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ya estaban a punto de acabar. Gracias por hacerme fácil algo que en aquel momento era un
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I ja finalment, la tercera generació: Mı́riam, Serena i Guillermo primer i Maciej i Moira
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Isaac Asimov said a long time ago that “The saddest aspect of life right now is that
science gathers knowledge faster than society gathers wisdom”, which I think it is still true
nowadays. Science moves forward at a very high rate and, to a certain degree thanks to the
boom of computational science during the last decades, it is something that will be continued
in the next few years.

During this thesis, whose work is presented over the next chapters, I feel that I have
contributed to this progress and I strongly hope the reader gets convinced too.

1.1 Overview of Drug Discovery and Development

It is estimated that the drug discovery and development process, on average, can take up
to 10 or 15 years to get a drug from early stages of research to being commercialized to the
public, with an associated cost of more than 500 million dollars.

Several stages have to be undertaken from starting point until getting a drug to the
market (summarized in Figure 1.1).

Figure 1.1: Scheme of the different stages and corresponding times that have to be dealt with in
the development of a drug.

In Target Discovery, the process implies finding out the target that causes a particular
disease of interest. Next, putative drugs (drug-like molecules [1, 2], biological compounds,
natural products, etc.) are screened experimentally against these identified targets in order
to find hits, which will be optimized to find lead compounds and develop them to drugs.
The lead compounds undergo a more exhaustive optimization during Lead Optimization
and ADMET (abbreviation for absorption, distribution, metabolism, excretion and toxicity)
stages. Many iterations in these stages involving in vitro and in vivo assays, syntethic
chemistry, genomic technology or bioinformatics can increase the length of this period for
up to 5 years.

After that, the lead compound has been optimized and becomes a more likely drug, which
will then be carried to the development stage of clinical trials. These are experiments carried
on humans and are divided in different stages, as depicted in Figure 1.2. In phase I, a safety
screen is performed within tens of people in order to establish safe dosage ranges and to
identify early visible side effects. In phase II, a comparison with a placebo determines the
efficacy of the drug. Moreover, in a larger group of people, uncommon side effects will be
easier to spot. Phase III serves as the final confirmation of safety and efficacy whereas side
effects are still monitored in thousands of participant people.

Figure 1.2: Summary of all phases of the clinical trials that a drug has to overcome.
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Finally, the last step is the registration and approval. A new drug has to be reviewed and
approved by the different regulatory authorities, which check that the safety, efficacy and
potency is well demonstrated. After the approval of the drug and after it has been marketed,
the phase IV of the clinical trials monitors the long-term side effects and if non-investigated
adverse events appear. These studies are carried on during sales, and are used to optimize,
when necessary, the risks, benefits and indications.

1.2 Main approaches in Drug Discovery

There are different procedures to approach the Drug Discovery and Development, which
could be classified into different categories:

• Classical approach

• Rational approach

• Gene therapy

• Biologics

• ...

The classical approach is the most used one in history of Drug Discovery and most drugs
available today have been discovered by applying so. It involves experimental observations
of the effects from testing chemical compounds. Thousands of compounds are tested in a
similar way thousands of keys should be tried in order to open a given lock. The positive
hits are isolated and characterized in detail and further optimization is carried on.

The rational approach, in contrast with the classical one, needs previous knowledge of the
target structure. Drugs are then designed to make an interaction with the target structure
in order to cause a beneficial outcome. This is the approach taken during this thesis and
more details about it will be shown in the next section.

Gene therapy and biologics are relatively hot topics with much less cases with respect to
the previous ones. Gene therapy aims at treating a disease by inserting a missing gene or
correcting a malfunctioning one. The final goal is to alter the disease pathway or to restore
the missing proteins or enzymes. Biologics are mainly antibodies, vaccines or proteins that
are designed to act as drugs. The biologic drugs are manufactured externally and inserted
to the body to perform their function.

1.3 Rational Approach

The main feature of rational approach is the necessity to know the 3D structure of the recep-
tor as well as the structure of the chemical structures being tested. X-ray crystallography or
NMR spectroscopy can help in solving the three-dimensional structure of the proteins, but,
in the cases where that is not possible, molecular modelling can predict the structure.

The role of computers

Computers have been used in biology and chemistry since a long time ago. Year after year,
computers evolve and methods are improved and widely applied. In recent years, computers
have helped in scanning DNA sequences to determine location of genes, determine possible
functions and structures of proteins, predict binding sites for drug interactions and provide
information for drugs to be designed to fit the binding sites.
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1.4 In Silico Drug Discovery

More specifically, I will focus on how computers aid in the Drug Discovery field. The
main stages where they are applied are the early parts of Drug Discovery and Development
pipeline, as shown in Figure 1.3.

Figure 1.3: Role of computers in Drug Discovery and Development.

It encloses a different number of techniques that deal with different aspects such as
studying the molecular basis of ligand-protein interactions, develop target-specific compound
libraries, model target proteins, identify hits by ligand and structure-based virtual screening,
estimate binding free energy, and optimize lead compounds, all of which can be used to
rationalize and increase the efficiency, speed, and cost-effectiveness of the drug discovery
process. The increment of such methods, the algorithmic and software development, the
large number of web servers and the decreasing cost of computational power have contributed
to the success of computational drug lead discovery.

However, it is reasonable to think that more accurate and reliable methods would surely
help to overcome the stagnation in the number of approved drugs in recent years [3], especially
if in silico drug discovery is coupled with druggability assessments early in the drug discovery
process.

1.5 Structure Based Drug Design

With current developments in bioinformatics, gene-sequencing and molecular biology tech-
niques, drug targets are identified at an increased pace and the limiting step is finding the
appropriate drug. Within target-based discovery, owing to the availability of the target
atomic structure, two approaches are identified: structure based drug design (SBDD)
and ligand based drug design (LBDD). Structure-Based Drug Design encompasses all the
tools and techniques exploiting the target’s structural information to rationally guide the de-
sign process [4]. On the other hand, when the target structure is not available, Ligand-Based
Drug Design, or ligand based approaches, exploit the information contained in the active hits
found during in vitro experimental assays. Therefore, second approach is usually employed
when some active ligands are already known and SBDD is the preferred tool in initial hit
finding.

The holy grail of SBDD is that, knowing the target structure, we have all the information
needed to design effective, selective and safe drugs. But we are not still there: a gap between
structure and successful drug is present. Are we lacking target structures or is the process
of understanding the information failing?

Thanks to ultimate technology advances (e.g. more precise and clear X-ray light, more
potent electromagnetic fields, etc.), crystallography and Nuclear Magnetic Resonance (NMR)
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techniques can now easily elucidate many macromolecule’s structure with a very low resolu-
tion. The evolution of these techniques is directly linked to the number of structures released
and, as shown in Figure ??, the exponential growth is notorious. Currently, the Protein Data
Bank or PDB (main database for macromolecular structures) contains more than 100.000
structures. All this wealth of structural information and the expected near future advances
make the target structure not the problem in SBDD.

It is our understanding on the fundamental process of molecular recognition in biological
systems which is still limited, and thus are the predictions, which generate the drug design
guiding hypothesis. It is still a hot topic how to correctly use the information contained
within the target structure and its interactions with the ligands in the more appropriate
manner.

1.5.1 Target identification, validation and structure elucidation

First crucial step in drug discovery processes is the correct selection of the appropriate target
entity responsible for the disease or effect we are willing to modulate. The target should
be responsible for the activity and its modulation should produce the desired effect without
altering normal functioning pathways in the organism. In this stage, bioinformatic genetic
studies are increasingly contributing to the discovery of potential drug targets [5]. After
a target is selected and approved for its correct behavior (i.e. knock-out models should
reproduce the drug effect), obtaining a good atomic resolution structure is probably the
most important task.

Usual techniques (crystallography and NMR) cannot grant the success on difficult to
produce and purify systems yet (e.g. membrane receptors, ion channels). In some situations
where experimental techniques fail, it is still possible to predict the structure of the target
in study if the target has a close homolog protein with already known structure.Homology
modeling , the computational discipline in charge of such predictions, finds its roots in the
lower diversity of protein folds than sequences: current SCOP classification (one of the
main authorities in protein tertiary structure classification) identifies 1390 different folds
independently on the origin organism; whereas only human body is estimated to have about
50000 different proteins. It is considered that above a 30% sequence identity it is possible
to obtain a reliable structure estimate [6].

If it is not possible to be obtain the target structure, ligand based approaches (e.g. QSAR
models, pharmacophore identification) have been successfully and widely applied before the
technology was able to yield as many protein structures as we have now. Ligand approaches
are still a powerful tool in combination with structure-based approach, specially during the
optimization stages where potency and safety should be improved.

1.5.2 Target structural analysis

Druggability and cavity detection

One important task to reduce attrition rates in drug discovery, that was somehow omitted
in early projects, is the assessment of the target’s druggability. The term druggability is
understood as the suitability of a target for binding drug-like molecules.

A correct classification of a macromolecule as either druggable or undruggable helps to
choose the appropriate target in early stages of the drug design process, discarding those
which are presumably more difficult to be modulated by drug-like molecules. Good predic-
tions have an evident economical impact on the project and help to direct all efforts to most
promising targets.
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The assessment of druggability can be done experimentally or computationally. Ex-
perimental methods include the retrospective analysis of the hit rates in high-throughput
screening or fragment screening campaigns[7]. But obviously, these approaches are not ap-
plicable in a prospective manner. The most promising approaches are all computational.
Based on a correct cavity identification and characterization, usually by the definition of
some descriptors, many methods have been developed to help in this assessment. A dataset
of known proteins already classified as druggable or not is used to train and validate the
predictive models. Schrodinger introduced a druggability score in their proprietary SiteMap
cavity prediction software[8] and fpocket, open-source software, based on an extended dataset
also proposed a druggable score[9].

Druggability, however, is not understandable without a previous cavity or binding site
definition and, actually, both tasks are usually linked. Cavity identification might be obvious
when targeting enzymes or receptors by classical mechanisms of action (e.g. competitive ag-
onism or antagonism) but, when targets are not naturally evolved to bind a small molecule
substrate or one seeks non-competitive mechanisms of action, this task becomes complex
(e.g. protein-protein interfaces). Several computational tools, mostly based on geometrical
and shape parameters, have been developed to aid in the binding site identification and
selection.[10] For instance, fpocket or SiteMap previously mentioned are two representa-
tive of these approaches.

Binding site characterization

Besides cavity identification, the correct characterization of the pocket will likely increase the
probabilities of success. Binding sites specify structural and physicochemical constraints that
must be met by any putative ligand. Hence, it is imperative to analyze the constitution of
the binding site by mapping the characteristics that are essential for ligand recognition. This
is particularly relevant during the project first stages when still no ligand has been identified.

1.5.3 Molecular Docking: Virtual screening and compound ranking

After the binding site has been identified, the normal process will follow with the docking
and scoring of a virtual compound library [11, 12, 13]. This process, known as virtual screen-
ing , aims to identify potential binders from a pool of virtual molecules [14]. If the scoring
process is correct, molecules with the lower energy values ranked at the top, should be the
most active. The advantage of this computational tool over experimental high throughput
screening is obvious: being virtual, there is no need to set up an assay, purchase nor syn-
thesize all the compounds to be assayed, with implied time saving and reduced costs [15, 16].

Space sampling and receptor definition

Taking into account that millions of poses for each molecule and thousands to millions of
different molecules should be evaluated, the limiting factor of virtual screening is speed.
Therefore, it is not possible to exhaustively explore all possible receptor or ligand geome-
tries. For this reason, the receptor is usually considered as a rigid body and, in the best
cases, some of the binding site side chains are allowed to move or hydrogen atoms to rotate.
Even then, the virtual screening process is still far from identifying induced binding sites or
complex ligand-protein conformational changes.

Moreover, it is known that water molecules play an important role in the binding process
of many drug-target complexes. However a common task in virtual screening is to remove all
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receptor solvating waters if there is not enough information pointing otherwise. The outcome
will largely depend on their presence, and will likely fail if important waters were removed.
More detailed discussion on this topic is presented in the next section.

Scoring functions

On the other side, accurate energy estimation is still a major problem to be addressed in
the field of computational chemistry. Usually, costly and complex computations (e.g. free
energy methods) are needed to roughly estimate binding affinities with an acceptable error.
The process involves molecular simulations and hours of computation for a single molecule.
It is therefore impossible to apply such accurate methods in a high-throughput manner, as
it would be required in virtual screening. The solution is to use empirically or statistically
derived scoring functions which try to offer the best balance between accuracy and speed of
calculation. These functions can evaluate a single pose in milliseconds.

Current scoring functions include several terms describing the ligand-receptor interactions
from a mechanical point of view. Many terms are used to build current scoring functions;
each one introduced with as many variations as scoring functions exists: Van der Waals for
steric effects, Coulomb for electrostatic interactions, geometrical terms for hydrogen bonds
and a desolvation term. All these terms are parametrized according to a training set. That
is, taking into account previous knowledge, a weighing factor is applied to each term in order
to reproduce the experimental set results. Then, if the function is not over-fitted, it will be
able to predict binding modes in novel systems not part of the training set.

But, what if we try to target binding sites very different from any training set used up
to date? Will it be possible to find allosteric or protein-protein inhibitors using classically
parametrized scoring functions (i.e. functions working well on natural binding sites)?

Professor Gisbert Schneider defines Virtual Screening as an endless staircase[17]: de-
spite all continued developments, still its impact on the success of drug discovery projects is
controversial. The lack of novel approaches is a major drawback to advance in the field of
computer aided drug design.

Including experimental information boosts results

Once first active ligands are identified, the determination of most and less important interac-
tions provides valuable information for guiding the virtual screening process. For instance, if
some mutational study highlights the importance of certain aminoacid for the ligand binding,
it is possible to introduce some bias in the virtual process to give higher score to ligands
fulfilling that interaction. If we have a resolved crystal structure and some water is mediat-
ing the interaction, its consideration in the docking process will likely yield better results.
Also if there are several active ligands with known binding mode, a pharmacophore can be
derived, to guide future virtual screening processes and improve the outcome.

1.5.4 Experimental assay and iterations

As mentioned before, scoring functions are somehow limited and being at the top of the
ranked ligand list, still does not guarantee a molecule will be active in experimental assays.
For this reasons, an expert will have to carefully examine the top ranking compounds and
select those which are more likely to be active based on his own experience. To somehow
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simplify this process, a common task is to re-score the list using several scoring functions
and finally sort the list with a consensus score[18].

Once a list is proposed, the compounds will be purchased or synthesized and tested in
the most suitable biologic assay. Active and inactive compounds information will be useful
to establish an initial structure-activity relationship (SAR) to guide future design. This SAR
is constructed to determine which are the optimal ligand structure for gaining the best po-
tency possible. Several informatic tools (e.g. QSAR, 3D-QSAR) are used to build predictive
quantitative models and estimate possible affinities before any compound is synthesized and
tested.

The active ligand list can be further optimized by looking for similar scaffolds or evolv-
ing the structure in a synthesis campaign guided by the binding mode hypothesis and the
primitive SAR. Knowing what interactions are more or less important will determine the
improvement success. The process iterates and the more molecules are found active, the
more precise the models and the SAR become and more potent ligands are likely to be found.

Not only the potency is important. Safety is also a crucial aspect of a good drug candi-
date. Thus ligand structure is in parallel also optimized for having good ADME properties
and be less likely to fail in future drug discovery stages.

MDmix

In 1997, Leipinsh and Otting described the presence of small organic molecules in the bind-
ing site of Hen Egg White Lysozime (HEWL) in their NMR studies [19]. Not only they
described the unspecific ability of DMSO, methanol, acetonitrile and other small co-solvents
to bind in the protein active site but they could also determine their binding affinity. Multi-
ple solvent crystal structures (MSCS) methodology, published in 2006 by Mattos et al., was
also presented as a method to determine binding sites and hots pots using different organic
solvent mixtures [20, 21]. This unspecificity is not surprising if we understand binding sites
as regions naturally designed to be desolvated for binding substrates, and the co-solvent
molecules as a minimum representation of a drug-like molecule.

As discussed in previous sections, the correct identification and characterization of bind-
ing sites is crucial for conducting a successful drug design campaign, and these techniques
can clearly help in such determination. However, several limitations hamper their applica-
bility: it must be feasible to produce protein and determine its structure in the presence of
the co-solvents. Unfortunately, this is not possible yet for many systems.

Consequently, in last years, our group developed a computational method (MDmix)[22,
23] which uses molecular simulations to mimic the experimental techniques. As an in sil-
ico version of previous experiment with aqueous-organic mixtures by Otting, Mattos and
other, the method simulates the behaviour of the target protein in a solvent mixture (an
isopropanol-water mixture in this case). The whole system is modeled and simulated using
classical Molecular Dynamics which allows the system to move and evolve in time. By cal-
culating the regions in the space with higher occupancy of isopropanol molecules, the study
aims at identifying binding sites and to estimate the maximum binding affinity a perfect
ligand would attain upon binding. This latter measure was given as an indicator of drugga-
bility (i.e. more druggable binding sites will have lower estimated energies).

The advantages of computational techniques in this area are obvious and, as proven
elsewhere[24], the simulation results are often as reliable and robust as experimental methods,
giving higher confidence on their predictive power.
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The workflow

Two main actors are needed to setup a calculation: the solvent mixtures (selected according
to the probes we are interested in) and the target macromolecule (usually a protein but it
could also be a nucleic acid chain). After choosing the simulation parameters (e.g. tem-
perature, number of replicas, time of simulation, etc.), the calculations can be submitted.
The process of Molecular Dynamics simulations, for those readers not familiar with it, can
be seen as a movie making process: the atoms move during time and their movement is
captured in a trajectory.

All results are contained within these films or trajectories and the analysis process in the
lower box in First step is the alignment of all the replica’s trajectories to a single reference
frame, usually the starting configuration of the protein. Then, superposing a rigid grid that
partitions the space, it is counted how many times the probe atoms in the co-solvent fall
in each of the small space partitions (the grid points or voxels). This way a density map
is obtained. For instance, in a simulation with ethanol and water mixture, a density map
for the oxygen in the ethanol will represent hydroxyl interactions (or hydrogen bond donor
and acceptor interactions in general) and the tail carbon will show hydrophobic interactions
[25, 26, 27].

Steered Molecular Dynamics

Steered molecular dynamics can be used for predicting affinity of small molecules upon bind-
ing to proteins [28]. However, this process can get really hampered by the difficulty in
identifying a valid reaction coordinate, which can be very complex due to the size if the pro-
tein and the diversity of potential ligand molecules. In this thesis, we propose an alternative
approach that consists in a reduction of the system size focused around a key interaction
point [29], which facilitates the choice of a reaction coordinate, decreases the time of the
simulations and allows us to differentiate between active and inactive compounds in a rela-
tively high throughput scenario.

This and other methods are applied in real Drug Discovery campaigns. The development
and real implementation of all of them is presented and discussed in this thesis. Moreover,
challenging targets demand better virtual screening methods: In this direction, the develop-
ment of such methods has been an important part of this thesis, whereas the application of
these methods in real challenging systems is one of the main motivations. A final discussion
and conclusions covers the main concepts introduced here and in the rest of the chapters.
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As discussed in the introduction, better and novel methods are needed to improve drug
discovery and, in particular, computer-aided drug discovery. In our group, rDock has always
been the main docking tool for all our projects. However, it lacks a comparison with other
programs that are commonly used as well as a public release after the evolution from Rib-
otarget’s RiboDock. Moreover, docking programs are usually far from perfect and a lot of
noise is present in their results: false negatives and, more importantly, false positives increase
the time and economic cost of drug discovery campaigns. Complementary methods that can
help in this aspect would be extremely useful.

Hence, the global objective of this thesis is to develop, apply and validate novel tools for
drug discovery in order to improve the actual landscape of available methods in Structure
Based Drug Design.

Specific Objectives

In particular, the specific objectives are the following:

1. Validation of rDock by comparing it to other reference docking programs.

2. Improve docking performance by introducing knowledge-based scoring biases.

3. Docking-based Virtual Screening and post-filtering of hits with complementary meth-
ods.

4. Develop a novel approach based on Steered Molecular Dynamics and establish a proof-
of-concept in prospective and retrospective applications.
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Three papers have been published as a result of this thesis. Each of them, preceded by
an overview and a brief summary of the results and conclusions, are included in this chapter.

The first paper, entitled “rDock: A Fast, Versatile and Open Source Program for Docking
Ligands to Proteins and Nucleic Acids”, introduces rDock to the scientific community. rDock
is a molecular docking software released as open source that improves results obtained by
other commonly used docking programs (more details on the results in section 4.1).

In the second paper, entitled “Dynamic Undocking and the Quasi-Bound State as Tools
for Drug Design”, we present the “Dynamic Undocking”, a new tool for drug discovery that
can help improve virtual screening results by several fold. All the details on the methodology
development and experimental validation using Hsp90 are found in section 4.2.

The third paper, entitled “Docking-Undocking Combination Applied to the D3R Grand
Challenge 2015”, summarizes our participation in the public challenge organized by the Drug
Design Data Resource (D3R) (in section 4.3). Our approach was based on a combination of
docking with rDock and Dynamic Undocking, which placed us amongst the best participants.
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Introduction

The discovery of small molecules with biological activities is

important to probe biological mechanism in chemical biology and

to provide drug candidates as potential therapeutic agents. The

first step in this process is to identify compounds that bind to a

specific target (hits); experimentally this is usually achieved with

high-throughput (HTS) or fragment screening (FS). The resulting

hits are then optimised to higher affinity compounds, usually

guided by a model of how the compounds bind to the target,

increasingly with crystal structures of the target used to guide the

optimisation.

Computational methods are often used as a central part of this

process. Molecular docking can play an important role in the

optimisation, where a proposed position and conformation

(so-called pose) of the compound can be generated and provide

useful models for how the compounds are binding, in advance of

any experimental structure determination. However, if the

structure of the target is known and a druggable cavity has been

identified [1], molecular docking can also be used to screen virtual

chemical collections to identify those molecules that offer good

shape and chemical complementarity [2]. Such virtual screening

(VS) offers opportunities for small research groups without access

to HTS or FS to identify new hit compounds, as setting up a low-

throughput assay to test a few tens of compounds is relatively fast

and inexpensive. Such VS has been successful, but it requires a

docking program that is computationally efficient and can be

finely tuned to achieve optimal performance [3–5]. rDock is a

molecular docking platform which has been optimised for such

tasks.

rDock has its origins in the program RiboDock [6], designed

initially for VS of RNA targets. Developed at the company now

known as Vernalis (http://www.vernalis.com), the software,
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scoring functions, and search protocols have been refined

continuously over a number of years to meet the demands of in-

house discovery projects on heat-shock proteins [7–9], kinases

[10–13] and other targets. The major components of the platform

now include fast intermolecular scoring functions (vdW, polar,

desolvation) validated against protein and RNA targets, a Genetic

Algorithm (GA)-based stochastic search engine, a wide variety of

external restraint terms (tethered template, pharmacophoric

restraints), and novel Genetic Programming-based post-docking

filtering [14]. In this paper we describe the platform, benchmark it

against two other state of the art docking programs for both

binding mode prediction and VS and discuss its use in high-

throughput VS (HTVS).

Design and implementation
The rDock platform is a collection of command-line programs

and scripts (Table 1 and Figure S1). The main tasks are carried out

by the programs rbcavity (cavity generation) and rbdock(docking).

rDock is written in ANSI C++ and compiles under the Linux

operating system using the GNU g++ compiler. Apart from the

C++ Standard Template Library (STL) there are minimal external

dependencies (e.g. OpenBabel bindings for running sdtether and

sdrmsd [15]). The core functionality is compiled into a single shared

library, which is linked with each of the (light-weight) command-

line applications. Scoring functions and docking protocols are

assembled at run-time from well-defined C++ object class

hierarchies, allowing for customisation at source code level by

extending the base classes. Ancillary scripts are provided for file

management and output processing and are described in the

manuals.

Preparation
The receptor is provided in Tripos MOL2 format with standard

atom typing. Amino acid ionisation states in the vicinity of the

cavity must be defined, as the rDock scoring functions depend on

formal charge assignments. Metal ions, cofactors and structural

water molecules can be included as part of the receptor. The user

should also resolve other structural issues such as alternate

locations or missing atoms. The docking volume is defined by

the rbcavity program which provides two mapping algorithms; the

accessible volume within a specific distance of a reference ligand,

and a two probe sphere method [6]. In the examples presented in

this paper, the reference ligand method is used with a distance of

6 Å.

Ligands to be docked are read in the MDL SDFile format (SDF)

and should have the correct topology and bond orders. The

program can protonate and deprotonate certain ionisable groups,

but pre-processing the ligands with a dedicated program is

preferable. Since the program only samples exocyclic dihedral

angles, a correct input geometry is required for bonds, angles and

rings. In the case of flexible rings, a variety of low-energy

conformers should be pregenerated by a suitable program. We

have used LigPrep [16] for all ligand preparation steps. The

execution of the programs is controlled by a series of parameter

(.prm) files; this allows user controlled tuning of the docking

protocol and scoring functions (described in more detail in the

Manual). The following sections describe the main characteristics

of the program and the available options.

Scoring
The rDock master scoring function (Stotal) is a weighted sum of

intermolecular (Sinter), ligand intramolecular (Sintra), site intramo-

lecular (Ssite), and external restraint terms (Srestraint). Sinter is the

main term of interest as it represents the protein-ligand (or RNA-

ligand) interaction score. Sintra reports the change in energy of the

ligand relative to the input ligand conformation. Similarly, Ssite

represents the relative energy of the flexible regions of the active

site. In the current implementation, the only flexible bonds in the

active site are terminal OH and NH3
+ bonds. Srestraint is a

collection of non-physical restraint functions that can be used to

bias the docking calculation in several useful ways (vide infra). Sinter,

Sintra, and Ssite are built from a common set of constituent

potentials, which are described in the Manual. Briefly, they mainly

consist of a van der Waals potential (vdW), an empirical term for

attractive and repulsive polar interactions, and an optional

desolvation potential that combines a weighted solvent accessible

surface area approach [17] with a rapid probabilistic approxima-

tion to the calculation of solvent accessible surface areas [18] for

computational efficiency. The vdW term can be calculated during

docking, or precalculated and stored on grid files by the ancillary

Table 1. List of main programs and utilities included in the rDock package.

Name Language Use Description

rbdock C++ Docking The main rDock docking engine

rbcavity C++ Cavity definition Cavity mapping and preparation of docking site (.as file).

rbcalcgrid C++ Preparation Calculation of vdW grid files (usually called by make_grid.csh
wrapper script)

sdtether python Preparation Prepares a ligand SD file for tethered scaffold docking,
annotating the atom indices of the tethered substructure.
Requires OpenBabel python bindings [15]

sdrmsd python Analysis Calculation of ligand Root Mean Squared Displacement (RMSD)
between reference and docked poses, taking into account ligand
topological symmetry. Requires OpenBabel python bindings [15]

sdfilter perl Analysis Utility for filtering SD files by arbitrary data field expressions.
Useful for simple post-docking filtering by score components.

sdsort perl Analysis Utility for sorting SD files by arbitrary data field. Useful for simple
post-docking filtering by score components.

sdreport perl Analysis Utility for reporting SD file data field values in tab-delimited or
CSV format.

doi:10.1371/journal.pcbi.1003571.t001
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program rbcalcgrid; this increases computational performance. Two

distinct scoring functions have been optimized using a binding

affinity validation set (described in the Manual). The default

scoring function (SF3) uses the repulsive polar term but not the

desolvation term, while the solvation scoring function (SF5) does

the opposite. The default SF3 is slightly faster and works better for

proteins while the solvation term is generally better for nucleic

acids. More importantly, the weighting terms of the scoring

function can be re-optimized with larger or more focused

validation sets to improve its performance.

