Valentina Catagnano

APROXIMACIÓN MORFOMÉTRICA Y PALEOGENÉTICA AL ESTUDIO DE LA VARIABILIDAD DE

Canis l. familiaris

EN LA PENÍNSULA IBÉRICA DESDE EL NEOLÍTICO HASTA ÉPOCA ROMANA Y SU CONTEXTUALIZACIÓN EN EL ÁMBITO DEL MEDITERRÁNEO OCCIDENTAL

CAPITULO X Discusión y conclusiones finales

10 Discusión de los resultados

La investigación sobre la variabilidad morfométrica de una muestra importante de restos de cánido recuperados en yacimientos de la península iberica ha permitido alcanzar una mejor comprensión sobre la gestión y selección de *Canis I. familiaris* en este territorio desde sus primeras evidencias hasta época histórica. El modelo de análisis que hemos presentado para abordar ésa problemática ha tenido como punto de partida la caracterización morfométrica de los ejemplares procedentes de los seis yacimientos objeto de estudio directo (Capp. IV-VII) y un sucesivo analisis comparativo en base a los datos biométricos publicados en el ámbito Peninsular y del Mediterráneo occidental (Cap. VIII). Complementariamente se han aplicado dos técnicas genéticas distintas con la finalidad de alcanzar una caracterización fenotípica y taxonómica de algunos de los ejemplares estudiados (Cap. IX).

Este procedimiento ha permitido:

- (1) verificar la coherencia entre los datos analizados directamente y los existentes;
- (2) evaluar la dinámica de la variabilidad relativa en cada periodo cronológico;
- (3) analizar a nivel diacrónico las tendencias en la variabilidad canina en el contexto peninsular y del Mediterráneo occidental y establecer los principales puntos de inflexión a nivel histórico y
- (4) evaluar el carácter resolutivo de las tendencias evolutivas observadas, contrastando si la variabilidad es el resultado de dinámicas a pequeña, media o gran escala, es decir, si responde a fenómenos de carácter local o bien se trata de un modelo compartido entre las distintas áreas geográficas analizadas.

A partir de los resultados obtenidos realizamos en esta última parte su contextualización espacial y temporal, incidiendo en los aspectos más significativos que guían la dinámica de cambio en las estrategias de gestión de los cánido a lo largo de la Historia. Se comentan en esta línea las contribuciones aportadas con este trabajo de investigación al estudio de la dinámica evolutiva de *Canis lupus* y *Canis I. familiaris*, integrándolas al debate general sobre el tema.

10.1 Variabilidad de Canis I. familiaris: un primer balance

Un primer balance sobre la diversidad del perro en ámbito peninsular se basa en los resultados obtenidos a partir del estudio directo de los restos de cánidos procedentes de los yacimientos de Serra de Mas Bonet, Can Xercavins, Mas Castellar, Ampurias, Camino del Molino y El Mallols. Se ha observado como los ejemplares ibéricos de Can Xercavins, Mas Castellar y los tardorromanos

de Els Mallols representen morfotipos comunes a los documentados en otros yacimientos contemporáneos. El estudio de Camino del Molino y Ampurias, en cambio, ha permitido aportar algunas nuevas contribuciones en relación a la variabilidad de las poblaciones caninas en lo relativo a:

- la documentación, a partir de época calcolítica, de una importante diversidad de perros;
- la presencia de restos de Canis lupus depositados en el yacimiento de Camino del Molino (y su uso complementario durante este intervalo temporal a la forma domestica);
- 3. la documentación de un tipo de perro poco difuso en el contexto peninsular correspondiente a la Edad del Hierro.

Las observaciones resultantes del punto 1 nos han brindado la oportunidad de reflexionar acerca de los factores que pueden haber contribuido a incrementar la variabilidad intraespecífica en época prehistórica, y, en particular sobre el papel ejercido por la acción antrópica a partir de presiones selectivas de diversa índole y la contribución que estas acciones pudieron haber tenido en la hibridación, contemplando igualmente la posibilidad de cruces naturales. En relación al punto 2, la excepcionalidad del hallazgo merece algunas consideraciones respeto a su posible significado y a las implicaciones en términos de relación entre los grupos humanos y esta especie en momento avanzados del Holoceno.

En relación a los resultados relacionados con la diversidad morfométrica deben realizarse algunas observaciones de carácter puramente metodológico concernientes a los distintos análisis aplicados para su investigación. En el marco de los estudios arqueozoológicos los procedimientos aplicados han consistido en el análisis morfométrico y biométrico, a partir de los cuales se ha llevado a cabo la diferenciación entre perros y lobos y caracterizado de forma general la variabilidad de las poblaciones caninas. Esta se ha investigado también genéticamente amplificando algunas muestras de DNA extraídas sde distintos ejemplares de los conjuntos analizados a través de del método de secuenciación Sanger y de la secuenciación masiva en paralelo (*Next Generation Sequencing*). Estos trabajos, conjuntamente al tratamiento estadístico de los resultados, han permitido establecer cuales son en cada caso los elementos esqueléticos más representativos de la variabilidad canina y contrastar la validez de los criterios utilizados en la diferenciación morfológica y biométrica entre perros y lobos a partir de los resultados obtenidos con los análisis genéticos. Se presentan y discuten a continuación estos resultados.

Sin duda alguna, el análisis del registro óseo recuperado en el yacimiento de la cueva de Camino del Molino ha contribuido notablemente a aumentar nuestros conocimientos sobre la variabilidad del perro en el Calcolítico peninsular. Los resultados obtenidos mediante el estudio morfométrico y estadístico de cada uno de los ejemplares que ha sido posible reconstituir evidencian la existencia de una elevada variabilidad respeto a la talla y robustez de los cánido representados en este yacimiento. Investigando la diversidad hemos logrado distinguir, a partir del *Mixture* análisis de los valores LSI de los principales elementos óseos, dos poblaciones distintas en el marco general del conjunto estudiado. La primera, de talla mayor, corresponde a *Canis lupus* y la segunda a *Canis I. familiaris*. Analizando posteriormente por separado el conjunto de restos atribuidos al perro se ha logrado diferenciar al menos cuatro grupos distintos de talla que tendrían significancia estadística: pequeña, mediana-pequeña, mediana-grande y grande, con una oscilación de alturas a la cruz que van desde 33,3 cm hasta 54,5 cm (según los perros que han podido ser individualizados en este yacimiento).

La talla mediana, representada por un tipo de perro mesomorfo y eumétrico de altura a la cruz entre los 40-50 cm, no muy robusto, es la más representativa del conjunto. A los extremos de esta franja mediana se sitúan los ejemplares de tamaño mediano-pequeño (<40 cm) y los de talla grande (50-60 cm), que, aunque no numerosos, prueban una diversificación en el tamaño de la especie. Para caracterizar y agrupar los individuos según la talla y la robustez expresada por los valores LSI de los principales huesos postcraneales, se ha recurrido a la estadística multivariante utilizando los análisis de componente principal (PCA) y el análisis de conglomerados (Figs. 8.26 y 8.28). El resultado de estos *tests*, realizados a partir de los valores LSI, ha mostrado la presencia de cuatro grupos estadísticamente significativos y una correlación entre la altura a la cruz y las características biométricas (altura+robustez) en algunos individuos.

La constatación de una diversidad importante de tipos caninos representada en el yacimiento de Camino del Molino, nos ha llevado a revisar en parte la teoría generalmente compartida que excluiría en época prehistórica la manipulación antrópica basada en presiones selectivas específicas. La innegable utilidad de *Canis I. familiaris* como ayuda complementaria en distintas tareas (caza, guarda, vigilancia, pastoreo, defensa) implica necesariamente la gestión de la especie, incluyendo también el control de su reproducción. El modelo que consideramos más verosímil contempla una selección intencionada de animales con determinadas características físicas. Esta selección se realizaría paralelamente a los cruces accidentales, que podían ser corrientes también entre las formas domésticas y las salvajes. De hecho, el flujo genético continuo entre perros y lobos, a partir de las fases iniciales de la domesticación, ha contribuido a

la variabilidad genética y fenotípica del perro (Fredmann et al., 2014). En éste escenario en que la manipulación humana de la especie pudo ser un fenómeno incipiente, otro factor tal como la hibridación entre perros y lobos, ha podido contribuir a aumentar la variabilidad entre la población canina.

La segunda aportación interesante se relaciona precisamente con la documentación de la presencia de restos de lobos depositados en la cueva sepulcral de Camino del Molino. Como hemos comentado en el Cap. II, a partir de la Arqueozoología la diferenciación entre el perro y su agriotipo viene realizándose teniendo en cuenta dos aspectos principales: la diferencia de tamaño entre las dos especies y los criterios diagnósticos relativos a la morfología cráneo-mandibular. En nuestro caso la distinción taxonómica se ha realizado analizando biométricamente y morfológicamente dos cráneos y los distintos elementos de esqueleto apendicular asociados al menos a tres individuos. En relación al cráneo, se ha registrado su conformación general, la morfología de la bulla timpánica y de la cresta sagital, la longitud del cuarto premolar del maxilar en relación a la de los dos dientes molares. De la mandíbula se ha analizado con esta finalidad la morfología del margen del borde caudal de las apófisis coronoidea y condilar (Olsen, 1985; Gilbert, 1990; Clutton-Brock, 1980; Benecke, 1987). A partir de éste estudio se ha concluido que el cráneo y las mandíbulas del ejemplar CMOL 1 reflejan características lobunas, y que la longitud del cuarto premolar superior excede la suma de la medida de los dos molares maxilares. En lo que respecta al cráneo fragmentado del individuo CMOL 27, del que se ha recuperado la región occipital, parte del neurocráneo y del maxilar, cabe mencionar que muestra una fuerte similitud biométrica y morfológica con el ejemplar CMOL 1 respeto al desarrollo de la cresta sagital y la forma de la bulla, cumpliendo también el criterio relativo a la longitud del cuarto premolar. Estos mismos métodos no se han podido aplicar al individuo CMOL 22, del que se conserva parcialmente la mandíbula y pocos fragmentos inconexos de cráneo. Las pocas medidas registradas de CMOL 22 son, pero, comparables a las obtenidas para CMOL 1 y CMOL 27. El otro procedimiento analítico aplicado, el análisis biométrico de los elementos del esqueleto postcraneal, muestra como resultado la clara y neta separación de esos tres cánidos del resto de animales del conjunto. Se ha procedido a continuación a analizar de forma exhaustiva las características físicas de estos tres ejemplares de Canis lupus.

Un aspecto interesante de esta parte de la investigación ha sido evaluar la variabilidad biométrica entre los principales restos del esqueleto apendicular asociados a esos tres individuos. De particular utilidad se han revelado en este sentido la aplicación de análisis de conglomerados, realizados a partir de los valores LSI del esqueleto postcraneal (Fig. 8.30). El clúster ha separado

en dos ramas distintas CMOL 1 y 22 de CMOL 27. Esta observación nos has llevado a explicar teóricamente la diferencia biométrica hallada entre estos ejemplares con el dimorfismo sexual y/o con la hibridación. En un ulterior estudio, correlacionando los valores de la media del LSI del cráneo y del postcraneal de CMOL 1 y CMOL 27 y de dos ejemplares de lobos mesolíticos del yacimiento de Gibijo (un macho y uno de sexo indeterminado) (Fig. 8.32), hemos valorado la posibilidad de que los ejemplares del yacimiento de Camino del Molino representen dos individuos de sexo distinto (CMOL 1 macho y CMOL 27 hembra).

La confirmación a las observaciones arqueozoológicas y estadísticas se ha logrado después integrando a estos datos los resultados de los análisis genéticos de PCR y NGS. Las secuencias obtenidas con la PCR del mtDNA de las muestras de CMOL 1 y CMOL 27, una vez comparada con las de lobos y perros modernos y antiguos (Fig. 9.1) descritas en la literatura publicada, han asociado los haplotipos de CMOL 1 y CMOL 27 al referencial de lobos y perros modernos, mientras un segundo haplotipo obtenido por la muestra de CMOL 27 no ha encontrado correspondencia en el referencial (cfr. Capítulo IX). Considerado el tamaño pequeño de las secuencias analizadas, con el análisis del mtDNA no ha sido posible lograr una clasificación cierta de los restos y debido a la herencia exclusivamente materna del mtDNA, no se ha podido tampoco excluir la hipótesis relativa a la hibridación. Sin embrago, hemos alcanzado un punto de inflexión analizando la muestra de CMOL 1 mediante la aplicación de la Next Generation Sequencing que ha comprobado sin dejar lugar a dudas que ese individuo es un ejemplar de Canis lupus (Fig. 9.2). La coincidencia de resultados en la atribución taxonómica lograda por el estudio arqueozoológico y genético de CMOL 1 ha sido también una ocasión para comprobar la validez de los criterios básicos de diferenciación entre perros y lobos aplicados comúnmente desde la Arqueozoología.

La combinación de Arqueozoología y Paleogenómica, en una óptica de investigación multidisciplinar, es, en nuestra opinión, la metodología más valida y practicable en la actualidad. Una multiplicidad de aspectos, entre los cuales se encuentran la variabilidad y funcionalidad de una especie, investigados bajo ambas las perspectivas a partir de correlaciones pueden generar datos con un potencial informativo ciertamente superior a lo alcanzable aplicando únicamente los métodos clásicos del análisis arqueozoológico.

La presencia del lobo entre los cánidos que acompañaban a los inhumados es una evidencia arqueológica sin precedentes cuya interpretación resulta compleja. Descartando la posibilidad que se trate de animales caídos accidentalmente y atrapados en la cueva, avalamos la hipótesis

que fueron depositados intencionalmente, de forma similar a los perros. La interpretación más corriente de las deposiciones de cánidos (enteros o representados por su cráneo) en contextos funerarios se basa en que estos corresponden a sacrificios realizados en ocasión de la muerte de una determinada persona²⁶ (¿su propio dueño?). La utilización del perro como acompañamiento de los difuntos es simbólicamente una prosecución en el más allá de su función de protector y guía desempeñada en vida. Si estas argumentaciones se fundamentan sobre el papel del perro y su estrecha vinculación al hombre, ¿es posible extenderlas al lobo para explicar su presencia en el espacio funerario?

Una primera hipótesis es que a su utilización en la esfera simbólico-funeraria se corresponda con su explotación durante la vida. A nivel teórico es posible suponer, aunque esporádicamente, la incorporación al nicho antrópico de lobeznos criados en cautividad utilizados igual que los perros en todos los aspectos de la vida y de la muerte. Una segunda hipótesis, totalmente contrapuesta, contempla la posibilidad que estos restos correspondan a presas sacrificadas (¿degolladas?) y depositadas en relación a algunos individuos específicos (¿tributos en honor de determinados personajes?) o bien sin una asociación particular a personas determinadas, enterrados y asociados al conjunto sepulcral completo.

En el Mediterráneo occidental no tenemos constancia de enterramientos de lobos en contextos sepulcrales prehistóricos. Solo un caso de dudosa interpretación se ha documentado en el yacimiento neolítico de Staines Road Farm en Inglaterra (Clark, 1996). En una fosa se ha recuperado el cráneo (con un fuerte golpe traumático) y una de las mandíbulas de un cánido de talla grande depositado en asociación a dos inhumaciones; los restos han sido interpretados como correspondientes a un probable lobo de talla pequeña aunque no se haya podido descartar totalmente la posibilidad que se trate de un tipo de perro de talla grande que excede notablemente de la variabilidad documentada para los perros neolíticos.

En relación al tercer aspecto destacado - la documentación de un tipo escasamente representado hasta el momento en los yacimientos de la Edad del Hierro de la Península- cabe mencionar que la variabilidad documentada en los individuos de la Edad del Hierro estudiados presenta dos tendencias netamente opuestas. Un primer grupo de perros corresponde a los individuos recuperados en los yacimientos ibéricos de Can Xercanvins y Mas Castellar (CXE 1, MCS 1 -solo

²⁶ A este respeto recordamos que en Camino del Molino la fuerte alteración de la estratigrafía no ha permito realizar ninguna asociación entre inhumados y cánidos.

cráneo- y MCS 2). Se trata en este caso de ejemplares con una altura a la cruz alrededor de los 55 cm, de extremidades esbeltas, que han mostrado una fuerte proporcionalidad métrica entre el cráneo y los elementos del esqueleto postcraneal. La conformación física de estos ejemplares representa un morfotipo muy difuso en ésta época tanto en ámbito peninsular como en el Mediterráneo occidental (Fig. 8.60) cuya funcionalidad se ha relacionado principalmente con el pastoreo (Vega Toscano *et al.*, 1998). El perro hallado bajo la muralla de Ampurias, representa, en cambio, un morfotipo totalmente distinto. Se trata de un perro de talla mediana-pequeña (promedio AC= 37,2 cm) poco difuso en los yacimientos peninsulares coetáneos donde el tipo más documentado es un perro de talla grande, con una altura a la cruz alrededor de los 50-55 cm. En la bibliografía, solo en los contextos de La Mota y de Las Quintanas-Padilla (Morales & Liseau, 1995) se hace referencia a perros de tamaño meno (AC entre 30 y 40 cm), aunque la falta de informaciones completas impide una comparación con el ejemplar de Ampurias. La cría selectiva de esos tipos de perros, cuyo tamaño sugiere una función no utilitaria, como la de simple animal de compañía, será corriente en época romana, cuando se documenta una reducción drástica de la talla con la conformación de tipos enanos, aspecto que comentaremos seguidamente.

10.2 Variabilidad de Canis I. familiaris: una visión integrada de la problemática

Al introducir el presente trabajo, uno de los aspectos que hemos destacado respeto a la investigación de *Canis I. familiaris* en ámbito peninsular, es la falta de estudios en que se analiza de forma sistemática el tema de la variabilidad canina. A ése respeto, nuestro proyecto ha pretendido cubrir ése vacío marcando un importante paso adelante en la investigación de la diversidad osteométrica y morfológica del género *Canis*, presentando una novedosa propuesta metodológica multidisciplinar. Tratándose de un estudio pionero, lo consideramos un punto de partida para el desarrollo de futuros trabajos que podrán contribuir positivamente al debate sobre la dinámica evolutiva de estas especies.

Para caracterizar esta dinámica evolutiva durante la Prehistoria hasta época romana se ha desarrollado y aplicado una propuesta metodológica basada en el análisis biométrico que comprende tanto el estudio específico de individuos y conjuntos individualizados como el análisis sintético articulado en base a los ámbitos cronológicos tradicionales. Este enfoque nos ha permitido contrastar la presencia de determinados morfotipos en un periodo cronológico/área geográfica concretos y reseguir a nivel sincrónico y diacrónico su expansión. La mayor limitación con la que nos hemos enfrentado ha sido la falta de medidas publicadas de animales completos, correspondiendo estas la mayoría de veces a elementos aislados, ya sean dientes o determinados

huesos del esqueleto postcraneal. A pesar de eso, un primer análisis (Fig. 8.53) realizado a partir que los valores LSI del esqueleto postcraneal ha mostrado que los ejemplares objeto de nuestro estudio directo se integraban en la variabilidad de sus coetáneos peninsulares, destacando no obstante el ejemplar mencionado anteriormente del yacimiento de Ampurias. Ha sido posible establecer de manera exhaustiva la diversidad de los cánido durante el Calcolítico, ya que de esta cronología contamos con un número relativamente más elevado de medidas publicadas, mientras que para las otras cronologías el número de medidas disponibles es en general menor. Jerarquizando los datos en base a las áreas investigadas (Áreas 2, 3, 4) según cronología, se observa también una cierta uniformidad, con pocas desviaciones respeto a la variabilidad media de los morfotipos documentados en cada época (Fig. 8.55-8.58 han cambiado de numero).

Pasando al estudio de los conjuntos/elementos individualizados, ha sido posible alcanzar una mayor concreción al disponer de más datos para las comparaciones. Aunque los efectivos disponibles por conjunto resulten numéricamente diferentes, la observación de la media de la variabilidad muestra, con pocas excepciones, una tendencia bastante homogénea a nivel sincrónico. Comparando de forma integrada estas tendencias sincrónicas se observa, a partir del Calcolítico, un aumento progresivo de la talla de los perros. Este aumento es progresivo hasta la Edad del Hierro, momento al que sigue una importante diversificación, ya en época romana. Es durante esta última cuándo se documenta una presencia generalizada de tipos bien diferenciados, con representación clara de grupos de talla extremos (perros pequeños y grandes). Una lectura más completa de estos datos se ha obtenido incluyendo también los yacimientos que presentaban pocos efectivos (Fig. 8.54). Se ha logrado, de esta manera, una sinopsis de lo que ha sido la evolución de la variabilidad canina en ámbito peninsular que ha confirmado y reforzado las observaciones anteriores. El Calcolítico y la época romana constituyen dos momentos claves en la diversificación morfométrica de los perros, documentándose en cambio durante el Neolítico, el Bronce y el Hierro una mayor homogeneidad.

El análisis comparativo entre los resultados de este estudio y los datos biométricos disponibles para la Península ibérica e italiana, se ha presentado al final del Capítulo IX, con el objetivo de comparar la variabilidad canina entre áreas geográficas tanto a nivel diacrónico como sincrónico. Los resultados (Fig. 8.64) evidencian una fuerte similitud para cada periodo/área, resultado que nos lleva a considerar la selección de *Canis I. familiaris* como un fenómeno que ha seguido tendencialmente, en términos generales, unas pautas significativamente afines. Las formaciones sociales asentadas en diferentes áreas geográficas habrían implementado modelos socioeconómicos análogos respeto a la estrategia de manipulación y gestión de la especie,

seleccionando de manera intencionada individuos con determinadas características funcionales para desempeñar tareas específicas. Considerando sumamente importante éste aspecto, nos parece imprescindible presentar un balance incorporando a la discusión las observaciones presentadas en distintos trabajos que, a nivel peninsular y del Mediterráneo occidental, han abarcado la misma problemática.

El trabajo de García-Moncó (2005) ofrece interesantes elementos de reflexión en relación a la variabilidad morfométrica del perro desde sus primeras manifestaciones en ámbito peninsular hasta el Neolítico final. Una primera observación, con la que coincidimos, es que la variabilidad canina sea resultado en su fase inicial (momentos correspondientes al mesolítico) de la aplicación de presiones selectivas basadas en sus propias características biológicas que "pero progresivamente se liga cada vez más a la funcionalidad del perro" (García-Moncó, 2005). Estos cambios estarían relacionados con su domesticación inicial y se vincularían a su adaptación al ambiente antrópico (cambios en la alimentación, pautas de movilidad, ...). Estos cambios biológicos resultado directo de la domesticación se traducirían principalmente a nivel de aspecto físico en una disminución general del tamaño y en una serie de modificaciones en la morfología de la región craneal, dando lugar a un tipo de perro bien diferenciado de su agriotipo, conformándose probablemente una primera población domestica con un cierto grado de homogeneidad. Contrariamente a lo esperado, pero, las evidencias arqueológicas relativas a los momentos iniciales de ése proceso muestran la presencia de al menos dos morfotipos contrapuestos. A este respeto nos parece muy ilustrativo mencionar los hallazgos de cánidos procedentes del Paleolítico superior de Erralla y de los estratos mesolíticos de los yacimientos de Marizulo y Cova Fosca. El húmero procedente del nivel V de Erralla (Altuna & Mariezkurrena, 1985) datado al Magdaleniense, muestra una reducción de tamaño respecto a los lobos contemporáneos y se ha clasificado como Canis I. familiaris, siendo hasta el momento el resto más antiguo (ca. 16.000 BP) de perro de la Península Ibérica. Sus dimensiones son parecidas a las del ejemplar recuperado en el yacimiento de Pont d'Ambon en Francia (10.730±100 BP), otra evidencia de perro doméstico del Tardiglaciar de Europa occidental (Vigne, 2005). Pasando al Mesolítico, la escapula de perro de dimensiones pequeñas recuperada en el Nivel II de Marizulo (Altuna, 1980 y 1994), comparada por el autor al tamaño de Canis palustris (el perro de las turberas), representa plenamente la culminación del proceso biológico de diferenciación entre lobos y perros. Ése "prototipo" de perro, pero, no es el único documentado en ámbito mesolítico peninsular. En el yacimiento de Cova Fosca los Niveles II y III conservaban algunos elementos óseos de cánidos de grandes dimensiones (atribuidos por su autor alternativamente a "perro grande o lobo pequeño", mientras en el Nivel S se recuperaron dos restos correspondientes a un

perro de tamaño pequeño (Estévez, 1988). La comparación métrica del MT IV del Nivel II con restos análogos de perros eneolíticos y del Bronce peninsular y de lobos de Lazaret (Niza, Francia) y de Purullena (Granada) ha sustentado la clasificación como perro de talla grande más que de lobo pequeño. La diversidad métrica de los restos de Marizulo y Cova Fosca parece obedecer a lógicas selectivas de orden biológico en que la variabilidad puede haberse visto acrecida indistintamente por fenómenos de hibridación o por distintos eventos de domesticación, independientemente de la manipulación humana intencionada. A falta de una muestra cuantitativamente significativa, resulta problemático asociar la variabilidad de los perros del Mesolítico a una forma de proto-selección antrópica orientada hacia la obtención de morfotipos de mayor tamaño. Si nos referimos al aspecto complementario de la variabilidad, la funcionalidad, teóricamente en una sociedad de cazadores-recolectores la presencia de ejemplares de talla grande se conjugaría con la necesidad de disponer de animales aptos para la caza o la defensa, mientras que los tipos de menor tamaño podrían corresponder a animales indiferenciados que ocupaban el nicho antrópico como especie comensal tolerada por el hombre. Estévez (1988), respeto a la función de los cánidos en Cova Fosca, atribuye su uso a tareas de ayuda o como animales de compañía, descartando su consumo alimenticio.

Las observaciones efectuadas sobre la diversidad registrada en ámbito del mesolítico peninsular, a pesar de su escasez, demuestran una concordancia general con los datos presentados por Horard-Herbin *et al.* (2014) en relación a la talla de perros coetáneos europeos (ca. de 9.000 a 7.000 a 4.000 cal. BC). La variabilidad documentada muestra un amplio rango que comprende des de animales talla grande (muy próximos a la variabilidad del lobo) hasta ejemplares de talla pequeña. Los autores, teniendo en cuenta la geografía de los hallazgos, relacionan esta diversidad métrica con la domesticación de distintas poblaciones locales de lobos en el Paleolítico superior. Los datos presentados no permiten efectuar un análisis más profundizado, dejando abierta la cuestión de la variabilidad observada durante el mesolítico.

Ya en el neolítico, y respeto al Mesolítico, se documenta un punto de inflexión respeto a los siguientes aspectos:

- (1) número de restos recuperados, sobretodo es su fase final (incluyendo esqueletos parcialmente completos);
- (2) variabilidad representada,
- (3) integración del perro en manifestaciones de la esfera simbólica (enterramientos) no documentados anteriormente en ámbito peninsular.

Los resultados obtenidos con el estudio de los valores LSI del esqueleto postcraneal describen para el Neolítico una población de individuos de talla mediana con oscilaciones hacia el tamaño mediano-grande y menos hacia el mediano-pequeño. Las escasas estimaciones de las alturas a la cruz disponibles hasta el momento muestran una medida mínima de 37,8 (Polideportivo de Martos-La Alberquilla; Riquelme et al., 2012) y máxima que oscila entre 50,8 y 57,1 (perro de Nivel I de Marizulo, Altuna, 1980). La altura media de 45,1 cm del ejemplar de Serra de Mas Bonet se sitúa entre los valores medianos documentados para esta cronología. Aunque considerando el sesgo informativo, fuertemente condicionado por las evidencias disponibles, el morfotipo canino más representado es el de tamaño mediano, comparable al perro ovejero catalán actual (AC 45-55 cm; García-Moncó, 2008). Los datos disponibles nos imponen una cierta cautela en el momento de tratar la problemática relativa a la selección intencionada durante esta cronología. Si por un lado resulta plausible suponer que los grupos humanos hayan simplemente explotado ese tipo de perro sin realizar una verdadera manipulación de la especie, por el otro no podemos excluir a priori una selección intencionada orientada a la obtención de tipos aptos para desempeñar actividades complementarias a la gestión del ganado, como la reunión y la guía de los rebaños.

Aparte de la conformación física *stricto sensu*, es posible que la selección intencionada se haya dirigido contemporáneamente hacia la obtención de determinados rasgos fenotípicos no detectables arqueológicamente, como puede ser un determinado color del pelaje. La hipótesis que consideramos más próxima a la realidad es que la variabilidad en época neolítica no es el resultado exclusivo de cruces naturales. Además, cabe recordar que junto a los individuos realmente explotados para la realización de actividades concretas, la población canina se componía de otros ejemplares sin una función específica (los perros parias) y que en casos esporádicos se ha documentado también la explotación de la especie como probable recurso cárnico (*cfr.* Cap. I, Parte II), aunque la marginalidad del fenómeno y la ambigüedad del registro arqueológico hacen excluir un consumo sistemático de la especie y una cría orientada a este propósito.

A partir del Calcolítico los hallazgos de perros se hacen más frecuentes debido principalmente a la práctica de depositar individuos enteros o representados por su cráneo en contextos funerarios, votivos, rituales y fundacionales. Se dispone, por consiguiente, de una muestra más amplia, hecho quenos ha permitido realizar una evaluación más exhaustiva de la diversificación morfométrica canina en ámbito peninsular durante esta cronología. A nivel diacrónico, la media de la variabilidad representada por los valores LSI del esqueleto postcraneal registra una modesta baja

de talla, aunque la mayoría de los restos analizados corresponden biométricamente a una franja de tamaño mediano (AC=40-50 cm), mostrando una continuidad respecto a la época neolítica. Un elemento de distinción con la cronología anterior es la documentación de la presencia, en los extremos de la diversidad, de efectivos correspondientes a ejemplares de tamaño relativamente más pequeño y más grande, que contribuyen a incrementar notablemente la variabilidad representada en periodos anteriores. Retomando los datos relativos a la altura a la cruz de los ejemplares ámbito peninsular, e incluyendo la información de las alturas estimadas en el yacimiento de Camino del Molino, se registra un rango de 33,3-56,25 cm (Valencina de la Concepción; Hain, 1982), cuyo límite superior podría exceder los 60 cm considerando el ejemplar de Pico Ramos (Castaños, 1995). La variabilidad registrada en Italia en época neolítica-eneolítica muestra una variación de talla que oscila entre 35,3 y 55,6 cm, con un promedio de 45,3 cm, con la presencia generalizada de tipos medianos-pequeños y la documentación en el Neolítico de dos ejemplares de talla pequeña en los yacimientos de La Marmotta y Scamuso (De Grossi Mazzorin & Tagliacozzo, 2000). En relación a la presencia de animales de talla pequeña, Horard-Herbin et al. (2014) sitúan en el Neolítico/Calcolítico la culminación del proceso de reducción de talla documentado arqueológicamente por los hallazgos de ejemplares de tamaño muy pequeño tanto en Europa suroriental como occidental. La creciente variabilidad del perro documentada en época calcolítica reflejaría una incidencia mayor de la manipulación antrópica de la especie, que puede relacionarse con el cambio en las estrategias de producción. En este sentido, con el progresivo abandono de la actividad cinegética a favor de una economía exclusivamente de tipo agropecuario, es posible suponer una mayor importancia del rol del perro como ayuda en las actividades humanas. Detectamos con la aparición de tipos que manifiestan un progresivo aumento de la talla (>50 cm), a partir de ésta época, el efecto de una probable selección antrópica intencionada que puede haber contribuido a la variabilidad morfométrica paralelamente a los cruces espontáneos.

Con la transición a la edad del Bronce en ámbito peninsular se documenta un leve aumento de la media de los valores LSI de esqueleto apendicular respeto al Calcolítico. La distribución prevalente de los efectivos se registra en torno a la franja mediana con una presencia poco marcada de valores que corresponden a ejemplares de tamaño grande y pequeño. Si analizamos globalmente la altura a la cruz de los perros, tal y como se recoge en el trabajo de Sanchís & Sarrión (2004), la casi totalidad de las medidas se sitúan entre los 40 y los 50 cm, con la sola excepción de Monachil y Purullena, yacimientos donde se ha registrado una altura a la cruz de 60 cm. En Italia, las dimensiones documentadas varían des de los 36 hasta 62,1 cm., con un promedio de 47,4 cm (De Grossi Mazzorin & Tagliacozzo, 2000). Aunque la variabilidad resulte amplia, la mayoría de los

morfotipos corresponden a la talla mediana. La diversificación se ha relacionado en este último caso con cruces espontáneos más que con una selección humana intencionada (De Grossi Mazzorin & Tagliacozzo, ibídem).

Considerando la relación entre funcionalidad y talla, el tipo común de perro indiferenciado mesomorfo del Bronce puede haber sido explotado indiferentemente en tareas de pastoreo y vigilancia, aunque hay que recordar que en distintos yacimientos peninsulares se ha documentado un aprovechamiento cárnico de la especie (Driesch & Boessneck, 1980; Friesch, 1987; Sanchís & Sarrión, 2004; Andúgar, 2015). Meniel (1987) propone para la edad del Bronce de Francia una falta de cría selectiva, atribuyendo al perro una función higiénica respeto a los desperdicios producidos por el hombre y reconociendo su importancia como fuente de proteínas. Vega Toscano et al. (1998) plantean, en relación a la uniformidad de tipos durante esta época, la posible existencia de dos tipos con uso distinto: "una variedad paria orientada hacia el consumo y otras de trabajo, formada por los antepasados de los actuales perros de pastor".

La edad del Hierro representa un cambio en la gestión y selección de Canis I. familiaris. El registro arqueológico evidencia una inversión negativa respeto al consumo de la especie y una variabilidad morfométrica más acentuada comparada con la registrada en época anterior. El análisis biométrico ha relavado un aumento tendencial del valor de la media de los valores LSI del esqueleto postcraneal que corresponde un incremento de la talla de los individuos. El intervalo de alturas a la cruz documentadas en ámbito Peninsular va des de un mínimo de 37,2 cm hasta un máximo de 61-62 cm, con una mayoría de individuos de tamaño alrededor de los 50 cm. La profusión de tipos más grandes no es un fenómeno local. En Italia, el promedio de las alturas a la cruz de ésa época se situa entorno a los 51,5 cm y el rango de alturas documentadas oscila entre 37,4-60,8 cm (De Grossi Mazzorin & Tagliacozzo, 2000). En Francia, las alturas medianas oscilan entre 40-50 cm, documentándose una altura mínima de 22 cm y una máxima de 62 cm (Meniel, 2002). A la selección intencionada de tipos hipermétricos tuvo que corresponder probablemente una explotación especifica (defensa, vigilancia) frente a la utilización indiferenciada de los tipos eumétricos mesomorfos. Vega Toscano et al. (1998), analizando algunos restos macromorofos meseteños de yacimientos prerromanos, reconocen en la cría selectiva de esos ejemplares un cambio de estrategia en la explotación de los ovicápridos. Esta hipótesis la basan en el hecho de que una ganadería orientada mayormente hacia los productos secundarios presupone la necesidad de emplear perros más grandes y fuertes, capaces de acompañar la trashumancia del ganado. La presencia de ejemplares macromorfos en la edad del Hierro precedería, según los autores, a la conformación de los mastines ibéricos en época prerromana.

La época romana corresponde al momento de mayor diversificación morfométrica canina, relacionada a una intensa y difundida actividad de selección intencionada (Harcourt, 1974; Altuna & Mariezkurrena 1992; Clark, 1995; Zedda *et al.*, 2006; De Grossi Mazzorin & Tagliacozzo, 2000, MacKinnon, 2010; Colominas, 2015). La cría selectiva de perros con determinadas características físicas (talla/robustez) y fenotípicas (color del pelaje) corresponde a una verdadera estandarización que se vincula estrictamente al uso efectuado del animal (pastoreo, caza, guarda), tal como ha sido descrito también por los autores antiguos (véase Cap. I, párrafo 1.1.6).

A partir del análisis biométrico de la muestra disponible para esta cronología en contexto peninsular, se obtiene el rango más amplio de variabilidad, hasta el momento no documenta. La población comprende desde individuos de talla pequeña-enana hasta muy grande. Se documenta así, en continuidad con la edad del Hierro, la cría selectiva de perros tipos hipermétricos y, al mismo tiempo, la tendencia totalmente opuesta a la selección de perros enanos, de tipo armónicos o braquimélicos, que tendrán una amplia difusión en todo el Imperio. El estudio del conjunto de Els Mallols ha revelado una cierta homogeneidad de talla entorno al tipo mediano y mediano-grande, con la sola excepción de un individuo joven que alcanzaría los 62 cm de alzada; no se han documentado en cambio restos de perros enanos.

Fernández (2003), partiendo del estudio de distintos yacimientos de época romana del norte peninsular, registra para los perros alturas a la cruz entre los 30,8-69,5 cm., remarcando la presencia "perros de compañía", o sea perros enanos que son presentes también con formas braquimélicas. Análogamente, en la *Hispania Tarraconensis*, los restos de cánidos recuperados en la necrópolis de Vila de Madrid (Barcelona) muestran un intervalo de alturas que oscilan des de los 25 hasta los 61 cm, que comprende un tipo braquimélico y otros tres ipometricos (<30 cm) (Colominas, 2015).

En Italia y Francia, las alturas a la cruz de los perros de época romana resultan muy similares: de 25 a 70 cm en Francia (Lepetz, 1996) y entre 26 y 69 cm en Italia (De Grossi Mazzorin & Tagliacozzo, 2000). En las dos áreas geográficas los ejemplos de perros ipométricos (25-35 cm) estan bien documentados (Farello, 1995; De Grossi Mazzorin & Tagliacozzo, 2000; Zedda *et al.*; 2006; Belhaoues, 2011; Valenzuela Lamas & Gardesein, 2005; Forest *et al.*, 2011; Colominas, 2015). Fernández (2003) considera estos perros como animales de prestigio que conferirían un mayor estatus a los propietarios (*estatus symbol*). miembros de la élite romana. No obstante, la opinión más acreditada es que estos animales tengan algún rol utilitarista en la economía humana. Colominas (2015) menciona en una reciente revisión la funcionalidad propuesta por

Clark (2012), autor que los define como "working terriers" potencialmente explotables en áreas rurales.

10.3 Conclusiones finales

Los análisis llevados a cabo en este trabajo han permitido incidir sobre la variabilidad morfométrica de *Canis I. familiaris* en la Península Ibérica, proporcionando nuevas informaciones respecto a la dinámica de selección de esta especie desde la Prehistoria hasta época romana. Para abordar este aspecto concreto a partir de los análisis arqueozoológicos se ha realizado una descripción de los morfotipos documentados en los seis yacimientos de referencia (Serra de Mas Bonet, Camino del Molino, Can Xercavins, Mas Castellar, Ampurias y Els Mallols) y un detallado análisis estadístico realizado a partir de los datos biométricos. Se ha aplicado a los restos del esqueleto postcraneal y de la región cefálica métodos de caracterización propuestos en trabajos precedentes enfocados en el análisis de la variabilidad específica del perro (De Grossi Mazzorin & Tagliacozzo, 1997 y 2000 entre todos), alcanzando una descripción morfométrica de los individuos estudiados y una imagen de su complexión que va más allá de la simple estimación de la altura a la cruz.

La abundante presencia de restos procedentes del yacimiento de Camino del Molino (Murcia) ha permitido la evaluación de la variabilidad de la población canina representada. Ésta se ha puesto en relación con la contribución de la selección antrópica en el proceso de diversificación, pudiéndose remontar a las fases incipientes de la domesticación. Además, la presencia de restos de *Canis lupus* asociados a las inhumaciones nos ha brindado la oportunidad de reflexionar sobre su posible integración, aunque esporádica, en el nicho antrópico, su utilización y su incidencia en la variabilidad de la población canina. Una de las problemáticas a las que hemos otorgado importancia es la correlación de los morfotipos caninos documentados con su posible uso.

A partir de las estrategias económicas y organizativas de las sociedades objeto de estudio, se ha proporcionado una gama de posibles usos de los cánidos a través del estudio de la conformación física de los individuos, destacando que estas funciones pueden ser alternativas y no excluyentes. En los contextos arqueológicos de procedencia de los restos analizados, de forma paralela, se ha relacionado la cuestión de la integración del perro (¿y del lobo?) en la dimensión simbólica e ideológica. La constatación de las asociaciones/caracteres recurrentes (presencia de restos cerámicos, vegetales, faunísticos,...) en las deposiciones intencionadas (de tipo funerario, ritual,

votivo,...) documentadas en el ámbito peninsular, ha facilitado la definición de los contextos de hallazgos de los cánidos estudiados. En unos casos se ha planteado -con la debida cautela- la posibilidad que algunas de las deposiciones puedan corresponder a acciones habituales de tipo sanitario (eliminación de las carcasas animales) sin relación con la esfera ritual, considerando sobre todo la ausencia de criterios de distinción significativos.

Otro aspecto remarcable en cuanto a las deposiciones intencionales, es la posibilidad que se hayan realizado sacrificando determinados individuos siguiendo criterios distintos (edad, sexo, color del pelaje, tamaño, funcionalidad,...) algunos de los cuales detectables únicamente a partir de la aplicación de análisis genéticos.

Los resultados obtenidos mediante el estudio estadístico integrado de las variables biométricas de los conjuntos analizados, del registro peninsular y del Mediterráneo occidental ha permitido analizar y evaluar la evolución de la variabilidad a lo largo del intervalo temporal considerado. Las dinámicas sincrónico-diacrónica observadas a nivel peninsular han demostrado tendencias afines a las perfiladas a partir de los hallazgos procedentes de contextos italianos, haciendo así presuponer la actuación de modelos comparables de gestión y selección de la especie. La escasez de registros relativos a las fases más antiguas dificultan el análisis de la variabilidad y, en este sentido, consideramos de grande interés la contribución aportada a la cuestión por el yacimiento de Camino del Molino (Murcia). El progresivo aumento de talla detectado desde el Calcolítico hasta la edad del Hierro sugeriría la implementación de criterios selectivos orientados hacia la cría de individuos especializados en determinadas funciones, como por ejemplo el pastoreo o la vigilancia. Los restos procedentes de la edad Hierro que hemos analizado en ámbito peninsular reflejan perfectamente dicha tendencia mientras que el perro procedente del yacimiento de Ampurias (Gerona) es un ejemplo claro de la diversificación de los cánidos hasta el momento poco documentada.

En este estudio se presenta un análisis interdisciplinar que integra los análisis arqueozoológicos y paleogenéticos. El estudio del aDNA ha sido orientado hacia la distinción específica entre las especies *Canis lupus* y *Canis I. familiaris*, así como el análisis de los rasgos fenotípicos como el color de la capa, el sexo y el tamaño, incidiendo sobre la variabilidad de las especies. Cabe resaltar el aspecto tafonómico en este estudio, dado que la muestra analizada se ha visto fuertemente afectada por factores previamente no controlables como la degradación y la contaminación. Los resultados logrados han sido de extrema utilidad para la clasificación taxonómica de los restos y nos han permitido corroborar la validez de las observaciones arqueozoológicas.

Los aspectos tratados en este trabajo representan solo algunas de las potencialidades de la integración de las distintas metodologías, la aplicación sistemática de análisis de genomas de cánidos antiguos puede en un futuro muy próximo contribuir a la investigación de cuestiones esenciales sobre la historia demográfica del perro, los procesos de sustitución o mestizaje asociados a migraciones humanas, su funcionalidad y la contribución de los tipos primitivos al origen de las primeras razas. Bajo esta perspectiva, la integración entre estudios paleogenético, paleogenómicos y arquezoologícos se impone como la metodología más apropiada para enfrentarse al estudio de la domesticación y de la variabilidad especifica del perro. Para la optimización de dicha integración seria adecuado incorporar protocolos anticontaminación durante el proceso de recuperación de las muestras por parte de los arqueólogos.

Por último, considerando el presente trabajo como un punto de partida de la investigación integrada de la variabilidad de *Canis I. familiaris* en la Península Ibérica y en el Mediterráneo occidental, confiamos que la propuesta metodológica que se ha presentado y los resultados obtenidos puedan facilitar el avance de la problemática, y que futuros estudios puedan seguir el camino que hemos trazado en estas páginas.

Agradecimientos

Al final de este viaje largo tres años son muchas las personas a las que tengo que dar las gracias. En primer lugar a mis directores María Saña y Oscar Ramírez por haberme guiado y soportado, aconsejado y ayudado en todo lo posible: gracias por el tiempo que me habéis dedicado y por haber creído en mí y en este proyecto. Gracias a las Instituciones que nos han concedido el material de estudio y su colaboración: el Dr. Rueda, director del Museo de Arqueología de Catalunya, el Dr. Lomba, director de la excavación de Camino del Molino, el Dr. Gil y el Dr. Vázquez-Autón de la Universidad de Murcia, la Dra. Pons, directora del Museu d'Arqueologia de Catalunya en Girona, el Dr. J. Francès i Farré, director del Museo del Poblado Ibérico de Ca n'Oliver, y la Dra. Santos, directora técnica del Museu d'Arqueologia de Catalunya en Ampurias. Gracias al Dr. Lalueza-Fox y al IBE CSIC-Pompeu Fabra y todo su equipo por haberme acogido en sus laboratorios durante la fase experimental de la investigación, y gracias a todos los técnicos y investigadores por su disponibilidad en ayudarme, en particular a Federica Pierini y Dani Gómez. Gracias también al Dr. Bondioli y la Dra. Fiore del Museo L. Pigorini en Roma por su colaboración y al Servei de Arqueologia de la Generalitat de Catalunya y el Institut de Paleontologia de la UAB. Gracias al Dr. Molist por haber acogido en el Departamiento de Prehistoria, por su ayuda y disponibilidad. Gracias las antropólogas Dra. Avilés y Dra. Haber, la Dra. Ruiz, la Dra. Colominas, el Dr. Gil y el Dr. De Grossi, que me han facilitado preciosas informaciones para el desarrollo de la investigación. Gracias a mi ex-soprintendente, el Dr. Gambari y al Ministero dei Beni e delle Attività Culturali e del Turismo por haberme concedido esta oportunidad de desarrollo profesional y humano.

Mis gracias van a toda mi familia: gracias a Giordano, pos tu inmensa paciencia y comprensión, por tu ayuda en los momentos más críticos y por tú animo; gracias de todo corazón a mis padres Anna y Enzo, por todo lo que hacéis día a día por mí y a Domenico y Eloisa, Riccardo y Tiziana por haberme motivado constantemente. Gracias a zio Pippo, gracias a Daniela y Sandro por vuestro apoyo.

Es de agradecer a los compañeros y amigos del Lab de Arqueozoología: gracias a Vanessa, Violeta, Lourdes, Roger, Judit por todo lo que habéis hecho por mí, gracias por vuestra amistad, ayuda, consejos y por los momentos bonitos que hemos compartido. Durante mi estancia en Murcia he conocido a muchas personas estupendas: así que gracias a todos los miembros de la Facultad de Veterinaria de Murcia, especialmente a María Dolores y Soledad.

Gracias a mis amigos y amigas Fede, Valentina, Valeria, Annalisa, Katiuscia, Alessio, Isabella, Ilario, Stefano, Giacomo, Katia, Marco, Francesca, Michele, Giulia, Licia, Marc, Toni, Diana, Roberto: gracias de corazón por lo que habéis hecho por mí, vuestro apoyo ha sido muy importante.

Y gracias a Giuseppe, Carla, Luigia, Alberto, Claudia, Roberto, por el constante soporte y por

vuestra amistad.

Bibliografía

- ABRIL, D., NOCETE, F., RIQUELME, J. A., BAYONA, M.R. & IÑÁCIO, N. (2010). Zooarqueología del III Milenio A.N.E.: El barrio metalúrgico de Valencina de la Concepción (Sevilla). *Complutum* 21 (1): 87-100.
- ACOSTA MARTÍNEZ, P. & PELLICER CATALAN, M. (1990). VI: La fauna y la dieta. (ACOSTA MARTÍNEZ, P. & PELLICER CATALAN, M. eds.) La cueva de La Dehesilla (Jerez de la Frontera). Las primeras civilizaciones productoras en Andalucía Occidental: 61-66.
- AGUSTÍ, B., ALCALDE, G., BURJACHS, F., BUXÓ, R., JUAN-MUNS, N., OLLER, J., ROS, M.T., RUEDA, J.M. & TOLEDO, A. (1987). La cueva 120; un almacén del Neolítico Antiguo. *Revista de Arqueología* 69:7-12.
- AGUSTÍ, B., BURCH, J., CARRASCAL, C., MERINO J. & NAVARRO N. (1998). Els reompliments de les sitges del Bosc del Congost. *Cypsela* 12: 81-95.
- **ALBARELLA, U.** (1989). Hipponion-Vibo Valentia: necropoli in località Piercastello: la fauna. *Annali della Scuola Superiore Normale di Pisa* 19: 825-832.
- ALBARELLA, U., CEGLIA, V. & ROBERTS, P. (1993). S. Giacomo degli Schiavoni (Molise): an early fifth century AD deposit of pottery and animal bones from central Adriatic Italy. *Papers of the British School at Rome* 61: 157-230.
- ALBIZURI CANADELL, S. (2011). La ofrenda animal durante el Bronce Inicial en Can Roqueta II (Sabadell, Vallès occidental). Arqueozoología del ritual funerario. Tesis doctoral inédita. Universidad de Girona.
- ALBIZURI, S. & NADAL, J. (1992) Estudi preliminar de les restes faunístiques. (SANMARTÍ, J. & SANTACANA, J. eds.) El poblat ibèric d'Alorda Park. Calafell, Baix Penedès. Excavacions Aqueològiques a Catalunya 11: 289-298.
- ALBIZURI CANADELL, S., FERNÁNDEZ, M. & TOMÁS, X. (2011). Evidencias sobre el uso del perro en la carga durante el Bronce Inicial en la Península Ibérica: el caso de Can Roqueta II (Sabadell, Barcelona). *Archaeofauna* 20: 139-155.
- ALFÉREZ, F., MOLERO, G., BUSTOS, V. & BREA, P. (1981). Apéndice II. La fauna de macromamíferos. (ASQUERINO, Mª. D. & LÓPEZ, D. eds.) La Cueva del Nacimiento (Pontones): un yacimiento neolítico en la Sierra del Segura. *Trabajos de Prehistoria* 38: 139-145.
- **ALLENDORF, P., HOHENLOHE, A. & LUIKART, G.** (2010). Genomics and the future of conservation genetics. *Nature Reviews Genetics* 11: 697–709.
- **ALMAGRO BASCH, M.** (1942). Nuevas excavaciones en la colonia grecorromana de Ampurias. *Investigación y Progreso* 13: 129-134. De la versión digital Gabiente de Antigüedades de la Real Academia de la Historia.
- ALMAGRO BASCH, M. (1947). Estratigrafía de la ciudad helenístico-romana de Ampurias. Archivo Español de Arqueología 20: 179-199.®De la versión digital Gabiente de Antigüedades de la Real Academia de la Historia.
- ALMAGRO BASCH, M. (1948). Ampurias. Cahiers d'histoire et d'archéologie (Institut d'études occitanes. Nîmes) 11 (9-10): 38-45. Traducción inédita.®De la versión digital Gabiente de Antigüedades de la Real Academia de la Historia.
- **ALONSO I MARTÍNEZ, N.** (2000). *Memòria intervenció arqueòlogica al jaciment de Minferri. Campaña 2000.* Memoria depositada ante el Servei d'Arqueologia i Paleontologia de la Generalitat de Catalunya.
- **ALTSCHUL, S., GISH, W., MILLER, W., MYERS, E. & LIPMAN, D.** (1990). Basic local alignment search tool. *Journal of Molecular Biology* 215 (3): 403–410. doi:10.1016/S0022-2836(05)80360-2.
- **ALTUNA, J.** (1967). Fauna de mamíferos del yacimiento prehistórico de Marizulo (Urnieta), Guipúzcoa. *MUNIBE* 3-4: 271-298.
- ALTUNA, J. (1972). Fauna de mamíferos de los yacimientos prehistóricos de Guipúzcoa. MUNIBE 24: 1-464.
- **ALTUNA, J.** (1974). Hallazgo de un uro (*Bos prigmenius Boj.*) en la sierra de Gibijo (Alava), estudio de su esqueleto y de la fauna asociada al mismo. *MUNIBE* 1-2: 25-71.

- **ALTUNA, J.** (1980). Historia de la domesticación animal en el País Vasco, desde sus origines hasta la romanización. *MUNIBE* 33: 75-81.
- ALTUNA, J. (1981). Restos óseos del yacimiento prehistórico de Rascaños, (GONZÁLES ECHEGARAY, J. & BARANDIARÁN MAESTU, I. eds.) El Paleolítico Superior de la Cueva del Rescaño (Santander), Centro de Investigación y Museo de Altamira. Monografías 3: 221-270.
- ALTUNA, J. (1984). Historia de las excavaciones. Descripción del yacimiento. Resumen estratigráfico del relleno. Utilización del espacio. Dataciones absolutas. (ALTUNA, J. & MERINO, J. M., eds.) El yacimiento prehistórico de la cueva de Ekain (Deba, Guipúzcoa), San Sebastián: Eusko Ikastuntza. Sociedad de Estudio Vasco: 17-45.
- ALTUNA, J. (1986). The mammalian fauna from the prehistoric site of La Riera, (STRAUS, L.G. & CLARCK, G.A. eds.) La Riera Cave. Stone Age hunter-gatherer adaptations in Northern Spain. *Anthropological Research Paper* 36: 237-274; 421-479; 481-497.
- **ALTUNA, J.** (1994). El perro en los yacimientos arqueológicos en el norte de la Península Ibérica. *Homenaje al Dr. Joaquín González Echegaray. Museo y Centro de Investigación de Altamira* 17: 159-162.
- ALTUNA, J. & MARIEZKURRENA, K. (1984). Bases de subsistencia, de origen animal, de los pobladores de Ekain en (ALTUNA, J. & MERINO J.M. eds.) El yacimiento prehistórico de la cueva de Ekain (Deba, Guipúzcoa), San Sebastián: Eusko Ikastuntza. Sociedad de Estudio Vasco: 211-280.
- ALTUNA, J. & MARIEZKURRENA, K. (1985). Bases de subsistencia de los pobladores de Erralla: Macromamíferos. (ALTUNA, J., BALDEÓN, A. & MARIEZKURRENA, K. eds.) Cazadores Magdalenienses en Erralla (Cestona, País Vasco). MUNIBE 37: 87-117.
- **ALTUNA, J. & MARIEZKURRENA, K.** (1989). Análisis arqueozoológicos de los macromamíferos del yacimiento de Zatoya. *Trabajos de Arqueología de Navarra* 8: 237-266.
- **ALTUNA, J. & MARIEZKURRENA, K.** (1992). Perros enanos en yacimientos romanos de la Península Ibérica. *Archaeofauna* 1: 83-86.
- ALTUNA, J. & MARIEZKURRENA, K. (2007). Restos de macromamíferos del yacimiento SJAPL (VEGAS ARAMBURU, J. I. coord.) San Juan Ante Portam Latinam. Una inhumación colectiva prehistórica en el ValleMedio del Ebro. Memoria de las excavaciones arqueológicas 1985, 1990 y 1991. Fundación José Miguel de Barandiarán, Ataun: 91-100
- ALTUNA, J., CUENCA BESCÓS, G., ELORZA, M., GARCÍA PIMIENTA, J.C., MARIEZKURRENA, K., PÉREZ RIPOLL, M., GONZÁLEZ MORALES, M. & GUY STRAUS, L. (2004). Post-Pleistocene faunas from the Archeological site of El Mirón Cave (Ramales de la Victoria, Cantabria, Spain): A preliminary summary. (BAQUEDANO, E. & RUBIO JARA, S. eds.) Miscelánea en homenaje a Emiliano Aguirre. Zona Arqueológica, Alcalá de Henares. II: Paleontologia, Zona Arqueológica 4. Museo Arqueológico Regional, Alcalá de Henares, Spain: 40-49.
- **ALTUNA, J. & MERINO J.M.** (1984). El yacimiento prehistórico de la cueva de *(Deba, Guipúzcoa), San Sebastián: Eusko Ikastuntza. Sociedad de Estudio Vasco.*
- **AMOROSI, T.** (1989). A Postcranial Guide to Domestic Neonatal and Juvenile Mammals. BAR International Series 533, Oxford, England.
- AMOROSO, A., DE GROSSI MAZZORIN, J. & DI GENNARO, F., (2005). Sepoltura di cane (IX-VIII sec. a.C.) nell'area perimetrale dell'antica Fidenae (FIORE, I., MALERBA, G. & CHILARDI, S. eds.), Atti del 3° Convegno Nazionale di Archeozoologia, Siracusa 3-5 novembre 2000, Studi di Paletnologia II, Collana del Bullettino di Paletnologia Italiana, Roma: 11-327.
- ANDÚGAR MARTÍNEZ, L. (2015) Análisis faunístico de los conjuntos calcolíticos y argáricos de Gatas (Turre, Almería) y La Bastida (Totana, Murcia). Tesis doctoral inédita, Universitat Autònoma de Barcelona.
- ANOUTCHINE, D.V. (1892). Zwei Rassen des Hundes aus den Torfmooren des Ladogasees (Russl.). Moscou
- APELLÁNIZ, J.M. (1975). El grupo de Santimamiñe durante la Prehistória con cerámica. MUNIBE 27: 1-135.
- ARBOGAST, R.M., MÉNIEL, P. & YVINEC, J.H. (1987). Une histoire de l'élevage. Les animaux et l'archéologie. Éditions Errance, Paris.
- Argelagués, M., Francès, J. & Hernàndez, J. (2007a). Els treballs arqueològics, (Francès i Farré, J. coord.)

 Els Mallols, un jaciment de la plana del Vallès entre el neolític i l'antiguitat tardana (Cerdanyola del Vallès, Vallès Occidental), Excavacions arqueològiques a Catalunya 17: 17-22.

- ARGELAGUÉS, M., HERNÀNDEZ, J. & FRANCÈS, J. (2007b). Situació del jaciment i entorn geographic, (FRANCÈS i FARRÉ, J., coord.) Els Mallols, un jaciment de la plana del Vallès entre el neolític i l'antiguitat tardana (Cerdanyola del Vallès, Vallès Occidental), Excavacions arqueològiques a Catalunya 17: 13-15.
- ARMENDARIZ GUTIÉRREZ, A. (2007). Cronología. (VEGAS ARAMBURU, J.I., DIR.), San Juan Ante Portam Latinam (Laguardia, Álava), *Memorias de Yacimientos Alaveses* 12: 101-103. Museo de Arqueología de Álava.
- Asensio, D. & Pons, E. (2004-2005). La troballa d'un crater àtic de figures roges en el jaciment ibèric del Mas Castellar. (Pontós, Alt Empordà). *Cuadernos de Prehistoria y Arqueologia Catellonenses* 24: 199-212.
- **ASENSIO, D. & PONS, E.** (2011). El paisatge fortificat de Mas Castellar de Pontós (Alt Empordà): un equilibri entre estructures constructives i excavades. *Revista d'arqueologia de Ponent* 21: 173-184.
- **ASQUERINO, M. D.** (1979). Fondos de cabaña del Cerro de la Cervera (Mejorada del Campo, Madrid), *Trabajos de Prehistoria* 36: 119-150.
- **ASQUERINO, Mª.D. & LÓPEZ, P.** (1981). La Cueva del Nacimiento: un yacimiento neolítico en la Sierra de Segura. *Trabajos de Prehistoria* 38: 107-133.
- AURA, J.E., BADAL, E., GARCÍA BORJA, P., GARCÍA PUCHOL, O., PASCUAL BENITO, J.L., PÉREZ JORDÁ, G., PÉREZ RIPOLL, M. & JORDÁ PARDO, J.F. (2005). Cueva de Nerja (Málaga): los niveles neolíticos de la sala del Vestibulo. (Ontañón, R., García-Moncó, C. & Arias, P. coords.), Actas del III Congreso del Neolítico en la Península Ibérica: 975-987. Santander 2003.
- AXELSSON, E., RATNAKUMAR, A., ARENDT, M.L., MAQBOOL, K., WEBSTER, M.T., PERLOSKI, M., LIBERG, O., ARNEMO, J.M., HEDHAMMAR, A. & LINDBLAD-TOH, K (2013). The genomic signature of dog domestication reveals adaptation to a starch-rich diet. *Nature* 495: 360-365.
- BADAL, E. (1999). El potencial pecuario de la vegetación mediterránea: las Cuevas Redil. (BERNABEU, J. & OROZCO, T. eds.) Actes del II Congrés del Neolític a la Península Ibèrica. Universitat de Valencia 7-9 Abril 1999. Saguntum-PLAV. Extra 2: 69-75.
- **BADIAS, J., GARCÉS, I., SAULA, O. & SOLANES, E.** (2005). El camp de sitges ibèric de Missatges (Tàrrega, Urgell), *Tribuna d' arqueologi*a 2001-2002: 143-166.
- BARANDIÁN, I. (1989). Las dataciones por C14. (BARANDIÁN, I. & CAVA, A. eds.) El yacimiento de Zatoya, Navarra. Evolución ambiental y cultural a fines tardiglaciar y en la primera mitad del Holoceno. *Trabajos de Arqueología* 8: 283-290.
- BARON, R. (1888). Traité sur les méthodes de reproduction en zootechnie. Firmin-Didot et Cie, Paris.
- BARONE, R. (1976). Anatomie comparée des Mammifères domestiques. Tome 1, Ostéologie, Vigot, Paris.
- **BATALLER, R.** (1952). Estudio de los restos de animales procedentes de la estación protohistórica de Cortes de Navarra. *Príncipe de Viana* 46-47: 41-64.
- **BATALLER, R.** (1953). Complemento al estudio de los restos animales procedentes de la estación protohistórica de Cortes de Navarra. *Príncipe de Viana* 50-51: 47-57.
- BAXTER, I.L. (2006). A dwarf hound skeleton from a Romano-British Grave at York Road, Leicester, England U.K., with a discussion of the other Roman Small dog types and speculation regarding their respective aetiologies. (SNYDER, L.M. & MOORE, E.A., eds.) Dogs and People in Social, Working, Economic or Symbolic Interaction (Proceedings of the 9th Icaz Conference, Durham 2002), Oxbow books: 12-23.
- BAXTER, I.L. (2010). Small Roman Dogs. BoneCommons, Item, #901.
- htpp://alexandriaarchive.org/bonecommons/items/show/901
- BELAYAEV, D.K. (1969). Domestication in animals. Science Journal (UK) 5: 47-52.
- BELAYAEV, D.K. (1979). Destabilizing selection as a factor in domestication. Journal of Heredity 72: 264-274.
- **BELAYAEV, D.K.** (1984). Foxes. (Mason, I.L. ed.) *Evolution of domesticated animals*. Longman, London: 211-214.
- BELÉN DEAMÓS, M. & LINEROS, R. (2001). 15 años de Arqueología en Carmona. (CABALLOS RUFINO, A. eds.) Actas del II Congreso de Historia de Carmona. Carmona Romana (Carmona, 1999). Carmona.
- **BELHAOUES, F.** (2011). Etude d'un assemblage canin inédit issu du puits 103 à Ambrussum (Hérault). Mémoire de Master 2 archéologie, Université Montpellier III Paul Valéry.

- **BELMONTE, C. ALBIZURI, S., NADAL, J. & GARCÉS I.** (2013). Èquids i gossos en l'economia i en els rituals. Resultats de l'estudi dels materials dipositats en el sitjar iberoromà del Serrat dels Espinyers (Isona, Pallars Jussà). *Revista de Arqueologia de Ponent* 23: 201-222.
- **BENECKE, N.** (1987). Studies on Early Dog Remains from Northen Europe. *Journal of Archaeological Science* 14: 31-49.
- **BENITO IBORRA, M.** (2013). *Una visión actualizada de la fauna hallada en Villa Filomena (Vila-Real, Castellón)*. (**SOLER DÍAZ, J.A.** ed.) Villa Filomena, Vila-Real (Castellón de la Plana). Memoria de una excavación nonagenaria. Un poblado de hoyos con campaniforme: 243-252.
- **BERNABEU, J**. (1988). El Neolítico en las comarcas meridionales del País Valenciano. (**LÓPEZ, M.** coord.) El Neolítico en España: 131-166.
- BERNSTEIN, B. E., BIRNEY, E., DUNHAM, I., GREEN, E. D., GUNTER, C., SNYDER, M., ENCODE PROJECT CONSORTIUM, HUBBARD, T. (2012). An integrated encyclopedia of DNA elements in the human genome. *Nature* 489 (7414): 57-74. [N/A]. 10.1038/nature11247.
- **BINOIS, A., WARDIUS, C., RIO, P., BRIDAULT, A. & PETIT, C.** (2013). A dog's life: Multiple trauma and potential abuse in a medieval dog from Guimps (Charente, France). *International Journal of Paleopathology* 3 (1): 39-47.
- **BERGMANN, C.** (1847). Uber die Verhaltnisse der Warmekonomie der Thiere zu ihrer Grosse. *Gottingen Studien* 3: 595-708.
- **Bernabeu-Aubán, J., Burton, C. M. & Pérez-Ripoll, M.** (2001). A Taphonomic Perspective on Neolithic Beginnings: Theory, Interpretation, and Empirical Data in the Western Mediterranean. *Journal of Archaeological Science* 28: 597-612.
- **BERNÁLDEZ SÁNCHEZ, E. & GARCÍA-VIÑAS, E.** (2010). Actividad cinegética en el yacimiento calcolítico de Los Páramos, en Aznalcóllar (Sevilla, España): interpretación tafonómica de un paleobasurero. *Espacio, Tiempo y Forma, Serie I, Nueva época* 2: 59-72.
- **BLANCO JIMÉNEZ, F. J.** (1998). Memoria de las excavaciones efectuadas en el solar ubicado en la Plaza de Asdrúbal esquina con el Paseo Marítimo durante 1997/98. Memoria inédita depositada en la Delegación Provincial de Cultura de Cádiz, Cádiz.
- BLANCO, J. F., BLASCO, M.C, LIESAU, C., GARCÍA, J. & SANZ, M. (2007). *Ill. El análisis de las estructuras*. (BLASCO, M.C. *et al.*) El Bronce Medio y Final en la región de Madrid. El poblado de la Fábrica de Ladrillos de Getafe. Monográfico de Estudios de prehistoria y arqueología madrileñas 14-15: 29-70.
- **BLASCO, Mª.C.** (1997). La Edad del Bronce en el interior peninsular. Una aproximación al II milenio a.C. en las cuencas de los ríos Duero y Tajo. *CuPAUAM* 24: 59-100.
- BLASCO, Mª.C., SÁNCHEZ-CAPILLA, Mª.L., CAPRILE, P. & CALLE, J. (1984-1985). Depósito votivo en un yacimiento de la Edad del Bronce en el Valle del Manzanares (Perales del Río, Getafe Madrid). *CuPAUAM* 11-12: 11-23.
- BLASCO, Mª.C. & RIOS, P. (2005-2006). Acerca de la diversidad de enterramientos en poblados calcolíticos de estructuras negativas. El ejemplo de Camino de Las Yeseras (San Fernando de Henares, Madrid). *Kalathos* 24-25, Teruel, SAET: 105-118.
- BLASCO BOSQUED, C., SÁNCHEZ-CAPILLA, Mª L., CALLE PARDO, J., ROBLES RODRÍGUEZ, F. J., GONZÁLEZ, V. M. & GONZALEZ, A. (1991). Enterramientos del horizonte protocogotas en el valle del Manzanares. Cuadernos de Prehistoria y Arqueología 18: 55-112.
- **Boessneck, J. & Von Den Driesch, A.** (1980). Tierknochenfunde aus vier südspanischen Höhlen. *Studien über fürhe Tierknochenfunde von der Iberischen Halbinsel* 7: 1-83.
- **Böкönyı, S.** (1970). A new method for the determination of the number of individuals in animal bone material. *American Journal of Archaeology* 74(3): 291-292.
- Böкönyı, S. (1975). Vlasac: an early site of dog domestication. (CLASON, A.T. Ed.) Archæozoological studies, North Holland, Amsterdam: 167-178.
- **BONIFAY, M.F.** (1971). *Carnivores quaternaires du Sud-Est de la France*. Mémoire du Muséum national d'Histoire naturelle, Paris, série C, XXI (2).
- Bosch, A., Buxó, R., Chinchilla, J., Palomo, A., Piqué, R., Saña, M., Tarrús, J. & Terradas, X. (2012). El poblat lacustre neolític de la Draga (Banyoles, Pla de l'Estany). *Quaderns de Banyoles* 13. Banyoles: Ajuntament de Banyoles

- Bosch, A. & Tarrùs, J. (1987) Enterramiento múltiple del Neolítico Antiguo catalán: Cova de l'Avellaner (La Garrotxa, Gerona). Revista de Arqueología, Año VIII (76): 20-24.
- Bosch, A., Buxó, R., Palomo, A., Buch, M., Mateu, J., Tabernero, E. & Casadevall J. (1998). El poblat neolític de Plansallosa. L'explotació del territoridels primers agricultors-ramaders de l'Alta Garrotas. Girona: Museu Comarcal de la Garrotxa. Publicacions eventuals d'Arqueologia de la Garrotxa 5.
- **BOUDADI-MALIGNE. M., MALLYE, J.-B., LANGLAIS, M. & BARSHAY-SZMIDT, C.** (2012). Des restes de chiens magdaléniens à l'abri du Morin (Gironde, France). Implications socio-économique d'une innovation zootechnique. *PALEO* 23: 39-45.
- **BOUDADI-MALIGNE, M. & ESCARGUELA, G.** (2014). A biometric re-evaluation of recent claims for Early Upper Paleolithic wolf domestication in Eurasia. *Journal of Archaeological Science*: DOI: 10.1016/j.jas.2014.02.006.
- BRINKMANN, A. (1924). Canidenstudien 5-6. Bergens Mus Aarbock (1923-1924), Naturvidensk. Raekke 7: 1-57.
- BRONK RAMSEY, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon 51(1): 337-360.
- **Burch, J. & Sagrera, J.** (2009). Excavacions arqueològiques a la muntanya de Sant Julià de Ramis. Els sitjars 3. Gerona.
- Burgos, A., Pérez, C. & Lizcano, R. (2001a). Actuación arqueológica realizada en la piscina comunitária de los bloques A1, A2, A3, A6, A7 y A8 del sector UA-23 de Marroquiés Bajos de Jaen. *Anuario Arqueológico de Andalucia* III (1)1998: 402-413.
- **Burgos, A., Pérez, C. & Lizcano, R.** (2001b). Actuación arqueológica realizada en el spacio destinado a la instalación del ovoide del Vial 4 de la UA-23 de Marroquiés Bajos de Jaen. *Anuario Arqueológico de Andalucia* III (1), 1998: 422-428.
- CÁCERES SÁNCHEZ, I. (2002). Estudio de los restos óseos de la fauna terrestre en el asentamiento de "El Retamar". (RAMOS MUÑOZ, J. & LAZARICH GONZÁLES, M. eds.) El asentamiento de "El Retamar" (Puerto Real, Cádiz). Contribución al estudio de la formación social tribal y a los inicios de la economía de producción en la Bahía de Cadíz, Universidad de Cadiz y Ayuntamiento de Puerto Real: 175-192.
- CALOI, L. & PALOMBO, M. R. (1980). Il cane domestic di Pyrgi. Studi etruschi 58: 293-328.
- CÁMARA SERRANO, J.A. & LIZCANO PRESTEL, F. (1996). Ritual y sedentarización en el yacimiento del polideportivo de Martos (Jaén). I Congrés del Neolític a la Península Ibèrica. Gavà-Bellaterra 1995. Rubricatum 1(1): 313-322.
- CÁMARA SERRANO, J.A., MOLINA GONZÁLES, F. & AFONSO MARRERO, J.A. (2005). La cronología absoluta de Los Castillejos en Las Peñas de los Gitanos (Montefrío, Granada). (ONTAÑÓN, R., GARCÍA-MONCÓ, C. & ARIAS, P. coords.) Actas del III Congreso del Neolítico en la Península Ibérica: 841-852. Santander 2003.
- CÁMARA SERRANO, J.A., LIZCANO PRESTEL, F., PÉREZ BAREAS, C. & GÓMEZ DEL TORO, E. (2008). Apropiación, sacrificio, consumo y exhibición ritual de los animales en el Polideportivo de Martos. Sus implicaciones en los orígenes de la desigualdad social. Cuadernos de Prehistoria & Arqueología de la Universidad de Granada 18: 55-90.
- CÁMARA SERRANO, J.A., RIQUELME CANTAL, J.A., PÉREZ BAREAS, C., LIZCANO PRESTEL, F., BURGOS JUÁREZ, A. & TORRES TORRES, F. (2010). Sacrificio de animales y ritual en el Polideportivo de Martos-La Alberquilla (Martos, Jaén). CPAG 20: 295-327.
- CÁMARA SERRANO, J.A., SÁNCHEZ SUSÍ, R., LANFFRANCHI, Z., MARTÍN FLÓREZ, S., RIQUELME CANTAL, J.A., SPANEDDA, L., GARCÍA CUEVAS, M.F., GONZÁLEZ HERRERA, A., JIMÉNEZ BROBEIL, S.A., NICÁS PERALES, J. (2012). La cronología y variedad de los sistemas funerarios en Marroquíes (Jaén). Una aproximación desde las excavaciones del sistema tranviario. *Saguntum* 44: 47-66.
- CAMARÓS, E., & SAÑA, M. (2008). Anàlisi arqueozoològica de les restes de fauna recuperades al jaciment de "Collet de Puig Gors" (Les Garrigues, Lleida). Informe inédito. Laboratori d'Arqueozoologia de la Universitat Autònoma de Barcelona.
- **CAMAÑES, P.** (2010). Estudio funcional de los espacios de Molí d'Espígol (Tornabous, L'Urgell): transformación, elaboración y consumo de alimentos. *Cypsela* 18: 193-208.

