

A
ppelt,2008)

D
ynam

ic
Program

m
ing

V
ariousEurogenetic

C
hrom

a
C
om

plete
A
udio

R
ecording

C
om

plete
M
usic

Score
✓

(M
üller,G

rosche,&
W
iering,2009)

iterative
subsequence

dy-
nam

ic
tim

e
w
arping

(ISDTW)
D
utch

Folk
Songs

C
hrom

a
C
om

plete
A
udio

R
ecording

C
om

plete
M
usic

Score
✓

✓
✓

✓

(Frem
erey

etal.,2010)
Jum

pD
TW

W
estern

C
lassical

C
hrom

a
C
om

plete
A
udio

R
ecording

C
om

plete
M
usic

Score
✓

(Joderetal.,2010)
C
onditionalR

andom
Fields

W
estern

C
lassical

C
hrom

a,
O
nset,

Tem
-

pogram
C
om

plete
(Syn-

thesized)
A
udio

R
ecording

C
om

plete
M
usic

Score
✓

✓

(A
rzt&

W
idm

er,2010)
R
ough

Position
Estim

a-
tor,

M
ultiple

O
nline

DTWs,
D
escision

M
aker

W
estern

C
lassical

FFT-based
O
nline

A
udio

R
ecording

C
om

plete
M
usic

Score
✓

(N
iederm

ayer,2009)
M
ultiscale

DTW
W
estern

C
lassical

C
hrom

a
C
om

plete
A
udio

R
ecording

C
om

plete
M
usic

Score
(D
uan

&
Pardo,2011)

D
ynam

ic
Program

m
ing

Jazz
C
hrom

a
C
om

plete
A
udio

R
ecording

C
om

plete
M
usic

Score
✓

✓
✓

(A
rztetal.,2012,2014)

A
udio

Transcription,Finger-
printing,D

atabase
Q
uerying

W
estern

C
lassical

Transcribed
A
udio,

Sym
bolic

Score
O
nline

A
udio

R
ecording

C
om

plete
M
usic

Score
✓

✓
✓

(D
evaney

etal.,2012)
DTW,H

M
M

W
estern

C
lassical

Y
IN

+
onset

C
om

plete
A
udio

R
ecording

C
om

plete
M
usic

Score
✓

✓

(G
rachten,G

asser,A
rzt,&

W
idm

er,
2013)

N
eedlem

an-W
unsch

tim
e

w
arping

W
estern

C
lassical

M
FC

C
,

C
onstant

Q
transform

(C
Q
T),

PST
orLN

SO
/N
C

C
om

plete
A
udio

R
ecording

C
om

plete
M
usic

Score
✓

(Prätzlich
&
M
üller,2014)

DTW-based
W
estern

C
lassical

C
hrom

a
C
om

plete
A
udio

R
ecording

Sections
in

the
A
udio

R
ecording

✓

(N
akam

ura
etal.,2016)

H
M
M

W
estern

C
lassical

C
Q
T

O
nline

A
udio

R
ecording

C
om

plete
M
usic

Score
✓

✓

(Şentürk,
H
olzapfel,

&
Serra,

2014;
Şentürk,G

ulati,&
Serra,2014)

H
ough

transform
,

SDTW,
graph

analysis
O
TM

M
Predom

inantM
elody

C
om

plete
A
udio

R
ecording

Sections
in

the
M
usic

Score

✓
✓

✓
✓

(H
olzapfeletal.,2015)

HHMM
O
TM

M
Predom

inantM
elody

C
om

plete
A
udio

R
ecording

C
om

plete
M
usic

Score
✓

✓
✓

✓



2.3. Relevant Works 17

structure analysis (Paulus et al., 2010). The state of the art methods
on structure analysis are mostly aimed at segmenting audio record-
ings of popular Eurogenetic music into repeating and mutually ex-
clusive sections. For such segmentation tasks, self-similarity anal-
ysis (Cooper & Foote, 2002; Goto, 2003) is typically employed.
These methods first compute a series of frame-based audio features
from the signal. Then all mutual similarities between the features
are calculated and stored in a so-called self similarity matrix, where
each element describes the mutual similarity between the temporal
frames. In the resulting square matrix, repetitions cause parallel
lines to the diagonal with 45 degrees and rectangular patterns in
the similarity matrix. This directional constraint makes it possible
to identify the repetitions and 2-D sub-patterns inside the matrix.

Since the sections in a composition follow a certain sequential
order, the extracted information can be formulated as a directed
acyclic graph (DAG) (Newman, 2010). (Paulus & Klapuri, 2009)
use this concept in self-similarity analysis. They generate a number
of border candidates for the sections in the audio recording and
create a DAG from all possible border candidates. Then, they use a
greedy search algorithm to divide the audio recording into sections.

Transposition

Müller and Clausen (2007) introduced transposition-independent
similarity matrices. This matrix computed from chroma features
extracted from two audio recordings (real or synthetic) to be com-
pared. In the point-to-point distance computation (using cosine
distance) one of the frames is shifted circularly. The distance is
assigned as the minimum of the computed distances. Müller et al.
(2009) later uses the transposition-independent similarity matrices
in analyzing Dutch folk songs to compansate the tonic deviations
within a recording.

Expressivity

When fragments of audio or score are to be linked, the angle of
the diagonal lines in the similarity matrix computed are not 45 de-
grees, unless the tempi of both information sources are exactly the
same. This problem also occurs in cover song identification (Ellis



18 Background

& Poliner, 2007; Serrà et al., 2009) for which a similarity matrix is
computed using temporal features obtained from a cover song can-
didate and the original recording. If the similarity matrix is found to
have some strong regularities, they are deemed as two different ver-
sions of the same piece of music. A proposed solution is to “squar-
ize” the similarity matrix by computing some hypothesis about the
tempo difference (Ellis & Poliner, 2007). However, tempo anal-
ysis in makam musics is not a straightforward task (Holzapfel &
Stylianou, 2009). The sections may also be found by traversing
the similarity matrices using dynamic programming (Serrà et al.,
2009). On the other hand, dynamic programming is a computa-
tionally demanding task.



Chapter 3
Music Corpus and

Test Datasets

For computational studies on specific type ofmusics, there is a need
for corpora, which constitutes the studied aspects of the particular
music culture. A music corpus may consist of multiple information
sources such as audio recordings, music scores, lyrics and editorial
metadata. The information sources in the corpus may be also anal-
ysed to obtain a description, which extends the corpus itself. The
corpora may be grouped into two types: research corpus and test
dataset (Serra, 2014). A research corpus is a data collection that
represents the ”real world” for a specific research problem. A test
dataset is a collection for a specific research task to test, calibrate
and evaluate particular methodologies.

Serra (2014) provides such criteria for the design of culture spe-
cific corpora, which are specified as purpose, coverage, complete-
ness, quality and reusability. To elaborate, the purpose of the cor-
pora should be well-defined to facilitate research tasks. The cor-
pora should be of good coverage to represent the music tradition
and include metadata with a high degree of completeness related
to studied aspects of the music. The corpora should attain a cer-
tain quality and it should be re-usable for future research.

In this Chapter,1 a corpus for computational research of OTMM

1This Chapter is partially published in (Uyar et al., 2014). Here, the statistics
of the corpus and test datasets are updated.
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is presented, which is designed with these considerations in mind.
The corpus is described with respect to the information sources that
are used to populate it, namely audio recordings, machine-readable
music scores, editorial metadata. For each type of data, the pur-
pose, coverage, completeness, quality and reusability criteria are
discussed, when applicable. The automatic description of the cor-
pus, which is considered as part of the corpus, is described in the
Chapters 4–6. The test datasets of OTMM, which are gathered in
the scope of the CompMusic Project, are also explained.2

The rest of the Chapter is as follows: Section 3.1 explains the
CompMusic OTMM corpus and the criteria for creating this re-
search corpus. Section 3.2 gives a detailed information about the
test datasets. Section 3.3 introduces the ontologies built for OTMM
and Section 3.4 wraps up the Chapter with a brief conclusion.

3.1 Music Corpus
In the CompMusic project, we mainly focus on the melodic and
the rhythmic characteristics of OTMM. To study these aspects of
the music tradition, we have been collecting audio recordings and
music scores. From the audio recordings we can extract the char-
acteristics of interpretations of compositions performed by musi-
cians. The music scores, on the other hand, provide an easy-to-
access medium to extract the musical elements. We additionally
store the editorial metadata about OTMM. The metadata contains
information related to the audio recordings andmusic scores as well
as additional information such as the birth date of the artists and rel-
evant web sources about the entities. The metadata also consists of
the relationships between each entity so that the connections within
the metadata can be exploited to access relevant information in a
structured manner. TheCompMusic OTMM corpus also includes
of the automatic description of the music scores and audio record-
ings that are obtained within the scope of this thesis.

For this purpose, a team of more than 15 collaborators, has been
working to collect and label all the available data. In this Section,
we explain the audio recordings (Section 3.1.1), the music scores

2This Chapter is mainly based on thematerial presented in (Uyar et al., 2014)
with updated statistics of the corpus as of August 2016.
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(Section 3.1.2) and the editorial metadata (Section 3.1.4) in the re-
search corpus. The metadata related to audio recordings and the
music scores are mainly explained within the corresponding source
type. The corpus is discussed in terms of the purpose, coverage,
completeness, quality and reproducibility of the audio recordings
and the music scores (Serra, 2014). In Section 3.1.4 we mostly fo-
cus on the overall statistics of the metadata as well as the statistics
of inter-relationships. Section 3.1.5 gives a bried introduction to the
automatic description of the corpus.

In our corpus, we use MusicBrainz (Swartz, 2002) to store the
metadata. MusicBrainz assigns a unique identifier, called Music-
Brainz identifier (MBID) to each entry (e.g. releases, audio record-
ings, artists).3 Unless otherwise indicated, all content (except com-
mercial recordings) it the corpus is licensed under theCreative Com-
mons Attribution-NonCommercial 3.0 License (CC BY-NC 3.0)
(Spain).

3.1.1 Audio Collection
While creating the corpus, one of our major efforts has been di-
rected to create an audio collection representative of OTMM. The
CompMusicOTMMaudio collection consists of 6601 stereo record-
ings. This collection corresponds to more that 420 hours of play
time. The collection includes both solo recordings and ensem-
ble/chorus recordings. Note that some recordings exist in multiple
releases either identically or with different mastering. Considering
such duplicates, there are 6543 unique performances in the audio
collection. They span a time period from the start of the 20th cen-
tury to nowadays. The collection covers various forms, which are
part of the classical (e.g. şarkı, sazsemaisi) or folk (e.g. türkü, oyun-
havası) music (Table 3.2). Some of the pieces also belong to the
religious (e.g. ilahi) or the military (e.g. mehter) repertoire.

Coverage

Historically, TRT has the most representative audio productions
of OTMM. However, most of their audio collection is not open

3Formore information on please refer to http://musicbrainz.org/doc/
MusicBrainz_Identifier.

http://musicbrainz.org/doc/MusicBrainz_Identifier
http://musicbrainz.org/doc/MusicBrainz_Identifier
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#
Recordings 6601
Works 2928
Artists 811
Releases 356
Makams 111
Usuls 74
Forms 87
Instruments 64
Vocal Types 8

Table 3.1: Number of unique recordings, releases, works,
artists, makams, usuls, forms and instruments/voicing in the Comp-
Music OTMM audio collection.

to public and only a small part of this collection is commercially
available. Apart from TRT, there are numerous labels, which have
released recordings of OTMM. For these reasons, it is hard to col-
lect the overall statistics of OTMM recordings.

So far, we have focused our efforts on gathering an audio col-
lection of classical repertoire, including the available commercial
recordings from TRT and other important labels. We also include
several non-commercial recordings, provided that they have a good
overall musical and production quality. In Table 3.1, we present the
general statistics of the gathered audio collection. Table 3.2 shows
the number of the most common makams, forms and usuls in the
audio collection.

Completeness

Along with the audio recordings, we also collect editorial metadata
given in the album covers. In case an album cover does not provide
related metadata (e.g. related work, makam) we attempt to fill the
missing metadata by accessing other information sources available.
The procedure is as follows: if some of the infomation (e.g. ma-
kam, usul, form, composer) is missing, a search with the name of
the recording is performed in the online score collections (such as
the ones explained in Section 3.1.2 later), and the missing infor-
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Makam # Form # Usul #
Hicaz 749 Şarkı 2667 Serbest 1425
Nihavent 500 Taksim 1249 Aksak 712
Hüzzam 461 Peşrev 529 Düyek 674
Uşşak 415 Sazsemaisi 473 Aksaksemai 598
Kürdilihicazkar 374 Türkü 232 Kapalı curcuna 421
Rast 372 Yürüksemai 191 Curcuna 362
Hüseyni 345 Beste 190 Sofyan 342
Segah 299 Ağırsemai 166 Yürüksemai 339
Hicazkar 158 İlahi 135 Ağıraksak 216
Mahur 157 Gazel 104 Devr-i kebir 216
Other (100 makams) 2655 (76 forms) 908 (63 usuls) 1888
Total 6485 6844 7194

Table 3.2: The most represented makams, forms and usuls at-
tributes in the audio collection and the corresponding number of in-
stances. Note that multiple compositions and improvisations might
be performed in an audio recording. Therefore, an audio recording
may have multiple instances of the same type of attribute associ-
ated.

mation is obtained from the matched score. For recordings named
only after the makam and form such as “Hicaz Peşrev”, since there
can be many ”Hicaz Peşrev” compositions, other ”Hicaz Peşrev”s
in the audio collection are listened and checked if there exists a
match. If a match is found, the corresponding work information is
copied.

The completeness of the audio related metadata is shown in Ta-
ble 3.3. While checking the completeness of the artist metadata in
the audio recordings, we assume a recording is complete if it has
at least one artist associated with it. Note that this does not imply
a strict completeness with respect to the artist metadata since a lot
of recordings (esp. ensemble recordings) do not have the complete
information about the performers in the album covers.

Quality

The audio recordings are stored in MP3 audio format. This format
is chosen due to its quality with a small storage size compared to
other audio formats. The audio files are sampled at 44100 Hertz
(Hz) and 160 kilobits per second (kbps).
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# Recordings % of total
Releases 6486 98%
Works 5266 80%
Artists 6608 100%
Makams 6163 93%
Forms 6389 97%
Usuls 6090 92%

Table 3.3: The number of audio recordings for which the metadata
type is available. 1238 audio recordings are improvisations, which
do not have a work. 106 recordings are standalone recordings and
hence does not have a release.

In the selection process, the releases in the CompMusic OTMM
audio collection are labeled in terms of its “cultural representabil-
ity.” If a release is labeled as “unrepresentative,” if it is not of high
production quality (except historical recordings) ormusical quality,
uses non-traditional instruments (e.g. synthesizers, acoustic guitar)
extensively or does not strictly belong to a OTMM genre (e.g. con-
temporary Turkish pop, Arabic maqam). In the audio collection, 46
releases4 out of 356 releases5 are labeled as such.

Re-Usability

The non-commercial recordings in our research corpus are freely-
available. Most of these non-commercial recordings can be down-
loaded from Internet Archive6 or the respectivewebsites where they
were originally fetched from.7 The cover arts of most of the re-
leases are available via CoverArt Archive.8

Due to copyright restrictions, we cannot distribute the commer-
cial audio recordings. On the other hand, they are available for
browsing and listening through Dunya-makam (Porter, Sordo, &

4Listed in https://musicbrainz.org/collection/9b7a0d92-a756
-411d-81da-e855c946f23e

5Listed in https://musicbrainz.org/collection/5bfb724f-7e74
-45fe-9beb-3e3bdb1a119e

6http://tinyurl.com/n9omoue
7e.g. http://www.socsci.uci.edu/~rgarfias/films.html
8https://coverartarchive.org/

https://musicbrainz.org/collection/5bfb724f-7e74-45fe-9beb-3e3bdb1a119e
https://musicbrainz.org/collection/5bfb724f-7e74-45fe-9beb-3e3bdb1a119e
http://tinyurl.com/n9omoue
http://www.socsci.uci.edu/~rgarfias/films.html
https://coverartarchive.org/
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Serra, 2013a; Şentürk et al., 2015) (explained in Section 7.1.1).
Moreover the annotations on all the audio recordings and the vari-
ous features extracted from them are freely distributed under the CC
BY-NC 3.0 (Spain). They can be used for computational research
purposes and redistributed according to the terms of the licence.

3.1.2 Score-Collection
The existing music scores of OTMM are mostly in physical for-
mats, such as hand-written scores and books. There are also non-
machine-readable scores available in digital formats like JPEG and
PDF. Typically, these types of scores are not very useful in compu-
tational research9 since the musical elements (e.g. notes, durations,
tempo, melodic structure, measure info) cannot be directly read by
the machines.

In the scope of CompMusic, Karaosmanoğlu (2012) has cre-
ated a music score collection called SymbTr. The scores in this
collection are selected from reliable sources and further curated by
experts. As it will be shown later in this Section, SymbTr collec-
tion is the biggest and most representative, machine-readable mu-
sic score repository for OTMM. The collection is available online10
and licensed under the Creative Commons Attribution-NonComm-
ercial-ShareAlike 4.0 License (CCBY-NC-SA 4.0) (International).

The naming of the music scores follows a convention (referred
as the SymbTr-slug throughout the text), which provides some of
the key information to identify and categorize the scores. The struc-
ture is given as “[makam]--[form]--[usul]--[title]--[artist/location],”
which basically provides the “slugs” of the makam, the form, the u-
sul and the title (for vocal compositions). The last item (artist/re-
gion) is the composer for composed works, the performer for tran-
scriptions, and the transcriber or the region for traditional folk
pieces. For example, the SymbTr-slug of the composition Ehl-i
Aşkın Neşvegâhı11 is “kurdilihicazkar--sarki--agiraksak--ehl-i_as-

9An obvious exception is optical music recognition.
10https://github.com/MTG/SymbTr. Since v2.0.0, I am the principal

maintainer of the repository and secondary curator after M. Kemal Karaosman-
oğlu.

11http://musicbrainz.org/work/b43fd61e-522c-4af4-821d
-db85722bf48c

https://github.com/MTG/SymbTr
http://musicbrainz.org/work/b43fd61e-522c-4af4-821d-db85722bf48c
http://musicbrainz.org/work/b43fd61e-522c-4af4-821d-db85722bf48c
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kin--tatyos_efendi.” Note that while almost all of the music scores
in the SymbTr collection are related to compositions, there also ex-
ists performance transcriptions; e.g. “huseyni--oyunhavasi--nim-
sofyan--cecen_kizi--tanburi_cemil_bey” is a transcription of Tan-
buri Cemil Bey’s famous interpretation of the folk piece Çeçen
Kızı (League, 2012).12

The first release of SymbTr collection is version 1.0.0.13 This
version is presented in (Karaosmanoğlu, 2012) and it consists of
1700music scores from the folk and classical repertoires ofOTMM.
The second major version (v2.0.0) of the collection is released in
June 201414 and described in (Karaosmanoğlu, 2015). In this ver-
sion, there are 2200 music scores. As of October 2016, SymbTr
v2.4.3 is the latest release.15 The number of scores has not changed
from v2.0.0 to v2.4.3, but there has been numerous improvements
over the format consistency, content and metadata of the music
scores. There are 155 unique makams, 56 unique forms, 88 unique
usuls, 395 unique composer/transcribers (including Lâedrî and tra-
ditional) and 67 geographical regions annotated in the SymbTr-
slugs.

Table 3.4 shows the top 10 makam, form, usul and composers
in the SymbTr collection. The statistics in this Table generally
overlap with the makam, form and usul statistics of the CompMu-
sic OTMM audio collection shown in Table 3.2. In addition, our
statistics coincide with the makam and usul statistics of TRT Tar-
ihi Türk Müziği Arşivi) (English: TRT Historical Turkish Music
Archive (TRT-TTMA) (accessed in 2005), which was reported
by Çevikoğlu (2007).

The scores typically notate the basic melody of the composition
devoid of the performance aspects such as intonation deviations and
embellishments. The scores in the SymbTr collection are created
by the software Mus2-alfa (Karaosmanoğlu, 2015, Appendix B)16
and stored in several different formats (txt, mu2,MusicXML,MIDI
and PDF). The formats are briefly explained below. For additional

12 http://musicbrainz.org/recording/ed38dc73-7c0a-4362-84ca
-07724ede9aab

13https://github.com/MTG/SymbTr/tree/v1.0.0
14https://github.com/MTG/SymbTr/releases/tag/v2.0.0
15https://github.com/MTG/SymbTr/releases/tag/v2.4.3
16not to be confused with the notation editor, Mus2

http://musicbrainz.org/recording/ed38dc73-7c0a-4362-84ca-07724ede9aab
http://musicbrainz.org/recording/ed38dc73-7c0a-4362-84ca-07724ede9aab
https://github.com/MTG/SymbTr/tree/v1.0.0
https://github.com/MTG/SymbTr/releases/tag/v2.0.0
https://github.com/MTG/SymbTr/releases/tag/v2.4.3
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Makam # Form # Usul # Composer #
Hicaz 157 Şarkı 994 Aksak 319 Lâedrî/Traditional 231
Nihavent 130 Türkü 285 Sofyan 293 Ahmet Avni Konuk 120
Uşşak 118 Seyir 169 Düyek 278 Şefik Gürmeriç 74
Rast 109 Küpe 120 Aksaksemai 128 Dede Efendi 71
Hüzzam 96 Peşrev 93 Curcuna 111 Erol Bingöl 66
Hüseyni 92 Sazsemaisi 86 Ağıraksak 108 Sadettin Kaynak 45
Segah 92 Aranağme 73 Semai 100 Hacı Arif Bey 40
Mahur 88 İlahi 42 Nimsofyan 99 Tanburi Cemil Bey 34
Hicazkar 79 Beste 41 Senginsemai 72 Rauf Yekta 32
Kürdilihicazkar 70 Yürüksemai 36 Türk aksağı 64 Şevki Bey 32
Other (145 makams) 1169 (46 forms) 261 (63 usuls) 628 (376 composers) 1260

Table 3.4: The most represented makams, forms, usuls and com-
posers in the SymbTr collection and the corresponding number of
instances.

Sira Kod Nota53 NotaAE Koma53 KomaAE Pay Payda Ms LNS Bas Soz1 Offset
172 9 Si4b2 B4b1 312 313 2 8 500 95 96 24.2222222222
173 9 Sol4 G4 296 296 1 8 250 95 96 Sa 24.3333333333
174 9 Sol4 G4 296 296 1 8 250 95 96 kın* 24.4444444444
175 9 Sol4 G4 296 296 1 4 500 95 96 geç* 24.6666666667
176 9 Do5 C5 318 318 1 4 500 95 96 kal 24.8888888889
177 9 Do5 C5 318 318 1 8 250 95 96 ma* 25.0
178 9 Si4b2 B4b1 312 313 3 16 375 99 96 er 25.1666666667
179 9 La4 A4 305 305 1 16 125 95 96 25.2222222222
180 9 Sol4 G4 296 296 1 4 500 95 96 ken* 25.4444444444
181 9 Re5 D5 327 327 5 8 1250 100 96 gel** 26.0
182 9 Re5 D5 327 327 2 8 500 95 96 26.2222222222
183 9 Do5 C5 318 318 1 8 250 95 96 A 26.3333333333
184 9 Do5 C5 318 318 1 8 250 95 96 man* 26.4444444444
185 9 Si4b2 B4b1 312 313 1 8 250 99 96 geç* 26.5555555556
186 9 La4 A4 305 305 1 8 250 95 96 26.6666666667
187 9 La4 A4 305 305 1 8 250 99 96 kal 26.7777777778
188 9 Si4b2 B4b1 312 313 1 8 250 95 96 26.8888888889
189 9 Do5 C5 318 318 1 8 250 95 96 ma* 27.0
190 9 Si4b2 B4b1 312 313 3 16 375 99 96 er 27.1666666667
191 9 La4 A4 305 305 1 16 125 95 96 27.2222222222
192 9 Sol4 G4 296 296 1 8 250 99 96 ken* 27.3333333333
193 9 Si4b2 B4b1 312 313 1 16 125 99 96 27.3888888889
194 9 La4 A4 305 305 1 16 125 95 96 27.4444444444
195 9 La4 A4 305 305 5 8 1250 95 96 gel** 28.0
196 9 Do5 C5 318 318 1 12 167 95 96 ARANAĞME 28.0740740741
197 9 Si4b2 B4b1 312 313 1 12 167 95 96 . 28.1481481481
198 9 La4 A4 305 305 1 12 167 95 96 . 28.2222222222
199 9 Sol4 G4 296 296 1 12 167 95 96 . 28.2962962963
200 9 Fa4#3 F4#4 290 291 1 12 167 95 96 . 28.3703703704
201 9 Fa4#3 F4#4 290 291 1 12 167 95 96 . 28.3703703704

Table 3.5: The contents of the SymbTr-txt file of the composi-
tion Bu Akşam Gün Batarken Gel from the 172th note to the 201th
note. The spaces are displayed as “*” for visualization purposes.

information about the SymbTr collection and the score formats,
please refer to (Karaosmanoğlu, 2012) and (Karaosmanoğlu, 2015).

• The data in the SymbTr-txt scores are stored as “tab sepa-
rated values,” where each row is a note or an editorial anno-
tation (such as usul change) and each column represents an
attribute such as the note symbol, the duration, the measure



3.1. Music Corpus 29

. . .

. . .

Figure 3.2: The visualization of the note sequence in Table 3.5 on
the SymbTr-PDF file.

9 4 Pay Payda Legato% Bas Çek Söz-1 Söz-2 0.444444444
50 Kürdîlihicazkâr B4b5/E5b5/A4b5
51 9 4 Ağıraksak
52 1 4 72
57 Şarkı
58 Tatyos Efendi
59 ?
60 Ehl-i Aşkın Neşvegâhı...
62 H
63 TSM

Makam
Usul
Tempo
Form
Composer
Lyricist
Title
Genre
Notation

Mertebe / Zaman
(here, it is 4/9)Key signature

Makam name

Usul name

Zaman (Number of 
beats in an usul cycle)

Mertebe (Beat unit)

Beat unit (here, it
is a fourth note)

Nominal tempo
in bpm

Form name

Folk (E) or Classical (H)

Folk notation (THM) or 
Classical notation (TSM)

(here, the lyricist is unknown)

Figure 3.3: The metadata header of the SymbTr-mu2 score Ehl-i
Aşkın Neşvegâhı. The annotations are shown in red.

marking or the lyrics. The rests (rows with the value “Es”
in the note columns), usul alterations (rows with the value
51 in the Kod column, indicating an usul change within the
piece) and measure marking columns (theOffset column) are
introduced in SymbTr v2.0.0.

Table 3.5 shows a short fragment selected from the SymbTr-
txt score of the composition Bu Akşam Gün Batarken Gel.17
The note symbols and pitch intervals are given according to
the 24-TET system defined in the AEU theory in the No-
taAE column or the 53-TET system in the Nota53 column.18
The note symbols are encoded as “[note-symbol][octave](ac-
cidental)(comma),” i.e. a “B4b1” note in theNotaAE column

17http://musicbrainz.org/work/30cdf1c2-8dc3-4612-9513
-a5d7f523a889

18The unit interval of the 53-TET, which is simply the 1/53th of an octave,
is called a Holderian comma (Hc).

http://musicbrainz.org/work/30cdf1c2-8dc3-4612-9513-a5d7f523a889
http://musicbrainz.org/work/30cdf1c2-8dc3-4612-9513-a5d7f523a889
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refers to the segah note according to AEU theory (Table 3.5).
The lyrics are synchronous to the note onsets on the syllable
level. The final syllable of eachword endswith a single space
and the final syllable of each poetic line ends with double
spaces. Some columns may be overloaded with additional
types of information. For example, the lyrics (the Soz1 col-
umn) column also contains editorial annotations entered in
capital letters such as the section names, instrumentation and
tempo changes (e.g. the lyrics of the 196th note in Table 3.5
marks the start of the Aranağme section).

The default score output of Mus2-alfa is the SymbTr-txt for-
mat. In the automatic analysis (Chapters 4 and 6), the scores
in the txt format are used, as they are the reference format.

• The PDF files in the SymbTr repository reflect the same se-
quence of events in the SymbTr-txt scores. Figure 3.2 shows
the PDF representation of the same sequence in Table 3.5 se-
lected from the composition Bu Akşam Gün Batarken Gel.

• Likewise, theMIDI-scores follow from theSymbTr-txt files.
They retain the tuning information in the form of pitch bends.

• Introduced in the SymbTr release version 2.0.0, mu2 is a
file format that can be read by Mus2.19 Mus2 is a music no-
tation software for OTMM, which supports makam music
concepts and microtonal playback. The note sequences in
the SymbTr-txt and SymbTr-mu2 scores are identical. The
data organization in the mu2 format is very similar to the
one in the SymbTr-txt, with several improvements, e.g. on
rhythmic and lyrics organization. In addition, themu2-scores
start with a easy-to-parse metadata header. Figure 3.3 shows
the header of the mu2 file of the composition Ehl-i Aşkın
Neşvegâhı.20

19https://www.mus2.com.tr/en/
20https://github.com/MTG/SymbTr/blob/v2.4.3/mu2/

kurdilihicazkar--sarki--agiraksak--ehl-i_askin--tatyos
_efendi.mu2

https://www.mus2.com.tr/en/
https://github.com/MTG/SymbTr/blob/v2.4.3/mu2/kurdilihicazkar--sarki--agiraksak--ehl-i_askin--tatyos_efendi.mu2
https://github.com/MTG/SymbTr/blob/v2.4.3/mu2/kurdilihicazkar--sarki--agiraksak--ehl-i_askin--tatyos_efendi.mu2
https://github.com/MTG/SymbTr/blob/v2.4.3/mu2/kurdilihicazkar--sarki--agiraksak--ehl-i_askin--tatyos_efendi.mu2
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• The MusicXML v3.0 files are introduced in SymbTr v2.0.0.
MusicXML21 is a format which can be imported and exported
by well-known music notation software such as MuseScore,
Finale and Sibelius. The SymbTr-MusicXML files are gen-
erated from the music sequence in the SymbTr-txt files and
the editorial metadata in the SymbTr-mu2 files. The con-
version process is explained in detail in Section 4.4.2.

In addition, we have built tools to convert theMusicXML scores
to LilyPond and scalable vector graphics format (SVG) formats.
The conversion is explained in Section 4.4.2. Independently, the
txt files in the SymbTr releases are converted to abc notation22 by
Seymour Shilen.23 These formats are not distributed in the offi-
cial SymbTr collection.

Now we present the coverage, completeness and quality and
reusability of the SymbTr collection as discussed in (Uyar et al.,
2014).

Coverage

To the best of our knowledge there are only two machine-readable
score collections of OTMM apart from SymbTr collection, which
can be used for computational research. First is the Uzun Hava
HumdrumDatabase (UHHD) (Şentürk, 2011). This collection fea-
tures the 77music scores of uzun havas, a non-metered improvisa-
tional form of Turkish folk music. Due to its specialized nature,
this collection is not considered for comparison. A more relevant
collection is the Türk Sanat Müziği Derlemi (English: Turkish Art
Music Corpus) (TSMD) (Atalay & Yöre, 2011), which includes
600 compositions equally divided into 20 makams (i.e. 30 pieces
per makam). It is smaller than the SymbTr collection.

To get a better means of comparison, we also refer to the online
music score collections, in which the music scores are stored in var-
ious image formats. Although these collections are not machine-
readable, hence unsuitable for computational research, they con-
tain a much greater amount of music scores with respect to the

21http://www.musicxml.com/
22http://abcnotation.com/
23http://ifdo.ca/~seymour/runabc/makams/index.html

http://www.musicxml.com/
http://abcnotation.com/
http://ifdo.ca/~seymour/runabc/makams/index.html
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machine-readable collections. This leads us to accept these collec-
tions as our references while measuring the coverage of the score
collection. Among these online collections, we selected TRT Tar-
ihi Türk Müziği Arşivi) (English: TRT Historical Turkish Music
Archive (TRT-TTMA)24 and the TürkMüzik Kültürünün Hafızası
(English: “Memory of Turkish Music Culture” Collection) (TM-
KH) collections.25 From these collections, we crawled the meta-
data of the music scores to obtain the statistics (Table 3.6).

TRT-TTMA is arguably the most reliable resource as it orig-
inates from TRT. The scores in TRT-TTMA are sold online. As
of July 2014, TRT-TTMA includes ∼ 17000 scores in total, all
of which are manually scanned from physical scores. TRT-TTMA
has some duplicate entries and some compositions, which are not in
the context of OTMM, (e.g. church chants, operettas etc.). When
these compositions are removed from comparison, the number of
compositions are reduced to ∼ 12000.

TMKH is created by funds from the Istanbul 2010 European
Capital of Culture Organization26 through the European Union.
As of July 2014, the TMKH collection includes ∼ 45000 scanned
scores (where multiple versions are available for almost each work)
of the personal collections of 3 professionalmakammusicians/scho-
lars. The collection is free, however there are several restrictions
on the site navigation and the number of daily downloads.

Some of the names of the makam, usul and form in the col-
lections slightly differ from each other. To match the names, we
carry a semi-automatic procedure. First, we use an automatic string
matching method. The algorithm we chose uses a weighted mea-
sure which consists of two edit distance measures:27 longest com-
mon subsequence, andDamerau–Levenshtein distance, which have
0.7 and 0.3 weights respectively. The weights are determined em-
pirically by varying them to find a configuration that results in sat-
isfactorymatches. Then, we go through themeatches andmanually
correct the erroneous and missing pairs.

24http://www.trtkulliyat.com/
25http://www.sanatmuziginotalari.com/; accesible through http://

turkmusikisivakfi.org/.
26http://istanbul2010.org/
27The implementation is here: https://github.com/gopalkoduri/

string-matching/

http://www.trtkulliyat.com/
http://www.sanatmuziginotalari.com/
http://turkmusikisivakfi.org/
http://turkmusikisivakfi.org/
http://istanbul2010.org/
https://github.com/gopalkoduri/string-matching/
https://github.com/gopalkoduri/string-matching/
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To assess how well the SymbTr collection covers the OTMM,
we compared the version v2.0.0 of our collection against these mu-
sic score collections. From each collection we report the number
of compositions, composers, makams, forms and usuls. We also
check how much the makams, forms and usuls in the SymbTr col-
lection overlap with the corresponding type of metadata in other
collections. We define overlap as:

O
(
AAA (R)

)
=

∣∣AAA (SymbTr) ∩AAA (R)
∣∣

|AAA (R)|
(3.1)

where AAA (SymbTr) is the set of the subjected attribute (makam, u-
sul or form) from the score collection SymbTr v2.0.0, AAA (R) is
the set of the subjected attribute from the referance collection R,
against which we want to measure our collection’s coverage and
O
(
AAA (R)

)
is the overlap, which demonstrates how much the sub-

jected attribute ofR is represented in SymbTr.
Table 3.6 shows the overlap of the makams, usuls, forms be-

tween our collection and the threemusic score collections explained
above. We can observe that the SymbTr collection covers almost
all of the makams, usuls and forms in the TSMD. While the num-
ber of compositions are much less than TRT-TTMA and TMKH,
there is a fair number of overlapping makams, usuls and forms
the SymbTr collection with respect to TRT-TTMA and TMKH.
Note that in OTMM, it is common to have different titles for the
scores of the same composition (first line of lyrics, the chorus etc.)
and a composermight have various names (e.g. aliases, titles, added
surname etc.). It is hard to obtain an accurate overlap for these at-
tributes. Hence, the overlap of the composers and the compositions
are not computed.

Note that themakams, usuls and forms listed in the score collec-
tions are not evenly distributed, some of these attributes are much
more represented than the others. Hence we should also consider
the coverage of these attributes with respect to their rate of presence
in the reference collection. Taking these circumstances into con-
sideration, we have modified the overlap function by adding some
measure parameters as explained below:
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SymbTr v2.0.0 TSMD TRT-TTMA TMKH
Compositions 2,200 600 12,035 45,368
Composers 455 230 1,447 2,674
Makams 157 20 (1) 293 (0.49) 317 (0.45)
Usuls 84 46 (0.89) N/A 382 (0.22)
Forms 62 6 (1) 110 (0.35) 90 (0.31)

Table 3.6: Coverage of the score collection in the corpus. The
number in paranthesis is the overlap measure Equation 3.1 in per-
centage. N/A indicates that data is not available.

• The attribute setAAA (R) is treated as an enumeration such that
each element α(R)

k ∈ AAA (R) is ordered according its occu-
rance (in decreasing order) with respect to the other elements.
The number of elements inAAA (R) is

∣∣AAA (R)
∣∣.

• An element α(R)
k has an occurrence, o

(
α
(R)
k

)
, in the collec-

tion such that o
(
α
(R)
k

)
≥ o(α

(R)
k+1),∀k ∈

[
1 :
∣∣AAA (R)

∣∣− 1
]
.

Moreover,

|AAA (R)|∑
k=1

o
(
α
(R)
k

)
= |R| (3.2)

where |R| indicates the number of scores in the reference
collection,R.

• AAA (R)[1 : k] denotes the first k elements in the enumerated
attribute set, i.e. the kmost occuring elements in the attribute
set.

• The occurence ratio, ô
(
α
(R)
k

)
, is defined as:

ô
(
α
(R)
k

)
=
o
(
α
(R)
k

)
|R| (3.3)
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• The cumulative occurrence ratio Ô
(
α
(R)
k

)
is the summation

of the occurence ratios of the elements in the enumeration
AAA (R)[1 : k] up to α(R)

k as,

Ô
(
α
(R)
k

)
=

∑k
1 o
(
α
(R)
k

)
|R| (3.4)

Notice that, Ô
(
α
(R)

|AAA (R)|

)
= 1, as it includes all of the refer-

ence collection.

• We measure the overlap of SymbTr against Ô
(
α
(R)
k

)
’s.

Ok

(
AAA (R)

)
=

∣∣AAA (SymbTr) ∩AAA (R)[1 : k]
∣∣

|AAA (R)[1 : k]|
(3.5)

• Finallywe define the attribute coverageC
(
AAA (R)

)
ofSymbTr

againstR.

C (AAA (R)) = max
(
Ô
(
α
(R)
k

))
| Ok

(
AAA (R)

)
= 1

(3.6)

By applying this modified procedure, we have reached detailed
results specifically different for the entities with different occurence
ratios. In Figure 3.4, two functions for Ok

(
makams(R)

)
are pro-

vided with respect to AAA = makams. In the Figure, SymbTr
corresponds to v2.0.0 of our collection and R corresponds to ei-
ther TMKH or TRT-TTMA.

The overlap,Ok

(
makams(TMKH)

)
, of TMKH by the SymbTr

collection is equal to 1, when the makams which contribute less
then 0.1% to the TMKH are excluded, i.e. ô

(
makam

(TMKH)
k

)
<

0.001. According to this specific k value, SymbTr covers TMKH
by 96%; C

(
makams(TMKH)

)
= 0.96.
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=

=

Figure 3.4: Overlap with respect to the makam, our corpus vsTM-
KH and TRT-TTMA. The dashed lines indicate the coverage val-
ues for TRT-TTMA (0.76) and TMKH (0.96).

The overlap, Ok

(
makams(TRT-TTMA)

)
of TRT-TTMA by the

SymbTr collection is equal to 1, when the makams which con-
tribute less than 0.6%, i.e. ô

(
makam

(TRT-TTMA)
k

)
< 0.006, are

excluded, providing a coverage value C
(
makams(TRT-TTMA)

)
of

= 0.76.
For the form attribute, the coverage C

(
forms(TMKH)

)
is 98%

with ô
(
form

(TMKH)
k

)
< 0.002 are excluded forTMKH. ForTRT-

TTMA, the form coverage C
(
forms(TRT-TTMA)

)
is 86%, when

the formswith ô
(
form

(TRT-TTMA)
k

)
< 0.01 are excluded. ForTM-

KH, SymbTr has a usul coverage C
(
usuls(TMKH)

)
of 94%, when

ô
(
usul

(TMKH)
k

)
< 0.003 are excluded. TRT-TTMA does not pro-

vide the usul information.

Completeness

The SymbTr-slugs include the makam, usul, form and artist infor-
mation. Moreover, miscellaneous metadata such as the key signa-
ture and nominal tempo can be easily parsed from mu2 headers or
crawled fromMusicBrainz by referring to the relevant work/recor-
ding MusicBrainz identifier (MBID).28

On the other hand, the set of structure annotations in the lyrics
column in the SymbTr-txt scores (and all other SymbTr formats,
which are generated by Mus2-alfa) does not convey the complete

28The relations are stored in: https://github.com/MTG/SymbTr/blob/
v2.4.3/symbTr_mbid.json.

https://github.com/MTG/SymbTr/blob/v2.4.3/symbTr_mbid.json
https://github.com/MTG/SymbTr/blob/v2.4.3/symbTr_mbid.json
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information about the section boundaries and the section names.
First, the section name (and hence the first note of a section) is only
given for the instrumental sections and the final note of the instru-
mental sections are not marked at all. Moreover, the section name
does not indicate if there are any differences between the renditions
of the same section. For the vocal sections, only the last syllable
of a poetic line is marked (i.e. with double space in the end of
the lyrics syllable). The marked note does not typically coincide
with the actual ending of the vocal section since a syllable can be
sung for longer than one note or there might be a short instrumental
movement in the end of the vocal section.

Out of 2200, 1771 txt-scores in SymbTr v2.4.3 has some edito-
rial section information. The remaining 429 scores either lack the
editorial section information or they are very short compositions
such that they do not have any sections. Given the linked and/or
embedded metadata, we can argue that SymbTr-scores are editori-
ally complete except the section labels. Later in Section 4.3 an au-
tomatic section extraction and labeling method is proposed, which
uses the implicit section information in the SymbTr-txt scores.

Including the transcription of Tanburi Cemil Bey’s Çeçen Kızı
performance, 856 SymbTr scores are currently paired with 2217
recordings in the CompMusic OTMM audio collection. The rela-
tional statistics between the audio recordings and SymbTr scores
can be seen in Table 3.7.

Quality and Re-usability

The scores in the SymbTr collection are obtained from reliable
sources and curated by experts (Karaosmanoğlu, 2012; Karaos-
manoğlu, 2015). Moreover, all music scores in the SymbTr collec-
tion contain the OTMM-specific information observed in the nota-
tion properly such as the key signature and accidental symbols so
that the (machine-readable) scores can be sythesized with proper
tuning.

The SymbTr collection is available to public and licensed un-
der the CC BY-NC-SA 4.0 (International). This way, a user can
make necessary changes on a certain score or contribute his/her
own scores and share their own works under the same license.
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n

num. works with
SymbTr, related to
n num. recordings

total
num. audio
recordings

1 315 315
2 191 382
3 130 390
4 84 336
5 41 205
6 29 174
7 24 168
8 9 72
9 7 63
10 3 30
11 4 44
12 2 24
13 1 13
Total 855 2216

Table 3.7: Number of works with SymbTr-scores distributed with
respect to the related number of audio recordings.

The MusicXML is supported by many popular notation soft-
ware. There are also numerous score parsing and analysis tools,29
which can read and write this format. The MusicXML format is
highly suitable for music score creation, sharing and content val-
idation. We plan to make MusicXML as the default score format
of SymbTr in the future (v3.0.0).Metadata

3.1.3 Music Theory
The makam, form and usul information is fetched from SymbTr-
slugs, SymbTr-txt files, SymbTr-mu2 headers, MusicBrainz and
the internal music theory library of Mus2-alfa (Karaosmanoğlu,
2015, Appendix B) (courtesy of M. Kemal Karaosmanoğlu). The
makam, form and usul instances are matched with each other by us-
ing the semi-automatic string matching procedure explained in the

29e.g. in Music21: http://web.mit.edu/music21/doc/usersGuide/
usersGuide_08_installingMusicXML.html

http://web.mit.edu/music21/doc/usersGuide/usersGuide_08_installingMusicXML.html
http://web.mit.edu/music21/doc/usersGuide/usersGuide_08_installingMusicXML.html
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score coverage computation (Section 3.1.2). The makam,30 form31

and usul32 dictionaries are stored separately as JSON files. Each
instance in the resultant dictionaries contains the naming of the in-
stance in different sources and the structured music theory knowl-
edge obtained from the music theory library of Mus2-alfa. An
instance with a unique identifier is created in Dunya-makam for
each makam form and usul instance. The instances also consist of
aliases (e.g. Çargah (Yeni) vs. Yeni Çargah).

Figure 3.5 shows an example instance from each dictionary and
the explanation of the structured data. The dictionary is used later
in automatic score validation (Section 4.4.3) and also to supply the
basic music theory information in automatic description methods
(e.g. Section 5.9 and Section 6.4).

3.1.4 Metadata
The metadata includes the general information about our corpus. It
identifies the entities forming the corpus such as the audio record-
ings, releases, artists (composers, lyricists, performers etc.), ma-
kams, usuls, forms and works. Moreover, these entities are linked
with each other (e.g. the instrument an artist performs in an au-
dio recording) and also with other information sources such as re-
lated web pages (e.g. artist biographies) and knowledge bases (e.g.
Wikidata33). These relationships may be used to navigate and dis-
cover the concepts of OTMM (e.g. in Dunya-makam as will be
described in Section 7.1.1).

As of February 2016, we have collected more than 15000 in-
stances of metadata and 92000 relationships (Figure 3.6). These in-
clude the recording, release, artist, work, instrument, makam, form
and usul information in the relevant entities in our corpus. Some

30https://github.com/sertansenturk/otmm_corpus_stats/
blob/94c05d4e08486012f43b268955f3f1b51a3658fb/data/
makamFormUsulDicts/makam_extended.json

31https://github.com/sertansenturk/otmm_corpus_stats/
blob/94c05d4e08486012f43b268955f3f1b51a3658fb/data/
makamFormUsulDicts/form_extended.json

32https://github.com/sertansenturk/otmm_corpus_stats/
blob/94c05d4e08486012f43b268955f3f1b51a3658fb/data/
makamFormUsulDicts/usul_extended.json

33https://www.wikidata.org

https://github.com/sertansenturk/otmm_corpus_stats/blob/94c05d4e08486012f43b268955f3f1b51a3658fb/data/makamFormUsulDicts/makam_extended.json
https://github.com/sertansenturk/otmm_corpus_stats/blob/94c05d4e08486012f43b268955f3f1b51a3658fb/data/makamFormUsulDicts/makam_extended.json
https://github.com/sertansenturk/otmm_corpus_stats/blob/94c05d4e08486012f43b268955f3f1b51a3658fb/data/makamFormUsulDicts/makam_extended.json
https://github.com/sertansenturk/otmm_corpus_stats/blob/94c05d4e08486012f43b268955f3f1b51a3658fb/data/makamFormUsulDicts/form_extended.json
https://github.com/sertansenturk/otmm_corpus_stats/blob/94c05d4e08486012f43b268955f3f1b51a3658fb/data/makamFormUsulDicts/form_extended.json
https://github.com/sertansenturk/otmm_corpus_stats/blob/94c05d4e08486012f43b268955f3f1b51a3658fb/data/makamFormUsulDicts/form_extended.json
https://github.com/sertansenturk/otmm_corpus_stats/blob/94c05d4e08486012f43b268955f3f1b51a3658fb/data/makamFormUsulDicts/usul_extended.json
https://github.com/sertansenturk/otmm_corpus_stats/blob/94c05d4e08486012f43b268955f3f1b51a3658fb/data/makamFormUsulDicts/usul_extended.json
https://github.com/sertansenturk/otmm_corpus_stats/blob/94c05d4e08486012f43b268955f3f1b51a3658fb/data/makamFormUsulDicts/usul_extended.json
https://www.wikidata.org
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"semai": {
        "dunya_name": "Semai",
        "dunya_uuid": "1942822b-778c-46a0-ad68-a38fdf92e321",  
        "variants": [
            {
                "clustering": [
                    1, 
                    1, 
                    1
                ], 
                "symbtr_internal_id": "4", 
                "mu2_name": "Semâî", 
                "symbtr_internal": "semai", 
                "mertebe": 4.0, 
                "num_pulses": 3.0
            }, 
            {
                "clustering": [
                    2, 
                    2, 
                    2
                ], 
                "symbtr_internal_id": "97", 
                "mu2_name": "Semâî (3/8)", 
                "symbtr_internal": "semai_3_8", 
                "mertebe": 8.0, 
                "num_pulses": 3.0
            }
        ], 
        "symbtr_slug": "semai", 
        "mb_tag": [
            "semai"
        ]
    }

usul key
name in Dunya-makam

unique identifier in Dunya-makam
list of variants of the usul

duration of the strokes  in the usul cycle

ID of the variant in Mus2-alfa
name of the variant in SymbTr-mu2 files

slug of the variant in Mus2-alfa
mertebe of the variant

zaman (number of pulses) of the variant

name in SymbTr-slug
tags in MusicBrainz recordings 

"sazsemaisi": {
        "dunya_name": "Sazsemaisi",
        "dunya_uuid": "9a33c7d6-7fe4-485d-aea6-0af3673e9ac1",  
        "mu2_name": "Sazsemâîsi", 
        "repetitive_section": "TESLIM,TESLİM,MÜLÂZİME,MULAZIME", 
        "symbtr_slug": "sazsemaisi",
        "mb_tag": [
            "sazsemaisi"
        ],
        "type": "instrumental",
        "genre": "TSM"
     }

form key
name in Dunya-makam

unique identifier in Dunya-makam
name in SymbTr-mu2 files

repetitive section name(s) in SymbTr-txt files
name in SymbTr-slug

tags in MusicBrainz recordings

"vocal" or "instrumental" type
genre ("TSM" for classical, "THM" for folk) 

"huzzam": {
        "dunya_name": "Hüzzam", 
        "dunya_uuid": "c5fa8f01-6959-4e6d-a998-d31d0fc17182", 
        "karar_midi_freq": 487.46, 
        "karar_symbol": "B4b1", 
        "key_signature": [
            "B4b1", 
            "E5b4", 
            "F5#4"
        ], 
        "mb_tag": [
            "hüzzam"
        ], 
        "mu2_name": "Hüzzam", 
        "symbtr_slug": "huzzam"
    }

makam key
name in Dunya-makam

unique identifier in Dunya-makam
tonic frequency when A4 = 440 Hz

tonic symbol
accidentals in the key signature

tags in MusicBrainz recordings 

name in SymbTr-mu2 files
name in SymbTr-slug

M
ak

am

Description JSON Representation

F
or

m
U

su
l

Figure 3.5: Examples of makam, form and usul instances in the
dictionaries stored in JSON format and their description.
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Figure 3.6: The number of metadata instances and the num-
ber of relationships between each type of entity in the CompMu-
sic OTMM makam corpus.

entries in MusicBrainz also include textual annotations within the
structural data.34

3.1.5 Automatic Description
As explained in earlier in Section 3.1, the automatic description is
considered as part of the corpora. As of any content in the cor-
pus, the automatic description is not static since the analysis tools
(and hence results) can be improved, extended and modified in the
future. Currently, the total size of the automatic description is ap-
proximately 191 gigabytes.

34e.g. http://musicbrainz.org/work/93f31506-25aa-49da
-96cd-660c6a2e44bf and http://musicbrainz.org/recording/
37dd6a6a-4c19-4a86-886a-882840d59518

http://musicbrainz.org/work/93f31506-25aa-49da-96cd-660c6a2e44bf
http://musicbrainz.org/work/93f31506-25aa-49da-96cd-660c6a2e44bf
http://musicbrainz.org/recording/37dd6a6a-4c19-4a86-886a-882840d59518
http://musicbrainz.org/recording/37dd6a6a-4c19-4a86-886a-882840d59518
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The automatic description methodologies and the analysis of
the CompMusic OTMM corpus are described between the Chap-
ters 4 and 6. Please refer to these Chapters formore detail andChap-
ter 7 for how the automatic description is used to discover theComp-
Music OTMM corpus.

3.2 Test Datasets
Test datasets are collections arranged for the specific research prob-
lems. These datasets are typically used as the ground-truth to eval-
uate methodologies applied to certain problems. They can be com-
posed of different types of data such as synthetic or “real-world”
data with manual, semi-automatic or automatic annotations.

In our test datasets, we have manual annotations by the experts.
The data is selected from the CompMusic OTMM corpus. Boz-
kurt, Ayangil, and Holzapfel (2014) made a review of computa-
tional analysis literature for OTMM. The datasets that we mention
in this section are useful for some of the research tasks discussed
in this paper such as structure analysis, automatic tonic identifi-
cation, automatic ornamentation segmentation and melodic phrase
segmentation. All the test datasets mentioned in this Section are ei-
ther the first datasets or the first open datasets created for the studied
research problems on OTMM.

3.2.1 Symbolic Melodic Segmentation Dataset
Karaosmanoğlu and Bozkurt have studied the problem of usul and
makam driven automatic melodic segmentation for Turkish Music
in (Bozkurt, Karaosmanoğlu, Karaçalı, & Ünal, 2014). The source
code and the test dataset are published in (Karaosmanoğlu, Boz-
kurt, Holzapfel, & Doğrusöz Dişiaçık, 2014) and they are avail-
able online.35 The test dataset presents a large machine-readable
dataset of OTMM scores in SymbTr v2.0.0 format, segmented into
phrases. The segmentation facilitates computational research on
melodic similarity between phrases, and relation between melodic
phrasing and meter, rarely studied topics due to unavailability of
data resources.

35http://www.rhythmos.org/shareddata/turkishphrases.html

http://www.rhythmos.org/shareddata/turkishphrases.html
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The phrase segmentation code and the test dataset are used as
part of the automatic score structural analysis methodology desc-
ribed in Section 4.3. To simplify the integration process, I forked
the dataset to GitHub.36 The latest release has minor changes from
the original test dataset in (Karaosmanoğlu et al., 2014) such as
duplicate file removal and changing the encoding of the scores to
UTF-8. The dataset currently consists of 31362 phrases on a set
of 480 scores of different compositions manually annotated by 3
experts of this music.

3.2.2 Symbolic Section Dataset
To test the semiotic labeling method in described in (Şentürk &
Serra, 2016b) (Section 4.3), I have created a small dataset by mark-
ing the start and end of each section in the selected SymbTr-scores,
and labeling the melodic and lyric relations manually as described
in Section 4.3.3. The dataset is open and available online.37

The release published for (Şentürk & Serra, 2016b) contains
the SymbTr scores of 23 vocal compositions in the şarkı form and
42 instrumental compositions in peşrev and sazsemaisi forms in
the txt and PDF formats. The scores are selected from the SymbTr
release version 2.4.2.

3.2.3 Makam Recognition Dataset
We have created a comprehensive dataset to address the lack of
open and representative datasets for makam recognition.38 The
release published in (Karakurt, Şentürk, & Serra, 2016) is com-
posed of 50 recordings from each of the 20most common makams
in CompMusic OTMM corpus. Currently, this release is the largest
makam recognition dataset. The dataset provides the manually an-
notated tonic and makam, and also the predominant melody, which
is used in the makam recogition and tonic identification experi-
ments conducted in (Karakurt et al., 2016) (Section 5.7.3). The
dataset is explained in detail in Section 5.7.4.

36https://github.com/MTG/otmm_symbolic_phrase_dataset
37https://github.com/MTG/otmm_symbolic_section_dataset/

releases/tag/fma_2016
38https://github.com/MTG/otmm_makam_recognition_dataset

https://github.com/MTG/otmm_symbolic_phrase_dataset
https://github.com/MTG/otmm_symbolic_section_dataset/releases/tag/fma_2016
https://github.com/MTG/otmm_symbolic_section_dataset/releases/tag/fma_2016
https://github.com/MTG/otmm_makam_recognition_dataset
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3.2.4 Tonic Identification Datasets

The tonic identification task has been studied in (Şentürk, Gulati,
& Serra, 2013) (Section 6.4), (Atlı et al., 2015) (Section 5.7.2)
and (Karakurt et al., 2016) (Section 5.7.2). Additionally, the score-
informed composition identification method proposed in (Şentürk
& Serra, 2016a) (Section 6.6) identifies the tonic in the process.

For score-informed tonic identification (Şentürk et al., 2013),
the tonic frequency of 257 audio recordings are annotated (Sec-
tion 6.4.3).39 The SymbTr-score (version v1.0.0) of the 57 rel-
evant compositions are indicated in the dataset. These recordings
and the scores are identical to the ones in the section linking dataset
explained in Section 3.2.6. Later in (Atlı et al., 2014), the tonic
of 1093 audio recordings are annotated.40 The test datasets used
in (Karakurt et al., 2016) and (Şentürk & Serra, 2016a) are intro-
duced in Section 3.2.3 and Section 3.2.5, respectively.

Recently, the tonic annotations included in all these test datasets
are combined together.41 The combined dataset consists of tonic
annotations of 2007 recordings. Instead of a single annotation per
recording, the combined dataset stores all the tonic annotations for
a recording with its source. While approximately three fourth of
the dataset is only annotated in a single source so far; we plan to
apply the automatic tonic identification methods described in (Şen-
türk et al., 2013; Atlı et al., 2015) and (Karakurt et al., 2016) to
the recordings in the test dataset. Similar to (Holzapfel, Davies,
Zapata, Oliveira, & Gouyon, 2012), we would like to use the mu-
tual (dis)agreement between the manual and automatic annotations
for each recording not only to evaluate the annotations themselves
but also to label “difficult” performances and investigate possible
causes (makam, heterophony, production quality etc.).

39https://github.com/MTG/otmm_tonic_dataset/releases/tag/
2013_ismir

40https://github.com/MTG/otmm_tonic_dataset/releases/tag/
2015_fma

41https://github.com/MTG/otmm_tonic_dataset/releases/tag/
senturk2016thesis

https://github.com/MTG/otmm_tonic_dataset/releases/tag/2013_ismir
https://github.com/MTG/otmm_tonic_dataset/releases/tag/2013_ismir
https://github.com/MTG/otmm_tonic_dataset/releases/tag/2015_fma
https://github.com/MTG/otmm_tonic_dataset/releases/tag/2015_fma
https://github.com/MTG/otmm_tonic_dataset/releases/tag/senturk2016thesis
https://github.com/MTG/otmm_tonic_dataset/releases/tag/senturk2016thesis
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3.2.5 Composition Identification Dataset
For the score-informed composition identification experiments in
(Şentürk & Serra, 2016a) (explained in Section 6.6), a test dataset
of the music scores of 147 instrumental compositions selected from
the SymbTr collection and 743 audio recordings selected from
the CompMusic OTMM audio collection are collected.42 In the
dataset, there are 360 recordings associated with 87 music scores,
forming 362 relevant audio-score pairs.

The predominant melody is included in the dataset for each
recording. Moreover, the tonic frequency of each audio score pair
is annotated manually. The dataset and the experiments are ex-
plained more in detail in Section 6.6.3 and Section 6.6.4, respec-
tively.

3.2.6 Section Linking Dataset
To test the section linking methodology proposed in (Şentürk, Hol-
zapfel, & Serra, 2014) (explained in Section 6.7), we have anno-
tated the start and end of each section in 57 SymbTr-scores and 257
relevant audio recordings.43 The number of section annotations in
the audio recordings is 2095. The dataset is explained more in de-
tail in Section 6.7.3. The dataset is also used partially in (Holzapfel
et al., 2015) (Section 6.7.6).