Sampling
rDock uses a combination of stochastic and deterministic search

techniques to generate low energy ligand poses. The standard

docking protocol to generate a single ligand pose uses 3 stages of

Genetic Algorithm search (GA1, GA2, GA3), followed by low

temperature Monte Carlo (MC) and Simplex minimization (MIN)

stages. The GA stages are interdependent and are designed to be

used sequentially. Several scoring function parameters are varied

between the stages to promote efficient sampling of the starting

poses, whilst minimising the likelihood that the poses become

trapped early in the search. The variations are in the functional

form of the Sinter vdW potential (switched from 4–8 potential in

GA1/GA2 to 6–12 potential in GA3/MC/MIN), the tolerances

on the polar distance and angular functions (relaxed in GA1 and

progressively tightened in GA2/GA3/MC), and the weight of the

ligand dihedral potential (reduced in GA1 and progressively

increased in GA2/GA3/MC). All scoring function parameters are

at their final reported values for the final MC/MIN stages. The

GA chromosome consists of the ligand centre of mass (COM), the

ligand orientation, as represented by the Euler angles (heading,

attitude, bank) required to rotate the ligand principal axes from the

Cartesian reference axes, the ligand rotatable dihedral angles, and

the receptor rotatable dihedral angles. The initial population is

generated such that the ligand COM lies on a randomly selected

grid point within the defined docking volume, and the ligand

orientation and all dihedral angles are randomised. Mutations are

applied to a randomly selected degree of freedom and the

magnitude of the mutation is selected from rectangular distribu-

tions of defined width. A generation is considered to have passed

when the number of new individuals created is equal to the

population size. Instead of having a fixed number of generations,

the GA is allowed to continue until the population converges

(scoring improvement ,0.1 units over the last three generations).

This allows early termination of poorly performing runs for which

the initial population is not able to generate a good solution. Once

the GA converges, a low temperature Monte Carlo simulation is

used to refine the pose, followed by Simplex routine to generate a

minimised solution. A more detailed description of the sampling

protocol can be found in the Manual. In a typical docking

calculation, the whole process is repeated 10 to 100 times and the

overall lowest scoring pose is taken as the correct solution (see

below for discussion on convergence), but it is also possible to

access the minimisation stage directly or simply score a pre-docked

pose.

Biased docking
The main limitation in molecular docking is the quality of the

scoring functions. It is therefore usual to introduce empirical bias,

which can improve the quality of the results and also reduce the

search space, thus improving performance. rDock implements

several pseudo-energy scoring functions that are added to the total

scoring function under optimisation, and a restricted search

protocol.

Pharmacophoric restraints. This feature ensures that

pharmacophores (derived from known ligands or hot-spot

mapping methods) are satisfied by all generated poses. rDock

recognizes nine feature types: neutral hydrogen bond acceptor,

neutral hydrogen bond donor, hydrophobic, hydrophobic aliphat-

ic, hydrophobic aromatic, negatively charged, positively charged,

and any heavy atom. Each pharmacophore restraint is defined by

a combination of feature type and position, specified as a tolerance

sphere with coordinate (x,y,z), and radius (r). Restraints are

classified as either mandatory or optional, where the user can

specify how many optional restraints (Nopt) should be met. Ligands

that have insufficient quantities of the defined restraint feature

types are removed prior to docking. The penalty score for a single

pharmacophore restraint is proportional to the square of the

distance from the nearest ligand feature of the required type to the

surface of the tolerance sphere, and is zero when the nearest ligand

feature is within the tolerance sphere. The total pharmacophore

restraint score, Sph4, is the sum of all the mandatory restraints plus

the Nopt lowest scoring optional restraints.

Tethered template. Tethered template docking can be used

to enforce partial binding modes obtained from crystal structures

of related molecules or constituent fragments. The template is

defined by a reference bound ligand structure and a SMARTS

query string defining the substructure to be tethered. The sdtether

utility prealigns molecules with matching substructures with the

reference substructure coordinates prior to docking. Non-match-

ing molecules are rejected. Molecules that have more than one

substructure match with the query are replicated within the library

of compounds to be docked, and each replicate prealigned and

docked individually, thus ensuring that all possible substructure

alignments are examined. In this mode, the centre of mass and

principal axes of the tethered substructure, rather than the whole

molecule, define the ligand position and orientation. Dihedral

angle mutations operate exclusively on the free (untethered) end of

each ligand rotatable bond, ensuring the tethered substructure

coordinates remain unchanged. Some movement of the tethered

region is allowed up to user-defined maximum deviations from the

reference coordinates for ligand translation (typically 0.1 Å) and

ligand rotation (typically 1u). For greater sampling efficiency,

tethering in rDock is enforced absolutely during pose generation

by restricting the randomisation and mutation functions for the

tethered degrees of freedom, rather than through the use of an

external penalty function.

Other. 1) To ensure that all poses are contained wholly within

the defined docking volume, a cavity penalty function (Scavity) is

calculated over all non-hydrogen ligand atoms. If the atom is

within the docking volume this term is zero, else, it is proportional

to the square of the distance to the nearest docking volume grid

point.2) When experimental NMR distance limits (NOE or STD)

are known for a specific ligand, restraints can be used to ensure

that a minimum distance is fulfilled between an atom (or group of

atoms) of the ligand and an atom (or group of atoms) of the

receptor.

Results

Benchmarking
The performance of rDock was compared with that of Glide

(version 57111 [19]) and AutoDock Vina [20] for database

enrichment and binding mode prediction for various test sets. As

detailed in Supporting Information Text S1, all receptors, docking

cavities and ligands were prepared in the same manner and

running parameters modified to ensure exhaustive sampling by all

programs.
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Protein-ligand binding mode predictions. The CCDC-

Astex Diverse Set of 85 diverse protein-ligand complexes was

selected for comparing binding mode prediction [21]. The results,

represented by percentage of correct predictions (ligand RMSD

below 2 Å) can be seen in Table 2. rDock calculations converge

after 20–50 GA runs (Figure S2; convergence also discussed

below). The predicted binding mode is correct in approximately

80% of cases for rDock and Vina, while Glide’s performance is

close to 70%. Failures for rDock and Vina are due to scoring

errors, as a correct pose is nearly always generated (99% and 97%

of times, respectively). However, Glide fails to sample the correct

binding mode in 16% of cases. Figure S3 shows the docking

outcome for each system and program. Although no obvious trend

can be identified, it would seem that rDock and Vina have a

higher coincidence in the type of systems for which they succeed or

fail.

RNA-ligand binding mode predictions. We selected 56

RNA-ligand complexes from the original RiboDock [6] and

DOCK6 [22] sets to assess the performance of rDock with RNA as

the receptor. RNA structures are more challenging than proteins

(less closed cavities, less hydrophobic, featureless) and the ligands

themselves are larger and more flexible (7.764.3 rotatable bonds

vs. 5.163.1 for the Astex set). For this reason the success cut-off

criterion is an RMSD below 2.5 Å, relative to the crystal structure.

The scoring function SF5, which includes a solvation term, is

better for RNA than SF3, as independently assessed [23]. After

50 GA runs, the top-ranked docking solution is correct in 5463%

of the systems (Figure S4), and at least one correct pose is

generated in 98% of cases, confirming that as with proteins, errors

are attributable to scoring rather than sampling problems.

However, both SF3 and SF5 have been primarily optimized for

proteins suggesting that development of an RNA-specific scoring

function could result in improvements. Vina and Glide can work

with but have not been optimised for ligand docking to RNA. On

the same set of complexes, we obtain success rates of 2962 for

Vina and 17.8 for Glide.

Virtual screening (DUD). VS enrichment was assessed

using the DUD benchmark set [24] which consists of 39

protein-ligand complexes with crystal structure, with an average

of about 100 known active ligands per complex and 36 decoys per

active ligand. The decoys are physically similar but topologically

dissimilar to the ligands in order to avoid bias. The DUD-E

benchmark set [25] was published recently, adding more protein-

ligand complexes. For our test set, 20 of the original DUD sets

were substituted with DUD-E data with more ligands and decoys

per system. Figures S5 and S6 show the ROC curves for all

systems and the most relevant parameters are summarized in

Table S1. The results are summarised in Table 3. Using most

metrics, Glide outperforms the other programs in ,70% of the

systems, while rDock is better in ,20% of systems and Vina in the

remaining 10%. On average, rDock AUC is 11% lower than Glide

and 5% better than Vina. In terms of logAUC, on average, Glide

outperforms rDock by 30%, while rDock outperforms Vina by

8%.

Sampling exhaustiveness and computing performance
A distinctive feature of rDock is that the GA converges very

quickly. This behaviour was designed for VS, where it is important

to discard poor ligands early on. Multiple docking runs (which

includes GA optimisation followed by MC and Simplex mini-

misation) are necessary to reach the global minimum score (Smin),

but few docking runs are necessary to reach a similar score

(Figure 1). For instance, after 5 runs, approximately 80% of

ligands reach a score of 0.8*Smin, and the median value is

0.94*Smin. Convergence depends on the dimensionality of the

problem and fewer docking runs are necessary when the ligands

contain fewer rotatable bonds (Figure 1) or when the cavity has a

smaller size (Figure S7). System-specific multi-step HTVS

Table 2. Percentage of top-ranked poses with an RMSD below 2 Å.

% Correct (top 1) % Correct (all)

rDock 76631 9960.21

Glide 67.6 83.8

Vina 81.2621 9760.51

1Average and standard deviation taking 100 random sets of 100 docking poses out of a pool of 1000 solutions.
doi:10.1371/journal.pcbi.1003571.t002

Table 3. Average values of different VS performance metrics over the 39 DUD/DUD-E systems.

Program AUC1 logAUC2 EFmax3 EF 1%4 EF 20%4

rDock 0.69 0.26 98.7 11.4 2.5

(18%) (18%) (33%) (19%) (18%)

Glide 0.78 0.37 334.6 22.6 3.2

(69%) (72%) (41%) (69%) (72%)

Vina 0.66 0.24 124.3 8.9 2.2

(13%) (10%) (26%) (11%) (10%)

The values in parentheses indicate the percentage of systems for which the program provides the optimal performance on a given metric.
1Area Under the ROC Curve.
2Area Under the semilogarithmic ROC Curve.
3Maximal Enrichment Factor.
4Enrichment Factor when the top x% of the virtual collection is selected.
doi:10.1371/journal.pcbi.1003571.t003
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protocols (see section below and Manual) achieve optimal

performance with an average of 8–10 runs per ligand. Table 4

shows the average computing times per ligand on 4 DUD systems

[24]. Precalculating the van der Waals potentials on a grid saves

20% to 40% of docking computing time, depending on the system.

For exhaustive docking, rDock is approximately 5-fold faster than

Vina, but still 8-fold slower than Glide SP. HTVS protocols

achieve a further reduction of 5 to 8-fold in computing time,

bringing the performance of rDock to be very similar to Glide SP

with no negative impact on the results (Table S3). Using a

relatively modest 100-core computing facility, a VS campaign of 1

million compounds can be completed in less than 1 day and the 21

million commercially accessible compounds compiled in ZINC

database [26] could be screened in 10 to 20 days for most systems.

Considerations for real VS applications
Design of multi-step HTVS protocols. Different docking

protocols are required for different applications. For detailed

docking, where the user is interested primarily in high accuracy, a

suggested rDock protocol is to allow receptor flexibility, bypass the

pre-calculation of van der Waals potentials and perform exhaus-

tive sampling (50–100 GA runs). For HTVS applications, where

computing performance is important, the recommended rDock

protocol is to limit the search space (i.e. rigid receptor), apply the

grid-based scoring function and to use a multi-step protocol to stop

sampling of poor scorers as soon as possible. An example is for the

DUD system COMT, where the computational time can be

reduced by 7.5-fold without affecting performance by: 1) 5 GA

runs for all ligands; 2) ligands achieving a score of 220 or lower

run 10 further GAs; 3) for those ligands achieving a score of 225

or lower, continue until 50 GAs. The optimal protocol is specific

for each particular system and parameter-set, but can be identified

with a purpose-built script (see Manual).

Guided docking. Usually, VS applications exploit existing

information to optimize the cavity definition (e.g. choice of protein

conformation, displaceable water molecules) and to bias the

docking protocol with empirical restraints (e.g. pharmacophoric

points, shape similarity). This is an essential step common to all

successful docking-based VS undertakings [3,27]. For this reason,

we have compared the outcome of VS on Hsp90, a DUD system

for which we have developed and used optimal docking protocols

[7,8,28]. The cavity includes 2 interstitial water molecules and two

pharmacophoric points. As shown in Table 5 and Figures S8 and

S9, all VS performance metrics improve significantly, particularly

those related to early enrichment (logAUC, EF1%). As scoring

functions are supplemented with empirical information, perfor-

mance increases and the difference between programs reduce

(Table S2).

Availability and future directions
The program is released under the Lesser General Public

License and the source code, scripts, manuals, and test sets are

available at http://rdock.sourceforge.net/. The current version

has prototype code to sample fully the degrees of freedom and

occupancy of interstitial water molecules, as previously described

for GOLD [29], or to dock simultaneously to an ensemble of

receptor coordinates to simulate receptor flexibility in an efficient

way. These features require further validation. Future develop-

Figure 1. Relative score vs. the number of docking runs for all
the protein-ligand complexes in the CCDC-Astex set. The
boxplot indicates the median value (out of 1000 possible solutions)
and the first and last quartile, while the whiskers span the 10% to 90%
range. The whole set (black) has been sub-divided into ligands with 5 or
fewer rotatable bonds (green) and the rest (red).
doi:10.1371/journal.pcbi.1003571.g001

Table 4. Average computing times (in seconds per ligand) on 4 DUD systems.

Vina1 Glide SP1 rDock

Grid-based SF Indexed SF

VS2 Full1,3 VS2 Full1,3

ADA 86.4 4.2 4.2 27.0 5.4 33.0

COMT 77.4 3.0 3.0 22.5 5.0 31.8

PARP 54.0 1.5 3.9 16.5 5.7 29.1

Trypsin 372.0 6.0 14.1 53.1 20.1 82.5

Average 147.5 3.7 6.3 29.8 9.1 44.1

1Default program parameters were used.
2On HTVS mode, the average number of docking runs needed for these 4 systems is 10.
350 docking runs are used for default docking.
All figures were obtained on Intel Xeon X5660 CPUs at 2.80 GHz.
doi:10.1371/journal.pcbi.1003571.t004
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ments will aim at improving the scoring functions for both protein-

ligand and RNA-ligand interactions.

Supporting Information

Figure S1 Workflow summary of an rDock docking job. Shapes

in gray background are not covered with any rDock program and

must be carried out with independent software.

(TIF)

Figure S2 Binding mode prediction in the protein-ligand set

(CCDC-Astex): Percentage of top-ranked poses with RMSD below

2.0 Å as a function of the number of docking runs. The boxplot

indicates the median value (out of 100 possible solutions) and the

first and last quartile, while the whiskers span the 10% to 90%

range. The whole set (black) has been sub-divided into ligands with

5 or fewer rotatable bonds (green) and the rest (red).

(TIF)

Figure S3 Matrix representation of the docking outcome for each

system in the CCDC-Astex set for the three programs evaluated. A

black area indicates that the best-scoring pose for a particular

system-program combination has an RMSD below 2.0 Å.

(TIF)

Figure S4 Binding mode prediction in the RNA-ligand set:

Percentage of top-ranked poses with RMSD below 2.5 Å as a

function of the number of GA runs. The boxplot indicates the

median value (out of 100 possible solutions) and the first and last

quartile, while the whiskers span the 10% to 90% range.

(TIF)

Figure S5 Receiver Operating Characteristic (ROC) Curves of

all DUD systems. In the Y-axis, the true positive rate is the fraction

of true positives out of the total actual positives and, in the X-axis,

the false positive rate is the fraction of false positives out of the total

actual negatives. In gray, ROC curve in case of random results.

(TIF)

Figure S6 Semilogarithmic Receiver Operating Characteristic

(ROC) Curves of all DUD systems. In the Y-axis, the true positive

rate is the fraction of true positives out of the total actual positives

and, in the X-axis in logarithmic scale, the false positive rate is the

fraction of false positives out of the total actual negatives. In gray,

semilogarithmic ROC curve in case of random results.

(TIF)

Figure S7 Relative score vs. the number of docking runs for all

the protein-ligand complexes in the CCDC-Astex set. The boxplot

indicates the median value (out of 100 possible solutions) and the

first and last quartile, while the whiskers span the 10% to 90%

range. The whole set (black) has been sub-divided into systems

with relatively small cavities (green) and the rest (red).

(TIF)

Figure S8 ROC curve of HSP90 without pharmacophoric

restraints in normal (A) or semilogarithmic scale (B).

(TIF)

Figure S9 ROC curve of HSP90 with pharmacophoric

restraints in normal (A) or semilogarithmic scale (B). It should be

noted that using these settings, Glide only produces an output for

13 actives (out of 24) and 451 decoys (out of 864).

(TIF)

Software S1 Compressed file with the source code of the rDock

software for ligand docking to Proteins and Nucleic Acids.

(GZ)

Table S1 Summary of statistics for all DUD systems and

averages for each and all programs.

(DOCX)

Table S2 Spearman’s rank correlation coefficient (r) between

programs on the Hsp90 DUD set.

(DOCX)

Table S3 AUC for the 4 DUD systems used for calculating the

time performance.

(DOCX)

Text S1 Supporting Methods: Test set preparation, execution

and analysis.

(DOCX)

Text S2 Full Acknowledgements.

(DOCX)
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Table 5. VS performance metrics for Hsp90 using an unbiased protocol with default parameters (rDock, Glide & Vina) or an
optimized cavity definition and empirical pharmacophoric restraints (rDock-guided & Glide-guided).

Program AUC logAUC EFmax EF 1% EF 20%

rDock 0.63 0.20 3.9 0.0 1.5

(0.8) (0.7) (0.5) (1.0) (0.7)

Glide 0.77 0.28 7.4 0.0 2.1

(1.0) (1.0) (1.0) (1.0) (1.0)

Vina 0.55 0.16 1.4 0.0 0.75

(0.7) (0.6) (0.2) (1.0) (0.4)

rDock-guided 0.92 0.46 36.9 12.3 4.3

(1.2) (1.6) (5.0) (–) (2.0)

Glide-guided 0.90 0.46 17.4 6.9 4.6

(1.2) (1.6) (2.3) (–) (2.2)

Note that Vina does not support pharmacophoric restraints. The numbers in parentheses indicate performance relative to the best non-guided result (Glide).
doi:10.1371/journal.pcbi.1003571.t005
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SUPPLEMENTARY MATERIAL 

 

rDock: a fast, versatile and open source docking program for 
proteins and nucleic acids. 

 

Text S1. Supporting Methods: Test set preparation, execution and analysis. 

 
DUD and ASTEX sets: 

 

- Protein Preparation 

The receptor structure files in DUD and Astex sets were processed using Preparation Wizard 

tool from Maestro (from Schrödinger), and were then used as input for the three programs. To 

define the cavity, rDock was run using the crystallographic ligand provided as reference with the 

“reference ligand method” and the following parameter values (if not in the list, the default value 

was considered): radius=6.0, small_sphere=1.0 and max_cavities=1. The coordinates obtained 

for the center and the size of the binding site were applied for Glide and Vina to ensure the least 

dissimilar cavities between each program. 

 

- Ligand Preparation 

The structure of the ligands in DUD set was converted to smiles format and processed with 

LigPrep software (from Schrödinger) applying the following filters: maximum atoms=100, 

maximum stereoisomers=8, maximum tautomers=6 and ionizing at pH=7 with a tolerance of +- 

1. 

The results in sdf format, compatible for running rDock, were converted to mae and pdbqt 

formats for running Glide and Vina, respectively. 

In case of Astex set, the ligands had already been manually prepared, thus no need of LigPrep 

processing was needed. Hence, the process was the same as for DUD set after the ligands had 

been processed with LigPrep. 

 

- Docking 

The Molecular Docking process was defined to be the most similar as possible. The 

exhaustiveness of all programs was set higher than default to try to obtain less sources of error 

than usual (sample minimum?). 

For DUD set, rDock was run with a receptor flexibility=3, scoring function “dock.prm” and 100 

docking runs. Glide was run with expanded sampling and with the following options increased 

with respect to the default values to avoid  filtering of intermediate poses and bad scored 

ligands which facilitated analysis of the results: postdock_npose=5000, poses_per_lig=5000 

and nreport=(5000*number of ligands). Vina had all parameters as default but the following 
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ones, for the same reason as Glide: exhaustiveness=16, num_modes=100 and 

energy_range=30. 

For Astex set, all the parameters were the same as in DUD but the number of runs in rDock and 

Vina, which were set to 1000 and to 50 jobs per ligand, respectively.  

 

- Results analysis 

In case of DUD set, ROC curves were generated using ROCR package for R (ref) and several 

statistical values, such as AUC and Enrichment Factors, were calculated. 

In case of Astex set, the RMSD of each predicted binding mode with respect to the crystallized 

ligand was calculated using Open Babel toolkit (ref). Random sets of 100 ligands were selected 

from all the resulting binding modes (if more than 100 ligands were available) and the 

percentage of the top-scored binding mode with an RMSD below 2Å was calculated. 

 

RNA: 

 

The structure of the RNA-ligand complex was downloaded from the PDB and prepared using 

MOE (ref chemcomp). The cavity was defined using the crystallographic ligand in the PDB as 

reference with the “reference ligand method” from rDock and the following parameters different 

from default: radius=4.0, small_sphere=1.0 and max_cavities=1.  

The docking jobs were run with receptor flexibility=3, scoring function “dock_solv.prm” and 1000 

docking runs, for statistical purposes in analysis of results. 

Like in Astex set, the RMSD of each predicted binding mode with respect to the crystallized 

ligand was calculated and random sets of 100 ligands were selected for calculating the 

percentage of top-scored binding modes with an RMSD below 2Å. 

 

 

Pharmacophoric restraints: 

 

Based on the knowledge available on the DUD systems and on their pharmacophoric 

properties, we selected HSP90. Three structural waters were added near to ASP78, the volume 

around residues TRP147 and GLY93 was excluded and hydrogen-bonds between ASP78 and 

the ligand and between one of the structural waters added and the ligand were added as 

pharmacophoric restraints. 

rDock and Glide were run with the same parameters as in the same DUD system without any 

pharmacophoric restraint (Vina cannot use pharmacophoric restraints). 

The results were processed the same way as in DUD set. 
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Supplementary Figures 

 

 

Figure S1. Workflow summary of an rDock docking job. Shapes in gray background are not 

covered with any rDock program and must be carried out with independent software. 
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Figure S2. Binding mode prediction in the protein-ligand set (CCDC-Astex): Percentage of top-

ranked poses with RMSD below 2.0Å as a function of the number of GA runs. The boxplot 

indicates the median value (out of 100 possible solutions) and the first and last quartile, while 

the whiskers span the 10% to 90% range. The whole set (black) has been sub-divided into 

ligands with 5 or fewer rotatable bonds (green) and the rest (red). 
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Figure S3. Matrix representation of the docking outcome for each system in the CCDC-Astex 

set for the three programs evaluated. A black area indicates that the best-scoring pose for a 

particular system-program combination has an RMSD below 2.0Å. 
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Figure S4. Binding mode prediction in the protein-RNA set: Percentage of top-ranked poses 

with RMSD below 2.5Å as a function of the number of GA runs. The boxplot indicates the 

median value (out of 100 possible solutions) and the first and last quartile, while the whiskers 

span the 10% to 90% range.  

 

  

37



Figure S5. Receiver Operating Characteristic (ROC) Curves of all DUD systems. In the Y-axis, 

the true positive rate is the fraction of true positives out of the total actual positives and, in the X-

axis, the false positive rate is the fraction of false positives out of the total actual negatives. In 

gray, ROC curve in case of random results. 
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Figure S6. Semilogarithmic Receiver Operating Characteristic (ROC) Curves of all DUD 

systems. In the Y-axis, the true positive rate is the fraction of true positives out of the total actual 

positives and, in the X-axis in logarithmic scale, the false positive rate is the fraction of false 

positives out of the total actual negatives. In gray, semilogarithmic ROC curve in case of 

random results.  
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Figure S7. Relative score vs. the number of docking runs for all the protein-ligand complexes in 

the CCDC-Astex set. The boxplot indicates the median value (out of 1000 possible solutions) 

and the first and last quartile, while the whiskers span the 10% to 90% range. The whole set 

(black) has been sub-divided into systems with relatively small cavities (green) and the rest 

(red). 
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Figure S8.ROC curve of HSP90 without pharmacophoric restraints in normal (top) or 

semilogarithmic scale (bottom). 
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Figure S9.ROC curve of HSP90 withpharmacophoric restraints in normal (top) or 

semilogarithmic scale (bottom). It should be noted that using these settings, Glide only produces 

an output for 13 actives (out of 24) and 451 decoys (out of 864).  
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Table S1. Summary of statistics for all DUD systems and averages for each and all 

programs. 
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AUC: Area Under the ROC Curve. LogAUC: Area Under the semilog ROC Curve. EFmax: Maximal 

Enrichment Factor. EFX: Enrichment Factor when the top x% of the virtual collection is selected. 
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Table S2. Spearman's rank correlation coefficient (ρ)* between programs on the Hsp90 

DUD set. 

 

Program rDock rDock-guided Glide Glide-guided Vina 
rDock 1 0,37 0,46 0,22 0,33 
rDock-guided  1 0,37 0,52 0,13 

Glide   1 0,41 0,31 

Glide-guided    1 0,13 

Vina     1 

 

* The introduction of empirical information produces results very different to the default 

parameters restraints  (ρ = 0.37 for rDock; ρ = 0.41 for Glide) while the output of different 

programs becomes more similar (ρ = 0.52, comparing rDock-guided with Glide-guided). ρ is 

calculated from the rank of 464 molecules for which Glide-guided produces an output.  
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Table S3. AUC for the 4 DUD systems used for calculating the time performance. 

