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Summary 

Fire management in Spain focuses on fast and total control of all wildfire 

ignitions, independently of location and weather conditions. In order to optimize 

this process, I have focused on analyzing which factors determine: i. the amount of 

the deployed resources (Chapter 3) and, ii. the wildfire occurrence patterns 

(Chapters 4-6). Results from Chapter 3 show that the number of personnel, 

terrestrial and aerial units deployed increases in large crown fires, being 

constrained by multiple-fire occurrences, although these results vary by 

considering regional scales. Firefighting resources in Spain may already be under 

duress in complying with the current total suppression policy of the country. 

Therefore, the prediction of wildfire occurrence, which in Spain is mainly 

caused by people (HCFs), is crucial for planning. Accordingly, the main objective 

of this thesis is to identify, analyze and characterize the spatio-temporal patterns of 

HCFs in Spain. Concern over HCFs has led to modeling for the prediction of their 

occurrence in other countries, so we have analyzed the state of the art of HCFs 

modeling (Chapter 4) globally, based on major habitat types. Wildfire occurrence 

has spatial and temporal similarities by major habitat types, but differences in 

vegetation composition and configuration patterns were found. 

In this way, the Mediterranean vegetation pattern is highly influenced by 

human land use and settlements, thus it can be considered that pattern is a good 

proxy for human presence and activities, therefore, for HCF occurrence. In this 

context, in Chapter 5, we attempted to predict HCF occurrence by quantifying the 

landscape pattern in peninsular Spain and Balearic Islands. The best model 

suggests that the highest fire occurrence is associated to highly diverse areas in 

terms of land uses with compact and short patch edges. 

In addition, HCF occurrence in multiple-fire-days suggests wildfire spatio-

temporal aggregations. HCF aggregations were analyzed in 9 regions of Spain and 

related to weather, population density and landscape pattern of each region. Our 

results suggest the existence of maximum space-time structures around 4 km and 6 

months that lose strength when spatial and temporal distances increase. HCFs seem 

to aggregate within fewer days in warm and dry regions than in milder Atlantic 

areas. Spatially, HCFs are clustered in shorter distances in diverse and fragmented 

landscapes of small patches and complex patches. Urban interfaces tend to spatially 

concentrate fire occurrence, while wildland-agriculture interfaces correlate to large 

aggregation distances.  



 

 

 

Resum 

La gestió d'incendis a Espanya es centra en el control ràpid i total de tots els 

esdeveniments, independentment de la seva ubicació i condicions meteorològiques. 

Per optimitzar aquest procés, aquesta tesi es centra en l'anàlisi dels factors que 

determinen: i. la quantitat de recursos empleats (Capítol 3) i, ii. els patrons 

d'ocurrència d'incendis forestals (Capítols 4-6). El Capítol 3 mostra que el nombre 

de mitjans d'extinció augmenten en els incendis grans i de copa, però estan limitats 

per l’ocurrència d’incendis simultanis, encara que aquests resultats varien segons la 

comunitat autònoma. Els mitjans d'extinció a Espanya poden ja estar sota coacció 

pel compliment de la política de supressió total d’incendis. 

Per tant, la predicció de l'ocurrència d'incendis forestals, que a espanya estan 

causats principalment per persones (HCF, per les seves sigles en anglès), pel que és 

fonamental la seva planificació. En conseqüència, l'objectiu principal d’aquesta tesi 

és identificar, analitzar i caracteritzar els patrons espacio-temporals dels HCFs a 

Espanya. Aquesta inquietud ha donat lloc a models per predir la seva ocurrència en 

altres països, pel que s’ha analitzat el seu estat de l'art (Capítol 4) a nivell mundial, 

en base als tipus d'hàbitat. L'ocurrència d'incendis mostra analogies espacials i 

temporals en els diferents hàbitats, però també es troben diferències en la 

composició i configuració de la vegetació. 

D’aquesta forma, el patró de la vegetació de la conca del Mediterrani està molt 

influenciada per les activitats agrícoles i forestals i pels assentaments humans. Per 

tant, es pot considerar que els patrons del paisatge són bons indicadors de la 

presència i activitats humanes i, per tant, per l'ocurrència dels HCFs. En aquest 

context, al Capítol 5, es prediu l'ocurrència dels HCFs mitjançant la quantificació 

dels patrons del paisatge a la península espanyola i les Illes Balears. El millor 

model suggereix que la major incidència d'incendis està associada a àrees amb alta 

diversitat d'usos del sòl, amb tessel·les compactes i perímetres curts. 

A més, el Capítol 6 suggereix que els HCFs es troben agregats espacial i 

temporalment. En aquest sentit, s'analitzen 9 regions d'Espanya i es relacionen amb 

el clima, la densitat de població i la configuració del paisatge de cada regió. Els 

resultats suggereixen estructures espai-temps màximes al voltant de 4 km i 6 mesos 

i perden força a l’augmentar les distàncies espacials i temporals. Els HCFs 

s'agreguen en un menor nombre de dies en les regions càlides i seques. Les 

distàncies espacials dels HCF són menors en paisatges fragmentats amb alta 

diversitat d'usos del sòl i tessel·les petites i complexes. Les interfícies urbanes 

tendeixen a concentrar espacialment l'ocurrència d'incendis, mentre que la 

interfície agrícola-forestal està correlacionada amb distàncies llargues d’agregació.  



 

 

 

Resumen 

La gestión de incendios en España se centra en el control rápido y total de 

todos los eventos, independientemente de su ubicación y condiciones 

meteorológicas. Para optimizar este proceso, esta tesis se centra en el análisis de 

los factores que determinan: i. la cantidad de recursos empleados (Capítulo 3) y, ii. 

los patrones de ocurrencia de incendios forestales (Capítulos 4-6). El Capítulo 3 

muestra que el número de medios de extinción aumentan en los incendios grandes, 

de copa pero están limitados por incendios simultáneos, aunque estos resultados 

varían según CCAA. Los medios de extinción en España pueden estar ya bajo 

coacción en el cumplimiento de la política de supresión total del territorio. 

Por lo tanto, la predicción de la ocurrencia de incendios forestales, que en 

España están causados principalmente por personas (HCFs, por sus siglas en 

inglés), es crucial para su planificación. En consecuencia, el objetivo principal de 

esta tesis es identificar, analizar y caracterizar los patrones espacio-temporales de 

los HCFs en España. Esta inquietud ha dado lugar a modelos para predecir su 

ocurrencia en otros países, por lo que se ha analizado su estado del arte (Capítulo 

4) a nivel mundial, en base a los tipos de hábitat. La ocurrencia de incendios 

muestra analogías espaciales y temporales en los diferentes hábitats, pero también 

se encontraron diferencias en la composición y configuración de la vegetación. 

De esta forma, el patrón de vegetación de la cuenca del Mediterráneo está muy 

influenciada por las actividades agrícolas y forestales y los asentamientos 

humanos. Por consiguiente, se puede considerar que los patrones del paisaje son 

buenos indicadores de la presencia y las actividades humanas y, por lo tanto, para 

la ocurrencia de HCFs. En este contexto, en el Capítulo 5, se predice la ocurrencia 

de HCFs mediante la cuantificación de los patrones del paisaje en España y 

Baleares. El mejor modelo sugiere que la mayor incidencia de incendios está 

asociada a áreas con alta diversidad de usos del suelo, con teselas compactas y 

perímetros cortos. 

Además, el Capítulo 6 sugiere que los HCFs se encuentran agregados espacial 

y temporalmente. Para ello, se analizan 9 regiones de España y se relacionan con el 

clima, la densidad de población y la configuración del paisaje de cada región. Los 

resultados sugieren estructuras espacio-tiempo máximas alrededor de 4 km y 6 

meses y pierden fuerza al aumentar las distancias espaciales y temporales. Los 

HCFs se agregan en un menor número de días en las regiones cálidas y secas. Las 

distancias espaciales de los HCFs son menores en paisajes fragmentados con 

diversidad de usos del suelo y teselas pequeñas y complejas. Las interfaces urbanas 

tienden a concentrar espacialmente la ocurrencia de incendios, mientras que la 

interfaz agrícola-forestal está correlacionada con distancias de agregación largas. 
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1. Introduction 

Wildfire is the major disturbance in many regions around the world, and trends 

in number and burned area seem to increase over time according to climate change 

predictions. Fire is a relevant factor in forest stands processes of mortality (Catry et 

al. 2010), regeneration (Francos et al. 2016), species composition (Fornwalt and 

Kaufmann 2014) and spatial structure (Lloret et al. 2002). Worldwide, burned area 

rounds 360-380 MHa per year (Chuvieco et al. 2016) and more than 30% of the 

land mass already has significant and recurrent fire activity (Chuvieco et al. 2008). 

Africa and South America are the most active fire areas (Figure 1.1), being the 

Tropical and subtropical grasslands, savannas and shrublands, the Flooded 

grasslands and savannas and the Tropical and subtropical dry broadleaf forests 

(Olson et al. 2001) the most affected land habitats. 

 

Figure 1.1. Global fire frequency between 2001 and 2015 based on the hotspots product of 

the sensor MODIS (http://neo.sci.gsfc.nasa.gov/) 

Fire suppression has been implemented in most affected countries for many 

decades, under different organizational models, with varying results often linked to 

development status of the country. Suppression performance depends on the 

number and behavior of active fires (Haight and Fried 2007) in relation to 

resources allocated, though management agencies in a few regions (see, for 

instance, Canada, Hirsch and Fugelm 2006) may allow some fires to burn if they 

respond to conservation or management goals. Human technical resources and 

budgets may be comparatively  more stressed  in those countries that sustain a full 

suppression policy like Spain (Costafreda-Aumedes et al. 2015) or some US 
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regions (Paveglio et al. 2010), because of their high values at risk in very populated 

regions. When lives and properties are threatened, firefighting managers must 

make crucial decisions on the amount, type and allocation of the required 

resources.  

Spain organized professional fire suppression in the 1970’s, and competences 

in fire management were transferred regionally (to the Autonomous regions, 

CCAA) after 1978 (Spanish Constitution approved). Managerial organizations in 

Spain differ by region, being generally linked either to general emergencies 

structures or to forest administrations. Different models and different budgets are 

applied regionally. In addition, these different regional budgets are constrained in 

the current economic recession (2010-2014) and often prevent maintenance of 

enough suppression resources that can manage active fires (Alonso-Betanzos et al. 

2003). For instance, Andalusia and Castile and Leon (Spain) decreased their fire 

suppression budget in €12 million each (Garcia-Rey et al. 2014) from 2006 to 2014 

(Andalusia) and 2009 to 2013 (Castile and Leon).  

Moreover, whatever resources are available, firefighting efforts may be 

rendered insufficient (Castellnou et al. 2010) under extreme fire behavior 

conditions in the fire environment and/or high human risk levels. Worst-scenarios 

occur under extreme weather conditions that increase the probability of fires to 

scape and to become large (i.e. Portugal in 2005, Italy in 2007 or France and 

Greece in 2009, Cardil, Salis, et al. 2014), becoming catastrophic events beyond 

suppression capacity. 

There are knowledge gaps on the relation between the amount on firefighting 

resources needed and characteristics in the fire physical and social environment, 

due to the regional variability in budgetary expenses, operational procedures and 

fire social perceptions. As fire management agencies worldwide have aimed to 

reduce expenses and damages without endangering human safety, a considerable 

amount of work has focused on simulating and improving the efficiency of the 

initial attack to fires and to optimize firefighting resources location from the 70’s 

(Simard et al. 1978) to present (Katuwal et al. 2016). However, in these cases, the 

capacity to anticipate fire spatial and temporal occurrences is what allows: i. to take 

preventive actions, ii. to allocate firefighting resources in advance, and 

accordingly, iii. to reduce damages and to optimize firefighting resources use.  

Consequently, the analysis of fire occurrence, its potential influence on 

deployment and its application to improved fire management is the focus of this 

thesis. 
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1.1. Human-caused fires 

Worldwide, more than 90 % of wildfire ignitions are linked, directly or 

indirectly, to human risk (FAO 2007). These fires are designated as human-caused 

fires (HCFs) and include as causes all intentional and unintentional human actions, 

power lines and machinery. HCFs frequently show broadly recognizable spatial 

and temporal patterns (Padilla and Vega-Garcia 2011), which were perceived from 

the 50’s onward. For instance, Crosby (1954) and Bruce (1963) where the first 

authors to consider that fire ignitions can be analyzed using mathematical methods. 

The interest of HCF modeling grew in the following years and is still active 

nowadays (Levi and Bestelmeyer 2016). 

The highest amount of models of HCF occurrence and frequency is mainly 

located in the Mediterranean Europe and North America (Figure 1.2). However, 

from 2010 to present, China has been one of the countries with the highest number 

of fire research models. The first wildfire occurrence models were simple (linear 

regression, Crosby 1954; Haines et al. 1970) and comprised natural- and human-

caused fires. In subsequent years, binary logistic (Donoghue and Main 1985) and 

Poisson logistic (Martell et al. 1985) models were introduced, and are still in use 

nowadays (Pan et al. 2016). In recent years, complex parametric and non-

parametric methodologies, such as Classification and Boosted regression trees, 

Artificial neural networks, Support vector machines, Zero-truncated Poisson 

regression or Generalized additive models were introduced as an alternative to 

traditional statistical methods. 

 Figure 1.2. Number of fire occurrence studies by region 
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HCF occurrence modelling has aimed to identify which biotic and abiotic 

factors influence wildfire ignition. Fire ignitions depend on the presence, the type 

of ignition sources and the environment conditions. Temporal factors are based on 

weather and weather-derived indices related to drought or vegetation moisture. 

Physiography, land/vegetation cover or human presence are often termed as spatial 

variables, due to their inherent low temporal variability or the unavailability of 

frequently updated data. 

Previous studies concluded that HCFs tend to occur with high temperatures 

(Padilla and Vega-Garcia 2011; Ancog et al. 2016) and low precipitation 

(Albertson et al. 2009), for instance. In addition, they frequently occur close to 

anthropic features, like (i.e.) settlements (Zhang et al. 2010; Chang et al. 2013) or 

roads (Badia-Perpinyà and Pallares-Barbera 2006; Dlamini 2010; Penman et al. 

2013) and are linked to certain socio-economic activities (Kalabokidis et al. 2007; 

Martínez et al. 2009; Mann et al. 2016). However, these HCFs are closely 

connected to the causative agent (Curt et al. 2016): arson and negligence fires 

occur most often in gently slopes and populated areas in summer, while livestock 

fires are mainly located in mountain areas and take place more often in winter and 

early spring (González-Olabarria et al. 2015). Under these conditions, HCFs tend 

to aggregate (Vazquez and Moreno 1998) and increase their recurrence. 

Accordingly, the simultaneity of wildfires frequently occurs in these periods and 

causes. 

For firefighting suppression resources, the simultaneity of two or more fires do 

create a challenge (Rachaniotis and Pappis 2006). Delays in the initial attack of 

new fires can happen when multiple fires are burning simultaneously, and the time 

required to extinguish them grows exponentially with detection and response time. 

Therefore, it is important to understand the occurrence pattern of HCFs to support 

prevention and pre-attack planning.  

Fire occurrence has been developing successfully for decades now, but admits 

new developments. The occurrence pattern has been analyzed spatially by relating 

wildfire occurrence with spatial features, but the landscape structure has rarely 

been used as a proxy for human activities, and the rapid development of landscape 

ecology quantitative methods holds potential in fire analysis. Also, temporal 

aggregation has also been observed linked to human risk, so both the spatial and 

temporal aggregation of HCF observations must be considered, requiring new 

methods of analysis. 
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1.2. HCF occurrence patterns at the landscape level 

Current landscapes composition and configuration are the result of historical 

disturbances on the environment we can observe nowadays (De Aranzabal et al. 

2008). Thus, the spatial landscape pattern allows understanding natural and human 

processes like climate (Pickett and White 1985), pests and diseases (Hatala et al. 

2010), human presence (Fuller 2001), land production activities (De Aranzabal et 

al. 2008) or wildfires (Naveh and Lieberman 1994; Chang et al. 2007; Moreno 

2007). 

In many major habitat types (MHTs), like Mediterranean forests, landscape has 

been modified by humans (Pausas 2006) and the footprint seems to start more than 

6000 years ago (Kaal et al. 2011). Recent landscape structures are mainly created 

by direct human action through the design of margins between wildland and 

anthropic features (i.e. infrastructures or buildings) and productive activities (i.e. 

agriculture), becoming what Farina (2006) calls cultural landscapes. Consequently, 

landscape patterns can be considered as a source of information on human 

activities and their interaction with  environment, and, accordingly, they have been 

largely analyzed by sets of metrics (i.e. Ferraz et al. 2009) like size, number, shape 

of patches or diversity of land uses. Landscape ecology has developed conceptual 

advances and empirical methods by which spatial land use patterns are related to 

ecological processes, such as HCFs. 

Therefore, the quantification of landscape spatial patterns is a useful tool to 

infer HCF occurrence factors. Among the large number of studies that have dealt 

with wildfire occurrence (see Chapter 4 for an exhaustive review), some have 

modelled fires with sets of geographic or spatial variables, but only few studies 

have included metrics measuring landscape patterns. In this way, Henry and Yool 

(2004) related landscape metrics to historical wildfire occurrence (all causalities) in 

Arizona (US). Focusing on HCFs, Ruiz-Mirazo et al. (2012) analyzed the behavior 

of landscape metrics in relation to pastoral wildfire occurrence in Andalusia 

(Spain). Martinez et al. (2009) and Martinez-Fernandez et al. (2013) considered 

size, density and fragmentation indices with other socio-economical and spatial 

variables to predict HCFs in Spain. Building on the conclusions of these authors, 

this thesis aims to identify the metrics that could be considered more appropriate to 

characterize fire-prone landscape traits. 

1.3. Spatio-temporal aggregations of HCFs 

HCFs are usually considered within regular quadrates or irregular 

administrative divisions (areal units), and few studies analyze wildfires’ points of 
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origin as spatial explicit locations. Among these few, HCF occurrence models have 

been devised using geographically weighted regression models (de la Riva et al. 

2004), ignition density estimates (Amatulli et al. 2007), log-Gaussian Cox 

processes (Serra et al. 2014) or the Ripley’s K-function (Vega Orozco et al. 2012; 

Fuentes-Santos et al. 2013; Serra et al. 2013). Few studies have considered the 

temporal dimension. For instance, Gralewicz et al. (2012a) considered temporal 

trajectory metrics of ignition densities and, Tanskanen and Venäläinen (2008) 

analyzed fire weather indices of summer wildfires.  

HCFs have also been evaluated as ignition points placed within novel spatio-

temporal point process statistical tools (Figure 1.3). These methods comprise the 

analysis of inhomogeneous spatio-temporal structures of wildfire ignitions (Hering 

et al. 2009), cluster analysis of wildfire ignitions (Vega Orozco et al. 2012; Pereira 

et al. 2015), modelling of fire locations by spatio-temporal Cox point processes 

(Møller and Díaz-Avalos 2010), and spatio-temporal analysis of fire ignition points 

combined with geographical and environmental variables (Juan et al. 2012). 

However, none of them analyze the space-time configurations of HCF ignitions in 

relation to environmental patterns, which is the last goal of the thesis. 

 

Figure 1.3. Spatio-temporal pattern of HCFs occurred in a 40 km x 40 km region of 

Badajoz (Spain) during the period 2007-2013 
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2. Objectives and structure 

The main objective of this thesis is to identify, analyze and characterize the 

spatio-temporal patterns of HCFs in Spain in order to better inform and potentially 

improve wildfire management (prevention, pre-attack planning and suppression). 

The work is carried out under the hypothesis that the current levels of fire 

incidence affect wildfire management, and specifically, deployment to fires, which 

raises a need for a better knowledge on spatial and temporal patterns of fire 

occurrence to optimize decision making in fire organizations. 

For this purpose, the followed specific objectives were formulated: 

1. To identify what wildfire-incidence-related aspects are currently 

influential on deployment of suppression resources to fires, besides 

testing if multiple/simultaneous occurrence situations strain 

suppression resources, as hypothesized. 

2. To review the state of the art in HCF occurrence prediction modeling. 

3. To evaluate specifically the relationship between landscape patterns 

and HCF occurrence with a comprehensive array of landscape metrics, 

encompassing the wide range of landscape compositions and 

configurations in Spain. 

4. To analyze space-time point patterns of HCF ignitions in relation to 

biotic and abiotic factors, including landscape metrics. 

This thesis is structured in chapters, which have been written as scientific 

papers. The first study (Chapter 3) analyzes how size, type, duration and 

simultaneity of wildfires affect firefighting resources management in peninsular 

Spain. Chapter 4 resumes the state of art of HCF occurrence models in the world 

for major habitat types, showing trends and differences in wildfire spatio-temporal 

patterns. Chapter 5 predicts HCF occurrence (fire / no-fire) by using landscape 

metrics as proxy variables of the human impact of high-modified landscapes by 

socioeconomic activities in peninsular Spain. Chapter 6 identifies the spatial and 

temporal aggregations of HCFs in 9 windows of 40 km x 40 km in Spain and 

compares the trends with some weather, vegetation and human-related variables. 
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networks 
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ABSTRACT: In Spain, the established fire control policy states that all fires must 

be controlled and put out as soon as possible. Though budgets have not restricted 

operations until recently, we still experience large fires and we often face multiple-

fire situations. Furthermore, fire conditions are expected to worsen in the future 

and budgets are expected to drop. To optimize the deployment of firefighting 

resources, we must gain insights into the factors affecting how it is conducted. We 

analyzed the national data base of historical fire records in Spain for patterns of 

deployment of fire suppression resources for large fires. We used artificial neural 

networks to model the relationships between the daily fire load, fire duration, fire 

type, fire size and response time, and the personnel and terrestrial and aerial units 

deployed for each fire in the period 1998-2008. Most of the models highlighted the 

positive correlation of burned area and fire duration with the number of resources 

assigned to each fire and some highlighted the negative influence of daily fire load. 

We found evidence suggesting that firefighting resources in Spain may already be 

under duress in their compliance with Spain’s current full suppression policy. 
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3.1. Introduction 

Wildland fires are one of the main threats for Mediterranean forests and cause 

their degradation (FAO 2013). Spain, one of the Mediterranean countries most 

affected, currently sustains a full suppression policy under which all fires are 

fought until extinguished. As in the US (Paveglio et al. 2010), the strategy 

generally applied is based mainly on a fast and aggressive attack on all ignition 

points in the territory, at every place and under all weather conditions. The strategy 

is justified by the high values at risk in this highly populated country. The results 

are usually outstanding in limiting most wildfires to very small burned areas. 

However, under certain conditions in the fire environment, fires do escape and 

became large, as happened in Portugal in 2003 and 2005, Italy in 2007, southeast 

France in 2003 and 2009 and Greece in 2000, 2007 and 2009 (Cardil, Salis, et al. 

2014). These episodes demonstrate that even strong suppression resources and 

capabilities may be inadequate when faced, for instance, with extreme fire behavior 

(Castellnou et al. 2010) or multiple-fire starts linked to human risk (Rachaniotis 

and Pappis 2006). The challenges related to wildfires may increase with the 

predicted climate change, which could intensify fire propagation and increase 

burned areas, hamper fire suppression operations and increase costs (Raftoyannis et 

al. 2014), which will be further raised by the expansion of wildland-urban 

interfaces (WUIs - Liang et al. 2008). 