3.2.7 Partial Audio-Score Alignment Dataset
We have recently created a dataset to study the time-deviations be-
tween the human annotators and automatic audio-score alignment
algorithms.44 The dataset consists of short fragments (< 1 minute)
selected from 19 audio recordings in the CompMusic OTMM cor-
pus. The recordings are associated with 14 SymbTr-scores. Each
recording excerpt is annotated at least by 4 experts by referring to
the note sequence in the relevant SymbTr-score. Note that the an-

42https://github.com/MTG/otmm_composition_identification
_dataset/tree/smc2016

43https://github.com/MTG/otmm_section_dataset/tree/
2014_jnmr

44https://github.com/MTG/otmm_partial_alignment_dataset

https://github.com/MTG/otmm_composition_identification_dataset/tree/smc2016
https://github.com/MTG/otmm_composition_identification_dataset/tree/smc2016
https://github.com/MTG/otmm_section_dataset/tree/2014_jnmr
https://github.com/MTG/otmm_section_dataset/tree/2014_jnmr
https://github.com/MTG/otmm_partial_alignment_dataset
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notations (of 1 expert) are partially taken from (Benetos & Holzap-
fel, 2015).

We are currently preparing the experimental setup to study the
aforementioned problem. In the meantime, Atlı (2016) used a part
of the dataset to the evaluate of the predominant melody extraction
method proposed in (Atlı et al., 2014) (Section 5.2).

3.2.8 Audio-Score Alignment Dataset
For the initial experiments in note-level audio-score alignment (Sec-
tion 6.8), we collected 6 audio recordings of 4 peşrev composi-
tions (Şentürk, Gulati, & Serra, 2014). The audio recordings in
the dataset have the annotated tonic frequencies, 51 section anno-
tations and 3896 note annotations in total. The note annotations are
derived from the manual transcriptions done in (Benetos &Holzap-
fel, 2015) and they follow the note sequences in the correspond-
ing SymbTr-scores. The statistics of this dataset is given in Sec-
tion 6.8.2.45

Currently, we are extending the dataset by including the rest of
the transcriptions in (Benetos & Holzapfel, 2015) and also annotat-
ing additional recordings.

3.2.9 Audio-Lyrics Aligment Dataset
Within the CompMusic project, Dzhambazov et al. has been work-
ing on automatic lyrics-to-audio alignment in OTMM (Dzhamba-
zov, Şentürk, & Serra, 2014; Dzhambazov & Serra, 2015; Dzham-
bazov, Srinivasamurthy, Şentürk, & Serra, 2016). The Acapella
Sections Dataset46 and Şarkı Vocal Dataset,47 used in these stud-
ies utilize the manually annotated sections in the section linking
dataset (Section 3.2.6). Şarkı Vocal Dataset (Dzhambazov et al.,
2016) also incorporates the note-level annotations in the latest ver-
sion of the OTMM audio-score alignment dataset (Section 3.2.8).

45https://github.com/MTG/otmm_audio_score_alignment
_dataset/tree/2014_fma

46http://compmusic.upf.edu/turkish-makam-acapella-sections
-dataset

47http://compmusic.upf.edu/node/226

https://github.com/MTG/otmm_audio_score_alignment_dataset/tree/2014_fma
https://github.com/MTG/otmm_audio_score_alignment_dataset/tree/2014_fma
http://compmusic.upf.edu/turkish-makam-acapella-sections-dataset
http://compmusic.upf.edu/turkish-makam-acapella-sections-dataset
http://compmusic.upf.edu/node/226
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3.3 Ontologies
After the corpus generation, I have been working on building on-
tologies (Gruber, 1995) that formally define the concepts, the prop-
erties and the relations in the domain of OTMM.48 They are based
on the existing ontologies such as Friend of a Friend Ontology
(FOAF) (Brickley &Miller, 2014), ordered list ontology49 and the
music ontologies developed by (Raimond, 2008). The entities are
organized in four distinct ontologies:

1. Makam Symbolic Music Ontology: Based on the Symbolic
Music Ontology,50 it defines the entities in the symbolic do-
main; including symbolic durations (fourth, dotted sixteenth
etc.), the accidentals used in classical and folk repertoire (ko-
ma, bakiye etc.), stroke names (düm, tek etc.) and traditional
note names (gerdaniye, hüseyni etc.).

2. MakamOntology: Defines theOTMMspecific entities such
as the makams, forms, usuls, chords and çeşnis. This ontol-
ogy imports the Makam Symbolic Music ontology.

3. MakamScoreOntology: Defines the concepts related to the
music scores such as notes, measures, composers, lyricists,
transcribers, compositions. This ontology imports theMakam
ontology.

4. OTMM Ontology: Defines the all entities about OTMM.
This ontology imports all the aforamentioned ontologies. In
addition, it defines the entities related to performance such
as (traditional) instruments, performers, tonic and ahenk.

A visualization of the entities and relations in the ontologies are
given in Figure 3.7. I am currently at the stage to generate a knowl-
edge base from the structured (and linked) (meta)data included in
the CompMusic OTMM corpus.

48https://github.com/sertansenturk/makam-ontologies
49http://smiy.sourceforge.net/olo/spec/orderedlistontology

.html
50http://purl.org/ontology/symbolic-music

https://github.com/sertansenturk/makam-ontologies
http://smiy.sourceforge.net/olo/spec/orderedlistontology.html
http://smiy.sourceforge.net/olo/spec/orderedlistontology.html
http://purl.org/ontology/symbolic-music
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3.4 Conclusion
In this Chapter, a research corpus of OTMM is presented. The
corpus is created under the considerations to meet some criteria:
purpose, quality, completeness, coverage and reusability. We also
present some test datasets, which have been used to test and cali-
brate some computational methodologies, e.g. (Bozkurt, Karaos-
manoğlu, et al., 2014; Dzhambazov et al., 2014; Şentürk et al.,
2013; Şentürk, Gulati, & Serra, 2014; Şentürk, Holzapfel, & Serra,
2014).

Having created a representative corpus and obtained its auto-
matic description, the next step is to generate a knowledge-base by
taking the definitions in the ontologies as the reference. This way,
the structured data is linked with each other and other relevant in-
formation sources. The resultant linked data would provide us a
broader, semantic description of OTMM. Moreover, the ontology
specification would allow relevant applications (such as Dunya) to
interact with others using common semantics.

The CompMusic OTMM corpus and the relevant test datasets
have facilitated most of the research done in the context of this the-
sis and in the context of computational research applied on OTMM
in the recent years. We hope that the CompMusic OTMM corpus
will increase both in size and variety and it will continue to stimu-
late academic studies in MIR and computational musicology in the
future.





Chapter 4
Score Analysis

In analyzing amusic piece, scores provide an easily accessible sym-
bolic description of many relevant musical components. Moreover
they typically include editorial annotations such as the nominal
tempo, the rhythmic changes and structural markings. These as-
pects render the music score a practical source to extract and ana-
lyze the melodic, rhythmic and structural properties of the studied
music.

In this chapter, the automatic content description process ap-
plied to the music scores of OTMM is explained. First, the editorial
information in the scores (such as composer, makam and tempo)
is parsed. This information is fetched from three different sources,
namely the SymbTr scores in the txt format, in the mu2 format (the
formats are explained in Section 3.1.2) andMusicBrainz. Next, the
information is validated against each other. The main contribution
in this chapter is the structural analysis methodology (Section 4.3),
which aims to extract and label the melodic and lyrics organization
both on phrase-level and section-level, using symbolic information
available in the music scores of OTMM. The method labels the ex-
tracted sections and phrases semiotically according their relations
with each other using basic string similarity and graph analysis.

The contributions may be summarized as:

• An automatic structural analysis method applied on Otto-
man-Turkish makam music scores.

• A novel semiotic labelingmethod based on network analysis.

51
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• Automatic description of the SymbTr collection encompass-
ing the editorial metadata, the sections and the phrases ob-
tained for 2200music scores, formore than 1300music scores
and 1750 music scores, respectively.

• An open SymbTr-score parser, which fetches the embed-
ded and online metadata and applies the structural analysis
method.

• Open source packages for automatic content validation and
music format conversion of SymbTr-scores, extending the
score parser.

The structural analysis and semiotic labeling are published in
(Şentürk & Serra, 2016b). The obtained metadata and the structure
information is later used in the joint analysis of music scores and
audio recordings extensively (Chapter 6).

The structure of the rest of the Chapter is as follows: Section 4.1
presents the parsing and (cross-)validation of the score metadata
from SymbTr-txt and SymbTr-mu2 scores and also from Music-
Brainz. Section 4.2 describes the extracted melodic and lyrics fea-
tures. Section 4.3 explains the structural analysis methodology ap-
plied to the SymbTr-txt scores. Section 4.5 provides the statistics
of the automatic description of the SymbTr collection. Section 4.4
demonstrates the additional applications of the score parser and the
complementary tools for symbolic score processing. Section 4.6
wraps the Chapter with a brief conclusion and suggestions on fu-
ture research.

4.1 Metadata
Music scores, typically contain high quality, curated editoral meta-
data describing the relevant composition or (in case of transcrip-
tions) performance. For this reason music scores, when available,
could act as a highly reliable information source for describing
the overall characteristics of a music tradition. If the scores are
machine-readable, e.g. stored in tab separated values (TSV), exten-
sible markup language (XML) or JSON formats, the basic musical
elements may be automatically read and processed by a computer
without the need of some sophisticated information retrival tech-
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niques. Nevertheless, fetching such metadata may not be straight-
forward due to several reasons such as the format of the music score
(e.g. parsing tables vs. MusicXML), how the data is organized (e.g.
parsing a metadata header following a certain schema vs. plain
text).

The score-related metadata is extracted from different infor-
mation sources, namely the SymbTr-slug, the SymbTr-txt and
theSymbTr-mu2 of amusic score (the formats are explained in Sec-
tion 3.1.2) and MusicBrainz (Section 3.1.4). The relevant MBID
inMusicBrainz is looked up from a <SymbTr-slug,MBID> dictio-
nary.1 The metadata and the information sources are summarized
in Table 4.1. Remember that there also exists SymbTr-scores,
which are transcriptions (Section 3.1.2). The metadata is organized
to reflect this relation (Table 4.1).

The metadata obtained from each information source is aggre-
gated to obtain a structured description of the score-related meta-
data, linked to the relevant data via MusicBrainz.2 Moreover, the
makam, form, usul and tempo obtained from these multiple sources
are also cross validated (Section 4.4.3).

4.2 Lyrics and Melody
The lyrics and synthetic melody extracted from each structural el-
ement is used to compute the relationships between the structures
(Section 4.3). The synthetic melody is also the score feature used
for audio-score alignment througout Chapter 6. In section link-
ing experiments (Section 6.2), synthetic HPCPs are computed and
compared with synthetic melody. Figure 4.1 shows the lyrics and
the synthetic melody (according to the theoretical intervals defined
in the AEU theory) and the synthetic HPCPs extracted from an ex-
cept of the SymbTr-score of the composition “Gel Güzelim.”3

1https://github.com/MTG/SymbTr/blob/v2.4.3/symbTr_mbid
.json

2https://nbviewer.jupyter.org/github/sertansenturk/
symbtrdataextractor/blob/v2.1.0/extractsymbtrdata.ipynb

3https://github.com/MTG/SymbTr/blob/v2.4.3/txt/nihavent-
-sarki--aksak--gel_guzelim--faiz_kapanci.txt

https://github.com/MTG/SymbTr/blob/v2.4.3/symbTr_mbid.json
https://github.com/MTG/SymbTr/blob/v2.4.3/symbTr_mbid.json
https://nbviewer.jupyter.org/github/sertansenturk/symbtrdataextractor/blob/v2.1.0/extractsymbtrdata.ipynb
https://nbviewer.jupyter.org/github/sertansenturk/symbtrdataextractor/blob/v2.1.0/extractsymbtrdata.ipynb
https://github.com/MTG/SymbTr/blob/v2.4.3/txt/nihavent--sarki--aksak--gel_guzelim--faiz_kapanci.txt
https://github.com/MTG/SymbTr/blob/v2.4.3/txt/nihavent--sarki--aksak--gel_guzelim--faiz_kapanci.txt
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Table 4.1: Summary of the metadata related to a SymbTr score.
The sources named as “txt, mu2, MB” and “slug” refer to the con-
tents of the SymbTr-txt score, the header of the SymbTr-mu2
score, MusicBrainz and the SymbTr-slug (“[makam]--[form]--
[usul]--[title]--[artist]”).

Key txt mu2 MB slug Explanation
symbtr ✓ The SymbTr-slug, if supplied. Otherwise, the

filename
url ✓ The URL of the MusicBrainz attribute

(https://musicbrainz.org/work/[mbid] for works,
https://musicbrainz.org/recordings/[mbid] for
recordings)

work ✓ ✓ ✓ Related work. If the score is associated with a
recording, the key is “works.”

recordings ✓ Recordings related to the work in MusicBrainz.
Optional for scores associated with works. If the
score is associated with a recording instead of a
work, the key is “recording.”

composer ✓ ✓ ✓ Composer(s) related to the work
lyricist ✓ ✓ ✓ Lyricist(s) related to the work
makam ✓ ✓ ✓ Makam of the work
form ✓ ✓ ✓ Form of the work
usul ✓ ✓ ✓ ✓ Usul of the work
number_of_notes ✓ Number of notes and rests in the SymbTr-txt

score (annotation rows etc. are not counted)
duration ✓ Duration in nominal tempo
rhythmic_structure ✓ List of rhythmic (e.g. tempo, usul) changes in the

score
tempo ✓ ✓ Nominal tempo of the piece. Read from the mu2

header, validated with the note durations in
the SymbTr-txt

notation ✓ Shows whether a score is written in the classical
accidentals (“TSM”) or folk accidentals (“THM”).

genre ✓ Indicates whether the composition belongs to the
classical or the folk repertoire

key_signature ✓ Validated with the key signature of the makam of
the composition, stored in the makam dictionary
within the SymbTr collection.

language ✓ The lyrics language
scores The slug of the related SymbTr-score, obtained

from the <SymbTr-slug, MBID> dictionary in
the SymbTr collection.

ehtonic ✓ Symbol of the tonic note. Obtained by referring
to the karar symbol of the makam of the compo-
sition from the makam dictionary in the SymbTr
collection.

releases ✓ The releases which include the associated record-
ing. Only for the scores, which are associated with
recordings instead of works.

artist_credits ✓ The main credited artist(s) of the associated
recording. Only for the scores, which are asso-
ciated with recordings instead of works.

artists ✓ The artist(s), which are related to the associated
recording (e.g. performer, conductor). Only for
the scores, which are associated with recordings
instead of works.

https://github.com/sertansenturk/symbtrdataextractor/tree/v2.1.0/symbtrdataextractor/makam_data/makam.json
https://github.com/MTG/SymbTr/blob/v2.4.3/symbTr_mbid.json
https://github.com/sertansenturk/symbtrdataextractor/tree/v2.1.0/symbtrdataextractor/makam_data/makam.json
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Table 4.2: The features extracted from score fragments and their
summary for each computational task they are used as input.

Feature Source Task Frame Rate Explanation
Lyrics SymbTr-txt Lyrical relation-

ship computation
(Section 4.3.2)

N/A

Synthetic Melody I SymbTr-txt Melodic relation-
ship computation
(Section 4.3.2)

Least commonmulti-
plier of the symbolic
durations

Synthetic Melody II SymbTr-txt Preliminary section
linking experiments
(Appendix A)

10ms The tuning extracted from the
audio recording to be aligned
is used to generate the syn-
thetic melody.

Synthetic Melody III SymbTr-txt All audio-score
alignment tasks
in Chapter 6 ex-
cept Section 6.8
and Section 6.12

44100/2048 ≈ 46ms The rest durations are added
to the duration of the previ-
ous note (Figure 4.1d). The
theoretical tuning defined in
theAEU theory is used to gen-
erate the synthetic melody.

Synthetic Melody IV SymbTr-txt Note-Level Align-
ment (Section 6.8)
and Combined Joint
Analysis Tasks
(Section 6.12)

44100/2048 ≈ 46ms Same as SyntheticMelody III,
however the melodies are re-
synthesized with respect to
the estimated average tempo
(of the recording in the sec-
tion linking step and of the
estimated section in the note-
level alignment step).

Synthetic HPCPs SymbTr-MIDI Section Linking
(Section 6.7.4)

44100/2048 ≈ 46ms The frame size is chosen as
4096 samples. They are com-
puted with different number
of bins per octave in the sec-
tion linking experiments.

Table 4.2 summarizes the lyrics and melody-related features
extracted from the score and their usage in different computational
tasks.

4.2.1 Lyrics
The information in the lyrics column is used to determine the bound-
aries of the vocal sections in Section 4.3.2. The lyrics associated
with a sequence or an element x is a string denoted as λ(x), sim-
ply obtained by contatenating the syllables of the note sequence[
n̄
(x)
1 , . . . , n̄

(x)

|N̄(x)|

]
of x. The editorial annotations (Section 3.1.2)

and the whitespaces in the lyrics column are ignored in the process.
Then the characters in the obtained string are all converted to lower
case. Trivially, λ(n̄i) of a note n̄i is the syllable associated with the
note n̄i in the lyrics column.
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4.2.2 Synthetic Melody
Given a fragment (x) in the SymbTr-txt score, the corresponding⟨
n
(x)
i , d

(
n̄
(x)
i

)⟩
tuples in the note sequence N̄(x) is selected. Here,

the sum of the durations in the tuples
∑

i d
(
n̄
(x)
i

)
is equal to the

duration of the score fragment d(x). Then the makam of the com-
position is noted, which is given in the score, and obtain the karar-
symbol of the piece by checking the makam in the <makam,tonic>
dictionary (see Table 4.1).

Then the note-symbols n(x)
i are mapped to the Hc distances.

Themapping can be done according to amusic theory (e.g. theAEU
theory) with reference to the karar note. As an example see Fig-
ure 4.1: here the karar note is G4 (Nihavent makam) and all the
notes take on values in relation to that karar, as for instance 13 Hc
for the B4 . The intervals can also be mapped according to a tuning
(Section 5.9) extracted from audio recording(s) (Şentürk, Holzapfel,
& Serra, 2012, explained inAppendixA). Finally, a syntheticmelody

Ψ̂
(x)

=

[
ψ̂

(x)
1 , . . . , ψ̂

(x)∣∣Ψ̂(x)
∣∣] is calculated by sampling the mapped

notes relative to the their duration d
(
n̄
(x)
i

)
at a certain frame rate

and concatenating all samples (Figure 4.1c). In the score structural
analysis (Section 4.3.2), the synthetic melody is sampled with a
frame rate equal to the least common multiplier (LCM) of the sym-
bolic score durations (e.g. if there are only dotted eighth and fourth
notes in a score, the frame rate is a sixteenth note). In the audio-
score alignment experiments presented in Chapter 6, the frame rate
is selected as 2048/44100 = 46ms (21.5 samples per second),
which is equal to the frame rate of the predominant melody ex-
tracted from the audio recordings (Section 6.2).

In makammusic practice, the notes preceding rests may be sus-
tained for the duration of the rest.4 For this reason, the rests in the
score may be ignored and their duration may be added to the pre-
vious note (Figure 4.1d) in the synthetic melody computation step
in the audio-score alignment experiments (Section 6.2).

4Figure 6.1 in Chapter 6 shows the same score fragment in Figure 4.1 with
a linked audio fragment. Notice that the notes in 6.1a are sustained in the per-
formance as seen in the audio waveform in Figure 6.1b.
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Figure 4.1: A short excerpt from the score of the composition,Gel
Güzelim. a) The score, b) the lyrics, c) the synthetic melody com-
puted from the note symbols and durations. The spaces in the end
of the syllables are displayed as *s. d) the synthetic melody with
the rest duration added to the duration of the previous note. e) the
synthetic HPCPs.

4.2.3 Synthetic Harmonic Pitch Class Profiles

In the section-linking experiments that will be described in Sec-
tion 6.7.4, SymbTr scores in MIDI format are used to obtain the
synthetic HPCPs. Given a fragment (x) selected from a MIDI-
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score, audio is generated from the fragment. TiMidity++5 is used
with the default parameters for the audio synthesis. Since there
are no standard SoundFonts of makam music instruments, the de-
fault SoundFont is selected.6 Nevertheless the SoundFont selec-
tion should not affect the HPCP computation greatly since HPCPs
were reported to be robust to changes in timbre (Gómez, 2006).

Then, the synthetic HPCPs, Ω̂
(x)

=

[
ω̂
(x)
1 , . . . , ω̂

(x)∣∣Ω̂(x)
∣∣], are com-

puted for the score fragment (x) (Figure 6.1e). The HPCPs are
extracted using Essentia (Bogdanov et al., 2013) with the default
parameters given in (Gómez, 2006). The hop size and the frame
size are chosen to be 2048 (e.g. ∼ 21.5 frames per second) and
4096 samples respectively. The first bin of the HPCPs is assigned
to the tonic symbol, κ(x), (e.g.G4 for Nihavent makam). Note that
the HPCPs contain microtonal information as well, since this infor-
mation is encoded into the SymbTr-MIDI scores (Karaosmanoğlu,
2012). HPCPs, Ω̂

(x)
, are computed with different number of bins

per octave in the section linking experiments (see Section 6.7.4).

4.3 Structure
Analyzing the structure of a music piece is integral in understand-
ing how the musical events progress along with their functionality
within the piece. Automatic extraction of the melodic and lyrics
structures, as well as their roles within the composition, might be
used to facilitate and enhance tasks such as digital music engraving,
automatic form identification and analysis, audio-score and audio-
lyrics alignment, music prediction and generation.

Structural analysis is a complex problem, which can be ap-
proached in different granularities such as sections, phrases and
motifs (Pearce, Müllensiefen, & Wiggins, 2010). To find such
groupings there has been many approaches based on music the-
ory (Jackendoff, 1985), psychological findings and computational
models (Cambouropoulos, 2001; Pearce et al., 2010). On the other
hand, there are a few studies that has investigated automatic struc-
tural analysis of makam musics. Lartillot and Ayari (2009) has

5http://timidity.sourceforge.net/
6grand acoustic piano: http://freepats.zenvoid.org/sf2/

http://timidity.sourceforge.net/
http://freepats.zenvoid.org/sf2/
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used computational models to segment Tunisian modal music and
compared the segmentations with the annotations of the experts.
Later, Lartillot, Yazıcı, and Mungan (2013) has proposed a sim-
ilar segmentation model for OTMM and also conducted compar-
ative experiments between the automatic segmentations and hu-
man annotations. Due to the lack of musicological agreement on
how to segment makam music scores, Bozkurt, Karaosmanoğlu,
et al. (2014) focused on learning a model from a dataset of music
scores annotated by experts and segmenting larger score datasets
automatically using the learned model. They propose two novel
culture-specific features based on the melodic and rhythmic prop-
erties of OTMM and conduct comparative studies with the features
used in the state-of-the-art methods (Bod, 2002; Cambouropou-
los, 2001; Temperley, 2004; Tenney & Polansky, 1980) and show
that the proposed features improve the phrase segmentation perfor-
mance.7 These methods typically focus on finding the segment bo-
undaries and do not study the inter-relations between the extracted
segments.

4.3.1 Problem Definition
Given the note sequence N̄(b) :=

[
n̄
(b)
1 , n̄

(b)
2 , . . .

]
and the measure

sequence M̄(b) :=
[
m̄

(b)
1 , m̄

(b)
2 , . . .

]
in the score (b), the aim is to

extract the sections S̄(b) :=
[
s̄
(b)
1 , s̄

(b)
2 , . . .

]
and the phrases P̄(b) :=[

p̄
(b)
1 , p̄

(b)
2 , . . .

]
along with their boundaries, and the melodic and

lyrics relationship with other structural elements of the same type.
Note that the sections and phrases will be collectively called as
“structural elements” in the score throughout the Chapter. More-
over, the superscript (b) is omitted in the rest of the Chapter for the
sake of simplicity.

It is assumed that the structural elements of the same type are
non-overlapping and consecutive (e.g. the last note of a section is
always adjacent to the first note of the next section). Consecutive-
ness restriction also implies that transitive interactions between two

7For a detailed review of structural analysis applied to OTMM and relevant
state of the art the readers are referred to (Bozkurt, Karaosmanoğlu, et al., 2014)
and (Pearce et al., 2010), respectively.
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consecutive structural elements are not permitted. In the scores of
the vocal compositions, each poetic line is considered as a section.

Remark that each subsequence8 might cover or overlap with
subsequences of different types, e.g. the note sequence in a section
would be a subsequence of N̄ or a phrase might start in the middle
of a measure and end in another. The index of the first note and the
index of the last note in the note sequence N̄(x) of a score element x
are denoted as n̄(x)

1 and n̄(x)

|N̄(x)| (where
∣∣N̄(x)

∣∣ is the number of notes
in N̄(x)), respectively. For example, the first note of an arbitrary
section s̄i, phrase p̄j and measure m̄k are denoted as n̄

(s̄i)
1 , n̄(p̄j)

1 and
n̄
(m̄k)
1 , respectively. The lyrics associated with an arbitrary element
x is denoted as λ(x). Each n̄(b)

j (where j ∈
[
1 : |N̄(b)|

]
) consists of

a
⟨
j, n

(b)
j , d

(
n
(b)
j

)
,λ

(
n
(b)
j

)⟩
tuple, the elements of which represent

the note index, the note symbol, the note duration and the syllable
in the lyrics associated with the note.

4.3.2 Methodology
First, the section boundaries are extracted from the score using a ad
hoc, heuristic process taking the editorial structure labels in the
score as an initial reference. In parallel, the score is automatically
segmented phrases according to a model learned from the phrases
annotated by an expert. Next, the synthetic melody and the lyrics
are extracted from each section and phrase. Then, a melodic and a
lyrics similarity matrix are computed between the extracted phrases
and the sections separately. A graph is formed from each similar-
ity matrix and the relation between the structural elements in the
context of the similarity (melodic or lyrics) is obtained. Finally
semiotic labeling is applied to the computed relations (Şentürk &
Serra, 2016b).

Section Extraction

The section boundaries are inferred using the explicit and implicit
boundaries given in the lyrics column of the SymbTr-txt scores

8 or element, which can also be regarded as a subsequence composed of a
single element.
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(Section 3.1.2). As a preprocessing step to distinguish the instru-
mental section labels from other editorial annotations in the lyrics
column, the unique strings are extracted in the lyrics column of
all SymbTr scores. The set of editorial annotations in the SymbTr-
scores is basically the set of the strings written in capital letters.
Then, the section annotations are picked manually from the set of
editorial annotations.9

Given the score (b), the set of instrumental section names are
searched in the lyrics column. The matched note indices mark the
actual beginning n̄(s̄i)

1 s of the instrumental sections s̄i ∈ S̄ |λ(s̄i) =
∅. Next, the lyrics column is searched for syllables ending with
double spaces. The index of the matched notes are assigned to the
final note n̄(s̄i)∣∣N̄(s̄i)∣∣s of the vocal sections; s̄i ∈ S̄ |λ(s̄i) ̸= ∅. As

explained in Section 3.1.2, the indices n̄(s̄i)∣∣N̄(s̄i)∣∣s may not coincide
with the actual ending and it may be moved to a subsequent note.

Up to here, the section sequence S̄ := [s̄1, s̄2, . . . , s̄|S̄|] has been
found, where |S̄| is the total number of sections in the music score
(b). The first note of the vocal sections and the last note of the in-
strumental sections are unassigned at this stage. The section bound-
aries are located using a rule-based scheme iterating though all sec-
tions starting from the last one.

If a section s̄i is instrumental, then n̄
(s̄i)
1 is already assigned. If a

section s̄i is vocal and the previous section s̄i−1 is instrumental, the
last instrumental measure is found, m̄k ∈ M̄ |λ(m̄k) = ∅, before
the last note n̄(s̄i)∣∣N̄(s̄i)∣∣ of the section s̄i. Then, the first note n̄(s̄i)

1 is

assigned to the first note n̄(m̄k+1)
1 of the next measure m̄k+1. If both

the current section s̄i and the previous section s̄i−1 are vocal, n̄
(s̄i)
1

is assigned to the index of the first note with lyrics after the last note
n̄
(s̄i−1)

|N̄(s̄i−1)| of s̄i−1. If n̄
(s̄i)
1 and n̄(s̄i−1)

|N̄(s̄i−1)| are not in the same measure,

n̄
(s̄i)
1 is reassigned to the first note of its measure, i.e. n̄(m̄k)

1 | n̄(s̄i)
1 ∈

m̄k. Finally the last note n̄
(s̄i)

|N̄(s̄i)| of the section is moved to the index

of the first note n̄(s̄i+1)
1 of the next section s̄i+1 minus one.

9https://github.com/sertansenturk/symbtrdataextractor/
blob/v2.1.0/symbtrdataextractor/makam_data/symbTrLabels.json

https://github.com/sertansenturk/symbtrdataextractor/blob/v2.1.0/symbtrdataextractor/makam_data/symbTrLabels.json
https://github.com/sertansenturk/symbtrdataextractor/blob/v2.1.0/symbtrdataextractor/makam_data/symbTrLabels.json
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The pseudocode of the procedure is given in Algorithm 1. Note
that the start of the first section and the end of the final section are
assigned to 1 and |N |, respectively, where |N | is the number of
notes in the score. This detail omitted from the pseudocode for the
sake of brevity.

Algorithm 1 Locate section boundaries
for i := |S̄| → 1 do ▷ from the last index to the first

if λ(s̄i) ̸= ∅ then ▷ find the start of the vocal section
if λ(s̄i−1) = ∅ then ▷ previous section is instrumental

k ← argkmin
(
n̄
(m̄k)
1 is after n̄(s̄i−1)

1 ∧
λ(m̄k) ̸= ∅

)
n̄
(s̄i)
1 ← n̄

(m̄k)
1

else ▷ previous section is vocal
k ← argkmin

(
nk is after n̄(s̄i−1)

|N̄(s̄i−1)| ∧

λ(n̄k) ̸= ∅
)

if n̄1(s̄i) ∈ m̄k ∧ n̄
(s̄i−1)

|N̄(s̄i−1)| /∈ m̄k then

n̄
(s̄i)
1 ← n̄

(m̄k)
1

else
n̄
(s̄i)
1 ← nk

n̄
(s̄i)

|N̄(s̄i)| ← n̄
(s̄i+1)
1 − 1 ▷ sections are consecutive

Having located the boundaries, the sections are extracted by
simply taking all information (i.e. rows in the SymbTr-txt score)
between these note boundaries. Figure 4.2 shows the section bound-
aries obtained on a mock example.

Automatic Phrase Segmentation

We use the automatic phrase segmentation methodology, which is
proposed by Bozkurt, Karaosmanoğlu, et al. (2014). The source
code and the training dataset presented in (Karaosmanoğlu et al.,
2014) are open and available online.10

In order to train the segmentation model, the annotations of Ex-
pert 1, who annotated all the 488 scores in the training dataset, are

10http://www.rhythmos.org/shareddata/turkishphrases.html

http://www.rhythmos.org/shareddata/turkishphrases.html
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<A1 1A  > <AB 1B > <C1 1C  > <D1 1B  > <C2 2B   > <B1 1A  >, ,1 , , , ,

3s2s1s 4s 5s 6s

Figure 4.2: Section analysis applied to a mock example. The sec-
tion labels (“INTRO” and “FIN”) are given in the lyrics written in
capital letters, The spaces in the end of the syllables are visualized
as *. The semiotic< Melody, Lyrics > label tuples of each section
are shown below the lyrics. The similarity threshold in the simi-
lar clique computation step is selected as 0.7 for both melody and
lyrics.

used (Karaosmanoğlu et al., 2014). Moreover, the authors of (Karaosmanoğlu
et al., 2014) commented through personal communication that the
first expert’s annotations aremore consistent with each other. There
are a total of 20801 training phrases annotated by the first expert.
In the training dataset, the variants of some usuls are combined
(e.g. the scores in Kapalı curcuna usul is treated as Curcuna. Using
the trained model, automatic phrase segmentation is applied to the
score collection (Section 3.1.2) and the phrase boundaries n̄(p̄k)

1 and
n̄
(p̄k)

|N̄(p̄k)| for each phrase p̄k ∈ P := [p̄1, p̄2, . . . ] is obtained, where
P is the automatically extracted phrase sequence. In Figure 4.4, the
vertical red and purple lines shows the phrase boundaries extracted
from the score “Kimseye Etmem Şikayet.”11

Melodic and Lyrical relationship computation

Given the structure sequence F := [f1, f2, . . . ] (which is either
the section sequence S̄ or the phrase sequence P̄) extracted from
the score, first the synthetic melody is generated and the lyrics of
each structural element is extracted (Section 4.2.1). The sampling
rate of the synthetic melody is taken as the LCM of the symbolic
score durations (e.g. if there are only dotted eighth and fourth notes
in a score, the sampling rate is a sixteenth note). This sampling
rate allows to represent the melody discretely without introducing
any ambiguity in time using the least number of samples possible.

11https://github.com/MTG/SymbTr/blob/
a50a16ab4aa2f30a278611f333ac446737c5a877/txt/nihavent--sarki
--kapali_curcuna--kimseye_etmem--kemani_sarkis_efendi.txt

https://github.com/MTG/SymbTr/blob/a50a16ab4aa2f30a278611f333ac446737c5a877/txt/nihavent--sarki--kapali_curcuna--kimseye_etmem--kemani_sarkis_efendi.txt
https://github.com/MTG/SymbTr/blob/a50a16ab4aa2f30a278611f333ac446737c5a877/txt/nihavent--sarki--kapali_curcuna--kimseye_etmem--kemani_sarkis_efendi.txt
https://github.com/MTG/SymbTr/blob/a50a16ab4aa2f30a278611f333ac446737c5a877/txt/nihavent--sarki--kapali_curcuna--kimseye_etmem--kemani_sarkis_efendi.txt
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Then, a melodic similarity and lyrics similarity between each ele-
ment is computed using a similarity measure based on Levenshtein
distance (Levenshtein, 1966). The similarity measure L̂ (x, y) is
defined as:

L̂ (x, y) := 1− L (x, y)

max (|x|, |y|)
(4.1)

where L (x, y) denotes the Levenshtein distance between the two
“strings” x and y with the lengths |x| and |y|, respectively and
max() denotes the maximum operation. In this context, x and y are
either the synthetic melody or the lyrics of two structural elements.
The similarity yields a result between 0 and 1. If the strings of the
compared structural elements are exactly the same, the similarity
equals to 1. Similar strings (e.g. the melodies of two instances
of the same section with volta brackets) would also output a high
similarity.

From the melodic and lyrics similarities, two separate graphs
are constructed, in which the nodes are the structural elements and
the elements are connected to each other with undirected edges.
The weight of an edge connecting two structural elements fi and
fj is equal to L̂

(
Ψ̂

(fi)
, Ψ̂

(fj)
)
in the melodic relation graph and

L̂
(
λ(fi), λ(fj)

)
in the lyrics relation graph, respectively. Next,

the edges are removed with a weight less than a constant similarity
threshold l ∈ [0, 1]. In Section 4.3.3, the effect of using different l
values will be experimented.

Given the graph, the structural elements with similar strings
are grouped by finding the maximal cliques in the graph (Tomita,
Tanaka, & Takahashi, 2006). A maximal clique is a subgraph,
which has its each node connected to each other and it cannot be
extended by including another node. These cliques are denoted
as vj ∈ V , where V is the set of “similar cliques.” The maxi-
mal cliques of the graph are additionally computed only consid-
ering the edges with zero weight. These cliques show the groups
of structural elements, which have exactly the same string. Each
of these cliques are called as “unique clique” uk ∈ U , where U
is the set of the “unique clique.” Note that two or more similar
cliques can intersect with each other. Such an intersection resem-
bles all the relevant similar cliques. These “intersections” are de-
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ρ(s1)

ρ(s2)

ρ(s3)

ρ(s4)

ρ(s5)

ρ(s6)

λ(s1)
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λ(s5)

λ(s6)

(a) (b)

A

B

C

D

A

B

C
A1

B1

AB1 C1

C2

D1

A1
C1B1

B2

0.75

0.75

0.8
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Figure 4.3: The graphs, the cliques and the semiotic labels ob-
tained from the mock example (Figure 4.2) using an edge weight
threshold of 0.7 for both melody and lyrics. The circles represent
the nodes and the lines represent the edges of the graphs, respec-
tively. The edge weights are shown next to the lines. Green, blue
and red colors represent the unique cliques, the similar cliques and
the intersection of similar cliques, respectively. The semiotic label
of each similar clique and each intersection is shown in bold and the
semiotic label of each unique clique is shown in italic, respectively.

noted as wl ∈ W , where W is the set of intersections between
different similar cliques. Also, N (G) denotes the nodes of an ar-
bitrary graph G. Remark that:

• A unique clique is a subgraph of at least one similar clique,
i.e. ∀uk ∈ U , ∃vj ∈ V |N (uk) ⊆N (vj).

• A unique clique cannot be a subgraph of more than one in-
tersection, i.e. ∀uk ∈ U , ∄{wl, wm} ⊆ W | N (uk) ⊆
N (wl) ∧N (uk) ⊆N (wm).

• A structural element belongs to only a single unique clique,
i.e. ∀fi ∈ F, ∃!uk ∈ U |N (fi) ⊆N (uk).

Figure 4.3 shows the graphs computed from the sections of
the mock example introduced in Figure 4.2. In the melodic rela-
tions graph, each section forms a unique clique since the melody of
each section is not exactly the same with each other. Using a sim-
iliarty threshold of 0.7, four similar cliques are obtained formed by
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{s̄1, s̄2}, {s̄2, s̄6}, {s̄3, s̄5}, {s̄4}. Notice that {s̄4} is not connected
to any clique. so it forms both a unique clique and a similar clique.
Moreover, s̄2 is a member of both the first and the second similar
cliques and hence it is the intersection of these two cliques. For the
lyrics, there are four unique cliques, formed by the sections {s̄1, s̄6}
(aka. instrumental sections), {s̄2, s̄4}, {s̄3} and {s̄5}. The lyrics of
s̄5 is very similar to {s̄2, s̄4} and they form a similar clique com-
posed of these three nodes and the relevant edges.

Semiotic Labeling

After forming the cliques, semiotic labeling explained in (Bimbot,
Deruty, Sargent, & Vincent, 2012) is used to describe the structural
elements. First similar cliques are labeled with a base letter (“A”,
“B”, “C”, …). Then the intersections are labeled by concetanating
the base letters of the relevant similar cliques (e.g. “AB”, “BDE”,
…). Each unique clique is finally labeled with the label of the rel-
evant intersection, if exists, or with the label of the relevant sim-
ilar clique, plus a number according to the order of occurence of
the clique in the score. Right now, only the simple labels termed
by Bimbot et al. (2012) (e.g. “A1”, “A2”, “AB2”) are used to label
the unique cliques.

The pseudocode of the process is given in Algorithm 2. Dur-
ing labeling, U , V andW are enumerated by sorting the elements
with respect to the index of the first occurence each element in the
score. The semiotic melody and lyrics label of an arbitrary element
x are denoted as Λ(x)

mel and Λ
(x)
lyr , respectively. In the algorithm, the

iterators #(vj) for each similar clique vj and #(wl) for each each in-
tersection wl are used to assign the numerical index to each unique
clique uk ∈ U according its relation with the relevant similar clique
or intersection.

The label of each section of the mock example is shown below
the staff in Figure 4.2. The same semiotic labels are also shown on
the computed graphs in Figure 4.3. Notice that the melodic semi-
otic label of s̄6 isB1 because the first occurence of the relevant sim-
ilar clique is at s̄2.

By extracting the relations in the graphs computed from the
melodic and lyrics similarity matrices (Section 4.3.2) and then ap-
plying semiotic labeling to each section and phrase according to
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Algorithm 2 Semiotic labeling
@←“A” ▷ Start the base letter iterator from “A”
#(vj)← 1,∀vj ∈ V ▷ Initialize the num. iterators for all vj
#(wl)← 1,∀wl ∈W ▷ Initialize the num. iterators for all wl

for vj ∈ sort(V) do ▷ Label similar cliques
Λ(vj) ← @
increment @ ▷ “A”⇒ “B”

for wl ∈ sort(W) do ▷ Label intersections
Λ(wl) ← concatenate Λ(vj),∀(vj) |N (wl) ⊆N (vj)

for uk ∈ sort(U) do ▷ Label unique cliques
if ∃wl |N (uk) ⊆N (wl) then

Λ(uk) ← Λ
(wl)
#(wl)

▷ e.g. “ACD1”
#(wl)← #(wl) + 1

else
Λ(uk) ← Λ

(vj)

#(vj) |N (uk) ⊆N (vj) ▷ e.g. “C2”
#(vj)← #(vj) + 1

for fi ∈ F do ▷ Label structural elements
Λ(fi) ← Λ(uk) |N (fi) ⊆N (uk)

its relation, a < Λmel,Λlyr > tuple is obtained for each section
and phrase (Section 4.3.2). For each phrase the sections are also
marked, which enclose and/or overlap with the phrase.

Figure 4.4 shows the results of the structural analysis applied to
the score “Kimseye Etmem Şikayet.” The sections are displayed in
colored boxes with the volta brackets colored with a darker shade of
the same color. The section labels and their semiotic< Λmel,Λlyr >
label tuple is shown on the left. The phrase boundaries are shown as
red lines for the first and as purple for the second pass. The phrases
and their semiotic labels are shown on top of the relevant interval
and on the bottom, when there are differences in the boundaries
in the second pass. Note that s̄5, s̄6, s̄9 and s̄10 are the repetitive
poetic lines (tr: “Nakarat”). “[Son]” in the end of the “Nakarat”
marks the end of the piece. The similarity threshold is taken as 0.7
for a) melody and b) lyrics. The usul of the score is Kapalı cur-
cuna, which is treated as Curcuna in the phrase segmentation step
(Section 4.3.2). Further examination of the analysis is left to the
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Figure 4.4: The results of the automatic structural analysis of the
score “Kimseye Etmem Şikayet.”

readers as an exercise.

4.3.3 Experiments
Bozkurt, Karaosmanoğlu, et al. (2014) report the evaluation of the
phrase segmentation method described in Section 4.3.2 on an ear-
lier and slightly smaller version of the training dataset. The readers
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are referred to Bozkurt, Karaosmanoğlu, et al. (2014) for the evalu-
ation of the training data. Furthermore, the labels of the automatic
phrase segmentations need to be validated by musicologists paral-
lel to the discussions brought by (Bozkurt, Karaosmanoğlu, et al.,
2014). For this reason, investigation of the effects of the similarity
threshold l in phrase analysis is left as future research.

To observe the effect of the similarity threshold in the melodic
and lyrics relationship extraction (Section 4.3.2), a small dataset
from the SymbTr collection is collected. The test dataset consists
of 23 vocal compositions in the şarkı form and 42 instrumental
compositions in peşrev and sazsemaisi forms. These three forms
are the most common forms of the classical OTMM repertoire.
Moreover their sections are well-defined within the music theory;
the two instrumental forms typically consists of four distinct Ha-
nes and a Teslim section, which follow a verse-refrain-like struc-
ture; the sections of the şarkıs typically coincide with the poetic
lines. The experiments on şarkıs are focused on the ones with the
poetic organization “Zemin, Nakarat, Meyan, Nakarat,” which is
one of the most common poetic organization observed in the şar-
kı form. Using the automatically extracted section boundaries (Sec-
tion 4.3.2) as the ground-truth, I have manually labeled the sections
in the scores with the same naming convention explained in Sec-
tion 4.3.2.12 Due to lack of data and concerns regarding subjectiv-
ity, the evaluation of section boundaries is left as future research.

Section analysis experiments are conducted on the test dataset
by varying the similarity threshold from 0 to 1 with a step size of
0.05. After the section labels are obtained, the semiotic melody and
lyrics labels are compared with the annotated labels. An automatic
label is considered as “True,” if it is exactly the same with the an-
notated label and “False,” otherwise. For each score, the labeling
accuracy is computed for the melody and the lyrics separately by
dividing number of correctly identified labels with the total num-
ber of sections. Additionally, the number of similar cliques and its
ratio to the unique cliques obtained for each score is noted. For
each experiment, the average accuracy for the similarity threshold

12The experiments and results are available at https://github.com/
sertansenturk/otmm-score-structure-experiments/releases/tag/
fma_2016

https://github.com/sertansenturk/otmm-score-structure-experiments/releases/tag/fma_2016
https://github.com/sertansenturk/otmm-score-structure-experiments/releases/tag/fma_2016
https://github.com/sertansenturk/otmm-score-structure-experiments/releases/tag/fma_2016
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Figure 4.5: The notched boxplots of the accuracies, number
of similar cliques and the ratio between the number of unique
cliques and similar cliques obtained for a) the melody labels and b)
the lyrics labels (only for vocal compositions) using different sim-
ilarity thresholds. The squares in the boxplots denote the mean
accuracy.

l is computed by taking the mean of the accuracies obtained from
each score.

Figure 4.5 shows the notched boxplots of the accuracies, the
total number of similar cliques and the ratio between the number
of unique cliques and the number of similar cliques obtained for
each similarity threshold. For the melody labels, the best results are
obtained for the similarity threshold values between 0.55 and 0.80
and the best accuracy is 99%, when l is selected as 0.70. For lyrics
labeling, any similarity value above 0.35 yields near perfect results
and 100% accuracy is obtained for all the values of l between 0.55
and 0.70. In parallel, the number of similar cliques and the ratio
between the unique cliques and the similar cliques gets flat in these
regions. From these results, the optimal l as 0.70 is selected for
both melodic and lyrics similarity.
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4.3.4 Discussion

As shown in Section 4.3.3, the similarity threshold l has a direct
impact on the structure labels. A high threshold might cause most
of the similar structural elements regarded as different, whereas a
low threshold would result in many differences in the structure dis-
regarded. In this sense the extreme values of l (around 0 or 1),
would not provide any meaningful information as l = 0 would
result in all the structures being labeled similar and l = 1 would
be output all the structures as unique. It is also observed that the
melodic similarity is more sensitive to value of l than lyrics similar-
ity. This is expected as the strings that make up the lyrics are typi-
cally more diverse than the note symbols used to generate the syn-
thetic melody. In the experiments the optimal value of l is found as
0.7 for the small score dataset of compositions in the peşrev, sazse-
maisi and şarkı forms. Moreover, it is observed that the curves
representing the number of similar cliques and the ratio between
the unique cliques and the similar cliques are relatively flat around
the same l value, where obtain the best results are obtained (Fig-
ure 4.5). This implies that there is a correlation between decisions
of the annotator and the methodology.

Nevertheless, the optimal l value presented above should not be
considered as a general optimal. First of all, the sections were an-
notated by a single person and therefore the evaluation does not
factor in the subjectivity between different annotators. Second,
the section divisions in different forms are much different from
the studied forms, which might influence the structure similarity.
For example, many vocal compositions of OTMM with terennüms
(repeated words with or without meaning such as “dost,” “aman,”
“ey”) are expected to have a lower optimal similarity threshold in
the lyrics relationship computation step. Moreover the poetic lines
might not coincide with melodic sections in many vocal composi-
tions especially in folk music genre. Third, the threshold can be
different in different granularities. For example, the phrases are
much shorter than the sections as can be seen in Figure 4.4. Human
annotators might perceive the intra-similarity between sections and
phrases differently.
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4.3.5 Summary
In this Section, a method to automatically analyze the melodic and
lyrics organization of the music score of OTMM is proposed. The
method is applied on the SymbTr collection (Section 4.5). The
extracted structural information is later used in automatic score
validation, score engraving and audio-score alignment tasks (Sec-
tion 4.4).

In the future, other string matching or dynamic programming
algorithms (Serrà et al., 2009; Şentürk, Holzapfel, & Serra, 2014)
may be tested as the similarity measure using different constraints.
Additionally, the optimal similarity threshold lmay be selected au-
tomatically according to the melodic and lyrics characteristics of
the scores. It is also desired to solidify the findings by evaluating
the methodology on a bigger dataset annotated by multiple experts
and cross-comparing the annotated and the automatically extracted
boundaries as done by Bozkurt, Karaosmanoğlu, et al. (2014). The
ultimate aim is to develop methodologies, which are able to de-
scribe themusical structure of manymusic scores and audio record-
ings semantically and on different levels.

4.4 Applications
The score metadata extraction (Section 4.1) and structural analy-
sis (Section 4.3) are implemented within a repository called symb-
trdataextractor (Section 4.4.1).13 Additionally, we created sev-
eral repositories for converting the score format (Section 4.4.2)
and for automatically validating/correcting the music scores (Sec-
tion 4.4.3). The automatically extracted sections are later used

For the sake of modularity, these functionalities in different
repositories are all integrated to a single symbolic analysis package
in Turkish-Ottoman Makam (M)usic Analysis TOolbox (toma-
to).14 Figure 4.6 shows the block diagram of the functionalities
in the symbolic analysis package. For more details on the imple-
mentations, please refer to Appendix C.

13https://github.com/sertansenturk/symbtrdataextractor/
14https://github.com/sertansenturk/tomato/tree/v0.9.1/

tomato/symbolic

https://github.com/sertansenturk/symbtrdataextractor/
https://github.com/sertansenturk/tomato/tree/v0.9.1/tomato/symbolic
https://github.com/sertansenturk/tomato/tree/v0.9.1/tomato/symbolic
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Figure 4.6: The block diagram of the score analysis and processing
tasks integrated to tomato.

4.4.1 Automatic Content Description
The symbtrdataextractor repository is able to parse the headers
of the SymbTr-mu2 files, process the contents of the SymbTr-
txt files and crawl the relevant metadata from MusicBrainz. To
crawlMusicBrainz, a wrapper around the open-sourceMusicbrainz
NGS bindings15 is created, which is specialized to fetch the OTMM
related metadata.16 The symbtrdataextractor package also reports
any errors or inconsistencies in the obtained automatic description.

4.4.2 Music Score Format Conversion
We have developed tools in Python to convert the SymbTr-txt
scores to the MusicXML format17 and then to the LilyPond for-
mat18 to improve the accesibility of the collection from popular

15https://github.com/alastair/python-musicbrainzngs
16https://github.com/sertansenturk/makammusicbrainz
17https://github.com/burakuyar/MusicXMLConverter
18https://github.com/hsercanatli/makam-musicxml2lilypond

https://github.com/alastair/python-musicbrainzngs
https://github.com/sertansenturk/makammusicbrainz
https://github.com/burakuyar/MusicXMLConverter
https://github.com/hsercanatli/makam-musicxml2lilypond
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music notation and engraving software.19 The converters use the
information obtained from symbtrdataextractor to add the meta-
data and the section names into the converted scores. The row in-
dex of each note (and rest) in the SymbTr-txt files are stored in the
converted files as inline comments.

The scores in the LilyPond format are later converted to SVG
using the LilyPond software itself. The software divides the score
into multiple files during the conversion. As a postprocessing step,
these files are joined together. Similar to the previous steps in
the score conversion, the note indices are also stored. These in-
dices are used later to visualize the audio-score alignment results
(Section 6.8) synchronous to the audio playback in Dunya (Sec-
tion 7.1.2).

The score format conversion chain is automated in tomato.20
The files in theMusicXML format are hosted in theSymbTrGitHub
repository and updated with each release.21 The scores in the latest
release is also hosted in Dunya-makam along with the score file in
the SVG format.

4.4.3 Automatic Music Score Validation
The SymbTr collection contains unit tests,22 which are automat-
ically run after each new commit is pushed to the remote reposi-
tory.23 The unit tests check many possible issues such as file en-
coding mismatches, file name (i.e. SymbTr-slug, see Section 4.1)
inconsistencies, missing and/or incomplete annotations (e.g. usul
changes), metadatamismatches between different information sour-
ces (Section 4.1), erroneous (i.e. non-zero) grace note durations,
and shifts between the note durations and the timestamps.

19MusicXMLConverter and makam-musicxml2lilypond packages are
mainly realized by Burak Uyar and Hasan Sercan Atlı, respectively, within
their masters research under the advisorship of Barış Bozkurt. My contributions
to these packages are mostly related to bug fixing, refactoring, documentation
and deployment. As of August 2016, the number of lines manipulated by me is
approximately the same with the main developers in both packages.

20https://github.com/sertansenturk/tomato/blob/v0.9.1/
tomato/symbolic/scoreconverter.py

21https://github.com/MTG/SymbTr/tree/v2.4.3/MusicXMLL
22https://github.com/MTG/SymbTr/tree/v2.4.3/unittests
23https://travis-ci.org/MTG/SymbTr

https://github.com/burakuyar/MusicXMLConverter
https://github.com/hsercanatli/makam-musicxml2lilypond
https://github.com/sertansenturk/tomato/blob/v0.9.1/tomato/symbolic/scoreconverter.py
https://github.com/sertansenturk/tomato/blob/v0.9.1/tomato/symbolic/scoreconverter.py
https://github.com/MTG/SymbTr/tree/v2.4.3/MusicXMLL
https://github.com/MTG/SymbTr/tree/v2.4.3/unittests
https://travis-ci.org/MTG/SymbTr
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To maintain the SymbTr collection, a complementary repos-
itory called SymbTr-extras24 is created. SymbTr-extras automati-
cally fixes most of the issues reported in the unit tests. Moreover,
the repository facilitates SymbTr-slug renaming and the SymbTr-
txt score to MusicXML conversion.

4.4.4 Audio-Score Alignment
In the performances of OTMM compositions, the musicians occa-
sionally insert, repeat and omit sections. Moreover they may intro-
duce musical passages, which are not related to the composition
(e.g. improvisations). In Şentürk, Holzapfel, and Serra (2014),
a section-level audio-score alignment methodology is proposed,
which considers such structural differences (themethod is explained
in Section 6.7). In the original methodology the sections in the
score are manually annotated with respect to the melodic structure.
Next, the candidate time intervals in the audio recording are found
for each section using partial subsequence alignment. The manual
section annotation step is replaced with the automatic section anal-
ysis part of the aligment method, where the melody labels are used
to align relevant audio recordings and music scores (Section 6.12).
I have additionally conducted experiments using the melodic re-
lations of the extracted phrases. The preliminary results suggest
that phrase-level alignment may provide better results than section-
level alignment.

4.5 Automatic Description of the
SymbTr Collection

Using the optimal similarity threshold (l = 0.7), structural analysis
(Section 4.3) is applied on the SymbTr release, v2.4.2 (Figure 4.7).
49231 phrases are extracted and labeled from 1344 scores, which
have both their makam and usul covered in the phrase segmentation
training model. In parallel, 21578 sections are extracted from 1772

24https://github.com/MTG/SymbTr-extras
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1344

49231

1772

21578

2200

2200

Figure 4.7: An overview of the automatic description of
the SymbTr collection v2.4.2. The numbers in the boxes and the
numbers next to the arrows indicate the total number of the entity
and the number scores for which the relevant entity is extracted,
respectively.

scores.25 The data can be further used to study the structure of
musical forms of OTMM.

In addition to the structural analysis, the metadata is extracted
for each score (Section 4.1). Please refer to Section 3.1.2 for the
statistics.

4.6 Conclusion
In this Chapter, the automatic description process applied to music
scores is presented. The description consists of:

• Curated metadata related to the music scores (such as ma-
kam, usul, form, tempo and composer/performers). Themeta-
data is fetched by parsing the SymbTr-txt and SymbTr-mu2
scores and crawling the relevant linked data in MusicBrainz

25The data is available at https://github.com/
sertansenturk/turkish_makam_corpus_stats/tree/
66248231e4835138379ddeac970eabf7dad2c7f8/data/SymbTrData

https://github.com/sertansenturk/turkish_makam_corpus_stats/tree/66248231e4835138379ddeac970eabf7dad2c7f8/data/SymbTrData
https://github.com/sertansenturk/turkish_makam_corpus_stats/tree/66248231e4835138379ddeac970eabf7dad2c7f8/data/SymbTrData
https://github.com/sertansenturk/turkish_makam_corpus_stats/tree/66248231e4835138379ddeac970eabf7dad2c7f8/data/SymbTrData
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(Section 4.1). The metadata from different sources are also
validated against each other. The procedure provides high
quality and linked data related to the music scores without a
need of sophisticated information retrieval techniques.

• Structure information obtained using a novel structural anal-
ysis methodology (Section 4.3). Themethod extracts the sec-
tions using implicit section information annotated in the the
music scores. In parallel, it automatically segments the score
into phrases according to makam and usul-specific models
trained from the manual annotations of experts. Next, the
melodic and lyrics relations between each phrase and each
sections are labeled semiotically by a graph-based procedure.

The automatic description is used to enhance the SymbTr col-
lection and also to find inconsistencies in the data (Sections 4.4.1
and 4.4.3). The automatic description of the SymbTr collection
includes the metadata related to all 2200 SymbTr-scores, 49231
phrases in 1344 scores and 21578 sections in 1772 scores. The la-
beled sections are later used to automate the section-level audio-
score alignment method (Section 4.4.4). Recently, the semiotic la-
beling is also applied to manually annotated score fragment bound-
aries to automatically label the fragments in the lyrics-to-audio a-
lignment method proposed in (Dzhambazov et al., 2016).

In addition to the automatic description, we created automatic
score format converters toMusicXML, LilyPond and SVG in order
to improve the accesibility of the SymbTr-scores via various ap-
plications (Section 4.4.2). The MusicXML files are now included
in the SymbTr collection and we plan to make this the main format
in the next major release (SymbTr v3.0). The SVG scores are used
to visualize the audio-score alignment results in the note, measure
and section granularities (explained in Section 7.1.2).





Chapter 5
Audio Analysis

The audio recordings can provide information about the charac-
teristics (e.g. in terms of dynamics or timing) of an interpreta-
tion of a particular piece. By analyzing large collections of au-
dio recordings, we can obtain generalizable information about the
performance aspect of the studied music. By utilizing automatic
analysis methodologies, not only the time and effort to obtain such
a description can be greatly reduced but we can also obtain reliable
information, some of which would be too difficult or tedious for
human annotators.

In the last decade, numerous sofware libraries for audio analy-
sis have emerged such asMarsyas (Tzanetakis &Lemstrom, 2007),
jAudio (McKay, 2010),MIRtoolbox (Lartillot, Toiviainen,&Eerola,
2008), Essentia (Bogdanov et al., 2013), Tarsos DSP (Six, Cor-
nelis, & Leman, 2014), librosa (McFee et al., 2015), and madmom
(Böck, Korzeniowski, Schlüter, Krebs, & Widmer, 2016). These
tools have been facilitating the development and advancement of
many methodologies for music information research. However,
these tools do not typically incorporate the implementations of the
state-of-the-art methodologies for the analysis of audio recordings
of OTMM.Moreover, many suitable algorithms are constrained for
Eurogenetic musics (e.g. 12-TET).

Considering the need of computational tools specialized to pro-
cess and analyse OTMM, Bozkurt (2011) has developed Makam
Toolbox in MATLAB. This toolbox incorporates several funda-
mental tasks to analyse audio recordings of OTMM such as pre-

79
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dominant melody extraction (Bozkurt, 2008), tonic identification
(Gedik & Bozkurt, 2010), tuning analysis (Bozkurt, 2012) and au-
tomatic transcription (Gedik, 2012). In addition, Makam Toolbox
provides a visual interface, in which the user can select the anal-
ysis algorithms to be applied and observe the outputs. However,
this toolbox is not publicly available, and it is not straightforward
to setup and distribute in different platforms due to certain limita-
tions of its design in the MATLAB environment. For these rea-
sons, Atıcı, Bozkurt, and Şentürk (2015) have developed an open
reimplementation of the toolbox in Java.1 The reimplementation is
called MakamBox.2 MakamBox is capable of performing most of
the analysis in the original toolbox3 with a more responsive visual
interface. The interaction in both toolboxes are mainly designed
around the visual interface and hence it is centered around process-
ing a single audio recording.4 Therefore, they are not suitable for
analysing large-scale audio corpora automatically.

In this Chapter, I give an overview of the current state-of-the-art
audio analysis methodologies proposed for OTMM. I present nu-
merous generalization and improvements of the existing methods.
I also propose several adaptations from methods already applied
to other similar music cultures. Another aim is to provide open
implementations of these methodologies to support open and re-
producible research. The main contributions may be summarized
as:

• An adaptation of a state-of-the-art predominant melody ex-
traction method.