 

 Vina1 Glide SP1 rDock 

   Grid-based SF Indexed SF 

   VS2 Full1,3 VS2 Full1,3 

ADA 0.39 0.67 0.68 0.64 0.57 0.62 

COMT 0.51 0.69 0.67 0.62 0.65 0.64 

PARP 0.68 0.9 0.88 0.86 0.87 0.86 

Trypsin 0.74 0.49 0.63 0.62 0.66 0.76 

Average 0.58 0.69 0.72 0.69 0.69 0.72 

 

1 Default program parameters were used. 2 On HTVS mode, the average number of docking 

runs needed for these 4 systems is 10. 3 50 docking runs are used for default docking. 
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2 

There is a pressing need for new technologies that improve the efficacy and 16 efficiency of drug discovery. Structure-based methods have contributed towards 17 this goal but they focus on predicting the binding affinity of protein–ligand 18 complexes, which is notoriously difficult. We adopt an alternative approach that 19 evaluates structural, rather than thermodynamic, stability. Noting that bioactive 20 molecules present a static binding mode, we devised Dynamic Undocking (DUck), a 21 fast computational method to calculate the work necessary to reach a quasi-bound 22 state, where the ligand has just broken the most important native contact with the 23 receptor. This non-equilibrium property is surprisingly effective in virtual 24 screening because true ligands form more resilient interactions than decoys. 25 Notably, DUck is orthogonal to docking and other ‘thermodynamic’ methods. We 26 demonstrate the potential of the docking–undocking combination in a fragment 27 screening against the molecular chaperone and oncology target Hsp90, for which 28 we obtain novel chemotypes and a hit rate approaching 40%.  29  30  31  32  33  34  35  36  37  38  39  40 
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Structural stability is a fundamental property of protein–ligand complexes. Though 41 cases of dual binding modes have been reported,1,2 they are generally not dynamic, 42 or involve predominantly hydrophobic interactions,3 which lack directionality and 43 do not impose strict geometric constraints.4 By contrast, hydrogen bonds are ideal 44 to provide structural stability because they have sharp distance and angular 45 dependencies.4 Their contribution to the free energy of binding (ΔGbind) is variable 46 but can be substantial.5 Importantly, they often act as anchoring points in protein–47 ligand complexes, providing the minimal binding unit through one or a few 48 hydrogen bonds as demonstrated for fragment-sized ligands.6,7 We have 49 previously shown that certain hydrogen bonds present strong opposition to small 50 structural distortions and can act as kinetic traps because the local environment 51 hinders the transition from a direct hydrogen bond to a water-bridged 52 interaction.8 As an early unbinding event, rupture of the so-called water-shielded 53 hydrogen bonds can influence the whole dissociation process.8,9 Taken together, 54 these observations suggest that hydrogen bonds are the main determinants of 55 structural stability, and lead us to postulate that their resilience should provide 56 information about the binding potential of candidate ligands. Thus, we set out to 57 investigate whether the work required to disrupt intermolecular hydrogen bonds 58 can be used to predict ligand binding.  59  60 We will introduce DUck, a simplified computational procedure to calculate the 61 work needed to break a key native contact, reaching a quasi-bound state (WQB). 62 Then, we will show that active compounds are structurally stable and present 63 higher WQB values than inactive ones. Finally, we demonstrate the use of this 64 
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property in virtual screening (VS) applications, showing that DUck complements 65 the thermodynamic perspective offered by existing methods.  66  67  68 
Results and Discussion 69  70 Simplified simulation of the early dissociation stage 71 To assess the hypothesis, we have devised Dynamic Undocking (DUck) 72 simulations, where a key intermolecular hydrogen bond is pulled from an initial 73 distance of 2.5 Å (close contact) to 5.0 Å (broken contact). In order to focus on just 74 one specific hydrogen bond, we use model receptors comprising only the protein 75 residues that are within 6 Å of the given hydrogen bond (Figure 1A). The work 76 necessary to carry out the steering process is monitored, and we define the quasi-77 bound (QB) state as the point along the simulation where the work profile 78 presents the highest value. WQB is the work necessary to depart from the ideal 79 hydrogen bond configuration and reach the QB state (Figure 1B). Notably, this is a 80 non-equilibrium property, and there is no reason why it should correlate with any 81 measurement of binding affinity. What is more, as the unbound state is not 82 considered, WQB cannot inform about the binding free energy. Instead, this 83 magnitude solely indicates if the interaction under investigation gives rise to a 84 (local) minimum in the free energy landscape and estimates the depth of said 85 minimum (Supplementary Figure 1). 86  87 Relationship between WQB and binding affinity 88 

52



5 

As an initial proof of concept, we apply DUck to a set of 41 fragment-like ligands 89 (<300Da) of the cyclin dependent kinase 2 (CDK2) with known binding mode and 90 half maximal inhibitory concentration (IC50) values. The hinge region of all kinases 91 is a hot spot for binding, where the protein backbone offers privileged hydrogen-92 bonding opportunities.10 For CDK2, the central hydrogen-bond donor (NH of 93 Leu83) is the most conserved interaction site and was used to define the reaction 94 coordinate. WQB presents only a weak correlation with binding affinity 95 (Supplementary Figure 2), but the distribution of WQB values is clearly skewed 96 (Figure 2A and Supplementary Figure 3). Thus, 65% of weak binders (IC50 > 1 µM) 97 present WQB values below 6 kcal/mol, while all strong binders (IC50 < 1 µM) pass 98 this threshold. Ligand 3FZ1,11 is the clear exception as it presents an almost flat 99 dissociation profile (WQB = 0.12 kcal/mol). This is explained by an unsuitably long 100 (3.4 Å) interaction with the hinge region, involving a methoxy group, which is a 101 poor hydrogen bond acceptor.4 Instead, this unusual ligand forms two charge-102 reinforced hydrogen bonds with Lys33 and Asn132, from which it draws structural 103 stability (Supplementary Figure 4). This shows that some ligands can use 104 alternative or additional interaction points to attain structural stability, in which 105 case, DUck calculations (as currently implemented) may underestimate the cost of 106 breaking the native contacts.  107  108 To further examine the surprising relationship between binding affinity and WQB, 109 we use the bromodomain and extra-terminal (BET) BRD4-BD1 as additional test 110 system. The side-chain N of Asn140 is a well-known pharmacophoric point of this 111 epigenetic target,12 and defines the key intermolecular hydrogen bond. Again, we 112 observe the same trend, i.e. higher WQB for more potent ligands, but with a large 113 

53



6 

dispersion that blurs correlation (Supplementary Figures 3 and 5). Interestingly, 114 the lowest WQB values (0, 1.1 and 1.7 kcal/mol) correspond to three kinase 115 inhibitors with off-target activity for the BRD4-BD1.13 Thus, achieving potency in 116 the absence of a robust anchoring interaction is possible, but rare, which suggests 117 that it is an ineffective strategy.  118  119 DUck is very effective in virtual screening 120 We then assess whether the approach can be used in virtual ligand screening by 121 testing the ability of DUck to distinguish true CDK2 ligands from a set of carefully 122 selected decoys14 for which we had generated binding modes by docking.  The 123 distribution of WQB is strikingly different from the active set, with 61% of 124 molecules presenting values below 2 kcal/mol and 49% below 1 kcal/mol (Figure 125 2A). This indicates that, in spite of forming the key hydrogen bond, this interaction 126 is labile for most of the docking decoys, which would translate to an unstable 127 binding mode. We therefore propose that WQB can distinguish true ligands from 128 inactive molecules, as shown in the receiver operating characteristics (ROC) curves 129 (Figure 2B). To demonstrate the wider applicability of the method, we conducted 130 similar experiments with the adenosine A2A receptor (AA2R) and Trypsin, as 131 representatives of G protein-coupled receptors (GPCR) and serine proteases, 132 respectively (Figure 2B). Together with kinases (such as CDK2) these protein 133 families include a large part of the current and investigational drug targets.15 The 134 key hydrogen bonds tracked by the DUck simulations involve the side-chain 135 carbonyl of Asn253, in the case of AA2R, and the carboxylic acid of Asp189, for 136 Trypsin. As shown in Figure 2B, the results for these systems are even better than 137 for CDK2, demonstrating that DUck is surprisingly effective in virtual screening. 138 
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Importantly, the performance improves consistently as sampling increases, but 139 good enrichments can be obtained with as little as 2 DUck runs per ligand 140 (Supplementary Figure 6). 141  142 DUck is orthogonal to existing methods 143 These results position DUck as a new method for virtual screening. But, as it aims 144 to predict a property that is fundamentally different from thermodynamic stability, 145 we investigate its complementarity with molecular docking, a method with a long 146 and successful history of application in virtual screening.16,17 Using the rDock 147 software,18 we find that docking scores have no correlation with WQB, and good 148 docking scorers are nearly as likely to present a low resistance to dissociation as 149 the rest of the decoys (Figures 2C, 2D and Supplementary Figure 7). As such, 150 molecular docking and dynamic undocking can be considered orthogonal (i.e. 151 perfectly complementary) and the intersection between both techniques defines a 152 region highly enriched in true ligands. We have also performed extensive 153 calculations with other virtual screening tools (Glide docking, MMPBSA and 154 MMGBSA re-scoring). The results, summarised in Supplementary Figures 8 and 9, 155 confirm that DUck is complementary to all of them. In fact, as we obtain low WQB 156 values for many decoys with good scores by all other methods, DUck post-filtering 157 delivers several fold improvement even when applied to a consensus list by two 158 independent ‘thermodynamic’ approaches (Figures 2E, 2F and Supplementary 159 Figure 10). These results support the idea that structural stability of the binding 160 mode, just like good chemical complementarity, is a necessary – but not sufficient – 161 condition for binding. By imposing both conditions simultaneously, we can 162 multiply the effectiveness of structure-based virtual screening. At the same time, 163 
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using WQB as a post-docking filter means that only the best-scoring subset of the 164 virtual chemical collection needs to be reassessed by DUck simulations, thus 165 improving computational efficiency.  166  167 Fragment discovery with in tandem docking-undocking calculations. 168 To demonstrate the power of the docking-undocking combination, we have 169 applied the method prospectively for the identification of small molecules that 170 bind the molecular chaperone, Heat Shock Protein 90KDa (Hsp90). This oncology 171 target has been a test-bed and paradigm in fragment and structure-based drug 172 design.19 With hundreds of Hsp90-ligand complexes deposited in the Protein Data 173 Bank (PDB), discovery of novel chemotypes is very challenging. We focused on 174 fragment-like molecules, as this may be the most efficient way to discover new 175 leads and to generate scaffold-hoping ideas.20,21 A collection of 280000 fragment-176 sized molecules was docked to the ATP binding site of Hsp90. A diverse set of 139 177 molecules from the best 450 (top 0.16%) was then selected and each one was 178 subjected to 100 DUck runs to obtain fully converged WQB values (note that fewer 179 DUck runs would have given similar results (Supplementary Figure 11)). The 180 distribution of WQB values (Figure 3A, Supplementary Figure 12) shows that even 181 at the upper limit of the docking score distribution a large proportion of putative 182 ligands present low resistance to dissociation, with 32%, 50% and 80% presenting 183 WQB below 3, 4 and 6 kcal/mol, respectively. We purchased all the molecules from 184 the high stability set (WQB > 6 kcal/mol) that were available (n=21). They were 185 tested using three different ligand-observed Nuclear Magnetic Resonance (NMR) 186 experiments, in the absence or presence of a known competitor to confirm that 187 fragment hits bind at the target site.19 Eight out of the 21 molecules (38%) were 188 
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confirmed as true hits (Table 1). Crucially, for the same system and screening 189 method, the hit rate obtained with a general fragment screening library is 4.4%.22 190 Therefore, the DUck-based virtual screening increases the efficiency by nearly an 191 order of magnitude. This is similar to optimal virtual fragment screening results 192 reported for other systems.23. In order to better assess the contribution of DUck to 193 the success rate, we also purchased and collected data for 15 molecules from the 194 medium stability set (WQB between 3 and 6 kcal/mol) and 11 from the low stability 195 set (WQB < 3 kcal/mol). Only one molecule from these sets was a hit and, 196 importantly, its WQB value is very close to the upper threshold (5.6 kcal/mol). This 197 confirms that DUck false negatives (i.e. active molecules with low WQB) are rare, an 198 ideal property for a screening method. Hit rates for the three categories are 199 summarized in Figure 3B. 200  201 To assess the value of the hits as starting points, we have compared their chemical 202 structures to existing Hsp90 ligands, finding low similarity in all cases (Table 1). 203 Binding mode determination and analysis of the main interactions that define the 204 chemical scaffold offers a more precise assessment of their novelty. Crystal 205 structures for 3 of the fragment hits were determined by X-ray crystallography 206 (Figure 4 and Supplementary Figure 13). This confirmed that the docking pose 207 used as starting position for the DUck experiments was correct, particularly 208 regarding the key interaction that was being monitored (side-chain of Asp93). 209 Compound 1 is the most potent fragment hit (dissociation constant KD=77μM) and 210 has a ligand efficiency (LE) of 0.33 kcal/mol per non-hydrogen atom, similar to 211 other Hsp90 fragment hits that have been evolved into very efficient lead 212 compounds.24 Many 2-aminopyrimidines have been described as Hsp90 ligands,19 213 
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confirming the potential of the fragment hit, but the relative lack of novelty would 214 advise against using this fragment as starting point at this stage. Compound 2 is 215 less potent (KD=320μM) but equally efficient (LE=0.32) by virtue of having fewer 216 atoms. In this case, the key interaction with Asp93 is mediated by an aminothiazole 217 moiety, which is unprecedented and would constitute a good starting point to 218 develop new chemical entities. Compound 3 (KD=700μM; LE=0.25) belongs to the 219 well-known family of resorcinol inhibitors, which includes the clinical candidate 220 NVP-AUY922,19 but provides an interesting example of scaffold hopping, where the 221 oxime acts a bioisosteric replacement of the five-membered rings included as core 222 scaffold in the patents. Compounds 4, 5 and 6 also represent completely novel 223 starting points, as their scaffold is unique amongst Hsp90 inhibitors. The binding 224 mode could not be confirmed experimentally, but is likely correct because two 225 independent methods deemed the molecules active based on the predicted 226 geometry (Their predicted binding modes can be found in Supplementary Figure 227 14). 228  229 
Conclusions 230  231 In summary, we have demonstrated that the concept of structural stability can be 232 used very effectively in structure-based drug design, complementing the standard 233 focus on binding free energy. Hydrogen-bonding groups in the active site are 234 privileged structures to fix the ligand in place, particularly when they act as 235 binding hot spots and can form water-shielded hydrogen bonds.8 The work needed 236 to break such interactions (WQB) is very useful to detect true ligands even though it 237 is a non-equilibrium property that is not expected to correlate with ΔGbind. This 238 

58



11 

intriguing fact may reflect the nature of proteins, which have been designed to 239 bind their natural ligands not only with high affinity and selectivity, but also 240 forming structurally stable complexes. Thus, it will be important to test the 241 approach on other types of supramolecular assemblies. Dynamic Undocking 242 (DUck), a particular implementation of steered molecular dynamics, allows us to 243 calculate WQB in a very efficient manner. DUck can be used in combination with 244 existing ‘thermodynamic’ approaches to multiply their effectiveness. The docking-245 undocking combination has proven particularly useful for virtual fragment 246 screening, delivering novel, diverse and suitable starting points with a hit rate of 247 38%. At present, we focus on a single key hydrogen bond to estimate WQB, which 248 requires previous knowledge and has a critical impact on the outcome. Future 249 investigations should address the extension of the method to multiple sites and 250 other interaction types to improve performance and avoid reliance on extrinsic 251 decisions. DUck inherits the intrinsic limitations of structure-based methods (e.g. 252 protein flexibility, quality of the force-field) and may have some of its own (e.g. 253 long range effects, steering conditions). Further tests will reveal its true potential, 254 but considering that it is orthogonal to existing methods and computationally very 255 efficient, we expect that it will be rapidly adopted by the structure-based drug 256 design community and adapted to other biotechnological applications involving 257 non-covalent complexes. 258  259   260 
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METHODS 261  262 
Dynamic Undocking 263 Dynamic Undocking (DUck) is a particular type of Steered Molecular Dynamics 264 (SMD),25 where we force the rupture of an intermolecular hydrogen bond formed 265 between a pre-defined interaction point in the receptor and a complementary 266 atom in the ligand. Additionally, we use a model receptor that includes only the 267 minimal subset of the protein necessary to preserve the local environment around 268 the hydrogen bond that is being monitored. This transformation minimizes the 269 influence of peripheral interactions, thus simplifying the dissociation pathway and 270 facilitating convergence (Supplementary Figure 15). As an added bonus, it speeds 271 up the calculations by a factor of 5 (Supplementary Table 2). The first and essential 272 step is to identify an atom of reference in the protein, which must form a hydrogen 273 bond with all (or most) known ligands. For well-known systems, like the ones used 274 here, it can be identified from a structural superimposition of all the available 275 protein-ligand complexes. On novel binding sites, it may be identified with a 276 quantitative hot spot identification method.26. Then, the model receptor is 277 generated from a representative 3D structure of the protein by selecting all 278 residues with at least one atom within 6 Å of the atom of reference. The selection is 279 visually inspected and, if needed, additional residues that are deemed necessary to 280 preserve the local environment are included in the selection. Unselected residues 281 are eliminated and truncated side chains are acetylated or N-methylated, as 282 needed. Interstitial water molecules, if present, are preserved. The PDB codes, 283 reference interaction points and the list of protein residues and water molecules 284 for each system are listed in Supplementary Table 3. Given the model receptor 285 
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(protein chunk) and a set of ligands properly oriented (docking poses or 286 superimposed X-ray geometries), a MOE27 SVL script developed in house 287 automatically performs the following steps: 1) Calculates AM1-BCC charges for the 288 ligand.28 2) Assigns parm@Frosst29 atom types and non-bonded parameters to the 289 ligand. 3) Identifies the ligand atom that is hydrogen-bonded to the protein’s 290 reference atom (based on distance and type). 4) Writes input and execution files to 291 carry out the MD simulations with AMBER30. 5) Calls AMBER’s tLeap to generate 292 valid topology and coordinate files for each individual receptor-ligand complex. 293 For the protein, the AMBER force field 99SB is used. Each system is placed in a 294 cuboid box spanning at least 12 Å more than the furthest atom in each direction. 295 The box is then filled with TIP3 water molecules to create periodic boundary 296 conditions. When needed, Na+ or Cl- ions are added to force the neutrality of the 297 whole system. MD simulation conditions (where non-default) are as follows: 1) At 298 all stages, harmonic restraints with a force constant of 1 kcal/mol·Å2 are placed on 299 all non-hydrogen atoms of the receptor to prevent structural changes. 2) 300 Spontaneous rupture of the key hydrogen bond during non-steered simulations is 301 prevented with a gradual restraint for distances beyond 3 Å (parabolic with k=1 302 kcal/mol·Å2 between 3Å and 4Å and linear with k=10 kcal/mol·Å beyond 4 Å). 3) 303 All equilibration and simulation steps were run using a Langevin thermostat with a 304 collision frequency of 4 ps-1 and the cutoff for non-bonded interactions was set to 305 9Å. 4) Bonds involving hydrogen are constrained using SHAKE.31 In order to 306 equilibrate the system the following steps are executed: 1) Energy minimization 307 for 1000 cycles. 2) Assignment of random velocities at 100K and gradual warming 308 to 300K for 400 ps in the NVT ensemble. 3) Equilibration of the system for 1 ns in 309 the NPT ensemble (1 atm, 300K). At this stage, the first SMD simulations can be 310 
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executed. We run two SMDs from the same restart file, but at different 311 temperatures (300K and 325K) to ensure that the trajectories proceed differently. 312 The SMD lasts 500 ps, during which time the distance between the key hydrogen 313 bonds is steered from 2.5 Å to 5.0 Å (constant velocity of 5 Å/ns) with a spring 314 constant of 50 kcal/mol·Å2. We have tested slower velocities and the results are 315 essentially unchanged (Supplementary Figure 16). The spring constant had little 316 influence and on a limited test set we obtained essentially identical results in the 317 range k=10 kcal/mol·Å2 to k=1000 kcal/mol·Å2. We have also investigated the 318 importance of the specific reaction coordinate by using the closest contact 319 between CDK2 Leu83:O and the ligand (instead of Leu83:N). The WQB values 320 obtained with these different atoms of reference (located only 3 Å apart) present a 321 high correlation (r2=0.75; Supplementary Figure 17). By contrast, when the atoms 322 of reference involve completely different part of the ligand, the results are 323 uncorrelated (Supplementary Figure 18).  To generate diverse starting points for 324 SMD trajectories, we perform 1ns unbiased MD simulation and repeat the process 325 as many times as desired (e.g. 50ns unbiased MD simulations are needed to 326 execute 100 SMD trajectories). All simulations were performed with Amber 12 327 adapted for running in GPUs and executed either in-house with NVIDIA GeForce 328 TITAN X GPUs or at the Barcelona Supercomputing Center using NVIDIA Tesla 329 M2090 GPUs. The simulations took 24 minutes (unbiased MD) or 30 minutes 330 (SMD) of wallclock time per nanosecond (average values for the systems tested on 331 the TITAN GPUs). Work profiles outputted by the SMD simulations are processed 332 as explained in the main text to obtain WQB values. Various methods could be used 333 to obtain free energies from the SMD work, but they have strict convergence 334 requirements, are computationally much more expensive and the results are only 335 
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valid if the reaction coordinate is mechanistically correct.25 Instead, we simply 336 assume that WQB is an upper limit to the equivalent magnitude in free energy 337 (ΔGQB). In order to get as close as possible to ΔGQB, we run multiple SMD replicas 338 and take the overall lower WQB as the representative value. Note that we have used 339 very conservative settings, favouring sampling over computational efficiency. 340 Based on convergence analysis (Supplementary Figures 6 and 11) and other tests, 341 we propose the protocol shown in Supplementary Figure 19 for virtual screening. 342 Less than one GPU hour per ligand would be necessary to discard approximately 343 80% of candidate ligands and produce a reasonable estimate of WQB for the 344 remaining ones. By comparison, a high-throughput implementation of MM-PBSA (1 345 ns of sampling) would require at least 3 GPU hours plus 20 CPU minutes per 346 ligand.   347  348 
Hsp90 virtual screening 349 A collection of 280000 purchasable fragment-sized molecules (<250 Da), were 350 docked to the ATP binding site of Hsp90 with an optimized protocol, where the key 351 hydrogen bond with Asp93 is enforced.18 Next, we grouped the 1000 top scoring 352 molecules into 400 clusters based on chemical similarity and visually inspected the 353 top-scoring molecule within each cluster to select 139 molecules that were 354 subjected to DUck simulations. Docking score was the main selection criterion, 355 with 90 molecules originating from the top 200 and all of them within the top 450. 356 Additional criteria included high predicted aqueous solubility and chemical 357 diversity. The selected molecules were subjected to 100 DUck calculations. We 358 divided the molecules in three categories according to their resistance to 359 dissociation: weak (WQB < 3; N=44; 32%), medium (3 < WQB < 6; N=67; 48%) and 360 
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strong (WQB > 6; N=28; 20%). We tested all the molecules that we could buy from 361 the strong set. For comparison, we also purchased and tested 15 molecules of 362 medium and 11 from the low stability sets. The chemical structures of the 47 363 compounds are shown in Supplementary Figure 12.  364  365 
Screening by NMR  366 Identification of compounds which bind to the ATP site of Hsp90α was performed 367 as described previously.32,33 Briefly, a number of 1D 1H NMR experiments (STD, 368 water-LOGSY, relaxation filtered) were used to identify interactions between 369 compounds and the protein; a potent competitor (PU3) was then added in order to 370 block the ATP binding site. Compounds which bound and were then displaced 371 were identified as interacting specifically with the protein.34 Molecules active in all 372 experiments were considered bona fide hits, while those giving a positive response 373 in one or two experiments were considered unconfirmed hits because changes in 374 NMR signal are not necessarily related to binding. All NMR experiments were 375 performed on a BrukerAvIII HD 600 MHz NMR spectrometer at 298K; pulse 376 sequences included an excitation sculpting module in order to suppress bulk 377 water. Samples contained 500 μM ligand and 10 μM Hsp90α in 20mM tris pH 7.5, 378 50mM NaCl 1mM freshly prepared DTT and contained 10% D2O. 379  380 
X-Ray crystallographic studies 381 Protein was produced and crystallized as previously described.35 For the 382 successful crystals, data were collected at 100K on an in-house Bruker D8 Venture 383 TXS Generator with a Bruker Photo 100 detector and were subsequently 384 processed using SAINT & SADABS. The crystals belong to the space groups I222. 385 
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The structures were solved by molecular replacement using a previously solved 386 Hsp90α protein model (PDB code: 1UY6; PU3 ligand and solvent removed) and the 387 program AMoRe.36 Twenty cycles of rigid-body then restrained refinement were 388 carried out using the refinement program REFMAC537 followed by model building 389 and solvent addition using the molecular graphics program COOT.38 The progress 390 of the refinement was assessed using Rfree and the conventional R factor. Once 391 refinement was completed the structures were validated using various programs 392 from the CCP4i package.39 Full data collection and refinement statistics are 393 presented in Supplementary Table 4.  394  395 Methodological details concerning the creation of the datasets, molecular docking, 396 MMPBSA and MMGBSA calculations, and surface plasmon resonance experiments 397 are provided as Supplementary Information.  398  399  400  401 
  402 
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TABLES 530 
 531 
Table 1. Summary of results for the 9 Hsp90 NMR Class 1 hits. Chemical structures 532 of all compounds are shown in Supplementary Table 1. 533 
 534 

ID MW 
Docking DUck SPR 

Kd 
(mM) 

PDB 
Simb

ChEMBL
Sim.b Score (Ranka) Score (Ranka) 

1* 248.7 -25.0 (79) 9.1 (10) 77 2XDX(0.37) CHEMBL1340447 (0.44) 
2* 221.3 -25.0 (73) 8.2 (11) 320 2WI6(0.29) CHEMBL1536318 (0.54) 
3* 230.2 -26.7 (19) 11.3 (1) 700 4EFU(0.32) CHEMBL1458840 (0.51) 
4 240.3 -26.4 (22) 7.4 (16) 730 3WHA(0.29) CHEMBL1542436 (0.37) 
5 165.2 -23.8 (128) 8.1 (12) - 4EFT(0.27) CHEMBL1313412 (0.28) 
6 206.3 -23.3 (138) 9.5 (5) - 3HHU(0.42) CHEMBL2103879 (0.42) 
7 236.3 -25.4 (51) 7.8 (15) - 3B24(0.31) CHEMBL1375884 (0.36) 
8 224.7 -25.3 (58) 7.0 (22) - 2XDX(0.35) CHEMBL1383799 (0.37) 

22 237.3 -28.3 (2) 5.6 (33) - 3O0I(0.27) CHEMBL1834092(0.33) 
        535 *Xray structure solved aPosition within the list 536 of 149 molecules that were evaluated with 537 DUck. bHsp90 structure in the PDB or 538 compound with Hsp90 activity in ChEMBL (as 539 of 23/03/2016) with the closest similarity to 540 the fragment hit. Similarity (values in 541 parentheses) was calculated with Open Babel 542 using the FP2 fingerprint. 543 

