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Wheat yield is linearly related to grain number per m
2
. As wheat is a cleistogamus plant, 

understanding the physiological determinants of fertile florets resulted of the different 

floret development dynamics due to genetic variability and ascertaining the role the 

particular genes: Photoperiod (Ppd) and earliness per se (Eps) might be useful to 

achieve improvements in grain number and yield.  

Three field studies (each comprising at field experiments conducted across two growing 

seasons) were carried out mainly to characterize the dynamics of floret primordia 

initiation and degeneration in a set of modern cultivars of hexaploid wheat and in Ppd 

and Eps near isogenic lines (NILs) and to determine which are the most critical 

parameters of such dynamics in establishing genotypic differences in the number of 

fertile florets at anthesis. In addition, to evaluate the possible effects due to the 

interaction between the Eps genes and temperature experiments under controlled 

conditions were also conducted. Across all the experiments, a huge amount of 

dissections were periodically made determining not only the number but also de 

developmental stage of floret primordia, providing an exceptionally detailed database of 

dynamics of floret development. 

High variability was found in the number of fertile florets due to different genetic 

background among elite cultivars and due to the introgression of the photoperiod 

insensitivity alleles. Effects on the number of fertile florets among Eps NILs were subtle 

as expected for these genes used for fine tune flowering time and presented a strong 

relationship with the temperature. However in both cases of near isogenic lines, results 

showed the dependency of the source (Ppd and Eps) and chromosome (Eps) of the 

particular alleles. Differences in the number of fertile florets were mainly explained by 

differences in the floret generation/degeneration dynamics and in most cases well 

associated with floret survival. In most cases, these differences well correlated with 

differences in the late reproductive phase due to differences among modern cultivars or 

due to the reduction associated with the introgression of the photoperiod insensitivity 

alleles. 

Advantageous cultivars with higher number of fertile florets among the elite population 

tested could be used for the next breeding programs, in the case of manipulating 

photoperiod insensitivity or the earliness per se, breeders might be careful due to the 

effects that can caused on the setting of the spike fertility.  
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El rendimiento del cultivo de trigo se encuentra linealmente relacionado con el número 

de granos por m
2
. Debido a que el trigo es una planta cleistógama, entender los 

determinantes fisiológicos del número de flores fértiles, que es resultado de las 

diferentes dinámicas del desarrollo floral dadas por variabilidad genética, y determinar 

el rol particular de los genes de fotoperiodo (Ppd) y precocidad intrínseca (Eps) podría 

ser útil para lograr mejoras en el número de granos y por lo tanto en el rendimiento.  

Se llevaron a cabo tres ensayos a campo durante dos años consecutivos, con el objetivo 

de caracterizar las dinámicas de iniciación y degeneración de primordios florales en un 

set de cultivares modernos de trigo hexaploide y en líneas isogénicas para Ppd y Eps, y 

determinar cuáles son los parámetros críticos de esas dinámicas que establecen las 

diferencias genotípicas en el número de flores fértiles en antesis. Además, para evaluar 

los posibles efectos de la interacción entre los genes Eps y la temperatura, se llevaron a 

cabo ensayos bajo condiciones controladas. En todos los experimentos, se hicieron 

periódicamente una gran cantidad de disecciones determinando no sólo el número, sino 

también, el estado de desarrollo de los primordios florales. Esto generó una base de 

datos detallada de las dinámicas de desarrollo floral. 

Se encontró gran variabilidad en el número de flores fértiles debido a distinto fondo 

genético entre cultivares elite y debido a la introgresión de alelos insensibles al 

fotoperiodo. Los efectos en el número de flores fértiles en las líneas isogénicas para Eps 

fueron sutiles, como era esperable para este tipo de genes usados para ajustar la fecha de 

floración, y resultaron estar fuertemente relacionados con la temperatura. Sin embargo, 

los resultados indicaron la dependencia de la fuente (Ppd y Eps) y del cromosoma (Eps) 

de cada alelo particular. Las diferencias en el número de flores fértiles fueron explicadas 

principalmente por diferencias en las dinámicas de generación/degeneración de flores y 

en la mayoría de los casos asociadas a la supervivencia de flores. Mayormente estas 

diferencias correlacionaron bien con las diferencias en la fase reproductiva tardía entre 

cultivares modernos o debido a la reducción asociada la introgresión de alelos 

insensibles al fotoperiodo. 

Aquellos cultivares que presentaron la ventaja de tener un mayor número de flores 

fértiles en las poblaciones elite, podrían ser utilizados en los próximos programas de 

mejoramiento; en el caso de manipular la insensibilidad a fotoperiodo o la precocidad 

intrínseca, los mejoradores deberían ser cautelosos debido a los efectos que puedan 

causar sobre el establecimiento de la fertilidad de la espiga.   
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El rendiment del cultiu de blat es troba linealment relacionat amb el nombre de grans 

per m
2
. Degut al fet que el blat és una planta clistògama, entendre els determinants 

fisiològics del nombre de flors fèrtils, el qual és resultat de les diferents dinàmiques del 

desenvolupament floral donades per variabilitat genètica, i determinar el rol particular 

dels gens de fotoperíode (Ppd) i precocitat intrínseca (Eps) podria ser útil per tal 

d’obtenir millores en el nombre de grans i, per tant, en el rendiment. 

S’han dut a terme tres assaigs de camp durant dos anys consecutius, amb l’objectiu de 

caracteritzar les dinàmiques d’iniciació i degeneració de primordis florals en un set de 

conreus moderns de blat hexaploide i en línies isogèniques per Ppd i Eps, i determinar 

quins són els paràmetres crítics d’aquestes dinàmiques què estableixen les diferències 

genotípiques en el nombre de flors fèrtils en antesi. A més a més, per avaluar els 

possibles efectes de la interacció entre els gens Eps i la temperatura, s’han dut a terme 

assaigs sota condicions controlades. En tots els experiments, s’han realitzat 

periòdicament una gran quantitat de disseccions determinant no solament el nombre, 

sinó que també, l’estat de desenvolupament dels primordis florals. Això va generar una 

base de dades detallada de les dinàmiques de desenvolupament floral. 

Es va trobar gran variabilitat en el nombre de flors fèrtils donat el diferent fon genètic 

entre conreus d’elit i degut a la introgressió d’al·lels insensibles al fotoperíode. Els 

efectes en el nombre de flors fèrtils en les línies isogèniques per Eps van ser subtils, 

com era d’esperar per aquest tipus de gens utilitzats per ajustar la data de floració, i van 

resultar estar freqüentment relacionats amb la temperatura. No obstant això, els resultats 

van indicar la dependència del donant (Ppd i Eps) i del cromosoma (Eps) de cada al·lel 

particular. Les diferències en el nombre de flors fèrtils van ser explicades principalment 

per diferències en les dinàmiques de generació/degeneració de flors i en la majoria dels 

casos associats a la supervivència de flors. Majoritàriament aquestes diferències van 

correlacionar bé amb les diferències en la fase reproductiva tardana entre conreus 

moderns o degut a la reducció associada a la introgressió d’al·lels insensibles al 

fotoperíode. 