In the Spanish recent past (1998-2009), budget was not supposed to be a 

constraint to forest firefighting. All available firefighting resources were used to 

minimize the damages, whatever the costs, even if these exceeded any budgetary 

limit (Velez 2009). However, budgets are a constraint in the current economic 

recession (2010-2014), as they will certainly be in the future. For instance, 

Andalusia decreased its fire suppression budget from €89 million in 2006 to €77 

million in 2014, and Castile and Leon from €34.4 million in 2009 to €22.4 million 

in 2013 (Garcia-Rey et al. 2014). Consequently, there is a need to examine the 

amount and patterns of resource use in Spain under the current scenario, because 

we are already forced to re-think our strategies under rising climate induced 

danger, dramatic financial cutbacks and rising values at risk in WUIs. 

There are certainly gaps of knowledge in Spain on many suppression-related 

issues, partly due to a great variability in budgets, operational procedures and 

social perceptions across the political regions in the country. As agencies 

responsible for fire management in other countries have aimed to optimize 

procedures to reduce costs and damages without jeopardizing human safety, a 

certain amount of work has been devoted to simulating optimal resource allocation 
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and dispatching procedures, mainly for initial attack (Simard et al. 1978; Islam and 

Martell 1998). A comprehensive review may be found in Calkin et al. (2011). 

Rachaniotis and Pappis (2006) in Greece addressed the problem of scheduling a 

single firefighting resource in a multi ple-fire situation. Martin-Fernandez et al. 

(2002) optimized wildfire combat by using simulated annealing and Bayesian 

global optimization techniques in the Northwest Forest of Madrid (Spain). 

Rodriguez-Silva (2007) described the SINAMI model for selecting the optimal 

resource combination for a given fuel type, fire type and duration in Spain. Mendes 

(2010) used this model to illustrate the application of producer theory and linear 

programming to optimize suppression. 

The anticipated complexity of modeling use of firefighting resources, and the 

fact that some successful applications had been developed before for other fire 

problems, led us to select artificial neural networks (ANNs) as a modeling 

technique. ANNs have been successfully applied to problems such as fire 

occurrence prediction (Vega-Garcia et al. 1996; Vasconcelos et al. 2001; Li et al. 

2009; Vasilakos et al. 2009; Karouni et al. 2014), regional forest fire susceptibility 

(Dimuccio et al. 2011), forest fire risk prediction and firefighting management in 

Galicia (Alonso-Betanzos et al. 2003), burned area mapping (Mitrakis et al. 2012), 

fire-landscape structure relations (Vega-García and Chuvieco 2006; Ruiz-Mirazo et 

al. 2012), and the evaluation of forest regeneration after fire (Debouk et al. 2013). 

ANN models are a reliable alternative to traditional statistical methods because 

they are robust pattern detectors even for unpredictable non-linear relationships 

(Scrinzi et al. 2007), they are not affected by multicollinearity or non-normal 

distributions (Hilbert and Ostendorf 2001) like statistical techniques, and they are 

flexible in terms of structure. 

In this study, we analyze the main factors influencing fire deployment 

decisions across Spain, especially the factors behind management decisions when 

resource limits are pushed during large wildland fires. Models for deployment and 

containment of large fires have very rarely been explored (Finney et al. 2009). 

Therefore, we studied fires larger than 100 ha because they cause the most serious 

problems to fire agencies and society, and because they account for a very high 

percentage of the total burned area (Cardil and Molina 2013). Furthermore, in large 

fires the fire behavior is usually more extreme, and this can influence the risk 

perception of managers, and hence their deployment decisions (Mills and Bratten 

1988). 

All publications cited above were used to identify selected factors that could 

influence demands on resources in this study. Regarding these factors influencing 

current deployment decisions across Spain, we aimed to answering the following 
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questions: (i) was the final fire size a major factor in the number of resources 

involved? (ii) Were more resources used when there was crown fire activity? (iii) 

Did fire duration influence the amount of resources assigned to fire suppression? 

(iv) Were enough suppression resources available when simultaneous fires 

occurred? And finally, (v) if response was not swift enough, did a delayed fire 

suppression response mean that more resources would be needed later? 

Deployment of different types of resources to fight fires would be expected to 

depend on factors such as simultaneous fire occurrence (Rachaniotis and Pappis 

2006) or fire size (Liang et al. 2008). However, the combined influence of these or 

other factors on fire management remained unknown in the literature, thus 

justifying this study. 

3.2. Materials and methods 

3.2.1. Study area 

This study covered the whole area of Spain (17 autonomous communities - 

Figure 3.1) including the Canary and Balearic Islands. Most of the study area is 

dominated by a Mediterranean climate, and only the northern end has an Atlantic 

climate. The long summers of high temperatures and low rainfall increase the risk 

of wildfires in the Mediterranean area. However, even in the northwestern part of 

Spain, which has an Atlantic climate, forest fire incidence is high (Vázquez de la 

Cueva et al. 2006; Moreno and Chuvieco 2013). The different climatic regions, the 

complex topography and the socio-economic development over millennia resulted 

in a very uneven spatial distribution of the vegetation, combining the presence of 

medium-scale farming areas, areas with little natural vegetation cover (grasses and 

rangelands), extensive shrublands, park-like open forest structures with 

undergrowth, and high forests of variable densities. Verdú et al. (2012) 

characterized the relationships between different climatic, topographic and 

vegetation factors and wildfires in Peninsular Spain. 

3.2.2. Historical fire data 

The fire history data used in this study were obtained from the National 

Wildland Fire Statistics (EGIF) of the Agency for Protection against Wildfires 

(ADCIF) of the Spanish Ministry of Environment and Rural and Marine Affairs 

(MAGRAMA). This national agency is responsible for compiling statistics, 

supporting regional actions and coordinating fire suppression at national level. 
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However, fire prevention and suppression activities are carried out independently 

by the 17 autonomous communities. 

The data were obtained from standard fire reports, which document each fire 

and contain information such as starting date and time, response time, fire duration, 

fire type (surface or crown fire), burned area of forest, shrubland or other land, and 

number of resources deployed. In our study, data for the period 1998-2008 were 

considered. It was decided to use only this subset of data because after 1998 the 

data collection procedures were deeply modified, they are considered generally 

reliable (Velez Muñoz 2000), and before 2008 the financial and economic crisis in 

Spain had not yet affected budgets. 

 

Figure 3.1. Location of the political regions of Spain. The regions of the study are 

indicated by different filling patterns. 

The database underwent many screening and cleaning processes. We discarded 

all records that contained non-logical information (i.e. records with zero as the fire 

detection time, zero suppression resources, crown fire type and no wooded burned 

area, and control time equal to or previous to time of arrival) and records with little 

information (blanks). The 206,978 fire records for the period 1998-2008 were 

reduced to 170,422 fires in our database, and of these we selected all fires larger 

than 100 ha (100ha+), adding up to 1824 observations for the whole of Spain. The 
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database was later divided for modeling according to regional location in Spain 

into either separate autonomous communities or combinations of adjacent 

communities with similar patterns in fire occurrence and suppression, in order to 

have enough cases for analysis across each territory (Figure 3.1). Combined 

regions were built on the basis of similarity in terms of weather conditions, fire 

regime and fire social implications, and the existing fire suppression systems (all-

in-one emergency agencies or forest services). Autonomous communities without 

neighboring similarities and few large fires (fewer than 100) were discarded for 

individual models but their data were considered in a general model for the whole 

of Spain. The rationale for this multiple modeling approach was that we knew that 

resources differ among regional agencies, but not by how much. Different regions 

can adjust their resources to their fire problem and values at risk over fire seasons, 

hence requiring regional models. Those regions with less local suppression 

resources, though, receive more frequent and intense support from national 

agencies (the Ministry of Environment and Rural and Marine Affairs, Civil 

Protection of the Ministry of the Interior, and the Army Emergency Unit). 

Therefore, we assumed a common baseline in terms of suppression effort across 

the country for the national model. 

3.2.3. Fire suppression resources in the reports: dependent variables 

In the EGIF reports, three main categories of fire suppression resources are 

listed: personnel (P), terrestrial units (TUs) and aerial units (AUs). The P category 

includes all different types of personnel that were directly involved in fire 

suppression: forest and fire supervisors, forest rangers, professional firefighter 

crews, well-organized volunteer firefighter crews, other civil personnel, police 

officers, and army personnel. TUs include fire trucks, bulldozers, farm tractors and 

other heavy machinery used for fire suppression. Finally, AUs include amphibious 

airplanes, air tankers, suppression helicopters, fire crew helicopters and 

coordination aircrafts. For each of these groups, only the number of resources 

deployed is reported in the EGIF dataset. 

Though available types of firefighting resources may change with the region, 

only a number of options are available in the EGIF fire report form, so the closest 

resource type is usually filled in, thus leading to inaccuracy of the data. Therefore, 

we only considered the three main categories (P, TUs and AUs) to avoid data noise. 

The database lacks any information about cost and length (working time) of 

suppression activities for each group. Therefore, it was impossible to transform 

suppression resources into one monetary dependent variable. We had to develop 
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models capable of explaining jointly the three dependent variables measured in 

different units: the quantity of P, TUs, and AUs used from each group in each fire. 

3.2.4. Individual fire characteristics in the reports: independent 

variables 

To explore the relationships between individual historical fire (100ha+) 

observations and their recorded use of suppression resources, a series of 

independent variables were considered according to the previous literature and our 

stated goals. The list of the independent variables used in the models (Fire Load, 

Response Time, Fire Type, Fire Duration and Burned Area), their range of values, 

their description and their use in previous references are presented in Table 3.1. In 

selecting these variables we acknowledged that we could not analyze 

environmental conditions and fire behavior because they were not compiled in the 

database. These are factors that would influence deployment, firefighting strategies 

and techniques on-site. However, they are not routinely included in the official 

reports in Spain. Variables related to vegetation are included in the EGIF database 

marginally and descriptively, but are not spatially explicit. Weather variables are 

very limited (days from last rain, temperature, wind speed and direction and 

relative humidity, just one value for the fire, at only one time), and topography is 

not present in all the records. Every EGIF fire is classified according to type of fire, 

but the individual record does not contain information on behavior or spread 

(intensity, direction, flame length, etc.). Therefore, we selected Fire Type (surface 

or crown fire, also in the record) as the best proxy variable to account for general 

fuel and danger conditions in the fire environment. 

Table 3.1. List of the independent variables used in our models, values range, their 

description and use in previous references. 

Independent 

variables 
Description Previous references 

Fire Load, FL 

(1-169 fires/day) 

The number of fires occurring on 

the same day and in the same 

region 

Islam and Martell (1998), 

Rachaniotis and Pappis (2006) 

Response Time, RT 

(0-47.5 h) 

Hours between the detection and 

arrival at the fire 
Islam and Martell (1998) 

Fire Duration, FD 

(0-236.5 h) 

Hours between the detection and 

the control of the fire.  

Not used. Conceptually related 

but not the same variable 

Fire Type, FT 

(logical,1,2) 
Surface or Crown fire (SF, CF) Mees and Strauss (1992) 

Burned Area, BA 

(100-19190.9 ha) 

Wooded, non-wooded area and 

non-forest area affected 
Liang et al. (2008) 
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3.2.5. ANN models 

High correlations should be expected between the variables (i.e. fire duration 

and fire size). Fire suppression resources would be measured in different units, 

people, trucks, helicopters or air tankers, which could not be added, but would also 

be correlated. Multicollinearity and the consideration of different types of 

suppression resources as joint dependent variables in the same model made the 

choice of ANN optimal for modeling their use in large fires across Spain. 

An ANN is an information processing system capable of identifying and fitting 

very complex non-linear patterns by iterative adjustment of the weights or 

connections between nodes (free parameters to store the relation between variables 

in the models) organized as input, hidden and output layers. Our models were feed-

forward, multilayered, non-linear, fully connected cascade-correlation networks 

(Fahlman and Lebiere 1990) built using NeuralWorks Predict ® v.3.24 software 

(Neuralware 2013). The models were computed as in Alcázar et al. (2008) and 

Debouk et al. (2013), but with three output nodes (one for each of the suppression 

dependent variables). With the cascade-correlation method, the architecture of any 

network is not set beforehand. Training based on an adaptive gradient learning rule 

– a variant of the general algorithm of back-propagation (Werbos 1994) – started 

with no hidden layer, and then hidden units were tested and added during the 

training process, creating an optimal multi-layer structure (Fahlman and Lebiere 

1990) by the time the best possible correlation between observed and predicted 

suppression variables was achieved. The independent variables (Fire Load, 

Response Time, Fire Duration, Fire Type and Burned Area) went through a 

comprehensive number of transformations (i.e. linear exponential, inverse, tanh, 

log, power functions), which were tested as possible inputs to the models with a 

genetic algorithm prior to model building (as in Alcázar et al. 2008). Also previous 

to model building, the national database of 1824 large fires was split into two 

subsets: 90% of the data were used for developing the networks (this sample was 

further divided into two: 70% for training and 30% for periodic testing and 

assessing of performance accuracy) and 10% for independent validation (data not 

used for building the model). To avoid the common problem of losing 

generalization capacity and the ability to perform well with new data in training a 

network model, it is customary to apply early stopping with a test set (Guan and 

Gertner 1991; Hasenauer et al. 2001; Corne et al. 2004). The database was divided 

according to regional location in Spain, and separate explanatory models were built 

for several regions. The regional databases were also split in two subsets: 10% for 

validation and 90% for developing the models (training 70%, testing 30%). 
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For each of the models several replicate networks were simulated by changing 

the random selections of fire observations falling within the validation, test and 

building datasets. We wanted to check for stability in the resulting models 

(convergence to the same solution). For each of these replicate networks, at least 

five different initial starting points (random weights assigned) were set for training, 

to avoid local minima. Given that some regions had a limited number of fires, a 

weight decay factor was applied to the learning rule for the corresponding regional 

models to inhibit the complexity of the models (Hasenauer et al. 2001; Neuralware 

2013). Models for regions with a low number of fires should not have complex 

networks with many weights or connections, as rules are often applied regarding 

the number of cases needed per weight for a robust network. 

If all the resulting networks (at least 15) converged to a similar result, we 

considered the solution robust and chose the best net model. 

In selecting the best ANN model, we looked for a high Pearson correlation 

between observed and predicted fire suppression units, low root-mean-square error, 

balanced results between the three datasets and parsimonious architecture. A 

sensitivity analysis based on partial derivatives (Jutras et al. 2009) was used to 

determine which independent variable had the highest impact on the predicted 

variable, since networks were too complex for direct examination. Finally, the 

frequency of selection of each independent variable by the generic algorithm in 

each model was examined. The higher the frequency of the independent variable, 

the more relevant it was in explaining the dependent variable. The same 

independent variable might enter any network twice or more times, further 

emphasizing its importance in the corresponding model (Alcázar et al. 2008). 

3.3. Results 

The maximum values of the variables were 1833 for P, 173 for TUs, and 43 for 

AUs. Pearson’s correlation between P and TUs was 0.72, 0.67 for P and AUs, and 

0.56 between TUs and AUs (p<0.01). Therefore, the correlation between dependent 

variables was significant and more personnel implied more aerial and terrestrial 

units also being used. 

Average values of resources used per fire and per burned area (100ha+) for the 

regions analyzed in Spain are presented in Table 3.2. In relation to the number of 

resources per fire, Aragon, Catalonia, the Valencian Community and Andalusia 

had the highest values and Cantabria and Asturias the lowest. Similar results were 

obtained considering the number of resources (P, TUs and AUs) per burned area 

(Table 3.2). Therefore, noteworthy differences were found among regions in Spain. 
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Table 3.2. Average values for each resource (personnel P, terrestrial units TUs, aerial units 

AUs) per each large fire and per 100 ha burned across regions in Spain. Values substantially 

over the Spanish average are shadowed 

Regions Num P/F TU/F AU/F P/100ha TU/100ha AU/100ha 

Spain 1824 
110.92 

(153.92) 

9.85 

(13.82) 

5.08 

(5.5) 

41.32 

(48.96) 

3.83 

(5.4) 

2.05 

(2.43) 

CL 507 
90.28 

(123.35) 

7.08 

(9.81) 

3.72 

(4.43) 

34.95 

(46.29) 

2.77 

(4.14) 

1.45 

(1.78) 

AN 151 
233.15 

(210.03) 

12.95 

(10.48) 

10.5 

(7.12) 

84.59 

(58.88) 

5.19 

(4.74) 

4.26 

(3.34) 

CM 134 
112.48 

(134.38) 

11.63 

(10.28) 

5.42 

(5.98) 

39.66 

(48.7) 

4.32 

(3.97) 

1.93 

(2.33) 

CV 118 
277.37 

(279.7) 

33.65 

(32.5) 

10.81 

(7.38) 

80.8 

(86.77) 

10.68 

(13.26) 

3.62 

(3.47) 

EX 181 
82.8 

(74.69) 

7.69 

(9.37) 

3.91 

(4.29) 

34.66 

(28.52) 

3.07 

(3.32) 

1.51 

(1.6) 

GA 497 
66.37 

(57.56) 

7.32 

(6.48) 

4.5 

(4.26) 

29.84 

(23.96) 

3.36 

(3.32) 

2.09 

(2.32) 

CA 127 
27.97 

(28.57) 

1.7 

(2.43) 

1.41 

(2.14) 

13.59 

(12.86) 

0.85 

(1.19) 

0.69 

(1.15) 

CL: Castile and Leon; AN: Andalusia; CM: Castile-La Mancha; CV: Catalonia and 

Valencian Community; EX: Extremadura; GA: Galicia; CA: Cantabria and Asturias 

No suitable ANN model could be designed for separately modeling Aragon, La 

Rioja, Madrid, Basque Country, Balearic and Canary Islands due to lack of 

sufficient data (fewer than 50 cases), so we focused our efforts on the other 

regional models with higher fire incidence. 

Integrated models for the three dependent variables (P, TUs and AUs) were 

successfully built using different combinations of the independent variables Fire 

Load, Fire Duration, Fire Type and Burned Area. The variable Response Time was 

discarded early in the development of the models, as it showed no significance 

during any of the building processes. In total, we obtained eight models, one for 

each of the seven regions and one for the whole of Spain. General model 

diagnostics (Pearson’s R and network architecture) for the best eight models are 

presented in Table 3.3, where the network architecture for all the best models is 

also listed, referring to the number of input, hidden and output nodes. ANN 

architectures were not too complex, but they were more substantial in Castile and 

Leon and Cantabria and Asturias, with a larger number of nodes in the hidden 

layer.  

The ANN fittings (Pearson’s R) between predicted and observed values of the 

Spanish model training data were 0.66 for P, 0.54 for TUs and 0.59 for AUs, with a 
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5-11-3 structure. Correlations between predicted and observed values of the 

Spanish model validation data were 0.70 for P, 0.65 for TUs and 0.60 for AUs. 

Table 3.3. General diagnostic with Pearson’s R and architecture of the best eight artificial 

neural network (ANN) models for all Autonomous Communities and for the whole of Spain 

for the period 1998-2008 

ANN architecture Spain CL AN CM CV EX GA CA 

 5-11-3 7-24-3 4-8-3 3-9-3 3-10-3 4-4-3 5-24-3 5-2-3 

P 

Train 0.662 0.637 0.809 0.744 0.588 0.700 0.662 0.428 

Test 0.699 0.508 0.805 0.773 0.779 0.582 0.560 0.685 

Valid. 0.698 0.851 0.357 0.944 0.599 0.571 0.574 0.397 

TU 

Train 0.542 0.522 0.706 0.666 0.601 0.720 0.596 0.244 

Test 0.545 0.528 0.677 0.745 0.380 0.370 0.456 0.668 

Valid. 0.651 0.808 0.412 0.908 0.505 0.733 0.395 0.740 

AU 

Train 0.594 0.567 0.741 0.784 0.494 0.616 0.513 0.323 

Test 0.606 0.628 0.706 0.739 0.483 0.641 0.448 0.447 

Valid. 0.600 0.866 0.644 0.931 0.628 0.687 0.500 0.441 

CL: Castile and Leon; AN: Andalusia; CM: Castile-La Mancha; CV: Catalonia and 

Valencian Community; EX: Extremadura; GA: Galicia; CA: Cantabria and Asturias 

By regions, Castile and Leon and Galicia showed the most complex 

architectures (24 nodes in the hidden layer), while the other models had a similar 

architecture to that of the global model. The best results by regions were obtained 

in Castile-La Mancha and Castile and Leon (0.80 and 0.66 Pearson’s R values 

averaged over the three datasets and resource types) and the worst in Cantabria and 

Asturias (0.49). The average sensitivity indicates the direction of change (Table 

3.4) and the factors that influence the number of resources (P, TUs and AUs). In 

order to more accurately illustrate the impact of inputs on outputs, we ran the 

network model for Spain with average input values for crown or surface Spanish 

fires, and then we shifted them up and down for crown fires (the most dangerous). 

The effects of changing Burned Area, and increasing or decreasing Fire Duration 

and Load (± 5 units) is reported in Table 3.5. 

In the global Spanish model (all the data), the average absolute error was 

approximately 60 for P, 6 for TUs and 3 for AUs (all similar for training, testing 

and validation data samples). The variables with the highest weight for the fire 

suppression resources (P, TUs and AUs) were Fire Load (negative) and Burned 

Area (positive), followed by Fire Duration and crown Fire Type (both positive). 

Thus, the number of forest firefighting resources is higher in larger fires when 

regional fire frequency is low, and in long-duration crown fires. 



Chapter 3. Factors in fire suppression use 

28 

 

Table 3.4. Simulation of Input-Output effects in the model for Spain 

Sensitivity Spain model FL FD SF CF BA P TUs AUs 

SFMEAN values 21 20 1 0 301 49 4 2 

CFMEAN values 23 28 0 1 731 107 9 5 

Crown fires sensitivities  FL FD SF CF BA P TUs AUs 

BAMEAN + 1STD ha 23 28 0 1 2463.2 113 10 6 

BAMIN 100 ha 23 28 0 1 100 58 4 3 

FLMEAN +5 fires 28 28 0 1 731 102 9 5 

FLMEAN -5 fires 18 28 0 1 731 114 10 6 

FDMEAN +5 h 23 33 0 1 731 111 10 6 

FDMEAN -5 h 23 23 0 1 731 101 9 5 

FL: Fire load; FD: Fire duration; SF: Surface fire; CF: Crown fire; BA: Burned area; P: 

Personnel; TUs: Terrestrial units; AUs: Aerial units 

The average absolute error of the regional models is widely variable, being the 

highest in Catalonia and the Valencia Community and the lowest in Cantabria and 

Asturias. The value ranges were 15-135 for P, 1.5-20 for TUs, and 1.5-5 for AUs. 

The number of selected variables in each model is uneven, being only two (Fire 

Duration and Burned Area) for the Andalusian model. The behavior of their 

variables is similar to the global Spanish model, in which Fire Load was negatively 

related to the number of resources (or not affecting them), while Fire Duration, 

Burned Area and crown Fire Type were positive. Thus, the number of resources for 

extinguishing a fire was greater in large, long duration crown fires, as expected. 

Table 3.5 shows some special patterns. In the Cantabria and Asturias region, 

more firefighting resources were allocated to surface fires than to crown fires. Fire 

Duration in Castile and Leon was negatively correlated with the number of TUs, 

and the correlation between Burned Area and TUs and AUs was stronger in 

Andalusia and Extremadura than in other regions. 