 544 
  545 
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FIGURE CAPTIONS 546  547  548 
Figure 1. Calculation of WQB. a. The receptor is idealized as a model system 549 containing only the local environment around a key intermolecular hydrogen 550 bond. b. Representative work profiles obtained from dynamic undocking 551 simulations for a strong (black) and a weak (grey) ligand. The quasi-bound state is 552 defined as the point with the highest energy relative to the ideal hydrogen bond 553 geometry. 554  555  556 
Figure 2. Application of the quasi-bound approximation to ligand ranking. a. 557 Distribution of WQB values of potent CDK2 ligands (IC50 < 1μM; dark grey), weak 558 CDK2 ligands (IC50 > 1μM; light grey) and non-binding decoys (black). Points 559 indicate population values, from which the smooth lines are extrapolated.  b. ROC 560 curves for the CDK2 (black), A2AR (red) and Trypsin (green) DUD sets. Plotted 561 results correspond to 2 DUck runs per ligand. AUC values are shown in 562 Supplementary Figure 6. c. Docking score vs. WQB values for active (red) and 563 inactive (black or gray) compounds in the CDK2 retrospective virtual screening 564 dataset. The quadrant in orange highlights the area corresponding to top 25% 565 docking score and top 25% WQB values, where optimal enrichment factors (EF) are 566 achieved. d. For the same set, distribution of WQB values for the active compounds 567 (red), all decoys (black) and decoys in the top 25% docking score (gray). e. 568 Distribution of WQB values of CDK2 actives (red) and decoys (gray) ranked in the 569 top 25% by two independent docking programs (rDock and Glide). f. Distribution 570 of WQB values of CDK2 actives (red) and decoys (gray) ranked in the top 25% both 571 by MMPBSA and the rDock docking program. 572  573  574 
Figure 3. Additional analyses of the prospective application of DUck in Hsp90. a. 575 Distribution of WQB values for 139 top docking scorers (pale gray), 47 compounds 576 within this set that were purchased (dark gray), and the 9 compounds detected as 577 active. b. Pie charts showing the hit rates for the set of compounds with high WQB 578 (top), medium WQB (middle) and low WQB (bottom). The area in black corresponds 579 to bona fide hits, dark gray represents compounds that give a positive signal in 1 580 or 2 NMR experiments, pale gray corresponds to inactive compounds. Labels 581 indicate the number of compounds of each class. Chemical structures are shown in 582 Supplementary Figure 12. 583  584 
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Figure 4. Experimental (grey) and predicted (orange) binding modes of the 585 fragment hits. a. Compound 1, the RMSD of the whole molecule is 2.58 Å due to a 586 conformational change of the protein next to the p-toluene ring. The pyridine ring 587 and bonded atoms, where the key interaction occur, have a RMSD of 0.54 Å  b. 588 Compound 2 has a RMSD of 0.54 Å c. Compound 3 has a RMSD of 1.55 Å, all 589 hydrogen bond interactions are preserved. 590  591 
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SUPPLEMENTARY	METHODS	

Datasets	
When	possible,	datasets	were	geared	towards	fragment-sized	ligands	because	they	

present	 more	 scaffold	 diversity,	 make	 fewer	 peripheral	 interactions	 that	 could	

mask	the	main	interactions	and	because	Fragment-Based	Drug	Discovery	(FBDD)	

approaches	 are	 increasingly	 important	 as	hit	 identification	 strategy.1,2	 For	CDK2,	

all	ligands	with	molecular	weight	below	300	Da	and	known	binding	affinity	(IC50)	

were	extracted	from	the	PDB.3	To	increase	the	diversity	of	the	dataset,	all	ligands	

were	clustered	at	75%	similarity	using	the	MACCS	fingerprints	as	implemented	in	

MOE	(Chemical	Computing	Group	Inc.,	2015)	and	only	the	centroids	were	used	to	

define	the	active	set.	The	composition	of	the	dataset	is	described	in	Supplementary	

Table	 5.	 It	 should	be	noted	 that	 this	 is	 a	 noisy	 dataset	 because	data	 sources	 are	

very	heterogeneous	and	IC50	values	have	an	indirect	relationship	with	dissociation	

constants.4	As	such,	it	should	only	be	used	to	detect	trends.	In	order	to	assess	the	

significance	of	 the	correlation,	we	have	also	 investigated	the	correlation	between	

IC50	 and	 molecular	 weight	 (Supplementary	 Figure	 20).	 For	 retrospective	 VS	

experiments,	a	pool	of	30	decoys	per	active	fragment	was	obtained	with	the	DUD-E	

decoy	generator,5	which	puts	together	a	set	of	putatively	 inactive	molecules	with	

physicochemical	 properties	 very	 similar	 to	 active	 ones.	 For	 BRD4,	 as	 it	 was	

designed	to	study	the	correlation	between	experimental	binding	affinity	and	WQB,	

only	 the	 ligands	 with	 known	 binding	 mode	 and	 measured	 IC50	 or	 KD	 were	

considered	(relationship	with	molecular	weight	reported	in	Supplementary	Figure	

21).	The	crystal	structure	of	each	ligand-protein	complex	was	obtained	from	PDB	

and	used	as	 input	 for	 subsequent	 calculations.	The	 composition	of	 the	dataset	 is	

described	 in	 Supplementary	 Table	 6.	 In	 the	 case	 of	 AA2AR,	 as	 there	 are	 few	

structures	in	the	PDB,	the	active	fragments	were	taken	from	the	DUD-E	benchmark	

set.5	The	rest	of	the	procedure	is	the	same	as	described	for	CDK2.	For	Trypsin,	we	

found	 that	 few	 ligands	have	 a	 low	molecular	weight	 so	we	did	not	 filter	by	 size.	

Instead,	a	random	subset	of	2000	actives	and	decoys	was	selected	from	DUD-E.	In	

the	 case	 of	 Hsp90,	 all	 candidate	 molecules	 originate	 from	 a	 unified	 collection	

generated	in	house	from	the	commercial	libraries	of	five	preferred	vendors	(Specs,	

Enamine,	Life	Chemicals,	Princeton	Biomoleculars	and	Asinex).	In	this	case	we	set	

an	upper	limit	of	250	Da,	obtaining	280000	candidate	fragments.	All	ligands	were	
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prepared	 for	 docking	 using	 Schrödinger’s	 Ligprep6with	 the	 following	 options	

different	than	default:	neutralize	and	ionize	at	pH	7	with	a	threshold	of	+-	1	with	a	

maximum	of	6	tautomers		and	8	stereoisomers	generated.	

	

Molecular	Docking	with	rDock	

For	CDK2,	AA2AR	and	Trypsin,	 the	3D	structure	used	 to	define	 the	receptor	was	

obtained	 from	the	DUD-E	benchmark	set.5	MOE7	was	used	 to	generate	mol2	 files	

that	can	be	read	by	rDock,	our	docking	engine.8	For	Hsp90,	we	use	the	same	cavity	

definition	 and	 docking	 protocol	 described	 previously.8	 In	 all	 systems,	

pharmacophoric	restraints	were	used	to	ensure	that	the	key	interaction	point	was	

matched	by	 every	molecule	 in	 the	dataset,	 as	 defined	 in	 Supplementary	Table	3.	

rDock	 was	 run	 with	 the	 default	 parameters	 for	 standard	 docking.	 50	 individual	

docking	processes	were	executed	per	ligand,	thus	ensuring	that	the	lowest-energy	

binding	mode	 is	 identified.	 The	 best-scoring	 solution	 is	 accepted	 as	 the	 putative	

binding	mode.	Ligands	that	do	not	fulfill	the	pharmacophore	are	identified	by	the	

restraint	penalty	and	eliminated	 from	the	dataset	 (i.e.	not	considered	 in	 the	ROC	

curves	or	any	other	analysis).		

	

Molecular	Docking	with	Glide	

In	order	to	demonstrate	that	our	methodology	provides	an	advantage	regardless	of	

the	 docking	 program	 used,	 we	 also	 run	 the	 CDK2	 system	 with	 Glide.9	 The	

generation	of	the	cavity	with	Glide	was	performed	using	coordinates	defined	as	in	

rDock	docking	and	default	parameters.	Pharmacophoric	restraints	were	defined	to	

force	 all	 ligands	 to	make	 a	 hydrogen	 bond	with	 Leu77:N	 acting	 as	 donor.	 Glide	

docking	was	run	with	default	parameters	(Supplementary	Figures	22,	23	and	24).	

The	best	docking	pose	for	each	ligand	was	selected	and	used	as	input	for	DUck.	

	

MMGBSA	and	MMPBSA	

MMGBSA	 and	 MMPBSA	 calculations	 using	 AMBER12	 software	 were	 also	

performed	and	compared	against	the	rest	of	methods.	Each	ligand	was	simulated	

for	 5	 ns	 with	 the	 full	 size	 receptor	 of	 CDK2	 using	 the	 same	 MD	 configuration	

defined	 in	 the	 section	 above	 (Supplementary	 Figures	 24	 and	 25).	 For	 each	

simulation,	 a	 total	 of	 25	 snapshots	 separated	 by	 200	 ps	were	 used	 and	 the	 free	
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energies	were	averaged	over	 the	ensemble	of	 conformations.	All	 the	 calculations	

were	performed	with	default	parameters	with	the	exception	of	the	following:	the	

GB	model	used	is	one	of	the	developed	by	Onufriev	et	al.10	(igb=2)	and	the	atomic	

radii	are	set	up	according	to	the	topology	(radiopt=0).	

	

Surface	plasmon	resonance	

Surface	 plasmon	 resonance	 (SPR)	 experiments	 have	 been	 done	 mainly	 as	

described	 before.11,12	 All	 measurements	 were	 performed	 on	 a	 Biacore	 T200	

instrument	(Biacore	GE	Healthcare)	at	20°C	on	Series	S	NTA	chips.	25	mM	HEPES	

pH7.4,	 175	mM	NaCl,	 0.01%	P-20,	 0.025mM	EDTA	and	1%	DMSO	was	used	 as	 a	

running	buffer.	HSP90	protein	was	produced	as	described	previously.	Chip	surface	

was	generated	with	multi-His-tagged	Hsp90	protein	as	 in	reference.11	The	sensor	

surface	was	regenerated	by	0.35	M	EDTA	and	45%	DMSO	with	additional	60	sec	

injections	 of	 0.1	mg/mL	 trypsin	 and	0.5	M	 imidazole.	 	 In	 some	 experiments,	 the	

protein	 was	 further	 stabilized	 on	 NTA	 surface	 by	 covalent	 amine	 coupling	 as	

advised	by	manufacturer.		Screening	of	fragments	was	conducted	in	dose	response	

titrations	of	nine	two-fold	diluted	experimental	points	with	the	top	concentration	

of	500	µM.	Each	fragment	has	been	tested	at	least	three	times.	Data	processing	was	

performed	 using	 BIAevaluation	 2.1	 (Biacore	 GE	Healthcare	 Bio-SciencesCorp)	 or	

Scrubber2	 (BioLogic)	 software.	 Sensorgrams	 were	 double	 referenced	 prior	 to	

global	 fitting	 of	 the	 concentration	 series	 to	 a	 Steady	 State	 Affinity	 model.	

Representative	sensorgrams	are	shown	in	Supplementary	Figure	26.	
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SUPPLEMENTARY	FIGURES	

Supplementary	Figure	1	
Graphical	representation	of	 the	quasi-bound	state	 in	relation	to	the	dissociation	process.	
The	 macroscopic	 constants	 describing	 the	 behavior	 of	 a	 non-covalent	 complex	 are	
determined	 by	 the	 relative	 free	 energies	 of	 three	 states	 (bound,	 transition	 state	 and	
unbound).	 States	 in-between	 are	 theoretically	 irrelevant,	 so	molecules	1,	 2	 and	3	would	
have	 the	 same	 kinetic	 and	 thermodynamic	 constants.	 The	 Quasi-bound	 state	 is	 merely	
designed	 to	 probe	 the	 slope	 around	 the	 bound	 state,	 obtaining	 an	 approximation	 to	 the	
structural	stability	of	the	binding	mode.	We	find	that	true	ligands	are	more	likely	to	have	a	
profile	like	1,	whereas	many	decoys	have	profiles	similar	to	2	or	3.	

	

Supplementary	Figure	2	
WQB	values	vs.	experimentally	determined	activities	(expressed	as	Log(IC50)),	 for	a	set	of	
41	Fragment-like	CDK2	ligands	taken	from	the	PDB.	Ligand	3FZ1	is	shown	in	red	and	not	
included	 in	 the	 correlation.	As	 shown	below,	 this	 ligand	does	 not	 fulfill	 the	 condition	 of	
using	the	hinge	region	as	attachment	point.	
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Supplementary	Figure	3	
Distribution	of	WQB	values	as	a	 function	of	binding	affinity	(IC50),	 for	the	CDK2	(top)	and	
BRD4	set	(bottom).	Compounds	with	the	same	binding	affinity	present	a	wide	distribution	
of	WQB	values,	but	there	is	a	tendency	towards	higher	values	for	more	potent	compounds.	
Most	notably,	very	low	WQB	values	are	rare	for	potent	ligands.	
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Supplementary	Figure	4	
Binding	 mode	 of	 ligand	 in	 PDB	 structure	 3FZ1.	 This	 ligand	 is	 unusual	 because	 its	
interaction	 with	 the	 hinge	 region	 is	 labile.	 Structural	 and	 SAR	 data	 confirms	 that	 this	
interaction	is	not	important	for	potency.14	Instead,	this	ligand	forms	two	charge-reinforced	
hydrogen	 bonds	 with	 Nζ	 of	 Lys33	 and	 Oδ1	 of	 Asn132,	 from	 which	 it	 draws	 structural	
stability.	Note	that	the	IC50	reported	in	the	PDB	for	this	compound	is	wrong.	The	correct	
value	is	146	nM.14	

	

Supplementary	Figure	5	
WQB	values	vs.	experimentally	determined	activities	(expressed	as	Log(IC50)),	 for	a	set	of	
30	 BRD4	 ligands	 taken	 from	 the	 PDB.	 The	 points	 in	 red	 have	 not	 been	 included	 in	 the	
correlation.	 They	 correspond	 to	 three	 kinase	 inhibitors	 that	 bind	 to	 BRD4	 as	 an	
unintended	 secondary	 target	 and	 present	 extremely	 low	 resistance	 to	 breaking	 the	
interaction	with	Nδ2	of	Asn120	(PDB	codes	4O74,	4O77	&	4O7E).	
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Supplementary	Figure	6	
ROC	 curves	 (left)	 and	 semilog-ROC	 curves	 (right)	 of	 the	 retrospective	 virtual	 screening	
experiments	on	CDK2	(top),	AA2R	(middle)	and	Trypsin	(bottom).	The	grey	line	indicates	
the	baseline	(random	selection).	For	CDK2,	the	results	corresponding	to	2,	8	and	22	DUck	
runs	 are	 reported.	 For	 AA2R,	 the	 results	 corresponding	 to	 2,	 and	 8	 DUck	 runs	 are	
reported.	For	Trypsin,	only	2	DUck	runs	were	executed.	AUC	values	are	inset	in	the	plots.	
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Supplementary	Figure	7	
Docking	(rDock)	score	vs.	WQB	values	
for	active	(red)	and	inactive	
compounds	(black	or	gray)	in	the	
retrospective	virtual	screening	
datasets	for	CDK2	(top),	AA2AR	
(middle)and	Trypsin	(bottom).	The	
side	panels	show	the	distribution	of	
active	(red)	and	inactive	(black)	
compounds	for	each	individual	
method	(docking	to	the	left,	DUck	at	
the	bottom).	Gray	points	(central	
panel)	and	gray	line	(inferior	panel)	
represent	the	decoys	with	a	docking	
score	within	the	top	25%.	The	orange	
square	highlights	the	area	
corresponding	to	top	25%	docking	
score	and	top	25%	WQB	values,	
where	optimal	enrichment	factors	
(EF)	are	achieved.		
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Supplementary	Figure	8	
Docking	 score	 vs.	WQB	 obtained	 for	 two	 different	 programs	 on	 the	 CDK2	 test	 set.	 Each	
molecule	was	docked	with	rDock	(top)	or	Glide	(bottom)	and	the	binding	mode	generated	
by	 each	 program	 was	 used	 as	 starting	 geometry	 for	 DUck	 simulations.	 In	 both	 cases,	
docking	scores	are	orthogonal	to	WQB	and	a	high	proportion	of	good	scorers	have	very	low	
WQB	values.	The	intersection	between	methods	defines	a	subset	highly	enriched	in	active	
molecules.	Two	intersecting	levels	are	presented	per	program:top25%	docking+	top	25%	
DUck	(left);and	top25%	docking	+	top	12%	DUck	(right).	
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Supplementary	Figure	9	
MMPBSA	 and	 MMGBSA-calculated	 ΔGbind	 vs.	 WQB	 on	 the	 CDK2	 test	 set.	 The	 rDock-
generated	binding	mode	was	used	as	 starting	point	 for	molecular	dynamics	 simulations,	
which	where	 then	 processed	 to	 obtain	MMPBSA	 and	MMGBSA	binding	 free	 energies.	 In	
both	 cases,	 the	 calculated	ΔGbind	 values	 are	 orthogonal	 to	WQB	 and	 a	 high	 proportion	 of	
good	MM(PB/GB)SA	scorers	have	very	low	WQB	values.	The	intersection	between	methods	
defines	a	subset	highly	enriched	in	active	molecules.	Two	intersecting	levels	are	presented	
per	method:	top25%	MM(PB/GB)SA	+	top	25%	DUck	(left);	and	top25%	MM(PB/GB)SA	+	
top	12%	DUck	(right).		
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Supplementary	Figure	10	
Filtering	by	WQB	increases	performance	even	after	consensus	scoring	(CDK2	test	set).	The	
left	 panels	 show	 a	 scatter	 plot	 of	 rDock	 score	 vs.	 Glide	 score	 (top)	 and	 rDock	 score	 vs.	
MMPBSA-calculated	ΔGbind	 (bottom).	Molecules	 ranked	 in	 the	 top	25%	by	both	methods	
(highlighted	area)	are	then	binned	according	to	their	WQB	(right	panels,	also	shown	in	the	
main	text).	Filtering	by	WQB	would	 increase	the	enrichment	factor	 in	a	cut-off	dependent	
manner.	
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Supplementary	Figure	11	
Percentage	of	active	molecules	in	the	top	21	(out	of	47	compounds	tested)	as	a	function	of	
the	number	of	DUck	runs.	At	the	screening	stage	we	carried	out	100	DUck	simulations	per	
ligand,	obtaining	a	hit	rate	of	38%.	Retrospectively,	we	took	50	random	combinations	of	
N={2,4,6,8,10,20,50}	 DUck	 runs	 and	 calculated	 the	 hit	 rates	 that	 would	 have	 been	
obtained.	Averages	are	 represented	as	 filled	 circles	 and	 labeled	with	 their	 actual	 values.	
The	bars	span	from	the	maximum	to	the	minimum	values.		
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Supplementary	Figure	12	
Chemical	 structure	 of	 the	 tested	 compounds.	 Duck	 Class	 refers	 to	 strong,	 medium	 and	
weak	 binders	 (1,	 2	 &	 3,	 respectively).	 NMR	 Class	 1	 are	 true	 binders.	 The	 rest	 are	
considered	inactive.	The	real	numbers	correspond	to	rDock	score	(left)	and	WQB	(right).	
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Supplementary	Figure	12	(cont)	
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Supplementary	Figure	12	(cont)	
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Supplementary	Figure	13	
Crystal	structure	of	Hsp90	in	complex	with	compounds	1	(top),	2	(middle)	and	3	(bottom).	
The	2fofc	electron	density	maps	are	displayed	at	the	1.0	Sigma	level	(Carve	=	1.7).	
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Supplementary	Figure	14	
Predicted	binding	modes	for	compounds	4,	5	and	6	(from	left	to	right).		

	

	 	

96



Supplementary	Information	–	Dynamic	Undocking	and	the	Quasi-Bound	State	

-	21	-	

Supplementary	Figure	15	
Dependence	of	 the	 results	 on	 the	 size	of	 the	 receptor.	WQB	 values	of	CDK2	 ligands	were	
calculated	 using	 the	whole	 protein	 as	 receptor	 and	 plotted	 against	 the	 results	 obtained	
with	a	truncated	system	(top).	WQB	values	obtained	with	the	truncated	system	represent	a	
lower	bound	 to	 those	obtained	with	 the	 full	 system.	This	 indicates	 that	when	 the	whole	
system	 is	 included,	 WQB	 may	 not	 reflect	 the	 contribution	 of	 the	 interaction	 under	
investigation.	 Potentially,	 this	 may	 give	 rise	 to	 false	 positives.	 Noteworthy,	 the	 virtual	
screening	 results	 are	 comparable	 to	 those	 obtained	with	 the	 truncated	 system	 (bottom;	
compare	with	Supplementary	Figure	8).		

	

	

	

	 	

97



Supplementary	Information	–	Dynamic	Undocking	and	the	Quasi-Bound	State	

-	22	-	

Supplementary	Figure	16	
Dependence	of	the	results	on	the	steering	velocity.	Two	different	velocities	are	compared:	
5	Å·ns-1	(used	through	this	work)	and	1.25	Å·ns-1.	Slower	velocities	mean	more	sampling	
and,	 potentially,	 lower	 WQB	 values.	 The	 high	 correlation	 (r2=0.94)	 indicates	 that	 the	
standard	conditions	(v=5	Å·ns-1)	produce	converged	results.	
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Supplementary	Figure	17	
Dependence	of	the	results	on	the	choice	of	reaction	coordinate.	WQB	values	obtained	using	
two	different	atoms	of	 reference	 in	 the	hinge	region	of	CDK2	are	highly	correlated	(top)	
and	afford	similar	enrichment	factors	in	retrospective	virtual	screening	(bottom;	compare	
with	 Supplementary	 Figure	 8).	 The	 atoms	 used	 as	 reference	 (Leu83:N	 in	 the	 x-axis	 and	
Leu83:O	 in	 the	 y-axis)	 are	 part	 of	 the	 hinge	 and	 located	 in	 close	 proximity	 (3Å).	 Most	
ligands	form	a	hydrogen	bond	with	both	atoms	at	the	same	time.	Points	in	red	represent	
ligands	that	only	form	a	hydrogen	bond	with	Leu83:N.	
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Supplementary	Figure	18	
WQB	of	CDK2	ligands	pulling	the	amine	of	Lys33	and	comparison	with	WQB	values	obtained	
for	the	hinge	region	(in	kcal/mol).	Only	those	ligands	capable	of	forming	a	hydrogen	bond	
with	NZ	of	Lys33	have	been	considered.	It	should	be	noted	that	this	part	of	the	active	site	
presents	 large	 conformational	 diversity	 between	 structures.	 In	 consequence,	 the	 DUck	
results	may	be	less	reliable	than	for	the	hinge	region.	

PDB 
Code 

WQB 
(O Leu83) 

WQB 
(Nζ  Lys33) 

1OIQ 4.48 5.18 
3BHT 6.59 9.65 
3BHV 6.94 0.00 
3EJ1 5.77 2.06 
3FZ1 0.12 10.50 
3QTQ 6.66 5.56 
3QTW 9.76 5.91 
3TIY 3.47 0.00 

	

Supplementary	Figure	19	
Proposed	protocol	 for	DUck-based	virtual	 screening	and	comparison	with	MMPBSA.	The	
smaller	size	of	the	system	speeds	up	calculations	by	a	factor	or	5	(Supplementary	Table	2),	
also	 permitting	 shorter	 equilibration	 times.	 Each	 ligand	 undergoes	 equilibration	 and	 at	
least	 two	SMDs	(45	GPU	minutes).	Molecules	with	WQB	above	a	given	 threshold	 (e.g.	 t=6	
kcal/mol)	would	 then	 proceed	 to	 N	 cycles	 of	 unbiased	MD	 +	 SMD	 simulations	 (42	 GPU	
minutes	per	cycle).	A	similar	protocol	for	MMPBSA	would	require	at	least	2	GPU	hours	of	
equilibration	 followed	 by	 N	 cycles	 of	 1ns	 MD	 simulation	 and	 MMPBSA	 calculation	 of	
representative	snapshots	(1	GPU	hour	+	20	CPU	minutes	per	cycle).		
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Supplementary	Figure	20	
CDK2	test	set:	correlation	between	LogIC50	and	WQB	 is	not	caused	by	Molecular	Weight.	
The	correlation	between	WQB	and	MW	(r2=0.07)	is	lower	than	the	correlation	between	WQB	
and	LogIC50	 (r2=0.23)	 or	 between	LogIC50	 and	MW	 (r2=0.36).	Red	points	 (discussed	 in	
Supplementary	Figure	2)	are	excluded	from	all	correlations.	
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Supplementary	Figure	21	
BRD4	test	set:	correlation	between	LogIC50	and	WQB	 is	not	caused	by	Molecular	Weight.	
The	correlation	between	WQB	and	MW	(r2=0.17)	is	lower	than	the	correlation	between	WQB	
and	 logIC50	 (r2=0.26)	 or	 between	 LogIC50	 and	MW	 (r2=0.43).	 Red	 points	 (discussed	 in	
Supplementary	Figure	5)	are	excluded	from	all	correlations.	
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Supplementary	Figure	22	
ROC	curves	comparison	of	DUck	(in	standalone	mode)	with	unbiased	docking	with	Glide	
and	rDock	for	the	three	test	systems:	CDK2,	AA2AR	and	Trypsin.	
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Supplementary	Figure	23	
ROC	 curves	 comparison	 of	 DUck	 (in	 standalone	 mode)	 with	 pharmacophore-guided	
docking	with	Glide	and	rDock	for	the	three	test	systems:	CDK2,	AA2AR	and	Trypsin.	
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Supplementary	Figure	24	
DUck	 postfiltering	 improves	 early	 enrichment.	 Semilogarithmic	 ROC	 curves	 for	 the	
retrospective	 virtual	 screening	of	 CDK2,	 obtained	with	 the	best-performing	program	 for	
this	 test	 set	 (Glide),alone	 or	 in	 combination	 with	 three	 different	 postfiltering	 methods:	
DUck	(left);	MMPBSA	(middle)	and	rDock	(right).	Ligands	were	initially	ranked	according	
to	Glide’s	score.	Then,	moved	to	the	back	of	the	list	if	they	were	not	in	the	top	12%	of	the	
rescoring	method.	This	shows	that	the	Glide-DUck	combination	is	superior	to	Glide	alone.	
For	 this	 test	 set	 the	 effect	 is	most	 prominent	 in	 the	 top	 1%	 to	 5%	of	 the	 library.	 Glide-
MMPBSA	 combination	 is	 provided	 for	 comparison	 and	 affords	 very	 similar	 results.	 The	
Glide-rDock	combination	does	not	improve	early	enrichment.	

	

	

Supplementary	Figure	25	
ROC	curves	comparison	of	DUck	(in	standalone	mode)	with	MMPBSA	and	MMGBSA	for	
CDK2	
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Supplementary	Figure	26	
Examples	of	 typical	 sensorgrams	 (left	 column)	and	 steady	 state	plots	 (right	 column)	 for	
the	 binding	 of	 the	 fragment	 hits	 to	 Hsp90.	 Fragments	 were	 tested	 in	 a	 2-fold	 dilution	
series	 starting	 at	 500uM	 or	 250uM	 concentrations.	 Steady	 state	 values	 were	 calculated	
4seconds	before	the	injection	stopped	and	plotted	against	the	concentration.	The	KD	value	
was	calculated	by	fitting	the	data	to	a	steady	state	affinity	model		(Biacore	T200	evaluation	
software	GE	Healthcare)	
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SUPPLEMENTARY	TABLES	

Supplementary	Table	1	
Chemical	structures	and	summary	of	results	for	the	9	Hsp90	NMR	Class	1	hits.	