Aquells conreus que presentaven l’avantatge de tenir un major nombre de flors fèrtils en 

les poblacions elit, podrien ser utilitzats en els pròxims programes de millora; en el cas 

de manipular la insensibilitat a fotoperíode o la precocitat intrínseca, els milloradors 

haurien de ser cautelosos degut als efectes que puguin causar sobre l’establiment de la 

fertilitat de l’espiga. 

 



 



Chapter I: General introduction 
 

 



 



Chapter I: General introduction 

 

3 

 

1. Why wheat? Crop relevance 

Wheat is one of the most important cereals in human diet since the ancient times. 

Nowadays, wheat contributes c. 19% of the calories and c. 20% of the total protein 

consumed all over the world (Braun et al., 2010).   

The importance of wheat is also revealed by it growing area, that represents a large 

proportion of the world-wide arable lands (218.7 million ha; Fig. 1.1). In addition, it 

was the third cereal with higher production quantity of c. 26.7% (663.4 million tonnes) 

after maize and rice between these last years (Fig. 1.1). 

Figure 1.1. Average area harvested and production quantity of the most common cereals 

between 2004-2014 all over the world. Data obtained from http://faostat3.fao.org.  

Due to the predictions of population increase by 2050 (c. 9.4 billion; Foulkes et al., 

2011) together with an increase in average individual requirements, there is an urgent 

requirement to increase wheat production in order to satisfy the demand. Wheat yield 

gains are currently not large enough, being estimated in 0.54% per year between 1997 

and 2007, less than half of that required in the near future (1.32% annual increase) 

(González et al., 2011) and being quite distance to the increases achieved during the 

Green Revolution, with growth average wheat yields of 3.6% per annum in developing 

countries (Dixon et al., 2009). The possible solutions may include: i) incrementing crop 

lands, although the availability is scarce and brings about issues on the long-term 

sustainability of agro-ecosystems (Reynolds et al., 2012); ii) developing management 

strategies as in the use of water and fertilizers but it is limited due to economic and 

environmental issues, iii) improving genetically yields through plant breeding focused 

on adaptation and yield potential. The latter seems to be the only successful way out to 

maintain the balance between wheat production and demand in the near future.  

The background conditions in which exceptionally large genetic gains must be achieved 

makes the requirement even more challenging. It is predicted a mean global warming of 

c. 1.5 to 5.8°C by the end of the century (Rosenzweig et al., 2001 and references 

therein) and it is expected a reduction in wheat production of 6% per degree of 

temperature increment (Asseng et al., 2015).  
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Therefore, understanding the physiological mechanisms that control grain yield plays a 

relevant role in order to further increase grain yield. In fact, the study of the crop 

developmental phases and the dynamics of the different organs generation/degeneration 

and how they are affected by genotypic differences or environmental conditions could 

be critical in order to achieve yield increments. 

2. Wheat developmental phases 

Wheat physiology can be analyzed in terms of wheat development and wheat growth. 

Even though yield is a measure of growth, crop development is critical in determining 

yield. Wheat crop cycle is divided into different developmental phases which can be 

defined due to micro and macroscopic changes (Miralles and Slafer, 1999) (Fig. 1.2). 

During the vegetative phase leaves are being developed from sowing to double ridge 

stage when the early reproductive phase starts and the spikelet primordia are developed. 

Following, the late reproductive phase starts at the terminal spikelet stage lasting until 

anthesis or flowering time, during this phase, floret primordia develop (this includes the 

floret generation and the degeneration processes) and the number of fertile florets per 

spike is set. Around anthesis, the number of fertile tillers is also set determining the 

final number of spikes. After pollination, grain number is set and the grain filling period 

starts until physiological maturity.  

The number of grains per unit land area is defined from sowing to anthesis with a 

critical period from the emergence of the penultimate leaf (20-30 days before anthesis) 

until c. 7-10 days post anthesis (Fischer 1985; Slafer and Savin, 1991), while the 

average weight is defined from some days before anthesis until maturity (Calderini et 

al., 2001; Ugarte et al., 2007). Normally, there is a negative relationship between grain 

number and grain weight but the nature of this negative relationship is not necessarily 

competition for limited assimilates during grain filling (Miralles and Slafer, 1995; 

Acreche and Slafer, 2006), as grains growth is most frequently sink-limited (Slafer and 

Savin, 1994; Kruk et al., 1997; Borrás et al., 2004; Shearman et al., 2005; Cartelle et 

al., 2006; Acreche and Slafer, 2009; Serrago et al., 2013, González et al., 2014; 

Sanchez-Bragado et al., 2014). Consequently, yield gains can be achieved by improving 

any of its major components, but significant gains would be almost exclusively 

dependent on increments in the number of grains per unit land area (Slafer et al., 2014). 

Therefore, understanding the mechanisms involved in defining the grain number would 

allow to identify traits which might be critical to increase grain yield. Although some 

fertile florets may not set grains, the usual grain setting ranges achieved under field 

conditions are very large (>70 %; Savin and Slafer, 1991; Ferrante et al., 2013a), which 

is expected in a cleistogamous plant species. Therefore grain number would be largely 

determined by the number of fertile florets and the latter is simply the consequence of 

floret generation/degeneration dynamics. Thus, the importance of how the 

environmental conditions affects the developmental phases lies on the effect on the 

organs that are being generated and the define the potential grain yield (Slafer et al., 

1996; Slafer, 2003). Manipulating the critical period becomes an important tool to 

increase the spike fertility (Fischer 2011; Foulkes et al., 2011; García et al., 2011). 
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Although soil fertility, water and nutrients availability and radiation were eventually 

reported to affect wheat development rates (Rawson 1993; Evans 1987; Rodriguez et 

al., 1994) their impact resulted weak and not always consistent (e.g. Hall et al., 2014). 

The main factors affecting the crop developmental phases are: temperature, 

photoperiod, vernalisation and their interaction (Slafer et al., 2015). When all are fully 

satisfied for a normal development, differences among cultivars can be the result of the 

apparently intrinsic effects of earliness per se genes (Slafer et al., 2015, and references 

therein). 

Temperature affects the development rate, at low temperatures the rate is reduced and 

the phases length is increased, at high temperatures the rate is increased and the phases 

length reduced (Slafer and Rawson, 1994). The rate of development increases linearly 

between the base and optimum temperatures in all crops, that is why the thermal time 

model (Monteith, 1984) is used to follow the development, when the thermal ranges 

explored are between these two cardinal temperatures. Temperature affects all the 

developmental phases during the whole growth cycle (Miralles and Slafer, 1999) in all 

crops.  

Photoperiod response is more complex. Wheat plants are classified as “long-day” due to 

a reduction in the developmental phases when the photoperiod is lengthened (Slafer et 

al., 2015). Most reports described the effects on time to anthesis due to different 

photoperiod sensitivity (Law, 1987; Worland, 1996; Worland et al., 1998); moreover, 

some studies reported the effect on time to anthesis/heading due to photoperiod 

manipulation under field conditions (Stelmakh, 1998; Whitechurch and Slafer 2001). 