- CANO, R.J., POINAR, H.N., PIENIAZEK, N.J., ACRA, A. & POINAR, G.O. Jr. (1993) Amplification and sequencing of DNA from a 120-135-million-year-old weevil. *Nature* 363: 536-538.
- CARAMELLI, D. & LARI, M. (2004) Il Dna antico. Metodi di analisi e applicazioni. Pontecorboli Editore.
- CARANDINI A. & CARAFA P. (2000). Palatium e Sacra Via I. Bollettino di Archeologia, Roma: 31-33.
- **CARDOSO, J.L.** (1993). Contribuição para o conhecimento dos grandes mamíferos do Plistocénico Superior de Portugal. Câmara Municipal de Oeiras.
- CARDOSO, J. L. Y GOMES, M. V. (1997). O consumo de cao, em contextos fenício-púnicos, no território português. Estudos Orientais, Homenagem ao Professor Antonio Augusto Tavares VI, Instituto Oriental, Lisboa.
- CARLÚS, X. & RUÍZ, F. J. (1991). Can Xercavins: un nou assentament ibèric al Vallès. *Limes* 1: 126-133. Cerdanyola.
- CARLÚS, X., LÓPEZ CACHERO, F.J., TERRATS, N.; OLIVA, M., PALOMO, A. & RODRÍGUEZ, A. (2008). Diacronia durant la prehistòria recent a Can Roqueta (Sabadell- Barberà del Vallès, Vallès Occidental) entre el VI i el I mil·lenni cal ANE. *Cypsela* 17: 115-142.
- CASELLAS, S. (1995). Dipòsit faunístic no substancials a la Catalunya Prehistòrica. Cota Zero 11: 89-93.
- **CASELLA I PARRA, S.** (1998). Anàlisi de les reste faunístiques del bronze antic del carrer Almeda (Bordils, Gironès). *Cypsela* X: 57-59.
- Cassoli, P.F. & Tagliacozzo, A. (1986). La fauna dell'insediamento neolitico di Scamuso. *Rivista di Antropologia* LXIV: 85-99.
- Cassoli, P.F. & Tagliacozzo, A. (1991). La fauna degli scavi 1983-1986 a Santorso, Vicenza (Età del Ferro). Presitoria Alpina 25: 165-216.
- CASSOLI, P.F. & TAGLIACOZZO, A. (1997). Nuovi dati faunistici del sito neoli-tico di Scamuso (Bari) Scavi 1986-88 (BIANCOFIORE, F. & COPPOLA, D. eds.) Scamuso, per la storia delle comunità umane tra il VI e il III millennio nel basso Adriatico. Roma: 215-234.
- CASTAGNA, D., GAZZONI, V., BERRUTI G.L.F. & MARTINA DE MARCH. (2011-2013). Studio Preliminare Sulle Sepolture Neolitiche Del Territorio Mantovano: I Casi Di Bagnolo San Vito e San Giorgio. *Rivista di Studi Liguri* 77-79: 339-352.
- CASTANYER, P., ESTEBA, Q., PONS, E., SANTOS, M. & TREMOLEDA, J. (1999). L'assentament indígena de la primera edat del ferro. (AQUILUÉ, X., dir.) Intervencions arqueològiques a Sant Martí d'Empúries (1994-1996). De l'assentament precolonial a l'Empúries actual. Monografies Emporitanes 9, Girona: 103-215.
- **CASTANYER, P., SANTOS, M. & TREMOLEDA, J.** (2015). *Nuevos datos arqueológicos sobre la evolución urbana de Emporion. Contacts et acculturations en Méditerranée occidentale.* Hommages à Michel Bats, BiAMA 15, Étdes Massaliètes 12: 121-130.
- CASTAÑOS, J., CASTAÑOS, P. & MARTÍN-BUENO, M. (2006). Estudio arqueozoológico de la fauna de *Bilbilis. SALDVIE 6*: 29-57.
- **CASTAÑOS, P.** (1983a). Estudio de los macromamíferos del yacimiento prehistórico de Bolinkoba (Abadiano, Vizcaya). *Kobie* 13: 261-298.
- **CASTAÑOS, P.** (1983b). Estudio de los macromamíferos del yacimiento prehistórico de Atxeta (Guernica). *Kobie* 13: 251-259.
- Castaños, P. (1984). Estudio de los macromamiferos de la Cueva de Santimamiñe (Vizcaya). *Kobie* 14: 236-318.
- CASTAÑOS, P. (1987). Los carnivoros prehistoricos de Vizcaya. Kobie 16: 7-76.
- CASTAÑOS, P. (1991). Estudio de los restos faunísticos de la Cueva del Moro (Olvena-Huesca). *Bolskan* 8: 79-107.
- CASTAÑOS, P. (1995). Estudio de la fauna de mamíferos del yacimiento de Pico Ramos (Muskiz, Bizkaia). *MUNIBE* 47:177-182.
- CASTAÑOS, P. (1997a). Estudio arqueozoológico de la fauna de Peña Larga (Cripán, Álava) (FERNÁNDEZ ERASO, J. ed.) Excavaciones en el Abrigo de Peña Larga (Cripán, Álava). Memorias de yacimientos alaveses 4: 125-134.
- CASTAÑOS, P. (1997b) El pastoreo y la ganadería durante la romanización en el País Vasco. BIBLID 1137-4489 (9): 659-668.

- **CASTAÑOS, P.** (2004). Estudio arqueozoológico de los macromamíferos del neolítico de la cueva de Chaves (Huesca). *SALDVIE* 4: 125-171.
- CASTAÑOS, P. (200722008). Estudio arqueozoológico de la fauna de Arcaya (Álava), VELEIA 24225: 116121182.
- CASTAÑOS, P. & CASTAÑOS, J. (2015). Estudio arqueozoológico de la fauna del yacimiento romano de Oioz (Urraúl Bajo, Navarra). *Trabajos de Arqueología de Navarra* 27: 135-152.
- CASTAÑOS, P. & CASTAÑOS, J. (en preparación). Estudio de la fauna de macromamiferos del yacimiento de Praileaitz I.
- **CÉLÉRIER, G. & DELPECH, F.** (1978). Un chien dans l'Azilien de « Pont d'Ambon » (Dordogne)?. *Bulletin de la Société préhistorique française* 75 (7):12-215. doi : 10.3406/bspf.1978.8564
- **CÉLÉRIER, G., TISNERAT, N. & VALLADAS, H.** (1999). Données nouvelles sur l'âge des vestiges de chien à Pont d'Ambon, Bourdeilles (Dordogne)/New data on the age of Canis remains at Pont d'Ambon, Bourdeilles (Dordogne, France). *Paléo* 11: 163-165. doi: 10.3406/pal.1999.1253
- CERDEÑO, E. & HERRÁEZ, E. (2000). Estudio de la fauna del yacimiento del Espinillo (Villaverde, Madrid) (BAQUEDANO BELTRÁN, M.I., BLANCO GARCÍA, J.F., ALONSO HERNÁNDEZ, P. & ÁLVAREZ ALONSO D.) El Espinillo: un yacimiento calcolítico y de la edad del bronce en las terrazas del Manzanares. Arqueología, Paleontología y Etnografía 8: 141-149.
- **CEREIJO PECHARROMÁN, M. & PATÓN DOMÍNGUEZ, D.** (1988-1989). Estudio sobre la fana de vertebrados recuperada en el yacimiento tartésico de la Calle del Puerto 6 (Huelva). Primera parte: mamíferos. *Huelva arqueólogica* X-XI (3): 217-244.
- CEREIJO PECHARROMÁN, M. A. & PATÓN DOMÍNGUEZ, D. (1990). Informe sobre la fauna de vertebrados recuperada en Puerto 29 (Huelva): Mamíferos. *Huelva Arqueológica XII,* Diputación de Huelva. Huelva
- CHAIX, L. (2000). A preboreal dog from the Northern Alps (Savoie, France). (CROCKFORD, S. ed.) *Dogs through time: an archaeological perspective*. Bar International Series, Oxford: 49-59.
- CHAIX, L. & MÉNIEL, P. (1996). Élements d' Archéozoologie. Éditions Errance, Paris.
- CHARD, C.S. (1974). Northeast Asia in Prehistory. Univ. of Wisconsin Press, Madison.
- **CLARK, K.M.** (1995). The later prehistoric and protohistoric dog: the emergence of canine diversity. *Archaeozoologia* VII (2): 9-32.
- **CLARK, K.M.** (1996). Neolithic Dogs: A Reappraisal Based on Evidence from the Remains of a Large Canid Deposited in a Ritual Feature. *International Journal of Osteoarcbaeology* 6: 211-229.
- CLARK, K.M. (1997). Osteology of the Kuri Maori: the prehistoric dog of New Zeland, *Journal of Archaeology Science* 24: 113-126.
- **CLUTTON-BROCK, J.** (1980). Los origenes del perro. (**CLUTTON-BROCK, J. & HILLS, M.** eds.) Ciencia en arqueología: 310-316. Fondo de Cultura Económica de España. Madrid.
- **CLUTTON-BROCK, J.** (1984). *Dog.* (**Mason, I.L.** ed.) *Evolution of domesticated animals*. Longman, London: 198-211.
- **CLUTTON-BROCK, J.** (1987). *Natural history of domesticated mammals*. Cambridge University Press. Bristish Museum (Naturall History).
- **CLUTTON-BROCK, J.** (2000). *Introduction*. (**CROCKFORD, S. J**. ed.) *Dogs through time: an archaeological perspective*, BAR International Series 889, Archaeopress, Oxford: 3-7.
- CLUTTON-BROCK, J. & NOE-NYGAARD, N. (1990). New Osteological and C-Isotope evidence on Mesolitich dogs: Companions to Hunters and Fishers at Star Carr, Seamer Carr and Kongemose, *Journal of Archaeological Science* 17: 643-653
- CONLIN, E. (2003). Los inicios del III milenio a.C. en Carmona. Las evidencias arqueológicas. Carel 1: 83-143.
- **CONLIN HAYES, E.** (2004). El poblado calcolítico de Carmona (Sevilla). *Actas del II y III Simposio de Prehistoria* "Cueva de Nerja". Málaga: Fundación Cueva de Nerja: 370- 378.
- **CONLIN HAYES, E.** (2006). Acerca del orígen verdadero de Carmona: su secuencia evolutiva en la Edad del Cobre. *Carel* 4: 1608-1640.
- **COLOMINAS BARBERÀ, L.** (2007). Animals i ideologia en l'àmbit funerari: estudi arqueozoològic de la necròpolis de la Plaça de la Vila de Madrid. *Quarhis: Quaderns d'Arqueologia i Història de la Ciutat de Barcelona* 3: 82-101.

- **COLOMINAS BARBERÀ, L.** (2008). Els animals en el conjunt de les pràctiques socials desenvolupades a l'establiment rural de Mas Castellar (Pontós, Girona). *Cypsela* 17: 219–32.
- **COLOMINAS BARBERÀ, L.** (2009). La gestió dels animals al nord-est de la Península Ibèrica entre els segles V ane. -V dne. Proposta metodològica d'integració de les anàlisis arquozoològiques als estudis de cronologies històriques. Tesis doctoral inédita, Universitat Autònoma de Barcelona.
- COLOMINAS BARBERÀ, L. (2015). Morphometric Variability of Roman Dogs in Hispania Tarraconensis: The Case Study of the Vila de Madrid Necropolis. *International Journal of Osteoarchaeology Published online in Wiley Online Library* (wileyonlinelibrary.com) doi: 10.1002/oa.2507
- COLOMINAS, L. & SAÑA M. (2009). Dinàmica i formació de la variabilitat dels conjunts de restes de fauna recuperats al jaciment del Bosc del Congost: gestió animal entre 325 aC. i 100 aC. (Burch, J. & SAGRERA, J. eds.) Excavacions Arqueològiques a la muntanya de Sant Julà de Ramis 3, El sitjar. Universitat de Girona: 155-179.
- COLOMINAS, L. & SAÑA M. (2012). Dinámica de la formación y variabilidad de los restos de fauna recuperados en los silos del yacimiento de Saus (CASAS, L. & SOLER, V. eds.) El asentamiento rural ibérico de Saus. Un ejemplo de la explotación agrícola en el territorio de Emporio. BAR International Series: 114-125.
- COOPER, A. & POINAR, H. N. (2000). Ancient DNA: do it right or not at all. Science 289: 11-39.
- **COPPINGER, R. & COPPINGER, L.** (2001). *Dogs: a startling new understanding of canine origin, behavior and evolution*. Scribner, NY.
- **COPPINGER, R. & SCNEIDER, R.** (1995). *Evolution of working dogs*. (**SERPELL, J.** ed.) The domestic dog: its behaviour and interaction with people. Cambridge University Press: 22-47.
- CORPET, F. (1988). Multiple sequence alignment with hierarchical clustering. *Nucl. Acids Res. 16* (22): 10881-10890.
- CORREIA, F. R. (2015). Enterramento de cães na Quinta da Almaraz. (BRANCO, G., ROCHA, L., DUARTE, C., DE OLIVEIRA, J. & BUENO RAMÍREZ, P. eds.) Arqueologia de Transição: O Mundo Funerário Actas do II Congresso Internacional Sobre Arqueologia de Transição (29 de Abril a 1 de Maio 2013): 113-124.
- CREMONESI, G. (1965). Il villaggio di Ripoli alla luce dei recenti scavi. Rivista di Scienze Preistoriche XX: 85-
- **CREMONESI, G.** (1976). Tomba della prima età dei metalli presso Tursi (Matera). *Rivista di Scienze Preistoriche XXXI*: 109-133.
- CROCKFORD, S. J. (2000). A commentary on dog evolution: regional variation, breed development and hybridization with wolves. (CROCKFORD, S. J. ed.) Dogs through time: an archaeological perspective, BAR International Series 889, Archaeopress, Oxford: 295-312.
- **CUADRADO, E**. (1987). *La necrópolis ibérica de "El Cigarralejo"* (Mula, Murcia). Bibliotheca Praehistorica Hispana, XXXIII. Madrid.
- DABNEY, J., KNAPP, M., GLOCKE, I., GANSAUGE, M.-T., WEIHMANN, A., NICKEL, B., VALDIOSERA, C., GARCÍA, N., PÄÄBO, S., ARSUAGA, J.-L. & MEYER, M. (2013). M-Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. *PNAS* September 24, 2013 vol. 110 no. 39: 15758-15763
- **DAHR E.** (1937). Studien über Hunde aus primitiven Steinzeitkulturen in Nord-Europa. *Lunds Universitets Arsskrift, NF, Avd.* 2, 23 (4): 312.
- **DAVIS, S.** (1981). The effects of temperature change and domesticatin on the body size of Late Pleistocene to Holocene mammals in the Israel region. *Paleorient* 8: 5-15.
- **DAVIS, S.J.M. & VALLA, F.R.** (1978). Evidence for domestication of the dog 12,000 years ago in the Natufian of Israel. *Nature* 276: 608-610.
- DAZA PEREA, A. (2015). La fauna en el Calcolítico de la Región de Madrid: los depósitos de canes. Másteres de la UAM. Año Académico 2011-2012 (Colección de Trabajos Fin de Máster para publicación digital), UAM Ediciones.
- DAZA PEREA, A. (2011). Los depósitos de perros en Camino de las Yeseras. (BLASCO, C., LIESAU, C. & Ríos, P., eds.) Yacimientos calcolítico con campaniforme de la región de Madrid: nuevos estudios, Patrimonio Arqueológicos de Madrid 6: 211-222

- DAZA PEREA, A. (2009). Los principales depósitos de canes del yacimiento El Camino de las Yeseras (San Fernando de Henares, Madrid): Una aproximación al estudio del perro en el calcolítico peninsular. (OrJIA, eds.) Actas de las II Jornadas de Jóvenes en Investigación Arqueológica (Madrid, 6, 7 & 8 de mayo de 2009), JIA I: 375-379.
- **DAY, S.P.** (1996). Dogs, Deer and Diet at Star Carr: a Reconsideration of C-Isotope Evidence from Early Mesolitich Dog Remains from the Vale of Pickering, Yorkshire, England. *Journal of Archaeological Science* 23: 783-787.
- **DECHAMBRE, P.** (1921). Le chien. Librairie agricole de la maison rustique, Paris.
- **DEGERBØL, M.** (1961). On a find of a preboreal domestic dog (Canis familiaris L.) from Star Carr, Yorkshire, with remarks on other Mesolithic Dogs. Proceedings of the Prehistoric Society 21: 35-55.
- **DE GROSSI MAZZORIN, J.** (1988). Il sondaggio stratigrafico nella sede centrale della Cassa di Risparmio di Modena (1985-1986). I resti faunistici. *Modena dalle origini all'anno mille. Studi di Archeologia e Storia* 1: 449-455.
- **DE GROSSI MAZZORIN, J.** (1991). *I resti faunistici dell'insediamento dell'Età del Bronzo finale delle Paludi di Celano: campagne di scavo 1986-1989*. Atti del Convegno di Archeologia "Il Fucino e le aree limítrofe nell'antichità", Roma: 165-173.
- DE GROSSI MAZZORIN, J. (1992). I resti ossei animali rinvenuti nella necropoli di Osteria dell'Osa (BIETTI SESTIERI, A.M. ed.) La necropoli laziale di Osteria dell'Osa. Roma. Ed. Quasar: 487-489.
- **DE GROSSI MAZZORIN, J.** (1994). I resti faunistici proveniente dalle Terramare esposti nel Museo Civico di Modena: alcune considerazioni. *Quaderni del Museo Archeologico-Etnologico di Modena 1, Studi di Preistoria e Protostoria* 1: 142-152.
- **DE GROSSI MAZZORIN, J.** (1995a). La fauna rinvenuta nell'area della Meta sudans nel quadro evolutivo degli animali domestici in Italia. Atti del I Convegno Nazionale di Archeozoologia, *Padusa Quaderni* 1: 309-318.
- **DE GROSSI MAZZORIN, J.** (1995b). Sepolture con cani nella necropoli pre-romana di Sulmona (AQ), Atti del I Convegno Nazionale di Archeozoologia. *Padusa Quaderni* 1: 375-376.
- **DE GROSSI MAZZORIN, J.** (1996a). Archeologia delle "ossa dei bruti" proveniente dagli scavi ella stazione preistorica sul Monte Castellaccio presso Imola. (**PACCIARELLI, M.** ed.) La collezione Scarabelli 2. Imola: Musei civici di Imola preistoria: 181-218.
- **DE GROSSI MAZZORIN, J.** (1997). Analisi dei resti faunistici dell'abitato di Ficana (zone 3b-c). (**BRANDT, J.R**) *Ficana*, vol. II (1), Roma, Ist. Pol. Stato: 405-423.
- **DE GROSSI MAZZORIN, J.** (2001a). Caratterizzazione archeologica: la sepoltura di cani. (**DI MANZANO, P.** ed.) *Ad deverticulum. Scavi archeologici lungo la bretella NOMENTANA –GRA*, Roma: 81-93.
- **DE GROSSI MAZZORIN, J.** (2001b). L'uso dei cani nei riti funerari. Il caso della necorpoli di età imperiale a Fidene via Radicofani. (**HEINZELMANN, M., ORTALLI, J. FASOLD, P. & WITTEYER M.** eds.) *Culto dei morti e costumi funerari romani. Roma Italia settentrionale e province nord-occidentali dalla tarda Repubblica all'età imperiale*, Convegno Internazionale, Roma 1-3 aprile 1998, Wiesbaden: 77-82.
- **DE GROSSI MAZZORIN, J.** (2008). L'uso dei cani nel mondo antico nei riti di fondazione purificacione e passaggio. (**ADRIA, F., DE GROSSI MAZZORIN, J. & FIORENTINO, G.** eds.) Uomini, piante e animali nella dimensione del sacro, Edipuglia: 71-82.
- **DE GROSSI MAZZORIN, J. & MINNITI, C.** (2006). Dog Sacrifice in the Ancient World: A Ritual Passage?, (SNYDER, L.M. & MOORE, E.A., eds.), Dogs and People in Social, Working, Economic or Symbolic Interaction, 9th ICAZ Conference, Durham 2002: 62-66.
- **DE GROSSI MAZZORIN, J. & RUGGE, M.** (2007). *Il cane del villaggio del Bronzo antico in località Croce del Papa a Nola*. Atti della XL Riunione Scientifica dell'I.I.P.P., Roma 30 novembre-3 dicembre 2005, Firenze: 915-919.
- **DE GROSSI MAZZORIN, J. & TAGLIACOZZO, A.** (1997). Dog remains in Italy from the Neolithic to the Roman period. *Anthropozoologica* 25-26: 429-440.
- **DE GROSSI MAZZORIN, J. & TAGLIACOZZO A.** (2000). Morphological and osteological changes in the dog from the Neolithic to the Roman period in Italy. (CROCKFORD, S. J. ed.) Dogs through time: an archaeological perspective, BAR International Series 889, Archaeopress, Oxford: 141-161.

- **DE PEDRO, M. J.** (2010). Cuevas, fosas y cistas. Evidencias funerarias del II milenio a.C. en tierras valencianas. En torno al Argar y al Bronce Valenciano. *Restos de vida, de muerte. La muerte en la Prehistoria*: 55-70. Museu de Prehistòria de València.
- **DE SALLE, R., GATESY, J., WHEELER, W. & GRIMALDI, D.** (1992) DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. *Science* 257:1933-1936
- **DETRY, C. & CARDOSO, J.L.** (2010). On some remains of dogs (Canis familiaris) from the Mesolithic shell-middens of Muge, Portugal, *Journal of Archaeological Science*, DOI: 10.1016/j.jas.2010.06.011.
- **Díaz-Andreu, M., Liseau, C., Castaño, A.** (1992). El poblado calcolítico de Loma de Chiclana (Vallecas, Madrid). Excavaciones de irgencia realizadas en 1987. Monográfico de Arqueología, Paleontología y Etnografía 9. Comunidad de Madrid. Madrid.
- **Díaz-Del-Río, P.** (2001). *La formación del paisaje agrario: Madrid en el III y II milenios BC*. Monográfico de Arqueología. Paleontología y Etnografía. 9, Comunidad de Madrid. Madrid.
- **DRAKE, A.B., COQUERELLE, M. & COLOMBEAU, G.** (2015). 3D morphometric analysis of fossil canid skulls contradicts the suggested domestication of dogs during the late Paleolithic, *SCIENTIFIC REPORTS 5*: 8299. DOI: 10.1038/srep08299
- **DRIESCH, A. VON DEN.** (1976). A guide to measurement of animal bones from archaeological sites. Peabody Museum of Archaeology and Ethnology, Harvard University Bulletin 1.
- **DRIESCH, A. VON DEN. & BOESSNECK, J.** (1969). Die Fauna des Cabezo Redondo bei Villena (Provincia de Alicante). *Studien über frühe Tierknochenfunde von der Iberischen Halbinsel* 1, München: 45-106.
- **DRIESCH, A. Von Den. & Boessneck, J.** (1976). Die Fauna vom Castro do Zambujal. *Studien über frühe Tierknochenfunde von der Iberischen Halbinsel* 5, München.
- DRIESCH, A. VON DEN. & BOESSNECK, J. (1980). Die Motillas von Azuer und Los Palacios (Prov. Ciudad Real) Untersuchung der Tierknochenfunde. Studien über frühe Tierknochenfunde von der Iberischen Halbinsel 7, München: 84-121.
- DRIESCH, A. VON DEN., BOESSNECK, J., KOKABI, M. & SCHÄFER, J. (1985). Tierknochenfunde aus der Bronzezeitlichen Höhensiedlung Fuente Alamo, Provinz Almeria. Studien über frühe Tierknochenfunde von der Iberischen Halbinsel 9, München: 1-75.
- **DRIESCH A. VON DEN. & MORALES, A.** (1977). Los restos animales del yacimiento de Terrera Ventura (Tabernas, Almería). *Cuadernos de Prehistoria y Arqueol*ogia 4: 15-34.
- DRUZHKOVA, A.S., THALMANN, O., TRIFONOV, V.A., LEONARD, J.A., VOROBIEVA, N.V., NIKOLAI D. OVODOV, N.D., GRAPHODATSKY, A.S. & WAYNE R.K. (2013). Ancient DNA Analysis Affirms the Canid from Altai as a Primitive Dog. *PLoS ONE* 8 (3): e57754, doi: 10.1371/journal.pone.0057754
- EIROA GARCÍA, J. J. (2006). Aportación al estudio del Patrimonio Arqueológico de Lorca y su comarca: los yacimientos prehistóricos, del Paleolítico a la Edad del Bronce. Estudios sobre Lorca y su comarca. Cuadernos del Grupo de Investigación "Historia y Geografía del urbanismo" nº 6. Universidad de Murcia: 101-140.
- **EQUIP MINFERRI.** (1997). Noves dades per a la caracterització dels assentaments a l'aire lliure durant la primera meitat del II mil·lenni cal. BC: primers resultats de les excavacions en el jaciment de Minferri (Juneda, les Garrigues). *Revista d'Arqueologia de Ponent* 7: 161-211.
- ESCALA ABAD, Ó., MOYA GARRA, A., TARTERA BIETO, E. & VIDAL AIXAL, A. (2011) El jaciment de la Rosella (Tàrrega, Urgell): un camp de Sitges associat a un hàbitat de l'ibèric tardà (segles II i I a. de la n.e.). Urtx: revista cultural de l'Urgell [en línia] 25: 211-241.
- **ESCALA, O., MOYA, A., TARTERA, E. & VIDAL, A. (**2011). El jaciment de la Rosella (Tàrrega, Urgell). Un camp de sitges associat a un hàbitat de l'ibèric tardà (segles ii i i a. de la n. e.). *Urtx* 25: 211-241.
- ESPARZA, A., DELIBES, G., VELASCO, J. & CRUZ, P.J. (2008). Historia de un golpe en la cabeza: Sobre el enterramiento calcolítico del hoyo 197 de "El Soto de Tovilla" (Tudela de Duero, Valladolid)". BSSA Arqueología LXXIV: 9-48.
- ESTEBA, Q. & PONS, E. (1999). El primer hàbitat a Sant Martí: Fase I. (AQUILUÉ, X. dir.) Intervencions arqueològiques a Sant Martí d'Empúries (1994-1996). De l'assentament precolonial a l'Empúries actual, Monografies Emporitanes 9, Girona: 89-101.

- **ESTÉVEZ, J.** (1988). Estudio de los restos faunísticos. (**OLARIA, C.** ed.) Cova Fosca. Un asentamiento Meso-Neolítico de cazadores y pastores en la serranía del Alto Maestrazgo, Monografías de Prehistória y Arqueología Castellonenques 3: 281-337.
- **EZQUERRA, B. & HERCE, A. I. COORDS.** (2007). Fragmentos de Historia. 100 años de arqueología en Teruel. Teruel.
- **FABIAN GRACÍA, J.F.** (2006). El IV y III milenios AC en el Valle Amblés (Ávila). Monografías Arqueología en Castilla y León 5, Junta de Castilla y León.
- **FABIAN GRACÍA, J.F. & BLANCO GÓNZALES, A.** (2012). Cuatro enterramientos calcolíticos en hoyo del Cerro de la Cabeza (Ávila). *Complutum* 23 (1): 99-120.
- FACCIOLO, A., FIORE, I. & TAGLIACOZZO, A. (2006) Archeozoologia dei contesti rituali paleoveneti. (CURCI, A. & VITALI, D. eds.) Animali tra uomini e dei. Archeozoologia del mondo preromano. Atti del Convegno Internazionale 8-9 novembre 2002: 197-203.
- **FARELLO, P.** (1995). *I cani tardoantichi rinvenuti in un condotto fognario di Classe (RA).* Atti del I Convegno Nazionale di Archeozoologia, *Padusa Quaderni* 1: 295-308.
- **FERNÁNDEZ, J. & OLIVA, D.** (1986). Valencina de la Concepción (Sevilla). Excavaciones de urgencia. *Revista de Arqueología* 58: 19-33.
- FERNÁNDEZ ERASO, J., MUJIKA ALUSTIZA, J.A. & TARRIÑO VIÑAGRE, A. (2005). Relaciones entre la cornisa Cantábrica y el Valle del Ebro durante los inciios del Neolítico en el País Vasco (ONTAÑÓN, R., GARCÍA-MONCÓ, C. & ARIAS, P. coords.), Actas del III Congreso del Neolítico en la Península Ibérica: 201-210. Santander 2003.
- FERNÁNDEZ ERASO, J., (1997). La cronologia: las fechas C-14. Peña larga en su contexto mas próximo (FERNÁNDEZ ERASO, J. ed.) Excavaciones en el Abrigo de Peña Larga (Cripán, Álava). Memorias de yacimientos alaveses 4: 161-170.
- **FERNÁNDEZ RODRÍGUEZ, C.** (2003). Ganadería, caza y animales de compañía en la Galicia romana. Estudio arqueozoológico. Brigantium 15.
- **FERRER MORRÓN, M.** (1993). Un sepulcre singular a la necrópolis del Coll del Moro (Gandesa, Tarragona). Observacions sobre el paisatge i les pràctiques funeraries. *Empuries* 48-50 (I): 312-323.
- FIORE, I. & TAGLIACOZZO, A. (1997). I reperti osteologici animali delle tombe 1 e 8 (area A) e 4 (area C) della necorpoli eneolitica: il contributo della tafonomia. (ZATTARINI, A. & PETRASSI, L. eds.) Casale del Dolce. Ambiente, economia e cultura di una comunità preistorica della Valle del Sacco. Roma: 220-228.
- FIORE, I. & TAGLIACOZZO, A. (2001). I resti ossei dal santuario preromano in località "Fornace" di Altino (VE). Studi e Ricerche sulla Gallia Cisalpina 14: 87-96.
- FONTANA, A., MARCONI, S. & TECCHIATI, U. (2009). La fauna dell'antica età del bronzo delle Grotte di Castel Corno (Isera TN). *Ann. Mus. Civ. Rovereto, Sez.: Arch., St., Sc. nat.* 25:27-66.
- **FOREST, V**. (1994). Approche du chien médiéval par l'archéozoologie. Histoire et évolution du chien. Séminaire 25-26 mars 1994, Société française de cynotechnie.
- **FOREST, V**. (1998). De la hauteur au garrot chez les espèces domestiques. *Revue de Médicine Vétérinaire* 149 (1): 55-60.
- FOREST, V., FABRE V. & BARDOR, A. (2011). Les vestiges anthropologiques et zoologiques, (SABRIE, M. & SABRIE, R. dir.) La maison au Grand triclinium du Clos de la Lombarde à Narbonne, éditions Monique Mergoil, Montagnac: 295-310.
- FRANCÈS, J. & CARLÚS, X. (1995): Noves dades sobre l'assentament ibèric de Can Xercavins (Cerdanyola del Vallès, Vallès Occidental). *Limes* 4-5: 44-61.
- FRANCÈS I FARRÉ, J., GUARDIA, M., SALA, O. & HERNANDEZ, J. (2007). Les estructures de l'antiguitat tardana, (FRANCÈS I FARRÉ, J., coord.) Els Mallols, un jaciment de la plana del Vallès entre el neolític i l'antiguitat tardana (Cerdanyola del Vallès, Vallès Occidental), Excavacions arqueològiques a Catalunya 17: 71-118.
- FRANTZ L.A. F., MULLIN, V.E., PIONNIER-CAPITAN, M., LEBRASSEUR, O., OLLIVIER, M., PERRI, A., LINDERHOLM, A., MATTIANGELI, V., TEASDALE, M.D., DIMOPOULOS, E.A., TRESSET, A., DUFFRAISSE, M., MCCORMICK, F., BARTOSIEWICZ, L., GÁL, E., NYERGES, E.A., SABLIN, M.V., BRÉHARD, S., MASHKOUR, M., BALASESCU, A., GILLET, B., HUGHES, S., CHASSAING, O., HITTE, C., VIGNE, J.-D., DOBNEY, K., HÄNNI, C., BRADLEY, D.G. &

- **LARSON, G.** (2016). Genomic and archaeological evidence suggest a dual origin of domestic dogs. *Science 352* (6290): 1228-1231. doi: 10.1126/science.aaf3161
- FREDMAN, A.H., GRONAU, I., SCHWEIZER, R.M., ORTEGA-DEL VECCHYO, D., HAN, E., SILVA, P.M., GALAVERNI, M., FAN, Z., MARX, P., LORENTE-GALDOS, B., BEALE, H.,RAMIREZ, O., HORMOZDIARI, F., ALKAN, C., VILÀ, C., SQUIRE, K., GEFFEN, E., KUSAK, J., BOYKO, A.R., PARKER, H.G., LEE, C., TADIGOTLA,V., SIEPEL, A., BUSTAMANTE, C.D., HARKINS, T.T., NELSON, S.F., OSTRANDER, E.A., MARQUES-BONET, T., WAYNE, R.K. & NOVEMBRE, J. (2014). Genome Sequencing Highlights the Dynamic Early History of Dogs. *PLoS Genetics* 10 (1), e1004016. doi:10.1371/journal.pgen.1004016
- FREZZA, A. M. (1998). Analisi faunisitica (BAILO MODESTI, G. & SALERNO, A. eds.) Pontecagnano II.5. La necropoli eneolitica, Napoli: 207-209.
- FRIESCH, K. (1987). Die Tierknochenfunde von Cerro de la Encina bei Monachil, provinz Granada (Grabungen 1977-1984). Studien über frühe Tierknochenfunde von der Iberischen Halbinsel 11, München.
- FUENTES, C. & MEJIDE, M. (1975). Sobre la fauna fósil encontrada en la cata de la cueva de Tito Bustillo (Asturias), (GARCÍA GUINEA, M.A. ed.) Primeros sondeos estratigráficos en la cueva de Tito Bustillo (Ribadesella, Asturias). Publicaciones del Patronato de las Cuevas Prehistoricas de la Provincia de Santander, vol. XII: 59-70.
- GABARDA, M.V. (2010). El yacimiento arqueólogico del Cingle del Mas Cremat. (Vizcaíno, D. ed.) El Cingle del Mas Cremat (Portell de Morella, Castellón): un asentamiento en altura con ocupaciones del Mesolítico Reciente al Neolítico Final- Parque Eólico de las Cabrillas/Zona III del Plan Eólico Valenciano: 17-29.
- GARCÍA-ARGÜELLES ANDREU, P., BERGADÀ ZAPATA, M. & DOCE GOICOECHEA, R. (1990). El estrato 4 del Filador (Priorato, Tarragona): un ejemplo de la transición Epipaleolítico-Neolítico en el sur de Cataluña. Saguntum PLAV 23: 61-87.
- **GARCÍA BLÁNQUEZ, L.A. & MARTÍNEZ, C.** (2004). Intervención arqueológica en Casa Noguera (Archivel, Caravaca de la Cruz). *Memorias de Arqueología de la Región de Murcia* 12: 235-252.
- GARCÍA BLÁNQUEZ, L.A., MARTÍNEZ, C. & PONCE, J. (2003). Excavaciones arqueológicas en la Glorieta de San Vicente (Lorca). Resumen de las XIII Jornadas de Patrimonio Histórico y Arqueología Regional: 20-22. Dirección General de Cultura, Servicio de Patrimonio Histórico de Murcia.
- GARCÍA CANO J. M., PAGE, V., GALLARDO, J., RAMOS, F., HERNÁNDEZ, E., GIL, F. (2008). El mundo funerario ibérico en el altiplano Jumilla-Yecla (Murcia): Necrópolis de El Poblado de Coimbra del Barranco Ancho. Investigaciones de 1995-2004. II. Las incineraciones y los ajuares funerarios. Murcia.
- GARCÍA, J. & LIESAU, C. (2005-2007). Los restos faunísticos. (BLASCO, C., BLANCO, J.F., LISEAU, C., CARRIÓN, E., GARCÍA, J., BAENA, J., QUERO, S. & RODRÍGUEZ DE LA ESPERANZA Mª F.) El Bronce Medio y Final en la región de Madrid. El poblado de la Fábrica de Ladrillos (Getafe, Madrid). Estudios de Prehistoria y Arqueología Madrileña 14- 15, Museo de los Orígenes, Madrid: 171-189.
- GARCÍA, J. & SESMA. J. (2001). Los Cascajos (Los Arcos, Navarra): intervenciones 1996 1999. *Trabajos de Arqueología Navarra* 15:299–306.
- GARCÍA GAZÓLAZ, J. & SESMA SESMA, J. (2007). Enterramientos en el poblado neolítico de Los Cascajos (Los Arcos). (HURTADO ALFARO, M.A., CAÑADA PALACIO, F., SESMA SESMA, J. & GARCÍA GAZÓLAZ, J., COORDS). La tierra te sea leve. Arqueología de la Muerte en Navarra: 52-58.
- GARCÍA LERGA, R., SÁNCHEZ SEGUIDO, F., VICENTE, A., ROJAS, J.M. & PÉREZ LÓPEZ-TRIVIÑO, J. (2008). El yacimiento calcolítico «Valladares I (P.K. 0+150)» de Illescas (Toledo). *Arse* 42:127-152.
- GARCÍA-MONCÓ PIÑEIRO, C. (2005). El perro en la Prehistoria de la Península Ibérica. Estudio crítico de la documentación anterior al Calcolítico en su contexto euroasiático. Tesis doctoral inédita, Universidad de Cantabria.
- GARCÍA-MONCÓ PIÑEIRO, C. (2006). Estudio arqueozoológico de los restos de Canis familiaris en contextos rituales y funerarios del neolítico final/calcolítico en Lorca y Caravaca de la Cruz (Murcia). Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Inédito.
- GARCÍA-MONCÓ PIÑEIRO, C. (2008). De Brennan a Bogart. Un mayor papel protagonista para el perro entre las primeras sociedades productoras de la Península Ibérica. (HERNÁNDEZ PÉREZ, M.S., SOLER DÍAZ, J.A. & LÓPEZ PADILLA, J.A. coord.) IV Congreso del Neolítico Peninsular: 411-417. Alicante 2006.

- GARCÍA PUCHOL, O., COTINO VILA, F., MIRET ESTRUCH, C., PASCUAL BENITO, J.L., MCCLURE, S.B., MOLINA BALAGUER, L., ALAPONT MARTÍN, L., CARRIÓN MARCO, Y., MORALES, J.V., BLASCO SENABRE, J. & CULLETON, B. (2010). Cavidades de uso funerario durante en Neolítico Final/Calcolítico en el territorio valenciano: trabajos arqueológicos en Avenc dels Forats o Cova del Monedero (Carcaixent, Valencia). *Archivo de Prehistoria Levantina 28*,: 139-206. SIP de Valencia. Valencia.
- GARRIDO, J.-P. & ORTA, E. M. (1978). Excavaciones en la Necrópolis de "La Joya", Huelva. II (3ª, 4ª y 5ª campañas). Excavaciones Arqueológicas en España 96, Ministerio de Cultura, Madrid.
- **GERMONPRÉ, M., LÁZNIČKOVÁ-GALETOVÁ, M. & SABLIN, M.V.** (2012). Paleolithic dog skulls at the Gravettian Předmostí site, the Czech Republic. *Journal of Archaeological Science* 39: 184-202.
- GERMONPRÉ, M., SABLIN, M.V., STEVENS, R.E., HEDGES, R.E., HOFREITER, M., STILLER, M. & DESPRÉS, V.R. (2009). Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. *Journal of Archaeological Science* 36: 473-490. doi:10.1016/j.jas.2008.09.033.
- GERMONPRÉ, M., SABLIN, M.V., LÁZNIČKOVÁ-GALETOVÁ, M., DESPRÉS, V.R., STEVENS, R.E., STILLER, M. & HOFREITER, M. (2014). Palaeolithic dogs and Pleistocene wolves revisited: a reply to Morey. *Journal of Archaeological Science* 54: 210-216.
- GIBAJA, J.F., MAJÓ, T., CHAMBON, P.H., RUÍZ, J. & SUBIRÀ, M.E. (2010). Prácticas funerarias durante el neolítico. Los enterramientos infantiles en el noreste de la Península Ibérica. *Complutum* 21 (2): 47-68.
- GIBBONS, A. (1994). Possible dino DNA find is greeted with skepticism. Science 266: 1159.
- **GIGLI, E.** (2011). Evolutionary genetics of Homo Neanderthalensis: adaptive traits and methodological problems. Tesis doctoral inédita, UPF, Barcelona.
- GIL CANO F., RUIZ GARCÍA-VASO, C., CONDE GÓMEZ, D., AVILÉS FERNÁNDEZ, A., HABER URIARTE, M. & VÁZQUEZ AUTÓN J. M. (2011). Análisis de restos óseos de cánidos encontrados en el yacimiento "Camino del Molino" (Caravaca de la Cruz, Murcia): una oportunidad excepcional para estudiar los perros que poblaron el sureste español durante el calcolítico. Primeros resultados. Libro de Actas del XVII Congreso Nacional y VIII Iberoamericano de Historia de la Veterinaria. Valencia
- GILBERT, M. (1990). Mammalian Osteology. Missouri Archaeology Society, Missouri.
- GILBERT, M.T.P., WILLERSLEV, E., HANSEN, A.J, BARNES, I., RUDBECK, L., LYNNERUP, N. & COOPER, A. (2003)

 Distribution Patterns of Postmortem Damage in Human Mitochondrial DNA. *Am J Hum Genet 72*: 32-47.
- **GILBERT, M.T.P, BANDELT, H.-J., HOFREITER, M. & BARNES, I.** (2005). Assessing Ancient DNA studies. *Trends in Ecology and Evolution* 20 (10): 541-544.
- GILI, E. & RIGO, A. (1992) El jaciment ibè ric de can Calvet.(Santa coloma de Gramanet). Un assentament de l'Ibèric Ple situat a la plana. *Puig Castellar* 3-4:37-51.
- GIOVE, C., FERRI, D., DE LUCIA, A., SCATTARELLA, V. & PESCE, V. (1977). La fauna della comunità neolitica di Cala Colombo (DE LUCIA, A. et alii) La comunità neolitica di Cala colombo presso Torre a Mare (Bari): 183-252.
- GOLENBERG, E.M., GIANNASI, D.E., CLEGG, M.T., SMILEY, C.J., DURBIN, M., HENDERSON, D. & ZURAWSKI, G. (1990) Chloroplast DNA sequence from a miocene Magnolia species. *Nature* 344: 656-658.
- **GÓMEZ RUÍZ, A.** (1986). El Cerro de los Encaños (Villar del Horno, Cuenca)". *Noticiario Arqueológico Hispánico* 27: 265-350.
- **GÓMEZ, M.** (2005). De los primeros animales domesticados en Euskal Herria a las razas actuales *MUNIBE* 57: 469-476.
- GÓMEZ PUCHE, M., DÍEZ CASTILLO, A., VERDASCO CEBRÍAN, C., GARCÍA BORJA, P., MCCLURE, S., LÓPEZ GILA, M.D., GARCÍA PUCHOL, O., OROZCO KÖHLER, T., PASCUAL BENITO, J.L., CARRIÓN MARCO, & PÉREZ JORDÁ, G. (2004). El yacimiento de Colata (Montaverner, Valencia) y los poblados de silos del IV milenio en las comarcas centro-meridionales del País Valenciano. *Recerques del Museu d'Alcoi* 13: 53-128. Alicante.
- GREENWOOD, A.D., CAPELLI, C., POSSNERT. G, & PÄÄBO, S. (1999). Nuclear DNA sequences from Late Pleistocene megafauna. *Mol. Biol. Evol.* 16: 1466-73.

- GUERRERO, L. & SOLÉ, J. (2003). Práctica antrópica y paleopatología en la Cueva de Boixadera dels Bancs (Montmajor, Barcelona). (CAMPO MARTÍN, M. & ROBLES RODRÍGUEZ, F.J. eds.): ¿Dónde estamos? pasado, presente y futuro de la Paleopatología: 123- 138. Actas del VI Congreso Nacional de Paleopatología (Madrid, 13 al 16 de septiembre de 2001). Asociación Española de Paleopatología.
- **GUIDI, A.** (1992). Le età dei metalli nell'Italia centrale e Sardegna. (**GUIDI, A. & PIPERNO, M.** eds.) Italia preistorica, Roma-Bari: 420-470.
- **Gusi, F.** (1989). Posibles recintos necrolátricos infantiles ibéricos en Castellón. *Cuadernos de Prehistoria y Arqueología Castellonenses* 14: 19-42.
- **HABERHMEL, K.H.** (1975). Die Alterbestimmung bei Haus und Labortieren. Paul Parey Verlag, Berlin et Hamburg.
- **HAIN, F.H.** (1982). Kupferzeitliche Tierknochenfunde aus Valencina de la Concepción (Sevilla). *Studien über frühe Tierknochenfunde von der Iberischen Halbinsel* 8, München.
- HAMMER, Ø., HARPER, D.A.T. & RYAN; P.D. (2001). PAST: Paleontological statistics software package for education and data analysis, *Palaeontologia Electronica* 4 (1). http://palaeo-electronica.org/2001_1/past/issue1_01.html
- HANDT, O., Höös, M., KRINGS, M. & PÄÄBO, S. (1994). Ancient DNA: methodological challenges. *Experientia* Jun 15 50(6): 524-529.
- **HARCOURT, R.A.** (1974). The dog in Prehistoric and Early Historic Britain, *Journal of Archaeological Science* 1: 151-175.
- HARRISON, R.J., MORENO, G.C. & LEGGE, A. J. (1994). Moncín: un poblado de la Edad del Bronce (Borja, Zaragoza). Diputación de Zaragoza, Zaragoza.
- **HASEBE, K.** (1952) Dog Skeletons. (**HASEBE, K.**, ed.) Board Of The Protection Of Cultural Properties (Bunkazai Hogo linkai), Yoshigo Kaizuka: 145-150.
- **HELMER, D.** (1987). Fiches descriptives pour les relevés d'ensembles osseux animaux, Juan-les-Pins, *Fiches d'ostéologie animale pour l'archéologie, Série B: Mammifères* 1, APDCA.
- **HENSHAW, A.R.** (1999). Location and appropriation in the Artic: an integrative zooarchaeological approach to Ihistoric Inuit houseold economie. *Journal of Anthropological Archaeology* 18: 79-118.
- HERRE, W. & RÖHRS, M. (1977). Zoological consideration on the origins of farming and domestication. (REED, C.A. ED.) *Origins of agriculture*: 245-279. The Hague-Paris.
- HIGUCHI, R., BOWMAN, B., FREIBERGER, M., RYDER, O.A. & WILSON, A.C. (1984). DNA sequences form the quagga, an exint member of the horse family. *Nature* 312: 282-284.
- HILLSON, S. (2005). Teeth. Cambridge Manuals in Archaeology Ser., Cambridge University Press.
- HOFREITER, M., JAENICKE, V., SERRE, D., HAESELER, A.V., & PÄÄBO, S. (2001a). DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. *Nucleic. Acids. Res.* 29 (23): 4793-4799.
- HOFREITER, M., SERRE, D., POINAR, H., KUCH, M. & PÄÄBO, S. (2001b). Ancient DNA. Nature Genetics 2: 353 359
- HORARD-HERBIN, M-P. (2000). Dog management and use in the late iron age: the evidence from the gallic site of Levroux (France). (CROCKFORD, S.J. eds), Dogs through time: an archaeological perspective. BAR International Series 889, Archaeopress, Oxford: 115-121.
- HORARD-HERBIN, M-P., TRESSET, A. & VIGNE, J-D. (2014). Domestication and uses of the dog in western Europe from the Paleolithic to the Iron Age. *Animal Frontiers* (1 July 2014): 23-31.
- **HUNTER, J.** (1787) Observations tending to show that the wolf, jackal, and dog are all the same species. Phil. Trans. Soc. London LXIV.
- **HURTADO, V.** (1991). Informe de las excavacionaes de urgência en La Pijotilla. Campaña de 1990. *Extremadura Arqueológica 2*: 45-67.
- **IBORRA ERES, P.** (2003). Équidos y restos faunísticos de la calle San José de Alcalà de Xivert (Castellón). El caballo en la antigua Iberia: 201-208. Madrid.
- **IBORRA ERES, P.** (2004). La ganadería y la caza desde el bronce final hasta el ibérico final en el territorio valenciano. Diputación de Valencia, XI.
- IBORRA, M. P. & MARTÍNEZ, R. (2010). Estudio de los restos óseos de macromamíferos y de aves del Cingle del Mas Cremat. (Vizcaíno, D. ed.) El Cingle del Mas Cremat (Portell de Morella, Castellón): un

- asentamiento en altura con ocupaciones del Mesolítico Reciente al Neolítico Final- Parque Eólico de las Cabrillas/Zona III del Plan Eólico Valenciano: 105-125.
- JAENICKE-DESPRES, V., BUCKLER, E.S., SMITH, B.D., GILBERT, M.T.P., COOPER A, ET AL. (2003). Early allelic selection in maize as revealed by ancient DNA. *Science* 302: 1206-8
- **JETTEILES, L.H.** (1877) *Die Stammväter unserer Hunderassen*. Wien.
- KOUDELKA, F. (1885). Das Verhältnis der Ossa longa zur Skeletthöhe bei den Säugetieren. Verhandlt. d. Naturforsch. Ver. Brünn 24: 127-153.
- LALUEZA-FOX, C., SAMPIETRO, M.L., CARAMELLI., D., PUDER, Y., LARI, M., CALAFELL. F., MARTÍNEZ-MAZA, C., BASTIR, M., FORTEA, J., DE LA RASILLA, M., BERTRANPETIT, J. & ROSAS, A. (2005). Neandertal evolutionary genetics: mitochondrial DNA data from the Iberian Peninsula. *Mol Biol Evol* 22: 1077-1081.
- **LARSON, G. & BURGER, J.** (2013). A population genetics view of animal domestication. *Trends in Genetic* 29 (4): 197-2045.
- LATORRE REVIRIEGO, R., RAMÍREZ ZARZOSA, G., LÓPEZ ALBORS, O., ARENCIBIA ESPINOSA, A., VÁZQUEZ AUTÓN, J.M., GIL CANO, F., ORENES HERNÁNDEZ, M. & MORENO MEDINA, F. (1995). Cuadernos prácticos de Osteología Veterinaria. Volumen III: Carnívoros. Secretariado de Publicaciones de la Universidad de Murcia.
- **LAUK, H. D.** (1976). Tierknochenfunde aus bronzezeitlichen Siedlungen bei Monachil und Purullena (Provincia de Granada). *Studien über frühe Tierknochenfunde von der Iberischen Halbinsel* 6, München.
- LAZARICH, M., FERNÁNDEZ, J.V., JENKINS, V., PERALTA, P., BRICEÑO, E., RAMOS, A., RICHARTE, MA. J., CARRERAS, A. Mª.; NÚNEZ, M., VERSACI, M., STRATTON, S., SÁNCHEZ, M. & GRILLÉ, J.M. (2009). Paraje de Monte Bajo (Alcalá de los Gazules). Una nueva necrópolis de cuevas artificiales en el sur de la provincia de Cádiz. Almoraima 39.
- LAZARICH GONZÁLEZ, M., RAMOS, A., CARRERAS EGAÑA, A.M., BRICEÑO, A.M., FERNÁNDEZ DE LA GALA, J.V., RICHARTE, M.J., NÚÑEZ, M., VERSACI INSÚA, M. (2012). Contribución al conocimiento de las costumbres funerarias del III y II milenios A.C. en la Baja Andalucía: la necrópolis de Paraje de Monte Bajo. Memorial Luis Siret. I Congreso de Prehistoria de Andalucía. La tutela del patrimonio prehistórico, Junta de Andalucía, Sevilla: 559-566.
- **LECHUGA CHICA, M.A., SOTO CIVANTOS, M. & RODRÍGUEZ ARIZA, M.O.** (2014). El poblado calcolítico Venta del Rapa (finales III milenio cal BC), Mancha Real, Jaén. Un recinto de fosos entre las estribaciones de Sierra Mágina y el Alto Guadalquivir. *Trabajos de Prehistoria* 71 (2): 353-366.
- **LEWIN, B.** (2008). *Genes IX*. Jones & Bartlett Learning.
- **LIESAU, C.** (2011). Estudios arqueofaunísticos en Camino de las Yeseras. Los restos de mamíferos del ámbito doméstico y funerario. (**BLASCO, M.C.; LIESAU, C. & RIOS, P.** eds.) *Yacimientos calcolíticos con campaniforme de la Región de Madrid: nuevos estudios*: 171-198. Patrimonio Arqueológico de Madrid 6.
- LIESAU, C. (2012) Depósitos con ofrendas de animales en yacimientos Cogotas I: antecedentes y características, en (RODRÍGUEZ MARCOS, J. A. & FERNÁNDEZ MANZANO, J., eds.) Cogotas I: una cultura de la Edad del Bronce en la Península Ibérica, Arte y Arqueología 30: 219-257.
- LIESAU, C., BLASCO, C., RÍOS, P., VEGA, J., MENDUIÑA, R., BLANCO, J.F., BAENA, J.F., HERRERA, T., PETRI, A. & GÓMEZ, J.L. (2008). Un espacio compartido por vivos y muertos: El poblado calcolítico de fosos de Camino de las Yeseras (San Fernándo de Henares, Madrid). *Complutum* 19 (1): 97-120.
- LIESAU, C., DAZA, A., LLORENTE, L. & MORALES, A. (2013). More questions than answers: the singular animal deposits from Camino de las Yeseras (Chalcolithic, Madrid, Spain). *Anthropozoologica* 48 (2): 5-14.
- LIESAU VON LETTOW-VORBECK, C., ESPARZA ARROYO, A. & SÁNCHEZ POLO, A. (2014). ¿Huesos en la basura o depósito ritualizado? Los perros descuartizados de La Huelga (Dueñas, Palencia). *Zephyrus* LXXIV: 89-115.
- LIGNEREUX, Y. (2006). Des origines du chien. Ethnozootechnie 78: 11-28.

- **LIGNEREUX, Y., REGEDON, S. & PAVAUX, CL**. (1991). Typologie céphalique canine. *Revue de Médicine Vétérinaire* 142: 469-480.
- LINDBLAD-TOH, K., WADE, C.M., MIKKELSEN, T.S., KARLSSON, E.K., JAFFE, D.B., KAMAL, M., CLAMP, M., CHANG, J.L., KULBOKAS III, E.J., ZODY, M.C., *ET AL.* (2005). Genome sequence, comparative analysis and haplotype structure of the domestic dog. *Nature* 438 (7069): 803-819.
- LINDAHL, T. (1993a). Instability and decay of the primary structure of DNA. Nature 362: 709-715.
- LINDAHL, T. (1993b). Recovery of antediluvian DNA. Nature 365.
- LIZCANO, R., CÁMARA, J.A., RIQUELME, J.A., CAÑABATE, M.A., SÁNCHEZ, A. & AFONSO J.A. (1991-1992). El Polideportivo de Martos. Producción económica y símbolos de cohesión en un asentamiento del Neolítico final en las campiñas del Alto Guadalquivir. *Cuadernos de Prehistória de la Universidad de Granada* 16-17: 5-101.
- LIZCANO, R., CÁMARA, J.A., PÉREZ BAREAS, C. & ESPANEDDA, L. (2005). Continuidad en habitat y continuidad ritual. Hipogeísmo en el Alto Guadalquivir. (ONTAÑÓN, R., GARCÍA-MONCÓ, C. & ARIAS, P. coords.)

 Actas del III Congreso del Neolítico en la Península Ibérica: 653-662. Santander 2003.
- LIZCANO, R., GÓMEZ, E., NOCETE, F. & PERAMO, A. (2006). Intervención arqueológica puntual para la recuperación del yacimiento arqueológico de las Eras del Alcázar (Úbeda, Jaén). *Anuario Arqueológico de Andalucía* 2006, Junta de Andalucía, Dirección General de Bienes Culturales.: 2529-2548.
- **LIZCANO PRESTEL, R. & GÓMEZ DE TORO, M.E.** (2015). Medidas de investigación y conservación para la puesta en valor y uso social del yacimiento arqueológico de las Eras del Alcázar (Úbeda, Jaén). Memoria Final
- LLONGUERAS I CAMPAÑA, M. (1981). La Balma de L'Espluga (Sant Quirze Safaja, Barcelona). (CAMPS, G.M., LLONGUERAS, M., MARCET, R., PETITI, M.A. & ROVIRA, J., eds.) El Neolític a Catalunya. Taula Rodonda de Montserrat, Maig 1980: 123-135.
- **LLORENTE RODRÍGUEZ, L.** (2015). Cova Fosca (Ares del Maestrat, Castellón): Arqueozoología de la Revolución Neolítica en la fachada levantina de Iberia. Tesis doctoral inédita, Universidad Autónoma de Madrid. Madrid.
- LOMBA MAURANDI, J., LÓPEZ MARTÍNEZ, M., RAMOS MARTÍNEZ, F. & AVILÉS FERNÁNDEZ, A. (2009a). Un excepcional sepulcro calcolítico: Camino del Molino (Caravaca de la Cruz). XX Jornadas de Patrimonio Cultural de la Región de Murcia: 205-219.
- LOMBA MAURANDI, J., LÓPEZ MARTÍNEZ, M., RAMOS MARTÍNEZ, F. & AVILÉS FERNÁNDEZ, A. (2009b). El enterramiento múltiple, calcolítico, de Camino del Molino (Caravaca, Murcia). Metodología y primeros resultados de un yacimiento excepcional. *Trabajos De Prehistoria* 66 (2): 143-159.
- LÓPEZ, P. (1988a). El Neolítico andaluz (LÓPEZ, P., COORD.) El Neolítico en España: 195-200.
- LÓPEZ, P. (1988b). El Neolítico en Cataluña (LÓPEZ, P., COORD.) El Neolítico en España: 65-100.
- **LÓPEZ, P. & MOLERO, G.** (1984). Análisis de los restos vegetales, faunísticos y polínicos del yacimiento de La Sarsa (Bocairente, Valencia). *Trabajos de Prehistoria* 41: 305-312.
- LORENZ, K. (1954). E l'uomo incontrò il cane. Adelphi.
- **LORENZ, K.** (1975). Foreword. (**Fox, M.W.** ed.) The wild canids. Their systematics, behavioural ecology and evolution. Van Nostrand Reinhold.
- LYMAN, R.L. (1994a). Quantitative Units and Terminology in Zooarchaeology. *American Antiquity* 59 (1): 36-71.
- LYMAN, R.L. (1994b) Vertebrate Taphonomy. Cambridge University Press, Cambridge.
- MAINI, E. (2012). Lo sviluppo dell'allevamento in Emilia-Romagna. Aspetti economici e implicazioni sociali nella gestione della risorsa animale durante l'età del Bronzo. Tesis doctoral inédita. Università di Bologna.
- **MACKINNON, M.** (2010). Sick as a dog: zooarchaeological evidence for pet dog health and welfare in the Roman world. *World Archaeology* 42 (2): 290-309.

- MAJÓ, T. (2007). Estudi antròpologic i anàlisis de les pràctiques funerariès. (FRANCÈS i FARRÉ, J., coord.) Els Mallols, un jaciment de la plana del Vallès entre el neolític i l'antiguitat tardana (Cerdanyola del Vallès, Vallès Occidental), Excavacions arqueològiques a Catalunya 17: 217-265
- MANCONI, F. (1996). Olbia, su cuguttu 1992: I reperti faunisitici. (MASTINO, A. & RUGGERI, P. eds). Olbia in età antica, Sassari: 447-460.
- MANHART, H., VON DEN DRIESCH, A. & LIESAU, C. (2000). Investigaciones arqueozoológicas en Fuente Álamo. (SCHUBART, H., PINGEL, V. & ARTEAGA, O. eds) Fuente Álamo. Las excavaciones arqueológicas 1977-1991 en el poblado de la Edad del Bronce. Junta de Andalucía, Sevilla: 223-240.
- MARCET BARBÉ, R. (1982). Memòria del jaciment arqueològic de Can Soldevilla (Santa Perpètua de la Mogoda- Vallès Occidental) Campanyes 1982-1983. Memoria depositada ante el Servei de Arqueologia i Paleontologia de la Generalitat de Catalunya. Inédito.
- MARIEZKURRENA, K. (1986). La cabaña ganadera del Castillar de Mendavia (Navarra). MUNIBE 38: 119-169.
- MARIEZKURRENA, K. (1987) Macromamíferos asociados a los enterramientos calcolíticos de la cueva Iruaxpe I (Guipúzcoa). MUNIBE 39:80-84.
- MARIEZKURRENA, K. (1990). Bases de subsistencia de origen animal durante los períodos postpaleolíticos de Amalda. (ALTUNA, J., BALDEÓN A. & MARIEZKURRENA, K. eds) La cueva de Amalda (Zestoa, País Vasco. Ocupaciones Paleolíticas y Postpaleolíticas. Edit. Eusko Ikaskuntza. San Sebastián: 193-224.
- MARIEZKURRENA, K. & ALTUNA, J. (1993-1994). Arqueozoología de la villa romana del Alto de la Cárcel, Arellano (Navarra). *Trabajos de arqueología Navarra* 11: 109-125.
- MARÍN MUÑOZ, J.M., LÓPEZ PADILLA, J.A. & DE MIGUEL IBÁÑEZ, M.P. (2013). Un excepcional ajuar ebúrneo de los inicios de la Edad del Bronce en Molinos de Papel (Caravaca de la Cruz, Murcia). (BANERJEE A., LÓPEZ PADILLA, J.A. & SCHUMACHER, T.X. eds.) Elfenbeinstudien. Faszikel 1: Marfil y elefantes en la Península Ibérica y el Mediterráneo occidental. Actas del coloquio internacional en Alicante, 26-27 de noviembre de 2008, DAI y MARQ, Iberia Archaeologica, Band 16: 157-171.
- MARSDEN, C.D., ORTEGA-DEL VECCHYO, D., O'BRIEN, D.P., TAYLOR, J.F., RAMIREZ, O., VILÀ, C., MARQUES-BONET, T., SCHNABEL, R.D., WAYNE, R.K. & LOHMUELLER K.E. (2016). Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. *PNAS* 2016 113 (1): 152-157; doi:10.1073/pnas.151250111
- MARTÍN CAMINO, M. (1998). Un contexto cerámico de finales del s. III a.C.: El vertedero púnico de la Plaza de San Ginés (Cartagena). Les fàcies ceràmiques d'importació a la costa ibèrica, les balears i les Pitiüses durant el segle III a.C i la primera meitat del segle II a.C. (RAMÓN TORRES, J., SANMARTÍGREGÓ, E., ASENSIO VILARÓ D. & PRINCIPAL PONCE, J. EDS.), ArqueoMediterrània 4, Universidad de Barcelona, Barcelona.
- MARTÍN DE LA CRUZ, J.C. (1995). Alteraciones antrópicas del ecosistema: indicadores arqueológicos según Papa Uvas (Aljaraque, Huelva). *Rubricatum* 1 (1):85-91.
- Martín, A., Bordas, A. & Martí, M. (1995). Bòbila Madurell (Sant Quirze del Vallès, Barcelona). Estrategia económica y organización social en el Neolítico Medio. *Rubricatum* 1 (1): 423-428.
- MARTÍN ORTEGA, M. A. & GENÍS ARAMADA, T. (1993). El jaciment ibèric de Puig de Serra (Serra de Daró). Segles VI-IV aC. Estudis sobre el Baix Empordà 12: 5-50.
- MARTÍN RODRÍGUEZ, P. (2015). Caracterización zooarqueológica de las cuevas redil en la Prehistoria de la Meseta Norte: el caso de El Mirador (Sierra de Atapuerca, Burgos). Tesis doctoral inédita, Universidat Rovirai Virgili, Tarragona.
- MARTÍN RODRÍGUEZ, P., ROSSELL, J. & VERGÈS, J.M. (2009). La gestión de los recursos faunísticos durante el Neolítico en la Sierra de Atapuerca (Burgos): los niveles 19 y 20 de la Cueva del Mirador, *Trabajos de Prehistoria* 66(2): 77-92.
- MARTÍN RODRÍGUEZ, P. SALADIÉ, P., NADAL, J. & VERGÈS, J.M. (2014). Butchered and consumed: Small carnivores from the Holocene levels of El Mirador Cave (Sierra de Atapuerca, Burgos, Spain). *Quaternary International 353*: 153-169
- Martínez Navarrete, M. I. (1984). El comienzo de la metalurgia en la provincia de Madrid: La Cueva de Juan Barbero (Tielmes). *Trabajos de Prehistoria 41*: 17-128.

- MARTÍNEZ, R. (1988). Las evidencias económicas: los restos de fauna, (JUAN J. & MARTÍNEZ R.) Fuente Flores (Requena, Valencia). Nuevos datos sobre el poblamiento y la economía del Neo-eneolítico valenciano. Archivo de Prehistoria Levantina XVIII: 181-232.
- MARTÍNEZ VALLE, R. (1993). La fauna de vertebrados. (BERNABEU, J. dir.) El III milenio a.C. en el País Valenciano. Saguntum-PLAV 2: 123-151.
- MARTÍNEZ, SÁNCHEZ, R. M. (2010). Análisis arqueozoológico de la fase ibérica y medieval del Cerro de la Cruz. Campañas de 2006-2008. (Muñiz, I. & Quesada, F. eds.) Un drama en tres actos. Dos milenios de ocupación humana en el Cerro de la Cruz (Almedinilla, Córdoba). Oikos 2 Río Caicena: 141-149.
- **MASSETI, M.** (2008). *Uomini e (non solo) topi. Gli animali domestici e la fauna antropocora*. Firenze University Press, Firenze: 33-41.
- MATHIESON, I., LAZARIDIS, I., ROHLAND, N., MALLICK, S., PATTERSON, N., ROODENBERG, S.A., HARNEY, E., STEWARDSON, K., FERNANDES, D., NOVAK, M., SIRAK, K., GAMBA, C., JONES, E.R., LLAMAS, B., DRYOMOV, S., PICKRELL, J., ARSUAGA, J.L., DE CASTRO, J.M., CARBONELL, E., GERRITSEN, F., KHOKHLOV, A., KUZNETSOV, P., LOZANO, M., MELLER, H., MOCHALOV, O., MOISEYEV, V., GUERRA, M.A., ROODENBERG, J., VERGÈS, J.M., KRAUSE, J., COOPER, A., ALT, K.W., BROWN, D., ANTHONY, D., LALUEZA-FOX, C., HAAK, W., PINHASI, R. & REICH D. (2015) Genome-wide patterns of selection in 230 ancient Eurasians. *Nature* 2015 Dec 23; 528 (7583): 499-503. doi 10.1038/nature16152
- MEADOW, R.H. (1999). The use of size index scaling techniques for research on archaeozoological collections from the Middle East. (BECKER, C., MANHART, H., PETERS, J., & SCHIBLER, J. eds.) *Historia animalium ex ossibus*. Verlag Marie Leidorf GmbH Rahden/Westf: 287-300.
- MERCADAL, O., PALOMO, A., ALIAGA, S., AGUSTÍ, B, GIBAJA, J.F., BARRIOS, A. & CHIMENOS, E. (2005). La costa de Can Martorell (Dosrius, El Maresme, Barcelona): muerte y violencia en una comunidad del litoral catalán durante el tercer milenio cal BC. (ONTAÑÓN, R., GARCÍA-MONCÓ, C. & ARIAS, P. coords.) Actas del III Congreso de Neolítico de la Península Ibérica. Santander 2003. Santander Insitituto Internacional de Investigaciones Prehistóricas de Cantabria: 75-116.
- MESTRES TORRES, J. (2007). Datación por radiocarbono de material osteológico del Caserío de Perales. (LÓPEZ LÓPEZ G. & MORÍN DE PABLOS, J. coord.) Nuevos datos para el estudio de la Edad del Bronce en la Comunidad de Madrid. Los yacimientos de Perales del Río y La Peineta. Memorias Arqueológicas Audema. Serie Prehistoria, 5. Madrid: 107-113.
- MEGNIN, P. (1897). Le chien et ses races. Deuxième édition, Tome premier. Broché.
- MENIEL, P. (1978). L'étude des vestiges osseux. Revue archéologique de l'Oise 13: 37-39.
- MENIEL, P. (1987). Chasse et elévage chez les Gaulois (450-52 av. J.C.). Errance, París.
- MEYER, M. & KIRCHER, M. (2010). Illumina sequencing library preparation for highly multiplexed target capture and sequencing. *Cold Spring Harb Protoc.* 2010 (6): pdb.prot5448. doi: 10.1101/pdb.prot5448.
- **MILZ, H.** (1986). Die Tierknochenfunde aus drei argarzeitlichen siedlungen in der provinz Granada (Spanien). *Studien über frühe Tierknochenfunde von der Iberischen Halbinsel* 10, München.
- MIRÓ, C. & Molist, N. (1982) Estudi de la fauna del jaciment de Can Soldevila III (Santa Perpètua de Mogoda). Fulls d'Arqueologia i Història de Santa Perpètua de Mogoda: 55-60. Museu Municipal de Santa Perpètua de Mogoda.
- MOLERO, G. (1988). Estudio de los restos faunísticos hallados en la necrópolis del Estacar de Robarinas, Cástulo. (GARCÍA-GELABERT, Mª.P. & BLÁZQUEZ, J. M.) Cástulo (Jaén, España). I. Excavaciones en la necrópolis ibérica del Estacar de Robarinas (s.IV aC). BAR, I.S. 425: 389-397.
- MOLINA I SERRAMITJANA, J.A. (1990). Anàlisi de la fauna. (BOSCH I LLORET, A. & TARRÚS I GALERT, J. eds.) La cova sepulcral del Neolitic Antic de L'Avellaner (Cogolls, Loes Planes D'Hostoles, La Garrotxa). Girona: Centre de investigacions Arqueològiques de Girona. Serie Monogràfica 11: 61:65.
- Monraval Sapiña, J.M. & López Piñol, M. (1984). Restos de un silicernio en la necrópolis ibérica de El Molar. Saguntum 18: 145-162.
- MONTERO, M. (2003). Anexo I. La fauna" en "Hipogeo fenicio en la necrópolis de Gibralfaro (Málaga). Anuario Arqueológico de Andalucía 2000 III, Junta de Andalucía, Sevilla.

- MORALES, A., CEREIJO, M. A., BRANNSTOM, P. & LIESAU, C. (1994). The mammals. Castillo de Doña Blanca. (ROSELLÓ, E. & MORALES A. eds.) Archaeo-environmental investigations in the Bay of Cádiz, Spain (750-500 B.C.). BAR International Series 593, Oxford University Press, Oxford.
- MORALES A. & LISEAU, C. (1995). Análisis comparado de la fauna arqueológicas en el valle medio del Duero (Valladolid) durante la Edad del Bronce. (DELIBES, G., ROMERO, F. & MORALES, A. eds.). Arqueología y Medio Ambiente. El primer milenio a.C. en el Duero Medio. Junta de Castilla y León, Valladolid: 455-514.
- MORALES A. & MORENO, R. (1989). Informe faunístico del depósito votivo de El Amarejo (Bonete, Albacete). (BRONCANO RODRÍGUEZ, S.) El depósito votivo ibérico de El Amarejo. Bonete (Albacete). Excavaciones Arqueológicas en España 156: 64-78.
- MORALES, A., RUBIO REGUEIRO, F. J. & SALCEDO, B. (1983). Los restos óseos recuperados en el Santuario ibérico de El Cigarralejo (Murcia). *Noticiario Arqueológico Hispánico* 15: 139-149.
- MOREL J.-P. (1966). Les phocéens en Occident: certitudes et hypothèses. Velia e i Focei in Occidente. La Parola del Passato 108-110: 463-508.
- MOREL, P. & MÜLLER, W. (1997). Hauterive-Champréveyres, 11. Un campement mag-dalénien au bord du lac de Neuchâtel: étude archéozoologique (secteur 1). Archéologie neuchâteloise 23. Musée cantonal d'archéologie, Neuchâtel.
- MORENO GARCÍA, M. (2003). Estudo dos resto faunísticos da Anta da Herdade de Santa Margarida (Reguengos de Monsaraz). (GONÇALVES, V.S., ed.) STAM-3, a Anta 3 da Herdade de Santa Margarida (Reguengos de Monsaraz). *Trabalhos de Arqueologia 32*: 432-439. Instituto Português de Arqueologia, Lisboa.
- Morey, D.F. (1994). The early evolution of domestic dog. American Scientist 82: 336-347.
- Morey, D.F. (1992). Size, Shape and Development in the Evolution of the Domestic Dog, *Journal of Archaeological Science* 19: 181-204.
- MOREY, D.F. (2010). Dogs. Domestications and the development of a social bond. Cambridge Univ. Press.
- Morey, D.F. (2014). In search of Palaeolithic dogs: a quest with mixed results. *Journal of Archaeological Science* 52: 300-307.
- MORVAN, A. (2002). Crâniométrie chez le chien: étude comparée des spécimens recueillis dans des cavités pyrénéennes (fouilles André Clot) et des chiens de races connues du Museum National d'Histoire Naturelle (collection Francis Peter). Tesis doctoral inédita, Ecole Nationale Vétérinaire de Toulouse.
- MULLIS, K.B. & FALOONA, F.A. (1987). Specific synthesis of DNA in vitro via a polymerase catalysedch a in reaction. *Methods Enzymol*. 155: 35-350.
- MULLIS, K.B., FALOONA, F.A., SCHARF, S., SAIKI, R., HORN, G. & ERLICH, H. (1987). Specific enzymatic amplification of DNA *in vitro*: the polymerase chain reaction. *Cold spring Harbour Symposium of Quantitative Biology* 51: 263-273.
- MÜLLER, W. (2005). The domestication of the wolf the inevitable first? (VIGNE, J.D. & HELMER, D., eds.), The first steps of animal domestication: new archaeological approaches. Oxbow Books, Oxford: 34-40.
- Muñoz Gambero, J.M. (1964). Poblado ibero-púnico del Cerro de la Tortuga. Teatinos (Málaga). VIII Congreso Nacional de Arqueología (Sevilla-Málaga, 1963), Zaragoza.
- Muñoz Vicente, A. (1991). Excavaciones arqueológicas de urgencia en la necrópolis de Cádiz: Área de la Plaza de Asdrúbal. Sector H. Anuario Arqueológico de Andalucía 1989 III, Junta de Andalucía, Sevilla.
- Musil, R. (1974). Tiergesellschaft der Kniegrotte (FEUSTEL, R. ed.) Die Kniegrotte. Eine Magdalenien-Station in Thfiringen. Veröffentlichungen des Museums für Ur- und Frügeschichte 5: 31-95. Weimar.
- MUSIL, R., (2000). Evidence for the domestication of wolves in Central European Magdalenian sites. (CROCKFORD, S.J. eds), Dogs through Time: An Archaeological Perspective. BAR Int. Ser. 889: 21-28.
- NADAL I LORENZO, J., SENABRE JUNCOSA, M.R., MESTRES I MERCADÉ, J. & CEBRIÀ I ESCUER, A. (1999). Evolución del aprovechamiento de los recursos faunísticos durante el Neolítico en la comarca de l'Alt Penedes (Barcelona). Il Congrés del Neolític a la Península Ibèrica. Saguntum PLAV Extra-2: 85-93.