ID	 Structure	 MW	
Docking	 DUck	

Xray	
SPR	
Kd	
(mM)	

PDB	
Simb	

ChEMBL	
Simb	Score	 Ranka	WQB	Ranka	

1	

	

248,72	 -24,97	 79	 9,1	 10	 Yes	 77	 2XDX	
(0.37)	

CHEMBL	
1340447	
(0.44)	

2	
	

221,29	 -25,03	 73	 8,2	 11	 Yes	 320	 2WI6	
(0.29)	

CHEMBL	
1536318	
(0.54)	

3	

	

230,22	 -26,62	 19	 11,3	 1	 Yes	 700	 4EFU	
(0.32)	

CHEMBL	
1458840	
(0.51)	

4	

	

240,33	 -26,45	 22	 7,4	 16	 -	 730	 3WHA	(0.29)	

CHEMBL	
1542436	
(0.37)	

5	

	

165,20	 -23,77	 128	 8,1	 12	 -	 -	 4EFT	
(0.27)	

CHEMBL	
1313412	
(0.28)	

6	

	

206,27	 -23,26	 138	 9,5	 5	 -	 -	 3HHU	
(0.42)	

CHEMBL	
2103879	
(0.42)	

7	

	

236,30	 -25,45	 51	 7,8	 15	 -	 -	 3B24	
(0.31)	

CHEMBL	
1375884	
(0.36)	

8	

	

224,66	 -25,35	 58	 7,0	 22	 -	 -	 2XDX	
(0.35)	

CHEMBL	
1383799	
(0.37)	

22	

	

237,29	 -28,27	 2	 5,6	 33	 -	 -	 3O0I	
(0.27)	

CHEMBL	
1834092	
(0.33)	

a	Position	within	the	list	of	149	molecules	that	were	evaluated	with	DUck.	bHsp90	structure	in	the	PDB	or	
compound	with	Hsp90	activity	in	ChEMBL	(as	of	23/03/2016)	with	the	closest	similarity	to	the	fragment	hit.	
Similarity	(values	in	parentheses)	was	calculated	with	Open	Babel	using	the	FP2	fingerprint.	
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Supplementary	Table	2	
Number	 of	 atoms	 of	 the	 investigated	 systems.	 On	 average,	 using	 a	 protein	 chunk	 with	
explicit	 solvation	 produces	 a	 system	 20%	 in	 size	 relative	 to	 the	 whole	 protein.	 As	
computational	 times	 scale	 linearly	with	 the	number	of	particles,	 this	 represents	a	5-fold	
gain	in	efficiency.	

System	

Number	of	Atoms	
Full	System	 Protein	Chunk	for	DUck	

Protein	 Periodic	Boxa	 Proteinb	 Periodic	Boxa,b	
Hsp90	 3291	 30387	 527	 (16,0%)	 9415	 (31,0%)	
Cdk2	 4578	 46803	 345	 (7,5%)	 9110	 (19,5%)	
AA2AR	 4603	 73039	 525	 (11,4%)	 8815	 (12,1%)	
Trypsin	 3231	 26721	 335	 (10,4%)	 9696	 (36,3%)	
Average	 3926	 44238	 433	 (11,0%)	 9259	 (20,9%)	

a	Protein	solvated	with	TIP3	water	molecules	using	Amber’s	tleap	program.	In	all	
cases,	the	periodic	system	is	a	truncated	octahedral	box,	the	distance	parameter	is	
12.0	and	the	closeness	parameter	is	0.65.b	Values	in	parentheses	are	percentage	of	
atoms	relative	to	the	full	system.	

Supplementary	Table	3	
Detail	of	the	receptor	definition	used	in	DUck	simulations.	Water	and	residue	numbers	
were	taken	from	the	corresponding	PDB	file.	

System	 Reference	Atom	
PDB	Code	
(Chain)	 Protein	residues	included	as	receptor	 Water	

Molecules	

CDK2 LEU 83 NH 1CKP (A) 

ILE10 VAL18 LYS20 ALA21 VAL29 VAL30 
ALA31 LEU32 VAL64 PHE80 GLU81 PHE82 

LEU83 HIS84 GLN85 ASP86 LEU133 LEU134 
ILE135 ASN136 ALA144 

- 

AA2AR ASN 253 ND2 3EML (A) 

LEU167 PHE168 GLU169 VAL172 PRO173 
MET174 MET177 VAL178 ASN181 PHE182 
TRP246 LEU247 PRO248 LEU249 HIS250 
ILE251 ILE252 ASN253 CYS254 PHE255 

THR256 PHE257 HIS264 ALA265 PRO266 
LEU267 MET270 TYR271 LEU272 ALA273 

ILE274 

- 

Trypsin ASP189 OD1 2AYW (A) 

HIS57 LEU99 ASP102 ASP189 SER190 CYS191 
GLN192 GLY193 ASP194 SER195 VAL213 
SER214 TRP215 GLY216 SER217 GLY219 

CYS220 ALA221A GLN221 LYS224 PRO225 
GLY226 VAL227 TYR228 THR229 

1017 1096 
1098 1101 

Hsp90 ASP93 OD2 2YED (A) 

GLU47 LEU48 ILE49 SER50 ASN51 SER52 
SER53 ASP54 ALA55 LEU56 ASP57 LYS58 

ILE78 ILE91 VAL92 ASP93 THR94 GLY95 ILE96 
GLY97 MET98 GLY137 PHE138 VAL150 ILE151 

THR152 GLY183 THR184 LYS185 VAL186 

2043 2045 
2049 2105 

2107 

BRD4 ASN140 ND2 3U5L (A) 

TRP81 PRO82 PHE83 GLN84 GLN85 PRO86 
VAL87 ASP88 ALA89 LYS91 LEU92 ASN93 

LEU94 TYR97 ILE101 PRO104 MET105 
THR131 ASN135 CYS136 TYR137 TYR139 
ASN140 ASP144 ASP145 ILE146 MET149 

- 
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Supplementary	Table	4	
Data	collection	and	refinement	statistics	for	Hsp90	in	complex	with	Compounds	1,	2	and	
3.Rfree	is	the	R	factor	calculated	using	5%	of	the	reflection	data	chosen	randomly	and	
omitted	from	the	refinement	process,	whereas	Rcryst	is	calculated	with	the	remaining	data	
used	in	the	refinement.	Rms	bond	lengths	and	angles	are	the	deviations	from	ideal	values;	
the	rms	deviation	in	B	factors	is	calculated	between	covalently	bonded	atoms.		

Compound	 1	 2	 3	

Data	collection	statistics	
Resolution	(Ǻ)	 2.20	 2.00	 2.10	
Space	group	 I222	 I222	 I222	
Cell	dimensions	(Ǻ)	
a	=	
b	=	
c	=		

66.87	
90.29	
98.33	

64.96	
88.41	
99.06	

68.98	
88.18	
96.90	

No.	molecules/asymmetric	unit	 1	 1	 1	
Solvent	content	(%)	 57.25	 54.73	 57.41	
Measured	reflections	 66152	 66886	 62479	
Unique	reflections	 15401	 19011	 17526	
Completeness:	Overall	/	in	hrba	(%)	 99.5	/	98.5	 96.7	/	90.9b	 99.4	/	99.9	
Mean	I/σI:	Overall	/	in	hrb	 11.2	/	2.8	 11.1	/	1.3	 8.33	/	0.95	
Rmerge:	Overall	/	in	hrb	(%)	 0.083	/	0.315	 0.048	/	0.412	 0.074	/	0.555	

Refinement	statistics	

Rfree	(%)	 24.0	 30.8b	 27.6	
Rcryst	(%)	 19.1	 22.1	 22.4	
Rms	Deviations:	
Bonds	(Ǻ)	
Angles	(o)	
B	Factor	(Ǻ2)	

0.018	
1.920	
4.679	

	
0.019	
1.958	
5.536	

	
0.019	
2.046	
6.415	

PDB	Code	 5FNC	 5FND	 5FNF	
ahrb:	highest	resolution	bin.	bDiffraction	data	for	this	structure	was	collected	from	a	crystal	that	did	
not	cryo-freeze	correctly	therefore	the	data	in	some	of	the	resolution	bins	was	of	a	lesser	quality	
than	the	equivalent	data	collected	from	the	other	two	crystals.	This	is	likely	to	have	impacted	the	
refinement	statistics	for	this	structure.	
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Supplementary	Table	5	
List	 of	 ligands	 in	 the	 CDK2	 test	 set.	 Ligands	 highlighted	 in	 red	 are	 not	 included	 in	 the	
correlation	plotted	in	Supplementary	Figure	2	and	Supplementary	Figure	25.	

PDB No.Atoms MW IC50 (uM) Log IC50 WQB (kcal/mol) 
1E1V 21 247.303 12.00 1.08 5.53 
1E1X 22 251.292 1.30 0.11 3.19 
1JSV 23 265.293 2.00 0.30 6.93 
1JVP 19 233.274 1.60 0.20 5.59 
1OIQ 23 271.325 2.90 0.46 4.98 
1PF8 21 242.26 0.03 -1.51 6.88 
1PXJ 16 206.267 13.00 1.11 1.76 
1PXK 19 249.293 2.20 0.34 4.84 
1PXM 23 298.365 0.06 -1.22 7.32 
1VYW 24 291.355 0.04 -1.43 12.13 
1VYZ 19 227.268 0.29 -0.54 12.19 
1W0X 25 298.351 5.00 0.70 3.97 
1WCC 10 129.55 350.00 2.54 3.33 
2BTR 19 261.344 0.10 -1.02 6.50 
2BTS 24 300.417 0.02 -1.70 8.94 
2C4G 22 270.294 1.15 0.06 13.18 
2C5O 17 207.275 6.50 0.81 3.12 
2CLX 21 218.221 3.50 0.54 6.94 
2EXM 17 203.249 78.00 1.89 7.84 
2R3H 19 239.282 20.00 1.30 4.18 
2VTA 10 118.139 185.00 2.27 6.05 
2VTH 18 223.249 120.00 2.08 1.97 
2VTJ 22 286.739 1.90 0.28 1.68 
2VTL 16 187.203 97.00 1.99 7.89 
2VTM 11 144.137 1000.00 3.00 1.68 
2VTN 22 262.246 0.85 -0.07 9.11 
2VTR 16 234.67 1.50 0.18 5.34 
3BHT 20 241.255 0.01 -1.96 6.28 
3BHV 26 293.291 0.08 -1.10 7.30 
3EJ1 20 252.281 0.12 -0.92 6.41 
3FZ1 24 278.352 0.15 -0.84 0.12 
3PXY 22 233.233 5.90 0.77 3.66 
3QQK 21 259.328 15.00 1.18 7.87 
3QTQ 21 262.332 3.10 0.49 6.67 
3QTR 24 295.361 0.93 -0.03 10.90 
3QTW 24 296.349 0.65 -0.19 11.51 
3R8Z 21 262.332 49.00 1.69 6.57 
3RZB 20 236.294 100.00 2.00 9.31 
3TIY 20 220.185 17.00 1.23 3.38 
3TIZ 23 265.314 150.00 2.18 2.23 
4EZ3 25 296.305 45.00 1.65 2.33 
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Supplementary	Table	6	
List	 of	 ligands	 in	 the	 BRD4	 test	 set.	 Ligands	 highlighted	 in	 red	 are	 not	 included	 in	 the	
correlation	plotted	in	Supplementary	Figure	5	and	Supplementary	Figure	26.	

	

PDB No.Atoms MW IC50 or Kd (nM) Log IC50 WQB (kcal/mol) 
3MXF 31 458.00 49.00 -1.31 6.63 
3U5J 22 308.77 2460.00 0.39 7.00 
3U5L 23 323.78 640.00 -0.19 9.12 
4A9L 22 325.38 30000.00 1.48 4.78 
4C66 23 343.85 79400.00 1.90 3.92 
4CFK 23 307.35 1830.00 0.26 3.13 
4CFL 23 306.36 1330.00 0.12 3.63 
4E96 24 347.39 136.00 -0.87 4.51 
4HBV 13 241.09 23000.00 1.36 2.51 
4HBW 18 269.32 4800.00 0.68 5.98 
4HBX 20 295.36 1900.00 0.28 5.53 
4HBY 22 317.36 4400.00 0.64 5.42 
4HXR 21 338.41 4100.00 0.61 6.54 
4HXS 23 346.42 4100.00 0.61 4.90 
4J0R 22 295.34 386.00 -0.41 7.70 
4J0S 22 295.34 382.00 -0.42 7.10 
4LR6 13 174.20 33000.00 1.52 3.85 
4LZS 15 208.26 16000.00 1.20 2.84 
4MEN 20 267.33 125000.00 2.10 3.84 
4MEO 22 292.34 250000.00 2.40 5.73 
4MEQ 17 225.25 250000.00 2.40 4.62 
4O72 30 413.49 1000.00 0.00 9.00 
4O74 38 521.66 25.00 -1.60 1.67 
4O77 25 331.35 2500.00 0.40 1.10 
4O78 30 406.44 4600.00 0.66 4.07 
4O7A 23 349.17 19000.00 1.28 3.72 
4O7E 24 313.36 5700.00 0.76 0.00 
4PCE 19 253.34 7000.00 0.85 4.30 
4PCI 19 252.31 7500.00 0.88 4.84 
4UYD 15 205.22 79400.00 1.90 4.03 
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Abstract 12 

 13 

Novel methods for drug discovery are constantly under development and independent exercises to test and 14 

validate them for different goals are extremely useful. The Drug Discovery Data Resource (D3R) Grand 15 

Challenge 2015 offers an excellent opportunity as an external assessment and validation experiment for 16 

Computer-Aided Drug Discovery methods. The challenge comprises two protein targets and prediction tests: 17 

binding mode and ligand ranking. We have faced both of them with the same strategy: pharmacophore-guided 18 

docking followed by dynamic undocking (a new method tested experimentally here) and, where possible, 19 

critical assessment of the results based on pre-existing information. In spite of using methods that are 20 

qualitative in nature, our results for binding mode and ligand ranking were amongst the best on Hsp90. 21 

Results for MAP4K4 were less positive and we track the different performance across systems to the level of 22 

previous knowledge about accessible conformational states. We conclude that docking is quite effective if 23 

supplemented by dynamic undocking and empirical information (e.g. binding hot spots, productive protein 24 

conformations). This setup is well suited for virtual screening, a frequent application that was not explicitly 25 

tested in this edition of the D3R Grand Challenge 2015. Protein flexibility remains as the main cause for hard 26 

failures. 27 

 28 
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Introduction 29 

 30 

Computer-Aided Drug Discovery (CADD) methods are constantly under development anda wide spectrum of 31 

options is available to the scientific community to address each specific situation at every stage of the drug 32 

discovery process[1-3]. 33 

 34 

Independent validation experiments are extremely useful to test the different methods, try them out under 35 

different circumstances and validate them for a specific goal. For instance, there have been experiments to 36 

help the development of protein structure modeling software [4],the prediction of protein-protein interactions 37 

[5]or certain physico-chemical properties of small molecules [6]. 38 

In this direction, the D3R Grand Challenge2015 provides an independent exercise to assess and validate 39 

CADDtools related with protein-ligand interactions. Two proteins (Hsp90 and MAP4K4) with datasets 40 

comprising different ligands with measured affinities and crystal structures are provided as blind sets. 41 

Different measures for each of the datasets were used to evaluate the performance of different methods in two 42 

situations that are common in drug discovery projects: ligand ranking and binding mode prediction. 43 

 44 

Docking, scoring and free energy methods have been widely applied in structure-based drug discovery [7–12] 45 

as they provide an excellent assistance particularly in early stages of the development of new drugs. Docking 46 

is a very common method that can be used both for predicting the binding mode of a protein-ligand complex 47 

and for virtually assaying thousands to millions of drug-like molecules in a relatively short amount of time, 48 

speeding up the finding of promising candidates and dramatically decreasing the cost in comparison with the 49 

experimental alternative.[13] However, the scoring functions employed in docking have been trained to 50 

reproduce specific data sets and are qualitative in nature. As such they are not expected to correlate with 51 

binding free energies.[14] Further limitations include receptor flexibility or the presence of water molecules 52 

that can be wither trapped or displaced by the ligand. 53 

 54 

In our particular approach, docking is a central component tackling the D3R Grand Challenge 2015, but we 55 

aim to overcome some of its limitations with complementary tools and, whenever possible, guiding the 56 

calculations with previous knowledge about the systems. Specifically, we have used rDock software [15] as 57 

the docking engine, using pharmacophoric restraints to ensure that the predicted ligand poses fulfil certain key 58 
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interaction points.[16–18] In the case of Hsp90, they correspond to a hydrogen bond with the carboxylate of 59 

Asp93 and, in case of MAP4K4, a hydrogen bond with the nitrogen atom of Cys108 in the hinge region (a 60 

short linear sequence that acts as a hinge between the N-terminal and C-terminal domains in kinases).These 61 

interaction points can be identified merely by superimposing all the available crystal structures of protein-62 

ligand complexes for each system in the PDB and obtaining a pharmacophore definition as detailed in the 63 

Methods, which can be supplemented to rDock in order to increase its efficiency as shown in previous studies 64 

[15]. Hsp90 presents at least one water molecule that can be displaced by certain ligand classes. By excluding 65 

this water molecule, we make the receptor definition valid for all chemotypes[19]. Then, to address the 66 

protein flexibility, we took a knowledge-based approach. We investigated the effect of protein flexibility on 67 

docking performance using Hsp90 as a test set, so we are familiar with the different conformations the protein 68 

can adopt upon ligand binding. We selected the We selected the most common conformation amongst all 69 

known Hsp90 protein-ligand complexes (namely, closed lid) for running docking and revised the quality of 70 

the predictions knowing that certain chemotypes can induce a conformational change of the lid to the open or 71 

helical states.[20] In contrast, MAP4K4 is a much less well characterized proteinand we took a best guess 72 

based on our previous knowledge about other kinases. As we will discuss below, the different degree of 73 

previous knowledge for each system has had a major effect on the outcome and highlights the importance of 74 

the human factor, which remains essential even as the computational tools improve. 75 

Finally, we have introduced the use of Dynamic Undocking (DUck), a new tool used to assess the structural 76 

stability of protein-ligand complexes.[21] Here we have experimentally adopted a consensus approach, where 77 

the docking poses are re-evaluated and re-ranked based on their resistance to break the key hydrogen bonding 78 

interaction. This approach allowed us to detect not only false positives but also false negatives from docking 79 

results. DUck has been shown to be orthogonal to docking, as it evaluates structural stability as opposed to 80 

binding affinity.[21] For some ligands, re-scoring by DUck has allowed us to identify good binding poses 81 

which are apriori discarded due to bad docking scores. In other cases, docking and DUck selected the same 82 

pose, increasing our confidence on predicted binding modes that would be deemed doubtful if they had been 83 

backed up only by docking. 84 

 85 

In the next sections, we will discuss in detail the methodology and the results obtained in the D3R Grand 86 

Challenge, drawing some conclusions to explain the failures and successes, as well as some recommendations 87 

for future editions of this challenge.  88 
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Methods 89 

 90 

Selection of Cavity 91 

The D3R Grand Challenge 2015 has two differentiated objectives: predict the crystallographic poses and the 92 

affinities or rankings for a series of ligands. Both of these objectives rely on a good definition of the system 93 

and a reliable characterization of the ligand-receptor interaction is crucial. For Hsp90, 4 receptor structures 94 

from the PDB were proposed by the organizers (2JJC, 2XDX, 4YKR and 4YKY). All of them were in the so-95 

called closed conformation of the lid with the exception of 2XDX, which had the lid in open conformation. 96 

As most of the known ligand-Hsp90 complexes have the lid in closed conformation, 2XDX was discarded. 97 

2JJC was also discarded because, unlike the ligands in the test set, it is a very small and may be unable to 98 

modulate the cavity for better docking performance.[22, 23] Structures 4YKY and 4YKR are very similar in 99 

all respects (both bind a ligand of the resorcinol family) and were considered equivalent. The former was 100 

selected as reference structure. In a previous study [15] we demonstrated the improvement in virtual screening 101 

applications when guiding the docking process by adding previous knowledge, with a specific example for 102 

Hsp90. Additionally, it is known that three interfacial water molecules have an important role mediating the 103 

protein-ligand contacts. For this reason, they have been included in all docking runs as structural waters in the 104 

binding site. Some ligand types (e.g. adenine) interact with a fourth interfacial water molecule, but it is 105 

displaced by others ligands (e.g. resorcinol) and cannot be kept as part of the receptor.[24] Hence, the 106 

protocol used in all the docking calculations for Hsp90 includes a pharmacophore definition of two hydrogen 107 

bonds with Asp93:OD2 and one of the water molecules (included in all the runs as non displaceable), as 108 

previously defined in [15]. For undocking, the water molecule is added explicitly to the initial structure. In 109 

case of MAP4K4, 2 receptor structures from the PDB were supplied by the organizers (4OBO and 4U44). The 110 

main difference between the conformations of the two crystals is a loop folding towards the hinge region in 111 

4OBO, thus decreasing the size and the solvent exposure of the binding site. Due to those restrictions we 112 

decided to use 4U44 as reference for all MAP4K4 applications, which had a bigger and more accessible 113 

binding site. In order to guide docking, we performed a pharmacophore search(more details in the next 114 

section)using all crystal structures of MAP4K4-ligand complexes in the PDB. We then supplied all docking 115 

calculations with a pharmacophore defined by a hydrogen bond with Cys108:N, located in the hinge region. 116 

 117 

Pharmacophore Search 118 
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To get a reliable pharmacophore definition for the MAP4K4 system, a set of known protein-ligand 3D 119 

structures was necessary. We selected all MAP4K4 protein-ligand complexes from the PDB (4OBO, 4OBP, 120 

4OBQ, 4RVT, 4U40, 4U41, 4U42, 4U43, 4U44, 4U45, 4ZK5 and 5DI1) and aligned them to the reference 121 

4U44.The “Pharmacophore Search” tool of MOE was run and a hydrogen bond with Cys108:N in the hinge 122 

region was selected as pharmacophore. It was fulfilled by all 12 ligands in the PDB subset. Moreover, it was 123 

consistent with other protein-ligand interactions in the kinases family.[25, 26] 124 

 125 

Molecular Docking 126 

For all molecular docking simulations we used rDock[10-12], a fast and reliable docking program that we 127 

released as open source several years ago. To run rDock, only a correctly prepared 3D structure of the 128 

receptor and a definition of the binding site are needed. In this work, we defined the cavity using the 129 

crystallized ligand found in both PDB structures for Hsp90 and MAP4K4, 4YKY and 4U44 respectively. 130 

Some rDock rbcavity parameters were decreased with respect to the default values in order to optimize the 131 

binding site definition: radius (changed from 10.0 to 6.0), which defines the region around the reference 132 

ligand that will be used to define the docking binding site and max_cavities (from 99 to 1), as we only want to 133 

run docking in one cavity. The pharmacophoric restraints were defined as mandatory and all the ligands 134 

unable to fulfill the definition were discarded. For the docking protocol, no modifications were made to the 135 

standard as previously published [15]: 50 individual docking runs per ligand, which is considered exhaustive 136 

sampling, in order to ensure that the lowest-energy binding mode is found. 137 

 138 

Receptor Preparation 139 

The 3D structure of the receptor has to be provided to rDock with standard Tripos MOL2 format and atom 140 

types [28]. However, as rDock relies on the user-supplied structure, we need to provide it with correct 141 

protonation states and charges, as well as correct orientations of flexible side chains (rDock only considers as 142 

flexible atoms of the receptor the hydrogen atoms of terminal OH and NH3+groups within 3Å of the binding 143 

site cavity).The “Structure Preparation” tool from MOE [29] was used to protonate at pH 7.0 and correct all 144 

the issues found for Hsp90 and MAP4K4 receptors, such as chain breaks, missing loops or disulfide bonds, 145 

incorrect residue labelling or alternate conformations. The prepared structures were then saved in mol2 format 146 

and used as input for rDock. 147 

 148 
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Ligand Structure 149 

As all ligands provided by the organization were in 2D format, Ligprep from Schrödinger [30] was used to 150 

calculate the 3D structure with correct topology, bond orders and geometry of bonds, angles, dihedrals and 151 

rings. The ionisable groups were protonated at pH=7 with a tolerance of +/- 1.All ligands were saved in MOL 152 

SDF format and used as input for docking. 153 

 154 

Dynamic Undocking 155 

We used Dynamic Undocking, or DUck, as a complementary tool to molecular docking in order to improve 156 

the overall performance of docking-based virtual screening.[21]DUck is a methodology developed in our 157 

group based on Steered Molecular Dynamics (SMD). The interaction of the ligand and the receptor with the 158 

key interaction point (specified when defining the cavity and protocols for docking) is monitored with SMD. 159 

In particular, DUck simulations consist on unbiased molecular dynamics (MD) simulations of the complex 160 

and repeated SMD simulations launched at 1 ns intervals of the MD to simulate the rupture of the ligand-161 

receptor interaction and measure the force needed to achieve a state where the interaction has just been broken 162 

or, as we named it, a Quasi-Bound state. The work profiles obtained from the SMD simulations are processed 163 

to obtain the work to achieve the Quasi-Bound state (WQB), which will be used to score and rank the ligands. 164 

Moreover, in order to increase throughput and reduce the influence of peripheral interactions and focus on the 165 

desired interaction, we use a model receptor that includes only a small part of the protein of interest. This 166 

portion is created around the defined key interaction point and preserves its local environment, simplifying 167 

also the dissociation pathway and avoiding artifactual results (more details about DUck can be found in 168 

reference [21] and http://www.ub.edu/bl/undocking/).For Hsp90 and MAP4K4, the following protocol was 169 

set: protein models were created containing the residues with any atom within6Å around the key interaction 170 

points (as detailed in Selection of the Cavity section) and manually refined to include other important residues 171 

for the binding site environment(Figure S1; Table S2). The best-scored docking poses for each ligand were 172 

subjected to an in-house script that automatically parameterized each ligand and prepared the necessary files 173 

for running the MD and SMD simulations of DUck. Each protein-ligand complex system was placed in a 174 

cuboid box with a minimum distance between each atom and the edge of the box of 12Å in every dimension 175 

and solvated with TIP3P water molecules and Na+ or Cl- ions were added to the solvation box depending on 176 

the charge of each of the protein-ligand complexes in order to ensure the electroneutrality of the simulated 177 

systems..Due to the artificiality of the protein models, MD simulations were run with harmonic restraints (1 178 
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kcal/mol·Å
2
) in all heavy atoms of the receptor to prevent big conformational changes. In order to preserve 179 

key hydrogen bond interaction during the equilibration part of the simulations, distances beyond 3Å are 180 

penalized(parabolic restraint with k=1 kcal/mol·Å
2
 between 3Å and 4Å; linear restraint with k=10 kcal/mol·Å 181 

beyond 4Å). All unbiased MD steps were run using a Langevin thermostat with the cutoff for non-bonded 182 

interactions set to 9Å and the collision frequency to 4 ps
-1

.The equilibration consisted in 1000 cycles of 183 

minimization, gradual warming from 100K to 300K for 400 ps in the NVT ensemble and equilibration of the 184 

system for 1 ns in the NPT ensemble. At intervals of 1 ns (starting right after the equilibration), two SMD 185 

runs are executed from the same restart file (at 300K and 325K, as described in reference [21]) for 500 ps. 186 