• A generalization of pitch-distribution based mode recogni-
tion and tonic identification methodologies previously ap-
plied to OTMM and Hindustāni music.

• Open implementations of all audio analysis methodologies I
have developed, which are described throughout this Chap-

1The toolbox is designed, developed and implemented by Bilge Miraç Atıcı.
He is supervised by Barış Bozkurt. I have assisted Miraç Atıcı in the preparation
of this publication and do not consider this work as part of my PhD research.

2https://miracatici.com/makambox
3For example, MakamBox does not incorporate automatic transcription and

uses a simpler, predominant melody extraction algorithm.
4Makam Toolbox is capable of processing several recordings to obtain an

overall tuning.

https://miracatici.com/makambox
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ter. These implementations cover most of the computational
tasks applied on audio recordings ofOTMMdiscussed in (Boz-
kurt, Ayangil, & Holzapfel, 2014).

• Integration of the aforementioned analysismethodologies into
a single workflow to facilitate the automatic description of
large-scale audio corpora of OTMM.

The rest of the Chapter is structured as: Given an audio frag-
ment, the structured metadata is fetched from MusicBrainz (Sec-
tion 5.1). In parallel, the predominant melody is extracted from
the raw audio (Section 5.2). Using the predominant melody, the
pitch distribution and pitch-class distribution (Section 5.5), stable
pitches and pitch-classes (Section 5.6), makam (Section 5.7), tonic
(Section 5.7), transposition (Section 5.8), tuning (Section 5.9), and
melodic progression (Section 5.10) of the audio recording are ex-
tracted. Section 5.11 explains the integration of these methodolo-
gies into tomato. Section 5.12 presents the resulting automatic de-
scription of the CompMusic OTMM audio collection. Section 5.13
provides a brief conclusion.

Throughout the Chapter, a feature extracted from an audio frag-
ment (a)would normally have the superscript (a). This superscript
is omitted5 for the sake of simplicity except the cases in which mul-
tiple audio recordings are processed (e.g. Section 5.7.2).

5.1 Metadata
Given an audio recording, basic information about the file such
as the sampling frequency, bit rate and duration are fetched us-
ing eyeD3. 6 The recording MBID is also read from the metadata
contained within the file (i.e. from the ID3 metadata in MP3 files).
NextMusicBrainz is queried to obtain relevant metadata. Table 5.1
makes a summary of the extracted metadata. To crawl Music-
Brainz, a wrapper around the open-sourceMusicBrainz NGS bind-
ings7 is created, which is specialized to fetch the OTMM related
metadata in a structured manner.8

5e.g. the predominant melody of (a), ϱ(a), is printed as ϱ.
6http://eyed3.nicfit.net/
7https://github.com/alastair/python-musicbrainzngs
8https://github.com/sertansenturk/makammusicbrainz

http://eyed3.nicfit.net/
https://github.com/alastair/python-musicbrainzngs
https://github.com/sertansenturk/makammusicbrainz
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Table 5.1: Summary of the metadata obtained for an audio record-
ing.

Source Key Explanation
Audio file path Location of the audio file

duration Duration of the audio file (in seconds)
bit_rate Bit rate of the audio file
sampling_frequency Sampling frequency of the audio file
mbid MusicBrainz identifier
url URL in MusicBrainz (basically,

http://musicbrainz.org/recording/[mbid])
MusicBrainz title Title of the recording in MusicBrainz

releases List of releases, which the recording is part
of

works List of works performed in the recording
artist-credits List of main credited artist(s)
artists List of artists, who took part in realizing the

recording; vocalists, intrument performers,
conductors, recording engineers, etc.

makam List of makams associated with the record-
ing. The information is fetched both from
the related works and also the tags in
MusicBrainz associated with the recording
(“makam: [makam_name]”)

form List of forms associated with the record-
ing. The information is fetched both from
the related works and also the tags in
MusicBrainz associated with the recording
(“form: [form_name]”)

usul List of usuls associated with the record-
ing. The information is fetched both from
the related works and also the tags in
MusicBrainz associated with the recording
(“usul: [usul_name]”)

5.2 Predominant Melody
In analyzing the tonal characteristics of music traditions involving
harmony, features capturing harmonic content such as chroma fea-
tures (Müller, Ewert, & Kreuzer, 2009; Gómez, 2006) are typically
used. Chroma features are the state of the art features used in struc-
ture analysis of Eurogenetic musics (Paulus et al., 2010) and also in
relevant tasks such as version identification (Serrà et al., 2009) and
audio-score alignment (Thomas et al., 2012). On the other hand,
predominant melody is a more representative, musically meaning-
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ful and interpretable feature for analyzing melody-dominant mu-
sics (Chordia & Şentürk, 2013; Bozkurt, Ayangil, & Holzapfel,
2014; Şentürk, Holzapfel, & Serra, 2014; Koduri, Ishwar, Serrà, &
Serra, 2014).

Previously, The fundamental pitch extraction method proposed
by (De Cheveigné & Kawahara, 2002) (YIN) was used by Boz-
kurt (2008) to analyze OTMM recordings. YIN has been shown
to be highly reliable to estimate the fundamental frequency over
time in monophonic music. However, YIN (and melody extraction
algorithms in general) introduce octave errors and spurious esti-
mations, when heterophonic or noisy recordings are analyzed. To
overcome these problems, (Bozkurt, 2008) has proposed a post-
filteringmethod to eliminate contours with a short duration, remove
pitch estimations with low confidence and correct octave errors by
shifting octave of the contours closer to the neighboring contours.

Recently, Şimşek, Bozkurt, and Akan (2016) have proposed a
method based on variational mode decomposition (VMD). The pre-
dominant melody extraction method proposed by (Şimşek et al.,
2016) (SIM-VMD) is reported to output comparable results to YIN
and our own adaptation of MELODIA, which will be explained
more in Section 5.2.1.

The predominant melody extracted from an audio fragment (a)
is denoted as ϱ :=

[
ρ1 . . . ρ|ϱ|

]
, where ρi ∈ ϱ is a pitch sample and

i ∈ [1 : |ϱ|], where |ϱ| is the length of the predominant melody.

5.2.1 Adaptations of the Existing
State-of-the-Art

Since predominantmelody is the primary feature extracted from the
audio recordings, its quality greatly determines the quality of the
subsequent analysis steps. However, developing a novel method-
ology would require an exhaustive effort and this task has not been
the main focus of this thesis. Instead, I and Hasan Sercan Atlı have
worked on improving the predominant melody extraction by adapt-
ing state-of-the-art methodologies to OTMM recordings. Except
the evaluation in (Şimşek et al., 2016) (which is addressed later in
this Section), these adaptations are not evaluated quantitatively due
to lack of ground-truth annotations, but evaluated qualitatively by
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comparing the output predominant melodies visually and also by
audio synthesis. Some of the algorithms are also evaluated extrin-
sically by comparing the results obtained from audio-score align-
ment methods (Section 6.7).

YIN

In the preliminary experiments on audio score alignment (Şentürk
et al., 2012) (explained in Appendix A), we use YIN to extract the
predominant melody of the audio recordings. We used the mex im-
plementation9 of YIN included in the Makam Toolbox. The hop
size is taken as 10ms. Next, Makam Toolbox applies the post-
processing explained in (Bozkurt, 2008). The toolbox has an ad-
ditional option to quantize the pitch values in the predominant me-
lody. The advantage of the quantized predominant melody is that
it takes out minor pitch variations such as vibratos. Afterwards, a
median filter with a window length of 41 frames (410ms) is applied
to fix spurious jumps in the predominant melody. The predomi-
nant melody extraction method in (Şentürk et al., 2012) is named
as BOZ-YINf .

The results of the preliminary experiments of section linking
(Appendix A) shows that as the instrumentation of a recording gets
more complex (i.e. the tendency of observing more heterophonic
interactions and expressive elements in an audio recording increas-
es), the section linking performance decreases almost monotoni-
cally. This suggests that an improvement in the extraction of audio
pitch contour is necessary. Through inspecting errors in the audio
recording level, it is seen that the current bottleneck of the system is
the pitch estimation. Since YIN is designed formonophonic sounds,
many confusions arise in the predominant melody extraction due to
the heterophonic nature of OTMM, especially in ensemble perfor-
mances. Moreover, YIN is found to lose its robustness, where there
are substantial usage of expressive elements such as legatos, slides
and tremolos.

9http://es.mathworks.com/help/matlab/call-mex-files-1
.html?s_cid=wiki_mex_1

http://es.mathworks.com/help/matlab/call-mex-files-1.html?s_cid=wiki_mex_1
http://es.mathworks.com/help/matlab/call-mex-files-1.html?s_cid=wiki_mex_1
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MELODIA

Based on the observations in our preliminary section-linking exper-
iments using YIN, we started optimizingMELODIA, a predominant
melody extraction method proposed for polyphonic music signals
by (Salamon & Gómez, 2012), in our following experiments on
section-level audio-score alignment (Section 6.7.4). We use the Es-
sentia implementation of the algorithm (Bogdanov et al., 2013)
throughout the thesis. The predominant melody extraction proce-
dure explained in (Şentürk, Holzapfel, & Serra, 2014) is named
as SEN-MEL.

The methodology proposed by Salamon and Gómez (2012) as-
sumes that there is no predominant melody in time intervals where
the peaks of the pitch saliences are below a certain magnitude with
respect to the mean of all the peaks. Moreover, it eliminates pitch
contours, which are considered as belonging to the accompaniment.
However, as OTMM is heterophonic (Section 2.1), unvoiced inter-
vals are very rare. Applied on OTMM recordings, the contour se-
lection step in the methodology (Salamon & Gómez, 2012, Section
D) treats a substantial amount of melody candidates as non-salient
(due to the embellishments andwide dynamic range), and dismisses
a significant portion of pitch contours as unvoiced. Instead, we in-
clude all the non-salient candidates to guess predominant melody
and obtain the audio predominant melody ϱ.

Next the predominant melody is downsampled from MELO-
DIA’s default frame rate of ∼ 344.5 frames per second (hop size
of 128 samples) to ∼ 21.5 frames per second or a period of ∼ 46
ms, which is sufficient to track the note changes. In our alignment
experiments, melody extraction is performed using various pitch
resolutions (Section 6.7.4).

We also compare the extracted predominantmelody andHPCPs
as input features for the audio-score alignment method. The results
(explained in Section 6.7.5) show that SEN-MEL performs better
compared to both BOZ-YINf and HPCPs. Moreover, a pitch pre-
cision of 50 cents is adequate for section-level audio-score align-
ment. Nevertheless, the pitch precision can be increased further
to use the extracted predominant melody later, in more precision-
demanding computational tasks such as tonic identification (Sec-
tion 5.7), tuning analysis (Section 5.9) and note-level audio-score
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alignment (Section 6.8). Therefore, we select the bin resolution as
1 cents instead of the default (10 cents) in the computation of the
pitch salience function.10

Additional adaptations on MELODIA

The predominant melody computed by SEN-MEL still produces sub-
stantial amount of errors, especially when themusic is played softer
than the rest of the audio. This becomes a noticeable problem in
the end of the melodic phrases, where musicians choose to play
softer. For this reason, we decided to optimize the methodology
of (Salamon&Gómez, 2012) step by step (Atlı et al., 2014).11 This
method is termed as ATL-MEL throughout the text.

Figure 5.1 shows the steps followed to compute the predom-
inant melody. All the steps shown (inside boxes) in the Figure
are named the same with the respective Essentia class,12 except the
“PitchContours Selection” step modified by us (explained below).
In the “FrameGenerator” step, the audio is divided into frames and
these frames are processed in parallel between the “Windowing”
and “PitchSalienceFunctionPeaks” steps. We refer the reader to
the Essentia documentation13 and (Salamon & Gómez, 2012) for
further information on the algorithms and their default parame-
ters.14

In the computation of pitch contours,15 we experimented on dif-
ferent values of the peak distribution threshold parameter to get a
satisfactory pitch contour length. We emprically set the “peakDis-

10http://essentia.upf.edu/documentation/reference/
streaming_PitchSalienceFunction.html

11This work was mainly conducted by Hasan Sercan Atlı under my guidance
during his Erasmus+ stay in Music Technology Group, UPF in Summer 2014.
Apart from proposing methodology, I have also contributed to the code with
bug fixing, refactoring, documentation and deployment. Andrés Ferraro has also
contributed to the code deployment and refactoring.

12in v2.1_beta3 as of November 2016: https://github.com/MTG/
essentia/releases/tag/v2.1_beta3

13http://essentia.upf.edu/documentation/algorithms
_reference.html

14The implementation is openly avaliable at https://github.com/
sertansenturk/predominantmelodymakam

15http://essentia.upf.edu/documentation/reference/
streaming_PitchContours.html

http://essentia.upf.edu/documentation/reference/streaming_PitchSalienceFunction.html
http://essentia.upf.edu/documentation/reference/streaming_PitchSalienceFunction.html
https://github.com/MTG/essentia/releases/tag/v2.1_beta3
https://github.com/MTG/essentia/releases/tag/v2.1_beta3
http://essentia.upf.edu/documentation/algorithms_reference.html
http://essentia.upf.edu/documentation/algorithms_reference.html
https://github.com/sertansenturk/predominantmelodymakam
https://github.com/sertansenturk/predominantmelodymakam
http://essentia.upf.edu/documentation/reference/streaming_PitchContours.html
http://essentia.upf.edu/documentation/reference/streaming_PitchContours.html
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Figure 5.1: The block diagram of ATL-MEL.
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Figure 5.2: Pitch contours and the resultant predominant melody
extracted from an audio fragment using ATL-MEL, plotted on top of
the spectrogram of the fragment. Sonic Visualizer is used to com-
pute the spectrogram and to display the features.

tributionTreshold” parameter as 1.4. This setting provides longer
pitch contours compared to the default value of 0.9. Originally, the
contour selection step in the method is trained using Eurogenetic
musics (Salamon & Gómez, 2012), which is the main reason for
the erroneous unvoiced estimations (explained in SEN-MEL). How-
ever, lacking the ground truth for training during the time of de-
velopment, we decided to replace the contour selection step with
a simple and generic heuristics. Once the pitch contours are ob-
tained, we order the pitch contours according to their length and
start with selecting the longest one. Then, we remove all portions
of pitch contours which overlap with the selected pitch contour.
We carry the same process for the next longest pitch contour, and
so forth. By repeating the process for all pitch contours, we obtain
the predominant melody of the audio recording (Figure 5.2).

Due to lack of ground truth in the time of implementation, we
made a qualitative comparison between the predominant melodies
obtained from SEN-MEL and ATL-MEL by synthesizing and listen-
ing the resultant predominant melodies synchronous to the audio
playback. We observed that ATL-MEL is able to capture the melody
better when the music is played softer in the expense of obtaining
more spurious pitch estimations and octave errors.
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To get rid of the spurious estimations and octave errors, we re-
introduced the post-processingmethod proposed byBozkurt (2008).
We first tried the PitchFilter function16 in Essentia, which is an
open implementation of this method. However, this implementa-
tion was not good enough in removing spurious estimations, which
affected the tonic identification accuracy using the last note de-
tection method Section 5.7.2. Therefore, we made our own open
source implementation.17 This filtered variant of the predominant
melody extracted using the procedure is described in (Atlı et al.,
2014), and it is abbreviated as ATL-MELf .18

In his masters thesis, Atlı (2016) extracted the predominant me-
lody of 18 audio recordings in the OTMMpartial audio-score align-
ment dataset (Section 3.2.7) using ATL-MELf and recorded the num-
ber of the predominantmelody samples that are within 1Hc vicinity
of the annotated notes (Figure 5.3). He reports that 143308 out of
157231 samples (91.14%) coincide with the note annotations, im-
plying ATL-MELf outputs reliable predominant melody estimations.
Nevertheless, these findings should not be regarded as an intrinsic
evaluation of the method, since the note annotations do not include
any information on the intonation deviations or the embellishments.

Şimşek et al. (2016) compared their method SIM-VMD with YIN
and ATL-MELf on four heterophonic OTMM recordings. They re-
port the evaluation measures used in Music Information Retrieval
EXchange (MIREX) Audio Melody Extraction task.19 The results
given in (Şimşek et al., 2016, Table 1) indicate that ATL-MELf is
superior to YIN, and it outputs either comparable or better results
than SIM-VMD over all evaluation measures.

16http://essentia.upf.edu/documentation/reference/
std_PitchFilter.html

17https://github.com/hsercanatli/pitchfilter
18Reimplementation of the pitch filter has been done by Hasan Sercan Atlı

within his masters research under the advisorship of Barış Bozkurt. Later, I
have contributed to the code with bug fixing, refactoring, documentation and
deployment.

19http://www.music-ir.org/mirex/wiki/2016:Audio_Melody
_Extraction#Evaluation_Procedures

http://essentia.upf.edu/documentation/reference/std_PitchFilter.html
http://essentia.upf.edu/documentation/reference/std_PitchFilter.html
https://github.com/hsercanatli/pitchfilter
http://www.music-ir.org/mirex/wiki/2016:Audio_Melody_Extraction#Evaluation_Procedures
http://www.music-ir.org/mirex/wiki/2016:Audio_Melody_Extraction#Evaluation_Procedures
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Figure 5.3: The predominant melody (in green), the note annota-
tions (white transparent boxes) and the melodic range spectrogram
(background) of an audio fragment in the OTMM partial audio-
score alignment dataset. Sonic Visualizer is used to compute the
melodic range spectrogram and to display the features. The Figure
is reproduced from (Atlı, 2016) courtesy of Hasan Sercan Atlı.

5.3 Harmonic Pitch Class Profiles

As mentioned in the Section 5.2, HPCPs (Gómez, 2006) are com-
pared to predominant melody in section linking experiments and
predominany melody is intrinsically observed to be a more repre-
sentative feature to describe the melodic characteristics of OTMM.
The experiments will be introduced in Section 6.7.4.

We use the default parameters given in (Gómez, 2006) to com-
pute the HPCPs. The hop size and the frame size are chosen to be
2048 (e.g. ∼ 21.5 frames per second) and 4096 samples respec-
tively. The first bin of the HPCPs is assigned to the tonic pitch or
pitch-class κ identified automatically using distribution matching
(Section 5.7.2) or score-informed tonic identification (Section 6.4)
and HPCPs, Γ̂

(a)
=
[
γ̂
(a)
1 , . . . , γ̂

(a)

|Γ̂(a)|

]
are obtained, where |Γ̂(a)| is

the number of frames in time. Each frame consists of a constant
number of bins. The number of bins denoted as nHPCP determines
the pitch resolution of the HPCPs, i.e. the width of each bin equals
to 1200/nHPCP. Figure 5.4 shows the tonic normalized HPCPs ex-
tracted from a short audio fragment.20

20http://musicbrainz.org/work/9aaf5c0b-4642-40fd-97ba
-c861265872ce

http://musicbrainz.org/work/9aaf5c0b-4642-40fd-97ba-c861265872ce
http://musicbrainz.org/work/9aaf5c0b-4642-40fd-97ba-c861265872ce
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Figure 5.4: HPCPs extracted for a short audio fragment. The first
bin of the HPCPs is centered at its annotated tonic frequency.

5.4 Pitch Intervals
In order to process the pitch content independent of the absolute
frequency (and as a result, independent of the octave), the pitch
values should be converted to intervals. This is achieved by con-
verting the pitch values in Hertz unit to cents. A pitch value ρ in
Hertz is converted to the cent scale by taking a frequency value f
as the reference in the equation below:

ρ̂f := 1200 log(ρ/f) (5.1)

Hence, the cent value shows the ratio between two frequen-
cies. This operation can be applied to any feature representing
the pitch content in Hertz such as the predominant melody (Sec-
tion 5.2) and the bins of the pitch(-class) distributions (Section 5.5),
and the stable pitches (Section 5.6). For example, given the pre-
dominant melody ϱ extracted from an audio fragment (a), ϱ̂f :=[
ρ̂f1 . . . ρ̂

f

|ϱ̂f |

]
denotes the predominant melody converted to cent

scale with respect to the frequency value f . Here ρ̂fi ∈ ϱ̂f is a
pitch sample in cents and i ∈

[
1 : |ϱ̂f |

]
, where |ϱ̂f | = |ϱ| is the

length of the predominant melody.
Given a pitch value ρ, the cent distance of its pitch class to the

reference frequency f (also termed as “octave-wrapped” cent dis-
tance throughout the text) is computed as:

△(ρ, f) := ρ̂f mod 1200 (5.2)

where mod is the modulo operation and ρ̂f is the cent-distance of
ρwith respect to f (Equation 5.1). Notice that△(f, ρ) = − △(ρ, f)
mod 1200 = 1200− △(ρ, f).
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The shortest “octave-wrapped” cent-distance ▲(ρ, f) between
ρ and f is computed as:

▲(ρ, f) := min
(
△(ρ, f),△(f, ρ)

)
(5.3)

5.5 Pitch and Pitch-Class Distributions
PDs and pitch-class distributions (PCDs) show the relative occur-
rence of the pitch and pitch class values with respect to each other,
respectively. PDs and PCDs are commonly used for analysis of to-
nic and pitch organisation. Krumhansl and Shepard (1979) used 12-
dimensional PCDs to study the tonal organisation of euro-genetic
musics. PCDs are also used for relevant tasks such as key detection,
chord recognition (Gómez, 2006; Temperley & Marvin, 2008) and
genre classification (Tzanetakis, Ermolinskyi, & Cook, 2003) for
Eurogenetic musics.

Formusical styles involvingmicrotonality, the pitch spacemust
be extended beyond 12-dimensions to model, analyze and predict
the melodic properties of the studied music (Bozkurt et al., 2009;
Gedik&Bozkurt, 2010; Şentürk, 2011; Şentürk, Holzapfel, & Serra,
2014). Pitch distributions have been used in many tasks applied
to OTMM such as tonic identification (Bozkurt, 2008; Atlı et al.,
2015), makam recognition (Gedik & Bozkurt, 2010) and tuning
analysis (Bozkurt et al., 2009). Likewise, these features will be
used extensively throughout the thesis in stable pitch and pitch-
class extraction (Section 5.6), tonic identification (Sections 5.7 and 6.4),
tempo estimation (Section 6.5), tuning analysis (Section 5.9), au-
dio melodic progression analysis (Section 5.10) and note modeling
(Section 6.11).

These distributions can be computed from any time-series rep-
resentation of pitch such as spectrograms, chroma features and pre-
dominant melody. Since Ottoman-Turkish makam music is a me-
lody-dominant tradition (Section 2.1), we use the predominant me-
lody to compute these distributions. First, the predominant melody
ϱ is converted from Hz-scale to cent scale by taking a frequency
value ∗ as the reference, and ϱ̂∗ is obtained. ∗ equals to the tonic
pitch κ, if available; otherwise ∗ is arbitrarily assigned to 440 Hz.
The conversion to cents allows to compute the distribution with
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constant bin width in the cents scale. The values in both distribu-
tions are computed as:

ĥ∗n :=

∑|ϱ̂∗|
i=1 ℓn (ρ̂

∗)

|ϱ̂∗
i |

(5.4)

where ĥ∗n is the relative occurence computed for the nth bin of the
distribution Ĥ

∗
, computed from the samples ρ̂∗ ∈ ϱ̂∗. As a con-

vention, 0th bin is centered around the reference frequency; or in
other words, the reference pitch is mapped to 0 cents.

The accumulator function ℓP,n for PDs is defined as:

ℓP,n(ρ̂) :=

{
1, cn ≤ ρ̂ ≤ cn+1

0, otherwise
(5.5)

where ρ̂ is a pitch sample in cents and (cn, cn+1) are the bound-
aries of the n-th bin. Similarly the accumular function for PCDs is
defined as:

ℓPC,n(ρ̂) :=

{
1, cn ≤ (ρ̂ mod 1200) ≤ cn+1

0, otherwise
(5.6)

Note that the PCD is a “circular” feature, e.g. the first and the
last bins are adjacent to each other. On the other hand, PD would
span to multiple octaves. Therefore a PDwould typically have bins
with negative indices, which represent frequencies below the refer-
ence frequency. Also notice that both PD and PCD are normalized
such that the resultant distribution can be treated as a probability
density function (Equation 5.4).

The bin size b
(
Ĥ
)
of a distribution Ĥ determines how pre-

cise the distribution is (to the extend allowed by the cent-precision
of the predominant melody) in representing the pitch space, the
tuning of the stable pitches and the microtonal characteristics in
a lower-level. The computed distributions might need to have a
small bin size, e.g. less than a quarter tone (50 cents) for many mu-
sic cultures (Gedik & Bozkurt, 2010; Chordia & Şentürk, 2013).
We select a constant bin size for the computed distributions, i.e.
b
(
Ĥ
)
= cn+1 − cn,∀n. The bin centers of both PDs and PCDs

are selected such that the reference frequency r is represented as
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a bin centered around 0 cents. We denote the number of bins in a
distribution ĥ as |Ĥ|. Note that |ĤPC| equals to ⌊1200/ b

(
Ĥ
)
⌋

in a PCD.
To remove the spurious peaks in the distribution, the distribu-

tion is convolvedwith aGaussian kernel and a “smoothed” distribu-
tion is obtained (Chordia & Şentürk, 2013). The standard deviation
of the Gaussian kernel, termed as the kernel width σ

(
Ĥ
)
, deter-

mines how smooth the resulting distribution will get. The kernel
width should be comparable to the bin size b

(
Ĥ
)
since a value

lower than one third of the bin size would not contribute much
to smoothing21 and a high value would “blur” the distribution too
much. Moreover, this parameter has a direct impact on the number
and the location of peaks in distribution, which are later used in to-
nic identification (Section 5.7) and tuning analysis (Section 5.9).
Finally, bin values are converted from cents back to Hz using the
inverse of the Equation 5.1 andH is obtained (Figure 5.5).

Unless stated otherwise, the default value of the bin size b
(
Ĥ
)

is selected as 7.5 cents ≈ 1/3 Hc, which is reported as an empiri-
cal optimal for this feature to capture tuning differences (Bozkurt,
2008). The standard deviation of the Gaussian kernel σ

(
Ĥ
)
is

selected as 7.5 cents such that it practically affects an area of six
standard deviations (22.5 cents ≈ 2 Hc peak to tail) and does not
mask quarter tone intervals (50 cents) (Şentürk et al., 2013). In our
implementation, we select the overall width of the Gaussian kernel
as 37.5 cents from peak to tail (i.e the kernel has 11 samples) for
performance reasons.22

5.6 Stable Pitches and Pitch-Classes
To extract the performed notes and their intervallic relations, the
first step is to extract the stable pitches and the stable pitch-classes

21The values of the bins in a Gaussian kernel, which are more than three
standard deviations away from the mean are greatly diminished.

22The implementation of pitch distribution and pitch-class distribution is
available at https://github.com/altugkarakurt/morty/blob/v1.2.1/
morty/pitchdistribution.py.

https://github.com/altugkarakurt/morty/blob/v1.2.1/morty/pitchdistribution.py
https://github.com/altugkarakurt/morty/blob/v1.2.1/morty/pitchdistribution.py
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Figure 5.5: The pitch distribution and pitch-class distribution com-
puted from a predominant melody. The stable pitch and stable pitch
classes are also marked on the pitch distribution and the pitch-class
distribution, respectively.

performed in the audio fragment. A simple method is to detect the
peaks in the computed pitch distributions and pitch-class distribu-
tions to extract these two features, respectively.

We detect the peaks in the distribution using the Essentia im-
plementation of the method explained in (Smith III & Serra, 1987).
We only consider the peaks, which have a ratio between its height
and the maxima of the distribution above a constant threshold. As
will be explained in Section 5.7.6, we empirically set the ratio δ(H)
to 0.15. The peaks indicate the stable pitches or stable pitch-classes
performed in the fragment depending on the distribution input (Fig-
ure 5.5). We denote the set of stable pitches extracted from the
pitch distributionHP asΦP := {ϕP,1, ϕP,2, . . . , }. Similarly the set
of stable pitch classes extracted from the pitch class distribution
HPC is denoted as ΦPC := {ϕPC,1, ϕPC,2, . . . , }.

This procedure will not be able to extract stable pitches/pitch-
classes, which are performed considerably less than maxima of the
distribution due to peak selection threshold or are masked by other
peaks. Therefore the extracted set of pitch(-classes) are limited to
“prominent” stable notes, which typically correspond to the notes
in the scale of the makam.

5.7 Tonic and Makam
In manymusic cultures, the melodies adhere to a particular melodic
framework, which specifies the melodic characteristics of the mu-
sic. While the function and the understanding of these frameworks
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are distinct from a culture-specific perspective, in a broader sense
theymay be considered as the “modes” of the studiedmusic culture.
Some of the music traditions that can be considered as “modal”
are Indian art musics, the makam traditions and medieval church
chants (Powers, et al., n.d.). Mode recognition is an important com-
plementary task in computational musicology, music discovery,
music similarity and recommendation. In the context of Ottoman-
Turkish makam music, mode is synonymous to makam.

Tonic is another important musical concept. It acts as the ref-
erence frequency for the melodic progression in a performance.
In many music cultures there is no standard reference tuning fre-
quency, which makes it crucial to identify the tonic frequency to
study melodic interactions. Likewise, there is not agreed reference
frequency in OTMMas stated earlier in Section 2.1. The identifica-
tion of the tonic frequency is required for many tasks such as tuning
analysis (Bozkurt et al., 2009), automatic transcription (Benetos &
Holzapfel, 2015) and audio-score alignment (Şentürk, Holzapfel,
& Serra, 2014). Estimating the tonic of a recording is the first step
for various computational tasks such as tuning analysis (Bozkurt,
2012), automatic transcription (Benetos & Holzapfel, 2015) and
melodic motif discovery (Gulati, Serrà, Ishwar, et al., 2016). In the
context of Ottoman-Turkish makam music, tonic is synonymous
to karar.

There has been a extensive interest on mode recognition in the
last decade (Koduri, Gulati, Rao, & Serra, 2012). Most of these
work focus on culture-specific approaches for music traditions such
as Ottoman-Turkish makam music (Gedik & Bozkurt, 2010), Car-
natic music (Dighe, Karnick, & Raj, 2013; Gulati, Serrà, Ishwar,
et al., 2016), Hindustani music (Chordia & Rae, 2007; Chordia
& Şentürk, 2013; Gulati, Serrà, Ganguli, et al., 2016) and Dast-
gah music (Abdoli, 2011). A considerable portion of these studies
are based on comparing pitch distributions (Chordia & Rae, 2007;
Chordia & Şentürk, 2013; Dighe et al., 2013; Gedik & Bozkurt,
2010), which are shown to be reliable in the mode recognition task.
There also exists recent approaches that are based on characteristic
melodic motif mining using network analysis (Gulati, Serrà, Ish-
war, et al., 2016), aggregating note models using automatic tran-
scription (Koduri et al., 2014), audio-score alignment (Şentürk, Ko-
duri, & Serra, 2016) or neural network based classification (Suma
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& Koolagudi, 2015; Shetty & Achary, 2009), all of which are de-
signed specific to the studied music culture and are not general-
izable to other music cultures without considerable effort. Simi-
larly, several studies on tonic identification use pitch distribution
based methods (Bozkurt, 2008; Chordia & Şentürk, 2013). More
recently there has been an interest in culture specific methods for
this task (Şentürk et al., 2013; Gulati, 2011; Atlı et al., 2015) that
make use of heuristics and the musical characteristics of the studied
tradition.

5.7.1 Problem Definition
Mode recognition is defined as classifying the mode µ(a) of an au-
dio fragment (a) from a discrete set of modesM := {µ1, . . . , µV },
where µ(a) ∈M and |M| is the total number of modes. In mode
recognition, we assume that the true tonic frequency (or pitch class)
k(a) of the audio recording is available.

Tonic identification is defined as estimating the frequency or
the pitch class (if the octave information of the tonic is not well-
defined for the music culture or the performance) of the perfor-
mance tonic. We denote the estimated tonic of an audio fragment
as κ(a). Tonic is a continuous variable. However, in practice, the to-
nic is typically constrained to be one of the stable pitches or pitch
classes performed in the audio fragment (Chordia & Şentürk, 2013;
Gedik &Bozkurt, 2010). With this assumption, tonic identification
can be reformulated as estimating the tonic frequency or the pitch
class κ(a) from a finite set of stable pitches/pitch-classes Φ(a) :={
ϕ
(a)
1 , . . . , ϕ

(a)

|Φ(a)|

}
performed in an audio fragment (a), where κ(a)

∈ Φ(a) and |Φ(a)| is the number of the stable pitches/pitch-classes
in the audio fragment. In the context of OTMM, we focus on iden-
tifying the pitch class of the tonic, since the frequency of the tonic is
ambiguos in heterophonic recordings, as explained in Section 2.1.
In tonic identification, we assume that the true mode m(a) of the
audio recording is known.

A third scenario arises when both the tonic κ(a) and the mode
µ(a) of the recording (a) are unknown. In this case, we identify
the tonic and recognize the mode together, which we term as joint
estimation of mode and tonic.
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Note that these scenarios are actuallymulti-class problems since
the mode and the tonic may change (and not necessarily simul-
taneously) throughout the performance. This is a more challeng-
ing problem, where we would not only like to obtain the set of
the modes and tonics in the performance but also mark the inter-
vals, where these musical “attributes” are observed.23 Later in Sec-
tion 6.7, audio-score alignment will be used to identify the tonic
and mode with their time intervals.

5.7.2 Methodologies
For makam recognition and joint recognition tasks, we general-
ize two state-of-the-art methods on distribution matching (Gedik &
Bozkurt, 2010; Chordia & Şentürk, 2013). The generalizedmethod
is explained in (Karakurt et al., 2016).24

For tonic identification, in addition to the generalized distribu-
tion matching method explained above, we also use the last-note
detection method proposed in (Atlı et al., 2015) (ATL-TON).25

Last note detection

ATL-TON uses the musical knowledge that a makam music per-
formance ends in the karar note (Section 2.1). The methodology
first extracts the predominant melody from the audio recording us-
ing ATL-MELf (Section 5.2). The end of the predominant melody
is divided into chunks according to the pitch jumps on the predom-
inant melody. Initially the tonic frequency is estimated as the me-
dian of all the frequencies in the last chunk. Then, a pitch distribu-
tion is computed (Section 5.5) using only the frequency values in

23A manually annotated example for OTMM is given in http://
musicbrainz.org/recording/37dd6a6a-4c19-4a86-886a
-882840d59518

24This work was mainly conducted by Altuğ Karakurt within his Erasmus+
internship under my guidance. I was responsible to design the methodology,
dataset and experiments. I have also contributed in developing the library, bug
fixing, refactoring, documentation and deployment.

25This work was mainly conducted by Hasan Sercan Atlı within his masters
research under the advisorship of Barış Bozkurt. I have assisted Hasan Sercan
Atlı in implementing the methodology and improving its performance. I have
also contributed with bug fixing, refactoring, documentation and deployment.

http://musicbrainz.org/recording/37dd6a6a-4c19-4a86-886a-882840d59518
http://musicbrainz.org/recording/37dd6a6a-4c19-4a86-886a-882840d59518
http://musicbrainz.org/recording/37dd6a6a-4c19-4a86-886a-882840d59518


98 Audio Analysis

Pitch
Distribution

Median Frequency 
of the Last Chunk

Last Pitch
Chunk

Predominant
Melody

Audio RecordingAudio Recording
Estimated Tonic

Frequency

Figure 5.6: The block diagram of ATL-TON.

the predominant melody, which are close to the initial estimation (±
a semitone). Then the tonic estimation is refined as the frequency
of the closest peak in the histogram. The flow diagram of ATL-TON
is shown in Figure 5.6.

This method provides a simple and generalizable solution with-
out requiring neither training nor additional information such as
the makam of the audio recording (as needed by the distribution
matching method; Section 5.7.2) or the music score (as needed by
the score-informed method; Section 6.4). Note that this method
will fail for any audio fragment, which does not end with the tonic
note,26 and the accuracy of this method is susceptible to the quality
of the predominant melody in the end of the fragment.27

Distribution matching

In (Karakurt et al., 2016), we combine and generalize the two state
of the art methods, originally proposed for audio recordings of Ot-
toman-Turkish makam music (Bozkurt, 2008; Gedik & Bozkurt,
2010)28 and short audio fragments of Hindustani music (Chordia &
Şentürk, 2013). The generalized methods are supervised and use k
nearest neighbors (kNN) estimation for classification. Our imple-
mentation is generic such that the parameters selected in the fea-
ture extraction, training and testing steps can be optimized for the
properties of the studied music tradition. We also allow the user to
classify either short audio fragments or complete audio recordings
and switch between different features, training schemes and tasks
as introduced in (Bozkurt, 2008; Gedik & Bozkurt, 2010; Chor-

26e.g. http://musicbrainz.org/recording/deadd528-5faf-4377
-8c68-ea7145112c34

27The open implementation of this method is available in https://github
.com/hsercanatli/tonicidentifier_makam

28(Bozkurt, 2008) introduces tonic identification methodology, which is later
extended to makam recognition in (Gedik & Bozkurt, 2010).

https://github.com/hsercanatli/tonicidentifier_makam
https://github.com/hsercanatli/tonicidentifier_makam
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Figure 5.7: An example model with a single PCD per makam
trained for three makams

dia & Şentürk, 2013). Later in Section 5.7.3, we demonstrate the
experiments for the parameter selection and optimization on a test
dataset of audio recordings of OTMM (Section 5.7.4) and the re-
sults of (Chordia & Şentürk, 2013) on a Hindustani and a Carnatic
music dataset using the optimal parameters reported in (Chordia &
Şentürk, 2013) (Appendix B.7).

In the training step, we use audio fragments with annotated ma-
kam and tonic. We first extract a predominant melody for each
audio fragment. These are used to compute either pitch distribution
or pitch-class distribution (Section 5.5). Next, we create makam
models from these computed distributions.

Given an audio recording with an unknown makam and/or to-
nic, we extract its predominant melody and compute the distribu-
tion. Then, we compute a distance or dissimilarity between the
distribution of the test audio and the selected distributions in the
training models and compute the k nearest neighbors according to
the computed measure. Finally, we estimate the unknown makam
and/or tonic as the most common candidate among the k nearest
neighbors.

Now we proceed to explain the generalized methodology in de-
tail.

Training model: The generalized method is supervised and
hence require training data, i.e. audio fragmentswith annotatedma-
kam and tonic. From a training audio fragment (x), we first extract
the predominant melody ϱ(x) and normalize with respect to the an-
notated tonic frequency κ(x) (Equation 5.1). Next, the normalized
predominant melodies ϱ̂κ,(x) are grouped according to the anno-
tated makam µ(x) of each individual fragment.

The fundamental difference between the methodologies pro-
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Figure 5.8: An examplemodel with three PCDs permakam trained
for three makams.

posed in (Bozkurt, 2008; Gedik & Bozkurt, 2010) and (Chordia
& Şentürk, 2013) is the training model T . The methodology pro-
posed in (Bozkurt, 2008; Gedik & Bozkurt, 2010) joins all the nor-
malized predominant melodies and compute a single distribution
per mode. On the other hand, (Chordia & Şentürk, 2013) creates
a separate distribution from each annotated audio fragment. From
a machine learning perspective (Bozkurt, 2008; Gedik & Bozkurt,
2010) represents each makam with a single data point (Figure 5.7),
whereas (Chordia & Şentürk, 2013) represents them with many
(Figure 5.8) in an |H|-dimensional space, where |H| is the num-
ber of bins in the distributions. From now on, we term the training
models using the training step in (Bozkurt, 2008; Gedik & Boz-
kurt, 2010) and (Chordia & Şentürk, 2013) as “single distribution
per mode” and “multi-distributions per mode”, respectively. We
denote the obtained model as T :=

{
⟨Ĥ1, µ1⟩, ⟨Ĥ2, µ2⟩, . . .

}
,

where ⟨Ĥj, µj⟩ is a tuple. Ĥj and µj denotes the trained distribu-
tion and the makam label of the j th data point, respectively.29 The
model T consists of the distribution representations for |M| ma-
kams, where |M| is the number of unique makam labels µi (where

29The annotated tonic and the source are not used later in the classification
step (Section 5.7.2). Therefore these labels are omitted from the representation
in T .
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i ∈ [1 : |M|]) in the training fragments.
Nearest Neighbor Selection: In mode recognition, tonic iden-

tification and joint estimation tasks, the common step is to find the
nearest neighbor(s) of a selected distribution among a set of distri-
butions to be compared against. To find these nearest neighbors, we
compute a distance or a dissimilarity between the test distribution
and each distribution in the comparison set selected from the train-
ing model (Cha & Srihari, 2002). We have implemented the dis-
tance and the similarity metrics in (Gedik & Bozkurt, 2010; Chor-
dia & Şentürk, 2013), namely, City-Block (L1 Norm) distance, Eu-
clidean (L2 Norm) distance, L3 Norm, Bhattacharyya distance, in-
tersection and cross correlation. Note that intersection and cross
correlation are similarity metrics, hence we convert them to dis-
similarities (i.e. 1−similarity) instead. The choice of the distance
or dissimilarity measure plays a crucial role in the neighbor selec-
tion.

Given a distribution Ĥj in the model T and the distribution
Ĥ

∗,(a)
extracted from an audio fragment (a) by taking the frequency

∗ as the reference, the implemented metrics between these distri-
butions are given below:

• City-Block (L1 Norm) Distance:

♢L1

(
Ĥj, Ĥ

∗,(a))
=

1

|Ĥj|

∑
n

|ĥj,n − ĥ∗,(a)n | (5.7)

• Euclidean (L2 Norm) Distance:

♢L2

(
Ĥj, Ĥ

∗,(a))
=

√∑
n

(
ĥj,n − ĥ∗,(a)n

)2
(5.8)

• L3 Norm:

♢L3

(
Ĥj, Ĥ

∗,(a))
=

(∑
n

∣∣∣ĥj,n − ĥ∗,(a)n

∣∣∣3)1/3

(5.9)

• Bhattacharyya Distance:

♢bhat

(
Ĥj, Ĥ

∗,(a))
= − log

∑
n

√
ĥj,n ĥ

∗,(a)
n (5.10)
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• Inverse of Intersection:

♢intr−1

(
Ĥj, Ĥ

∗,(a))
= 1− 1

|Ĥj|

∑
n

min
(
ĥj,n, ĥ

∗,(a)
n

)
(5.11)

• Negative of Cross-Correlation:

♢1 - ccor

(
Ĥj, Ĥ

∗,(a))
= 1− 1

|Ĥj|

∑
n

ĥj,n ĥ
∗,(a)
n (5.12)

Remember that the reference is always the 0th bin. Also remark
that the PDs would not typically have the same length. During the
distance or dissimilarity computation, the values of the “missing”
bins in the distributions are treated as 0.

After the distances or the dissimilarities are computed, the com-
pared distributions are ranked and the k nearest neighbors are se-
lected. We then estimate the test sample as the most common label
of the neighbors. In case of a tie between two or more groups, we
select label of the group, which accumulates the lowest distance
or dissimilarity. Note that if a single-distribution is computed for
each mode as explained in (Gedik & Bozkurt, 2010), the k value is
always 1, since each mode is only represented by one sample.

Nowwe proceed to explain the procedure for each task in detail.
Makam Recognition: Given an audio fragment (a) with an

unknown mode, we compute the distribution Ĥ
k,(a)

by taking the
annotated tonic k(a) as the reference (Section 5.5). Next we com-
pute the distance or the dissimilarity between Ĥ

k,(a)
and the trained

distribution Ĥj of each tuple ∈ T , where T is the trained model,
and obtain the k nearest neighbors to (a). We estimate the ma-
kamµ(a) of (a) as the most commonmakam label within the nearest
neighbors.

Tonic Identification: Given an audio fragment (a)with the an-
notated makamm(a), we first extract the predominant melody ϱ(a).
Then we compute a distributionH(a) (Section 5.5). We detect the
peaks in the distribution and obtain the set of stable pitches/pitch-
classes as Φ(a) :=

{
ϕ
(a)
1 , . . . , ϕ

(a)

|Φ(a)|

}
, where |Φ(a)| is the number

of detected peaks (Section 5.6). Assuming each peak ϕ(a)
i as the to-

nic candidate, we compute Ĥ
ϕ
(a)
i ,(a)

such that the index of the bin
representing ϕ(a)

i becomes 0 in the shifted distribution.
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Figure 5.9: Block diagram of the joint estimation methodology.
The shifted distribution in red and the training distribution in blue
shows a close match.

From the training model T , we select all the ⟨Ĥj, µj⟩ ∈ T
such that the label µj = m(a). Next we compute the distance or the

dissimilarity between each shifted distribution Ĥ
ϕ
(a)
i (a)

and the se-
lected ⟨Ĥj, µj⟩s. We obtain the k pairs with the lowest distance or
dissimilarity and select the most occurring peak ϕ(a)

i in the neigh-
bors as the estimated tonic κ(a).

Joint Estimation of Makam and tonic: Given an audio frag-
ment (a) with unknown makam and tonic, we compute the stable
pitches/pitch-classes, Φ(a) :=

{
ϕ
(a)
1 , . . . , ϕ

(a)

|Φ(a)|

}
and then the dis-

tributions Ĥ
ϕ
(a)
i ,(a)

assuming each ϕ(a)
i ∈ Φ(a) as the tonic candi-

date, as explained in the tonic identification procedure explained
above. Next, we compute the distance or the dissimilarity between

each pair of shifted distribution Ĥ
ϕ
(a)
i ,(a)

and the distributions Ĥj

in all the training samples ⟨Ĥj, µj⟩ ∈ T . We select the k pairs with
the lowest distance or dissimilarity and estimate the most occurring
⟨mode, tonic candidate⟩ pair, i.e. ⟨µi, ϕ

(a)
j ⟩ (µi ∈M, ϕ(a)

j ∈ Φ(a))
as the makam µ(a) and the tonic κ(a) of the audio fragment (a). An
example procedure is shown in Figure 5.9.
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5.7.3 Experiments
To evaluate the generalized methodology, we conducted exhaus-
tive experiments on the largest makam recognition dataset of Otto-
man-Turkish makam music (OTMM) (Section 5.7.4).

In most of the tonic identification and mode recognition stud-
ies in the past, the features extracted from the data,30 the source
code and the experimental results have not been generally shared.
We consider the unavailability of public tools, datasets and repro-
ducible experimentations as major obstacles for computational re-
search on OTMM and MIR in general. For this reason, we have
implemented the generalized distribution matching methodology
and packaged it as a open source toolbox calledMOdeRecognition
andTonicYdentification Toolbox (Karakurt et al., 2016) (MORTY).31
MORTY is free software written in Python 2.7 and licensed under Af-
fero GPLv3.32 Our primary aim is to provide open and flexible
tools for the mode recognition and tonic identification tasks, which
can be applied to different music cultures while allowing the users
to optimize the parameters easily according to the characteristics of
the studied music.

This toolbox also includes the implementations of pitch and
pitch-class distributions (Section 5.5)33 and also the stable pitch
and pitch-class extraction step (Section 5.6)34 and hence provide
the essential tools for several relevant tasks such as tuning and
intonation analysis (Section 5.9 and 6.11). Moreover, MORTY has
been recently used as a benchmark against novel methodologies
proposed for mode recognition in Hindustaion and Carnatic mu-
sic (Gulati, Serrà, Ishwar, et al., 2016; Gulati, Serrà, Ganguli, et
al., 2016) (Appendix B.7).

In addition to the toolbox and experimentation code, the dataset
(Section 5.7.4), the experiments (Section 5.7.3) and the results (Sec-

30Excluding the commercial audio recordings, which cannot be generally
made public due to copyright laws.

31https://github.com/altugkarakurt/morty
32https://www.gnu.org/licenses/agpl-3.0.en.html
33https://github.com/altugkarakurt/morty/blob/v1.2.1/

morty/pitchdistribution.py
34https://github.com/altugkarakurt/morty/blob/v1.2.1/

morty/pitchdistribution.py#L231-L265

https://github.com/altugkarakurt/morty
https://www.gnu.org/licenses/agpl-3.0.en.html
https://github.com/altugkarakurt/morty/blob/v1.2.1/morty/pitchdistribution.py
https://github.com/altugkarakurt/morty/blob/v1.2.1/morty/pitchdistribution.py
https://github.com/altugkarakurt/morty/blob/v1.2.1/morty/pitchdistribution.py#L231-L265
https://github.com/altugkarakurt/morty/blob/v1.2.1/morty/pitchdistribution.py#L231-L265
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tion 5.7.5) are in public domain.35

Experimental Setup

In the experiments we use stratified 10-fold cross validation. Ta-
ble 5.2 gives a combination of the parameters used in the exper-
imental setup. We use grid search, to find the optimal parame-
ters for OTMM. We use ATL-MELf for predominant melody ex-
traction (Atlı et al., 2014). The parameter combinations where the
bin size b

(
Ĥ
)
is greater than or equal to 3 times the kernel width

σ
(
Ĥ
)
are omitted. We also conduct experiments using the raw

distributions, without smoothing. When the trainingmodel consists
of a “single” distribution per mode, the number of neighbors, is al-
ways taken as 1 as each label is represented by a single data point.
The minimum peak ratio, δ(H), is only used in tonic identification
and joint estimation tasks. The optimal value of the minimum peak
ratio is found separately (Section 5.7.5).

For mode recognition, wemark the classification as True, if the
estimated mode µ(a) and the annotated mode m(a) for a recording
(a) are the same. The tonic octave in the orchestral performances
of OTMM is ambiguous as each instrument plays the melody in
their own register. Therefore, we aim to evaluate the tonic pitch
class and calculate the shortest octave-wrapped cent distance ▲(
κ(a), k(a)) between the estimated κ(a) and the annotated tonic k(a)

(Equation 5.3). If the distance is less than 25 cents, we consider
the tonic as correctly identified. In the case of joint estimation, we
require both the tonic and makam estimates to be correct.

For each fold, we compute the accuracy, which is the number
of correct estimations divided by the total number of testing data.
In Section 5.7.5, we report the average accuracies of the folds for
each parameter combination. We also compare the tonic identifi-
cation results obtained in the tonic identification and joint estima-
tion tasks with the results obtained from the the last note detection
method (Atlı et al., 2015) (Section 5.7.2). For all results below, the
term “significant” refers to statistical significance at the p = 0.01
level as determined by a multiple comparison test using the Tukey-
Kramer statistic.

35http://compmusic.upf.edu/node/319

http://compmusic.upf.edu/node/319
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Table 5.2: The summary of the tasks, features, training models and
parameters used in the experiments.

Symbol Name Values / Methods Comment
task mode, tonic, joint

ϱ predominant melody ATL-MELf extraction method specialized
for OTMM

Ĥ distribution PD, PCD
T type of the training model single, multi number of distributions

per mode used in (Gedik &
Bozkurt, 2010; Chordia &
Şentürk, 2013)

b
(
Ĥ
)

bin size 7.5, 15, 25, 50, 100
cents

σ
(
Ĥ
)

kernel width “no smoothing” &
7.5, 15, 25, 50, 100
cents

Combinations with b
(
Ĥ
)
≥

3σ
(
Ĥ
)
are omitted.

♢ distance or dissimilarity L1, L2, L3,
Bhattacharyya,
1−intersection,
1−cross_correlation

1−intersection and
1−cross_correlation are
dissimilarities computed
from the namesake similarity
measures

k number of nearest neighbors {1, 3, 5, 10, 15} for the “single” distribution
per mode training model, the
value is fixed to 1

δ(H) minimum peak ratio [0, 1] optimal found by a separate
grid-search with a step of
0.05, is not used in makam
recognition

To find an optimal for the minimum peak ratio, δ(H), we com-
pute all distributions of each recording in the dataset using all the
combinations of the bin sizes and the kernel widths given in Ta-
ble 5.2. Then, we detect the peaks in each pitch distribution us-
ing a minimum peak ratio, from 0 (no threshold) to 1 (only keep-
ing the highest peak). For each value of the minimum peak ratio,
we note the number of distributions which has the annotated to-
nic among the peaks (“tonic hits”) and the total number of peaks
obtained from each distribution. All of the scripts, computed fea-
tures, experiments and results are shared online for reproducibility
purposes.36

36https://github.com/sertansenturk/makam_recognition
_experiments/tree/dlfm2016

https://github.com/sertansenturk/makam_recognition_experiments/tree/dlfm2016
https://github.com/sertansenturk/makam_recognition_experiments/tree/dlfm2016
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5.7.4 Dataset
In (Gedik & Bozkurt, 2010), the makam recognition method was
evaluated on 172 solo audio recordings in 9 makams. To the best
of our knowledge, this dataset represents the biggest number of
recordings that has been used to evaluate makam recognition task,
so far. As explained by the authors, these recordings were se-
lected from the performances of “indisputable masters,” and there-
fore they aremusically representative of the coveredmakams. Nev-
ertheless, the results are not reproducible as the dataset is not pub-
lic.

The tonic identification method proposed in (Bozkurt, 2008)
was evaluated using 150 synthesized MIDI files plus 118 solo re-
cordings. Similar to (Gedik & Bozkurt, 2010) the data is not pub-
licly available. To the best of our knowledge, the only open tonic
identification datasets have been compiled under the CompMusic
project (Section 3.2.4). The first one is provided in (Şentürk et al.,
2013) (which will be explained in detail in Section 6.4) and it con-
sists of 257 audio recordings. The second and the bigger test dataset
is provided in (Atlı et al., 2015), consisting of 1093 recordings.37
The recordings in both of the datasets are identified using MBIDs.
Nevertheless, the features extracted from the audio recordings are
not provided in either dataset. Therefore, the results are not straigh-
forward to reproduce.

Considering the lack of open test datasets for makam recogni-
tion and the drawbacks of the available tonic identification datasets,
we have gathered a test dataset of audio recordings with anno-
tated makam and tonic, called the Ottoman-Turkish makam recog-
nition dataset.38 The dataset covers 20 commonly performed ma-
kams39 and it is composed of 1000 audio recordings. Following our
constraint in the problem definition (Section 5.7.1), a single makam
is performed in each recording (i.e. there are 50 recordings per
makam). This dataset is currently the largest and the most compre-

37The datasets are hosted in https://github.com/MTG/turkish_makam
_tonic_dataset/releases/

38https://github.com/MTG/otmm_makam_recognition_dataset/
tag/v1.0.0

39i.e. Acemaşiran, Acemkürdi, Bestenigar, Beyati, Hicaz, Hicazkar,
Hüseyni, Hüzzam, Karcığar, Kürdilihicazkar, Mahur, Muhayyer, Neva, Ni-
havent, Rast, Saba, Segah, Sultanıyegah, Suzinak and Uşşak

https://github.com/MTG/turkish_makam_tonic_dataset/releases/
https://github.com/MTG/turkish_makam_tonic_dataset/releases/
https://github.com/MTG/otmm_makam_recognition_dataset/tag/v1.0.0
https://github.com/MTG/otmm_makam_recognition_dataset/tag/v1.0.0
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hensive dataset for the evaluation of automatic makam recognition.
Moreover, it is comparable to the aforementioned dataset provided
in (Atlı et al., 2014) for the evaluation of tonic identificationmethod-
ologies.

Similar to (Atlı et al., 2015) and (Şentürk et al., 2013), the
recordings in the dataset are labeled with MBIDs. The tonic fre-
quency of each recording is annotated manually by marking the to-
nic frequency using the visual interface ofMakamToolbox. The to-
nic frequency is adjusted by synthesizing and listening the marked
frequency synchronous to the audio playback using the same tool-
box. The annotations are cross checked by at least two annotators.
We also provide the predominant melodies extracted from the au-
dio recordings using ATL-MELf for reproducibility purposes.

Similar to (Gedik & Bozkurt, 2010), the dataset is intended
to be musically representative of OTMM. To achieve this, we se-
lected the recordings of acknowledged musicians from the Comp-
Music makam corpus (Uyar et al., 2014), which is currently the
most representative music corpus of OTMM aimed at computa-
tional research. The dataset covers contemporary and historical,
monophonic and heterophonic recordings, as well as live and stu-
dio recordings. Some of the recordings have non-musical sections,
such as clapping at the end of live recordings, announcements or
scratch and hissing sounds (e.g. in historical recordings). This di-
versity gives us the opportunity to test the methods in a much more
challenging environment, which has not been completely addressed
in previous research (Gedik & Bozkurt, 2010).

5.7.5 Results
To find an optimal for the minimum peak ratio, δ(H), we com-
pute the PD and PCD for all recordings in the test dataset using
7.5 and 15 cent bin size and all kernel widths given in Table 5.2,
resulting in 24 distributions ×1000 recordings = 24000 distribu-
tions. We detect the peaks in the computed distributions by chang-
ing the minimum peak ratio from 0 (select all peaks) to 1 (select the
highest peak), and note whether the annotated tonic is among the
detected peaks. For each minimum peak ratio, we divide the num-
ber of distributions with the tonic annotation detected as a peak and
the total number of computed distributions (24000). Note that this
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Figure 5.10: Total number of peaks and the ratio between the num-
ber of tonic hits and number of all distributions.

ratio is not 1 even when δ(H) is selected as 0. This is because
of the possibility that the tonic masked by the neighboring peaks
when the selected kernel is too wide. We also count the total num-
ber of peaks detected from all distributions for each minimum peak
ration. By inspecting the Figure 5.10, we observe that the probabil-
ity of finding the tonic among the peaks is very high for minimum
peak ratios less than 0.4 in the expense of an exponential increase
in the tonic candidates (peaks) and hence in the processing time.
Since our scenario can tolerate a moderate increase in processing
time, we select the minimum peak ratio, δ(H), as 0.15.

Table 5.3 shows the best results obtained after grid search. For
mode recognition, multi-distribution per mode model yields an ac-
curacy of 71.8% with the best parameter set while highest accu-
racy using single distribution per mode is 38.7%. For tonic identi-
fication multi-distribution per mode performs with accuracy above
95% in 20 parameter sets and above 90%accuracy in 299 parameter
sets out of 1440 experiments, where the highest accuracy obtained
is 95.8%. Hence, the method is robust to a variety of parameter
selections for tonic identification. On the other hand, single dis-
tribution per mode model yields 89.8% accuracy with the best pa-
rameter set. For joint estimation the multi-distribution per mode
model performs with 63.6% accuracy (86.1% tonic identification
and 65.2%makam recognition accuracy) in the best configuration,
while single distribution yields 27.6% (71.0% tonic identification
and 28.6% makam recognition accuracy). For all three considered
tasks, the optimal choices for distribution, distance/dissimilarity
and training model are PCD, Bhattacharyya distance and multi-
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Figure 5.11: The distribution of octave-wrapped distances be-
tween the estimated and annotated tonic for all parameter sets with
7.5 cent bin size.

distribution per mode.

Table 5.3: The best parameter sets for each task. For all
tasks PCDs using Bhattacharyya distance and traning multiple dis-
tributions per mode gives the best results.

Task σ
(
Ĥ
)

b
(
Ĥ
)

k Accuracy
Tonic 7.5 15 3 95.8%
Makam 25 25 10, 15 71.8%
Joint 15 7.5 15 63.6%

The method proposed in (Atlı et al., 2015) obtained 79.9% to-
nic identification accuracy on our dataset. The best tonic identifi-
cation accuracy using PDs and single-distribution per mode as pro-
posed in (Bozkurt, 2008) is 49.8%. Multi-distribution per mode
method using PCDs outperforms both methods whether the ma-
kam is known (95.8% accuracy with the best configuration) or not
(91.5% tonic accuracy in joint estimation with the best configu-
ration) even with the majority of sub-optimal parameter sets. Fig-
ure 5.11 shows the distribution of the octave-wrapped cent distance
(Equation 5.2) between the estimated and the annotated tonic for
each test and for all the parameter sets with 7.5 cent bin size.
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These experiments revealed that certain parameter selections
significantly improve or diminish the methods’ performances:

• T : Multi-distribution training model (Chordia & Şentürk,
2013) performs significantly better than single-distribution
training model (Gedik & Bozkurt, 2010).