3.4. Discussion 

Cascade-correlation ANNs were used to model the relationships between 

suppression resources deployed in large wildland fires (100ha+) and several 

independent variables (Fire Load, Fire Duration, Fire Type and Burned Area) in 

Spain. Our models had a similar behavior and architecture, and replicates 

converged even when observations were randomly shifted in the training, testing 

and validation datasets. These findings agree with those of other works (Scrinzi et 

al. 2007; Alcázar et al. 2008) and indicate that the models were robust and the 

databases were suitable for identifying the trends in the data through the analysis of 
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input/output relationships. However, it would be advisable to improve the data 

collected in order to obtain more accurate analyses in the future, including other 

information than the quantification of resources used by type (i.e. economic 

information). 

Table 3.5. Interactions between independent and dependent variables in each region and 

the whole Spain. Values of average sensitivity for the period 1998-2008 

 Spain CL AN CM CV EX GA CA 

Personnel 

Fire Load -1.03 -0.07 0 0 0 0 -0.21 -0.01 

Fire Duration 0.21 0.17 0.64 0.19 0.11 0.0005 0.26 0.34 

Fire type 
Crown 0.05 0.03 0 -0.01 0.06 0.056 0.04 0 

Surface 0 0 0 0 0 0 0 0.06 

Burned area 0.65 0.05 2.69 0.09 0.27 2.165 0.11 0.22 

Terrestrial units 

Fire Load -0.80 -0.08 0 0 0 0 -0.20 -0.07 

Fire Duration 0.06 -0.11 0.60 0.28 -0.07 0.0003 0.37 0.19 

Fire type 
Crown 0.05 0.03 0 -0.05 0.10 0.0306 0.05 0 

Surface 0 0 0 0 0 0 0 0.05 

Burned area 0.78 0.06 3.24 0.35 0.47 1.0747 0.13 0.16 

Aerial units 

Fire Load -1.34 -0.10 0 0 0 0 -0.28 -0.01 

Fire Duration 0.51 0.86 0.85 0.372 0.12 0.0002 0.25 0.18 

Fire type 
Crown 0.07 0.06 0 -0.004 0.08 0.0418 0.03 0 

Surface 0 0 0 0 0 0 0 0.05 

Burned area 0.88 0.05 5.66 0.153 0.52 2.127 0.07 0.09 

CL: Castile and Leon; AN: Andalusia; CM: Castile-La Mancha; CV: Catalonia and 

Valencian Community; EX: Extremadura; GA: Galicia; CA: Cantabria and Asturias 

As a general observation, modeling of TUs showed slightly worse results than 

that of AUs and P, and P showed the best prediction accuracy within the same 

model and across all models. Trends in dispatching TUs could be related to the 

proximity and accessibility of the TUs to the fire location. Local factors such as 

distance, access, the presence and steepness of forest roads are instrumental, as 

Mees and Strauss (1992) mentioned, and could explain the higher use of TUs in the 

densely populated eastern and southern Spanish regions in large wildland fires and 

the lower use in Castile and Leon. Castile and Leon is the largest region in both 

total area and total forest area, but it has one of the lowest population densities (27 

inhabitants per square kilometer). 

Different considerations may be applied to P and AU. According to Ganewatta 

and Handmer (2009), AUs are only justified when other resources cannot reach the 
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fire site, but in Spain they are routinely used in many cases and scenarios. This 

means that AU dispatching could also depend on limited access to the fire site by 

other resources (interaction effects). AU use is usually restricted by weather 

conditions and geographic or socio-economic factors (Donovan and Rideout 2003; 

Gebert et al. 2007; Kaval 2009). 

For the general model at the national level, the number of forest firefighting 

resources is higher in large, crown and long duration fires when regional fire 

frequency is low. The fire load negatively influenced deployment to large fires, as 

found in other environments for fire suppression in the US (González-Cabán et al. 

1986; Donovan and Rideout 2003). Islam and Martell (1998) also found an effect 

of fire load on aerial initial attack range in Ontario. Our findings apparently 

contradict those of Hunter (1981), who concluded that response time and 

dispatching decisions were not affected by multiple-fire occurrences in Montana, 

US, though the US environment and the forest fire policy greatly differ from the 

current Spanish situation. 

Not surprisingly, at the national level when the burned area increases, the 

number of dispatched resources increases, as was also found by Liang et al. (2008). 

The behavior of the independent Fire Type variable seemed to capture the general 

knowledge that crown fires are the most severe and destructive type of fires 

(Alexander and Cruz 2014), thus requiring most suppression resources (Dupuy 

2009). The fire duration variable showed that the longer the fire, the more 

resources would be assigned for suppression activities. However, this was more 

likely for AUs than for TUs, in agreement with Castellnou et al. (2010). Sensitivity 

analysis of the national model shows, for instance, that a reduction from average 

Burned Area in crown fires (731 ha) to the minimum considered in the study of 

100 ha saves 49 personnel, 5 machines and 2 aircraft from being deployed. An 

increase in simultaneous fire occurrence by 5 more fires in the same day and region 

means that 5 fewer people will be deployed to any crown fire. A delay of 5 hours in 

controlling a crown fire causes on average an increase of 4 people, one TU and one 

AU. 

Our 7 regional models showed a similar behavior and structure to the national 

Spanish model, but not all of them achieved equally good results or used the same 

variables, indicating different regional trends in the use of firefighting resources 

across Spain. The NW regions (Galicia, Cantabria and Asturias) had lower 

goodness-of-fit (network Pearson’s R correlation) values than central Spain 

(Castile and Leon and Castile-La Mancha) and the Mediterranean regions 

(Catalonia and the Valencian Community region). The NW regions also had lower 
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average absolute errors, but this is a consequence of the lower number of resources 

usually deployed in these regions and not an indication of better model fit. 

Regarding Fire Type, in the NW region of Galicia crown fires also appeared to 

be important for resource deployment, but Fire Load, Fire Duration, and Burned 

Area (the last one to a lesser extent) were far more influential variables in the best 

model. The model also confirmed that the influence of fire simultaneity in Galicia 

is the highest in Spain (Chas-Amil et al. 2010). Also, this NW region was more 

difficult to model in terms of fire occurrences (Padilla and Vega-Garcia 2011), 

indicating that the general fire environment (social and biophysical) and related 

patterns of use of suppression resources are more complex than elsewhere in Spain. 

Although similar to other variables, the combined region of northern Cantabria 

and Asturias showed an opposite pattern in Fire Load (resulting negligible) and 

Fire Type, with more resources being dispatched to surface fires. Surface fires 

create the most relevant problems in these regions, where large tracts of shrub 

lands with the worst fire behavior have been created by abandonment of productive 

rangeland. Moreover, when compared with the nearby Galicia, Cantabria-Asturias 

exhibits more topographic complexity and lower forest property fragmentation, 

which favors lower transmittance of fire to tall forests (Rodriguez LA, Head of 

Prevention and Training of the Emergency Service of Asturias, pers. comm.). 

Castile and Leon showed a pattern similar to Galicia, but with lower influence of 

the Fire Load variable. 

The individual patterns of Mediterranean regions were completely different, 

with Burned Area playing a major role in Extremadura and Andalusia. The relation 

between Burned Area and resources (both TUs and AUs) was stronger in southern 

Spain than in other regions. This finding may be explained by the fact that 

population density in the other regions is higher, therefore availability of local 

firefighting resources (especially personnel) is also higher. 

Interestingly, daily fire load was not relevant in central-southern and eastern 

Spain. Fire Load did not imply a reduction in firefighting resources deployed to 

large, 100 ha+ fires in four of these regions. This finding may indicate that the 

occurrence threshold (number of fires) above which available resources are under 

duress may not yet have been reached, and that the national model is influenced by 

the high number of fires in NW Spain. 

Some regional differences should be expected as different fire regimes in 

Atlantic (NW Spain) and Mediterranean Spain have been identified in previous 

studies (Verdú et al. 2012; Cardil and Molina 2013; Moreno et al. 2014), and 

agencies naturally adjust their deployment protocols to the different ignition and 
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propagation conditions and the values at risk. Resource use in large fires in the 

Mediterranean areas was substantially above the Spanish average. Lower resource 

use in the Atlantic likely indicated that burning conditions were not as extreme as 

in the Mediterranean (assuming no budgetary restrictions for either regions in 

1998-2008). However, the influence of fire load in three regional models in the 

northwest, and very especially in Galicia, proved that the occurrence of multiple 

fires reduced available resources for large fires in these Spanish regions. 

Management implications for regions with high fire occurrence need to be 

considered in our current scenario of a full suppression policy. If fire load is high, 

temporal constraints in use may occur, meaning that late-arrival fires will use fewer 

resources or none. When these constraints are in place, there is the possibility of 

improving the efficiency by training fire managers in advanced analysis of fire 

behavior and meteorology (Molina et al. 2010) and by optimizing the selection and 

distribution of resources (Martin-Fernandez et al. 2002; Rodríguez y Silva 2007), 

even leaving lower priority fires watched but unattended. And when fire load is 

high, social preventive action is essential (Raftoyannis et al. 2014). 

In the future, we can expect worse fire danger conditions in all regions, a more 

complex WUI environment and constrained budgets (Liang et al. 2008; Garcia-Rey 

et al. 2014; Raftoyannis et al. 2014), leading to the conclusion that new 

management strategies are required not only for Spain, but also for other 

Mediterranean countries with similar conditions (Mendes 2010). The potential 

impact on budgets should be carefully evaluated (Gebert and Black 2012) and 

anticipated. Environmental conditions and fire behavior factors that would 

influence deployment, firefighting strategies and techniques could not be included 

in our models because they were not available in the official Spanish fire database, 

but they should be included in future work. Some recent extreme behavior fires 

have already offered reduced opportunities for fire suppression, being beyond 

suppression capacity (Molina et al. 2010; Cardil, Salis, et al. 2014). The current 

pattern of adding suppression resources when fires grow in size or duration will not 

be the solution for future fire control, especially if resources are increasingly 

limited by higher human risk and lower budgets. It may be advisable to revise the 

current policy of suppression of all fires, as other countries have done before (US 

and Canada, for instance). The heterogeneous regional environmental and the 

managerial characteristics and fire regimes (Moreno and Chuvieco 2013) make fire 

prevention the focus for the future control of fires (Fernandes et al. 2013). Forest 

and fire prevention management alternatives for safer landscapes, including 

reduced fuel hazards arising from technical use of fire (Cassagne et al. 2011; Ager 
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et al. 2013; Fernandes et al. 2013) and information and education campaigns 

(Raftoyannis et al. 2014), should be a priority for Spain. 

3.5. Conclusions 

ANNs were successfully applied to model regional patterns of firefighting 

resource deployment in Spain. Our models suggested that Spanish agencies 

generally respond to large fires by adding more resources as the fires grow either in 

size or duration, but in some regions (especially those in NW Spain) multiple-fire 

situations divert resources from their use on large fires. However, national level 

analyses may mask the fact that trends of regional firefighting resources differ 

across Spain. Efficiency can be improved by training decision makers on advanced 

analysis of fire behavior and meteorology, but in the future we can expect worse 

danger conditions, a more complex WUI environment and constrained budgets. 

The full suppression policy being applied should be reexamined. The current 

pattern of just adding suppression resources with extended fire duration or size will 

not be the solution for future fire control, thus fire prevention should be a priority 

for Spain. 
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ABSTRACT. The increasing global concern in the world about wildfires, mostly 

caused by people, has triggered the development of models for the prediction of 

occurrences in fire-prone regions, under the premise that a better knowledge of the 

underlying factors is critical for suppression, prevention-planning actions and 

guidance on fire policies. Here we analyze the state of the art on human-caused fire 

occurrence modelling since the first attempts until the present (1954-2016), with 

the purpose of establishing current and future research needs, stratifying our 

worldwide analysis by major habitat types that support different fire environments. 

Fire occurrence patterns present many spatial and temporal similarities, but we 

found regional differences responding to vegetation composition and configuration, 

closely linked to weather, human presence and activity that need to be considered 

regionally in model development.  
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4.1. Introduction 

Wildfire is a major disturbance factor in many parts of the world and it is 

growing due to climate change (Wotton et al. 2010). More than 30% of the world’s 

land mass already has significant and recurrent fire activity (Chuvieco et al. 2008). 

According to FAO (2010), which compiled a wildfire database with records from 

64 countries (60% of the world’s forest area), an annual average of 487,000 

wildfires occurred during 2003–2007. Mozambique, United States, Madagascar, 

Poland, Portugal, Russia, Spain, Argentina and Hungary topped their list, all with 

averages over 10,000 fires/year. However, remote sensing has proved Africa and 

Latin America are the most active fire areas (Chuvieco et al. 2008), being the 

Tropical and subtropical grasslands, savannas and shrublands, the Flooded 

grasslands and savannas and the Tropical and subtropical dry broadleaf forests 

(Olson et al. 2001) the most affected major habitat types (MHTs). Worldwide, 

more than 90% of these fires are linked, directly or indirectly, to human activities 

like forest clearing, grasslands maintenance for livestock production, extraction of 

non-wood forest products, hunting, recreational areas, arson or resettlement (FAO 

2007). These fires are usually termed as “human-caused fires” or HCFs. HCFs 

encompass intentional and unintentional human actions, power lines and 

machinery; fires are labelled as “natural” if mainly caused by lightning, and locally 

at certain regions, by volcanic eruptions or earthquakes. 

HCFs often show broadly identifiable spatial and temporal patterns, which led 

to believe that forest fire occurrences could be modelled from the 1950´s onward. 

At that time, Crosby (1954) argued that “Fire occurrence can be predicted” and 

Bruce (1963) asked “How many fires?” occur considering that fire ignitions can be 

analysed by mathematical methods. New models of fire occurrence appeared 

during the following years. Donoghue and Main (1985) produced the first study 

focused on HCFs occurrence. It was soon recognized that the prediction of these 

fire occurrences could provide important information for prevention programs 

(Donoghue et al. 1987), optimizing resource allocation in strategic firefighting 

(Dlamini 2010) and generally guiding forest and fire policies (Chas-Amil et al. 

2010). The interest of modelling HCFs grew in the following years and this interest 

remains active nowadays (Pan et al. 2016). 

Fire occurrence modelling has tried to identify which biotic and abiotic factors 

influence fire ignitions, by using many modelling techniques. The aim of this 

review is to analyse the state of art of HCF occurrence modelling with the purpose 

of establishing current and future research needs to better inform and aid wildfire 

management. We have considered research papers written in English in widely 
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available scientific journals, and reports published during the 50s and 60s when 

publishing in scientific journals was not as common as later on. 

4.2. The causes of HCFs 

138 research papers have been found between the first, Crosby (1954), to the 

most recent, Levi and Bestelmeyer (2016), and all are listed in Supplementary table 

4.S1, with descriptive information on contents. The largest number of HCF papers 

has been published between 2012 and 2015, with an average of 12 studies per year, 

and this trend seems to increase in 2016 (13 studies published until July).  

This review compilation considers general HCFs occurrence modelling (36 

studies), but also studies on specific processes related to human behaviour, like 

arson (Donoghue and Main 1985; Vasconcelos et al. 2001; Prestemon and Butry 

2005; Juan et al. 2012; Penman et al. 2013; Serra et al. 2013, 2014; Collins et al. 

2015), negligence (Vasconcelos et al. 2001; Juan et al. 2012; Serra et al. 2013, 

2014; Collins et al. 2015), livestock-related (Ruiz-Mirazo et al. 2012) or debris 

fires (Donoghue and Main 1985). HCF occurrence studies often focus on fire 

ignitions in human-dominated landscapes (FAO, 2007) because a reliable 

classification of specific causes (human/natural) is not always available. 

Consequently, we have also considered research papers that include ignitions from 

any cause or those that do not specify ignitions source, but state that human activity 

is the predominant causal factor for ignitions in the study area (93 studies).  

All these HCFs occurrence models involve the selection and quantification of  

significant risk factors (predictive variables) used to characterize the occurrence of 

fire ignitions that are detected and reported, conducing to a fire record in a database 

for analysis (observed/predicted variable).   

4.3. HCF occurrence and ignition data collection  

HCF occurrence models rely on the analysis of historical data to describe past 

HCFs or to predict future events. Fire events are usually reported to a database by 

national forest departments, forest or fire agencies or forest administrations and 

usually include the location, date and time, cause and size of each fire, which are 

the basis for forest fire occurrence modelling (Finney 2005). However, undetected 

and/or unreported fires or missing fires are a common problem in many countries, 

due to lack of managerial resources, peak high fire loads, differing policies on 

minimum reporting size or occurrence in remote underpopulated regions with low 

values-at-risk (i.e. Lefort et al. 2004). When reliable fire records are unavailable, 
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fire occurrence (Chuvieco et al. 2008) can yet be estimated from remote sensing 

sources from burned areas or hotspots (i.e. Venevsky et al. 2002; Vadrevu et al. 

2006; Maingi and Henry 2007; Chuvieco et al. 2008; Garcia-Gonzalo et al. 2012; 

Marques et al. 2012; Zhang et al. 2013; Li et al. 2014; Bedia et al. 2015; Ancog et 

al. 2016). In this case, as with historical fire records, precise ignition locations are 

often uncertain. 

Fire ignitions are usually reported within regular quadrats or irregular 

administrative divisions (areal units), and only a few studies have been able to 

analyze the spatial-specific location of each event as a point pattern in a certain 

location and date (Yang et al. 2007; Juan et al. 2012; Liu et al. 2012; Miranda et 

al. 2012; Fuentes-Santos et al. 2013; Serra et al. 2013, 2014). 

HCFs occurrence models in grid or areal units are usually probabilistic and 

their output is a probability (of at least one fire) that ranges from 0 to 1. By 

classifying this probability with a cut-off value, fire occurrence can be modelled as 

binary (absence or presence of fires, coded 0 and 1, respectively) and the greatest 

amount of research papers have focused on the binary prediction of wildfires (i.e. 

Andrews et al. 2003; Reineking et al. 2010; Zhang et al. 2010, 2016; Arndt et al. 

2013; Pan et al. 2016). A binary dependent variable implies accepting that fires are 

rare events (Vega-Garcia et al. 1995), hardly ever more than one takes place in the 

temporal and areal unit under study. However, this is not true across temporal and 

spatial scales, which demands estimations of the actual number of ignitions of each 

areal unit. Therefore, some studies have focused on the modelling of number of 

HCF in a certain time span (i.e. García Diez et al. 1994, 1999; Cardille et al. 2001; 

Knorr et al. 2014; Plucinski et al. 2014; Xiao et al. 2015) 

Both binary occurrence and numerical HCFs prediction models have been 

developed for varying temporal spans. HCF models range from daily predictions 

(i.e. (Crosby 1954; Haines et al. 1983; Alonso-Betanzos et al. 2003; Lozano et al. 

2007; Albertson et al. 2009; Wotton et al. 2010; Padilla and Vega-Garcia 2011; 

Sakr et al. 2011), to monthly predictions (Preisler et al. 2004; Boulanger et al. 

2014), to yearly predictions (Todd and Kourtz 1991; Prestemon and Butry 2005; 

Karouni et al. 2014; Hu and Zhou 2014) or even longer time-span predictions (i.e. 

Pew and Larsen 2001; Chuvieco et al. 2008; Avila-Flores et al. 2010; Gonzalez-

Olabarria et al. 2011; West et al. 2016).  

Within a year, fire occurrence may differ seasonally (Albertson et al. 2009): 

there is a well-defined seasonality in some regions with a high peak of fire 

occurrence in summer (Ager et al. 2014), while in others there are two well-

defined peaks of fire frequency in early winter and summer (Martell et al. 1989). 

Accordingly, some models only use fires recorded during the fire season because 
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this is the period with the highest number of fires (i.e. Haines et al. 1970; Vega-

Garcia et al. 1995, 1996; Dickson et al. 2006; Vilar et al. 2010). 

After ignition, fires grow to a final size determined by topography, fuels, winds 

and suppression efforts, in a process that is usually modelled separately from 

occurrence, dependent on sources of ignition and fine fuels state. For this reason, 

HCF studies usually consider fires of all sizes. However, models built from remote 

sensing data have had to focus on large forest fires (LFFs), or consider a certain 

minimum size arising from technical limitations. Bradstock et al. (2009) 

considered fires larger than 1000ha, Preisler and Westerling (2007) and West et al. 

(2015) fires larger than 400ha, Drever et al. (2009), Gralewicz et al. (2012), Jiang 

et al. (2012) and Boulanger et al. (2014) fires bigger than 200ha; Sitanggang et al. 

(2013) and Zhang et al. (2013, 2016) fires larger than 100ha; Lefort et al. (2004) 

and Duane et al. (2015) fires over 50ha; Verdú et al. (2012) fires over 25ha; 

Dickson et al. (2006) and Hegeman et al. (2014) fires larger than 20ha; Garcia-

Gonzalo et al. (2012), Marques et al. (2012) and Rodrigues et al. (2014) fires over 

5ha; Parisien and Moritz (2009) fires over 4ha, Cardille et al. (2001) fires over 

0.4ha; Stolle et al. (2003) fires over 0.25ha; or Miranda et al. (2012) fires larger 

than 0.1ha.  

4.4. HCF occurrence modelling methods 

The first fire occurrence and frequency models were simple, starting with linear 

regression (Crosby 1954; Haines et al. 1970, 1983; Altobellis 1983), modelling 

together natural- and human-caused fires. In the second half of the 1980s, 

Donoghue and Main (1985) and Martell et al. (1987) introduced, respectively, 

binary logistic regression for the HCFs binary occurrence and Poisson logistic 

regression for predicting the number of HCFs. Both methods have been frequently 

put to use since then (i.e. (Liu and Zhang 2015; Marchal et al. 2016; Levi and 

Bestelmeyer 2016), as they are easy to use and understand (Chang et al. 2013). In 

subsequent years, models evolved in parallel to mathematical applications and 

computing power. Complex techniques such as Classification and Regression Trees 

(CARTs, i.e. Amatulli et al. 2006; Sitanggang et al. 2013; Karouni et al. 2014; 

Argañaraz et al. 2015), Artificial Neural Networks (ANNs, i.e. Vasconcelos et al. 

2001; Sakr et al. 2011; Ruiz-Mirazo et al. 2012), Support Vector Machines (SVMs, 

Rodrigues and De la Riva 2014) or Generalized Additive Models (GAMs, Penman 

et al. 2013) have been introduced as an alternative to traditional statistical methods, 

especially when dealing with large databases, non-linear patterns and not normally 

distributed or highly correlated variables. Currently, the observation that fires often 
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occur in aggregated or clustered patterns (Pereira et al. 2015) has led to non-

parametric models including the spatio-temporal relations between ignitions (Yang 

et al. 2007; Beccari et al. 2015). 

Additionally, this methodological evolution has increased HCF prediction 

accuracy. While the linear regression model of Altobellis (1983) showed an 

accuracy of 0.27 for all fire causes, the Poisson mixed model accuracy of Boubeta 

et al. (2015) is 0.86 in HCFs. Padilla and Vega-Garcia (2011) reached 0.89 for one 

ecoregion in Spain. Higher accuracy should increase the reliability of HCFFs 

models for operational use by fire managers. Models predicting locations and 

weather conditions of new fires have the potential to aid in detection and initial 

attack. Fire suppression resources are often challenged by simultaneous 

occurrences of fires (Molina-Terrén and Cardil 2015) that can be predicted in 

advance by fire occurrence models. However, the current level of operational 

implementation of the majority of these models is scarce, though some fire 

management systems have made provisions for their use (i.e. Chuvieco et al. 

2010). 