During this time, the distance of the key hydrogen bond is steered from 2.5 Å to 5.0 Å with a spring constant 187 

of 50 kcal/mol·Å
2
. More unbiased MD steps (1 ns each) were run to create more starting points for SMD runs 188 

to repeat the process as much as desired. All simulations were run with AMBER 14 [31] using in-house 189 

NVIDIA GeForce TITAN X GPUs or at the Barcelona Supercomputing Center using NVIDIA Tesla M2090 190 

GPUs. AMBER force field 99SB was used for the protein and parm@Frosst[32] for the ligands.  191 

 192 

Binding Mode Prediction 193 

For all of the ligands where a binding mode was to be predicted, the protocol was the following: 1- Run 194 

docking as described in the “Molecular Docking” section above. 2- From the docking results, select a set of 195 

poses with a RMSD between them higher than 1 Å using the sdrmsd script from rDock package. 3- Run 196 

DUck to calculate the WQB for all the sets of selected poses per ligand. 4- Select the pose with the highest 197 

WQB as the correct binding mode and 5- visually inspect the results to check the selected poses fulfilled the 198 

defined interaction and the receptor conformation (more details in the following sections). 199 

 200 

Ligand Ranking 201 

A few differences from the protocol for binding mode prediction were introduced in case of ligand ranking: 1- 202 

Run docking as described in the “Molecular Docking” section above. 2- From the docking results, select the 203 

top scored pose for each ligand. 3- Run DUck to calculate the WQB for the selected poses.4-For each of the 204 

ligands in the sets, the similarity to all known PDB ligands with measured affinity for the corresponding 205 

receptor(Hsp90 or MAP4K4)was calculated and taken into account to check the rankings and possible 206 

docking errors.5- Docking score and WQB from DUck were normalized for each of the sets. All ligands were 207 

ranked according to the sum of the two corresponding normalized scores. In the cases where docking was not 208 
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able to find a good binding mode (i.e. the key interaction was not fulfilled), the similarity of each ligand with 209 

respect to other ligands in the challenge set and other ligands in PDB was used to assign a corrected ranking. 210 

Finally, a final step of visual analysis was carried on to check all ligands and re-rank some of them taking into 211 

account our previous experience. 212 

 213 

  214 
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Results & Discussion 215 

 216 

Following our primary hypothesis, we designed a docking protocol that would reinforce the importance of the 217 

most important binding hot spot. This was done through the introduction of pharmacophoric restraints that 218 

forced the presence of hydrogen bonding groups at specific locations (Figure 1). The protein conformation 219 

was chosen to be as general as possible, thus for MAP4K4 we selected 4U44 as it has a bigger cavity than 220 

other structures available. For Hsp90, the biggest cavities present a ligand-induced hydrophobic sub-pocket 221 

(the PU3 cavity), but the associated protein conformation (helical) is energetically penalized and tends to 222 

downgrade the docking results[19]. For this reason, we chose a non-helical conformation (4YKY) taking care 223 

that the binding site was not blocked by any side-chain. 224 

 225 

 226 

Binding Mode Prediction 227 

We ran rDock to generate 50 poses per ligand. Poses with restraint penalties higher than 1 kJ/mol (indicating 228 

that the pharmacophore is not fulfilled) were discarded. After that, we selected a diverse set of the remaining 229 

poses, sorted by docking score to be re-evaluated by Dynamic Undocking (DUck). On average, 10 poses per 230 

ligand were selected for next step. DUck measures the work needed to break a given hydrogen bond (WQB). 231 

We have found that true ligands in their correct binding mode, form hydrogen bonds that are much harder to 232 

break than decoys [21]. Here we employ this method to compare various binding modes of the same ligand. 233 

In the majority of cases, the binding pose with the best docking score also presented the highest WQB value 234 

and was proposed as the correct solution. But often DUck provides a much more clear distinction between 235 

poses, removing uncertainty from the decision. This is illustrated with the Hsp90 ligand 40, which presented 236 

two alternative binding modes (Figure 2). In the first binding mode, the ligand interacts with Asp93 through 237 

the resorcinol, whereas the cyclic urea plays this role in the second binding mode. Though their docking 238 

scores are relatively similar (-23.4 and -18.9 kJ/mol, respectively), the hydrogen bond formed by the second 239 

binding mode is extremely labile (WQB = 0.5 kcal/mol), which makes this binding mode very unlikely. By 240 

contrast, the first binding mode presented a very strong hydrogen bond (WQB = 17.7 kcal/mol) and was 241 

selected with full confidence. For Hsp90, in several cases a lower ranking pose was selected based on the 242 

DUck calculation(Table S1). This is shown in Figure 3, where the Hsp90 ligand 73 presents a relatively 243 

similar binding mode with two different orientations. The first one (green) is the preferred one by docking 244 
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(score = -20.3 kJ/mol), whereas the second one (pink) is heavily penalized due to a steric clash of the 1-245 

chloro-3-nitrobenzene moiety (score = 1.3 kJ/mol). Dynamic undocking indicated that the latter binding mode 246 

was actually preferred (WQB= 11.6 kcal/mol vs. 10.9 kcal/mol), which prompted us to seek a protein 247 

conformation where the second binding mode would fit without clashing. In this particular case, the ligand 248 

binds to helical conformation (e.g. 2WI6) where a hydrophobic pocket (the PU3 pocket) emerges.[20] 249 

 250 

The results submitted to the stage 1 of the D3R Grand Challenge 2015 are summarized in Table 1 and Table 2 251 

for Hsp90 and MAP4K4, respectively. The accuracy of binding mode prediction is generally measured in 252 

terms of root mean squared deviation (RMSD) from the crystallographic pose. It is also common to convert 253 

this value to a binary decision (correct/incorrect) based on a fixed threshold (usu. 2.0 Å). This is a debated 254 

topic, and several alternative solutions have been put forward [18,19]. 255 

In practice, the best measure may depend on the particular problem that one is facing. For instance, a 256 

prediction that captures the main interactions is valid when dealing with a new chemotype, but inadequate at 257 

the lead optimization stage. Since our lab focuses on the hit identification stages of drug discovery, we are 258 

particularly interested in predicting the position of the central scaffold, i.e. the part of the ligand that forms the 259 

main interactions and defines the vectors of growth in the hit to lead stage. Thus, we have complemented the 260 

objective RMSD measure with a subjective binary classification telling if the prediction is sufficiently 261 

accurate to be used in the hit progression. In terms of RMSD, our average results were 1.6 ± 0.9 Å for Hsp90 262 

(8
th 

position among the participants of the D3R Grand Challenge 2015) and 3.7 ± 2.8 Å for MAP4K4 (3
rd 263 

position). On the former set, we predict all but one ligand within 2.0 Å of RMSD. The only exception is 264 

ligand 44 (RMSD = 3.0 Å), but even then the position of the scaffold is correct and the deviation is due to the 265 

different orientation of a part of the ligand that does not engage in interactions with the protein(Figure S2). 266 

The MAP4K4 results are much worse, but we still fared better than most participants, which highlight the 267 

difficulty of this set. Using the 2.0 Å RMSD cutoff, we only predicted 11 ligands correctly (37%). In our 268 

subjective assessment, we predicted the position of the scaffold correctly for 18 ligands (60%). The reason 269 

behind the poor performance is almost exclusively due to the flexibility of the protein. As this is a key issue in 270 

molecular docking, it will be discussed in detail. On the positive side, our protocol was still capable of 271 

predicting the main interaction correctly for a majority of ligands. Worthy of note, the structure of ligand 32 272 

was originally inverted (Figure 4). Docking, but particularly Dynamic Undocking, argued strongly against 273 

this binding mode. After consultation with the crystallographers our predicted binding mode was accepted as 274 
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the proper binding mode. This is a reminder of the necessary dialogue between crystallographers and 275 

modellers, particularly where various binding modes are consistent with the observed electron density (e.g. 276 

due to tautomerism).[35] 277 

 278 

Protein flexibility: the greatest docking challenge? 279 

Reviewing the cause of the cases in MAP4K4where we failed in making a good prediction, we found that 280 

using a single receptor conformation was by far the most important factor. There is a large body of literature 281 

indicating the importance of protein flexibility[21-23],but back in 2005 we demonstrated that using multiple 282 

protein conformations could actually downgrade the results, particularly in virtual screening applications[19]. 283 

Since then, other authors have suggested that judicious selection of two or three structures can produce a 284 

small but systematic improvement over the best single structure.[39–41]However, as we did not have any 285 

previous knowledge on this system, we adopted the simple approach of using the biggest cavity (4U44), 286 

hoping that it would be valid for a larger proportion of ligands[42]. 287 

 288 

Once the experimental structures were disclosed, we observed that a large proportion of the ligands actually 289 

bind to a conformation where the cavity is partly occluded by the side-chain of Tyr36 in the P-loop(Figure 5). 290 

In order to measure the impact of these effects, we ran the exact same experiments using as receptor structure 291 

4OBO (Tyr36-IN), which has this alternative conformation. As shown in Table 2, most of the recalculated 292 

poses have an RMSD lower than the one we submitted to the D3R Grand Challenge 2015. Taking the best 293 

RMSD of the different binding modes, we obtain an average RMSD improvement of 1.1 Å (2.6 vs. 3.7 Å) 294 

with 18ligands (60%) below the 2.0 Å threshold and 23 ligands (77%) with a correctly placed scaffold. While 295 

the results are still imperfect, one must consider that three structures are still insufficient to represent the 296 

whole array of conformational possibilities. In fact, we deem that there are only 2 ligands (7%) for which the 297 

failure cannot be attributed to the conformation of the protein: Ligands 4 and 17 do not form a hydrogen bond 298 

with the backbone of Cys108 (the hinge region) and are thus incompatible with our docking and dynamic 299 

undocking protocol. On the other hand, if the relative energies of the conformational states are not properly 300 

considered, using multiple structures may cause more problems than it solves.[43] In our opinion, except for 301 

direct experimental observation of the conformational states,[44] empirical knowledge gained from detailed 302 

analysis of multiple crystallographic structures is – at present – the only  practical solution to this problem. 303 

 304 
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This is indeed the case for Hsp90, a system that we have studied thoroughly. Here, we were able to predict not 305 

only the structure of the ligands, but also which conformation would the protein adopt upon ligand binding. 306 

This aspect was not evaluated in the D3R Grand Challenge 2015. Considering the importance of this issue, we 307 

suggest that it should be included as a measurement of success in future editions. As shown in Table 3, the 308 

RMSD of the residues lining the binding site was below 0.4 Å in all cases, and the change in backbone 309 

conformation induced by ligand 73 could be predicted based on the DUck calculations (vide supra). 310 

 311 

 312 

Virtual Screening 313 

 314 

For Stage 2 of the D3R Grand Challenge 2015, we were asked to predict the affinities or affinity rankings for 315 

180 ligands in Hsp90 and 18 ligands in MAP4K4 systems. The tools developed and used in our group are 316 

geared towards virtual screening, where we aim to identify true ligands from huge libraries of chemical 317 

compounds. As such, our predictions are fast and qualitative and not well suited to predict binding affinities, 318 

instead our goal was to produce a ranked list enriched with potent ligands in the top positions. For this reason, 319 

we only discuss the results in terms of virtual screening performance: area under the curve (AUC) of the 320 

Receiver Operating Characteristic (ROC) curve and Enrichment Factors (EF). This type of analysis could not 321 

be performed on the MAP4K4 set because 15 out of the 18 ligands were considered as active (IC50< 1 µM) 322 

and the other three were in a close range (1.74, 2.25 and 10 µM). The Hsp90 set presented more dispersion: 323 

40.6% of ligands (73 out of 180) had an IC50 lower than 1µM and are considered active, the remaining are 324 

considered inactive even though 21.7% (39 out of 180) have an IC50 between 1 and 10 µM. The fact that the 325 

inactive set contains molecules that are, a) true binders and, b) structurally very similar to the active ones 326 

makes this a very unusual and challenging test set. We encourage the organizers to include more standard 327 

virtual screening test sets in future editions of the challenge.  328 

 329 

Our ranking protocol was based on an initial docking stage followed by DUck simulations of the top scoring 330 

pose. We combined the scores obtained from docking and DUck and, following visual inspection to check all 331 

the ligands and the corresponding rankings, the final position of 49 ligands (27%) in the ranked list was 332 

manually modified. Visual inspection introduces a subjective step that is difficult to control, but is essential in 333 

real applications to correct some of the limitations of docking. In our case, we used it mostly to rescue 334 
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compounds that were predicted as inactive because they had an incorrect binding mode (e.g. ligands binding 335 

to the helical conformation that could not fit in the docking cavity). Considering the qualitative nature of our 336 

approach, the ROC curve (Figure 6) demonstrates a very good performance, as do the corresponding 337 

enrichment factors (Table 4). To assess the effect of consensus ranking and visual inspection, we also plotted 338 

the ROC curve that would be obtained after the first stage (docking) and without the visual inspection (Figure 339 

S3). The AUC was much better for the combined ranking (0.71 vs. 0.55) and the enrichments were also 340 

higher for the combined ranking. This waste best performance across participants in this metric. 341 

Unexpectedly, we also ranked well in terms of Spearman correlation (0.39). This was surprising because both 342 

Docking and Dynamic Undocking are designed to discriminate between active and inactive compounds, 343 

rather than to obtain a quantitative assessment of their (relative) binding free energies. In part, this reflects our 344 

knowledge about this particular system, where we can anticipate from previous experience the conformational 345 

changes that take place in the protein and the ligand features that contribute to binding affinity. However, this 346 

correlation should not be considered a success, as it is likely insufficient to drive drug design. Instead it 347 

indicates that ranking ligands using structure-based methods is particularly challenging. In fact, many ligands 348 

in the test set have analogues with published binding affinity and we anticipate that a purely ligand-based 349 

strategy might have provided very good results. We suggest that the performance of one such knowledge-350 

based approach would be useful as a benchmark of the performance of all participants in the contest.. 351 

 352 

  353 
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Conclusions 354 

Through the participation in the D3R Grand Challenge 2015, we have been able to validate the methods 355 

developed and used in our lab. We must emphasize that our main focus is virtual screening, an application 356 

that has not been considered explicitly in the challenge. Binding mode prediction is a first essential step for 357 

any subsequent prediction, so we had a particular interest on this part of the challenge. Binding affinity 358 

prediction (or ligand ranking) is much more demanding than virtual screening, and we participated in this part 359 

of the challenge somewhat reluctantly, expecting a clear underperformance compared to free energy methods. 360 

 361 

We used a combination of qualitative techniques that, together, have worked much better than any of them 362 

separately. Namely, we used rDock for molecular docking with pharmacophoric restraints and DUck, a new 363 

technique based on molecular dynamics. For Stage 1, we were able to correctly predict how  the ligands bind, 364 

particularly the position of the central scaffold forming the main interactions with the protein: for Hsp90 5 out 365 

of 6 ligands had an RMSD lower than 2 Å and 100% of the scaffolds were correctly predicted; for  366 

MAP4K411 out of 30 ligands had an RMSD lower than 2 Å and 60% of the scaffolds were correctly 367 

predicted. These figures would have increased to 18 out of 30 ligands and 77% of the scaffolds if one single 368 

additional conformation (Tyr46-IN) would have taken into account. Retrospectively, we performed additional 369 

experiments to understand the failures, finding that protein flexibility was the major factor limiting the quality 370 

of the results. Predicting protein conformations is feasible, but increasing the number of conformation 371 

generally leads to decreased docking performance [19]and even when few conformations are considered, their 372 

relative energies must be considered to avoid artifacts.[44]This is a tall order that we have by-passed by 373 

employing previous knowledge about the system, which enabled us to predict the most likely receptor 374 

conformation for each Hsp90 ligand purely based on chemical structure. The fact that we did not have this 375 

information for MAP4K4 explains the difference in performance between both systems. It should be possible 376 

to extract this type of knowledge automatically from existing crystal structures deposited in the PDB, but we 377 

are not aware of any tool capable of doing this task. Forcing certain interactions during the docking process is 378 

equally important because it corrects some of the limitations of the scoring functions. Fortunately, in this case, 379 

the main pharmacophoric points can be extracted easily and automatically with existing tools. In the absence 380 

of known ligands, binding hot spots can be identified from molecular simulations.[45] 381 

In Stage 2, for Hsp90 we performed much better than expected considering the qualitative nature of our 382 

methods. The results were biased by our previous knowledge on this system, which had an important effect on 383 
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the final performance, but this reflects the typical situation in drug discovery, where expert users combine 384 

tools and previous knowledge whenever possible. Our relative success highlights the challenges that free 385 

energy methods are still facing, but also indicates that there is a lot of potential in combining relatively simple 386 

structure-based tools with knowledge-based approaches. No doubt, machine learning will play an increasingly 387 

important role in the future, driven both by the growing body of public data [29, 30]and major advances in the 388 

field.[31,32] 389 

Finally, we have several suggestions to improve future editions of the challenge. Namely, the prediction of 390 

protein conformation as a measure of success in binding mode prediction, the inclusion of a virtual screening 391 

prediction set and the introduction of an automated ligand-based approach as a baseline for measuring success 392 

of ligand ranking applications. We consider that all these aspects may improve what is already an extremely 393 

useful and necessary exercise. 394 

  395 
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Tables 504 

 505 

Table 1. 

Summary of the results for the 6 ligands in the Hsp90 system Stage 1. 

Ligand ID RMSD (Å) Scaffold OK 

40 1.71 Yes 

44 3.00 Yes 

73 0.61 Yes 

164 1.40 Yes 

175 1.94 Yes 

179 0.70 Yes 

Summary RMSD (Å) Scaffold OK 

Average 1.56 6/6 (100%) 

 506 

  507 
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 508 

Table 2. 

Summary of the results for the 30 ligands in the MAP4K4 system Stage 1, and simulation of 

Stage 1 results for MAP4K4 taking into account additional conformations of Tyr36 (ligands with 

bad prediction only). 

Lig 

ID 

RMSD (Å) RMSD 

Flexible (Å) 

Scaffold OK Lig 

ID 

RMSD (Å) RMSD 

Flexible (Å) 

Scaffold OK 

1 2.26 - Yes 17 8.44 6.94
 b
 No / No 

2 3.59 10.44
a
 No / No 18 1.99 - Yes 

3 1.02 - Yes 19 1.85 - Yes 

4 7.16 6.14
 b
 No / No 20 1.29 - Yes 

5 8.90 1.13
 a
 No / Yes 21 0.96 - Yes 

6 2.50 - Yes 22 1.47 - Yes 

7 1.03 - Yes 23 2.66 1.46
 a
 Yes / Yes 

8 1.43 - Yes 25 3.40 3.13
 a
 Yes / Yes 

9 2.49 3.55
 a
 No / No 26 6.77 6.93

 a
 No / No 

11 0.68 - Yes 27 1.29 - Yes 

12 11.06 1.42
 a
 No / Yes 28 1.68 - Yes 

13 5.71 1.06
 a
 No / Yes 29 6.34 6.58

 a
 No / No 

14 4.95 1.50
 a
 No / Yes 30 3.83 0.52

 a
 Yes / Yes 

15 2.14 - Yes 31 6.64 7.25
 a
 No / No 

16 5.69 4.83
 a
 No / Yes 32 3.09 

c
 1.32

 ac
 Yes / Yes 

Summary Original Flexible  

Average 

RMSD (Å) 

3.74 2.57 

Scaffold OK 18/30 (60%) 23/30 (77%) 

a) P-loop and Tyr36faced inwards to the cavity b) No hydrogen bond made with Cys108 in the hinge 

region c) Measured with respect to the corrected crystallographic pose 

 509 
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Table 3.  

RMSD (Å) between binding site residues
a
 of submitted Hsp90 receptor structures and crystal 

structure. For each of the crystal structures, the submitted PDB receptor structure is highlighted in 

italics.  

PDB Code Submitted Crystal Structure 

40 44 73 164 175 179 

2CCU 0.29  0.30 1.19 0.27 0.25 0.37 

2WI6 1.05 1.05 0.34 1.05 1.07 1.03 

a
 List of residues defining the binding site: LEU48, ASN51, SER52, ALA55, ASP93, ILE96, GLY97, 

MET98, ASN106, LEU107, GLY108, PHE138, TYR139, VAL150, THR152, THR184 and VAL186. 

 511 

 512 

Table 4. 

Summary of statistics for Hsp90 system Stage 2 results. 

Ranking AUC
a
 Enrichment

b
 

1 % 10 % 20 % 

Docking Score 0.55 1.23 0.68 1.37 

Combination 0.71 2.47 1.91 1.99 

a
Max.value for AUC = 1.00 

b
Max.enrichment possible = 2.47 

 513 
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Figure Captions 515 

 516 

Fig. 1 A) Hsp90 receptor definition. Asp93 and two surrounding water molecules (shown in sticks) define the 517 

key interaction element. The pharmacophoric points (transparent blue spheres) force the presence of a H-bond 518 

donor next to Asp93:OD2 and a H-bond acceptor next to the interstitial water molecule. B) MAP4K4 receptor 519 

definition. The hinge region is a characteristic binding hot spot of protein kinases. A pharmacophoric restraint 520 

forced the presence of a hydrogen bond acceptor next to Cys108:N (transparent blue sphere) 521 

 522 

Fig. 2 Two binding modes proposed by docking for ligand 40 in the Hsp90 set (green and pink sticks; RMSD 523 

= 5.5 Å). Dashed lines represent the hydrogen bond between each ligand and Asp93. The crystal structure of 524 

ligand 40 is represented in white sticks for comparison 525 

 526 

Fig. 3 Two different binding modes (RMSD: 2.5A) for ligand 73 in the Hsp90 set proposed by docking 527 

represented in green and pink sticks. The green one is the preferred conformation according to docking, 528 

whereas the pink one has a really bad score due to a clash penalization. With DUck, we could detect that the 529 

correct binding mode was the pink one. The crystal structure of ligand 73 is represented in white sticks for 530 

comparison, the RMSD with respect to the pink binding mode is 0.61 531 

 532 

Fig. 4 Structure of MAP4K4 ligand MAP32 in the disclosed crystallographic structure (A) and the alternative 533 

mode we proposed (B). Note the different tautomers with inverted methyl and hydroxyl groups, where in the 534 

crystallographic pose there is a clash between the methyl group and Glu106, we found a well structured 535 

hydrogen bond between the hydroxyl group and Glu106 536 

 537 

Fig. 5 Comparison between the two MAP4K4 supplied starting structures 4OBO (blue) and 4U44 (orange). In 538 

the former structure the side-chain of Tyr36 in the P-Loop is facing inwards, reducing the cavity space 539 

available for ligand binding 540 

 541 

Fig. 6 ROC Curves of the 180 ligands in the Hsp90 Stage 2 Set. Ligands with an IC50 higher than 1 µM were 542 

considered as active. A)Ranking according to rDock docking scores (AUC=0.55). B)Consensus ranking as 543 

submitted to the challenge(AUC=0.71) 544 
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Fig.S1 A) Hsp90 protein model for Dynamic Undocking (orange) and full protein (gray). Asp93 (sticks) 

acts as the key interaction point. B) MAP4K4 protein model for Dynamic Undocking (orange) and full 

protein (gray). Cys108 (sticks) in the hinge region acts as the key interaction point. Residues forming the 

model binding site are listed in Table S2. 

 

 
Fig. S2 Depiction of ligand 44 from the Hsp90 set to illustrate the differences between the x-ray structure 

(white) and the predicted binding mode (orange). As explained in the main text, the scaffold forming the 

main interactions is placed correctly, but the different orientation of the rest of the ligand increases the 

RMSD to 3.0Å. 
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Fig. S3 ROC Curve of the 180 ligands in the Hsp90 Stage 2 Set ranked according to the consensus score 

considering rDock scores and WQB values from DUck. Ligands with an IC50 higher than 1 µM were 

considered as active. The corresponding statistic values are AUC=0.66, EF1%=2.47, EF10%=1.23 and 

EF20%=1.37. 

  

143



4 
 

 
Table S1. Rank position of the Hsp90 ligands according to the rDock score and DUck WQB. The fourth 

column indicates which pose was selected. 

Ligand ID rDock Ranking DUck Ranking Binding Mode Selected
a
 

40 1 1 Yes 

175 
1 2 

 
8 1 Yes 

164 
1 4 

 
3 1 Yes 

73 
1 2 

 
9 1 Yes 

179 
1 3 

 
6 1 Yes 

44 1 1 Yes 

a
When the best-scoring docking pose did not correspond to the best DUck pose, 

the DUck pose was prioritized. 

 
 

Table S2. Receptor definition used in Dynamic Undocking simulations. Water and residue numbers were 

taken from the corresponding PDB file. 

System Reference 

Atom 

PDB Code 

(Chain) 
Protein residues included as receptor 

Water 

Molecules 

Hsp90 ASP93:OD2 4YKY (A) 

GLU47 LEU48 ILE49 SER50 ASN51 SER52 

SER53 ASP54 ALA55 LEU56 ASP57 LYS58 

ILE78 ILE91 VAL92 ASP93 THR94 GLY95 

ILE96 GLY97 MET98 GLY137 PHE138 

VAL150 ILE151 THR152 GLY183 THR184 

LYS185 VAL186 

419 444 

460 511 

MAP4K4 CYS108:N 4U44 (A) 

VAL31 LYS41 LEU50 ALA51 ALA52 ILE53 

LYS54 ALA83 THR84 MET105 GLU106 

PHE107 CYS108 GLY109 ALA110 GLY111 

SER112 GLN157 VAL159 LEU160 LEU161 

THR162 LYS168 VAL170 ASP171 

- 
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4.1 rDock Molecular Docking

rDock is a molecular docking program developed at Vernalis which evolved from RiboDock
[30], originally designed for docking ligands against Nucleic Acids. The program was re-
designed and modified in order to be also used against Proteins and the whole docking
motor was freshly implemented. It can be used for High Throughput Virtual Screening
and binding mode prediction and allows the user to incorporate additional restraints and
information to bias docking.

However, a lack of a deep validation and a position of rDock in the actual landscape of
available docking software was needed. In this aspect, Glide (commercial) and Vina (open
source) were selected to represent two currently used docking programs. The two following
benchmarking experiments were planned:

• Binding Mode Prediction with ASTEX diverse set, for proteins, and RiboDock and
DOCK6 sets for RNA.

• Virtual Screening Performance with DUD/DUD-E sets.

4.1.1 Preparation and Set Up

In both benchmarking experiments, the receptors were prepared the same way: The receptor
structure files in DUD and ASTEX sets were processed using the Preparation Wizard tool
from Maestro whereas the RNA structures were prepared using MOE. The docking cavities
were defined in rDock using the “Reference Ligand” method and the coordinates were applied
for Glide and Vina to ensure the least dissimilar cavities between each program.

The ligands in DUD and RNA sets were converted to smiles format and processed with
Schrödinger’s LigPrep software to create accurate, energy minimized 3D molecular structures
and to expand tautomeric and ionization states, ring conformations and stereoisomers. For
the ASTEX set, the ligands had already been manually prepared, thus processing was not
needed.