- NADAL, J. & ESTRADA, A. (2005). Estudi de les restes faunístiques recuperades al jaciment del Pla del Serrador (Les Franqueses del Vallès, Vallès Oriental). Informe depositado ante el Servei d'Arqueologia de la Generalitat de Catalunya. Inédito.
- NADAL, J. & ESTRADA, A. (2007). Estudi de la fauna, (FRANCÈS i FARRÉ, J., coord.) Els Mallols, un jaciment de la plana del Vallès entre el neolític i l'antiguitat tardana (Cerdanyola del Vallès, Vallès Occidental), Excavacions arqueològiques a Catalunya 17: 265-306.
- Napierala, H. & Uerpmann, H.-P. (2012). A 'New' Palaeolithic Dog from Central Europe. *Int. J. Osteoarchaeology* 22: 127-137
- NAVERÁN, N. (2007). DNA antiguos, metodología y daños moleculares. Aproximacion al poblamiento del nuevo Mundo. Tesis doctoral inédita. Universidad de Santiago de Compostela, Istituto de Medicina Legal.
- **NIVEAU DE VILLEDARY Y MARIÑAS, A.M.** (2001). Pozos púnicos en la necrópolis de Cádiz: Evidencias de prácticas rituales funerarias. *Rivista di Studi Fenici XXIX, 2,* Centro Nazionale per la Ricerca, Roma.
- **NIVEAU, A.M. & FERRER, E**. (2004). Sacrificios de cánidos en la necrópolis púnica de Cádiz. Actas del III Congreso español de Antiguo Oriente Próximo (Huelva), Huelva Arqueológica 20: 63-88.
- **Nobis, G.** (1962). Die Tierreste prähistorischer Siedlungen aus den Satrupholmer Moor (Schlewig-Holstein). *Z.Tierzüchtung u. Züchtungsbiol* 77:16-30.
- **Nobis, G.** (1986). Die Wildsäugetiere in der Umwelt des Menschen von Oberkassel bei Bonn und das Domestikationsproblem von Wölfen im Jungpaläolithikum. *Bonner Jahrbuch 186*: 368–376.
- **NoBIS, G.** (1981). Aus Bonn: das älteste Haustier des Menschen. Unterkiefer eines Hundes aus dem Magdalkniengrab von Bonn-Oberkassel. Das Reinische Landesmuseum Bonn: 49-50.
- **NOCETE CALVO, F. (COORD.)** (2004) Odiel. Proyecto de investigación arqueológica para el análisis del origen de la desigualdad social en el Suroeste de la Península Ibérica. Arqueología-Monografías 19, Junta de Andalucía: 253-264.
- **O'CONNOR, T.P.** (1997). Working at relationship: another look at animal domestication. *Antiquity* 71: 149-156.
- OLALDE, I., SCHROEDER, H., SANDOVAL VELASCO, M., VINNER, L., LOBÓN, I., RAMÍREZ, O., CIVIT, S., GARCÍA BORJA, P., SALAZAR-GARCÍA, D. C., TALAMO, S., FULLOLA, J. Mª., OMS, F. X., PEDRO, M., MARTÍNEZ, P., SANZ, M., DAURA, J., ZILHÃO, J., MARQUÈS-BONET, T., GILBERT, M. T. P. & LALUEZA-FOX, C. (2015) A common genetic origin for early farmers from Mediterranean Cardial and Central European LBK culture. *Molecular Biology and Evolution* 32 (12): 3132-3142.
- OLALDE, I., ALLENTOFT, M., SÁNCHEZ-QUINTO, F., SANTPERE, G., CHIANG, C.W., DEGIORGIO, M., PRADO-MARTINEZ, J., RODRÍGUEZ, J., RASMUSSEN, S., QUILEZ, J., RAMÍREZ, O., MARIGORTA, U.M., FERNÁNDEZ-CALLEJO, M., PRADA, M., ENCINAS, J.M., NIELSEN, R., NETEA, M.G., NOVEMBRE, J., STURM, R.A., SABETI, P., MARQUÈS-BONET, T., NAVARRO, A., WILLERSLEV, E. & LALUEZA-FOX, C. (2014). Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. *Nature* 507 (7491): 225-8. doi:10.1038/nature12960.
- OLÀRIA, C. (1988a) Resultados de las dataciones de radiocarbono. (OLARIA, C. ed.) Cova Fosca. Un asentamiento Meso-Neolítico de cazadores y pastores en la serranía del Alto Maestrazgo. Monografías de Prehistória y Arqueología Castellonenques 3: 247-249.
- **OLÀRIA, C.** (1988b) En Neolítco de las comarcas castellonenses (**LÓPEZ, P.** coord.) El Neolítico en España: 101-130.
- **OLÀRIA, C.** (2000) Nuevas dataciones de C-14 para el neolítico mediterráneo peninsular. *Cuadernos de Prehistoria y Arqueología Castellonense* 21: 27-33.
- OLÀRIA, C., GUSI, F., ESTÉVEZ, J., CASABO, J. & ROVIERA, M.L. (1981) El yacimiento Magdaleniense superior de Cova Matutano (Vilafamès, Castellón). Estudio del sondeo estratigráfico 1979. Cuadernos de Prehistoria y Arqueología Castellonense 8: 21-100.
- **OLIVER FOIX, A.** (1990). Hallazgo arqueológico en el casco urbano de Alcalá de Xivert. *Boletín del Centro de Estudios del Maestrazgo* 31: 81-88. Benicarló. Castellón.
- OLIVER FOIX, A. (2006). El Puig de la Nau, Benicarló. Museo de BB.AA. Castellón
- **OLIVER FOIX, A.** (2014). Perros en el culto, la economía y el prestigio de los iberos. *Cuadernos de Prehistoria* y Arqueologia castellonenques 32: 43-61.

- OLLIVIER, M., TRESSET, A., HITTE, C., PETIT, C., HUGHES, S., GILLET, B., DUFFRAISSE, M., PIONNIER-CAPITAN, M., LAGOUTTE, L., ARBOGAST, R.-M., BALASESCU, A., BORONEANT, A., MASHKOUR, M., VIGNE, J.-D. & HÄNNI, C. (2013). Evidence of Coat Variation Shed New Light on Ancient Canids. *PloS One* 8 (10): 1-7 doi: 10.1371/journal.pone.0075110.
- OLSEN, S. J. (1985). Origins of the domestic dog: the fossil record. University of Arizona Press, Tucson, USA.
- OLSEN S.J. & OLSEN J.W. (1977) The Chinese wolf, ancestor of New World dogs. Science: 533-535.
- ONORATO, G. (1960). La ricerca archeologica in Irpinia. Avellino.
- ORLANDO, L., GINOLHAC, A., ZHANG, G., FROESE, D., ALBRECHTSEN, A., STILLER, M., SCHUBERT, M., CAPPELLINI, E., PETERSEN, B., MOLTKE, I., JOHNSON, P. L. F, FUMAGALLI, M., VILSTRUP, J.T., RAGHAVAN, M., KORNELIUSSEN, T., MALASPINAS, A.-S., VOGT, J., SZKLARCZYK, D., KELSTRUP, C.D., VINTHER, J., DOLOCAN, A., STENDERUP, J., VELAZQUEZ, A. M. V., CAHILL, J., RASMUSSEN, M. ET AL. (2013) Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. *Nature* 499: 74-78. doi: 10.1038/nature12323
- **ORTALLI, J.** (1990) *Le mura coloniali di Ariminum e il deposito di fondazione con "semuncia" a testa di gallo.* Etudes Celtiques XXVII: 24-30.
- Ovodov, N.D., CROCKFORD, S.J., KUZMIN, Y.V., HIGHAM, T.F., HODGINS, G.W. & VAN DER PLICHT, J. (2011). A 33,000-year-old incipient dog from the Altai mountains of Siberia: evidence of the earliest domestication disrupted by the last glacial maximum. *PloS One* 6(7): e22821. doi:10.1371/journal.pone.0022821
- **Р**анно, **S.** (1989). Ancient DNA: extraction, characterization, molecular cloning and enzymatic amplificatio. *Proc. Natl. Acad. Sci. USA* 86: 1939-1943. Genetic analyses from ancient DNA.
- **РÄÄBO, S., HIGUCHI, R.G. & WILSON A.C.** (1989). Ancient DNA and the polymerase chain reaction. The emerging field of molecular archaeology. *The Journal of biological chemistry* 264 (17): 9709-12.
- PÄÄBO, S. & WILSON, A.C. (1991). Miocene DNA sequences a dream come true? Curr Biol. 1(1): 45-46.
- PÄÄBO, S., POINAR, H., SERRE, D., JAENICKE-DESPRES, V., HEBLER, J., ROHLAND, N., KUCH, M., KRAUSE, J., VIGILANT, L. & HOFREITER M. (2004). Genetic analyses from ancient DNA. *Annu. Rev. Genet.* 38: 645-79.
- Paz, M.A. (1992). Estudi arqueozoològic de diverses estructures Neolítiques de "La Bòbila Madurell" (Sant Quirze del Vallès, Barcelona). (VVAA) Estat de la investigació sobre el Neolític a Catalunya. IXè Col.loqui Internacional d'arqueologia de Puigcerdà: 187-190.
- PAZ, M.A. (1999). Estudio de los restos arqueozoológicos recuperados en la necrópolis de "El Poblado". (GARCÍA CANO J. M.) Las necrópolis ibéricas de Coimbra del Barranco Ancho (Jumilla, Murcia). II. Análisis de los enterramientos, catálogo de materiales y apéndices antropológico, arqueozoológico y paleobotánico. Murcia.
- **PERDIGONES MORENO, L. & MUÑOZ VICENTE, A.** (1987). *Excavaciones de urgencia en un solar de la plaza Asdrúbal (Cádiz) en 1985*. Anuario Arqueológico de Andalucia 1985 III, Junta de Andalucía, Sevilla.
- PÉREZ, M. (1978). Análisis faunístico de los restos óseos procedentes del poblado de la Edad del Bronce de Les Planetes. (A. GONZÁLEZ, ed.) Excavaciones en el poblado de la Edad del Bronce de Les Planetes, Mas d'En Serrans, Benassal (Castellón). Cuadernos de Prehistoria y Arqueología Castellonense 5: 238-241.
- PÉREZ RIPOLL, M. (1980). La fauna de vertebrados. (MARTÍ OLIVER, B., PASCUAL PÉREZ, V., GALLART MARTÍ, M. D., LÓPEZ GARCÍA, P., PÉREZ RIPOLL, M., ACUÑA HERNÁNDEZ, J. D. & ROBLES CUENCA, F. eds) Cova de L'Or (Beniarrés, Alicante) Vol. II. Servicio de Investigación Prehistórica de la Diputación de Valencia 65: 193-256.
- **PÉREZ RIPOLL, M.** (1990) La ganadería y la caza en la Ereta del Pedregal (Navarrés, Valencia). Archivo de Prehistoria Levantina XX, Valencia: 223-254.
- **PÉREZ RIPOLL, M.** (1992). Marcas de carnicería, fracturas intencionadas y mordeduras de carnivorosen huesos prehistóricos del Mediterraáneo español. Instituto del Cultura Juan Gil-Albert. Diputación provincial de Alicante.
- PÉREZ RIPOLL, M. (2006). Estudio arqueozoológico de la fauna de Falguera (Alcoi, Alacant). (GARCÍA PUCHOL, O. & AURA TORTOSA, J.E. coords.) El Abric de La Falguera (Alcoi, Alacant). 8.000 años de ocupación humana en la cabecera del río de Alcoi: 120-157. Diputación de Alicante, Ayuntamiento de Alcoi y CAM.

- **PESOLE. G., GISSI, C., DE CHIRICO, A. & SACCONE, C.** (1999). Nucleotide substitution rate of mammalian mithocondrial genomes. *Journal of Molecular Evolution* 48: 427-434
- **PETERS, J.** (1994). *Le chien dans l'antiquité, Histoire et évolution du chien*. XXXIX séminaire de la Société Francophone de Cynotechnie 25-26 mars 1994.
- **PETERS, J. & DRIESCH, A. VON DEN.** (1990). Archäozoologische untersuchung der tierrestre aus der kupferzeitlichen siedlung von Los Millares (prov. Almería). *Studien über frühe Tierknochenfunde von der Iberischen Halbinsel* 12: 51-110. München.
- **РІDOPLICHKO, I.G.** (1969) *Late Paleolithic dwellings of Mammoth bones in Ukraine (in russian)*. Academie des sciences de l'Ukraine. Institut de Zoologie, Kiev, Nauka, Doumka.
- PIERA TEIXIDÓ, M., ALONSO MARTÍNEZ, N., TUTUSAUS ANTOLÍN, F., GARCÍA CLOP, C., GIBAJA BAO, J.F., SAÑA SEGUÍ, M. & GALLART FERNÁNDEZ, J. (2009). La Intervenció arqueològica al jaciment del neolític final de l'Espina C (Tàrrega, l'Urgell). Urtx: revista cultural de l'Urgell: 11-49.
- Piérard, J. (1967). Note d'anatomie appliquée, appréciation de l'âge du chien. Canadian Veterinary Journal 8 (9): 197–200.
- PIONNIER-CAPITAN, M., BEMILLI, C., BODU, P., CELERIER, G., FERRIE, J.-G., FOSSE, P., GARCÍA, M. & VIGNE, J.-D. (2011). New evidence for Upper Palaeolithic small dogs in South-Western Europe. *Journal of Archaeological Science* 38: 2123-2140.
- PISONI, L. & TECCHIATI, U. (2010). Una sepoltura di cane connessa a un edificio di abitazione della seconda età del Ferro a Lajon/Lajen –Gimpele I (Bolzano). Atti del V convegno nazionale di Archeozoologia, Rovereto: 239-242.
- Poinar, H., Kuch, M., McDonald, G., Martin, P., & Pääbo, S. (2003) Nuclear gene sequences from a Late Pleistocene sloth coprolite. *Curr. Biol.* 12: 1150–52.
- POINAR, H. N., Höss, M., BADA, J. L. & PÄÄBO, S. (1996). Amino acid racemization and the preservation of ancient DNA. *Science* 272: 864.866.
- **Pons, E.** (1997). Estructures, objectes i fets cultuals en el jaciment protohistòric de Mas Castellar (Pontós, Girona). *Quaderns de prehistòria i arqueologia de Castelló* 18: 71-90.
- PONS, E. (DIR.) ET AL. (2002). Mas Castellar de Pontós (Alt Empordà). Un complex arqueològic d'època ibérica (Excavacions 1990-1998). Sèrie Monogràfica 21, Museu d'Arqueologia de Catalunya-Girona.
- Pons, E., Asensio, D., Bouso, M. & Fuertes, M. (2005). Noves aportacions sobre la periodització al jaciment ibèric de Mas Castellar (Pontós, Alt empordà), Món ibèric als Països Catalans. XIII Col.loqui Internacional d'Arqueologia de Puigcerdà. Homenatge a Josep Barberà i Farràs. Puigcerdà, 14 i 15 de novembre de 2003, Vol. 1: 361-378
- **Pons, E. & Colominas Barberà, L.** (2015). Des silos et des rite dand le monde ibérique. Espaces de culte à Pontós. *Dossier d'Archéologie* 367:38-43
- Pons, E., Colominas Barberà, L. & Saña, M. (2016). Dog sacrifices at the protohistoric site of Mas Castellar (Pontós, Spain). (Murray C.A., ed.) Diversity of Sacrifice: Form and Function of Sacrificial Practices in the Ancient World and Beyond. IEMA Proceedings 2011 (5): 191-210.
- PONS, E., COLOMINAS BARBERÀ, L., SAÑA, M. & VARGAS, A. (2011). Mas Castellar, Pontós. Gérone. (ROURE, R. & PERNET, L. dir.) Des rites et des hommes: les pratiques symboliques des Celtes, des Ibères et des Grecs en Provence, en Languedoc et en Catalogne. Ed. Errance: 205-210.
- **Pons, E., Bouso, M., Gago, N. & Fernández, M.J.** (1998). Significació funcional de les sitges amortitzades de Mas Castellar de Pontós: una aproximació metodològica. *Cypsela* 12: 63-79.
- **POPLIN, F.** (1976). Remarques théoriques et pratiques sur les unités utilisées dans les études d'ostéologie quantitative, particulièrement en archéologie préhistorique. Actes du IXe Congrès de l'Union Internationale des Sciences Préhistoriques et Protohistoriques de Nice. Thèmes spécialisés B. Problèmes ethnographique des vestiges osseux, Nice: 124-141.
- **POPLIN, F.** (1981). Un problème d'ostéologie quantitative: calcul d'effectif initial d'après appariements. Généralisation aux autres types de remontages et à d'autres matériels archéologiques. Actes du 20e Symposium International d'Archéométrie, Paris 1980. Revue d'Archéométrie 5: 159-165.

- PORTERO, V. MOLINOS, M. FERNÁNDEZ, R. & GÓMEZ, F. (2010). Intervención arqueológica de urgencia en el paraje de la Venta de Llano (Mengíbar, Jaén). *Anuario Arqueológico de Andalucía 2004 (2):* 621-632.
- **PUIGCERVER HURTADO, A.** (1992-1994). Arqueología de la Edad del Bronce en Alicante: La Horna, Foia de la Perera y Lloma redona. *LVCENTVM* XI-XIII: 63-71
- **PUJANTE, A.** (2001). *El yacimiento de los Molinos de Papel, Caravaca de la Cruz*. XII Jornadas de Patrimonio Histórico y Arqueología Regional, 22-25 de Mayo, Murcia.
- **PUJANTE, A.** (1999). El yacimiento prehistórico de los Molinos de Papel (Caravaca de la Cruz, Murcia) Intervención arqueológica vinculada a las obras de infraestructura del Plan Parcial SCR2 1999-2000. Memorias de Arqueología de la Región de Murcia 14: 133-172.
- **QUERO, S.** (1982) El poblado del Bronce Medio de Tejar del Sastre (Madrid). *Estudios de prehistoria y arqueología madrileñas 1*: 183-248.
- RAMÍREZ, J.A. (2004). Excavaciones en la Calle de La Corredera 46 y 47 de Lorca. Resumen de las XV Jornadas de Patrimonio Histórico y Arqueología de la Región de Murcia: 119-123. Dirección General de Cultura, Servicio de Patrimonio Histórico de Murcia.
- RAMÍREZ, O., ALTET, L., ENSEÑAT, C., VILÀ, C., SÁNCHEZ, A. & RUIZ., A (2006). Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding. *Conservation Genetics* 7:861–878. doi 10.1007/s10592-006-9123-z
- RAMÍREZ, O., GÓMEZ-DÍAZ, E., OLALDE, I., ILLERA, J.C., RANDO, J.C., GONZÁLEZ-SOLÍS, J. & LALUEZA-FOX, C. (2013). Population connectivity buffers genetic diversity loss in a seabird. *Frontiers in Zoology* 10: 28 http://www.frontiersinzoology.com/content/10/1/28
- RAMÍREZ, O., BURGOS-PAZ, W., CASAS, E., BALLESTER, M., BIANCO, E., OLALDE, I., SANTPERE, G., NOVELLA, V., GUT, M., LALUEZA-FOX, C., SAÑA, M. & PÉREZ-ENCISO, M. (2014). Genome data from a sixteenth century pig illuminate modern breed relationships. *Heredity* (2014), 1-10. doi: 10.1038/hdy.2014.81
- RAMOS AGUIRRE, M. (2007). Cortecampo II (Los Arcos) y Osaleta (Lorca, Valle de Yerri). Sepulturas descubiertas en las obras de la Autovía del Camino. (HURTADO ALFARO, M.A., CAÑADA PALACIO, F., SESMA SESMA, J. & GARCÍA GAZÓLAZ, J., coords.) La Tierra te sea leve. Arqueología de la Muerte en Navarra: 93-96.
- RAMOS AGUIRRE, M. (2009). Arqueología en la Autovía del Camino. *Trabajos de Arqueología Navarra* (TAN) 21: 5-119.
- RAMOS, J., LAZARICH, M., CÁCERES, I., PÉREZ, M., CASTAÑEDA, V., HERRERO, N. & DOMÍNGUEZ, S. (2005). El asentamiento de El Retamar. Síntesis del registro arqueológico y enmarque socioeconómico e histórico (ARIAS, P., ONTAÑON, R. & GARCÍA-MONCÓ, C. eds.) Actas del III Congreso de Neolitico de la Península Ibérica: 509-518. Santander 2003. Santander Insitituto Internacional de Investigaciones Prehistóricas de Cantabria.
- **REIG-GARCÍA, S. (2015)** El paper de l'animal en les pràctiques funeràries prehistòriques. Trabajo final de grado inédito. Universidat Autònoma de Barcelona.
- REIMER, P. J., BARD, E., BAYLISS, A., BECK, J. W, BLACKWELL, P.G., BRONK RAMSEY, C., BUCK, C. E., CHENG, H., EDWARDS, R. L., FRIEDRICH, M., GROOTES, P. M., GUILDERSON, T.P., HAFLIDASON, H., HAJDAS, I., HATTÉ, C., HEATON, T. J., HOFFMANN, D. L., HOGG, A. G., HUGHEN, K. A., KAISER, K. F., KROMER, B., MANNING, S. W., NIU, M., REIMER, R. W., RICHARDS, D. A., SCOTT, E. M., SOUTHON, J. R., STAFF, R. A., TURNEY, C. S. M. & VAN DER PLICHT, J. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0 50,000 years cal BP. *Radiocarbon* 55(4): 1869-1887.
- **RIEDEL, A.** (1968a). I mammiferi domestici del Castelliere di Nivize nel Carso triestino. *Atti e Memorie della Commissione Grotte Eugenio Boegan* 8: 125-144.
- **RIEDEL, A.** (1975). La fauna del Villaggio preistorico di Isolone della Prevaldesca. *Bollettino del Museo Civico di Storia Naturale di Verona* 2: 355-414.
- **RIEDEL, A.** (1976a). La fauna del villaggio preistorico di Barche di Solferino. *Atti del Museo Civico di Storia Naturale di Trieste* 29:215-238.
- **RIEDEL, A.** (1976b). Resti faunistici preistorici della Caverna Catariova (Trieste) (Scavi B. Lonza). *Atti del Museo Civico di Storia Naturale di Trieste* 29: 69-104.
- RIEDEL, A. (1976c). La fauna del villaggio preistorico di Ledro. Studi Trentini di Scienze Naturali 53: 3-120.

- **RIEDEL, A.** (1979). La fauna di alcuni insediamenti preistorici del territorio Veronese. *Atti del Museo Civico di Storia Naturale di Trieste* 31: 41-73.
- **RIEDEL, A.** (1982b). Die fauna einer bronzezeitlichen Siedlung bei Peschiera am Gardsee. *Rivista d'Archeologia* 6: 23-27.
- **RIEDEL, A.** (1997). Lo scheletro di cane dell'Età del Bronzo di Olmo di Nogara. *Quaderni di Archeologia del Veneto,* XIII: 81-87.
- RIEDEL, A. & TECCHIATI, U. (1992). La fauna del riparo del Santuario (Comune di Lasino-Trentino) Aspetti archeozoologici, paleoconomici e rituali, *Ann. Mus. civ. Rovereto* 8: 3-46
- RIMBAULT, M., BEALE, H.C., SCHOENEBECK, J.J., HOOPES, B. C., ALLEN, J.J., KILROY-GLYNN, P., WAYNE, R.K., SUTTER, N.B. & OSTRANDER, E.A. (2013). Derived variants at six genes explain nearly half of size reduction in dog breeds, *Genome Res* 23: 1985-1995
- RIPOLL, E. (1983). Els grecs a Catalunya, Barcelona.
- RIQUELME, J.A. (2009). Análisis arqueozológico de mamíferos. (LIZCANO, R., NOCETE F. & PERAMO, A., COORDS.)

 Las Eras. Proyecto de puesta en valor y uso social del patrimonio arqueo- lógico de Úbeda (Jaén),

 Universidad de Huelva, Huelva, Capítulo 2.5.
- RIQUELME CANTAL, J.A., LIZCANO PRESTEL, R., PÉREZ BAREAS, C., SÁNCHEZ SUSI, R. & CÁMARA SERRANO, J.A. (2012).

 Una introducción al análisis de los restos faunísticos de la zona arqueológica del Polideportivo de Martos, Cuadernos de Prehistoria y Arqueología de la Universidad de Granada 22: 199-230.
- RITTATTORE VONWILLER, F., FALCHETTI, F. & NEGRONI CATACCHIO, N. (1978). Preistoria e Protostotia della Valle del Fiume Fiora. Un dedennio di richerche archeologiche. *Quaderni della Ricerca Scientifica* 100 (2): 27-82.
- **ROBERT, R.** (1993). Rites de protection et de défence. A propos des ossement d'un chien découvert au pied du rempart de Paestum. *Annali dell'Istituto Ortientale di Napoli* XV: 120-142.
- RODRÍGUEZ. J. A., MARCOS, G.J., MARTÍN, M. A., MISIEGO, M.C. & SANZ, F. J. (1997) Excavaciones arqueológicas en ·Las Vegas· (Jabares de los Oteros). Un yacimiento arqueológico del 'Horizonte Protocogotas 1' en la provincia de León. (VIDAL, J. M. ed.) Protección del Patrimonio Cultural y Obras Públicas. Actuaciones arqueológica en la autopista del Camino de Saantiago (1994-1997). Junta de Castilla y León: 49-70.
- RODRÍGUEZ, R., RAMÍREZ, O., VALDIOSERA, C.E., GARCÍA, N., ALDA, F., MADURELL-MALAPEIRA, MARMI, J., DOADRIO, I., WILLERSLEV, E., GÖTHERSTRÖM, A., ARSUAGA, J.L., THOMAS, M.G., LALUEZA-FOX, C. & DALÉN, L. (2011) 50,000 years of genetic uniformity in the critically endangered Iberian lynx. *Molecular Ecology* (2011) 20: 3785–3795. doi: 10.1111/j.1365-294X.2011.05231.x
- ROLLO, F. (1999) Il DNA antico nello studio dei resti umani antichi. Principi, metodi e applicazioni. Ed. Medical Books.
- ROMÁN RODRÍGUEZ, J.M. & CONLIN HAYES, E. (2001). Excavaciones arqueológicas de urgencia en la calle Dolores QuintaniJla nº 6. Carmona (Sevilla). *Anuario arqueológico de Andalucía* 1997, 3: 529-535.
- ROSILLO, R. (2011). Excavació arqueològica a la Serra del Mas Bonet (Vilafant, Alt Empordà). Memoria depositada ante el Servei d'Arqueologia i Paleontologia de la Generalitat de Catalunya.
- ROSILLO, R., TARRÚS, J., PALOMO, A., BOSCH, À. & GARCÍA DE CONSUEGRA, R. (2010). Les esteles amb banyes de la Serra del Mas Bonet (Vilafant, Alt Empordà) dins de l'art megalític de Catalunya. *Cypsela* 18: 43-59.
- ROSILLO, R., TARRÚS, J, PALOMO, A., BOSCH, À. & GARCÍA DE CONSUEGRA, R., ANTOLÍN, F., CAMPENY, G., CLEMENTE, I., CLOP, X., GARCÍA, E., GIBAJA, J. F., OLIVA, M., PIQUÉ, R., SAÑA, M. & TERRADAS, X. (2012). Darreres troballes de prehistòria recent a l'Alt Empordà. Dos assentaments a l'aire lliure: la Serra del Mas Bonet (Vilafant) i els Banys de la Mercè (Capmany). *Tribuna d'Arqueologia 2010-2011*: 41- 62.
- ROSSER, P. (2010). Enterramientos neolíticos y creencias en el Tossal de les Basses: primeros datos. (PÉREZ FERNÁNDEZ, A. & SOLER, B. coord.), Restos de vida, de muerte. La muerte en la Prehistoria: 183-190. Museu de Prehistòria de València.
- ROSSER LIMIÑANA, P. & FUENTES, C. (2008). Tossal de les Basses, seis mil años de historia de Alicante. Alicante.
- **ROUILLARD, P.** (1991). Les grecs et la Péninsule Ibérique du VIIIe au IVe siècle avant Jésus-Christ. Publications du Centre Pierre Paris 21, Paris,.

- ROZEN, S. & SKALETSKY, H. (2000). Primer3 on the WWW for general users and for biologist programmers. *Methods Mol. Biol.* 28000 132: 365-86.
- Rubio, I. (1988). La economía de subsistencia en el Neolítico hispano. (LÓPEZ, P. coord.) El Neolítico en España: 337-418.
- **RUFFO, M.** (1994-1995). Anangni (FR) Località S. Cecilia. Indagini nel santuario ernico: il deposito votivo arcarico. I resti faunistici della stipre votiva di Anagni (S.Cecilia). *NSc* IX 5/6: 154-163.
- Ruiz García-Vaso, C. (2013). Estudio Preliminar de Restos Óseos de Fauna Doméstica encontrados en el Yacimiento Calcolítico Camino del Molino. Tesina de Licenciatura. Facultad de Veterinaria, Universidad de Murcia. Inédita.
- RUIZ GARCÍA-VASO, C., VÁZQUEZ AUTÓN, J.M., ORENES HERNÁNDEZ M. & GIL CANO, F. (2013a). Los perros que vivieron en la región de Murcia hace 4000 años: nuevos datos sobre tamaños, edad, alimentación y patologías. Comunicación presentada al XIX Congreso Nacional de Historia de la Veterinaria y X Iberoamericano (Madrid, 18-20 de octubre de 2013).
- Ruiz García-Vaso, C., Vázquez Autón, J.M., Orenes Hernández M. & Gil Cano, F. (2013b). Estudio preliminar de restos óseos de fauna doméstica encontrados en el yacimiento calcolítico "Camino del Molino" (Caravaca de la Cruz, Murcia). Comunicación presentada al XIX Congreso Nacional de Historia de la Veterinaria y X Iberoamericano (Madrid, 18-20 de octubre de 2013).
- Ruiz García-Vaso, C., Vázquez Autón, Lomba Maurandi, J., Avilés Fernández, A., Haber Uriarte, M., Orenes Hernández M. & Gil Cano, F. (2014). El yacimiento calcolítico "Camino del Molino" (Caravaca de la Cruz, Murcia): una oportunidad excepcional para estudiar los cánidos que poblaron el sureste español hace 4000 años. Primeros resultados. Orígenes y Raíces. Revista de la Sociedad de Estudios Hístoriológicos y Etnográficos de las Tierras Altas del Argos, Quípar y Alhárabe 6: 5-7.
- **RUSCILLO, D.** (2006). The Table Test: a Simple Technique for Sexing Canid Humeri (**RUSCILLO, D.** ed.) Recent Advances in Ageing and Sexing Animal Bones. 9th ICAZ Conference, Durham 2002: 62-67.
- **RÜTIMEYER, L.** (1861) Die Fauna der Pfahlbauten der Schweiz. Untersuchungen über die wilden und der Haussäugetiere von Mittel-Europa. *Neue Denkschriften der Shweizer. Gesellsch. für die gesamten Naturwissenschaften*. Bahnmaier, Bâle, 1862, 19.
- SABLIN, M. & KHLOPACHEV, G. (2002). The earliest ice age dogs: evidence from Eliseevichi I. *Curr. Anthropol.* 43: 795-799. DOI: 10.1086/344372
- SAIKI, R.K, SCHARF, S., FALOONA, F., MULLIS, K.B., HORN, G.T., ERLICH, H.A. & ARNHEIM, N. (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. *Science* 230: 1350–1354.
- SALARI L. (1997-1998). Analisis delle faunae del sito di Grotta dei Cocci (Narni, Umbria). Considerazioni paleochimatiche e culturali. Tesis doctoral en Paleontología de Vertebrados. Università "La Sapienza", Roma.
- SALARI L., SARDELLA R., SQUAZZINI E., LISCIARELLI A. & SUADONI, T. (2006) Il cane della necropoli di Amelia (Terni, Umbria). (Curci A. & Vitali, D. eds.) Animali tra uomini e dei. Archeozoologia del mondo preromano, Atti del Convegno Internazionale 8-9 novembre 2002: 197-203.
- SAÑA SEGUÍ, M. (1994). Apéndice 1. Análisis zooarqueológico del pozo HX-1. El pozo púnico del Hort d'en Xim (Eivissa). Trabajos del Museo Arqueológico de Ibiza 32. Museo Arqueológico de Eivissa, Eivissa.
- SAÑA SEGUÍ, M. (1998). Els recursos animals. (BOSCH, A., BUCH, M., BUXÓ, R., CASADEVALL, J. MATEU, J., PALOMO T. & TABERNERO, E. coords.). El poblat neolític de Plansallosa. Explotació del territorio dels primers agricultors-ramaders de l'Alta Garrotxa. Publicacions Eventuals d'Arqueologia de la Garrotxa 5, Olot: 92-97.
- **SAÑA, M.** (2011a). *Anàlisi Arqueozoològica. Serra de Mas Bonet.* Informe inédito. Laboratori d'Arqueozoologia, Universitat Autònoma de Barcelona.
- SAÑA, M. (2011b). La gestió dels recursos animals. (BOSCH, A. & CHINCHILLA I TARRÚS, J. coords.) El poblat lacustre del neolític antic de La Draga. Excavacions 2000-2005. Monografies científiques del CASC 9, MAC, Barcelona: 177-212.

- **SAÑA, M., BOGDANOVIC, I. & NAVARRETE, V.** (2014) Taphonomic evaluation of the degree of historical representation of the archaeological bone samples in anaerobic versus aerobic environments: The Neolithic site of La Draga (Banyoles, Spain). *Quaternary International* 330: 72-87.
- SAÑA, M. & LLADÓ, E. (2007). Anàlisi arqueozoològica de les restes de fauna recuperades al jaciment de "ESPINA C" (TARREGA). Laboratori de Arqueozoologia, Universitat Autònoma de Barcelona. Infome inédito.
- **SÁNCHEZ, E.** (1990). Excavacions arqueològiques al castell de Rubí. Bulletí del grup de col.laboradores del muesu de Rubí 33, any IX. Rubí.
- **SÁNCHEZ, A., RUEDA, C. & BELLÓN, J.P.** (2005): Nuevos datos sobre la Zona Arqueológica de Marroquíes Bajos: el quinto foso. *Trabajos de Prehistoria* 62 (2): 151-164.
- **SÁNCHEZ POLO, A.** (2012). Algo más que animales de compañía: la deposición ritualizada de perros en hoyos en el solar de Cogotas I. (**RODRÍGUEZ MARCOS, J. A. & FERNÁNDEZ MANZANO, J.,** eds.) Cogotas I: una cultura de la Edad del Bronce en la Península Ibérica. *Arte & Arqueología* 30: 449-468.
- Sanchís, A. & Sarrión, I. (2004). Restos de cánidos (*Canis familiaris ssp.*) en yacimientos valencianos de la edad del Bronce. *Archivo de Prehistoria Levantina* XXV: 161-198.
- **SANGER, F., NICKLEN, S. & COULSON, A.R.** (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74: 5463-5467.
- SANMARTÍ, E., CASTAÑER, P., TREMOLEDA, J. & BARBERÁ, J. (1986). Las estructuras griegas de los siglos V y IV a. de J.C. halladas en el sector sur de la Neápolis de Ampurias (Campaña de excavaciones del año 1986). Cuadernos de Prehistoria y Arqueología Castellonenses 12: 141-217.
- **SANMARTÍ, E., CASTAÑER, P. & TREMOLEDA, J.** (1988). La secuencia histórico-topográfica de las murallas del sector meridional de Emporion. *Madrider Mitteilungen* 29: 191-220.
- **SANMARTÍ, E., CASTAÑER, P. & TREMOLEDA, J.** (1992). Nuevos datos sobre la historia y la topografía de las murallas de Emporion. *Madrider Mitteilungen* 33: 102-112.
- **SANTOS RETOLAZA, M.** (2008). L'arqueologia grega a Empúries. Un discurs en construcció. *Annals de l'Institut d'Estudis Empordanesos* 39: 49–79.
- SARDELLA, R., BERTÈ, D., IURINO, D.A., CHERIN, M. & TAGLIACOZZO A (2013). The wolf from Grotta Romanelli (Apulia, Italy) and its implications in the evolutionary history of Canis lupus in the Late Pleistocene of Southern Italy. *Quaternary International* (2013), http://dx.doi.org/10.1016/j.quaint.2013.11.016
- **SARRIÓN, I.** (1982). Clasificación de la fauna de la cueva Soterraña (Requena, Valencia). Yacimiento de la Edad del Bronce Valenciano. *Lapiaz* 9: 11-20.
- SARRIÓN, I. (1983). Análisis de los restos de fauna recuperados en la Muntanya Assolada de Alzira en la campaña de 1978. (Martí, B. ed.) La Muntanya Assolada (Alzira, Valencia). *Lucentum* II: 59-62.
- SARRIÓN, I. (1990). Estudio de la Fauna de la Cueva II. (MARTÍ, A.) Las Cuevas del Puntal del Horno Ciego (Villagordo del Cabriel, Valencia). Saguntum 23: 180-182. Valencia.
- SARRIÓN, I. (1998). Clasificación preliminar de la fauna. (DE PEDRO, M.J. ed.) La Lloma de Betxí, Paterna, Valencia. Un poblado de la Edad del Bronce. Trabajos varios del SIP de la Diputación de Valencia 94, Valencia: 247-260.
- **SAVOLAINEN P., ZHANG Y., LUO J., LUNDEBERG J. & LEITNER T.** (2002). Genetic evidence for an East Asian Origin of Domestic Dogs. *Science* 298: 1610-1613.
- **SERPELL, J.** (1995) From paragon to pariah: some reflection on human attitudes to dog. (**SERPELL, J.** ed.) The Domestic dog: its evolution, behaviour and interaction with people. Cambridge University Press: 257-262.
- **SERRA I VILARÓ, J.** (1966) Exploraciones arqueológicas en el Solsonés entre 1915 y 1923. *Empúries* 28: 191-200.
- SCHMID, E. (1972). Atlas of animal bones, Elsevier publishing company, Amsterdam.
- Schoenebeck, J.J., Hutchinson, S. A., Byers, A., Beale, H.C., Carrington, B., Faden, D. L., Rimbault, M., Decker, B., Kidd, J.M., Sood, R., Boyko, A.R., Fondon III, J.W., Wayne, R.K., Bustamante, C.D., Ciruna B. & Ostrander, E.A. (2012). Variation of BMP3. Contributes to Dog Breed Skull Diversity. *PLoSGenet* 8(8): e1002849. doi: 10.1371/journal.pgen.1002849.

- SCHOENEBECK, J.J. & OSTRANDER, E.A. (2013). The Genetics of Canine Skull Shape Variation. *Genetics* 193: 317-325.
- Shannon, L.M., Boyko, R.H., Castelhano, M., Corey, E., Hayward, J.J., McLean, C., White, M.E., Said, M.A., Anitaf, B.A., Bondjengo, N.I., Calero, J., Galov, A., Hedimbi, M., Imam, B., Khalap, R., Lally, D., Masta, A., Oliveira, K.C., Pérez, L., Randall, J., Tam, N.M., Trujillo-Cornejo, F.J., Valeriano, C., Sutter, N.B., Todhunter, R.J., Bustamante, C.D. & Boyko A.R. (2015). Genetic structure in village dogs reveals a Central Asian domestication origin. *PNAS Early Edition*, www.pnas.org/cgi/doi/10.1073/pnas.1516215112.
- SHIGEHARA, N. (1994). Morphological changes in Japanese ancient dogs. ArchaeoZoologia 6 (2): 79-94.
- SILVER, I.A. (1969). The Ageing of Domestic Animals. (BROTHWELL, D.R. & HIGGS, E.S, eds.) Science in Archaeology: A Comprehensive Survey of Progress and Research, London: 283–302.
- SILVA, J.F. & MACARRO, J.A. (1996). El yacimiento de la Edad del Bronce del 'Polígono 25' en Alcalá de Henares: primeros resultados. Actas de la 1 Reunión de Arqueología Madrileña, Madrid, 25-26 de enero de 1996: 138-141.
- SIMPSON, G.G. (1941). Large Pleistocene felines of North America. *American Museum Novitates 1136*: 1-26.
- SIMPSON, G.G., ROE, A. & LEWONTIN, R.C. (1960). *Quantitative Zoology*. New York. Harcourt, Brace and World
- SKOGLUND, P., ERSMARK, E., PALKOPOULOU, E. & DALÉN, L. (2015). Ancient Wolf Genome Reveals an Early Divergence of Domestic Dog Ancestors and Admixture into High-Latitude Breeds. *Current Biology* 25: 1515–1519,
- SMITH, C. I., CHAMBERLAIN, A. T., RILEY, M. S., COOPER, A., STRINGER, C. B. & COLLINS, M. J. (2001). Neanderthal DNA: not just old but old and cold? *Nature* 10: 771–772.
- Soltis, D.E., Soltis, P.S. & Milligan, B.G. (1992). Intraspecific Chloroplast DNA variation: systematich and phylogenetic implication. Molecular Systematic of Plants (Soltis, D.E., Soltis, P.S. & Doyle, J.J. eds.) Chapman and Hall, New York: 117-150
- **STINER, M. C.** (1991). The Faunal Remains From Grotta Guattari: A Taphonomic Perspective. *Current Anthropology* 32 (2): 103-117.
- STRAUS, L.G, ALTUNA, J., JACKES, M. & KUNST, M. (1988). Last glacial human settlement in Eastern Cantabria (Northen Spain). *Journal of Archaeology Science* 29: 1403-1414.
- **STREET, M.** (1989). Ein frühmesolithischer Hund und Hundverbiss an Knochen vom Fundplatz Bedburg-Königshoven, Niederrhein. *Archäologische Informationen* 12: 203–215.
- STROBEL, P. (1880) Le razze del cane nella Terremare dell'Emilia. Bullet. di Paletnologia Italiana 6, Torino.
- **STUDER, S.** (1893) *Zwei grosse Hunderassen aus der Steinzeit der Pfahlbauten.* Schweiz. Hundestammbuch V.
- Sutovsкy, P., MacCauly, T.C., Sutovsky, M., & Day, B.N. (2003). Early Degradation of Paternal Mithocondrial in Domestic Pig (Sus scrofa) Is Prevented by Selective Proteasomal Inhibitors Lactacystin an MG132. Biology an Reproduction 68: 1793-1800.
- **TAGLIACOZZO, A.** (1989). Analisi dei resti faunistici nell'area sacra di S. Omobono. Il viver quotidiano in Roma arcaica: materiali dagli scavi del tempio arcaico nell'area sacra di S. Omobono: 65-69.
- **TAGLIACOZZO, A.** (1993). *Le ossa animali*. (**BALISTA, C. & RUTA SERAFINI, A.** eds.) *Saggio stratigrafico presso il muro romano di Largo Europa a Padova*. Quaderni di Archeologia del Veneto 9: 95-111.
- **TAGLIACOZZO, A.** (2000-2001). Risultati delle ricerche alla grotta del Pino (Sassano, Salerno): 1997/1998. La fauna. *Bullettino di Paletnologia Italiana* (Roma) 91-92: 153-165.
- **TCHERNOV, E. & Valla, F.F.** (1997). Two New Dogs, and Other Natufian Dogs, from the Southern Levant. *Journal of Archaeological Science* 24: 65-95.
- TEICHERT, M. (1987). Brachymel dogs. Archaeozoologia I (1) Grenoble: 69-75.
- **TESTAR, A.** (1982). Les chasseurs-cuilleurs ou l'origine des inégalités. Paris:Société d'Ethnografie.
- THALMANN, O., SHAPIRO, B., CUI, P., SCHUENEMANN, V.J., SAWYER, S.K., GREENFIELD, D.L., GERMONPRÉ, M.B., SABLIN, M.V., LÓPEZ-GIRÁLDEZ, F., DOMINGO-ROURA, X., NAPIERALA, H., UERPMANN, H.P., LOPONTE, D.M., ACOSTA, A.A., GIEMSCH. L., SCHMITZ, R.W., WORTHINGTON, B., BUIKSTRA, J.E., DRUZHKOVA, A., GRAPHODATSKY, A.S., OVODOV, N.D., WAHLBERG, N., FREEDMAN, A.H., SCHWEIZER, R.M., KOEPFLI, K.P.,

- LEONARD, J.A., MEYER, M., KRAUSE, J., PÄÄBO, S., GREEN, R.E. & WAYNE, R.K. (2013). Complete Mitochondrial Genomes of Ancient Canids Suggest a European Origin of Domestic Dogs. *Science* 342: 871-874
- **THE, T.L. & TROUTH C.O.** (1976). Sexual dimorphism in the basilar part of the occipital bone of the dog (*Canis familiaris*). *Acta Anat. (Basel)* 95(4): 565-571.
- **TORRE SANTANA, M.** (1984). La Cueva de las Tontas en la estación arqueológica de las Peñas de los Gitanos: Montefrío, Granada. *Cuadernos de Prehistoria y Arqueología de la Universidad de Granada 9: 85-96*
- TROUTH, C.O., WINTER, S., GUPTA, K.C., MILLIS, R.M. & HOLLOWAY, J.A. (1977). Analysis of the sexual dimorphism in the basiocciptal portion of the dog's skull, *Acta Anatomica 1977*; 98: 469-473. doi:10.1159/000144826
- TRUT, L.N. (1999). Early canid domestication: the farm fox-experiment. American Scientist 87: 160-169.
- **TURNBULL, P.F. & REED, C.A.** (1974) The fauna from the terminal Pleistocen at Pelagawra cave, a Zarzian occupation site in north-eastern Iraq. *Fieldiana Anthropology,* Chicago Field Museum of Natural History 63: 81-146.
- **Udrescu, M.** (1989). Les chiens de l'habitat civil romain de Stolniceni-Vilcea; données zooarchéologiques. Ann. Roum. Anthropol. 27, Bucarest: 3-8.
- **UERPMANN, H.P.** 1979. Informe sobre los restos faunísticos del corte n° 1, (**ARRIBAS, A. & MOLINA, F.**). El poblado de "Los Castillejos" en Las Peñas de Los Gitanos (Montefrío, Granada). Campaña de excavaciones de 1971. El corte número 1. *Cuadernos de Prehistoria de la Universidad de Granada, Serie Monogr.* 3: 153-168.
- **VALENZUELA LAMAS, S. & GARDEISEN, A.** (2005). L'environnement animal urbain à l'époque gallo-romaine. Le témoignage de trois puits de Lattes (PT129011, PT471 et PT290), *LATTARA* 18: 235-270.
- **VALERA, A.C.** (2010). Construção da temporalidade dos Perdigões: contextos Neolíticos na Área Central. *Apontamentos de Arqueologia e Património* 5 Lisboa, NIA-ERA: 19-26.
- VALERA, A.C., NUNES, T. & COSTA, C. (2010). Enterramentos de canídeos no neolítico: a fossa 5 de Corça 1 (Brinches, Serpa), Apontamentos de Arqueologia e Património 5, Lisboa, NIA-ERA: 7-17.
- VALIENTE, J. (1992). La Loma del Lomo II Cogoludo (Guadalajara). Patrimonio Histórico-Arqueología de Castilla La Mancha 5. Servicio de Publicaciones de la Junta de Comunidades de Castilla-La Mancha.
- VEGA TOSCANO, L.G., CERDEÑO SERRANO, M. L. & CÓRDOBA DE OYA, B. (1998). El origen de los mastines ibéricos. La trashumancia entre los pueblos prerromanos de la meseta. *Complutum* 9: 117-135.
- **VEGAS, J.I.** (1999). San Juan Ante Portam Latinam. Catálogo de exposición. Vitoria-Gasteitz, Museo de Arqueología de Álava.
- VEGAS, J.I., ARMENDARIZ, A., ETXEBERRIA. F., FERNÁNDEZ, M.S., HERRASTI, L. & ZUMALABE F. (1999). La sepultura colectiva de San Juan ante Portam Latinam (Laguardia, Alava). Il Congrés del Neolític a la Península Iberica. SAGVNTVM-PLAV, Extra-2 (1999): 439-445.
- VEGAS, J.I. (2007). El yacimiento, descubrimiento e investigación (VEGAS ARAMBURU J. I.Coord.) San Juan Ante Portam Latinam. Una inhumación colectiva prehistórica en el Valle Medio del Ebro. Memoria de las excavaciones arqueológicas 1985, 1990 y 1991, Fundación José Miguel de Barandiarán, Ataun:17-54.
- **VERDÚ, J.C.** (2004). Excavación «Marianela» Lorca. *Resumen de las XV Jornadas de Patrimonio Histórico y Arqueología de la Región de Murcia*. Dirección General de Cultura, Servicio de Patrimonio Histórico de Murcia: 31-33
- VIGILANT, L., PENNINGTON, R., HARPENDING, H., KOCHER, T.D. & WILSON, A.C. (1989) Mitochondrial DNA sequences in single hairs from a southern African population. *Proc. Natl. Acad. Sci.* 86: 9350-9354. USA
- **VIGNE, J.-D.** (2005). L' humérus de chien magdalénien de Erralla (Gipuzkoa, Espagne) et la domesticación tardiglacier de loup en Europe. *MUNIBE* 57: 279-287.
- VIGNE, J.D. & MARINVAL- VIGNE, M.C. (1988). Quelques réflexions préliminaires sur les canidés mésolithiques de Noyen-sur-Seine (France) et sur la domestication du chien en Europe occidentale, *Archæozoologia* 2 /1-2: 153-164

- VILÀ, C., SAVOLAINEN, P., MALDONADO, J. E., AMORIM, I.R, RICE, J.E., HONEYCUTT, R., CRANDALL, K. A., LUDEBURG, J. & WAYNE R. K. (1997). Multiple and Ancient Origins of the Dog, *Science* 276: 1687-1689.
- **VOELKERDING, K.V., DAMES, S.A. & DURTSCHI, J.D.** (2009). Next-Generation Sequencing: From *Basic Research to Diagnostics Clinical Chemistry* 55 (4): 641-658.
- VONHOLDT, B.M., POLLINGER, J.P., LOHMUELLER, K.E., HAN, E., PARKER, H.G., QUIGNON, P., DEGENHARDT, J.D., BOYKO, A.R., EARL, D.A., AUTON, A. REYNOLDS, A., BRYC, K., BRISBIN, A., KNOWLES, J.C., MOSHER, D.S., SPADY, T.C., ELKAHLOUN, A., GEFFEN, E., PILOT, M., JEDRZEJEWSKI, W., GRECO, C., RANDI, E., BANNASCH, D., WILTON, A., SHEARMAN, J., MUSIANI, M., CARGILL, M., JONES, P.G., QIAN, Z., HUANG, W., DING, Z.-L., ZHANG, Y., BUSTAMANTE, C.D., OSTRANDER, E A., NOVEMBRE, J. & WAYNE, R.K. (2010). Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication, *Nature* 464: 898–902.
- **Voza, G.** (1964). *Ultimi scavi de la necropoli del Guado*. Atti VIII e IX Riunione Scientifica Istituto Italiano di Preistoria e Protostoria, Firenze 1964: 265-276.
- **WAGNER, K.** (1930): Rezente Hunderassen. Eine osteologische Untersuchung Skriften utgitt av Det Norske Videnskaps, Akademi i Oslo, I, *Mat.-Naturv. Kl.* 9: 1-157.
- WALDRON, T. (2008). Paleopathology, Cambridge Manuals in Archaeology Ser., Cambridge University Press.
- **WILKENS, B.** (1987a). Il passaggio dal Mesolitico al Neolitico attraverso lo studio delle faune di alcuni siti dell'italia centro-meridionale. Tesis doctoral inédita. Università di Pisa.
- **WILKENS, B.** (1989-90). La fauna dei livelli neolitici della Grotta Continenza. *Rivista di Scienze Preistoriche* 42: 93-100.
- **WILKENS, B.** (1995). Animali da contesti rituali nella preistoria dell' Italia centro-meridionale. Atti del I Convegno Nazionale di Archeozoologia, *Padusa Quaderni*: 1201-207
- WILKENS, B. (1996). Le faune. (DI FRAIA, T. &GRIFONI CREMONESI, R. eds.) La Grotta Sant'Angelo sulla Montagna dei Fiori (Teramo). Le testimonianze dal Neolitico all'Età del Breonzo e il problema delle frequentazioni cultuali in grotta: 277-293.
- WILKENS, B. (1997a). I resti faunistici dei livelli piceni di Osimo. Rassegna d'archeologia 14: 237-252.
- **WILKENS, B.** (1997b). Restes de chiens provenant d'un puits de l'âge du fer à Lavello, Potenza (Italie). *Anthropozoologica* 25-26: 799-801. Paris.
- **WILKENS, B.** (2000) *Resti rituali dal posso sacro di Serra* Niedda (SS), Atti del 2° Convegno degli Archeozoologi Italiani, Asti 14-16 novembre 1997. Forlì: 263-266.
- **WILKENS, B.** (2002). Archeozoologia. Manuale per lo studio dei resti faunistici di area mediterranea, Dipartimento di Storia, Università degli Studi di Sassari, CD-rom.
- WILLERSLEV, E. & COPPER, A. (2005). Ancient DNA, Proceedings of the Royal Society B 272:3-16.
- WITT, K.E., KATHLEEN, J., KITCHEN, A., GRIER, C., KOHLER, T.A., ORTMAN, S.G., KEMP, B.M. & MALHI R.S. (2015). DNA analysis of ancient dogs of the Americas: Identifying possible founding haplotypes and reconstructing population histories. *Journal of Human Evolution* 79: 105-118.
- **WOLDRICH, J.N.** (1878). Über einen neuen Haushund aus der Bronzezeit (*Canis familiaris intermedius*) aus den Aschenlagen von Weiskersdorf, Pulkau und Ploscha. *Mitteilungen der Anthropologischen Gesselschaft in Wien* 7: 61-85.
- WOOD, J.R., CROWN, A., COLE, T.L. & WILMSHURST J.M. (2016) Microscopic and ancient DNA profiling of Polynesian dog (kurī) coprolites from northern New Zealand. Journal of Archaeological Science, Reports 6 (2016): 496–505.
- **WOODWARD, S.R, WEYAND, N.J. & BUNNELL, M.** (1994) DNA sequence from Cretaceous period bone fragments. Science 266:1229-1232
- **YVINEC, J-H.** (1987). Découpe, pelleterie et consommation des chiens galois a Villeneuve-Saint-Germain. *Anthropozoologica* 1 spécial: 83-90.
- ZAPATA, L., PEÑA-CHOCARRO, L., PÉREZ JORDÀ, G. & STIKA, H.P., (2005). Difusión de la agricultura en la Peninsula Ibérica. (ONTAÑÓN, R., GARCÍA-MONCÓ, C. & ARIAS, P. coords.), Actas del III Congreso del Neolítico en la Península Ibérica: 841-852. Santander 2003: 103-113
- **ZEDDA M., MANCA, P., CHISU, V., GADAU, S., LEPORE, G., GENOVESE, A. & FARINA, V.** (2006). Ancient Pompeian Dogs Morphological and Morphometric Evidence for Different Canine Populations. *Anatomia Histologia Embryologia* 35: 319-324.

- **ZEDER, M.A.** (2012) Pathways to animal domestication. Biodiversity in Agriculture: Domestication, Evolution and Sustainability, (GEPTS, P., FAMULA, T.R., BETTINGER, R.L. & BRUSH S.B, eds.), Cambridge University Press, Cambridge.
- **ZEUNER, F.E.** (1963). A history of domesticates animals. Harper and Row.
- **ZIEGLER, R.** (1990). Tierrestre aus der Prähistorischen siedlung von Los Castillejos bei Montefrío (prov. Granada). Studien über frühe Tierknochenfunde von der Iberischen Halbinsel 12, München: 1-46.

Webgrafía

VIERSTRAETE, A. (1999). http://users.ugent.be/~avierstr/principles/pcr.html

Índice de las Figuras

CAPITULO II Materiales y métodos: la investigación arqueozoológica
Fig. 2.1 Localización geográfica de los yacimientos arqueológicos peninsulares objeto del present
trabajo75
Fig. 2.2 Diferencias relativas a la morfología general de la caja craneal que se presenta más larga
estrecha en CALU respecto a CAFA78
Fig. 2.3 Comparación entre la morfología de la mandíbula: el margen del borde caudal de la
apófisis coronoidea y condilar es curva y cóncavo en CAFA y recto en CALU (Olsen 1985; Gilber
1990)79
Fig. 2.4 La Longitud del P ⁴ en lobo excede la suma de las longitudes de M¹ y M², mientras en CAFA
resulta menor (Clutton-Brock 1980)79
Fig. 2.5 Edad de desgaste de la dentición en los canes según Pierard (1967)8
Fig. 2.6 Nomenclatura de las cúspides de M ₁ , vista lingual8
Fig. 2.7 Fases de desgaste de M_1 según Horard-Herbin (2000)86
Fig. 2.8 Marcas en la superficie del basioccipital del cráneo de Canis familiaris88
Fig. 2.9 Distinción entre tipos de cráneos de perro (imagen por internet)9
CAPITULO III Materiales y métodos: La investigación paleogenética
Fig. 3.1 Representación grafica de la estructura secundaria del DNA108
Fig. 3.2 Estructura del mtDNA humano110
Fig. 3.3 En el diagrama se muestra la distribución de las longitudes de los fragmentos del mtDN
de las muestras humanas de La Braña 1 que se coloca entre un tamaño de 50 y 100 bp (Olalde ϵ
al., 2014)
Fig. 3.4 Esquema del proceso de desaminacion de la adenina en hipoxantina y substitución fina
de G a A en el filamento L114
Fig. 3.5 Esquema del proceso de desaminacion de la citosina en uracilo y substitución final de T
C en el filamento L11
Fig. 3.6 Las tres fases de la Reacción a cadena de la polimerasa119
Fig. 3.7 Secuenciación a través de Illumina Genome Analyzer Sequencing122
Fig. 3.8 Esquematización de la cubeta de electroforesis y de los componentes del experimento
127
Fig. 2.0 Flactroforosis en gal de agarosa; conaración del DNA por número de nares de hases

Fig. 3.10 Placa de cultivo con colonias bacterianas de color azul y blanco128
Fig. 3.11 Las secuencias de los distintos clones de una muestra alineados a la secuencia diana
entre los dos primers (en amarillo, arriba)
Fig. 3.12 Modelo demográfico de la domesticación (imagen por Fredmann et al., 2014)132
Fig. 3.13 Representación gráfica del árbol filogenético de las secuencias de perros modernos y
antiguos
Fig. 3.14 Representación gráfica del árbol filogenético realizado a partir del mtDNA del ejemplar
de Altai, de coyotes y de lobos136
Fig. 3.15 En la imagen A se representa la distribución geográfica de los hallazgos de perros
arqueológicos mientras en la B la explicación de la teoría de las dos domesticaciones
independientes del perro en Europa y Asia y la substitución de la población europea por la asiática
supuesta por Frantz et al., 2016 (imagen por Frantz et al., ibídem)137
CAPITULO IV Muestra estudiada correspondiente al Neolítico: el yacimiento de Serra del Mas
Bonet
Fig. 4.1 Localización geográfica de la Serra del Mas Bonet en la comarca del Alt Empordà,
Cataluña141
Fig. 4.2 Ortofotomapa del yacimiento de la Serra del Mas Bonet (imagen por Google® Earth 2015).
Fig. 4.3 Planimetría del área de excavación con las principales estructuras halladas144
Fig. 4.4 El silo E-186 antes de su excavación (izquierda) y después del vaciado (derecha) (imágenes
por Rosillo, 2011)
Fig. 4.5 Esqueleto del perro SMB 1 antes de su recupero (imagen por Rosillo, 2011)145
Fig. 4.6 Planta y sección estratigráfica del Silo E-186
Fig. 4.7 Ulna derecha (vista lateral) y húmero izquierdo (vista dorsal) con fuerte alteración
tafonómica debida a corrosión biogeoquímica y acción de las raíces en el subsuelo148
Fig. 4.8 Plantilla con la representación en negro de los elementos anatómicos del perro SMB 1
(Helmer, 1987)
Fig. 4.9 Fase D, estadio c-d: desgaste incipiente del paracónido y hipocónido del M ₁ según el
método de Horard-Herbin (2000)151
Fig. 4.10 Desgaste de los incisivos superiores comparable a la Fase B (primer grupo) del método
Pierard (1967)
Fig. 4.11 Radio: comparación del índice de gracilidad de SMB 1 y de razas actuales (Wagner, 1930,
Catagnano, en este trabajo)

Fig. 4.12 Tibia: comparación del índice de gracilidad de SMB 1 y de razas actuales (Wagner, 1930),
Catagnano, en este trabajo)154	1
Fig. 4.13 Cráneo de SMB 1 en vista lateral izquierda (arriba) y en vista dorsal (abajo)156	5
Fig. 4.14 MD: Diferencia logarítmica en base 10 entre el lobo actual del Museo Pigorio	ηi
(Catagnano, en este trabajo) tomado como estándar, razas actuales (Wagner 1930) y el perr	o
SMB115	7
CAPITULO V Muestra estudiada correspondiente al Calcolítico: el yacimiento de Camino de	e۱
Molino	
Fig. 5.1 Localización geográfica de Caravaca de la Cruz en la comarca noroeste de Murcia, Regió	n
de Murcia163	3
Fig. 5.2 Ortofotomapa del yacimiento de Camino del Molino con la ubicación del cercan	o
asentamiento de Molinos del Papel (imagen por Google Earth 2016®)16	3
Fig. 5.3 Vista general del área de excavación antes del comienzo de las tareas de campo (image	n
cortesía de Avilés en Ruiz, 2013)164	1
Fig. 5.4 El bastidor utilizado como unidad mínima de excavación en Camino del Molino (fot	o
cortesía de Avilés en Ruiz, 2013)16	5
Fig. 5.5 Fotografía aérea de la cavidad al final de la campaña arqueológica y restaurada l	a
estructura que la cubría (imagen por Lomba <i>et al.,</i> 2009a)166	5
Fig. 5.6 Acumulación de restos humanos con una fuerte concentración de cráneos a lo largo de	e۱
perímetro de la cueva sepulcral (foto cortesía de Avilés en Ruiz, 2013)170)
Fig. 5.7 Distribución de restos de cánidos por unidad estratigráfica173	2
Fig. 5.8 Izquierda: perro Cmolf 14 en deposición primaria (fotos cortesía de Avilés en Ruiz, 2013);
derecha: el mismo individuo ensamblado en el Museo de Veterinaria del UMU (imagen por Rui	Z,
2013)173	2
Fig. 5.9 Distribución de las trazas tafonómicas de origen natural173	3
Fig. 5.10 Marca de mordisco de carroñero en el isquion del coxal izquierdo de CMOL 12174	1
Fig. 5.11 Izquierda: Punzón de cobre enmangado en una tibia de perro (imagen por Lomba <i>et al</i>	١.,
2009a, modificada); Derecha: marcas de fendiente en la tibia de CMOL 32175	5
Fig. 5.12 MD (vista lingual) del individuo infantil CMOL 1317	9
Fig. 5.13 Histograma que muestra la distribución en cada columna del número de individuo	S
agrupados por clases de edad distintos en base a la talla18	5
Fig. 5.14 Radio: índice de robustez /altura a la cruz de los cánidos individualizados de Camino de	эl
Molino, razas actuales de perros y lobo (Wagner, 1930, Catagnano, en este trabajo)18	6

Fig. 5.15 Tibia: índice de robustez /altura a la cruz de los cánidos individualizados de Camino del
Molino, razas actuales de perros y lobo (Wagner, 1930, Catagnano, en este trabajo)187
Fig. 5.16 Cráneo de CMOL 1 en vista dorsal (arriba), lateral derecha (centro) y basal (abajo)190
Fig. 5.17 Comparación entre la morfología mandíbula de CMOL 1 (al centro), de un lobo ibérico
actual (arriba) y de un perro hipermétrico actual (abajo) (imagen por Ruiz, 2013 modificada)191
Fig. 5.18 Cráneo de CMOL 3 en vista dorsal (arriba), lateral derecha (centro) y basal (abajo)192
Fig. 5.19 Cráneo de CMOL 5 en vista dorsal (arriba), lateral derecha (centro) y basal (abajo)193
Fig. 5.20 Cráneo de CMOL 40 en vista dorsal (arriba), lateral derecha (centro) y basal (abajo)193
Fig. 5.21 Anomalías en la formula dental. CMOL 12
Fig. 5.22 Mandíbula interesada por un importante absceso que ha modificado el margen alveolar
entre el M ₁ y el P ₄ 197
Fig. 5.23 Cráneo de CMOL 39 que presenta una displasia a nivel del borde dorsal del foramen
magno del occipital198
Fig.5.24 Cráneo de CMOL 15 con evidente traumatismo por golpe en el hueso frontal (Izquierda) y
de CMOL 40 con fractura en el borde del proceso cigomático del hueso frontal (derecha)198
Fig. 5.25 Vertebras lumbares patológicas que presentan exostosis y sinostosis200
Fig. 5.26 Talus y calcaneus en sinostosis (izquierda) y vértebra lumbar con exostosis en el
procesos transverso (derecha)200
Fig. 5.27 Displasia del fémur: coxa valga201
Fig. 5.28 Vertebras lumbares patológicas que presentan una flexión lateral del proceso
espinoso
Fig. 5.29 Tibia y fíbula patológicas del Cmolf 14 (Imagen por Ruiz, 2013; modificada)202
CAPITULO VI Muestra estudiada correspondiente a la edad del Hierro: los yacimientos Can
Kercavins, Mas Castellar y Ampurias
Fig. 6.1 Localización geográfica de Cerdanyola en la comarca del Vallès Occidental, Cataluña209
Fig. 6.2 Ortofotomapa del yacimiento de Can Xercavins (imagen por Google Earth® 2016)210
Fig. 6.3 Planta general de la excavación del año 2002; en el circulo rojo el silo ST-267 (imagen por
Francès i Farrè <i>et al.</i> , 2005, modificada)213
Fig. 6.4 Foto de los silos ST 267, 265 y 268 y del muro M-257 antes de la excavación de las
estructuras negativas (imagen por Francès i Farré <i>et al.</i> , 2005)213
Fig. 6.5 Sección de los silos ST-267, ST-268, ST 265 y del muro MR-257. El rectángulo verde en el
Fig. 6.5 Sección de los silos ST-267, ST-268, ST 265 y del muro MR-257. El rectángulo verde en el nivel 5400 del silo ST-267 indica la posición estratigráfica esqueleto del perro (imagen por Francès

Fig. 6.6 El perro en el silo ST-267, antes de su recuperación (imagen por Francès i Farré <i>et al.</i> ,
2005)215
Fig. 6.7 Plantilla con la representación en negro de los elementos anatómicos del perro CXE 1
(Helmer, 1987)218
Fig. 6.8 Fase D, b-c: desgaste incipiente del paracónido y hipocónido del M_1 que según el método
de Horard-Herbin (2000) corresponde a animales adultos
Fig. 6.9 Radio: comparación del índice de gracilidad de CXE 1 y de perros razas actuales y lobo
(Wagner, 1930; Catagnano, en este trabajo)221
Fig. 6.10 Tibia: comparación del índice de gracilidad de CXE 1 y de perros razas actuales y lobo
(Wagner, 1930; Catagnano, en este trabajo)221
Fig. 6.11 CXE 1: cráneo en vista lateral derecha222
Fig. 6.12 Diferencia logarítmica en base 10 entre medidas craneales del lobo actual del Museo
Pigorini (Catagnano, en este trabajo) tomado como estándar y razas actuales (Wagner 1930) y del
perro CXE 1
Fig. 6.13 MD: Diferencia logarítmica en base 10 entre el lobo actual del Museo Pigorini
(Catagnano, en este trabajo) tomado como estándar, razas actuales (Wagner 1930) y el perro CXE
1225
Fig. 6.14 Localización geográfica de Mas Castellar de Pontós en la comarca del Alt Empordà,
Cataluña227
Fig. 6.15 Ortofotomapa del yacimiento de Mas Castellar de Pontós por Google Earth® 2016228
Fig. 6.16 Planimetría de Mas Castellar de Pontós con la ubicación de los principales
descubrimientos del Camp del Dalt y del Camp de Baix y las distintas zonas del yacimiento
(imagen por Asensio et al., 2011; modificada)229
Fig. 6.17 Planimetría de la Zona 20 en el Camp de Dalt: en los dos círculos rojos se sitúan el silo SJ
134 y 137 (imagen cortesía de Saña, modificada)232
Fig. 6.18 Sección estratigráfica del silo SJ 134: círculo rojo indica la ubicación del cráneo de perro
en la UE 20092 (imagen cortesía de Saña, modificada)234
Fig. 6.19 Los silos SJ 134 Y SJ 133 vaciados totalmente después de su excavación (imagen cortesía
de Saña, modificada)234
Fig. 6.20 El ejemplar de perro en fase de hallazgo en el silo SJ-137 (izquierda) y el estrato de
cobertura de la deposición (derecha) (imagen por Pons et al., 2016; modificada)236
Fig. 6.21 Sección estratigráfica del silo SJ 133 y SJ 137, con la ubicación del cráneo de perro en la
UE 20120, al fondo de la estructura (imagen por Asensio et al., 2004-2005)236
Fig. 6.22 Zona 20, vista desde oeste de los silos SJ 137, SJ 130 y SJ 136 (imagen por Pons, Dir. et
al. 2002)

Fig. 6.23 Cráneo, atlas y axis del individuo MCS 1, lado izquierdo. Las flechas y la línea rasgueada
indican la posición de las marcas antrópicas239
Fig.6.24 Marcas de cuchillo (flechas rojas) y de hacha (línea rasgueada) sobre el atlas y el axis de
MCS 1239
Fig. 6.25 Representación grafica de los restos (NR) de MCS 1 y MCS 2 (Helmer, 1987)241
Fig. 6.26 Mandíbula derecha de MCS 1, vista bucal El estadio de desgaste corresponde a la Fase F,
c del sistema de Horard-Herbin (2000)241
Fig. 6.27 Radio: comparación del índice de gracilidad de MCS 2 y de perros razas actuales y lobo
(Wagner, 1930; Catagnano, en este trabajo)244
Fig. 6.28 Tibia: comparación del índice de gracilidad de MCS 2 y de perros razas actuales y lobo
(Wagner, 1930; Catagnano, en este trabajo)244
Fig. 6.29 Cráneo de MCS 1 en vista dorsal y MD en vista labial245
Fig. 6.30 Diferencia logarítmica en base 10 entre medidas craneales del lobo actual del Museo
Pigorini (Catagnano, en este trabajo) tomado como estándar, razas actuales (Wagner 1930) y de
MCS 1 y MCS 2246
Fig. 6.31 Diferencia logarítmica en base 10 entre medidas mandibulares del lobo actual del
Museo Pigorini (Catagnano, en este trabajo), tomado como estándar, razas actuales (Wagner
1930) y de MCS 1 y MCS 2247
Fig. 6.32 Cráneo de MCS 2 en vista dorsal (arriba) y lateral izquierda (abajo)248
Fig. 6.33 Localización geográfica de Ampurias en la comarca del Alt Empordà, Cataluña255
Fig. 6.34 Ortofotomapa con la localización de las Ruinas de Ampurias (imagen por Google Earth®
2016)257
Fig. 6.35 Mapa de la ciudad grecorromana de Ampurias257
Fig. 6.36 Planta del sector meridional de Emporion260
Fig. 6.37 Plantilla con la representación en negro de los elementos anatómicos del perro AMP 1
(Helmer, 1987)263
Fig. 6.38 AMP 1, estadio de desgaste de M_1 de la mandíbula derecha en vista medial y su
comparación con la Fase F del sistema de Horard-Herbin (2000)263
Fig. 6.39 Radio: comparación del índice de gracilidad de AMP 1 y de perros razas actuales y lobo
(Wagner, 1930; Catagnano, en este trabajo)266
Fig. 6.40 Tibia: comparación del índice de gracilidad de AMP 1 y de perros razas actuales y lobo
(Wagner, 1930; Catagnano, en este trabajo)266
Fig. 6.41 Diferencia logarítmica en base 10 de (Driesch 1976) razas actuales (Wagner 1930) y del
perro AMP 1 del lobo actual del Museo Pigorini (Catagnano) tomado como estándar268
Fig. 6.42 MC V v MC IV izquierdos (vista lateral) con evidente exostosis (izquierda)270