4.5. Study areas by terrestrial ecoregions 

Our analysis of previous work was geographically stratified from the Global 

Map of Terrestrial Ecoregions determining Major Habitat Types (MHTs) (Olson et 

al. 2001, https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-

world), which has been used in previous fire occurrence modelling studies (Bedia 

et al. 2015). MHTs are characterized from climate and, particularly, temperature 

and precipitation. Climate depends on i. latitude (related to temperature and 

seasonality), which define polar, subpolar, boreal, temperate, subtropical and 

tropical regions; ii. precipitation, which determines super-humid, humid, sub-

humid, semiarid, arid and super-arid MHTs; and iii. altitude which determines 

basal, premontane, montane, subalpine, alpine and nival belts. MHTs provide an 

adequate basis for the stratification of HCFs studies because vegetation results 

from the interactions between climate, human activities and natural processes, 

including wildfires. For our analysis, we selected 14 ecoregions from the total 16 

(Table 4.1), discarding Water bodies and Rocky and Ice areas because of their little 

or no vegetation presence. A minimum representation of 10% in area was set to 

consider that a publication pertained to a MHT. 

Most of the 138 publications analyzed had study areas comprising two or more 

MHTs. 44 studies had their study area completely enclosed within one MHT, being 

6 the number of MHTs in these cases. These 44 studies are distributed with a 
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minimum of 1 and a maximum of 19 studies within the 6 MHTs, suggesting that: i. 

study areas are usually not based on major vegetation types, but political or 

administrative boundaries, and ii. some fire environments have received a lot more 

attention that others, particularly Mediterranean Forests, Woodlands and Scrub, 

and Temperate Broadleaf and Mixed Forests, though they are not the highest in fire 

incidence (Table 4.1). In terms of political boundaries, publications are mainly 

located in Southern Europe (49 publications, out of which 37 have been done in 

Spain and Portugal), and North America (US and Canada), with 29 and 16, 

respectively. In the last years (2010-2016), China has been the second country with 

the highest number of HCF occurrence modelling publications (14 studies), behind 

Spain with 22. 

Table 4.1. Terrestrial major habitat types (Olson et al. 2001), with their world areal 

percentage and fire density between 2000 and 2015 based on the hotspots product of the 

sensor MODIS (http://neo.sci.gsfc.nasa.gov/) 

Major habitat type 
Area 

% 

Fire density 

(fires/km2) 

Tropical and Subtropical Grasslands, Savannas and 

Shrublands 
6.7 16.6 

Flooded Grasslands and Savannas 0.4 16.2 

Tropical and Subtropical Dry Broadleaf Forests 1.0 11 

Tropical and Subtropical Coniferous Forests 0.3 7.4 

Mangroves 0.1 6.4 

Tropical and Subtropical Moist Broadleaf Forests 6.5 5.6 

Temperate Grasslands, Savannas and Shrublands 6.4 3.4 

Temperate Broadleaf and Mixed Forests 8.1 2.4 

Mediterranean Forests, Woodlands and Scrub 1.5 2.2 

Temperate Conifer Forests 2.7 1.8 

Montane Grasslands and Shrublands 2.3 1.6 

Deserts and Xeric Shrublands 11.7 1.3 

Boreal Forests/Taiga 19.8 0.6 

Tundra 22.8 0.1 

Rock and ice 9.1 0 

Inland water 0.7 0 



Chapter 4. Human-caused fire occurrence modelling 

44 

 

4.6. Global driving risk factors of HCF occurrence  

Human risk (or probability that a fire starts) (Merrill and Alexander 1987) 

depend on the presence and activity of ignition sources and the conditions in the 

environment in which fires take place. Environmental factors with high variability 

in time are mainly based on weather, and weather-driven indices related to drought 

or vegetation moisture, and are often called “temporal” factors. Factors derived 

from physiography, land/vegetation cover or human socioeconomic variables (i.e. 

census data) are often termed as “spatial” or “geographic” variables, and have 

inherent low temporal variability or frequently updated data is usually unavailable. 

Some studies only consider temporal or spatial variables, or specific groups (i.e. 

only weather, only landscape structure) for input variables (Plucinski 2012). Across 

the abundant research done until present, many spatial and temporal factors have 

been tested and been found to be related to, or to be able to explain, HCF 

occurrence at the MHTs level. The methodology of the analysis (Verdú et al. 2012) 

and the range values of the variables in each study area (Argañaraz et al. 2015) 

influence variable selection and their behavior in a model. However, the analysis of 

spatial and temporal variables selected in most studies (at least 10) within each 

MHT, in Table 4.2, shows coincidences in variables and their trends (positive or 

negative relation to fire occurrence), that allow to summarize some global patterns. 

4.6.1. Weather factors 

As should be expected when considering combustion requirements in the 

environment, variables reflect drought conditions, vegetation stress and upward 

changes in fuel availability. High mean and maximum temperatures (i.e. Chou 

1992; Pew and Larsen 2001; Magnussen and Taylor 2012; Turco et al. 2014; 

Ancog et al. 2016), low precipitation (i.e. Lefort et al. 2004; Parisien and Moritz 

2009; Oliveira et al. 2012; Barreal and Loureiro 2015; Guo, Su, et al. 2016) and 

low relative humidity (i.e. Mandallaz and Ye 1997; Oliveira et al. 2012; Chang et 

al. 2013; Karouni et al. 2014) favor fires and are often used. Evapotranspiration 

and insolation (i.e. Badia-Perpinyà and Pallares-Barbera 2006), lack of 

precipitation during fire-days and previous dry-days (Turco et al. 2014) also 

increase risk. However, annual precipitation, and especially spring precipitation, is 

related to an increase of HCFs (i.e. Donoghue and Main 1985; Cardille et al. 2001; 

Krawchuk et al. 2009; Parisien and Moritz 2009; Oliveira et al. 2012). 

Precipitation in spring increases vegetation biomass, especially in fine fuels like 

grasses or shrubs, that will be later available to burn. 
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Table 4.2. List and behavior of the most common variables per MHT, if at least a minimum 

of 10% of the study area belong to the MHT and if included in at least 10 research papers 

(Number of research papers, Num.RP). 
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 Table 4.2. Continued 
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Table 4.2. Continued 
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Fire science has developed methods to estimate the decrease of the moisture 

content caused by weather on litter and fine fuels, medium compact organic layers 

and deep organic soil layers or heavy fuels for fire danger rating (Dimitrakopoulos 

et al. 2011). Among them, we found very frequent use of Fine Fuel Moisture 

Content (FFMC, Cunningham and Martell 1973; Martell et al. 1989; Chuvieco et 

al. 2009; Carvalho et al. 2010; Lee et al. 2012), Drought Code (DC, Drever et al. 

2009; Wotton et al. 2010; Bedia et al. 2014) and Duff Moisture Code (DMC, 

Wotton et al. 2003; Magnussen and Taylor 2012; Wu et al. 2014), Fire Weather 

Index (FWI, i.e. Martell et al. 1987; Carvalho et al. 2008; Ager et al. 2014; Beccari 

et al. 2015), Initial Spread Index (ISI, Haines et al. 1983; Vega-Garcia et al. 1996), 

McArthur (Crosby 1954; Bradstock et al. 2009; Penman et al. 2013), Keetch-

Byram Drought Index (KBDI, Prestemon and Butry 2005), Palmer Drought 

Severity Index (PDSI, Preisler and Westerling 2007; Miranda et al. 2012), Energy 

Release Index (Andrews et al. 2003) and Angstrom (Reineking et al. 2010).   

The Canadian codes and indices FFMC, DMC, DC and FWI, are the most 

significant indices in all MHTs, followed by the American KBDI, ERC and PSDI 

and the Australian McArthur. These indices were selected in most of models in 

which were included, often with preference to other weather variables.  

Weather conditions favorable to fire occur mainly in summer (Albertson et al. 

2009; Ager et al. 2014), but also happen, to a lesser extent, in early or late winter in 

those regions with marked seasonality (Maingi and Henry 2007; Reineking et al. 

2010; Zhang et al. 2010). In some regions, like Europe (Mandallaz and Ye 1997; 

Reineking et al. 2010; Ganteaume et al. 2013), fires have two well-defined peaks, 

one higher in summer, and another lower in winter. They may associate to specific 

fire causes, i.e. arson, agricultural burnings and accidental fires are more frequent 

in summer (Ganteaume et al. 2013), fires caused by shrub removal for regenerating 

pastures and feeding livestock in winter and early spring (DeWilde and Chapin 

2006).   

4.6.2. Physiography variables 

Elevation and slope are considered in most of MHTs. Usually, decreases in 

elevation increases HCFs occurrence (i.e. Sebastián-López et al. 2008; Kwak et al. 

2012; Narayanaraj and Wimberly 2012) and slope (i.e. Syphard et al. 2008; Dondo 

Bühler et al. 2013; Argañaraz et al. 2015; Najafabadi et al. 2015). As temperature 

decreases (average variation of -0.65 °C / 100m) while relative humidity increases 

with elevation (i.e. in mountain ecoregions), these variables may be reflecting 

climatic conditions. As HCFs tend to occur in lowlands and gentle slopes, where 
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population tends to cluster, topographic variables may also be proxies for human 

presence and activity. However, this depends on the activity, Gonzalez-Olabarria et 

al. (2015) found fires related to pastures and forests are mainly located in the 

mountain areas. Arson (Vasconcelos et al. 2001) and negligence fires (Juan et al. 

2012; Serra et al. 2013) occur most often in flat or moderate slopes. 

4.6.3. Fuel risk factors 

Even though vegetation, and hence fuel availability, differ by MHTs, it is 

possible to identify some trends around the world with regard to landscape 

composition. Conifer forests seem more prone to burning (Badia et al. 2011; Verdú 

et al. 2012; Duane et al. 2015), being some examples in the literature Ponderosa 

pine (Dickson et al. 2006), Jack pine (Cardille and Ventura 2001), Aleppo pine 

(Kalabokidis et al. 2007), black pine (Kalabokidis et al. 2007) and maritime pine 

(Barreal and Loureiro 2015).  

As for landscape configuration (Farina 2006), land uses interfaces seem to 

favor HCF occurrence in those MHTs in which it has been considered. Particularly, 

the wildland-urban interface (WUI), areas with less than 50% vegetation and at 

least 6 houses per km2 of an area over 500 ha (Faivre et al. 2014) and the wildland-

agriculture interface (WAI) (Vilar del Hoyo et al. 2011), are significant factors in, 

respectively, 4 and 2 of the 7 MHTs in Table 4.2. Urban, forest, and agriculture 

land uses coexist and intermix in these anthropic landscapes. 

Configuration metrics have not been applied as extensively as composition or 

land cover variables, but fire prone landscapes often present high fragmentation 

(Martínez et al. 2009; Ruiz-Mirazo et al. 2012; Martínez-Fernández et al. 2013) 

and non-complex shapes linked to the artificial boundaries set by humans (Henry 

and Yool 2004; Gralewicz et al. 2012b; Costafreda-Aumedes et al. 2013). 

Wildfire patterns differ between MHTs according to vegetation changes; tree or 

forest structure variables influence the occurrence process (González et al. 2006), 

but not always in a similar way. Temperate conifer forest and Temperate broadleaf 

and mixed forest in cold and wet regions usually show high tree density and a 

moist understory composed mainly by ferns and forbs. This understory has low 

wildfire occurrence probability (Narayanaraj and Wimberly 2012). By contrast, 

forests in Temperate grasslands, savannas and shrublands, Mediterranean forests, 

woodlands and scrub or Deserts and xeric shrublands have an understory of shrubs 

with low moisture content under warm and dry conditions, so shrubs favor 

wildfires in those MHTs (Badia et al. 2011; Verdú et al. 2012; Oliveira et al. 2014; 

Mishra et al. 2016; Modugno et al. 2016). However, specific information on the 
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role of forest components in specific MHTs is often lacking, since few references 

are enclosed in just one MHT: for example, Temperate broadleaf and mixed forest 

have 5 references completely included within the MHT, and only Narayanaj and 

Wimberly (2012) included shrubs in the model (with negative sign). The combined 

influence of neighboring MHTs in a study may mask particular vegetation patterns 

of fire occurrence.  

4.6.4. Human factors 

HCFs  are, directly or indirectly, caused by human activities linked to 

socioeconomic conditions (Oliveira et al. 2014). The location of these activities is 

highly dependent on site-related variables that determine the number and 

distribution of human sources of ignition. These parameters vary geographically, 

placing locations under different fire risk levels (Vega-Garcia et al. 1995), so 

human presence can be analysed from explicit spatial factors, such as accessibility. 

In this way, proximity to, or density of, infrastructures such as roads (Dickson et al. 

2006; Gralewicz et al. 2012b; Yang et al. 2015; Zhang et al. 2016; Mhawej et al. 

2016), tracks (Pew and Larsen 2001; Romero-Calcerrada et al. 2008, 2010; 

Rodrigues et al. 2014), trails (Syphard et al. 2008; Vilar del Hoyo et al. 2011; 

Arndt et al. 2013) and railways (Sturtevant and Cleland 2007; Guo et al. 2015) are 

associated with an increase in fire occurrence. For example, in Spain (MAGRAMA 

2015) and US (Morrison 2007) more than half of HCFs start along road systems. 

They act as conveyers for arsonists, careless drivers and campers (Morrison 2007). 

Regarding socio-economic indicators, population density is the most important 

factor related to the occurrence of HCFs (i.e. Prasad et al. 2008; Kwak et al. 2012; 

Dondo Bühler et al. 2013; Knorr et al. 2014; Nunes et al. 2016), being present in 

all MHTs in Table 4.2. High population densities are related to high wildfire 

occurrence, in general. However, studies in which high population density 

aggregates in large urban areas, such as Gonzalez-Olabarria et al. (2011) in NE 

Spain, Penman et al. (2013) in SW Australia, Argañaraz et al. (2015) in Argentina 

or Beccari et al. (2015) in North Italy, found low fire occurrence. This may have 

been caused by the lower availability of fuels to support HCFs. Donoghue and 

Main (1985) observed an increase of HCF occurrence related only to non-

metropolitan population density. In intensive agricultural areas, usually the highest 

number of farmers (Martínez et al. 2009; Koutsias et al. 2010) and small holders 

(Stolle et al. 2003), the highest HCF occurrence. 

Related to population density, HCFs occur most often near settlements (i.e. 

Pew and Larsen 2001; Romero-Calcerrada et al. 2008; Yang et al. 2008; Liu et al. 
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2012; Wu et al. 2014) or highly built-up areas (Sturtevant and Cleland 2007; Chas-

Amil et al. 2015). Gonzalez-Olabarria et al. (2015) have found that the distribution 

of arson, smokers, powerlines and camp fires in NE Spain occur near coastal areas, 

where the population density is higher. 

Productive activities on the land, especially agriculture, seem related to wildfire 

occurrence. Croplands (Catry et al. 2009; Vasilakos et al. 2009), or proximity to 

agricultural plots (Vasconcelos et al. 2001) are risk factors. Martinez et al. (2009), 

Rodrigues and de la Riva (2014) and Rodrigues et al. found that the density of 

agricultural machinery in Spain, as a proxy for intensive land use, is related to HCF 

occurrence. When considering livestock production, also livestock density is often 

directly associated with HCF occurrence (Martínez et al. 2009; Oliveira et al. 

2012; Boubeta et al. 2015) but relations are not linear. Dlamini (2010) and 

Romero-Calcerrada et al. (2008) concluded in Swaziland and Central Spain, 

respectively, that intermediate livestock densities were associated with an increased 

occurrence of HCFs. Shrub removal for regenerating pastures and feeding livestock 

tend to locate in areas with lower population density and further from metropolitan 

areas (Cardille et al. 2001; Stolle et al. 2003; Zhang et al. 2010, 2013; Sitanggang 

et al. 2013). 

Outdoor recreational activities (Romero-Calcerrada et al. 2008, 2010; Vilar del 

Hoyo et al. 2011) are risky activities related to HCFs in most MHTs. Proximity to 

campgrounds (Pew and Larsen 2001; Gonzalez-Olabarria et al. 2011; Mann et al. 

2016) or fishing areas (Chang et al. 2013; Sitanggang et al. 2013) are often related 

to negligent or careless fires. These activities are mainly carried out during bank 

holidays (Albertson et al. 2009; Plucinski et al. 2014), weekends (Prestemon and 

Butry 2005; Albertson et al. 2009; Vasilakos et al. 2009; Plucinski et al. 2014) and 

holidays (Mandallaz and Ye 1997; Prestemon and Butry 2005). The fact that they 

are especially popular in spring (Martell et al. 1989; Preisler and Westerling 2007; 

Albertson et al. 2009) and summer (Martell et al. 1989; Preisler et al. 2004; Vilar 

et al. 2010; Ager et al. 2014), matches human risk with the most favorable seasons 

for ignition. Considering only specific activities may change general patterns, for 

instance, Narayanaj and Wimberly (2012) concluded that fire ignitions occurred in 

low population density areas because their fires were linked to hiking, camping and 

hunting in public forests, which are located far from highly populated areas.  

Additionally, HCFs have been modelled including other variables related to 

economic and educational levels in the population. Wildfires have been found to 

relate to social level (Mercer and Prestemon 2005; Vadrevu et al. 2006; Oliveira et 

al. 2012; Dondo Bühler et al. 2013; Chas-Amil et al. 2015), poverty levels (Dondo 

Bühler et al. 2013), gross domestic product per capita (Chuvieco et al. 2008; Guo, 
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Su, et al. 2016; Guo, Wang, et al. 2016; Guo, Selvalakshmi, et al. 2016), 

unemployment (Mercer and Prestemon 2005; Prestemon and Butry 2005; Martínez 

et al. 2009; Oliveira et al. 2012; Dondo Bühler et al. 2013; Chas-Amil et al. 2015; 

Nunes et al. 2016), age (Koutsias et al. 2010; Martínez-Fernández et al. 2013; 

Nunes et al. 2016) or literacy level (Vadrevu et al. 2006). Enforcement, measured 

as police presence was found significant by Donoghue and Main (1985). 

4.4. Conclusions 

The large quantity of HCF occurrence models found indicates this fire science 

topic has reached a good level of development. First wildfire occurrence models 

were simple and did not predict well, then, logistic regression models were 

introduced and became commonly used, and over the years, they have been joined 

by more complex methodologies such as CARTs, ANNs, SVMs, GAMs and other 

parametric and non-parametric models with good accuracies. The majority of 

studies are located in Europe and North America, mainly focused on MHTs 

Temperate broadleaf and mixed forests and Mediterranean forests, woodlands and 

scrubs. In recent years, People's Republic of China has become the second country 

with the highest number of studies, behind Spain.  

As HCFs are human artefacts, study areas tend to follow political or 

administrative boundaries that often combine neighboring MHTs, so patterns 

specific to some vegetation types are not well known. We used MHTs to classify 

research work over the world, and at the broad scale of the MHT delimitation of 

Olson et al. (2001) we found that few studies have focused on the most active fire 

regions (Chuvieco et al. 2008; Krawchuk et al. 2009; Knorr et al. 2014; Bedia et 

al. 2015), where wildfire databases are not even available (FAO 2010). Tropical 

and subtropical grasslands, savannas and shrublands of Zambia, Central African 

Republic, Guinea, Togo, Benin, Guinea Bissau, Angola and Ghana, Flooded 

Grasslands and savannas in Zambia, Botswana, Namibia, Sudan and Bolivia, and 

Tropical and subtropical dry broadleaf forests in Madagascar and Indochinese 

Peninsula have largely been ignored by research, so far. 

A variety of modelling techniques have been applied, but HCF occurrence 

present similar spatial and temporal patterns across MHTs. HCFs tend to occur in 

accessible and populated areas, close to humans and their socio-economic activities 

(both productive and leisure locations), interfaces and fragmented landscapes. Risk 

factors depend on causative agent, but studies stratified by cause or fire-prone 

activities are not abundant.  
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Fire danger rating indices have proved optimal to characterize the weather 

conditions conducive to fires, particularly FFMC, DC, DMC and FWI, present in 

the majority of studies conducted. 

Modelling HCF occurrence has the potential to improve territorial planning for 

prevention and suppression management, but regardless of research advances, the 

current level of operational application of models is very low. Model complexity 

and model perception as a black box (i.e. for ANN) with lack of adequate technical 

transference may explain partly this issue. Also, policies about total control of fire 

in most countries, often force managers to consider risk as high and homogeneous 

all over the territory, all the time, decreasing their need for better predictions 

(Boulanger et al. 2012, 2014). 

Future research to inform better wildfire management seems to revolve around 

deeper knowledge on causality, better stratification of the landscape risk beyond 

political boundaries and improved technology transfer to managers, but mainly, 

future research needs to consider the most active fire regions in the world. 

Improving global wildfire databases (location and causality of ignition sources), 

either through fieldwork or remote sensing imagery is necessary to have a complete 

diagnosis of human caused fire occurrence in the world. 
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ABSTRACT: Human settlements and activities have completely modified 

landscape structure in the Mediterranean region. Vegetation patterns show the 

interactions between human activities and natural processes on the territory, and 

allow understanding historical ecological processes and socioeconomic factors. 

The arrangement of land uses in the rural landscape can be perceived as a proxy for 

human activities that often lead to the use, and escape, of fire, the most important 

disturbance in our forest landscapes. In this context, we tried to predict human-

caused fire occurrence in a 5-year period by quantifying landscape patterns. This 

study analyses the Spanish territory included in the Iberian Peninsula and Balearic 

Islands (497,166 km2). We evaluated spatial pattern applying a set of commonly 

used landscape ecology metrics to landscape windows of 10 km x 10 km (4751 

units in the UTM grid) overlaid on the Forest Map of Spain, MFE200. The best 

logistic regression model obtained included Shannon’s Diversity Index, Mean 

Patch Edge and Mean Shape Index as explicative variables and the global 

percentage of correct predictions was 66.3 %. Our results suggested that the highest 

probability of fire occurrence at that time was associated with areas with a greater 

diversity of land uses and with more compact patches and fewer edges. 
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5.1. Introduction 

Landscape structure is the result of past and present interactions between 

human activities and natural processes (Naveh and Lieberman 1994; Löfman and 

Kouki 2003; Echeverría et al. 2007; De Aranzabal et al. 2008; Serra et al. 2008). 

Variations in frequency, magnitude and extension of disturbances produce complex 

patterns in vegetation composition, age structure and patch size distribution over 

the landscape (Regato et al. 1999; Farina 2006; Saura 2010). Thus, the spatial 

pattern of vegetation, usually assessed by different metrics, allows understanding 

historical ecological processes and socio-economic factors. Landscape composition 

and configuration metrics have been proved to be influenced by climate (Pickett 

and White 1985), forest pests and diseases (Romero et al. 2007; Hatala et al. 2010), 

land use changes (Gallant et al. 2003; Serra et al. 2008; Ferraz et al. 2009), human 

settlements (Fuller 2001), deforestation (Löfman and Kouki 2003; Zhang and 

Guindon 2005), the abandonment of traditional agrarian tasks (plowing, grazing 

and cutting) (De Aranzabal et al. 2008) and fires: burned area and frequency 

(Pickett and White 1985; Naveh and Lieberman 1994; Chang et al. 2007; Moreno 

2007).  

In the Mediterranean environment, the landscape has long been modified by 

human influence (Pausas 2006), becoming what we call a cultural landscape 

(Farina 2006). Landscape patterns are created by direct human action through the 

design of boundaries between crops and natural vegetation, wildland-urban 

interfaces, presence of infrastructures, or indirectly by allowing the spread of 

disturbances, for instance. Hence, landscape metrics may be proposed as surrogate 

variables for human activities in our Mediterranean environment.  