Photoperiod sensitivity is the delay in duration of certain stage of development per hour 

difference between actual and optimum photoperiod that is why it is considered more a 

quantitative (delayed development) than a qualitative (no further development) 

response. It has been already recognized that photoperiod sensitivity changes 

throughout wheat development (Slafer and Rawson, 1996; Miralles and Richards, 2000; 

González et al., 2002). However little research has focused on the effect of photoperiod 

on the individual pre-anthesis phases (González et al., 2005c) and this represents a 

powerful tool for plant breeding to fine-tune the flowering time avoiding any stress 

which can impact on grain yield.   

Other important factor affecting the developmental phases is vernalisation, the 

accumulation of coldness which accelerates the development of sensitive cultivars 

(winter vs spring) (Slafer et al., 2015).  In winter wheats lack of vernalisation delays the 

flowering while when vernalisation is saturated they flower coincidently with spring 

wheats (Trevaskis et al., 2003). Optimal vernalisation temperature was defined between 

3.8 and 6ºC with temperatures in the range from -1.3 and 15.7ºC having some 

vernalisation effect, being it more reduced as the thermal condition is further away from 

the optimum vernalisation values (Porter and Gawith, 1999, an references therein). 

Vernalisation response affects the duration of the vegetative phase (Flood and Halloran, 

1986; Ritchie, 1991; Robertson, et al., 1996) and the early and late reproductive phases 

in interaction with photoperiod (González et al., 2002, 2003b).  
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Figure 1.2. Diagram shows the stage of sowing (Sw), emergence (Em), floral initiation (FI), 

initiation of the first double ridge (DR), terminal spikelet initiation (TS), heading (Hd), anthesis 

(At), beginning of the grain-filling period (BGF), physiological maturity (PM), and harvest 

(Hv). Boxes indicate the periods of differentiation or growth of some organs within the 

vegetative, the reproductive and grain-filling phases and timing when different components of 

grain yield are produced. Extracted and adapted from Miralles and Slafer, 1999. 

When all the crop requirements of vernalisation and photoperiod are satisfied, there are 

still residual differences in time to heading among cultivars. These differences are 

referred to as intrinsic earliness which reflects the basic development rate of a genotype, 

a term referring to differences in development that are intrinsic and therefore 

independent on the environment. Then, genetic factors determining differences in 

intrinsic earliness were termed earliness per se (Slafer et al., 2015, and references 

therein). However, this independence of the environment (which is relevant as the 

earliness per se of genotypes would be maintained in any growing condition) is true for 

vernalizing temperatures and daylength, but it has been assumed respect to 

temperatures. As temperature has an universal effect on developmental rates, it has been 

implicitly assumed that there would not be significant genetic differences in sensitivity 

to temperature; an issue that is debatable (Appendino and Slafer, 2003; Karsai et al., 

2013), and will be considered in the present thesis as well. 

 

 

Reproductive Phase 
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3. Fertile florets 

As mentioned above, grain number is mostly associated to the number of fertile florets 

produced (Kirby, 1988; Slafer and Andrade, 1993; Miralles et al., 1998, 2000) mainly 

due to wheat is a cleistogamous species. The number of fertile florets was reported to be 

affected by i) genotypic differences (Miralles et al., 1998), and ii) environmental 

conditions including both resources such as availability of nutrients (Sibony and 

Pinthus, 1988; Ferrante et al., 2010), and signals, such as red/far-red light ratios (Ugarte 

et al., 2010) and photoperiod (Miralles et al., 2000; González et al., 2003b; González et 

al., 2005a; González et al., 2005b; Ghiglione et al., 2008; Serrago et al., 2008).  

Floret development starts in the central spikelets in the positions most proximal to the 

rachis and progresses from there to most distal positions (Sibony and Pinthus, 1988) and 

continue until around booting (Kirby, 1988; González et al., 2003a, González et al., 

2005a, Ferrante et al., 2010, 2013a). Usually, from 6 to 12 floret primordia per spikelet 

are being developed (Sibony and Pinthus, 1988; Youssefian et al., 1992; Miralles et al., 

1998), but most of them degenerate before anthesis indicating a possible competition for 

assimilates against the stems and spikes determining the rate (González et al., 2005a; 

Ghiglione et al., 2008) and the onset of floret mortality (González et al., 2011; Ferrante 

et al., 2013b).  

The rate of development of the floret mortality period was reported to be accelerated by 

extending photoperiod, reducing the duration of the phase (González et al., 2003b, 

González et al., 2005a) and was associated to the expression of genes linked to floral 

development cell proliferation and programmed cell death. Aborting primordia anatomy 

including the vacuoles formation and authophagosomes suggested a programmed cell 

death rather than passive death while another mechanism involved in floret abortion is 

the decrease of soluble sugars during the spike growth (Slafer et al., 2015). 

3.1 Floret development dynamics 

To analyze differences in floret primordia development among genotypes and detailed 

analysis of the generation and degeneration dynamics, the quantitative scale proposed 

by Waddington et al. (1983) is most frequently used. This scale considers the changes in 

the morphology of the barley and wheat pistil until anthesis (Fig. 1.3). Floret primordia 

stages are considered individually from when the scale reaches the stage of W3.5 and 

follows developing through time when the successively floret primordia start to 

develop. Floret initiation in central spikelets occurs around the apical stage of terminal 

spikelet. The initiation continues until reaching the maximum number of floret 

primordia initiated and then it follows the floret mortality, with the consequence of that 

a little proportion of initiated primordia survives and reaches the fertile floret stage at 

anthesis, defining the final number of fertile floret per spikelet. Floret survival tends to 

be low (Miralles et al., 1998; Ghiglione et al., 2008; González et al., 2011; Ferrante et 

al., 2013b) but critical to establish spike fertility (González-Navarro et al., 2015). 
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Figure 1.3. Illustration of different floret development stages. Changes in the pistil morphology 

is followed and characterized using the Waddington et al., 1983 scale allowing establishing 

differences among florets positions within a particular genotype and among different genotypes. 

3.2 Wheat development as affected by genetic control 

Allohexaploid wheat presents three genomes, A, B and D which confers high variability 

an more complex genetic regulation which is mostly based on the effect of different 

genes along the cycle: the photoperiod response (Ppd), vernalisation (Vrn) and the 

earliness per ser (Eps) (Slafer, 2012; Gomez et al., 2014). 