Fig. 6.43 Costillas fracturadas (vista lateral) con callo en proceso de osificación (c	lerecha) y con
recién calcificación (izquierda)	270
CAPITULO VII Muestra estudiada correspondiente a la edad tardorromana: el yac	imiento de Els
Mallols	
Fig. 7.1 Localización geográfica de Cerdanyola del Vallès en la comarca del Vall	ès Occidental,
Cataluña	275
Fig. 7.2 Ortofotomapa del yacimiento de Els Mallols (imagen por Google Earth® 201	6)276
Fig. 7.3 Planta general del área de excavación de la Edad Tardana (Argelagués	et al., 2007a;
modificada), en rojo la ubicación de los silos de que proceden los restos de perro	277
Fig. 7.4 Plantillas con la representación en negro de los elementos anatómicos de lo	s individuos 2,
6, 14 y 15 de Els Mallols (Helmer, 1987)	287
Fig. 7.5 Distribución porcentual de los individuos por clases de edades	288
Fig. 7.6 E183, capa II: húmeros de MALL 10 y MALL 12 clasificados cor	no individuos
fetales/neonatos	289
Fig. 7.7 E-183, capa VII: húmeros de los individuos infantiles de MALL 5 y MALL 4,	se aprecia una
diferencia entre el tamaño de los dos huesos	290
Fig. 7.8 Desgaste del M_1 según el método Horard-Herbin (2000): MALL 6, mandíbul	a izquierda en
vista bucal, Fase A, estadio a; MALL 13 mandíbula izquierda en vista bucal y MALL	14 mandíbula
derecha en vista bucal, ambas Fase B, estadio a	291
Fig. 7.9 Desgaste del M_1 según el método Horard-Herbin (2000): MALL 6, mandíbul	a izquierda en
vista bucal, Fase F, estadio a; MALL 15, mandíbula derecha en vista bucal, ambas F	ase G, estadio
a	292
Fig. 7.10 Distribución de las AC de los individuos distintos por clases de edades	293
Fig. 7.11 Radio: índice de robustez/altura a la cruz de MALL 2, razas actuales de	e perro y lobo
(Wagner, 1930, Catagnano, en este trabajo)	295
Fig. 7.12 Cráneos en vista superior y lateral izquierda de los perros MALL2, MA	
16	296
Fig. 7.13 Izquierda: medidas craneales 1/15 (longitud total del cráneo/longitud de	la línea de los
dientes desde P ¹ a M ²): comparación entre los individuos 2, 16 y 17 y razas act	uales (Wagner
1930)	298
Fig. 7.14 Diferencia logarítmica en base 10 entre medidas craneales del lobo act	ual del Museo
Pigorini (Catagnano, en este trabajo) tomado como estándar, razas actuales (W	agner 1930) y
MALL2, MALL 16 y MALL 17	299

Fig. 7.15 Representación de la relación entre el índice 5 y la LT del cráneo en que se distingue lo
perros según su morfología cefálica300
Fig. 7.16 Diferencia logarítmica en base 10 entre una mandíbula de lobo actual del Museo Pigorir
(Catagnano, en este trabajo), tomado como estándar, razas actuales (Wagner 1930) y MALL 2
MALL 15302
Fig. 7.17 Distribución de las patologías documentadas en los cánidos de Els Mallols303
Fig. 7.18 MALL 2 calcáneo y talus izquierdos con exostosis; última vertebra torácica con apófisi
transversa304
Fig. 7.19 MALL 2 tibia izquierda con exostosis y derecha con deformación (torsión) a nivel de l
diáfisis, vista frontal y lateral304
Fig. 7.20 MALL 2, mandíbula derecha con hipodoncia del P_4 y cráneo con maxilar izquierdo
interesado por hipodoncia del P¹ (probable agenesia)304
Fig. 7.21 MALL 3: Torsión de la diáfisis de la tibia (vista frontal y lateral) y exostosis de las epífisi
distales de ulna y radio30!
Fig. 7.22 MALL 6: vertebra lumbar afectada por osteomielitis306
Fig. 7.23 MALL 6, dos fragmentos de costillas con callo óseo formado tras fractura de lo
huesos306
Fig. 7.24 MALL 15: tibia derecha con fuerte deformación de la porción diafisária y fíbula d
dimensiones reducidas en sinostosis con la misma tibia (vista frontal)307
Fig.7.25 Fosa E-183, Capa VII: el individuo masculino senil MALL 2 en fase de excavación (image
por Francès i Farré, coord., 2007)30
Fig. 7.26 Arriba: Planta de la UE Capa VII y la respectiva posición de los individuos A, B, C y D y de
perro MALL 2. Abajo: sección del silo E-183 con la distinción de estratos (imagen por Francès
Farré, coord., 2007)310
CAPITULO VIII Estudio de la variabilidad de <i>Canis lupus / Canis I. familiaris</i> a partir del análisi
biométrico
Fig. 8.1 Mixture análisis de la medida GL o GLC de los HU, TI, FE, CAL y TA de los cánidos Camino
del Molino319
Fig. 8.2 Mixture análisis de la medida GL de los metapodios de los cánidos Camino de
Molino320
Fig. 8.3 <i>Mixture</i> análisis de la medida LT de la mandíbula y de la medida L del M_1 y del P^4 de lo
cánidos Camino del Molino321
Fig. 8.4 Mixture análisis de medida Bd y GB de diferentes huesos del postcraneal322
Fig. 8.5 Mixture análisis de la medida Bd de los metapodios323

Fig. 8.6 Diagrama de dispersión de las medidas GL y Bd del HU	324
Fig. 8.7 Diagrama de dispersión de las medidas GL y Bp del R	325
Fig. 8.8 Diagrama de dispersión de las medidas DPA/SDO de la UL	325
Fig. 8.9 Diagrama de dispersión de las medidas GL y Bd del MC IV	326
Fig. 8.10 Diagrama de dispersión de las medidas GL y Bd del MC II	326
Fig. 8.11 Diagrama de dispersión de las medidas GL y SD de la TI	327
Fig. 8.12 Diagrama de dispersión de las medidas GLC y Bd del FE	328
Fig. 8.13 Diagrama de dispersión de las medidas GL y GB del CAL	328
Fig. 8.14 Diagrama de dispersión de las medidas GL y Bd del MT III	329
Fig. 8.15 Diagrama de dispersión de las medidas GL y Bd del MT IV	329
Fig. 8.16 Diagrama de dispersión de las medidas 1 y 20 (Driesch, 1976) de la MD; en el o	diagrama a
la derecha se representan las solas medidas de CAFA	330
Fig. 8.17 Diagrama de dispersión $M_{1,}$ de las medidas L y B; en el diagrama a la derech	a las solas
medidas de CAFA	330
Fig. 8.18 Diagrama de dispersión de las medidas L y B del $M_{2,}$; en el diagrama a la derecl	na las solas
medidas de CAFA	331
Fig. 8.19 Diagrama de dispersión de las medidas L y B del P ⁴ ; en el diagrama a la derech	na las solas
medidas de CAFA	331
Fig. 8.20 Diagrama de dispersión de las medidas L y B del M^1 ; en el diagrama a la c	erecha las
solas medidas de CAFA	332
Fig. 8.21 Representación de los valores LSI de las L de los principales huesos del	esqueleto
postcraneal de Camino del Molino	334
Fig. 8.22 Representación del los valores LSI de las B de los principales huesos del	esqueleto
postcraneal de Camino del Molino	335
Fig. 8.23 Representación de los individuos de Camino del Molino ordenados según la m	edia de los
valores LSI	337
Fig. 8.24 Representación de los individuos de Camino del Molino ordenados según la m	edia de los
valores LSI	338
Fig. 8.25 Box-plot de los valores de LSI de los individuos de Camino del Molino	339
Fig. 8.26 Análisis de PCA de los individuos de Camino del Molino: distinción en cua	tro grupos
estadísticamente significativos	340
Fig. 8.27 Box-plot en que se representan los grupos distintos a partir del análisis o	de PCA en
relación a las AC de los individuos	341
Fig. 8.28 Cluster analysis de los valores LSI de los individuos de perro de Camino del Mo	ino342

Fig. 8.29 Diagrama de Box -plot que representa los individuos CMOL1, 22 y 27 ordenados según la
media de los valores LSI344
Fig. 8.30 Cluster analysis de los valores LSI de los individuos de lobo de Camino del Molino344
Fig. 8.31 Diagrama de Box-plot que representa los valores LSI de las medidas craneales de los
ejemplares de Gibijo y de Camino del Molino345
Fig. 8.32 Diagrama de dispersión en que se representa la relación entre la media de los valores LSI
del cráneo y del esqueleto postcraneal de los ejemplares de Gibijo y de Camino del Molino346
Fig. 8.33 Diagrama Box-plot que representa los valores LSI de las poblaciones de lobos de la
Península ordenados según cronología348
Fig. 8.34 Mixture análisis de los valores LSI de las poblaciones de lobos de las Península ordenados
según cronología350
Fig. 8.35 Diagrama Box-plot que representa las poblaciones de lobos de algunos yacimientos
peninsulares, ordenados según cronología350
Fig. 8.36 Diagrama de dispersión de las medidas L y B del M_1 de lobos, perros y <i>Cuon alpinus</i> de la
Península Ibérica352
Fig. 8.37 Diagrama Box-plot que representa los valores LSI de poblaciones de Canis lupus del
Pleistoceno353
Fig. 8.38 Diagrama de dispersión de las medidas L y B del M_1 de lobos procedentes de distintos
yacimientos del Mediterráneo occidental y de la fachada atlántica peninsular354
Fig. 8.39 Diagrama Box-plot que representa los valores del LSI del esqueleto postcraneal
ordenados según media y cronología del hallazgo355
Fig. 8.40 Diagrama Box-plot que representa los valores del LSI del cráneo ordenados según media
y cronología del hallazgo356
Fig. 8.41 Diagrama de dispersión que representa la correlación de la media de los valores del LSI
del cráneo y del postcraneal357
Fig. 8.42 Diagrama Box-plot que representa los valores del LSI de la extremidad anterior
ordenados según la media358
Fig. 8.43 Diagrama Box-plot que representa los valores del LSI de la extremidad posterior
ordenados según la media358
Fig. 8.44 Diagrama de dispersión en que se correlacionan las medias de los valores LSI de las
extremidades anterior y posterior359
Fig. 8.45 Diagrama Box-plot que representa los valores del LSI de la L y la B del primer y segundo
molar inferior ordenados según la media360
Fig. 8.46 Diagrama de dispersión que representa la correlación de la media de los valores del LSI
del cráneo y del postcraneal360

Fig. 8.47 Diagrama Box-plot en que se representan los valores LSI de los elementos del esqueleto
postcraneal de las poblaciones de <i>Canis I. familiaris</i> desde el Neolítico hasta la época romana362
Fig. 8.48 Representación del LSI de las poblaciones del Neolítico (izquierda) y Neolítico final -
Calcolítico (derecha) ordenados según la media de los valores LSI
Fig. 8.49 Representación del LSI de las poblaciones del-Calcolítico ordenados según la media de
los valores LSI
Fig. 8.50 Representación del LSI de las poblaciones del-Bronce ordenados según la media de los
valores LSI365
Fig. 8.51 Representación de los valores del LSI de las poblaciones de la edad del Hierro (izquierda)
y de época romana (derecha) ordenados según la media366
Fig. 8.52 Diagrama Box-plot en que se representan los valores LSI del postcraneal de ejemplares
de canes desde el Neolítico hasta la época romana368
Fig. 8.53 Diagrama Box-plot en que se representan los valores LSI del postcraneal de canes
registrados en los yacimientos peninsulares desde el Neolítico hasta la época romana368
Fig. 8.54 Diagrama Box-plot en que se representan los valores LSI de los elementos del esqueleto
postcraneal de restos de cánidos recuperados en los yacimientos peninsulares desde el Neolítico
hasta la época romana369
Fig. 8.55 Diagrama Box-plot en que se representan los valores LSI de los elementos considerados
de la extremidad anterior (izquierda) y posterior (izquierda) de las poblaciones de cánidos desde
el Neolítico hasta la época romana370
Fig. 8.56 Diagrama Error Standard en que se representan los valores de la media del LSI de la L y la
B del primer molar inferior de distintas cronologías370
Fig. 8.57 Mixture análisis de los valores LSI del postcraneal de las poblaciones caninas
peninsulares examinadas371
Fig. 8.58 Diagrama Box-plot en que se representan los valores LSI de individuos del Neolítico y
Calcolítico373
Fig. 8.59 Diagrama Box-plot en que se representan los valores LSI de individuos de la edad del
Bronce
Fig. 8.60 Diagrama Box-plot en que se representan los valores LSI de individuos de la edad del
Hierro
Fig. 8.61 Diagrama Box-plot en que se representan los valores LSI de individuos de la edad
romana
Fig. 8.62 Diagrama Box-plot en que se representan los valores LSI de las poblaciones caninas de
énoca romana procedentes de distintas áreas del Mediterráneo occidental 376

Fig. 8.63 Mixture análisis en que se representan los valores LSI de las poblaciones caninas de edad
romana procedentes de distintas áreas del Mediterráneo occidental377
Fig. 8.64 Diagrama Box-plot en que se representan los valores LSI de las poblaciones caninas de
distintas áreas del Mediterráneo occidental
CAPITULO IX Los análisis genéticos: resultados
Fig. 9.1 Representación grafica del árbol realizado a partir de las secuencia de MALL 2, CMOL 1 y
27 y los haplotipos descritos por Thalmann <i>et al.</i> , 2013
Fig. 9.2 Diagrama de dispersión en que se presenta la variabilidad genética de perros y lobos a
partir de los genomas descritos por Marsden et al., 2016 (imagen elaborada por Gómez, IBE-
UPF)

Índice de las Tablas

CAPITULO II Materiales y metodos: la investigación arqueozoológica
Tabla 2.1 Sinopsis de los yacimientos, cronología y número de restos de Canis I. familiaris
recuperados en cada conjunto75
Tabla 2.2 Edad de fusión en los canes de los huesos del postcraneal según Barone (1976)82
Tabla 2.3 Edad de fusión en los canes de las suturas craneales según Barone (1976)83
Tabla 2.4 Edad de erupción en los canes de la dentición según Haberhmel (1975)84
Tabla 2.5 Edad de desgaste de la dentición en los canes según Haberhmel (1975)84
Tabla 2.6 Coeficientes para el cálculo de la altura a la cruz según Koudelka (1885) y Harcourt
(1974)91
Tabla 2.7 Coeficientes para el cálculo de la altura a la cruz según Clark (1995)91
Tabla 2.8 Clasificación de tipos caninos según su altura a la cruz, siguiendo Mégnin (1897) en
Forest (1994)91
Tabla 2.9 Clasificación de tipos caninos según su altura a la cruz, siguiendo Udrescu (1989) en
Forest (1994)92
Tabla 2.10 Nuestra propuesta de clasificación de tipos caninos según su altura a la cruz92
Tabla 2.11 Categorías de talla según Hasebe (1952)92
Tabla 2.12 Distinción entre tipología cefálicas en Belhaoues (2011)94
Tabla 2.13 Calculo de la longitud basal del cráneo del perro según Brinkmann (1924) y Dahr (1937)
en Driesch (1976)95
Tabla 2.14 Tamaños de cráneos según Hasebe (1952)95
Tabla 2.15 Medidas craneales y mandibulares significativas según De Grossi Mazzorin &
Tagliacozzo (2000)97
Tabla 2.16 Índices craneales y mandibulares según De Grossi Mazzorin & Tagliacozzo (2000)97
CAPITULO III Materiales y métodos: La investigación paleogenética
Tabla 3.1 Técnica de análisis genéticos aplicada a los individuos de los yacimientos estudiados.124
Tabla 3.2 Listado de los primeros utilizados, la secuencia genética, el número de pares de bases,
el target del experimento, la referencia y las muestras analizadas126

CAPITULO IV Muestra estudiada correspondiente al Neolítico: el yacimiento de Serra del Ma
Bonet
Tabla 4.1 Descripción sintética del NRD, del NME y del NRnD distintos por elementos anatómicos
Tabla 4.2 Cálculo de la altura a la cruz en cm siguiendo Koudelka (1885), Harcourt (1974) y Clar
(1995) y de la longitud del cuerpo según Clark (1997)152
Tabla 4.3 Índices craneales (CR) y mandibulares (MD) de SMB 1 comparados con los de raza
actuales (Wagner 1930) y del lobo del Pigorini (Catagnano, en este trabajo)155
Tabla 4.4 Comparación entre la longitud máxima del P4, M1 y M2 de SMB 1 y de razas actuale
(Wagner, 1930)156
CAPITULO V Muestra estudiada correspondiente al Calcolítico: el yacimiento de Camino de
Molino
Tabla 5.1 Las tres dataciones radiocarbónica del yacimiento de Camino del Molino168
Tabla 5.2. Distribución anatómica de los restos asociados a individuos: número de resto
determinados (NRD), número mínimo de elementos (NME) , número de restos no determinado
(NRnD) y relativos totales
Tabla 5.3 Distribución anatómica de los restos no asociados a individuos: número de resto
determinados (NRD), número mínimo de elementos (NME), número de restos no determinado
(NRnD) y relativos totales
Tabla 5.4 Longitud basal en mm calculada a través de los índices de Brinkmann (1924) y Dah
(1937)
Tabla. 5.5 Índices craneales de los individuos de Camino del Molino 194
Tabla. 5.6 Índices mandibulares de los individuos de Camino del Molino 195
CAPITULO VI Muestra estudiada correspondiente a la edad del Hierro: los yacimientos Car
Xercavins, Mas Castellar y Ampurias
Tabla 6.1 Descripción sintética del NRD, del NME y del NRnD distintos por elemento
anatómicos217
Tabla 6.2 Cálculo de la altura a la cruz en cm, siguiendo Koudelka (1885), Harcourt (1974) y Clar
(1995)
Tabla 6.3 Índices craneales (CR) y mandibulares (MD) de CXE 1 comparados con los de raza
actuales (Wagner 1930) y del lobo del Pigorini (Catagnano, en este trabajo)223
Tabla 6.4 Comparación entre la longitud máxima del P4, M1 y M2 de CXE 1 y de razas actuale
(Wagner 1020)

Tabla 6.5 Descripción sintética del NRD, del NME y del NRnD distintos por elementos anatómicos
de MCS 1 y MCS 2240
Tabla 6.6 Estimación de la AC según Koudelka (1885), Harcourt (1974) y Clark (1997), y de la LC
según Clark (1997)243
Tabla 6.7 Índices craneales (CR) de MCS 1 y MCS 2 comparados con los de raza actuales (Wagner
1930) y del lobo del Pigorini (Catagnano, en este trabajo)249
Tabla 6.8. Índices mandibulares (MD) de MCS 1 y MCS 2 comparados con los de raza actuales
(Wagner 1930) y del lobo del Pigorini (Catagnano, en este trabajo)249
Tabla 6.9 Descripción sintética del NRD y del NME y del NRnD divididos por elementos
anatómicos
Tabla 6.10 Cálculo de la altura a la cruz en cm, siguiendo Koudelka (1885), Harcourt (1974) y Clark
(1995)265
Tabla 6.11 Comparación entre la longitud máxima del P4, M1 y M2 de AMP 1 y de razas actuales
(Wagner 1930)
Tabla 6.12 Cálculo de la longitud basal del cráneo según Brinkmann (1924) y Dahr (1937) en
relación a la altura a la cruz según Harcourt (1974)267
Tabla 6.13 Índices mandibulares de AMP 1 comparados con los de raza actuales (Wagner 1930) y
del lobo del Pigorini (Catagnano, en este trabajo)
del lobo del Pigorini (Catagnano, en este trabajo)
del lobo del Pigorini (Catagnano, en este trabajo)
CAPITULO VII Muestra estudiada correspondiente a la edad tardorromana: el yacimiento de Els
CAPITULO VII Muestra estudiada correspondiente a la edad tardorromana: el yacimiento de Els Mallols
CAPITULO VII Muestra estudiada correspondiente a la edad tardorromana: el yacimiento de Els Mallols Tabla 7.1 Descripción sintética de las estructuras por Francès et al. (2007) y NMI de Canis I.
CAPITULO VII Muestra estudiada correspondiente a la edad tardorromana: el yacimiento de Els Mallols Tabla 7.1 Descripción sintética de las estructuras por Francès et al. (2007) y NMI de Canis I. familiaris
CAPITULO VII Muestra estudiada correspondiente a la edad tardorromana: el yacimiento de Els Mallols Tabla 7.1 Descripción sintética de las estructuras por Francès et al. (2007) y NMI de Canis I. familiaris
CAPITULO VII Muestra estudiada correspondiente a la edad tardorromana: el yacimiento de Els Mallols Tabla 7.1 Descripción sintética de las estructuras por Francès et al. (2007) y NMI de Canis I. familiaris
CAPITULO VII Muestra estudiada correspondiente a la edad tardorromana: el yacimiento de Els Mallols Tabla 7.1 Descripción sintética de las estructuras por Francès et al. (2007) y NMI de Canis I. familiaris
CAPITULO VII Muestra estudiada correspondiente a la edad tardorromana: el yacimiento de Els Mallols Tabla 7.1 Descripción sintética de las estructuras por Francès et al. (2007) y NMI de Canis I. familiaris
CAPITULO VII Muestra estudiada correspondiente a la edad tardorromana: el yacimiento de Els Mallols Tabla 7.1 Descripción sintética de las estructuras por Francès et al. (2007) y NMI de Canis I. familiaris
CAPITULO VII Muestra estudiada correspondiente a la edad tardorromana: el yacimiento de Els Mallols Tabla 7.1 Descripción sintética de las estructuras por Francès et al. (2007) y NMI de Canis I. familiaris
CAPITULO VII Muestra estudiada correspondiente a la edad tardorromana: el yacimiento de Els Mallols Tabla 7.1 Descripción sintética de las estructuras por Francès et al. (2007) y NMI de Canis I. familiaris
CAPITULO VII Muestra estudiada correspondiente a la edad tardorromana: el yacimiento de Els Mallols Tabla 7.1 Descripción sintética de las estructuras por Francès et al. (2007) y NMI de Canis I. familiaris

Tabla 7.8 Índices craneales de los individuos MALL 2, MALL 16 y MALL 17 comparados a los de
razas actuales (Wagner, 1930) y un lobo moderno (Catagnano, en este trabajo)301
CAPITULO VIII Estudio de la variabilidad de Canis lupus / Canis I. familiaris a partir del análisis
biométrico
Tabla 8.1 Parámetros estadísticos de las principales medidas (en mm) del postcraneal de los
cánidos de Camino del Molino316
Tabla 8.2 Parámetros descriptivos de las medidas (en mm) de MD y dientes inferiores y superiores
de Camino del Molino317
Tabla 8.3 Resumen de los elementos anatómicos, medidas y número de restos que intervienen en
el LSI
Tabla 8.4 Resumen del número de restos (NR) y de valores LSI (NM) que intervienen en el estudio
los diferentes ejemplares individualizados
Tabla 8.5 Análisis univariado de los valores del LSI de las poblaciones de lobos de la Península
analizados
Tabla 8.6 Análisis univariado de los valores del LSI de las poblaciones de lobos de la Península
analizadas351
Tabla 8.7 Análisis univariado de los valores LSI de las de las poblaciones del Pleistoceno353
Tabla 8.8 Descripción sintética de los yacimientos analizados en la Fig. 8.41354
Tabla 8.9 Test de Kruskal Wallis de los valores LSI de las poblaciones caninas peninsulares372
CAPITULO IX Los análisis genéticos: resultados
Tabla 9.1 Resumen de las muestras de cánidos analizadas mediante PCR. En negrita se muestran
las muestras de las que se ha obtenido resultado
Tabla 9.2 Composición de los haplotipos representados en el árbol de la Fig. 9.1384
Tabla 9.3 Descripción de las muestras arqueológicas de perros y lobos utilizadas a partir del
trabajo de Thalmann <i>et al.</i> , 2013384
Tabla 9.4 Resumen de las muestras de cánidos analizadas mediante NGS385
Tabla 9.5 Informaciones relativas a los <i>reads</i> generados a partir de la secuencia de CMOL 1385

ANEXOS

Horiz. Cron.	Yacimiento	Datacion absoluta	Procedencia restos	NR	NMI	Descripción	Acción/Interpretación	Bibliografía
MES O NEO?	Santimamiñe (Kortezubi, Vizcaya)	Datation absolute	Nivel IV	2	1	Description	Acciony interpretation	Castaños, 1984; Apellániz, 1975
NEO-EPAL	El Filador (Priorato, Tarragona)		Abrigo,Estrato 4		1	un cánido indiferenciado	¿quemado? ¿consumo?	García-Arguelles et al.,1990
NEO IN	Cueva del Parralejo de Dos Hermanas (Arcos de la Frontera, Cádiz)						presencia del perro	López, 1988a
NEO A	Cova Fosca (Ares del Maestre,	Fosca I (CSIC 357) 7.210 ±70 BP Fosca I (CSIC 356) 7.100±70 BP (Olària, 1988a y 2000)	FOSCA I, Nivel I	2		tamaño pequeño	Fetu	Estévez, 1988
NEO A	Castellón)	Fosca II (CSIC 353) 7640±70 BP (Olària, 1988a y 2000)	FOSCA II, Nivel II				presencia del perro	Estevel, 1500
NEO	Santimamiñe (Kortezubi, Vizcaya)		Nivel III	9	2			Castaños, 1984
NEO A	Los Castillejos (Montefrío, Granada)	7.250-4.950 BP (Cámara et al. , 2005).				presencia del perro	marcas de mordeduras de perro sobre huesos	Uerpmann, 1979
NEO A	La Draga (Banyoles, Gerona)	ca. 5.430 y 4.796 cal BC	Sector B	38	2	un perro de 3-6 meses, otro de >12 meses	termoalteraciones y marcas, manipulación antrópica	Saña, 2011; Saña et al., 2014
NEO A	El Retamar (Puerto Real, Cádiz)	(Beta 90122) Hogar 18: 6.780±80 BP; (Sac-1525) Hogar 18: 7.280±60 BP; (Sac-1676) Conchero 6: 7.400±100 BP; todas sobre concha (Ramos <i>et al.</i> , 2005)		7	1	un perro adulto de tamaño mediano-pequeño		Cáceres, 2002
NEO A	Zatoya (Abaurrea Alta, Navarra)	Nivel I, mitad superior: (Ly-1397) 6.320 ±280 BP, sobre huesos (Barandián, 1989)	Nivel I	2	1			Altuna & Mariezkurrena, 1989
NEO A EP	Cova de L'Avellaner (Cogolls, Gerona)	Base de la cavidad 1 ^a 5.920 ±180 BP (Gak-12933) (Bosch et al., 1987)	Necrópolis en cueva: cámaras 1, 2, 3	33		restos de cánidos indistintos	¿ofrenda en contexto sepulcral?	Molina i Serramitjana, 1990; Bosch, 1994
NEO A EP	Pou Nou 3 (Sant Pere del Molanta, Barcelona)		Estructura 3	1				Nadal i Lorenzo et al., 1999
NEO A	Cova del Bolet (Sierra de Fontrubí, Barcelona)		Nivel B			presencia de perro y lobo entre la fauna		López, 1988b
NEO A	Cova de l'Or (Beniarrés, Alicante)	6.510±160 BP; 6.265±75 BP; 6.275±70 BP; 6.310±170 BP (Zapata <i>et al.</i> , 2005)	Distintos niveles	10	2		no se documenta el consumo del perro pero si utensilios sobre huesos de Canis familiaris y Canis sp.; se menciona la acción del perro como agente tafónomico	Pérez Ripoll, 1980 y 1992
NEO A	Los Cascajos (Los Arcos, Navarra)	6.185±75 BP, sobre hueso humano (Zapata et al., 2005)	Fosa 62		2	dos cánidos enterrados		García & Sesma, 2001 y 2007
NEO A	Cova 120 (Sales de LLierca, Gerona)		Silos de almacenamiento		1	restos de un cánido, un zorro,un jabalí, dos cabras pirenaicas, un ovicáprido, u y dos conejos		Agustí et al. , 1987
NEO A	Collet de Puig Gros (Les Garrigues, Lérida)	4.339 cal. BC (UBAR-892)	Estr. 2, UE 12 y UE 14	134	2	dos adultos	¿deposición intencional o higiénica?	Camarós & Saña, 2008
NEO A	La Sarsa (Boicarent, Valencia)		Estr. 5, UE 34 y UE 36	3		pelvis, escápula y mandíbula de un perro jóven	marcas tafonómicas (depresiones debidas a masticación) sobre una mandibula, probable consumo	Boessneck & Von den Driesch, 1980; López & Molero, 1984
NEO A		4.820 BC; 4.700 BC; 4150 BC; 4380 BC (Baldellou, 1984)	Nivel Ia	15	1	AC: 49,39 cm (Harcourt,1974)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Castaños, 2004
NEO A	Chaves (Bastarás, Huesca)	4.380 BC; 4.310 BC; 4280 BC; 4170 BC (Baldellou, 1984)	Nivel Ib	25	1			Castaños, 2004
NEO A	Cova del Frare (Matadepera, Barcelona)						presencia del perro	Lopez, 1988b
NEO A	Plansallosa (Montagut-Sadernes, Gerona)	(Beta-74311): 6.180±60 BP; (Beta-74313): 6.130±60 BP; (OxA-2532):5.890±80 BP; (Beta-74312): 5.870±60 BP; (Beta-87965):5.270±70; todas sobre madera (Bosch et al., 1998)	Poblado aire libre	1			trazas de mordeduras; empleado para las tareas mantenimiento	Saña, 1998
NEO A	Cueva del Nacimiento (Pontones, Jaén)	6780±130 BP (Asquerino & López, 1981)		1		una tibia de grande tamaño con marcas de quemadura de incierta atribución, podría ser de lobo ¿consumo?	posible consumo	Alferéz et al., (1981)
NEO A	Peña Larga (Cripán, Álava)	(I-14909) N. IV.: 5.830±110 BP (Fernández Eraso, 1997)	Nivel IV	2				Castaños,1997
NEO	El Mirador (Sierra de Atapuerca, Burgos)	MIR-18:5.210-5.160 y 5.150-4.930; MIR-19: 5.230-492; MIR 16: 4.710-4.360; Dataciones C14 AMS 2σ BC	MIR-18 y MIR 19 , MIR-16	5		dos restos de perro y tres de <i>Canis</i> sp.	¿hervido?¿consumo?	Martín Rodríguez, 2015; Martín Rodríguez <i>et a</i> l., 2009 y 2014
NEO	Cueva de Atxeta (Guernica, Vizcaya)		Nivel B	1	1			Castaños, 1983b
NEO IN	Santimamiñe (Kortezubi, Vizcaya) Cova Fosca (Ares del Maestre, Castellón)	(Ua42707) UE -196/-211, hueso de perro: 6.222±48 BP; (Ua-42709) UE -211/-220, hueso de perro: 5.926±86 BP	Nivel III Sector C	18	9	A parte de los restos de perros se han recuperado entre los restos hay tres huesos de Canis sp. (NMI 1) y cuatro de lobo (NMI 3)		Castaños, 1984 Llorente, 2015
NEO M	, 25 del maestre, castellolly	100 .0. 00, 00 211, 220, nacio de peno. 3.320100 Br	Sector C	4	2			

Horiz. Cron.	Yacimiento	Datacíon absoluta	Procedencia restos	NR	NMI	Descripción	Acción/Interpretación	Bibliografía
NEO M	Pou Nou 2 (Sant Pere del Molanta, Barcelona)		Estrucutura 9	1				Nadal i Lorenzo <i>et al.,</i> 1999
	La Dehesilla							
NEO M	(Arcos de la Frontera, Cádiz)				1	de tamaño pequeño		Acosta et al., 1990
NEO M	Bauma de L'Espluga (Sant Quirze Safaja, Barcelona)		Sondeo D, Nivel III Nivel V		1	un cánido indistinto varios restos de cánidos		Llongueras i Campana, 1981
NEO	Marizulo (Urnieta, Guipúzcoa)	(GrN-5992) 5.285±65 BP (Altuna, 1980); Nivel I-enterramiento: 5.315±100 BP Nivel I: 5.235±75 BP (Fernández Eraso <i>et al.</i> , 2005)	Nivel I	60	1	La AC con Koudelka (1885) oscila entre 50,8 y 56,1 cm, con Harcourt (1974) entre 50,8 y 57,1 cm	perro que acompaña una sepultura humana junto a un cordero	Altuna, 1967, 1972 y 1980
NEO M-F	Puig d'en Roca (Salt, Girona)		Sepulcro 9, Sepulcro 6	48		47 restos de perro del Sep. 9 y uno de <i>Canis</i> sp. del n.6	¿ofrenda en contexto sepulcral?	Rubio, 1988
NEO M/TAR	Cueva de las Tontas (Montefrío, Granada)					presencia del perro y lobo entre la fauna		Torre, 1984
NEO F	Mas d'en Boix (Pacs del Penèdes, Barcelona)		E-001	2		descrios como <i>Canis familiaris</i> y <i>Canidae</i> sp.		Nadal i Lorenzo <i>et al.,</i> 1999
NEO F	Santa Maria del Horts (Vilafranca del Penèdes, Barcelona)			2	1	perro adulto		ivadal i Lorenzo et dr., 1999
NEO F	Cingle del Mas Cremat (Portell de la Morella, Castellón)	4.850-4.790 2σ cal BP	Nivel II	1			marcas de descarnado	Iborra & Martínez, 2010
			UE 55, estr. 5	18	2	restos de mínimo dos cánidos adultos, en la fosa no son presentes restos de otras especies	deposición intencional	
NEO F	L'Espina C (Tàrrega, Urgell)	4.120±40 BP (Beta-247384)	UE 130, estr.13	3	1	tres piezas dentarias (dos caninos superiores y uno inferior) de un perro de edad adulta, acompañados por pocos fragmentos de un buey y de ovicáprido		Piera <i>et al.</i> , 2009; Saña & Lladó, 2007
NEO F	Tossal de les Basses (Albufereta, Alicante)	ca. 4.950-4.420 y 3.650-3.520 BC	Fosa, UE11766		2		¿deposición votiva o ritual?	Rosser, 2010; Rosser & Fuentes, 2008
NEO F	Polideportivo de Martos (Martos, Jaén)	(I-17083) Hogar XIIb, carbón: 5.080±140 BP (Lizcano <i>et al.</i> , 1991-1992)	Estructuras XIIb, XVI y XVI	637	7	AC de 40,1-51,4 cm (Harcourt, 1974); 40,6-50,5 cm (Koudelka, 1994)	probables rituales de fundación/consolidación	Lizcano <i>et al.</i> , 11997 y 2005; Riquelme <i>et al.</i> , 2012;
NEO F	El Mirón (Ramales de la Victoria, Cantabria)			2			marcas de mordeduras de perro	Altuna et al., 2004
NEO F	Papa Uvas (Aliaraje, Huelva)	Fase I ±5.250-4.950/4.850 BP Fase IIa ±4.950/4.850-4.750 BP		£39?		11% de la fauna		Martín de la Cruz, 1995
NEO F	La Cocina (Dos Aguas, Valencia)					presencia indirecta del perro	marcas de mordeduras de perro	Pérez Ripoll,1992
NEO	Les Cendres (Moraira, Alicante)	6.730±80 BP (Beta-75220); 6.340±70 BP; Nivel V.A: 5.640±80 BP (Beta-75213); Nivel IIIA 4.700±120 BP (Ly- 4304); (Badal, 1999)				presencia indirecta del perro, probablemente perro pastor en cueva redil	marcas de mordeduras de perro	Pérez Ripoll,1992
NEO F	La Falguera (Alcoi, Alicante)	6.510±70 BP, sobre cereal (Zapata et al., 2005)	Niveles VI+V+IV	1		presencia indirecta del perro	elevadas marcas de mordeduras de perro	Pérez Ripoll, 2006
NEO F	Costa de Can Martorell (Dosrius, Barcelona)	3.810±55 BP (Ly-7813), 3.795±55 BP (ref. Ly-7838), 3.875±50 BP (UBAR-695) y 3.920±80 BP (ref. UBAR- 696) (Mercadal <i>et al.</i> , 2005)				pocos restos de cánidos	enterramiento múltiple con restos de cánidos quemados: ¿ritual o consumo en el banquete?	Mercadal et al., 2005
NEO F	Bóbila Madurell (Sant Quirze del Vallès, Barcelona)		Estr. 4.3	2	¿1?		¿ofrenda en contexto sepulcral?	Paz, 1992
NEO F	Bóbila Madurell (Sant Quirze del Vallès, Barcelona)	(UBAR-84) Silo 12, carbón: 5010±80 BC; (UBAR-442) Sep G1, hueso humano: 5.310±90 0BC; (UBAR-443) BM M7, hueso humano: 4.560±80BC; (UBAR-586) BMS 78, carbón 3.810±70 BC	Tumba E-28		1		un cánido asociado a un enterammiento infantil ¿ofrenda en contexto sepulcral?	Gibaja et al., 2010
NEO REC	Polideportivo de Martos-La Alberquilla (Martos, Jaén)	4.465±25 BP sobre hueso de perro (CNA603)	Complejo estr. 7, corte 14	599	5	Cinco adultos, AC de 37,8-41,8 (Harcourt, 1974) o 38,3-41,2 cm (Koudelka, 1885)	despositados en un fondo de cabaña enterrados asociados a una vaca joven en conexión anatómica y a una cabeza de un macho adulto de oveja	Riquelme et al., 2012; Camara et al., 2010
D-1-11- D /- "	-'' Danielana' Cara Vanda (C''	Parallel (VIII)	Harry Allianotal Danier Batis (5)	Citas aisladas	A /A 4711	and Contain Co	Niete (MACIe es) Como del C	
Bobila Roca (Palle (Granada)	ejá, Barcelona); Cova Verda (Sitges, Bar	celona); Barranc Fondo (Xàtiva, Valencia); Casa Lara (Vi	llena, Alicante); Penya Rotja (Planes,)	Alicante); Covacha de Lla	atas (Andilla, Vale	encia); Carigüela (Granada);Nerja (Granada); La F	ileta (Málaga);Cueva del Coquino	Pérez Ripoll, 1992; Aura <i>et al.</i> en prensa, Rubio (1988), Aparicio 1979, Olària, 1988b y Ruíz Bustos, 1992 todos en García Moncó, 2005

Hallazgos de cánidos procedentes de los yacimientos del Neolítico de la Península Ibérica.

Horiz. Cron.	Yacimiento	Datacíon absoluta	Procedencia restos	NR	NMI	Descripción	Acción/Interpretación	Bibliografía
NEO F/CALC	Core Name (Aughinel Mannie)		Silo I, UUEE 4226, 4227, 4228 y 4235	278	9	presencia de cachorros	problables desechos	García-Moncó Piñeiro, 2006
NEO F/CALC	Casa Noguera (Archivel, Murcia)		Estructura 7		2	dos perros enteros	acompañando a un inhumado	García & Martínez, 2004
NEO F/CALC	Albuquerque (Lorca, Murcia)		UE 1141, 1142, 1146, 1153, 1185	411	2	tamaño pequeño	inhumación colectiva	García-Moncó Piñeiro, 2006
NEO F/CALC	Calle Corredera n.° 47 (Lorca, Murcia)		Fondo	1406	8	tamaño pequeño	¿fosa común de perros?	García-Moncó Piñeiro, 2006
NEO F/CALC	Avenc dels Dos Forats o Cova del Monedero (Carcaixent, Valencia)	(UCIAMS-663118) Muestra AVF6 sobre colageno hueso humano 4.115±25 BP (García Puchol et al., 2010)	UA 6-UE 3700 de la Cavidad de uso funerario	2		un resto de perro y otro descrito como de <i>Canidae</i>	vertebra con marca de carnicería: consumo	García Puchol et al., 2010
NEO F/CALC	Glorieta de San Vicente de Lorca (Murcia)		Estructuras negativas		4		en estructura reaprovechadas con fines funerarios	García Blánquez et al., 2003; Eiroa, 2006
CALC	Los Husos (Elvillar, Álava)	Nivel IIIB, base del Eneolítico: 4.730±110 BP (I-5949); nivel IIC, Eneolítico II: 3.920± 100 BP (AA59520) (I-3985) (Altuna, 1980).	Estratos IIIA-IIB4	3	2			Altuna, 1980
CALC	La Loma de Chiclana II (Madrid)	4.324±34 BP (Ua 39325) (Díaz -Andreu <i>et a</i> l., 1992)	Fondo 11		1	cráneo , vertebras y mandibula; edad >72 m	fondo de vivienda reaprovechado	Daza, 2015; Liseau <i>et al.</i> , 2012
NEO F/CALC	Sant Juan Ante Portam Latinam (Laguardia, Álava)	235±70 BP (ref. lab. Ua-1357; muestra sobre cráneo de perro), 4.520±75 BP (ref. lab. GrA- 5420; muestra cráneo 123) y 4460±70 BP (ref. lab. Ua-10356; muestra cráneo 330) (Vegas, 1999); 3.338-3.095 cal. BC (Armendáriz, 2007)	Sepulcro colectivo en hipogeo	11	1		decapitación del perro enterrado en un sepulcro colectivo de fallecidos por causas violentas	Vegas et al., 1999; Altuna & Mariezkurrena, 2007
CALC A	Valladares I (P.K. 0+150) (Illescas ,Toledo)		Hoya 14		1	un cánido de pequeño tamaño y corta edad	acción voluntaria	GarcíaLerga et al., 2008
CALC	Valencina de la Concepción (Sevilla)		Zanja			mandíbulas de perro	depostitadas en el fondo de una zanja	Fernández & Oliva, 1986
CALC	Valencina de la Concepción-Barrio metalugico (Sevilla)	AMS de 2.736±99 BC (UA 24557) y 2.004±82 BC (UA32043)	Sector 4, E-171	55	1	en conexión anatómica bastante completo y sin marcas de corte	posible enterramiento intencionado	Abril et al., 2010
CALC	Cerro de la Cabeza (Ávila)	3.850±60 BP (Beta-109831)	Enterramiento 4		1	un esqueleto casi completo de tamaño mediano- pequeño	deposición en contexto funerario	Fabián, 2006; Fabián <i>et al.</i> , 2012
CALC	Cerro de la Cervera (Madrid)		Fondo I, Nivel I		1	un perro joven entero	¿rito fundacional?	Asquerino, 1979
CALC	Colata (Montaverner, Valencia)	4.335±36 BP (AA59520) y 4.463±36 BP (AA59521)	Estructuras 58 y 76	104	6	al menos dos de los individuos eran jóvenes y uno adulto	no se detectan marcas de consumo ni de aprovechamiento pieles	Gómez Puche et al., 2004
CALC	Los Páramos (Aználcollar, Sevilla)		Estructura UE 19	14	1	un cánido	actividad cinegética	Bernáldez et al., 2010
CALC	Camino del Molino (Caravaca de la Cruz, Murcia)							
CALC	Molinos de Papel (Caravaca de la Cruz, Murcia)		Estructura siliforme		1	un esqueleto	deposición	Marín et al., 2013
CALC	Cabezo Juré (Alosno, Huelva)			3				Nocete, 2004
CALC	Calle Dolores Quintanilla n.º 6 de Carmona (Sevilla)	E-3/DQ6: 3.340-3.210 cal.BC hasta aprox. 3.100-3.000 (Conlin, 2006)	UU.EE. 66 y 72 U.E. 70 y U.E. 65		5	cinco perros enteros		Román et al., 2001; Conlin, 2003 y 2004
CALC			Silos E-6 y E-7		2	2 cráneos		Roman et al., 1997
CALC	La Pijotilla (Badajoz)		Corte L-1		?1غ	¿1 cánido?	enterramiento intencionado	Hurtado, 1991
CALC	El Perdido (Torres de la Alameda, Madrid)	3.834±35 BP (Ua-41488); 3.816±40 BPo (Ua-41489)	Tumba:Ue 40100, UE 40200		2	los dos casi completos, uno es adulto	en tumbas colectivas,perro como guía y protector en el más allá	Daza Perea, 2015

Hallazgos de cánidos procedentes de los yacimientos del Neolítico final-Calcolítico de la Península Ibérica.

Horiz. Cron.	Yacimiento	Datacion absoluta	Procedencia restos	NR	NMI	Descripción	Acción/Interpretación	Bibliografía
CALC	Untine (Bake Cuinteres)		Nivel C (problale B)	4				Altuna, 1972 y 1980
CALC	Urtiaga (Deba, Guipúzcoa)		Nivel A+B	3	2			Altuna, 1972 y 1980
CALC		3.987±30BP (Ua-39317) sobre ulna; 4.220±35BP (Ua-36107) sobre ulna; 4.000±4BP (Beta-235584) sobre costilla	Área 54 Elemento a-121- e01a U.e. 02		1	macho, edad 6-10 m	perro en el interior de un tramo de foso asociado a un suido infantil, posible deposito fundacional	Daza, 2011 y 2015; Liseau,2012
CALC CAMP	Camino de las Yeseras (San Fernando de Henares, Madrid)	3.530±40BP (Ua-35019)	Área 21 Elemento 04 U.e. 01		2	perros depositados enteros	asosiacodo a una fosa funeraria campaniforme , presencia de traumatismo: ¿perros sacrificados?	Daza, 2011 y 2015; Liseau, 2012
CALC		4.007±30BP (Ua-39316) sobre Perro 1; 3.976±30 BP (Ua-39318) sobre Perro 4	Área 40, Elemento 01 U.e. 07		7 0 8	perros reoresentados por sus cráneos y primeras vertebras en dod casos	decapitación, dispuestos en circulo juntos a las paredes de la fosa	Daza, 2011 y 2015; Liseau, 2012
CALC	Las Eras (Úbeda, Jaén)	3.553±103 BC cal. Dir.	Tumbas T-17 y T-18		2	enteros	enterramiento con humanos	Lizcano et al., 2005 y 2006; Riquelme, 2009
CALC CAMP	Paraje del Monte (Cádiz)	Carbón, E-2, fechas C14 AMS (Beta–23395) (MBE215N113) 4.480±40BP; (Beta 233952) (MBE246N3) 4.450±40BP; (Lazarich et al., 2012)	Cueva arificial sepulcral colectiva		2		cánidos en el fondo de una cueva sepulcral artificial con 60 inuhumados: guardianes sepultura, simbolo o <i>totem</i> del grupo	Lazarich et al., 2009
CALC CAMP	Villa Filomena (Vila-Real, Castellón de la Plana)				1	cráneo y mandibulas	¿enterramiento intencional?	Benito, 2013
CALC	El Mirón (Ramales de la Victoria, Cantabria)		Nivel 7	1				Altuna et al., 2004
CALC	Las Matillas (Alcalá de Henares, Madrid)		UE 1400 y 3400, silos cilindricos	6	2			Díaz del Rio, 2001
CALC	Amalda (Cestona, País Vasco)			3				Mariezkurrena, 1990
CALC	Les Jovades (Cocentaina, Valencia)		Estructuras 152, 156 y 180	183	4	tres adultos y un subadulto de tamaño mediano	¿aprovechamiento pieles y/o cárnico?	Martínez Valle, 1993
CALC	Arenal de la Costa (Ontinyent, Valencia)			2				Martínez Valle, 1993
CALC	Cueva de Juan Barbero (Tielmes, Madrid)		Cueva	1 CASP		pelvis de un individuo jóven		Martínez Navarrete, 1984
CALC	Marianela (Lorca)	4.050±25 BP (KIA-21808; U.E1027)	Silo		2		dos cánidos depuestos con dos humanos	Verdú, 2004
CALC			Tramo 3, diferentes estructuras	2312	34			Cámara et al., 2012
CALC	Marroquíes Bajos (Jaén)	25801860 cal BC (Cámara et al., 2012)	Estuctura VIIB		2	¿un esqueleto entero y otro parcial?	¿dos enterramientos?	Burgos et al,. 2001a
CALC			Parcela UE-23 de la estructura negativa 1/estrato I		1	un perro entero		Burgos et al., 2001b
CAL	Venta del Rapa (Mancha Real, Jaén),		Estructura siliforme 301		2		dos perros acompañando 19 inhumados	Lechuga <i>et al.</i> , 2014
CALC	La Venta del Llano (Mengíbar, Jaén)		Complejo Estructural Funerario 462		1		ofrenda de perro en el nivel basal de una enterrramiento colectivo	Portero et al., 2010
CALC	Los Millares (Almería)							Peters & Von der Driesch 1990
CALC	Fuente Flores (Requena, Valencia)			8	2	dos individuos, un adulto y uno de menos de 8 meses; tamaño mediano-pequeño		Martínez ,1988
CALC	Ereta del Pedregal (Navarrés, Valencia)		Niveles I y IV	4	4	tres dientes aislados y una tibia		Pérez, 1990
CALC	Los Castillejos (Montefrío, Granada)	7.250-4.950 BP (Cámara et al. , 2005).						Ziegler, 1990
CALC	Aldeacueva (Carranza, Vizcaya)		Cueva sepulcral	3		dos restos atribuidos al perro y uno al lobo		Altuna, 1967
CALC	Txotxinkoba (Gizaburuaga, Vizcaya)		Cueva	1		·		Altuna, 1967
CAL	Pico Ramos (Muskiz,Vizcaya)		Nivel I de la Cueva Sepulcral	113	1	AC 60,5 cm (K) o 63,2 cm (H)	un individuo entero, se duda de la fiabilidad del hallazgo que puede ser moderno	Castaños, 1995

Hallazgos de cánidos procedentes de los yacimientos del Calcolítico de la Península Ibérica.

Horiz, Cron.	Yacimiento	Datacion absoluta	Procedencia restos	NR	NMI	Descripción	Acción/Interpretación	Bibliografía
BR-ENEO	Santimamiñe (Kortezubi, Vizcaya)	Dutation absolute	Nivel II	12	1	Descripcion	Accion, interpretation	Castaños, 1984
	, , , , , ,		-				142 restos pertenecen a dos individuos hallados en el	·
BR	Espinillo (Villaverde, Madrid),		Fondos de Cabañas	170	6		Fondo 12	Harráez & Cerdeño, 2000
PCOG COG I	Camino de las Yeseras (San Fernando de Henares, Madrid)	(Beta-184325) 3.340±70 BP Hueso fauna Hoyo 319 (dep. votivo); (Liesau <i>et a</i> I., 2008)	Fondo 319	1	1	un cráneo de perro	sacrificio cámico con distintas especies y un cráneo de perro y cinco bóvidos, dos ovicápridos, un suido, un équido, si bien sólo las porciones esqueléticas de los bóvidos documentados en el Nivel II fueron objeto de deposición ritual.	Liesau, 2012
PCOG		1400-1300 cal BC (Daza, 2011)	Área 134		1	una perra parturienta entera, de 2- 3 años en una fosa, AC promedio 44,8 cm	ihumación infantil con ajuar compuesto por el perro, un cuervo y restos de oveja y vacuno	Liesau, et al., 2008; Liseau, 2012; Daza 2011
PCOG	La Dehesa (Alcalá de Henares, Madrid)		Zona A		1	en conexión anatómica	depositado en un hoyo cuyo nivel superior había sido amortizado como hogar	Silva & Macarro, 1996.
PCOG	Las Vegas (Jabares de los Oteros, León)		Hoyo AG-60		1	esqueleto completo y en conexión anatómica de un cánido	el centro del hoyo con las extremidades replegadas hacia el abdomen sugiere que fue colocado <i>ex</i> <i>profeso</i>	Rodríguez <i>et al.,</i> 1997
BR-PCOG 2			Hoya 11C-1		2	dos cabezas de perro y dos suidos completos	¿ofrenda para un humano de 5-6 años?	Valiente, 1992
BR-PCOG 2	Loma del Lomo II (Cogolludo, Guadalajara)		Hoya 10D-2	1	1	un ejemplar de sexo masculino	próximo a un inhumado pero no compartiendo espacio con este (ent. 9); 50 cm de envergadura, incrustado entre piedras y bloques de revestimiento con los que quizás se habría formado una caja en la que acondicionar el cuerpo del animal	Valiente, 1992; Blasco,1997
PCOG I-BR M	La Huelga (Dueñas, Palencia)	(Poz.43075) 3.350±30 BP sobre costilla canina	Parcela n. 45, Poligono 5, campo de hoyos, Hoyo C-36	97	2	un perro entre 12-20 meses, otro entre 20-24 meses; solo cuartos delanteros	fondo de hoyo con cuerno de bóvido y otros huesos suletos	Liseau <i>et al.,</i> 2014
BR	Caserío de Perales del Río I (Madrid)		Enterramiento doble, F. 23, Cuad.31		1	un perro de talla media	dos infantes con a sus pies la mitad delantera de un perro	
PCOG	Caserío de Perales del Río II (Madrid)	(UBAR-818) 3.270+50 Hueso fauna Fondo V; UE 36 (Fosa fun.) (Mestres, 2007)	F 3 Cuad. D 1	6	1		Se han podido identificar tres ovicápridos, y un ejemplar de bóvido, équido y cánido. En su mayoría corresponden a elementos craneales y dentales, así como apendiculares.	Blasco <i>et al.,</i> 1991
BR A	Can Soldevilla III (Santa Perpètua de Mogoda, Barcelona)		Enterramiento				inhumación asociada a cráneo y mandíbulas de perro	Miró & Molist, 1982; Marcet Barbé,1982
BR A	Bòfia de Sant Jaume (Montmajor, Barcelona)		Enterramiento múltiple en cueva con 29 inhumados	72	21		acompañando a 29 inhumados representados por el cráneo; presencia de otros restos de fauna con marcas antrópicas	Reig-García, 2015; Serra i Vilaró, 1966; Guerrereo et al., 2003
BR A	Carrer Almeda (Bordilis, Gerona)			89	1	un subadulto de talla mediana	¿evisceración?	Casella i Parra, 1998
BR IN	Pla del Serrador (Les Franqueses del Vallès, Barcelona)		Silo E-64, Nivel 3		9		asociados a otra fauna en relación a una estrucutra funeraria n. 5 donde hay una ihumación infantil	Nadal & Estrada, 2005 en Albizuri 2011
BR IN		2 000 4 450 DC	Fosas funeraria, Fosas rituales y otras foasa	1408	38	13 esqueltos completos	ritual	Albizuri, 2011
BR IN	Can Roqueta II (Sabadell, Barcelona)	2.000-1.450 cal BC; (Carlús <i>et al.</i> , 2008)	CRII459, fosa hipogéa funeraria	4	1	restos de dimensiones mayores que han hecho suponer la presencia del lobo		Albizuri, 2011
ARG	Cerro de la Encina (Granada)						marcas de desarticulación	Friesch, 1987
ARG	Castellón Alto (Granada)					AC 43,9-54,7 (Harcourt, 1974)	marcas de carnicería	Milz, 1986
ARG	Gatas (Turre, Almería)	2900-1550 cal BC		51				Andúgar, 2015
ARG	La Bastida (Totana, Murcia)			153				Andúgar, 2015
ARG	Purullena (Granada)					AC aprox. 40 y 60 cm		Lauk, 1976
ARG	Terrera Ventura (Taberna, Almería)		Fase III y Fase IV	6	2		comparados a Canis palustris	Von der Driesch & Morales, 1977
ARG	Terrera Del Reloj (Dehesas de Guadix, Granada)					AC 45,3-50,3 (Harcourt, 1974)	marcas de carnicería	Milz, 1986
ARG+BR T	Fuente Álamo (Almería)		De las Fases I-V	669		AC 39,95-49,01 cm (Harcourt, 1974)		Von der Driesch et al., 1985; Manhart et al., 2000

Hallazgos de cánidos procedentes de los yacimientos de la edad del Bronce de la Península Ibérica.

Horiz. Cron.	Yacimiento	Datacíon absoluta	Procedencia restos	NR	NMI	Descripción	Acción/Interpretación	Bibliografía
COG -BR T	Cortecampo II (Los Arcos, Navarra)		Enterramiento 9		4	dos perros enteros y restos de las extremidades y del cuarto unos pocos restos óseos indeterminados	en el depósito que cubría al inhumado fueron halladas ofrendas alimenticias de carácter ritual consistentes en mandibulas de ovicáprido y al menos cuatro perros	Ramos Aguirre, 2007 y 2009
COGI	Moncín (Borja, Zaragoza)		Fosa 104	1		un cráneo de perro	asociado a cerámica y otros restos de fauna	Harrison et al., 1994
BR	Avenc dels Dos Forats o Cova del Monedero		UA 5 (?) de la Cavidad de		2	un resto de perro y otro descrito	,	García Puchol et al., 2010
	(Carcaixent, Valencia)		uso funerario			como de Canidae		Garcia Pucifor et ar., 2010
BR	Picarcho (Camporrobles, Valencia)		Cata A, capa 6, 51841	1	1	un perro juvenil	no consumo antrópico	
BR	Pic del Corbs, 1993 (Sagunt, Valencia)		1067, K3 IV, B72, BFA, N VI	1	1	un perro adulto: 50,55 cm (Koudelka, 1885) y 48,79 cm (Harcourt, 1974)	consumo antrópico	
BR	Lloma de Betxí, 2000 (Paterna, Valencia)		e/29, capa 2, 102980	1	1	un perro adulto	consumo antrópico	Sanchís & Sarrión, 2004
BR	Lloma de Betxí, 2001 (Paterna, Valencia)		d-e/24, capa 1/2	1	1	un perro juvenil	¿consumo antrópico?	1
BR	Lloma de Betxí, 2002 (Paterna, Valencia)		bc/21, capa 6		1	un esqueleto casi completo de un adulto en deposición primaria, junto a un inhumado	extracción piel, evisceración, ritual, funenario, acto social	
BR M	Tejar del Sastre (Madrid)		Fondo 44 y Fondo 35		2	un esqueleto completo; un cráneo de perro	¿ritual?	Quero, 1982
BR	Motilla de Azuer (Ciudad Real)						alteraciones antrópicas	Von der Driesch & Boessneck, 1980
BR	Cueva Soterraña (Requena, Valencia)			¿1?				Sarrión, 1982
BR	Les Planetes (Benassal, Castellón)			14	1			Perez Ripoll, 1978
BR	Lloma deBetxí 88-91 (Paterna, Valencia)		Corte Oeste y Cisterna	2				Sarrión,1998
BR	Los Palacios (Granada)						alteraciones antrópicas	Von der Driesch & Boessneck, 1980
BR	Muntaña Assolada 1978 (Alzira, Valencia)			5				Sarrión, 1983
BR	Illeta dels Banyets (Campello, Alicante)			3				Perez Ripoll, 1978
BR	Foia de la Perera (Benassal, Castellón)			1	1		no consumo; apoyo tareas de ganadería	Puigcerver,1992-1994
BR	La Horna (Aspe, Alicante)			8	3		no consumo; apoyo tareas de ganadería	, .
¿BR?	Cueva Atxeta (Guernica, Vizcaya)		Nivel A	7	2			Castaños, 1983b
			Silo SJ-89				un cánido entero y un bóvido entero en un silo;¿ritual?	Equip Minferri, 1997
BR	Minferri (Juneda, Lérida)		Silo SJ-88		2		enterramiento múltiple (mujer de 25-35 años, un individuo perinatal, hombre 60-70 años) con dos cánido juntos a una mujer; ofrendas animales tributadas a la mujer (cabra, cuernos de buey) y sobretodo al hombre (restos de 7 ovicápridos, un buey incompleto)	Alonso i Martinez, 2000
BR	Cueva de Arenaza (Galdames, Vizcaya)		Sector VII	20	3	dos adultos y un jóven, documetados también dos restos de lobo		Altuna & Mariezkurrena, 2007
BR	El Mirador (Sierra de Atapuerca, Burgos)	<u>'</u>		10	<u>'</u>		consumo antrópico	Martin Rodríguez, 2015
BR	Peña Larga (Cripán, Álava)		Nivel Ia	5				Castaños, 1997
BR	Cueva de Atxeta (Guernica, Vizcaya)		Nivel A	7	1			Castaños 1983b
BR	Los Husos (Elvillar, Álava)		Nivel 1182-IC	3	2			Altuna,1980
BR F	Cabezo Redondo (Villena, Alicante)			340			marcas de desarticulación	Von der Driesch & Boessneck, 1969
BR F BR F	Monachil (Granada) Torrecilla-Perales del Río (Getafe, Madrid)		Fondos geminados 1-2		1	un fémur de perro	depósito votivo o ofrenda animal con cerámica y fauna (un ovicáprido y dos bóvidos), vinculado a la ganadería	Lauk, 1976 Blasco <i>et al.</i> , 1984-985
	Fabrica de Ladrillos (Getafe, Madrid)		Fondos geminados 56-57		1	solo axis y metapodios; talla reducidida	partes anatómicas correspondientes a la piel de un perro desollado:¿puesta para clausura de una cabaña?	García & Liseau, 2005-2007; Liseau et al. 2008
BR F-HIE	Mola d'Agres (Agres, Alicante)			3				Castaños, 1996
BR F	Vinarragell (Burriana, Castellón)		Cuadro 33	1		una mándibula		Ibarra 2004
BR PL	Cerro del Cuchillo (Almansa, Albacete)			4			consumo de perros	Iborra, 2004

Hallazgos de cánidos procedentes de los yacimientos de la edad del Bronce de la Península Ibérica.

Horiz. Cron.	Datación rel.	Yacimiento	Datacíon absoluta	Procedencia restos	NR	NMI	Descripción	Acción/Interpretación	Bibliografía
IB	fin. VIII- in. VII s. BC	Coll de Moro de Gandesa		Sepulcro Teuler 16	5		cuatro incisivos y un molar de un un cánido de talla mediana adulto, los	asociado a un infante de 4-5 años incinerado	Ferrer, 1993
		(Terra Alta, Tarragona)					restos son incinerados		
HIE I				Soto I	6	1	documetada una pelvis con corte profundo en la arista superior de la	existe evidencia de consumo de perros, al menos, en los	
		El Soto de Medinilla (Valladolid)					ala iliaca	nivéles celtibéricos,¿ presencia de mastines?	Vega Toscano, et al., 1998, Morales & Liseau, 1995
HIE II	III -II s. BC			Soto II Soto III+Sondeo	20 21	5 6			2.3200, 2333
HIE A	VII -VI s. BC			30t0 III+30IIde0	1	1	un calcáneo de perro adulto	no marcas carnicería	Iborra, 2004
THE A	VII -VI S. BC	Los Villares			1	1	un calcaneo de perro addito	no marcas carnicena	100114, 2004
IB A	VI s. BC	(Caudete de las Fuentes, Valencia)			2	2	un fémur y una segunda falange	entre restos de basura domestica ¿consumo?	Iborra, 2004
IB A	VI s. BC			Fosa, UE 253		1	perro infantil	ritual doméstico, debajo del pavimento de una vivienda	
HIE A		Vinarragell (Burriana, Castellón)		Cuadro 34 Campañas de 1988	1		un atlas	presencia del perro perro como agente tafonómico; Nivel VII del cuadro 9-	
HIE I-II, CIB	VII-IV s. BC	La Mota (Medina del Campo, Valladolid)		(corte alfa), 1988/89 (corte 9-A9) y 1990 (Cuadro N)	58	20	de talla mesomorfa (BC:30-40 cm)	A9 aparece una porción distal de fémur tanto con incisiones como con una huella de percusión que fractura el hueso	Morales & Liseau, 1995
IB	VI-IV s. BC	Puig de la Serra (Serra de Daró, Gerona)		Necrópolis, e.2			estremidades de un perro, cráneo y extremidades de cerdo	deposito/ofrenda sobre la roca y cubiertos con piedras, no relBCionados a un enterramiento en particular	Martín & Genís, 1993
HIE I	600-550 BC	Era Alta (Melgar de Abajo, Valladolid)			1	1	extremidades de cerdo	no reiocionados a un enterramiento en particular	Morales & Liseau, 1995
HIE II		Era Alta (Melgar de Abajo, Valladolid)			8	5			Morales & Liseau, 1995
HIEI	V s .BC	Necrópolis de Landatxo (Gardélegui, Álava)		Sepultura III, incinerBCión en hoyo			restos de perro	asociados a <i>Bos taurus, Ovis aries/Capra hircus</i> en una sepultura	Altuna,1980
HIE I		Cerro del Castillo			8	4		presencia de coprolitos de perro de grande tamaño	Vega Toscano, <i>et al</i> . (1998); Altuna, (1980)
HIE II		(Montealegre de Campos, Valladolid)			2	1			Morales & Liseau, 1995
IB	V-II s. BC	Mas Castellar (Pontós, Gerona)						restos procedentes de distintos contextos, véase Cap. VI	Colominas, 2009; Pons, 1997; Pons <i>et al.,</i> 2005 y 2016; Casellas, 1995
IB	IV s. BC	El Estacar de Robarinas de Cástulo (Linares, Jaén)		Necrópolis	23	1	un húmero, un radio, dos carpales, siete mertacarpos y doce falánges de perro adulto	¿ofrenda?	Molero,1988
CIB	IV -I s. BC	Las Quintanas-Padilla (Padilla de Duero, Valladolid)			32	5	ejemplares adultos de talla media (AC: 30-40 cm)	un esqueleto quemado procedente de la unidad Ilb.3. ¿enterrado en una casa o muerto BCcidentalmente durante el incendio de la vivienda?	Morales & Liseau, 1995
CIB	IV -II s. BC	La Hoya (Laguardia Álava)		Nivel A	5	2		cuatro restos atribuidos a un probable mastín por su biometría	Vega Toscano, et al. (1998). Altuna, 1980
INDOE-HIE I				Nivel B	8	2			Altuna, 1980
IB PL	IV-IIIs. BC	Necrópolis de la Serreta (Alcoi, Alicante)		Sepulturas 50 y 59	2		un fragmento de costilla y de cráneo	ritual funerário	Iborra, 2004
				Silo 36	1		una costilla	marcas antrcopicas en costilla:¿cosumo?	Burch & Sagrera, 2009
IB	III s	Bosc del Congost (Gerona)		Silo 48 Silo 116	3 87	1	tres metacarpos una hembra de dos años, AC de 52,5 cm, robusto de talla mediana	asociado a una cabra, un caballo y restos de suido y bovino; ¿enterramiento sanitario?Probablemente empleado en actividades ganaderas	Colominas & Saña, 2009
IB	III s. BC	Amarejo IV-III-II (Bonete, Albacete)		Depósito votivo			tibia	termoalteraciones; el perro entre otras ofrendas	Morales & Molero, 1989; Iborra, 2004
IB	III s. BC	El Cirralejo de Mula (Murcia)	2160±46 BP; 2180±35BP	Necrópolis	8	1	mandíbula, diente inferior, atlas, dos vertebrast cervicales, costilla húmero, pelvis	no es cierto que corresponda al perro de grande tamaño cuya mandíbula fue encontrada el la tumba 291 con marcas de descarnado y asociados a restos de équidos	Morales et al., 1983; Cuadraro 1987
IB	III-II s. BC	Cerro de la Cruz (Almedinilla,Córdoba)					presencia del perro		Martínez Sánchez, 2010
IB PL-TAR	III-I s. BC	Serrat dels Espinyers (Isona- Pallars Jussà, Lérida)		Sector I: silos rituales, silos vertederos y de función incierta		46	4 neonatos, 1 infantil (6 meses), 14 jóvenes (8-15 meses), 15 subadultos (15 meses-3 años), 11 adultos (3-4años,) 1 senil; enteros o parciales; Altura a la cruz entre 40 y 63 cm	asociados a équidos (mulos, caballos y burros) y otros restos aislados de fauna, en fosas de connotación ritual y algunas fosas inciertas; un perro con patologia de cargo, perros utilizads en el trasporte y vigilancia	Belmonte, et al.2013

Hallazgos de cánidos procedentes de los yacimientos de la edad del Hierro de la Península Ibérica.

Horiz. Cron.	Datación rel.	Yacimiento	Datacion absoluta	Procedencia restos	NR	NMI	Descripción	Acción/Interpretación	Bibliografía
HIE I		Castro del Castillo de Henayo (Alegría de Álava, Álava)		Nivel III	3	2			Altuna, 1980
HIE I		Casto de las Peñas de Oro (Vitoria, Álava)		Nivel II	1	1			Altuna, 1980
HIE I		Casto de Berbeia (Barrio, Álava)		Niveles III+IIB	16	2			Altuna, 1980
IB	seg. mit. II s.BC	Sitjar de Missatge (Tàrrega, Urgell)		Silo S 26		2	dos cráneos de perro		Badias et al., 2005
IB FIN	II-I s. BC	La Morranda (El Ballestar,Castellón)			4	1	un canino, un fragmento de costilla, una ulna proximal y un metatarso distal de un perro adulto		lborra, 2004
IB FIN	II-I s. BC	El Cormulló Moros (Albocàsser y Tírig, Castellón)			12	1	<10 meses; maxilar, mandíbulas, dientes sueltos, ulna proximal, metacarpo proximal y falanges	entre restos vertidos	lborra, 2004
IB PL -T		El Palomar de Oliete (Teruel, Aragón)				1	un perro	junto a la puerta de acceso de una vivienda	Ezquerra & Herce, 2007
IB T	II-I s. BC	Escala de la Rossella (Tàrrega, Urgell)		Silo del sector 2/2			un cánido	asociado a restos de bóvido, significado aún de aclarar, otros dos silos con fauna, entre cuyo un équido entero	Escala et al., 2011
HIE	I s. BC	Castilmontán (Somaén, Soria)		Casa B. hab. 3	1	1	un atlas	ejemplar macromorfo tipo mastín	Vega Toscano, et al. (1998)
IB		Molí de l'Espigol (Tornabous, L'Urgell)		Sector 10, Hogar		1	un perro	bajo el suelo del hogar una inhumación de un ejemplar de <i>Canis familiaris</i> , estrucura relacionada con la producción de alimentos	Camañes, 2010
IB		Alcalá de Xivert (Castellón)				1	un diente	asociado a un cráneo de equido	iborra, 2003, oliver 1990
IB		Cueva del Sapo (Chiva, Valencia)		Cueva sepulcral y habitat	40		39 restos de perro y uno de lobo		Sárrion, 1990
IB		Escudilla de Zucaina (Alto Mijares, Castellón)		Recinto H-1, Fosa circular en camara sepulcral con urnas de infantes			varias extremidades completas en conexión anatómica pertenecientes a tres perros	asociado a dos ovejas y un jabalí; probable "silicernio o ofrendas votivas" relacionadas con las inhumaciones	Gusi, 1989
IB		Puig de la Nau (Benicarló, Castellón)				2	un perro completo con morfología craneal tipo vreton y elementos de otro	depósito en la calle junto a la escalera de una vivienda	Oliver, 2006
IB		Coimbra del Barranco Ancho (Jumilla, Murcia)		Tumba 73		1	una falánge de perro		García Cano et al., 2008; Paz, 1999
IB		Molar de San Fulgencio (Alicante)		Necrópolis	1			banquete funerário junto a otra especie sin evidencia de consumo	Monraval & Lopez, 11984
IB				Sacrificio 2, Ambito A UE 14-14 b		1	perro infantil	rito fundacional en ámbito doméstico	
IB		Alorda Park (Calafell, Baix Penedès)		Sacrificio 6, Ambito 1, UE 1051		1	perro infantil	rito fundacional en ámbito doméstico	Albizuri & Nadal, 1992
IB				Sacrificio 5 ,Torre UE 5094		1	perro infantil		

Hallazgos de cánidos procedentes de los yacimientos de la edad del Hierro de la Peninsular Ibérica.