In the past, fire was the main tool used in cleaning and removal of forest 

residues, along with grazing and firewood extraction (Pausas 1999; Torre Antón 

2010). In current times, fires are still linked to the persistence of traditional 

agrarian activities (Martínez et al. 2009). Approximately 18,600 fires occur per 

year in Spain, and 96.2 % are caused by people (MAGRAMA 2010). About 75 % 

of human-caused fires in Spain are related to the rural use of fire for vegetation 

management (MAGRAMA 2010; Torre Antón 2010). Fires are a human artefact 

emanating from the rural activities that shape the Mediterranean landscapes.  

Consequently, the quantitative analysis of landscape structure becomes a 

relevant tool to make inferences on future fire occurrence. Among the studies that 

have dealt with fire occurrence in the literature, many have included geographic or 

spatial variables (i.e. Padilla and Vega-Garcia 2011) but only Henry and Yool 

(2004), Martínez et al. (2009) and Ortega et al. (2012) have included independent 
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variables measuring landscape pattern. Henry and Yool (2004) calculated 

landscape metrics (area, shape and diversity indices) in remote sensing images 

(Landsat TM and SIR-C data) to relate landscape pattern with historical fire 

occurrence in National Saguaro Park (Arizona). Martínez et al. (2009) considered 

area, density and fragmentation indices (landscape and cropland fragmentation) 

with socio-economical and geographical variables to predict human-caused fire 

occurrence at the municipal scale in Spain. A recent study by Ortega et al. (2012) 

did analyze landscape structural factors (11 metrics) related to increased wildfire 

incidence in forest-agriculture interfaces within the SISPARES monitoring network 

(observation size 16 km2), finding that certain landscape configurations were more 

vulnerable (fire-prone) than others. 

Building on these findings, we propose that some metrics may be more 

appropriate than others to characterize and identify fire-prone landscape traits at 

the national level. Thus, the aim of this paper is to evaluate specifically the 

relationship between landscape patterns and human-caused fire occurrence with a 

comprehensive array of landscape metrics, encompassing the wide range of 

compositions and configurations that can be found in Spain. 

5.2. Materials and methods 

5.2.1. Study area  

This study analyzes the Spanish territory included in the Iberian Peninsula and 

Balearic Islands (497,166 km2). Most of the study area is dominated by a 

Mediterranean climate, and only the Northern third has an Atlantic climate. These 

climatic zones and the complex topography combined with human socio-

economical development over millennia have given way to a very uneven spatial 

distribution of the vegetation, combining the presence of medium-scale farming 

areas, areas with scarce natural vegetation cover (grasses, rangelands), extensive 

shrublands, park-like open forest structures (dehesas) with undergrowth and high 

forests of variable densities (EEA 2006). 

The main reference for the study of vegetation cover in Spain is the Forest Map 

of Spain by Ruiz de la Torre (1990) at 1:200,000 scale (digitized 1:50,000). It 

locates more than 5,500 species of trees, shrubs and grasses, collecting information 

about other land uses. 

In order to fulfill the goals of this study and work at the considered scale 

(Peninsular Spain and Balearic Islands) it was necessary to reclassify the different 
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plant species and land uses in manageable categories meaningful for risk analysis. 

The classification was designed according to the fuel models of Rothermel (1972) 

and species response to fire (Rothermel 1972; Riano et al. 2001; Sturtevant and 

Cleland 2007). Figure 5.1 displays the vegetation classes used, defined in Table 

5.1. 

 
Figure 5.1. Forest Map of Spain with the classes used in the study grouped in six land uses. 

Zoom windows of 900 km2, as examples of two forest landscapes in Atlantic (S1) and 

Mediterranean Spain (S2). 
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5.2.2. Independent variables: Landscape metrics 

To characterize the vegetal landscape pattern we selected 13 metrics related to 

the area, shape, fragmentation and diversity of the vegetation patches. All of them 

were indices commonly used in the scientific literature of fire landscape ecology 

(Forman 1995; Frohn 1997; Lloret et al. 2002; Henry and Yool 2004; Hernandez-

Stefanoni 2005; Romero-Calcerrada et al. 2008; Martínez et al. 2009; McGarigal et 

al. 2012; Ortega et al. 2012). Table 5.2 shows the selected indices, the group they 

belong to and a brief description about the information they convey (McGarigal et 

al. 2012). 

Table 5.1. Land use classes and fuel description. Classes for landscape metrics calculation. 

Forest soil layer-driven fuels  

 

 

 

Formations with woody plants taller than 7 m and 

corresponding to fuel models 7, 8, 9 and 10.  

Conifers-FC 

(pinaceous, cupressaceous, mix of 

conifers and other conifers) 

Broadleaves-FB 

(oak woodland, perennial oak, beech 

forest, riparian forest, eucalypt forest, 

poplar stand, mix of broadleaves, other 

broadleaves) 

Mixed forest-FM 

Shrub-driven fuels  

This group is composed by formations with 

woody plants shorter than 7 m, alone or under 

tree cover less than 30% fraction cover that 

correspond to Rothermel fuel models 4, 5 and 6 

Xerophylous shrubland-XS 

Mesophylous shrubland-MS 

Grass-driven fuels 

This group includes vegetal formations with 

natural herbaceous habitats (fuel models 1, 2 and 

3) and ferns for their shade-tolerance preference 

and low height 

Xerophylous grassland-XG 

Mesophylous grassland-MG 

Little/No-vegetation  

Composed by open spaces with little or no 

vegetation such as beaches, dunes, sandy areas, 

nude land, bare rocks and sparsely vegetated and 

burned areas 

Little/No-vegetation-NV 

Anthrophic surface  

High human influence areas. We separate urban 

fabric, industrial units, mines dumps and 

construction sites from herbaceous and woody 

agricultural plants 

Artificial surface-AS 

Agricultural areas-AA 

Continental water  

Contains any surface covered by water bodies or 

stream courses. It also includes those herbaceous 

or woody plants that grow in water 

Continental Water-W 
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Table 5.2. Table of all landscape metrics considered in the study 

Group Abrev. Description Mean 
Std. 

Dev. 

References where the 

variable or a similar factor 

were used 

Density PD Patch Density 0.327 0.199 

Lloret et al. 2002; Henry and 

Yool 2004*; Ortega et al. 2008, 

2012*; Martínez et al. 2009* 

Area 

MPS 
Mean Patch 

Size 
5.188 7.721 

Lloret et al. 2002; Henry and 

Yool 2004*; Romero-

Calcerrada and Perry 2004; 

Hernandez-Stefanoni 2005; 

Ortega et al. 2012* 

MedPS 
Median Patch 

Size 
1.341 6.804 Martínez et al. 2009* 

Shape 

ED Edge density 0.036 0.040 Ortega et al. 2012* 

MPE 
Mean Patch 

Edge 
10.682 3.839 Ortega et al. 2012* 

MSI 
Mean Shape 

Index 
1.967 0.276 

Henry and Yool 2004*; Ortega 

et al. 2012* 

AWMSI 

Area-Weighted 

Mean Shape 

Index 

2.846 0.993 Henry and Yool 2004* 

MPAR 

Mean 

Perimeter-Area 

Ratio 

0.162 1.314 

Henry and Yool 2004*; 

Hernandez-Stefanoni 2005; 

Ortega et al. 2008 

Diversity 

PR Patch Richness 7.102 2.335 Ortega et al. 2012* 

SHDI 
Shannon’s 

Diversity Index 
1.114 0.502 

Lloret et al. 2002; Henry and 

Yool 2004*; Romero-

Calcerrada and Perry 2004; 

Ortega et al. 2012* 

SHEI 
Shannon’s 

Evenness Index 
0.565 0.217 Henry and Yool 2004* 

SIDI 
Simpson’s 

Diversity Index 
0.534 0.231  

SIEI 
Simpson’s 

Evenness Index 
0.624 0.258  

* References which have used landscape metrics to predict forest fire occurrence 

These metrics were computed for the landscape units in Spain using Patch 

Analyst 4 (Elkie et al. 1999) and ArcGis 9.3 (ESRI Inc 2009). The landscape units 

corresponded to 10 km x 10 km UTM grid cells used by the Ministry of 

Environment in Spain to record locations of fires in the reports (Figure 5.2). 

Because these landscape units were not constant in area, it was not possible in 

principle to compare the values for each grid, since some metrics are sensitive to 



Chapter 5. Fire occurrence and landscape in Spain 

63 

 

the size of the landscape unit (Saura 2002). The original grid consisted of 5,278 

cells, but some irregular cells on the coastline and in the boundaries between UTM 

zones 29, 30 and 31 were excluded to obtain comparable landscape units (100 ± 25 

km2). The resulting grid of 4,751 cells was set as the spatial base for calculation of 

the explanatory variables and for the analyses of the present study. 

5.2.3. Dependent variable: Fire occurrence 

The fire history registry from 1983 to 2008 was provided by the Ministry of the 

Environment and Rural and Marine Affairs (MAGRAMA) in Spain. The fire 

reports routinely included information about the causes of the fires, dividing these 

into natural (lightning) and human-caused fires. This information could be easily 

summarized in number of fires per year for each 10 km x 10 km UTM grid used by 

the Ministry to locate fires. According to our stated goal, only anthropogenic fires 

were selected for this study. 

The dependent variable was the probability that at least one fire happened in 

the 5-year period between 1989 and 1993. Fire occurrence data in the historical 

reports (Figure 5.2) was summed up for each 10 km x 10 km UTM cell or 

landscape unit and coded as Y=1 if at least one fire took place in the period and 

cell, or Y=0 if otherwise.  

 

Figure 5.2. Human-caused fire occurrence in Spain, 1989-1993 
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This study period of 5 years was carefully chosen so that it chronologically 

followed the time span between the acquisitions of the ortophotos (1982 - 1986), 

the field work (up to 1989) and the date of creation of the Forest Map of Spain 

(MFE200, 1990). According to Chuvieco (1996), Viegas et al. (1999) and Vega-

Garcia and Chuvieco (2006), the reasonable period for updating dynamics in 

vegetation maps is around 4 or 5 years. More importantly, the years 1989 and 1994 

were severe fire-years; a number of large fires occurred in those years (burning 

426,468 and 437,635 ha respectively), and in between, fires burned slightly more 

(90,000-260,000) hectares than are burned nowadays (50,000-190,000 ha, 

MAGRAMA 2010), reflecting worse conditions than at present, but conditions that 

could develop again in the future (Vega-García and Chuvieco 2006). The number 

of occurrences, though, was very similar (12,913-20,811 in 1989-1993) to present 

numbers (10,932-25,492 in 2004-2008). 

During this study period (1989 to 1993), at least one human-caused forest fire 

occurred in 60.5 % (2,876 cells) of the 4,751 observations in Spain, and no fire 

took place in 39.5 % (1,875) of the landscape units. The landscapes for analysis 

were sufficiently large (100 km2) and diverse to include all Table 5.1 classes under 

different spatial arrangements. Composition seemed influential but not 

determinant: For instance, out of 772 cells with >90% forest cover, 544 had fires 

(71%), 228 had not (29%). Out of 667 cells with >90% no-forest classes, there 

were 213 with fires (31%) vs 454 without fires (69%). 140 cells >90% agriculture 

had fires. The only landscape with 40% water had experienced fire. The only two 

landscapes >90% urban (Madrid) had fires in the study period. 

5.2.4. Statistical analysis: logistic regression 

Logistic regression has been frequently used to predict fire occurrence (Martell 

et al. 1987; Vega-Garcia et al. 1995; Stolle et al. 2003; Henry and Yool 2004; 

Vilar del Hoyo et al. 2008; Chuvieco et al. 2009; Martínez et al. 2009; Padilla and 

Vega-Garcia 2011), and it was also chosen for this work. 

Logistic regression models can estimate or predict the probability P that a 

dichotomous or binomial variable occurs or not, based on a more or less extensive 

list of independent variables related to the event studied (Equation 5.1). Logistic 

regression requires fewer statistical assumptions than linear, being the main that 

independent variables are uncorrelated with each other. 

 
 


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ii X
Y

0exp1

1
1P   (5.1) 
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where P is the probability of an event happening (wildfire), and Xi and Bi are the 

independent variables (the metrics computed in the landscape units) and the 

estimated coefficients of the model, respectively. 

The cut-off point of the logistic function is usually set by default to 0.5 (the 

midpoint of the distribution). However, this value is arbitrary and depends on the 

model goals or the user interests (Jamnick and Beckett 1988). The decision on the 

level of maximum likelihood involves usually predicting correctly both (Vega-

Garcia et al. 1995; Stolle et al. 2003). 

The number of variables is important when dealing with logistic regression. A 

small number of variables introduced in any model make it simpler, and the 

appearance of high errors in the formulation or non-significant values is more 

likely. On the contrary, an excessive amount of variables reduces the residual 

errors but makes fitting the equation more difficult (Martínez et al. 2009). A 

variable selection process was carried out before modeling the relationship between 

fires and landscape metrics, based on a Spearman’s correlation analysis between all 

independent variables, most not-normally distributed. We grouped the variables 

according to their landscape feature typology (size, density, shape, diversity) and 

their Spearman correlation, calculated using SPSS 15 (SPSS Inc 2006). Also, their 

individual capability to predict human-caused fires occurrence was tested by 

building one-variable models. Only uncorrelated variables from every metric group 

and with significant relationship to fire occurrence entered the model building 

process. 

Model fit and validation 

The database for analysis was divided randomly in two groups: 60 % of cases 

were used to adjust the logistic regression function and the remaining 40 % were 

reserved for validation. The overall fit of the model was evaluated by the -2LL 

value, the Nagelkerke R2, the Hosmer-Lemeshow test and the percentage correctly 

predicted in the classification table. In addition, the significance of the dependent 

variables was assessed using the Wald statistic and its statistical significance (p-

value less than 0.05) (Hair et al. 1998; Silva and Barroso 2004). The validation 

results were evaluated using the classification table and the Kappa statistic 

(Congalton and Green 1999). 

The adjustment method for the logistic regression model was the forward 

stepwise approach, more demanding than the backward stepwise approach, which 

proceeds by adding variables with statistical significance (p-value less than 0.05) 

one by one (Hair et al. 1998; Silva and Barroso 2004). 
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In order to evaluate the spatial distribution of errors, we tested clustered or 

dispersed conditions of the over and underestimated errors (false alarms and 

missed fires) with the Average Nearest Neighbor Distance Index (ANND) 

(Martínez et al. 2009). This index examines the distances between the centroid 

points of the closest misclassified quadrants, and compares their distance mean 

with the expected mean distance that would occur for a random distribution. 

Expected R values for randomness should be close to one, within an interval 

ranging from 0 to 2.14. 

5.3. Results 

5.3.1. Results of the variable selection 

The Spearman correlation values between variables are presented in the 

Appendix.  

As should be expected, Mean Patch Size (MPS), Patch Density (PD) and Edge 

Density (ED) were strongly correlated. MPS was inversely correlated to ED and 

PD. Median Patch Size (MedPS) had a moderate correlation to MPE, but not to 

MPS and PD.  

Regarding shape, the correlation between the Mean Shape Index (MSI) and the 

Area-Weighted Mean Shape Index (AWMSI) was moderate. Both have a similar 

behaviour, although MSI is more influenced by the area of the observation unit.  

The low correlations of MedPS and Mean Perimeter-Area Ratio (MPAR) with 

the other metrics discouraged their grouping with any other landscape metrics.  

All diversity metrics were highly correlated (r-values over 0.427 with Patch 

Richness and over 0.939 between Shannon and Simpson’s Indices). Correlation 

between PR and SHEI and SIEI was low, but these indices showed good correlation 

with other diversity metrics. We included the five variables (PR, SHDI, SHEI, SIDI 

and SIEI) in the same group, and selected only one at a time for model building 

trials. 

Thus, all metrics considered were classified into six groups (Table 5.3) 

depicting landscape patch size, patch density (fragmentation) and vegetation 

diversity, plus shape characteristics split into three groups. 

Within each group, we selected the most significant variable in terms of 

individual prediction of the human-caused fire occurrence, if any. We also 

regarded previous use in the literature. The Shannon’s Diversity Index had been the 

most widely used metric in studies of landscape diversity (Henry and Yool, 2004, 
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Lloret et al., 2002, Ortega et al., 2012, Romero-Calcerrada and Perry, 2004) and 

we wanted the results of this study to be comparable. In addition, Shannon’s 

Diversity Index predictive capability in the one-variable models was the highest 

among all variables (Nagelkerke R2
SHDI = 0.141). The selected metrics were four: 

Mean Patch Edge (MPE), Patch Density (PD), Mean Shape Index (MSI) and 

Shannon’s Diversity Index (SHDI). 

Table 5.3. Uncorrelated groups of correlated metrics. 

Size Density Shape Diversity 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

MPS PD AWMSI ED  MPAR SIDI 

MedPS  MSI   SIEI 

MPE     SHEI 

     SHDI 

     PR 

These uncorrelated metrics best explained fire occurrence within their groups 

in the one-variable models built (Nagelkerke R2
MPE = 0.023, R2

PD = 0.121, R2
MSI = 

0.052, R2
ED = 0.111, R2

SHDI = 0.154). MPS, MedPS, MPAR and AWMSI showed 

low human-caused fire occurrence predictability in the univariate logistic 

regression analysis (Nagelkerke R2 less than 0.007).  

5.3.2. Results of the logistic regression 

The best model included three variables: Shannon’s Diversity Index (SHDI), 

Mean Patch Edge (MPE) and Mean Shape Index (MSI), all significant with p-value 

less than 0.016. The p-value of the Hosmer-Lemeshow test was significant (p-value 

< 0.001), and the Nagelkerke R2 was 0.224. Table 5.4 lists the estimated 

coefficients and variables of this model. 

Table 5.4. Estimated coefficients and significance values of the best logistic regression 

model (p-values for the three variables < 0.001) 

Variables β E.T. Wald Exp(β) 

SHDI 1.431 0.085 280.966 4.181 

MPE -0.065 0.013 24.665 0.937 

MSI -0.221 0.092 5.796 0.801 
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Interpretation of the Wald statistic indicated that SHDI was the variable with 

greater weight in the adjusted model (Wald = 280.97), followed by MPE (Wald = 

24.67) and MSI (Wald = 5.80). The analysis of exp(β) confirmed this since a unit 

increase of the Shannon Diversity Index increased by 418.1 % the probability of 

forest fire occurrence, while the unit chance of the MPE meant a decrease of 93.7 

% and only 80.1 % for the MSI. The analysis of signs of the β coefficients indicated 

that the highest probability of human-caused fire occurrence occurs with high 

values of the SHDI and with low values of MPE or MSI. 

A classification table (Table 5.5) was used for evaluating the predictability of 

the model, comparing predicted and observed fire occurrence. The cut-off point 

applied was 0.61, which balanced the percentages of correct matches of the 

landscape units with fire (Y = 1) and no fire (Y = 0) occurrences. The overall 

percentage of correct predictions was 66.3 %, 65.1 % for no-fire and 67 % for fire 

observations.  

Table 5.5. Classification table of logistic regression (cut-off point = 0.61) 

Model building data Validation data 

Observed Predicted  Observed Predicted  

 no-fire fire TOTAL  no-fire fire TOTAL 

no-fire 742 397 1139 no-fire 462 275 737 

fire 565 1147 1712 fire 365 798 1163 

TOTAL 1307 1544 2851 TOTAL 827 1073 1900 

Results in the classification table for the validation data (40 % of the initial 

data) were similar to those obtained with the model building dataset. The 

percentage of correctly predicted no-fire observations was 62.7 % and the 

percentage of correctly predicted and observed fires was 68.6 % (with an overall 

percentage of correct predictions of 66.3 %). 

Lastly, the fitted equation was used to map the correct human-caused fire 

occurrence predictions for the 10 km x 10 km landscape units in the period 1989 to 

1993 (Figure 5.3A). 

In general, the model identified landscape units with higher fire occurrence 

probability in Northwest areas and in the Mediterranean coast. Agricultural inland 

valleys with scarcer presence of natural vegetation presented a lesser likelihood of 

fire (Ebro, Guadalquivir). Both general spatial trends agreed with historical forest 

fire records from the Ministry of Environment in Spain (MAGRAMA). The spatial 

representation (Figure 5.3B) of misclassified predictions did not show a clear 

pattern indicative of a specific geographic trend (North/South, Atlantic/Mediterra-
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nean), but the ANNDOMISSION z-score value was -9.647 and the ANNDCOMMISSION z-

score value was -14.570, both significant (p-value < 0.001). Overestimation errors 

(false alarms) were aggregated in locations with high diversity (mean SHDI 1.47), 

but lower than in the fire-prone areas correctly classified (1.50) and 

underestimation errors (missing fires) were aggregated in areas with greater 

diversity (0.76) than in the identified as no-fire-prone (0.58). 

5.4. Discussion 

The probabilistic relationship between landscape metrics and human-caused 

fire occurrence could be modelled and was found to be significant in Spain. These 

results agreed with previous studies that made use of  landscape metrics as proxies 

for the impact of human activities on the territory (Fuller 2001; Löfman and Kouki 

2003; Echeverría et al. 2007; Serra et al. 2008; Ruiz-Mirazo et al. 2012). 

 

Figure 5.3. Correctly (A) and incorrectly (B) classified landscape units of human-caused 

fire occurrence. 

The results of the classification table suggested a moderate predictive 

capability of the best model, with overall percentage correctly predicted of 66.3 %. 

This value was almost identical to that obtained with the validation sample (66.3 

%), which indicated the model robustness. However, the low value of Nagelkerke 

R2 (0.224) pointed at the fact that a large portion of the dependent variable variance 

was not explained by the fitted model. This should be expected. We knew other 

environmental or socioeconomic factors affected human-caused fire occurrence 

(Díaz-Delgado et al. 2004; Sturtevant and Cleland 2007; Romero-Calcerrada et al. 
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2008; Padilla and Vega-Garcia 2011), but it was not our purpose to evaluate those 

factors in this study.  

The reduction in the number of variables to include in the fitting of the logistic 

regression allowed to respect the non-collinearity assumption and made the model 

more parsimonious. There were three significant variables in the model: Shannon’s 

Diversity Index (SHDI), Mean Patch Edge (MPE) and Mean Shape Index (MSI), in 

line with the statement by Forman (1995) that two or three well-selected landscape 

metrics should be sufficient to answer specific questions on landscape processes. 

These selected variables were also found significant in other studies. Henry and 

Yool (2004) determined that SHDI and MSI explained some of the variability of 

fire occurrence in Arizona from remote sensing images in a fusion of SIR-C and 

Landsat TM images. Other variables, such as MPAR and AWMSI, were significant 

in the analysis with Landsat TM images. SHDI and MPS were found to have 

significant effects on wildfire occurrence in the period 1985-1998 by Ortega et al. 

(2012). Fine-grained forest-agriculture mixtures and road density had significant 

effects in all periods (1974-2008) in their forest-agriculture interface landscapes. 

The study by Martínez et al. (2009) tested only three landscape metrics 

(Fragmentation using a 7x7 kernel on the Corine Land Cover 1990 grid reclassified 

into four classes, Patch Density and MedPS) but only agricultural land 

fragmentation was selected for their model.  

Landscape diversity was the main factor in predicting human-caused fires in 

this study. Our analysis concluded that in the 10 km x 10 km units with greater 

landscape diversity the probability of human-caused fire occurrence was generally 

higher. Also, this likelihood of occurrence was greater in landscape units with 

fewer edges and with more compact patches. These characteristics are common in 

humanized environments (Badia-Perpinyà and Pallares-Barbera 2006) because, for 

example, the sharing of edges between roads and agricultural areas (Martínez et al. 

2009). 

The map obtained by applying the fitted equation (Figure 5.3A) agreed with 

that of Martínez et al. (2009) at the municipal level. The areas with greater 

agreement between observed and predicted values in the model are given in the 

Atlantic North of Spain. Is in these areas where most of the human-caused fires 

occur in Spain, and consequently, there it is greater the consistency in the 

relationship of the fitted model between landscape structure and fire occurrence. 