Photoperiod response is regulated by a group of genes in the short arm of chromosome 

2: Ppd-D1 (in D genome), Ppd-B1 (in B genome) Ppd-A1 (in A genome). Photoperiod 

insensitivity is a dominant response mainly conferred by Ppd-D1a allele (Worland and 

Law, 1985; Worland, 1996; Beales et al., 2007) although Ppd-B1 was also reported to 

be an important source (Scarth and Law, 1984; Tanio and Kato, 2007) while Bentley et 

al., 2011 reported a reduction in flowering time due to photoperiod insensitivity in the A 

genome in synthetic hexaploid wheats with the strength intermediate between that of the 

insensitivities in the D and B genomes. Besides, photoperiod insensitivity in 2D is 

associated with a 2089-bp deletion upstream of the coding region (Beales et al., 2007) 

while in B genome no sequence mutation was found; but Díaz et al., 2012 reported 

alleles conferring early flowering had an increased copy number an altered gene 

expression and in the A genome of tetraploid wheat there is a 1027 or 1117 bp deletions 

upstream of the coding region (Wilhelm et al., 2009).  

Vernalisation response is regulated by Vrn-A1 (Vrn1), Vrn-B1 (Vrn2) and Vrn-D1 

(Vrn3), in the middle of the long arm of chromosomes 5A, 5B, 5D. Dominance in one 

or more loci removes the vernalisation requirement giving a spring phenotype while the 

winter ones present recessive alleles. It was reported that alelles like Vrn-A1a conferred 

vernalisation insensitivity (Appendino et al., 2003; Yan et al., 2004). Besides, 

additional loci like: Vrn2, Vrn3 and Vrn4 are involved but less information about how 

they act in wheat is reported. In barley VrnH3 was characterized to play an important 

role between the vernalisation and photoperiod pathways and polymorphisms in its 

promoter and in the intron 1 were shown to contribute to variation in flowering time 

under field conditions, particularly with evident effects after jointing stage (Casas et al., 

2011).   
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Earliness per se gene response is more quantitative with many genes detected across 

different chromosomes. These genes have, in most cases, effects of a magnitude much 

smaller than the Ppd and Vrn genes and are useful for fine-tuning adaptation. In 

addition they may interact with photoperiod and vernalisation. The earliness per se 

locus Eps-A
m
1was recently mapped within 0.8 cM interval on chromosome 1A

m
L of 

diploid Triticum monococcum L., and it was shown that its effect was modulated by 

temperature (Bullrich et al., 2002). Eps-A
m
1 and the Eps-3A

m
 loci were reported to 

determine the number of spikelets and grains per spike and regulate flowering time 

(Bullrich et al., 2002; Lewis et al., 2008; Gawroński et al., 2014). However, few works 

are available due to they were mapped in crosses segregating for Ppd and Vrn masking 

their effects (Zikhali et al., 2015). Recently, Zikhali et al., 2015 described a deletion of 

the chromosomal region ELF3 was linked to the earliness per se locus Eps-D1 which 

causes early flowering in bread wheat. 

As it was previously mentioned, there are many reports of the effects of these genes on 

developmental rates towards heading/anthesis and on yield components, however, few 

works considered the same genetic background using near isogenic lines and, to the best 

of my knowledge, virtually none analyzed the effects of these genes on the floret 

generation/degeneration dynamics.  

This Thesis presents the detailed analyses of the effects of i) different genetic 

background among modern cultivars, ii) Ppd and iii) Eps genes on floret development 

determining the spike fertility level in wheat.  

4. Objectives 

The main aim of this Thesis was to understand the complex floret 

generation/degeneration mechanisms that define the number of fertile florets at anthesis 

as affected by the genetic variability among modern cultivars, the Ppd and Eps genes.  

The general hypothesis was that the number of fertile florets at anthesis resulted from 

the floret generation/degeneration dynamics would be reduced as the duration of the 

phase of floret development is reduced by genetic differences or the introgression of 

Ppd-insensitivity alleles or Eps-early alleles. 

To contrast the hypothesis different specific objectives were outlined: 

To analyze the dynamics of floret primordia initiation and degeneration in a set of 

modern cultivars of hexaploid wheat and to determine which were the most critical 

parameters of such dynamics in establishing genotypic differences in the number of 

fertile florets at anthesis and to find out a possible role of synchrony in the floret 

primordia development in determining genotypic differences in floret survival (Chapter 

III). 

To evaluate the effect of the different allelic combination into the same background of 

the Ppd (Chapter IV) and Eps (Chapter V) genes on the final number of fertile florets 

at anthesis characterizing floret development patterns during the stem elongation phase, 

and quantifying the dynamics of floret primordia initiation and degeneration to shed 
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light on some physiological causes of the photoperiod insensitivity and the Eps early 

response on the reproductive fertility of the crop.  

To evaluate the possible interaction between the Eps genes and temperature on the 

number of fertile florets and the floret development dynamics (Chapter VI). 

5. Outline of the present Thesis 

This Thesis is divided into seven chapters. These chapters include the general 

introduction (Chapter I), a description of the general procedures and the methodology 

that was used in most chapters (Chapter II). This chapter was thought to avoid being 

repetitive, although specific materials and methods used only in particular chapters are 

included within the corresponding chapter. Then, four experimental chapters, Chapters 

III, IV, V and VI, are included presenting the results of the different experiments carried 

out to text the hypothesis. Finally, Chapter VII contains a general discussion ending 

with the conclusions of the thesis. This last chapter highlights key results and 

conclusions of each chapter whilst exhibits the consistencies and inconsistencies across 

the different studies reported throughout the thesis. 
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The research in which this thesis is based on has been conducted on different 

experiments. The details of each experiment will be provided in the Materials and 

Methods section of each research chapter, but as several methods were common to 

many if not all the experiments to avoid unnecessary repetitions across the different 

chapters, I prepared this specific Chapter aimed to describe and to explain (and in 

occasions to illustrate) all the methods (determinations, measurements and analyses) 

that were common to more than one experiment. Naturally determinations, 

measurements and analyses done only in one experimental setup were described in the 

Materials and Methods section of the particular corresponding experimental Chapter. 

Avoid the repetitions will both reduce the length of the experimental chapters and 

improve the readability of the thesis (by consistently referring to a single 

methodological chapter from the different experimental chapters). 

1. Background conditions 

In all the experiments, the treatments consisted essentially of the genotypes grown in 

field conditions (with the exception of the experiment in controlled conditions reported 

in Chapter VII where treatments were the factorial combination of selected genotypes 

and growing temperatures). The background conditions in these experiments were as 

stress-free as possible: (i) weeds, insects and diseases were controlled or prevented 

using conventional commercial pesticides with doses recommended by their 

manufacturers; (ii) irrigation was applied when needed in order to avoid water stress: 

flood-irrigation (Experiments in Chapter III, IV and last growing season of experiments 

in Chapter V) or sprinkle-irrigation (First and second growing seasons of the 

experiments in Chapter V) during the whole growing cycle and plots (pots in the 

controlled environment experiment) were fertilised to avoid any nutrient deficiency. 

2. Measurements and analyses 

In table 2.1, the experiments are summarized and listed in order to show the amount of 

treatments within each chapter; however the details of the experimental conditions and 

plant material used are provided in the Materials and Methods section of the specific 

experimental Chapter.  