The Molecular Docking protocols were defined to be the most similar as possible between
each program. The exhaustiveness of all programs was set higher than default to remove
uncertainty due to low sampling.

4.1.2 Virtual Screening

The DUD set, which consisted in 39 protein complexes with crystal structures, was run for
Virtual Screening assessment. Each system contained an average of about 100 known active
ligands and 36 per active ligand. The decoys have similar physicochemical properties to the
active ligands but have different structures and shapes. The higher the active ligands are
ranked with respect to the decoys, the better the enrichment. ROC curves were generated
using ROCR [31] package for R with several statistical values, such as AUC and Enrichment
Factors, being also calculated. On average, the best program was Glide for all the calculated
metrics, with rDock performing as the average of the three tested programs (Table 4.1).

Table 4.1: Average of Virtual Screening Performance results for DUD set.

Program AUC logAUC EFmax EF 1% EF 20%

rDock 0.69 0.26 98.7 11.4 2.5
Glide 0.78 0.37 334.6 22.6 3.2
Vina 0.66 0.24 124.3 8.9 2.2
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4.1.3 Binding Mode Prediction

For the ASTEX and RNA sets, the RMSD of each predicted binding mode with respect to
the crystallized ligand was calculated using Open Babel toolkit [32]. Random sets of 100
ligands were selected from all the resulting binding modes (if more than 100 ligands were
available) and the percentage of the top-scored binding mode with an RMSD below 2Å for
ASTEX set was calculated. For the RNA set, as the structures are more challenging than
proteins (less closed cavities, less hydrophobic, featureless) and the ligands are larger and
more flexible (7.8 ± 4.3 rotatable bonds vs. 5.16 ± 3.1 for the Astex set), the cut-off criterion
is an RMSD below 2.5Å with respect to the crystal structure. Moreover, in order to assess
whether the failures for each program were due to low sampling or bad scoring, the RMSD
of all resulting binding modes (even with bad docking scores) was calculated.

These results are summarized in table 4.2, where we can see that the performance of
rDock with respect to the binding mode prediction for the ASTEX set is pretty similar to
the best program tested (Vina), whereas for the RNA set, rDock makes the best performance.

Table 4.2: Summary of Binding Mode Prediction results for ASTEX and RNA benchmark sets.

% Correct in top 1 ASTEX set
(% At least 1 correct pose)

% Correct in
top 1 RNA set

rDock 76 ± 3 (99 ± 0.2) 54 ± 3
Glide 67.6 (83.8) 17.8
Vina 81.2 ± 2 (97 ± 0.5) 29 ± 2

4.1.4 Biased Docking

One of the main limitations in molecular docking is the quality of the scoring functions. It
is therefore usual to introduce empirical bias, which can improve the quality of the results
and also reduce the search space, thus improving performance. rDock allows the user to
introduce empirical bias to guide docking in different ways: tethered template docking or
pharmacophoric restraints.

Tethered template docking Tethered template docking can be used to enforce partial
binding modes obtained from crystal structures of related molecules or constituent fragments,
whereas the rest remains free (Figure 4.1). The template is defined by a reference bound lig-
and structure and a SMARTS query string defining the substructure to be tethered. rDocks’s
sdtether utility prealigns molecules with matching substructures with the reference substruc-
ture coordinates prior to docking and non-matching molecules are rejected. Molecules that
have more than one substructure match with the query are replicated within the library of
compounds to be docked, and each replicate prealigned and docked individually, thus ensur-
ing that all possible substructure alignments are examined. For greater sampling efficiency,
tethering in rDock is enforced absolutely during pose generation by restricting the randomi-
sation and mutation functions for the tethered degrees of freedom, rather than through the
use of an external penalty function.

Pharmacophoric restraints This feature ensures that pharmacophores (9 types are rec-
ognized: neutral hydrogen bond acceptor, neutral hydrogen bond donor, hydrophobic, hy-
drophobic aliphatic, hydrophobic aromatic, negatively charged, positively charged, and any
heavy atom) are satisfied by all generated poses. Each pharmacophore restraint is defined
by a combination of feature type and position, specified as a tolerance sphere with coordi-
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Figure 4.1: Example of tethered template docking results: while the indole moiety remains fixed,
the rest of the molecule can be optimized. Blue and white sticks represent two docking solutions of
a sample molecule with the indole group defined as tethered.

nate (x,y,z), and radius (r). Ligands that have insufficient quantities of the defined restraint
feature types are removed prior to docking.

To illustrate this effect, we compared the outcome of a Glide and rDock Virtual Screening
protocol on the DUD system Hsp90 by adding empirical bias: 2 interstitial water molecules
and two pharmacophoric points were added. Two hydrogen-bonds between ASP93 and
one of the waters with the ligand were defined as the pharmacophoric restraints. rDock
and Glide were run with the same parameters as in the same DUD system without any
pharmacophoric restraint (Vina cannot use pharmacophoric restraints) and the results were
processed the same way as previously in DUD set.

As shown in Table 4.3, the metrics improved significantly and both programs became
very similar in their outcome:

Table 4.3: Virtual Screening Performance results for Hsp90 with and without pharmacophoric
restraints.

Program AUC logAUC EFmax EF 1% EF 20%

rDock 0.63 0.20 3.9 0.0 1.5
Glide 0.77 0.28 7.4 0.0 2.1
Vina 0.55 0.16 1.4 0.0 0.75

rDock-Guided 0.92 0.46 36.9 12.3 4.3
Glide-Guided 0.90 0.46 17.4 6.9 4.6

Figure 4.2: Comparison of ROC Curves for Hsp90 system using DUD set for unbiased docking (left)
and docking guided using pharmacophoric restraints (right).

4.1.5 Off the record: Scoring Functions Improvement

Last but not least, in order to improve scoring functions, we tried to develop several atomic
weighting factors to enhance docking performance. rDock was modified to read an extra
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column in the input mol2 file with atomic weights, which changed the polar and Van der
Waals contributions in the scoring stage of the docking protocol. Moreover, we also wanted
to test whether the hotspots obtained running MDmix [23] could be automatically applied to
rDock as “optional” pharmacophoric restraints to guide docking. The different hypotheses
were tried:

• Rigid atoms should have more weight than flexible ones (from MD simulation B-
factors).

• ABPAs should have more weight (calculated with fpocket)[29].

• Run MDmix and automatically extract hotspots and use them as a new type of phar-
macophoric restraints to guide docking.

As a first test, we applied the approach of running MDmix to extract hotspots and
automatically use them as a new type of pharmacophoric restraints in Hsp90. We ran
MDmix simulations and derived up to 10 hot spots (HS) located in the binding site which
were then supplied to the standard scoring function to evaluate its effect. We also studied
whether the inclusion of just the HS with the lowest (and the 2 lowest ones) interaction
energy already improved the results. Additionally, we compared the results with a manually-
derived pharmacophore from existing ligands in the PDB (the one used in section 4.1.4). The
corresponding results are found in Table 4.4 and Figure 4.3.

Table 4.4: Calculated statistic values for Hsp90 virtual screening with the different configurations
detailed in the main text.

Settings AUC EF 1% EF 20%

Unbiased 0.63 0 1
PDB-guided 0.91 0 4.3
MDmix-guided 1 HS 0.85 7.9 3.3
MDmix-guided 2 HS 0.88 19.6 3.9
MDmix-guided all HS 0.79 15.7 2.5

Figure 4.3: Comparison of ROC Curves for Hsp90 systems with the different settings as specified
in the legend. Associated statistic values can be found in Table 4.4.

However, although we obtained promising results in this area, they have not yet been
published as more experiments are needed. A collaboration with Marcelo Martin and Adrian
Turjanski’s group in Argentina has been established to investigate further and a publication
with these results is planned for the next months.



CHAPTER 4. RESULTS SUMMARY 151

4.2 Dynamic Undocking and the Quasi-Bound State

There is an urgent need for new methods that increase the efficacy and efficiency of ratio-
nal drug design. Structure-based approaches are powerful, but they usually provide crude
estimates of the binding affinity between small molecules and their target, because obtain-
ing quantitative predictions is extremely challenging even for the most sophisticated (and
computationally expensive) approaches. We postulate that, on top of presenting favourable
binding free energies, true ligands should be recognizably by their structural stability, defined
as the ability to maintain a precise and stable binding mode, which implies strong resistance
to even minor structural deviations.

4.2.1 Background and theory

We developed a fast computational method to assess the cost of breaking key native con-
tacts (hydrogen bonds) and demonstrated, for the first time, that structural stability is a
natural property of ligands that can be exploited in virtual screening applications. This ap-
proach benefits from inexpensive calculations that have been implemented in an automated
way, which makes our method amenable to high-throughput applications. Furthermore,
it is an excellent complement to existing techniques, particularly molecular docking. The
method, termed as “Dynamic Undocking” (DUck), calculates the work necessary to reach a
quasi-bound state (WQB), where the ligand has just broken the most important hydrogen
bonds with the receptor (a 2.5Å displacement, from 2.5Å to 5Å), allowing us to differentiate
between active and inactive ligands (Figure 4.4). DUck is complementary to day-to-day tech-
niques such as molecular docking and it is intended to foster drug design efforts in the lead
optimization stage by improving the efficiency of the in silico assessment of protein-ligand
binding affinity.

Figure 4.4: Schema of the background idea. Focusing on the first part of the disociation (highlighted
plot), we are able to differenciate between active (green) and inactive (red) ligands.

In principle, the Jarzynski’s equality (JE) [33] could be used to calculate Free Energy
(FE) differences from non-equilibrium work distributions along a reaction coordinate, as it
relates the work performed during a non-equilibrium process to the FE difference between
two equilibrium states. However, in practice, as we have no guarantee that the reaction
coordinate is correct, we select the lowest maximum point in the work profiles from all
simulations as the WQB.

Though WQB is irrelevant from a thermodynamic perspective, we found that true ligands
present higher WQB values because their binding mode corresponds to a deep and narrow
minimum in the free energy landscape.
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4.2.2 Implementation

One of the main points of Dynamic Undocking is to use a reduced portion of the system
instead of the whole protein including only the minimal subset of the protein necessary to
preserve the local environment around the hydrogen bond that is being monitored. This
transformation minimizes the influence of peripheral interactions, thus simplifying the dis-
sociation pathway and facilitating convergence. As an added bonus, it speeds up the calcu-
lations by a factor of 5.

However, it has some drawbacks: it is not possible to recover the full dissociation profile,
but most of the work needed to break a complex is used in the initial stages, where native
hydrogen bonds are broken. Therefore, the goal is not to calculate the FE difference between
the bound and unbound states, but to identify those ligands with higher resistance to disso-
ciate. On the other hand, it has some important advantages: thanks to the reduction of the
system size, the ligand dissociation path gets simplified which makes the choice of reaction
coordinate trivial and, as the calculation speeds up accordingly to the system size reduction,
it makes possible to screen hundreds to thousands of compounds. Finally, one requisite for
the system to give good results is that most of the activity of the ligand must be explained
by a key anchoring point, a hydrogen bond.

Molecular Docking

As a starting point, DUck needs a 3D structure in the binding site of each of the ligands
generated by molecular docking (rDock and Glide in our particular case). For running
docking, the receptor structures are prepared using MOE and the ligands with Schrodinger’s
Ligprep, as also detailed in section 4.1. In all cases, pharmacophoric restraints were used to
ensure that the key interaction point was matched by every molecule in the dataset. rDock
and Glide were run with the default parameters for standard docking and the best-scoring
solution was accepted as the putative binding mode and used as input for DUck. Ligands
that did not fulfill the pharmacophore were identified by the restraint penalty and eliminated
from the dataset. Hence, all ligands that were subjected to DUck simulations fulfilled the
defined interaction.

Steered Molecular Dynamics

Dynamic Undocking per se is a particular type of Steered Molecular Dynamics (SMD) sim-
ulations, where we force the rupture of an intermolecular hydrogen bond formed between a
pre-defined interaction point in the receptor and a complementary atom in the ligand. To
prepare the model receptor for the DUck simulations, all residues with at least one atom
within 6Å of the atom of reference in a 3D structure of the protein of interest are selected
and visually inspected to refine the selection if additional residues are considered necessary
to maintain the local environment.

Once the model receptor is prepared and the set of ligands are properly oriented, a MOE
SVL script developed in-house automatically calculates charges and assigns parameters to
all the ligands, prepares all the input files and generates the topology and coordinate files for
each ligand-receptor complex. Minimization and equilibration steps are run for each complex
after which SMD simulations can be run to calculate the WQB. Afterwards, unbiased MD
simulations can be run to generate diverse starting points for additional SMD runs.

In the video available when scanning the QR code in Figure 4.5, you will see a visual
summary of how DUck works and how the SMD pull the ligand out from the receptor until
the hydrogen bond defined is broken.

Finally, work profiles outputted by the different SMD replicas are processed to calculate
the WQB values.



CHAPTER 4. RESULTS SUMMARY 153

Figure 4.5: QR code for the Dynamic Undocking video summary.

MMPB/GBSA

For CDK2, MMGBSA and MMPBSA calculations using AMBER12 software were also per-
formed and compared against the rest of methods. Each ligand was simulated for 5 ns with
the full size receptor using the same MD configuration as in DUck simulations. For each one,
a total of 25 snapshots separated by 200 ps were used and the free energies were averaged
over the ensemble of conformations.

4.2.3 Validation Experiments

To validate our approach, retrospective and prospective validation experiments were carried
on.

One one hand, we performed retrospective virtual screening against important thera-
peutic targets (CDK2, Trypsin and Adenosine A2A Receptor) based on the the DUD-E
benchmark set. For an extra validation, BRD4 was used to study whether the experimental
binding affinity and WQB were correlated. As detailed in section above, different docking
programs and other Free Energy methods were compared in order to demonstrate that DUck
was orthogonal to the different existing methodologies.

On the other hand, we also run prospective in silico fragment screening against the
ATP binding site of Hsp90. In collaboration with Vernalis, a UK-based company, different
experiments were executed to confirm the fragment hits found by DUck (NMR, SPR and
X-ray crystallography).

Figure 4.6: Representation of WQB (X-axis) vs rDock score (Y-axis). Active ligands are shown in
red and decoys in black or gray (for best 25% docking poses). The enrichment of each sector is also
shown, highlighting the sector with the best enrichment factor. The lines correspond to the density
functions and are coloured according to the set of the main plot they represent.



154 4.2. DYNAMIC UNDOCKING

Figure 4.7: Distribution of WQB values as a function of binding affinity (IC50), for the BRD4 set.
Compounds with the same binding affinity present a wide distribution of WQB values, but there is a
tendency towards higher values for more potent compounds. Most notably, very low WQB values are
rare for potent ligands

Datasets

We designed datasets focusing on fragment-sized ligands because they present more scaffold
diversity, make fewer peripheral interactions that could mask the main interactions and
because Fragment-Based Drug Discovery (FBDD) approaches are increasingly important
as hit identification strategy. For CDK2, a diverse subset from all ligands with molecular
weight below 300 Da and known binding affinity (IC50) present in the PDB was selected.
A pool of 30 decoys per active fragment was obtained with the DUD-E decoy generator,
which puts together a set of putatively inactive molecules with physicochemical properties
very similar to active ones (as in a regular DUD or DUD-e set). For BRD4, as we wanted
to study the correlation between experimental binding affinity and WQB, only the ligands
with known binding mode and measured IC50 or KD were considered. The crystal structure
of each ligand-protein complex was obtained from PDB and used as input for subsequent
calculations. In the case of AA2AR, as there were few structures in the PDB, the active
fragments were taken from the DUD-E benchmark set. The rest of the procedure is the same
as described for CDK2. For Trypsin, we found that few ligands had a low molecular weight
so we did not filter by size. Instead, a random subset of 2000 active ligands and decoys was
selected from DUD-E. In the case of Hsp90, all candidate molecules come from a unified
collection generated in-house from the commercial libraries of five preferred vendors (Specs,
Enamine, Life Chemicals, Princeton Biomoleculars and Asinex). In this case we set an upper
limit of 250 Da, obtaining 280000 candidate fragments.

Retrospective Validation

For the retrospective validation of CDK2, AA2AR and Trypsin, docking was run to generate
all the starting binding modes, forcing all ligands to fulfill the defined key hydrogen bond
(Leu83 for CDK2, Asn253 for AA2AR and Asp189 for Trypsin). Afterwards, all docking
results were subjected to Dynamic Undocking, from where we could obtain the corresponding
WQB for each compound. The active fragments defined as strong binders (IC50 < 1 µM)
presented a WQB > 6 kcal/mol, whereas more than 50% of weak binders (IC50 > 1 µM)
had a WQB < 6kcal/mol. However, the distribution of WQB values is completely different
for decoys, with 61% and 49% of molecules presenting an initial dissociation cost below 2
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Figure 4.8: Pie charts showing the hit rates for the set of compounds with high WQB -“strong”
set- (top), medium WQB -“medium” set- (middle) and low WQB -“weak” set- (bottom). The area in
black corresponds to bona fide hits, dark gray represents compounds that give a positive signal in 1
or 2 NMR experiments, pale gray corresponds to inactive compounds. Labels indicate the number of
compounds of each class.

kcal/mol and 1 kcal/mol, respectively (Figure 4.6 as an example for CDK2).
For BRD4, the correlation between binding affinity (IC50) and WQB was calculated.

Despite not finding a good correlation, a qualitative trend was present (Figure 4.7).

Prospective Validation

Posteriorly, we applied the method prospectively for the identification of novel Hsp90 lig-
ands. The collection of 280000 purchasable fragment-sized molecules was docked to the
ATP binding site of Hsp90 with an optimized protocol, where the key hydrogen bond with
Asp93 was enforced. The top scoring poses were sujected to DUck simulations and classified
in three categories according to their Structural Stability: weak (WQB < 3; N=44; 32%),
medium (3 < WQB < 6; N=67; 48%) and strong (WQB > 6; N=28; 20%). Some of them
were tested at Vernalis, finding 9 positive, 8 of them corresponding to the “strong” category
(Figure 4.8), which corresponded to a 38% accuracy. Furthermore, they represented distinct
chemotypes, thus demonstrating that Dynamic Undocking brings out a major improvement
in VS processes and validating use of docking/undocking as a valid source of fragment hits,
which can be used as a complement or alternative to general fragment screening libraries.
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4.3 D3R Grand Challenge 2015

After developing and applying successfully Dynamic Undocking in section 4.2, we tested our
approach by taking part in the D3R Grand Challenge 2015.

4.3.1 The Challenge

New Computer-Aided Drug Discovery (CADD) methods are constantly under development
and, depending on the specific target or stage in the drug discovery process, a wide spectrum
of options is available to the scientific community. Independent big-scale experiments are
extremely useful to test the different methods, try them out under different circumstances
and validate them for a specific goal. For instance, there have been experiments to help
the development of protein structure modelling software, the prediction of protein protein
interactions or the subtle characterization of small molecules properties.

The Datasets

In this direction, the D3R Grand Challenge 2015 provided an independent exercise to assess
and validate ligand-protein docking algorithms and their scoring protocols. Two different
datasets (Hsp90 and MAP4K4) were provided as blinded unpublished sets with high quality
crystal structures and activity data for testing and improving CADD tools.

On one hand, the binding site of Hsp90 has been targeted by several drug discovery
programs related with cancer over the past 20 years and consequently there is a lot of data
in the PDB and literature. Nevertheless, due to the high flexibility of the receptor binding
site and the -sometimes underestimated- importance of water-mediated interactions, it still
persists as a challenge in drug design. The HSP90 dataset was formed by 8 crystal structures
with a resolution of less than 2.0Å and binding data for 180 compounds.

On the other hand, MAP4K4 is a kinase member of the STE20 family and it is involved
in metabolism, cancer and inflammation. In this case, the additional challenge was related
with the flexibility of the P-loop from kinases. The corresponding dataset was formed by
30 compounds with crystal structures with a resolution of less than 2.5Å and binding data
obtained by SPR for 18 of them.

The Experiments

The challenge was divided in two different stages for each of the datasets. In the first stage,
the SMILES string of several ligands and different protein-ligand co-crystal structures were
provided and we had to submit a prediction of the binding pose of these ligands for each
protein. In the second stage, the correct structure of the ligands in the previous stage was
disclosed and a bigger set of ligands was provided. The output in this stage was to predict
the affinities or rankings for all the ligands.

Possible strategies

Docking, scoring and free energy methods have been widely applied in drug discovery cam-
paigns, as they provide an excellent assistance particularly in early stages of the development
of new drugs. Docking and scoring can be used for virtually assay thousands to millions of
drug-like molecules in a relatively short amount of time, speeding up the finding of promis-
ing candidates and dramatically decreasing the cost in comparison with the experimental
alternative. However, there are several limitations that we need to be aware of: the flexi-
bility of drug-like ligands is currently taken into account by most docking programs but the
receptor flexibility is still an unresolved issue under investigation[ref], most scoring functions
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are developed based on specific training sets and they will be limited by the characteris-
tics of these sets and, besides aiming on predicting real affinities, docking scores might be
interpreted qualitatively rather than being a reliable quantitative measure.

4.3.2 Docking-Undocking Combination

In our particular approach, the main tools we used were Docking and Dynamic Undocking,
which was recently developed in our group, as presented in this thesis.

Specifically, we used rDock software complemented with pharmacophoric restraints as a
first approach. First of all, we identified the key interactions that the compounds should
fulfill upon binding to both of the proteins. In the case of Hsp90, the interaction was a
hydrogen bond with one of two oxygen atoms of Asp93 sidechain and, in case of MAP4K4, a
hydrogen bond with the nitrogen atom of Cys108 in the hinge region (residues from Met105
to Gly111 acting as a hinge between the N-terminal and C-terminal domains).

Then, to address the protein flexibility, we took a knowledge-based approach. For Hsp90,
we selected the most common conformation for running docking and revised its quality de-
pending on the structure of each ligand. In contrast, MAP4K4 is a completely unfamiliar
protein to us and we selected a conformation based on our previous knowledge on other
kinases. Hence, this different degree of previous knowledge for each system was also a good
point we discussed after finishing the D3R Grand Challenge 2015. Finally, to overcome the
qualitative measures of docking, we also applied Dynamic Undocking, developed during this
thesis. DUck gave us an orthogonal measure of the protein-ligand interaction and allowed
us to detect not only false positives but also false negatives from docking results. As ligands
were re-evaluated taking into account a different and complementary property with respect
to docking, we identified good binding poses which were apriori discarded due to bad docking
scores, overall increasing the quality of our calculations. This also helped us in predicting
with high accuracy how the ligands bound to the corresponding receptor, increasing our
confidence that the best binding mode predicted was the correct one.

As a summary, we performed docking-based virtual screening biased with pharmacophoric
restraints and selected receptor configurations according to our degree of previous knowledge.
Afterwards, we applied Dynamic Undocking to complement docking calculations and get
more confident predictions rather than limiting to docking.

Binding Mode Prediction

For both of the datasets, we ran rDock to generate different binding modes for each ligand.
After that, we selected a diverse subset and subjected them to DUck simulations. Taking
into account both the docking score and the DUck WQB, the best docking pose was selected
as the most likely binding mode. The accuracy of binding mode prediction is generally
measured in terms of root mean squared deviation (RMSD) from the crystallographic pose.
It is also common to convert this value to a binary decision (correct/incorrect) based on a
fixed threshold (usually 2.0Å). Our average results were 1.6 ± 0.9 Å for Hsp90 and 3.7 ±
2.8 Å for MAP4K4, which placed us in the 8th and 3rd position, respectively.

Ligand Ranking

For the next task, we were asked to predict the affinities or affinity rankings for 180 ligands
in Hsp90 and 18 ligands in MAP4K4 systems. The tools developed and used in our group are
geared towards virtual screening, where we aim to identify true ligands from huge libraries
of chemical compounds. As such, our predictions are fast and qualitative and not well suited
to predict binding affinities, instead our goal was to produce a ranked list enriched with
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Figure 4.9: ROC Curves of the 180 ligands in the Hsp90 Ligand Ranking Set. Ligands with an
IC50 higher than 1 µM were considered as active (AUC=0.71).

potent ligands in the top positions. For this reason, we only presented the results in terms
of virtual screening performance: area under the curve (AUC) of the Receiver Operating
Characteristic (ROC) curve and Enrichment Factors (EF). However, this type of analysis
could not be performed on the MAP4K4 set because 15 out of the 18 ligands were considered
as active.

Our ranking protocol was based on an initial docking stage followed by DUck simulations
of the top scoring pose. We combined the scores obtained from docking and DUck and,
following visual inspection, the final position of some ligands in the ranked list was manually
modified.

The ROC curve (Figure 4.9) demonstrated a very good performance, as did the cor-
responding AUC of 0.71, which was the best performance among all participants in this
metric.
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In the previous chapters the papers published during this thesis were presented and the
work carried on for each of them was summarized. In this chapter I will briefly discuss all
the main findings and challenges that were arisen.

Molecular Docking has been used for many years and there are still several limitations
that we need to be aware of: the flexibility of drug-like ligands is currently taken into account
by most docking programs but the receptor flexibility is still an unresolved issue under
investigation [34, 35, 36], most scoring functions are developed based on specific training sets
and they are limited by the characteristics of these sets and, besides aiming on predicting
real affinities, docking scores might be interpreted qualitatively rather than being a reliable
quantitative measure.

Nevertheless, when comparing the different software available [37, 16, 38], we can as-
sess their performance for different approaches in Drug Discovery. Something that is often
ignored is the scalability of a given program. In the case of Glide, as it is token-based a
regular user will be limited by the number of available tokens. Whereas for Vina and rDock,
both can be straightforwardly parallelized to increase the speed by orders of magnitude, thus
allowing small research groups or companies with limited budget, to run High Throughput
Virtual Screening. One of the main issues discussed in Paper 1 is the effect of guiding dock-
ing by introducing external bias. As it is demonstrated, the results improve significantly
with respect to unbiased docking. This is interesting from a wider point of view: if stan-
dard Docking-based Virtual Screening included this external bias, we could obtain better
enrichments. This issue is also discussed in Paper 3, where we also used guided docking. In
comparison with other groups that did not use guided docking, the results were much better.

As it was introduced in Chapter 1, challenging targets need novel methods that tackle
unexplored properties of ligand-binding. However, a demonstration that these methods can
be applied to less challenging targets is a necessary starting point. In the case of Dynamic
Undocking, we proved that if could be effectively run in virtual screening mode for different
systems, as shown in Figure 5.1.

Figure 5.1: ROC Curves of the application of Dynamic Undocking for Virtual Screening of CDK2,
AA2AR and Trypsin sets.

Not only that, but we also demonstrated its application as a complement to docking. The-
oretically, both of them are measurements of completely different ligand properties: Docking
measures overall complementarity and takes into account all possible interactions whereas
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Dynamic Undocking focuses in a single interaction and calculates Structural Stability based
solely on that (Figure 5.2). In principle, they should complement each other and this is
actually what happens: True ligands display overall complementarity but also structural
stability.

Figure 5.2: Example of the complementarity of the measurements in docking (left) and Dynamic
Undocking (right).