• Ĥ: PCD significantly outperforms PD.
• b
(
Ĥ
)
: Smaller bin size yields better results, however there

is no significant distinction between 7.5, 15 and 25 cent bin
sizes. Note that these bin sizes significantly outperform 50
and 100 cent bin sizes.

• σ
(
Ĥ
)
: The 7.5, 15 and 25 cent kernel widths significantly

improves the accuracy of the models compared to 50 and
100 cent kernel widths. No smoothing performs slightly (in-
significantly) worse than 7.5, 15 and 25 cent kernel widths.
However, processing the distribution without smoothing is
substantially slower due to the peak detection step.

• ♢: Using multi-distribution training model and PCDs, Bhat-
tacharyya distance always yields the highest accuracy. It is
significant for all cases except using either 1−intersection or
L1 in tonic identification.

• k: Increasing the number of nearest neighbors increases the
accuracy. Nevertheless, the increase does not make a sig-
nificant impact except k = 1, which performs significantly
worse than higher k values.

• δ(H): In the tonic identification task, the true tonic is typi-
cally among the detected peaks for minimum peak ratios be-
low 0.4. Values smaller than 0.1 increases the processing
time without any meaningful improvement in tonic identifi-
cation accuracy.

5.7.6 Discussion
The drawback of the pitch distribution based methods is that they
do not consider the temporal characteristics. When we inspect the
results obtained from the experiments in 5.7.3, it is observed that
the confusions (Figure 5.12) are mainly between makams, which
either have very similar intervals in their scale or contain similar
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Figure 5.12: Confusion matrix of the best performing makam
recognition experiment (Table 5.3).

sets of pitches. Similarly in (Gulati, Serrà, Ishwar, et al., 2016),
the proposed method was better in classifying phrase-based ragas,
while our method was better at classifying scale based ones (Ap-
pendix B.7).

In (Atlı et al., 2015), we showed that the last note detection
method outperforms the tonic identification method in (Bozkurt,
2008) (i.e. using PDs with single-model per mode) for OTMM.
Our results validate these findings (the best is accuracy is 49.8 as
stated in Section 5.7.5). Nevertheless, we show that using PCDs
with multi-model per mode is superior to both methods even when
the makam of the recording is not known and even if the makam is
found erroneously in the joint estimation process.

While the estimated tonic is typically around the annotation
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(Figure 5.11), the main confusion occurs around the fourth, fifth
and seventh of the tonic, which typically act as the melodic centers
and/or anchor points in the melodic progression (Özkan, 2006).

For all the tasks defined in Section 5.7.1, we suggest using
multi-distribution models approach with PCD and Bhattacharyya
distance. If the estimation accuracy is a top priority, we suggest
choosing a small b

(
Ĥ
)
, σ
(
Ĥ
)
(7.5 or 15 cents) and δ(H) (0.15)

as these parameters yield high accuracies. For applications requir-
ing computational efficiency (e.g. mobile applications) or fast op-
eration (e.g. real-time estimation), b

(
Ĥ
)
, σ
(
Ĥ
)
(25 cents) and

δ(H) (0.4) can be bigger, since reduced feature dimensions would
substantially decrease the computational complexity. The number
of neighbors may be chosen as any value higher than 1.

5.7.7 Summary
In this section, a generalizedmethodology based on (Bozkurt, 2008;
Gedik & Bozkurt, 2010; Chordia & Şentürk, 2013) is presented.
The methodology is implemented as an open toolbox for mode
recognition and tonic identification called MORTY. It is designed
with flexibility in mind such that it can be easily modified and
optimized to analyse large audio corpora. The implementation is
evaluated on the largest makam recognition dataset of OTMM. The
generalized method outperformed the state-of-the-art methodolo-
gies proposed for makam recognition (Gedik & Bozkurt, 2010)
and tonic identification (Bozkurt, 2008; Atlı et al., 2014). The tool-
box has also been used to benchmark two novel mode recognition
methodologies proposed for Indian art musics (Appendix B.7).

MORTY is also used as a part of our makam music analysis tool-
box40 in several tasks such as pitch and pitch-class distribution com-
putation (Section 5.5), tuning analysis (Section 5.9) and melodic
progression analysis (Section 5.10). The usage and implementa-
tion will be explained more in Section 5.11) and Appendix C, re-
spectively. In the future, we plan to apply dimension reduction and
hashing techniques to summarize the features and speed up the clas-
sification for real-time mode and tonic estimation on short audio

40https://github.com/sertansenturk/tomato

https://github.com/sertansenturk/tomato
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fragments. We would also like to incorporate the (Gulati, Serrà,
Ganguli, et al., 2016), which has outperformed our methodology
in mode recognition on Carnatic and Hindustani musics. We also
hope that MORTY may be useful as a general tool for tonic identi-
fication, mode recognition and tuning analysis applied on different
modal music traditions.

5.8 Transposition
To obtain the transposition (ahenk) of an audio performance, the to-
nic symbol of the makam of the recording is read by referring to a
dictionary.41 The theoretical frequency (according to the intervals
defined by AEU theory) kbolahenk of the tonic in Bolahenk (the de-
fault transposition of OTMM performances) is also noted.42 Then,
the octave-wrapped cent distance △(κ, kbolahenk) from κ to kbolahenk
is computed (Equation 5.2). Finally, the transposition is matched
by referring to the interval in Table 5.4, which contains the com-
puted distance.43 Note that the ”Bolahenk Nısfiye” ahenk, which
is an octave higher than Bolahenk, is omitted due to the ambiguity
of tonic octave in heterophonic recordings (Section 2.1).

5.9 Tuning
To analyze the tuning of each note performed in an audio frag-
ment, we implemented the methodology explained in (Bozkurt et
al., 2009).44 The method first obtains the set of stable pitches ΦP
performed in an audio fragment (a) by applying peak detection

41https://github.com/sertansenturk/ahenkidentifier/blob/
v1.5.0/ahenkidentifier/data/tonic.json

42e.g. A4 ≈ 329.6 Hz, if the tonic symbol of the makam is A4. Readers are
reminded that the “typical” performance tuning of Western classical music (A4
= 440 Hz) is a fourth higher than Bolahenk (Section 2.1).

43The implementation is available at https://github.com/
sertansenturk/ahenkidentifier.

44This work was done by Hasan Sercan Atlı and me between January and
March 2016. We have equal contribution on implementing the methodology. I
have also contributed to the code with bug fixing, refactoring, documentation
and deployment. Bilge Miraç Atıcı has also contributed to the initial stages of
the development and also with bug fixing.

https://github.com/sertansenturk/ahenkidentifier/blob/v1.5.0/ahenkidentifier/data/tonic.json
https://github.com/sertansenturk/ahenkidentifier/blob/v1.5.0/ahenkidentifier/data/tonic.json
https://github.com/sertansenturk/ahenkidentifier
https://github.com/sertansenturk/ahenkidentifier
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Table 5.4: The transpositions, the corresponding octave-wrapped
cent distance intervals and the theoretical center of the pitch-class
if the tonic symbol is G4.

Ahenk △(κ, kbolahenk) Center when the tonic is G4
Bolahenk [−50, 50) cents 293.67 Hz
Davut-Bolahenk Mabeyni [50, 150) cents 311.13 Hz
Davut [150, 250) cents 329.63 Hz
Şah [250, 350) cents 349.23 Hz
Mansur-Şah Mabeyni [350, 450) cents 370.00 Hz
Mansur [450, 550) cents 392.00 Hz
Kız-Mansur Mabeyni [550, 650) cents 415.31 Hz ×2n, ∀n ∈ Z
Kız [650, 750) cents 440.01 Hz
Yıldız [750, 850) cents 466.17 Hz
Müstahsen [850, 950) cents 493.89 Hz
Sipürde [950, 1050) cents 523.26 Hz
Bolahenk-Sipürde Mabeyni [1050, 1150) cents 554.38 Hz

on the pitch distribution as explained in (Section 5.6). The stable
pitches are then normalized (Equation 5.1) with respect to the tonic
frequency κ (Section 5.7) and the performed scale degrees ϕ̂κ

P,i ∈
Φ̂

κ

P (in cents) are obtained.
In parallel, the note symbols in the scale of the performed ma-

kam is inferred from the key signature of the makam and extended
to ± two octaves. The note symbols are mapped to the theoretical
scale degrees according to the AEU theory (Özkan, 2006) (e.g. if
the tonic symbol is G4, the scale degree of A4 is 9 Hc ≈ 203.8
cents).

Next, the performed scale degrees are matched with the theo-
retical scale degrees using a threshold of 50 cents (close to 2.5 Hc,
which is reported as the optimal by Bozkurt et al. (2009)). If a
performed scale degree is close to more than one theoretical scale
degree (or vice versa), we only match the closest pair. As a trivial
addition to (Bozkurt et al., 2009), we re-map the theoretical scale
degrees to the note symbols and obtain the stable pitch - note sym-
bol pairs, i.e. ⟨ϕi, ni⟩s. We also store the theoretical scale degree
and the performed scale degree of each match.45

Figure 5.13 shows the extracted tuning over the pitch distribu-
tion of an audio recording in Hüseyni makam.46 The frequency of

45Our implementation is available at https://github.com/miracatici/
notemodel.

46http://musicbrainz.org/recording/8b8d697b-cad9-446e-ad19

https://github.com/miracatici/notemodel
https://github.com/miracatici/notemodel
http://musicbrainz.org/recording/8b8d697b-cad9-446e-ad19-5e85a36aa253
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Figure 5.13: The tuning extracted from an audio recording in Hü-
seyni makam.

each stable note is shown on the x-axis. The vertical dashed lines
indicate the frequencies of the notes according to the theoretical in-
tervals. The matched note symbol and the deviation from the the-
oretical scale degree of each stable pitch is displayed right next to
the corresponding peak on the PD. It can be observed that the some
of the notes (esp. çargah and hüseyni notes) substantially deviate
from the AEU theory.

Note that the method explained in (Bozkurt et al., 2009) is lim-
ited to obtaining the tuning of the notes in the extended scale. More-
over, there is limited information about the intonation of the per-
formed notes that can be retrieved from analysing the pitch distri-
butions alone.47 In Section 6.11, a score-informed method is pro-
posed, which is able to capture the tuning and intonation of the
majority of the performed notes.

5.10 Melodic Progression
Bozkurt (2015) has proposed two similar models for analyzing the
melodic progression (seyir) of music scores and audio recordings,
respectively. For symbolic analysis, the note sequence in the score
is divided into small chunks. The note sequence in each chunk
is synthesized (Section 4.2.2) by converting the note symbols to
scale degrees according to the intervals defined by the AEU the-
ory. Then the relative occurrence of the scale degrees and the mean
of the scale degrees is computed for each chunk. For audio anal-

-5e85a36aa253
47e.g. the shape and spread of the peaks in the distributions

http://musicbrainz.org/recording/8b8d697b-cad9-446e-ad19-5e85a36aa253
http://musicbrainz.org/recording/8b8d697b-cad9-446e-ad19-5e85a36aa253
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Figure 5.14: The predominant melody and melodic progression
feature of an audio recording.

ysis, the predominant melody is divided into chunks and a pitch
distribution is computed for each chunk. Finally the mean of the
predominant melody of each chunk is computed. Bozkurt (2015)
computes these representations from several sets of music scores or
audio recordings grouped with respect to their makam to observe
a “generalizable” melodic progression for each of the studied ma-
kams.

To analyse themelodic progressions in an audio fragment, these
two approaches are combined by first extracting a predominant
melody ϱ and dividing it to chunks with a certain frame size and
overlap ratio. Then a PD HP (Section 5.5) is computed for each
chunk and the set of stable pitchesΦP are extracted from the PD of
each chunk (Section 5.6).48

So far the melodic progression is used for visualization in the
recording pages of Dunya-makam (Section 7.1.2). For consistency
in visualization, we divide an input audio recording into 40 chunks
with a 50% overlap. Figure 5.14 shows the predominant melody
(in green) extracted from an audio recording and along with the
melodic progression. The black line indicates the mean of the pre-
dominant melody in each chunk. The dots show the location of the
stable pitches. The radius of the dots are proportional to the height
of the corresponding peak in the PD computed for the chunk and
the red dot corresponds to the stable pitch extracted from the high-
est peak of the PD in its chunk. Note that the computed PDs are
not displayed to avoid cluttering the Figure.

48The implementation is available at https://github.com/
sertansenturk/seyiranalyzer.

https://github.com/sertansenturk/seyiranalyzer
https://github.com/sertansenturk/seyiranalyzer
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5.11 Combining Audio Analysis
Methodologies

The methodologies described throughout the Chapter are imple-
mented in Python and integrated into an audio analysis sub-package
in Turkish-Ottoman Makam (M)usic Analysis TOolbox (toma-
to).49 If a type of information is alreadyFor example, if the key
signature of the makam of a recording is not known (Section 3.1.3),
the stable pitches will not be matched with the note symbols dur-
ing tuning analysis. The algorithms may also be executed together
in a workflow as shown in Figure 5.15. In the combined analysis
workflow, the makam recognition step is skipped, if the makam
information already exists in the metadata.

For a more detailed description of the implementations, please
refer to Appendix C.

5.12 Automatic Description of the
CompMusic-Makam Audio Collec-
tion

Using the combined audio analysis methodologies (Section 5.11),
an automatic description of the CompMusic OTMM audio collec-
tion is obtained. Figure 5.16 shows the overview of the description.

The automatic description is used to facilitate the navigation
and discovery on the audio collection itself (Section 7.1.2). In ad-
dition, the description could allow to study the performance char-
acteristics on a sizable amount of data. As an example, Figure 5.17
and Figure 5.18 show the distribution of automatically identified
tonic pitch-classes and transpositions from theCompMusicOTMM
audio collection using ATL-TON. It can be observed that the most
popular ahenks are bolahenk, mansur, kız and sipürde. In addition,
the spread shows that the tonic is not necessarily tuned with respect
to a standard reference frequency such as 440 Hz.

49https://github.com/sertansenturk/tomato/blob/v0.9.1/
tomato/audio/audioanalyzer.py

https://github.com/sertansenturk/tomato/blob/v0.9.1/tomato/audio/audioanalyzer.py
https://github.com/sertansenturk/tomato/blob/v0.9.1/tomato/audio/audioanalyzer.py
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Figure 5.16: An overview of the description of the CompMusic
OTMM audio collection. The numbers in the boxes indicate the
number audio recordings for which the relevant entity is extracted.
The metadata fetched from MusicBrainz is shown in green and
the features obtained by automatic analysis are shown in orange.
The makam information is shown in both green and orange because
it obtained either from themetadata or automatically (Section 5.11).

Note that ATL-TON achieved around 80%accuracy on theMakam
Recognition Dataset (Section 5.7.5, hence these distributions con-
sist of a significant amount of erroneous information. This argu-
ment can be extended to other audio features, which are explained
throughout this Chapter. In the next Chapter, improvements over
the automatic description will be discussed using methods based on
joint audio and score analysis.

5.13 Conclusion
In this Chapter, an overview of themelodic analysis tasks applied to
audio recordings of OTMM is presented. The Chapter covers most
of the automatic analysis tasks discussed in (Bozkurt, Ayangil, &
Holzapfel, 2014), namely predominant melody extraction, pitch
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Figure 5.17: The distribution of tonic pitch classes in the Comp-
Music OTMM audio collection using ATL-TON.

and pitch-class distributions computation, stable pitch and pitch-
class computation,makam recognition, tonic and transposition iden-
tification, tuning analysis and melodic progression computation.
One notable example, which is not left out of this Chapter is auto-
matic transcription. The readers are referred to (Benetos &Holzap-
fel, 2015) for a recent study on this problem.

Some of the existing methodologies presented in this Chap-
ter have been improved for better performance on audio record-
ings of OTMM. Among these methods, ATL-MELf is currently the
state-of-the-art in predominant melody extraction. In addition, we
have generalized the distribution-based tonic and makam estima-
tionmethodologies previously proposed for OTMM (Gedik&Boz-
kurt, 2010) and Hindustāni music (Chordia & Şentürk, 2013). The
generalized method outperforms previously proposed methodolo-
gies in tonic identification (Atlı et al., 2015) and makam recogni-
tion (Gedik & Bozkurt, 2010).

To facilitate future development, the implementations of the
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Figure 5.18: The distribution of transpositions in the CompMusic
OTMM audio collection using ATL-TON.

methodologies described in this Chapter are distributed openly in
tomato. In addition, these algorithms are used to analyse theComp-
Music OTMM audio collection and an automatic description of the
collection is obtained as a result. Many features constituting the
description will be improved later as a result of the joint audio and
score analysis (Chapter 6).

Several of the methodologies described in this Chapter (such
as ATL-MELf and ATL-TON) rely on rule-based schemes. These ap-
proaches were taken due to the lack of data in the initial stages of
the CompMusic project. The resulting description obtained from
the automatic analysis could now be used to develop more sophis-
ticated and robust approaches based on machine-learning. The de-
scription of tonal spacemay also be improved by replacing the PCDs
with time-delayed melody surface (Gulati, Serrà, Ganguli, et al.,
2016), which is already shown to outperform PCD on the rāga/rāg
recognition task in IAM (Section B.7).



Chapter 6
Joint Audio-Score

Analysis

The most relevant representations of music are notations and audio
recordings, each of which emphasizes a particular perspective and
promotes different approximations in the analysis and understand-
ing of music. Linking these two representations and analyzing them
jointly should help to better study many musical facets by being
able to combine complementary analysis methodologies. Parallel
information extracted from score and audio recordings may facil-
itate many computational tasks such as version detection (Arzt et
al., 2012), source separation (Ewert & Müller, 2012), intonation
analysis (Devaney et al., 2012; Abesser et al., 2016) and automatic
accompaniment (Cont, 2010).

In order to develop accurate alignment methods, we have to
take into account the specificities of a given type of music. In this
Chapter presents an audio-score alignment methodology, which is
designed to address several challenges brought by themusical char-
acteristics of OTMM performances such as transpositions of tonic,
tuning and intonation deviations, and heterophony. In addition the
methodology is robust to structural differences, and melodic addi-
tions, insertions and omissions between the music scores and audio
recordings.

The alignment procedure is based on linking a fragment se-
lected from the music score with the audio recording (Section 6.3).

123
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This step is designed to find inexact matches due to the character-
istic differences between the melodic representations of these in-
formation sources. Fragment linking is used to jointly identify the
tonic frequency (Section 6.4) and estimate the tempo (Section 6.5).
It is also used to automatically identify the performed music com-
positions in an audio collection, and vice versa (Section 6.6). As a
result of composition identification, the performances and compo-
sitions in a music corpus could be linked with each other.

To overcome the structural differences (e.g. section repetitions,
improvisations) between the audio recordings and music scores, a
bottom-up approach is used based on fragment linking (Section 6.7).
Instead of attempting to align the complete music score with the au-
dio recording, the methodology estimates candidate locations in the
audio performance for each the musical section in the score. Then,
the best section-level alignment is inferred from the candidates. In
parallel, a finer alignment is applied between the linked sections in
the audio recording and music score to obtain the note-level align-
ment (Section 6.8).

As an output of the alignment process, the performed notes and
sections in the audio recordings are obtained. In addition, these
events are linked to the relevant notes and sections in the music
score. The linked score information could be further exploited to
infer additional (time-aligned) features such as lyrics and rhyth-
mic elements (measure, usul etc.) (Section 6.9). The aligned notes
are used to refine several audio features such audio predominant
melody, pitch distribution, pitch-class distribution andmelodic pro-
gression (Section 6.10), and to construct more-informed tuning and
intonation models (Section 6.11).

The aforementioned steps are incorporated into a single work-
flow (Section 6.12), which is used to extend and complement the
automatic description of the CompMusic OTMM corpus. The re-
sults show that the joint audio-score analysis does not only improve
the automatic description compared to the state-of-the-art audio
analysis scheme (Chapter 5), but it also brings a simpler solution
for many computational tasks, which would require sophisticated
computational methodologies otherwise.

The contributions presented in this Chapter may be summarized
as:
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• A novel audio-score alignment approach for OTMM, which
is designed to handle culture-specific challenges brought by
the musical characteristics of OTMM

• Robust score-informed audio analysis methodologies for nu-
merous computational tasks such as tonic identification, tempo
estimation, composition identification, predominant melody
filtering, and tuning and intonation analysis.

• Open and easy-to-use implementations of the joint audio-
score analysis methodologies.

• Open datasets to evaluate these methodologies.
• Automatic description of the CompMusic OTMMcorpus ob-
tained from joint audio-score analysis. The description en-
compasses approximately 18, 000 linked sections and 750, 000
notes, which correspond tomore than 85 hours of time-aligned
audio data.

Now, I proceed to introduce the basic terminology used though-
out the Chapter.

6.1 Nomenclature
We define audio-score alignment as synchronisation of the musical
events in the score of a composition with the corresponding events
in the audio recording of the same composition. In this Chapter,
two levels of granularity are considered in the alignment: 1) Struc-
ture (section) level, 2) Note level. Our method addresses the some
of main challenges of computational analysis of OTMM such as
transpositions, structural differences and tuning deviations.

1. Let N̄(b) the note sequence in the music score (b). Each n̄(b)
j ∈

N̄(b) (where j ∈
[
1 : |N̄(b)|

]
) consists of a

⟨
n
(b)
j , d

(
n
(b)
j

)⟩
tuple, the elements of which represent the note symbol, note
duration associated with the note, respectively.
Throughout this Chapter, the time and duration of a “score
fragment” (defined in the next point) does not refer to sym-
bolic time and duration, respectively. Instead, these sym-
bolic values are converted to seconds by referring to a certain
tempo in bpm (e.g. the duration of a eighth note � according
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to the tempo ♩ = 120 bpm is 0.25 seconds). Unless stated
explicitly, the nominal tempo indicated in the music score is
used for conversion. The nominal tempo of a music score (b)
is denoted as τ (b).

2. Let f̄ (x) be an arbitrary fragment selected from a music score
or an audio recording (x). The fragment refers to all the con-
tents of an event in the music score or the audio recording
with the label f (x). Examples of fragment labels f (x) may be
“the Teslim section in the music score of a composition” or
“the first 15 seconds of an audio recording.”

A fragment lies in the time-interval t
(
f̄ (x)
)
=
[
tini
(
f̄ (x)
)

tfin
(
f̄ (x)
)]
(in seconds). The duration of a fragment d

(
f̄ (x)
)

is equal to
∣∣t(f̄ (x)

)∣∣ = tfin
(
f̄ (x)
)
− tini

(
f̄ (x)
)
. For a score

fragment f̄ (b), the duration is equal to the sum of the note
durations

∑
j

n̄
(f̄ (x))
j , n̄

(f̄ (x))
j ∈ N̄(f̄ (x)) where N̄(f̄ (x)) is the note

sequence in the score fragment (f (x)).

The set of fragments f̄ (x)
k with the identical label f (x) in a mu-

sic score or an audio recording (x) is denoted as F̄ (x)
(f (x)) ={

f̄
(x)
k |f

(x)
k = f (x)

}
.

Below, the definitions are extended to the sections in the audio
recordings and music scores:

1. We define the section sequence in the music score (b) as
S̄(b) :=

[
s̄
(b)
1 , . . . , s̄|S̄(b)|

]
, with each s̄(b)j consisting of a sec-

tion label, s(b)j (e.g. “Teslim, Aranağme”), and a note se-

quence N̄
(
s̄
(b)
j

)
=

[
n̄

(
s̄
(b)
j

)
1 , n̄

(
s̄
(b)
j

)
2 , . . .

]
, where N̄

(
s̄
(b)
j

)
is a

subsequence of N̄(b). The note sequence of the sections with
the same section label (e.g. repetitive sections) do not have to
be identical due to different ending measures, volta brackets
etc.

2. The sections in the score form the score section label se-
quence, S(b) :=

[
s
(b)
1 , . . . , s

(b)

|S(b)|

]
, where s(b)j ∈ Ss and j ∈
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[
1 : |S(b)|

]
, with |S(b)| being the number of sections in a score,

repeated sections are counted individually.

3. Let S(b) =
{
Ss(b), unrelated

}
denote the set of section la-

bels. It consists of a set of symbols Ss(b) :=
{
S(b)
}
, which

represents all the |Ss(b)| possible distinct section labels in
the composition; and an “unrelated” section, i.e. a seg-
ment with content not related to any structural element of
the musical form. The number of unique sections is

∣∣S(b)
∣∣ =

|Ss(b)|+ 1.

4. Analogous, for the audio recording (a)we have the (true) au-
dio section sequence, S̄(a) =

[
s̄
(a)
1 , . . . , s̄|S̄(a)|

]
. Each ele-

ment of the sequence, s̄(a)i (i ∈ [1 : |S̄(a)|]), has the section
label, s(a)i , and covers a time interval in the audio, t

(
s̄
(a)
i

)
, i.e.

s̄
(a)
i =

⟨
N̄

(
s̄
(a)
i

)
, s

(a)
i , t

(
s̄
(a)
i

)⟩
. The time interval is given

as t
(
s̄
(a)
i

)
=
[
tini

(
s̄
(a)
i

)
tfin

(
s̄
(a)
i

)]
, where tini

(
s̄
(a)
1

)
=

0 sec; tfin
(
s̄
(a)
i

)
= tini

(
s̄
(a)
i+1

)
,∀i ∈ [1 : |S̄(a)| − 1

]
; and

tfin

(
s̄
(a)

|S̄(a)|

)
refers to the end of the audio recording.

5. For the audio recording we have the (true) audio section la-
bel sequence, S(a) =

[
s
(a)
1 , s

(a)
2 , . . .

]
, where s(a)i ∈ S, i ∈[

1 : |S(a)|
]
, with |S(a)| being the number of sections in the

performance, including possibly multiple unrelated sections.

6.2 Melodic Feature Extraction
Score and audio recording are different ways to representmusic. To
compare these information sources, features that capture the melo-
dic content given in each representation are extracted.

Thoughout the Chapter, predominant melody is typically ex-
tracted from the audio recordings (Section 5.2). As mentioned in
Section 5.2, either of BOZ-YINf , SEN-MEL or ATL-MEL is utilized
in the experiments. In parallel, synthetic melody is extracted from
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Figure 6.1: Score and audio representations of the first nakarat
section of Gel Güzelim and the features computed from these rep-
resentations. a) Score. b) Annotated section in the audio recording.
c) Synthetic predominant melody computed from the note symbols
and durations. d) predominant melody computed from the audio
recording using SEN-MEL. The end of the predominant melody has
a considerable number of octave errors. e) HPCPs computed from
the synthesized MIDI. f) HPCPs computed from the audio record-
ing.

the music scores (Section 4.2.2). The pitch intervals in the syn-
thetic melody are computed either according to the performed tun-
ing (Section 5.9) extracted from the audio recording to be aligned
(Appendix A) or according to the AEU theory (Section 6.7.4).

In section linking experiments (Section 6.7.4), the predominant
melody (Section 5.2) and the synthetic melody (Section 4.2.2) is
compared with the HPCPs (Section 5.3) and the synthetic HPCPs
(Section 4.2.3), respectively.

The details of the relevant extraction methods will be given in
the respective Sections. Figure 6.1 shows a score excerpt and an
audiowaveform1 of the first nakarat section of the composition,Gel
Güzelim2 with the features extracted from these sources.

1http://musicbrainz.org/recording/e7be8c2a-3309-4106-93b7
-76cd6102a924

2http://musicbrainz.org/work/9aaf5c0b-4642-40fd-97ba
-c861265872ce

http://musicbrainz.org/recording/e7be8c2a-3309-4106-93b7-76cd6102a924
http://musicbrainz.org/recording/e7be8c2a-3309-4106-93b7-76cd6102a924
http://musicbrainz.org/work/9aaf5c0b-4642-40fd-97ba-c861265872ce
http://musicbrainz.org/work/9aaf5c0b-4642-40fd-97ba-c861265872ce
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6.3 Fragment Linking
In several tasks such as tonic identification (Section 6.4), tempo es-
timation (Section 6.5) and composition identification (Figure 6.6),
a complete alignment between the audio recording and music score
is not necessary. Moreover, structural differences between the mu-
sic score and audio performance of OTMM (Section 2.1) have to be
taken care of for complete alignment. This problem is approached
from a bottom-up scheme by first aligning the sections in the music
score separately and then estimating the global alignment from the
individual paths (Section 6.7). Therefore, obtaining partial align-
ments between the audio recording and the score fragment(s) is the
fundamental step in all audio-score alignment tasks described here-
after.

Fragment linking is defined as “marking the fragments, in an
audio recording at which a fragment selected from amusic score are
performed.” Given the fragment f̄ (b) selected from the music score
(b) with the label f (b), the set of fragments in the audio recording
(a)with the same label is denoted as F̄ (a)

(f (b)) = {f̄ (a)
1 , f̄

(a)
2 , . . . },

where f̄ (a)
m = f (b) and m ∈

[
1 : |F̄ (a)

(f (b))|
]
in the time interval

t
(
f̄
(a)
m

)
=
[
tini

(
f̄
(a)
m

)
tfin

(
f̄
(a)
m

)]
.

This process forms a link, π(f̄ (a)
m , f̄ (b)), between the score frag-

ment f̄ (b) and each audio fragment f̄ (a)
m such that f (a)

m = f (b), ∀f̄ (a)
m ,

and the start tini and the end tfin of the linked fragments aremapped
to each other. Linking the audio and score fragments also imply re-
lating the relevant attributes of each source (if available), e.g. the
tonic symbol κ(b) of the score and the tonic frequency κ(a) of the
audio recording. Similarly, additional useful information may be
obtained from the linking process, e.g. the intra-alignment path,
ϖ(f̄

(a)
m , f̄ (b)) between the fragments f̄ (a)

m and f̄ (b), which can be
used later in note-level alignment (Section 6.8). The set of links be-
tween the audio recording (a) and the music score (b)with the frag-
ment label (x) is denoted as Π(a, b, x) =

{
π(f̄

(a)
m , f̄ (b)), f

(a)
m =

f (b) = x
}
.

Two different methods are used for fragment linking: 1) Hough
transform (Section 6.3.1), and 2) Subsequence dynamic time warp-
ing (Section 6.3.2). Throughout this Section, it is assumed that the
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tonic pitch/pitch-class of the audio recording, κ(a), is already iden-
tified. The tonic identification step will be explained in Section 6.4.

6.3.1 Hough Transform
Given an audio recording (a) of a composition and a fragment f̄ (b)

selected from the music score (b) of the same composition, we first
extract either the predominant melody or the HPCPs from the au-
dio recording. The audio feature is then normalized with respect
to the performance tonic, κ(a), and a normalized predominant me-
lody, ϱ̂κ(a),(a), or HPCPs, Γ̂

κ(a),(a)
, are obtained. In parallel, a syn-

thetic melody, Ψ̂
(f̄ (b))

, or synthetic HPCPs, Ω̂
(f̄ (b))

, are computed.
To compare the audio recording with each section in the score,
we compute a distance matrix between the score feature, Ψ̂

(f̄ (b))

or Ω̂
(f̄ (b))

, of the fragment (f̄ (b)) and the audio feature, ϱ̂κ(a),(a) or
Γ̂

κ(a),(a)
, of the whole recording.

If predominant melodies are chosen as the features, the distance
matrix, Dκ(a),(a,f̄ (b)), between the normalized audio predominant
melody, ϱ̂κ(a),(a), and the synthetic predominant melody, Ψ̂

(f̄ (b))
,

of a score fragment (f̄ (b)) is obtained by computing the pairwise
smallest Hc distance between each point of the features using Equa-
tion 5.3. To recapitulate, each elementDκ(a),(a,f̄ (b))

ij in the distance
matrixDκ(a),(a,f̄ (b)) is computed as:

D
κ(a),(a,f̄ (b))
ij = ▲

(
ψ̂

(f̄ (b))
i , ρ̂

κ(a),(a)
j

)
(6.1)

where ψ̂(f̄ (b))
i is the ith sample of the synthetic melody Ψ̂

(f̄ (b))
com-

puted from the score fragment f̄ (b) (Section 4.2.2), ρ̂κ
(a),(a)

j is the
j th sample of the predominant melody ϱ̂κ(a),(a) normalized with re-
spect to the tonic κ(a) of the audio recording (a) (Section 5.2), and
▲(x, y) denotes the shortest octave-wrapped distance between the
pitch values x and y (Section 5.4). The first element in the su-
perscript, κ(a), indicates that the predominant melody, ϱ̂κ(a),(a), ex-
tracted from (a) is normalized to cent-scale by taking the tonic κ(a)

as the reference. Dκ(a),(a,f̄ (b)) is a
∣∣∣ϱ̂κ(a),(a)

∣∣∣ x ∣∣∣Ψ̂(f̄ (b))
∣∣∣ matrix. Fig-
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ure 6.2e shows a distance matrix computed for the Teslim section
between an audio performance3 and SymbTr-score of Şedaraban
Sazsemaisi.4

If HPCPs are chosen as the input features, the distance matrix,
Dκ(a),(a,f̄ (b)), between the normalized audio HPCPs, Γ̂

κ(a),(a)
, and

the synthetic HPCPs, Ω̂
(f̄ (b))

, of a score fragment, (f̄ (b)), is ob-
tained by taking the cosine distance between each HPCP frame.
Cosine distance is a common feature used for comparing chroma
features (Paulus et al., 2010) computed as:

D
κ(a),(a,f̄ (b))
ij = 1−

nHPCP∑
k=1

ω̂
(f̄ (b))
ik γ̂

κ(a),(a)
jk√√√√(nHPCP∑

k=1

(
ω̂
(f̄ (b))
ik

)2)
.

(
nHPCP∑
k=1

(
γ̂
κ(a),(a)
jk

)2) ,

1 ≤ i ≤ |Ω̂(f̄ (b))| and 1 ≤ j ≤ |Γ̂κ(a),(a)| (6.2)

where ω̂(f̄ (b))
ik is the kth bin of the ith frame of the HPCPs (of

∣∣∣∣Ω̂(f̄ (b))
∣∣∣∣

frames) of a fragment (f̄ (b)), γ̂κ
(a),(a)

jk is the kth bin of the j th frame of

the HPCPs (of
∣∣∣∣Γ̂κ(a),(a)

∣∣∣∣ frames) extracted from the audio record-

ing (a) and nHPCP denotes the number of bins per frame chosen
for the HPCP computation. Cosine distance between two HPCP
frames of length nHPCP can be interpreted as 1minus the dot product
of the two frames, normalized to unit length on annHPCP-dimensional
Euclidean space. The outcome is bounded to the interval [0 1] for
non-negative inputs, 0 denoting the “closest,” which makes it pos-
sible to compare the relative distance between the frames of HPCPs
that have unitless, non-negative values.

If the score fragment is performed in the audio, the distance ma-
trix shows blob(s) in a diagonal trajectory formed by low distance

3http://musicbrainz.org/recording/efae832f-1b2c-4e3f-b7e6
-62e08353b9b4

4http://musicbrainz.org/work/1eb2ca1e-249b-424c-9ff5
-0e1561590257

http://musicbrainz.org/recording/efae832f-1b2c-4e3f-b7e6-62e08353b9b4
http://musicbrainz.org/recording/efae832f-1b2c-4e3f-b7e6-62e08353b9b4
http://musicbrainz.org/work/1eb2ca1e-249b-424c-9ff5-0e1561590257
http://musicbrainz.org/work/1eb2ca1e-249b-424c-9ff5-0e1561590257
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values, which hint the location(s) of the score fragment in the audio
(Figure 6.2e). The values of the points forming the blobs may be
substantially greater than zero in practice, making it harder to dis-
tinguish the blobs from the background. Therefore, binary thresh-
olding is applied to the distancematrix before applyingHough trans-
form to emphasize the diagonal blobs. A binary similarity matrix
Bκ(a),(a,f̄ (b)) is obtained as:

B
κ(a),(a,f̄ (b))
ij =

{
1, D

κ(a),(a,f̄ (b))
ij ≤ β(B)

0, D
κ(a),(a,f̄ (b))
ij > β(B)

(6.3)

where β(B) is the binarization threshold. The binary similarityma-
trix B

κ(a),(a,f̄ (b))
ij of a fragment f̄ (b) shows which samples between

the score feature and the audio feature are similar enough to each
other to be deemed as the same note (Figure 6.2f). For melody, the
binarization threshold correspond to the minimum value of short-
est octave wrapped distance in cents. For HPCPs, the binarization
threshold is unitless in the interval [0 : 1]. Effect of the binarization
threshold value is investigated in the section linking experiments
(Section 6.7.4). In the preliminary section linking experiments, we
additionally used a number of structural morphological operations
(Serra, 1983; Ballard, 1981) to emphasize the blobs. They are ex-
plained in Appendix A separately for the sake of brevity.

As can be seen in Figure 6.2f, these blobs can be approximated
as line segments. To detect these segments, a common line detec-
tion method called Hough transform is applied to the binary simi-
larity matrix (Figure 6.2g) (Ballard, 1981). Hough transform has
also been previously used in musical tasks such as locating the for-
mant trajectories of drum beats (Townsend & Sandler, 1993) and
detecting repetitive structures in an audio recording for thumbnail-
ing (Aucouturier & Sandler, 2002).

The angle θ
(
f̄
(a)
m , f̄ (b)

)
of a detected diagonal line segment is

related to the tempo of the performed audio fragment τ
(
f̄
(a)
m

)
and the

tempo of the respective score fragment τ(f̄
(b)). We define the rel-

ative tempo for each candidate τ̂
(
f̄
(a)
m

)
as:
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τ̂

(
f̄
(a)
m

)
= tan

(
θ
(
f̄ (a)
m , f̄ (b)

))
=

d
(
f̄ (b)
)

d
(
f̄
(a)
m

) ≈ τ

(
f̄
(a)
m

)
τ(f̄

(b))
, f

(a)
k = f (b)

(6.4)
where d

(
f̄ (b)
)
is the duration of the fragment given in the score,

d
(
f̄
(a)
m

)
=
∣∣∣t(f̄ (a)

m

)∣∣∣ = tfin

(
f̄
(a)
m

)
− tini

(
f̄
(a)
m

)
is the dura-

tion of the candidate audio fragment f̄ (a)
m and θ

(
f̄
(a)
m , f̄ (b)

)
is the

angle of the line segment associated with the candidate fragment
link. Provided that there are no phrase repetitions, omissions or ex-
treme tempo changes inside the performed fragment, relative tempo
approximately indicates the amount of deviation from the tempo
given in the score. If the tempo of the performance is exactly the
same with the tempo, the angle of the diagonal line segment is 45◦.

The relative tempo τ̂
(
f̄
(a)
m

)
of a fragment candidate is constrained

between 0.5 and 2. This limits the angles searched in Hough trans-
form to an interval [θmin, θmax]:

[θmin, θmax] =

{
θmin = arctan(0.5) ≈ 27◦

θmax = arctan(2) ≈ 63◦
(6.5)

The step size of the angles between θmin and θmax is set to 1 degree.
Then, the peaks are selected from the obtained transformation ma-
trix. These peaks indicate the angle and the distance to the origin
of the most prominent line segments (Duda &Hart, 1972). Consid-
ering the maximum number of repetitions in the peşrev, sazsemaisi
and şarkı forms (Section 2.1) plus a tolerance of 50%, we pick the
12 peaks emitting the highest similarity. Next, the line segments
(i.e. the linear alignment paths, ϖ

(
f̄
(a)
m , f̄ (b)

)
between the score

fragment f̄ (b) and the estimated audio fragments f̄ (a)
m are computed

from this set of peaks such that the line segment covers the entire
duration of the section given in the score (Figure 6.2g).

6.3.2 Subsequence Dynamic Time Warping
Dynamic programming and more specifically DTW are the state-of-
the-art methodologies for many relevant tasks such as cover song
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identification (Serrà et al., 2009; Ellis & Poliner, 2007) and au-
dio score alignment (Müller & Appelt, 2008; Niedermayer, 2012).
Unlike Hough transform, DTW is robust to changes in tempo and
musical insertions, deletions and repetitions. However, it can be
prone to pathological warpings.

Subsequence dynamic time warping is a typical variant of DTW
used, when one of the time series is a subsequence of the other
(Anguera & Ferrarons, 2013; Müller, 2007). In this variant the
paths are allowed to start/endwithin the target. We refer the readers
to (Müller, 2007, Chapter 4) for a thorough explanation of DTW and
its variants.

We use SDTW in composition identification (Section 6.6) and
note-level alignment (Section 6.8). Selecting the predominant me-
lody as the input feature, we first compute an elementAκ(a),(a,f̄ (b))

ij

in the accumulated cost matrixAκ(a),(a,f̄ (b)) recursively as:

A
κ(a),(a,f̄ (b))
ij =



0, i = 0

+∞, j = 0

D
κ(a),(a,f̄ (b))
ij +min


A

κ(a),(a,f̄ (b))
i−1 j−1

A
κ(a),(a,f̄ (b))
i−2 j−1 , i > 1

A
κ(a),(a,f̄ (b))
i−1 j−2 , j > 1

i, j ̸= 0

(6.6)
As seen above, we select the step size condition as {(2, 1),

(1, 1), (1, 2)}. Analogous to the angle restriction in Hough trans-
form (Section 6.3.1), this step size ensures that the intra-tempo vari-
ations in any path will stay between half and double the nominal
tempo indicated in the score. We use the local distanceDκ(a),(a,f̄ (b))

ij

to calculate the accumulated cost matrix. Also, notice that the ac-
cumulated cost matrix is extended with a zeroth row and column,
initialized to enable subsequence matching.

We then back-track the pathϖ
(
f̄
(a)
m , f̄ (b)

)
ending at argmin(i)

A
κ(a),(a,f̄ (b))

i

∣∣Ψ̂f(b)
∣∣ (remember that

∣∣Ψ̂f (b)∣∣ is the length of the synthetic
melody), which emits the lowest accumulated cost (Müller, 2007,
Chapter 4).

In the proposed composition identification and note-level align-
mentmethodologies, we align a single fragment aswill be explained
in Section 6.6 and Section 6.8. If multiple estimations are required
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(e.g. in the audio-score alignment methodology adapted for Car-
natic music as explained in Appendix B.1), one can use ISDTW.
In ISDTW, a path is back-tracked as explained in the case of SDTW.
Next, the vicinity of the path (e.g. 10% of the alignment path
length

∣∣∣ϖ(f̄ (a)
m , f̄ (b)

)∣∣∣ on the audio axis) is “blacklisted” by as-
signing +∞ to the respective values in the accumulated cost ma-
trix. Then, a new path is back-tracked by referring to the minima
of the row A

κ(a),(a,f̄ (b))

i

∣∣Ψ̂f(b)
∣∣ in the recomputed accumulated cost ma-

trix. By repeating this process at most 12 times (analogous to peak
picking in Hough transform),5 the estimated audio fragments [f̄ (a)

1 ,

f̄
(a)
2 , . . . ] are obtained. The tempo τ

(
f̄
(a)
m

)
and the relative tempo

τ̂

(
f̄
(a)
m

)
are estimated from the durations covered by path on the mu-

sic score and the audio recording using Equation 6.4.

6.3.3 Similarity Computation
Using either Hough transform or SDTW, we obtain a set of align-
ment paths

{
ϖ
(
f̄
(a)
1 , f̄ (b)

)
,ϖ
(
f̄
(a)
2 , f̄ (b)

)
, . . .

}
. Each alignment

pathϖ
(
f̄
(a)
m , f̄ (b)

)
between the audio fragment f̄ (a)

m and the score
fragment f̄ (b) is denoted as:

ϖ
(
f̄ (a)
m , f̄ (b)

)
=

[
ϖ1

(
f̄ (a)
m , f̄ (b)

)
, . . . , ϖ∣∣ϖ(

f̄
(a)
m ,f̄ (b)

)∣∣(f̄ (a)
m , f̄ (b)

)]
(6.7)

where ϖl

(
f̄
(a)
m , f̄ (b)

)
=
(
rl
(
f̄
(a)
m

)
, ql
(
f̄ (b)
))
. Here rl

(
f̄
(a)
m

)
and

ql
(
f̄ (b)
)
refer to the sample indices in the feature extracted from the

audio recording (i.e. the rl
(
f̄
(a)
m

)th
pitch ρ̂(a)

rl

(
f̄
(a)
m

) of the predom-
inant melody ϱ̂(a) or the rl

(
f̄
(a)
m

)th
frame γ̂(a)

rl

(
f̄
(a)
m

) of the HPCPs
Γ̂

(a)
) and from the music score (i.e. the ql

(
f̄
(a)
m

)th
pitch ψ̂(b)

ql

(
f̄
(a)
m

)
5If most of the accumulated cost matrix is blacklisted such that no other path

can be backtracked, the process will return less than 12 paths.
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of the synthetic melody Ψ̂
(b)

or the ql
(
f̄
(a)
m

)th
frame ω̂(b)

ql

(
f̄
(a)
m

) of
the synthetic HPCPs Ω̂

(b)
), respectively. The index l is an ele-

ment of
[
1 :
∣∣∣ϖ(f̄ (a)

m , f̄ (b)
)∣∣∣], where ∣∣∣ϖ(f̄ (a)

m , f̄ (b)
)∣∣∣ is the length

of the pathϖ
(
f̄
(a)
m , f̄ (b)

)
. We compute a similarity, ν(f̄ (a)

m , f̄ (b)) ∈

[0 : 1], between the score fragment f̄ (b) and the audio fragment f̄ (a)
m

by:

ν(f̄ (a)
m , f̄ (b)) =

∑
l

B
(
rl
(
f̄
(a)
m

)
, ql
(
f̄ (b)
))

∣∣∣ϖ(f̄ (a)
m , f̄ (b)

)∣∣∣ (6.8)

6.3.4 Duplicate Link Removal
If two or more links have their borders in the same vicinity (±6
seconds), they are treated as duplicates. This occurs frequently
using Hough transform since the line segments in the binary ma-
trix are actually blobs. Hence, there might be line segments with
slightly different parameters, effectively estimating the same candi-
date. Among the duplicates, only the onewith the highest similarity
is kept (Figure 6.2h).

Finally, the regions covered by the remaining estimations are
chosen as the candidate audio fragments, f̄ (a)

m , with the time in-
tervals, t(f̄ (a)

m ) =
[
tini(f̄

(a)
m ) tfin(f̄

(a)
m )
]
, and the tempi, τ

(
f̄
(a)
m

)
.6

For each fragment, f̄ (a)
m , a link, π

(
f̄
(a)
m , f̄ (b)

)
is formed (such that

f
(a)
m = f (b)) with the similarity, ν(f̄ (a)

m , f̄ (b)), and the alignment
path,ϖ

(
f̄
(a)
m , f̄ (b)

)
(Figure 6.2i).

6.4 Score-Informed Tonic Identification
In Section 5.7, a tonic identification methodology, which is based
onmatching the distribution extracted from an audio recordingwith
unknown tonic with template distributions obtained from a set of

6and therefore the relative tempi τ̂(f̄
(a)
m )
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training audio recordings, is described. The disadvantage of using
audio recordings for template computation is the necessity of ade-
quate amount of training data. Moreover, the quality of the data has
to be maintained so that the intervallic properties are represented
well. Even so, a test distribution can substantially differ from the
corresponding template. A common confusion is the estimation of
another pitch (or pitch class) when its occurrence is comparable
to the occurrence of the tonic. Moreover, in cases when an audio
recording includes unrelated musical content in addition to a per-
formed piece, e.g. improvisations or performances of other pieces
in different modal structures, the resultant distribution would be a
mixture of the distributions of these distinct musical events. This
might cause substantial confusions. This problem motivates the
replacement of audio recordings with a more “definitive” informa-
tion source in the template training step. If available, scores can
be good sources, since they provide an easily accessible symbolic
description of many relevant musical components.

The remainder of the Section is organized as follows: Sec-
tion 6.4.1 explain the proposed methodologies. Section 6.4.2 ex-
plains the dataset and the experimental setup to test the methodolo-
gies and provides the results. Section 6.4.5 wraps up the Section
with a discussion and conclusion.

6.4.1 Methodologies
In (Şentürk et al., 2013), two methodologies, which identify the
tonic of a performed piece, are presented. In this task, the audio
recording and the score are already known to be related with the
same work (composition) and the music scores (SymbTr-txt) in-
clude the makam of the piece, the boundaries of the structural ele-
ments and the sequence of these elements. We use makam music
knowledge and the findings from previous research (Gedik & Boz-
kurt, 2010; Chordia & Şentürk, 2013; Şentürk, Holzapfel, & Serra,
2014; Karakurt et al., 2016) to specialise both the methodologies
for the melodic aspects of OTMM. Both methods extract predom-
inant melody from the audio recording (Section 5.2). Then a PCD
is computed from the audio predominant melody (Section 5.5) and
stable pitch classes are selected as the tonic candidates (Section 5.6).
Adapted from (Gedik & Bozkurt, 2010; Chordia & Şentürk, 2013),
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Figure 6.3: Tonic identification by music score template PCD
matching

the first method applies circular shifting to the audio PCD accord-
ing to tonic candidates. Each shift is then compared with a score
PCD computed from the monophonic melody in the score. The
second method normalises the predominant melody with respect to
each tonic candidate. Next, it attempts to link melodic fragments
in the score with the respective time intervals in the audio record-
ings by using the fragment linking approach explained in (Şentürk,
Holzapfel, & Serra, 2014) (Section 6.3).

Note that a recording may contain performances of multiple
compositions, which may have different performance tonics.7 We
can estimate the tonic κ(a,bi) of the sub-performance in the audio
recording (a), in which the composition (bi) is performed. This
case is handled within the combined joint analysis procedure de-
scribed in Section 6.12. For the sake of brevity, the score-informed
tonic identification process between a single audio recording (a)
and music score (b) is described in this Section. The score relation,
(bi), in the the tonic symbol, κ(a,bi), is omitted and the symbol is
denoted as κ(a).
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Tonic Identification by Score Template Distribution Matching

The tonic identificationmethod by score template distributionmatch-
ing (Şentürk et al., 2013) (SEN-TONPCD) first generates a synthetic
melody Ψ̂

(b)
from the complete music score (b) (Section 4.2.2)

by referring to the intervals defined by the AEU theory. Next a
score PCD, ĤPC

(b)
, is computed from the synthetic melody.

In parallel, a predominant melody, ϱ(a), is extracted from the
audio recording (a) using SEN-MEL (Section 5.2). Then a PCD,
H

(a)
PC , is computed from the audio predominantmelody (Section 5.5).

The first bin of the PCD is initialised to the dummy value, 440.0
Hz, as described in Section 5.5. The bin size, b

(
Ĥ
)
, of the PCD is

selected as 7.5 cents and the kernel width, σ
(
Ĥ
)
, is set to 15 cents

(≈ 2
3
Hc) empirically, so that an observation practically contributes

within an interval of 4Hc (slightly smaller than a semitone). Next,
the stable pitch classes,Φ(a)

PC , which are extracted from the peaks of
the audio PCD (Section 5.6), are selected as the tonic candidates.

The audio PCD is circularly shifted according to its stable pitch

classes, ϕ(a)
k ∈ Φ

(a)
PC , one by one and ĤPC

ϕ
(a)
k ,(a)

s are obtained.
These shifted distributions are compared to the score PCD, ĤPC

(b)
,

using Bhattacharyya distance (Equation 5.10). The tonic candidate
ϕ
(a)
k used to shift the audio PCD, which results in the minimum

distance to score PCD, is selected as the tonic pitch class κ(a) (Fig-
ure 6.3).

The tonic identification methods using audio template distribu-
tion matching (Gedik & Bozkurt, 2010; Chordia & Şentürk, 2013;
Karakurt et al., 2016) are based on the similarity of the distributions
belonging to the same makam. On the other hand, SEN-TONPCD is
based on the similarity of the distributions belonging to the same
composition, which is expected to score higher due to less variabil-
ity in the relative occurence of the pitch classes in the PCDs.

7e.g. http://musicbrainz.org/recording/37dd6a6a-4c19-4a86
-886a-882840d59518

http://musicbrainz.org/recording/37dd6a6a-4c19-4a86-886a-882840d59518
http://musicbrainz.org/recording/37dd6a6a-4c19-4a86-886a-882840d59518
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Tonic Identification by Fragment Linking

Using score PCD templates, we can only take an advantage of the
interval and some limited intonation information. Nevertheless,
scores also include note sequence information. In the tonic iden-
tification method by fragment linking (Şentürk et al., 2013) (SEN-
-TONlink), we attempt to link a melodic fragment from the score
with the audio recording by extending the fragment linking proce-
dure presented in (Şentürk, Holzapfel, & Serra, 2014) (Section 6.3).

SEN-TONlink uses the note sequence information given in the
score. From the score (b), SEN-TONlink only extracts the synthetic
melody Ψ̂

f̄ (b)

of a fragment f̄ (b) selected from the score. The frag-
ment may be sliced from the start or the repetitive section (e.g. Tes-
lim, Nakarat) of the score, with a certain duration. Similar to SEN-
-TONPCD, SEN-TONlink computes a predominant melody ϱ(a), au-
dio PCD H

(a)
PC and the stable pitch classes Φ

(a)
PC from the audio

recording (a).
The method then obtains a normalized audio predominant me-

lody ϱ̂ϕ
(a)
k ,(a) with respect to each stable pitch class ϕ(a)

k and at-
tempts to link the fragment in the score with its respective locations
tϕ

(a)
k (f̄

(a)
m )8 in the audio recording (Section 6.3). In the experiments

explained in Sections 6.4.2, a binary similarity matrixBϕ
(a)
k ,(a,f̄ (b))

is computed by taking the binarization threshold β(B) as 3 Hc
(Equation 6.3), an optimal for OTMM as will be discussed in Sec-
tion 6.7.4. Then, Hough transform is applied to the binary similar-
ity matrix to detect the diagonal line segments as described in Sec-
tion 6.3.1. In the experiments explained in Sections 6.6.3, SDTW is
compared with Hough transform. There, an accumulated cost ma-
trixAϕ

(a)
k ,(a,f̄ (b)) is computed using SDTW and the path emitting the

lowest similarity is backtracked (Section 6.3.2).
We obtain a set of links Πϕ

(a)
k (a, b, f (b)) =

{
πϕ

(a)
k

(
f̄
(a)
1 , f̄ (b)

)
,

πϕ
(a)
k

(
f̄
(a)
2 , f̄ (b)

)
, . . .

}
such that f (b) = f̄

(a)
m for each tonic can-

didate ϕ(a)
k . The similarity of a link πϕ

(a)
k

(
f̄
(a)
m , f̄ (b)

)
is denoted as

8Notice that the time interval, links and similarity values are denoted with
an additional superscipt in this Section, indicating that the estimated audio frag-
ments f̄ (a)m are dependent on the tonic candiate ϕ(a)k .
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νϕ
(a)
k

(
f̄
(a)
m , f̄ (b)

)
.

The similarity of each linkmay be summarized to obtain aweight
for each tonic candidate. The accumulated weight is given as:

ν
(
ϕ
(a)
k

)
=

3

√√√√√√
∣∣∣∣Πϕ

(a)
k (a,b,f (b))

∣∣∣∣∑
m

νϕ
(a)
k

(
f̄
(a)
m , f̄ (b)

)3
(6.9)

Equation 6.9 ensures that (possibly erroneous) links with low
similarities are suppressed with respect to the links with high sim-
ilarities. The tonic is estimated as the pitch class ϕ(a)

k , which has the
highest accumulatedweight ν

(
ϕ
(a)
k

)
, i.e. κ(a) = argmax

ϕ
(a)
k ∈Φ(a)

PC

ν
(
ϕ
(a)
k

)
.

6.4.2 Experiments
We test the methodologies explained in Section 6.4.1 on OTMM-
section-linking. In SEN-TONlink, the fragment is selected as the
whole repetitive section and synthesized by referring to the theo-
retical intervals defined by the AEU theory. We compare the esti-
mated tonic κ(a) from each algorithm with the manually annotated
tonic k(a) using Equation 5.3. If the shortest octave-wrapped dis-
tance between the estimated and the annotated tonic are less than
1 Hc, the estimation is marked as True. Then, the tonic identifica-
tion accuracy is computed by dividing the number of True identi-
fications to the total number of identifications.9

6.4.3 Dataset
To test the methodologies, we use the audio recordings inOTMM-
section-linking dataset. OTMM-section-linking consists of 116
audio recordings of 24 peşrevs, 84 audio recordings of 19 sazsemai-
sis, and 57 audio recordings of 14 şarkıs (257 audio recordings of 57
compositions in total). The compositions are taken from the clas-
sical repertoire, in which the makam and the karar note are clearly
defined in music theory. The audio recordings andmusic scores are

9The results are available at http://compmusic.upf.edu/node/164.

http://compmusic.upf.edu/node/164
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Figure 6.5: Distribution of the annotated tonics in the data collec-
tion. a) Pitch class histogram of the annotated tonic with respect to
the pitch class C, b) Histogram of the transpositions with respect
to bolahenk

selceted from the CompMusic audio corpus and SymbTr collec-
tion, respectively. Some recordings include musical events which
do not belong to the composition such as improvisations and even
performances of other compositions. The makam of each compo-
sition is included in the metadata, which is included in the score
(Section 4.1). The pieces cover 28 different makams.10

The ground truth is obtained by manually marking the tonic
frequency using Makam Toolbox (Gedik & Bozkurt, 2010). Fig-
ure 6.5a and Figure 6.5b show the distribution of the annotated tonic
with respect to the pitch class C and the distribution of the transposi-
tions with respect to bolahenk, respectively. It can be seen that the
annotated tonic are mostly distributed around the semitones with
microtonal deviances. Apart from bolahenk, the tonic is mostly
performed with a transposition around the perfect fourth, perfect
fifth and minor seventh. Nevertheless a considerable number of
tonic annotations reside in microtonal pitch classes.

Additional statistics of the OTMM-section-linking are given
in Section 6.7.3.

6.4.4 Results
Tonic identification by repetitive section linking fails only in one
piece (99.2% success rate). In this recording, the vocalist sings

10The annotations are available at https://github.com/MTG/otmm
_tonic_dataset/tree/2013_ismir.

https://github.com/MTG/otmm_tonic_dataset/tree/2013_ismir
https://github.com/MTG/otmm_tonic_dataset/tree/2013_ismir
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a gazel (vocal improvisation) in almost three fifth of the duration
of the recording with skillful vibratos extending up to ≈ 200 cents
peak-to-peak.11 These vibratos occasionally cross mahur (G5 ) and
less frequently reach to gerdaniye (G5), which is in the pitch class
of the tonic. Throughout the piece the pitch class G is visited more
than G and it shows a wide spread towards G such that no peak is
formed in the vicinity of the tonic pitch class. In this case the pitch
class G is estimated as the tonic, having a 2.33 Hc deviation.

Using distribution matching, we are able to identify the tonic
of 244 performances out of 257 (94.9% success rate). Most of
the errors occur in makams Kürdilihicazkar (3 recordings), Mu-
hayyer (3 recordings), Suzidilara (2 recordings), Isfahan and Ma-
hur (1 recordings each), which have complex pitch distributions.
The errors are distributed mostly to the fourth (7 recordings) and
fifth (4 recordings) of the scale degree. In 4 recordings the tonic is
identified as the başlangıç (initial) note, which is the other melodic
center of the makam. The average distance between the annotated
tonic and the correctly estimated tonics is 0.23 Hc with a standard
deviation of 0.21 Hc for both methods.