2.1 Developmental stages 

To determine stages of development, plots were individually inspected from once a 

week to every second day (depending on temperatures and closeness of the stages) and 

the timings of terminal spikelet and anthesis (DC 6.5 of the scale of Zadocks et al., 

1974) were recorded. The timing of anthesis stage in each experimental unit was taken 

when 50% of plants in each experimental unit reached that stage. Thermal time was 

calculated from sowing to terminal spikelet and DC 6.5 as well as for the duration of the 

phase between them: the late reproductive phase (LRP) when floret development takes 

place. For this purpose, the daily average temperature [(Tmax+Tmin)/2] was summed 

between the intervals considered. This computation of thermal time assumed a base 
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temperature of 0ºC and that Tmin was never below this threshold and Tmax was never 

above the optimum temperature for developmental progress. 

Table 2.1. Location, growing season and plant material of the experiments carried out in the 

present Thesis (and the specific chapter in which results from them are presented).  

 

Chapter Location Growing season Plant material 

III 
Field experiment, 

Bell·lloc d’Urgell, Spain 
2012-2013 9 modern cultivars 

III 
Field experiment, 

Bell·lloc d’Urgell, Spain  
2013-2014 9 modern cultivars 

IV 
Field experiment, 

Bell·lloc d’Urgell, Spain 
2012-2013 12 Ppd NILs + Paragon 

IV 
Field experiment, 

Bell·lloc d’Urgell, Spain 
2013-2014 12 Ppd NILs + Paragon 

V 
Field experiment, 

Algerri, Spain 
2012-2013 20 Eps NILs (4*) 

V 
Field experiment, 

Algerri, Spain 
2013-2014 32 Eps NILs (6*) 

V 
Field experiment, 

Bell·lloc d’Urgell, Spain 
2014-2015 12 Eps NILs (2*) 

VI 
Growth chamber experiment, 

Lleida, Spain 
2015-2016 4 Eps NILs at 6, 9, 15, 21, 24ºC (2*) 

VI 
Growth chamber experiment, 

Norwich, United Kingdom 
2015-2016 4 Eps NILs  at 12 and 18ºC (2*) 

*Number of contrasts considered for the analysis: Eps-late vs -early for each particular parental 

cross and chromosome. 

2.2 Number of fertile florets at anthesis 

Samples of aboveground biomass were taken at anthesis from each replicate of each 

genotype from a sample area of 0.5 m long of a central row, which had been labelled 

few weeks after emergence warranting that the plant density and uniformity was that 

ideally expected in the sample area and its borders. The number of fertile florets (style 

and stigmatic branches spreading and green or yellow anthers visible) was counted in 

main-shoot and tiller spikes, within each spikelet from one side and all along the entire 

spike as it is illustrated in Fig. 2.1.  

 

2.3 Floret development and living primordia dynamics 

From the onset of stem elongation onwards, three plants from each genotype were 

sampled frequently (normally 2-3 times a week, depending on temperature). The spikes 

(Fig. 2.2A) of the main shoots were dissected under microscope (Leica MZ 7.5, Leica 

Microscopy System Ltd, Heerbrugg, Switzerland) and then within particular central 

spikelets (Fig. 2.2B) floret primordia were counted and the stage of development of 

each primordium (Fig. 2.2C) was determined following the scale described by 

Waddington et al., (1983).  
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Figure 2.1. Illustration of mapping fertile florets. The number of fertile florets in each spikelet 

position from one side of the spike was counted from the basal to the apical positions including 

the terminal spikelet.  

Figure 2.2. View of: the entire spike with all the spikelets (A), a particular spikelet with the 

floret primordia (B) and a floret primordium (C) under microscope.  

Pistil development progress was observed in each floret primordia as shown in Fig. 2.3 

from the early stages until W10, when florets were considered fertile or until the 

maximum Waddington stage reached by each floret primordium that did not reached 

W10. Florets were numbered from 1 to n, from the closest to the most distal positions 

respect to the rachis, respectively. The Waddington score used for describing the pistil 

development was plotted against the thermal time from anthesis describing the floret 

development dynamics for each floret primordium within the same genotype (Fig. 2.4) 

and for all the genotypes. This allowed determining the timing of the onset and the 

duration of development for each particular floret primordium. It also showed the florets 

which reached the fertile stage (W10) as well as the most advanced developmental stage 

reached by the primordia that never became fertile florets. 
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Figure 2.3. Floret development along thermal time from early stages until post anthesis stages 

when the fecundation has already occurred. Above each picture the stage of development is 

indicated following the scale of Waddington et al., (1983).  

 

 

Figure 2.4. Floret score using Waddington scale against thermal time from anthesis for the 

floret primordium closest to the rachis (F1) of the hypothetical genotype 1, chosen as example, 

(closed circles) and for a distal floret primordium (Fn) of the same genotype (closed triangles). 

In order to analyze and compare each floret development dynamics among treatments, 

each floret of each genotype in the same position (F1, F2,.., Fn) were plotted together 

(Fig. 2.5). Differences between genotypes could be observed either as shifts among the 

curves for the same floret (Fig. 2.5, left panel), meaning differences in the time of 

development initiation and on the duration of the floret development phase, or as 

different scores reached by the same florets (Fig. 2.5, right panel). 

The number of living floret primordia within spikelets was plotted against thermal time 

from anthesis for each genotype. This shows the number of primordia that were 

developing normally at each sampling timing in the central spikelets from the beginning 

of floret generation (florets were considered to be a single primordium at W3.5, before 

that stage what the scale refers to the stage of development of the spike as a whole, not 

of the individual florets) until the maximum of floret primordia is reached (floret 

development generation phase: TTG). In addition, floret initiation was defined when 

floret 1 reached the stage of Waddington (W) 3.5. After the maximum number of 

primordia initiated is reached, the floret mortality or degeneration starts (TTD) until the 

number of fertile florets is finally established around anthesis. This number of fertile 

florets is therefore the end result of the generation and degeneration process and then 

  W5       W6.5            W7               W8               W9            W≈9.5            W9.5          W>10           W>>10 

 

Thermal time 
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has as components the maximum number of floret primordia and the floret survival 

(Fig. 2.6, left panel) which was calculated as the ratio between the number of fertile 

florets at anthesis and the maximum number of floret primordia developed. In order to 

compare genotypes, living floret dynamics were plotted together showing differences in 

the duration of the floret generation/degeneration phase length, in the maximum number 

of floret primordia developed and the final number of fertile florets (Fig. 2.6, right 

panel). 

Figure 2.5. Floret score using Waddington scale against thermal time from anthesis for floret 1 

(left panel) and floret 4 (right panel) of hypothetical genotypes 1 (closed circles) and 2 (open 

square), the line inset the right panel indicates the shift among the curves indicating differences 

in the timing of the onset of floret initiation (left panel).  