Horiz, Cron.	Datación rel.	Yacimiento	Datación absoluta	Procedencia restos	NR	NMI	Descripción	Acción/Interpretación	Bibliografía
IB	200000000000000000000000000000000000000	Saus (Gerona)		Silo 23, Niveles I y II	296	3	tres individuos, Ind. 3 entre 6-10 mese, Ind. 1 de >de 48 meses y Ind. 2 entre 24 y 36 meses	los individuos 1 y 2 correspnden a perros que se han arrojado dentro el silo, el 1 en deposición primaria y el 2 en deposición segundaria. Los restos del Ind. 3 pueden testimoniar los restos oseos de una acción de despelleje	Coliminas & Saña, 2012
				Silo 18	1	1	un cráneo bastante entero	¿resto de una manipulación antrópica?	
IB		Cueva II del Puntal del Horno Ciego (Villagorodo, Valencia)		Estrato II de la Cueva	75	4	un adulto y otro juvenil de 12 meses de edad, de talla natural, y los otros dos perros de raza muy pequeña y robusta	¿restos del periodo ibérico ¿caídos accidentalmente?	Sarrión, 1990
				Estratos I, III, IV, Galería	18			restos en el nivel de enterramiento	
HIE		Cerro de los Encaños (Villar del Horno-Cuenca)		Cueva-Santuario	1		un premolar de un individuo de talla pequeña		Gómez, 1986
HIE		Castillar de Mendavia (Navarra)			2	2	una pelvis de adulto y una mandíbula de jóven	interpretado como ayuda en las tareas pastoriles	Mariezkurrena, 1986
HIE		Cortes de Navarra (Navarra)		Estratos A, B, C, D		5	restos de un individuo jóven, más un cráneo y cinco mandíbulas de otros individuos		Bataller, 1952 y 1953
TART MED	725-700-650 BC	Calle del Puerto/6 (Huelva)		Niveles Ia-Ib	6	4	todos adultos menos un infantil/juvenil; talla mesomorfos	perros mesomorfos para caza y pastoreo, presencia marginal	Cereijo & Patón,1988-1989
TART MED	590/570-560 BC			Nivel V	3	2			
TART MED	650-625/600 BC	Calle del Puerto/29 (Huelva)		Nivel II	4	3	Perros macromorfos		Cereijo & Paton, 1990
PUN	VIII s. BC	Fonteta (Guardamar del Segura, Alicante)		De la Fase III	1	1	un metapodio		Iborra, 2004
PUN	VIII-VI s. BC	Castillo de Doña Blanca (p.to S.M., Cádiz)		Vertederos		4	individuos de tamaño medio	no signos de consumo	Morales et al., 1994
PUN	VII s. BC	FBCtoria de Toscanos (Málaga)		Habitado			varios restos		Cardoso & Gomes, 1997
PUN	VII-VI s. BC	Necrópolis de la Joya (Huelva)		Inhumación en fosa Tumba 14		2	esqueletos completos	ofrenda funeraria sobre la tumba, con recipiente cerámicos rotos	Garrido & Orta, 1978
PUN	VII-VI s. BC	Cerro de la Tortuga (Málaga)		Depósito en cisterna en un santuario		1	esqueleto completo	junto a fragmentos cerámicos ¿sacrificio propiciatorio?	Muñoz Gambero, 1964
PUN	IV-III s. BC	Plaza Asdrúbal H (Cádiz)		Necrópolis: Pozo ritual A, Sector H		4		asociado a cráneo humano ¿sacrificio propiciatorio?	Muñoz Vicente, 1991; Niveau & Ferrer, 2004; Niveau, 2001
PUN	IV-II s. BC			Pozos rituales			varios restos	¿animales consumidos?	Niveau & Ferrer, 2004
PUN	III s. BC	Plaza Asdrúbal e/A .Barca (Cádiz)		Pozo ritual 2		1	esqueleto completo	asociado a cráneo humano trapanado ¿sacrifício propiciatorio?	Blanco Jiménez, 1998; Niveau, 2001
PUN	VI s. BC	Necr. de Gibralfaro (Málaga)		Hipogéo		1	esqueleto completo de un perro adulto de tamaño medio	perro sacrificado y los restos quemados ¿ofrenda funeraria u holocausto?	Montero, 2003
PUN	V s. BC	Playa de Santa Maria del Mar (Cádiz)		Pozo ritual, Nivel VI			esqueletos completos de varios perros	¿sacrificio propiciatorio?	Muñoz Vicente, 1991 en Niveau & Ferrer, 2004
PUN	III s. BC	C/Brunete, 2 (Cádiz)		Fosa bajo muros que delimita la necrópolis		1	esqueleto completo	restos de banquete ¿sacrificio? ¿de tipo propiciatorio?	Niveau, 2001; Niveau & Ferrer, 2004
PUN	III s. BC	Avda. Andalucía, 19 (Cádiz)		Estructura circular		1	esqueleto completo	asociado un équido de pequeña envergadura ¿sarificio? ¿de tipo propiciatorio?	Niveau,2001; Niveau & Ferrer, 2004
PUN		Avda. Amílcar Barca (Cádiz)		Pozos rituales			varios restos	¿animales consumidos?	Niveau & Ferrer, 2004
PUN	III s. BC	Hort d'en Xim (Ibíza)		Pozo-vertedero HX-1		1	varios restos	trazas de descuartizado y descarnación: consumo	Saña, 1994
PUN	III s. BC	San Ginés (Cartagena)		Fosa-vertedero		:1?	varios restos	¿animales consumidos?	Martín Camino, 1988
PUN	¿III s. BC ?	Plaza Asdrúbal E (Cádiz)		Pozo ritual		:1?	esqueleto completo		Perdigones & Muñoz, 1985; Niveau & Ferrer, 2004; Niveau, 2001
PUN	III s. BC ?	Edificio Cultual (Carmona, Sevilla)		Nicho en un edificio de culto		5	esqueletos completos de perros de pequeño tamaño superpuestos y en conexión		Belén & Lineros, 2001

Hallazgos de cánidos procedentes de los yacimientos de la edad del Hierro de la Peninsular Ibérica.

A.10

Horiz. Cron.	Datación rel.	Yacimiento	Datación absoluta	Procedencia restos	NR	NMI	Descripción	Acción/Interpretación	Bibliografía
HIE-ROM		Santimamiñe (Kortezubi, Vizcaya)		Nivel II	10	2			Castaños, 1984
				Unidades Funerarias	83	19	seis individuos entre 5 y 12 meses, uno entre 12 meses y 3 años, y doce de más de 3 años,; dos de ellos son enanos	asociados los principlaes domésticos; se interpretan como perros sacrificados para ser enterrados con sus dueños	
ALTO IMP	II-III s. AD	Necrópolis de Vila de Madrid (Barcelona)		Pozo/Silo A645	1456	10	dos individuos entre de 5 y 12 meses, tres entre 12 meses y 3 años y cinco de más de 3 años; un total de seis machos	adulto termoalteraciones	Colominas, 2007, 2009 y 2015
				Niveles de circulación de la necrópolis	207	13	tres entre 1 y 5 meses, tres entre 5 y 12 meses y seis de más de 3 años	perros enterrados enteros que no hacen parte de los restos de banquetes funerarios	
ALTO IMP	a partir de I s. AD	Arcaya (Álava)		Recinto E3-E4, contexto urbano	131	8	dos de tamaño mediano-grande, dos medianos, uno enano armonico, uno braquimélico, un juvenil de menos de 4 meses	no se documenta consumición de la especie	Castaños, 2007
ALTO IMP		Santo Domingo (Lugo)		Contexto urbano	1	1	una tibia de un perro de AC de 31,4 cm	presencia del perro sin fines alimenticios	Altuna & Mariezkurrena ,1992; Mariezkurrena & Altuna, 1993-1994
ALTO IMP		Aloria (Frato, Álava)		Contexto urbano	4			presencia del perro sin fines alimenticios	Castaños, inédito en Castaños, 1997b
ALTO IMP		Las Ermitas (Espejo, Álava)		Contexto urbano	143			presencia del perro sin fines alimenticios	Castaños, inédito en Castaños, 1997b
ALTO IMP				Niveles de relleno	8	2		restos aislados removidos de su lugar de depósito orignaer y utilizados en rellenos para construcciones de obras	
BAJO IMP		Astorga (León)		Vertederos intra muros	397	20	AC de 30 a 70 cm, presencia de perros micromorfos	enterrados en vertederos intra muros utilizados también como lugar de enterramiento de los animales domésticos muertos naturalmente	Fernandéz, 2003
ROM					18	2			
ROM	I s. AC -II s. AD	Bilbilis (Calatayud, Aragón)		Distintas zonas de la ciudad sin especificar	122	7	cinco adultos y dos juveniles, es presente también un perro enano armonico	los restos proceden de carcasa depositas enteras y disgregada post portem; no hay evidencias de consumo	Castaños et al., 2006
ROM	aprox. seg. mit. del s. I AD. y el s. IV AD	Casa Martelo (A Coruña)		Depósito de desechos urbanos	2	2		presencia del perro sin fines alimenticios	Fernandéz, 2003
ROM		Porta de Santiago (Lugo)		Depósito de desechos urbanos	1	1	un radio de perro adulto		Fernandéz, 2003
ROM		Oioz (Urraúl Bajo, Navarra)		Contexto urbano	2	1	un perro adulto		Castaños & Castaños, 2015)
VASCO- ROM		Los Husos (Elvillar, Álava)		Niveles IB-IA	1	1		presencia del perro sin fines alimenticios	Altuna, 1980
VASCO- ROM	hasta el s. II AD	Castro de Berbeia (Barrio, Álava)		Nivel IF.a	1	1		presencia del perro sin fines alimenticios	Altuna, 1980
BAJO IMP		Calle Real (A Coruña)		Depósito de desechos urbanos	3	1	cranéo y un diente de un perro adulto	no interés alimenticio	Fernandéz, 2003
BAJO IMP		Las Ermitas (Espejo,Álava)		Contexto urbano	1	1		presencia del perro sin fines alimenticios	Castaños, inédito en Castaños, 1997b
TAR		Buradón (Salinillas de Buradón, Álava)		Contexto urbano	1	1		presencia del perro sin fines alimenticios	Castaños, inédito en Castaños, 1997b

Hallazgos de cánidos procedentes de los yacimientos de la época romana de la Península Ibérica.

	A.111		-	1 .	111 11 2	20
Yacimiento		Dataciones BI		1	libación 2σ	
Cova Fosca (Ares del Maestre, Castellón)	Ref. Lab.	BP 0460	Desv.	De 0241	A 9240	% Fiabilidad
Cova Fosca (Ares del Maestre, Castellón) Cova Fosca (Ares del Maestre, Castellón)	I-11313 CSIC-353	9460 7640	160 70	9241 6633	8349 6397	95,4 95,4
El Retamar (Puerto Real, Cádiz)	Sac-1676	7400	100	6439	6069	95,4
El Retamar (Puerto Real, Cádiz)	Sac-1575	7280	60	6248	6020	95,4
Cova Fosca (Ares del Maestre, Castellón)	CSIC-357	7120	70	6205	5842	95,4
Cova Fosca (Ares del Maestre, Castellón)	CSIC-356	7100	70	6096	5803	95,4
El Retamar (Puerto Real, Cádiz)	Beta 90122	6780	80	5841	5547	95,4
Les Cendres (Moraira, Alicante)	Beta-75220	6730	80	5756	5490	95,4
Cova de l'Or (Beniarrés, Alicante)	- Deta 73220	6510	160	5732	5077	95,4
La Falguera (Alcoi, Alicante)	_	6510	70	5614	5329	95,4
Les Cendres (Moraira, Alicante)	-	6340	70	5478	5081	95,5
Zatoya (Abaurrea Alta, Navarra)	Ly-1397	6320	280	5774	4611	95,4
Cova de l'Or (Beniarrés, Alicante)	-	6310	170	5613	4849	95,5
Cova de l'Or (Beniarrés, Alicante)	-	6275	70	5464	5046	95,4
Cova de l'Or (Beniarrés, Alicante)	_	6265	75	5464	5021	95,5
Cova Fosca (Ares del Maestre, Castellón)	Ua-42707	6222	48	5307	5052	95,4
Los Cascajos (Arcos, Navarra)	-	6185	75	5311	4947	95,4
Plansallosa (Montagut-Sadernes, Gerona)	Beta-74311	6180	60	5301	4990	95,4
Plansallosa (Montagut Sadernes, Gerona)	Beta-74313	6130	60	5225	4854	95,4
Cova Fosca (Ares del Maestre, Castellón)	Ua-42709	5926	86	5027	4583	95,4
Cova de L'Avellaner (Cogolls, Gerona)	Gak-12933	5920	180	5292	4401	95,4
Plansallosa (Montagut-Sadernes, Gerona)	OxA-2532	5890	60	4932	4608	95,4
Plansallosa (Montagut-Sadernes, Gerona)	Beta-74312	5870	60	4897	4559	95,4
Peña Larga (Cripán, Álava)	I-14909	5830	110	4974	4452	95,4
Les Cendres (Moraira, Alicante)	Beta-75213	5640	80	4682	4344	95,4
Marizulo (Urnieta, Guipúzcoa)	-	5315	100	4346	3961	95,4
Marizulo (Urnieta, Guipúzcoa)	GrN-592	5285	65	4315	3973	95,4
Plansallosa (Montagut-Sadernes, Gerona)	Beta-87965	5270	70	4315	3964	95,4
Marizulo (Urnieta, Guipúzcoa)	-	5235	75	4314	3816	95,5
Polideportivo de Martos	I-17083	5080	140	4242	3635	95,4
Los Husos (Elvillar, Álava)	I-5949	4730	110	3763	3114	95,3
Les Cendres (Moraira, Alicante)	Ly-430	4700	120	3709	3096	95,4
Sant Juan Ante Portam Latinam	GrA-5420	4520	75	3498	2933	95,4
Paraje del Monte (Cádiz)	Beta-23395	4480	40	3349	3026	95,4
Polideportivo de Martos- La Alberquilla (Martos, Jaén)	CNA603	4465	25	3335	3026	95,4
Colata (Montaverner, Valencia)	AA59521	4463	36	3341	3020	95,4
Sant Juan Ante Portam Latinam	Ua-10356	4460	70	3351	2928	95,4
Paraje del Monte (Cádiz)	Beta 233952	4450	40	3339	2933	95,4
Colata (Montaverner, Valencia)	AA59520	4335	36	3081	2891	95,4
La Loma de Chiclana II (Madrid)	Ua 39325	4324	34	3021	2889	95,4
Sant Juan Ante Portam Latinam	Ua-1357	4235	70	3016	2620	95,4
Camino de las Yeseras (San Fernando de Henares, Madrid)	Ua-36107	4220	45	2911	2666	95,4
L'Espina C (Tàrrega, Urgell)	Beta-247384	4120	40	2872	2577	95,4
Avenc dels Dos Forats o Cova del Monedero (Carcaixent, Valencia)	UCIAMS-663118	4115	25	2864	2578	95,4
Marianela (Lorca)	KIA-21808	4050	25	2833	2487	95,3
Camino de las Yeseras (San Fernando de Henares, Madrid)	Ua-39316	4007	30	2581	2467	95,4
Camino de las Yeseras (San Fernando de Henares, Madrid)	Beta-235584	4000	40	2831	2356	95,4
Camino de las Yeseras (San Fernando de Henares, Madrid)	Ua-39317	3987	30	2574	2465	95,4
Camino de las Yeseras (San Fernando de Henares, Madrid)	Ua-39318	3976	30	2577	2370	95,4
Costa de Can Martorell (Dosrius, Barcelona)	UBAR-695	3920	80	2622	2145	95,4
Los Husos (Elvillar, Álava)	I-3985	3920	100	2850	2059	95,4
Costa de Can Martorell (Dosrius, Barcelona)	UBAR-695	3875	50	2472	2204	95,4
Cerro de la Cabeza (Ávila)	Betta-109831	3850	60	2472	2141	95,4
El Perdido (Torres de la Alamadeda, Madrid)	Ua-41488	3834	35	2458	2153	95,4
El Perdido (Torres de la Alamadeda, Madrid)	Ua-41489	3816	40	2456	2140	95,5
Costa de Can Martorell (Dosrius, Barcelona)	Ly-7813	3810	55	2462	2059	95,4
Costa de Can Martorell (Dosrius, Barcelona)	Ly-7838	3795	55	2457	2043	95,5
Camino de las Yeseras (San Fernando de Henares, Madrid)	Ua-35019	3530	40	1971	1745	95,4
La Huelga (Dueñas, Palencia)	Poz.43075	3350	30	1737	1534	95,4
Camino de las Yeseras (San Fernando de Henares, Madrid)	Beta-184325	3340	70	1871	1451	95,4
Caserío de Perales del Río II (Madrid)	UBAR-818	3270	50	1660	1437	95,4
El Cirralejo de Mula (Murcia)	-	2180	35	367	117	95,4
El Cirralejo de Mula (Murcia)	-	2160	46	361	61	95,4
Calibración a 2 g con la curva IntCal12 do las datacion						nidos do la

Calibración a 2σ con la curva IntCal13 de las dataciones BP de los principales yacimientos de que proceden restos de cánidos de la Península Ibérica.

CONTEXTO ARQUEÓLOGICO: IDENTIFICACIÓN

- **UTM**: coordenadas UTM
- Asmn: altura sobre nivel del mar
- LOC: Localidad
- AGEO: Área geográfica
- AÑO: año de excavación
- YAC: nombre del vacimiento
- SIGLA: abreviatura del nombre
- TIPO YAC: tipo de yacimiento

AIL Aire libre

CUE Cueva

AB Abrigo

APR Área de producción

POB Poblado

CIU Ciudad

ALD Aldea

AS Asentamiento

CSIL Campo de silos

NEC Necrópolis

MEG Conjunto megalítico

ND No determinado

CTX: contexto

HAB Habitacional

FUN Funerario

RIT Ritual

VOT Votivo

PRD Productivo

SAC sacrificial

ND No determinado

• CARACTERISTICAS:

Especificar detalles no resumibles

• ESTR: estructura

CA Casa

CAB Cabaña

CUE Cueva

HAB Habitación

HO Hoyo

SIL Silos

FHIP Fosa hipogea

FOS Fosa

FON Fondo

TUM Tumba individual

ETM Enterramiento múltiple

ET Enterramiento

TEM Templo

NFU Nivel fundacional

PUE Puerta

PO Pozo

POR Pozo ritual

RFOS Recinto de fosas

MU Muro

ND No determinado

PROCEDENCIA:

Según identificación atribuida por los arqueólogos (E-11, H-2, etc...)

• CAPA UE o Nivel

CRONO: Cronología

TAR Tardo antiguo

ALTO IMP Alto imperial

BAJO IMP Bajo imperial

ROM Romano sin especificar

HIE Hierro

PUN Púnico

TART Tartésico

INDOE Indoeuropeo

IB Ibérico

ARG Argárico

COG Cogotas

PCOG Protocogotas

BR Bronce

CAMP Campaniforme

CAL Calcolítico

ENEO Eneolítico

CIB Celtíbero

NEO Neolítico

MES Mesolítico

EPA Epipaleolítico

PAL Paleolítico

PLEIS Pleistoceno

A estas siglas se acompañan:

A Antiguo

IN Inicial

M Medio

S Superior

F Final

PL Pleno

T Tardío

- DATACION REL. Datación relativa en siglos o milenios
- DATACION ABS Datación absoluta calibrada (especificar)

BC Before Christ

AD Anno Domini

BP Before present

• LAB Referencia del laboratorio que ha realizado las dataciones

CLASIFICACIÓN ANATÓMICA Y TAXONÓMICA

- Reg. No. Número de registro si procede
- Taxón:

CAFA Canis I. familiaris

CALU Canis lupus

CASP Canis sp.

• **Hueso**: hueso o elemento anatómico

AT Atlas

AX Axis

C Canino

CP EL Carpiano escafolunar

CP PIS Carpiano pisiforme

CP PIR Carpiano piramidal

CP HAM Carpiano hamatum

CPND Carpiano no determinado

CAL Calcáneo

CCOST Cartílago Costal

CD Canino deciduo

CR Cráneo

CRND Fragmento de cráneo no determinado

CST Costilla

DND Diente no determinado

DP2 Segundo deciduo

DP3 Tercero deciduo

DP4 Cuarto deciduo

DPND deciduo no determinado

E Escápula

EST Esternón

FA1 Primera falange

FA2 Segunda falange

FA3 Tercera falange

FE Fémur

FI Fíbula

FAND Falange no determinada

HU Húmero

I1 Primero incisivo

12 Segundo incisivo

13 Tercero incisivo

ID1 Primero incisivo deciduo

ID2 Segundo incisivo deciduo

ID3 Tercero incisivo deciduo

HY Hioides

IDND Incisivo deciduo no determinado

INoD Incisivo no determinado

M1 Primero molar

M2 Segundo molar

M3 Tercer molar

MX Maxilar

MC Metacarpiano

MC 1 Primer metacarpiano

MC 2 Segundo metacarpiano

MC 3 Tercer metacarpiano

MC 4 Cuarto metacarpiano

MC 5 Quinto metacarpiano

MCND Metacarpiano no determinado

MD Mandíbula

MND Molar no determinado

MPND Metapodios no determinado

MT Metatarsiano

MT II Segundo metatarsiano

MT III Tercer metatarsiano

MT IV Cuarto metatarsiano MT V Quinto metatarsiano

MTND Metatarsiano no determinado

OP Hueso peneano

P1 Primer premolar

P2 Segundo premolar

P3 Tercer premolar

P4 Cuarto premolar

PEL Pelvis

PND Premolar no determinado

R Radio

RO Rótula

SA Sacro

SES Sesamoideo

T CUB Tarsiano cuboide

T NAV Tars. navicular

T CNL Tars. cuneiforme lateral

T CIN Tars. cuneiforme intermedio

T MED Tars. cuneiforme medial TND Tars. no determinado

TA Talus

TI Tibia

UL Ulna

VCA Vertebra caudal

VC Vertebra cervical VL Vertebra lumbar VND Vertebra no determinada VT Vertebra torácica

Otras categorías: FHP Fragmento Hueso plano FHCR Fragmento Hueso cráneo DFHL Diáfisis hueso largo

ND no determinado

Lado:

I Izquierdo

D Derecho

I/D Impar

ND No determinado

- NFRG numero fragmentos (en el caso de costillas y vt)
- Variabilidad esquelética

EN Entero

PAR Parcial

FRG Fragmentado

Fracción:

Huesos largos:

CA Caput

DD Diáfisis distal

DM Diáfisis medial

DP Diáfisis proximal

ED Epífisis distal

EP Epífisis proximal

DF Diáfisis (DP a DD)

Escápula

ART Articulación

CUE Cuello

COR Corpus

PC Proceso coronoide

ESP Espina

Pelvis

A Acetabulum

IL Ala ilíaca

IS Isquion

PU Pubis

SIN Sínfisis

Mandíbula

AN Angulo

BR Branca ascendiente

CON Cóndilo

COR Corpus

DIA Diastema

FD Fracción dentaria

PC Proceso coroideo

SIN Sínfisis

AL Alveolar

Cráneo

OR Orbital

BT Bulla timpánica

COC Cóndilo occipital

FRO Frontal

IMX Intermaxilar

LA Lacrimal MX Maxilar

NA Nasal

HCC Occipital HI Hueso incisivo **PAL Palatal**

PAR Parietal

TEM Temporal

ZI Cigomático

Costillas

ANC Angulo costal

ACC Articulación costocondral

CA Caput

CC Cartílago costal

CUE Cuello

COR Corpus

TC Tubérculo costal

Vértebras

ARC Arco vertebral

ART Proceso articular

COR Cuerpo vertebral

FV Foramen vertebral

PT Proceso transverso

SP Proceso espinoso

Falanges

DF Diáfisis

EP Epífisis proximal

ED Epífisis distal

Esternón

COR Corpus

XF Proceso xifoideo

MAN Manubrium

Dientes

CO Corona

RR Raíz

CUE Cuello

DEN Dentina

Otras partes:

(Tarso, Carpo, Maleolar, sesamoideo, Rótula)

E entero

1/2 Mitad

¼ Cuarto

⅓ Octavo

EF: estado de fusión ROX Y DST

EF Estado fusionado

ENF Estado no fusionado

FS En proceso de fusión

ND No determinado

D. Dent.: desgaste dental

SD Sin desgaste

DI Desgaste incipiente

DM Desgaste medio

DN Desgaste notable

CD Completamente desgastado

ND No determinado

Edad REL.: edad relativa

INF Infantil

JU Juvenil

SA Subadulto

A Adulto

A/SEN Adulto-Senil

SE Senil

ND No determinado

- SX: sexo: ♂ M Masculino; ♀ F Femenino; ND No determinado
- AC: Altura en la cruz

ANALISI CUALITATIVA / TAFONÒMICA

• TAFONOMIA:

S Sí

N No

• NTI: intensidad de la alteración natural

ND No determinado

0: < 10%

1: 10-20%

2: 20-50%

5:> 50%

POS: posición

Mismos códigos de la fracción, se repite por cada uno de los siguientes:

NAT: alteración natural

ER Erosión/ Abrasión

EX Exfoliación

AGR Agrietado

Al Agua

SD Sedimento (adhesión)

RR Raíces

COR Corrosión química (ej. digerido)

ND No determinado

BIO: alteración biológica

ND No determinado

MRS Mordisco carnívoro

MDP Mordisco carnívoro depresión

ROS Roedores

• ANTR: trazas antrópicas

C Corte

In Incisión

FRGP Fractura por golpe

GP Golpe

POL Polito

PF Perforaciones

QUE quemadura

ND No determinado

• INTERPRETACION: interpretación de las trazas antrópicas

DCU Descuartizado

DCA Descarnado

DEC Decapitación

DSA Desarticulación

EV Evisceración

• TERMO: termo-alteración

S Sí

N No

• COLOR:

A Amarillo

M Marrón

N Negro G Gris

B Blanco

HER Hervido

ND No determinado

• POS: Posición

FR: fractura

S Sí

N No

Tipo FR

LOG longitudinal

TRA transversal OBL oblicua IRR irregular

Interpretación

FRS Fresca SEC Seca

CNX: en conexión anatómica

S Sí (indicar nº)

N No

PAT: patología

S Sí N No

POS: posición

Tipo PAT

HIPD hiperdoncia HIPOD hipodoncia DEF deformación

EXO exostosis

REM remodelación del tejido óseo

MORFOLOGIA

• Tamaño:

PEQ pequeño MED mediano GRA grande

Morfología post-cráneo:

ELP Elipométrico (enanos) IPO Ipométrico (pequeños) EU Eumétrico IP Hipermétrico

Morfología cráneo:

BRA Braquicéfalo MESO Mesocéfalo DOL Dolicocéfalo

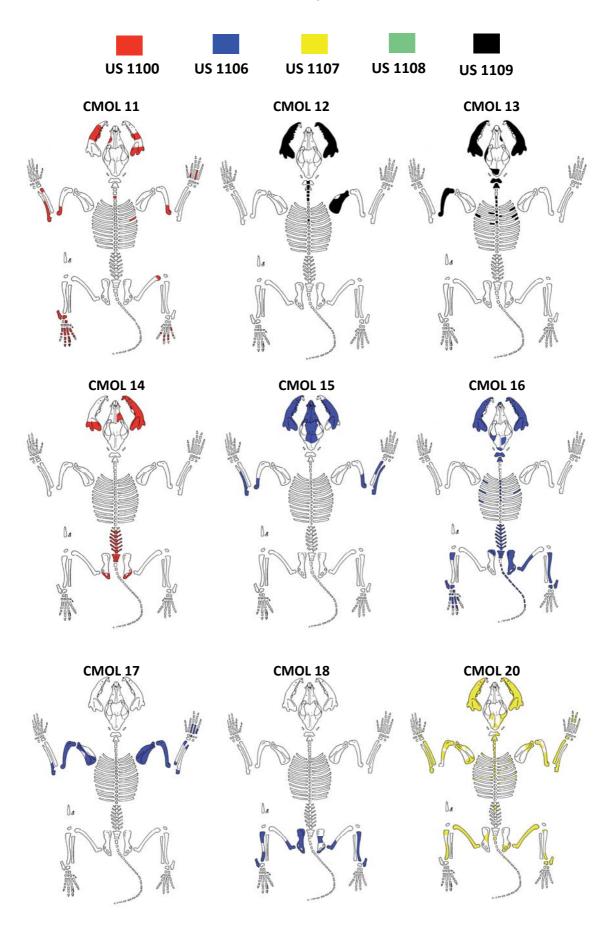
INTERPRETACION DE LOS RESTOS

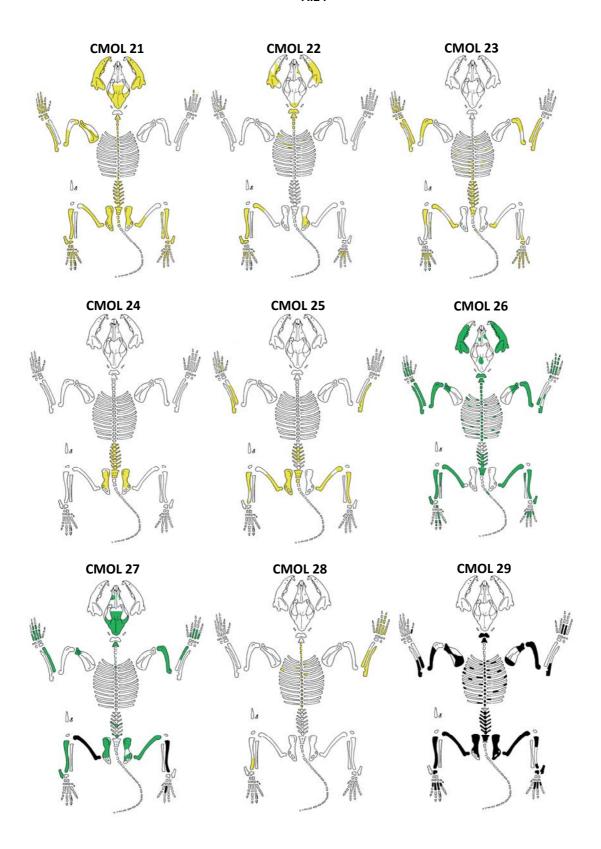
• Interpretación:

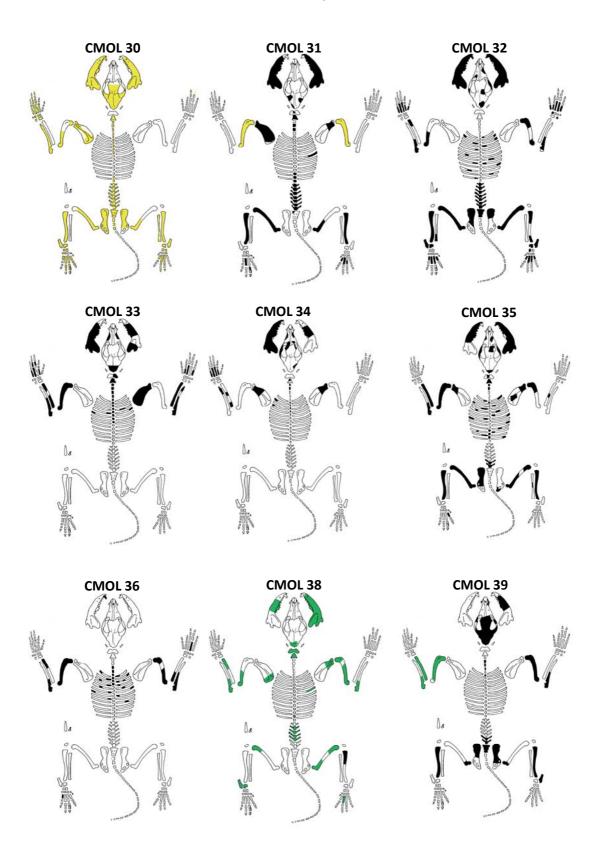
OFR Ofrenda alimentaria SAC Sacrificio RIF Ritual de fundación ACM Acompañamiento en el mas allá RAI Restos aislados sin interpretación DES Desechos alimenticios SAN Enterramiento sanitario **ENT Enterramiento** NAT Muerte natural ND No determinado

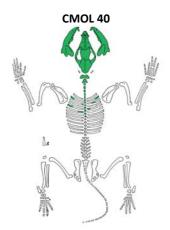
Funcionalidad/Uso:

GU Guarda **DEF** Defensa COM Compañía CA Caza **CONS Consumo** ND no determinado


Inf. Bibl. Informaciones bibliográficas y NOTAS


CLASE→	SA	A/SE	A/SE	Α	SA	A/SE	Α	A/SE	Α	Α	JU	Α
EDAD→	15-18 m	2,5 a	>24 m	>18-24 m	18 m	>24-36 m	>18 m	>24 m	>18 m	>18 m	7-8 m	>18-24 m
ESP →	CALU	CAFA	CAFA	CAFA	CAFA	CAFA	CAFA	CAFA	CAFA	CAFA	CAFA	CAFA
INDIV→	CMOL	CMOL	CMOL	CMOL	CMOL	CMOL	CMOL	CMOL	CMOL	CMOL	CMOL	CMOL
	1	2	3	4	5	6	7	8	9	10	11	12
CR	1		1		1	1	1			1	1	1
MD	2	2	2		2	1				2	2	2
D AI							1					
HY												
AT	1	1	1		1	1						1
AX	1	1	1	1		1						1
VC	2	5	5	1	1		1				1	3
VT		7	13	1	2		1	4				1
VL	8	2	7	1	5		3	7				
VCA	3	7	2									
SA	1	1	1		1			1				
EST												
E			2			1	1		1			1
HU	2	1	2	1		1			2	1	2	
R	2	1	2		2	1			1		1	
UL	2	1	2	1	1		1		1	1	1	
СР										1		
MC	1		1				1					
PEL	1	2	2		2	2		2				
FE	2		1	2	2		1	2			1	
RO												
TI	1	1		2	1		2	1				
FI												
TA	1	1	1				1				1	
CAL	1	1		1	1		1				1	
Т	2		1								1	
MT	8	4			3		6				5	
FA 1	7	2			1						7	
FA 2	4	1			1						7	
FA 3	2				1						2	
SES		1										-
OP TOT												-
NME	55	42	47	11	28	9	21	17	5	6	33	10
CRND						16						
CSTND			31		1		1	39			1	
VND												
MPND												
TOTnD			31		1	16	1	39			1	1


CLASE→	INF	Α	A/SE	Α	SA	A/SE	INF	Α	SA	JU	Α	Α
EDAD→	3-4 s	18-24 m	>24 m	24 m	12-15 m	>24- 36 m	3 s	>18-24 m	15-18 m	10-12	>18-24 m	>18-24 m
ESP →	CAFA	CAFA	CAFA	CAFA	CAFA	CAFA	CAFA	CAFA	CAFA	CALU	CAFA	CAFA
INDIV→	CMOL	CMOL	CMOL	CMOL	CMOL	CMOL	CMOL	CMOL	CMOL	CMOL	CMOL	CMOL
	13	14	15	16	17	18	19	20	21	22	23	24
CR	1	1	1	1			1	1	1	1		
MD	2	2	2	2			2	2	2	2		
D AI										1		
HY												
AT	1			1				1		1		
AX	1			1				1	1	1		
VC	3							5	4	3		
VT	3	2		7				8	9		6	
VL		4		7					7		7	7
VCA				11				3	3		1	2
SA		1		1					1		1	1
EST												
E					2			2	1			
HU	1		2		2			2	1		2	
R			1		1			2			2	
UL			2		1			2	1		2	
СР					1			4	7		2	
MC					3				4		4	
PEL		2		2		2		2	2	1		2
FE				1		2		2	2	1	2	
RO												
TI				2		2		2	2	1	2	
FI									1		1	
TA				1				1	2	1	1	
CAL				2		2		1	2	1		
T				4				1	8			
MT				4				-	8	6	9	
FA 1				2				3	8		11	
FA 2						-		2	10		4	
FA 3								1	8		4	
SES						 		1	4		2	
OP TOT								-				
NME	12	12	8	49	10	8	3	48	99	20	63	12
CRND			30			ļ		ļ				
CSTND	7			4				34	40	4	22	
VND								ļ	1			
MPND								1				
TOTnD	7		30	3				35	41	4	22	


CLASE→	A/SE	Α	А	Α	SA	SA	SA	SA	Α	Α	Α	SA
EDAD→	>24-36 m	>18-24 m	18-24 m	>18-24 m	18 m	18 m	12-18 m	18 m	>18-24 m	>18-24 m	>18-24 m	18 m
ESP →	CAFA	CAFA	¿CALU?	CAFA	CAFA	CAFA	CAFA	CAFA	CAFA	CAFA	CAFA	CAFA
INDIV→	CMOL 25	CMOL 26	CMOL 27	CMOL 28	CMOL 29	CMOL 30	CMOL 31	CMOL 32	CMOL 33	CMOL 34	CMOL 35	CMOL 36
CR	23	1	1	20	23	1	1	1	1	1	1	30
MD		2				2	2	2	2	2	2	
D AI												1
нү												
AT		1			1	1	1		1		1	
AX		1	1		1	1	1		1	1	1	
vc		5		2		2	5		5	3	2	3
VT	4	12	2	13	11	3	8		8	5	5	3
VL		4	1		6	7	6	7			2	
VCA	1	2					1					
SA	1	1			1	1		1				
EST		3			1							
E		2	1		2	2	1		2	2	2	
HU	1	2	1		2	2	2	2	2		2	2
R	1	2	2	1	2			1	2	1	2	2
UL	2	2		1	2		2	2	2	1	1	2
СР		2						2				
MC	1	7	8	4	3		2	10	6	4		1
PEL	1		2		2		1	2			2	
FE RO	2	2	2		2	2	1	2			2	
TI	2	2	2	1	2	2	1	2			2	
FI	2	2	2	1	2	2	1	1			1	
TA					2	1		2			1	
CAL		2	1		1			2				
Т		2			1			1				
MT		5	1		7	4		8			1	1
FA 1		10	3	4		1	1		2			
FA 2		4	1	1								
FA 3		2										
SES		1										
OP						1						
TOT NME	16	80	29	27	49	33	37	48	34	19	31	15
CRND												
CSTND		56		4	44	1	18	18	12	2	39	15
VND												
MPND			1								1	
TOTnD		56	1	4	44	1	18	18	12	2	40	15

EDAD→	18-24 m	15-18 m	18-24 m	>18-24 m
ESP →	CAFA	CAFA	CAFA	CAFA
INDIV→	CMOL37	CMOL 38	CMOL 39	CMOL 40
CR		1	1	1
MD		2	1	2
D AI				
нү				
AT		1		1
AX		1		1
vc	1	1	3	5
VT	2	1	1	7
VL	5	4	2	
VCA				
SA	1		1	
EST				
E		2		
HU	2	2	2	
R	2	1	1	
UL	2	2	2	
СР				
МС	2			
PEL	1		2	
FE	2	2	2	
RO				
TI	2	1	2	
FI				
TA		1		
CAL		1	1	
Т				
МТ		1		
FA 1				
FA 2				
FA 3				
SES				
OP				
TOT NME	22	24	21	17
CRND				
CSTND	5	1		7
VND				
MPND				
TOTnD	5	1		7

			CMOL 1, SUBADULTO		
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)
R	I	217	69,87	70,96	
FE	D	232GLC	69,83	71,55	
MC II	I	80,96			74,54
MT II	D	87,31			73,05
MT II	I	87,12			72,88
MT III	D	96,66			72,17
MT III	I	96,8			72,28
MT IV	D	99,13			71,67
MT IV	I	98,33			71,07
MT V	D	88,4			71,62
MT V	I	89,55			72,58
MEDIA red.			69,9	71,3	72,4
		ı	ONGITUD DEL CUERPO		
		GL (mm)	Clark (cm)		
PEL	D	166	70,6		

Camino del Molino, individuo 1: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

			CMOL 2, ADULTO/SENIL		
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)
HU	I	145,71	49,10	47,32	
R	1	146,47	47,16	48,53	
UL	I	173	46,19	48,72	
TI	D	161	47,01	47,95	
MT II	D	56,53			46,58
MT III	D	62,11			45,56
MT IV	D	64,09			45,39
MT V	D	57,45			45,93
MEDIA red.			47,4	48,1	45,9
			ONGITUD DEL CUERPO		
		GL (mm)	Clark (cm)	·	
PEL	D	134,28	55,7		

Camino del Molino, individuo 2: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

	CMOL 3, ADULTO/SENIL									
El. Anat.	El. Anat. Lado GL (mn		Koudelka (cm)	Harcourt (cm)	Clark (cm)					
R	D	150	48,30	49,65						
HU	D	150,86	50,84	49,09						
HU	I	149,75	50,47	48,71						
FE	D	163,95	49,35	50,18						
MC V	D	48,86			46,32					
MEDIA red			49,7	49,4	46,3					
	LONGITUD DEL CUERPO									
GL (mm) Clark (cm)										
PEL	D	134	55,60							

Camino del Molino, individuo 3: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

	CMOL 4, ADULTO									
El. Anat. Lado GL (mm) Koudelka (cm) Harcourt (cm) Clark (cm)										
HU	D	159 GLC	53,58	51,88						
FE	D	177	53,28	54,28						
TI	I	188	54,90	55,84						
MEDIA			F2.0	F4.00						
red.			53,9	54,00						

Camino del Molino, individuo 4: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

	CMOL 5, SUBADULTO										
El. Anat.	El. Anat. Lado GL (mm) Koudelka (cm) Harcourt (cm) Clark (
FE	I	180	51,97	52,91							
FE	D	180	51,97	52,91							
TI	D	178	54,18	55,22							
MT III	I	71,71			57,48						
MT IV	I	74,48			59,96						
MEDIA red.			53,4	54,5	58,7						

Camino del Molino, individuo 5: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 6, ADULTO/SENIL										
El. Anat.	El. Anat. Lado GL (mm) Koudelka (cm) Harcourt (cm) Clark (cm)									
R	D	134,64	43,35	44,77						
MEDIA red			43,4	44,8						
		LONGITUD	DEL CUERPO							
GL (mm) Clark (cm)										
PEL	I	127	52,3							

Camino del Molino, individuo 6: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 7, ADULTO									
El. Anat.	El. Anat. Lado GL (mm) Koudelka (cm) Harcourt (cm) Clark (cm)								
TI	D	178	51,98	52,92					
TI	- 1	179	52,27	53,21					
MT V	I	60,22			48,23				
MEDIA red.			52,1	53,1	48,2				

Camino del Molino, individuo 7: altura a la según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 8, ADULTO/SENIL								
El. Anat. Lado GL (mm) Koudelka (cm) Harcourt (cm) Clark (cm)								
TI	D		43,8	44,74				
MEDIA red 43,8 44,7								

Camino del Molino, individuo 8: altura a la según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 9, ADULTO									
El. Anat. Lado GL (mm) Koudelka (cm) Harcourt (cm) Clark (cm)									
HU	ı	138,49	46,67	44,85					
MEDIA red.	MEDIA red. 46,7 44,9								

Camino del Molino, individuo 9: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 11, JUVENIL							
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)		
MC IV	D	53,72			42,52		
MT III	I	59,64			43,66		
MT IV	- 1	60,75			42,88		
MT V	I	54,25			43,28		
MEDIA red.					43,10		

Camino del Molino, individuo 11: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 12, ADULTO									
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)				
E	- 1	109,70	44,57						
MEDIA red.			44,6						

Camino del Molino, individuo 12: altura a la cruz la según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 15, ADULTO/SENIL									
El. Anat. Lado GL (mm) Koudelka (cm) Harcourt (cm) Clar									
UL	D	161	42,98	45,37					
MEDIA red.			43,0	45,4					

Camino del Molino, individuo 15: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

	CMOL 16, ADULTO										
El. Anat.	Lado	ado GL (mm) Koudelka (cm) Harcourt (cm)			Clark (cm)						
TI	D	132,79	38,77	39,72							
MT II	I	44,64			36,35						
MT III	I	49,75			36,05						
MT IV	Ι	51,41			35,88						
MTV	Ι	47,35			37,55						
MEDIA red			38,8	39,7	36,5						
		LONGITUD	DEL CUERPO								
		GL (mm) Clark (cm)									
PEL	D	111,02	44,8								

Camino del Molino, individuo 16: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

	CMOL 17, SUBADULTO										
El. Anat.	El. Anat. Lado GL (mm) Koudelka (cm) Harcourt (cm) Clark (c										
E	1	131,1	53,2								
HU	D	153	51,6	49,8							
HU	1	155	52,2	50,5							
MC III	D	61,01			48,61						
MC IV	D	61,53			49,09						
MC V	D	52,59			49,98						
MEDIA red.			52,3	50,2	49,2						

Camino del Molino, individuo 17: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 18, ADULTO/SENIL										
El. Anat. Lado GL (mm) Koudelka (cm) Harcourt (cm) Clai										
TI	D	151,78	44,32	45,26						
MEDIA red			44,3	45,3						

Camino del Molino, individuo 18: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 20, ADULTO									
El. Anat.	El. Anat. Lado GL (mm) Koudelka (cm) Harcourt (cm) Clark (c								
R	D	154	49,59	50,92					
R	I	155	49,91	51,24					
FE	D	160 GLC	48,16	48,94					
FE	I	166 GLC	49,97	50,83					
MEDIA red			49,4	50,5					

Camino del Molino, individuo 20: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

	CMOL 21, SUBADULTO										
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)						
UL	-	155	41,39	43,71							
TI	D	150,18	43,85	44,79							
TI	I	146,19	42,69	43,63							
MC II	I	43,01			38,87						
MC III	I	49,79			39,30						
MC IV	-	49,38	·		38,88						
MC V	ı	41,97			39,57						
MT II	ı	48,34			39,53						
MT II	D	48,03			39,27						
MT III	ı	54,02			39,34						
MT III	D	54,22			39,49						
MT IV	ı	56,12			39,41						
MT IV	D	55,99			39,31						
MT V	I	50,51			40,17						
MEDIA red.			42,6	44	39,3						
		LO	NGITUD DEL CUERPO								
		GL (mm)	Clark (cm)								
PEL	I	121,49	49,7								

Camino del Molino, individuo 21: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 22, JUVENIL								
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)			
TI	I	232	67,44	68,69				
MT II	I	80,75			67,41			
MT II	D	81,65			68,18			
MT IV	I	93,24			67,25			
MT V	I	81,82			66,16			
MEDIA red.			67,4	68,7	67,3 ok			

Camino del Molino, individuo 22: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

	CMOL 23, ADULTO										
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)						
R	D	159	51,20	52,51							
R	I	158,5	51,04	52,35							
MC II	- 1	53,72			48,94						
MC III	I	61,49			49,01						
MC V	I	51,04			48,46						
MT II	D	58,24			48,05						
MTII	I	58,82			48,55						
MT III	I	65,95			48,52						
MT IV	D	68,11			48,40						
MT IV	I	67,83			48,19						
MT V	D	60,57			48,52						
MT V	ı	59,94			48,00						
MEDIA red.			51,1	52,4	48,5						

Camino del Molino, individuo 23: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

	CMOL 25, ADULTO/SENIL									
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)					
UL	D	159	42,45	44,82						
TI	D	154	44,97	45,91						
MC III		53,99			42,78					
MEDIA red			43,7	45,4	42,8					
	ı	ONGITUD D	EL CUERPO							
		GL (mm)	Clark (cm)							
PEL	I	125,3	51,5							

Camino del Molino, individuo 25: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

	CMOL 26, ADULTO										
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)						
HU	D	146	49,20	47,42							
R	I	157	50,55	51,88							
UL	D	182	48,59	51,22							
FE	D	164	49,36	50,20							
FE	I	164	49,36	50,20							
TI	I	171	49,93	50,87							
TI	D	171	49,93	50,87							
MC II	D	50,26			45,68						
MC II	I	51			46,38						
MC III	I	58,19			46,27						
MC III	D	58,42			46,46						
MC IV	D	58,34			46,41						
MC IV	I	57,45			45,66						
MC V	I	48,63			46,10						
MT II	D	58,21			48,02						
MT III	D	65,47			48,15						
MT III	I	65,22			47,96						
MT IV	D	67,03			47,59						
MT V	D	59,34			47,50						
MC II	D	50,26			45,68						
MEDIA red.			49,6	50,4	46,8						

Camino del Molino, individuo 26: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

	CMOL 27, ADULTO											
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)							
R	I	198	63,76	64,92								
HU	D	195	65,72	64,23								
FE	D	214	64,41	65,90								
FE	- 1	214	64,41	65,90								
TI	I	215	62,78	63,72								
TI	D	214	62,49	63,43								
MC II	D	72,32			66,42							
MC III	D	83,01			66,87							
MC III	I	82,7			66,61							
MC IV	D	82,35			66,57							
MC IV	I	82,07			66,34							
MC V	I	69,22			66,28							
MC V	D	69,02			66,08							
MT III	D	90,96			67,78							
MEDIA red.			63,9	64,7	66,6							

Camino del Molino, individuo 27: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 28, ADULTO								
El. Anat.	El. Anat. Lado GL (mm) Koudelka (cm) Harcourt (cm) Clark							
UL	D	146,96	39,24	41,48				
MC II	D	43,85			39,66			
MC III	D	50,99			40,29			
MC V	D	42,79			40,37			
MEDIA red			39,2	41,5	40,11			

Camino del Molino, individuo 28: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

		CN	MOL 29, SUBADULTO		
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)
E	I	98,46	39,97		
R	D	125,34	40,36	41,81	
HU	D	128,18	43,20	41,31	
FE	D	128,39	38,65	39,02	
FE	I	128,26	38,61	38,98	
TI	I	134,85	39,38	40,32	
MC III	D	49,46			39,02
MC IV	D	48,8			38,39
MT III	D	53,98			39,30
MT IV	I	56,47			39,67
MT IV	D	55,51			38,95
MT V	I	49,26			39,14
MEDIA red.			40	40,2	39,1
		LO	NGITUD DEL CUERPO		
		GL (mm)	Clark (cm)		
PEL	D	111	44,79		
PEL	I	110,81	44,70		
			44,75		

Camino del Molino, individuo 29: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

	CMOL 30, MACHO SUBADULTO											
El. Anat.	Lado	GL (mm)	Harcourt (cm)	Clark (cm)								
HU	I	143,97	48,52	46,73								
ни	D	143,33	48,30	46,51								
FE	I	157	47,26	48,00								
TI	I	163	47,60	48,54								
TI	D	164	47,89	48,83								
MT II	D	55,3			45,52							
MT III	D	61,96			45,45							
MT IV	I	63,11			44,65							
MEDIA red.			47,9	47,8	45,2							

Camino del Molino, individuo 30: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

	CMOL 31, SUBADULTO										
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)						
E	I	84,87	34,46								
HU	1	104,95 GLC	35,37	33,34							
MC II	D	34,88			31,23						
MC III	D	39,35			30,63						
MEDIA red.			34,9	33,3	30,9						
	LONGITUD DEL CUERPO										
		GL (mm)	Clark (cm)								
PEL	D	98,93	39,1								

Camino del Molino, individuo 29: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 32, SUBADULTO										
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)					
FE	D	139,17	41,89	42,40						
TI	I	138,9	40,56	41,50						
MC II	D	43,77			39,58					
MC II	I	43,1			38,95					
MC III	D	49,44			39,01					
MC III	I	49,33			38,91					
MC IV	D	49,42			38,91					
MC IV	I	49,37			38,87					
MC V	D	41,35			38,96					
MC V	I	41,69			39,30					
MT II	D	48,41			39,59					
MT II	I	48,6			39,76					
MT III	D	54,09			39,39					
MT III	I	55,15			40,21					
MT IV	D	54,9			38,50					
MT IV	I	55,34			38,83					
MT V	D	47,96			38,06					
MT V	I	48,8			38,75					
MEDIA red.			41,2	41,95	39,1					

Camino del Molino, individuo 32: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

	CMOL 33, ADULTO											
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)							
E	D	127,23	51,66									
E	I	126,61	51,40									
HU	I	155	52,24	50,51								
R	D	153,41	49,40									
MC II	I	49,45			44,92							
MC II	D	49,47			44,94							
MC III	D	56,77			45,09							
MC IV	I	56,98			45,26							
MC V	- 1	48,09			45,57							
MC V	D	47,31			44,80							
MEDIA red.			51,2	50,5	45,10							

Camino del Molino, individuo 33: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 34, ADULTO									
El. Anat.	El. Anat. Lado GL (mm) Koudelka (cm) Harcourt (cm) Clark (cm)								
MC II	I	43,69			39,51				
MC III	I	49,53			39,08				
MC IV	1	49,37			38,87				
MC V	1	42,01			39,61				
MEDIA red					39,3				

Camino del Molino, individuo 34: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

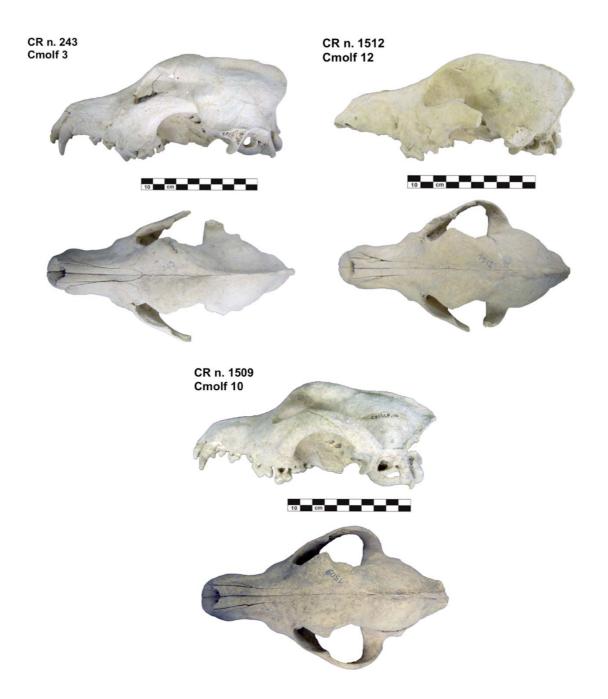
CMOL 35, ADULTO								
El. Anat.	I. Anat. Lado GL (mm) Koudelka (cm) Harcourt (cm) Clark (
R	- 1	128,12	41,25	42,69				
HU	D	125	42,13	40,22				
FE	-	141	42,44	42,98				
TI	ı	148,9	43,48	44,42				
TI	D	148,78	43,44	44,38				
MT II	I	50,91			41,74			
MEDIA red			42,6	42,9	41,7			

Camino del Molino, individuo 35: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

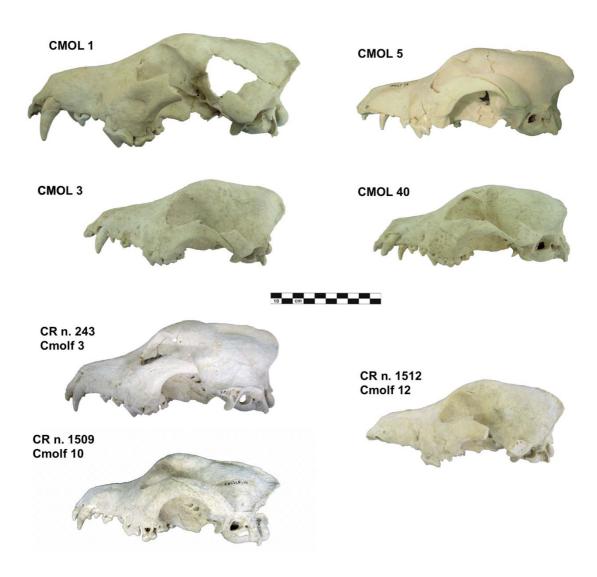
CMOL 36, SUBADULTO								
El. Anat.	El. Anat. Lado GL (mm) Koudelka (cm) Harcourt (cm) Clark (cm)							
HU	- 1	144,83	48,81	47,02				
MC IV	D	56,67			45,00			
MT V	I	55,75			44,52			
MEDIA red.			48,8	47	44,8			

Camino del Molino, individuo 36: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 37, ADULTO								
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)			
TI	D	141	41,17	42,11				
FE	I	133	40,03	40,47				
FE	D	133	40,03	40,47				
MC II	I	43,91			39,72			
MC IV	I	49,66			39,11			
MEDIA red			40,41	41,02	39,4			


Camino del Molino, individuo 37: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 38, SUBADULTO								
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)			
MT III	D	58,77			42,99			
MEDIA red.					43			


Camino del Molino, individuo 38: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

CMOL 39, ADULTO								
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)			
HU	D	124,24	41,87	39,96				
R	1	121,38	39,08	40,55				
TI	- 1	140,1	40,91	41,85				
TI	D	140,17	40,93	41,87				
MEDIA red.			40,70	41,1				

Camino del Molino, individuo 39: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

Comparación entre los cráneos (vista superior y lateral) procedentes del yacimiento calcolítico de Camino del Molino.

Comparación entre los cráneos (vista lateral) procedentes del yacimiento calcolítico de Camino del Molino.

Comparación entre los cráneos (vista lateral) de los individuos MCS 1 y MCS 2, procedentes del yacimiento ibérico de Mas Castellar.

	MALL 1, JUVENIL				
El. Anat.	Lado	Lado GL (mm) Koudelka (d		Harcourt (cm)	Clark (cm)
E	D	100	40,6		
R	D	120	38,64	40,11	
R	I	119,94	38,62	40,09	
UL	D	140	37,38	39,54	
TI	I	120	35,04	35,98	
MC II	D	46,95			42,57
MC V	D	43,57			41,14
MT III	1	57,48			42
MT IV	D	60,75			42,88
MEDIA red.	MEDIA red. 38,1		38,1	38,9	42,2
LONGITUD DEL CUERPO					
			Clark (cm)		
PEL	D	110	44,3		

Els Mallols, individuo 1: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

			MALL 2, SENIL		
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)
HU	D	152	52,57	52,08	
HU	I	152	52,57	52,08	
R	D	156	50,23	51,56	
UL	D	182	48,59	51,22	
FE	D	170*	51,17	52,08	
MC II	D	51,3			46,66
MC III	D	57,62			45,79
MC III	- 1	57,82			45,96
MC IV	D	57,43			45,64
MC IV	- 1	57,66			45,83
MC V	D	49,05			46,51
MC V	I	46,16			43,68
MTII	D	57,5			47,41
MTII	I	57,59			47,49
MT III	D	63,66			46,76
MT III	- 1	64,15			47,14
MT IV	D	65,69			46,59
MT IV	I	66,7			47,35
MT V	I	58,32			46,66
MEDIA red.			51	51,8	46,4
		LONG	GITUD DEL CUERPO	0	
			Clark (cm)		
PEL	D	130	53,7		
PEL	I	134	55,6		
MEDIA red.			54,7		

Els Mallols, individuo 2: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

A.41

	MALL 3, ADULTO				
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)
TI*	D	179	52,26	53,21	
MC II	D	52,42			47,71
MC III	D	60,1			47,85
MC IV	D	59,7			47,55
MC V	D	50,7			48,13
MT II	D	58,69			48,43
MT III	D	66,56			48,99
MT IV	D	68,89			48,98
MT V	D	61,87			49,60
MEDIA red.			52,3	53,2	48,4

Els Mallols, individuo 3: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

	MALL 6, JUVENIL					
El. Anat.	El. Anat. Lado GL (mm) Koudelka (cm) Harcourt (cm) Clark (ci					
FE	D	140*	42,14	42,66		
MC II	D	52,06			47,38	
MC V	D	43,54			41,11	
MEDIA red.			42,1	42,7	44,2	

Els Mallols, individuo 6: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

MALL 14, JUVENIL					
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)
R	ı	166	53,4	54,74	
UL	D	200	53,45	56,22	
TI	D	197	57,52	58,47	
MC III	I	77,24			62,07
MC IV	I	76,85			61,95
MC V	- 1	65,28			62,41
MT II	D	76,56			63,80
MTII	I	76,84			64,04
MT III	- 1	85,26			63,39
MT III	D	83,14			61,76
MT IV	I	86,64			62,3
MT IV	D	86			61,82
MT V	D	75,96			61,3
MEDIA red.			54,8	56,5	62,5

Els Mallols, individuo 14: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

A.42

	MALL 15, SENIL				
El. Anat.	Lado	GL (mm)	Koudelka (cm)	Harcourt (cm)	Clark (cm)
R	-	168	54,10	55,38	
UL	1	168	44,86	47,36	
MC II	D	50,48			45,89
MC III	D	57			45,28
MC IV	D	56,71			45,04
MC V	D	46,78			44,28
MEDIA red.			49,5	51,4	45,1

Els Mallols, individuo 15: altura a la cruz según Koudelka (1885), Harcourt (1974) y Clark (1995).

Comparación entre las mandíbulas de los individuos MALL 6 (I) MALL 13 (I), MALL 2 (I) Y MALL 14(D).

A.43

CMOL CAFA/HU GLC				
IND/NR. HUESO	Group 1	Max group		
CMOL3	0,02197	1		
CMOL4	0,008911	1		
CMOL33	0,008911	1		
CMOL39	0,0169	1		
CMOL29	0,01864	1		
CMOL31	0,002728	1		
2067	0,0183	1		
1917	0,02498	1		
CMOL35	0,0152	1		
CMOL36	0,02582	1		
CMOL26	0,02517	1		
1057	0,01325	1		
CMOL2	0,02612	1		
CMOL9	0,02655	1		
CMOL17	0,01598	1		
1130	0,01576	1		
1189	0,008911	1		
1181	0,02655	1		
1396	0,02561	1		

Mixture analysis de los valores LSI del HU: se distingue un único grupo para la GLC.

CMOL CAFA/TI GL				
IND/NR. HUESO	Group 1	Group 2	Max group	
CMOL8	0,02778	0,0001034	1	
CMOL32	0,01703	4,65E-07	1	
CMOL29	0,01041	3,98E-08	1	
CMOL30	0,008527	0,00579	1	
CMOL39	0,0192	9,53E-07	1	
1892	0,005099	0,009148	2	
CMOL35	0,028	6,29E-05	1	
CMOL7	0,0002596	0,01364	2	
CMOL26	0,002226	0,01348	2	
CMOL37	0,02058	1,50E-06	1	
CMOL5	0,000352	0,0144	2	
CMOL16	0,007594	1,03E-08	1	
CMOL2	0,013	0,003177	1	
CMOL4	1,06E-05	0,004102	2	
CMOL18	0,02673	0,0002051	1	
1176	0,02433	0,0004488	1	
1182	0,01809	0,001511	1	
1381	0,001074	0,01525	2	
CMOL25	0,02433	0,0004488	1	
CMOL21	0,02772	0,0001111	1	

Mixture analysis de los valores LSI de la TI: en negrita los valores de GL mayores.

A.44

CMOL CAFA/FE GLC				
IND/NR. HUESO	Group 1	Group 2	Max group	
CMOL4	5,79E-17	0,009809	2	
1990	8,41E-08	0,02969	2	
CMOL32	0,007029	0,004994	1	
CMOL29	0,006636	0,0002429	1	
CMOL30	1,18E-06	0,02789	2	
CMOL35	0,003577	0,007478	2	
1814	3,25E-08	0,0298	2	
2055	1,19E-05	0,02424	2	
CMOL26	1,21E-08	0,02966	2	
1655	8,47E-14	0,01759	2	
1656	0,0001573	0,01783	2	
CMOL37	0,01358	0,0008145	1	
CMOL5	8,87E-20	0,005267	2	
CMOL16	0,01383	0,002075	1	
CMOL20	1,18E-06	0,02789	2	
1027	2,31E-12	0,02173	2	
1188	1,21E-12	0,02092	2	
1384	1,19E-05	0,02424	2	
1383	5,71E-06	0,02562	2	

Mixture analysis de los valores LSI del FE: en negrita los valores de GLC menores.

CMOL CAFA/CAL GL				
IND/NR. HUESO	Group 1	Group 2	Max group	
CMOL2	1,41E-38	0,1078	2	
CMOL4	1,78E-37	0,1065	2	
CMOL7	2,07E-10	0,044	2	
3134	2,08E-43	0,1123	2	
3137	2,76E-27	0,08993	2	
3136	1,35E-92	0,09047	2	
3133	2,83E-34	0,1022	2	
CMOL32	1,24E-113	0,06742	2	
CMOL29	5,91E-109	0,07247	2	
3141	9,60E-65	0,1142	2	
CMOL39	4,02E-127	0,05372	2	
CMOL26	5,42E-37	0,1059	2	
404	3,19E-32	0,09904	2	
CMOL38	2,23E-104	0,0775	2	
CMOL5	0,08565	0,007131	1	
CMOL16	1,45E-137	0,04431	2	
CMOL20	1,07E-20	0,07463	2	
1003	0,05524	0,005415	1	
1052	3,60E-05	0,02535	2	
1114	0,02624	0,01274	1	
CMOL18	5,35E-55	0,1166	2	
1453	2,34E-51	0,1162	2	
CMOL21	2,09E-73	0,1088	2	
1518	6,291E-34	0,1017	2	
5312	2,68E-209	0,008842	2	

Mixture analysis de los valores LSI del CAL: en negrita los valores de GL mayores.

A.45

CMOL CAFA/TA GL				
IND/NR. HUESO	Group 1	Group 2	Max group	
CMOL2	0,05292	0,03826	1	
CMOL3	1,147E-17	0,1346	2	
CMOL7	2,725E-09	0,2682	2	
1954	0,00003005	0,1905	2	
CMOL32	0,1703	0,01406	1	
CMOL29	0,2105	0,006645	1	
CMOL30	1,504E-11	0,2518	2	
3141	0,0003982	0,1421	2	
1893	1,474E-09	0,268	2	
CMOL38	0,06315	0,0007737	1	
CMOL16	0,2101	0,006168	1	
CMOL20	6,294E-08	0,2597	2	
1115	1,858E-22	0,06203	2	
CMOL23	1,365E-18	0,1177	2	
1474	8,75E-13	0,2321	2	
1454	0,000003155	0,2241	2	
CMOL21	0,0002573	0,1509	2	

Mixture analysis de los valores LSI del TA: en negrita los valores de GL menores.

CMOL CAFA/ MC II GL				
IND/NR. HUESO	Group 1	Group 2	Max group	
47	1,60E-28	0,07002	2	
1951	3,64E-11	0,05883	2	
3130	8,50E-36	0,0658	2	
CMOL34	2,31E-38	0,06371	2	
CMOL32	9,44E-38	0,06423	2	
CMOL31	2,70E-137	0,00344	2	
2074	0,03325	0,02488	1	
CMOL26	3,13E-05	0,04143	2	
1724	4,75E-52	0,05011	2	
1686	1,08E-36	0,0651	2	
1086	0,1039	0,01889	1	
1054	0,04072	0,01043	1	
1190	1,95E-10	0,05725	2	
CMOL23	0,0965	0,01349	1	
1446	2,39E-07	0,04899	2	
1467	0,1081	0,01847	1	
CMOL21	8,93E-44	0,05865	2	
CMOL33	2,23E-07	0,04909	2	

 ${\it Mixture~analysis}~{\it de~los~valores~LSI~del~MC~II}: en~negrita~los~valores~{\it de~GL~mayores}.$

CMOL CAFA/MC IV GL			
IND/NR. HUESO	Group 1	Group 2	Max group
271	0,005595	5,032E-88	1
1955	0,04078	6,90E-47	1
1958	0,04127	8,99E-50	1
3119	0,04848	9,00E-129	1
3131	0,02749	0,0004339	1
CMOL34	0,02329	0,3197	2
CMOL32	0,02351	0,2991	2
CMOL29	0,02074	0,05637	2
CMOL33	0,04957	4,54E-182	1
CMOL36	0,04947	9,22E-168	1
CMOL26	0,04859	8,41E-252	1
1715	0,04269	3,18E-59	1
CMOL5	1,06E-03	0	1
CMOL11	0,04295	4,17E-61	1
1085	4,69E-02	2,50E-299	1
1084	0,04705	2,59E-296	1
1053	0,03492	0,00E+00	1
CMOL17	0,03854	0,00E+00	1
1451	0,02617	0,00E+00	1
1447	0,0494	6,15E-162	1
1476	0,02198	2,35E-01	2
1469	0,04484	0,00E+00	1
CMOL21	0,02333	3,16E-01	2
CMOL37	0,02462	1,33E-01	2

Mixture analysis de los valores LSI del MC IV: en negrita los valores de GL menores.

CMOL CAFA/MT III GL			
IND/NR. HUESO	Group 1	Group 2	Max group
CMOL2	1,02E-06	0,06011	2
3138	0,03595	0,006775	1
3117	5,55E-06	0,05619	2
3125	0,0868	0,001905	1
CMOL32	0,07804	0,002542	1
CMOL29	0,08075	0,002346	1
CMOL30	1,48E-06	0,05946	2
CMOL26	5,41E-11	0,04722	2
405	1,33E-07	0,06172	2
CMOL38	0,0009002	0,03054	2
1693	0,08844	0,00178	1
CMOL11	0,0002053	0,03979	2
CMOL16	0,0255	5,10E-05	1
1070	7,09E-20	0,005803	2
1077	0,0405	9,69E-05	1
CMOL23	1,04E-11	0,0423	2
1450	1,88E-07	0,06167	2
CMOL21	0,07464	0,00279	1
CMOL28	0,05882	0,0001823	1

Mixture analysis de los valores LSI del MT III: en negrita los valores de GL menores.

CMOL CAFA/ MT IV GL			
IND/NR. HUESO	Group 1	Group 2	Max group
CMOL2	3,84E-05	0,05792	2
1956	0,004679	0,03116	2
1950	0,02677	7,62E-05	1
CMOL32	0,067	0,002578	1
CMOL29	0,06068	0,003809	1
CMOL30	0,0001564	0,05513	2
1894	4,07E-05	0,05788	2
CMOL26	2,36E-07	0,04482	2
1716	6,63E-05	0,0573	2
1674	0,02999	0,01124	1
CMOL11	0,002541	0,03711	2
CMOL16	0,03993	0,0001673	1
1030	0,05858	0,004201	1
1047	1,49E-11	0,01059	2
1079	0,04192	0,0001864	1
CMOL23	2,62E-08	0,03503	2
CMOL21	0,05395	0,005084	1

 $\textit{Mixture analysis} \,\, \text{de los valores LSI del MT IV: en negrita los valores de GL menores.}$

CMOL CAFA/MD LT			
IND/NR. HUESO	Group 1	Group 2	Max group
CMOL3	0,02565	9,66E-93	1
CMOL16	0,01299	0,01891	2
CMOL15	0,03182	3,01E-45	1
CMOL21	0,01778	2,72E-05	1
CMOL5	0,01625	2,70E-140	1
CMOL32	0,009182	0,03463	2
CMOL30	0,03151	9,09E-38	1
CMOL20	0,02831	1,13E-78	1
CMOL31	0,0009844	3,22E-28	1
CMOL35	0,01334	0,0143	2
CMOL2	0,02964	1,23E-70	1
CMOL10	0,02874	3,74E-23	1
265	0,03121	8,18E-35	1
CMOL40	0,03127	2,64E-57	1
CMOL12	0,02438	2,61E-13	1
1516	0,009015	8,60E-189	1
216	0,02894	8,35E-24	1
213	0,03026	5,50E-29	1
1193	0,03127	2,74E-35	1
CMOL14	0,03028	4,52E-29	1
1064	0,01696	1,98E-136	1
1416	0,03182	1,05E-44	1
244	0,002618	1,17E-275	1
1477	0,01084	0,04986	2
264	0,02957	5,07E-26	1
145	0,03124	4,74E-35	1
CMOL38	0,00864	0,02361	2
CMOL34	0,01015	0,04904	2
1510	0,02642	7,64E-89	1
1527	0,01667	5,71E-138	1

Mixture analysis de los valores LSI de la MD: en negrita los valores de LT menores.

ND/ND HIJEGO	CMOL CAF	•	May group
ND/NR. HUESO	Group 1	Group 2	Max group
CMOL3	1,84E-10	0,2527	2
CMOL21	6,28E-104	0,1919	2
CMOL16	5,48E-246	0,01365	2
1671	4,77E-81	0,2574	2
CMOL5	4,17E-35	0,3449	2
CMOL32	2,60E-08	0,2325	2
CMOL30	3,58E-26	0,3326	2
CMOL20	0,3544	0,1064	1
CMOL31	7,85E-55	0,326	2
CMOL35	1,10E-70	0,2871	2
CMOL2	0,4	0,09245	1
CMOL10	3,75E-39	0,3452	2
265	1,38E-51	0,3321	2
1739	4,40E-40	0,3449	2
CMOL12	3,11E-10	0,2507	2
1517	0,06756	0,1359	2
217	8,89E-76	0,2727	2
214	2,51E-37	0,3454	2
1194	7,64E-115	0,1635	2
1064	0,186	0,1216	1
1415	6,29E-48	0,3378	2
1007	9,01E-06	0,2035	2
1514	0,001987	0,1687	2
245	0,1704	0,07309	1
264	0,001523	0,1707	2
1445	1,69E-41	0,3442	2
145	2,04E-47	0,3385	2
1067	0,4072	0,09699	1
1777	1,08E-38	0,3453	2
267	1,09E-104	0,1899	2
CMOL38	9,49E-172	0,0615	2
1088	1,99E-25	0,3308	2
1090	0,2673	0,07966	1
1006	0,2276	0,07699	1
1069	0,2246	0,07699	1
CMOL26	4,69E-51	0,333	2
CMOL34	1,17E-52	0,3302	2
1066	0,0002076	0,03972	2
CMOL39	9,46E-187		2
		0,04614	2
1510	5,22E-10	0,2488	1000
1527	1,21E-11	0,2625	2
CMOL33	5,89E-33	0,3435	2
CMOL6	7,13E-22	0,3197	2
CMOL11	1,29E-23	0,3256	2
1530	1,55E-130	0,1276	2
1763	8,46E-26	0,3317	2
CMOL15	7,49E-05	0,1911	2
5326	2,15E-82	0,2535	2
5244	2,15E-82	0,2535	2

 $\it Mixture~analysis~$ de los valores LSI del M_1 : en negrita los valores de L mayores.

	CMOL CAF	A/P4 SUP L	
IND/NR. HUESO	Group 1	Group 2	Max group
CMOL3	0,0007404	0,2961	2
CMOL5	0,004742	0,3159	2
CMOL32	0,005284	0,3152	2
CMOL16	0,2086	0,003294	1
CMOL20	9,30E-06	0,1553	2
CMOL21	0,2011	0,003021	1
CMOL5	0,009348	0,3064	2
CMOL35	0,2736	0,05986	1
CMOL10	0,08323	0,1868	2
1512	0,02802	0,2645	2
1738	0,2912	0,05102	1
CMOL12	0,01138	0,3014	2
1515	3,88E-06	0,1297	2
1113	0,0002319	0,263	2
218	0,05498	0,0002972	1
576	0,2953	0,009419	1
1192	0,3124	0,03961	1
CMOL14	0,216	0,003589	1
1008	9,21E-08	0,05293	2
1513	0,09964	0,1704	2
243	0,001314	0,3078	2
1089	0,2398	0,07685	1
CMOL26	0,2705	0,06143	1
CMOL34	0,2736	0,05986	1
CMOL39	0,1325	0,001276	1
1509	0,01737	0,2871	2
1526	0,155	0,1264	1
CMOL33	0,01513	0,2923	2
CMOL6	0,3134	0,01266	1
CMOL11	0,3235	0,03216	1
1529	0,2289	0,0825	1
274	0,01987	0,2814	2
268	3,08E-07	0,07207	2
5134	0,0008993	0,3005	2
CMOL15	0,2885	0,05243	1
5051	0,002702	0,3161	2

Mixture analysis de los valores LSI del P⁴: en negrita los valores de L menores.