The landscape configuration of the Atlantic zone is characterized by small and 

highly fragmented patches with high diversity of species, due mainly to a fractured 

topography, high rainfall and humidity (Figure 5.1, S1). In the Northwest these 

landscape characteristics are associated with risk factors such as a traditional use of 
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fire to obtain open areas for increasing pasture land and the low profit from forests 

by local people (Torre Antón 2010). There is also agreement in the Mediterranean 

coast (Coastal Catalonia and the Baetic Ranges), a scenario of significant urban 

development linked to tourism and the influx of population in the summer overlaps 

with dry weather to increase fire risk levels (Vilar del Hoyo et al. 2008). Most of 

the landscape units without fire occurrence in the period are plains with fertile deep 

soils where intensive agriculture is the most profitable economic activity: the Ebro 

and Guadalquivir river basins and the Meseta Central, where large extensions of 

croplands exist and natural vegetation is scarce. 

Misclassified units (errors) were found scattered throughout the Spanish 

territory (Figure 5.3B), but their distribution was locally aggregated. These clusters 

respond to the presence of local conditions that influence the occurrence or absence 

of fire, according to Martínez et al. (2009) and Padilla and Vega-Garcia (2011). 

Martínez et al. (2009) found that landscape metrics showed comparatively lower 

significance compared to socio-economic changes in rural and urban areas and 

traditional activities associated with fire, and the authors obtained better results in 

predicting overall fire occurrence in Spain (model building data: 85.4 %, and 

validation: 76.2 %) by including socio-economic factors in their model. 

Results in previous studies indicate that it is not possible to have good wildfire 

predictions taking into account only landscape structure, but landscape pattern 

variables, and specifically diversity and shape, must be considered in fire 

occurrence models in Spain. It would be highly convenient to test these results at 

different scales, and with more recent fire data, once the Forest Map of Spain 

MFE50 (Andalucía not available yet) and MFE25 (expected 2017) are published. 
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Appendix. Spearman’s correlation matrix of all landscape metrics 
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6. Spatio-temporal configurations of human-caused 

fires in Spain through point pattern processes 
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ABSTRACT: Human-caused wildfires are often regarded as unpredictable, but 

usually occur in patterns aggregated over space and time. We analysed the spatio-

temporal configuration of 7790 anthropogenic wildfires (2007–2013) in nine study 

areas distributed throughout Peninsular Spain by using the Ripley’s K-function. 

We also related these aggregation patterns to weather, population density, and 

landscape structure descriptors of each study area. Our results provide statistical 

evidence for spatio-temporal structures around a maximum of 4 km and six 

months. These aggregations lose strength when the spatial and temporal distances 

increase. At short time lags after a wildfire (<1 month), the probability of another 

fire occurrence is high at any distance in the range of 0–16 km. When considering 

larger time lags (up to two years), the probability of fire occurrence is high only at 

short distances (>3 km). These aggregated patterns vary depending on location in 

Spain. Wildfires seem to aggregate within fewer days (heat waves) in warm and 

dry Mediterranean regions than in milder Atlantic areas (bimodal fire season). 

Wildfires aggregate spatially over shorter distances in diverse, fragmented 

landscapes with many small and complex patches. Urban interfaces seem to 

spatially concentrate fire occurrence, while wildland-agriculture interfaces 

correlate with larger aggregates. 
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6.1. Introduction 

Human-caused fires (HCFs) do not occur randomly, they follow spatio-

temporal patterns that change depending on the socioeconomic activity linked to 

the use or misuse of fire triggering ignitions (González-Olabarria et al. 2015). 

Ignition points have been proved to show broadly identifiable spatial and temporal 

patterns (Juan et al. 2012). For instance, fire starts have occurred most often near 

roads (Badia-Perpinyà and Pallares-Barbera 2006), near urban- and cropland-forest 

interfaces (Martínez et al. 2009) and in areas with an extensive presence of shrubs 

or conifers (Verdú et al. 2012). Fire starts also showed clustered temporal 

structures due to the seasonal distribution of the risk of ignitions (Prestemon et al. 

2012). 

The number of HCFs can vary widely between locations and time spans. Thus, 

the characterization of spatio-temporal patterns of fire ignition can provide 

important information for optimizing resource allocation in strategic firefighting 

(Genton et al. 2006). Fire management strategies usually focus on the control of 

potential multiple-fire situations in areas and periods with high risk of fire 

(Gonzalez-Olabarria et al. 2012). Because of budgetary restrictions and rising 

firefighting costs, it is usually impossible to maintain sufficient resources to cope 

with all potential multiple-fire occurrences. In fact, under extreme weather 

conditions, available firefighting resources may be overloaded beyond suppression 

capacity. In these cases, the ability to anticipate high-risk wildfire conditions and 

take preventive actions, or to pre-position firefighting resources in advance, can 

reduce the damages and optimize the use of the suppression resources (Boychuk 

and Martell 1988; Genton et al. 2006). 

A number of previous studies have focused on the spatial and/or temporal 

distribution of wildland fires. For instance, Padilla and Vega-Garcia (2011) 

identified the most significant spatial variables for analysing human-caused 

wildfire occurrences using non-spatially explicit models (autoregressive Poisson 

and logit processes). Other studies have used spatially explicit models to explain 

patterns of fire occurrence, for instance, geographically weighted regression 

models (de la Riva et al. 2004), ignition density estimates (Amatulli et al. 2007), 

log-Gaussian Cox processes (Serra et al. 2014; Najafabadi et al. 2015), scan 

statistics permutation (Vega Orozco et al. 2012), or Ripley’s K-function (Turner 

2009; Fuentes-Santos et al. 2013; Serra et al. 2013). A few studies have focused on 

the temporal pattern of fire ignitions; Tanskanen and Venäläinen (2008) found 

temporal aggregations using temporal trajectory metrics of wildfire ignition 

densities, while Hering et al. (2009) found temporal aggregations when analysing 
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the fire weather indices of summer fire ignitions in Finland. In addition, time series 

of the fire occurrence models of Prestemon et al. (2012) included temporal and 

spatio-temporal lags lasting up to 2-3 days. 

Wildfire occurrences have also been analyzed as points placed within a spatio-

temporal region using point process statistical tools. These tools include, for 

instance, analysis of inhomogeneous spatio-temporal structures of wildfire 

ignitions (Hering et al. 2009), cluster analysis (Vega Orozco et al. 2012; Pereira et 

al. 2015), modelling of fire locations by spatio-temporal Cox point processes 

(Møller and Díaz-Avalos 2010), and spatio-temporal analysis of fire ignition points 

combined with geographical and environmental variables (Juan et al. 2012). For 

instance, (Hering et al. 2009) analyzed space-time configuration of wildfires 

assuming spatial tools for each year of study separately, and they did not consider a 

continuous space-time approach for the fire occurrence. 

Here we consider inhomogeneous spatio-temporal point processes to analyze 

the point pattern configuration of human-caused wildfire ignition points of several 

data sets in Spain. We applied the inhomogeneous spatio-temporal counterpart 

version of Ripley's K-function proposed by Gabriel and Diggle (2009). This 

approach was adopted because of the apparent inhomogeneous structure of the 

spatio-temporal point patterns suggested by the analysis of available official fire 

reports from the Spanish Ministry of Environment. The analysis of these point 

configurations would be valuable for interpreting the space-time dependencies of 

fire ignition points in order to understand wildfire dynamics. 

The expected spatial and temporal aggregation patterns of HCFs should be 

related to the underlying fire risk factors (Padilla and Vega-Garcia 2011) found in 

previous work such as weather or population. Land use has been used often as a 

proxy variable for distribution of vegetation/fuels and the presence and activity of 

human sources of ignition (Henry and Yool 2004; Costafreda-Aumedes et al. 

2013). However, the spatial structure of the land mosaic is rarely considered 

(Costafreda-Aumedes et al. 2013), although its composition, configuration, and 

length of land use interfaces should be of special interest in spatial processes like 

this. Advances in landscape ecology provide abundant indices to measure mosaic 

characteristics (McGarigal et al. 2012). Consequently, we also test linear 

correlations between spatial and temporal parameters derived from the fire patterns 

and relevant spatial variables linked to the structure of the fire environment with 

the Pearson product-moment correlation coefficient (Pearson 1920). 
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6.2. Materials and Methods 

6.2.1. Study area 

This study analysed nine regions in windows of 40 km × 40 km distributed 

over forested areas (at least >20% forest area) in Peninsular Spain (Figure 6.1). 

These study areas comprise a wide range of forest environments with different 

landscape structures, but all have fire use levels conducive to significant fire 

occurrence (at least 100 fires over the study period).  

 

Figure 6.1. Location of the 9 study areas in the Spanish peninsula. 1. Ourense, 2. Asturias, 

3. La Rioja, 4. Tarragona, 5. Alicante, 6. Guadalajara, 7. Caceres, 8. Badajoz, 9. Jaen. 

Most of peninsular Spain is dominated by a Mediterranean climate, and only 

15% of the land area, located in the north, has an Atlantic climate. These climatic 

zones and the complex topography combined with human socio-economic 

development over millennia have given way to a very uneven spatial distribution of 

the vegetation, combining the presence of medium-scale farming areas, areas with 

scarce natural vegetation cover (grasses, rangelands), extensive shrub-lands, park-

like open forest structures (dehesas) with undergrowth, and high forests of variable 

densities (EEA 2006). Tables 6.1 and 6.2 include a subset of the total number of 

independent variables that were generated to capture weather, socioeconomic, and 

landscape composition and configuration traits of the nine study areas; these 

variables were selected for their potential relation to the spatio-temporal 
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aggregation of fires. Population density was derived from the municipal registry of 

2014 available on the website of the National Institute of Statistics of Spain 

(http://www.ine.es) and is weighted by the township area included in each study 

area. Annual climate data was derived from the Digital Climate Atlas of the Iberian 

Peninsula (1971–2000) (http://www.opengis.uab.es). Landscape ecology indices 

(landscape and class levels) (McGarigal et al. 2012) were calculated with Patch 

Analyst 5.2 (Rempel et al. 2012) extension of ArcGis 10.3 over a land use 

reclassification (Figure 6.2) of the Forest Map of Spain (digitized at 1:50,000 from 

1997 to 2006) from Ruiz de la Torre and available on the website of the Spanish 

Nature Databank of the Ministry of Agriculture, Food and Environment 

(http://www.magrama.gob.es). Woodland-urban interfaces (WUI), woodland-

agriculture interfaces (WAI), and urban-agriculture interfaces (UAI) were 

evaluated, firstly, calculating a 100 m-buffer of each land use (Ruiz Cejudo and 

Madrigal Olmo 2013) and intersecting them, and secondly, by dividing the area of 

each interface by all interface areas. 

Table 6.1. A subset of independent variables for general characterization of each study area 

Pp 

Weather Landuse Interfaces Landscape metrics 

Tx P W A U WUI WAI UAI NP MdPS MPE PAR SDI 

37.1 17.8 1076 67.0 31.5 1.0 4.3 90.4 2.9 493 21.7 16.1 0.4 0.71 

275.4 16.9 1169 56.1 39.4 4.3 4.7 82.8 10.9 1516 8.8 10.5 0.7 0.84 

112.7 17.4 606 36.9 59.9 2.9 4.2 81.9 10.6 4469 0.6 3.1 1.5 0.80 

89.9 18.9 583 45.3 50.9 3.7 3 86.6 4.8 1542 6.3 9.2 0.8 0.83 

135.9 20.3 541 53.6 42.0 4.0 7.5 65.7 12.2 1401 5.3 8.2 0.6 0.85 

298.3 19.6 478 24.5 68.7 6.6 3.8 85.1 9.8 1023 8.2 10.8 0.5 0.79 

32.7 18.4 1073 81.0 17.5 0.9 3.9 88.7 6.9 782 7.6 8.4 0.4 0.55 

29.6 22.3 580 49.1 49.0 1.3 4.4 80 12.3 441 12.7 12 0.3 0.79 

78.9 20.4 568 40.9 57.2 1.8 3.4 86.2 8.8 966 5.2 7.5 0.5 0.77 

Pp: Population density (inhab/km2); Tx: Annual maximum temperature (ºC); P: Annual 

precipitation (mm); W: Forest, shrubs and pastures (%); A: Croplands (%); U: Urban (%); 

WUI: Wildand-Urban interface (%); WAI: Wildland-Agriculture interface (%); UAI: Urban-

Agriculture interface (%); NP: Number of patches; MdPS: Median patch size (ha); MPE: 

Mean patch edge (km); PAR: Perimeter-Area ratio (km/ha); SDI: Shannon’s diversity index 
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Table 6.2. Class metrics by land use and study area 

Location Class CA NP MPS MdPS PSSD MPE ED PAR MSI 

Ourense 

Agriculture 31.5 316 159.6 28.7 0.705 11.6 23 324.7 2.896 

Wildland 67 127 843.9 11.2 7.136 30.4 24.2 508.3 2.386 

Urban 1 44 37.7 10.6 0.086 6.5 1.8 284.1 2.434 

Water 0.5 6 124.1 25.2 0.207 16 0.6 438.2 4.157 

Asturias 

Agriculture 39.4 793 79.5 11.2 0.795 9.4 46.8 773.8 3.015 

Wildland 56.1 422 212.6 9.5 2.594 16.7 44 569.9 2.904 

Urban 4.3 289 23.7 3.8 0.216 4.5 8.1 472.3 2.445 

Water 0.2 12 31.8 19.3 0.030 10.6 0.8 412.0 5.084 

La Rioja 

Agriculture 59.9 1494 64.1 0.8 0.952 4.3 40.2 916.4 1.814 

Wildland 36.9 2302 25.7 0.4 0.668 2.7 38.9 2198.3 2.047 

Urban 2.9 621 7.4 0.9 0.044 16.4 6.4 679.3 1.860 

Water 0.4 52 11.1 1.5 0.030 4.5 1.5 543.8 2.470 

Catalonia 

Agriculture 50.9 722 112.8 6.4 0.123 9.4 42.6 580.8 2.565 

Wildland 45.3 616 117.7 5.5 2.206 10.6 40.7 1290.5 2.920 

Urban 3.7 199 30.1 9.4 0.079 3.8 4.8 340.1 2.184 

Water 0.1 5 21.0 20 0.012 7.8 0.2 376.6 4.676 

Alicante 

Agriculture 42 804 83.6 6.5 0.342 6.7 33.9 487.1 2.369 

Wildland 53.6 352 243.8 3.1 4.228 14 30.7 810.5 2.255 

Urban 4 226 28.5 7.1 0.115 4.3 6 345.3 2.219 

Water 0.3 19 29.0 9.8 0.042 9.6 1.2 620.1 5.406 

Guadalaj. 

Agriculture 68.7 388 283.4 8.3 2.251 13.7 33.2 726.3 2.323 

Wildland 24.5 460 85.4 7.1 0.468 10.7 30.8 501.5 2.833 

Urban 6.6 165 64.4 12.1 0.401 4.6 4.7 195.9 1.861 

Water 0.1 10 13.4 11.6 0.009 7.3 0.5 473.7 5.040 

Caceres 

Agriculture 17.5 493 56.7 9.5 0.201 6.1 18.7 381.4 2.407 

Wildland 81 138 939.2 4.5 10.875 22.9 19.7 745.2 2.153 

Urban 0.9 110 13.1 6.2 0.022 2.4 1.6 268.5 1.962 

Water 0.6 41 24.7 6.6 0.066 4.3 1.1 354.2 2.846 

Badajoz 

Agriculture 49 202 387.9 13.4 1.409 11.2 14.1 243.8 2.014 

Wildland 49.1 135 582.0 10.9 4.315 15.8 13.4 421.2 2.507 

Urban 1.3 62 34.3 16.4 0.077 8.3 3.2 239.4 2.911 

Water 0.6 42 22.7 12.3 0.042 8.9 2.3 420.7 4.471 

Jaen 

Agriculture 57.2 298 306.9 5.1 2.659 11.8 21.9 686.2 2.093 

Wildland 40.9 524 124.8 5.3 2.353 6.2 20.3 513.5 2.273 

Urban 1.8 123 23.8 5.5 0.086 3.6 2.7 323.5 2.043 

Water 0.1 21 9.4 4.7 0.025 2.6 0.3 487.3 2.658 
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CA: Classes (%); NP: Number of patches; MPS: Mean patch size (ha); MdPS: Median patch 

size (ha); PSSD: Patch size standard deviation (ha); MPE: Mean patch edge (km); ED: 

Edge density (km/ha); PAR: Perimeter-Area ratio (km/ha); MSI: Mean shape index (km/ha); 

PAR: Perimeter-Area ratio (km/ha); MSI: Mean shape index 

 

Figure 6.2. Land use map of the study areas 

6.2.2. Fire data 

The Spanish Forest Service of the Ministry of Environment and Rural and 

Marine Affairs (MAGRAMA) provided the fire records for the study. The nine 

study areas held a sufficient number of fire ignition points to study the spatio-

temporal dynamics of fire ignition: at least 100 fires over the study period. Our 

data sets involved historical records of daily human-caused fire occurrences during 

the period 2007–2013. The period of study was restricted to seven years due to data 
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availability (precise GPS locations available), but this period was considered 

appropriate because it surpassed the usual time framework for fire prevention 

planning in Spain (Generalitat Valenciana 2012). This period included a variety of 

weather conditions, with mild years but also years with high risk weather 

conditions, i.e., 2006 in NW Spain (1900 fires set in just 12 days in August) (Chas-

Amil et al. 2010). 

The spatio-temporal point pattern analyzed consisted of 7790 fire ignition 

points located in 9 square areas of 40 x 40 km2 for the seven years, with 877 

ignitions in 2007, 1060 in 2008, 1298 in 2009, 1032 in 2010, 1308 in 2011, 1478 in 

2012 and 903 in 2013. Figure 6.3 displays their distribution by study area, monthly. 

 

Figure 6.3. Human-caused wildfire frequency for the period 2007 - 2013 given by study 

area and month. 



Chapter 6. Space-time aggregations of human-caused fires 

83 

 

Figure 6.4 shows the HCFs spatial pattern of the 9 selected study regions. 

Visual inspection of the point pattern in the 9 plots suggests that the point 

structures are inhomogeneous, with areas of high point intensity juxtaposed to 

areas of low point intensity. This figure also highlights the presence of point 

clusters, suggesting that fire events aggregate in space and in time. 

 
Figure 6.4. Spatial positions of the 7790 HCFs in the study. The biggest and darkest points 

correspond to recent fires while the lightest points occurred earlier.  

6.2.3. Spatio-temporal statistics 

To analyze the spatio-temporal structure of inhomogeneous point patterns 

representing ignition point fires, we used the spatio-temporal counterpart version of 

Ripley's K function proposed by Gabriel and Diggle (2009). For a review about 

space-time point processes see Illian et al. (2008). Considering a stationary and 
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anisotropic spatio-temporal point process   on  whose elements form a countable 

set ),( iii tXS  , for ni ,,1  and 2),(  iii yxX  and it  in a bounded 

region TWM  . This M  region contains all the ignition fires for a given planar 

region W  for a time interval  10 ,TTT  . Now, the point pattern should be assumed 

as a set of points in a continuous tridimensional space. The inhomogeneous spatio-

temporal Ripley’s K-function proposed by Gabriel and Diggle (2009) assumes that 

the point pattern under analysis is second-order intensity reweighted stationary and 

isotropic or, in other words, it assumes a weaker form of stationarity and therefore 

relaxes the hypothesis of homogeneity. A point process is stationary and isotropic 

if its statistical properties do not change under translation and rotation, 

respectively. Informally, stationarity implies that one can estimate properties of the 

process from a single realization on W x T, by exploiting the fact that these 

properties are the same in different, but geometrically similar, subregions of W x 

T; isotropy means that there are no directional effects.  

Function ),( vuK st  is the expected number of further points in a spatio-temporal 

region delimited by a cylinder whose bottom surface area is centered at an arbitrary 

point of  (a point process) with radius u  (a spatial distance) and height v2  (a 

time interval). For any inhomogeneous Poisson process (i.e. the a Poisson process 

where the constant intensity is replaced by a spatially varying intensity function) 

with spatio-temporal intensity function bounded away from zero, vuvuKst
22),(  , 

and hence vuvuK st
22),(   (i.e. the empirical spatio-temporal Ripley’s K 

function minus this function under the hypothesis of no spatio-temporal structure, 

fire ignitions are independently distributed) can be considered a measure for 

detecting spatio-temporal point dependences (Gabriel and Diggle 2009). Values of 

02),( 2  vuvuKst   will indicate regularity, while 02),( 2  vuvuKst   will suggest 

spatio-temporal clustering. Moreover, ),( vuK st  can also be used to detect absence 

of spatio-temporal interaction. In particular, separability of ),( vuK st  into purely 

spatial and temporal components, )()(),( vKuKvuK tsst  , suggests absence of 

spatio-temporal dependency (Diggle et al. 1995). The lack of spatio-temporal 

interaction indicates that ignition point locations and ignition times are 

independent, i.e. there is no correlation between where a fire happens and when it 

happens. However, in real life one may expect these two components to be 

correlated, so the time occurrence of a fire will depend on the spatial location. An 

edge-corrected estimator of ),( vuK st  can be defined via Gabriel et al. (2013) 
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where n  is the total number of points in M , jiij XXu  , )(I  is the 

indicator function where 1)( FI  if F  is true and 0)( FI  otherwise, TW   

denotes the volume of this region and )(ˆ   is an estimator of the spatio-temporal 

intensity function at the location iS  or, in other words, an estimator of expected 

number of points per unit volume at this exact location. To correct spatial edge 

effects we use Ripley's factor ij  (Ripley 1976) and to deal with time-edge effects 

we consider ijv . This ijv  equals to 1 if both ends of the interval of length ij tt 2  

centered at jt  lie between T  and it equals to 1/2 otherwise (Gabriel et al. 2013). 

Note that correctors for edge-effects are necessary to deal with window sampling 

where information outside this space-time window (unobserved points) is lost, 

introducing, usually, a negative bias for ),(ˆ vuK st . Edge-effect correctors such as 

the Ripley’s factor and the time correction considered here are standard 

approximations to reduce these biass effects based on mathematical arguments. 

Usually these arguments consider that the unobserved numbers of points outside 

the observation windows are proportional to those inside these windows. 

In order to obtain Equation 6.1, we need to obtain an estimator of the spatio-

temporal intensity function. Here we adopted a kernel-based estimator for this 

space-time function. First we need to assume that first-order effects (i.e. the 

intensity function) are separable from the space and the time domain, as suggested 

by Gabriel and Diggle (2009), i.e.                                        

)()(),( tXmtX            (6.2) 

and thus any non-separable effects can be considered as second-order effects 

(i.e. related to the variance of the process) rather than first-order effects. Then from 

Equation 6.2 we can estimate )(  (Ghorbani 2013) as 

ntXmtX /)(ˆ)(ˆ),(ˆ               (6.3) 

as  

        ntdtXdXm

T
W

  ̂ˆ           (6.4) 
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Now, we can estimate both the space and the time intensity function separately. 

For the space point intensity )(Xm , we used a Gaussian kernel-based estimator, 

with bandwidth initially chosen to minimize the estimated mean-square error of 

)(ˆ Xm , as suggested in Berman and Diggle (1989). In some cases, this optimal 

bandwidth was slightly increased to provide a good visual fitting to the point 

patterns. Moreover, for time point intensity, we adopted a Gaussian kernel 

estimator since we do not consider covariate information related the fire locations. 