2.4 Synchrony in floret primordia initiation 

The likelihood of a relatively distal floret primordia to become a fertile floret might be 

related to the synchrony of initiation of different florets. To estimate the degree of 

synchrony among the floret primordia initiation for each particular treatment, I 

determined the timing (thermal time) of the onset of floret initiation, as when each 

primordium reached W3.5, in the cases that did not coincide with any microscope 

observation; it was estimated using each floret development dynamics fitting a linear 

regression between floret score and thermal time, while the progression of development 

was clearly linear (Fig. 2.7), and estimating with the parameters of the linear regression 

the timing of W3.5 for that particular primordium. Once the timing of Waddington stage 

3.5 of each floret primordium was calculated, each floret position was plotted against 

thermal time to its stage W3.5 (Fig. 2.8, left panel) and fitted a linear regression whose 

slope was the rate of floret primordia initiation, and its reciprocal the “plastochron” for 

floret primordia (i.e. the average thermal time interval between the initiation of two 

consecutive floret primordia). Even though the Waddington scale is strongly qualitative 

in nature, this allowed comparing genotypes in terms of synchrony of floret initiation 

events comparing the slopes of the linear regressions (Fig. 2.8, right panel, a1 vs a2) and 

the plastochrons for floret primordia. 

-1000 -500 0 500 1000
0

2

4

6

8

10

Genotype 1, F1

F
lo

r
e
t 

sc
o

r
e
 (

d
im

e
n

si
o

n
le

ss
)

Thermal time from anthesis (°C d)

Genotype 2, F1

-1000 -500 0 500 1000
0

2

4

6

8

10

Genotype 1, F4

F
lo

r
e
t 

sc
o

r
e
 (

d
im

e
n

si
o

n
le

ss
)

Thermal time from anthesis (°C d)

Genotype 2, F4



Chapter II: General procedures 

 

22 

 

Figure 2.6. Number of living floret primordia against thermal time from anthesis for an 

hypothetical genotype. The number of living floret primordia for a particular thermal time, the 

number maximum of floret primordia developed and the final number of fertile florets are 

indicated, and the segments on the top indicate the length of the phases (in thermal time) of 

floret primordia generation (TTG) and degeneration (TTD) (left panel). Comparison of the 

number of living floret primordia per spikelet against thermal time between hypothetical 

genotypes 1 (closed circles) and 2 (open triangle) (right panel). 

2.5 Statistical analyses 

To determine the significance of genotypic differences I subjected the data to analysis 

of variance (ANOVA) or t-tests and to a posteriori contrasts, depending on the 

experiments: Fishers Least Significant Difference (LSD) or LSMeans Differences 

Student's t test to determine when differences between particular treatments were 

significant using JMP® Pro version 12.0 (SAS Institute Inc., Cary, NC, USA). To 

determine the degree of relationships between variables, linear regression analyses were 

performed. 

Figure 2.7. Illustration of the estimation of the timing of W3.5 for the floret primordium (F1, 

F4) through linear regression of each particular primordium developmental dynamics in the 

cases in which W3.5 did not coincide with a direct microscopic observation.  
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Figure 2.8. Illustration of the timing of W3.5 for each floret primordium in an hypothetical 

genotype. Slope indicated the rate of floret initiation (a1), the R2, the significance of the linear 

regression and the reciprocal of the slope to calculate the thermal time average between the 

appearance of two successive floret primordia are shown (left panel). Illustration of the timing 

of W3.5 for each floret primordium comparing two genotypes. Slopes of the linear regressions 

a1 and a2, R
2 and significances and the reciprocals of the slope for each genotype are also shown 

(right panel). 
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1. Introduction

Large grain yield gains are necessary to satisfy the current and future food demands. 

Even though grain yield is a multifactorial trait, large increases seem impossible without 

increasing grain number (Slafer et al., 2014). As wheat is a cleistogamous species, grain 

number  is largely associated with the number of fertile florets (Kirby, 1988; Slafer and 

Andrade, 1993; Miralles et al., 1998; 2000). It was already explained how the number 

of fertile florets is affected by environmental factors such as availability of resources 

and photoperiod conditions, as well as by genotypic factors such as the introgression of 

Rht alleles (Chapter I). However few works reported in detail the dynamics of processes 

determining the number of fertile florets at anthesis: onset and rate of floret primordia 

initiation, number of maximum floret primordia developed and the floret mortality 

process determined by duration and rate of floret primordia degeneration. A recently 

published study, Guo et al., (2016), reported that even though there was clear variability 

among cultivars of European wheat under field conditions in the maximum number of 

floret primordia initiated per spikelet, genotypic differences in number of fertile florets 

was much more strongly dependent upon differences in floret survival than in maximum 

number of primordia developed. This is consistent with previous reports (e.g. Ferrante 

et al., 2013, with very few durum wheat cultivars; González-Navarro et al., 2015, with 

lines of hexaploid wheat of a germplasm panel of CIMMYT). 

Modern cultivars adapted to a particular region are the most valuable germplasm used 

by breeders aiming to improve yield (or any other complex agronomic trait), by crossing 

elite x elite expecting transgressive segregation for that complex trait but within a 

progeny with proven agronomic value (parents would be already well adapted, tolerant 

to main diseases and with appropriate “agronomic type”). As these genotypes are all 

high-yielding, the likelihood of achieving that transgressive segregation would increase 

if the parents crossed possess particular physiological traits determining yield, and 

eventually two different physiological traits may be complemented in some of the 

offspring. In this context, characterizing the main physiological traits responsible for 

yield is relevant for a proper, analytical process for selecting prospect parents for a 

cross. The dynamics of floret development (i) is one of the critical physiological 

processes determining differences in grain number and yield, (ii) has been analyzed 

only very few occasions (due to the complexity and difficulty in determining such 

dynamics), and to the best of my knowledge never before in a set of modern cultivars. 

Therefore, it was aimed to characterize the dynamics of floret primordia initiation and 

degeneration in a set of modern cultivars of hexaploid wheat and to determine which are 

the most critical parameters of such dynamics in establishing genotypic differences in 

the number of fertile florets at anthesis. The study also allowed making an analysis of a 

possible role of synchrony in the floret primordia development in determining genotypic 

differences in floret survival.   
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2. Materials and methods 

2.1 General description 

Two field experiments were carried out in fields (Table 3.1) very close to Bell·lloc 

d’Urgell, Lleida, NE Spain (Lat. 41°38N, Long. 0°47´E, 196 m above sea level). In both 

fields the soil type was a complex of Calcisol petric and Calcisol haplic (soil 

information collected from IUSS Working Group WRB, 2006), with soil Nitrogen 

availability warranted for crop growth.  

Sowing rates were within the ranges used to optimize yield potential in the area (300 

seeds m-2 during the first growing season and 350 seeds m-2 during the second one). 

Plots size was 4.8 m2 (6 rows 0.2 m apart and 4 m long) in both growing seasons. 

Table 3.1. Experiments field details: growing seasons, date of sowing and modern cultivars 

grown as treatments. 

Experiment Growing season Sowing date Cultivars (classified as) 

1 2012-2013 22/11/2012 Nogal (winter) 

Ingenio (winter) 

Garcia (winter) 

Califa Sur (spring) 

Arthur Nick (spring) 

Sensas (spring) 

Atae (spring) 

Rodolfo 413MO (intermediate) 

Tribat I33* (intermediate) 

2 2013-2014 12/11/2013 

* at the time of the experiments, this was an experimental advanced and promising breeding line 

(SAR32) that has now been registered as the commercial cultivar Tribat I33. 