CMOL CAFA/HU Bd			
IND/NR. HUESO	Group 1	Group 2	Max group
CMOL3	8,77E-02	1,74E-63	1
CMOL4	1,12E-02	1,75E-167	1
CMOL33	1,24E-01	2,55E-31	1
CMOL39	0,03937	0,0287	1
CMOL32	0,05113	0,2042	2
CMOL29	0,0681	0,117	2
CMOL31	8,93E-03	4,02E-16	1
3142	0,07111	0,07556	2
2067	0,04686	0,131	2
2082	1,21E-01	2,87E-14	1
2066	1,19E-01	3,10E-13	1
1933	1,13E-01	3,98E-10	1
3141	1,19E-01	1,24E-12	1
1917	0,08917	0,0006832	1
CMOL35	0,06246	0,2041	2
CMOL36	1,26E-01	5,44E-23	1
CMOL26	1,26E-01	7,36E-21	1
1713	0,04951	0,1781	2
CMOL37	0,05085	0,2001	2
1703	0,05984	0,2344	2
CMOL38	1,02E-01	1,41E-06	1
CMOL15	1,21E-01	1,79E-35	1
CMOL11	1,05E-01	3,37E-07	1
CMOL20	1,20E-01	2,45E-36	1
1057	0,05669	0,249	2
CMOL2	1,10E-01	5,93E-46	1
1046	1,74E-02	1,13E-147	1
1045	1,26E-01	1,39E-19	1
CMOL9	1,13E-01	4,86E-10	1
CMOL11	0,09064	0,0003928	1
1056	0,06188	0,2119	2
1092	1,26E-01	1,61E-25	1
CMOL17	6,48E-02	2,53E-82	1
1130	4,95E-02	3,20E-97	1
1179	1,26E-01	3,90E-27	1
1189	2,04E-02	1,17E-140	1
1181	1,25E-01	2,02E-29	1
1396	1,05E-01	2,86E-07	1
CMOL23	8,71E-02	5,98E-64	1
CMOL25	9,83E-02	3,24E-55	1
CMOL21	7,63E-02	0,02863	1

Mixture analysis de los valores LSI del HU: en negrita los valores de Bd menores.

CMOL CAFA/TI Bp			
IND/NR. HUESO	Group 1	Group 2	Max group
CMOL8	2,06E-07	0,1262	2
CMOL32	1,29E-18	0,08428	2
CMOL29	3,92E-12	0,1362	2
CMOL30	4,17E-06	0,1089	2
CMOL39	1,17E-15	0,111	2
1888	2,75E-14	0,1224	2
CMOL38	1,27E-20	0,0672	2
CMOL35	5,39E-10	0,1405	2
CMOL7	0,1074	0,007022	1
CMOL26	1,91E-09	0,1395	2
CMOL37	2,23E-21	0,06126	2
1670	2,16E-16	0,1044	2
CMOL5	0,09931	0,00896	1
CMOL20	0,0001488	0,07962	2
1041	1,22E-36	0,005372	2
1109	2,89E-08	0,1337	2
CMOL2	0,0002341	0,07532	2
CMOL4	0,0855	0,002794	1
1122	0,1052	0,004444	1
CMOL18	9,74E-07	0,1181	2
1176	6,05E-09	0,1377	2
1182	4,67E-07	0,1222	2
1381	0,1044	0,007855	1
1382	0,03321	0,023	1
CMOL23	0,03321	0,023	1
CMOL25	7,15E-05	0,08632	2
1473	4,05E-10	0,1406	2
CMOL21	3,62E-12	0,136	2

Mixture analysis de los valores LSI de la TI: en negrita los valores de Bp mayores.

CMOL CAFA/FE Bd			
IND/NR. HUESO	Group 1	Group 2	Max group
CMOL3	0,04605	0	1
CMOL4	0,0331	0	1
CMOL7	0,09191	0	1
1990	0,1742	0	1
CMOL32	0,04928	0,3295	2
CMOL29	0,07871	3,36E-33	1
CMOL30	0,1739	0	1
CMOL35	0,167	0	1
1814	0,1693	0	1
2055	0,1437	4,941E-324	1
CMOL26	0,1668	0	1
1655	0,1243	0	1
1656	0,1677	0	1
CMOL37	0,05241	0,8162	2
1654	0,01717	3,74E-133	1
CMOL38	0,07774	4,38E-31	1
CMOL11	0,1364	7,54E-272	1
CMOL16	0,05402	0,4789	2
CMOL20	0,1678	0	1
1027	0,1719	0	1
1188	0,06712	0	1
1180	0,1742	0	1
1384	0,1629	0	1
1383	0,1401	2,61E-297	1
CMOL5	0,04568	0	1
CMOL23	0,1595	0	1

Mixture analysis de los valores LSI del Fe: en negrita los valores de Bd menores.

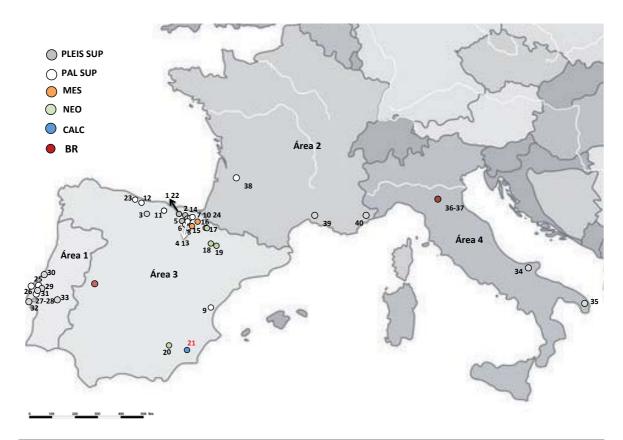
CMOL CAFA/CAL GB			
IND/NR. HUESO	Group 1	Group 2	Max group
CMOL2	0,1501	0	1
CMOL4	0,2543	0	1
CMOL7	0,1599	0	1
3134	0,2402	0	1
3137	0,2478	0	1
3136	0,178	0	1
3133	0,2123	0	1
CMOL32	0,1284	0	1
CMOL29	0,1854	0	1
CMOL39	0,1231	0	1
CMOL26	0,2132	0	1
404	0,2496	0	1
CMOL38	0,2017	0	1
CMOL5	0,08717	0	1
CMOL11	0,0279	8,41E-50	1
CMOL16	0,007348	0,3798	2
CMOL20	0,1169	0	1
1003	0,09449	0	1
1052	0,1866	0	1
1114	0,1296	0	1
CMOL18	0,151	0	1
1453	0,1937	0	1
CMOL21	0,2552	0	1
1518	0,1457	0	1
5312	0,008831	0,3783	2

 ${\it Mixture~analysis}~{\it de~los~valores~LSI~del~CAL}; ~en~negrita~los~valores~{\it de~GB~menores}.$

CMOL CAFA/MC II Bd			
IND/NR. HUESO	Group 1	Group 2	Max group
47	0,4112	1,06E-07	1
1951	0,115	0,6187	2
3130	0,6868	3,38E-35	1
CMOL34	0,6291	2,71E-42	1
CMOL32	0,645	6,96E-18	1
CMOL31	0,6558	2,24E-39	1
2074	0,6291	2,71E-42	1
CMOL26	0,3043	9,64E-05	1
1724	0,5665	1,95E-13	1
1686	0,7075	8,54E-26	1
CMOL5	0,09454	1,43E-104	1
1086	0,07918	1,153	2
1054	0,0358	0,2667	2
1190	0,4384	2,36E-59	1
CMOL23	0,4212	5,20E-08	1
1446	0,6635	2,40E-19	1
1467	0,1051	0,7922	2
CMOL21	0,2745	2,65E-75	1
CMOL33	0,06485	1,092	2

Mixture analysis de los valores LSI del MC II: en negrita los valores de Bd mayores.

CMOL CAFA/MC IV Bd			
IND/NR. HUESO	Group 1	Group 2	Max group
271	0,5756	0,0003527	1
1955	0,4394	0,04788	1
1958	0,005512	0,4693	2
3119	6,56E-05	0,6271	2
3131	0,5521	0,0003107	1
CMOL34	0,8334	0,001665	1
CMOL32	0,8913	0,003565	1
CMOL29	0,8675	0,002323	1
CMOL33	1,10E-05	0,5812	2
CMOL36	5,79E-08	0,3234	2
CMOL26	0,01224	0,396	2
1715	0,5323	0,03529	1
CMOL5	0,0009118	0,5875	2
CMOL11	0,8334	0,001665	1
1085	2,48E-06	0,5161	2
1084	0,007245	0,4453	2
1053	1,55E-07	0,3729	2
CMOL17	8,33E-10	0,1543	2
1451	0,7138	0,01822	1
1447	0,1911	0,1147	1
1476	0,3947	0,05541	1
1469	0,003606	0,5036	2
CMOL21	0,1614	1,97E-05	1
CMOL37	0,8576	0,002081	1

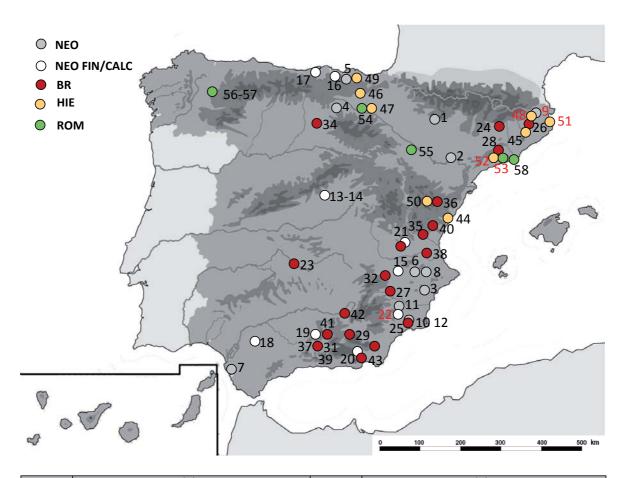

Mixture analysis de los valores LSI del MC IV: en negrita los valores de Bd mayores.

	CMOL CAFA	/MT III Bd		
IND/NR. HUESO	Group 1	Group 2	Max group	
CMOL2	0	0,04167	2	
3138	6,12E-101	0,4212	2	
3117	0	0,3532	2	
3125	6,96E-110	0,4253	2	
CMOL32	2,139	0,2814	1	
CMOL29	1,51E-58	0,3941	2	
CMOL30	0	0,2995	2	
CMOL26	0	0,3696	2	
405	0	0,3728	2	
CMOL38	1,71E-207	0,4482	2	
1693	5,49E-06	0,3149	2	
CMOL11	3,362	0,2739	1	
CMOL16	2,02E-17	0,3435	2	
1070	0	0,3252	2	
1077	2,992	0,2777	1	
CMOL23	0	0,4142	2	
1450	2,17E-76	0,4073	2	
CMOL21	0,6006	0,2589	1	
CMOL28	0	0,03073	2	

Mixture analysis de los valores LSI del MT III: en negrita los valores de Bd menores.

CMOL CAFA/MT IV Bd							
IND/NR. HUESO	Group 1	Group 2	Max group				
CMOL2	0,009212	0,3426	2				
1956	0,4333	1,67E-08	1				
1950	0,7524	6,16E-24	1				
CMOL32	0,7648	1,67E-21	1				
CMOL29	0,7642	7,63E-22	1				
CMOL30	0,7456	5,86E-18	1				
1894	0,01459	0,4743	2				
CMOL26	0,3413	8,84E-07	1				
1716	0,765	3,61E-21	1				
1674	0,7618	1,57E-22	1				
CMOL11	0,3605	2,58E-43	1				
CMOL16	0,3505	8,41E-44	1				
1030	0,3219	1,99E-06	1				
1047	0,05827	0,1332	2				
1079	0,2929	8,83E-47	1				
CMOL23	0,5173	3,18E-10	1				
CMOL21	0,2838	2,75E-47	1				

 ${\it Mixture~analysis}~{\it de~los~valores~LSI~del~MT~IV}; en~{\it negrita~los~valores~de~Bd~mayores}.$

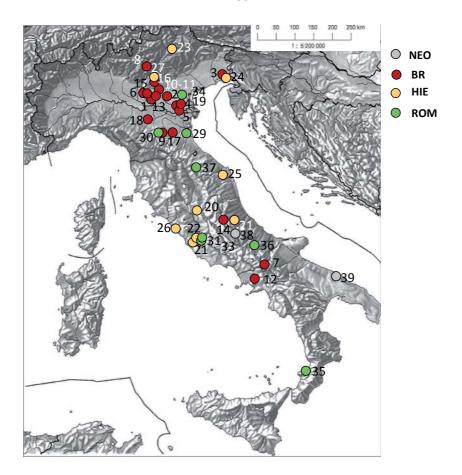


N	Yacimiento	N	Yacimiento
1	Atxuri (Mañaria, Vizcaya)	21	Camino del Molino (Caravaca de la Cruz, Murcia)
2	Lumentxa (Lekeitio, Vizcaya)	23	Tito Bustillo (Ribadesella, Asturias)
3	Cueva del Polvorín (Carranza, Vizcaya)	24	Ermittia (Deba, Guipúzcoa)
4	Sagastigorri (Kortezubi, Vizcaya)	25	Casa da Moura (Concelho de Óbidos)
5	Iruaxpe I (Aretxabaleta, Guipúzcoa)	26	Furninha (Concelho de Peniche)
6	Bolinkoba (Abadiano, Vizcaya)	27	PedreIra das Salemas (Concelho de Loures)
7	Ekain (Deba, Guipúzcoa)	28	Pego do Diabo (Concelho de Loures)
8	Lezetxiki (Arrasate, Guipúzcoa)	29	Fontainhas (Concelho de Cadaval)
9	Cova Matutano (Vilafamés, Castellón)	30	Algar de João Ramos (Concelho de Alcobaça)
10	Praileaitz I (Deba, Guipúzcoa)	31	Lapa da Rainha (Concelho de Torres Vedras)
11	Cueva de Rascaño (Mirones, Cantabria)	32	Algar de Cascais (Concelho de Cascais)
12	Cueva de la Riera (Llanes, Asturias)	33	Escoural (Concelho de Montemor-o-Novo)
13	Santimamiñe (Kortezubi, Vizcaya)	34	Gotta Paglicci (Puglia)
14	Urtiaga (Itziar, Guipúzcoa)	35	Grotta Romanelli (Puglia)
15	Gibijo (Álava)	36	Terramare (Modena)
16	Marizulo (Urnieta, Guipúzcoa)	37	Redù (Modena)
17	Zatoya (Abaurrea Alta, Navarra)	38	Abri du Morin (Gironde, Aquitaine)
18	Chaves (Bastarás, Huesca)	39	Lunel-Viel (Hérault, Languedoc-Rousillon)
19	Cueva del Moro (Olvena, Huesca)	40	Observatoire (Monaco)
20	Cueva del Nacimiento (Pontones, Jaén)		

Localización de los yacimientos de que proceden los restos de *Canis lupus* analizados.

CI	C'-1-	I Washindana	AUD.		8.6%	206	84 - d' -	_ cp	Diblia and fin
Cron. rel.	Sigla	Yacimiento Chaves (Bastarás, Huesca)	NR 6	10	Mín. -0,22	-0,09	-0,17	0,04	Bibliografía Castaños, 2004
	CPG	Collet de Puig Gros (Les Garrigues, Lleida)	1	1	-0,22	-0,09	-0,17	0,04	Camaros & Saña, 2008
FSC	FSC	Cova Fosca (Ares del Maestre, Castellón)	3	7	-0,22	-0,05	-0,14	0,07	Estévez, 1988; Llorente, 2015
	MIR	El Mirador (Sierra de Atapuerca, Burgos)	1	1			-0,16		Martín Rodríguez, 2015
NEO	MRZ	Marizulo (Urnieta, Guipúzcoa)	12	36	-0,24	-0,03	-0,11	0,05	Altuna, 1967
	OR	Cova de l'Or (Beniarrés, Alicante)	1	1			-0,26		Perez Ripoll, 1980
	RTM	El Retamar (Puerto Real, Cádiz)	2	2	-0,23	-0,11	-0,17	0,08	Caceres Sánchez, 2002
	SRS	La Sarsa (Boicarent, Valencia)	1	3	-0,28	-0,23	-0,26	0,03	Von der Driesch & Boessneck , 1980
	SMB 2	Serra del Mas Bonet (Vilafant, Gerona)	1	4	-0,18	-0,15	-0,16	0,02	Este trabajo
	TOT		28	65	-0,28	-0,03	-0,14	0,06	
	CC47	Calle Corredera °47 (Lorca)	13	21	-0,33	-0,01	-0,21	0,07	García-Moncó, 2006
	CNO-02	Casa Noguera (Archivel, Caravaca de la Cruz)	7	13	-0,33	0	-0,20	0,07	García-Moncó, 2006
	SAR	Albuquerque (Lorca)	14	25	-0,29	0,05	-0,14	0,08	García-Moncó, 2006
NEO FIN	CYE	Camino de las Yeseras (San Fernando de Henares, Madrid)	20	38	-0,2	-0,04	-0,12	0,04	Daza Perea, 2015
CALC	EPER	El Perdido (Torres de la Alameda, Madrid)	28	59	-0,45	0,16	-0,20	0,08	Daza Perea, 2015
CALC	JOV	Les Jovades (Cocentaina, Valencia)	6	9	-0,31	-0,16	-0,21	0,05	Martínez , 1993
	URT	Urtiaga (Deba, Guipúzcoa)	4	9	-0,23	-0,14	-0,17	0,04	Altuna, 1972
	RAM	Pico Ramos (Muskiz,Vizcaya)	5	7	-0,1	-0,03	-0,07	0,03	Castaños, 1995
	VLC	Valencina de la Concepción (Sevilla)	1	2	-0,2	-0,2	-0,20	0,00	Hain, 1982
	MTF	Los Castillejos (Montefrío , Granada)	2	2	-0,17	-0,15	-0,16	0,01	Ziegler, 1990
	MILL	Los Millares (Almería)	1	1			-0,2		Peters & Von der Driesch, 1990
	FFL	Fuente Flores (Requena, Valencia)	3	3	-0,27	-0,17	-0,22	0,05	Martínez, 1988
	TOT AZR	Motilla de Azuer (Ciudad Real)	104 10	189 11	-0,45 -0,22	0,16 -0,07	0,17 -0,14	0,08	Von der Driesch & Boessneck,
	BSJ	Bòfia de Sant Jaume (Montmajor, Barcelona)	23	70	-0,28	-0,1	-0,18	0,05	1980 Reig-García, 2015
	BST	La Bastida (Totana, Murcia)	38	60	-0,28	-0,1	-0,18	0,05	Andugar, 2016
	CLM	Carrer Almeda (Bordils, Girona)	2	3	-0,20	0,12	-0,17	0,03	Casella i Parra, 1998
	CRED	Cabezo Redondo (Villena, Alicante)	4	8	-0,21	-0,11	-0,18	0,03	Boessneck & Von der Driesch, 1969
	CRII	Can Roqueta II (Sabadell, Barcelona)	40	99	-0,33	-0,04	-0,14	0,04	Albizuri, 2011
	CSA	Castellón Alto (Galera, Granada)	7	10	-0,23	-0,13	-0,19	0,03	Milz, 1986
	CUS	Cueva Soterraña (Requena, Valencia)	5	6	-0,13	0,04	-0,08	0,06	Sarrión, 1982
	ENC	Cerro de la Encina (Granada)	2	4	-0,19	-0,15	-0,17	0,02	Friesch, 1987
	FAL	Fuente Álamo (Almería)	5	10	-0,25	-0,11	-0,16	0,05	Von der Driesch et al., 1985
	GAT	Gatas (Turre, Almería)	9	19	-0,23	-0,14	-0,18	0,03	Andugar, 2016
BR	HUE	La Huelga (Dueñas, Palencia)	8	28	-0,23	-0,12	-0,16	0,03	Liseau et al., 2014 Sanchís & Sarrión, 2004;
	LLB	Lloma de Betxí (Paterna, Valencia)	15	34	-0,24	-0,04	-0,16	0,04	Sarrión,1998
	LPL	Les Planetes (Benassal, Castellón)	5	5	-0,22	-0,16	-0,21	0,03	Perez Ripoll, 1978 Von der Driesch & Boessneck
	LPS	Los Palacios (Granada)	4	8	-0,24	-0,12	-0,18	0,04	,1980
	MAS78 MON	Muntaña Assolada (Alzira Valencia) Monachil (Granada)	6	1 11	-0,24	0	-0,20 -0,12	0,08	Sarrión, 1983 Lauk, 1976
	PDC93	Pic del Corbs, 1993 (Sagunt, Valencia)	1	1	-0,24	 	-0,12	0,00	Sanchís & Sarrión, 2004
	PRL	Purullena (Granada)	12	23	-0,24	-0,06	-0,17	0,05	Lauk, 1976
	TDR	Terrera Del Reloj (Dehesas de Guadix, Granada)	3	4	-0,24	-0,15	-0,20	0,04	Milz, 1986
	TRR	Terrera Ventura (Taberna, Almería)	5	8	-0,26	-0,15	-0,21	0,04	Von der Driesch & Morales, 1977
	тот		205	423	-0,33	0,12	-0,16	0,05	
	BALL	El Ballestar (Castellón de la Plana, Castellón)	1	1			-0,14		Iborra, 2004
	BCG	Bosc del Congost (Gerona)	6	19	-0,18	-0,05	-0,12	0,04	Colominas, 2013
	HE	Castro del Castillo de Henayo (Alegria de Álava, Álava)	1	1			-0,12		Altuna, 1980
HIE	НО	La Hoya (Laguardia Álava)	4	8	-0,05	0,04	-0,03	0,03	Altuna, 1980
	MCS P+R	Mas Castellar (Pontós Girona)	12	16	-0,26	-0,08	-0,14	0,06	Colominas, 2009
	SMM	Santimamiñe (Kortezubi, Vizcaya)	4	7	-0,22	-0,11	-0,15	0,04	Castaños, 1984
	VILL	Los Villares (Caudete de las Fuentes-Valencia Valencia)	1	2	-0,19	-0,14	-0,17	0,04	Iborra, 2004
		Arenus (61)	28	54	-0,26	0,04	-0,12	0,06	Castaños, 2007-2008
	ARC BIL	Arcaya (Álava) Bilbilis (Calatayud, Aragón)	27 27	64 55	-0,34 -0,39	-0,05 0,04	-0,17 -0,15	0,08	Castaños, 2007-2008 Castaños et al., 2006
ROM	SND	Santo Domingo (Lugo)	1	3	-0,33	-0,05	-0,13	0,10	Fernandéz, 2003
	PSD	Porta de Santiago (Lugo)	1	2	-0,18	-0,08	-0,13	0,07	Fernandéz, 2003
	VLD	Necrópolis de Vila de Madrid (Barcelona)	289	607	-0,48	0,04	-0,15	0,09	Colominas, 2009
	TOT		345	731	-0,48	0,04	-0,15	0,09	

Análisis univariado de los valores LSI de los restos de perros procedentes de los yacimientos de la Península Ibérica .



N.	Yacimiento	N.	Yacimiento
1	Chaves (Bastarás, Huesca)	30	Cueva Soterraña (Requena, Valencia)
2	Collet de Puig Gros (Les Garrigues, Lérida)	31	Cerro de la Encina (Granada)
3	Cova Fosca (Ares del Maestre, Castellón)	32	Fuente Álamo (Almería)
4	El Mirador (Sierra de Atapuerca, Burgos)	33	Gatas (Turre, Almería)
5	Marizulo (Urnieta, Guipúzcoa)	34	La Huelga (Dueñas, Palencia)
6	Cova de l'Or (Beniarrés, Alicante)	35	Lloma de Betxí (Paterna, Valencia)
7	El Retamar (Puerto Real, Cádiz)	36	Les Planetes (Benassal, Castellón)
8	La Sarsa (Boicarent, Valencia)	37	Los Palacios (Granada)
9	Serra del Mas Bonet (Vilafant, Gerona)	38	Muntaña Assolada (Alzira Valencia)
10	Calle Corredera n.°47 (Lorca)	39	Monachil (Granada)
11	Casa Noguera (Archivel, Caravaca de la Cruz)	40	Pic del Corbs, 1993 (Sagunt, Valencia)
12	Albuquerque (Lorca)	41	Purullena (Granada)
13	Camino de Las Yeseras (San Fernando de Henares, Madrid)	42	Terrera Del Reloj (Dehesas de Guadix, Granada)
14	El Perdido (Torres de la Alameda, Madrid)	43	Terrera Ventura (Taberna, Almería)
15	Les Jovades (Cocentaina, Valencia)	44	El Ballestar (Castellón de la Plana, Castellón)
16	Urtiaga (Deba, Guipúzcoa)	45	Bosc del Congost (Gerona)
17	Pico Ramos (Muskiz, Vizcaya)	46	Castro del Castillo de Henayo (Alegría de Álava, Álava)
18	Valencina de la Concepción (Sevilla)	47	La Hoya (Laguardia Álava)
19	Los Castillejos (Montefrío , Granada)	48	Mas Castellar (Pontós Girona)
20	Los Millares (Almería)	49	Santimamiñe (Kortezubi, Vizcaya)
21	Fuente Flores (Requena, Valencia)	50	Los Villares (Caudete de las Fuentes-Valencia Valencia)
22	Camino del Molino (Caracava de la Cruz, Murcia)	51	Ampurias (La Escala, Gerona)
23	Motilla de Azuer (Ciudad Real)	52	Can Xercavins (Cerdanyola del Vàlles, Barcelona)
24	Bòfia de Sant Jaume (Montmajor, Barcelona)	53	Els Mallols (Cerdanyola del Vàlles, Barcelona)
25	La Bastida (Totana, Murcia)	54	Arcaya (Álava)
26	Carrer Almeda (Bordils, Girona)	55	Bilbilis (Calatayud, Aragón)
27	Cabezo Redondo (Villena, Alicante)	56	Santo Domingo (Lugo)
28	Can Roqueta II (Sabadell, Barcelona)	57	Porta de Santiago (Lugo)
29	Castellón Alto (Galera, Granada)	58	Necrópolis de Vila de Madrid (Barcelona)

Cron. rel.	Sigla	Yacimiento	NR	NM	Bibliografía
	CONT	Grotta Continenza (Trasacco, Abruzzo)	13	21	Wilkens, 1987a, 1989-1990
NEO	SCAM	Scamuso (Torre a Mare-Bari, Puglia)	1	2	Cassoli & Tagliacozzo, 1986 y 1997
	TOT	, , , , ,	14	23	
	BAR	Barche di Solferino (Mantova, Lombardia)	34	89	Riedel, 1976a
	CAV	Cavalzara (San Pietro di Morubio-Verona, Veneto)	4	9	Riedel, 1979
		Caverna di Cotariova			· ·
	СОТ	(Sgonico-Trieste, Friuli-Venezia Giulia)	1	2	Riedel, 1976c*
	PAV	Fondo Paviani (Torrette di Legnano-Verona, Veneto)	1	1	Riedel, 1979
	FTT	Frattesina (Fratta Polesine-Rovigo, Veneto)	2	4	en De Grossi Mazzorin & Tagliacozzo, 1997
	ISO	Isolone sul Mincio (Volta Mantovan- Mantova, Lombardia)	1	3	Riedel, 1975
	STZ	La Starza (Ariano Irpino-Avellino, Campania)	2	5	Albarella, en estudio en De Grossi Mazzorin &
	312				Tagliacozzo, 1997
BR	LDR	Ledro (Trento, Trentino Alto Adige)	15	53	Riedel, 1976e*
BK	CST	Monte Castellaccio (Imola-Bologna, Emilia Romagna)	5	17	De Grossi Mazzorin, 1996a
	ZOP	Monte Zoppega (Monteforte d'Alpone-Veron,a Veneto)	1	1	Riedel, 1979
	MRD	Morandine (Verona, Veneto)	2	5	en De Grossi Mazzorin & Tagliacozzo, 1997
	NOL	Nola (Croce del Papa-Napoli,Campania)	13	13	De Grossi & Rugge, 2007
	NOG	Olmo di Nogara (Verona, Veneto)	12	31	Riedel, 1997
	PAL	Le Paludi di Celano (L'Aquila, Abruzzo)	1	2	De Grossi Mazzorin, 1991*
	PES	Peschiera (Verona, Veneto)	3	8	Ridel, 1982b
	SCL	Scalucce (Fumane-Verona, Veneto)	1	2	en De Grossi Mazzorin & Tagliacozzo, 1997
	SOL	Solarolo (Ravenna, Emilia Romagna)	18	38	Maini, 2012
	TMR	Terramare (Prov. Modena, Emilia Romagna)	3	11	De Grossi Mazzorin, 1994
	TNG	Terranegra (Legnan- Verona, Veneto)	2	1	Riedel, 1979
	тот		121	295	
	AME	Necropoli di Amelia (Terni, Umbria)	10	22	Salari et al., 2006
	FIC	Ficana (Acilia-Roma, Lazio)	16	36	De Grossi Mazzorin, 1997
	FIDV	Fidene-Via Vernio (Roma, Lazio)	11	27	Amoroso et al., 2005
	LAI	Laion-Gimpele I (Bolzano, Trentino Alto Adige)	13	31	Pisoni & Tecchiati, 2010
HIE	NIV	Castellieri di Nivize (Trieste, Friuli-Venezia Giulia)	10	20	Riedel, 1968a*
	OSI	Osimo (Ancona, Marche)	1	2	Wilkens, 1997a*
	PYR	Pyrgi (Santa Marinella- Roma, Lazio)	15	33	Caloi & Palomo, 1980
	SNT	Santorso (Vicenza, Veneto)	1	2	Cassoli & Tagliacozzo, 1991*
	SUL	Sulmona-Fonte d'Amore (L'Aquila, Abruzzo)	23	37	De Grossi, 1995b
	тот		100	210	
	CLS	Classe (Ravenna, Emilia Romagna)	42	172	Farello,1995
	CMOD	Cassa di Risparmio-Modena (Modena, Emilia Romagna)	4	6	De Grossi Mazzorin, 1988
	MTS	Meta Sudans (Roma, Lazio)	11	22	De Grossi Mazzorin, 1995a; De Grossi Mazzorin & Tagliacozzo, 1997
2004	MNN	Morandine (Verona, Veneto)	1	2	en De Grossi Mazzorin & Tagliacozzo, 1997
ROM	NOM	Nomentana-GRA (Roma, Lazio)	38	77	De Grossi Mazzorin, 2001a
	PEU	Padova- V.le Europa (Veneto)	8	16	Tagliacozzo, 1993*
	PRC	Piercastello (Vibo Valentia, Calabria)	1	2	Albarella, 1989*
	SGC	S. Giacomo degli Schiavoni (Campobasso, Molise)	6	12	Albarella, 1993*
	SST	Sestino (Arezzo, Toscana)	1	2	en De Grossi Mazzorin & Tagliacozzo, 1997
	TOT		112	311	

*medidas extraidas de De Grossi Mazzorin & Tagliacozzo, 1997

Sinopsis de los restos de cánidos procedentes de yacimientos italianos analizados en el estudio de LSI.

N	Yacimiento	N	Yacimiento
1	Barche di Solferino (Mantova, Lombardia)	21	Ficana (Acilia-Roma, Lazio)
2	Cavalzara (San Pietro di Morubio-Verona, Veneto)	22	Fidene-Via Vernio (Roma, Lazio)
3	Caverna di Cotariova (Sgonico-Trieste, Friuli-Venezia Giulia)	23	Laion-Gimpele I (Bolzano, Trentino Alto Adige)
4	Fondo Paviani (Torrette di Legnano-Verona, Veneto)	24	Castellieri di Nivize (Trieste, Friuli-Venezia Giulia)
5	Frattesina (Fratta Polesine-Rovigo, Veneto)	25	Osimo (Ancona, Marche)
6	Isolone sul Mincio (Volta Mantovan- Mantova, Lombardia)	26	Pyrgi (Santa Marinella- Roma, Lazio)
7	La Starza (Ariano Irpino-Avellino, Campania)	27	Santorso (Vicenza, Veneto)
8	Ledro (Trento, Trentino Alto Adige)	28	Sulmona-Fonte d'Amore (L'Aquila, Abruzzo)
9	Monte Castellaccio (Imola-Bologna, Emilia Romagna)	29	Classe (Ravenna, Emilia Romagna)
10	Monte Zoppega (Monteforte d'Alpone-Verona, Veneto)	30	Cassa di Rispramio-Modena (Modena, Emilia Romagna)
11	Morandine (Verona, Veneto)	31	Meta Sudans (Roma, Lazio)
12	Nola (Croce del Papa-Napoli,Campania)	32	Morandine (Verona, Veneto)
13	Olmo di Nogara (Verona, Veneto)	33	Nomentana-GRA (Roma, Lazio)
14	Le Paludi di Celano (L'Aquila, Abruzzo)	34	Padova- V.le Europa (Veneto)
15	Peschiera (Verona, Veneto)	35	Piercastello (Vibo Valentia, Calabria)
16	Scalucce (Fumane-Verona, Veneto)	36	S. Giacomo degli Schiavoni (Campobasso, Molise)
17	Solarolo (Ravenna, Emilia Romagna)	37	Sestino (Arezzo, Toscana)
18	Terramare (Prov. Modena, Emilia Romagna)	38	Grotta Continenza (Trasacco, Abruzzo)
19	Terranegra (Legnano-Verona, Veneto)	39	Scamuso (Torre a Mare-Bari, Puglia)
20	Necropoli di Amelia (Terni, Umbria)		

Localización geográfica de los yacimientos italianos que intervienen en el estudio de LSI.

TABLAS OSTEOMETRICAS

Canis lupus, ejemplar moderno MUSEO L. PIGORINI, ROMA

HUESO	LADO	SIGLADO	MEDIDAS		
CR			1	2	3
	ı	3	242,7	225	213
			4	5	7
			59	156,88	114
			8	9	10
			125	144	110
			12	13	14
			104,2	114	38,8
			15 D	15	16 D
			81,8	81,91	21,5
			16	17 D	17 I
			21,5	62,21	63
				•	
			19 D	191	22 D
			22	21,9	27,9
				•	
			22	23	24
			27,6	75,38	73,86
			25	26	27
			43,69	61,75	24,35
				-	
			28	29	30
			21,01	62	125
			31	32	33
			47,03	69,41	47,04
			34	35	36
			73,68	36,27	41
				•	
			37 D	37 I	38
			36,08	36,1	68,18
				•	•
			39	40	
			60	47,37	

HUESO	LADO	SIGLADO	MEDIDAS				
MD			1	2	3		
5	ı	3	179,67	177,2	168,2		
<u> </u>		15	173,07	1177,2	100,2		
			4	5	6		
			155,27	144,23	154,81		
			133,27	111,23	13 1,01		
			7	8	9		
			100,27	94,4	84,12		
				•			
			10	11	12		
			43,09	50,94	40,98		
				-			
			13	14	17		
			28,48	25,97	10,22		
			18	19	20		
			72,34	26,54	23,95		
D SUP			L	В	GB		
P4	I	3	24,83	9,8	12,18		
M1	I	3	16,87	19,25			
M2	I	3	7,15	12,9			
					_		
D INF			L	В			
M1	I	3	28,58	10,65			
M2	I	3	10,68	7,91			
M3	I	3	4,84	4,82			
AT			GB	GL	BFcr		
	I	3	96,34	46,59	49,3		
			BFcd	GLF	Lad		
			39,45	35,35	18,22		
				•			
			н	1			
			31,35]			
AX			LCDe	LAPa	BFcr		
	I	3	58,48	63,08	36,63		
			Bpacd	BPtr	SBV		
			31,64	47,08	25,84		
					1		
			BFcd	Н	1		
			23,23	44,25]		
E			HS	GLP	SLC		
	I	3	169,73	38,99	30,16		

BG 23,15

HUESO	LADO	SIGLADO	MEDIDAS			
	•	•	•			
MD			1	2	3	
	ı	3	179,67	177,2	168,2	
			4	5	6	
			155,27	144,23	154,81	
			7	8	9	
			100,27	94,4	84,12	
			10	11	12	
			43,09	50,94	40,98	
			13	14	17	
			28,48	25,97	10,22	
			18	19	20	
			72,34	26,54	23,95	
D SUP			L	В	GB	
P4	1	3	24,83	9,8	12,18	
M1	I	3	16,87	19,25		
M2	I	3	7,15	12,9		
	1		1		_	
D INF	_	_	L	В		
M1	<u> </u>	3	28,58	10,65		
M2	l	3	10,68	7,91		
M3	<u> I</u>	3	4,84	4,82		
AT.			65	6:	l _{DF}	
AT			GB OC 24	GL 46.50	BFcr	
	lı	3	96,34	46,59	49,3	
			DF ad	CLE	lind	
			BFcd	GLF	Lad	
			39,45	35,35	18,22	
			ш			
			H			
			31,35			
AX			LCDe	LAPa	BFcr	
	ı	3	58,48	63,08	36,63	
	<u> 1' </u>		130,40	03,00	130,03	
			Bpacd	BPtr	SBV	
			Dpacu	DI (I	354	

31,64

BFcd

23,23

47,08

H 44,25 25,84

HUESO	LADO	SIGLADO		MEDIDA	S
E			HS	GLP	SLC
	I I	3	169,73	38,99	30,16
				_	
			BG		
			23,15		
		1		lava .	I_
HU			GL	GLC	Dp
	I	3	203,5	203	52,05
			SD	Bd	
			15,12	41,12	
			15,12	41,12	
R			GL	ВР	SD
	ı	3	202,5	22,2	14,88
	<u> </u>			,-	1 - 1,000
			Bd		
			32,12		
			32,12		
UL			GL	DPA	SDO
	ı	3	236,3	31,31	27,03
		!	<u>'</u>		
			ВРС		
			22,6		
MC			GL	Bd	
MC I	l I	3	27,76	6,18	
MC II	l I	3	79,03	11,7	
MC III	I	3	90,26	11,61	
MC IV	I	3	89,77	11,1	
MC V	I	3	76,87	12,3	
SA			GL	PL	GB
	I	3	52	44,57	54,84
			BFcr	HFcr	
			28,94	13,34	
	<u> </u>				
PEL			GL	LAR	SH
	ı	3	176,42	26,29	23,11
			SB	LFo	
			10,42	31,07	
				•	

[<u></u>	1	I	I		
HUESO	LADO	SIGLADO		MEDIDAS	
	1	I			l
FE			GL	GLC	Вр
	I	3	216,27	220,4	47,35
				•	
			DC	SD	Bd
			22,87	16,26	41,29
					_
RO			GL	GB]
	1	3	22,86	13,11	
TI			GL	Вр	SD
	I	3	227,5	46,26	15,39
			Bd		
			28,86		
				-	
FI			GL		
	I	3	211,83		
				-	_
CAL			GL	GB]
	I	3	55,49	23,39]
					_
TA			GL		
	I	3	33,48		
				-	
МТ			GL	Bd]
MTII	I	3	87,25	10,77]
MT III	ı	3	97,57	11,22	1
MT IV	ı	3	100,35	10,77	1
MT V	I	3	88,4	9,97	1
	•				4

HUESO	LADO	SIGLADO	MEDIDAS			
FA			GL	Вр	SD	Bd
FA 1 ANT I DEDO	I	3	14,54	7,26	4,69	6,19
FA 1 ANT II DEDO	I	3	30,47	11,73	6,03	8,83
FA 1 POST II DEDO	I	3	30,6	11,17	6,03	8,32
FA 1 ANT III DEDO	I	3	34,65	10,85	5,93	9,07
FA 1 POST III DEDO	I	3	35,52	10,83	6,67	8,73
FA 1 ANT IV DEDO	I	3	34,04	11,03	5,93	8,92
FA 1POST IV DEDO	I	3	35,17	10,81	6,27	8,56
FA 1 ANT V DEDO	I	3	30,25	11,67	6,17	8,81
FA 2 ANT II DEDO	I	3	19,01	9,51	6,2	9,2
FA 2 POST II DEDO	I	3	17,74	8,79	6,2	8,28
FA 2 ANT III DEDO	I	3	23,51	9,71	5,51	9,41
FA 2 POST III DEDO	I	3	23,85	8,94	5,86	8,75
FA 2 ANT IV DEDO	I	3	23,12	9,4	5,4	9,29
FA 2 POST IV DEDO	I	3	24,76	8,99	5,38	8,36
FA 2 ANT V DEDO	I	3	17,83	9,67	6,26	9,12
FA 2 POST V DEDO	I	3	17,46	8,65	6,06	8,09
FA 3 ANT I DEDO	I	3	19,3	6,66		
FA 3 ANT	I	3	23,16	8,94		
FA 3 ANT	I	3	23,85	9,43		
FA 3 ANT	I	3	23,55	8,66		
FA 3 ANT	I	3	22,76	9,04		
FA 3 POST	I	3	22,07	8,43		
FA 3 POST	I	3	23,92	8,86		
FA 3 POST	ı	3	22,55	8,43		
FA 3 POST	I	3	20,71	8,41		

SERRA DEL MAS BONET (VILAFANT, GERONA) NEOLITICO ANTIGUO EPICARDIAL (4900-4600 cal BC) SILO E-186 CAPA 2

Canis I. familiaris SMB 1, MACHO ADULTO

HUESO	LADO	SIGLADO	NUM.		MEDIDA	S
	•	•	•	•		
CR				1	4	13 a
	I/D	186.2.7	78+81	171	40,09*	83,55*
				15 I	16 D	16
				60,92	17,64	18,31
				·		<u>'</u>
				17 I	22 D	22
				44,68	19,16	18,59*
					•	
				23	25	27
				59,9	37,04	19,1
				28	36	40
				14,91	36,5*	41,52
MD				1	2	3
	D	186.2.7	71	124,42*	124,68	118,73
	ı	186.2.8	72	126,4*		119,25
	-	-	-			
				4	5	6
				107,66	101,92	108,34
				107,6	101,22	
				7	8	9
				73,42	69	65
				73,68	69,76	65,79
				10	11	12
				32,61	34,98	30,87
				33	35,27	30,81
				13	14	17
				21,04	18,18	11
				20,92	18,12	10,97
				18	19	20
				46,77	21,74	20,2

HUESO	LADO	SIGLADO	NUM.		ı	MEDIDAS	
			-	-			
СР				GB			
C CAP	ı	186:02:07	39	13,45			
	•			•			
МС				GL	Bd		
MC II	I		25	49,53	7,7		
MC III	I		24	57,27	7,27		
MC IV	ı	186.2.7	23	57,46	7,32		
MC V	ı	186.2.7	22	47,31	7,5		
		•	,	•	•		
PEL				GL	LAR	SH	SB
	D	186.2.7	7		21,5	15,36	8,5
	ı	186.2.7	8	122,4	21,5	15,32	8,4
		•		•	•	•	
				LFo			
				21,31			
FE				GL	GLC	Вр	DC
	D	186.2.7	1	145,74	150,35	31,32	16,29
	I	186.2.7	2	145,4	147,56	31,6	16,33
				<u></u>	-		
				SD	Bd		
				11,55	27,15		
				11,56			
					-		
TI				GL	Вр	SD	Bd
	D	186.2.7	3		31,2	11,45	
	ı	186.2.7	4	149,77	28,89	11,12	19,97
	•			-	-	•	-
CAL				GL	GB		
	ı	186.2.7	6	38,83	17,68		
			,				
TA				GL			
	D	186.2.7	5	25,65			
Т				GB			
T NAV	ı	186.2.7	38	13,52			
	1		1	1 -/-	ı		

HUESO LADO SIGLADO NUM. MEDIDAS	

MT				GL	Bd
MT II	D	186.2.7	18	56,42	7,1
MT II	I	186.2.7	21	56,82	6,9
MT III	D	186.2.7	17	62,96	7,68
MT IV	D	186.2.7	16	64,37	7,11
MT V	D	186.2.7	15	56,2	6,18
MT V	I	186.2.7	19	56,8	6,3

FA				GL	Вр	SD	Bd
FA 1	ND	186.2.10	27	18,75	7,72	5,2	6,95
FA 1	ND	186.2.7	28	18,12	7,06	3,84	5,74
FA 1	ND	186.2.7	29	22,6	7,28	5	6,2
FA 1	ND	186.2.7	30	22,12	7,3	4,7	5,99
FA 1	ND	186.2.7	31	18,77	7,5	4,8	5,76
FA 1	ND	186.2.7	32	21,64	7	5	6,58
FA 1	ND	186.2.7	33	9,72	5,3	3,85	4,69
FA 2	ND	186.2.7	34	15,92	6,65	4,5	6,36
FA 2	ND	186.2.7	35	15,78	6,68	4,9	6,39
FA3	ND	186.2.7	36	12,97	5,93		
FA3	ND	186.2.7	37	11,08	5,49		

CAMINO DEL MOLINO (CARAVACA DE LA CRUZ, MURCIA) CALCOLITICO (3850±40 BP) UE 1110-11106-1107 Canis lupus, CMOL 1, SUBADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.	MEDIDAS				
CR				1	2	3	4	
	I/D	33	2	250,67	223,29	211,17	63,6	
				5	7	8	9	
				153,61	116,1	122,42	134,57	
				10	12	13	13a	
				92,93	105	120,83	118,15	
				14	14a	15 D	15 I	
				47,93	45,09	84,46	83,23	
				16 D	161	17 D	17 I	
				23,13	22,85	66,1	66,3	
				19 D	19	22 D	22	
				25,55	25,11	27	27,13	
				23	24	25	26	
				80,55	81,15	48,59	65,74	
				27	28	29	30	
				25,8	16,85	59,55		
				31	32	33	34	
				46,6	61,95	44,61	74,27	
				35	36	37 D	37 I	
				48,2	48,03	34,23	34,19	
				38	39	40		
				70,54	65,6	59,58		
MD				1	2	3	4	
	D	33	1	177	174,65	170,87	149,96	
	I	33	50					
				5	6	7	8	
				148,57	153,36			
						99,7	95,55	

HUESO	LADO	SIGLADO/Cmolf	NUM.	MEDIDAS			
	•	•	•	•			
				9	10	11	12
						50,56	46,04
				90,37	44,26	50,6	46,7
					•	•	•
				14	17	18	19
				28,86	13,15	75,54	31,95
				29,2	13,07		31,82
				20			
				26,54			
				25,41			
D SUP				L	В	GB	
P4	D	33	2	27,02	10,73	13,22	
P4	ı	33	2	26,41	10,68	13	
M1	D	33	2	17,11	21,33		
M1	l l	33	2	16,91	21,3		
M2	D	33	2	9,74	13,3		
M2	I	33	2	9,22	13,34		
D INF				L	В		
M1	D	33	1	29,6	12,24		
M1	I	33	50	30,11	12,22		
M2	D	33	1	12,17	8,9		
M2	l l	33	50	11,89	9,1		
				laa.	1	1	I
AT	1/5	647		GB	GL	BFcr	BFcd
	I/D	617	3	95,53	48,02	49,13	38,8
				CLE	Lad	1	
				GLF	18,8	H 32,19	
				35,26	10,0	32,19	
AX				LCDe	BFcr	Bpacd	SBV
/ //	I/D	617	4	61,59	36,67	35,3	28
	1,75	1027	-	01,33	30,07	33,3	
				BFcd	Н		
				22,84	49,2		
HU				SD	Bd		
	D	575	20	15,04	45,03		
	ı	663	3062	14,12	44,86		
			•		1 .		
R				GL	Вр	SD	Bd
	D	575	18	217	24,97	15,55	34,71
	ı	82	3063		24,53	16,58	31,01
,			•		· ·	<u> </u>	1 .
UL				DPA	SDO	ВРС	
		1	40	2.55		1000	

D

575

81

19

3064

34,66

33,54

29,43

28,21

22,34

22,69

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
MC				GL	Bd		
MC II	1	150	1299	80,96	11,27		
	<u> </u>	•		<u> </u>	•		
SA				GL	PL	GB	BFcr
	I/D	259	1940	33,71	31,89	34,48	21,71
	•	•		•	•	•	•
				HFcr			
				9,97			
				•			
PEL				GL	LAR	SH	SB
	D	614	21	166	31,01	25,16	11,72
	•	•	•	•		•	•
FE				GLC	DC	SD	CD
	D	sn	41			16,4	
	ı	663	1195	232	24,68	16,48	17,34
		•	•		•		•
				Bd			
				44,4			
				42,51			
CAL				GL	GB		
	ı	627	22	59,37	24,87		
	-			-		<u></u>	
TA				GL			
	D	605	39	35,44			
	•	•		•			
Т				GB			
T CUB	ı	56	17	22,43			
T CUB	D	627	23	22,41			
	•				-		
MT				GL	Bd		
MT II	D	56	8	87,31	11,57		
MT II	I	626	24	87,12	11,35		
MT III	D	56	9	96,66	12,38		
MT III	ı	626	25	96,8	12,14		
MT IV	D	56	10	99,13	11,8		
MT IV	I	626	26	98,33	11,42		
MT V	D	56	11	88,4	10,75		
MT V	ı	626	27	89,55	10,95		
FA				GL	Вр	SD	Bd
FA 1	D POST	56	12	36,21	12,08	7,72	9,88
FA 1	D POST	56	13	30,78	11,8	7,2	9,6
FA 1	D POST	56	14	35,66	12,35	7,33	9,61
FA 1	D POST	56	15	30,07	11,51	6,34	9,04
FA 1	I POST	626	28	36	11,48	7,37	9,54
FA 1	I POST	626	29	30,69	11,43	7,05	9,3
FA 1	I POST	626	30	29,66	11,15	6	8,6
FA 2	D POST	56	16	18,55	9,8	6,73	8,95
FA 2	I POST?	626	31	25,08	10,15	6,46	9,45
FA 2	I POST?	626	32	25,33	10,21	6,69	9,3
FA 2	I POST?	626	33	19	9,7	7	9,1

UE 1110

Canis I. familiaris, CMOL 2, ADULTO/SENIL

HUESO	LADO	SIGLADO/Cmolf	NUM.		ı	MEDIDAS	
			1				
MD				1	2	3	4
	ı	34	87				
	D	31	1026	131	132	125	113,13
				5	6	7	8
				110,77	116,85	75,11	71,14
				9	10	11	12
						37,39	32,81
				66,76	33,82	37,46	33,32
				14	17	19	20
				19,89	10,76	23,29	18,18
				19,93		24,26	17,53
D SUP				L	В		
M1 INF	I	34	87	20,91	8,34		
M1 INF	D	31	1026	21,36	8,43		
M2 INF	I	34	87	8,37	6,17		
M2 INF	D	31	1026	8,25	6,25		
P4 INF	I	34	87	11,56	6,26		
P4 INF	D	31	1026	11,59	6,42		
P3 INF	ı	34	87	10,17	5,12		
P3 INF	D	31	1026	10,34	5,15		
P2 INF	ı	34	87	8,25	4,57		
P2 INF	D	31	1026	7,8	4,51		
P1 INF	D	31	1026	3,7	3,66		
P1 INF	ı	34	87	4,28	3,55		
			_	<u> </u>	•		
AT				GB	GL	BFcr	BFcd

70,4

52

I/D

34

GLF	Lad	н
23,71	14,16	26,65

39,15

37,06

HUESO	LADO	SIGLADO/Cmolf	NUM.		ſ	MEDIDAS	
			!	<u>!</u>			
AX				LCDe	LAPa	BFcr	BPtr
	I/D	34	51	44,78	43,27	25,14	38,78
	<u>'</u>	'		•	'	'	•
				SBV	BFcd	н	
				17,86	16,09	32,36	
					•	•	
HU				GL	GLC	Dp	SD
	I	31	1023	145,71	139,99	35,18	12,59
		-	-			-	
				Bd			
				29,65			
R				GL	Вр	SD	Bd
	I	34	74	146,47	17,16	11,11	21,09
UL				GL	DPA	SDO	ВРС
	I	34	75	173	22,26	19,35	16,08
SA				GL	PL	BFcr	HFcr
	I/D	1	83	39,54	32,06	20,23	10,41
PEL				GL	LAR	SH	SB
	D	1	89	134,28	21,65	18,05	8,8
	I	1	88		21,55	18,09	8,47
TI				GL	Вр	SD	Bd
	D	31	1024	161	30,5	13,2	23,57
			1				
CAL				GL	GB		
	D	34	73	38,42	17,24		
		1	1	1			
TA	_			GL			
	D	52	76	21,51			
247				61	la.t		
MT		24	CE	GL FC F2	Bd 7.74		
MTII	D	34	65	56,53	7,74	_	
MT III	D	34	66	62,11	8,68	_	
MTIV	D D	34	67	64,09	7,89		
MT V	ען	34	68	57,45	7,1		
FA				GL	l _{Pn}	SD	Bd
FA 1	D BOST	34	69		Bp	4,7	6,49
FA 1	D POST D POST	34	70	19,08 22,84	7,59 8,2	5,4	7,22
FA 2	D POST		71				
FA Z	ונטיז ען	34	′ ¹	16,07	7,52	4,85	6,61

UE 1110

Canis I. familiaris, CMOL 3, ADULTO/SENIL

HUESO	LADO	SIGLADO/Cmolf	NUM.		ſ	MEDIDAS	
CR			1	1	2	3	4
CR .	I/D	20	122	178			44,24
	I/D	28	132	1/8	168,44	160,74	44,24
				5	7	8	9
				115,3	86,57	89,04	97,37
				113,3	00,37	03,04	37,37
				10	12	13	13a
				66,16	74,79	88,98	84,57
				14	14a	15 D	15 I
				27,38	25,34	62,6	62,38
				16 D	16	17 D	17
				15,88	15,85	47,6	47,77
				19 D	19	22 D	22
				17,39	17,44	18,69	18,6
							!
				23	24	25	26
				64,36	63,31	37,22	55,95
				27	120	29	31
					28 15,4	54,28	31,57
				18,55	15,4	34,20	31,37
				32	33	34	35
				48,71	32,64	60,45	33,23
					I	<u> </u>	
				36	37 D	37 I	38
				34,45	27	27,19	60,13
					1		
				39	40		
				55,8	47		
MD				1	2	3	4
-	ı	28	133	134	133,7	128,36	116
	D	28	134		<u> </u>		
		'		·	I		į
				5	6	7	8
				110,18	116,61	76	71
						75,13	71,8

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
				9	10	11	12
				65,96	33,3	38,31	33,22
				66,66	32,6	39,44	34,07
				<u> </u>			
				14	17	18	19
				20,2	12,2	54,9	24,2
				20,7			23,85
					_		
				20			
				18,72			
				18,35			
SUP				L	В	GB	
4	D	28	132	18,04	7	10,02	
		· · · · · · · · · · · · · · · · · · ·					
INF				L	В		
/11 INF	I	28	133	20,62	8,24		
11 INF	D	28	134	20,52	8,59		
/12 INF	I	28	133	8,3	5,98		
12 INF	D	28	134	8,4	5,8		
VI3 INF	I	28	133	4,08	3,51		
/I3 INF	D	28	134	4,08	3,53		
			1	las	la.		l
AT	1/5		00	GB	GL	BFcr	BFcd
	I/D	28	92	77,31	37,9	40,35	30,4
				GLF	Lad	н	
				30,3	14,73	28,76	
				,	,		
λX				LCDe	LAPa	BFcr	Bpacd
	I/D	28	93	44,75	50,3	29,77	30,03
				BPtr	SBV	BFcd	Н
				38,23	22,2	17,98	36,85
				GLP			
	D	28	128	27,75			
		120	120	27,73			
IU				GL	GLC	Dp	SD
	D	587	124	150,86	146,19	37,8	11,7
_	ı	31	1000	149,75	144,73	38,55	12,62
				Bd			
				30,47			
				31,74	1		

R				GL	Вр	SD	Bd
	D	587	122	150	17,18	11,6	23,48
	I	31	1072		16,74		

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
	•	<u> </u>		•			
UL				DPA	SDO	ВРС	
	D	587	123	23,44	19,72	16	
	I .	31	1073	23,5			
							_
SA				GL	PL	GB	BFcr
	I/D	28	119	40	36,37	43,3	24,12
				HFcr			
				10,7			
				•			
PEL				GL	LAR	SH	SB
	D	28	126	134	22,5	17,15	7,3
	I	561	1043		21,55	17,07	7,7
				sc	SBI		
				16,12	10,12		
FE				GL	Вр	DC	SD
	D	28	127	163,95	35,41	18,06	12,9
				Bd			
				30,92			
TA				GL	GB		
	D	28	131	24,97			

GB 15,18

135

28

T NAV

D

UE 1110

Canis I. familiaris, CMOL 4, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
AX				LCDe	BFcr	Bpacd	BPtr
	I/D	629	141	53,54	31,1	32,96	44,33
				SBV	BFcd	н	
				23,7	21,4	37,82	
HU				GLC	Вр	Dp	SD
	D	628	136	159		41,7	13,85
	ı	85	1189	159	31,12		14,3
		·					
				Bd			
				33,88			
				33,14			
UL				DPA	SDO	ВРС	
	D	634	137	27,67	23,01	18,72	
		100+	1237	27,07	25,01	10,72	
FE				GL	GLC	Вр	DC
	D	632	138	177	180	37,66	18,82
	I	58	1121			37,1	18,79
		•					
				SD	CD	Bd	
				13,45		31,31	
				14,08	14,26		
_				1	-		
TI				GL	Вр	SD	CD
	D	631	139		35,1	15,23	
	l l	668	1002	188	34,14	15,49	13,52
				Bd			
				Du .			
				22,6			
				22,0			
CAL				GL	GB		

Canis I. familiaris, CMOL 5, SUBADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.	MEDIDAS				
CR				1	2	3	4	
	I/D	29	1005	197,75	173,87	165,29	48,34	
				5	7	8	9	
				116,6	92,09	76,57	105,66	
				10	12	13	13a	
				54,81	76,4	91,28	89,42	
				15 D	16 D	17 D	17	
				63,13	17,28	49,32	49,2	
					Lea	I	I	
				19 D	191	22 1	23	
				16,99	16,7	22,54	67,03	
					la-	l	1	
				24	25	26	27	
				65,37	38,4	51,34	18,8	
				20	120	124	122	
				28	29	31	32	
				13,83	54,47	38,62	54,67	
				33	34	35	36	
				35,71	65,42	34,65	35,69	
				33,71	03,42	34,03	33,09	
				37 D	38	39	40	
				29,67	63,55	56,8	47,89	
				23,07	03,33	30,8	47,83	
MD				1	2	3	4	
	D	643	168	-	-		119,9	
	ı	29	1004	139,4	140,04	135,09	120,8	
	-			1 /	-7-	,	-,-	
				5	6	11	12	
				115,83	119	38,97	34,32	
				116,09	120,14	39,23	34,34	
				<u> </u>				
				14	17	18	19	
				19,05	11,4	57,69	22,52	
				19,06	11,3	57,11	22,6	
							I	
				20				
				17,96				

D SUP				L	В	GB
P4	D	29	1005	17,73	7,1	8,25
P4	I	29	1005	17,6	6,8	9
M1	D	29	1005	11,99	14,95	
M2	D	29	1005	7,57	9,78	

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
			111111111111111111111111111111111111111				
D INF				L	В		
M1	D	643	168	19,78	8,56		
M1	ı	29	1004	19,65	8,6		
M2	D	643	168	8,92	5,84		
	•	•		•	•		
AT	AT			GB	GL	BFcr	BFcd
	I/D	639	151	82,05	39,93	44,22	33,29
	•		•			•	-
				GLF	Lad	н	
				35,19	16,1	29,02	
R				Вр	SD	Bd	
	D	54	146		14,42	25	
	ı	54	147	17,47			
		•		-			
UL				DPA	SDO	ВРС	
	ı	645	149	27,45	23,93	18,59	
	-			-			
SA				GL	PL	GB	BFcr
	I/D	57	153	48,93	41,07	41,59	23,99
				HFcr			
				11,95			
PEL				LAR	SH	SB	sc
	D	666	1126	22,99	19,4	10,73	19,42
	1	1	1120	22,58	20,73	10,48	19,35
				GBTc	GBTi	SBI	
					11,64	9,54	
				12,55			
FE				GL	GLC	Вр	DC
	I	641	148	180	184	38,71	19,39
	D	129	1397	180	184	38,7	19,39

I	641	148	180	184	38,71	19,39
D	129	1397	180	184	38,7	19,39
	-	-		-		_

SD	CD	Bd
13,81	14,74	30,9
14,26	15,07	30,93

TI				GL	Вр	SD	CD
	D	644	150	178	33,16	13,69	12,84

Bd 21,49

HUESO	LADO	SIGLADO/Cmolf	NUM.	MEDIDAS			
CAL				GL	GB		
	D	622	1003	44,48	17,86		

MT				GL	Bd
MT II	I	646	167		6,15
MT III	I	646	165	71,71	7,75
MT IV	I	646	166	74,48	7,42

FA				GL	Вр	SD	Bd
FA 1	ND	646	163	24,87	8,12	6,16	6,37
FA 2	ND	646	164	11,63	7,45	6,15	6,72
FA 3	ND	647	152	15,3	7,76		

UE 1110

Canis I. familiaris, CMOL 6, ADULTO/SENIL

HUESO	LADO	SIGLADO/Cmo	f NUM.		1	MEDIDAS	
CR				15 I	16	17 I	
	I/D	32	177	58,52	15,86	44,05	
MD				4	5	6	7
	D	sn	176	107	102,46	108,26	70
				8	9	10	11
				64,85	60,02	31	34,02
					•	•	•
				12	14	17	18
				29,3	19,09	9,82	49,48
					•		
				19	20		
				19,33	17,2		
D SUP				L	В	GB	
P4 SUP	ı	32	177	16,25	6,7	8,8	
P4 SUP	D	32	177	16	6,86	9,08	
M1 SUP	ı	32	177	11,63	13,42		
M1 SUP	D	32	177	11,55	12,92		
M2 SUP	ı	32	177	6,44	9,14		
M2 SUP	D	32	177	6,62	9,01		
		Į.				Į.	
D INF				L	В		
M1 INF	D		176	19,83	7,47		
M2 INF	D		176	8,2	6,1		
			l	I			
AT				GB	GL	BFcr	BFcd
	I/D	596	172	64,96	33,48	36,47	26,94
			ļ	I			
				Lad	н		
				14	25,1		
					1 '		
AX				LCDe	LAPa	BFcr	Bpacd
	I/D	596	173	45,48	43,86	25,09	26,38
				1 -,	1 -,	1 -,	1 -/

BPtr

35,38

SBV

18,3

BFcd

15,73

LADO	SIGLADO/Cmolf	NUM.		ı	MEDIDAS	
-	•		•			
			GLP	SLC	BG	
D	53	179	25,03	22,88	14,86	
			Dp	SD		
D	53	171	34,52	12,05		
•				•	<u></u>	
			GL	Вр	SD	Bd
D	603	169	134,64	15,62	12,7	20,54
•	•			•	•	
			GL	LAR	SH	SB
ı	615	174	127	19,86	15,21	7,5
D	615	175		19,37	15	7,64
	D D D	D 53 D 603	D 53 179 D 53 171 D 603 169	GLP 25,03 179 25,03	GLP SLC D 53 179 25,03 22,88 D D SD D SJ 171 34,52 12,05 D GL Bp D 603 169 134,64 15,62 I 615 174 127 19,86	GLP SLC BG D 53 179 25,03 22,88 14,86 Dp SD D 53 171 34,52 12,05 D GL Bp SD D 603 169 134,64 15,62 12,7 GL LAR SH I 615 174 127 19,86 15,21

CAMINO DEL MOLINO (CARAVACA DE LA CRUZ, MURCIA) CALCOLITICO (3850±40 BP) UE 1110-SECTOR OESTE Canis I. familiaris, CMOL 7, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
	'	•		•			
UL				DPA	SDO	ВРС	
	I	585	2059	24,1	22,19	16,76	
		•		•			
FE				SD	Bd		
	I	678	184	12,3	29,9		
TI				GL	Вр	SD	Bd
	D	595	185	178		12,87	
	I	585	2065	179	33,38	12,72	20,72
CAL				GL	GB		
	D	680	183	41,5	17,15		
	_	· · · · · ·					
TA				GL			
	D	595	186	23,67			
				•			
MT				GL	Bd		
MT V	ı	585	2063	60,22	7,58		

UE 1110

Canis I. familiaris, CMOL 8, ADULTO/SENIL

HUESO	LADO	SIGLADO/Cmolf	NUM.		MEDIDAS				
	•	•		•					
SA				GL	PL	GB	BFcr		
	I/D	557	196	40,75	32,95	39,48	20,95		
	•	•	•				•		
				HFcr					
				10,6					
PEL				LAR	SH	SB			
	ı	557	191	21,2	16,17	8			
	D	557	192	21,25					
FE				Вр	DC				
	D	557	194	33,06	12,09				
				-	-				
TI				GL	Вр	SD	Bd		
	D	557	193	150	29,09	12,12	19,11		

CAMINO DEL MOLINO (CARAVACA DE LA CRUZ, MURCIA) CALCOLITICO (3850±40 BP) UE 1110

Canis I. familiaris, CMOL 9, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.	MEDIDAS			
E				HS	GLP	SLC	BG
	I	616	209	132	30,17	25,54	17,03
HU				GL	GLC	Dp	SD
	D	620	210			33,84	
	I	669	1062	138,49	135,26	33,37	10,77
				Bd			
				27,11			
R				Вр			
	I	51	212	19,52			
							-
UL				DPA	SDO	ВРС	
	ı	55	211	24,78	20,95	18,14	

UE 1107

Canis I. familiaris, CMOL 10, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.		ı	MEDIDAS	
					1-	1	1
CR				4	7	10	14a
	I/D	9	1523	39	80,58	55,08	27,6
				15 I	16	17 D	17 I
				58	15,43	43,57	44,11
				30	13,43	13,37	77,11
				19 D	19 I	22 D	22 1
				15,9	15,82	21,96	21,84
					!		· · · · · · · · · · · · · · · · · · ·
				23	24	25	26
				60,83	61,22	34,01	45,99
					·	•	
				27	28	29	31
				18,85	13,56	53,62	39,19
				32	33	34	35
				51,4	34,42	62,27	35,22
				38	39	40	
				54,79	51,64	43	
ИD				1	2	3	4
	ı	9	1525	122,09	121,84	117,5	106,39
	D	9	1524	121	121,14	116,5	106,51
			1		/-	120,0	120,02
				5	6	7	8
				101,54	106,01	70,35	66,15
				101,65	105,09	70,37	66,49
					•	•	•
				9	10	11	12
				61,67	30,78	34,78	30,77
				61,61	30,58	34,19	31,28
				14	17	18	19
				19	11,39	49,97	21,06
				19,08	11,38	49,65	20,56
				20	21		
				17,57	7,84		
				16,76	7,82		

HUESO	LADO	SIGLADO/Cmolf	NUM.		MEDIDA	AS
		-				
D SUP				L	В	GB
P4 SUP	I	9	1523	16,46	7,23	9,27
P4 SUP	D	9	1523	17,06	7,04	9,29
M1 SUP	ı	9	1523	6,46	8,75	
M1 SUP	D	9	1523	6,48	8,81	
M2 SUP	ı	9	1523	11,68	13,66	
M2 SUP	D	9	1523	11,58	13,71	
	•	•	•		•	•
D INF				L	В	
M1 INF	ı	9	1525	19,62	7,97	
M1 INF	D	9	1524	19,69	8	
M2 INF	ı	9	1525	8,26	5,77	
M2 INF	D	9	1524	8,31	5,29	
M3 INF	ı	9	1525	4,79	4,06	
M3 INF	D	9	1524	4,77	3,95	
	•	•	•		•	
E				GLP	SLC	BG
	ı	9	1520	28,35	23,1	16,45
	•	•	•	•	•	•
R				Bd		
	ı	9	1522	22,69		
	•	•		•		
UL				DPA	SDO	ВРС
	ı	9	1521	23,57	20,22	15,55

UE 1110

Canis I. familiaris, CMOL 11, JUVENIL

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
MD				12	19	20	
	I .	104	2000	32,5	19,87	16,67	
D CLID							
D SUP	1	104	2002	16.29	6.9	0.06	
P4	I	104	2003	16,28	6,8	9,96	
M1	<u> </u>	104	2003	11,47	13,13		
D INF				L	В		
M1	ı	104	2000	20,23	7,87		
M1	D	108	2002	20,12	7,4		
M2	ī	104	2000	8,67	6,51		
M2	D	108	2002	8,38	6,15		
		<u> </u>	1	1 /	1 -7 -		
HU				Bd			
	ı	97	2010	26,75			
	D	102	1060	26,24			
	•		•				
МС				GL	Bd		
MC IV	D	97	2015	53,72	6,48		
		<u> </u>	·	•			
FE				Bd			
	D	97	2011	26,14			
	•	•		-			
CAL				GB			
	I	97	2021	12,74			
MT				GL	Bd		
MT II	ı	97	2017		5,9		
MT III	ı	97	2018	59,64	6,37		
MT IV	ı	97	2019	60,75	6,04		
MT V	ı	97	2020	54,25	5,64		
FA				GL	Вр	SD	Bd
FA 1	ND	97	2023	17,43	6,42	4,02	5,3
FA 1	ND	97	2024	20,77	7,04	4,71	5,66
FA 1	ND	97	2025	20,15	7,07	4,56	6,06
FA 1	ND	97	2026	16,87	7,13	4,61	5,44
FA 1	ND	97	2027	17,46	7,34	4,69	5,46
FA 1	ND	97	2028	20,08	7,82	5,2	5,9
FA 1	ND	97	2029	19,53	7,12	4,63	5,92
FA 2	ND	97	2030	14,59	6,29	4,42	6,12
FA 2	ND	97	2031	13,91	6,52	4,63	6,37
FA 2	ND	97	2032	16,7	7,01	5,09	6,79
FA 2	ND	97	2033	10,04	6,45	5,15	6,06
FA 2	ND	97	2034	14,78	6,29	4,59	5,62
FA 2	ND	97	2035	9,63	6,04	4,55	5,32
FA 2	ND	97	2036	13,84	6,55	4,72	6,48
FA3	ND	97	2037	13,56	5,55		
FA3	ND	97	2038		5,7		

UE 1109

Canis I. familiaris, CMOL 12, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.		<u> </u>	MEDIDAS	
CR				13	13a	14	14a
	I/D	508	254	81,16	79,6	26,99	25,6
			1	L ·			I .
				17 D	17 I	19 D	19 I
				45,87	45,7	17	17,12
				<u> </u>			
				22 D	25	26	27
				20,14	34,69	41,68	17,79
						· ·	· · · · · ·
				28	34	35	
				12,17	59,88	33,53	
MD				1	2	3	4
	ı	508	252	119,77		116,09	103,57
	D	508	253	119,1	121,27	115,48	103,38
			•		•	•	•
				5	6	7	8
				99,81		70,17	65,6
				100,04	105,56	70	66,72
				-	•	•	•
				9	10	11	12
				62,03	33	34,23	30,02
				62,41	32	34,27	30,21
					•	•	•
				14	17	18	19
				20,62	10,8	50,42	21,02
				19,79	10,8	50,9	22,61
				20	21		
				17,86	7,99		
				17,26	7,94		
D SUP				L	В	GB	
P4 SUP	ı	508	254	18,15	7,57	10,09	
P4 SUP	D	508	254	17,56	7,4	10,16	
M1 SUP	I	508	254	12,47	14,62		
M1 SUP	D	508	254	12,43	14,73		
M2 SUP	D	508	254	6,84	9,17		1

HUESO	LADO	SIGLADO/Cmolf	NUM.	MEDIDAS
•	-	-	-	

D INF				L	В
M1 INF	D	508	253	20,53	8,02
M2 INF	ı	508	252	8,53	6,2
M2 INF	D	508	253	8,5	6,27
M3 INF	ı	508	252	4,72	4,19

	AT				GL	BFcr	BFcd	Lad
ĺ		I/D	508	251	33	37,47	26,64	12,76

Н	
22,9	

AX				LCDe	BFcr	BFcd
	I/D	508	249	41,97	25,73	15,82

E				HS	GLP	SLC	BG
	D	508	255	109,79	24,9	21,03	15,27

UE 1110

Canis I. familiaris, CMOL 14, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
CR				16	19 D		
	I/D	588	1012	15,61	15,64		
MD				1	2	3	8
	I	588	1011				
	D	588	1010	123,55	123,21	119,07	70,5
				9	10	11	12
				66,56	33,14	38,08	33,46
				14	17	18	19
						49,3	
				20,35	10,32		21,11
				20			
				16,26			
D SUP				L	В	GB	
P4 SUP	D	588	1012	15,68	6,96	9,7	
M1 SUP	D	588	1012	11,32	13		
M2 SUP	D	588	1012	6,8	8,66		
M2 SUP	I	588	1012	6,9	8,77		
D INF				L	В		
M2 INF	D	588	1010	8,68	6,66		
				-	-		
SA				GL	PL	BFcr	HFcr
	L/D	500	4046	45.67	22.42	21.01	1
	I/D	589	1016	45,67	39,18	21,04	11,28