Note that a kernel-based estimator for the time intensity does not assume any 

previous knowledge of the time series, while providing a reasonable approximation 

for the intensity function. After some experimentation, we considered 0.10  

as it provides a good visual fitting to the data while reproducing quite well some of 

the outliers observed in the time series.                

To test for evidence of spatio-temporal clustering or regular structures, we 

compare the estimator ),(ˆ vuK st  with estimates obtained for simulations under a 

suitable null hypothesis. Here the null hypothesis is that the underlying point 

process is an inhomogeneous Poisson process, and therefore the empirical spatio-

temporal pattern is compared with a spatio-temporal Poisson process with point 

intensity (Equation 6.3), based on a Monte Carlo test. This is a space-time Poisson 

process where the constant intensity is replaced by a spatially varying intensity 

function estimated by Equation 6.3. 

We simulate 1000 spatio-temporal point patterns under this null hypothesis and 

for each one an estimator of Equation 6.1 is obtained. This set of functions is then 

compared with the resulting estimator for the empirical data under analysis. Under 

this test, we reject the null hypothesis (spatio-temporal point independence) if the 

resulting estimator of this function lies above the 95th percentile of estimates 

calculated from the 1000 simulations of inhomogeneous Poisson point process with 

intensity (Equation 6.3). This 95th percentile of estimate values form the tolerance 

envelops for our test. In this case, we should accept spatio-temporal clustering of 

fire locations. 

All the spatio-temporal statistical analyses were computed using the stpp 

statistical package (Gabriel et al. 2013) for the R statistical environment (R 

Development Core Team 2005). 

6.2.4. Spatio-temporal aggregation trends 

In order to explain possible spatio-temporal HCFs aggregations, the Pearson 

product-moment correlation coefficient was selected to measure the strength of the 
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linear dependence between the spatial and temporal aggregation patterns of HCFs 

and the independent weather, socioeconomic and landscape composition and 

configuration variables (Tables 6.1 and 6.2). This estimator ranges from +1 to -1, 

where the positive and negative values indicate, respectively, positive and negative 

correlation (data-pairs best regression fit), and 0 indicates no significant correlation 

between variables (Amatulli et al. 2007). 

6.3. Results 

6.3.1. Spatio-temporal aggregation of HCFs 

In Figure 6.5, we compare vuvuK st
22),(ˆ   and tolerance envelopes suggesting 

the presence of different spatio-temporal structures for time lags of less than two 

years and ignition point distances in the range of 0-16 km. In particular, this figure 

provides results on clustering patterns in the 9 regions under analysis; black values 

indicate spatio-temporal clustering for these space-time scales. We used these 

maximum time and space intervals to avoid edge effects that may not be corrected 

by the mathematical assumptions made here. The maximum scale of the spatio-

temporal aggregation of HCFs was found to be around 4-4.5 km and 5.5-6 months 

in Tarragona, and the minimum, less than one month and one km, in La Rioja. The 

spatio-temporal structures generally lose strength as the time lag increases; at the 

time lag of 6 months, or higher, these dependencies are only observable for short 

inter-ignition point distances of less than 3 km. 

However, in the NW of Spain with Atlantic climate (Ourense and Asturias), the 

spatial pattern shows a cyclical aggregation trend of around one year (a hump in 

the plot around the 12-month value). These Atlantic areas also display aggregation 

up to the maximum spatial distance considered (16 km) for all time lags under 

three months. This means that once a fire happens, the probability that another 

takes place within a wide area around the first one (up to 16 km in radius) persists 

for a period close to 3 months. In the other study areas, the probability that an 

additional fire occurs once one takes place, only persist for the maximum distance 

(up to 16 km in radius) for short time lags (under 1-2 months).  

6.3.2. Trends of the spatio-temporal HCFs pattern 

The values found in each plot at the limits of the maximum intervals 

considered or axis—the x for 24 months, x24; the y for 16 km, y16- were taken as 

descriptors of spatial and temporal aggregation. x24 is the spatial lag for 
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aggregation at any time lag (spatial lag of aggregation independent of the time lag). 

y16 is the time lag for aggregation at any spatial lag considered (time lag of 

aggregation independent of the space lag). Table 6.3 shows the Pearson’s 

correlation between those aggregation parameters, the number of fires of Figure 6.3 

and the descriptive variables of Table 6.1 at the landscape level. The number of 

HCFs shows a positive correlation with the time-independent spatial aggregation 

values x24, even higher with the distance-independent temporal aggregation values 

y16. Therefore, the higher the fire occurrence caused by humans, the more likely 

fires aggregate over longer distances and longer time frames, and vice versa. 

 
Figure 6.5. Comparison between vuvuK st

22),(ˆ  and tolerance envelopes indicating 

spatio-temporal clustering (black values) for each study area. 
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According to the results, higher population density causes distance-aggregation 

or spatially closer fires and dilates the time lag for wildfire occurrence, but the 

correlation is not high. Drought weather conditions (higher Tmax and lower P) 

influence wildfire aggregates by decreasing the distance and time lags. Weather, 

mean patch edge (MPE) and fire frequency (FF, the occurrence of other fires) seem 

to be the variables mainly related to temporal aggregation of fires. 

Table 6.3. Pearson product-moment correlation coefficient between each variable of Table 

1 and the descriptors of spatial and temporal aggregation. In bold, values over 0.5.  

Variable Spatial x24 Temporal y16 
 

Variable Spatial x24 Temporal y16 

FF 0.609 0.813 
 

WAI 0.539 0.192 

Pp -0.218 0.391 
 

UAI -0.562 -0.418 

Tmax -0.123 -0.688 
 

NP -0.768 -0.162 

P 0.696 0.693 
 

MdPS 0.648 0.488 

Wil 0.683 0.327 
 

MPE 0.649 0.514 

Agr  -0.681 -0.371 
 

PAR -0.744 -0.157 

Urb -0.422 0.198 
 

SDI -0.627 0.035 

WUI -0.221 0.154 
    

FF: Fire frequency; Pp: Population density (inhab/km2); Tmax: Annual maximum 

temperature (ºC); P: Annual precipitation (mm); Wil: Forest, shrubs and pastures (%); Agr: 

Croplands (%); Urb: Urban (%); WUI: Wildand-Urban interface (%); WAI: Wildland-

Agriculture interface (%); UAI: Urban-Agriculture interface (%); NP: Number of patches; 

MdPS: Median patch size (ha); MPE: Mean patch edge (km); PAR: Perimeter-Area ratio 

(km/ha); SDI: Shannon’s diversity index 

Proportions of land covers (Wil, Agr, Urb) indicate an effect on spatial 

aggregation of fires, linked by larger distances in landscapes with higher wildland 

cover and closer distances in landscapes with a higher relative proportion of 

agriculture and urban areas. Interfaces between land covers are correlated to the 

time-independent spatial aggregation of fires, particularly, urban interfaces (WUI 

and UAI) seem to spatially concentrate fire occurrence, while WAI correlates with 

larger aggregates. 

The time-independent spatial lag for aggregation x24 is clearly influenced by 

landscape composition and configuration, being negatively correlated to SDI, NP 

and PAR and positively to MPE and MdPS. In other words, wildfires aggregate 

over closer distances in diverse, fragmented landscapes with many patches, where 

patches are small and with complex shapes.  
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Table 6.4 shows the Pearson’s correlation between the descriptors of spatial 

and temporal aggregation and the variables in Table 6.2 for landscape structure 

analyzed at the land use class level. Higher relative proportion of wildland 

organized in larger patches (MPS, MdPS), with more edges (MPE), and lower 

complexity (PAR) and number of patches (NP) favor larger spatial aggregation 

distances. In general, fire spatial aggregates grow in coarse-grained landscapes, 

with decreasing number of patches (NP) and compact shapes (PAR) in all land use 

classes. The temporal lag for aggregation of fires seems to be positively related to 

the presence of larger and complex agriculture patches (MdPS, MSI), and wildland 

edges (MPE). 

Table 6.4. Pearson product-moment correlation coefficient between each variable in Table 

6.2 with the descriptors of spatial and temporal aggregation. In bold, values over 0.5. 

 
Class NP MPS MdPS PSSD MPE ED PAR MSI 

Spatial x24 

Agr -0.696 0.042  0.659  -0.108 0.378 -0.444 -0.521 0.635 

Wil -0.769 0.711 0.580 0.709 0.777  -0.403 -0.712 0.109  

Urb -0.761 0.107 0.200 -0.054 0.245 -0.597 -0.575 0.204 

Temporal 

y16 

Agr 0.009 -0.459 0.572 -0.344 0.161 0.421 0.073 0.915  

Wil -0.257 0.163 0.389  0.145 0.569 0.459  -0.241 0.364 

Urb -0.089 0.174 -0.200 0.304 0.062 0.227 0.040 0.044 

Wil: Forest, shrubs and pastures (%); Agr: Croplands (%); Urb: Urban (%);NP: Number of 

patches; MPS: Mean patch size (ha); MdPS: Median patch size (ha); PSSD: Patch size 

standard deviation (ha); MPE: Mean patch edge (km); ED: Edge density (km/ha); PAR: 

Perimeter-Area ratio (km/ha); MSI: Mean shape index 

6.4. Discussion 

The methodology used appears to be suitable for identifying differentiated 

patterns of spatio-temporal aggregation for HCFs in environments with different 

fire incidence, such as Peninsular Spain, even though the influence of window size 

(40 km x 40 km) and study period remains to be explored in future research. This 

method is especially useful in regions with enough observations because its 

negative simulations’ bias decreases as the number of observations increases 

(Gabriel and Diggle 2009). The largest spatial and temporal distances for wildfire 

aggregation were found with increased fire occurrence, which is coherent with 

higher risk levels that cause more fires over longer time spans and greater distances 

(i.e. Galicia, Asturias).  
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Our results provide statistical evidence for spatio-temporal structures around a 

maximum of 4 km and three months, but these aggregated structures lose strength 

when the spatial and temporal distances increase. These results agree with previous 

work (Alonso-Betanzos et al. 2003; Telesca and Pereira 2010; Juan et al. 2012; 

Fuentes-Santos et al. 2013; Chas-Amil et al. 2015; Pereira et al. 2015) which 

detected spatial and temporal structures in wildfire occurrence in Portugal and 

Spain, and the general state-of-knowledge on fire occurrence in Spain; at short time 

lags after a wildfire (<1 month), the probability of another fire occurrence is high at 

any distance in the range of 0-16 km. This is in agreement with the fact that in the 

short term, weather is the main driver of fire occurrence, and its effects are 

regional. When considering larger time lags (up to two years, or 24 months), the 

probability of fire occurrence is high only at short distances, closer than 3 km, 

which is consistent with the presence of local structural risk factors independent of 

the season or weather condition (i.e. arson, Serra et al. 2014). These results agree 

with Vega Orozco et al. (2012) and Pereira et al. (2015), which mention that 

aggregations between fires are more often at the local level and are not visible in 

larger distances (15 or 50 km). 

Nevertheless, these aggregated patterns vary depending on location in Spain, 

suggesting the existence of varied spatio-temporal aggregation patterns of HCFs 

throughout the country, mainly related to fire frequency, weather and landscape 

structure variables, and hence, fire regimes. 

Patterns in Atlantic (Ourense, Asturias) and Mediterranean Spain (the other 

areas) differ, which should be expected given their climatic and landscape structure 

characteristics than determine different fire regimes (Verdú et al. 2012). The 

spatial aggregation found (up to the maximum distance considered, 16 km) for all 

time lags under three months is likely determined by the duration of the bimodal 

fire season in the milder Atlantic region (February-April, June-August, three 

months), but also a consequence of a fragmented landscape and a generally high 

human risk and occurrence all year round. This pattern has been also identified in 

Portugal (Telesca and Pereira 2010) linked with the annual cycle of weather and 

vegetation phenology. Relatively stable conditions with higher rainfall (>1000 mm) 

and lower maximum temperatures extend risk over longer periods than in the 

Mediterranean (around 550 mm). Variations of weather events occur gradually in 

the NW, so the range of variation in temperature and precipitation is low within 

each Atlantic study area. In areas with higher precipitation there are more rainy 

days and, therefore, the number of fire-days decreases (Garcia-Gonzalo et al. 2012; 

Boubeta et al. 2015), so fires aggregate over longer time lags (Gabriel and Diggle 

2009).  
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Wildfires seem to aggregate within fewer days in warm and dry Mediterranean 

regions (0-1.5 months). The annual weather cycle (Cardil, Molina, et al. 2014) 

favors multiple fires per day or in a few days in the summer fire season (De Haan 

and Icove 2011). Fire suppression resources sufficient to manage one fire may be 

challenged in high temperature days with simultaneous occurrences (Rachaniotis 

and Pappis 2006), which require exhaustive firefighting personnel management 

(Haight and Fried 2007). During high temperature-days, the temporal aggregation 

of HCFs decreases, since the occurrence of new fires is associated to those spells of 

extreme weather conditions (Padilla and Vega-Garcia 2011; Cardil, Molina, et al. 

2014; Barreal and Loureiro 2015). Our temporal results are coherent with the 

occurrence of heat waves (high-temperature days, HTDs, Cardil, Molina, et al. 

2014) that combine with more uneven human risk levels over coarser landscapes to 

render a lower fire occurrence, though these fires may have catastrophic results in 

terms of burned area. 

Previous studies done in the Iberian Peninsula (Barreal and Loureiro 2015; 

Chas-Amil et al. 2015), found direct relations between population density and HCF 

occurrence; we found that higher population density causes distance-aggregation or 

spatially closer fires and dilates the time lag for wildfire occurrence, though the 

correlations were not very high. We used a single population density value for each 

study area (40 km x 40 km), but considering mean distances to towns (Badia-

Perpinyà and Pallares-Barbera 2006; Padilla and Vega-Garcia 2011; Serra et al. 

2014), access by road (Badia-Perpinyà and Pallares-Barbera 2006; Oliveira et al. 

2014; Rodrigues and De la Riva 2014) and trails (Vasilakos et al. 2009; Chas-Amil 

et al. 2015) could also be adequate to account for the combined effect of 

population and access on HCF spatio-temporal aggregation. 

Landscape structure clearly influences spatio-temporal patterns in wildfire 

occurrence. We found that wildfires aggregate spatially in closer distances in 

diverse, fragmented landscapes with many patches, where patches are small and 

with complex shapes. Ignitions have been found before to concentrate in highly 

fragmented landscapes (Martínez et al. 2009; Ruiz-Mirazo et al. 2012) or, in other 

words, in areas with a larger number of small patches (Henry and Yool 2004; 

Costafreda-Aumedes et al. 2013) in anthropic environments where patches are 

more compact (Henry and Yool 2004; Costafreda-Aumedes et al. 2013) with 

shorter edges (Gralewicz et al. 2012a), raising doubts about the role of patch shape 

on ignition. We propose that patch shape is relevant in combination with landscape 

composition, depending on the class under consideration and its dominance in the 

landscape. Landscapes with higher relative proportion of wildland coverage 

organized in larger patches (MPS, MdPS), with more edges (MPE), and lower 
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complexity (PAR) and number of patches (NP) favor larger spatial aggregation 

distances. In general, fire spatial aggregates cover larger distances in coarse-

grained landscapes, with decreasing number of patches (NP) and compact shapes 

(PAR) in all classes. These forest landscapes are typically created by land 

abandonment processes (Vega-García and Chuvieco 2006), expanding in all the 

Southern European Mediterranean countries for the last 60 years.  

Landscape composition and patch shapes determine the presence of interfaces 

between land use classes. Urban interfaces with wildlands and crops (WUI and 

UAI) seem to spatially decrease the distance for fire clustering, while increasing 

percentages of wildland-agriculture interfaces correlate with larger aggregates, 

effectively showing a spatial extension in risk. Previous studies in HCF prediction 

(Catry et al. 2009; Chas-Amil et al. 2015) have linked wildfires to agricultural 

cover over wildland (Garcia-Gonzalo et al. 2012; Oliveira et al. 2014; Serra et al. 

2014) and urban covers (Gonzalez-Olabarria et al. 2011). Fires in Spain often 

occur at the wildland-agriculture interface (Rodrigues and De la Riva 2014). The 

study areas with lower proportion of wildland-agriculture interface have wildfires 

clustered at shorter distances and they seem to aggregate on patch perimeters 

between these classes (WAI). This finding agrees with Gonzalez-Olabarria et al. 

(2011) and Martínez-Fernández et al. (2013) who have associated also higher 

proportion of wildland-agriculture interface with an increase of fire occurrence in 

Spain. Interestingly, the temporal lag for aggregation of fires seems to be positively 

related to the presence of larger and complex agriculture patches (MdPS, MSI), and 

wildland edges (MPE) pointing again to the importance of WAI interfaces in fire 

occurrence. 

Beyond supporting previous findings in the field of fire occurrence prediction -

related to fire frequency, weather and landscape structure variables- we would like 

to point out that our analysis contributes additional information that is useful for 

fire management. The descriptors of spatial and temporal aggregation (x24, y16) 

have different values in different study areas, and may serve as indicators for 

diverse applications, for instance, fire regimes classification concerning fire 

occurrence. A better knowledge of factors related to occurrence is useful for 

prevention and suppression, but the spatial and temporal dimensions added for each 

window of analysis have direct operational applications. Wildfire suppression 

performance in the fire season depends on number and behavior of active fires 

(Haight and Fried 2007); fire managers must make crucial decisions on the amount, 

type and allocation of the fire suppression resources required. For instance, risk 

levels and probability of new fire occurrences remain high in Ourense for up to 

three months, which allows for less mobility in the positioning of initial attack 
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crews than in Badajoz with no temporal aggregation, or La Rioja (<1 month). 

Spatial risk at any time lag occurs under 0.75 km distance in La Rioja, but reaches 

2.75 km in Caceres or Ourense, with implications for the design of the detection 

network. This persistent local risk is related to complex socioeconomic factors 

(Prestemon et al. 2012), but can be linked to landscape structure, which can be 

used to inform also general prevention and land planning to avoid risky structures. 

6.5. Conclusions  

This study demonstrates the existence of spatio-temporal aggregation patterns 

of human-caused fires in Peninsular Spain. This aggregation reaches maximum 

values around 4 km and 6 months, but decreases with increasing temporal and 

spatial distances, and varies in different study areas. The probability of an 

additional fire is higher at any distance in the range of 0-16 km for short periods 

after a fire. On the long term, the probability of fire occurrence is higher at 

distances closer than 3 km from the location of a first fire. Temporal aggregation is 

mainly related to meteorology (annual rainfall and maximum temperature), while 

spatial aggregation is mainly linked to the structure and composition of the 

landscape. Our results suggest that wildfires temporally aggregate in fewer days in 

warm and dry Mediterranean regions than in milder Atlantic areas; wildfires 

spatially aggregate in fewer kilometers in highly fragmented wildland and 

agriculture landscapes with high land use diversity, and spatially disperse 

comparatively more in forest coarse-grained landscapes resulting from 

abandonment. Our results also suggest the existence of local risk conditions that 

persist over time, probably related to land structure and complex socioeconomic 

factors. 
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7. Discussion 

7.1. Factors affecting firefighting resource management 

The spatiotemporal pattern of HCF occurrence in Spain can be characterized 

from different approaches. There is an advanced state of the art in wildfire 

occurrence modeling around the world, to which this thesis contributes. 

Consequently, the efficiency of planning for the prevention and control of fires can 

be improved (Rachaniotis and Pappis 2006) in order to minimize vegetation 

damage and human losses. Anticipation and planning will be crucial in the future 

due to climate change forecasts that estimate the increase of temperature and the 

decrease of the precipitation and the number of precipitation-days (Yang et al. 

2015). Fuel flammability, number and severity of wildfires are expected to increase 

(Wotton et al. 2003; Lee et al. 2012), especially in regions with high HCF 

occurrence (Turco et al. 2014) like Spain. Under drought and heat conditions 

predicted in the Mediterranean basin, the occurrence of multiple-fire-days will 

increase (Costafreda-Aumedes and Vega-Garcia 2014), which will in turn increase 

demands on firefighting resources more and more limited by budgets. 

Large wildfire-incidence-related aspects (fire duration, fire type, fire size and 

fire load in the same province and day) were related to the deployment of 

suppression resources in Chapter 3. The number of firefighting personnel, 

terrestrial and aerial units deployed by Autonomous regions reached different 

response level. Prediction accuracy of human resources sent to fires was the best in 

all models and, on the contrary, terrestrial units’ accuracy was the worst, showing 

different deployment patterns across Spain. This may be explained by the use of 

only fire-related factors. Trends in dispatching terrestrial units could be influenced 

by their proximity and accessibility to the fire. According to Mees and Strauss 

(1992), distance, access and steepness of forest roads could explain the higher use 

of terrestrial units in highly-populated and connected regions in the East and South 

peninsular Spain and the lower use in depopulated Castile and Leon. Also, usually 

aerial units are only justified when other resources cannot reach the fire site 

(Ganewatta and Handmer 2009), but are usually restricted by weather conditions, 

geographic or socio-economic factors (Donovan and Rideout 2003; Gebert et al. 

2007; Kaval 2009), not included in this analysis. 

At the national level, results of Chapter 3 show that the number of firefighting 

resources deployed in a wildfire increases in large fires, crown fires and long 

duration fires when the number of fires in the same day and province is low, in 
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agreement with results by Gonzalez-Caban et al. (1986) and Donovan and Rideout 

(2003) in US, and Islam and Martell (1998) in Canada. However, our results 

contradict Hunter (1981), who found that response time and dispatching decisions 

were not affected by multiple-fire ignitions in Montana (US). This can be 

explained considering that this US environment and fire management significantly 

differ from the Spanish situation. 

Regional deployment models show similar trends to the national model, but 

some differences were found in accuracy and selected variables, suggesting 

different firefighting resources management trends across Spain. Central and 

Mediterranean Spain had higher accuracy than other regions. Mediterranean 

regions, and especially South Mediterranean Spain, present strong relations 

between fire size and terrestrial and aerial units that can be explained by the high 

population density and the high availability of local firefighting resources. 

On the contrary, NW Spain shows lower accuracy but also low average 

absolute errors, which are mainly related to the lower number of deployed 

resources in these regions. This lower accuracy agrees with Padilla and Vega-

Garcia (2011) who concluded that NW Spain model accuracy of HCF occurrences 

was lower and the social and biophysical fire environments and related patterns of 

suppression resources management are more complex than elsewhere in Spain. 

However, the pattern of resources deployment also varies within NW Spain. 

Cantabria and Asturias presented more dispatched firefighting resources in surface 

fires than crown fires in comparison to Galicia. This difference is likely related to a 

higher topographic complexity and forest property fragmentation, which does not 

favor the transmittance of surface fires to tall forests.  

Regional differences were also found to be linked to different fire regimes in 

Atlantic (NW Spain) and Mediterranean Spain, as pointed out by Verdu et al. 

(2012), Cardil and Molina (2013) and Moreno et al. (2014). Resource use in large 

fires in the Mediterranean region was substantially above the Atlantic average. This 

lowest Atlantic resource use indicates that burning conditions were not as extreme, 

assuming no budgetary restrictions in any Spanish region. However, some regional 

models in Galicia showed that the occurrence of multiple fires reduces available 

resources for large fires. 

Management implications for high fire occurrence regions, like Spanish 

Atlantic and coastal Mediterranean regions, need to be considered in the current 

scenario of full-suppression policy in Spain. When fire load is high, fewer 

resources are available and late arrival to fires may happen, hence, fires may 

escape. Firefighting managers can improve in efficiency by training in advance fire 

behavior and meteorology (Molina et al. 2010) but also by optimizing resources 
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selection and allocation, and pre-attack planning (Martin-Fernandez et al. 2002; 

Rodríguez y Silva 2007), based on fire occurrence prediction models. 