For comparison, we also modify and test the approach in (Ge-
dik & Bozkurt, 2010) (described in Section 5.7 in detail) using the
implementation in Makam Toolbox. We use the SEN-MEL as the
predominant melody extraction method instead of YIN, which was
used in the original methodology, in order to improve the pitch esti-
mations. The makam of the piece is provided to the algorithm. We
use a subset of the collection with 152 audio recordings. The num-
ber of failed identifications is 46, 10 and 1 for audio template dis-
tribution matching, score template distribution matching and repet-
itive section linking, respectively. The results from both of our
methods are substantially better than the results obtained from the
Makam Toolbox.

6.4.5 Discussion and Summary
We proposed two novel methods that use score information to iden-
tify the tonic of audio recording. Assuming the most played pitch

11http://dunya.compmusic.upf.edu/makam/recording/f5a89c06
-d9bc-4425-a8e6-0f44f7c108ef?start=57387

http://dunya.compmusic.upf.edu/makam/recording/f5a89c06-d9bc-4425-a8e6-0f44f7c108ef?start=57387
http://dunya.compmusic.upf.edu/makam/recording/f5a89c06-d9bc-4425-a8e6-0f44f7c108ef?start=57387
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classes as tonic candidates, the first method compares pitch class
distributions computed from the audio and score, and the second
method searches for a repetitive score fragments in the audio. We
tested the methodologies in a scenario of audio-score collections
of OTMM, where the audio and score are already linked with each
other at the document level and the score includes the notes, as
well as the structural organization, the makam and the tempo of the
piece. The results indicate that score information greatly simpli-
fies the tonic identification task. Moreover, the pitch deviationss
between the estimated tonic and the annotated tonic are mostly in-
discernible. These findings point out the computational potential of
knowledge-driven methodologies using multi-modal information.
While template distributions computed from audio are similar to
the testing distributions with respect to the tuning and limited in-
tonation information in makam level, score distributions indicate
these similarities in the (more definitive) composition level. On
the other hand, the distribution matching method is still suscepti-
ble to the errors seen us audio-based template matching. In the ma-
jority of the recordings where distribution matching failed, it was
observed that the piece has modulations to pitches that do not be-
long to the scale of the makam. These contrastive notes and any
event can be grouped into characteristic fragments, melodic pro-
gressions and structural elements; eventually building the unique
the music piece. In general, the lack of such temporal information
is the main problem of distribution matching.

By linking repetitive sections, only the tonic of one performance
is missed. These results indicate the usefulness of the temporal in-
formation in pitch related tasks. The successful results obtained
from tonic identification and previously from section linking (Şen-
türk, Holzapfel, & Serra, 2014) (explained in Section 6.7.4) mo-
tivates adapting the “fragment linking” methodology for further
computational tasks. In Section 6.6, we work on linking audio
and scores in the document level by trying to link sections in each
score with corresponding audio recordings. Highly ranked links
will indicate the scores and audio recordings related to the same
work. We also generalize the tonic identification method to less
“complete” scores, where structure information is unknown. The
results obtained from the composition identification experiments
(Section 6.6.5) show that tonic identification by linking non-repe-
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titive score fragments as short as 8 seconds is possible.
Another interesting direction is to generate predictive models

from the scores of eachmakam. Themodels can be used to discover
characteristic phrases, which could be linked with the audio to fur-
ther carry relevant tasks such as makam recognition, melodic sim-
ilarity analysis and expression analysis. Previously we found that
multiple viewpoints may be highly predictive in modelling OTMM
(Şentürk, 2011). We plan to take advantage of these computational
methodologies and models to discover, navigate through and ap-
preciate cultural-specific aspects of makam music of Turkey and
other music genres/traditions involving melody-dominant content.

6.5 Score-Informed Tempo Estimation

The relative tempo τ̂(f
(a)) of an audio fragment f (a) is simply in-

ferred as the ratio between the duration of the aligned audio frag-
ment and the score fragment, and absolute tempo τ(f

(a)) is com-
puted by multiplying the relative tempo estimation with the nom-
inal tempo τ(f

(b)) given in the relevant score f (b) as described in
Equation 6.4 (Figure 6.2).

In (Holzapfel et al., 2015), the first 20% of the audio recordings
is aligned to the first section of the music score using the Hough
transform (Section 6.3) to infer the tempo. The annotated tonic k(a)
is used to normalize the audio predominant melody. The tempo of
the aligned fragment is used to bias the Bayesian network. This
preliminary step is reported to output reliable tempo estimations.
The methodology proposed in (Holzapfel et al., 2015) will be ex-
plained more in detail in Section 6.7.6.

Later, the average tempo τ (a) computation is generalized in-
corporating the process into the score-informed tonic identification
method, SEN-TONlink (Section 6.4). First, the link set, Πκ(a)

(a, b,

f (b)) =
{
πκ(a)

(
f̄
(a)
1 , f̄ (b)

)
, πκ(a)

(
f̄
(a)
2 , f̄ (b)

)
, . . .

}
, which is com-

puted using the estimated tonic κ(a), is selected. The average tempo
of the recording is estimated as the tempo τ

(
f̄
(a)
m

)
of the audio frag-

ment (f̄ (a)
m ) in the link set, which emits the highest similarity-value,
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i.e. τ (a) = argmax
τ(f̄

(a)
m )

{
νκ

(a)
(
f̄
(a)
m , f̄ (b)

)
, f̄

(a)
m ∈ F̄

κ(a),(a)
(f (b))

}
.

6.6 Score-Informed Composition
Identification

Version identification is an important task in music information re-
trieval which aims to find the versions of a music piece from a col-
lection of audio recordings automatically (Ellis & Poliner, 2007;
Serrà et al., 2009). For popular music such as rap, pop and rock,
the task aims to identify the covers of an original audio recording.
For classical music traditions a more relevant task is associating
compositions with the audio performances. The composition in-
formation is highly useful in many other computational tasks such
as automatic content description and music discovery (e.g. search-
ing the performances of a composition in a music collection).

For classical music cultures, music collections consisting of
music scores and audio recordings alongwith editorial metadata are
desirable in many applications involving cultural heritage archival,
music preservation and musicological studies. Composition iden-
tification is a crucial step linking performances and compositions
during the creation of such music corpus from unlabeled musical
data (Thomas et al., 2012).

Composition information can be used to generate and improve
linked musical data, enhance the music content description and fa-
cilitate navigation in semantic web applications. Consider a sce-
nario, where a musician uploads his interpretation of a composition
to a platform such as SoundCloud, YouTube etc. The performed
compositions can be automatically identified and labeled semanti-
cally using an ontology, e.g. (Raimond, Abdallah, Sandler, & Fred-
erick, 2007). Next the performance can be linked with related con-
cepts (e.g. form, composer, music score) available in other sources
such as biographies of the performing artist, the music score of the
composition or the musical and editorial metadata stored in open
encyclopedias such as MusicBrainz andWikipedia. Such a scheme
would facilitate searching, accessing and navigating relevant mu-
sic content in a more informed manner. Likewise, tasks such as en-
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hanced listening and music recommendation may also benefit from
the musical data linked via automatic composition identification.

Due to inherent characteristics of the oral tradition and the prac-
tice of OTMM, performances of the same piece may be substan-
tially different from one another. This aspect brings certain com-
putational challenges for the computational analysis and retrieval
of OTMM (Section 2.1). In this Section, a composition identifica-
tion methodology is presented (Şentürk & Serra, 2016a), which is
based on the score-informed tonic identificationmethodology (Sec-
tion 6.4). We consider two composition identification scenarios,
1) identifying the compositions performed in an audio recording,
2) identifying the audio recordings in which a composition is per-
formed. Note that there might not be any relevant audio recordings
for some compositions, and vice versa. The methodology also aims
to identify such cases. The contributions can be summarized as:

1. The first composition identification methodology applied to
OTMM.

2. An open and editorially complete dataset for composition
identification in OTMM (Section 6.6.4).

3. Comparison of Hough transform and SDTW in transposition-
invariant partial audio-score alignment for OTMM.

4. Simplifications and generalizations of the fragment selection
and the fragment duration steps used in the score-informed
tonic identification method (Section 6.4) and verification of
this method on a larger dataset as a side product of the com-
position identification experiments (Table 6.1).

For reproducibility purposes, relevant materials such asmusical
examples, data and results are open and publicly available via the
Compmusic Website.12

The rest of the Section is structured as follows: Section 6.6.1
gives a definition of the composition identification tasks we are
dealing with. Section 6.6.2 explains the methodology applied to
both composition identification scenarios explained above. Sec-
tion 6.6.3 presents the experimental setup, the test dataset and the
results. Section 6.6.6 discusses the obtained results and concludes
the section with a brief summary.

12http://compmusic.upf.edu/node/306

http://compmusic.upf.edu/node/306
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6.6.1 Problem Definition
Given a specific music collection with the set of audio recordings
and the set of music scores, two basic composition identification
scenarios are:

1. Composition retrieval: Identification of the compositions
which are performed in an audio recording.

2. Performance retrieval: Identification of the audio record-
ings in which a composition is performed.

These scenarios are ranked retrieval problems where the query
is an audio recording and the retrieved documents are the compo-
sitions in the composition identification task, and vice versa. In
both cases, the common step is to estimate whether a composition
and an audio recording are relevant to one another. The relevances
in the composition identification problems are binary, i.e. 1 if the
composition and the audio recordings are paired and 0 otherwise.

The results in both cases can be aggregated by applying this step
to multiple documents and queries. Nevertheless, there might be
situations where it may be impossible or impractical to retrieve the
whole collection, for example restricted access to copyrighted mu-
sic material or the lack of computational resources in fast-query ap-
plications (e.g. real-time composition identification in mobile ap-
plications). Moreover, both scenarios might require different con-
straints to obtain better results and/or process more efficiently. For
example, a good performance retrieval method should findmultiple
relevant audio recordings for a composition; on the other hand only
the top ranked documents are important in composition retrieval as
more than a single composition is rarely performed in the queried
audio recordings (Section 6.6.4). In this paper, we deal with these
two tasks separately and leave the joint retrieval task as a future
direction to explore.

6.6.2 Methodology
In this method, it is assumed that the scores of the compositions are
available. The binary relevance is estimated by partially aligning
the score of a composition (bj)with the audio recording of a perfor-
mance (ai). For partial alignment invariant of the transposition of
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the performance, the score-informed tonic identification procedure
described in (Şentürk et al., 2013) (Section 6.4) is used.

The fragment is selected either from the repetitive section or
the start of a score. Different fragment durations are tried in the
experiments (Section 6.6.3). For partial alignment, either Hough
transform or SDTW is used with the same parameters given in Sec-
tion 6.4. For the sake of simplicity, the accumulated weight compu-
tation given in Equation 6.9 is replaced by a simpler weight com-
putation by taking the maximum similarity-value for each stable
pitch:

ν
(
ϕ
(ai)
k

)
= max

(
νϕ

(ai)

k

(
f̄
(ai)
m , f̄ (bj)

))
,m ∈

[
1 :
∣∣∣Πϕ

(a)
k (a, b, f (b))

∣∣∣]
(6.10)

The similarity ν(ai, bj) ∈ [0, 1] between the audio recording
(ai) andmusic score (bj) is taken as the highest weight, i.e. ν(ai, bj)
= max

(
ν
(
ϕ
(ai)
k

)
, ϕ

(ai)
k ∈ Φ

(ai)
PC

)
. We observe a high similar-

ity value, if the composition (bj) is indeed performed in the au-
dio recording (ai) (Section 6.6.2). Note that finding a true pair
also implies correctly identifying the tonic pitch class, i.e. κ(ai) =
argmax

ϕ
(ai)

k

ν
(
ϕ
(ai)
k

)
, ϕ

(ai)
k ∈ Φ

(ai)
PC . The block diagram of transposi-

tion invariant partial-audio score alignment is given in Figure 6.4.
The alignment process is repeated between each audio record-

ing and music score, and a similarity value is obtained for each
composition and performance pair in our collection. Figure 6.6 show
the similarities computed between the performances in our audio
collection (Section 6.6.4) and the composition, “Acemaşiran Peş-
revi.”13 In this example, the similarity of the relevant audio record-
ings are much higher compared to the non-relevant ones. Finally,
the performance-composition pairs with low similarity values are
discarded using outlier detection (Section 6.6.2), and the relevant
pairs are obtained.

13http://musicbrainz.org/work/01412a5d-1858-43b3-b5b0
-78f383675e9b

http://musicbrainz.org/work/01412a5d-1858-43b3-b5b0-78f383675e9b
http://musicbrainz.org/work/01412a5d-1858-43b3-b5b0-78f383675e9b
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Figure 6.6: Similarity vs Mahalanobis distance between the com-
position “Acemaşiran Peşrevi” and the audio recordings in the data-
set, along with the kernel density-estimate computed from the sim-
ilarity values between the audio recordings and the composition.

Irrelevant Document Rejection

In many common retrieval scenarios, including composition iden-
tification, the users are only interested in checking the top docu-
ments (Manning, Raghavan, & Schütze, 2008). After applying par-
tial audio-score alignment between the query and each document,
we rank the documents with respect to the similarities obtained.
We then reject documents with low similarities according to an au-
tomatically learned threshold.

As seen in Figure 6.6, the relevant documents stand as “out-
liers” among the irrelevant documents with respect to the similar-
ities they emit. To fetch the relevant documents per query, one
can apply “outlier detection” using similarities between each docu-
ment and query. Outlier detection is a common problem, which has
many applications such as fraud detection and server malfunction
detection (Chandola, Banerjee, & Kumar, 2009).

Upon inspecting the similarity values emitted by irrelevant doc-
uments, we have noticed that the values roughly follow a Normal
distribution (Figure 6.6). However, the distributions observed for
each query have a different mean and variance. This is expected
since the similarity computation could be affected by several fac-
tors such as the melodic complexities of the score fragment and
the audio performance, as well as the quality of the extracted au-
dio predominant melody. To deal with this variability, we compute
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the Mahalanobis distance (Maesschalck, Jouan-Rimbaud, & Mas-
sart, 2000) of each similarity value to the distribution represented
by the other similarity values (Figure 6.6).14 Mahalanobis distance
is a unitless and scale-invariant distance metric, which outputs the
distance between a point and a distribution in standard deviations.

To reject irrelevant documents we apply a simplemethodwhere
all documents below a certain threshold are rejected. To learn the
decision boundary for thresholding, we apply logistic regression
(Manning et al., 2008), a simple binary classification model, to
the similarity values and the Mahalanobis distances on labeled data
(Section 6.6.4). The training step is explained in Section 6.6.3 in
more detail.

After eliminating the documents according to the learned deci-
sion boundary, we add a last document called none to the end of
the list. This document indicates that the query might not have any
relevant document in the collection if all of the documents above
are irrelevant.

6.6.3 Experiments
In the experiments, two alignment methods (Hough transform vs.
SDTW) are compared. We try to align either the repetition in the
score as done in (Şentürk et al., 2013) or the start in the score as
a simpler alternative and for the case when the structure informa-
tion is not available in the score. The optimal fragment duration is
searched between 4 and 24 seconds.

As mentioned in Section 6.6.1, the performance retrieval and
the composition retrieval tasks are evaluated separately. To test
the document rejection step, 10-fold cross validation is used. The
transposition-invariant partial audio score alignment is applied be-
tween each score fragment and audio recording (Section 6.6.2) and
then the similarity value for each performance-composition pair in
the training set is computed. TheMahalanobis distance is also com-
puted for each query (performance in composition retrieval task and
vice versa). Logistic regression is applied to the similarity values

14Note that the Mahalanobis distances shown in Figure 6.6 are less than what
a “real” Normal distribution would produce. This is because of the contribution
by the true pairs to the distribution.
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and the Mahalanobis distances computed for each annotated audio-
score pair (with the binary relevances 0 or 1), and a decision bound-
ary is learned between the relevant and irrelevant documents. Then,
given a query (a composition in the performance retrieval task, and
vice versa) from the testing set, we carry out all the steps explained
in Section 6.6.2 and reject all the documents (performances in the
performance retrieval task, and vice versa) “below” the decision
boundary.

Mean average precision (MAP) (Manning et al., 2008) is used
to evaluate the methodology. MAP can be considered as a summary
of how a method performs for different queries and the number of
documents retrieved per query. For the document rejection step, we
report the average MAP obtained from the MAPs of each testing set.
We also conduct 3-way ANOVA tests on the MAPs obtained from
each testing set to find if there are significant differences between
the alignment methods, fragment locations and fragment durations.
For all results below, the term “significant” has the followingmean-
ing: the claim is statistically significant at the p = 0.01 level as
determined by a multiple comparison test using the Tukey-Kramer
statistic.

6.6.4 Dataset
For our experiments, a collection of 743 audio recordings and 146
music scores of different peşrev and sazsemaisi compositions is
gathered. The audio recordings are selected from the CompMusic
corpus (Uyar et al., 2014). These recordings are either in public-
domain or commercially available. The scores are selected from
the SymbTr score collection (Karaosmanoğlu, 2012). SymbTr-
scores are given in a machine readable format, which stores the
duration and symbol of each note. The structural divisions in the
compositions (i.e. the start and end note of each section) and the
nominal tempo are also indicated in the scores.

The compositions performed in each audio recording are la-
beled manually. In the dataset there are 360 recordings associated
with 87 music scores, forming 362 audio-score pairs. This infor-
mation along with other relevant metadata such as the releases,
performers and composers are stored in MusicBrainz. Figure 6.7
shows the histogram of the number of relevant compositions per
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Figure 6.7: The number of relevant documents for the queries a)
Histogram of the number of relevant audio recordings per score, b)
Histogram of the number of relevant scores per audio recording

audio recording and the number of relevant audio recordings per
composition. The number of recordings for a particular composi-
tion in our collection may be as many as 11. On the other hand, the
releases of OTMM are typically organized such that there is a sin-
gle composition performed in each track. For this reason, we were
only able to obtain two audio recordings in which there are two
compositions performed. Note that the tonic frequency changes in
the performances of each composition in these two recordings.

The average cardinalities of the compositions per audio record-
ing and audio recordings per composition are 0.49 and 2.48, respec-
tively. Notice that we have also included some compositions in our
data collection, which do not have any relevant performances, and
vice versa (Figure 6.7). Ourmethodology also aims to identify such
queries without relevant documents. If we consider this case as an
additional, special “document” called none, the average cardinal-
ity for compositions per audio recording and audio recordings per
composition is 1.00 and 2.88, respectively.

6.6.5 Results
Before document rejection, the MAP is around 0.47 for both com-
position retrieval and performance retrieval tasks using either of
the alignment methods, fragment locations and fragment durations
longer than 8 seconds. The MAP is low before document rejection
since the queries without relevant documents will practically have 0
average precision. Figure 6.8 shows the composition retrieval and
performance retrieval results before document rejection only for
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Figure 6.8: MAP for composition and performance retrieval task
before document rejection, across different methods, fragment lo-
cations and durations. Only the queries with at least one relevant
document are considered.

the queries with relevant documents. The retrieval results before
document rejection show that most of the audio-score pairs may be
found by partial audio-score alignment by using a score fragment of
at least 12 seconds. Although Hough transform performs slightly
better than SDTW, these increases are not significant for fragment
durations longer than 8 seconds.

Figure 6.9 shows the average MAPs from all queries obtained
using different fragment durations, fragment locations and partial
alignment methods in a 10-fold cross validation scheme. The best
average MAP is 0.96 for composition retrieval using either Hough
transform or SDTW and aligning 24 seconds from the start. For
performance retrieval the best average MAP of 0.95 is achieved us-
ing Hough transform and aligning 16 seconds from the start. When
we inspect average MAPs obtained from the queries without any rel-
evant documents (Figure 6.10), we observe that the document re-
jection step always achieves an average MAP higher than 0.95 for all
the parameter combinations in the composition retrieval task and
an average MAP closer to or higher than 0.9 for all the parameter
combinations in the performance retrieval task, respectively.

When we inspect the alignment results, we find that the score
fragments were aligned properly for most of the cases. Moreover
the tonic is identified almost perfectly for all the audio recordings
by aligning the relevant scores (Table 6.1), and we achieved 100%
accuracy out of the 362 audio-score pairs by aligning at least 12
seconds from the repetition using Hough transform.
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Figure 6.9: MAP for composition and performance retrieval task
after document rejection, across different methods, fragment loca-
tions and durations. All queries are considered.
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Figure 6.10: MAP for composition and performance retrieval task
after document rejection, across different methods, fragment loca-
tions and durations. Only the queries with no relevant documents
are considered.

Table 6.1: Number of errors in tonic identification

Methods Locations Durations (sec.)
4 8 12 16 20 24

Hough Start 30 15 2 3 2 2
Repetition 14 5 0 0 0 0

SDTW Start 32 6 3 3 3 3
Repetition 24 3 1 2 3 3

6.6.6 Discussion and Summary
In this Section, a methodology is proposed to identify the relevant
compositions and performances in a collection consisting of au-
dio recordings and music scores, using transposition invariant par-
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tial audio-score alignment. The methodology is the first automatic
composition identification proposed for OTMM. The methodology
is highly successful, achieving 0.95 MAP in retrieving the composi-
tions performed in a recording and 0.96 MAP in retrieving the audio
recordings where a composition is performed. What is more, our
methodology is not only reliable in identifying relevant composi-
tions and audio recordings but also identifying the cases when there
are no relevant documents for a given query. Our algorithm addi-
tionally identifies the tonic frequency of the performance of each
composition in the audio recording almost perfectly, as a result of
partial audio-score alignment.

The results show that even aligning an 8 second fragment is
highly effective, nevertheless, the optimal value of fragment dura-
tion for composition identification is around 16 seconds. Using a
fragment duration longer than 16 seconds is not necessary since it
increases the computation time without any significant benefit on
identification performance. The results further show that aligning
the start is sufficient, and there is no need to exploit the structure
information to select a fragment from the repetition as in (Şentürk
et al., 2013).

If a fragment of 16 seconds from the start of the score is se-
lected, Hough transform and SDTW produces the same results in
both composition retrieval and performance retrieval tasks. One
surprising case is the lower MAPs obtained in the performance re-
trieval task using SDTW to align the repetition. Although the drop is
not significant for fragment durations longer than 12 seconds, we
observed that SDTW tends to align irrelevant subsequences in the
performances with the score fragments, which have similar note-
symbol sequences but different durations.

Both Hough transform and SDTW have a complexity of
∣∣ϱ(a)

∣∣×∣∣Ψ̂(f (b))∣∣, where ∣∣ϱ(a)
∣∣ is the length of the predominant melody ex-

tracted from the audio recording (a) and
∣∣Ψ̂(f (b))∣∣ is the length of the

synthetic melody generated from the score fragment of the compo-
sition (f (b)). Nonetheless, Hough transform is applied to a sparse,
binary similaritymatrix, hence it can operate faster than SDTW.More-
over, Hough transform is a simpler algorithm. These properties
make Hough transform a cheaper and effective alternative to more
complex alignment algorithms such as SDTW, when precision in
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intra-alignment (e.g. note-level) is not necessary. Given these ob-
servations, we select alignment of the first 16 seconds of the score
using Hough transform as the optimal setting. As the next step we
would like to evaluate the method on more forms, possibly with
shorter structural elements such as the vocal form, şarkı. We would
also like to investigate network analysis methods to identify the rel-
evant performances and compositions jointly.

For the score fragments longer than 8 seconds, the tonic identi-
fication errors always occur in two historical recordings, where the
recording speed (hence the pitch) is not stable and another record-
ing where the musicians sometimes play the repetition by transpos-
ing the melodic intervals by a fifth. Even though the tonic identifi-
cation has failed in these cases, the fragments are correctly aligned
to the score. For such recordings, the stability of the tonic fre-
quency can be assessed and the tonic frequency can be refined lo-
cally by referring to aligned tonic notes in the alignment path com-
puted using SDTW.

From Figure 6.9, we can observe that by using a simple out-
lier detection step based on logistic regression, we were able to
reject most of the irrelevant documents in both composition re-
trieval and performance retrieval scenarios. By comparing Fig-
ure 6.8 with Figure 6.9, we can also conclude that this step does not
remove many relevant documents, providing reliable performance
and composition matches. The usefulness of this step is more ev-
ident when the results for the queries with no relevant documents
are checked (Figure 6.10). For such queries, since all the docu-
ments typically have a low, comparable similarity, our methodol-
ogy is able to reject almost all the irrelevant documents. From Fig-
ure 6.10, we can also observe that the document rejection step is
robust to changes in the fragment duration, the fragment location
and the alignment method.

The method can easily be adapted to neighboring music cul-
tures such as Greek, Armenian, Azerbaijani, Arabic and Persian
music, which share similar melodic characteristics. We hope that
our method would be a starting point for future studies in automatic
composition identification, and facilitate future research and appli-
cations on linked data, automatic music description, discovery and
archival.
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6.7 Section Linking
In this Section, we focus on marking the time intervals in the au-
dio recording of a piece with the musically relevant structural ele-
ments (sections) marked in the score of the same piece (or briefly
“section linking”). The proposed method extracts features from the
audio recording and the sections in the score. From these features,
similarity matrices are computed for each section. The method ap-
plies Hough transform (Duda & Hart, 1972) to the similarity ma-
trices in order to detect section candidates. Then, it selects be-
tween these candidates by searching through the paths, which re-
flect the sequence of sections implied by the musical form, in a di-
rected acyclic graph (DAG) directed acyclic graph. We optimize
the method for the cultural-specific aspects of OTMM. By link-
ing score sections with the corresponding fragments in the audio
recordings, computational operations that are specific to this type
of music, such as makam recognition (Gedik & Bozkurt, 2010),
tuning analysis (Bozkurt et al., 2009) and rhythm analysis can be
done at the section level, providing a deeper insight into the struc-
tural, melodic or metrical properties of the music.

Section linking has been studied in two papers (Şentürk et al.,
2012; Şentürk, Holzapfel, & Serra, 2014) in the scope of the thesis.
This Section focuses on the section linking methodology explained
in (Şentürk, Holzapfel, & Serra, 2014). The preliminary methodol-
ogy (Şentürk et al., 2012) is explained in Appendix A separately for
the sake of brevity. Until the end of Section 6.7, an audio record-
ing15 of the composition Şedaraban Sazsemaisi16 is used for illus-
tration.

The remainder of the Section is structured as follows: Sec-
tion 6.7.1makes a formal definition of section linking. Section 6.7.2
explains the proposedmethodology in detail. Section 6.7.4 presents
the experiments carried out to evaluate the method. Section 6.7.3
describes the dataset used to test the methodology. Section 6.7.5
presents the results obtained from the experiments and Section 6.7.7
provides a discussion and a brief conclusion.

15http://musicbrainz.org/recording/efae832f-1b2c-4e3f-b7e6
-62e08353b9b4

16http://musicbrainz.org/work/1eb2ca1e-249b-424c-9ff5
-0e1561590257

http://musicbrainz.org/recording/efae832f-1b2c-4e3f-b7e6-62e08353b9b4
http://musicbrainz.org/recording/efae832f-1b2c-4e3f-b7e6-62e08353b9b4
http://musicbrainz.org/work/1eb2ca1e-249b-424c-9ff5-0e1561590257
http://musicbrainz.org/work/1eb2ca1e-249b-424c-9ff5-0e1561590257
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6.7.1 Problem Definition

We define section linking as “marking the time intervals in the au-
dio recording at which musically relevant structural elements (sec-
tions) given in the score are performed.” In this task, we start with
a score and an audio recording of a music piece. The score and
audio recording are known to be related with the same work (com-
position) via available metadata, i.e. they are already linked with
each other in the document-level.

The score includes the notes, and it is divided into sections,
some of which are repeated. These sections are annotated; and the
label, the start and end of each section are provided in the score,
including the compositional repetitions. Therefore, we do not need
any structural analysis to find the structural elements. Later in Sec-
tion 6.12, the semiotic section labels obtained in score structure
analysis (Section 4.3) are used instead. From the start and end of
each section, the sequence of the sections are known. The tempo
and the makam of the piece are also available in the score. The
audio recording follows the section sequence given in the score
with possible section insertions, omissions, repetitions and substi-
tutions. The tonic of the audio recording is known, etiher by man-
ually annotating or by automatic tonic identification (Section 6.4).
For the sake of brevity, the tonic symbol is omitted (e.g. the simi-
larity matrix Bκ(a),(a,s̄

(b)
j ) is written as B(a,s̄

(b)
j )). The performance

might include various expressive decisions such as musical mate-
rial that are not related to the piece, phrase repetitions/omissions,
pitch deviations.

Following the definitions introduced in Section 4.3.1, we ap-
ply our method to obtain the (estimated) audio section sequence

S̄(a) in the audio recording, where each section, s̄(a)i =

⟨
N̄

(
s̄
(a)
i

)
,

s
(a)
i , t(s̄

(a)
i )
⟩
, in the sequence is paired with a section label s(a)i ∈

S(b) =
{
Ss(b), unrelated

}
in the composition. Ideally, the true au-

dio section sequence, S̄(a), and section link sequence, S̄(a) should
be identical.
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Figure 6.11: Block Diagram of the Section Linking Methodology.

6.7.2 Methodology

By incorporating makam music knowledge, and considering cul-
ture-specific aspects of the makam music practice (such as pitch
deviations and heterophony), we specialize the section linking met-
hodology to OTMM. Given the score representation (b) of a com-
position and the audio recording (a) of the performance of the same
composition, the procedure to link the sections of a score with the
corresponding sections in the audio recording is as follows (Fig-
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ure 6.11):

1. Frommusic-theory knowledge, a dictionary is generated con-
sisting ⟨makam, karar⟩ pairs, which stores the karar of each
makam (e.g. if the makam of the piece is Hicaz, the karar is
A4.). The karar note is used as the reference symbol during
the generation of score features for each section (Section 6.2).
We also apply the theoretical intervals for a makam as de-
fined in AEU theory to generate the score features from the
machine-readable score (Section 6.2).

2. Features are computed from the audio recording (a) and the
musically relevant sections (s̄(b)j ) with unique section labels
(∀s(b)j ∈ Ss(b)) of the score (b) (Section 6.2). If SymbTr-
MIDI scores are used, audioHPCPs Γ̂

(a)
and synthetic HPCPs

Ω̂
(b)
are computed for the audio recording and themusic score,

respectively. If SymbTr-txt scores are used, predominant
melody ϱ(a) and synthetic melody Ψ̂

(b)
are computed for the

audio recording and the music score, respectively.

3. A similarity matrix B(a,s̄
(b)
j ) is computed for each section

(s̄
(b)
j ), measuring the similarity between the score features

of the particular section and the audio features of the whole
recording (Section 6.3). By applying Hough transform to
the similarity matrices, candidate links π(s̄(a)i , s̄

(b)
j ), where

s
(a)
i = s

(b)
j ∈ Ss(b), are estimated in the audio recording for

each section given in the score (Section 6.3.1).
In order to restrict the angles searched in Hough transform to
an interval [θmin, θmax], the relative tempo of all the true sec-
tions τ̂

(
s̄
(a)
i

)
in the section linking dataset (see Section 6.7.3)

are computed. The relative tempo τ̂
(
s̄
(a)
i

)
of a section candi-

date is restricted between 0.5 and 1.5, covering most of the
observed tempo distribution. This limits the searched angles
in Hough transform between θmin = 27◦ and θmax = 56◦

(Equation 6.5).
Figure 6.2 shows the candidate link estimation process for
the Teslim section of Şedaraban Sazsemaisi.
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Figure 6.12: Extraction of all possible paths from the estimated
candidates in an audio recording of Şedaraban Sazsemaisi. a) An-
notated Sections, b) Candidate Estimation, c) The directed acyclic
graph formed from the candidate links.

4. Treating the candidate links as labeled nodes, a directed acyclic
graph (DAG) is generated. Using section sequence informa-
tion (S̄(b)) given in the score, all possible paths in theDAGare
searched and the most-likely candidates are identified. Then,
the non-estimated time intervals are guessed. The final links
are marked as section links Figure 6.12. We now proceed to
explained this step (termed as sequential linking) in detail.

Sequential Linking

By inspecting Figures 6.12a and 6.12b, it can be seen that all ground
truth annotations are among the detected candidates, with prob-
lems in the alignment of 4th Hane. However, as there are also
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many false positives, we use knowledge about the structure of the
composition to improve the candidate selection. Considering the
candidate links as nodes in a DAG, we first extract all possible
paths from the DAG according to the score section symbol se-
quence S̄(b) =

[
s̄
(b)
1 , . . . , s̄|S̄(b)|

]
. We then decide the most likely

paths. Finally, we attempt to guess non-estimated time intervals in
the audio and obtain the final section links.

Path Extraction: Having obtained the candidate section links
π(s̄

(a)
i , s̄

(b)
j ), each section candidate s̄(a)i , may be interpreted as a no-

de. A node has the following labels:

• Section symbol, s(a)i = s
(b)
j ∈ Ss(b)

• Time interval t(s̄(a)i ) =
[
tini(s̄

(a)
i ) tfin(s̄

(a)
i )
]
.

• Relative tempo, τ̂ (s̄
(a)
i ), with its value restricted according to

the duration constraint, i.e. to the interval [0.5, 1.5].

• Weight ν(s̄(a)i ), equal to the similarity ν(s̄(a)i , s̄
(b)
j ) of the can-

didate section link π(s̄(a)i , s̄
(b)
j ), in the interval [0, 1] (see Sec-

tion 6.3.3).

If the final time of a node, tfin(s̄(a)k ), is close enough to the ini-
tial time of another node, tini(s̄(a)i ), i.e. |tfin(s̄(a)k )− tini(s̄(a)i )| < α

(α is chosen as 3 seconds), a directed edge ek→i =
⟨
s̄
(a)
k , s̄

(a)
i

⟩
from s̄

(a)
k to s̄(a)i is formed. The nodes and edges form a DAG, G

(Figure 6.12c).
We define a path pi as a sequence of nodes S̄(pi) =

[
s̄
(pi)
1 , . . . ,

s̄
(pi)
|S̄(pi)|

]
⊂ N (G), where N (G) denotes the node set of the graph;

and weighted edges E(pi) =
[
e
(pi)
1 , e

(pi)
2 , . . . , e

(pi)
k , . . . , e

(pi)
Ki−1

]
⊂

E(G), where e(pi)k represents the directed edge e(pi)k→k+1 =
⟨
s̄
(pi)
k , s̄

(pi)
k+1

⟩
and E(G) denotes the edge set of the graph. The length of the path
is |pi| =

∣∣E(pi)
∣∣ = |S̄(pi)| − 1. We also obtain the section symbol

sequence S(pi) =
[
s
(pi)
1 , . . . , s

(pi)
|S(pi)|

]
, where k ∈ [1 : |S(pi)|] and

s
(pi)
k ∈ Ss is the section label of the node, s̄(pi)k .
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To track the section sequences in audio with reference to the
score section symbol sequence S(b), we construct a variable-length
Markov model (VLMM) (Bühlmann & Wyner, 1999). A VLMM is an
ensemble of Markov models from an order of 1 to a maximum or-
der of Nmax. Given a section symbol sequence S(pi), the transition
probability ξ(pi)k−1 of the edge e

(pi)
k−1 is computed as:

ξ
(pi)
k−1 = Pr

(
s
(pi)
k , s

(pi)
k−1 . . . s

(pi)
k−n

)
, n = min (Nmax, k − 1)

(6.11)
where Pr (xk, xk−1 . . . xk−n) is the conditional probability of the
event xk occuring after the sequence of events xk−1 . . . xk−n (xk−n

occurs the first).
In the dataset, the sections are repeated at most twice in succes-

sion (Section 6.7.3). Hence, the maximum order of the modelNmax
is chosen as 3, which is necessary and sufficient to track the position
of the section sequence. VLMMs are trained from the score section
symbol sequences, s(b), and true audio section symbol sequences,
S̄, of other audio recordings whose compositions are built from a
common symbol set Ss(b). If a composition is performed partially
in an audio recording, the recording is not used for training.

If a node s̄(a)k has outgoing but no incoming edges, it is the start-
ing node of a path. A node s̄(a)k is connectable to the end of a path
pi, if the following conditions are satisfied:

i. A directed edge e(pi)|pi|+1→k from s̄
(pi)
|S̄(pi)| to s̄

(a)
k exists, i.e.∣∣∣tfin(s̄(pi)|S̄(pi)|)− tini(s̄

(a)
k )
∣∣∣ < α, α = 3 seconds.

ii. The transition probability from s̄
(pi)
|S̄(pi)| to s̄

(a)
k is greater than

zero, i.e. Pr
(
s
(a)
k , s

(pi)
|S̄(pi)| . . . s

(pi)
|S̄(pi)|−n+1

)
> 0, n = min (Nmax,

|S̄(pi)|
)
.

Starting from the nodes with no incoming edges, we iteratively
build all paths in the graph by applying the above rules. While
traversing the nodes, an additional path is encountered, if:
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• A node in the path is connectable to more than one node.
There exists a path for each of these connectable nodes. All
these paths share the same starting node.

• The transition probability of an edge to the node s̄(a)k is zero
for the current pathpi, i.e.

∣∣∣tfin(s̄(pi)|S̄(pi)|)− tini(s̄
(a)
k )
∣∣∣ < α, α =

3 seconds, and Pr
(
s
(a)
k , s

(pi)
|S̄(pi)| . . . s

(pi)
|S̄(pi)|−n+1

)
= 0, n =

min
(
Nmax, |S̄(pi)|

)
, but the transition probability is greater

than zero for a VLMM with a smaller order 0 < n′ < n. In
this case, there exists a path that has s̄(pi)|S̄(pi)|−n′+1

as the start-
ing node.

Traversing the nodes and edges, we obtain all possible paths
P(G) =

{
p1, . . . , p|P(G)|

}
from the candidate links, where |P(G)|

is the total number of paths (Figure 6.13a). The total weight of a
path pi is calculated by adding the weights of the nodes and the
transition probabilities of the edges forming the path:

ν(pi) =
|S(pi)|∑
k=1

ν(s̄
(pi)
k ) +

|pi|∑
k=1

ξ
(pi)
k (6.12)

In summary, each path pi has the following labels:

• A sequence of labeled nodes, S̄(pi) ⊂N (G),
∣∣S̄(pi)∣∣ = |pi|+

1, representing the sections.

• Directed, labeled edges connecting the nodes, E(pi) ⊂ E(G),∣∣E(pi)
∣∣ = |S(pi)|.

• Section symbol sequence, S(pi) = [s
(pi)
1 , . . . , s

(pi)
|S̄(pi)|].

• Time interval t(pi) = [tini(pi) tfin(pi)], where tini(pi) =

tini

(
s̄
(pi)
1

)
denotes the initial time and tfin(pi) = tfin

(
s̄
(pi)
|S̄(pi)|

)
denotes the final time of the path.

• Total weight, ν(pi).

Elimination of Improbable Candidates: Correct paths usu-
ally have a greater number of nodes (and edges) as depicted in
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Figure 6.13a. Moreover, the correct nodes typically have a higher
weight than the others. Therefore, the correct paths have a higher
total weight than other paths within their duration. Assuming p∗ is
the path with the highest total weight, we remove all other nodes
within the duration of the path [tini(p∗) tfin(p∗)] (Algorithm 3, Fig-
ure 6.13b,d). Notice that p∗ can remove one or more nodes from the
“middle” of another path, which has a longer time duration than p∗;
effectively removing edges, splitting the path into two, and hence
creating two separate paths.

Algorithm 3 Remove overlapping nodes
function remove_overlap(N (G), p∗)

N chk ⇐N (G)− S̄(p∗)
for s̄k ∈N chk do

if [tini(p∗) tfin(p∗)] ∩ [tini(s̄k) tfin(s̄k)] > 3 seconds
then

N (G)⇐N (G)− s̄k
returnN (G)

After removing the nodes within the time interval covered by
the path p∗, the related section sequence S̄(p∗) becomes uniquewithin
this time interval, and are therefore considered final section links.
The section symbol sequence of the path S(p∗) follows a score sec-
tion symbol subsequence S(b∗) =

[
s
(b)
j , . . . , s

(b)
k

]
of the score sec-

tion symbol sequence S(b) =
[
s
(b)
1 , . . . , s

(b)
j , . . . , s

(b)
k , . . . , s

(b)

|S(b)|

]
,

1 ≤ j ≤ k ≤ |S(b)|. Next, we remove inconsequent nodes occur-
ring before and after the audio section sequence, pi with respect to
S(b∗) (see Algorithm 4).

We define two score section symbol subsequences S(b−) and
S(b+), which occur before and after S(b∗), respectively. Since the
sections may be repeated twice in succession within a performance
(Section 6.7.3), they depend on the first two section symbols, {s(p

∗)
1 , s

(p∗)
2 },

and the last two section symbols, {s(p
∗)

|S(b∗)|−1
, s

(p∗)
|S(b∗)|}, of the section

symbol sequence S(p∗) of the path p∗:
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Figure 6.13: Graphical example for the sequential linking for
the Şedaraban Sazsemaisi. a) All possible paths extracted from
the graph. The number in parenthesis in the right side of each path
indicates the total weight of the path. b) Overlapping nodes with
respect to the path with the highest weight are removed (see Al-
gorithm 3). c) Inconsequent nodes with respect to the path with
the highest weight are removed (see Algorithm 4). d) Overlap-
ping node with respect to the path with the second highest weight
is removed.

S(b−) =


∅, s

(p∗)
1 = s

(p∗)
2 = s

(b)
1[

s
(b)
1 , . . . , s

(b)
j−1

]
, s

(p∗)
1 = s

(p∗)
2 ̸= s

(b)
1[

s
(b)
1 , . . . , s

(b)
j

]
, s

(p∗)
1 ̸= s

(p∗)
2

(6.13)
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S(b+) =


∅, s

(p∗)
|S(b∗)|−1

= s
(p∗)
|S(b∗)| = s

(b)
M[

s
(b)
k+1, . . . , s

(b)
M

]
, s

(p∗)
|S(b∗)|−1

= s
(p∗)
|S(b∗)| ̸= s

(b)
M[

s
(b)
k , . . . , s

(b)
M

]
, s

(p∗)
|S(b∗)|−1

̸= s
(p∗)
|S(b∗)|

(6.14)

Since sections given in the S(b−) and S(b+) have to be played in
the audio before and after S(p∗) respectively, we may remove all
the nodes occurring before and after p∗, which do not follow these
score section symbol subsequences (Algorithm 4, Figure 6.13c).

Algorithm 4 Remove inconsequent nodes
function remove_inconsequent(N (G), p∗)

N chk ⇐N (G)− S̄(p∗)
S(b−) ⇐ get_prev_sec_subseq(S(p∗),S(b∗)) ▷ Equation 6.13
S(b+) ⇐ get_next_sec_subseq(S(p∗), S(b∗)) ▷ Equation 6.14
for s̄k ∈N chk do

if tini(s̄k) < tini(p∗) & sk /∈ S(b−) then
N (G)⇐N (G)− s̄k

else if tfin(s̄k) > tfin(p∗) & sk /∈ S(b+) then
N (G)⇐N (G)− s̄k

returnN (G)

In order to obtain the optimal (estimated) audio section sequence
S̄(a), we iterate through the paths ordered by weight ν(pi) and re-
move improbable nodes according to this path by usingAlgorithms 3
and 4. Note that the final sequence might be fragmented into sev-
eral disconnected paths, as shown e.g. in Figure 6.13d. The final
step of our algorithm attempts to fill these gaps based solely on
information about the compositional structure.

Guessing non-linked time intervals: After we obtained a
list of links based on audio and structural information, there might
be some time intervals where there are no sections linked (Fig-
ure 6.13d).

Assume that the time interval t∗ = [t∗ini t
∗
fin] is not linked and it

lies between two paths, {p−,p+}, before and after the non-linked
interval. Note that the path p− or p+ can be empty, if the time in-
terval is in the start or the end of the audio recordings, respectively.
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Figure 6.14: Guessing non-estimated time intervals shown on an
audio recording of Şedaraban Sazsemaisi a) Possible paths com-
puted with respect to the median of the relative tempos of all nodes.
b) Final links.

These paths would follow the score section symbol subsequences
S(b−) and S(b+), respectively, and there will be a score section sym-
bol subsequence S(b∗) = [s

(b∗)
1 , . . . , s

(b∗)

|S(b∗)|], lying between S
(b−) and

S(b+). This score symbol subsequence can be covered in the time
interval t∗. Since the sections may be repeated twice in succession
within a performance (Section 6.7.3), the first and the last symbol
of S(b∗) depend on the last two section symbols of S(p−) and the first
two section symbols of S(p+) (similar to Equations 6.13-6.14).

From the VLMMs, we compute all possible section symbol se-
quences,

{
s
(p∗)
1 , s

(p∗)
1 , . . .

}
, that obey the subsequence S(b∗). From

the possible section symbol sequences, we generate each pathP∗ ={
p∗1, . . . , p∗|P∗|

}
. The relative tempo of each node in the possible

paths is set to the median of the relative tempo of all previously

linked nodes, i.e. τ

(
s̄
(p∗r)
k

)
R = median

(
τ

(
s̄
(a)
k

)
R ,∀s̄(a)k ∈N (G)

)
,

where s̄(p
∗
r)

k ∈ S̄(p∗r) (Figure 6.14a). Therefore the duration of

the nodes in the path becomes |t(s̄(p
∗
r)

k )| = d(s̄
(b)
n )/τ

(
s̄
(p∗r)
k

)
R , ∀s̄(p

∗
r)

k ∈
S̄(p∗r) and s(p

∗
r)

k = s
(b)
n , where s̄(b)n is the section in the music score

(b) with the identical label.
We then compare the duration of each path and the interval,

|t∗ − t∗(p∗r)|. We pick p∗r , such that r = argminr (|t∗ − t∗(p∗r)|)
with the constraint |t∗ − t∗(p∗r)| < 3 seconds. If no path is found,
the interval is labeled as “unrelated” to composition, i.e. sk =

unrelated (Figure 6.14b). Finally, all the links s̄(a)k are marked
as section links.
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6.7.3 Dataset
For the experiments, 200 audio recordings of 44 instrumental com-
positions (peşrev and sazsemaisis), and 57 audio recordings of 14
vocal compositions (şarkıs) are collected (i.e. 257 audio recordings
of 58 compositions in total). The makam of each composition is in-
cluded in the metadata.17 The pieces cover 27 different makams.

The scores are taken from theSymbTr score collection (Karaosmanoğlu,
2012) (Section 3.1.2). The beginning and ending notes of each
section are indicated in the instrumental SymbTr-scores. In the
vocal compositions the sections can be obtained from the lyrics
and the melody indicated in the SymbTr-score. In this Section,
we manually label each section in the vocal compositions accord-
ing to these. The section sequence indicated in the PDF formats
is found in the SymbTr-txt and MIDI scores as well (i.e. follow-
ing the lyric lines, the repetitions, volta brackets, coda signs etc.
in the PDF). The duration of the notes in the MIDI and SymbTr-
score are stored according to the tempo given in the PDF. We di-
vided the MIDI files manually according to the section sequence
given in the SymbTr-txt scores. MIDI files include the microtonal
information in the form of pitch-bends.

Three peşrevs (associatedwith 13 recordings) do not have a Tes-
lim section in the composition but each section has very similar
endings (Section 2.1). Nine peşrevs (associated with 40 record-
ings) have less than 4Hanes in the scores. There are notated tempo
changes in the 4th Hanes of four sazsemaisi compositions (in the
PDF), and the note durations in the related sections in the SymbTr-
scores reflect these changes. In most of the şarkıs each line of the
lyrics is repeated. Nevertheless, the repetition occasionally comes
with a different melody, effectively forming two distinct sections.
Two şarkı compositions include gazel sections (vocal improvisa-
tions). The mean and standard deviation of the duration of each
section given in the score are 38.16 and 19.73 seconds for instru-
mental compositions, and 13.05 and 3.97 seconds for şarkıs.

The audio recordings are stored in MP3 format and the sam-
pling rate is 44100 Hz. They are selected from the CompMusic
corpus (Section 3.1.1) and they are either in public-domain or com-

17The metadata is stored in MusicBrainz: http://musicbrainz.org/
collection/5bfb724f-7e74-45fe-9beb-3e3bdb1a119e

http://musicbrainz.org/collection/5bfb724f-7e74-45fe-9beb-3e3bdb1a119e
http://musicbrainz.org/collection/5bfb724f-7e74-45fe-9beb-3e3bdb1a119e
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Figure 6.15: Instrumentation and voicing in the reordings
of OTMM-section-linking a) Instrumentation in the peşrevs
and sazsemaisis b) Voicing in the şarkıs. “Instr.” and “Acc.”
stands for instrumental and accompaniment, respectively.

mercially available. The ground truth is obtained by manually an-
notating the timings of all sections performed in the audio record-
ings. There are 1457 and 638 sections performed in the recordings
of the instrumental and vocal compositions, respectively (a total of
2095 sections). In all the audio recordings, a section is repeated
in succession at most twice. The mean and standard deviation of
the duration of each section in the audio recordings are 35.17 and
19.49 seconds for instrumental, and 13.47 and 6.17 seconds for vo-
cal pieces, respectively.

The performances contain tempo changes, varying frequency
and kinds of embellishments, and inserted/omitted notes. There
are also repeated or omitted phrases inside the sections in the audio
recordings. Heterophonic interactions occur between instruments
played in different octaves. Figure 6.15a,b shows the instrumen-
tation and voicing of the audio recordings in the dataset. Among
the audio recordings of instrumental compositions, ney recordings
are monophonic. They are mostly from the “Instrumental Pieces
Played with the Ney” collection (43 recordings),18 and performed
very similar to the score tempo andwithout phrase repetitions/omis-
sions. From solo stringed recordings to ensemble recordings the
density of heterophony typically increases. All audio recordings of
vocal compositions are heterophonic. Hence the dataset represents
both the monophonic and the heterophonic expressions in makam
music. The ahenk (transposition) varies from recording to record-

18http://neyzen.com/ney_den_saz_eserleri.htm

http://neyzen.com/ney_den_saz_eserleri.htm
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Figure 6.16: Histograms of relative tempo τ̂ in the dataset a) Peş-
revs and sazsemaisis b) Şarkı. “Instr.” and “Acc.” stand for instru-
mental and accompaniment, respectively.

ing, which means that the tonic frequency (karar) varies even be-
tween interpretations of the same composition. Some of the record-
ings include material that is not related to any section in the score,
such as taksims (non-metered improvisations), applauses, introduc-
tory speeches, silence and even other pieces of music. The number
of segments labelled as unrelated is 220.19

We computed the distribution of the relative tempo, which was
obtained by dividing the durations of sections in a score by the du-
ration of its occurance in a performance (Equation 6.4). Figure 6.16
shows all the occured quotients for the annotated sections in the au-
dio recordings in the dataset. The outliers seen in Figure 6.16a are
typically related to performances which omit part of a section, and
4th Hanes, which tend to deviate strongly from the annotated tempo.
As can be seen from Figure 6.16, the tempo deviations are roughly
Gaussian distributed, with a range of quotients [0.5 1.5] covering
almost all observations. This will help us to reduce the search space
of our algorithm in Section 6.7.2.

6.7.4 Experiments
We link the sections given in the score with segments in the audio
recordings using the approach described in Section 6.7.2. The sig-
nal features are either chosen as predominant melodies using SEN-
-MEL or HPCPs (Section 6.2). For comparison, the features are

19The score data, annotations and results are available in http://
compmusic.upf.edu/node/171.

http://compmusic.upf.edu/node/171
http://compmusic.upf.edu/node/171
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computed with 12, 24, 48 and 120 bins per octave (4.42, 2.21, 1.10,
0.44 Hc resolution). The binarization threshold β(B) range from
0.5 to 9Hc (i.e. a whole tone) for distance matrices calculated from
predominant melodies, and from 0.20 to 0.50 for distance matrices
computed from HPCPs.

Besides section linking, we extract pitch features from anno-
tated audio segments and link them to the audio recording itself,
i.e. “self-linking” the section annotations to the audio. This oper-
ation represents an upper limit for the possible results achievable
by section linking (Figure 6.17). For repeated sections, the first an-
notation of any repeated section in the audio recording is selected
for self-linking. Self-linking should ideally be able to link all the
sections in the audio recording except the repeated sections with
phrase omissions, repetitions and tempo changes.

We compare the initial and final times, tini and tfin, of the sec-
tions after sequential linking and self linking with the manually an-
notated time intervals separately. A section is marked as a true
positive, if an annotation in the audio recording and the link has the
same section label, and the section is aligned with the annotation,
allowing a tolerance of ±3 seconds. All links that do not satisfy
these two conditions are considered as false positives. If a section
annotation does not have any links in the vicinity of ±3 seconds,
it is marked as false negative. If an unrelated section is aligned
with an unrelated annotation, allowing a tolerance of ±3 seconds,
the unrelated section is a true negative. From these quantities we
compute specificity, recall, precision, and F1-scores as:

Precision =
tp

tp + fp
, Recall =

tp
tp + fn

Specificity =
tn

tn + fp
, F1 = 2

Precision× Recall
Precision+ Recall

(6.15)

tp, tn, fn, fp and F1 stand for number of true positives, number
of true negatives, number of false negatives, number of false pos-
itives and F1-score, respectively. For all results below, the term
“significant” has the following meaning: the claim is statistically
significant at the p = 0.01 level as determined by a multiple com-
parison test using the Tukey-Kramer statistic.
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Figure 6.17: F1 scores obtained for different pitch feature preci-
sion and binarization threshold. a) Sequential linking results us-
ingHPCPs and annotated karars, b) Sequential linking results using
predominant melody and annotated karars.

6.7.5 Results
To find the optimal parameters for section linking, the experiments
are done over a range of pitch feature precisions and binarization
thresholds (β(B)) using annotated karars (Figure 6.17). TheHPCPs
with 4.42 Hc pitch precision (12 bins per octave) perform better
with a binarization threshold at around 0.3. For pitch precisions
higher than 4.42 Hc, the optimal results are obtained for a bina-
rization threshold between 0.30 and 0.45 (Figure 6.17a). Increas-
ing the precision produces slightly better but insignificant results
(p = 0.85) for HPCPs. The optimal range of binarization threshold
for predominant melody is observed between 1.5 and 4 Hc (Fig-
ure 6.17b). The F1-scores are similar for HPCPs (88.3%) and pre-
dominant melody (0.90) with semi tone (4.42 Hc) pitch precision
and optimal binarization thresholds at this precision (β(B) = 0.3
for HPCPs and β(B) = 2.5 Hc for predominant melodies). Since
increasing the pitch precision more than quarter tone (< 2.21 Hc)
does not have any significant effect, we select 2.21 Hc pitch preci-
sion as the optimal pitch precision. In the remainder of this section,
we are reporting the detailed results using the optimal parameters
(2.21Hc pitch precision for both features; β(B) = 0.35 for HPCPs
and β(B) = 2.5 Hc for predominant melodies), unless stated oth-
erwise. The optimal parameters will be further discussed in Sec-
tion 6.7.7.

The F1-score obtained from the entire dataset using the optimal
parameters and annotated karar is 0.89 (vs. 0.97 from self-linking)
for HPCPs and 0.94 (vs. 0.97 from self-linking) for predominant
melody, with the differences between the features being statisti-
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Table 6.2: Section linking results obtained for candidate esti-
mation and sequential linking with annotated karar, and for self-
linking. Optimal parameters are used for computation. The results
are given for the instrumental pieces and the vocal pieces sepa-
rately.

HPCPs Predominant melody
Cand. Seq. Self Cand. Seq. Self
Est. Link Link Est. Link Link

Instr.

Precision 0.29 0.90 0.97 0.33 0.93 0.97
Recall 0.89 0.86 0.97 0.94 0.92 0.97

Specificity 0 0.47 0.78 0 0.55 0.73
F1 0.44 0.88 0.97 0.49 0.92 0.97

Vocal

Precision 0.43 0.92 0.98 0.54 0.97 0.96
Recall 0.85 0.87 0.97 0.96 0.97 0.97

Specificity 0 0.40 0.69 0 0.64 0.59
F1 0.57 0.90 0.97 0.69 0.97 0.97

cally significant. The average distance between each boundary of a
true positive and the corresponding annotation is 0.36 and 0.44 sec-
onds with a standard deviation of 0.41 and 0.49 seconds for links
found from HPCPs and predominant melodies using optimal pa-
rameters, respectively. There is no significant change in F1-scores
with respect to the instrumentation of the instrumental pieces or
voicing of the vocal pieces.

Table 6.2 gives the results for instrumental pieces and vocal
pieces, using the annotated karar with optimal parameters. Apart
from the results for the complete algorithm (Seq. Link), and the
self-linking (Self Link), we also report the results obtained from
the candidate estimation (Cand. Est.), i.e. without applying any
candidate selection. While the precision is low for candidate esti-
mation, sequential linking greatly increases the precision by effec-
tively removing improbable candidates. In the meantime, the recall
slightly drops for instrumental pieces, and a considerable number
of non-linked intervals (44 tp for HPCPs and 20 tp for predomi-
nant melodies) are guessed correctly for vocal compositions, effec-
tively increasing the recall. The specificity of candidate estimation
is always 0, since unrelated time-intervals are marked in sequen-
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tial linking (Section 6.7.2). Moreover, 155 (0.45 specificity) and
167 (0.57 specificity) unrelated annotations (out of 220 unrelated
annotations) are correctly marked after guessing un-linked time
intervals, using HPCPs and predominant melodies, respectively.
While there is no significant difference between self-linking results
for HPCPs and predominant melodies (0.97 F1-score for HPCPs
and 96.5% F1-score for predominant melodies using optimal pa-
rameters), predominant melodies significantly outperform HPCPs
in recall, precision and F1-scores in both candidate estimation and
sequential linking.

Using the predominant melodywith optimal parameters and an-
notated karar, most of the errors are due to structural changes within
sections in a performance (29 out of 129 false positives and 39 out
of 146 false negatives in the whole dataset) and substantial tempo
changes within the sections (23 out of 129 false positives and 30
out of 146 false negatives in the whole dataset) that Hough trans-
form cannot handle. Most of these errors in the dataset arise from
the 4th Hane of the instrumental compositions, with 42 out of 129
false positives and 56 out of 146 false negatives in the instrumen-
tal compositions being related to the 4th hane. glshough is not able
to find the lines associated with 21 (out of 53 annotations) of the
4th Hane annotations, due to their tempo deviating more than the
allowed ratio with respect to the tempos given in the score. Re-
maining 4th Hane annotations errors are due to omissions, repeti-
tions and tempo changes observed in the performances. One audio
recording is too slow20 and two are too fast21 such that the rela-
tive tempo of the sections are beyond the allowed interval. In these
recordings Hough transform fails to detect the appropriate lines (2
true positives out of 24 section annotations, 14 false positives and
20 false negatives).

The results of section linking using automatic karar identifi-
cation using the methodology explained in (Bozkurt, 2008) are re-
ported in Table 6.3. Compared to section linking using annotated ka-
rar (Table 6.2), there is a considerable drop in all of the recall, pre-

20http://musicbrainz.org/recording/812828e6-3cb6-49c5-93fe
-bf649c3096ae

21http://musicbrainz.org/recording/031a6e72-903a-479a
-9a4c-e2a3335e4a0a, http://musicbrainz.org/recording/
35d127d1-39e1-49d9-ab81-f8180b32590c

http://musicbrainz.org/recording/812828e6-3cb6-49c5-93fe-bf649c3096ae
http://musicbrainz.org/recording/812828e6-3cb6-49c5-93fe-bf649c3096ae
http://musicbrainz.org/recording/031a6e72-903a-479a-9a4c-e2a3335e4a0a
http://musicbrainz.org/recording/031a6e72-903a-479a-9a4c-e2a3335e4a0a
http://musicbrainz.org/recording/35d127d1-39e1-49d9-ab81-f8180b32590c
http://musicbrainz.org/recording/35d127d1-39e1-49d9-ab81-f8180b32590c
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Table 6.3: Results obtained from automatic karar identification
using optimal parameters for the instrumental pieces and the vocal
pieces. The results are given for the instrumental pieces and the
vocal pieces separately.