All parameters defining DUck were validated and optimized according to our hypothesis.
In order to focus on just one specific hydrogen bond, we use model receptors comprising
only the protein region around this hydrogen bond. This way, we prevent the ligand to
form unspecific interactions with other parts of the protein and we increase computational
efficiency.

In the prospective validation with Hsp90, a hit-rate of 38% was achieved. If compared
with a standard fragment screening approach for the same system [39], a hit-rate of around
4% was expected. Hence, our improvement was almost 10 fold.

Finally, we applied our approach in the D3R Grand Challenge 2015, which results have
been summarized in the previous chapter.

Regarding the ranking of ligands using our approach, we need to be aware that the test
set was very unusual and challenging, as the proportion of active ligands was really high
(40%) and the inactive ligands were very similar to the active ones. Nevertheless, such
subtle changes in structure were correctly captured by our approach and the combination
of docking and Dynamic Undocking worked extremely well. Moreover, we also ranked well
in terms of correlation of rankings and real measured affinities. This was surprising to us
because both docking and Dynamic Undocking are designed to discriminate between active
and inactive compounds, rather than to obtain a quantitative assessment of their binding
free energies. In part, this reflects our knowledge about this particular system, discussed in
more detail in the paper.

On the other hand, regarding the accuracy of binding mode prediction, we discussed how
good are the general measurements of “correct or incorrect” in terms of RMSD with respect
to the crystallographic pose [40, 41].

In practice, we think that the best measure may depend on the particular problem that
one is facing. For instance, a prediction that captures the main interactions is valid when
dealing with a new chemotype, but inadequate at the lead optimization stage. Since we are
particularly interested in the position of the central scaffold, we took into account if the
prediction is sufficiently accurate to be used in the hit progression. On Hsp90 set, we predict
all but one ligand within 2.0 Å of RMSD but, looking at the central scaffold, we correctly
predicted all of them [42]. In contrast, for MAP4K4 we only predicted 11 ligands correctly
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(37%) using the RMSD criterium. Using the scaffold assesment, we predicted the correct
position for 18 ligands (60%).

We highlighted that the reason behind the poor performance was almost exclusively due
to the flexibility of the protein. There is a large body of literature discussing the importance
of protein flexibility [41, 43], and newer studies have suggested that multiple-receptor docking
can improve the results over a single structure [44, 45, 46].
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Global Conclusions

• Challenging targets demand better computational methods. rDock and “Dynamic
Undocking” have been both the main projects in my research, whereas the application
of these methods in real challenging systems has been one of the main motivations of
this thesis.

• Drug candidate assays in pharmaceutical industry are very time and resources de-
manding. Taking advantage of a combination of computational and experimental ap-
proaches, we have been able to find active hits with a feasible amount of time and
resources invested.

• We have demonstrated that instead of directly testing millions of commercially avail-
able compounds, with the consequent financial efforts, it is possible to use Virtual
Screening, in our specific case rDock and “Dynamic Undocking”, and supplementary
chemo-informatics methods for selecting and buying only tens of compounds and per-
form experiments to characterize their effect.

• Orthogonal methods can be complemented and exploited to a higher success ratio.
Both in the cases of “Dynamic Undocking” validation with Hsp90 and in the D3R
Grand Challenge 2015 this has been studied.

Specific Conclusions

• Molecular Docking has important limitations and being aware of them and how to
overcome them is key. We always run Molecular Docking with external information in
order to guide it, and we have demonstrated that it is much more reliable.

• rDock has been thoroughly tested and validated with different systems. For Binding
Mode Prediction, it worked almost like the best of the tested programs. In the case
of Virtual Screening, it performed as average, with the advantage of high scalability.
However, when supplemented with external information, it was ranked the best.

• Pharmacophoric restraints or tethered template docking can prove crucial. Choosing
a docking program with such features, such as rDock, is essential for success.

• I have run rDock in every project I have been involved in this thesis. The code is
maintained as open source and the interest of the scientific community is growing
steadily.

• “Dynamic Undocking” allows the follow-up of a ligand unbinding (partially) event at
timescales accessible to Molecular Dynamics. Since the first application of Steered
Molecular Dynamics [47], it has gradually become a tool for protein-ligand recognition
and interaction [48].

• The Quasi-Bound state is a state where the main interaction between ligand and re-
ceptor has just been broken and, though it is thermodynamically irrelevant, the work
needed to reach it WQB can be related to the Structural Stability and used for ligand
ranking and Virtual Screening.

• The election of WQB instead of Jarzynski Equality to calculate the work associated to
the Structural Stability resides on its sensitivity to the choice of the reaction coordinate
if the number of replicas is not high enough (reliable results can be obtained starting
at 2 or 8 SMD simulations). Moreover, it can be calculated straightforwardly.
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• Hydrogen-bonding groups in the active site are privileged structures to fix the ligand in
place, particularly when they act as key binding hot spots and can form water-shielded
hydrogen bonds [29].

• “Dynamic Undocking” is orthogonal to Molecular Docking. Although it is suitable as
a Virtual Screening method itself, it is ideal as a post-docking filter.

• Being a novel approach, a thorough validation of all the variables, such as portion size,
Steered Molecular Dynamics parameters or WQB has been carried out.

• Molecular Docking with rDock and “Dynamic Undocking” were combined to partic-
ipate in D3R Grand Challenge 2015, with excellent results for both Binding Mode
Prediction and Ligand Ranking.

• The role of previous knowledge in a given system can result crucial for its outcome.
Special remark for receptor flexibility and previous molecules that interact.
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During this thesis I also participated in other projects and collaborations. As a special
remark, here you can find one of the projects that are closely related with this thesis. Despite
not being published yet, it is in preparation and will be submitted in the following months.

8.1 Rational design of Protein-Protein Interface binders with
“Glue” Activity

In this project, we applied all the methodologies available in our lab at its corresponding
time in order to rationally design ligands that are able not only to bind in a Protein-Protein
Interface (PPI), but also to increase the complex affinity, acting as a “glue” molecule.

More specifically, what we proposed is a novel alternative mechanism of action consisting
in stabilizing specific protein complexes using drug-like molecules, which should bind at the
dimer interface. As long as these drug-like molecules present much higher affinity for the
complex than for any of the monomers, they will act as ’glue’, over-stabilizing the complex.

In particular, after running fpocket to the whole PDB and MDmix to a selected subset,
a complex formed by E.Coli proteins CheA and CheY was been selected for validating the
rational design of PPI stabilizers by a combination of both computational and experimental
approaches.

Molecular docking, chemoinformatic tools, molecular dynamics simulations, X-ray chrys-
tallography, SPR and MST are the different techniques applied to discover several drug-like
molecules acting with the desired effect and, as proof-of-concept, we were able to demon-
strated our hypothesis.
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Abstract 15 

Paradoxically, as the financial resources invested in drug discovery and our knowledge are 16 

exponentially increasing, the number of new chemical entities released to the market and the number 17 

of novel targets remain constant year after year. Hence, it is very necessary to expand the “druggable 18 

genome” and, therefore, increase the productivity of the pharmaceutical industry. Here we present 19 

protein-protein interfaces as a real option to deal with this issue. 20 

We have used the combination of computational and experimental approaches to find potentially 21 

active compounds that bind to protein-protein interfaces. Molecular docking program rDock has been 22 

used to perform Virtual Screening and to select a small subset of possible interface binders. These 23 

compounds have then been tested experimentally using Biacore technology and three hits were 24 

obtained. Two of them were inhibiting the formation of the complex and one of them was increasing 25 

the affinity of both proteins, in other words, it was acting as glue. 26 
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There is not any deliverables in this publication. All the data used in any moment are publicly available 28 

online. 29 

 30 

 31 

Introduction 32 

It is known that the productivity of the pharmaceutical industry, as the financial resources invested are 33 

growing and the number of new chemical entities remain constant, is decreasing year after year. This 34 

seems to be explained by different reasons, such as unpredicted toxicity or lack of demonstrated 35 

efficacy [1], for instance. In relation with this issue, it is surprising that the number of new 36 

pharmacological targets per year has remained constant for the last 20 years [2,3]. 37 

Hence, expanding the “druggable genome”, which is defined as the subset of genes in the human 38 

genome that express proteins suitable for binding drug-like molecules, would be a key step in order to 39 

increase the productivity of the pharmaceutical industry and the discovery of new chemical entities. 40 

On the other hand, the currently “one target-one disease” model is being challenged by a more complex 41 

point of view thanks to systems biology and functional proteomics, which study the interrelation 42 

between components of biological systems to obtain a full view of cells, organisms or pathways. 43 

According to this new paradigm, the goal of drug therapy has shifted from acting in individual 44 

components towards altering the equilibrium of a whole system [4]. 45 

In accordance with the two last ideas, the development of protein-protein interaction inhibitors has 46 

received considerable attention but, as the interacting surface is usually buried and polar, inhibitors 47 

are hard to find and rarely valid as drug candidates [5]. As this kind of targets is not being currently 48 

exploited [6], this is a very challenging alternative for rational selection of targets and drug candidates. 49 

Accordingly, we propose a novel alternative mechanism of action consisting in stabilizing specific 50 

complexes using drug-like molecules which could bind at the interface between two monomers. As 51 

long as these drug-like molecules present much higher affinity for the complex than for any of the 52 

individual monomers, they will act as “glue”, over-stabilizing the complex. 53 

All the structures in the PDB have been scanned and tens of druggable binding sites located at the 54 

interface of protein complexes were found. After studying several of these interfacial systems using 55 
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our own methods[7, 8], one protein-protein complex was chosen based on its properties and its 56 

feasible validation. The chosen complex was formed by E.Coli chemotaxis proteins CheA and CheY, two 57 

proteins involved in bacterial motility. CheA has an interaction domain for CheY (PDB structure 1a0o) 58 

which involves different phosphorilation affinities depending on the environment that alter motility 59 

patterns [9]. CheA has a molecular weight of more than 70.000 Da, whereas its binding site for CheY 60 

and CheY itself have similar molecular weights smaller than 20.000 Da. Hence, in order to facilitate all 61 

the work, we decided to use the described binding domain of CheA for CheY instead of the CheA 62 

full-length. This was a good system because it was easy to produce and purify the proteins needed for 63 

assaying the activity of the selected compounds in vitro, taking advantage of SPR technology, and in 64 

vivo by means of a motility assay. 65 

We plan to validate this novel alternative by a combination of both computational and experimental 66 

approaches. First by selecting tens of commercially available compounds using Virtual Screening and 67 

then by testing them using experimental methods. 68 

  69 

Methods 70 

Molecular Docking using rDock software 71 

Molecular docking is a computational technique widely used to predict the binding mode of a complex 72 

formed by one or more molecules [10. 11], in our case, one ligand binding to a protein-protein complex 73 

interface. In high-throughput screening, millions of compounds are experimentally tested for activity 74 

using miniaturized assays [12]. In an analogous manner, Virtual Screening techniques allow to detect 75 

potentially active compounds from a huge list of candidates and test them experimentally [13]. 76 

Here, we have used rDock as the software to perform the molecular docking. It provides a package of 77 

software to facilitate the preliminary tasks and posterior analysis steps of docking results [14]. 78 

However, the actual implementation of the method is slightly different from the work presented by 79 

Morley and Afshar and, as it is in preparation for publication, here we have summarized the main 80 

issues. 81 

The master scoring functions that rDock implements is equation 1. It is formed by a weighted sum of 82 

intermolecular (equation 2), ligand intramolecular (equation 3), site intramolecular (equation 4) and 83 
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restraint (equation 5) terms. 84 

 85 

 𝐒𝐭𝐨𝐭𝐚𝐥 = Sinter + Sintra + Ssite + Srestraint  (1) 86 

 87 

Sinter , Sintra , Ssite  represent the cavity-ligand interaction score, the relative score of the ligand 88 

conformation and the relative score of the active site, respectively. The three equations (below these 89 

lines), are formed by a set of constituent potentials. 90 

 91 

 

𝐒𝐢𝐧𝐭𝐞𝐫 = Wvdw
inter ⋅ Svdw

inter +Wpolar
inter ⋅ Spolar

inter +

+Wrepul
inter ⋅ Srepul

inter +Warom
inter ⋅ Sarom

inter +

+Wsolv ⋅ Ssolv +Wdot ⋅ Nrot +Wconst

 (2) 92 

 93 

 94 

 
𝐒𝐢𝐧𝐭𝐫𝐚 = Wvdw

intra ⋅ Svdw
intra +Wpolar

intra ⋅ Spolar
intra +

+Wrepul
intra ⋅ Srepul

intra +Wdihedral
intra ⋅ Sdihedral

intra
 (3) 95 

 96 

 97 

 
𝐒𝐬𝐢𝐭𝐞 = Wvdw

site ⋅ Svdw
site +Wpolar

intra ⋅ Spolar
site +

+Wrepul
site ⋅ Srepul

site +Wdihedral
site ⋅ Sdihedral

site
 (4) 98 

 99 

Srestraint  stands for the score of several functions involving the default and user-defined restraints 100 

that can be used to alter the docking runs in several useful ways, for instance, highly penalizing those 101 

poses of the ligand that are trying to go away from the defined docking cavity. 102 

 103 

 
𝐒𝐫𝐞𝐬𝐭𝐫𝐚𝐢𝐧𝐭 = Wcavity ⋅ Scavity +Wnmr ⋅ Snmr +

+Wtether ⋅ Stether +Wph4 ⋅ Sph4
 (5) 104 

 105 

In our Virtual Screening, we have defined the docking cavity where the previous druggability studies 106 

found at the interface of both CheA and CheY. We also added two pharmacophoric restraints that were 107 
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also found in previous druggability studies, one hydrogen bond acceptor involving the NH group of 108 

CheY TYR10, and one hydrophobic region, stacking with CheY ILE12. The system is represented in 109 

figure 4. The receptor flexibility was accepted within 3.0 Å of the docking cavity, which means that 110 

terminal OH and NH3+ groups will be treated as flexible. 111 

The compounds used to perform the Virtual Screening were exported from our own database of 112 

commercially available compounds. This database has almost 5 million non-redundant compounds 113 

from 13 different vendors. All the compounds have been prepared using ligprep software from 114 

Schrödinger, which converts from two-dimensional to three-dimensional structural data. The 115 

compounds generated have been limited to have, at most, 8 stereoisomers and 6 tautomers. Moreover, 116 

when more than one ionization state is present (in a proportion higher than 10%) in a pH range 117 

between 6.0 and 8.0, both structures are kept. 118 

We exported a set of about 1.200.000 compounds, which accomplished several conditions: the number 119 

of violations of Lipinski’s and Veber’s rules and the number of reactive atoms was 0, the number of 120 

conformational states was less than 4 and in a proportion higher than 0.1 and the number of 121 

hydrogen-bond donor and acceptor was higher than 1. 122 

Finally, we performed the molecular docking using a High Throughput Virtual Screening protocol for 123 

rDock, which indicated how many steps to run for each of the ligands docked and the energy cutoff for 124 

selecting the best poses. We have defined this protocol to run three steps: first, make 5 runs and check 125 

if the Sinter  value (we have selected this term of the scoring function as the reference one because we 126 

are comparing the interaction between thousands of ligands and the protein-protein interface) is 127 

smaller than −15. Second, if any pose passes the first filter, then run 15 more steps and check again if 128 

Sinter  is smaller than −20. And, the last step, if any pose has passed the last two filters, run up to 50 129 

steps and write the resulting poses that have not moved away from the docking cavity to the output. 130 

 131 

Surface Plasmon Resonance 132 

To validate the computational experiment results, an experimental confirmation was needed. The 133 

chosen technique to do so was Surface Plasmon Resonance (SPR). SPR technique is a method that, 134 

using optical measures, can determine in real time the interaction of two or more molecules by 135 
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comparing the refractive index of material adsorbed on a metal, usually gold. The material adsorbed 136 

has to be forming very thin layers. Then, we can straightforwardly transform this response into 137 

interaction affinities [15]. Applying this, we can assess the interaction between small molecules and 138 

proteins [16]. In our case, it was slightly different, as we did not work with one protein but with the 139 

complex formed by two proteins. 140 

We used Biacore technology with CM5 chips. All the buffers used were HBSN, that contains 10mM of 141 

HEPES and 150 mM of NaCl in water, with 1% of DMSO at pH 7.4. The temperature was always set 142 

to 25 Celsius degrees. Both proteins included a His-tag in order to make the production and 143 

purification stages easier. 144 

For the covalent immobilization on the chip, the protein chosen was CheY, as it gave us better response 145 

in first tests. To immobilize it, we ran a protocol consisting in three stages: first, 7 minutes of a 146 

EDC/NHC 1: 1 solution for activating the surface; second, Chemotaxin Y during as many time as 147 

needed to reach about 120 of RU fixed; and third, 7 minutes of Ethanolamine solution for 148 

deactivating the excess of reactive groups (these activating and deactivating solutions were provided 149 

within Biacore consumables). All these steps were performed using a flow rate of 10 𝜇𝐿/min. 150 

For compound screening, we used the previously selected compounds to determine a reproducible and 151 

reliable experimental protocol. It consisted in adding a mixture of CheA and one compound, which 152 

allowed us to determine the effect of each compound by comparing its response with a reference with 153 

only CheA. All the interaction steps were run using a flow rate of 30 𝜇𝐿/min during 60 seconds. 154 

Two regeneration stages were needed after running every interaction step. The first one with SDS 155 

0.25% during 60 seconds and the second one with NaOH 0.1 M during 30 seconds (also using a 156 

flow rate of 30 𝜇𝐿/min). 157 

 158 

Results 159 

Virtual Screening 160 

Once the docking job was finished, we merged all the output results and get a total of more than 161 

64.000 docking poses with the Sinter  score smaller than −20 (the minimum and mean scores were 162 

−30.69 and −21.28, respectively). 163 
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Then, we applied several filtering steps in order to decrease the number of compounds and facilitate a 164 

final manual inspection to select the most likely ones to be actives. We filtered out the poses with 165 

Srestraint  higher than 0.5 and selected the pose with smallest Sinter  of each ligand. As we had used a 166 

pharmacophoric restraint involving one hydrogen-bond in the active site, we decided to divide all the 167 

resulting ligands in different subclasses depending on the chemical group which was fulfilling the 168 

restraint. Afterwards, the resulting groups were clustered by fingerprint similarity and a last manual 169 

inspection was performed to make a selection the most interesting ones that spanned as many 170 

chemical groups as possible. The evolution of the whole filtering process is represented in table 1. 171 

The selection of the compounds was performed with two main objectives: first, we selected the 172 

structural patterns that were present in the binding pocket and accomplished the defined restraints in 173 

order to obtain a set as diverse as possible, but also maintaining the representativeness of the selected 174 

compounds. Then, we performed a clustering filter and manually inspected all the centroids. 175 

This way, we obtained a set of more than 50 compounds that was diverse and was formed by 176 

molecules that represented almost all the output compounds selected in the Virtual Screening process. 177 

 178 

Experimental Validation 179 

Kinetics of CheA and CheY complex. The immobilized amount of CheY in this experiment was about 120 180 

RU. The two molecular weights of the immobilized protein (CheY) and binding protein (CheA) are 181 

15.000 and 18.000 Da, respectivelly. The theoretical Rmax is about 145 RU whereas the predicted 182 

one is about 130 RU. Figure 1 depicts the response during contact time with a solution of CheA from 183 

0 to 50 𝜇𝑀. Moreover, we predicted the kD for the protein-protein complex, being about 3.7 𝜇𝑀. In 184 

figure 2, the fitted curve for kD prediction is represented. 185 

 186 

Compounds screening. We tested all the compounds by adding a concentration of 100 𝜇𝑀 of each one 187 

with CheA at a concentration of 1.25 𝜇𝑀. 188 

We found two compounds that seemed to inhibit the interaction of the complex (compounds I1 and 189 

I2). Adding these compounds one by one in combination with CheA, made the response decrease to 190 

almost zero, as can be seen in figure 2. Moreover, we also found one compound that was increasing the 191 
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affinity for the interaction of both proteins (compound G1). In figure 2, it is represented the increasing 192 

of the response when combining this compound and CheA. 193 

The binding mode of these three compounds when binding at the protein-protein interface was 194 

predicted in the molecular docking stage. In figure 4, the two-dimensional structures of each 195 

compound and the predicted binding mode of the stabilizing compound are represented. 196 

  197 

Discussion 198 

Using computational methods, we reduced the number of compounds to be assayed from more than 199 

one million to less than one hundred. This has been done, first, by performing Virtual Screening and, 200 

second, by several filtering stages based on the diversity of the chemical groups that fulfil the hydrogen 201 

bond pharmacophoric restraint. The final selection, both clustering by fingerprint and manual steps, 202 

was performed with the intention of maintaining the proportion of each of the classes selected. As seen 203 

in table 1, the compounds selected and tested posteriorly spanned all the interesting chemical 204 

patterns. This way, we ensured that diversity was such that we could obtain as many active hits classes 205 

as possible, facilitating further structure-based drug design studies. 206 

In the experimental approach, two main tasks were performed. First of all, we characterized the 207 

interaction between the two proteins. The response increases as the concentration of CheA also 208 

increases, reaching a saturation maximum at about 145 RU, when the concentration of CheA is 50 209 

𝜇𝑀. The kD predicted is about 3.7 𝜇𝑀, in the same order than previous studies [17]. Second, and 210 

most important, we performed the screening of the compounds selected in the computational 211 

approach. 68 compounds were tested, from which 3 of them were producing significant effects to 212 

the complex interaction. 2 out of this 3 compounds were decreasing the affinity, whereas the other 213 

one was increasing it. We also run the experiments without CheA in order to ensure that the 214 

compounds were interacting at the interface. As shown in figures 2 and 2, they had no effect by 215 

themselves. Surprisingly, we found two compounds that were inhibiting the interaction of the complex 216 

instead of the expected effect, the stabilization. In previous studies has been shown that small 217 

modifications in ligands may produce the opposite effect [18]. Hence, we are planning to repeat these 218 

tests with analogous compounds trying to enhance complex stabilization. 219 
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Moreover, we also tried to check the binding of all the compounds with individual proteins. As the 220 

fixed protein to the chip was CheY, we could not assess the effect of the compound when binding to 221 

CheA. Hence, we performed experiments adding only one compound at each step to the fixed CheY and 222 

we did not see any significant effect, although it could be due to low sensitivity of SPR technology with 223 

such differences in molecular weight. Thus, more experiments in this direction are needed to explain 224 

these changes in the expected activity. 225 

In the case of the stabilizing compound G1, we also going to run more tests with analogous compounds 226 

to try to stablish a structure-activity relationship. In figure 4, it is possible to see the fixed structures of 227 

each compound for this structure-activity relationship studies. 228 

We also made several dose-response tests with the three compounds, I1, I2 and G1. In all cases, the 229 

affinity of the complex returned back to the values without any compound. On the other hand, when 230 

increasing the concentration of G1, the response achieved a maximum corresponding to the predicted 231 

Rmax (data not shown). For example, in the case of figure 2, the RU observed when having both the 232 

CheA and the compound were about 140, while the expected RU for that specific concentration of 233 

CheA was about 60. This was in concordance with the experiment for determining the kD, where the 234 

predicted Rmax was about 130 RUs. 235 

Finally, the predicted binding mode energy for I1, I2 and G1 was −23.44, −20.14 and −23.17, 236 

respectively. 237 

 238 

Conclusions 239 

Drug candidate assays in pharmaceutical industry are very time and resources demanding. Here, we 240 

have taken advantage of a combination of computational and experimental approaches to perform a 241 

feasible way of finding active hits. We demonstrated that instead of directly testing millions of 242 

commercially available compounds, with the consequent financial efforts, it is possible to use Virtual 243 

Screening and chemo-informatics methods for selecting and buying tens of compounds and perform 244 

experimental tests to characterize their effect. 245 

Despite the difficulty of finding protein-protein interface inhibitors [19], we found three 246 

protein-protein interface binders from the total 68 compounds tested. Two compounds decreased 247 
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the affinity of the complex and one increased it. 248 

Finally, and most important, with this proof-of-concept we have also confirmed protein-protein 249 

interfaces as possible novel drug targets. Rational design of these targets could become a real option in 250 

present and future of drug-discovery, from binding pocket detection and druggability prediction to 251 

drug-target interaction and active hits selection. Thus, as our knowledge about protein-protein 252 

complexes and crystal structures is increasing, we believe that it would indeed be possible to increase 253 

productivity of drug-design industry. 254 

As stated in some recent articles [6], protein-protein interfaces are not currently being exploited in 255 

drug-design. We are planning to also explore interfaces between domains in multi-domains proteins, 256 

between different protein subunits in future studies. 257 

As a concluding remark, it should be noticed that further validation studies are planned to be carried 258 

out. Molecular dynamics simulations will be performed with the stabilizing compound to see if the 259 

predicted binding mode is indeed correct and in vitro experiments for obtaining the crystal structure of 260 

the complex with the compound will also be done. 261 
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Tables 342 

 343 

Table 1. Summary of post-docking filtering stages.  344 

Smarts pattern   Structural Descriptor   Compounds   Compounds 

after clustering 

 Selected 

compounds 

[SX4]([OX1])([OX1])   Sulfonyl   1134   155   12 

s1c2ncncc2cc1   Thienopyrimidine   46   9   3  

o1nccc1   Isoxazole   773   89   7  

c1cccnc1   Pyridine   603   213   2 

n12N=CC=Cc1nnc2   Pyrimidine-Triazole   300   6   2 

[#7, #8]   Hydrogen bond 

acceptor  

 3430   1501   9 

[OX2H]   Hydroxyl   487   204   4 

C(=O)N   Amides   697   345   13  

-   Unclassified*   4500   -   -  

*The compounds marked as unclassified were not matching any smarts pattern or were outside 345 

pharmacophoric restraint region. They were manually inspected, but none of them seemed interesting 346 

to us.  347 

  348 
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Figure Captions 349 

 350 

Figure 1. The different curves represent the response units versus time for the interaction between 351 

fixed CheY and variable CheA in the following concentrations: 0, 0.1, 0.6, 1.25, 2.5, 5 and 50 𝜇𝑀. 352 

   353 

Figure 2. Calculation of the kD for the complex. In black, the fitted response and, in gray, the value 354 

predicted as the kD. 355 

   356 

Figure 3. Response of the two inhibitors compounds. I1 and I2 are represented in blue and red, when 357 

combinated with CheA, and in light blue and light red, when added without the protein. In black, CheA 358 

alone and, in gray, a reference with running buffer (a). Increase of the response produced by the 359 

combination of the compound G1 with CheA. The response of the protein with G1 is represented in 360 

green and, in light green, the compound without the protein. CheA alone is represented in black and 361 

the reference with running buffer is represented in gray (b). 362 

 363 

Figure 4. Two-dimensional representation of the three compounds. In the left and in the center, the 364 

two inhibitors. On the right, the stabilizing compound. The structure depicted in color red is the 365 

common structure that we will remain fixed for following structure-activity relationship studies (top). 366 

View of the predicted binding mode of G1 compound in the protein-protein interface. CheA and CheY 367 

are represened in orange and yellow, respectively. The two restraints are also displayed: the blue stick 368 

is the NH group of TYR10 which forms the hydrogen bond, and the turquoise sphere represents the 369 

hydrophobic region (bottom). 370 

 371 
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