UE 1106

Canis I. familiaris, CMOL 15, ADULTO/SENIL

HUESO	LADO	SIGLADO/Cmolf	NUM.		ı	MEDIDAS	
CR				8	9	10	12
	I/D	36	3000	86,11	104,72	66,07	76,79
				13	13a	14	14a
				85,1	83,8	27,4	25,44
				15 D	15 I	16 D	16 I
				62,25	61,11	16,43	16,51
				17 I	19	31	32
				47,15	15,62	38,45	44,11
				33	34	35	36
				35,06	63	33,99	33,06
				37 I			
				25,68			
MD				1	2	3	4
	I	36	3002	126,87	125,82	121,17	111,47
	D	36	3001				
				5	6	7	8
				106,18	111,36	74,65	69,23
						75	69,29
				9	10	11	12
				64,73	32	37,03	33,17
				64,7	31	36,73	32,93
				14	17	18	19
				18,83	10,6	51,07	21,04
				18,69	10,3		20,21
				20			
				17,36			
				17,55			
				/			
D SUP				L	В	GB	_

P4

М1

М1

M2

D

D

36

36

36

36

3000

3000

3000

3000

16,45

11,85

11,62

6,73

6,06

13,7

13,85

9

HUESO	LADO	SIGLADO/Cmolf	NUM.		l	MEDIDAS		
D INF				L	В			
M1	I .	36	3002	20,02	7,61			
M1	D	36	3001	20,01	7,97			
M2	ı	36	3002	8,3	6,01			
M2	D	36	3001	8,2	6,13			
		•			•			
HU				SD	Bd			
	D	651	3005	11,53	29,08			
	ı	650	3006		29,03			
		•	•	•				
R				SD	Bd			
	D	662	3004	11,7	19,54			
		•	•					
UL				GL	DPA	SDO	ВРС	
	D	655	3003	161	22,11	18,77	14,63	
	ı	652	3007		22,59	18,73	14,76	

UE 1106

Canis I. familiaris, CMOL 16, ADULTO

HUESO	LADO	SIGLADO/0	Cmolf NUM.			MEDIDAS	
				T	1	1	1
CR				22 D	22	25	27
	I/D	37	3010	20,19	20,2	32,47	16,95
				28			
				12,49			
MD				1	2	3	4
	I	649	3008	112,56	112,42	108,6	97,31
	D	37	3009				
				5	6	7	8
				92,54	96,4	64,31	60,92
						65,68	61,78
				9	10	11	14
				57,01	31,52		18,8
						31,72	18,52
				17	18	19	20
				9,66	46,98	18,84	15,08
				8,91		17,98	14,11
D SUP				L	В	GB	
P4 SUP	D	37	3010	15,66	6,49	9,02	
M1 SUP	ı	37	3010	10,58	12,75		
M1 SUP	D	37	3010	10,53	12,4		
M2 SUP	ı	37	3010	6,44	8,75		
D INF				L	В		
M1 INF	D	37	3009	17,16	7,04		
M2 INF	ı	649	3008	8,04	5,71		
M2 INF	D	37	3009	7,74	5,66		
AT				GB	GL	BFcr	BFcd
	I/D	37	3011	60,47	30,03	34,91	24,98
				GLF	Lad	н	
				23,86	11,55	24,52	
						•	
AX				LCDe	LAPa	BFcr	Bpacd
	I/D	37	3012	41,55	42,86	22,47	25,9
		•	•	•	•	•	•
				BPtr	SBV	BFcd	н

30,57

17,94

14,58

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
E		GPL	SLC	BG			
	D	26,21	22,99	16,24			
SA				GL	PL	GB	BFcr
	I/D	37	3030	33,33	29,72	36,11	18,93
					_		
				HFcr			
				9,9			
			1	la.	1	I	la-
PEL				GL	LAR	SH	SB
D	37	3044		111,02	16,26	13,71	6,22
				LFo	GBA	GBTi	SBI
				17,96	17,08	8,08	6,95
FE				Вр	DC		
12	D	37	3051	29,31	13,99		
			1000-	23,31	13,33		
TI				GL	SD		
	D	37	3047	132,79	9,77		
					,		
	I			I			
CAL				GL	GB		
	ı	37	3053	32,92	11,94		
	D	37	3048	31,33			
	•	•	•	•	•		
TA				GL			
	D	37	3048	20,66			
	ı	37	3054	20,33			
Т				GB			
T CUB	ı	37	3055	11,59			
T CUB	D	37	3050	11,8			
МТ				GL	Bd		
MTII	ı	37	3056	44,64	6,93		
MT III	ı	37	3057	49,75	6,56		
MT IV	l l	37	3058	51,41	6,03		
MT V	I	37	3059	47,35	5,49		
				la	la.	len	la.
FA	1,00=	0.7	2042	GL	Вр	SD	Bd
FA 1	I POST	37	3042	19,77	6,82	4,69	5,34
FA 1	I POST	37	3043	16,53	6,53	4,3	5,04

UE 1106

Canis I. familiaris, CMOL 17, SUBADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.		MEDIDAS				
			•						
E				HS	GLP	SLC	BG		
	I	1	1142	131,1	28,99	25,11	17,5		
	D	1	1143		29,12	25,12	17,59		
						-			
HU				GL	GLC	Dp	SD		
	D	1	1140	153	152	38,52	14,76		
	I	1	1141	155		38,87	14,59		

Bd
31,23
31,44

R				Вр	Bd
	D	1	1144	17,31	23,11

UL				DPA	SDO	ВРС
	D	1	1149			17,24
	I	1	1123	20,9	17,27	14,78

MC				GL	Bd
MC III	D	1	1147	61,01	7,59
MC IV	D	1	1146	61,53	8,05
MC V	D	1	1145	52,59	8,42

UE 1106

Canis I. familiaris, CMOL 18, ADULTO/SENIL

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
	•	•	•				
PEL				LAR	SH	SB	sc
	ı	60	1153	19,93	15,75	8,42	15,92
	-		-		-		
				GBTc	SBI		
				8,3	7,63		
						<u>-</u>	
FE				Вр	DC	SD	
	ı	67	1155		16,01	12,43	
	D	62	1152	32,66	15,86		
	-	•			-	•	
TI				GL	Вр	SD	Bd
	D	648	1156	151,78	29,36	11,25	18,81
	I	74	1183		29,39	11,94	18,84
		•	•	•			
CAL				GL	GB		
	ı	677	1150	36,38	15,45		
	D	677	1151	37,21	14,28		

Canis I. familiaris, CMOL 20, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.		l	MEDIDAS	
MD		_		1	2	3	4
	D	7	2041			1	116,91
	I	7	2042	132,14	131,8	127	117,09
				5	6	7	
					6		8
				110,54	447.20	75,6	69
				111	117,29	75,67	
				9	10	11	12
				65,9	32,14	36,2	32,64
				66,07	32,42		32,9
				<u>'</u>	1 '		
				14	17	18	19
				20,15	9,8	51,01	22,65
				20,02	9,75	51,44	23,59
					•		•
				20	21		
				18,56	8,62		
				18,58	8,79		
D SUP				L	В	GB	
P4	I	7	3070	18,62	7,25	8,07	
D INF				L	В		
M1 INF	D	7	2041	21,27	8,1		
M1 INF	I	7	2042	20,44	8,16		
M2 INF	D	7	2041	8,54	5,8		
M2 INF	<u> </u>	7	2042	8,57	5,87		
M3 INF	D	7	2041	4,44	3,86		
M3 INF	I	7	2042	4,49	3,98		
AV				ICD:	LADS	DEcr	Durad
AX	L/D	7	2072	LCDe	LAPa	BFcr	Bpacd
	I/D	7	3072	48,56	51,57	25,78	27,41
				SBV	BFcd	н	
				20,05	17,35	33,47	
E				GLP	SLC	BG	
_	ı	7	3100	26,14	21,85	16,75	
	D	7	3098	26,32	21,83	16,03	
			3030	20,32	21,3	10,03	

HUESO	LADO	SIGLADO/Cmolf	NUM.		MEDIDAS				
HU				Вр	Dp	SD	Bd		
	D	7	3097			11,76	29,13		
	I	7	3101	27,76	34,75	10,64			
R				GL	Вр	SD	Bd		
	D	7	3096	154	15,62	11,49	21,27		
	ı	7	3102	155	15,17	11,59	22,05		
				I	,	,	,		
UL				DPA	SDO	ВРС			
	D	7	3116	21,34	19,19	15,86			
	I	7	3103	21,21	19,13	15,71			
СР	LADO			GB					
C EL	D	7	3119	18,25					
C PIR	D	7	3112	15,77					
C HAM	I	7	3111	11,54					
FE				GLC	DC	SD	CD		
-	ı	7	3114	166	16,87	11,32	11,61		
	D	7	3105	160	16,16	11,56	11,44		
				Bd 27,26 18,17					
				27,26 18,17		la.			
TI		7	2100	27,26	SD 11.41	CD 10.41	Bd 20.04		
TI	D	7	3106	27,26 18,17	11,41	10,41	20,04		
ті	D I	7 7	3106 3115	27,26 18,17	_	_			
			+	27,26 18,17	11,41	10,41	20,04		
			+	27,26 18,17 Bp 30,39	11,41 11,93	10,41	20,04		
	ı	7	3115	27,26 18,17 Bp 30,39	11,41 11,93 GB	10,41	20,04		
CAL	ı	7	3115	27,26 18,17 Bp 30,39 GL 40,11	11,41 11,93 GB	10,41	20,04		
CAL	D D	7 7	3115	27,26 18,17 Bp 30,39 GL 40,11	11,41 11,93 GB	10,41	20,04		
CAL	ı	7	3115	27,26 18,17 Bp 30,39 GL 40,11	11,41 11,93 GB	10,41	20,04		
CAL	D D	7 7	3115	27,26 18,17 Bp 30,39 GL 40,11	11,41 11,93 GB	10,41	20,04		
TA T	D D	7 7 7	3115	27,26 18,17 Bp 30,39 GL 40,11 GL 23,4	11,41 11,93 GB	10,41	20,04		
CAL TA	D D	7 7	3115	27,26 18,17 Bp 30,39 GL 40,11	11,41 11,93 GB	10,41	20,04		
TA T NAV	D D	7 7 7	3115	27,26 18,17 Bp 30,39 GL 40,11 GL 23,4	11,41 11,93 GB	10,41	20,04		
TA T NAV	D D	7 7 7	3115	27,26 18,17 Bp 30,39 GL 40,11 GL 23,4 GB 14,08	11,41 11,93 GB 13,96	10,41	20,04 20,13		
TA T NAV FA FA 1	D D	7 7 7	3115 3107 3108 3110	27,26 18,17 Bp 30,39 GL 40,11 GL 23,4 GB 14,08	11,41 11,93 GB 13,96	10,41 10,86	20,04 20,13		
TA T NAV FA FA 1 FA 1	D D D ND	7 7 7 7	3107 3107 3108 3110	27,26 18,17 Bp 30,39 GL 40,11 GL 23,4 GB 14,08	11,41 11,93 GB 13,96 Bp 7,31	10,41 10,86	20,04 20,13 Bd 5,9		
TA T T NAV FA FA 1 FA 1 FA 2	D D D ND ND	7 7 7 7 7	3115 3107 3108 3110 3110 3091 3093	27,26 18,17 Bp 30,39 GL 40,11 GL 23,4 GB 14,08 GL 21,28 21,27	11,41 11,93	10,41 10,86 SD 5,03 4,87	20,04 20,13 Bd 5,9 6,11		
CAL	D D D ND ND ND	7 7 7 7 7 7	3115 3107 3108 3110 3091 3093 3095	27,26 18,17 Bp 30,39 GL 40,11 GL 23,4 GB 14,08 GL 21,28 21,27 17,08	11,41 11,93	\$D 5,03 4,87 5,06	20,04 20,13 Bd 5,9 6,11 5,79		

UE 1107

Canis I. familiaris, CMOL 21, SUBADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.		I	MEDIDAS	
CD				22.5	22.1	22	24
CR				22 D	22 1	23	24
	I/D	5	1292	20,3	20,5	63,5	56,26
					1	1.	
				25	26	27	28
				33,81	43,88	17,87	12,98
					1.	1.	_
				29	31	40	
				48,01	32,23	38,37	
4D				1	12	12	la -
MD		-	1201	115.25	114.27	109.06	100.84
	D D	5	1291	115,35	114,37	108,96	100,84
	טן	5	1290				
				5	6	7	8
				95,94	102,23	65,3	62,7
				9	10	11	12
				59	31,53	33,48	28,29
				57,64	31,04	32,48	27,9
				37,04	31,04	32,40	27,3
				14	17	18	19
				19,72	9,11	46,42	19,17
				20,53	9	46,29	15,86
				20	21		
				14,16	9,05		
				14,2			
					<u>'</u>		
D SUP				L	В	GB	
P4	D	5	1292	15,64	5,84	9,08	
P4	ı	5	1292	15,84	5,86	9,21	
M1	D	5	1292	11,35	13,31		
M2	D	5	1292	5,81	8,41		
M2	ı	5	1292	5,87	8,49		
				•	•	-	
D INF				L	В		

AX				LCDe	LAPa	BFcr	BPtr
	I/D	100	1196	41,3	42,26	24,39	31,6

18,63

19,15

7,91

7,61

6,92

7,04

5,75

5,64

1290

1291

1290

1291

M1

М1

M2

M2

D

D

5

5

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
				SBV	BFcd	н	
				17	14,8	30,06	
				17	14,0	30,00	
E				GLP	SLC	BG	
	ı	5	1248	24,04	18,92	14,96	
	•	•		'	•	•	
HU				SD	Bd		
	I	5	1199	10,22	25,76		
UL				GL	DPA	SDO	ВРС
	I	5	1201	155	20,83	17,45	13,55
			1		_		
СР				GB			
C EL	ı	5	1241	17,68			
C PIS	ı	5	1242	12,91			
C PIR	ı	5	1243	13,89			
С НАМ	I	5	1244	10,7			
C CAP	I	37	1245	11,96			
			1				
МС				GL	Bd		
MC II	ı	5	1231	43,01	6,42		
MC III	ı	5	1230	49,79	6,24		
MC IV	ı	5	1229	49,38	6,14		
MC V	I	5	1228	41,97	7,05		
SA				GL	PL	BFcr	HFcr
	I/D	5	1267	31,67	29,77	19,54	10,18
DEL				CI	LAD	lic.	cu
PEL		-	1204	GL 421 40	LAR	LS	SH 45.43
	D D	5	1204	121,49	18,81	35	15,43 15,73
	טן	5	1205		18,83		15,/3
				SB	sc	LFo	GBTc
				6,39	15,03	24,28	5,58
				6,45	15,53		5,09
				GBTi	SBI		
				8,06	5,86		
				8,00	3,60		
FF				In-	Inc	Ico	lep.

FE				Вр	DC	SD	CD
	I	5	1203			10,57	10,42
	D	5	1202	30,7	16,09	11,24	

TI				GL	Вр	SD	CD
	I	5	1200	150,18	27,52	10,06	9,89
	D	106	1206	146,19	28,74	10,,23	9,52

Bd	
18,94	
17,86	

HUESO LADO SIGLADO/Cmolf NUM. MEDIDAS	
---------------------------------------	--

	CAL				GL	GB
		I	106	1207	36,32	13,87
ſ		D	5	1272	36,06	15,92

TA				GL
	D	106	1208	21,67
		5	1273	22,5

Т				GB
T CNL	I	106	1225	12,04
T CNL	D	5	1276	12,02
T CUB	I	106	1223	12,58
T CUB	D	5	1274	12,63
T NAV	I	106	1124	12,29
T NAV	D	5	1275	12

·				GL	Bd	
MT II	ı	106	1212	48,34	5,37	
MT II	D	5	1604	48,03	5,91	
MT III	ı	106	1211	54,02	6,39	
MT III	D	5	1605	54,22	6,33	
MT IV	ı	106	1210	56,12	6,11	
MT IV	D	5	1606	55,99	5,96	
MT V	I	106	1209	50,51	5,85	

FA				GL	Вр	SD	Bd
FA 1	I POST	106	1213	19,35	7,28	4,23	5,55
FA 1	I POST	106	1214	18,97	7,25	4,17	5,16
FA 1	I POST	106	1215	15,98	6,36	3,65	4,91
FA 1	D POST	5	1280	19,53	7,25	4,15	5,23
FA 1	D POST	5	1281	19,35	6,99	4,34	5,16
FA 1	D POST	5	1282	16,06	6,81	3,87	5,25
FA 1	I ANT	5	1232	14,71	6,64	4,5	5,82
FA 1	I ANT	5	1233	18,6	6,97	4,69	6,04
FA 1	I ANT	5	1234	18,42	6,98	4,46	5,69
FA 1	I ANT	5	1235	15,46	7,08	4,21	5,57
FA 2	I POST	106	1216	9,18	5,83	4,64	5,21
FA 2	I POST	106	1217	13,3	6,26	4,04	5,92
FA 2	I POST	106	1218	13,17	5,95	4,04	5,81
FA 2	I POST	106	1219	8,92*	6,06	4,87	5,56
FA 2	D POST	5	1284	13,38	6,02	3,96	5,86
FA 2	D POST	5	1285	13,32	6,18	4,38	5,82
FA 2	I ANT	5	1236	12,19*	7,2	5,3	6,29
FA 2	I ANT	5	1237	12,56	6,29	4,14	6,23
FA 2	I ANT	5	1238	8,4	6,2	5,01	5,65
FA3	D POST	5	1277	12,95	5,2	2,79	
FA3	D POST	5	1278	11,87	5,29	2,68	
FA3	D POST	5	1279	12,45	5,05	2,78	
FA3	I ANT	5	1293	12,7	5,24	2,76	
FA3	I ANT	5	1294	12,4	5,15	3,29	

UE 1107

Canis lupus, CMOL 22, JUVENIL

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
CR				22 1	25	28	
	I/D	153	1309	28,8	46,09	15,9	
MD				14	18	19	
	ı	161	1315	27,45	69,45	30,53	
	D	161	1314	27,8			
D SUP				L	В	GB	
P4	D	161	1316		10,77	11,32	
D INF				L	В		
M1 INF	D	161	1314	28,63	11,13		
M2 INF	D	161	1314	12,72	8,15		
M2 INF	I	161	1315	12,6	8,19		
M3 INF	D	161	1314	6,46	5,82		
M3 INF	I	161	1315	6,31	5,71		
AT				GB	GL	BFcr	BFcd
	I/D	153	1307	90,78	41,7	47,96	38,78
	-	•		•		•	
				GLF	Lad	н	
				GLF 37,51	17,22	H 30,15	
AX							Bpacd
AX	I/D	153	1308	37,51	17,22	30,15	Bpacd 30,45
AX	I/D	153	1308	37,51	17,22	30,15 BFcr	
AX	I/D	153	1308	37,51	17,22	30,15 BFcr	
AX	I/D	153	1308	37,51 LCDe 59,2	17,22 LAPa 62,81	30,15 BFcr 36,45	
AX	I/D	153	1308	37,51 LCDe 59,2 SBV	17,22 LAPa 62,81 BFcd	30,15 BFcr 36,45	
AX PEL	I/D	153	1308	37,51 LCDe 59,2 SBV	17,22 LAPa 62,81 BFcd	30,15 BFcr 36,45	
	I/D	153	1308	37,51 LCDe 59,2 SBV 26,28	17,22 LAPa 62,81 BFcd 21,69 SH	30,15 BFcr 36,45 H 46,06	30,45 SC
				37,51 LCDe 59,2 SBV 26,28	17,22 LAPa 62,81 BFcd 21,69	30,15 BFcr 36,45 H 46,06	30,45
				37,51 LCDe 59,2 SBV 26,28	17,22 LAPa 62,81 BFcd 21,69 SH	30,15 BFcr 36,45 H 46,06	30,45 SC
				37,51 LCDe 59,2 SBV 26,28 LAR 27,07	17,22 LAPa 62,81 BFcd 21,69 SH	30,15 BFcr 36,45 H 46,06	30,45 SC
				37,51 LCDe 59,2 SBV 26,28 LAR 27,07	17,22 LAPa 62,81 BFcd 21,69 SH	30,15 BFcr 36,45 H 46,06	30,45 SC
PEL				37,51 LCDe 59,2 SBV 26,28 LAR 27,07 SBI 7,37	17,22 LAPa 62,81 BFcd 21,69 SH 24,27	30,15 BFcr 36,45 H 46,06 SB 11,39	30,45 SC
		161	1306	37,51 LCDe 59,2 SBV 26,28 LAR 27,07 SBI 7,37	LAPa 62,81 BFcd 21,69 SH 24,27	30,15 BFcr 36,45 H 46,06 SB 11,39	30,45 SC
PEL	D			37,51 LCDe 59,2 SBV 26,28 LAR 27,07 SBI 7,37	17,22 LAPa 62,81 BFcd 21,69 SH 24,27	30,15 BFcr 36,45 H 46,06 SB 11,39	30,45 SC
PEL	D	161	1306	37,51 LCDe 59,2 SBV 26,28 LAR 27,07 SBI 7,37	LAPa 62,81 BFcd 21,69 SH 24,27	30,15 BFcr 36,45 H 46,06 SB 11,39	30,45 SC

Bd	
28,76	

HUESO	LADO	SIGLADO/Cmolf	NUM.		MEDIDAS			
	-			-				
CAL				GL	GB			
	I	9	1297	60,33	24,81			
TA				GL				
	I	9	1298	35,23				
	-			-				
MT				GL	Bd			
MT II	I	169	1302	80,75	9,72			
MT II	D	162	1303	81,65	8,14			
MT IV	I	169	1301	93,24	9,42			
MT V	ı	169	1300	81,82	8,95			

UE 1107

Canis I. familiaris, CMOL 23, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.		MEDIDAS				
HU				Dp	SD	Bd			
	D	11	1318	37,98	12,25	30,49			
	I	11	1317	37,78	12,55				
_				I	I-	I	I		
R				GL	Вр	SD	Bd		
	D	24	1323	159	16,93	12,45	22,61		
	I	24	1321	158,5	16,28	12,56	22,63		
				1	1	I			
UL				DPA	SDO	BPC			
	D	24	1322	23,2	20,97				
	I	24	1320			14,15			
			I						
СР				GB					
C EL	I I	24	1332	21,25					
C PIS	I	24	1331	15,09					
					1				
MC				GL	Bd				
MC II	I I	24	1326	53,72	7,45				
MC III	I	24	1327	61,49	7,1				
MC V	I	24	1333	51,04	7,91				
FE				Вр	DC	SD	Bd		
	I	24	1325	35,49	18,38	13,43	28,46		
	D	159	1343	37,52	18,32				
TI				Вр	SD	CD	Bd		
	I	24	1324	32,2	12,69	12,66			
	D	159	1342				20,59		
TA				GL					
	D	159	1324	25,09					
MT				GL	Bd				
MT II	D	159	1348	58,24	7,17				
MT II	<u> </u>	11	1338	58,82	6,92				
MT III	D	159	1347		7,54				
MT III	ı	11	1337	65,95	7,39				
MT IV	D	159	1346	68,11	6,97				
MT IV	I	11	1336	67,83	7,25				
MT V	D	159	1345	60,57	6,8				
MT V	ı	11	1335	59,94	6,8				

HUESO	LADO	SIGLADO/Cmolf	NUM.	MEDIDAS				
FA				GL	Вр	SD	Bd	
FA 1	I/D	159	1349	23,33	8,13	5,78	6,64	
FA 1	I/D	159	1350	19,65	7,51	5,02	6,18	
FA 1	I/D	159	1351	23,14	8,11	5,58	6,12	
FA 1	I/D	159	1352	19,2	7,27	4,65	6,2	
FA 1	I/D	11	1339	19,19	7,3	4,77	5,83	
FA 1	I/D	11	1340	23,7	7,93	5,52	6,62	
FA 1	I/D	11	1341	23,01	8,08	5,36	6,52	
FA 1	I/D	24	1328	19,3	8,21	5,81	6,5	
FA 1	I/D	24	1329	22,62	7,66	5,69	6,55	
FA 1	I/D	24	1330	22,86	7,68	5,66	6,43	
FA 2	I/D	159	1353	15,78	7,13	5,12	7,11	
FA 2	I/D	159	1354	16,02	7,28	4,89	6,86	
FA 2	I/D	159	1355	10,2	6,85	5,63	6,5	
FA 2	I/D	159	1356	11	6,88	5,64	6,26	
FA3	I/D	159	1357	13,57	6,13			
FA3	I/D	159	1358	15,13	6,23			
FA3	I/D	159	1359	13,68	6,2			
FA3	I/D	159	1360	14,95	6,35			

CAMINO DEL MOLINO (CARAVACA DE LA CRUZ, MURCIA) CALCOLITICO (3850±40 BP) UE 1108 Canis I. familiaris, CMOL 24, ADULTO

.ADO	SIGLADO/Cmolf	NUM.	MEDIDAS				
			GL	PL	GB	BFcr	
/D	163	1426	32,46	33,74	42,07	23,51	
				GL	GL PL	GL PL GB	

HFcr	
10,98	

PEL			LAR	SH		SC
	163	1419	19,11	16,08	8,48	15,29
	163	1418	18,78	15,52	7,97	15,97

GBTc	SBI
6,87	
	6,36

UE 1107

Canis I. familiaris, CMOL 25, ADULTO/SENIL

HUESO	LADO	SIGLADO/Cmolf	NUM.	MEDIDAS				
HU				SD	Bd			
	ı	113	1441	11,83	30,1			
R				Вр	SD			
I		113	1442	16,02	12,44			
	-	•				-		
UL				DPA	SDO	ВРС		
	ı	113	1443	23,07	19,71	15,57		
MC				GL	Bd			
MC III	I	127	1434	53,99	6,73			
SA				HFcr				
	I/D	127	1433	10,44				
PEL				GL	LAR	SH	SB	
	I	139	1437	125,3	18,42	17,04	7,93	
				sc	LFo	GBTc	GBTi	
				16,59	21,66	7,6	9,39	
				SBI				
				6,5				
FE				Вр	DC	SD		
	D	115	1430	34,68	16,95	11,9		
	ı	136	1435	34,93	16,69	12,06		
							•	
					T_	Top	[
TI				GL	Вр	SD	Bd	
TI	D	127	1432	GL 154	30,22	11,9	22,68	

UE 1108

Canis I. familiaris, CMOL 26, ADULTO

HUESO	LADO	SIGLADO/C	SIGLADO/Cmolf NUM. MEDIDAS				
MD				4	5	7	8
	D	251	1621	115,84	111,22	73,89	68,8
	I	251	1622		110,15	73,5	68,2
				9	10	11	12
				63,65	31,6	37,35	32,23
				63,16	31	36,09	31,43
					-	-	•
				14	17	18	19
				17,1	11,27	51,5	22,88
				17,11	11,02		22,85
					•	•	•
				20			
				20,12			
				20,43			
D SUP				L	В	GB	
P4	D	251	1623	16,51	6,6	9,95	
M1	D	251	1623	11,94	13,66		
			· · · · · · · · · · · · · · · · · · ·	'			
D INF				L	В		
M1 INF	D	251	1621	19,45	7,8		
M1 INF	ı	251	1622	19,42	7,98		
M2 INF	D	251	1621	8,2	5,95		
M2 INF	ı	251	1622	8,16	5,84		
M3 INF	D	251	1621	4,43	3,95		
M3 INF	lı .	251	1622	4,44	3,98		
		I	I				
AT				GB	GL	BFcr	BFcd
	I/D	251	1573	70,27	33,93	37,93	27,04
			I	I		I	
				Lad	н		
				12,02	25,52		
AX				LCDe	LAPa	BFcr	Bpacd
	I/D	251	1574	44,64	47,1	26,49	25,84
		ļ.	ļ.			ļ , -	
				SBV	BFcd	н	
				19,03	17,01	31,43	
				15,03	1=-,0=	32,73	
E				GLP	SLC	BG	
_	ı	251	1579	25,17	20,56	15,72	
	D	251	1580	23,17	20,30	15,82	
		231	1300			13,02	

HUESO	LADO	SIGLADO/Cmolf	NUM.	MEDIDAS			
HU				GL	GLC	Dp	SD
	D	12	1545	146	142	35,14	10,88
	I	12	1548		144		10,9

Bd	
28,11	
28,57	

R				GL	Вр	SD	Bd
	D	12	1546		16,07		
	I	12	1549	157	16,06	11,5	22,3

UL				GL	DPA	SDO	ВРС
	I	251	1578		21,61	19,13	14,86
	D	251	1577	182	21,8	19	14,75

СР	LADO			GB
C EL	L	251	1618	16,77
СНАМ	D	251	1620	11,83

MC				GL	Bd
MC II	D	251	1584	50,26	7,57
MC II	ı	251	1587	51	7,77
MC III	I	251	1588	58,19	7,15
MC III	D	251	1585	58,42	7,24
MC IV	D	251	1586	58,34	7,24
MC IV	I	251	1589	57,45	7,49
MC V	ı	251	1590	48,63	7,58

SA				GL	PL	GB	BFcr
	I/D	12	1570	35,19	32,63	41,55	19,44

HFcr	
9,3	

FE				GL	GLC	Вр	DC
	D	12	1542	164	165	33,02	16,04
	I	12	1541	164			

SD	Bd
11,35	26,95
11,22	27,01

TI				GL	Вр	SD	CD
	l	12	1543	171	29,35	11,4	10,9
	D	12	1539	171	28,36	11,66	10,88

Bd	
19,19	
18,8	

HUESO	LADO	SIGLADO/Cmolf	NUM.	MEDIDAS

CAL				GL	GB
	I	251	1576	38,21	16,75
	D	251	1575	38,55	16,63

Т				GB	
T NAV	I	251	1619	13	
NAT				GL	

MT				GL	Bd
MT II	D	12	1555	58,21	6,77
MT III	D	12	1554	65,47	7,55
MT III	I	251	1581	65,22	7,43
MT IV	D	12	1553	67,03	7,14
MT V	D	12	1552	59,34	7,48

FA				GL	Вр	SD	Bd
FA 1	ND	12	1556	22,9	7,34	5,13	6,29
FA 1	ND	251	1582	21,53	7,15	4,62	5,8
FA 1	ND	251	1609	19,83	7,62	5,26	6,62
FA 1	ND	251	1610	22,9	7,23	5,08	6,18
FA 1	ND	251	1603	22,46	7,53	4,84	6,39
FA 1	ND	251	1608	19,43	7,04	4,59	6,17
FA 1	ND	251	1612	19,35	7,66	5,19	6,53
FA 1	ND	251	1611	19,56	7,47	5,17	6,57
FA 1	ND	251	1607	18,95	7,58	5,14	6,53
FA 1	ND	251	1602	21,62	7,27	4,46	6,15
FA 2	ND	12	1557	16,06	6,74	4,95	6,51
FA 2	ND	251	1613	12,12	7,11	5,2	6,27
FA 2	ND	251	1614	15,72	7,08	5,09	6,53
FA 2	ND	251	1615	11,9	7,42	5,7	6,46
FA3	ND	251	1616	13,34	5,67		
FA3	ND	251	1617	13,25	5,42		

Canis lupus, CMOL 27, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
CR				4	7	16 D	16 I
	I/D	250	1652	56,07	106,9	23,45	23,42
				22 D	22 1	23	24
				27,07	27	76,16	74,45
					la-	1	
				25	26	28	29
				42,96	68,82	15,97	63,8
				31	38	39	40
					70,68	61,29	56,34
				45,51	70,08	01,29	30,34
D SUP				L	В	GB	
P4 SUP	ı	250	1652	25,77	10,2	11,56	
M1 SUP	ı	250	1652	17,07	20,7	,	
M1 SUP	D	250	1652	17	20,67		
M2 SUP	ı	250	1652	9,6	14,07		
M2 SUP	D	250	1652	9,58	14		
		•	•	<u>'</u>	•		
AX				LCDe	BFcr	Bpacd	SBV
	I/D	217	1651	58,79	33,32	31,66	23,21
				BFcd	н		
				22,48	46,78		
E				GLP	SLC	BG	
	Į	190	1636	37,3	30,88	22,94	
				1		I_	
HU	_			GL	GLC	Dp	SD
	D	173	1628	195	192	51,62	15,05
				Bd			
				38,94			
R				GL	Вр	SD	Bd
	ı	172	1625	198	22,03	16,69	30,57
	D .	208	1624	1255		120,03	30,41
		1	1				30,71
мс				GL	Bd		
MC II	D	176	1637	72,32	11,17		
MC III	D	176	1638	83,01	10,73		
MC III	ı	722	1634	82,7	10,74		
MC IV	D	176	1639	82,35	10,5		

82,07

69,22

69,02

1642

1641

1640

10,51

11,82

11,65

MC IV

MC V

MC V

D

176

176

176

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
PEL				SH	SB		
rcı	ı	177	1648	25,38	10,36		
	D	177	1649	25,3	10,3		
FE				GL	GLC	Вр	DC
	D	174	1627	214	216	48,12	23,37
	I	292	1626	214	216	48,09	23,21
	•	•	•	•	•	•	•
					la.		
				SD	Bd		
				16,13	37,44		
				16,13	37,44		
TI				16,13	37,44	SD	Bd
TI	ı	173	1630	16,13 16,34	37,44 38,41	SD 16,63	Bd 26,4
ті	I D	173 292	1630 1629	16,13 16,34	37,44 38,41 Bp		
ті			_	16,13 16,34 GL 215	37,44 38,41 Bp 42,58	16,63	26,4
TI			_	16,13 16,34 GL 215	37,44 38,41 Bp 42,58	16,63	26,4
			_	16,13 16,34 GL 215 214	37,44 38,41 Bp 42,58 42,38	16,63	26,4
	D	292	1629	16,13 16,34 GL 215 214	37,44 38,41 Bp 42,58 42,38	16,63	26,4
	D	292	1629	16,13 16,34 GL 215 214	37,44 38,41 Bp 42,58 42,38	16,63	26,4

FA				GL	Вр	SD	Bd
FA 1	ND	176	1646	31,36	10,38	6,83	8,83
FA 1	ND	176	1644	31,43	10,44	6,85	8,87
FA 1	ND	176	1645	31,19	10,28	6,83	8,85
FA 2	ND	176	1647	21,74	9,16	6,55	9,1

Canis I. familiaris, CMOL 28, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
		-		·			
R				Вр	SD		
	D	146	1496	11,96	9,48		
UL				GL	DPA	SDO	BPC
	D	146	1495	146,96	16,21	15,56	9,07
	-	•	-	•		•	
МС				GL	Bd		
MC II	D	146	1506	43,85	6,23		
MC III	D	146	1505	50,99	5,41		
MC V	D	146	1503	42,79	6,27		
TI				Bd			
	D	146	1497	15,18			
					-		
FA				GL	Вр	SD	Bd
FA 1	D ANT	146	1498	19,51	6,22	3,68	4,35
FA 1	D ANT	146	1499	19,77	5,93	3,79	4,43
FA 1	D ANT	146	1500	16,37	6,9	4,13	5,15
FA 1	D ANT	146	1501	16,67	6,68	4,41	4,85
FA 2	D ANT	146	10,08	9,51	5,93	4,93	4,99

UE 1109

Canis I. familiaris, CMOL 29 SUBADULTO

HUESO	LADO	SIGLADO/Cn	nolf NUM.			MEDIDAS	
AT				GB	GL	BFcr	BFcd
	I/D	17	5222		32,23	36,52	28,04
	=	-	-	•	-	-	•
				Lad	н		
				11,2	22,44		
AX				LAPa	BFcr	Bpacd	SBV
	I/D	17	5223	41,68	25,85	23,6	18,2
		-		-	-	•	•
				BFcd	н		
				14,57	27,71		
					•		
E				HS	GLP	SLC	BG
	D	17	1807		22,68	17,63	14,35
	ı	17	1808	98,46	22,73	17,61	14,11
	•	•	•	•	•	•	•
HU				GL	GLC	Dp	SD
	D	17	1803	128,18	124,2	31,97	10,3
	ı	17	1804				10,03
	•		•	•	•	'	
				Bd			
				25,49			
				25,33			
R				GL	Вр	SD	Bd
	D	17	1805	125,34	14	9,48	18,66
	ı	17	186		14,27	9,5	
	-	•		•	•	•	•
UL				DPA	SDO	ВРС	
	ı	17	1802		16,77	13,3	
	D	17	1801	19,8	16,83	13,49	
	-			•		-	<u>-</u>
МС				GL	Bd		
MC I	ı	17	324	17,12	3,94		
MC III	D	17	325	49,46	6,76		
MC IV	D	17	326	48,8	6,51		
		'					
SA				GB	BFcr	HFcr	
	I/D	17	1809	38,85	18,32	8,64	

LADO	SIGLADO/Cmolf	NUM.		MEDIDAS		
-	-	-	-			
			GL	LAR	SH	SB
D	17	1797	111	18,83	13,9	6,05
I	17	1798	110,81		13,82	6,09
				•	-	
			GL	GLC	Вр	DC
D	17	1800	128,39	130,49	29,6	15,3
ı	17	1799	128,26	130	29,4	14,85
	D I	D 17 I 17 D 17	D 17 1797 I 1798 D 17 1800	GL D 17 1797 111 1798 110,81 GL GL	GL LAR D 17 1797 111 18,83 I 17 1798 110,81 GL GLC D 17 1800 128,39 130,49	GL LAR SH D 17 1797 111 18,83 13,9 I 17 1798 110,81 13,82 GL GLC Bp D 17 1800 128,39 130,49 29,6

SD	Bd
10,15	25
10,1	25,1

CAL				GL	GB
	D	17	327	34,2	14,6

TA				GL
	D	17	330	20,52

T				GB
T CUB	I	17	329	12,6

MT				GL	Bd
MT III	D	17	321	53,98	6,72
MT IV	I	17	319	56,47	6,68
MT IV	D	17	322	55,51	6,56
MT V	I	17	320	49,26	6,25

UE 1109-1107

Canis I. familiaris, CMOL 30, MACHO SUBADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.	MEDIDAS				
			•					
MD				1	3	4	5	
	D	21	1847					
	l l	21	1846	125,43	122,45	111,74	106,65	
				7	8	9	10	
					69,1	64,6	31,5	
				73,4	69,1	65,8	31,64	
				11	12	14	17	
				36,82	33,24	19,22	9,65	
				39,24	33,6	19,52	9,44	
				18	19	20	21	
				51,56	22,3	17,24		
				51,23	22,13	17,2	8,48	
					•	•	•	
D INF				L	В			
M1 INF	D	21	1846	20	8,13			
M1 INF	ı	21	1847	19,94	8,18			
M2 INF	D	21	1846	8,22	5,75			
M2 INF	ı	21	1847	8,22	5,68			
				!	!			
AX				LCDe	LAPa	BFcr	Bpacd	
	I/D	21	1844	42,56	47,37	26,64	28,6	
				'		·		
				SBV	BFcd	н		
				18,73	16,01	30,68		
					L	·		
E				GLP	SLC	BG		
	ı	21	1822	26,55	22,13	15,25		
	'		•	I.				
				GL	GLC	Dp		
ни								
ни	ı	148	1386	143,97	141,27	35,66		
HU							_	
ни	I D	148 151	1386 1085	143,97 143,33	141,27	35,66 35,05		
HU				143,33	138,45			
HU								

GL

68,64

1833

ОР

I/D

21

HUESO	LADO	SIGLADO/Cmolf	NUM.	MEDIDAS			
FE				GL	GLC	Вр	DC
	I	21	1819	157	160	34,89	15,85
	D	21	1820			35,06	

SD	Bd
11,3	27,36
	27,34

TI				GL	Вр	SD	Bd
	I	21	1816	163	29,9	10,25	20,41
	D	21	1817	164	29,63	11,02	20,4

TA				GL
	D	21	1818	24,07

MT				GL	Bd
MT II	D	21	1829	55,3	7,37
MT III	D	21	1828	61,96	7,75
MT IV	I	21	1831	63,11	6,68

FA				GL	Вр	SD	Bd
FA 1	ND	21	1832	21,58	7,49	5,01	6,21

Canis I. familiaris, CMOL 31, SUBADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS			
	-								
MD				1	2	3	4		
	l I	15	1849	98,61	97,1	93,2	84,48		
	D	15	1848				84,57		
		•		•			•		
				5	6	11	12		
				78,65	83,03	28,12	24,83		
				79	83,5	28,28	25		
					•		•		
				14	17	18	19		
				17,4	8,94	36,71	14,31		
				17,8	8,8	36,47	15,12		
					•	•			
				20	21				
				13,81	7,4				
				13,7	1				
					I				
D INF				L	В				
M1	ı	15	1849	19,39	7,08				
M1	D	15	1848	19,38	7,12				
M2	ı	15	1849	7,53	5,84				
M2	D	15	1848	7,45	5,75	- 			
		1	1	1.7.2	157.5				
AX				LCDe	LAPa	BFcr	Bpacd		
	I/D	15	1862	31,06	35,8	21,36	24,49		
	1.75	123	1002	101,00	100,0	122,55	2 1, 13		
				BPtr	SBV	BFcd	н		
				25,1	17,18	13,04	27,21		
				23,2	17,10	120,0 :	27,22		
E				HS	GLP	SLC	BG		
_	ı	15	1857	84,87	20,26	15,98	13,34		
	i.	123	1037	04,07	20,20	13,50	15,54		
HU				GLC	Dp	SD	Bd		
110	ı	15	1855	104,95	25,73	9,07	22,48		
		113	1033	104,55	25,75	13,07	22,40		
UL				DPA	SDO	ВРС			
OL .	D	15	1851	16,82	14,29	13,5			
	ı	15	†		14,29				
	li .	172	1856	17,34		12,95			
NAC .				lc:	P.1				
MC		45	1053	GL	Bd				
MC II	D	15	1852	34,88	6,84				
MC III	D	15	1853	39,35	6,61				
						1			
PEL				GL	LAR	SH	SB		
	D	15	1850	98,93	15,91	11,26	5,73		
FA FA 1	ND	15	1885	GL 14,44	Bp 6,61	SD 4,17	Bd 5,76		

UE 1109

Canis I. familiaris, CMOL 32, SUBADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
		<u> </u>		<u> </u>			
CR				16 D	16	19 D	19 I
	I/D	17	1790	15,55	15,9	16,44	16,5
	-	*				•	
				22 D			
				17,25			
MD				1	7	8	9
	D	17	1792	110*	67,12	63,09	60,28
	ı	17	1791	112,4*	67,1	63,1	60,28
				10	11	12	14
				31,94	32,29	29,73	20,2
				31,85	33,28	29,74	20,18
				17	18	19	20
				9,46	46,09	19,33	16,54
				9,6	46,44	19,57	16,52
D SUP				L	В	GB	
P4 SUP	ı	17	1790	17,69	7,5	9,54	
P4 SUP	D	17	1790	17,71	7,52	10,37	
M1 SUP	D	17	1790	12,55	14,4		
M1 SUP	ı	17	1790	12,48	14,69		
M2 SUP	D	17	1790	5,8	9,02		
M2 SUP	I	17	1790	5,85	9,14		
D INF				L	В		
M1 INF	D	17	1792	20,62	8,33		
M1 INF		17	1791	20,9	8,36		
M2 INF	D	17	1792	8,75	6,3		
M2 INF	l l	17	1791	8,5	6,2		
				-			
ни		1-	4704	Dp	SD	Bd	
	D	17	1784	31,28	0.6	24,9	
	<u> I</u>	17	1785		9,6	24,89	
D				Bd			
R	ı	17	1786	18,26			
	<u> </u>	17	1/00	10,20			
UL				DPA	SDO	ВРС	
OL.	D	17	1783	DFA	300	11,84	
	li li	17	1787	19,5	16,97	13,04	
		11/	1707	13,3	10,37	13,04	
СР				GB			
C PIS	D	17	307	13,66			
C PIR	D	17	316	13,33			
~ · ···\		1-1	310	13,33			

HUESO	LADO	SIGLADO/C	molf NUM.		ľ	MEDIDAS		
nac .				la	la.i			
MC I	D	17	297	GL	Bd 4.03			
MC I	ı	17	302	17,13 17,07	4,93 5,05			
MC II	D	17	298	43,77	7,2			
MC II	ı	17	303	43,77	7,05			
MC III	D	17	299	49,44	6,84			
MC III	ı	17	304	49,33	6,71			
MC IV	D	17	300	49,42				
MC IV	ı	17	305	49,42	6,55 6,6			
MC V	D	17	301	41,35	6,76			
MC V	l'	17	306	41,69	7,19			
IVIC V	!'		300	41,09	7,19			
SA				GL	PL	GB	BFcr	
	I/D	17	5225	33,16	29,67	36,13	19,77	
		I	<u> </u>	1/-	1 -7-	122,		
				HFcr				
				8,7				
				· ·				
FE				GL	GLC	Вр	DC	
	ı	17	1779		143,1	28,64	14,15	
	D	17	1780	139,17	143,55	29,01	15,12	
	•	•	•		•	•	•	
				SD	Bd			
				10,47	24,44			
				10,48	24,33			
					•	<u>-</u>		
TI				GL	Вр	SD	Bd	
	1	17	1788	138,9	25,89	9,5	18,03	
	D	17	1781		27,74		17,88	
CAL				GL	GB			
	D	17	294	33,98	14,07			
	ı	17	292	33,82	14,06			
TA				GL				
	D	17	295	21,01				
	l l	17	293	20,86				
Т				GB				
T CUB	D	17	296	12,74				
MT				GL	Bd			
MT II	D	17	312	48,41	6,6	_		
MT II	ı	17	308	48,6	6,7			
MT III	D	17	313	54,09	6,39	_		
MT III	l l	17	309	55,15	6,8	_		
MT IV	D	17	314	54,9	6,57	_		
MT IV	ı	17	310	55,34	6,47			
MT V	D	17	315	47,96	6,18	_		
MT V	- II	17	311	48,8	6,4	İ		

UE 1109

Canis I. familiaris, CMOL 33, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
CR				4	15	16	17
	I/D	20	240	46,8	60,78	15,23	47,13
	'	!		!			
				22 D	22	23	24
				21,35	21,33	61,86	60,05
						•	
				25	26	27	28
				37,47	46,76	19,24	13,7
					•		•
				29	38	39	40
				53,51	55,9	51,88	43,31
					•		•
MD				10	11	12	14
	ı	20	241	28,47			17,51
	D	20	242		41,99	32,64	
D SUP				L	В	GB	
P4 SUP	ı	20	240	17,5	7,26	8,3	
P4 SUP	D	20	240	17,5	7,46	8,2	
M1 SUP	ı	20	240	11,67	12,95		
M1 SUP	D	20	240	11,6	12,86		
M2 SUP	I	20	240	6,02	7,81		
M2 SUP	D	20	240	6,1	7,95		
				L	В		
D INF			1044	120 5	8,02		
M1 INF	ı	20	241	20,5	0,02		
M1 INF M1 INF	I D	20	242	20,47	7,8		
		20 20	242 241		7,8 5,32		
M1 INF M1 INF M2 INF M2 INF	D I D	20 20 20	242 241 242	20,47	7,8		
M1 INF M1 INF M2 INF	D I	20 20	242 241	20,47 7,1	7,8 5,32		
M1 INF M1 INF M2 INF M2 INF M3 INF	D I D	20 20 20	242 241 242	20,47 7,1 7,46 4,03	7,8 5,32 5,44 3,68		I
M1 INF M1 INF M2 INF M2 INF	D I D	20 20 20	242 241 242	20,47 7,1 7,46	7,8 5,32 5,44	Bpacd	BPtr

SBV	BFcd	н
19,8	16,59	35

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
E				HS	GLP	SLC	BG
	D	20	226	127,23	26,27	22,02	16,25
	ı	20	238	126,61	26,39	22,19	16,2
	•	•		•	•	•	•
HU				GL	GLC	Dp	SD
	ı	20	235	155	159	36,56	11,35
				Bd			
				28,83			
R				GL	Вр	SD	Bd
	D	20	236	153,41	15,15	11,45	20,94
	ı	500	2051		15,97		
	•	•	•	•	•	•	•
UL				ВРС	DPA	SDO	ВРС
	D	20	237	14			
		1	1	·			
MC				GL	Bd		

8,04
7,95
8,03
7,66
8,64
8,47
1

FA				GL	Вр	SD	Bd
FA 1	ND	500	2045	21,17	7,59	5,09	6,24
FA 1	ND	500	2048	17,33	7,65	5,06	6,18

UE 1105

Canis I. familiaris, CMOL 34, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.		1	MEDIDAS	
		<u> </u>					
MD				1	3	4	5
	ı	16	1987	110,7	106,68	95,16	91,83
	D	16	1988				
	•	•		•	•	•	•
				7	8	9	10
				65,9	62,95	57,32	27,32
				11	12	14	17
				33,8	28,68	15,82	10
				32,38	27,92		
							·
				18	19	20	21
				42,09	18,04	15,67	6,22
						15,74	
					1	1	
D SUP				L	В	GB	
P4 SUP	ı	16	1986	16,58	6,4	7,8	
P4 SUP	D	16	1986	16,5	6,51	8,3	
M1 SUP	ı	16	1986	12,2	12,49		
M2 SUP	ı	16	1986	5,85	7,94		
	!			· ·		Į.	
D INF				L	В		
M1 INF	ı	16	1987	19,42	7,45		
M2 INF	ı	16	1987	7,8	5,7		
M2 INF	D	16	1988	7,94	5,94	\neg	
M3 INF	ı	16	1987	4,08	3,63		
			•	<u> </u>			
E				GLP	SLC	BG	
	D	16	1978	22,4	17,56	13,33	
			•				
R				Вр			
	ı	16	1985	13,51			
	-!	<u> </u>	!	I			
МС				GL	Bd		
MC II	ı	16	1979	43,69	6,8		
MC III	ı	16	1980	49,53	6,7	\dashv	
MC IV	ı	16	1981	49,37	6,48		
MC V	ı	16	1982	42,01	7,01	_	

UE 1109

Canis I. familiaris, CMOL 35, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
			•				
MD				1	3	4	5
	ı	506	262				
	D	506	261	112,77	108,27	98,69	94,54
	-		-				
				7	9	10	12
							29,12
				68,13	59,32	31,06	29,07
				14	17	18	19
				17,88			
				17,9	9,36	44,79	20,08
				20	21		
				16,79			
				16,59	6,64		
D SUP				L	В	GB	
P4 SUP	I	506	263	16,24	6,96	9,38	
P4 SUP	D	506	263	16,5	6,98	9,34	
M1 SUP	I	506	263	11,55	13,33		
M1 SUP	D	506	263	11,93	13,18		
M2 SUP	I	506	263	6,73	8,87		
M2 SUP	D	506	263	6,64	8,57		
D INF				L	В		
M1 INF	l l	506	262	19,11	7,4		
M2 INF	D	506	261	8,62	6,52		
M2 INF	I	506	262	8,56	6,44		
M3 INF	D	506	261	5,23	4,56		
	1	1					
AX				LCDe	LAPa	BFcr	Bpacd
	I/D	506	257	41,08	42	24,77	25,4
							_
				SBV	BFcd	H	
				18,61	14,6	28,73	
F				CLD	CLC	DC.	
E		553	2001	GLP	SLC	BG 14.C4	
	D	552	2091	22,89	10.45	14,64	
	1	552	2096	23,15	19,45	14,79	
шп				GL	GLC	Dp	SD
HU	1	552	2097	125	121	31,67	10,47
	D	536	2097	123	121	 	10,47
	م ا	330	2000			31,64	
				Bd			
				25,3			
				23,3			
				<u> </u>			
R				GL	Вр	SD	Bd
R	1	543	2053	128,12	14,3	10,23	19,18
		343	2033	120,12	14,3	10,23	13,10
UL				DPA	SDO	ВРС	
02	1	543	2052	20,16	17,7	13,23	
	<u>. </u>	1373	2032	120,10	1,,,	13,23	

HUESO	LADO	SIGLADO/Cmolf	NUM.		MED	IDAS
PEL				SH	SB	
	I	499	2079	15,46	7,42	

FE				GL	GLC	Вр	DC
	I	536	2085	141	146	30,78	15,72
	D	529	1938			31,63	16,21

SD	Bd
11,66	26,96
	26,93

TI				GL	Вр	SD	Bd
	I	537	1886	148,9	28,06	10,6	19,02
	D	495	1889	148,78	28,18	10,56	19

MT				GL	Bd
MT II	I	499	2075	50,91	6,88

UE 1108-1109

Canis I. familiaris, CMOL 37, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
		•		•			
HU				Bd			
	D	284	1714	24,69			
	I	257	1705	24,89			
	•	•		•	.		
R				Bd			
	D	401	2069	19,19			
	ı	260	1711	18,1			
	-			•			
UL				DPA	SDO	ВРС	
	D	267	1696	19,28	16,43	12,4	
	I	273	1699	19,46	16,6	12,47	
	•	•	•	•	•	•	
мс				GL	Bd		
MC II	1	253	1686	43,91	7,05		
MC IV	ı	257	1707	49,66	6,5		
	•			•	•	<u>-</u>	
SA				GB	BFcr	HFcr	
	I/D	257	1706	33,16	18,45	8,17	
	•		•	•	•	•	
PEL				LAR	SH	SB	
	I	483	1903	17,78	13,33	6,72	
	•	•	•	•	•	•	
FE				GL	GLC	Вр	DC
	ı	253	1676	133	136	29,66	14,76
	D	253	1675	133	135	29,64	14,72
	!			l .	· ·	I	
				SD	Bd		
				10,7	24,73		
				10,67	24,41	7	

TI				GL	Вр	SD	Bd
	I	253	1677		25,21		
	D	211	1685	141	25,29	9,7	17,08

UE 1108-1109

Canis I. familiaris, CMOL 38, SUBADULTO

HUESO	LADO	SIGLADO/C	molf NUM.		ſ	MEDIDAS	
				L	la .	1.	1-
MD		227	4770	1	3	4	5
		227	1770	100.50	105.26	00.04	02.42
		241	1769	109,59	105,26	98,04	93,42
				7	8	9	10
				,			10
				64,43	61,56	57,77	27,83
				2.7.15	10-,00	15.7	1=:,==
				11	12	14	17
						16,1	
				31,58	27,35	16,05	8,8
						·	Į.
				18	19	20	
					18,85		
				43,05	18,91	16,02	
							
D INF				L	В		
P4	I	227	1770	10,52	5,07		
P4	D	241	1769	10,57	5,07		
M1	I	227	1770	18,14	7,23		
M1	D	241	1769	17,85	7,18		
M2	ı	227	1770	7,79	5,34		
M2	D	241	1769	8	5,4		
AT				GB	GL	BFcr	BFcd
	I/D	224	1772	61,39	29,79	35,01	26,16
						_	
				Lad	Н		
				12,84	24,56		
							<u> </u>
AX				LCDe	LAPa	BFcr	Bpacd
	I/D	238	1774	40,55	40,97	24,19	26,71
					1	I	I
				BPtr	SBV	BFcd	H
				31,26	18,17	15,48	28,03
E				GLP	SLC	BG	
-	1	266	1695	23,19	18,45	14,6	
		200	1033	23,13	10,43	14,0	
ни				SD	Bd		
	D	245	1697	10,74	26,66		
	ı	204	1698	10,77	26,8	\dashv	
		1204	1036		120,0		

HUESO	LADO	SIGLADO/Cmolf	NUM.			MEDIDAS	
	-			-			
R				Bd			
	I	235	1719	19,46			
UL				DPA	SDO	ВРС	
	I	235	1718	20,15	18,43	14,6	
	D	234	1729	20,11	16,74	12,76	
		•			•	•	
FE				Вр	DC	SD	Bd
	D	269	1684	31,72	16,24	11,45	24,98
	ı	268	1687				26,87
		•	!	•	•	•	•
TI				Вр			
	D	419	1890	25,45			
	•	•		•			
CAL				GL	GB		
	ı	900	1692	34,42	14,76		
	'	1			'		
TA				GL			
	ı	213	1691	19,92			
	-	1	'				
MT				GL	Bd		
MT III	D	235	1717	58,77	7,03		

UE 1108-1109

Canis I. familiaris, CMOL 39, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.		MEDIDAS	IDAS		
MD				11	12	14	19	
	D	279	1762	31,51	27,41	16,05	19,07	
				20				
				15,56				
	_					_		
D INF				L	В			
M1	D	279	1762	17,7	7,22			
M2	D	279	1762	6,81	4,75			
				1.	1		-	
HU		144	4007	GL 424.24	GLC	Dp	SD	
	D .	441	1997	124,24	122,57	28,1	10,04	
	I	255	1723			29,05	10,01	
				p.d				
				Bd				
				24,44				
D				GL	Dn	SD	Bd	
R	ı	255	1721		Bp 13,75			
		255	1721	121,38	13,/5	10,43	17,94	
UL				DPA	SDO	ВРС		
UL	D	414	413	18,34	16,07	11,96		
	ı	255	1722	18,17	16,21	11,83		
	!'	233	1722	18,17	10,21	11,63		
SA				GL	PL	GB	BFcr	
JA	I/D	443	1902	30,99	28,07	38,55	18,54	
	1,75	1445	1302	30,33	20,07	30,33	10,54	
				HFcr				
				9				
				<u> </u>				
PEL				SH	SB			
	D	443	1895	14,42	6,93			
	ı	443	1896	14,63	7,04			
			1					
FE				Вр				
	D	443	1897	29,42				
	ı	443	1898	29,93				
	!	I	ļ.	I				
TI				GL	Вр	SD	Bd	
••	ı	321	2070	140,1	26,31	10,46	17,45	
••	1.		1					
	D	321	2071	140,17	26,59	10,51	17,85	
		321	2071	140,17	26,59	10,51	17,85	
CAL		321	2071	140,17	GB	10,51	17,85	

UE 1108

Canis I. familiaris, CMOL 40, ADULTO

HUESO	LADO	SIGLADO/Cmolf	NUM.		ľ	MEDIDAS	
	•	•	•				
CR				1	2	3	4
	I/D	13	1738	181,29	166	155,73	43,14
	-	-	-		-	-	•
				5	7	8	9
				112,59	84,4	84,56	96,89
				10	12	13a	14a
				62,18	73,16	88,71	24,81
				15 D	15 I	16 D	16
				59,02	58,49	16,56	16,58
				17 D	17 I	19 D	19
				45,35	44,6	15,5	15,52
				22 D	22 I	23	24
				21,76	22,26	60,23	61,52
				25	26	27	28
				34,47	47,91	18,9	13,72
				29	30	31	32
				55,47	97,54	38,61	56,95
				33	34	35	37 D
				39,35	58,78	34,16	25,57
				37 I	38	39	40
				25,31	53,12	51,29	43,34
MD				1	2	3	4
	I .	13	1740	129,51	129,41	125,31	111,85
	D	13	1739	128,95	129,46	124,78	111,97
				5	6	7	8
				108,6	112,84	71,85	67,05
				108,42	113,5	74,58	68,75
				9	10	11	12
				62,33	30,03	36,03	31,52
				63,53	30,74	36,76	31,65

HUESO	LADO	SIGLADO/Cmolf	NUM.	MEDIDAS
10250	1-7.0-0	5. GE (2 G) CG		1112515710

14	17	18	19
19,3	11,05	48,86	21,13
18,77	10,93	51,45	22,61

20	21
16,72	
17,65	6,4

D SUP				L	В	GB
P4 SUP	ı	13	1738	16,38	6,46	9,58
P4 SUP	D	13	1738	16,44	6,91	8,93
M1 SUP	I	13	1738	12,1	14,5	
M1 SUP	D	13	1738	12,4	13,5	
M2 SUP	I	13	1738	6,8	9,22	
M2 SUP	D	13	1738	6,8	9,21	

D INF				L	В
M1 INF	ı	13	1740	19,87	7,87
M1 INF	D	13	1739	19,67	7,76
M2 INF	I	13	1740	7,8	6,26
M2 INF	D	13	1739	7,78	6,26

AT				GB	GL	BFcr	BFcd
	I/D	13	1741	73,43	37,43	37,85	30,4

Lad	н
14,68	25,46

AX				LCDe	LAPa	BFcr	Bpacd
	I/D	13	1742	45,93		29,5	27,93

BPtr	SBV	BFcd	Н
37,38	22,48	17,26	34,87

CAN XERCANVINS (CERDANYOLA, BARCELONA) EPOCA IBERICA (segunda mitad IV s. BC) SILO S-267 UE 5400

Canis I. familiaris CXE 1, ADULTO

HUESO	LADO	SIGLADO	NUM.		MEDIDA	S
CR				1	7	9
	I/D		123	200	99,8	108,88
				15 D	16 D	17 D
				67,5	19,36	52,35
				19 D	22 D	23
				19,27	24,8	65,76
				24	25	27
				64,61	36,2	18,31
				28	29	31
				15,11	54,45	38,41
				32	33	37 D
				52,18	37,85	29
				38		
				59,17		
MD	1	1		1	2	3
MID	D		121			140,96
	ם ו		121	146,16	145,17	140,96
				4	5	6
				127,29	112,28	125,65
				127,23	112,20	123,03
				7	8	9
				82,74	76,77	71
				<u> </u>		1
				10	11	12
				35,54	41,79	35,59
				<u> </u>		
				14	17	18
				21,62	11,55	55,1

HUESO	LADO	SIGLADO	NUM.	MEDIDAS		
	-		-			
MD				19	20	
	D		121	24,46	20,98	
			-			
D SUP				L	В	GB
P4	D		123	20,22	7,8	9,91
M1	D		123	14,14	15,49	
M2	D		123	8,25	10,15	
D SUP				L	В	
M1	D		121	22,75	8,75	
M2	D		121	8,81	6,5	
М3	D		121	4,82	4,57	
	-	-		-	-	•
AT				GL	BFcr	BFcd
	I/D		115	36,03	39,27	32,14
	•	•			•	-
				LAd	н	
				14,49	27,14	
					•	
AX				LCDe	LAPa	BFcr
	I/D		116	48,47	49,07	31,5

Bpacd	SBV	BFcd
28,58	22,17	18,39

Н	
36	,

HUESO	LADO	SIGLADO	NUM.		MEDIDAS		
E				HS	GLP	SLC	
	I		12	132	29,78	26,34	
	D		13	133	29,29	25,96	

BG	
17,63	
17,7	

HU			GL	GLC	Dp
	I	1	163	156	41,8
	D	4	162	156	41,71

SD	Bd
12,68	34,07
12,92	33,68

R			GL	Вр	SD
	I	2	163	18,54	12,85
	D	5	162	18,14	12,84

Bd
24,88
24,83

ı	UL			GL	DPA	SDO
		I	3	190	24,36	21,45
		D	6	188	23,28	20,42

ВРС	
17,79	
16,6	

СР			GB
C EL	D	45	22,5
C PIS	D	44	15,95
C PIR	D	49	18,82
С НАМ	D	47	12,72
C CAP	D	46	14,91

HUESO	LADO	SIGLADO	NUM.		MEDIDA	AS
мс				GL	Bd	
MC I	D		27	21,66	5,57	
MC I	I		32	21,45	5,46	
MC II	D		28	55,42	8,62	
MC II	I		33	58,7	9,05	
MC III	D		29	65,62	8,95	
MC III	I		34	67,26	9,1	
MC IV	D		30	65,08	8,5	
MC IV	ı		35	66,63	8,64	
MC V	D		31	54,66	8,7	
MC V	I		36	55,81	8,97	
			-		-	
SA				GL	PL	GB
	I/D		94	45,4	38,95	47,63

BFcr	HFcr
27,06	11,95

PEL			GL	LAR	LS
	I	14	145,11		43,08
	D	15	144,2	24,51	43,08

SH	SB	LFo
19,64	9,5	27,34
19,46	9,37	27,27

GBTc	GBA	GBTi
88,8	77,93	103,63
88,8	77,93	103,63

SBI
70,91
70,91

HUESO	LADO	SIGLADO	NUM.		MEDIDA	AS
FE				GL	GLC	Вр
	<u> </u>		7	183	182	38,57
	D		9	183	181	38,31
				DC	SD	Bd
				18,26	12,9	31,03
				19,36	12,89	31,43
RO				GL	GB	
	D		24	17,43	10,06	
			1			
TI				GL	Вр	SD
	I I		8	181	34,79	14,03
	D		10	181	33,88	13,9
				Bd		
				22,88		
				23,3		
_	1			les		
T	_			GB		
T CNL	D		50	15,35		
T NAV	D		48	16,04		
CAL				le.	l c p	
CAL			16	GL 45.06	GB	
	D		16	45,06	18,27	
ТА				GL		
TA			17			
	D		17	26,6		
NAT				GL	Bd	
MT			27			
MTII	D I	-	37 41	65,83	8,5	—
MT II				65,95	8,53	—
MT III	D		38	73,73	9,2	—
MT III	I		42	73,8	9,17	
MT IV	D		39	75,06	8,8	
MT V	D .		40	67,08	8	
MT V	I		43	66,84	7,5	

HUESO LADO SIGLADO NUM.	MEDIDAS
-------------------------	---------

FA			GL	Вр	SD	Bd
FA 1	ND	51	25,57	8,18	5,7	7,39
FA 1	ND	52	26	7,27	5,65	7,29
FA 1	ND	53	24,83	8,2	5,61	7,26
FA 1	ND	54	27	8,4	5,74	7,29
FA 1	ND	55	26,43	8,5	5,43	7,15
FA 1	ND	56	25,55	8,6	6,05	7,35
FA 1	ND	57	27,75	8,62	7,03	8,09
FA 1	ND	58	26,65	8,55	5,46	7,2
FA 1	ND	59	22,24	8,43	5,46	7,28
FA 1	ND	60	22,03	7,9	4,74	6,65
FA 1	ND	61	21,55	8,55	5,41	7,23
FA 1	ND	62	22,7	8,44	5,36	7,1
FA 1	ND	63	23,08	9,05	5,51	7,15
FA 1	ND	64	22,58	8,58	5,6	7,25
FA 1	ND	65	21,83	8,7	5,66	7,3
FA 2	ND	66	18,2	8,09	5,52	6,97
FA 2	ND	67	18,07	8,11	5,53	7,3
FA 2	ND	68	17,33	7,92	5,7	7,44
FA 2	ND	69	17,82	8	5,6	7,36
FA 2	ND	70	14,23	8,23	5,5	6,96
FA 2	ND	71	14,39	8,42	6,04	7,4
FA 2	ND	72	18,11	7,89	5,6	7,5
FA 2	ND	73	18,36	7,74	5,07	6,93
FA 2	ND	74	14,04	8,4	6,09	7,32
FA 2	ND	75	14,03	7,62	5,14	6,72
FA 2	ND	76	12,25	6,26	4,35	5,7
FA 2	ND	77	13,93	7,68	4,94	6,65
FA 2	ND	78	12,19	6,24	4,39	5,54
FA 3	ND	79	13,72	6,11		
FA 3	ND	80	14,55	6,22		
FA 3	ND	81	16,15	6,54		
FA 3	ND	82	15,97	6,52		
FA 3	ND	83	16,11	6,72		
FA 3	ND	84	14,24	6,6		
FA 3	ND	85	16,79	6,63		
FA 3	ND	86	16,6	6,64		
FA 3	ND	87	16,11	7,07		

Elementos óseo no individulizados

HUESO	LADO	SIGLADO	NUM	1	2	3	4	5	6	7
CR	I/D	191	1776							
CR	I/D	6	1512	185,83	163,82	158,57	45,53	113,04		83,38
CR	I/D	38	1515							
CR	I/D	30	1113	195,05						
CR	I/D	35	1192							
CR	I/D	27	1008							84,84
CR	I/D	4	1513							
CR	I/D	3	243	213,2	189,63	180,12	50,18	129,94		99
CR	I/D	10	1509	193,54	173,21	163,31	45,78	117,53		85,8

HUESO	LADO	SIGLADO	NUM	8	9	10	11	12	13	13a
CR	I/D	191	1776							
CR	I/D	6	1512	86,8	102,45	63,76		76,28		84,72
CR	I/D	38	1515							
CR	I/D	30	1113		107,05					
CR	I/D	35	1192							
CR	I/D	27	1008							
CR	I/D	4	1513	95,59				80,46	92,99	91,39
CR	I/D	3	243	97,78	114,2	57,8		83,75	99,53	98,15
CR	I/D	10	1509	108, 04	107,74	70,28		84,67	91,16	90,23

HUESO	LADO	SIGLADO	NUM	14	14a	15 D	15	16 D	161	17 D
CR	I/D	191	1776					23,47		
CR	I/D	6	1512		28,96	62,96	62,74	18,7	18,49	46,95
CR	I/D	38	1515				65,09	17,27	16,91	
CR	I/D	30	1113			56,04		16,55		48,82
CR	I/D	35	1192				58,73		17,24	
CR	I/D	27	1008		19,38	60,87		16,73		47,81
CR	I/D	4	1513	29,67	26,61	64,6	64,43	16,68	16,46	50,76
CR	I/D	3	243	32,61	31,49	68,6		18,39		53,59
CR	I/D	10	1509	31,15	30,27	66,22	65,88	17,52	16,58	50,87

HUESO	LADO	SIGLADO	NUM	17 IZQ	19 D	19	22 DER	22 IZQ	23	24
CR	I/D	191	1776							
CR	I/D	6	1512	45,65	16,1	16,56	22,5	22,29	60,24	60,25
CR	I/D	38	1515	48,92	17,31	17,3				
CR	I/D	30	1113	49,02	17,67	17,96	21			
CR	I/D	35	1192	43,89		15,68				
CR	I/D	27	1008	47,79	17,77	17,65		21,95	66,6	
CR	I/D	4	1513	50,17	16,8	16,61				
CR	I/D	3	243	53.74	17,23	17,22	20,31	21,34	69,05	67,6
CR	I/D	10	1509	49,95	15,86	15,6	22,13	22,15	62	61,65

HUESO	LADO	SIGLADO	NUM	25	26	27	28	29	30	31
CR	I/D	191	1776							
CR	I/D	6	1512	34,08	46,75	17,95	15,59	56,78		38,28
CR	I/D	38	1515							
CR	I/D	30	1113	36,88		18,59	14,28			35,57
CR	I/D	35	1192							
CR	I/D	27	1008							37,59
CR	I/D	4	1513							
CR	I/D	3	243	41,67	53,6	21,43	14,68	57,15		38,2
CR	I/D	10	1509	36,97	50,03	20,88		52,74	104,43	34,71

HUESO	LADO	SIGLADO	NUM	32	33	34	35	36	37 D	37 I
CR	I/D	191	1776							
CR	I/D	6	1512	51,56	33,47	61,48	34,3	35,12	27,73	27,41
CR	I/D	38	1515							
CR	I/D	30	1113						30,04	
CR	I/D	35	1192							
CR	I/D	27	1008	50,79	36,12	60	33,28	34,69		27,71
CR	I/D	4	1513			62,88	34,65	35,58		28,43
CR	I/D	3	243	52,92	39,11				29,4	29,34
CR	I/D	10	1509	54,5	39,2	62,01	34,4		26,28	26,16

HUESO	LADO	SIGLADO	NUM	38	39	40
CR	I/D	191	1776			
CR	I/D	6	1512	55,95	51,92	45,05
CR	I/D	38	1515			
CR	I/D	30	1113			
CR	I/D	35	1192			
CR	I/D	27	1008			
CR	I/D	4	1513			
CR	I/D	3	243	68,28	57,91	
CR	I/D	10	1509	56,67	51,78	46,5

HUESO	LADO	SIGLADO	NUM	1	2	3	4	5	6	7	8
MD	ı	291	266	125,12	123,49	120,07	107,61	103,59	107,98	69,75	65,89
MD	D	291	265	124,82	124,67	120,66	108,42	104,54	107,89	72,2	65,87
MD	ı	38	1517								
MD	D	38	1516	144,01		139,31	127,03	121,6		81,61	73,75
MD	ı	35	1193	124,92	124,44	118,51	108,67	103,42	108,97	72,77	
MD	D	35	1194				109,76	104,1	108,97	72,6	67,75
MD	ı	584	1065	138,6	135,87	129,82	121,17	113,94	119,5	77,65	73,42
MD	D	555	1064	139	137,37	133,35	121,69	115,2	120,5	78,17	73,46
MD	ı	142	1416	126,77		122,54	111,05	106,97		74,59	71,33
MD	D	142	1415								
MD	I .	285	269								
MD	I	565	1007				121,77	117		79,87	73,57
MD	D	4	1514								
MD	l .	3	244	150,96	151,35	145,32	132,67	127,22	133,75	84,98	76,72
MD	I	133	1477	111,17	108,95	106,07	95,13	90,5	94,03	64,33	61,82
MD	l .	317	264	122,82	121,91	116,42	107,96	102,9	107,89		
MD	I	138	1445				103,8	100,11	103,33	70,85	67,12
MD	1	630	145	124,87	124,42	118,85	107,58	102,45	108,47	70,14	70,94
MD	ı	308	1756				96,96	88,71	93,54	62,5	59,2
MD	D	308	1757								
MD	D	601	1067				101	96,88	101,45	68,95	67,69
MD	D	192	1779								
MD	D	242	1777								
MD	I	233	267								
MD	I.	599	1088								
MD	I.	578	1069								
MD	I	10	1511	134,89	135,68	129,42	116,94	112,15	119,14	77,4	72,31
MD	D	10	1510	133,5	134,5	129,08	116,71	112,2	119,27	77,78	73,28
MD	I	8	1528							78	72,38
MD	D	8	1527	139,16	140,02	134,27	125,09	118,72	125,45	79,08	74,05
MD	I	118	1531							76,13	71,24
MD	ı	222	1764								
MD	D	222	1763								64