HPCPs Predominant melody
Cand. Seq. Cand. Seq.
Est. Link Est. Link

Instr.

Precision 0.22 0.76 0.23 0.78
Recall 0.68 0.66 0.72 0.70

Specificity 0 0.25 0 0.27
F1% 0.33 0.71 0.35 0.74

Vocal

Precision 0.35 0.85 0.45 0.88
Recall 0.74 0.75 0.86 0.84

Specificity 0 0.23 0 0.31
F1% 0.48 0.80 0.59 0.86

cision, and hence F1-scores. This decrease is due to karar iden-
tification, which fails (i.e. the octave-wrapped distance between
the annotated karar and identified karar are more than 2.5 Hc, i.e.
the optimal binarization threshold) for 62 pieces (53 instrumental
pieces and 9 şarkıs) out of 257 recordings (24.1% error). The karar
identification typically fails in pieces with more complex makams
such as Ferahfeza (10 out of 10 recordings), Hicazkar (8 out of 9
recordings), Kürdilihicazkar (9 out of 19 recordings), Hüzzam (5
out of 8 recordings), Segah (7 out of 14 recordings) and Acemaşi-
ran (3 out of 7 recordings). For those makams, often more em-
phasis is put on notes different from the karar, which usually leads
to the assignment of the karar to one of these notes. The F1-score
obtained from the entire dataset using the optimal parameters and
automatic karar identification is 0.74% for HPCPs and 0.78% for
predominant melody.

We also computed the elapsed time for section linking exclud-
ing feature computation and karar identification. On average, our
implementation in MATLAB takes 3% of the duration of the audio
recording (with a standard deviation of 1%) to link the sections of
the particular audio recording with a 64 bit Ubuntu machine with
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13.5 GB RAM and 3.33 GHz processor.

6.7.6 Section Linking Using Hierarchical Hid-
den Markov Models

Although highly accurate, the section linking methodology pro-
posed in (Şentürk, Holzapfel, & Serra, 2014) requires manually an-
notated music scores and audio recordings to train parallel VLMMs
for each unique section label sequence S(b) of the studied composi-
tions. Therefore, the sequential linking part of the section linking
methodology is hard to scale to large music corpora of OTMM or
other music cultures (Şentürk et al., 2016).

In (Holzapfel et al., 2015),22 a simpler section linking method is
proposed, which is based on a HHMMs. Unlike the bottom-up ap-
proach taken by the methodology in (Şentürk, Holzapfel, & Serra,
2014), the proposedmethod attempts to align the entire music score
with the audio recording while allowing jumps in the score at the
section boundaries. It should be noted that the constructed network
assumes that the target audio performance does not include inser-
tions (e.g. improvisations) with respect to the music score.

T is comparedwith themethod proposed in (Şentürk, Holzapfel,
& Serra, 2014) on a subset of 166 recordings (i.e. without şarkıs)
from theOTMM-section-linking dataset. The recordings with ex-
tra contents are removed, following the proposed method’s limita-
tion to handle insertions unrelated to the music score. The evalua-
tionmeasures in (Şentürk, Holzapfel, & Serra, 2014) (Section 6.7.4)
is utilized for comparison. In addition the F1-scores are computed
for different temporal-tolerances (from 0.1 to 3 seconds) between
the annotated and estimated section boundaries (Figure 6.18). In
the experiments in a pairwise t-test is used for statistical signifi-
cance computations at a α = 5% significance level.

When the tolerance is selected as 3 seconds, the HHMM based
method and the method proposed in (Şentürk, Holzapfel, & Serra,
2014) has an F1 measure of 0.946 and 0.932, respectively. In this
tolerance, there is no statitically significant difference betwen the
methods. This shows that both methods give comparable results at

22I contributed to the publication by providing the dataset and reporting the
results obtained by the method proposed in (Şentürk, Holzapfel, & Serra, 2014).
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Figure 6.18: The F1-scores for the HHMM based method, HHMM
based method with downsampled predominant melody input and
the method proposed in (Şentürk, Holzapfel, & Serra, 2014) for
different temporal-tolerances.

locating the section boundaries. However the HHMM based method
significantly outperforms the method proposed in (Şentürk, Hol-
zapfel, & Serra, 2014) for temporal-tolerances less than or equal
to 1 (0.846 vs 0.797 F1-scores for 1 second tolerance). This is ex-
pected since the proposed model can adapt to intra-section tempo
deviations, unlike the Hough transform based model.

Holzapfel et al. (2015) also compare the methods by reporting
the average percentage of the audio duration for linking the sec-
tions. The implementation of the method proposed in (Şentürk,
Holzapfel, & Serra, 2014) completes the operation in the 3% of the
audio duration on average, while the implementation of the HHMM
basedmethod requires 25%. To improve the performanceHolzapfel
et al. (2015) downsamples the input predominant melody and syn-
thetic melody by a factor of 3. This variant is able to retain com-
parable results within the 1.8% duration of the audio recording for
tolerances longer than 300 miliseconds. This tolerance is highly
sufficient, since it is close to the temporal-tolerances used in eval-
uating note-level aligment (200 ms is used in Section 6.8.3).

Nevertheless, the HHMM based linking method is not generaliz-
able to large corpora either, since it is unable to align recordings
with unrelated events, a common case in OTMM performances.
In Section 6.12, several simplifications will be introduced to the
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section linking methodology proposed in (Şentürk, Holzapfel, &
Serra, 2014) to be able to apply the joint analysis procedure auto-
matically (described throughout this Chapter) to CompMusicOTMM
corpus.

6.7.7 Discussion and Summary
The results show that our method is effective in linking sections
given in the score to their corresponding time intervals in audio
recordings, given a wide variety of instrumental and vocal timbres.
The method is able to achieve good results by using different pitch
features with fast computation time and accurate link boundaries.

To find optimal parameters for binarization threshold and pitch
precision, we examined the results of section linking using differ-
ent binarization threshold and pitch precision (Section 6.7.4). The
optimal range for binarization threshold for predominant melody is
between 1.5 and 4 Hc. Other than for HPCP, the threshold range
of predominant melody has a musical interpretation since the per-
formed notes might deviate from the theoretical frequency of a note
by as much as a semi-tone, as explained in Section 2.1. This makes
predominant melodies more intuitive to apply to OTMM, and pos-
sibly to other musics with a clear emphasis on melody.

For bothHPCPs and predominantmelodies, semitone pitch pre-
cision (4.42 Hc) performs worse than higher pitch precisions. This
shows that pitch precisions higher than semitone are necessary to
capture the melodic characteristics of OTMM. Nevertheless, in-
creasing the pitch precision more than quarter tone (< 2.21 Hc)
does not lead to further increase in the F1-score. Therefore, both
precision and binarization threshold lie in the vicinity of 2Hc. While
deviations between theory and practice were observed in single
cases to reach a semi-tone, the usual deviation can be assumed to lie
close to that value of 2 Hc. This proves the necessity of resolutions
higher than the semi-tone resolution when attempting even such a
high level task as we do in this paper. Even though increasing the
pitch precision beyond 2.21Hc (24 bins per octave) does not change
theF1-score practically, the default pitch precision can be increased
further to use the same pitch tracks for more precision-demanding
tasks such as karar identification, audio-score alignment or intona-
tion analysis.
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When comparing the results obtained from self-linking and se-
quential linking using predominant melody and annotated karar
(Table 6.2), it is evident that the method is able to achieve prac-
tically the maximum possible F1-score for vocal pieces (0.97 vs.
0.97 from self linking23) and a very high F1-score for instrumen-
tal pieces (0.92 vs. 0.97 from self linking). The drop in the F1-
score for the instrumental pieces is mostly due to the errors re-
lated to specific performance characteristics (internal repetitions,
omissions and tempo changes) which glshough cannot handle ef-
fectively. Moreover, most of these errors are related to the 4th Ha-
nes. In fact, resolving all the errors related to 4th Hanes would in-
crease the F1-score to approximately 0.96 (vs. 0.97 from self link-
ing). In the sazsemaisi form, dividing the 4th Hane further into its
substructures (Section 2.1) might help to handle these problems.
More generally, such performance features could be better handled
by aligning audio and the score at the note level.

Statistical significance tests show that our feature and similarity
matrix computation is resilient to changes in timbre and density
of heterophony. Moreover, recall obtained in candidate estimation
step (Table 6.2) show that Hough transform is able to give reliable
estimations for section links. It only fails in three audio recordings
(out of 257) in which the performance is beyond the allowed tempo
ratios. To remove the angle constraints from the line detection step,
we need to estimate an average tempo of performance. Increasing
the range of searched angles in Hough transform and then deducing
the average tempo ratio of the performance from candidates with
high weights might be sufficient for tempo estimation.

Comparing the recall of candidate estimation and sequential
linking in Table 6.2, it can be seen that guessing non-linked inter-
vals improves the section linking in vocal pieces. However it does
not make any improvement in instrumental pieces, mostly due to
the non-linearities in the performances of 4th hanes. Guessing non-
linked intervals is dependent on the median of the relative tempo
of the performed sections (see Section 6.7.2). In the case, where
the 4th Hane does not follow the tempo indicated in the score or

23In both cases the number of true positives are the same (616 true positives),
however section linking using annotated karar produces slightly less errors than
self linking (20 vs. 23 false positives and 19 vs. 22 false negatives). This differ-
ence is insignificant.
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there are structural deviations inside the performance of the sec-
tion, the duration of the guessed paths do not match the duration of
the non-linked audio segment.

The self-linking results (Table 6.2) imply that both chroma fea-
tures and predominant melody can ideally perform equally well.
However, candidate estimation using HPCPs misses more true pos-
itives than predominant melody, and sequential linking is not able
to reduce the gap between the F1-scores (Tables 6.2 and 6.3). This
indicates that the predominant melody is a more adequate repre-
sentation, when aiming at a comparison between score and audio
in this musical context.

Our method can not search unrelated annotations directly and
the errors within the time interval can only be removed by Algo-
rithm 4, for false positives that do not obey the section sequences.
Moreover the unrelated region can not be marked correctly if the
time interval of an unrelated region is estimated poorly due to a
neighboring section with tempo changes, phrase repetition/omis-
sions. Detecting “non-musical” events such as applause and si-
lence can help to distinguish the unrelated regions and eliminate
errors due to tempo changes typically occurring in the end of the
recordings.

The bottleneck of the system is the automatic karar identifica-
tion. If the karar of the piece is recognized incorrectly, no true lines
will be present in the binarized similarity matrices obtained from
either of the two feature types. While the results with automatic
karar identification using Makam Toolbox are still good, the errors
becomes a noticeable drawback especially for pieces composed in
complex makams. Nevertheless, by using the melodic informa-
tion in the scores we can greatly increase the accuracy of the karar
identification accuracy. Recently, in (Şentürk et al., 2013), we ex-
tracted the stable pitches from the audio recording (i.e. the peaks
of the pitch distribution computed from the prominent melody) and
attempted to link the repetitive section in the score using the candi-
date estimation method explained in Section 6.7.2, assuming each
stable pitch as the karar. Using the same data collection explained
in Section 6.7.3 we achieved an accuracy of 99.6% (1 fail out of
257) effectively solving the karar identification problem for pieces
with an available score. The F1-scores obtained from section link-
ing using repetitive section linking for karar identification is 0.89
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(vs. 0.89 using annotated karar) for HPCPs and 0.9324 (vs. 0.94 us-
ing annotated karar) for predominant melody for the whole dataset.

We presented a novel methodology to link musically relevant
sections in a score with corresponding time intervals in an audio
recording of the same piece. We tested our approach using HPCPs,
a pitch feature previously applied to music with strong emphasis
on harmony, and predominant melodies, a melodic pitch feature.
We demonstrated that predominant melodies capture the hetero-
phonic characteristics of OTMM better than HPCPs. Since scales
in OTMM need resolutions higher than a semitone, we also tried
section-linking over a range of pitch precisions and binarization
thresholds. It was observed that the pitch precision has to be higher
than semitone to represent the melodic granularity of OTMM. Un-
like HPCPs, the optimal range of binarization threshold for pre-
dominant melodies was musically interpretable. Therefore using
predominant melodies is more intuitive for music, where there is a
clear melody, and concepts like functional harmony do not exist.
Our results show the importance of culture-aware and knowledge-
based systems. Nevertheless, we have also achieved remarkable
results using HPCPs. It may be argued that that the methodology
can be easily adapted to Eurogenetic musics, which can be typically
conceptualized with the help of harmony.

Our approach is fast and accurate in matching both the section
labels and their corresponding time intervals. Section links can
be used as a complementary information in computational tasks
such as form analysis and audio score alignment. Moreover, the
computational steps in our approach can be modified to be used
in similar research problems such as pattern matching and version
detection. In (Şentürk et al., 2013), we used the candidate esti-
mation methodology (Section 6.3) to identify the performed karar
of the audio recording. Our results indicate that score information
greatly simplifies the karar identification task. Parallel to findings
of Aucouturier and Sandler (2002), the self-linking results (Fig-

24Using predominant melody with optimal parameters, all of the sections are
correctly linked (i.e. 1 recall) in the audio recording with failed karar identifica-
tion25. In this recording the distance between the estimated and actual karar is
slightly higher than 2.5 Hc, i.e. the optimal binarization threshold. Our section
linking methodology is still able to link the sections even though the resultant
weights are low.
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ure 6.17c,f) imply that repetitive section linking can be effectively
used for audio thumbnailing.

Nevertheless, there is still room for improvement for a more
reliable automatic system. As a next step in this research we want
to increase the granularity of the linking between audio and score
in order to provide more insights on the dynamics and the into-
nation of makam music performances. This should solve section
linking problems due to performance particularities such as omis-
sions, repetitions and tempo changes. We plan to use JumpDTW
proposed by Fremerey et al. (2010), which allows jumps between
the measures indicated in the score. Since we know the score sec-
tion sequence, we can further modify JumpDTW to allow jumps
between the sections and between the measures within each sec-
tion. Section linking prior to audio-score alignment might increase
the F1-score and reduce computational time.

Content-based creation, analysis and discovery of multimodal
and inter-linked music collections is becoming an active research
area in the last few years, thanks to the advances in information
technology and the emergence of vast numbers of available multi-
modal information sources such as audio, glsMIDI, sheet music,
video and editorial metadata (Cornelis, Lesaffre, Moelants, & Le-
man, 2010; Thomas et al., 2012). Under the CompMusic Project
we are developingDunya, a system to browse and interact with mu-
sic collections in a culturally informed way (Sordo, Koduri, Şen-
türk, Gulati, & Serra, 2012; Porter et al., 2013a). We will inte-
grate our section linking methodology to the system and use it as a
culture-specific tool for navigation and discovery of OTMM. We
hope that our approach will contribute to the information technolo-
gies aimed at preserving, discovering and appreciating musical cul-
tures.

6.8 Note-Level Audio-Score Alignment
In this Section, we extend the alignment methodologies explained
so far to cover note-level alignment.

This remainder of the Section is structured as follows: Sec-
tion 6.8.1 explains the note-level alignment. Section 6.8.2 presents
the data collection. Section 6.8.3 presents the experiments. Sec-
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tion 6.8.4 presents the results and Section 6.8.5 give a brief dis-
cussion and conclusion.

6.8.1 Methodology
Given a music score of a composition with structure (section) in-
formation and an audio performance of the same composition, our

method first extracts a synthetic melody Ψ̂
(s̄

(b)
j )

per section (s̄
(b)
j )

from the note values and durations in the score (b) and a audio pre-
dominant melody ϱ(a) from the audio recording (a) (Section 6.2).
Then it identifies the performed tonic frequencyκ(a) using the score-
informed tonic identification method explained in (Şentürk et al.,
2013) (Section 6.4). The audio predominant melody is normalized
with respect to the estimated tonic and ϱ̂κ(a),(a) is obtained.

Next each score section (s̄
(b)
j ) is linked with the time intervals

t(s̄
(a)
i ),∀s(a)i = s

(b)
j , where each score section is performed in the

audio recording (a) (i.e. structure level alignment) (Section 6.7).
After section linking, the obtained time-interval of each audio

section is extended by 3 seconds to deal with the tempo differences.
For each section link π(s̄(a)i , s̄

(b)
j ), s

(a)
i = s

(b)
j , the synthetic melody

is recomputed by resampling the feature according to the estimated

tempo of the recording and the synthetic melodies Ψ̂
τ (a),(s̄

(b)
j )

are
obtained. Next, subsequence dynamic time warping (Müller, 2007,
Chapter 4) is applied between the normalized audio predominant
melody ϱ̂κ(a),(s

(a))
i of each section in the audio recording and syn-

thetic melody Ψ̂
τ (a),(s̄

(b)
j )

of the corresponding section in score. We
use the parameters as described in Section 6.3.2 (Figure 6.19a). In
addition, we also apply global constraint as discussed in (Sakoe
& Chiba, 1978). The bandwidth of the global constraint is se-
lected as 20% of the query length. As a result the note sequence

N̄
(
s̄
(a)
i

)
=

[
n̄

(
s̄
(a)
i

)
1 , . . . , n̄

(
s̄
(a)
i

)∣∣N̄(s̄(a)i )
∣∣
]
of each section s̄(a)i is obtained.

Note that note-level alignment refines the time interval of the sec-

tion t
(
s̄
(a)
i

)
=

[
tini

(
n̄

(
s̄
(a)
i

)
1

)
tfin

(
n̄

(
s̄
(a)
i

)
|N̄(s̄

(a)
i )|

)]
and the align-
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...

...

(a) (b)

Figure 6.19: Note-level audio score alignment using SDTW. a) The
resultant alignment path displayed on top of the accumulated cost
matrix between the score synthetic pitch and audio predominant
melody, b) Notes inferred from the alignment path

SymbTr-score Audio MBID Instrumentation #Anno tp fp fn F1%
beyati–pesrev–hafif—-seyfettin_osmanoglu 70a235be-074d-4b9b-8f94-b1860d7be887 ensemble 906 790 116 116 87.2
huseyni–pesrev–muhammes—-lavtaci_andon 8b78115d-f7c1-4eb1-8da0-5edc564f1db3 ensemble 614 482 132 132 78.5

9442e4cf-0cb3-4cb3-a060-77aa37392501 ney & percussion 302 260 45 42 85.7
rast–pesrev–devrikebir—-giriftzen_asim_bey 31bf3d56-03d8-484e-b63c-ae5ae9a6e733 tanbur 658 374 306 281 56.0

5c14ad3d-a97a-4e04-99b6-bf27f842f909 ney 673 418 262 255 61.8
segah–pesrev–devrikebir—-yusuf_pasa e49f33b8-cf8a-4ca9-88cf-9a994dbad1c0 ney & kanun 743 267 490 476 35.6

Table 6.4: Results of note-level alignment per experiment.

ment pathϖ
(
s̄
(a)
i , s̄

(b)
j

)
such that s(a)i = s

(b)
j (Figure 6.19b).

6.8.2 Dataset
For the experiments, the scores for each composition are obtained
from the SymbTr collection (Karaosmanoğlu, 2012). 6 audio record-
ings of 4 peşrev compositions are selected from the automatic tran-
scription dataset presented in (Benetos & Holzapfel, 2013). The
recordings are performed in a variety of transpositions. There are
51 sections in the audio recordings in total. The duration of the
sections are 36.1 seconds on average with a standard deviation of
16.2 seconds.The total number of the note annotations in the au-
dio recordings are 3896. These annotations typically follow the
note sequence in the SymbTr. Note that there are 3 inserted and
49 omitted notes in the annotations with respect to the SymbTr-
scores.
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6.8.3 Experiments

Given a score of a composition and an audio recording of the same
composition, we align the notes in the SymbTr-score of a composi-
tion with the corresponding audio performance of the same compo-
sition using the methodology explained in Section 6.8.1 and obtain
aligned note onsets in the audio recording.

To evaluate the tonic identification, we compare the distance
between the pitch class of the estimated tonic and the pitch class
of the annotated tonic as explained in (Şentürk et al., 2013). If the
distance is less than 1 Hc, the estimation is marked as correct.

To evaluate section linking, we check the time distance between
the time interval of annotated sections and sections links as ex-
plained in Section 6.7.4 (Şentürk, Holzapfel, & Serra, 2014). A
section link is marked as a true positive, if an annotation in the au-
dio recording and the link has the same section label, and the link
is aligned with the annotation, allowing a tolerance of±3 seconds.
All links that do not satisfy these two conditions are considered as
false positives. If a section annotation does not have any links in
the vicinity of ±3 seconds, it is marked as false negative.

To evaluate the note-level alignment, we compare the aligned

onset n̄
(
s̄
(a)
i

)
k and the corresponding annotated onset n̄

(
s̄
(a)
i

)
k (n

(
s̄
(a)
i

)
k =

n

(
s̄
(a)
i

)
k ). We consider the aligned onset tini

(
n̄

(
s̄
(a)
i

)
k

)
as a true pos-

itive if its time-distance to the annotated onset tini
(
n̄

(
s̄
(a)
i

)
k

)
is less

than ±200 ms. If the time-distance is higher than ±200 ms, the
aligned onset and the annotated onset are labeled as false positive
and false negative, respectively. The insertions are ignored in the
evaluation. If the aligned note corresponding to an omitted annota-

tion is not rejected (i.e. the duration t
(
n̄

(
s̄
(a)
i

)
k

)
> 0), it is deemed

as a false positive.

From these quantities we compute the F1-scores for section
linking and note-level alignment separately Equation 6.15.
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6.8.4 Results

Across all the experiments, the tonic is identified correctly (100%
accuracy in tonic identification) and all the sections were linked
perfectly (F1 = 100% for section linking). In the note-level, our
methodology is able to align 2591 notes out of 3896 notes correctly,
yielding to anF1-score of 0.66. The mean, median and standard de-
viation of the time-distance between the aligned note and the corre-
sponding annotation are 299, 93 and 498milliseconds, respectively.
Moreover, 89% (recall rate) of the notes are aligned with a margin
of±1 second, implying that SDTW does not lose track of themelody.

Previously in (Şentürk et al., 2013) and (Şentürk, Holzapfel,
& Serra, 2014) we showed that our linking methodology is highly
reliable for tonic identification and section linking. The results in
this paper also comply with these previous findings.

To understand the common mistakes in the note-level, we ex-
amined the aligned notes against annotated notes. Table 6.4 shows
the results per experiment. The expressive embellishments in the
performance (portamentos, legatos, trills etc.) are common rea-
sons of misalignment. For example, SDTW infers portamentos as an
insertion and the note onsets are aligned around the time when the
portamento reaches to the stable note pitch. Similarly when there
is a melodic interval less than a whole tone, a trill might cause a
note onset to be marked earlier. Since these embellishments are
not shown in the score, standard (subsequence) SDTW was expected
to fail. While we can argue that the section-level alignment is ac-
curate, the results in the note-level alignment show that there is still
more room for improvement for note-level alignment.

From Table 6.4, it can be seen that the note-level alignment
fails for most of the notes in the audio recording of Segah Peşrev
within the ±200ms tolerance. This is a recording with ney and
kanun, which consists of heterophonic interactions such as embel-
lishments played by a single musician and time differences in note
onsets between the performers. Due to such cases, the time dis-
tance between aligned onset and the annotated is typically larger
than 200ms. Note that 75% (recall rate) of the notes are still aligned
correctly within a tolerance of ±1 second.
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6.8.5 Discussion and Summary
In this Section, we proposed amethod to align scores ofmakammu-
sics with their associated audio recordings. Our system is able to
handle the transpositions and structural repetitions and omissions
in the audio recordings, which are common phenomenon in ma-
kam musics. The results obtained from the data collection present
a proof-of-concept that a standard technique such as SDTW can be
effective for audio-score alignment for makam musics in the note
level. Nevertheless, we need incorporate additional steps to han-
dle non-notated embellishments and note omissions, insertions and
repetitions.

Currently method relies on manual section segmentations in
music scores. Manual segmentation of the score is not an difficult
task compared to the note-level audio-score alignment itself. Nev-
ertheless, it might be desirable to use other methodologies that do
not require structural segmentations (e.g. (Grachten et al., 2013)),
especially when we are working on large audio-score collections.

While we didn’t have such an example in our data collection,
there can be also omissions, insertions and repetition of phrases in-
side the sections. Currently, our methodology cannot handle such
cases. In the future we want to use the JumpDTW proposed by
(Fremerey et al., 2010) to handle these intra-section omissions, in-
sertions and repetitions. Another approach might be segmentation
of the symbolic score into melodic phrases and link extracted ph-
rases from score with the corresponding audio recording. Recently,
Bozkurt et al. (Bozkurt, Karaosmanoğlu, et al., 2014) came with a
method for segmenting music scores into melodic phrases accord-
ing to the makam and usual information. Our initial experiments
using the extracted phrases show that phrase linking is highly ac-
curate. We observed that the erroneously linked phrases are almost
identical to the true phrase, differing by very few pitches or dura-
tions, hence note-level alignment does not suffer a large number of
errors.

We are extending the data collection to cover more examples
from the CompMusic collection. In audio recordings with hetero-
phonic interactions (such as the audio recording of Segah Peşrev)
there is an ambiguity of the exact timings in the note onsets. To
study the implications we plan to make several experts to annotate
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the note onsets in the same set of scores and audio recordings. We
will jointly compare the onset markings from each annotator with
the aligned onsets produced by the future iterations of our automatic
audio-score alignment method.

6.9 Inferring Measures, Phrases, Lyrics,
Onsets and Usul Strokes

Up to here, the note sequence N̄(a) =
[
n̄
(a)
1 , n̄

(a)
2 , . . . ,

]
in the au-

dio recording (a) is obtained. The notes in N̄(a) are linked with
the notes in the note sequence N̄(b) =

[
n̄
(b)
1 , n̄

(b)
2 , . . . ,

]
of the score

(b). Remember that the SymbTr-scores contain the measure se-
quence M̄ =

[
m̄

(b)
1 , m̄

(b)
2 , . . . ,

]
and the lyrics λ

(
n̄
(a)
k

)
,∀n̄(a)

k ∈ N̄(a)

are coupled with the notes in the syllable-level (Section 3.1.2). If
automatic phrase segmentation has been applied to the score (Sec-
tion 4.3), a phrase sequence P̄(b) =

[
p̄
(b)
1 , p̄

(b)
2 , . . . ,

]
is also obtained

for the music score. The measures, phrases and lyrics in the music
score can be linked with the respective events in the audio record-
ing by simply referring to the alignment between the note sequences
N̄(a) and N̄(b), and the start and final note indices of each event in
the score. Note that the melody of a section may be identical or
very similar to the melody of other sections, while the lyrics are
different (Section 4.3.2). In such cases incorporation of automatic
audio-to-lyrics alignment (Dzhambazov et al., 2016) is necessary
to properly match of the lyrics.

Rhythmic information can be also easily inferred from the align-
ment between the audio recordng and the score. The onsets are

trivially given as tini
(
n̄

(
s̄
(a)
i

)
k

)
. Note that these onsets does not

constitute all the onsets in the audio recording per se, as the per-
cussive onsets, note insertions (with respect to the music score) and
heterophonic interactions related to the same note event are not
notated in the score. Remember that the usul information parsed
from the SymbTr-scores includes the usul changes throughout the
piece (Section 4.1). By referring to an ⟨usul, stroke_sequence⟩
dictionary, the usul strokes (e.g. the onomatopoeic stroke names
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such as düm and tek) and the symbolic duration of each stroke (e.g.�, ♩) may be obtained for each usul cycle. These strokes may be
mapped to the note indices in the score and then to the sample in-
dices in the audio recording (a) by referring to each alignment path
ϖ
(
s̄
(a)
i , s̄

(b)
j

)
for each s̄(a)i such that s(a)i = s

(b)
j .

6.10 Score-Informed Predominant
Melody Correction

The octave errors in the predominant melody are corrected by re-
ferring to the aligned note sequence N̄(a) =

[
n̄
(a)
1 , n̄

(a)
2 , . . . ,

]
in the

audio recording (a). First, a modified audio note sequence N̄∗(a) is
obtained by carrying the end time tfin(n̄

(a)
k ) of each note within the

note sequence N̄(a) to min
(
tfin(n̄

(a)
k ) + 3 seconds, tini(n̄

(a)
k+1)

)
, so

that all pitch samples will be covered within the aligned sections.
Next, the modified note sequence is synthesized (Ψ̂

∗(a)
) according

to the AEU theory theory (Section 4.2.2). Then the octave of each
audio pitch sample ρκ

(a),(a)
i in the audio normalized predominant

melody ϱ(a) is moved such that the absolute cent-distance to the
aligned synthetic pitch ψ̂(a)

j in the synthetic melody Ψ̂
∗(a)

is mini-
mized.26 Figure 6.20 shows the octave-correction applied on a short
except of a performance27 of Uşşak Sazsemaisi.28

In the joint analysis methodology (Section 6.12), the input pre-
dominant melody is computed by ATL-MEL and then octave-correc-
tion is applied using the note sequence obtained from the alignment
of each relevant music score. This procedure is termed as SEN-
-MELf . Using the octave-corrected predominant melody, the PD,
PCD and melodic progression features are also recomputed.

26The implementation is available at https://github.com/
sertansenturk/alignedpitchfilter.

27http://musicbrainz.org/recording/e72db0ad-2ed9-467b-88ae
-1f91edcd2c59

28http://musicbrainz.org/work/ad9fb46e-eb95-4446-93ad
-e3bf13c01a95. The score is online at https://github.com/MTG/SymbTr/
blob/v2.4.2/txt/ussak--sazsemaisi--aksaksemai----dede_salih
_efendi.txt.

https://github.com/sertansenturk/alignedpitchfilter
https://github.com/sertansenturk/alignedpitchfilter
http://musicbrainz.org/recording/e72db0ad-2ed9-467b-88ae-1f91edcd2c59
http://musicbrainz.org/recording/e72db0ad-2ed9-467b-88ae-1f91edcd2c59
http://musicbrainz.org/work/ad9fb46e-eb95-4446-93ad-e3bf13c01a95
http://musicbrainz.org/work/ad9fb46e-eb95-4446-93ad-e3bf13c01a95
https://github.com/MTG/SymbTr/blob/v2.4.2/txt/ussak--sazsemaisi--aksaksemai----dede_salih_efendi.txt
https://github.com/MTG/SymbTr/blob/v2.4.2/txt/ussak--sazsemaisi--aksaksemai----dede_salih_efendi.txt
https://github.com/MTG/SymbTr/blob/v2.4.2/txt/ussak--sazsemaisi--aksaksemai----dede_salih_efendi.txt
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Figure 6.20: Octave correction in a short except of Uşşak Sazse-
maisi. The initial predominant melody computed by SEN-MEL, the
octave-corrected predominant melody and the aligned notes are
shown as green, blue and red lines, respectively.

6.11 Score-Informed Tuning and
Intonation Analysis

A musical note can be defined as a sound with a definite pitch and
a given duration. An interval is a difference between any two given
pitches. Most melodic music traditions can be characterized with
a set of notes it uses and the corresponding intervals. They consti-
tute the core subject matter of research concerning the tonality and
melodies of a music system. For any quantitative analyses therein,
it is required to have a working definition and a consequent compu-
tational model of notes which dictate how and what we understand
of the pitch content in a music recording.

In much of the research in music analysis and information re-
trieval, the most commonly encountered model is one that consid-
ers notes as a sequence of points separated by certain intervals on
frequency spectrum. There are different representations of the pitch
content from a given recording based on this notion, the choice
among which is influenced to a great degree by the intended ap-
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plication. Examples include pitch class profiles (Fujishima, 1999),
harmonic pitch class profiles (Gómez, 2006) (Section 5.3), pitch
distribution (Gedik & Bozkurt, 2010) and pitch-class distribution
(Chordia & Şentürk, 2013) (Section 5.5) besides others. Albeit a
useful model of notes used alongside several information retrieval
tasks, we believe it is limited in its purview. In this Section, we
discuss a score-informed tuning and intonation analysis method,
consisting of a statistical model of notes (namely PDs each note
symbol) that broadens the scope of the former, encapsulating the
notion of the variability in notes.

This analysis methodology is originally proposed for Carnatic
music in (Şentürk et al., 2016). The original methodology uses a
variant of the section and note-level audio-score alignment steps
explained throughout this Chapter, which is adapted and optimized
for the culture-specific properties of Carnatic music. The method-
ology is evaluated extrinsically in a classification task comparing
the results with a state-of-the-art system (Koduri et al., 2014) on
two datasets of Carnatic music. The readers are referred to Ap-
pendix B.1 for the detailed description of the original methodology
and the experiments.

Referring to the time intervals of each aligned note (t(n̄(a)
i ), we

extract the pitch trajectories ϱ(n̄
(a)
i ) of each note from the octave-

corrected predominant melody. The median of each pitch trajec-
tory is assigned as the the performed stable pitch ϕ

(
n̄
(a)
i

)
of the

note. Next, the trajectories are grouped with respect to the note
symbols, (e.g. the set of pitch trajectories for the note gerdaniye is{
ϱ

(
n̄
(a)
i

)
: n

(a)
i = “gerdaniye”

}
. The pitch values are aggregated

from the set of pitch trajectories for each note symbol and they are
used to compute a PD for each note symbol (Koduri et al., 2014)
(e.g. H

(a,“gerdaniye”)
P ). The peak in the PD of each note, which is

closest to the theoretical tuning frequency is taken as the performed
stable pitch of the note symbol (e.g. ϕ(a,“gerdaniye”)). These features
provide a means to specify both the overall and individual intona-
tion and tuning characteristics of the performed notes.

In this step, the identified tonic pitch is also recomputed as the
stable pitch of the tonic symbol κ(b) as indicated in the score (b),
i.e. κ(a) = ϕ(a,κ

(b)). Notice that the tonic octave is also identified in
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Figure 6.21: Score-informed tuning and intonation analysis ap-
plied on the octave-corrected predominant melody of the same
short except of Uşşak Sazsemaisi, presented in Figure 6.20.
The pitch distribution is drawn as a black-dashed curve. The
note PDs are drawn in different colors with the note symbol, its
frequency and cent-distance to tonic indicated on the left.

the process, whereas the identification methods output pitch-class
of the tonic.29 The transposition is also re-identified at this step
from the refined tonic frequency (Section 5.8).

6.12 Combining Joint Audio-Score Anal-
ysis Methodologies

To obtain the automatic description of the audio recordings and
music scores in the CompMusic makam corpus, the methodologies
explained throughout this Chapter are implemented with several
adjustments based on the experimental findings. Some of the al-
gorithms are also simplified for the sake of scalability. Figure 6.22

29The implementation is available at https://github.com/
sertansenturk/alignednotemodel.

https://github.com/sertansenturk/alignednotemodel
https://github.com/sertansenturk/alignednotemodel
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Figure 6.22: Joint Audio and Score Analysis Process. The process
is repeated for each score of the composition performed in the audio
recording

shows the block diagram of the joint audio-score analysis method-
ology. Below the overall methodology is explained:

Preliminary Score Analysis: The sections s̄(b)j in the score (b)
are extracted using the implicit information in themusic score (Sec-
tion 4.3.2) and labeled semiotically (Section 4.3.2).

Preliminary Audio Analysis: The predominant melody ϱ(a)

of the audio recording (a) is extracted using ATL-MEL instead of SEN-
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-MEL.
Joint Tonic Identification and Tempo Estimation: Based on

the results obtained in the composition identification experiments
(Table 6.1), a synthetic pitch Ψ̂(f̄ (b)) is computed from a 15 second
fragment. The fragment is selected from the start of the score in
instrumental compositions and the start of the first vocal section
in vocal compositions.30 Hough transform is used at the fragment
linking step and max similarity (Equation 6.10) is assigned to the
weight of each tonic candidate.31

The average tempo of the audio recording τ (a) is jointly esti-
mated as the tempo of the audio fragment with the highest sim-
ilarity obtained during the tonic identification step, as explained
in Section 6.5.

Audio-ScoreAlignment: Asmentioned earlier in Section 6.7.6,
the section linking methodology proposed in (Şentürk, Holzapfel,
& Serra, 2014) is not scalable to large corpora. For this reason, I
introduced several simplifications and modifications to the original
methodology. Moreover note-level alignment is incorporated into
the section linking process for the sake of simplicity.32

1. In (Şentürk, Holzapfel, & Serra, 2014), the sections are la-
beled manually according to their melody. Instead, the auto-
matically extracted sections with unique melodic labels are
used (Section 4.3.2).

2. In (Şentürk, Holzapfel, & Serra, 2014), only the first occur-
rence of each section label is used, ignoring other variants
(e.g. the instances of a repetitions with volta brackets). Here,
the sections with “unique” melodies (i.e. “unique” cliques
in the graph computed from the melodic dissimilarities be-
tween the synthetic pitch of each section, as explained in Sec-

30Remember the instrumental intros may be skipped or replaced by another
instrumental intro in the vocal compositions 2.1.

31The compiled binary for joint tonic identification and tempo estimation
is available at https://github.com/sertansenturk/tomato_binaries
with the wrappers available in tomato (Appendix C).

32The compiled binary for section linking and note-level alignment is avail-
able at https://github.com/sertansenturk/tomato_binaries with the
wrappers available in tomato (Appendix C).

https://github.com/sertansenturk/tomato_binaries
https://github.com/sertansenturk/tomato_binaries
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tion 4.3) are selected, so that the variants of the same melody
are also considered in the alignment.

3. In (Şentürk, Holzapfel, & Serra, 2014), the synthetic melody

Ψ̂

(
s̄
(b)
j

)
of each section is computed with respect to the nom-

inal tempo τ (b) in the score (Section 4.2.2). Here, the esti-
mated average tempo τ (a) of the audio recording is used.

4. FollowingHough transform, SDTW is applied the between score
section s̄(b)j and the audio section candidate s̄(b)i on the path
of each detected line segment ϖ

(
s̄
(a)
i , s̄

(b)
j

)
. This way not

only the note-level alignment is obtained (Section 6.8), but
the time-boundaries of the sections are also marked more ac-
curately.

5. Motivated by the performance of the irrelevant document re-
jection step in composition identification (Section 6.6.2), the
section candidates are initially (before sequential linking, ex-
plained in Section 6.7.2) clustered into two groups, and the
candidates in the group constituting lower similarities are re-
moved. The similarity-values computed for each audio sec-
tion candidate are first normalized by normalizing the values
such that the values have a zero mean and a standard devia-
tion of one. For the sake of simplicity, k-means clustering,
an unsupervised clustering method (Arthur & Vassilvitskii,
2007), is applied to the normalized similarity values using
the squared Euclidean distance. This step greatly reduces the
false positives without the need of sophisticated models such
as VLMMs as described in Section 6.7.2.

6. The method in (Şentürk, Holzapfel, & Serra, 2014) requires
training a VLMM for each section sequence in different forms.
The VLMMs used in the path computation is removed (Equa-
tion 6.11) and the transition from one section to a connected
section (boundary distance is less than 3 seconds) is allowed
without any penalty. Next, the overlapping sections are re-
moved (Algorithm 3). Inconsequent section removal and guess-
ing unsure time-intervals (described in Section 6.7.2) are also
skipped as they too require VLMMs.
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The methodologies used in the joint analysis are implemented
in Python, and they are integrated to tomato33 The algorithms are
designed such that partial or complete fails (due tomissing informa-
tion) at each step are allowed. The joint analysis process is applied
between all relevant scores and the audio recording. The automatic
description is summarized and updated in each iteration.34

6.13 Automatic Description of the
CompMusic-Makam Corpus

By applying the joint audio-score analysis described in Section 6.12,
an automatic description of the CompMusic OTMM corpus is ob-
tained. Figure 6.23 show the statistics of the joint analysis. The au-
tomatic description covers around one third of the audio recordings
andmusic scores in the corpus. Approximately 18, 000 sections and
750, 000 notes are in the audio recordings are linked, which corre-
spond to more than 85 hours of time-aligned audio data. The score-
informed features override the relevant audio features computed in
Chapter 5 in our music discovery web applications (Section 7.1.2).
The time-aligned data (e.g. the notes, measures and sections in the
score; the pitch contours, pitch distribution of each note and sec-
tions in the audio recording) are also displayed synchronous to the
audio playback.

6.14 Conclusion
In this Chapter, joint analysis of audio recordings and music scores
is described. The analysis is based on an audio-score alignment
scheme proposed for OTMM. The approach is able to handle the
structural differences between the audio and symbolic data. It is
robust to many performance aspects such as ahenks, tempo vari-

33https://github.com/sertansenturk/tomato/blob/v0.9.1/
tomato/joint/jointanalyzer.py

34https://github.com/MTG/pycompmusic/blob/
f28ad58033e5387efc7e96612fbde5333adb27ca/compmusic/
extractors/makam/jointanalysis.py#L89

https://github.com/sertansenturk/tomato/blob/v0.9.1/tomato/joint/jointanalyzer.py
https://github.com/sertansenturk/tomato/blob/v0.9.1/tomato/joint/jointanalyzer.py
https://github.com/MTG/pycompmusic/blob/f28ad58033e5387efc7e96612fbde5333adb27ca/compmusic/extractors/makam/jointanalysis.py#L89
https://github.com/MTG/pycompmusic/blob/f28ad58033e5387efc7e96612fbde5333adb27ca/compmusic/extractors/makam/jointanalysis.py#L89
https://github.com/MTG/pycompmusic/blob/f28ad58033e5387efc7e96612fbde5333adb27ca/compmusic/extractors/makam/jointanalysis.py#L89
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ations, tuning and intonation deviations, non-notated embellish-
ments and heterophony.

The fundamental step in each task in joint audio and score anal-
ysis is partial audio score alignment (Section 6.3). This step, termed
as fragment linking, attempts to find the time-interval(s), where a
fragment picked from the music score, is performed. Fragment
linking is used in joint tonic identification (Section 6.4) and tempo
estimation (Section 6.5). The score-informed tonic identification
method has achieved over 99% accuracy on two datasets in a wide
range of parameter combinations, effectively solving the problem
when the music score is available. Then, the method is extended to
composition identification (Section 6.6). The proposed method is
highly successful as it obtained more than 0.90 MAP for the majority
of the parameter combinations with the best performing combina-
tion providing around 0.95 MAP.

To handle the structural differences between the music score
and the audio recording, the music score is divided into musically
relevant sections and candidate time-intervals for each section are
estimated using fragment linking. The candidates are aggregated,
and the best possible section sequence is inferred using graph oper-
ations (Section 6.7). This method achieves a 0.93 F1-score in link-
ing the sections. The results obtained from the experiments on tonic
identification, composition identification and section linking also
show that: 1) predominant melody may be a better and musically
more interpretable feature than HPCP in the analysis of OTMM
recordings, 2) The Hough transform may be a simpler and cheaper
alternative to than DTW and HMM for audio-score alignment, when
note-level precision is not needed.

The note-level alignment is obtained by applying SDTW between
the predominant melody of each linked section in the audio record-
ing and the synthetic melody computed from the relevant section
in the music score (Section 6.8). Due to lack of annotations dur-
ing the time of development, the note-level alignment methodology
is rather simplistic compared to the rest of the proposed method-
ology. We have recently created the CompMusic OTMM partial
audio-score alignment (Section 3.2.7) and the audio-score align-
ment (Section 3.2.8) datasets. Having gathered sufficient amount
of data, I would like to investigate partial and complete alignment
approaches based on the Hough transform, DTW and Bayesian net-
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works (Başaran, Cemgil, & Anarιm, 2015; Holzapfel et al., 2015),
fingerprinting (Arzt et al., 2014) and neural networks (Raffel, 2016)
applied to various computational tasks covered in this Chapter.

As a result of audio-score alignment, the sections and notes
within these two different musical representations are linked with
each other. The linked data may be further used to implicitly infer
additional information related to lyrics and rhythm (Section 6.9)
and improve existing features such as predominant melody and
melodic progression (Section 6.10), and compute more accurate
and informative features to describe tuning and intonation infor-
mation (Section 6.11).

The CompMusic OTMM corpus is enhanced by applying the
joint audio and score analysismethodologies described in this Chap-
ter (Section 6.12). The resultant automatic description brings more
reliable information compared to the automatic description obtained
throughout audio analysis described in Chapter 5. The automatic
description is used to complement our web application for the dis-
covery ofOTMM.The applicationwill be explained in detail in Sec-
tion 7.1.2.

The vast amount of accurate, linked and time-aligned data paves
up new research topics to investigate in MIR, computational mu-
sicology and music education. In short-term, I would like to fo-
cus on corpus-based studies to describe and discover the musical
characteristics of OTMM. One interesting direction could be re-
producing the tuning analysis applied in (Bozkurt et al., 2009) on
the whole CompMusic OTMM corpus, and extending the findings
to automatically describe intonation by using the note distributions
and pitch contours obtained in Section 6.11. I would also like to
extend the observations of Holzapfel (2015b) on the relations be-
tween surface rhythm and usuls by analyzing the SymbTr collec-
tion, with a performance-driven analysis on the same dataset us-
ing audio-score alignment. Finally, I would like to investigate the
musical expressivity using score-informed methods similar to the
methods applied by Abesser et al. (2016) on jazz music.

Apart from OTMM, several methodologies presented in this
Chapter have been applied to other melody-dominant music tradi-
tions, namely Carnatic music (Section B.1) and Cretan music (Sec-
tion B.8). The results obtained from the analysis of these three mu-
sic traditions show the importance of culture-specific and knowl-
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edge-based approaches in music information processing.
Following open research best practices, most of the code (in

tomato), and all datasets and experimental results presented in this
Chapter are openly available (Chapter C). I hope that the availabil-
ity of these resources would enable future development of compu-
tational analysis methods applied to OTMM and other music tradi-
tions, in general.



Chapter 7
Applications and

Conclusions

This Chapter present the web application developed for the discov-
ery of OTMM

7.1 Applications
Dunya comprises all the music corpora and related software tools
that have been developed as part of the CompMusic project. “Dun-
ya” means the world in many languages such as Arabic (which is
the language of origin), Turkish, Hindi and several other languages
in the Indian subcontinent. The languages constitute the de facto
languages of Arab-Andalusian, Carnatic, Hindustani and Ottoman-
Turkish makam musics, i.e. all music traditions studied under the
CompMusic project except Beijing Opera. While the word is gen-
erally used to imply our planet in these languages, it is also used
metaphorically to refer to a realm; in our case the realm of music.1

7.1.1 Dunya-Makam
In the context of Dunya, Dunya-makam encompasses the Comp-
Music OTMMcorpus, the culture-aware software tools (e.g. toma-

1Dunya was suggested byMohamed Sordo, while he and I were brainstorm-
ing together to find a inclusive name for the “outputs” of the CompMusic project.
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to), as well as the automatic description of the corpus obtained
using these tools. These resources are part of Dunya-web, a web-
based application designed to store the data, the software tools and
the research output, and also provide a framework to process and
manage the content.

Unless otherwise indicated, all content except copyrighted ma-
terial (e.g. commercial recordings) and all code in Dunya-makam
and Dunya-web is licensed under CC BY-NC 3.0 (Spain) and GNU
Affero General Public License Version 3 (AGPLv3), respectively.

7.1.2 Dunya Web
We have created a web application called Dunya-web to show-
case our technologies developed within the CompMusic project.2
The application stores the data, executes the algorithms (e.g. the
implementations of the methodologies described between Chap-
ters 4-6) and displays the resulting automatic analysis.3 Dunya-web
has a separate organization for each music culture studied within
the CompMusic project. In this Section, we exclusively focus on
the makam part of Dunya-web.

Dunya-web stores the all the audio recordings and music scores
in the CompMusic OTMM corpus. The metadata is stored in Mu-
sicBrainz.4 Apart from allowing researchers to access andmaintain
the resources, the website currently showcases our music discovery
prototype developed for OTMM. The users can navigate the audio
collection by searching or filtering by recordings, compositions,
artists, makams, forms and/or usuls. When an audio recording is
selected, the users are directed to the page of the recording, where
they can examine the metadata, play the recordings and examine
the automatic description synchronous to the audio playback (Sec-
tion 7.1.2). If the SymbTr score of a composition performed in

2http://dunya.compmusic.upf.edu/makam
3The infrastructure has been built mainly by Alastair Porter, Andrés Ferraro

and Mohamed Sordo. I have been responsible for developing and implement-
ing the analysis methodologies described in the Chapters 4-6, integration of the
algorithms to the web application and testing.

4Please visit http://compmusic.upf.edu/node/280 to access the data,
its metadata, the code of the web application and the automatic description
methodologies, the extracted features and the analysis results.

http://dunya.compmusic.upf.edu/makam
http://compmusic.upf.edu/node/280
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the recording is available, the score and the alignment results are
displayed synchronous to the audio playback.

The navigation of the website is open to public. The metadata
and the available automatic description of each recording may be
freely downloaded from the relevant recording page. Due to copy-
right issues, playback of most recordings is only allowed to reg-
istered researchers. Nevertheless, 273 recordings in the CompMu-
sic OTMM audio collection may be listened publicly, which we are
given the streaming rights of, courtesy of (listed in the alphabetical
order) Krikor Music (Ara Dinkjian), Özer Özel, Robert Garfias and
Traditional Crossroads (Harold Hagopian).

Data Storage and Algorithms

Dunya-web (Porter, Sordo, & Serra, 2013b; Porter & Serra, 2014)
is an application that is developed with Django framework.5 The
audio recordings, music scores and relevant metadata are stored in
a PostgreSQL database.6 It’s possible to manage information about
the stored data and submit analysis tasks on the data from the ad-
ministration panel. The output of each analysis can be used as an in-
put of another analysis module and/or be displayed on the interface
(Section 7.1.2). The data can be accessed from theDunyaRESTAPI.
We have also developed a Python wrapper, called pycompmusic,
around the Application Programming Interface (API).7

To render each score element synchronously in the interface
(Section 7.1.2), we first convert the score in text format to Mu-
sicXML and then to SVG (Section 4.4.2). We use LilyPond forMu-
sicXML to SVG conversion, which allows us to record a mapping
of each element between these different formats. This way, each
object in the SVG file can be referenced by the note that it repre-
sents in the score (Section 7.1.2).

Interface

The interface interaction is developed with Javascript. In the front
page, the user can search the works, makams, forms, usuls, com-

5https://www.djangoproject.com/
6https://www.postgresql.org/
7https://github.com/MTG/pycompmusic

https://www.postgresql.org/
https://github.com/MTG/pycompmusic
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posers, lyricists and performers by typing in the search bar, navi-
gate to the showcased recording pages and also access to the static
Project Overview, Statistics and Results pages. The results of a
searched query are displayed simultaneously byAjax8 (Figure 7.2a).
The user can also navigate by filtering the works according to these
attributes without supplying a query from by selecting the attribute
value from “Advanced filtering,” which can be accessed by click-
ing the cog-shaped button next to the search bar (Figure 7.2b). Af-
terwards, the user is directed to the search results (Figure 7.2c).
In this page, the user can modify the query and also add, remove
or modify the filters. The search is organized with respect to the
works. The user can select one of the audio recordings relevant to
the work. Once the user selects a recording, the recording page is
opened (Figure 7.3). The page consists of four different parts:

1. Left Panel: The metadata about the composition and the
recording. Score informed tempo ( Section 6.5) and trans-
position ( Section 5.8) for each composition is also included
inside the composition tabs in this panel.

2. TopPanel: The audio features. These include a spectrogram,
the octave-corrected predominantmelody (Section 6.10). The
tonic frequency ( Section 6.4) is drawn with a dashed line.
The chunk of the predominant melody on the time-interval
of the current aligned note is highlighted in red.

3. Centre Panel: The music score. The SVG elements corre-
sponding to the current note and the measure are highlighted.
We obtain the SVG element related to the aligned note from
the mappings mentioned in Section 4.4.2. We also find the
current measure by searching the two closest measure line
elements, which encloses the position of the note element in
the SVG file.

4. Bottom Panel: The playback buttons, audio timeline, play-
back time instance and audio duration. The melodic progres-
sion (Section 5.10) extracted from the octave-corrected pre-
dominant melody is drawn in the background of the time-
line. The timeline can be clicked to jump the playback to

8http://api.jquery.com/jquery.ajax/

http://api.jquery.com/jquery.ajax/
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the desired time instance. If there are multiple compositions
performed in the audio recording, the time intervals are in-
dicated in the bottom of the timeline. The coloured regions
mark the time-intervals of the performed sections. When the
user hovers over the panel, the semiotic label of the section
(Section 4.3.2) at this time is displayed.

Summary

Dunya-web is a web application, which can be used for the anal-
ysis and discovery of collections of audio recordings and music
scores. So far, we have analysed 2200 music scores (Section 4.5),
over 6700 audio recordings (Section 5.12) and over 1500 audio-
score pairs (Section 6.13) of OTMM.We plan to incorporate score-
informed rhythm analysis (Section 6.9) in the future. Currently, the
audio-lyrics alignment research (Dzhambazov et al., 2014; Dzham-
bazov & Serra, 2015; Dzhambazov et al., 2016), is showcased in
Dunya-web separately.9 We aim to further develop these technolo-
gies to support tasks in music discovery, musicological research
and music education.

7.1.3 Dunya Desktop
While the music discovery interface in Dunya-web is highly useful
for navigating the corpus and examining the automatic description
obtained for audio recordings, it is not designed to be customizable
for different use cases. For example, the interaction is centered
around individual audio recordings and it is not currently possi-
ble to access the music scores and their descriptions directly from
the visual interface. Moreover, the interface does not provide any
means of comparison, e.g. studying the performances of the same
composition or the vocal characteristics of two singers.

Atlı (2016) has developed a visual interface to display the mu-
sic scores and audio recordings of OTMMaiming at assistingmusic
education. The visual interface is designed in Python 2.7 using Qt4.
The application uses the audio analysis and joint audio-score anal-
ysis methods described in this thesis such as predominant melody

9e.g. http://dunya.compmusic.upf.edu/makam/lyric-align/
727cff89-392f-4d15-926d-63b2697d7f3f

http://dunya.compmusic.upf.edu/makam/lyric-align/727cff89-392f-4d15-926d-63b2697d7f3f
http://dunya.compmusic.upf.edu/makam/lyric-align/727cff89-392f-4d15-926d-63b2697d7f3f
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Figure 7.4: A screenshot of the interface developed by Atlı (2016)
(courtesy of Hasan Sercan Atlı).

extraction (ATL-MELf ), tuning analysis (Section 5.9), section link-
ing (Section 6.7) and note-level alignment (Section 6.8). A screen-
shot of the interface is shown in Figure 7.4.

Hasan Sercan Atlı continues to develop the interface (which
is called as Dunya-desktop)10 under the CompMusic project. The
aim is to address the shortcomings of the music discovery interface
in Dunya-web in terms of customizability. The code is provided
with detailed documentation, and it is written with modularity and
extendibility of the existing modules in mind. The easily customiz-
able interface will allow researchers to navigate through a corpus
in a manner tailored to the needs of the studied problem, select the
relevant material from the corpus and label/organize the content
appropriately with annotations and automatic description.

7.2 Conclusions
The CompMusic OTMM corpus stands out as the largest and most
representative resource of OTMM that can be used for computa-
tional research. The corpus includes 2200 music scores, more than

10https://github.com/MTG/dunya-desktop

https://github.com/MTG/dunya-desktop
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6500 audio recordings, and accompanying metadata. The data has
been collected, annotated and curated with the help of music ex-
perts. The potential of the research corpus is shown by using sev-
eral criteria such as completeness, coverage and quality. In ad-
dition, several test datasets have been created from the corpus to
develop and evaluate the specific methodologies proposed for dif-
ferent computational tasks addressed in the thesis.

The main contribution of the thesis is the audio-score align-
ment, which is designed for culture-specific properties of OTMM.
The approach is able to handle the structural differences between
the audio and symbolic data. It is robust to many performance as-
pects such as tonic transpositions, tempo variations, tuning and in-
tonation deviations, non-notated embellishments and heterophony.
The alignment method achieves a 0.93 F1-score in linking the sec-
tions in the music score with the respective time-intervals in the
audio recording. The joint analysis method not only links the audio
and the symbolic data, but it also simplifies and improves the au-
dio feature extraction steps, that would require sophisticated audio
processing approaches. For example the score-informed tonic iden-
tification method achieved over 99% accuracy, effectively solving
the problem when the music score is available. Likewise, the com-
position identification method achieved a mean average precision
around 0.95.

The analysis methodologies presented in the thesis are imple-
mented within a comprehensive and easy-to-use toolbox in Python.
The algorithms are applied to the CompMusic OTMM corpus and
an automatic description of the corpus is obtained. The results are
integrated into Dunya-web, a web application aimed at culture-
aware music discovery. Several of the methodologies developed
within the thesis are also applied to other musical cultures. Fol-
lowing open research best practices, all the created data, software
tools and analysis results are openly available. The methodologies,
the tools and the corpus itself provide vast opportunities for future
research in many fields such as music information retrieval, com-
putational musicology and music education.



Appendix A
Preliminary Section

Linking Methodology

In this Appendix, the preliminary section linking methodology pro-
posed in (Şentürk et al., 2012) is decribed. The method uses a ma-
chine readable version of the score of a composition (selected from
the SymbTr collection) and an audio recording consisting of a per-
formance of the same composition as the inputs. The method also
utilizes complementary metadata about these information sources
and related concepts frommakammusic theory (SectionA.1). From
the audio recording, the predominant melody is extracted. The pre-
dominant melody is also used to calculate a pitch histogram in or-
der to identify the tuning and the note intervals (Section A.1.1).
From the score information, the note symbols, the sections and
the makam are read, and a synthetic predominant melody is gener-
ated (Section A.1.2). In order to estimate the candidate locations of
the sections in the audio, the method compares these relevant pitch
representations (Section A.2). In the final step, the candidates are
hierarchically checked to link the sections of the score to the cor-
responding parts in the audio (Section A.3). The block diagram of
the methodology is given in Figure A.1.

This method has been tested on a small dataset consisting 44
audio recordings of 11music scores of peşrev and sazsemaisi forms
(SectionA.4) and shown to provide promising results (SectionA.5).
This method has been improved and simplified in (Şentürk, Hol-
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zapfel, & Serra, 2014), which was described in Section 6.7.

A.1 Feature Extraction

To link the identified score sections with their performances, ma-
chine-readable scores and audio recordings are used. These in-
formation sources are already associated with each other through
complementary metadata available, so that there is no need to ap-
ply composition identification (Section 6.6) prior to section linking.
The scores are encoded as SymbTr files (Karaosmanoğlu, 2012), a
Humdrum-like machine readable format. The starting and ending
of the sections are explicitly marked in the scores. Some theoret-
ical knowledge, namely the letter symbols of the notes, the letter
symbol of the karar note of the makam of the piece and melodic
intervals are used to process the audio recordings and the symbolic
scores, which will be explained in Section A.1.1 and Section A.1.2.

A.1.1 Predominant Melody Extraction and Tun-
ing Analysis on the Audio Recordings

To obtain the predominant melody from the audio recordings, the
predominant melody extraction procedure described in (Şentürk et
al., 2012), which is adapted from (Bozkurt, 2008) (BOZ-YINf ) is
used (explained in Section 5.2.1). The tonic is identified using
the implementation of the distribution matching method (Gedik &
Bozkurt, 2010) (explained in Section 5.7.2) in the Makam Tool-
box. Next, the predominant melody is normalized with respect to
the identified tonic. The pitch values in the time-intervals with-
out any estimation (e.g. noise, silence) are assigned a non-sensical
numerical value. In parallel, a histogram is computed from the pre-
dominant melody (Section 5.5) with a bin width of 1/3 Hc. Next,
tuning analysis (Section 5.9) is applied to the histogram to obtain
the performed intervals for each note symbol.
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Table A.1: Structural element defined for the dilation operation.