Accordingly, understanding which weather-, physiography-, vegetation- and 

human-related factors favor fires is crucial to improve firefighting resources 

allocation or to manage efficiently the pre-attack planning process (Donoghue and 

Main 1985). For this purpose, descriptive models of past events and predictive 

models of potential future fire ignitions have been developed worldwide. 

7.2. HCF occurrence modelling status 

According to Finney (2005), the basis for forest fire occurrence modelling 

usually include the location, date and time, cause and size of each fire. However, 

fire occurrence data is not available in all countries. According to FAO (2010), 

only 64 countries (with 60% of the world’s forest cover) have compiled national 

wildfire datasets, but only some of these countries are located in the most active 

fire areas, in Africa and Latin America. Undetected and/or unreported fires or 

missing fires are a common problem in many countries, due to lack of managerial 

resources, peak high fire loads, differing policies on minimum reporting size or 

occurrence in remote underpopulated regions with low values-at-risk (Lefort et al. 

2004). When reliable fire accounts are unavailable, fire occurrence can only be 

estimated from remote sensing sources from burned areas or hotspots (Chuvieco et 

al. 2008), but precise ignition locations and causes are uncertain.  

Spain has one of the longest registries in Europe (the second). Fire historical 

records include a cause field that allows separating natural fires from other human-

related sources of ignition. Consequently, this thesis focuses on human-caused fires 

(HCFs) because the largest proportion of wildfires in Spain are related, directly or 

indirectly, to humans. 

A literature review shows that the first HCF models were done by Donoghue 

and Main (1985) and Martell et al. (1987), which used, respectively, binary logistic 

regression and Poisson logistic regression for predicting the binary occurrence and 

the number of fires. The progressive availability of georeferenced data and higher 

computation capabilities has led to complex techniques such as CARTs, ANNs, 

SVMs, GAMs or MARS. Contrary to traditional models, these new methods are 

useful when dealing with large databases (currently known as Big Data), non-linear 

patterns and not normally distributed or highly correlated variables. However, most 

recent predictions of HCF occurrence focus on point pattern models (Rodrigues et 

al. 2014; Serra et al. 2014) instead of regions (i.e. Martell et al. 1987; Padilla and 

Vega-Garcia 2011). Currently, the analysis of the HCFs risk patterns has 
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incorporated non-parametric spatio-temporal models, used to identify space and 

time aggregation patterns (Pereira et al. 2015). It seems that this innovation would 

continue to be applied and new mathematical methods will be developed. 

Model accuracy under any technique seems to increase when the variability of 

fire characteristics (minimum fire size, study area size, binary/frequency response, 

and causality range) diminishes. Accordingly, the highest model accuracy occur 

when the number of ignition causes is low, or just one cause is under study 

(Costafreda-Aumedes and Vega-Garcia 2014). Consequently, for effectively 

implementing HCFs occurrence predictive models in any suppression management 

system, models should aim to minimize the variability of the input data by 

stratifying the different human-related processes that lead to fires (causes).  

Also, the use of dynamic spatial and temporal models is possible as new 

wildfire records keep being compiled yearly by autonomic forest services. 

The methodological evolution in HCF occurrence prediction has also increased 

models accuracy. The linear regression model of Altobellis (1983) showed low 

accuracy for all fire causes. When dealing with HCFs, the logistic regression model 

of Donoghue and Main (1985) had an accuracy of 0.49, while Oliveira et al. (2012) 

presented an accuracy of 0.95 using random forests in Mediterranean Europe. The 

higher accuracy increases the reliability of HCF occurrence models for operational 

use by fire managers. In this way, predicting locations and weather conditions is 

especially important in multiple-fire days or periods and have the potential to aid in 

detection and initial attack (Simard et al. 1978). However, the current level of 

operational implementation of the majority of these models is scarce, though some 

fire management systems have made provisions for their use (Chuvieco et al. 

2010). 

7.3. Factors that affect HCFs in Spain 

Across the abundant research done until now, many spatial and temporal 

factors have been found to be related to, or to be able to explain, HCF occurrence 

behavior. Factors with high temporal variability are mainly based on weather and 

weather-driven indices related to drought or vegetation moisture. By contrast, the 

spatial pattern is more often related to physiography, land cover or socioeconomic 

factors, with inherent low temporal variability or the unavailability of frequently 

updated data. Worldwide, HCFs have similar spatial and temporal trends, but 

variations have been found between and within habitats. However, trends depend 

on the amount and type of the input variables considered by the authors (Plucinski 

2012).  
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A great amount of weather variables has been selected before, being 

temperature, precipitation and relative humidity the most typical variables in HCF 

occurrence modelling. The highest wildfire occurrence probability is favored by 

high temperatures and low precipitation and relative humidity everywhere. In these 

conditions, vegetation suffers water deficit and cannot absorb enough water from 

the soil for growing and, subsequently, the moisture content of litter and fine fuels, 

medium compact organic layers and deep organic layers decreases. Thereby, 

vegetation dries up and becomes highly flammable. Accordingly, drought indices 

related to wildfire risk (FFMC, DC and DMC) and fire behavior indices associated 

with them (i.e. FWI, ISI, McArthur) increase. Canadian FWI, FFMC, DMC and 

DC have been found the most significant indices in most of regions (major habitat 

types). 

Vegetation driest conditions occur mainly in summer, where most fires take 

place (Albertson et al. 2009; Ager et al. 2014), but also happen in early or late 

winter in those regions with marked seasonality, like the Mediterranean region 

(Costafreda-Aumedes and Vega-Garcia 2014). Wildfire occurrence is favored by 

the lack of precipitation during fire-days and previous dry-days (Cardil, Molina, et 

al. 2014). In this way, precipitation during the fire season increases relative 

humidity and soil water availability for vegetation while decreasing ignition 

potential. By contrast, annual and non-fire season precipitation increases fine fuels 

(especially grasses and shrubs) that will be later available for burning. 

When considering physiography, elevation and slope have been the most 

selected variables in most of habitats / regions and studies. Generally, HCFs tend to 

occur in low areas and gentle slope. However, this behavior depends on human 

activity. Fires related to pastures and forests (González-Olabarria et al. 2015) are 

mainly located in the mountain areas and, arson (Vasconcelos et al. 2001) and 

negligence fires (Juan et al. 2012; Serra et al. 2013) occur most often in flat or 

moderate slopes. 

Vegetation differs by major habitat types. However, it is possible to identify 

some trends around the world with regard to landscape composition. Conifers 

seems more prone to burning. For landscape configuration, wildland-agriculture 

and wildland-urban interfaces are significant factors in those major habitat types in 

which they have been considered. Urban, forest, and agriculture land uses coexist 

and intermix in these anthropic landscapes. 

According to Chapter 5, landscape configuration reflects the impact of humans 

on the territory. I found as most significant landscape metrics on peninsular Spain, 

Shannon’s diversity index, mean patch edge and mean shape index. They have 

been also found significant in other studies; Henry and Yool (2004) found that 
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species diversity and shape and compactness of patches were included in the best 

model to predict fire occurrence in Arizona using remote sensing images. Ruiz-

Mirazo et al. (2012) found that the occurrence of pastoral fires is boosted with high 

proportion of large patches of moderate and low grazing in the landscape with 

small and elongated patches of intensive grazing. When models include other 

spatial and temporal variables, the significance of landscape metrics differ. 

Martínez et al. (2009) tested fragmentation, patch density and median patch size, 

but only agriculture fragmentation was significant in their best model. Ortega et al. 

(2012) tested eight landscape metrics to model wildfire occurrence by periods and 

only landscape diversity and patch size were significant in 1985-1998. Gralewicz et 

al. (2012b) found that forest patch size was the main discriminant variable for 

Canadian wildfires, while the number and proportion of forest patches were not 

included in the best model. Finally, Martinez-Fernandez et al. (2013) found 

significant only the density of agricultural patches, but discarded land 

fragmentation. 

In this thesis, HCF occurrence increases in diverse landscape mosaics with 

fewer edges and compact patches. The North Atlantic Spain landscape 

configuration (the region most affected by HCFs in Spain) comprises a set of small 

and highly fragmented patches with high diversity of land uses due to its diverse 

topography, rainfall and humidity. Its landscape is associated with traditional use 

of fire for livestock feeding and the low forest profit by local people (Torre Antón 

2010). In the Mediterranean region, urban development (with compact patches), 

linked to population density, especially in summer, overlaps with dry weather to 

increase fire risk (Vilar del Hoyo et al. 2008). Most regions with low predicted 

HCFs are fertile croplands of the Ebro and Guadalquivir river basins and the 

Meseta Central, where landscape mosaics characterize by large extension of 

croplands and scarce natural vegetation coverage. 

At more detailed scale (forest stand), HCF patterns also differ according to 

vegetation structure; tree or forest structure variables influence wildfire occurrence 

(González et al. 2006), but not always in a similar way. The understory of high tree 

density temperate forests is mainly composed by ferns and forbs (moist shrubs), 

and has low wildfire occurrence probability. By contrast, shrubs in other regions 

have low moisture content under warm and dry conditions, favoring wildfire 

occurrence (Badia et al. 2011; Oliveira et al. 2014). However, the combined 

influence of neighboring major habitat types in a study may mask particular 

vegetation patterns of fire occurrence. 

HCF occurrence varies also by the presence or abundance of human 

constructions and activities (Oliveira et al. 2014) and their pattern determines the 
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number and distribution of wildfires. This pattern varies geographically and 

temporally. In this way, in Spain (MAGRAMA 2015) and US (Morrison 2007) 

more than half of HCFs start along infrastructures such as roads, tracks, trails and 

railways and act as conveyers for arsonists, careless drivers and campers. 

Regarding socio-economic indicators, population density is the most important 

factor related to the occurrence of HCFs. High population densities are related to 

high wildfire occurrence, except when high population density aggregates in large 

urban areas (i.e. Penman et al. 2013; Beccari et al. 2015) where there is lower 

availability of fuels. This is in agreement to Donoghue and Main (1985) who have 

observed an increase of HCFs when increasing the non-metropolitan population 

density. In relation to population density, HCFs occur most often near settlements 

or highly built-up areas, but this trend depends on the causality agent. In this way, 

Olabarria et al. (2015) have found that the distribution of arson, smokers, 

powerlines and camp fires in NE Spain occur near coastal areas, where the 

population density is higher. 

Productive activities on the land seem related to wildfire occurrence. In this 

way, cropland coverage, proximity to them, or other variables related to intensive 

land use are risk factors. In addition, livestock density is often directly associated 

with HCF occurrence but relations are not linear and depend on the quantity of 

livestock. In this way, Dlamini (2010) and Romero-Calcerrada et al. (2008) 

concluded that intermediate livestock densities were associated with an increased 

occurrence of HCFs in Swaziland and Central Spain, respectively. Shrub removal 

for regenerating pastures and feeding livestock tend to locate in areas with lower 

population density and, in agreement to (i.e.) Gonzalez-Olabarria et al. (2015), 

further from metropolitan areas. 

Outdoor recreational activities are risky activities related to negligent or 

careless fires. In this way, proximity to campgrounds or fishing areas are often 

carried out during bank holidays, weekends and holidays. They are especially 

popular in late spring and summer, being the most favorable periods for ignition. 

These fire ignitions mainly occur in low population density areas because they are 

linked to hiking, camping and hunting in public forests, which are usually located 

far from highly populated areas.  

7.4. Spatio-temporal aggregation of HCFs in Spain 

In turn, weather, physiography, vegetation and socioeconomic activities that 

take place in Spain determine the spatio-temporal aggregation of HCFs. These 

spatial and temporal distances for wildfire aggregation increase with increased fire 
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occurrence, which is coherent with higher risk levels caused by high number of 

fires over longer time spans and greater distances.  

In agreement to Alonso-Betanzos et al. (2003), Telesca and Pereira (2010), 

Juan et al. (2012), Fuentes-Santos et al. (2013), Chas-Amil et al. (2015), Pereira et 

al. (2015), HCFs aggregate spatial and temporally in the Iberian peninsula. Results 

of Chapter 6 show that these aggregations maximize around 4 km and 180 days, for 

a selection of windows representing a variety of conditions in Spain. However, the 

aggregated structures lose strength when spatial and temporal distances increase. In 

general, shorter time spans than a month after a wildfire, HCF occurrence is high at 

any distance in the range 0-16 km. This is in agreement with the fact that in the 

short term, weather is the main driver of wildfire occurrence, and its effect are 

regional. At larger time spans of two years, the probability of fire occurrence is 

high only at distances closer than 3 km. The spatial aggregations are consistent 

with the presence of local structural risk factors independent of the season and 

weather conditions (i.e. arson, Serra et al. 2013). These results agree with Vega 

Orozco et al. (2012) and Pereira et al. (2015) which conclude that wildfire 

aggregations more often occur at local level and are not visible at large distances 

(15 – 50 km). 

However, HCF spatio-temporal patterns vary throughout Spain in relation to 

fire frequency/return interval, weather and landscape structure. Aggregation 

patterns differ between Atlantic and Mediterranean Spain, as expected by their 

climatic and landscape structure that determine different fire regimes (Verdú et al. 

2012). In the milder Atlantic region, the spatial aggregation for time lags under 

three months is determined by the duration of the bimodal fire season (February-

April and June-August). The spatial aggregation is also the consequence of 

landscape fragmentation and high HCF risk and occurrence in the region. This 

pattern was identified in Portugal by Telesca and Pereira (2010) who linked it with 

the annual weather cycle and vegetation phenology. High rainfall and low 

maximum temperatures extend risk over longer periods than in the Mediterranean. 

The highest precipitation, the highest number of rainy days and, therefore, the 

lowest number of fire days (Garcia-Gonzalo et al. 2012; Boubeta et al. 2015) and 

the least aggregation over time spans (Gabriel and Diggle 2009) than extent in mild 

conditions. 

In warm and dry Mediterranean regions, HCFs aggregate within fewer days. 

The annual weather cycle, with high temperature periods, favors the occurrence of 

multiple fires in low number of days during the fire season (De Haan and Icove 

2011). These multiple-fire conditions require exhaustive management of the 

firefighting personnel and terrestrial and aerial units (Haight and Fried 2007). The 
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occurrence of new HCFs is associated to spells of extreme weather conditions 

(Padilla and Vega-Garcia 2011; Barreal and Loureiro 2015) caused by heat waves 

(Cardil, Molina, et al. 2014) and, accordingly, the temporal aggregation of 

wildfires decreases and clusters in lower numbers of days. 

Spatially, the aggregation pattern of HCFs is influenced by population density 

and landscape structure and composition. In agreement to Barreal and Loureiro 

(2015) and Chas-Amil et al. (2015), as seen in Chapter 4, HCF distance-

aggregations are related to higher population density, which dilates the time lag for 

wildfire occurrence, though the correlations were not very high. 

Landscape structure influences fire occurrence (from Chapter 5), and their 

spatio-temporal aggregations. Our results show that HCFs in Spain spatially 

aggregate in closer distances in diverse and fragmented landscapes with small and 

complex-shape patches. These results agree with the main conclusions of Chapter 6 

where we found that HCFs are associated to diverse and highly fragmented 

landscapes with large number of small and compact patches. In addition, patch 

shape is relevant in combination with landscape composition, depending on the 

land use under consideration and its dominance in the landscape. Landscapes with 

higher coverage of non-fragmented, large and compact wildland patches favor 

larger spatial aggregation distances. These wildland landscapes are the common 

result of land abandonment processes (Vega-García and Chuvieco 2006) in SE 

Mediterranean countries for the last 60 years. 

In relation to landscape composition, spatio-temporal HCF aggregation patterns 

in Spain are related to the presence of interfaces between land use classes. Previous 

studies found that wildfire occurrences have been linked to agricultural cover over 

wildland (Garcia-Gonzalo et al. 2012; Rodrigues and De la Riva 2014; Serra et al. 

2014) and urban covers (Gonzalez-Olabarria et al. 2011). Our results show that 

wildland-urban and agriculture-urban interfaces decrease spatial aggregation 

distance, while the wildland-agriculture interfaces increase spatial aggregation 

distance. Accordingly, short spatial aggregation distances have been found with 

low proportion of wildland-agriculture interface and, thus, wildfires seem to 

aggregate close to the patch perimeters between both classes. These results agree 

with Gonzalez-Olabarria et al. (2011) and Martínez-Fernández et al. (2013) who 

have related higher proportion of wildland-agriculture interface to an increase of 

wildfire occurrence in Spain. Temporally, longer temporal lag for aggregation of 

human-caused wildfires is related to the presence of larger and complex agriculture 

patches and longest wildland edges, showing again the importance of wildland-

agriculture interfaces in wildfire occurrence. 
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7.5. Identifying future research needs in HCF occurrence modeling 

Traditionally, HCF occurrence has been considered at regional level, either by 

administrative divisions (townships, autonomous regions or countries), land 

ownership or other local arbitrary divisions. The current modeling trends on 

wildfire occurrence and risk analysis considers supranational regions (i.e. Oliveira 

et al. 2014 in Mediterranean Europe). In this way, Chuvieco et al. (2008), 

Krawchuck et al. (2009), Knorr et al. (2014) and Bedia et al. (2015) used remote 

sensing data (hotspots of burned area products) to study the global pattern of 

wildfires. These global wildfire ignitions become from remote sensing data that has 

been mainly recorded by MODIS, VIIRS and Seviri from the different fire data 

programs such as Globe Fire Data (www.globefiredata.org), Active Fire Data 

(earthdata.nasa.gov) or Global Fire Monitoring (www.gmes-atmosphere.eu).  

In addition, and according to Finney (2005) fire records should be 

characterized by location, date and time, and cause , so the best accuracies in 

wildfire modeling come with high number of records and their associated 

information. However, the lack of complete fire occurrence data in some countries 

hinders accurately locating the ignition of each event and, therefore, to model 

adequately wildfires (due to lightning- and human-caused fires occur generally in 

different temporal conditions and spatial locations). Also, inaccuracies in sampling 

or the lack of records in the databases hinders subsequent modeling. Therefore, in 

those countries without fire history datasets or with missing records, the research or 

managerial communities should make an effort in registering accurately all 

wildfires occurred for increasing the global wildfire databases. Supranational 

initiatives such as JRC (EFFIS), which is compiling all wildfires occurred in 21 

European countries since 2004 (Camia et al. 2010), are invaluable for these 

modelling purposes (Ganteaume et al. 2013; San-Miguel-Ayanz et al. 2013). 

Traditional models further limit prediction capacity if they use simple or binary 

dependent variables. For example, binary regression models (fire / no fire) on 

administrative divisions do not consider all fires and only consider the first ignition 

(at least one), which loses information and, therefore, accuracy. In this regard, 

higher number of fire ignitions in longest periods and the improved computational 

capabilities allow using complex statistical methods related to point analysis and 

increase the accuracy of models. Accordingly, recent models are focused on the 

spatial-explicit fire ignitions (i.e. Amatulli et al. 2007) or their spatio-temporal-

explicit pattern (i.e. Vega Orozco et al. 2012). These point pattern methods allow 

incorporating the space-time aggregations of HCFs showed in Chapter 6, which 

have not been considered in previous studies. Therefore, HCF occurrence models 
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should consider that the occurrence of new fires is spatially and temporally 

influenced by nearby fires, but loses strength at higher spatial and temporal 

distances. 

Most of previous models analyzed HCF occurrence in a long-time period, but 

the quantity and causative agent of wildfires varies seasonally (Costafreda-

Aumedes and Vega-Garcia 2014) and, therefore, wildfire occurrence models 

should account for variability in space (Amatulli et al. 2007) but also in time.  

Finally, the spatio-temporal point pattern models proposed for the future will 

allow the modelling of not only potential new fires, but also improving firefighting 

resources allocation when they are used in a mixed model. Therefore, the most 

important goal of these techniques in suppression management is to minimize the 

response time in firefighting arrival and the environmental and human losses. 
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8. Conclusions 

1. This thesis aims to contribute to the advanced state of the art in wildfire 

occurrence modeling; it proves that it is possible to characterize the 

spatiotemporal pattern of HCF occurrence in Spain from different 

approaches, and account for regional differences. In turn, it would be 

possible to improve planning efficiency for prevention and control of fires 

in order to minimize vegetation damage and human losses. 

2. The number of firefighting resources deployed in Spain increases in large 

fires, crown fires and long duration fires and in days without multiple-fire 

situations. However, deployment pattern varies throughout the territory. 

Mediterranean fires exhibit a strong relation between fire size and 

terrestrial and aerial units. Firefighting resources in the Atlantic region 

show unique deployment trends, since in Cantabria and Asturias more 

suppression resources are engaged in surface fires than in crown fires. 

3. The first fire occurrence models developed worldwide were simple and did 

not consider causative agent (natural and people-caused), but the 

progressive implementation of new mathematical techniques and the 

improving of the ignition source analysis (through remote sensing and field 

investigation) allows nowadays the use of complex techniques, stratifying 

lightning- and human-caused fires. This progress also implies an increase 

in the accuracy of models. 

4. The most relevant variables used worldwide in models include: 

- Temperature, precipitation and relative humidity, which are the most 

representative temporal variables in HCF modelling. High HCF 

occurrence occurs at high temperature and low precipitation and 

relative humidity. Under these conditions, vegetation dries and 

becomes combustible. Canadian FWI, FFMC, DMC and DC are the 

most significant weather-derived indices for most major habitat types. 

- The behavior of the spatial variables is similar throughout the world 

and, generally, when human presence increases, HCF occurrence 

increases. This pattern changes depending on the causative agent. 

Pastures and forests fires occur in mountain areas and low population 

densities while arson and negligence fires occur mostly in low or 

middle slopes, on holidays and weekends, with high human presence. 
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- The relation between HCFs and vegetation varies by major habitat 

type. However, HCFs tend to occur more frequently in conifer forests 

and in agricultural-forestry and wildland-urban interfaces. The main 

differences in vegetation are in the shrub response between warm and 

temperate habitats. 

5. Landscape configuration in Spain determines the pattern of HCFs. Fires 

occur most frequently in landscapes with high land use diversity and 

compact patches with short edges, especially significant in NW Spain and 

coastal Mediterranean area. 

6. The maximum spatiotemporal aggregation of HCFs in Spain occurs around 

4 km and 180 days. These structures lose strength when the spatial and 

temporal distances increase.  

- The largest temporal aggregations occur in Atlantic regions with 

higher precipitation and lower maximum temperatures, and HCFs 

aggregate in shorter periods in hot and dry weather conditions as 

occur in the Mediterranean region.  

- The spatial aggregation of HCFs is influenced by population density 

and the landscape composition and configuration. In this way, the 

largest aggregation distance occurs with high population density, 

highly fragmented landscapes with compact patches low percentage of 

wildland-urban and agriculture-urban interfaces, and high percentage 

of wildland-agriculture interfaces. 

7. This thesis offers new perspectives and approaches for HCF modelling in 

Spain. However, the analysis of wildfire occurrence at supranational level 

within similar major habitat types, and considering specific causes of 

ignition, should also render useful information on current and future trends. 

This larger scale is supported by the current higher availability of geodata 

and computational capacity, which allows complex methods, such as point 

pattern analysis, to be applied to larger study areas. In contraposition to 

more traditional methods, point pattern analysis can contribute to explain 

space-time HCF aggregations, like those observed in the study areas in 

Spain, in other world regions with high fire incidence. 
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