HUESO	LADO	SIGLADO	NUM	9	10	11	12	13	14	15	16
MD	I	291	266	60,15	29,51	36,2	31,56		18,85		
MD	D	291	265	61,8	30,06	36	31,69		19,15		
MD	I	38	1517			40,11	35,18		20		
MD	D	38	1516	68,93	36,04	39,54	33,43		20,27		
MD	I	35	1193	63,98	31,7		30,72		18,81		
MD	D	35	1194	63,63	31,99	35,25	30,97		18,8		
MD	I	584	1065	67,73	34	39,45	34,24		20,56		
MD	D	555	1064	67,94	33,2	39,34	34,46		20,16		
MD	I	142	1416	65,92	31,43	38,26	33,88		18,86		
MD	D	142	1415			3859	33,4				
MD	I	285	269								
MD	I	565	1007	69,08	34,09	39,47	34,72		19,62		
MD	D	4	1514			39,23	34,81				
MD	I	3	244	70,86	34,22	42,14	37,1		20,64		
MD	I	133	1477	58,53	30	31,94	27,69		18,78		
MD	I	317	264			36,34	32,01		20		
MD	I	138	1445	63,09	31,65	35,01	30,65		18,81		
MD	I	630	145	61,21	30,55	38,17	29,59		18,7		
MD	I	308	1756	56,21	29,94	31,35	27,49		16,54		
MD	D	308	1757		29,3				16,59		
MD	D	601	1067	62,6	32	35,54	30,45		18,97		
MD	D	192	1779								
MD	D	242	1777			34,31	30,27				
MD	I	233	267				34,18		17,5		
MD	I	599	1088						19,09		
MD	I	578	1069				30,12		18,15		
MD	I	10	1511	67,15	32,15	39,94	34,55		19,31		
MD	D	10	1510	68,04	32	40,37	34,98		18,3		
MD	I	8	1528	66,91	32,92	39,93	34,43		18,5		
MD	D	8	1527	68,9	32,75	40,36	34,23		18,26		
MD	I	118	1531	66,23	31,9	37,26	32,26		19,54		
MD	ı	222	1764								
MD	D	222	1763	57,14	27,19	36,33	29,79		66,28		

HUESO	LADO	SIGLADO	NUM	17	18	19	20	21
MD	l l	291	266	10,99	46,52	20,17	17,64	7,3
MD	D	291	265	11	47,28	20,4	17,8	7,3
MD	l l	38	1517	11,5		21,63	17,83	8,7
MD	D	38	1516	10,97	54,66	21,54	18,2	
MD	l l	35	1193	10,5	49,08	20,9	17,33	8,19
MD	D	35	1194	9,97	47,11	21,37	17,35	
MD	l l	584	1065	12	54,08	21,83	19,27	8,43
MD	D	555	1064	11,91		21,18	18,55	8,4
MD	ı	142	1416	11		22,11	19,37	
MD	D	142	1415				18,7	
MD	ı	285	269		42,83	18,71		
MD	l l	565	1007	10,19	55,29	22,58	17,79	
MD	D	4	1514				17,69	
MD	l l	3	244	13	59,52	27,86	20,6	10,11
MD	ı	133	1477	9,6	43,17	19,36	16,11	7,82
MD	l l	317	264	10,29	46,19	19,48	18,38	
MD	ı	138	1445	9,98		19,45	17,41	
MD	l l	630	145	10,4		19,02	16,63	7,75
MD	ı	308	1756	8,7	43,57	18,35	14,58	6,73
MD	D	308	1757	8,67	43,34	18,9		
MD	D	601	1067	8,89		19,07	15,64	
MD	D	192	1779				16,3	7,35
MD	D	242	1777				16,06	
MD	ı	233	267				18,13	
MD	ı	599	1088	9,61				
MD	ı	578	1069					
MD	ı	10	1511	12,8	52,98	22,95	18,33	9,35
MD	D	10	1510	12,97	53,27	22,05	17,55	9,26
MD	ı	8	1528	12		23,84	20,17	
MD	D	8	1527	12,28	55,66		19,82	8,92
MD	ı	118	1531	11,6		22,8	18,14	8,04
MD	ı	222	1764					
MD	D	222	1763	9,32		18,76	15,6	

HUESO	LADO	SIGLADO	NUM	L	В	GB
M1 SUP	ı	191	1776	16,51	19,05	
M1 SUP	I	38	1515	12,94	15,32	
M1 SUP	D	38	1515	12,77	15,45	
M1 SUP	ı	30	1113	12,58	14,81	
M1 SUP	D	30	1113	12,57	15,07	
	ı	35			13,67	
M1 SUP			1192	11,65		
M1 SUP	D	35	1192	11,61	13,66	
M1 SUP	I	27	1008	12,75	14,33	
M1 SUP	D	27	1008	12,55	14,3	
M1 SUP	I	4	1513	11,51	14,24	
M1 SUP	D	4	1513	11,77	14,35	
M1 SUP	ı	3	243	12,76	13,86	
M1 SUP	D	3	243	12,65	14,04	
-						
M1 SUP	ı	599	1089	11	13,41	
M1 SUP	D	599	1089	10,61	12,97	
M1 SUP	I	10	1509	11,13	13,46	
M1 SUP	D	10	1509	11,71	13,37	
M1 SUP	ı	8	1526	11,8	14,1	
M1 SUP	D	8	1526	12,03	14,04	
M1 SUP	ı	118	1529	12,43	15,15	
M1 SUP	D	118	1529	12,43	14,9	
M1 SUP	I	286	274	11,45	13,93	
M1 SUP	D	286	274	11,52	13,86	
M1 SUP	I	310	268	12,54	14,29	
M1 SUP	D	72	1066	12,9	14,4	
M2 SUP	ı	191	1776	9,06	12,4	
M2 SUP	ı	38	1515	6,52	8,48	
M2 SUP	D	38	1515	6,69	7,5	
M2 SUP	I	30	1113	7,28	10,37	
M2 SUP	D	30	1113	7,31	10	
M2 SUP	Į.	35	1192	6,82	8,81	
M2 SUP	D	27	1008	6,3	8,56	
M2 SUP	ı	4	1513	7,1	8,67	
M2 SUP	D	4	1513	7,1	8,86	
M2 SUP	D	3	243	7,1	8,8	
M2 SUP	I	3	243	7,26	8,8	
M2 SUP	I	599	1089	7	9,07	
M2 SUP	D	599	1089	7,04	9,05	
M2 SUP	I	10	1509	6,6	8,49	
M2 SUP	D	10	1509	6,62	8,51	
M2 SUP	D	8	1526	6,92	9,4	
M2 SUP	D	118	1529	7,4	10,14	
					· ·	
M2 SUP	I	286	274	6,12	8,9	
M2 SUP	D	286	274	6,2	8,88	
P4 SUP	I	191	1776	24,3	9,35	12,34
P4 SUP	I	6	1512	17,01	7,1	8,93
P4 SUP	D	6	1512	17,36	7,02	8,8
P4 SUP	ı	38	1515	18,1	7,83	10,7
P4 SUP	D	38	1515		7,32	10,54
				18,72		
P4 SUP	1	30	1113	18,43	7,65	10,24
P4 SUP	D	30	1113	18,21	7,5	10,4
P4 SUP	I	35	1192	16,57	6,16	8,3
P4 SUP	D	35	1192	16,35	6,28	8,16
P4 SUP	ı	27	1008	18,7	7,33	9,3
P4 SUP	D	27	1008	19,11	7,46	9,32
P4 SUP	D	4	1513	17	7,4	9,37
P4 SUP	ı	3	243		7,56	9,22
				17,81		-
P4 SUP	D	3	243	17,95	7,69	9,76
P4 SUP	I	599	1089	16,49	6,67	9,11
P4 SUP	D	599	1089	16,6	6,5	9,12
P4 SUP	I	10	1509	17	6,95	8
P4 SUP	D	10	1509	17,47	7,14	7,79
P4 SUP	D	8	1526	16,83	6,83	9,95
P4 SUP	ı	118	1529	16,83	6,85	7,95
P4 SUP	D	118	1529	16,63	6,73	8,45
P4 SUP	D	286	274	17,44	7,4	9,5
P4 SUP	I	310	268	18,99	7,46	10,17
P4 SUP	D	116	5134	18,01	7,25	9,44
P4 SUP	D	198	5051	17,83	7,2	9,72

					-
HUESO	LADO	SIGLADO	NUM	L	В
M1 INF	I	203	1671	18,95	7,69
M1 INF	I	291	266	19,56	7,77
M1 INF	D	291	265	19,44	7,84
M1 INF	I	38	1517	21,1	8,45
M1 INF	I	35	1193	19,37	7,75
M1 INF	D	35	1194	18,49	7,42
M1 INF	I	524	1065	21,15	8,48
M1 INF	D	555	1064	21,18	8,58
M1 INF	I	142	1416	20,14	8,2
M1 INF	D	142	1415	19,51	8,35
M1 INF	I	565	1007	20,76	8,5
M1 INF	D	4	1514	20,93	8,45
M1 INF	I	3	244	21,6	8,86
M1 INF	D	3	245	21,5	8,48
M1 INF	ı	317	264	20,92	8,28
M1 INF	ı	138	1445	19,64	7,64
M1 INF	ı	630	145	19,52	7,55
M1 INF	D	601	1067	21,33	8,6
M1 INF	D	242	1777	19,7	7,45
M1 INF	ı	233	267	18,62	8
M1 INF	1	599	1088	20,02	7,4
M1 INF	1	599	1090	21,45	9,07
M1 INF	D	619	1090		
M1 INF	ı			21,47	8,8
	·	578	1069		8,58
M1 INF	D	72	1066	21,82	8
M1 INF	-	10	1511	20,45	8,22
M1 INF	D	10	1510	20,54	8,26
M1 INF	ı	8	1528	20,01	8,28
M1 INF	D	8	1527		
M1 INF	I	118	1531	20,4	7,72
M1 INF	D	118	1530	20,07	7,71
M1 INF	D	222	1763	18,3	6,97
M1 INF	D	314	5326	20,82	8,38
M1 INF	D	415	5244	18,93	7,4
M1 INF	I	335	5247	18,93	7,73
M2 INF	I	291	266	7,47	5,62
M2 INF	D	291	265	7,69	5,68
M2 INF	I	38	1517	8,2	5,88
M2 INF	I	35	1193	8,85	5,85
M2 INF	D	35	1194	8,82	5,82
M2 INF	ı	524	1065	8,98	6,95
M2 INF	D	555	1064	8,9	6,9
M2 INF	ı	142	1416	7,96	6,3
M2 INF	ı	285	269	7,07	5,7
M2 INF	1	565	1007	8,65	6,18
M2 INF		3	244	8,25	6,43
M2 INF	·	133	1477	7,95	5,48
M2 INF		138	1445	8,65	6
M2 INF	1	630	145		5,9
	<u> </u>	308		8,4	
M2 INF			1756	8,2	6,1
M2 INF	D	308	1757	8,35	6
M2 INF	D .	601	1067	8,25	5,94
M2 INF		233	267	8,5	5,9
M2 INF	1	599	1088	8,22	5,4
M2 INF	D	619	1006	8,41	6,75
M2 INF	D	72	1066	9,2	
M2 INF	ı	10	1511	8,29	6,06
M2 INF	D	10	1510	8,61	6,1
M2 INF	I	8	1528	8,8	5,98
M2 INF	D	8	1527	8,74	5,72
M2 INF	I	118	1531	8,93	
M2 INF	I	578	1069	8,5	6,2
M2 INF	D	222	1763	7,3	5,6
M3 INF	ı	38	1517	4,73	3,92
M3 INF	D	38	1516	5	3,94
M3 INF	ı	142	1416	5,23	4,51
M3 INF	ı	630	145	4,06	3,84
M3 INF	D	72	1066	4,61	4,28
	<u> </u>		-000	.,01	.,20

HUESO	LADO	SIGLADO	NUM	GB	GL	BFcr	BFcd	GLF	Lad	н
AT	I/D	289	1953	66,6	32,28	35,28	26,3		13,32	24,85
AT	I/D	353	1943	65,58	29,49	34,82	25,67		12,47	23,28
AT	I/D	69	1911	74,99		39,54	31,05		16,19	24,95
AT	I/D	77	1063		33,32	35,91	36,04	21,5	13,62	24,75
AT	I/D	665	1124	80,74	37,24	31,82	39,68	31,39	15,85	27,83
AT	I/D	160	1184	73,7	33,82	36,85	27,58	27,44	15,69	24,74
AT	I/D	2 = 141	5156		38,3	41,88	30,89		16,16	27,78

HUESO	LADO	SIGLADO	NUM	LCDe	LAPa	BFcr	Bpacd	BPtr	SBV	BFcd	н
AX	I/D	353	1944				23,4		18,29	15,46	
AX	I/D	583	1112	48,2	52,98	27,88	28,7		21,3	17,75	35,78
AX	I/D	66	1087			28,6			23,58		
AX	I/D	341	5273			25,85				15,96	
AX	I/D	554	5235		53,15		28,45	40,4		17,35	36,32
AX	I/D	389	5241	42,11	43,8	26,17	26,74		19,88	14,91	31,52
AX	I/D	2 = 141	5155		50,1	29,1	30,12		22,04	17,13	36,79
AX	I/D	222	1765	37,88	38,06	24,3			18,89	14,46	28,73

HUESO	LADO	SIGLADO	NUM	нѕ	GLP	SLC	BG
E	D	31	1001		25,77	22,2	16,36
E	I	567	1028		29,13	24,62	17,66
E	D	563	1040		26,04		15,94
E	I	98	1061		23,26	20,52	14,17
E	D	679	1068		16,22	14,09	9,53
E	D	583	1109		28,67		16,96
E	D	126	1402	117,8	24,88		14,88

HUESO	LADO	SIGLADO	NUM	GL	GLC	Dp	SD	Bd
ни	D	309	3142					25,59
HU	D	473	2067	127,21	123,88	30,92	9,34	24,74
HU	I	550	2082					27,55
HU	D	356	2084			34,1		
HU	D	445	2066					27,45
HU	D	386	1933					27,12
HU	ı	313	3141					27,39
HU	I	539	2083			33,84		
HU	D	547	1917	136,75	131,41	33,98	10,74	26,19
HU	I	218	1713					24,84
HU	I	244	1703					25,21
HU	D	197	1712			33,17		
HU	D	31	1057		119,18		10,82	25,1
HU	1	600	1046					33,34
HU	I	598	1045				10,8	28,01
HU	D	560	1058			34,94		
HU	D	31	1056				10,98	25,28
HU	D	568	1092				9,87	28,45
HU	I	658	1130	153	152,21	38,67	13,54	31,77
ни	D	656	1131	153	150,46	38,62	12,31	31,73
HU	D	83	1179					28,56
HU	I	85	1189		159		14,3	33,14
ни	D	88	1181	140,7	135,3	36,09	11,04	28,71
HU	I	134	1396		132,56		12,95	26,76

HUESO	LADO	SIGLADO	NUM	GL	ВР	SD	Bd
R	D	412	3124		15,03		
R	D	540	3127		15,19	10,31	21,16
R	I	69	1907				17,75
R	D	99	2004		17,65	12,78	
R	I	97	2008		18,26		
R	D	568	1091		16	10,73	
R	D	84	1178		16,62	12,27	
R	I	109	1399		19,12	12,66	22,21

HUESO	LADO	SIGLADO	NUM	GL	DPA	SDO	ВРС
UL	D	20	237		22,04	20,24	14,77
UL	ı	461	2085		21,33	17,77	14,37
UL	ı	533	412		20,16	17,62	14
UL	D	545	414		19,85	17,65	14,36
UL	D	319	415		21,86	18,64	15,19
UL	D	568	1093		24,82	21,22	16,88
UL	D	623	1108		20,31		14,16
UL	D	80	1177		22,35	19,84	13,41
UL	l	137	1412		22,38	18,47	
UL	D	109	1398		25,41	22,55	17,24

HUESO	LADO	SIGLADO	NUM	GL	Bd
MC II	D	47	59	45,07	7,46
MC II	ı	1951	318	48,38	7,83
MC II	D	3130	330	44,03	6,9
MC II	ı	2074	499	52,07	6,8
MC II	ı	1724	293	42,05	7,3
MC II	I	1686	253	43,91	7,05
MC II	D	1086	66	52,86	7,91
MC II	D	1054	611	54,32	8,06
MC II	I	1190	682	48,57	6,59
MC II	I	1446	143	49,48	7,17
MC II	I	1467	170	52,92	7,85
MC III	D	1957	289	53,32	6,87
MC III	1	3146	452	53,23	7,1
MC III	D	3118	394	55,78	7,32
MC III	I	1448	143	62,24	6,93
MC III	D	1468	170	59,67	7,45
MC IV	1	271	360	43,98	6,35
MC IV	D	1955	289	53,16	6,84
MC IV	I	1958	289	53,28	7,3
MC IV	D	3119	394	55,75	7,57
MC IV	D	3131	330	50,27	6,34
MC IV	D	1715	293	53,65	6,8
MC IV	D	1085	66	59,16	7,73
MC IV	I	1084	66	59,11	7,28
MC IV	I	1053	611	62,33	7,85
MC IV	I	1451	143	64,17	6,72
MC IV	D	1447	143	56,54	6,97
MC IV	I	1476	125	49,08	6,86
MC IV	D	1469	170	59,89	7,33
MC V	D	1948	525	43,25	7,7
MC V	D	3120	538	40,97	7,65
MC V	I	3121	538	40,95	7,53
MC V	I	1737	271	41,15	7,42
MC V	D	1186	160	45,96	7,48
MC V	ı	1475	125	43,09	7,35

HUESO	LADO	SIGLADO	NUM	GL	LAR	LS	SH	SB
PEL	D	16	1991		19,36			
PEL	I	17	1815				17,04	9,06
PEL	D	385	1904		16,59			
PEL	I	483	1903		17,78		13,33	6,72
PEL	I	203	1658				17,87	7,97
PEL	D	195	1727		23,14		17,58	7,77
PEL	I	194	1720				15,05	7,16
PEL	I	187	1725		19,48		15,79	6,88
PEL	D	674	1034		17,82		14,4	8,32
PEL	D	597	1042		19,13		12,91	6,4
PEL	I	558	1094		17,79		15,11	8,6
PEL	I	109	1117		22,28		19,68	10,4
PEL	I	114	1191		21,45		19,87	9,92
PEL	D	140	1387		18		16,93	7,62
PEL	ı	130	1479	97,48	14,35		14,74	6,91

HUESO	LADO	SIGLADO	sc	LFo	GBTc	GBA	GBTi	SBI
PEL	D	16						
PEL	I	17						
PEL	D	385		21,02				
PEL	ı	483						
PEL	ı	203						
PEL	D	195						
PEL	ı	194						
PEL	ı	187						
PEL	D	674	14,8				8,69	7,91
PEL	D	597	12,72		6,34			
PEL	ı	558	13,59		7,01			
PEL	ı	109	19,81					9,29
PEL	I	114	18,91		9,79		9,81	9,72
PEL	D	140	15,83		7,71		7,41	6,45
PEL	I	130	12,46		7,56		7,02	5,79

HUESO	LADO	SIGLADO	NUM	GL	PL	GB	BFcr	HFcr
SA	I/D	17	291	37,09	33,86		20,88	10,3
SA	I/D	259	1940	33,71	31,89	34,48	21,71	9,97
SA	I/D	558	1099	29,93	22,15			9,33
SA	I/D	308	1760	34	29,46		19,14	9,6
SA	I/D	551	5263	30,53	28,02	38,66	20,38	10,22
SA	I/D	672	5080	39,04	33,72	39,54	22,2	10,4
SA	I/D	270	5012	37,41	31,41	36,3	21,14	9,8
SA	I/D	2 = 141	5147	30,7	27,18	45,02	21,5	10,63

HUESO	LADO	SIGLADO	NUM	GL
OP	I/D	448	1945	58,76
ОР	I/D	16	1992	75,98

HUESO	LADO	SIGLADO	NUM	GL	GLC	Вр	DC	SD	CD	Bd
FE	D	16	1990	159	163	34,89	17,17	11,82		27,4
FE	ı	17	1814	160	164	35,63	16,54	11,66		27,06
FE	ı	447	2055	154	157	32,63	16,56	11,6		26,3
FE	l .	188	1655	174	175	37,3	17,36	12,8		29,27
FE	D	180	1656	151	153	33,52	16,13	11,07		26,99
FE	I	246	1672			30,51				
FE	D	215	1673			30,26				
FE	D	902	1654							23,18
FE	I	203	1659					12,54		
FE	I	243	1657				14,04			
FE	I	586	1027	168	172,5	34,58	16,33	10,71	10,87	27,2
FE	D	37	1022			36,41	17,36			
FE	D	656	1129					12,64	12,78	
FE	I	64	1188	167,5	173	37,68	18,18	11,93	11,86	30,41
FE	I	83	1180							27,4
FE	D	157	1384	156	157	33,08	16,53	12,54	12,09	26,81
FE	I	168	1383	158	158	31,9	16,9	12,27	12,57	26,22
FE	I .	140	1388				15,89	11,44	11,04	
FE	D	165	1395			32,51	16,37			
FE	l l	130	1478			28,45	12,66			
FE	i i	10	1508			37,47	17,43			

HUESO	LADO	SIGLADO	NUM	GL	Вр	SD	CD	Bd
TI	l l	447	2054			11,6		18,42
TI	I	430	1888		26,94			
TI	I	405	1891					20,16
TI	I	404	1892	167		11,97		19,81
TI	D	413	1887					19,84
TI	I	203	1670		26,41			
TI	I	608	1041		22,55			
TI	D	95	1109		28,77			
TI	D	93	1059			13,3	12,52	
TI	I	58	1122		33,77			
TI	D	87	1176	154	28,53	11,75	11,63	19,11
TI	I	68	1182	158	29,23	11,6	10,94	20,32
TI	D	152	1381	174	33,28	13,43	13,13	21,38
TI	I	671	1382		32,2	12,63	12,27	
TI	D	144	1473		28,14	11,18	10,95	18,52

HUESO	LADO	SIGLADO	NUM	GL	GB
CAL	I	283	3134	38,04	16,28
CAL	ı	364	3137	39,42	16,14
CAL	D	480	3136	35,01	14,53
CAL	ı	492	3133	38,78	16,64
CAL	D	313	3141	36,58	
CAL	D	17	404	38,96	16,1
CAL	D	622	1003	44,83	17,78
CAL	D	638	1052	42,58	16,9
CAL	D	109	1114	43,68	17,43
CAL	I	143	1453	37,46	14,68
CAL	ı	38	1518	38,81	17,28
CAL	D	333	5312	30,21	12,04
CAL	ı	333	5313	29,51	11,42

HUESO	LADO	SIGLADO	NUM	GL
TA	D	289	1954	22,77
TA	D	313	3141	22,44
TA	I	404	1893	23,72
TA	D	109	1115	25,56
TA	D	144	1474	24,27
TA	I	143	1454	23,02

HUESO	LADO	SIGLADO	NUM	Bd
MTII	D	1105	47,68	6,09
MT II	D	1449	55,7	6,97
MT III	ı	3138	55,57	6,83
MT III	ı	3117	61,4	7,6
MT III	D	3125	53,7	6,85
MT III	D	405	62,9	7,54
MT III	ı	1693	53,61	6,48
MT III	D	1070	70,51	7,68
MT III	D	1077	50,36	6,38
MT III	ı	1450	62,77	6,77
MT IV	D	1956	60,11	7,05
MT IV	ı	1950	50,57	6,5
MT IV	I	1894	64,05	7,82
MT IV	I	1716	63,72	6,58
MT IV	D	1674	57,48	6,54
MT IV	D	1030	55,67	7,16
MT IV	I	1047	71,28	7,58
MT IV	D	1079	51,53	5,97
MT V	Į	1949	44,64	6,34
MT V	Į	1952	50,68	6,4
MT V	I	2063	60,22	7,58
MT V	ı	1044	60,11	7,28
MT V	I	1452	57,93	6,59

HUESO	LADO	SIGLADO	NUM	GB
T CUB	Ι	17	406	14
T CUB	_	143	1464	12,08
T NAV	I	143	1465	13,75
T NAV	I	38	1519	14,4

HUESO	LADO	SIGLADO	NUM	GL	Вр	SD	Bd
FA 1	ND	360	270	19,39	6,73	4,76	5,57
FA 1	ND	17	331	16,34	7,02	4,65	6,14
FA 1	ND	17	332	20,15	6,68	4,2	5,64
FA 1	ND	17	333	19,23	6,85	4,42	6,03
FA 1	ND	17	334	17,12	6,67	4,03	5,43
FA 1	ND	17	335	16,55	7,26	4,71	6,22
FA 1	ND	17	336	20,45	6,54	4,08	5,63
FA 1	ND	17	337	19,87	7,1	4,64	
FA 1	ND	17	338	16,1	7,08	4,88	6,19
FA 1	ND	17	339	16,4	6,75	4,3	5,92
FA 1	ND	17	340	19,4	6,83	4,37	6,11
FA 1	ND	17	341	19,21	6,86	4,5	6,07
FA 1	ND	17	342	16,39	6,3	3,88	5,37
FA 1	ND	17	343	16,21	6,41	3,85	5,41
FA 1	ND	17	344	19,66	6,71	4,41	6,04
FA 1	ND	17	345	19,86	6,89	4,74	6,05
FA 1	ND	17	346	16,99	6,33	3,5	5,1
FA 1	ND	17	347	17,4	7,07	4,43	5,66
FA 1	ND	17	348	19,65	6,97	4,43	5,71
FA 1	I/D	673	1082	16,8	6,76	3,99	4,98
FA 1	I/D	160	1185	21,43		6,3	7,12
FA 1	I/D	143	1455	21,72	8,1	5,17	6,15
FA 1	I/D	143	1456	21,35	7,51	5,31	5,41
FA 1	I/D	143	1457	21,41	7,53	5,3	6,05
FA 2	ND	17	349	13,59	6,57	4,5	6,14
FA 2	ND	17	350	13,12	6,12	4,31	5,75
FA 2	ND	17	351	13,28	6,21	4,19	5,88
FA 2	ND	17	352	13,61	6,39	4,27	6,09
FA 2	ND	17	353	10,61	6,65	4,9	6,2
FA 2	ND	17	354	9,66	6,02	4,15	5,36
FA 2	ND	17	355	10,49	6,4	4,58	5,64
FA 2	ND	17	356	13,74	6,3	4,17	5,71
FA 2	ND	17	357	13,13	6,39	4,49	6,21
FA 2	ND .	17	358	14,04	6,01	3,7	5,4
FA 2	I/D	670	1075	14,24	6,26	4,5	6,01
FA 2	I/D	673	1083	9,41	6,03	4,62	5,18
FA 2	I/D	673	1078	9,6	5,98	5,23	5,29
FA 2	I/D	143	1458	14,3	7,2	4,73	6,63
FA 2	I/D	143	1459	14,62	7,15	5,03	6,66
FA 2	I/D	143	1460	14,45	6,73	4,77	6,18
FA 2	I/D	143	1461	9,92	6,59	5,46	5,76
FA 3	ND	17	359	11,74	5,85		
FA 3	ND	17	360	11,61	5,42		
FA 3	ND	17	361	13	5,73 4,9		
FA 3	ND	17	362	10,18			
FA 3	ND I/D		363	11,33	5,22	2.02	
FA 3	I/D	143	1076	13,79	5,9	3,03	
FA 3	I/D	143	1462	13,13			
FA 3	I/D	659	1463	13,13 14,5	7,52	3,51	
FA 3	I/D	671	5117 5116	18,34	6,6 8,57		
FA 3	טיון	0/1	2110	10,34	0,37	<u> </u>	

MAS CASTELLAR (PONTOS, GERONA) EPOCA IBERICA (V-IV s. aC) ZONA 20, SILO S-137, UE 20092 Canis I. familiaris MCS 1, SENIL

HUESO	LADO	SIGLADO	NUM.		MEDIDA	S
CR				1	2	3
	I/D	MC-20092-1	1	200	191	180
				4	5	7
				49,11	126,89	104,75
				8	9	12
				99,38	109,6	89,9
				15 D	15 I	16 D
				65,66	65,44	18,41
				17 D	17 I	19 D
				51	50,9	18,36
				19 i	23	24
				18,38	69,4	66,98
				25	27	29
				38,58	20,5	54,67
				31	32	33
				38,46	49,56	34,68
				34	35	37 D
				63,26	35,85	32,22
				20	20	40
				38	39	40
				64,45	52,65	49,11

HUESO	LADO	SIGLADO	NUM.		MEDIDA	\S
MD				4	5	7
	<u> </u>	MC-20092-1	2			
	D	MC-20092-1	3	129,24	119,13	82,38
				8	9	10
				74,93*	70,46	36,85
				74,09*	69,15	35,5
				,,,,,	1 , -	1/-
				11	12	14
				39,57	35,31	20,22
				39,26	34,1	20,06
				<u> </u>	1 '	1 /
				17	18	19
				11		25,61
				10,83	60,84	26,6
				20 20,15 20,16		
SCUP				20,15 20,16		les.
		MC 20002 1		20,15 20,16	B 7.5	GB
P4		MC-20092-1	1	20,15 20,16 L 18,58	7,5	10,4
P4 P4	D	MC-20092-1	1	20,15 20,16 L 18,58 18,52	7,5 7,37	
P4 P4 M1	D I	MC-20092-1 MC-20092-1	1	20,15 20,16 L 18,58 18,52 12,6	7,5 7,37 15,11	10,4
D SUP P4 P4 M1 M1	D I D	MC-20092-1 MC-20092-1 MC-20092-1	1 1 1	20,15 20,16 L 18,58 18,52 12,6 12,5	7,5 7,37 15,11 15,1	10,4
P4 P4 M1 M1 M2	D I D I	MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1	1 1 1 1	20,15 20,16 L 18,58 18,52 12,6 12,5 7,29	7,5 7,37 15,11 15,1 9,26	10,4
P4 P4 M1 M1 M2	D I D	MC-20092-1 MC-20092-1 MC-20092-1	1 1 1	20,15 20,16 L 18,58 18,52 12,6 12,5	7,5 7,37 15,11 15,1	10,4
P4 P4 M1 M1 M2 M2	D I D I	MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1	1 1 1 1	20,15 20,16 L 18,58 18,52 12,6 12,5 7,29 7,3	7,5 7,37 15,11 15,1 9,26 9,26	10,4
P4 P4 M1 M1 M2 M2 D INF	D I D I D D	MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1	1 1 1 1 1	20,15 20,16 L 18,58 18,52 12,6 12,5 7,29 7,3	7,5 7,37 15,11 15,1 9,26 9,26	10,4
P4 P4 M1 M1 M2 M2 D INF	D I D I	MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1	1 1 1 1 1 1	20,15 20,16 L 18,58 18,52 12,6 12,5 7,29 7,3	7,5 7,37 15,11 15,1 9,26 9,26 9,26	10,4
P4 P4 M1 M1 M2 M2 D INF M1	D I D I D I D I I D I I I I I I I I I I	MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1	1 1 1 1 1 1 3	20,15 20,16 L 18,58 18,52 12,6 12,5 7,29 7,3 L 21,07 20,93	7,5 7,37 15,11 15,1 9,26 9,26 8 8,58 8,4	10,4
P4 P4 M1 M1 M2 M2 D INF M1 M1 M1	D I D I D I D D D D	MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1	1 1 1 1 1 1 3 2	20,15 20,16 L 18,58 18,52 12,6 12,5 7,29 7,3 L 21,07 20,93 8,58	7,5 7,37 15,11 15,1 9,26 9,26 9,26	10,4
P4 P4 M1 M1 M2 M2 D INF M1 M1 M2	D I D D D I D D I I D D D I I D D D I I D	MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1	1 1 1 1 1 1 3 2 3 2	20,15 20,16 L 18,58 18,52 12,6 12,5 7,29 7,3 L 21,07 20,93 8,58 8,5	7,5 7,37 15,11 15,1 9,26 9,26 8 8,58 8,4 6,93 6,91	10,4
P4 P4 M1 M1 M2 M2 D INF M1 M1 M1 M2	D I D D D D D D D D D D D D D D D D D D	MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1	1 1 1 1 1 1 3 2	20,15 20,16 L 18,58 18,52 12,6 12,5 7,29 7,3 L 21,07 20,93 8,58	7,5 7,37 15,11 15,1 9,26 9,26 9,26	10,4
P4 P4 M1	D I D D D I D D I I D D D I I D D D I I D	MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1 MC-20092-1	1 1 1 1 1 1 3 2 3 2	20,15 20,16 L 18,58 18,52 12,6 12,5 7,29 7,3 L 21,07 20,93 8,58 8,5	7,5 7,37 15,11 15,1 9,26 9,26 8 8,58 8,4 6,93 6,91	10,4

AX				BFcr
	I/D	MC-20092-1	5	30,45

MAS CASTELLAR (PONTOS, GERONA) EPOCA IBERICA (V-IV s. BC) ZONA 20, SILO S-137, UE 20092 Canis I. familiaris MCS 1, SENIL

HUESO	LADO	SIGLADO	NUM.		MEDIDA	S
	•	•	•	•		
CR				1	2	3
	I/D	MC-20092-1	1	200	191	180
				4	5	7
				49,11	126,89	104,75
				8	9	12
				99,38	109,6	89,9
				15 D	15 I	16 D
				65,66	65,44	18,41
					1	
				17 D	17	19 D
				51	50,9	18,36
				19 i	23	24
				18,38	69,4	66,98
				10,30	09,4	00,98
				25	27	29
				38,58	20,5	54,67
					•	<u>'</u>
				31	32	33
				38,46	49,56	34,68
				34	35	37 D
				63,26	35,85	32,22
				38	39	40
				64,45	52,65	49,11

HUESO	LADO	SIGLADO	NUM.		MEDIDA	AS
			-			
MD				10	11	12
	I		2	35,12	40,67	36,1
	D		3	35,22	40,33	36
				14	17	18
				20,46	10,62	57,09
				20,4	11,03	
				19	20	
				24,57	21,5	
				24,99	21,43	
D SUP				L	В	GB
P4	D	MC-20120-2	1	19,45	8,65	11,08
P4	I	MC-20120-2	1	19,47	8,63	11,05
M2	D	MC-20120-2	1	7,75	11	
D INF				L	В	
M1	D	MC-20120-2	3	21,64	9	
M2	D	MC-20120-2	3	9,57	7,07	
M2	I	MC-20120-2	2	9,51	6,22	
M3	D	MC-20120-2	3	5,34	4,42	
AT				GB	GL	BFcr
	I/D	MC-20120-2	4	84,33	38,27	40,48
				BFcd	Lad	Н
				32,75	15,4	30
AX				LCDe	LAPa	BFcr
	I/D	MC-20120-2	5	45,63	51,06	31,9
				Bpacd	BPtr	SBV
				33,09	44,75	25,2
				BFcd	н	
				10 61	27 14	1

BFcd	Н
18,64	37,14

E				HS	GLP	SLC
	D	MC-20120-2-1	6	141,71	31,08	25,71
	ı	MC-20120-2-5	7		30,93	25,25

BG	BG
18,29	18,29
18,36	18,36

HUESO	LADO	SIGLADO	NUM.	MEDIDAS		
HU				GL	GLC	Dp
	1.	NAC 20120 2 12		100	104	42 F

HU				GL	GLC	Dp
	1	MC-20120-2-12	8	169	164	43,5
	D	MC-20120-2-2	9	169	164	43,59

SD	Bd
13,97	33,28
14,07	33,63

R				GL	Вр	SD
	I	MC-20120-2-13	10	173	19,05	13,3
	D	MC-20120-2-4	11	170	19,03	13,21

Bd
24,7
24,53

UL				GL	DPA	SDO
	I	MC-20120-2-13	12	198	26,46	22,64
	D	MC-20120-2-3	13	196	25,91	22,23

ВРС
17,47
17,32

СР				GB
C EL	D	MC-20120-2-9	14	23,21
C PIS	I	MC-20120-2-10	15	16,84
C PIS	D	MC-20120-2-10	16	17,26
C PIR	I	MC-20120-2-10	17	19,1
С НАМ	D	MC-20120-2-9	18	12,83
С САР	ı	MC-20120-2-10	19	14,6
С САР	D	MC-20120-2-9	20	14,75
C TRZ	D	MC-SN	21	9,49

МС				GL	Bd
MC I	I	MC-20120-2-9	22	21	5,86
MC I	D	MC-20120-2-10	23	20,94	5,7
MC II	ı	MC-20120-2-9	24	54,82	9,5
MC II	D	MC-20120-2-9	25	55,12	10,11
MC III	I	MC-20120-2-9	26	63,87	9,56
MC III	D	MC-20120-2-9	27	63,84	9,56
MC IV	I	MC-20120-2-9	28	64,14	9,15
MC IV	D	MC-20120-2-9	29	64,06	9,1
MC V	1	MC-20120-2-9	30	54,33	10,27
MC V	D	MC-SIN NUM	31	54,35	10,1

HUESO	LADO	SIGLADO	NUM.		MEDIDA	IS
	1	10.000.00	11111111			
SA				GL	PL	GB
	I/D	MC-20120-18	32	43,93	37,25	47,9
			Ļ	- /		,-
				BFcr	HFcr	
				22,64	11,28	
HUESO	LADO	SIGLADO	NUM.		MEDIDA	ıs
	·			l		
PEL				GL	LAR	SH
	ı	MC-20120-17	33	154	24,64	22
	!	· · · · ·		<u> </u>		
				SB		
				10,6		
				<u> </u>		
FE				GL	GLC	Вр
	D	MC-20120-2	34	186	183	41,9
	ı	MC-20120-15	35	185	183	42
			•	1	L	I
				DC	SD	Bd
				19,03	14	33,34
				19,08	14	33,52
					!	Į ·
RO				GL	GB	
RO	ı	MC-20120-2-15	36		GB	
RO	I	MC-20120-2-15	36	GL 18,06		
RO	I	MC-20120-2-15	36			
RO TI	ı	MC-20120-2-15	36			SD
	I D	MC-20120-2-15	36	18,06	10	SD 13,95
				18,06 GL	Bp 36,76	13,95
		MC-20120-2	37	18,06 GL 190	10 Bp	
		MC-20120-2	37	18,06 GL 190	Bp 36,76	13,95
		MC-20120-2	37	18,06 GL 190 188	Bp 36,76	13,95
		MC-20120-2	37	18,06 GL 190 188	Bp 36,76	13,95
		MC-20120-2	37	18,06 GL 190 188 Bd 22,87	Bp 36,76	13,95
TI		MC-20120-2	37	18,06 GL 190 188 Bd 22,87	Bp 36,76	13,95
		MC-20120-2	37 38	18,06 GL 190 188 Bd 22,87 23,7	Bp 36,76	13,95
TI	D I	MC-20120-2 MC-20120-25	37 38 38	18,06 GL 190 188 Bd 22,87 23,7	Bp 36,76	13,95
TI	D I	MC-20120-2 MC-20120-25	37 38 38	18,06	Bp 36,76	13,95
TI	D I	MC-20120-2 MC-20120-25	37 38 38	18,06	Bp 36,76	13,95
TI FI	D I	MC-20120-2 MC-20120-25	37 38 38	Bd 22,87 23,7 GL 178 177	Bp 36,76 36,47	13,95
TI FI	D I	MC-20120-2 MC-20120-25 MC-20120-2-16 MC-20120-2-16	37 38 39 40	18,06	Bp 36,76 36,47	13,95
TI FI	D I	MC-20120-2 MC-20120-25 MC-20120-2-16 MC-20120-2-16 MC-20120-2-0	37 38 39 40	18,06	Bp 36,76 36,47 GB 19,25	13,95
TI FI	D I	MC-20120-2 MC-20120-25 MC-20120-2-16 MC-20120-2-16 MC-20120-2-0	37 38 39 40	18,06	Bp 36,76 36,47 GB 19,25	13,95
TI FI CAL	D I	MC-20120-2 MC-20120-25 MC-20120-2-16 MC-20120-2-16 MC-20120-2-0	37 38 39 40	18,06	Bp 36,76 36,47 GB 19,25	13,95

HUESO LADO SIGLADO NUM.	MEDIDAS
-------------------------	---------

Т				GB
T CNL	D	MC-20120-22	45	15
T CIN	D	MC-20120-22	46	8
T CUB	D	MC-20120-22	47	16,4
T NAV	D	MC-20120-22	48	14,75

HUESO	LADO	SIGLADO	NUM.	MEDIDAS
-------	------	---------	------	---------

MT				GL	Bd
MT II	D	MC-20120-23	49	61	8,95
MT II	I	MC-20120-28	50	61,24	8,79
MT III	D	MC-20120-23	51	69,95	9,72
MT III	I	MC-20120-28	52	69,52	9,6
MT IV	D	MC-20120-23	53	72,23	8,96
MT IV	I	MC-20120-28	54	72,74	8,8
MT V	D	MC-20120-23	55	65,08	9,28
MT V	I	MC-20120-28	56	65,12	8,6

FA				GL	Вр	SD	Bd
FA 2	ND	MC-20120-2-9	57	12,14	9,41	6,78	7,68
FA 2	ND	MC-20120-2-10	58	16,91	8,03	6,14	8,15
FA 2	ND	MC-20120-2-10	59	12,5	8,92	7,08	7,8
FA 2	ND	MC-20120-2-10	60	17,54	7,84	5,82	7,64
FA 2	ND	MC-20120-2-10	61	17,17	8,35	6,38	8,06
FA 2	ND	MC-SIN NUM	62	16,67	8,03	6,26	8,09
FA 2	D	MC-20120-24	63	17,8	8,2	6,34	7,8
FA 2	I	MC-20120-29	64	12,08	8,21	6,39	6,97
FA 3	ND	MC-20120-2-11	65	17,75	7,3		
FA 3	ND	MC-20120-2-11	66	16,47	7,2		
FA 3	ND	MC-20120-2-11	67	16,57	7,05		

AMPURIAS (LA ESCALA, GERONA) EPOCA GRIEGA (III s. BC) UE 87-N3-4051

Canis I. familiaris AMP 1, SENIL

HUESO	LADO	SIGLADO	NUM.		MEDIDAS		
MD				4	5	6	
	D	87N34051	1	86,68	82,28	87,47	
	I	87N34051	2	86,55	82,8	87,45	

7	8	9
56,73	54,29	49,75
57,72	54,36	49,97

10	11	12
25,9	29,17	25,14
25,6	29,09	24,75

14	17	18
14,14	7,43	39,43
14,02	7,46	39,15

19	20
16,5	14,5
15,93	14,48

D INF				L	В
M1	D	87N34051	1	15,52	6,17
M1	I	87N34051	2	15,65	6,4
M2	D	87N34051	1	6,4	4,6
M2	I	87N34051	2	6,2	4,6
M3	D	87N34051	1	3,36	2,95

HUESO	LADO	SIGLADO			MEDIDA	AS
	-	-	•			
D SUP				L	В	GB
P4	D	87N34051	3	14,09	6,35	7,86
P4	ı	87N34051	3	14,43	6,3	8,03
M1	D	87N34051	3	9,93	11,09	
M1	ı	87N34051	3	9,78	11,1	
M2	D	87N34051	3	4,9	6,82	
M2	ı	87N34051	3	4,6	6,8	
		-		•	•	•
AT				GB	GL	BFcr
	I/D	87N34051	4	57,3	28,1	30,31
	-	-	-	-	-	-
AX				BFcd	Lad	н
	I/D	87N34051	5	23,34	11,6	21,17
	=	-		•	-	-
				LAPa	BFcr	Bpacd

Bpacd
22,08

BPtr	SBV	BFcd
27,03	15,16	12,63

Н	
24,5	

E				HS	GLP	SLC
	D	87N34051	6		21,55	17,19
	1	87N34051	7	98,34	21,27	17,19

BG	
13,21	
13	

HU				GL	GLC	Dp
	D	87N34051	8	112,26	110	26,88
	L	87N34051	9	111,28	109,17	26,73

SD	Bd
8,1	23,6
8,07	23.88

HUESO LADO SIGLADO	MEDIDAS
--------------------	---------

R				GL	ВР	SD	Bd
	D	87N34051	10	112,6	12,45	7,8	16,47
	I	87N34051			12,41	7,8	

UL				GL	DPA	SDO	ВРС
	D	87N34051	11		16,32	14,59	11,82
	I	87N34051	12	131,64	16,33	14,56	11,77

СР				GB
C EL	D	87N34051	13	16,22
C PIS	D	87N34051	14	11,7
C PIS	I	87N34051	15	11,9
СНАМ	D	87N34051	16	9
C CAP	D	87N34051	17	12,95

мс				GL	Bd
MC I	I	87N34051	18	15,35	4,07
MC II	D	87N34051	19	39,55	6,1
MC II	I	87N34051	20	39,38	6
MC III	D	87N34051	21	46	6,29
MC III	I	87N34051	22	45,92	6,27
MC IV	D	87N34051	23	45,43	5,85
MC IV	I	87N34051	24	44,55	5,95
MC V	D	87N34051	25	38,59	5,99
MC V	I	87N34051	26	38,12	6,13

FE				GL	GLC	Вр
	D	87N34051	27	126,05	124,3	24,93
	I	87N34051	28	125,8	124,15	24,85

DC	SD	Bd
12,99	9,24	20,69
12,81	9,23	20,43

HUESO	LADO	SIGLADO	MEDIDAS			
TI			CI.	Bn.	cn.	l DM

TI				GL	Вр	SD	Bd
	D	87N34051	29	125,31	24	7,8	15,67
	I	87N34051	30	125,41	23,9	7,7	15,45

CAL				GL	GB
	I	87N34051	31	30,23	13,73

TA				GL
	I	87N34051	32	19,57

MT				GL	Bd
MT II	D	87N34051	33	44,74	5,55
MT II	I	87N34051	34	44,13	5,52

FA				GL	Вр	SD	Bd
FA 1	ND	87N34051	35	15,08	6,38	3,86	5,1
FA 1	ND	87N34051	36	17,32	6	3,53	5,14
FA 1	ND	87N34051	37	17,34	6,2	3,74	5,23
FA 1	ND	87N34051	38	15,48	6,39	3,92	5,09
FA 2	ND	87N34051	39	8,76	6,1	4,77	5,39
FA 2	ND	87N34051	40	11,95	5,63	3,87	5,46
FA 2	ND	87N34051	41	11,77	5,67	3,94	5,39
FA 3	ND	87N34051	42	12,15	4,75		
FA 3	ND	87N34051	43		5,17		
FA 3	ND	87N34051	44	12,36	4,74		
FA 3	ND	87N34051	45	12,05	5,02		
FA 3	ND	87N34051	46	12,01	4,33		

ELS MALLOLS (CERDANYOLA, BARCELONA) EPOCA TARDORROMANA (V-VII s. AD) SILO E-183 UE II

Canis I. familiaris MALL 1, JUVENIL

HUESO	LADO	SIGLADO	NUM.			MEDIDAS	
	·	Į.					
AT				BFcr	BFcd		
	I/D		25	36,6	29		
	•	•	•				
AX				BFcr	SBV		
	I/D		24	25,52	18		
					-		
E				HS	GLP	SLC	BG
	D		23	100	23,23	20,82	14,68
	•	•	-	-			
HU				GLC	Dp	SD	Bd
	D		18	125	28,09	10	27,09
	I		19	124,74	27,8	9,86	26,55
R				GL	ВР	SD	Bd
	D		20	120	13,59	9,15	18,05
	I		21	119,94	13,29	9,14	17,71
	-	-		-	-	-	-
UL				GL	DPA	SDO	ВРС
	D		22	140	20,49	17,32	14,75
	•	•	•	•			
МС				GL	Bd		
MC II	D	8	11	46,95	7,47		
MC V	D	5	10	43,57	7,8		
			•	-			
PEL				GL	LAR	SH	SB
	D		17	110	20,4	13,71	6,38
	•			•			-
FE				Вр	SD		
	I		15	28,6	9,93		
	D		16	27,9	9,9		
	•		•	•			
TI				GL	Вр	SD	Bd
	I			120	21,8	8,87	16,69
MT				GL	Bd		
MTi II	I	29	12	57,48	7,56		
MT IV	D	15	13	60,75	7,45		
FA				GL	Вр	SD	Bd
FA 1	ND		1	17,86	7,34	4,45	5,89
FA 1	ND		2	16,9	6,5	3,5	5,17
FA 1	ND		3	18,35	6,9	4	5,5
FA 1	ND		4	18,3	6,5	3,7	5,7
FA 1	ND		5	21,04	6,75	4,4	6,15
FA 1	ND		6	20,18	7,24	4,5	6
FA 1	ND		7	20,87	7,05	4,4	5,95
FA 1	ND		8	21	7,28	4,55	6
FA 1	ND		9	20,72	7,05	4,27	6,05

ELS MALLOLS (CERDANYOLA, BARCELONA) EPOCA TARDORROMANA (V-VII s.AD) SILO E-183 UE VII

Canis I. familiaris MALL 2, MACHO, SENIL

HUESO	LADO	SIGLADO	NUM.		MEDIDA	S
	-	•	•	-		
CR				1	2	3
	I/D		72	180	169	157
				4	8	9
				45,83	95	105
				15 D	16 D	161
				58,65	16,76	17
				17 D	19 D	191
				45,7	16,76	16,72
				22 I	23	24
				20,31	64,5	60,8
				25	26	27
				36,3	47,47	19,7
				28	29	30
				15,8	56,53	96,97
				31	34	35
				34,55	64	34,95
				37 I	38	39
				28,6	56,24	51,95
					_	
				40		
				41,63		
MD				4	5	6
	1		69	117,26	108,38	117
	D		70	117,3	110	118,8

10	14	17
35,79	19,11	11,7
34,62	19,19	10,52

70,29

70,25

75,15

75,5

9

65,43

65

ПОЕЗО	LADO	SIGLADO	INOIVI.		IVILDIDA	13
				18	19	20
				52,74	22,13	17,95
				53,17	21,2	17,94
				21		
				38		
				36,69		
D SUP				L	В	GB
P4	ı		72	17,36	7	9,9
P4	D		72	17,2	7,4	9,7
M1	ı		72	11,7	13,94	
M1	D		72	11,7	13,86	
M2	ı		72	6,4	9,98	
M2	D		72	6,66	9,6	
	•	•	•	•	•	•
D INF				L	В	
M1	D		70	19,9	7,73	
M1	ı		69	20	7,8	
M2	D		70	8,57	6,13	
M2	ı		69	8,25	6,1	
AT				GL	GB	BFcr
	I/D		71	75,56	38	38,9
	•	'	<u>.</u>	'	<u>'</u>	•
				BFcd	Lad	н
				28,57	14,4	25,68
AX				LAPa	BFcr	Bpacd
	I/D		70	50	27,2	26,24
	•	<u>'</u>		<u>'</u>	1	<u> </u>
				SBV	BFcd	н
				20,1	16,95	39,83
					!	
E				GLP	SLC	BG
	D		67	28,54	23,69	16,89
	ı		68	29,3	22,4	16,51
		<u> </u>		<u> </u>		
HU				GL	GLC	Dp
	D		60	156	152	36,09
	l l		61	156	152	36,79
	1-	ı		1-55	1-0-	
				SD	Bd	
				11,46	30,68	
				11,40	30,00	

11,7

30,45

HUESO

LADO

SIGLADO

NUM.

MEDIDAS

HUESO	LADO	SIGLADO	NUM.			MEDIDAS	
R				GL	ВР	SD	Bd
N.	D		63	156	16,26	12,5	22,8
	ı		64	130	16,7	11,7	22,8
	''	<u> </u>	104		10,7	11,7	
UL				GL	DPA	SDO	ВРС
	D		65	182	23,89		16,32
	I		66		23,8	20,4	16,57
СР				GB			
C EL	D		26	21,11			
C PIS	D		27	13,71			
C PIS	I		28	14,26			
C PIR	D		29	16,85			
C PIR	I		30	16,9			
СНАМ	D		31	11,94			
MC				GB	Bd		
MC II	D		32	51,3	8,3	_	
MC II	ı		33	31,3	8,3		
MC III	D		34	57,62	8,4		
MC III	ı		35	57,82	8,5		
MC IV	D		36	57,43	8,02		
MC IV	ı		37	57,66	8,3	 	
MC V	D		38		8,4	 	
MC V	ı		39	49,05			
IVIC V	<u> </u> '		39	46,16	8,5		
PEL				GL	LAR	SH	SB
	D		58	130	20,75	18,56	7,7
	ı		59	134	20,76	18,8	7,86
FE				GL	Вр	DC	SD
	D		55	170	33,9	17,59	12,05
	I		56		33	16,2	11,65
				Bd			
				28,49			
				20,43			
				<u> </u>			
RO				GL	GB		
	D		57	15,24	9,13		
TI				GL	Вр	SD	Bd
	D		53	163	31	11	
	I		54		31,5	11,3	25,5
CAL				le:	65		
CAL				GL	GB		
	D		51	41,15	16,38		
	I		52	41,12	17,97		

	1		1	
HUESO	LADO	SIGLADO	NUM.	MEDIDAS

TA			GL
	D	48	23,64
	I	49	22,77

Т			GB
T CNL	D	50	10,91

MT			GB	Bd
MT II	D	40	57,5	8,1
MT II	I	41	57,59	8,07
MT III	D	42	63,66	8,37
MT III	I	42	64,15	8,4
MT IV	D	44	65,69	8,1
MT IV	I	45	66,7	8,3
MT V	D	46		7,35
MT V	I	47	58,32	7,15

FA			GL	Вр	SD	Bd
FA 1	ND	2,1	21,41	8,28	5,3	6,34
FA 1	ND	2,2	21,73	8,18	5,26	6,5
FA 1	ND	2,3	22,05	8,18	5,25	6,7
FA 1	ND	2,4	23,35	8,3	5,3	6,55
FA 1	ND	2,5	23	7,94	5,2	6,2
FA 1	ND	2,6	22,88	7,76	5,15	6,3
FA 1	ND	2,7	19,53	7,43	4,88	6,2
FA 1	ND	2,8	19,02	7,3	4,4	6,03
FA 1	ND	2,9	19,06	7,94	4,9	6,09
FA 1	ND	2,10	18,32	8,07	5,2	6,4
FA 1	ND	2,11	19,06	7,25	4,5	6
FA 2	ND	2,12	12,4	7	5,3	6,45
FA 3	ND	2,13	14	5,9		
FA 3	ND	2,14	14,29	6,2		
FA 3	ND	2,15	15,2	6,28		
FA 3	ND	2,16	12,61	5,98		
FA 3	ND	2,17	11,3	5,44		

ELS MALLOLS (CERDANYOLA, BARCELONA) EPOCA TARDORROMANA (V-VII s. AD) SILO E-183 UE II/III

Canis I. familiaris MALL 3, ADULTO, MACHO

HUESO	LADO	SIGLADO	NUM.		ĺ	MEDIDAS	
R				Bd			
	I		85	20,85			
UL				DPA			
OL .	ı		86	21,44			
	•	•	•	•			
СР				GB			
C PIS	ı		87	14,4			
MC				GL	Bd		
MC II	D		73	52,42	7,77		
MC III	D		74	60,1	7,45		
MC IV	D		75	59,7	7,28		
MC V	D		76	50,7	8		
TI				GL	Вр	SD	Bd
	D		84	179	30,22	11,9	21,16
			1				
CAL	_			GL	GB		
	D		83	40,83	15,52		
TA				GL			
	D		81	24,85			
				12.,65			
Т				GB			
T CUB	D		82	13,85			
	ļ.						
MT				GL	Вр		
MT II	D		77	58,69	7,05		
MT III	D		78	66,56	8,05		
MT IV	D		79	68,89	7,78		
MT V	D		80	61,87	6,85		
FA				GL	Вр	SD	Bd
FA 1	ND		3,1	22,6	7,75	5	6,5
FA 1	ND		3,2	23,24	7,74	4,93	6,44
FA 1	ND		3,3	20,17	7,75	5	6,33
FA 1	ND		3,4	19,72	7,9	4,94	6,2
FA 1	ND		3,5	20,18	7,68	4,6	6,17
FA 2	ND		3,6	16,25	6,85	4,44	6,35

ELS MALLOLS (CERDANYOLA, BARCELONA) EPOCA TARDORROMANA (V-VII s. AD) SILO E-183 UE II

Canis I.familiaris MALL 6, JUVENIL

IIIIECO	LADO	CICLADO	NILINA.		MEDIDA	
HUESO	LADO	SIGLADO	NUM.		MEDIDA	13
				T.	I_	1,55
CR				4	7	15 D
	I/D		104	36,05	69,89	56,56
					1	1
				16 D	16	17 D
				17,13	17,15	43,08
				22 D	22	23
				19,18	19,03	56,7
				19,18	19,03	30,7
				24	25	26
				54,29	36,2	45,15
				37,23	30,2	73,13
				27	28	29
				19,65	14,06	56,49
				23,00	12.,000	100,10
				31	32	33
				33,71	36,12	26,36
						•
				38	39	40
				50,34	47,24	36,56
MD				4	5	6
	I		100	100,7	93,31	97,1
	D		101	100,97	95,45	97,7
				7	8	9
				71,19	66,95	61,15
				70,6	67,3	60
				10	11	12
				32,75	35,85	29,26
				32,85	37,77	28,62
				14	17	18
				18	10,4	44,65
				17,85	10	44,11
				42	22	lac.
				19	20	21
				19	16,55	37
				19,1	16,24	

HUESO	LADO	SIGLADO	NUM.		MEDIDA	NS .
D SUP				L	В	GB
P4	ı		104	16,89	7,67	9,92
P4	D		104	16,78	7,89	9,31
M1	I		104	12,21	13,61	
M1	D		104	12,4	13,97	
M2	ı		104	7,41	8,85	
M2	D		104	7,43	8,59	
5 1115					-	
D INF	<u>.</u>		100	L 10.0	B	
M1	I		100	18,8	7,7	
M2	D .		101	9,16	6,3	
M2	I		100	8,99	6,3	
AT				GL	GB	BFcd
	I/D		103	60,3	28,67	27,28
	14-	I		100,0	1=5,5:	1-17-5
				Lad	н	
				12,85	24,48	
					1= 1,115	
AX				LCDe	LAPa	BFcr
	I/D		102	35,88	37,7	25,5
				Bpacd		
				23,94		
				SBV	BFcd	н
				18,26	15,35	26,85
E				GLP	SLC	BG
	ı		98	25,49	19,24	
	D		99	25,52	19,35	13,72
СР				GB		
C PIR	D		88	14,89		
С НАМ	D		89	11		
мс				GL	Bd	
MC II	D		90	52,06	7,17	
MC V	D		91	43,54	7,56	
DE!				luan	CI.	lon .
PEL				LAR	SH	SB
	I		97	20,2	13,28	6,4
					-	
					I D	IDC
FE	D		95	GLC 140	27,63	DC 12,44

HUESO	LADO	SIGLADO	NUM.	MEDIDAS				
				SD	Bd			
				9,24	25,82			
RO				GL	GB			
	I		96	15,64	8,46			
		1		1	1			
CAL				GL	GB			
	l l		94	35,41	14,43			
T.A.				61				
TA				GL				
	D		92	22,34				
	I		93	23,25				
FA				GL	Вр	SD	Bd	
FA 1	ND		6,1	20,2	7	4,23	6,16	
FA 1	ND		6,2	17,28	7,26	6,31	5,8	
FA 1	ND		6,3	20,27	7	4,45	5,97	
FA 1	ND		6,4	18,1	7,17	4,45	6	
FA 1	ND		6,5	20,46	6,7	4,05	5,7	
FA 1	ND		6,6	16,7	6,72	4,2	5,55	
FA 1	ND		6,7	20,09	6,6	3,95	5,6	
FA 1	ND		6,8	16,54	6,96	4,01	5,68	
FA 2	ND		6,10	14,3	6,5	4,19	6,2	
FA 2	ND		6,11	14,15	6,4	4,08	6,21	

ELS MALLOLS (CERDANYOLA, BARCELONA) EPOCA TARDORROMANA (V-VII s. AD) SILO E-183 UE II Canis I. familiaris MALL 7, ADULTO

HUESO	LADO	SIGLADO	NUM.	MEDIDAS			
PEL				LAR	SH	SB	
	D		106	19,53	16	6,26	
	•	•		•	•		
CAL				GL	GB		
	D		105	37,8	15,7		
	•	•	•	•	-		
FA				GL	Вр	SD	Bd
FA 2	ND		6.9	10.98	6.47	4.8	6.1

ELS MALLOLS (CERDANYOLA, BARCELONA) EPOCA TARDORROMANA (V-VII s. AD) SILO E-183 UE II

Canis I.familiaris MALL 13

HUESO	LADO	SIGLADO	NUM.			MEDIDAS	
MD				1	3	4	5
	ı		109			102,94	99,9
	D		110	117,54	115,3	103	99,87
		-		-	-		-
				7	8	9	10
				71,55	67,4	63	31,83
				71,67	67,46	62	33,46
				•	-		-
				11	12	14	17
				35,15	30,54	20,4	9
				36,54	31,5	20,26	8,9
				18	19	20	
				42,2	19,3	14,78	
					19,57	14	
				· ·	-		
D SUP				L	В	GB	
P4 SUP	I		113	17,49	7,3	9,5	
M1 SUP	I		113	12,75	14		
M1 SUP	D		113	12,98	13,4		
M2 SUP	I		113	6,59	8,82		
M2 SUP	D		113	6,48	8,8		
D INF				L	В		
M1 INF	I		109	20,3	7,76		
M1 INF	D		110	20,55	7,73		
M2 INF	I		109	8,3	6,12		
M2 INF	D		110	8,59	6,3		
M3 INF	D		110	4,6	3,95		
AT				GB	BFcr	BFcd	н
	I/D		112	30,8	37,49	28,34	24,59
AX				LCDe	LAPa	BFcr	SBV
	I/D		111	38,4	41,26	26,91	18,3

BFcd	
16,22	

HUESO	LADO	SIGLADO	NUM.		N
HU				SD	Bd
	D		108	10,29	27,89
	=	•	-	-	-
CAL	LADO			GL	
	ı		107	38,85	

			GL	Вр	SD	Bd
FA 1	ND	14,1		7,63	4,4	6,4
FA 1	ND	14,2	23,05	7,49	4,26	6,5
FA 1	ND	14,3	22,61	7,6	4,3	6,38
FA 1	ND	14,4	19,6	7,14	3,53	5,66
FA 1	ND	14,5	20,53	7,79	4,53	6,62
FA 2	ND	14,17	15,58	7	4,39	6,5
FA 2	ND	14,18	6,46	3,75	5,44	

ELS MALLOLS (CERDANYOLA, BARCELONA) EPOCA TARDORROMANA (V-VII s. AD) SILO E-223 UE II

Canis I. familiaris, MALL 14, JUVENIL

HUESO	LADO	SIGLADO	NUM.			MEDIDAS	
MD				4	5	6	7
	D		148	139,68	133,19	136,31	89
					l _o	140	laa .
				8	9	10	11
				83,82	78,81	36,6	48,44
				12	14	17	19
				42,42	21,54	11,5	25,69
						•	•
				20			
				21,22			
D SUP				L	В	GB	
P4	D		150	17,75	8	9,88	
P4	ı		150	17,75	7,7	9,88	$\overline{}$
M1	D		150	12,23	14,8	3,23	
M1	D		150	7,5	10,3		—
M2	ı		150	7,74	9,55		
	!·		1200	1,7, -	15,55		
D INF				L	В		
M1 INF	D		148	21	8,38		
M1 INF	I		149	20,98	8,5		
M2 INF	D		148	8,85	6,87		
M3 INF	D		148	4,64	3,96		
AT				LAPa	BFcr	Bpacd	SBV
	I/D		152	58,35	35,31	31,12	25,34
AX				BFcr	Lad		
AA.	I/D		151	45,7	22		
	1,10	ļ	131	43,7	144		
E				GLP	BG		
	D		147	36,92	20,49		
HU				GLC	SD	Bd	
	D		141	171	14,14	38,71	
	l I		142		14,15	37,71	

HUESO	LADO	SIGLADO	NUM.			MEDIDAS	
R				GL	ВР	SD	Bd
	I		143	166	19,45	14,45	25,83
UL				GL	SDO	ВРС	
	D		144	200	25,7	29,17	
	I		145		25,8	29,24	
СР				GB			
C EL	ı		114	27,78			
C PIS	I		115	20,98			
MC				GB	Bd		
MC I	I		116	26,62	6,53		
MC III	ı		118	77,24	8,88		
MC IV	I		120	76,85	8,71		
MC V	I		122	65,28			
PEL				LAR	SH	SB	
	D		140	27,6	21,5	9,95	
			-		-		
TI				GL	Вр	SD	Bd
	D		138	197	30,47	14,5	27,24
	I		139			15,05	26,1
	•	•	•	•	•	•	•
CAL				GL	GB		
	D		136	53,43	21,78		
	ı		137	52,54	21,88		
	•		•	•	•		
TA				GL			
	ı		131	30,83			
		'					
Т				GB			
T CNL	ı		132	16,96			
T CUB	D		133	19,55			
T CUB	ı		134	19,6			
	1			1 '			

HUESO LADO SIGLADO NUM MEDIDAS					
INDESC SIGEADO NOM. MEDIDAS	HUESO	LADO	SIGLADO	NUM.	MEDIDAS

МТ			GB	Bd
MT II	D	124	76,56	
MT II	I	125	76,84	
MT III	I	126	85,26	
MT III	D	127	83,14	10,29
MT IV	ı	128	86,64	
MT IV	D	129	86	
MT V	D	130	75,96	8,97

FA			GL	Вр	SD	Bd
FA 1	ND	15,1	29,39	9,55	6,26	8,32
FA 1	ND	15,2			6,23	7,87
FA 1	ND	15,3	30,55	9,84	5,9	7,6
FA 1	ND	15,4	30,45	9,86	6,15	7,89
FA 1	ND	15,5	29,07	9,34	6,3	7,9
FA 1	ND	15,6	30,67			7,93
FA 1	ND	15,7	30,54			
FA 1	ND	15,8	29,1	9,48	6,22	8,06
FA 1	ND	15,9	24,88	9,05	4,82	7,2
FA 1	ND	15,10			6,2	8,07
FA 1	ND	15,11	24,8	9,02	5,14	7,03
FA 1	ND	15,12	25,47	9,96	6,2	8,08
FA 1	ND	15,13	26,13	9,86	6,09	7,9
FA 1	ND	15,14	25,39	9,86	5,85	7,92
FA 2	ND	15,15	21,55	8,5	5,43	7,9
FA 2	ND	15,16	15,37	8,08	5,64	7,48
FA 2	ND	15,17	19,69	8,3	5,89	8,7
FA 3	ND	15,18	15,47	6,88		

ELS MALLOLS (CERDANYOLA, BARCELONA) EPOCA TARDORROMANA (V-VII s. AD) SILO E-157 UE I

Canis I. familiaris, MALL 15

HUESO	LADO	SIGLADO	NUM.			MEDIDAS	
		•		<u> </u>			
MD				7	8	9	10
	D		171	72,6	64,05	59,86	30,63
	ı		172	71,9	66,31	60,3	30,51
•	•	•		•	•		•
				11	12	14	17
				34,13	29,3	19,06	10,33
				34,55	29,99	19,05	10,36
					-		
				19	20		
				19,73	17,6		
				19,8	17,25		
D SUP				L	В	GB	
P4	D		173	17,24	7,65	9,2	
P4	I		173	17,11	7,72	9,8	
M1 SUP	D		173	11,54	14		
M1 SUP	ı		173	11,66	14,5		
M2 SUP	I		173	6,46	9,8		
D INF				L	В		
M1 INF	D		171	19,95	8,3		
M1 INF	1		172	19,95	8,35		
M2 INF	D		171	8,24	6,26		
M2 INF	ı		172	8	6,2		
M3 INF	D		171	4,36	4,38		
E				GLP	BG		
	D		169	24,6	15,32		
	I		170	24,96	16,23		
HU				SD	Bd		
	D		163	11	26,05		
	I		164	10,8	26,28		
R				SD	Bd		
	D		167		18,6		
	I		168	10,4	18,86		
UL				GL	DPA	SDO	
	I		165	168	20,61	17,59	
	D		166		20,75	17,7	

HUESO	LADO	SIGLADO	NUM.	MEDIDAS
	-			

МС			GB	Bd
MC I	I	153	18,1	4,42
MC II	D	154	50,48	7,09
MC III	D	155	57	6,85
MC IV	D	156	56,71	6,25
MC V	D	157	46,78	7,44

СР			GB
C PIS	I	151	13,85
C PIS	D	152	13,76

PEL			LAR	SH	SB
	I	162	18,43	15,91	7,74

MT			GL	Bd
MT II	D	158		5,62
MT III	D	159		6,86
MT IV	D	160		6,31
MT IV	D	161		5,34

FA			GL	Вр	SD	Bd
FA 1	ND	16,1	21,4	6,69	4,52	6
FA 1	ND	16,2	21,07	6,9	4,45	5,8
FA 1	ND	16,3	21,55	6,82	4,33	5,72
FA 1	ND	16,4	21,35	6,76	4,45	5,69
FA 1	ND	16,5			4,45	5,74
FA 1	ND	16,6	18,48	7,14	4,58	5,67
FA 1	ND	16,7	18,79	7,13	4,65	5,84
FA 1	ND	16,8	18,95	7,16	4,7	5,89
FA 1	ND	16,9		6,99	4,46	
FA 1	ND	16,1			4,02	
FA 1	ND	16,11	17,58	6,65	3,45	5,33
FA 1	ND	16,12	17,19	6,15	3,14	4,84
FA 1	ND	16,2	19,63	5,11	3,68	4,34
FA 1	ND	16,21	19,35	5,1	3,6	4,28
FA 2	ND	16,13	14,5	6,39	4,58	6,31
FA 2	ND	16,14	14,87	6,27	4,32	6,21
FA 2	ND	16,15	11,36	6,44	5,05	6,2
FA 2	ND	16,16	14,26	6,52	4,75	6,29
FA 2	ND	16,17	10,37	6,56	5,05	5,96
FA 2	ND	16,18	11,49	6,69	5,2	6,17
FA 2	ND	16,19		6,66	5,22	
FA 3	ND	16,22	14,2	5,72		
FA 3	ND	16,23	13,5	5,6		
FA 3	ND	16,24		5,86		
FA 3	ND	16,25		4,2		
FA 3	ND	16,26		4,36		

ELS MALLOLS (CERDANYOLA, BARCELONA) EPOCA TARDORROMANA (V-VII s. AD) SILO E-240 UE I

Canis I. familiaris MALL 16, ADULTO

HUESO	LADO	SIGLADO	NUM.		ı	MEDIDAS	
CR				1	2	3	4
	I/D		174	156	146	138,64	42,54
				5	7	8	9
				95,31	74,9	79,05	81,32
				10	12	13a	14a
				57,6	65,68	73,34	21,7
				15 D	15 I	16 D	16
				55	53,54	16,73	17,16
				17 D	17 I	19 D	19 I
				40	39,94	15,55	15,59
				22 D	23	24	25
				19,29	57,39	54,95	32,6
				26	27	28	29
				42,62	18,06	14,54	53
				31	33	34	35
				37,85	34,09	53,54	30,33
				36	37 DER	38	39
				31,96	26,15	49,01	46,81
				<u>. </u>		•	•
				40			

D SUP			L	В	GB
P4	D	174	16,78	6,82	8,45
P4	I	174	16,8	6,9	8,25
M2 SUP	D	174	6,34	7,78	
M2 SUP	ı	174	6.26	7.8	

36,62

ELS MALLOLS (CERDANYOLA, BARCELONA) EPOCA TARDORROMANA (V-VII s. AD) SILO E-24 UE I

Canis I. familiaris MALL 17

HUESO	LADO	SIGLADO	NUM.		I	MEDIDAS	
	•	•	•	-			
CR				1	2	3	4
	I/D		175	176	166	158	37,43
				5	7	8	9
				120	81,9	87,39	101,72
				10	12	13	13a
				65,7	74,34	90,09	87,07
				14	14a	15 D	15
				30,65	28,82	61,83	61,94
				16 D	16	17 D	17
				18,4	18,44	46,79	47,62
				19 D	22 1	23	24
				17,46	21,07	65,19	63,49
				25	26	27	28
				38,56	49,79	19,62	15,55
				38,30	143,73	13,02	13,33
				29	30	31	32
				56,87	96,62	38,5	49,1
				<u>'</u>			
				33	34	35	36
				35,25	60,86	34	36,51
				I.			•
				37 D	37 IZQ	38	39
				28,52	28,37	52,15	51,15

40
42,95

D SUP			L	В	GB
P4	I	175	17,64	7,52	8,72
P4	D	175	17,65	7,51	8,7
M2	I	175	7,29	9,45	
M2	D	175	7,25	9,35	

ELS MALLOLS (CERDANYOLA, BARCELONA) EPOCA TARDORROMANA (V-VII s. AD) SILO E-54 UE I

Canis I.familiaris MALL 18

HUESO	LADO	SIGLADO	NUM.	MEDIDAS	
D INF				L	В
M1 INF			176	19,45	7,59

ELS MALLOLS (CERDANYOLA, BARCELONA) EPOCA TARDO ANTICA (V-VII s. AD) SILO E-100 UE II

Canis I. familiaris MALL 21

HUESO	LADO	SIGLADO	NUM.	MEDIDAS	
HU	LADO			SD	Bd
	D		62	14	34,44