1 1 1 . . . . . .
1 1 1 . . . . . .
1 1 1 1 . . . . .
. . 1 1 . . . . .
. . . . 1 . . . .
. . . . . 1 1 . .
. . . . . 1 1 1 1
. . . . . . 1 1 1
. . . . . . 1 1 1

A.1.2 Synthetic Pitch Contour Generation on
the Music Scores

From the score, the makam of the piece, the starting event num-
bers of the sections, the note names and their durations are read.
If the repetitive section have different endings, only the note se-
quence of the first instance is considered. The symbolic format is
first mapped to theoretical pitches with respect to the theoretical in-
formation given (as described in Section 4.2.2), such that the karar
note is assigned to 0 Hc and all note symbols are converted to their
respective theoretical scale degree values (i.e. the symbol B4♭2 is
converted to 7 Hc, where the karar note of a piece is A4 = 0 Hc).
Then each value obtained from the theoretical intervals is inter-
changedwith the scale degrees in the performance obtained through
tuning analysis (Section A.1.1). The rests in the score are assigned
the same nonsensical value, which was noted in audio predomi-
nant melody extraction (Section A.1.1). Then, the note and time
sequences are divided into sections by using the event number of
the start of each section. Finally a synthetic predominant melody
of each section is generated (Section 4.2.2) from the durations and
the Hc values of the note sequences (obtained from tuning analysis)
in the segments with a sampling period of 100ms to match the hop
size of the downsampled audio predominant melody.
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Table A.2: Structural element defined for the erosion and opening
operations.

1 1 . . .
1 1 . . .
. . 1 . .
. . . 1 1
. . . 1 1

A.2 Candidate Estimation
After feature extraction, a distance matrix is computed between the
audio predominant melody and the synthetic melody of each score
section using Equation 6.1. The distance matrices are then normal-
ized so that the values are between 0 and 1.

In the normalized distance matrices, long, diagonal “valleys”
(i.e. adjacent distance values close to zero) are observed, which
identify the time-intervals in the audio recordings, where the se-
lected section in the score might be performed. Prior to detection,
First these blobs are emphasized by utilizing a number of struc-
tural morphological operations (Serra, 1983; Ballard, 1981). To
properly apply morphological operations, the values in the distance
matrices are subtracted from 1 such that values close to 0 in the dis-
tancematrix aremapped close to 1, and vice versa. Then, thematrix
is dilated using a binary diagonal beam shown in Table A.1 as the
structural element. Afterwards, the distance matrix is eroded twice
using a similar but smaller beam as shown in Table A.2. Later, the
distance matrix is opened with the same structuring element used
in the erosions Table A.2 to remove noises. Next, the distance ma-
trices are converted into binary images by applying thresholding,
such that all values higher than 0.96 are given the value one and all
other values are assigned to zero. Structural component analysis is
done on the binary image to find the blobs. All blobs that are not
in the desired diagonal orientation (i.e. lying between 0 and −90
degrees) are removed. From the remaining blobs only the biggest
20% are picked. As a last step in pre-processing the distance ma-
trix, the image is dilated by a 3 × 3 square structuring element to
slightly widen the diagonals.

After pre-processing the distance matrices, Hough transform



220 Preliminary Section Linking Methodology

H
a
n

e
1

 (
s
e
c
)

0 20 40 60 80 100 120 140 160 180 200

0

5

10

0 20 40 60 80 100 120 140 160 180 200

0

5

10

0 20 40 60 80 100 120 140 160 180 200

0

10

20

0 20 40 60 80 100 120 140 160 180 200

0

20

40

Te
s
li
m

(s
e
c
)

0 20 40 60 80 100 120 140 160 180 200

0

5

10

15

Audio Recording (sec)
200 400 600 800 1000 1200 1400 1600 1800 2000

−10

−5

0

5

10
teslim

hane2
teslim

hane3 teslim

teslim

teslim
unsure

hane1

hane1, hane3 u
n

s
u

re

H
a
n

e
2

 (
s
e
c
)

H
a
n

e
3

 (
s
e
c
)

H
a
n

e
3

 (
s
e
c
)

Figure A.2: Section candidates shown on top of the processed dis-
tance matrices, estimated for an audio recording of Muhayyer Saz
Semâi (recording #29 in Table A.3) and groups connected prior to
sequential linking. Horizontal blue lines show the group borders,
red lines indicate connections of preceding and following groups
and pink links mark overlapping regions.

(Ballard, 1981) is applied on each distance matrix to detect the
prominent lines. The peaks between −25 and −65 degrees are de-
tected in the transformation matrix, and the peaks which have ac-
cumulated a value higher than 0.3 are picked. The detected peaks
are then used to extract line segments: in this process only the lines
which are longer than 150 pixels are selected. Since the diagonals
are actually blobs, there are a number of lines in the same region
with small variances in locations and angles: all of these lines are
removed except the longest one. Moreover, some prominent di-
agonals might have discontinuities resulting in more than one line
segment on different parts of a diagonal. These lines are connected
with each other provided their combined projection to the score
(i.e. the range in the corresponding y-axis) covers more than 60%
of the score. Finally, all line segments covering more than 70% of
the score are extrapolated to the edges and all other lines are re-
moved. By combining the parallel results, candidate locations for
all sections are obtained.
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A.3 Sequential Linking
Through inspecting the candidates obtained from the estimations of
each section, most of the sections may be linked with their corre-
sponding regions in the audio recording. Nevertheless, there might
be some erroneous candidates in several locations apart from the
true location. Since the candidate estimations for each section are
temporally independent from each other, such erroneous linksmight
overlap or enclose other candidates, and produce conceptually prob-
lematic outcomes. Moreover, there might also be some unsure re-
gions where no candidate was estimated.

Nevertheless, since the sequence of the sections in the score
is known, an additional step making use of the sequence of the
sections given in the composition might be introduced. This step
would be hierarchically able to eliminate any erroneous candidates
and guess unsure regions, and therefore increase the overall accu-
racy of the method.

First, the candidates are gathered such that when the borders
of a candidate is inside the borders of another (i.e. one candidate
is enclosing another), they are grouped together. Since there is al-
ways a chance for the shorter candidate to be exceeding a border
of the longer candidate by a very small duration, an expansion out-
side the border of the longer candidate by less than 10% of the du-
ration of the longest candidate is tolerated. Next, regions, where
candidate estimation did not predict any candidates, are labeled as
“unsure.” Afterwards, these groups are connected together so that
any preceding, following and overlapping groups may be traversed
(Figure A.2).

After the enclosing groups are formed, linking is commenced it-
eratively. First, any non-overlapping groups having a single candi-
date are temporarily linked. Next, each Hane candidate is checked
whether its location is impossible with respect to already linked
candidates. For example, if a 2nd Hane is linked and there are
other 2nd Hane candidates occurring later in the audio recording,
which are not directly connected to the link (i.e. a sequence of
{2nd Hane, 2nd Hane} is not observed) or through an unsure region
(i.e. a sequence of {2nd Hane, unsure, 2nd Hane} is not observed),
these future candidates are removed even if they are already linked.
Moreover any earlier candidates which should not occur before
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a Hane link (i.e. 3rd Hane and 4th Hane candidates occurring before
a 2nd Hane link) or should not occur after a Hane link (i.e. 1st Hane
candidates occurring after a 2nd Hane link) are removed. This way,
most of the false positives occurring before and after the true Ha-
ne link may be taken care of, while linking the Hane repetitions.
Note that the method allows sub-performances between two sec-
tions with the same label, which are not related to the composition
(e.g. taksim).

After this step, the indices of links (i.e. order of the section
given in the score) are noted, where possible. Since each Hane
has an unique index in the score, our starting point is to note the
indices of the linked Hanes. For example, if the score is in the form
[1st Hane, Teslim, 2nd Hane, . . . , 4th Hane, Teslim], the index of a
2nd Hane link will be 3. If a Teslim or a Teslim repetition is found,
the index will be the index of the previous neighboring Hane plus
one or the index of the next neighboring Hane minus one, provided
either one is known. If the indices of both the previous and the
next neighboringHane link is known, theymust be consecutive (i.e.
[1st Hane, Teslim(s), 2nd Hane]), or the indices for the Teslim will
be left indeterminate. The indices of the links are used to estimate
the unsure groups and groups with mulitple candidates, which will
be explained later.

Through inspecting the enclosing groups, it was seen that if a
group is overlapping with at least two other groups, the candidates
inside the group are almost never true positives. All such overlap-
ping groups are removed to increase precision in exchange with a
minimal-to-zero decrease in recall.

After each step, if all the candidates of an enclosing group is
removed, the group is assigned “unsure.” Moreover, if an unsure
group is followed by another, both groups are merged into one.
Unsure groups are also not allowed to overlap with other groups.
If such a case occurs the interval overlapping with the other groups
is trimmed from the unsure group.

The final confusion arises when a group does not have any
candidates (unsure group) or there are at least two candidates that
are both linkable. To guess an unsure group, both of the immedi-
ate neighbor groups must be already linked.1 If the neighbors are

1With the exception of the first and the last groups since they are in the start
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consecutive Hanes, the algorithm predicts a Teslim for the unsure
group. If both of the neighbors are Teslims, the algorithm predicts
a Hane in between, provided that at least one of the composition in-
dex of the (Teslim) neighbors are previously noted. If both indices
are known, theymust be even consecutive2 so that there can only be
a single Hane nominee. If these conditions are not met and only one
of the neighbors is a Teslim, the algorithm predicts a Teslim rep-
etition. Otherwise, the group is left as unsure. For groups, which
multiple candidate are possible, the same operation is done. Never-
theless, a multiple-candidate group only requires a single neighbor
to be linked before. Moreover, if the unlinked neighbor has more
than one candidate (i.e. it is also a multi-candidate group), all can-
didates in this neighboring group are considered one-by-one to link
the multi-candidate group.

The iterative process is finished if no border changes or linking
is done in a cycle. Afterwards the gaps between each neighboring
link are closed provided there is one. The first and the final links
are also widened to the start and the end of the audio recording
provided the are not further from the start/end more than 10% of
the duration of the longest candidate. Finally, all of the remaining
unsure regions are converted to links indicating regions which in-
dicate unrelated parts in the performance with respect to the given
composition.

A.4 Experiments
To test the methodology, we have gathered scores of instrumen-
tal pieces and the corresponding audio recordings (Section A.4.1).
The method is applied to each audio recording, linking the sections
marked in the score with the corresponding audio fragments. The
links found between the audio recordings and scores are then com-
pared with manually linked regions (Section A.5).

and end of the recording respectively. For the first and the last groups respec-
tively, only the next and previous groups are needed to be linked before.

2Since both sazsemaisi and peşrev forms start with 1st hane, Teslims always
occupy even indices.
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Table A.3: The dataset used in the experimentation. hn, t and u stand for the
nth Hane, Teslim and unrelated region respectively. t* indicates ends of the Tes-
lims vary in the composition.

Rec. # Composition Composer Instrumentation Dur. Annotations Comments
1 Acemaşiran Peşrev Neyzen Salih Dede Ney 4:19 h1, h2, h3, h4 Kız Ahenk
2 Ney 4:22 h1, h2, h3, h4 Kız Ahenk
3 Ney 4:22 h1, h2, h3, h4 Mansur Ahenk
4 Hicaz Saz Semâî Muhittin Erev Ney 4:00 h1, t, h2, t, h3, t, h4, t Kız Ahenk
5 Ney 4:00 h1, t, h2, t, h3, t, h4, t Mansur Ahenk
6 Hüseyni Peşrev Kul Mehmet Ney 5:21 h1, h2, h3, h4 Kız Ahenk
7 Ney 5:22 h1, h2, h3, h4 Mansur Ahenk
8 Hüseyni Peşrev Lavtacı Andon Ensemble 5:17 h1, t*, h2, t*, h3, t*, h4, t*, u Silence in the End
9 Ensemble 5:15 h1, t*, h2, t*, h3, t*, h4, t*, u Silence in the End
10 Hüseyni Saz Semâî Lavtacı Andon Ney 4:48 h1, t, h2, t, h3, t, h4, t Kız Ahenk
11 Ney 4:48 h1, t, h2, t, h3, t, h4, t Mansur Ahenk
12 Hüseyni Saz Semâî Tatyos Efendi Ensemble 3:01 h1, t, h2, t, h3, h3, t, h4, t, t, u Silence in the End
13 Ensemble 5:38 h1, t, t, h2, h2, t, t, h3, h3, t, t, h4, t, t,

u
Silence in the End

14 Tanbur, Kemençe 3:21 h1, t, t, h2, t, h3, h3, t, t, h4, t, t, u Repetitions in Hane 4
Omitted
Silence in the End

15 Ud 7:31 u, h1, h1, t, t, h2, h2, t, t, h3, h3, t, t,
h4, t, t, u

Speech and Taksim in the
Start
Taksim and Silence in the
End

16 Kürdilihicazkar Peşrev Vasilaki Ensemble 1:10 h1, t* Partial Performance
17 Ensemble 1:11 h1, t* Partial Performance
18 Tanbur 4:05 h1, t*, h2, t*, h3, t*, h4, t*, u Denoised Recording of

Below
Silence in the End

19 Tanbur 4:07 h1, t*, h2, t*, h3, t*, h4, t*, u Noisy Recording
Silence in the End

20 Ud 4:19 h1, t*, h2, t*, h3, t*, h4, t*, u Silence in the End
21 Ensemble 5:48 h1, t*, h2, t*, h3, t*, h4, t*, u Silence in the End
22 Ensemble 2:07 h1, t*, h2, t* Partial Performance
23 Muhayyer Saz Semâî Tanburi Cemil Bey Ud 6:32 u, h1, t, t, h2, t, t, h3, t, t, h4, t, t, u Silence in the Start and the

End
24 Ud 4:08 h1, t, t, h2, t, t, h3, t, t, h4, t, t, u Silence in the End
25 Ud 4:16 h1, t, t, h2, t, t, h3, t, t, h4, t, t, u Silence in the End
26 Ensemble 5:33 h1, t, t, h2, t, t, h3, t, t, h4, t, t, u Silence in the End
27 Ney 4:20 h1, t, h2, t, h3, t, h4, t Kız Ahenk
28 Ney 4:20 h1, t, h2, t, h3, t, h4, t Mansur Ahenk
29 Ensemble 3:22 h1, t, h2, t, h3, t, h4, t, t, u Silence in the End
30 Rast Peşrev Osman Bey Ney 4:10 h1, t, h2, t, h3, t, h4, t Kız Ahenk
31 Ney 4:09 h1, t, h2, t, h3, t, h4, t Mansur Ahenk
32 Segah Saz Semâî Yusuf Paşa Ensemble 2:36 h1, t* Partial Performance
33 Violin 7:35 u, h1, t*, h2, t*, h3, t*, h4, t*, u Silence in the Start and the

End
34 Ney, Percussion 3:27 h1, t*, h2, t* Percussion is Recorded

Loud
35 Cello, Viola 14:03 h1, t*, h2, t*, h3, t*, h4, t*, u Group Taksim, Suzidil Saz

Semaisi and Silence in the
End

36 Ney, Kanun 6:39 h1, t*, h2, t*, h3, t*, h4, t*
37 Uşşak Saz Semâî Salih Dede Tanbur 6:45 h1, t, t, h2, t, t, h3, t, t, h4, h4, t, t
38 Tanbur, Kemençe 4:16 h1, t, h2, t, h3, t, h4, t, u Silence in the End
39 Ud 5:53 h1, t, t, h2, t, t, h3, t, t, h4, t, t
40 Tanbur 5:44 h1, t, t, h2, t, t, h3, t, t, h4, t, t, u Silence in the End
41 Kemençe 5:20 h1, t, h2, t, h3, t, t, h4, u, h4, t, t, u Taksim in the Middle

Silence in the End
42 Ney 5:56 h1, t, h2, t, h3, t, h4, t Kız Ahenk
43 Ney 5:56 h1, t, h2, t, h3, t, h4, t Mansur Ahenk
44 Ney 7:16 h1, t, t, h2, t, t, h3, t, t, h4, t, t Müstahsen Ahenk

A.4.1 Data
For the experiments we have used a set of 44 audio recordings as-
sociated with 11 scores of different compositions (Table A.3). The
scores and parallel audio recordings come from the SymbTr col-
lection (Karaosmanoğlu, 2012) and the CompMusic-makam cor-
pus, respectively.
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All the scores follow the Arel-Ezgi-Uzdilek theory. In the ex-
periments, we are using a single score per composition, which is ei-
ther obtained from the SymbTr collection (Karaosmanoğlu, 2012).
As score fragments, we use the actual sections of the pieces, a to-
tal of 53 fragments. All of the audio recordings are in wav format
and either public-domain3 or commercially available. The record-
ings encompass a wide variety of instrumentation (Table A.3) such
as solo ney recordings, which are monophonic; solo stringed in-
struments, which involve heterophonic peculiarities; duo, trio and
ensembles, which are heterophonic. The recordings also cover a
substantial amount of expressive decisions such as changes in per-
formance speed, different density of embellishments, note suspen-
sion and repetitions, melodic excerpts played in different octaves
and various ahenks. Some of the recordings include some material
that is not related to the scores such as taksims, applauses, intro-
ductory speeches, silences and even other pieces of music. These
audio materials are not manually removed.

A.5 Results and Evaluation
To evaluate themethod, we built the ground truth bymanually iden-
tifying the particular fragment of the score section by labeling the
time boundaries in the audio recordings. A composition-related
link is deemed as true positive, if and only if it is coinciding with
an annotation of the same section, and the average distance between
the borders of the annotation and the link does not exceed 10% of
the duration of the annotation. Links, which do not meet these con-
straints are treated as false positives. If a composition related anno-
tation does not coincide with any link with the distance constraint
given above, it is labeled as a false negative.

Since the system is not meant to identify what a non-related re-
gion actually is, the boundaries of the links labeled as “unrelated”
do not have to coincide with the borders of an unrelated anno-
tation. Therefore, any consecutive unrelated regions (i.e. intro-
ductory speech followed by a taksim) are combined into a single
one, and evaluation is done on the links which are enclosed by a

3e.g. the Instrumental Pieces Played with the Ney collection: http://
neyzen.com/ney_den_saz_eserleri.htm

http://neyzen.com/ney_den_saz_eserleri.htm
http://neyzen.com/ney_den_saz_eserleri.htm
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Table A.4: The results per piece. t and tN indicate the time and
normalized time elapsed per experiment with semi-automatic ka-
rar recognition. K-, K+, H- and H+ indicate results obtained from
fully-automatic karar recognition, semi-automatic karar recogni-
tion, candidate estimation and sequential linking respectively.

#Sections / t / tN True Positive True Negative False Negative False Positive
Rec. # #Unrelated (sec) K-H- K+H- K-H+ K+H+ K-H- K+H- K-H+ K+H+ K-H- K+H- K-H+ K+H+ K-H- K+H- K-H+ K+H+
1 4 32 / 34 0 4 0 4 0 0 0 0 4 0 4 0 0 2 0 0
2 4 26 / 27 0 4 0 4 0 0 0 0 4 0 4 0 0 3 0 0
3 4 26 / 28 0 4 0 4 0 0 0 0 4 0 4 0 0 3 0 0
4 8 28 / 32 7 7 8 8 0 0 0 0 1 1 0 0 0 0 0 0
5 8 33 / 37 7 7 8 8 0 0 0 0 1 1 0 0 1 1 0 0
6 4 39 / 33 0 4 0 4 0 0 0 0 4 0 4 0 0 1 0 0
7 4 39 / 33 0 4 0 4 0 0 0 0 4 0 4 0 0 0 0 0
8 8 / 1 30 / 26 0 3 0 5 0 0 0 0 8 5 8 3 0 0 0 1
9 8 / 1 32 / 28 7 7 8 8 0 0 0 0 1 1 0 0 0 0 0 0
10 8 27 / 32 7 7 8 8 0 0 0 0 1 1 0 0 1 1 0 0
11 8 27 / 32 8 8 8 8 0 0 0 0 0 0 0 0 3 3 0 0
12 10 / 1 28 / 42 4 4 5 5 0 0 1 1 6 6 5 5 1 1 2 2
13 14 / 1 67 / 66 10 10 12 12 0 0 0 0 4 4 2 2 0 0 2 2
14 12 / 1 46 / 62 11 11 10 10 0 0 0 0 1 1 2 2 2 2 2 2
15 15 / 2 126 / 89 13 13 14 14 0 0 2 2 2 2 0 0 1 1 3 3
16 2 13 / 53 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
17 2 14 / 52 1 1 2 2 0 0 0 0 1 1 0 0 0 0 0 0
18 8 / 1 30 / 34 7 7 7 7 0 0 0 0 1 1 1 1 0 0 1 1
19 8 / 1 28 / 31 5 5 6 6 0 0 0 0 3 3 2 2 0 0 0 0
20 8 / 1 29 / 30 5 5 6 6 0 0 0 0 3 3 2 2 0 0 1 1
21 8 / 1 32 / 30 4 4 8 8 0 0 0 0 4 4 0 0 0 0 0 0
22 4 17 / 37 0 2 0 4 0 0 0 0 4 2 4 0 0 0 0 0
23 12 / 2 40 / 33 5 5 7 7 0 0 1 1 7 7 5 5 0 0 2 2
24 12 / 1 32 / 36 4 4 7 7 0 0 0 0 8 8 5 5 1 1 1 1
25 12 / 1 59 / 63 7 7 8 8 0 0 0 0 5 5 3 3 1 1 5 5
26 12 / 1 50 / 50 7 7 10 10 0 0 0 0 5 5 2 2 0 0 2 2
27 8 28 / 29 7 7 8 8 0 0 0 0 1 1 0 0 0 0 0 0
28 8 31 / 33 7 7 7 7 0 0 0 0 1 1 1 1 1 1 2 2
29 9 / 1 40 / 54 8 8 9 9 0 0 0 0 1 1 0 0 2 2 1 1
30 8 33 / 36 8 8 8 8 0 0 0 0 0 0 0 0 3 3 0 0
31 8 36 / 39 8 8 8 8 0 0 0 0 0 0 0 0 5 5 0 0
32 2 15 / 44 2 2 2 2 0 0 0 0 0 0 0 0 1 1 0 0
33 8 / 2 45 / 32 7 7 8 8 0 0 1 1 1 1 0 0 4 4 0 0
34 4 23 / 31 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0
35 8 / 1 101 / 33 5 5 5 5 0 0 0 0 3 3 2 2 2 2 4 4
36 8 44 / 36 8 8 8 8 0 0 0 0 0 0 0 0 3 3 1 1
37 13 76 / 61 12 12 12 12 0 0 0 0 1 1 0 0 0 0 2 2
38 8 / 1 32 / 34 7 7 7 7 0 0 0 0 1 1 1 1 2 2 1 1
39 12 61 / 57 11 11 12 12 0 0 0 0 1 1 0 0 0 0 1 1
40 12 / 1 93 / 90 10 10 10 10 0 0 1 1 2 2 2 2 1 1 1 1
41 11 / 2 63 / 54 9 9 10 10 0 0 0 0 2 2 1 1 0 0 2 2
42 8 39 / 37 8 8 8 8 0 0 0 0 0 0 0 0 0 0 1 1
43 8 41 / 38 8 8 8 8 0 0 0 0 0 0 0 0 2 2 1 1
44 12 69 / 44 12 12 12 12 0 0 0 0 0 0 0 0 3 3 1 1

Total 364 / 24 1817 / 1831 262 287 290 319 0 0 6 6 100 75 68 39 40 49 39 40
(Av: 41 / 42 )

non-compositional region. Links enclosed by a non-compositional
region are obtained by the enclosing operation explained in Sec-
tionA.3. All links labeled as “unrelated” enclosed by a non-compo-
sitional annotation are labeled as true negative. All other enclosed
links are treated as false positives. Any unguessed parts in these
annotations are neither awarded or penalized.

We have computed accuracy, specificity, recall, precision, F1-
score and F3-score from the true positives, true negatives, false pos-
itives and false negatives. These results are reported for both candi-
date estimation and sequential linking. The automatic karar recog-
nition obtained via Makam Toolbox has failed in 7 pieces (record-
ings #1, #2, #3, #6, #7, #8 and #22, indicated as bold in Table A.4),



A.5. Results and Evaluation 227

Table A.5: The results of the section linking experiment includ-
ing all audio recordings. K-, K+, H- and H+ indicate results
obtained from fully-automatic karar recognition, semi-automatic
karar recognition, candidate estimation and sequential linking re-
spectively.

K-H- K+H- K-H+ K+H+
Accuracy 65.17% 69.83% 73.45% 80.45%
Specificity 0% 0% 13.33% 13.04%
Recall 72.38% 79.28% 81.01% 89.11%
Precision 86.75% 85.42% 88.15% 88.86%
F1 score 78.92% 82.23% 84.43% 88.98%
F3 score 73.60% 79.86% 81.67% 89.08%

Table A.6: The results obtained from the candidate estimationwith
semi-automatic karar detection. The results are grouped per in-
strumentation. #Rec., #Sec., #Un., tp, fn, fp, Accur., Precis., F1,
F3 stand for number of recordings, number of sections, number of
unrelated regions, number of true positives, number of false nega-
tives, number of false positives, accuracy, precision, F1-score and
F3-score respectively.

#Rec. #Sec. #Un. tp fn fp Accur. Recall Precis. F1 F3

Solo Ney 17 116 0 111 5 28 77.08% 95.69% 79.86% 87.06% 93.83%
Solo Stringed 12 131 14 95 36 8 68.35% 72.52% 92.23% 81.20% 74.10%
Duo / Trio 4 36 3 31 5 9 68.89% 86.11% 77.50% 81.58% 85.16%
Ensemble 11 79 7 50 29 4 60.24% 63.29% 92.59% 75.19% 65.36%
All 44 362 24 287 75 49 69.83% 79.28% 85.42% 82.23% 79.86%

which are corrected via the graphical interface of the Makam Tool-
box. The true positive, true negative, false positive, false negative
scores calculated per experiment is given in Table A.4. The global
accuracy, specificity, recall, precision, F1 score and F3 score ob-
tained from the candidate estimation and sequential linking with
automatic and semi-automatic karar recognition are given in Ta-
ble A.5.

In order to assess the effectiveness of predominant melodies
proposed, it is necessary to check the results obtained from the
candidate estimation with respect to the density of heterophonic
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and expressive elements. However, it is not straightforward to di-
rectly measure the level of heterophony and expressivity of an au-
dio recording. On the other hand, since these elements are related
to instrumentation, the results obtained from candidate estimation
are grouped and compared with respect to different types instru-
mentation (Table A.6).

The time elapsed per experiment are also recorded. The tim-
ings are then normalized with respect to the duration of the audio
recordings with the given formula:

tNi =
ti

duri
∗
∑n

i duri

n
(A.1)

where ti is the time elapsed during the section linking, duri is the
duration of the ithaudio recording andn is the number of the record-
ings (Table A.5). It takes an average of 42 seconds with a standard
deviation of 15 seconds to link the sections of a audio recording
approximately 275 seconds long (i.e. the average duration of an
audio recording in the dataset), when the implementation is run on
computer with a 4 GB RAM and 2.26 GHz processor.

A.6 Discussion
The results in Table A.5 points that the methodology is success-
ful in linking sections given in the scores with the corresponding
audio recordings. The method is able to deal with a wide number
of situations such as compositions without any section repetitions,
various ahenks, partial performances, Hane or Teslim repetitions
and recordings with unrelated parts. Table A.5 also shows that se-
quential linking has a clear success over candidate estimation, even
when failed karar detections are not altered.

The advantage of the sequential linking is more evident, when
results per piece (Table A.4) are inspected. Except the 14th record-
ing, where candidate estimation produced one erroneous link en-
closing a true link and sequential linking preferred the erroneous
one, sequential linking emits more true positives and less false neg-
atives. Moreover, there is no increase in the number of false posi-
tives obtained through all experiments, thus sequential linking pre-
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sents much better precision, recall and F-scores over evaluation on
raw links provided by the section estimation.

The results also show that the predominant melodies computed
by BOZ-YINf is a representative feature for section linking applied
to OTMM. Nevertheless, in Table A.6, it can be seen that as the
instrumentation of a recording gets more complex, i.e. the ten-
dency of observing heterophonic and expressive elements in an au-
dio recording increases, the accuracy and the F1-score decreases
almost monotonically. This suggests that an improvement in the
extraction of audio predominant melody is necessary. Through in-
specting errors in the audio recording level, it is seen that the cur-
rent bottleneck of the system is the pitch estimation. Since YIN
is designed for monophonic sounds, lots of confusions arise in the
fundamental frequency estimations due to the heterophonic nature
of OTMM, especially in ensemble performances. Moreover, YIN is
found to lose its robustness, where there are substantial usage of ex-
pressive elements such as legatos, slides and tremolos. This prob-
lem should be tackled by using multi-pitch extraction and promi-
nent melody detection (Salamon & Gómez, 2012).

A second problem occurs when the performers substantially de-
viate from the score i.e. a performer suspends the note while the
rest of the performers continue playing, some notes in an melodic
excerpt is played an octave up/down. In these situations, Hough
transformation detects either a short, single line segment or several
line segments in the region, where a section is being performed.
However, as explained in (Section A.2), the synthetic predominant
melody do not link to its corresponding location in the performance
under these circumstances, unless 70% of the section is covered
by the line segments. To handle these problems, a metric, which
compensates for octave differences might be devised, analogous
to octave-resilient methods used for Eurogenetic musics (Müller
et al., 2009). Moreover, arithmetic geometry operations might be
made more flexible by removing the 70% coverage constraint and
using the ratio of the coverage as a confidence measure for sequen-
tial linking. This way, the method will be allowed to link partial
similarity between the predominant melodies.

It is also observed that sequential linking predicts a consider-
able amount of regions which candidate estimate do not (100 vs.
68 false negatives with automatic karar recognition and 75 vs. 39
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false negatives with semi-automatic karar recognition). Most of
the remaining false negatives (30 false negatives out of 39, and 11
related false positives out of 40 with semi-automatic karar detec-
tion) after sequential linking are due to Hough transform not able
to yield any links for regions encompassing at least two consequent
composition related annotations in the previous step. These regions
might be linked to multiple sections by allowing sequential linking
make multiple decisions based on the duration of the particular re-
gion with respect to the previously linked sections. Nevertheless,
the core reason of this type of confusion is due to the partial dif-
ferences in the predominant melodies explained above. We predict
that by implementing the relevant measures proposed above, this
type of confusions will diminish without rendering the sequential
linking step much more complex.

Another drawback of the method is the detection of the unre-
lated regions in sequential linking.4 In this step, unrelated links
are currently found indirectly by locating related sections. Even if
there are no estimations given for a unrelated region after candidate
estimation, sequential linking typically predicts an erroneous link
in these regions (16 false positives out of 40 with semi-automatic
karar detection), resulting in a low specificity. To increase the de-
tection of true negatives, some direct means of linking the audio
signal with some types of unrelated events, i.e. through silence
and speech detection, may be useful.

Currently sequential linking does not have any restrictions on
the duration of a candidate link. By adding some constraints in
the duration of links (i.e. comparison of the performance speed
of a candidate in the audio recording by the speed of its synthetic
predominant melody and the speeds of the predominant melodies
of other sections already linked), an ample amount of erroneous
links to silent regions and regions spanning to multiple annotations
may also be avoided. Moreover, since the current approach for se-
quential linking is completely rule-based, every single special case
should be considered explicitly, which makes the implementation
hard to maintain and prone to errors. This type of situation is highly

4Note that candidate estimation does not currently produce any unrelated
links since it conceptually only tries to link patterns it is provided, and leaves the
time-related decisions to the sequential linking step.
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suitable for applying principles of fuzzy logic (Klir & Yuan, 1995).
Fuzzy logic might also lower the complexity of the code.

A.7 Conclusion and Future Work
We have proposed a method to link sections of a musical score of a
composition with the corresponding regions in an audio recording
of the performance of the same composition. We have tested the
method with 11 instrumental compositions of OTMM associated
with 44 audio recordings, obtaining remarkable performance in a
fast operation time.

Since a score section is basically a sequence of note events, the
candidate estimation step might be generalized to link any type of
melodic fragments with an audio recording. A generalized frag-
ment linking methodology might be helpful in computational tasks
such as audio-score alignment, embellishment detection, tonic anal-
ysis, tuning detection, intonation analysis and version detection.
Conversely, the candidate estimation methodology might require
specific adjustments for each task. Comparative candidate esti-
mation experiments should be carried using other techniques such
as general Hough transform (Ballard, 1981), SAX (Lin, Keogh,
Lonardi, &Chiu, 2003), dynamic programming (Serrà et al., 2009),
minimal geodesics (Kimmel & Sethian, 1998).

Currently, candidate estimation uses similarity matrices com-
puted from descriptors which are specifically designed for OTMM.
Similarly, the method can be adapted to other musical cultures by
computing descriptors, which are musically relevant to the culture
being studied.





Appendix B
Applications in Other

Music Cultures

While the methodologies presented throughout the thesis are de-
signed to address the culture-specific properties of OTMM, they
can be also used to study other musical cultures. This Appendix
focuses on three studies: 1) Score-informed note modeling (ex-
plained in Section 6.11), applied to study the tuning and intonation
of the svaras of Carnatic music (Section B.1). 2) Pitch distribution
basedmode recognition (explained in Section 5.7.2) in Carnatic and
Hindustani musics (Section B.7). 3) Fragment linking (explained
in Section 6.3) used to partially align melodic phrases between au-
dio recordings of Cretan music (Section B.8).

In fact, the first two use cases have been initially applied to Car-
natic music (Şentürk et al., 2016) and Hindustani music (Chordia
& Şentürk, 2013), and later adapted to OTMM. Below, the compu-
tational studies are explained in detail.

B.1 Score-Informed Note Models in Car-
natic Music

As argued in Section 6.11, defining a musical note as a sound with
a definite pitch frequency with possibly minor deviations (e.g. vi-
bratos) may be limited in its purview. To elaborate, we consider the

233
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case of Carnatic music, an art music tradition from south India. The
counterpart to note in this tradition is referred to as svara, which has
a very different musicological formulation. A svara is defined to be
a definite pitch value with a range of variability around it owing to
the characteristic movements arising from its melodic context. The
seven svaras in Carnatic music are S(a), R(i), G(a),M(a), P (a),
D(ha), N(i), which account for 12 pitch positions (svarasthanas),
S, R1, R2/ G1, R3/G2, G3, M1, M2, P , D1, D2/N1, D3/N2,
N3 (Krishna & Ishwar, 2012). It is emphasized that the identity
of a svara lies in this variability (Krishna & Ishwar, 2012), which
makes it evident that the former model of notes has a very limited
use in this case. The arguments related to variability are also rele-
vant to Hindustani music, an art music form prevalent in northern
parts of the Indian subcontinent and as well as many other melody-
dominant music cultures such as Ottoman-Turkish makam music.

In (Şentürk et al., 2016), we discuss a statistical model of notes
that broadens the scope of the former, encapsulating the notion of
the variability in svaras (Section B.3). We develop a methodology
that exploits score information to automatically process the pitch
content of audio recordings (Section B.4). The methodology first
aligns the audio recording with the relevant music score. This step
is designed to handle the structural differences between the music
score and the audio performance. Next, the pitch values are aggre-
gated for each note symbol from the aligned instances of the notes
and these pitch values are used to compute a statistical represen-
tation for each note. The methodology is evaluated extrinsically
in a classification task comparing the results with a state-of-the-art
system (Koduri et al., 2014) (Section B.5) using two datasets (Sec-
tion B.2).

Our contributions in (Şentürk et al., 2016) can be summarized
as:

1. A novel, computational note model, which is able to describe
the characteristics of the notes statistically besides its definite
location

2. Adaptation of a state of the art audio-score alignment method
proposed for another melody dominant culture to Carnatic
music
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3. Simplification and generalization of the audio-score align-
ment method

4. A new dataset of Carnatic music, composed of audio record-
ings and music scores linked to each other in the document-
level

B.2 Data
For evaluation, we use the Carnatic Varnạṁ test dataset (CAR-
VAR)1 (see (Koduri et al., 2014) for a description of varnạṁs and
the dataset). Varnạṁs are compositions that are often sung to the
score unlike several other forms which are interlaced with improvi-
sation. Note that even though the order of the cycles in the score are
retained, the performers tend to omit a few cycles or repeat a few
of them twice with some minor variations. The dataset has annota-
tions at the metrical cycle-level synchronizing the audio recording
and the extracted melody with the score. There are 7 rāgas, 27
recordings and 1155 cycle-level annotations. The average cycle-
duration is 9.8 seconds with a standard deviation of 1.2 seconds.
The music scores in the dataset are notated as a sequence of svara
symbols and their relative durations. The metrical cycles are in-
dicated in the score. There is no nominal tempo information in
the score as the performance tempo is decided by the performer.
With an assumption that each svara within the cycle is sung ex-
actly according to its relative duration in the score, the svaras in
the recording are annotated semi-automatically.

This dataset comes with a limitation that all the performances
of a given rāga are of the same composition. Therefore the repre-
sentation computed for a svara can be specific to either the rāga or
the composition. In order to eliminate this ambiguity, we have put
together another dataset, called Carnatic Krṭi test dataset (CAR-
KRI), which is more diverse in terms of the number of composi-
tions per rāga.2 The details of the dataset are shared in Table B.1.
TheCAR-VAR is drawn from the performances of a compositional
form known as varnam. Our dataset contains performances of an-
other compositional form known as krṭi. The latter are more com-

1Available at http://compmusic.upf.edu/carnatic-varnam-dataset
2The dataset is available at http://compmusic.upf.edu/node/314.

http://compmusic.upf.edu/node/314
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Rāga #Comp. #Singer #Rec.
Anandabhairavi 3 5 7
Atana 4 5 5
Bhairavi 5 7 8
Devagandhari 5 5 5
Kalyani 4 4 5
Todi 9 15 15
Total 30 24 45

Table B.1: A more diverse dataset compared to the Car-
natic Varnạṁ test dataset. This consists of 40 recordings in 6 rāgas
performed by 24 unique singers encompassing 30 compositions.

mon in concert performances, where the performers take liberty to
do an impromptu improvisation. As a result, krṭis are almost always
not sung to the score and hence pose more challenges compared
to varnạṁs for a score-informed approach such as ours. Note that
we follow the same format of the scores in CAR-VAR to notate
the krṭi compositions.

B.3 Model of Musical Notes
Research that involved analysis of svaras in Indian art music has
time and again shown that reducing svara to a frequency value re-
sults in loss of important information (Subramanian, 2007; Krish-
naswamy, 2003; Chordia & Şentürk, 2013). Computational svara
descriptions that use more melodic context for the description of
a svara such as pitch histograms, have been shown to outperform
the naive descriptions such as pitch-class distributions (Koduri et
al., 2012, 2014). We build on these observations from the past re-
search and consolidate that to a statistical model of notes that would
facilitate extracting information that is otherwise opaque to the cur-
rently used model.

Figure B.1 shows melodic contours extracted from the individ-
ual recordings ofM1 svara (498 cents in just-intonation) in differ-
ent rāgas. It shows that a svara is a continuum of varying pitches
of different durations, and the same svara is sung differently in
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Figure B.1: Example predominant melodies ofM1 svara in differ-
ent rāgas. the X-axis is time normalized with respect to the length
of each predominant melody. The tuning of M1 svara according
to the just-intomation temperament (498 cents) is indicated with a
continuous red line. Notice that the majority of the pitches are sung
quite distant from the theoretical tuning.

two given rāgas. Note that a svara can vary even within a rāga in
its different contexts (Subramanian, 2007; Krishnaswamy, 2003).
Taking this into consideration, we propose a statistical model of
notes that aims for a more inclusive representation of pitches con-
stituent in a svara. In this model, we define a note as a proba-
bilistic phenomenon on a frequency spectrum. This notion can be
explored in two approaches that are complementary in nature: i)
temporal, which helps to understand the evolution of a particular
instance of a svara over time (This has been theoretically explored
by Krishnaswamy (2003)) and ii) aggregative, which allows for
studying the whole pitch space of a given svara in its various forms,
often discarding the time information.

Our method, presented in the following section, takes the latter
approach. From the annotations in our dataset, we aggregate the
predominant melodies over the svara reported in Figure B.1 for the
same set of rāgas. Figure B.2 shows its representations, computed
as described in Section B.4.2. The correspondences between the
two figures are quite evident. For instance,M1 in Bēgadạ is sung as
an oscillation between G3 (386 cents) andM1. The representation
reflects this with peaks at the corresponding places. Further, the
shape of the distributions reflect the nature of pitch activity therein.
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Figure B.2: Histograms of M1 svara computed from the anno-
tated predominant melodies shown in Figure B.1. The tuning of
M1 svara according to the just-intomation temperament (498 cents)
is indicated with continuous red lines.

The goal of our approach is to obtain such representations for svaras
across different rāgas in our dataset automatically.

B.4 Methodology
Our method starts by aligning the audio and the score at the cycle-
and the svara-level (Section B.4.1). Then the pitch values in differ-
ent instances of a given svara are obtained and an aggregate repre-
sentation of a svara is computed (Section B.4.2).

B.4.1 Audio-score alignment
Audio-score alignment can be defined as the process of finding
the segments in the audio recording that correspond to the perfor-
mance of each musical element in the music score. For this task,
several approaches have been proposed using techniques such as
Hidden Markov models (Cont, 2010; Maezawa, Okuno, Ogata, &
Goto, 2011), conditional random fields (?, ?) and DTW (Dixon &
Widmer, 2005; Fremerey et al., 2010; Niedermayer, 2012).

The structural mismatch between the music score and the audio
recording is a typically encountered challenge in audio-score align-
ment. This is also common phenomenon in the performances of
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varnams and kritis, where the singers tend to repeat, omit or insert
cycles in the score. To overcome this problem there exists method-
ologies, which allow jumps between structural elements (Fremerey
et al., 2010; Holzapfel et al., 2015). However these methodologies
are not designed to skip musical events in the performance, which
are not indicated in the score, such as impromptu improvisations
commonly sung in kritis (Section B.2). Moreover, wemay not need
a complete alignment between the score and audio recording in or-
der to accumulate a sufficient number of samples for each svara.

In (Şentürk, Holzapfel, & Serra, 2014), an audio-score align-
ment methodology for aligning audio recordings of OTMM with
structural differences and events unrelated to the music score was
introduced, and it is later extended to note-level alignment in (Şen-
türk, Gulati, & Serra, 2014). The methodology proposed in (Şen-
türk, Holzapfel, & Serra, 2014), divides the score into meaning-
ful structural elements using the editoral section annotations in the
score. It extracts a predominant melody from the audio recording
and computes a synthetic pitch of each structural element in the
score. Then it computes a binarized similaritymatrix for each struc-
tural element in the score from the predominant melody extracted
from the audio recording and the synthetic pitch. The similarity
matrix has blobs resembling lines positioned diagonally, indicat-
ing candidate alignment paths between the audio and the structural
element in the score. Hough transform, a simple and robust line de-
tection method (Ballard, 1981), is used to locate these blobs and
candidate time-intervals for where the structural element is per-
formed is estimated. To eliminate erroneous estimations, (Şen-
türk, Holzapfel, & Serra, 2014) uses a VLMM based scheme, which
is trained on structure sequences labeled in annotated recordings.
Finally, SDTW is applied to the remaining structural alignments to
obtain the note-level alignment (Şentürk, Gulati, & Serra, 2014).

Our alignment methodology is based on the method described
in (Şentürk, Holzapfel, & Serra, 2014; Şentürk, Gulati, & Serra,
2014). Since the original methodology is proposed for OTMM, we
optimize several parameters according to the characteristics of our
data. We also modify several steps in the original methodology for
the sake of generalization and simplicity. These changes will be
detailed throughout this section, hereafter. The procedure in our
methodology can be summarized as:
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1. Feature extraction: Given an audio recording (a), we ex-
tract a predominant melody ϱ(a) using the method proposed
in (Salamon & Gómez, 2012). This method has been shown
to output reliable pitch estimations on Carnatic music recor-
dings (Koduri et al., 2014). The sampling rate of the predom-
inant melody is equal to≈ 334.5 Hz, which is reported as an
optimal for the methodology in (Salamon & Gómez, 2012).
The tonicκ(a) is extracted automatically using (Gulati, 2011),
which is reported to output near-perfect results in identifying
the tonic of Carnatic music recordings. Then, the predom-
inant melody is normalized by tonic frequency and ϱ̂(a) is
obtained.
Parallel to audio predominant melody extraction, the sva-
ra symbols notated in the score are mapped to their cent-
scale equivalents using just-intonation temperament (Serrà,
Koduri, Miron, & Serra, 2011). Then, the score is divided
into cycles p̄(b)j according to the cycle boundaries annotated

in the score. For each cycle p̄(b)j , a synthetic pitch Ψ̂

(
p̄
(b)
j

)
is

computed by sampling a hypothetical continuous predomi-
nant melody corresponding to the svara sequence (Şentürk,
Holzapfel, & Serra, 2014) (Section 4.2.2). In this process,
the tempo τ (b) of the score is considered as 70 bpm, which
is reported in (Koduri et al., 2012) as the average tempo in
the CAR-VAR. The sampling rate of the synthetic pitch is
equal to the sampling frequency of the audio predominant
melody. During the synthetic pitch computation, the svara
onset and offset timestamps t

(
n̄
(b)
k

)
| n̄(b)

k ∈ N̄(b) are recor-
ded. This information is used to obtain the svara-level align-
ment later.

2. Cycle-Level Alignment: Instead of Hough transform used
in (Şentürk, Holzapfel, & Serra, 2014), we use ISDTW (ex-
plained in Section 6.3.2), a common methodology used to
find a queried subsequence in a given target (Müller & Ap-
pelt, 2008; Anguera & Ferrarons, 2013) to estimate the time-
intervals, where a cycle is performed. Our preliminary ex-
periments on the Carnatic Varnam Dataset showed that us-
ing ISDTW gave comparable results toHough transform. More-



B.4. Methodology 241

over, ISDTW simplifies the note-level alignment step com-
pared to (Şentürk, Gulati, & Serra, 2014) since note onset
and offsets can be directly inferred from the paths obtained
from ISDTW, without introducing an additional process (e.g. SDTW
in (Şentürk, Gulati, & Serra, 2014) as described in Section 6.3.2).
We set the step size to {(2, 1) , (1, 1) , (1, 2)}. This step size
restricts the path between half and double of the tempo, which
helps to avoid pathological errors. To obtain an accumu-
lated cost matrix, Aκ(a),(a,p̄

(b)
j ) for each cycle (p̄

(b)
j ) (Equa-

tion 6.6), we use the local distance measure defined in Equa-
tion 5.3. Remember that this distance may be interpreted as
the shortest distance in cents between two pitch classes and
it is not affected by octave-errors in the normalized predom-
inant melody.
We use iterative subsequence dynamic timewarping (ISDTW)
given in (Müller, 2007, Page 81) (Section 6.3.2) to estimate
multiple alignments for each cycle

(
p̄
(b)
j

)
. We iterate the

algorithm for 12 times for each cycle. After each iteration,
we obtain a set of cycle estimations
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indices in the predominant melody of the audio recording (a)
and the synthetic melody of the score cycle
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, respec-

tively. Section B.5 presents the experiments to search the
optimal value for the binarization threshold, β(B), used in
the similarity computation. After each iteration, the indices

between rl
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, are set to infinity so that a new path will
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not be searched nearby in the next iteration.
3. Discarding erroneous estimations: At this step a consider-

able number of correct estimations are obtained albeit with a
comparable number of erroneous estimations. Nonetheless, a
high precision has to be ensured in the cycle-level alignment
to obtain a reliable svara description. In order to achieve this,
a trade in the recall can be afforded in the process since a
moderate recall in the cycle-level alignment would still be
able to supply a good number of samples per svara.
The method proposed for discarding erroneous estimations
in (Şentürk, Holzapfel, & Serra, 2014) is not generalizable
as introducing a new form with a different structure requires
substantial number of training recordings in that form. For
this reason, we choose to use an unsupervised estimation se-
lection scheme, which is more generalizable and simpler.
The estimated cycles are clustered into two classes with re-
spect to their similarity values (i.e. “good” and “bad” estima-
tions). k-means clustering (MacKay, 2003) is used to clus-
ter the estimations. We use squared Euclidean distance as
the distance measure and discard the cluster with low scores.
Next, the estimations, which overlap more than 3 seconds in
time, are grouped. In each group, only the estimation with
the highest similarity-value is kept as the music has a single
melody track throughout. In Section B.5, the alignment re-
sults after discarding estimations both without (i.e. only dis-
carding overlapping estimates) and with k-means clustering
are reported.

4. Note-Level Alignment: Recall that the svara onset times-
tamp, tini
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)
, and offset timestamp, tfin

(
n̄
(b)
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)
, in each

cycle of the synthetic pitch, Ψ̂
(
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j

)
, are known. The aligned

svara onset and offsets are directly obtained as the times-

tamps, t
(
r
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)
l

)
, which are mapped to these onsets and

offsets inside the alignment path,ϖ
(
p̄
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i , p̄

(b)
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)
.
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Figure B.3: Description ofM1 svara (498 cents in just intonation)
using our approach.

B.4.2 Computing svara representations

For a given recording, for each svara, nk, in the corresponding rāga,
we obtain a pool of normalized pitch values,

{
ρ̂
(nk)
1 , ρ̂

(nk)
2 , . . .

}
,

aggregated over all the aligned instances from its melodic contour.
Our representationmust capture the probabilities of the pitch values
in a given svara. Histograms are a convenient way for representing
the probability density estimates (Chordia & Şentürk, 2013; Koduri
et al., 2014). Therefore, we compute a normalized histogram Ĥ

(nk)

over the pool of the pitch values as described in Section 5.5, Equa-
tion 5.4. For brevity sake, we consider pitch values over the middle
octave (i.e., starting from the tonic) at a bin-resolution b

(
Ĥ
)
of

one cent.

Figure B.3 shows the representations obtained in this manner
forM1 svara (our running example from Figure B.1) in different rā-
gas. Notice that the representations obtained forM1 are similar to
the corresponding representations shown in Figure B.2. This rep-
resentation allows to deduce important characteristics of a svara
besides its definite location (i.e., 498 cents) in the frequency spec-
trum. For instance, from Figure B.3, one can infer thatM1 in Be-
gada and Saveri are sung with an oscillation that ranges from G3

(386 cents) to P (701 cents) in the former andM1 to P in the latter.
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B.5 Evaluation and Results
Ourmethod is evaluated on the two datasets described in SectionB.2
using the following tasks:

i. The cycle-level alignment, evaluated intrinsically using the
ground truth annotations from the Carnatic Varnạṁ test data-
set.

ii. The svara-level alignment and the computed representation,
evaluated extrinsically on both Carnatic Varnạṁ test dataset
and the Carnatic Krṭi test dataset via rāga classification task.

The svara-level alignments cannot be verified in an intrinsic
manner because marking the ground truth is prone to be erroneous
as it is difficult for even musicians to agree with each other on the
exact boundaries of a svara sung in a melodic continuum.3

To evaluate the cycle-level alignment, we check the time-dis-
tance between the estimated borders of the cycle and annotated
borders as described in (Şentürk, Holzapfel, & Serra, 2014) (Sec-
tion 6.7.4). A cycle is marked as a true positive if the distance be-
tween both of the boundaries of the aligned cycle and the relevant
annotation is less than 3 seconds. It is marked as a false positive
otherwise. If there is no estimation for an annotation, it is marked
as a false negative.

Figure B.4 shows the recall, precision andF1-score for different
binarization thresholds used in similarity computation. Figure B.4a
shows that our methodology achieves a balanced recall and pre-
cision in the cycle-level alignment even without having a precise
information on the performance tempo. Figure B.4b shows that
the process described to the discard erroneous alignments removes
most of the false positives within an acceptable decrease in recall.
It can also be observed that our cycle-level alignment is insensi-
tive to the binarization threshold, β(B). When the parameter is
selected between 50 cents (a quarter tone) and 200 cents (a whole
tone), there is no a significant difference in the alignment results
at the p = 0.01 level as determined by a multiple comparison test

3The experiments and the results are available at http://compmusic.upf
.edu/node/314.

http://compmusic.upf.edu/node/314
http://compmusic.upf.edu/node/314
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Figure B.4: Results of cycle-level alignment for different binariza-
tion threshold values.

Method CAR-VAR CAR-KRI
Context-based svara distributions (Koduri et al., 2014) 0.62 0.64
Our approach 0.95 to 1 0.88
Using the groundtruth annotations 0.95 N/A

Table B.2: Results of rāga classification task over the two datasets
using different approaches.

using the Tukey-Kramer statistic. Hereafter, we report results for
a binarization threshold of 150 cents.

Using an β(B) of 150 cents, we achieve a 0.42 recall, 0.81precision
and 0.56 F1-score in cycle-level alignment after discarding the er-
roneous estimations. The mean and the standard deviation of the
true positives are 0.62 and 0.59 seconds, respectively. Within the
Carnatic Varnam dataset, we align 606 cycles and 15795 svaras in
total. Out of these cycles 490 are true positives. By inspecting the
false positives we observed two interesting cases: occasionally an
estimated cycle is marked as false positive when one of the bound-
ary distances is slightly more than 3 seconds. The second case is
when the melody of the aligned cycle and performance is similar
to each other, e.g. ν

(
p̄
(a)
i , p̄

(b)
j

)
> 0.6. In both situations consider-

able number of the note-level alignments would still be useful for
the svara model. Within CAR-KRI, 1938 cycles and 59209 svaras
are aligned in total.

We use a rāga classification task to evaluate the correctness of
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the svara alignments and the usefulness of the svara representation
created using our statistical model. Our svara representation was
shown to perform better compared to the existing representations
in our previous work (Koduri et al., 2014). Therefore, in this task
our primary motive is to evaluate the correctness of the svara align-
ments. However, as marking the svara boundaries is not a viable
task, we combine it with evaluating the usefulness of the repre-
sentation itself in a rāga classification task. We parametrize the
representation of each svara using a set of features proposed in our
aforementioned work, which include salient observations and the
shape parameters of the histogram:

i. The highest probability value in the histogram of the svara
ii. The pitch value corresponding to the highest probability
iii. A probability-weighted mean of pitch values
iv. Pearson’s second skewness coefficient
v. Fisher’s kurtosis
vi. Variance

There are 12 svaras in Carnatic music, where each rāga has a
subset of them. For the svaras absent in a given rāga, we set the
features to a nonsensical value. Each recording therefore has 72
features in total.

The smallest rāga-class has three recordings in the Carnatic Var-
nam dataset, with few classes having more, so we subsampled the
dataset six times (corresponding to the highest number of record-
ings for a class) with three recordings per class. We have also sub-
sampled our dataset in a similar manner. The k-nearest neighbors
classifier was earlier shown to perform the best in several rāga clas-
sification tasks with varied feature sets (Koduri et al., 2014). We
use the same, with Euclidean distance metric and the number of
neighbors set to one.

We compare the results of our approach with the one proposed
by Koduri et al. (2014) which was shown to outperform the pre-
vious methods of rāga classification by a slight margin. Their ap-
proach uses a moving window to estimate the local temporal con-
text of a small section of melodic contour which is further used to
estimate the svara sung at that instance. For each svara, we obtain
the corresponding pitch values and use them to create a representa-
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tion using the method described in Section B.4.2, and parametrize
it as described earlier in this section. We further compare these re-
sults with that obtained using the representation computed from the
annotated svara instances in the dataset.

We performed the classification experiment over the subsam-
ples of the two datasets using the leave-one-out cross-validation
technique. For our approach, we repeated the experiment with
the alignment data resulting from different binarization thresholds.
The mean F1-scores using the representations obtained from the
annotations in the dataset, our approach and (Koduri et al., 2014)
across the subsampled datasets for the two datasets are reported in
Table. B.2. Our approach has performed significantly better than
the earlier one in (Koduri et al., 2014) on both datasets, and is on
par with the method using annotated data. This is a strong indi-
cation that our description using the statistical model succeeds in
capturing the variability, and therefore the identity of svaras. We
also observed that different binarization threshold values have a
unimportant impact on the classification accuracy.

B.6 Summary
We have presented a statistical model of musical notes that expands
the scope of the current model in use by addressing the notion of
variability of svaras. An approach that builds on this model and ex-
ploits scores to describe pitch content in the audio music recordings
is presented and evaluated at various levels. The results clearly in-
dicate that our approach is successful in obtaining a computational
description of the svaras improving over the state-of-the-art results
significantly.

CAR-VAR has 7 rāgas, one composition per rāga sung by 3
to 5 artists. We believe this to be one of the contributing factors
to a near perfect result using our approach in the rāga classifica-
tion test. We have put together a more diverse dataset that encom-
passes more compositions per rāga. Our approach has been shown
to be robust to the variability of svaras across compositions in a
given rāga. However, we seek attention to the fact that our align-
ment method relies on the average tempo of the recordings com-
puted from the annotations of the Carnatic Varnam dataset (Koduri
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et al., 2014). In order to make the systemmore self-reliant, we plan
to add an initial tempo estimation step similar to (Holzapfel et al.,
2015) by aligning a single cycle using SDTW and resynthesizing the
synthetic melodies according to the estimated tempo. We also plan
to improve the alignment step by incorporating the svara models in
the similarity computation within a feedback mechanism.

An interesting direction to our work is to infer possible facts
about a svara from its description. For instance, answering ques-
tions such as: i) “Is the svara sung steadily?” ii) “Where is the
oscillation on a svara anchored?” and so on. These can further
be used as parameters that describe the svara even more concisely.
Another direction which interests us is the development of alterna-
tive computational descriptions using our statistical model of notes.

B.7 Mode Recognition in Carnatic and
Hindustani Music

The multi-distribution per rāga method (Chordia & Şentürk, 2013)
implemented inMOdeRecognition andTonicYdentification Tool-
box (Karakurt et al., 2016) (MORTY) (Karakurt et al., 2016) (de-
scribed in Section 5.7.2) has been used as a benchmark for rāga/rāg
recognition of audio recordings of Hindustani and Carnatic music
in comparison with two novel methods (Gulati, Serrà, Ganguli, et
al., 2016; Gulati, Serrà, Ishwar, et al., 2016). In both papers, the
optimal parameters of the multi-distribution per rāga method re-
ported in (Chordia & Şentürk, 2013) are used (bin size b

(
Ĥ
)
= 10

cents, kernel width σ
(
Ĥ
)
= 10 cents, number of nearest neigh-

bors k = 1 using Bhattacharyya distance). Note that there al-
ready exists a method for tonic identification for these music tra-
ditions (Salamon, Gulati, & Serra, 2012; Gulati, 2011), which is
reported to provide near perfect results. This method is used in
both papers to automatically identify the tonic. Therefore, the tonic
identification and joint estimation experiments are not conducted.
For more details on the proposed methodologies and experiments,
please refer to (Chordia & Şentürk, 2013; Gulati, Serrà, Ishwar, et
al., 2016) and (Gulati, 2016, Chapter 6).
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Table B.3: The highest accuracies obtained by the methods com-
pared in (Gulati, Serrà, Ishwar, et al., 2016).