2.2 Treatments and design 

Treatments were the 9 modern genotypes of wheat well adapted to the growing 

conditions of the region. They were at the time of the initiation of the study 8 

commercial cultivars, released between 1999 and 2014 (GENVCE-Semillas Battle), and 

one advanced breeding line; but later the line ended registered as a new cultivar (Table 

3.1). Please note that even though they were classified as winter, spring or intermediate 

(facultative) cultivars, in Mediterranean regions with mild winters, this classification is 

not relevant as agronomically all types are sown normally before the onset of winter 

(between mid-October and mid-December, most frequently in mid-November) and they 

reach anthesis with only few days of difference, in all cases within the optimal window 

of time for flowering. 

In both experiments treatments were arranged in a randomized complete block design 

with three replicates. 
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2.3 Measurements and analyses 

We determined the number of floret primordia periodically from terminal spikelet 

initiation to anthesis, when the number of fertile florets was counted in detail for each 

spikelet in both main-shoot and tiller spikes. The general procedures and all 

measurements and analyses were presented in detail in Chapter 2.  

In order to illustrate with some details, and help to further understand, the physiological 

mechanisms behind the differences observed among modern commercial cultivars, we 

selected the two cultivars with extreme behaviors (considering the average over the two 

growing seasons in the number of the fertile florets at anthesis) to show genotypic 

differences in physiological determinants of fertile floret number, though the results are 

offered for each of the cultivars in each growing season in the Annex 3. Again to reduce 

the number of panels in each figure of the main text of this chapter, the floret 

development dynamics are shown for florets number 1, 3, 4 and 6 to summarize the 

effects, but the rest of floret dynamics of each floret primordia and for the rest of 

cultivars can be also seen in Annex 3. These floret positions were chosen because of 

their contrasting behavior in most cases: Floret 1 always is fertile in all genotypes; F3 

and F4 are labile florets and therefore are the most sensitive to treatments, including 

genotypic differences, and are responsible for the differences in fertile floret number; 

and F6 never becomes fertile in any genotype. In addition, the timing of Waddington 

3.5 stage, which allowed analyzing the floret initiation rate, for each floret primordia for 

the rest of each genotype is also shown in Annex 3.  

2.4 Weather conditions 

Weather data were recorded hourly at standard meteorological stations provided by the 

agro-meteorological network of Catalonia. Although both the first (264.3 mm) and the 

second (303.0 mm) growing seasons were rainier than the average of the previous six 

years (246.5 mm), flood irrigation was needed around flowering to avoid water stress. 

Temperatures were in general similar in both growing seasons (in turn similar to the 

average of the previous 6 years; Fig. 3.1). There was however a major difference in the 

average of the maximum temperature during April (when anthesis occurred for all 

cultivars in both growing seasons) which was clearly warmer in the second than in the 

first growing season (22.5 and 18.8ºC, respectively). In addition, both experimental 

seasons had warmer Aprils than the average of the maximum temperature in the six 

previous years (from 2007 to 2012) for that month (17.4ºC). 
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Figure 3.1. Weather conditions: Minimum (left panel), maximum (middle panel) and mean 

(right panel) temperatures averaged monthly in the first (Exp1) and in the second (Exp2) 

growing seasons and in the six years previous to the experiments (2007-2012). 

3. Results 

3.1 Number of fertile florets at anthesis 

High variability was found in the number of fertile florets at anthesis among elite 

cultivars during both growing seasons (Fig. 3.2). Cultivar Nogal presented the highest 

number of fertile florets while Atae presented the lowest value with differences between 

them of c. 46% during the first growing season (Fig. 3.2, left panel). In the second 

growing season, the largest differences were found between Sensas and Arthur Nick 

cultivars of c. 30% (Fig. 3.2, right panel). In addition and consistently, important and 

significant differences of c. 21% between Nogal and Atae cultivars were found in the 

second growing season as well (Fig. 3.2, right panel). In fact, in the second growing 

season the number of fertile florets of Nogal was not significantly lower than that of 

Sensas, and that of Atae was not significantly higher than that of Arthur Nick (Fig. 3.2, 

right panel). The average of the number of fertile florets at anthesis for each genotype 

across growing seasons showed that the largest and most significant differences were 

those between cultivars Nogal and Atae. This reasonable consistency across seasons is 

further supported by the magnitude and the nature of the GxE interaction. Regarding the 

magnitude, the mean square of the GxE interaction for the number of fertile florets per 

m2 (43.878 fertile florets m-2), even when statistically significant, was negligible 

compared with the mean square of the genotypic effect (154.791 fertile florets m-2), 

more than 3-fold greater. Regarding the nature, much of the significance of this 

interaction is given by a single cultivar, Arthur Nick (Fig. 3.2)1. 

Thus, we selected cultivars Nogal and Atae to illustrate in detail the more complex traits 

measured in the main body of this Chapter, but the data characterizing each of the rest 

of cultivars are presented in Annex 3, and relationships between traits are performed 

considering the attributes for the 9 cultivars. Naturally all conclusions are supported by 

the overall results, not just those of Nogal and Atae. 

                                                 
1 if the analysis is carried out disregarding Arthur Nick the mean square of genotype becomes almost 6-

fold than that of the GxE  
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Figure 3.2. Number of number of fertile florets per square meter among the modern cultivars 

during the first (left panel) and second growing seasons (right panel). Mean ± SEM are 

represented, p-value of genotype source resulted from ANOVA. Besides, the minimum and 

maximum number of fertile florets among the genotypes are indicated inset each panel.  

3.2 Relevance of fertile florets per spike and spikelet 

The differences among genotypes in the number of fertile florets per m2 were 

reasonably well explained by their differences in number of fertile florets per spike. In 

the first growing season the relationship was highly significant (Fig. 3.3, left panel) 

while in the second growing season it was significant only with 5.6% of probability 

(Fig. 3.3, right panel). In both growing seasons the differences in fertile florets per m2 

between Nogal and Atae reflected well these relationships (Fig. 3.3). Thus, the 

understanding of the genotypic differences in fertile florets per m2 requires a more 

detailed analysis of the fate of florets in the spikes because differences among the 

modern cultivars in fertility of the spikes seemed more relevant than in fertility of 

tillers. 

Figure 3.3. Relationship between the number of fertile florets at anthesis per square meter and 

the number of fertile florets per spike among the modern cultivars during the first (left column) 

and the second growing seasons (right column). The coefficient of determination (R2) and the 

level of significance (p-value) for linear regression are shown. 
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The number of fertile florets per spikelet was found to be consistently higher in Nogal 

than in Atae: the consistency of the difference was outstanding: it appeared along all the 

spikelets of the spikes of both main-shoots and tillers and in both growing season (Fig. 