(Gulati, Serrà,
Ishwar, et al.,
2016)

(Chordia & Şen-
türk, 2013)

(Koduri et al.,
2014)

10 rāga dataset 91.7% 89.5% 70.1%
40 rāga dataset 69.6% 74.1% 51.4%

In (Gulati, Serrà, Ishwar, et al., 2016) a rāga recognitionmethod
for Carnatic music based on melodic motif characterization using
graph analysis is proposed. The method has been compared with
the multi-distribution per rāga method (Chordia & Şentürk, 2013)
and a method based on parameterizing the pitch distributions com-
puted from individual svaras (Koduri et al., 2014). The methods
are evaluated two datasets with 10 rāga and 40 rāga setups in a
10-fold cross validation scheme. Table B.3 shows the accuracies
obtained by the aforementioned methodologies on these datasets.
The methodologies proposed in (Gulati, Serrà, Ishwar, et al., 2016)
and (Chordia & Şentürk, 2013) output similar results and they sig-
nificantly outperform the method proposed in (Koduri et al., 2014).
When the confusions were inspected, it was seen that the methods
proposed by Gulati, Serrà, Ishwar, et al. (2016) and (Chordia &
Şentürk, 2013) provided complementary results. Gulati, Serrà, Ish-
war, et al. (2016) is better in distinguishing “allied” rāgas, which
have similar scales but different melodic progressions, while the
multi-distribution per rāga method (Chordia & Şentürk, 2013) is
more successful in recognizing scale-based rāgas.

In the latter work (Gulati, Serrà, Ganguli, et al., 2016), a method
based on extracting a novel feature termed by the authors as the
“time-delayed melody surface” is proposed for rāga/rāg recogni-
tion in Carnatic and Hindustani music. This method is compared
against the multi-distribution per rāga method (Chordia & Şentürk,
2013) and the method previously proposed in (Gulati, Serrà, Ish-
war, et al., 2016) on the same 40 rāga dataset used in (Gulati, Serrà,
Ishwar, et al., 2016) and a new 30 rāg dataset of Hindustani music.
In the experiments, leave-one-out cross validation is used instead
of 10-fold cross validation. The comparative results are summa-
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Table B.4: The highest accuracies obtained by the methods com-
pared in (Gulati, Serrà, Ganguli, et al., 2016).

(Gulati, Serrà,
Ganguli, et al.,
2016)

(Chordia & Şen-
türk, 2013)

(Gulati, Serrà,
Ishwar, et al.,
2016)

40 rāga dataset 97.7% 91.7% 83.0%
30 rāg dataset 86.6% 73.1% 68.1%

rized in Table B.4. On both datasets, the multi-distribution per rāga
method (Chordia & Şentürk, 2013) significantly outperforms the
method previously proposed in (Gulati, Serrà, Ishwar, et al., 2016).
However, the method proposed by Gulati, Serrà, Ganguli, et al.
(2016) significantly outperforms both methods. The results show
that time-delayed melody surface is a superior feature than pitch
distribution on the rāga/rāg recognition task and potentially inmode
recognition tasks in other music cultures.

B.8 Melodic Phrase Matching in Cre-
tan Music

Recently, the characteristics of the leaping dances of Crete has
been studied by Holzapfel (in press, 2015a). The author focuses
on identifying the melodic key phrases, which occur across the au-
dio recordings of different dances. The audio recordings are se-
lected from the commercial recordings of well-known performers.
Initially, the author applies automatic beat detection to the audio
recordings using the methodology proposed in (Davies & Plumb-
ley, 2007) and then corrects the errors manually. From the beats
the measure boundaries are inferred directly from the knowledge
that the studied dances follow a 2/4 musical meter.

Next, the predominant melody is extracted from each recording
using MELODIA (Salamon & Gómez, 2012). The extracted pre-
dominant melody is sliced into patterns of two measures long with
an overlap of a measure. Each pattern in a recording is searched in
the rest of the recordings using the fragment linking method pro-
posed in (Şentürk, Holzapfel, & Serra, 2014) (Section 6.3). Af-
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Figure B.5: Distribution of the detected melodic patterns for
the five leaping dances of Crete. The Figure is reproduced
from (Holzapfel, in press), courtesy of André Holzapfel.

ter matching the patterns by this partial audio-to-audio alignment
scheme, the author reports the probability of a pattern played in a
particular dance observed in other dances (or itself) (Figure B.5).
From the probability distributions, the author discusses the rela-
tions between different dances in terms of their geographical ori-
gins, performance practice and similarity of movements.

B.9 Conclusion
This Appendix presented examples of how several analysis meth-
ods described throughout the thesis are used in othermusic cultures.
In the future, I would like to extend the methodology to automat-
ically adapt the parameters according to the culture-specific prop-
erties of the studied music culture.

Note that the developed methodologies are not necessarily lim-
ited to melody-dominant music traditions. As an example, semi-
improvised jazz music performances, where musicians build vari-
ations of predefined melodies through improvisation, share a simi-
lar basis with OTMM. The variations of a characteristic motif may
be identified through out a performance using the fragment link-
ing methodology described in Section 6.3 similar to (Holzapfel,
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2015a). In this case, computing HPCPs (Section 5.3) from the no-
tated melody (based on jazz harmony) might be more suitable than
computing a monophonic predominant melody. Similarly, audio-
score alignment proposed in Chapter 6 might be adapted to struc-
ture analysis in Eurogenetic musics by replacing the predominant
melodies with some harmonic descriptors.



Appendix C
Towards Open and

Reproducible Research

In the start of the CompMusic project, there had been a lack of
open-source software tools, which aimed at computational analy-
sis of the studied music cultures. Moreover, most of the existing
automatic analysis tools such as Essentia (Bogdanov et al., 2013)
and TarsosDSP (Six et al., 2014) could be mostly utilized for ex-
tracting low-level features without any culture-aware processing
and therefore these tools were not able to address most of the rele-
vant research problems. While Makam Toolbox by Bozkurt (2008)
has been an invaluable tool for automatic description of OTMM
recordings, the toolbox is not practical to extend and deploy (e.g.
to Dunya-makam) due to its implementation inMATLAB, a propri-
etary programming language. Likewise, the lack of music corpora
representing the studied music traditions (Chapter 3), test datasets
tailored for the studied research tasks (Section 3.2) as well as re-
producible experiments and the obtained results.

Initially, I had not identified the lack of public tools, datasets
and experiments as a problem itself. As a result, many of the early
research presented in this thesis (such as (Şentürk et al., 2012)) are
not reproducible. In later stages of my doctoral research, I expe-
rienced the absence of resources and tools as a major obstacle for
reproducing, building on top of and hence advancing music infor-
mation research (MIR). Therefore, I have dedicated a fair amount

253



254 Towards Open and Reproducible Research

of effort in the last year of my PhD to reimplement the existing
state-of-the-art applied on OTMM (e.g. most of the methodologies
described in Chapter 5) and package the implementations of the
novel methodologies proposed in this thesis (e.g. the audio-score
alignment methodologies described in Chapter 6) with modularity,
readability and extensibility in mind. In the meantime, I have either
spearheaded or contributed to the creation, curation and mainte-
nance of the collections Dunya-makam corpus and the test datasets
described in Chapter 3. Moreover, I share the results of almost all
of the experiments done throughout my doctoral research with the
extracted features and complementary metadata. Some of my later
publications, e.g. (Şentürk & Serra, 2016b; Karakurt et al., 2016)
are designed to be fully reproducible.

The rest of the Appendix is organized as follows: Section C.1
presents the open tools, coding practices and the services used. Sec-
tion C.2 explains the organization of the test datasets, experiments
and publications. Section C.3 finalizes this Appendix with a brief
conclusion.

C.1 Software
The analysis tasks described throughout the thesis are packaged
into separate repositories for the sake of modularity. They are pub-
licly hosted in GitHub1 with complete version history. To pro-
mote open science and reproducibility, the repositories are pub-
lished free of charge under the AGPLv3.2 Within the development
cycle, the code is periodically released according to the conven-
sions defined by the Semantic Versioning v2.0.0.3 Moreover, each
release is automatically assigned a digital object identifier (DOI)
using Zenodo’s4 Github integration to be able to discover and cite
the code with proper versioning.5 In order to detect erroneous be-
haviour (e.g. bugs) immediately and ensure reliable operation, the
majority of the repositories consist of unit tests. These unit tests,

1https://github.com/
2https://www.gnu.org/licenses/agpl-3.0.en.html
3http://semver.org/spec/v2.0.0.html
4https://zenodo.org/
5https://guides.github.com/activities/citable-code/

https://github.com/
https://www.gnu.org/licenses/agpl-3.0.en.html
http://semver.org/spec/v2.0.0.html
https://zenodo.org/
https://guides.github.com/activities/citable-code/
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along with code style validation,6 code coverage7 and code qual-
ity8 checkers, are invoked automatically using Travis CI,9 when
a “commit” is pushed to GitHub. This automated setup, helps to
identify and solve software bugs earlier; reduces the time, effort
and risks introduced by code repetition; improves readability and
enhances sustainable development, in general.

Except the audio-score alignment code, all tools are implemen-
ted in Python 2.7. They generally follow the conventions of object-
oriented programming. For coding style consistency, PEP 8 style
guide10 is strictly followed. The code in each package is orga-
nized into modules.11 Moreover the packages include the setup
scripts,12 which would allow the user to install these packages to
different machines with ease. The code depends on other open
source software such as NumPy (van der Walt, Colbert, & Varo-
quaux, 2011) and SciPy (Jones, Oliphant, Peterson, et al., 2001–
) for numeric computations, scikit-learn (Pedregosa et al., 2011)
for machine learning related tasks, NetworkX (Hagberg, Schult, &
Swart, 2008) for graphs analysis, pandas (McKinney, 2010) for
processing tabular data, matplotlib (Hunter, 2007) for visualiza-
tions,MusicBrainz NGS bindings13 for crawlingMusicBrainz, Lily-
Pond (Nienhuys & Nieuwenhuizen, 2003) for score engraving, Es-
sentia (Bogdanov et al., 2013) for audio processing and eyeD314
for reading embedded metadata in audio files. Jupyter notebooks15
are provided as “user manuals” of each package to demonstrate ex-
ample usage. Since one of motivations of the thesis is handling
large digital audio collections, we also provide examples of par-
allelization through ipyparallel,16 which is a part of the IPython

6using flake8 (http://flake8.pycqa.org/en/latest/) for the code
in Python

7using codecov (https://codecov.io/) for the code in Python
8using QuantifiedCode http://docs.quantifiedcode.com/ for the

code in Python
9https://travis-ci.org/
10https://www.python.org/dev/peps/pep-0008/
11https://docs.python.org/2/tutorial/modules.html
12https://docs.python.org/2/distutils/setupscript.html
13https://github.com/alastair/python-musicbrainzngs
14http://eyed3.nicfit.net/
15http://jupyter.org/
16https://github.com/ipython/ipyparallel/releases

http://flake8.pycqa.org/en/latest/
https://codecov.io/
http://docs.quantifiedcode.com/
https://travis-ci.org/
https://www.python.org/dev/peps/pep-0008/
https://docs.python.org/2/tutorial/modules.html
https://docs.python.org/2/distutils/setupscript.html
https://github.com/alastair/python-musicbrainzngs
http://eyed3.nicfit.net/
http://jupyter.org/
https://github.com/ipython/ipyparallel/releases
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project (Pérez & Granger, 2007).
Two repositories are not written in Python. The symbolic phrase

segmentation methodology (explained in Section 4.4) is implemen-
ted in MATLAB scripting language.17 The repository is a fork of
the original source code by Bozkurt, Karaosmanoğlu, et al. (2014).
The fork introduces performance optimizations and wrapper func-
tions for several steps such as feature extraction, training and test-
ing. The second is the audio-score alignment code, which is mainly
written inMATLAB scripting, except the DTW implementation in C.
The DTW implementation is primarily written by Sankalp Gulati18
withmodifications for OTMM(such as the implementation of Equa-
tion 5.3) introduced by myself. The implementation is compiled
as a mex function19 to interface with the MATLAB scripts. Cur-
rently, the phrase segmentation20 and audio-score alignment21 code
is compiled into binaries for Linux and MacOSX using MATLAB
compiler22 in MATLABR2015a (8.5), hence the algorithms can be
called usingMATLABRuntime 23 without the need of aMATLAB
proprietary license. In the future, we would like to port the audio-
score alignment code to Cython24 (i.e. the DTW implementation will
stay in C). We would also like to update all the code in Python 2.7
to latest version of Python 3 for sustainability in the future.25

To easily analyze large-scale audio recording and music score
collections of OTMM, I have implemented a toolbox called Turk-
ish-OttomanMakam (M)usic Analysis TOolbox (tomato). toma-
to is a comprehensive and easy-to-use, which implements the state-
of-the-art methodologies (explained throughout the thesis) designed
specifically for the culture-specific characteristics ofOTMM. toma-
to calls the score metadata extraction and structure analysis (Sec-

17http://es.mathworks.com/products/matlab/
18The implementation is included in the repository https://github.com/

sankalpg/Library_PythonNew
19http://es.mathworks.com/help/matlab/ref/mex.html
20Hosted in its package releases: https://github.com/MTG/makam

-symbolic-phrase-segmentation/releases
21Hosted in https://github.com/sertansenturk/tomato_binaries
22http://www.mathworks.com/products/compiler/
23http://www.mathworks.com/products/compiler/mcr/
24http://cython.org/
25We will start working on Python 3+ support, as soon as the Essentia bind-

ings are available: https://github.com/MTG/essentia/issues/138.

http://es.mathworks.com/products/matlab/
https://github.com/sankalpg/Library_PythonNew
https://github.com/sankalpg/Library_PythonNew
http://es.mathworks.com/help/matlab/ref/mex.html
https://github.com/MTG/makam-symbolic-phrase-segmentation/releases
https://github.com/MTG/makam-symbolic-phrase-segmentation/releases
https://github.com/sertansenturk/tomato_binaries
http://www.mathworks.com/products/compiler/
http://www.mathworks.com/products/compiler/mcr/
http://cython.org/
https://github.com/MTG/essentia/issues/138
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tion 4.4) and each step in complete audio analysis (Section 5.11)
and complete joint analysis (Section 6.12). The toolbox is designed
such that the complete analysis methods are able to output partial
results in case some steps fail. As described in Section 7.1, tomato
is already integrated to Dunya-makam, the prototype web applica-
tion of CompMusic for the discovery of OTMM. tomato also in-
cludes pretrained models for score phrase segmentation and audio
makam recognition. These models as well as any other type of data
(the music scores, extracted features, figures, outputs etc.) in the
repository are licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

The implementations of all methods described in the Chapters 4-
6 are summarized in the Tables C.1-C.3. In the future, we would
like to port all the repositories inside tomato to get rid of the circular-
dependencies across the packages, provide a more comprehensive
documentation and extend the unit tests. We would also like to cre-
ate a Docker26 image consisting of tomato not only to deploy the
toolbox to web services easily but also to improve the reproducibil-
ity of the software environment.

C.2 Data, Experiments and Publications
Similar to the software tools, the SymbTr collection (Section 3.1.2)
and all of the test datasets (Section 3.2) are hosted in Github. Us-
ing git allows us to track the changes in the data easily, with com-
plete version history.27

When a test dataset is used in a publication, a new version is
released with proper tagging.28 Likewise, a new version of the
SymbTr collection is released,29 when certainmilestones aremet.30
Similar to the unit tests applied to the code, the SymbTr collec-

26https://hub.docker.com/
27As an example, the readers can inspect https://github.com/MTG/

SymbTr/commits/v2.4.3/txt/rast--sarki--sofyan--gelmez_oldu-
-dramali_hasan_hasguler.txt and https://github.com/MTG/SymbTr/
blame/v2.4.3/txt/rast--sarki--sofyan--gelmez_oldu--dramali
_hasan_hasguler.txt.

28e.g. https://github.com/MTG/otmm_tonic_dataset/releases
29https://github.com/MTG/SymbTr/releases
30https://github.com/MTG/SymbTr/blob/v2.4.3/Changelog.md

https://hub.docker.com/
https://github.com/MTG/SymbTr/commits/v2.4.3/txt/rast--sarki--sofyan--gelmez_oldu--dramali_hasan_hasguler.txt
https://github.com/MTG/SymbTr/commits/v2.4.3/txt/rast--sarki--sofyan--gelmez_oldu--dramali_hasan_hasguler.txt
https://github.com/MTG/SymbTr/commits/v2.4.3/txt/rast--sarki--sofyan--gelmez_oldu--dramali_hasan_hasguler.txt
https://github.com/MTG/SymbTr/blame/v2.4.3/txt/rast--sarki--sofyan--gelmez_oldu--dramali_hasan_hasguler.txt
https://github.com/MTG/SymbTr/blame/v2.4.3/txt/rast--sarki--sofyan--gelmez_oldu--dramali_hasan_hasguler.txt
https://github.com/MTG/SymbTr/blame/v2.4.3/txt/rast--sarki--sofyan--gelmez_oldu--dramali_hasan_hasguler.txt
https://github.com/MTG/otmm_tonic_dataset/releases
https://github.com/MTG/SymbTr/releases
https://github.com/MTG/SymbTr/blob/v2.4.3/Changelog.md


258 Towards Open and Reproducible Research

T
able

C
.1:

A
n
overview

of
the

im
plem

entations
of

the
score

analysis
m
ethodologies

and
score

form
atconverters

explained
in
C
hapter4.

T
ask

M
ethodology

Inputs
Package

V
ersion

C
om

m
ents

M
etadata

extraction
Section

4.1
W
ork

M
B
ID

https://github.com/sertansenturk/makammusicbrainz
v1.3.0

R
equires

internetconnection
to
access

M
usic-

B
rainz

Phrase
segm

entation
(B
ozkurt,K

araosm
anoğlu,et

al.,2014),Section
4.3.2

Sym
bT

r-txtscore
https://github.com/MTG/makam-symbolic-phrase-segmentation

v1.0-alpha.1
Forked

from
http://akademik.bahcesehir

.edu.tr/~bbozkurt/112E162.html.
The

binary
is
hosted

in
the

releases
ofthe

package,
called

phraseSeg
Section

extraction
(Şentürk

&
Serra,

2016b),Section
4.3.2

Sym
bT

r-txtscore
https://github.com/sertansenturk/symbtrdataextractor

v2.1.0
Im
plem

ented
in

sym
btrdataextrac-

tor/section.py
Sem

iotic
labeling

(Şentürk
&

Serra,
2016b),Section

4.3.2
Sym

bT
r-txtscore

https://github.com/sertansenturk/symbtrdataextractor
v2.1.0

Im
plem

ented
in

sym
btrdataextrac-

tor/structurelabeler.py
Synthetic

m
elody

extraction
(Şentürk,H

olzapfel,&
Serra,

2014),Section
4.2.2

Sym
bT

r-txtscore
https://github.com/sertansenturk/symbtrdataextractor

v2.1.0
Im
plem

ented
in

sym
btrdataextrac-

tor/scoreprocessor.py.
fragm

entLinker
package

(Table
C
.3)

uses
an

internal
im
-

plem
entation.)

C
om

plete
score

analysis
Sections4.1-4.3

Sym
bT

r-txt
score,

Sym
bT

r-m
u2

score
(optional),w

ork
M
B
ID

(optional)

https://github.com/sertansenturk/symbtrdataextractor
v2.1.0

C
alls

all
the

tasks
above

and
also

cross-
validates

the
m
etadata

obtained
from

M
usic-

B
rainz,Sym

bT
r-txtand

Sym
bT

r-m
u2

scores

Sym
bT

r-txt
to

M
usicX

M
L

conversion
Section

4.4.2
Sym

bT
r-txt

score,
Sym

bT
r-m

u2
score

(optional),w
ork

M
B
ID

(optional)

https://github.com/burakuyar/MusicXMLConverter
v1.2.1

Sym
bT

r-m
u2

and
w
ork

glsM
B
ID

can
be

in-
putto

enhance
the

w
ork

m
etadata

em
bedded

to
the

M
usicX

M
L
score

Sym
bT

r-M
usicX

M
L
to
Lily-

Pond
conversion

Section
4.4.2

Sym
bT

r-M
usicX

M
L

score
https://github.com/hsercanatli/makam-musicxml2lilypond

v1.2.1

LilyPond
to
SV

G
conversion

Section
4.4.2

Sym
bT

r-M
usicX

M
L

score
https://github.com/sertansenturk/tomato

v0.9.1
Im
plem

ented
in

tom
ato/sym

bolic/scoreconver-
ter.py

C
om

plete
score

analysis
and

form
atconversion

C
hapter4

Sym
bT

r-txt
score,

Sym
bT

r-m
u2

score
(optional),w

ork
M
B
ID

(optional)

https://github.com/sertansenturk/tomato
v0.9.1

Im
plem

ented
in

tom
ato/sym

bolic.
D
epends

on
allpackagesabove.

A
dditionalSym

bT
r
tools

Section
4.4.3

Sym
bT

r-txt
or

Sym
bT

r-m
u2

score

https://github.com/MTG/SymbTr-extras
v0.3.dev

Tools
to
m
anipulate

the
m
usic

scores
to
m
ain-

tain
consistency

in
form

atting
(e.g.

encoding,
line

breaks),content(e.g.
restnam

es,usulan-
notations)etc.D

ependson
m
akam

m
usicbrainz,

sym
btrdataextractorand

M
usicXM

LC
onverter.

https://github.com/sertansenturk/makammusicbrainz
https://github.com/MTG/makam-symbolic-phrase-segmentation
http://akademik.bahcesehir.edu.tr/~bbozkurt/112E162.html
http://akademik.bahcesehir.edu.tr/~bbozkurt/112E162.html
https://github.com/sertansenturk/symbtrdataextractor
https://github.com/sertansenturk/symbtrdataextractor
https://github.com/sertansenturk/symbtrdataextractor
https://github.com/sertansenturk/symbtrdataextractor
https://github.com/burakuyar/MusicXMLConverter
https://github.com/hsercanatli/makam-musicxml2lilypond
https://github.com/sertansenturk/tomato
https://github.com/sertansenturk/tomato
https://github.com/MTG/SymbTr-extras


C.2. Data, Experiments and Publications 259

T
ab
le
C
.2
:
A
n
ov
er
vi
ew

of
th
e
im
pl
em

en
ta
tio
ns

of
th
e
au
di
o
an
al
ys
is
m
et
ho
do
lo
gi
es
ex
pl
ai
ne
d
in
C
ha
pt
er
5.

T
as
k

M
et
ho
do
lo
gy

In
pu
ts

Pa
ck
ag
e

V
er
si
on

C
om

m
en
ts

M
et
ad
at
a
ex
tra
ct
io
n

Se
ct
io
n
5.
1

A
ud
io

fil
e

or
re
co
rd
-

in
g
M
B
ID

ht
tp

s:
//

gi
th

ub
.c

om
/s

er
ta

ns
en

tu
rk

/m
ak

am
mu

si
cb

ra
in

z
v1
.3
.0

R
eq
ui
re
s
in
te
rn
et
co
nn
ec
tio
n
to
ac
ce
ss
M
us
ic
-

B
ra
in
z

Pr
ed
om

in
an
tm

el
od
y
ex
tra
ct
io
n

(A
tlı
et
al
.,
20
14
),
Se
c-

tio
n
5.
2.
1

A
ud
io
fil
e

ht
tp

s:
//

gi
th

ub
.c

om
/s

er
ta

ns
en

tu
rk

/p
re

do
mi

na
nt

me
lo

dy
ma

ka
m

v1
.2
.0

Se
e

AT
L-

ME
L

Pr
ed
om

in
an
tm

el
od
y
fil
te
rin
g

(B
oz
ku
rt,

20
08
),
Se
c-

tio
n
5.
2.
1

Pr
ed
om

in
an
tM

el
od
y

ht
tp

s:
//

gi
th

ub
.c

om
/h

se
rc

an
at

li
/p

it
ch

fi
lt

er
v1
.2
.1

Se
e

AT
L-

ME
L f

Pi
tc
h
di
st
rib
ut
io
n
ex
tra
ct
io
n

(B
oz
ku
rt,

20
08
),
Se
c-

tio
n
5.
5

Fi
lte
re
d
pr
ed
om

in
an
tm

el
od
y

(u
si
ng

AT
L-

ME
L f
)

ht
tp

s:
//

gi
th

ub
.c

om
/a

lt
ug

ka
ra

ku
rt

/m
or

ty
v1
.2
.1

Im
pl
em

en
te
d
in
m
or
ty
/p
itc
hd
is
tr
ib
ut
io
n.
py

Pi
tc
h-
cl
as
sd

is
tri
bu
tio
n
ex
tra
ct
io
n

(C
ho
rd
ia

&
Şe
nt
ür
k,

20
13
),
Se
ct
io
n
5.
5

Fi
lte
re
d
pr
ed
om

in
an
tm

el
od
y

(u
si
ng

AT
L-

ME
L f
)

ht
tp

s:
//

gi
th

ub
.c

om
/a

lt
ug

ka
ra

ku
rt

/m
or

ty
v1
.2
.1

Im
pl
em

en
te
d
in
m
or
ty
/p
itc
hd
is
tr
ib
ut
io
n.
py

St
ab
le
pi
tc
h
ex
tra
ct
io
n

(S
m
ith

II
I
&

Se
rr
a,

19
87
),
Se
ct
io
n
5.
6

Pi
tc
h
di
st
rib
ut
io
n

ht
tp

s:
//

gi
th

ub
.c

om
/a

lt
ug

ka
ra

ku
rt

/m
or

ty
v1
.2
.1

C
om

pu
te
d

by
de
te
ct
_p
ea
ks

fu
nc
tio
n

in
m
or
ty
/p
itc
hd
is
tr
ib
ut
io
n.
py
.

St
ab
le
pi
tc
h-
cl
as
se
xt
ra
ct
io
n

(S
m
ith

II
I
&

Se
rr
a,

19
87
),
Se
ct
io
n
5.
6

Pi
tc
h-
cl
as
sd

is
tri
bu
tio
n

ht
tp

s:
//

gi
th

ub
.c

om
/a

lt
ug

ka
ra

ku
rt

/m
or

ty
v1
.2
.1

C
om

pu
te
d

by
de
te
ct
_p
ea
ks

fu
nc
tio
n

in
m
or
ty
/p
itc
hd
is
tr
ib
ut
io
n.
py
.

To
ni
c
id
en
tif
ic
at
io
n
I

(A
tlı
et
al
.,
20
15
),
Se
c-

tio
n
5.
7.
2

Fi
lte
re
d
pr
ed
om

in
an
tm

el
od
y

(u
si
ng

AT
L-

ME
L f
)

ht
tp

s:
//

gi
th

ub
.c

om
/h

se
rc

an
at

li
/t

on
ic

id
en

ti
fi

er
_m

ak
am

v1
.3
.1

Se
e

AT
L-

TO
N.
U
se
s
th
e
PD

an
d

PC
D
im
pl
e-

m
en
ta
tio
ns

in
MO

RT
Y

To
ni
c
id
en
tif
ic
at
io
n
II

(K
ar
ak
ur
t

et
al
.,

20
16
),
Se
ct
io
n
5.
7.
2

Pi
tc
h-
cl
as
s
di
st
rib
ut
io
n,

m
a-

ka
m
(o
pt
io
na
l)

ht
tp

s:
//

gi
th

ub
.c

om
/a

lt
ug

ka
ra

ku
rt

/m
or

ty
v1
.2
.1

If
m
ak
am

in
pu
t
is

no
t
gi
ve
n,

th
e
ta
sk

co
r-

re
cp
on
ds

to
jo
in
t
es
tim

at
io
n
of

m
ak
am

an
d

to
ni
c.

Tr
an
sp
os
iti
on

id
en
tif
ic
at
io
n

Se
ct
io
n
5.
8

To
ni
c,
m
ak
am

or
to
ni
c
Sy
m
-

bo
l

ht
tp

s:
//

gi
th

ub
.c

om
/s

er
ta

ns
en

tu
rk

/a
he

nk
id

en
ti

fi
er

v1
.5
.0

M
ak
am

re
co
gn
iti
on

(K
ar
ak
ur
t

et
al
.,

20
16
),
Se
ct
io
n
5.
7.
2

Pi
tc
h-
cl
as
s
di
st
rib
ut
io
n,
to
ni
c

(o
pt
io
na
l)

ht
tp

s:
//

gi
th

ub
.c

om
/a

lt
ug

ka
ra

ku
rt

/m
or

ty
v1
.2
.1

If
to
ni
c
in
pu
ti
sn

ot
gi
ve
n,
th
e
ta
sk

co
rr
ec
po
nd
s

to
jo
in
te
st
im
at
io
n
of
m
ak
am

an
d
to
ni
c.

Tu
ni
ng

an
al
ys
is

(B
oz
ku
rt

et
al
.,

20
09
),
Se
ct
io
n
5.
9

St
ab
le
pi
tc
he
s,
m
ak
am

ht
tp

s:
//

gi
th

ub
.c

om
/m

ir
ac

at
ic

i/
no

te
mo

de
l

v1
.2
.1

D
ep
en
ds

on
MO

RT
Y
fo
rP

D
im
pl
em

en
ta
tio
n
an
d

pe
ak

de
te
ct
io
n.

Th
e
im
pl
em

en
ta
tio
n
ac
ce
pt
s

a
PD

,i
ns
te
ad

of
th
e
st
ab
le
pi
tc
he
s
fo
rt
he

sa
ke

of
us
ab
ili
ty
an
d
co
m
pu
te
st
he

st
ab
le
pi
tc
he
si
n-

te
rn
al
ly
.
Th
e
m
et
ho
d
fa
ils
,i
f
th
e
sc
al
e
of

th
e

m
ak
am

is
no
ta
va
ila
bl
e.

M
el
od
ic
pr
og
re
ss
io
n
an
al
ys
is

(B
oz
ku
rt,

20
15
),
Se
c-

tio
n
5.
10

Fi
lte
re
d
pr
ed
om

in
an
tm

el
od
y

(u
si
ng

AT
L-

ME
L f
)

ht
tp

s:
//

gi
th

ub
.c

om
/s

er
ta

ns
en

tu
rk

/s
ey

ir
an

al
yz

er
v1
.1
.1

D
ep
en
ds

on
MO

RT
Y
fo
rP

D
co
m
pu
ta
tio
n

C
om

pl
et
e
au
di
o
an
al
ys
is

Se
ct
io
n
5.
11

A
ud
io
fil
e

ht
tp

s:
//

gi
th

ub
.c

om
/s

er
ta

ns
en

tu
rk

/t
om

at
o

v0
.9
.1

Im
pl
em

en
te
d
in

to
m
at
o/
au
di
o.

D
ep
en
ds

on
al
l

pa
ck
ag
es
ab
ov
e.

https://github.com/sertansenturk/makammusicbrainz
https://github.com/sertansenturk/predominantmelodymakam
https://github.com/hsercanatli/pitchfilter
https://github.com/altugkarakurt/morty
https://github.com/altugkarakurt/morty
https://github.com/altugkarakurt/morty
https://github.com/altugkarakurt/morty
https://github.com/hsercanatli/tonicidentifier_makam
https://github.com/altugkarakurt/morty
https://github.com/sertansenturk/ahenkidentifier
https://github.com/altugkarakurt/morty
https://github.com/miracatici/notemodel
https://github.com/sertansenturk/seyiranalyzer
https://github.com/sertansenturk/tomato


260 Towards Open and Reproducible Research

T
able

C
.3:

A
n
overview

ofthe
im
plem

entationsofthe
jointanalysism

ethodologiesexplained
in
C
hapter6.

T
ask

M
ethodology

Inputs
Package

V
ersion

C
om

m
ents

Fragm
entlinking

(Şentürk,
H
olzapfel,

&
Serra,

2014),
Sec-

tion
6.3

Predom
inant

m
elody

of
the

au-
dio

recording
(using

ATL-MEL)
us-

ing
ATL-MEL,Sym

bT
r-score

fragm
ent

https://github.com/sertansenturk/fragmentLinker
v0.1.0

Fundam
entalstep

in
allaudio-score

alignm
ent

tasks/im
plem

entations.Im
plem

ented
in

+
frag-

m
entLinker/@

C
andidateLinkEstim

ator/.
Syn-

thetic
m
elody

is
com

puted
internally

from
the

score.
Tonic

identification
(Şentürk

et
al.,

2013),Section
6.4

Predom
inantm

elody
ofthe

audio
record-

ing
(using

ATL-MEL),syntheticm
elody

of
the

m
usic

score
fragm

ent

https://github.com/sertansenturk/fragmentLinker
v0.1.0

Im
plem

ented
in

+
m
akam

-
Linker/TonicIdentifier.

O
btained

jointly
w
ith

the
tem

po.
The

binary
is

hosted
in
tom

ato_binaries,called
extractTonicTem

po-
Tuning

Tem
po

estim
ation

(H
olzapfel

et
al.,

2015),Section
6.5

Predom
inantm

elody
ofthe

audio
record-

ing
(using

ATL-MEL),syntheticm
elody

of
the

m
usic

score
fragm

ent

https://github.com/sertansenturk/fragmentLinker
v0.1.0

Im
plem

ented
in

+
m
akam

-
Linker/Tem

poEstim
ator.

O
btained

jointly
w
ith

the
tonic.

The
binary

is
hosted

in
tom

ato_binaries,called
extractTonicTem

po-
Tuning

C
om

position
identification

(Şentürk
&

Serra,
2016a),Section

6.6
Predom

inantm
elody

ofthe
audio

record-
ing

(using
ATL-MEL),syntheticm

elody
of

the
m
usic

score
fragm

ent

https://github.com/sertansenturk/fragmentLinker
v0.1.0

Im
plem

ented
in

+
m
akam

-
Linker/C

om
positionIdentifier.

O
btained

jointly
w
ith

the
tonic.

Section
linking

(Şentürk,
H
olzapfel,

&
Serra,

2014),
Sec-

tion
6.7

Predom
inant

m
elody

and
tonic

of
the

audio
recording,

synthetic
m
elody

and
sem

iotic
section

labelsofthe
m
usic

score
fragm

ent,
tem

po
of

the
audio

recording
(optional)

https://github.com/sertansenturk/fragmentLinker
v0.1.0

Im
plem

ented
in
+
m
akam

Linker/SectionLinker.
O
btained

togetherw
ith

the
aligned

notes.
The

binary
ishosted

in
tom

ato_binaries,called
alig-

nAudioScore.
Fails

if
the

section
annotations

are
m
issing

in
the

score.
N
ote-levelalignm

ent
(Şentürk,

G
ulati,

&
Serra,

2014),
Sec-

tion
6.8

Inputs
of

section
linking

task,
section

links
https://github.com/sertansenturk/fragmentLinker

v0.1.0
Im
plem

ented
in

+
m
akam

Linker/N
oteAligner.

O
btained

together
w
ith

the
section

links.
The

binary
ishosted

in
tom

ato_binaries,called
alig-

nAudioScore
Predom

inantM
elody

Filtering
Section

6.10
Predom

inantm
elody

ofthe
audio

record-
ing

(using
ATL-MEL),aligned

notes
https://github.com/sertansenturk/alignedpitchfilter

v1.1.0

N
ote

m
odelcom

putation
(Şentürk

et
al.,

2016),Section
6.11

Predom
inantm

elody
ofthe

audio
record-

ing
filtered

w
ith

respectto
the

note
align-

m
ents,

aligned
notes,

M
akam

or
Tonic

Sym
bol

https://github.com/sertansenturk/alignednotemodel
v1.1.1

D
ependson

MORTY
forPD

im
plem

entation
and

peak
detection.

C
om

plete
jointanalysis

Section
6.12

A
udio

file,
predom

inant
m
elody

of
the

audio
recording

(us-
ing

ATL-MEL),
Sym

bT
r

score,
score

features
com

puted
by

sym
btrdataextrac-

tor

https://github.com/sertansenturk/tomato
v1.1.1

Im
plem

ented
in

tom
ato/joint.

D
epends

on
all

packagesabove.

https://github.com/sertansenturk/fragmentLinker
https://github.com/sertansenturk/fragmentLinker
https://github.com/sertansenturk/fragmentLinker
https://github.com/sertansenturk/fragmentLinker
https://github.com/sertansenturk/fragmentLinker
https://github.com/sertansenturk/fragmentLinker
https://github.com/sertansenturk/alignedpitchfilter
https://github.com/sertansenturk/alignednotemodel
https://github.com/sertansenturk/tomato


C.2. Data, Experiments and Publications 261

tion is validated after each commit through automated tests us-
ing Travis CI.31 The automated tests ease the process of adding new
music scores to the collection and greatly reduce the errors acciden-
tally introduced during score curation process. Please refer to Sec-
tion 4.4.3 for the applied tests. The SymbTr repository also links
to two other repositories as submodules:32 The first is the SymbTr-
pdf repository,33 which hosts the PDFs of the music scores so that
the main repository is not bulky. The second is the SymbTr-extras
repository,34 which contains the tools to validate and manipulate
the SymbTr scores for the maintenance of the SymbTr repository.

In addition to test datasets, the results of most experiments con-
ducted within the thesis are35 are available online. Several experi-
ments are shared step-by-step such as the makam recognition and
tonic identification experiments conducted to test MORTY (Karakurt
et al., 2016) (Section 5.7.3). Below these experiments is explained
as a reference example:

The experiments in (Karakurt et al., 2016) are available online
in GitHub.36 The proper version of the test dataset is linked as a
submodule.37 All steps in the experiments (i.e. data preprocess-
ing, training, testing and evaluation) are organized into scripts with
proper documentation and instructions for reproducibility. This
repository includes a setup script, which installs the appropriate
version of MORTY and its requirements. The overall results and the
evaluation are saved as json files. Due to size limitations the fea-
tures, training data and testing data are hosted in Zenodo.38 The
data and the code in this repository is licensed under CC BY-NC-
SA 4.0 and AGPLv3, respectively.

Finally, all the papers publishedwithinmy doctoral research are

31https://travis-ci.org/MTG/SymbTr
32https://git-scm.com/book/en/v2/Git-Tools-Submodules
33https://github.com/MTG/SymbTr-pdf
34https://github.com/MTG/SymbTr-extras
35e.g. section linking: http://compmusic.upf.edu/node/171, score

structure analysis: http://compmusic.upf.edu/node/302 and makam
recognition: http://compmusic.upf.edu/node/319.

36https://github.com/sertansenturk/makam_recognition
_experiments/tree/dlfm2016

37see https://github.com/sertansenturk/makam_recognition
_experiments/tree/dlfm2016/data

38https://zenodo.org/record/57999
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available online via the MTG website39 and my personal website40
with relevant accompanying materials and documentation, when
applicable.41

C.3 Conclusion
This Appendix gave an overview of my data, code, experiment and
publication-related contributions to Dunya-makam with an aim of
open research and experimental reproducibility. This Chapter is
written as a “proof-of-concept” for future researchers, who would
share similar concerns on open and accesible research.

Considering the rapid development in computer science, the
base technologies (For example, Python 2 will abandoned in favor
of Python 3 in the upcoming years) and online services, the URLs
and even the digital format of this dissertation42 will cease to exist
in the upcoming years. I acknowledge that these dynamics would
render some of the specific steps taken obsolete. Nevertheless,
many of the concepts would continue to exist, albeit with drastic
changes. It is also no doubt that the methodologies described in
this thesis will be eventually replaced by faster, more powerful and
more generalizable technologies in the future. I believe that the
open tools, datasets and the reproducible experiments presented as
part of this thesis will facilitate the proliferation and advancement
of the state-of-the-art in MIR in this turn.

39http://mtg.upf.edu/biblio/author/494
40http://sertansenturk.com/research/publications/
41e.g. for (Karakurt et al., 2016), please visit http://mtg.upf.edu/node/

3538.
42unless you are reading it from the sturdy, “paper” format.
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Appendix D
Resources

This Appendix provides a quick access to the supplementary mate-
rials presented in the thesis. The text reflects the companion page
of the thesis, hosted in the CompMusic website:

http://compmusic.upf.edu/senturk2016thesis

A mirror of the companion page is also stored in my personal
website at:

http://sertansenturk.com/research/works/phd-thesis

D.1 Music Examples
These examples are compiled to show the main challenges faced in
the computational analysis of OTMM such as tuning, intonation,
heterophony in the performances and descriptiveness of the music
scores. You have to register to Dunya-makam to listen to the audio
recordings. For a thorough explanation, please refer to Chapter 2.

1. Hüseyni Peşrev by Lavtacı Andon: https://github.com/
MTG/SymbTr-pdf/blob/v2.4.3/huseyni--pesrev-
-muhammes----lavtaci_andon.pdf

• Performance by Ahmet Kadri Rizeli: http://
dunya.compmusic.upf.edu/makam/recording/
8b78115d-f7c1-4eb1-8da0-5edc564f1db3
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• Performance by İlhan Barutçu: http://
dunya.compmusic.upf.edu/makam/recording/
8b78115d-f7c1-4eb1-8da0-5edc564f1db3

• Performance by Kudsi Ergüner Ensemble: http://
dunya.compmusic.upf.edu/makam/recording/
cccf944d-c237-43e0-82ac-e1c29dbc1b62

2. Muhayyer Sazsemaisi by Tanburi Cemil Bey:
https://github.com/MTG/SymbTr-pdf/blob/v2.4.3/
muhayyer--sazsemaisi--aksaksemai----tanburi
_cemil_bey.pdf

• Performance by Necati Çelik: http://
dunya.compmusic.upf.edu/makam/recording/
4948c836-5485-4a69-8bdc-11fe4559e78f

• Performance by Enver Mete Aslan: http://
dunya.compmusic.upf.edu/makam/recording/
f51ef91d-4680-4652-8e8f-ce234e5c26e0

D.2 Research Corpus
The CompMusic Ottoman-Turkish makam music (OTMM) corpus
consists of the audio recordings, music scores, metadata related to
these information sources and automatic description extracted from
the corpus itself. The data can be accessed from the Dunya API.
The API documentation is online at:

http://dunya.compmusic.upf.edu/docs

The music scores in the corpus are taken from the SymbTrmu-
sic score collection. The collection is maintained at:

https://github.com/MTG/SymbTr

The metadata is hosted in MusicBrainz and organized into sev-
eral collections:

• Ottoman-Turkish makam: The releases in the CompMu-
sic OTMM audio collection; https://musicbrainz
.org/collection/5bfb724f-7e74-45fe-9beb
-3e3bdb1a119e
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• Ottoman-Turkish makam excluded: The “unrepre-
sentative” releases in the CompMusic OTMM audio
collection; https://musicbrainz.org/collection/
9b7a0d92-a756-411d-81da-e855c946f23e

• Dunya Ottoman-Turkish makam stream: The audio
recordings, which we have obtained the rights to stream
in Dunya; https://musicbrainz.org/collection/
af941dfc-cf39-4bbe-83f3-d367202fe629

• SymbTr music score collection: https://
musicbrainz.org/collection/6d7ee31a-a251-4c38
-b751-e0551f64c77d

D.3 Test Datasets
I have created numerous test datasets during my doctoral research:

• OTMM Symbolic Section Dataset: https://github
.com/MTG/otmm_symbolic_section_dataset

• OTMM Makam Recognition Dataset: https://github
.com/MTG/otmm_makam_recognition_dataset

• OTMM Tonic Identification Datasets: https://github
.com/MTG/otmm_tonic_dataset

• OTMM Composition Identification Dataset:
https://github.com/MTG/otmm_composition
_identification_dataset

• OTMMSection Linking Dataset: https://github.com/
MTG/otmm_section_dataset

• OTMM Partial Audio-Score Alignment Dataset:
https://github.com/MTG/otmm_partial_alignment
_dataset

• OTMM Audio-Score Alignment Dataset: https://
github.com/MTG/otmm_audio_score_alignment
_dataset

I have assisted the creation of two audio-lyrics alignment datasets:

https://musicbrainz.org/collection/9b7a0d92-a756-411d-81da-e855c946f23e
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• OTMM Şarkı Vocal Dataset: http://compmusic.upf
.edu/node/226

• OTMM Acapella Sections Dataset: http://
compmusic.upf.edu/turkish-makam-acapella
-sections-dataset

In addition, I used several datasets created by other members
of CompMusic project:

• OTMM Symbolic Melodic Segmentation Dataset:
https://github.com/MTG/otmm_symbolic_phrase
_dataset

• Carnatic Varnạṁ Dataset: http://compmusic.upf
.edu/carnatic-varnam-dataset

• Carnatic Krṭi Dataset: http://compmusic.upf.edu/
node/320

• Indian Art Music Rāga Recognition Dataset: http://
compmusic.upf.edu/node/328

D.4 Code
The implementations of the methodologies proposed to analyze the
audio recordings and music scores (Chapters 4-6) are part of Turk-
ish-OttomanMakam (M)usic Analysis TOolbox (tomato). In ad-
dition, tomato contains the tools to convert the SymbTr music
scores to MusicXML, LilyPond and SVG formats. The toolbox
is open at:

https://github.com/sertansenturk/tomato

Some complementary software tools used in the thesis are:

• Essentia audio feature extraction library: http://essentia
.upf.edu/

• Dunya-web platform: https://github.com/MTG/dunya
• pycompmusic, a Python wrapper around Dunya-web API:

https://github.com/MTG/pycompmusic
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• Dunya-desktop, an extendible desktop interface for the nav-
igation and annotation of music data: https://github
.com/MTG/dunya-desktop

D.5 Results
The automatic description of the CompMusic OTMM corpus is
open and available via the Dunyawebsite. The data can be obtained
using pycompmusic, a Python wrapper around the Dunya API.

The metadata and the automatic description are used in a web
application aimed at the discovery of the CompMusic OTMM cor-
pus. It allows the users to navigate the audio collection and play
the audio recordings synchronous to the automatic description. The
application is hosted in Dunya-web at:

http://dunya.compmusic.upf.edu/makam/

D.6 Publications
Please refer to Appendix E for the list of relevant publications.

D.7 Licenses
All the code presented in the thesis is licensed under GNU Affero
General Public License Version 3.

All the data (e.g. the music scores, extracted features, training
models, figures, text, outputs) except the copyrighted material (e.g.
commercial recordings) are licensed under Creative Commons At-
tribution-NonCommercial-ShareAlike 4.0 License (International),
unless stated otherwise.

https://github.com/MTG/dunya-desktop
https://github.com/MTG/dunya-desktop
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List of Publications by
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This Appendix presents a list of my academic publications, orga-
nized by the relevance to the thesis. An up-to-date list of my pub-
lications can be found in my personal website at:

http://sertansenturk.com/research/publications/

• Articles in peer-reviewed journals

1. Şentürk, S., Holzapfel, A., & Serra, X. (2014). Linking
scores and audio recordings inmakammusic of Turkey.
Journal of New Music Research, 43:34–52.

• Papers published in peer-reviewed conferences

2. Şentürk, S., & Serra X. (2016). Composition Iden-
tification in Ottoman-Turkish Makam Music Using
Transposition-Invariant Partial Audio-Score Align-
ment. In Proceedings of 13th Sound and Music Com-
puting Conference (SMC 2016). pages 434–441, Ham-
burg, Germany

3. Şentürk, S., Koduri G. K., & Serra X. (2016). A Score-
Informed Computational Description of Svaras Using
a Statistical Model. In Proceedings of 13th Sound and
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Appendix F
Glossary

F.1 Technical Terms
CompMusic The research project aims to advance in the automatic

description of music by emphasizing cultural specificity
CompMusic OTMM audio collection The audio collection

in the CompMusic OTMM corpus
CompMusicOTMMcorpus The corpus ofOttoman-Turkish

makam music collected under the CompMusic project
dynamic time warping A dynamic programming algorithm to de-

termine the similarity between two sequences. It can be
back-tracked to align the sequences in time.

iterative subsequence dynamic time warping A variant
of subsequence dynamic time warping, which allows mul-
tiple subsequence matching within the target for the given
query.

subsequence dynamic time warping A variant of dynamic
time warping, which allows subsequence matching within
the target for the given query.

graph A mathematical structure depicting objects (nodes) where
related objects are connected (by edges)

clique A (sub)graph with its every two node being adjacent
(connected with an edge)

maximal clique A clique, which is a subclique of only itself
similar clique (Defined in the text) A maximal clique with
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at least one node (a structure element) different from the
others (i.e. the similarity, hence edge weight is not equal
to 1.

unique clique (Defined in the text) A maximal clique, where
each node (a structure element) is identical with each other
(i.e. the similarity, hence edge weight equals to 1)

directed acyclic graph A graph with directed edges without
any directed cycles

edge Abasic unit of graphs, which shows the relation between
two (related) nodes

node A basic unit of graphs, which represents an “object.”
subgraph A graph formed from a subset of the nodes and

edges of another graph.
Hough transform A simple parametric line detection method.
link XX

F.2 Technologies
C A programming language
Dunya The music corpora and related software tools created under

the CompMusic project
Dunya-desktop The interface developed by Atlı (2016)
Dunya-makam The Ottoman-Turkish makammusic corpora

and related software tools created under the CompMusic
project

Dunya-web The web applications, which hosts and man-
ages the corpora and the analysis tools developed under
the CompMusic project

pycompmusic A wrapper around Dunya REpresentational
State Transfer (REST) API

Essentia An open-source library for audio analysis and audio-
based music information retrieval (Bogdanov et al., 2013)

git A version control system
LilyPond An open-source software and the relevant file format for

score engraving
Makam Toolbox A makam audio analysis framework developed

by Bozkurt (2011)
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MakamBox Reimplementation of Makam Toolbox in Java
by Atıcı et al. (2015)

MATLAB A proprietary language primarily designed for numer-
ical computing and specifically matrix manipulations

MELODIA The predominant melody extraction method proposed
by Salamon and Gómez (2012). The Essentia implemen-
tation is used throughout the thesis.

MP3 An audio coding format for digital audio, which uses a form
of lossy data compression

Mus2 A notation software specialized for microtonal music and
OTMM

mu2 The score file format of the score editor software, Mus2
Mus2-alfa Asoftware byKemalKaraosmanoğlu (Karaosmanoğlu,

2015) to notate and playback SymbTr-scores
MusicBrainz An open music encyclopedia of metadata
MusicXML An open format for representing digital sheet music
PostgreSQL An object-relational database
Python A high-level, interpreted programming language

Django A high-level Python Web framework
Qt An open-source application framework
Sonic Visualizer An audio analysis and visualization application

developed at the Centre for Digital Music, Queen Mary,
University of London

SoundFont A file format and the related technology to play MIDI
files

TiMidity++ A software synthesizer for playing MIDI files
Travis CI A hosted continous integration service
Wikipedia A free online encyclopedia

F.3 Musical Concepts
heterophony Simultaneous variation of a single melodic line
mode Melodic framework. Synonymous to makam, rāg, rāga etc.

in the most general sense.
scale A set of notes ordered with respect to a reference note
tonic First degree of a scale. Synonymous to the karar in OTMM

or sa in IAM.
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F.4 Ottoman–Turkish Makam Music
ahenk Transposition of the karar note in OTMM performances

bolahenk Default ahenk of OTMM. G4 ≈ 293 Hz
artists

Ahmet Avni Konuk (1868 / 1938) A famous composer and
lyrics collector

Dede Efendi (1778 / 1846) One of the greatest composers
of OTMM

Erol Bingöl (1948 / ) A composer
Hacı Arif Bey (1831 / 1885) A prolific composer best known

for his şarkı compositions
RaufYekta (1871 / 1935) Amusicologist, musician and com-

poser.
Sadettin Kaynak (1895 / 1961) A prominent composer
Şefik Gürmeriç (1904 / 1967) A composer and music theory

educator
Şevki Bey (1860 / 1891) A composer, who has composed in

the şarkı form
Tanburi Cemil Bey (1871 or 1873 / 1916) One of the most

renowned virtuosos and composers of OTMM
başlangıç The typical melodic center in the start of a makam per-

formance. Its literal translation is “beginning.”
chord The basic building blocks of scales in OTMM
çeşni A “sample,” which contains some of the peculiar character-

istics of a makam (Ederer, 2011). Its literal translation is
“flavor.”

vuruş “Stroke” in Turkish, indicating the beats. Each vuruş has an
onomatopoeic name, which describe its relative strength in
an usul cycle

düm One of the onomatopoeic stroke names to refer to strong
beats in an usul cycle

tek One of the onomatopoeic stroke names to refer to weak
beats in an usul cycle

form The idiosyncratic structure of a music piece created by its
elements

ağırsemai A classical vocal form
beste A classical, non-religious vocal form
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gazel A vocal, melodic improvisation form. Typically un-
metered.

ilahi Themost common religious form of the classical OTMM
repertoire.

küpe A classical form.
mehter Themost commonmilitary form in the classical reper-

toire of OTMM
oyunhavası A rhythmic, instrumental folk form.
peşrev One of the most common instrumental forms of the

classical OTMM repertoire.
şarkı The most common vocal form of the classical OTMM

repertoire. Its literal translation is “song.”
sazsemaisi One of the most common instrumental forms of

the classical OTMM repertoire.
taksim An instrumental melodic improvisation form. Typi-

cally unmetered.
türkü The most common vocal form of the folk OTMM

repertoire.
yürüksemai A classical, non-religious vocal form composed

in yürüksemai usul.
güçlü See başlangıç
karar A melodic center and the final note where a makam perfor-

mance ends. Synonymous to tonic. Its literal translatoin is
“decision.”

Lâedrî “Unknown” in Arabic. Used when the creator of a work
(e.g. composer or lyricist of a musical work) is not known.

makam The melodic framework of Ottoman-Turkish art and folk
music

Hicaz A makam with neva başlangıç and dügah karar
Hicazkar A makam with rast karar
Hüseyni A makam with hüseyni başlangıç and dügah karar
Hüzzam A makam with segah karar
Segah A makam with neva başlangıç and segah karar
Isfahan A makam with neva başlangıç and dügah karar
Kürdilihicazkar A makam with rast karar
Mahur A makam with gerdaniye başlangıç and rast karar
Muhayyer A makam similar to Hüseyni makam with “de-

scending” melodic progression.
Neva A makam withneva başlangıç and dügah karar
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Nihavent A makam with neva başlangıç and rast karar
Rast A makam with rast başlangıç and neva karar
Suzidilara A makam with rast karar
Uşşak A makam with neva başlangıç and dügah karar

mertebe The denominator of the time signature of an usul
zaman The number of pulses, i.e. the numerator of the time sig-

nature, of an usul
perde A term, which is used to refer to notes (e.g. dügah perdesi)

and melodic intervals (e.g. yarım perde = semitone)
çargah The note indicated by the C5 note in the staff notation
dügah The note indicated by the A4 note in the staff notation
gerdaniye The note indicated by the G5 note in the staff no-

tation
hüseyni The note indicated by the E5 note in the staff notation
mahur The note indicated by the G5 note in the staff notation
neva The note indicated by the D5 note in the staff notation
rast The note indicated by the G5 note in the staff notation
segah The note indicated by the B4 note in the staff notation

section The structural divisions, which form the compositional or-
ganization of a music piece.

aranağme An instrumental section, which is typically per-
formed in the start of vocal forms as an introduction

hane Literal translation of section. Typically used to refer to
non-repetitive sections in peşrev and sazsemaisi forms.

terennüm The repetitive vocal section in classical forms such
as beste and yürüksemai. The section may include nonsen-
sical syllables.

meyan A vocal section in the traditional OTMM composition
style. The section may recapitulate the melody introduced
in the zemin section.

nakarat Repetitive poetic line in şarkı and türkü forms
teslim The repetitive section in peşrev and sazsemaisi forms.
zemin First poetic line in şarkı form

seyir Melodic progression. Its literal translation is “navigation.”
usul The rhythmic framework of Ottoman-Turkish art and folk

music
ağıraksak An usul with 9 zaman
aksak An usul with 9 zaman and 6 vuruş
aksaksemai An usul with 10 zaman and 6 vuruş
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curcuna An usul with 10 zaman
kapalı curcuna A variant of the curcuna usul with “closed”

strokes
devr-i kebir An usul with 28 zaman
düyek An usul with 8 zaman and 5 vuruş
nimsofyan An usul with 2 zaman and 2 vuruş
semai An usul with 3 zaman and 3 vuruş
senginsemai Slow mertebe of the yürüksemai usul. The unit

of its zaman is ♩.
serbest Non-metered. Literal translation of theword is “free.”
sofyan An usul with 4 zaman and 3 vuruş
Türk aksağı An usul with 5 zaman and 3 vuruş
yürüksemai An usul with 6 zaman and 5 vuruş

F.5 Indian Art Musics
Carnatic An art music tradition of predominantly performed in

south India
Hindustāni An art music tradition of predominantly performed in

north India
krṭi A common vocal compositional form in Carnatic music
rāg The melodic framework of Hindustani music
rāga The melodic framework of Carnatic music

Bēgadạ A rāga in Carnatic Music
svara The symbols used in the solfège of Indian Art Musics

sa The first position (reference svara) of Indian Art Musics
varnạṁ A vocal compositional form in Carnatic music

F.6 Acronyms
CAR-KRI Carnatic Krṭi test dataset
CAR-VAR Carnatic Varnạṁ test dataset
FOAF Friend of a Friend Ontology
OTMM-section-linking CompMusicOttoman-Turkishmakammu-

sic section linking test dataset
SymbTr the collection ofmachine-readableOttoman-Turkishmakam

music scores by Karaosmanoğlu (2012)
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TMKH Türk Müzik Kültürünün Hafızası (English: “Memory of
Turkish Music Culture” Collection)

TRT-TTMA TRT Tarihi Türk Müziği Arşivi) (English: TRT His-
torical Turkish Music Archive

TSMD Türk Sanat Müziği Derlemi (English: Turkish Art Music
Corpus)

UHHD Uzun Hava Humdrum Database
kNN k nearest neighbors
ATL-MEL the predominant melody extraction procedure described

in (Atlı et al., 2014)
ATL-MELf the variant of the predominant melody extraction proce-

dure described in (Atlı et al., 2014) using the post filtering
method described in (Bozkurt, 2008)

ATL-TON the tonic identification method described in (Atlı et al.,
2015)

BOZ-YINf the predominant melody extraction procedure described
in (Şentürk et al., 2012), which is adapted from (Bozkurt,
2008)

CRF Conditional Random Field
DTW dynamic time warping
HHMM hierarchical hidden Markov model
ISDTW iterative subsequence dynamic time warping
LCM least common multiplier
MAP mean average precision
MORTY MOdeRecognition andTonicYdentification Toolbox (Karakurt

et al., 2016)
SDTW subsequence dynamic time warping
SEN-MEL the predominant melody extraction procedure described

in (Şentürk, Holzapfel, & Serra, 2014)
SEN-MELf the predominant melody extraction procedure described

in (Şentürk, Holzapfel, & Serra, 2014) using the score-
informed octave correctionmethod described in Section 6.10

SEN-TONPCD the tonic identification method by score template
distribution matching (Şentürk et al., 2013)

SEN-TONlink the tonic identification method by fragment linking
(Şentürk et al., 2013)

VLMM variable-length Markov model
VMD variational mode decomposition
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YIN the fundamental pitch extractionmethod proposed by (DeChe-
veigné & Kawahara, 2002)

tomato Turkish-OttomanMakam (M)usic Analysis TOolbox
SIM-VMD the predominant melody extraction method proposed by

(Şimşek et al., 2016)
AEU theory Arel-Ezgi-Uzdilek theory
AGPLv3 GNU Affero General Public License Version 3
API Application Programming Interface
bpm beat per minute
CC BY-NC 3.0 Creative Commons Attribution-NonCommercial

3.0 License
CC BY-NC-SA 4.0 Creative Commons Attribution-NonComm-

ercial-ShareAlike 4.0 License
CQT Constant Q transform
DAG directed acyclic graph
DOI digital object identifier
Hc Holderian comma
HMM Hidden Markov model
HPCP harmonic pitch class profile (Gómez, 2006)
Hz Hertz
IAM Indian Art Musics
JSON JavaScript object notation
kbps kilobits per second
MBID MusicBrainz identifier
MIDI musical instrument digital interface
MIR music information research
MIREX Music Information Retrieval EXchange
OTMM Ottoman-Turkish makam music
PCD pitch-class distribution
PD pitch distribution
PDF portable document format
REST REpresentational State Transfer
SVG scalable vector graphics format
TET tone-equal-tempered
TRT Türkiye Radyo ve Televizyon Kurumu (English: Turkish

Radio and Television Corporation)
TSV tab separated values
URL uniform resource locator
XML extensible markup language
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