3.4) in line with the differences seen in the number of fertile florets per unit land 

between them (Fig. 3.2). Expectedly, the number of fertile florets “mapped” in main-

shoot spikes was consistently higher than those in tiller spikes across most cultivars 

(Figs. 3.4 and A3.1-2). Thus, the number of fertile florets per spike in the main-shoot 

spikes reflected well the situation of all spikes in the canopy; naturally with values 

falling above the 1:1 ratio (spike fertility is higher in main-shoot than in tiller spikes 

(Fig. 3.5).  

Moreover, as the differences in the mapping of fertile florets evidenced that they were 

fairly distributed along the different spikelets of the spike (see above, Fig. 3.3) the 

differences observed in the spike fertility among the modern cultivars were explained at 

least by c. 51% during the first growing seasons and even more during the second 

growing season (c. 65%) by differences in the fertility of the central spikelets (Fig. 3.6), 

where the floret development starts and the number of florets per spikelet is accordingly 

highest. Therefore, analyzing in detail the floret developmental processes determining at 

the end the level of fertility in the central spikelets of the main-shoot spikes seems a 

reasonable approach to understand the mechanisms behind the differences among 

modern cultivars in floret fertility.  

 

Figure 3.4. Mapping of fertile florets (fertility of each spikelet position on the main-shoot and 

tiller spikes) (top and bottom panel, respectively) for the selected cultivars Atae (open triangles) 

and Nogal (open squares) during the first (left columns) and the second growing seasons (right 

column). Each data-point is the average of all replicates and within each replicate the value was 

the average of 5 plants and the segment in each data-point stands for the standard error of the 

means. 

0

10

20

30

Atae
Nogal

Atae
Nogal

0 2 4 6

0

10

20

30

Atae
Nogal

0 2 4 6

Atae

Nogal

Number of fertile florets per spikelet

S
p

ik
e
le

t 
p

o
si

ti
o
n

First growing season Second growing season

M
a
in

 s
h

o
o
ts

T
il

le
rs



Chapter III: Variation between elite cultivars on the physiological determinants of fertile florets 

 

33 

 

Figure 3.5. Relationship between the number of fertile florets per main-shoot spike and the 

number of fertile florets per spike among the modern cultivars during the first (left column) and 

the second growing seasons (right column). The coefficient of determination (R2) and the level 

of significance (p-value) for linear regression are shown. 

Figure 3.6. Relationship between the number of fertile florets per spike and the number of 

fertile florets per central spikelet among the modern cultivars during the first (left column) and 

the second growing seasons (right column). The coefficient of determination (R2) and the level 

of significance (p-value) for linear regression are shown.  

3.3 Floret development and living floret primordia dynamics in the central spikelets 

During both growing seasons, no major differences were found in the dynamics of 

development if the most proximal floret (Floret 1) in the two cultivars with extreme 

values of number of fertile florets at anthesis, beyond the fact that it seemed to have 

started a bit earlier (respect to the anthesis stage) in Nogal than in Atae. In both cultivars 

Floret 1 reached the fertile floret stage (stage 10) in all plants examined. On the other 

hand, Floret 3, which again started to develop earlier in Nogal than in Atae, finally 

reached the fertile floret stage in all plants examined only in Nogal (Fig. 3.7A) while in 

Atae this floret position did not reach the fertile floret stage in any of the plants 

examined (Fig. 3.7A, top panels) or did so only in some of them, that is why the most 

advanced stage of development averaging across all replicates was between 9 and 10 

(Fig. 3.7A, bottom panels). When considering the fourth floret position, Nogal seemed 

to have started to develop earlier and it distinctly reached more advanced stages of 
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development at anthesis than (Fig. 3.7A). Floret 4 was fertile only in few (Fig. 3.7A, top 

panels) or in all (Fig. 3.7A, bottom panels) plants of Nogal whilst it did never reach the 

stage of fertile floret in Atae (i.e. in none of the plants examined in either of the two 

growing seasons). Floret 6 was always infertile (for the two cultivars and the two 

growing seasons), but even in this case the primordia of this floret position reached 

always more advanced stages in Nogal than in Atae, though the difference was more 

clear in the first than in the second growing season (Fig. 3.7A). All other floret 

primordia not shown in the main text of the chapter exhibited similar differences 

between Nogal and Atae: Floret 2 was also fertile in all plants of both cultivars in both 

seasons, floret 5 was intermediate between florets 4 and 6 and floret 7 was a bit less 

developed than floret 6 in both cultivars but again it developed a bit more in Nogal than 

in Atae (Fig. A3.3,4,5,6); and in the second season only Nogal started to develop the 

floret primordia 8 (Fig. A3.4). The dynamics of floret generation and degeneration 

(considering the living florets at each timing of development progress) can be analyzed 

through integrating the dynamics of development of each floret primordia (Figs. 3.7B; 

A3.21; and A3.22). Overall primordia considered and cross growing seasons, it can be 

summarized that Nogal presented a longer floret development phase, with a particular 

longer floret mortality phase in the first growing season (when differences in fertile 

florets was largest), reaching a slightly higher maximum number of living floret 

primordia and a higher number of final fertile florets than Atae (Fig. 3.7B). As in both 

growing seasons the magnitude of the difference in number of fertile florets at anthesis 

seemed much higher than that in maximum number of floret primordia (Fig. 3.7B) it 

seems clear that floret survival was more relevant than floret initiation in determining 

the genotypic differences in number of fertile florets between Nogal and Atae.  

Developmental patterns of each floret primordia in each of the two growing seasons for 

each of the other 7 cultivars can be found in Annex 3 (Fig. A3.7-A3.20). The dynamics 

of floret generation and degeneration derived for each of these other cultivars in both 

years also showed a large mortality rate: most floret primordia initiated did not progress 

in development enough to reach the stage of fertile florets (Fig. A3.21-A3.22). 

Consequently, even though there was variation in the maximum number of primordia 

initiated, differences among cultivars in number of fertile florets which was not (first 

growing season) or was slightly related to the their maximum number of florets2 (Fig. 

3.8, top panels). On the other hand, the number of fertile florets it was very strongly 

related to floret survival in both growing seasons (Fig. 3.8, bottom panels).  

To elucidate  possible causes of variation among elite material in failure of floret 

primordia to keep developing normally towards becoming fertile florets, we analyzed (i) 

synchrony of development of different primordia, being the conjecture that a major 

cause for genetic variation in labile primordia failing to become a fertile florets could be 

genotypic differences in synchrony of development of the different floret primordia; and 

(ii) overall duration of the process of floret development, being the alternative 

                                                 
2 The term “slightly” refers not only to a relatively low coefficient of determination (compared with the 

one obtained with floret survival) but also that the range of variation in maximum number of floret 

primordia initiated was much smaller than the range of variation in number of fertile florets 
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conjecture that a genetic variation in phenological time for floret development would 

drive the genetic variation in critical determinants of the number of fertile florets. 

3.4 Synchrony in floret primordia initiation 

To estimate the degree of synchrony we analyzed both (i) the rate of initiation (stage 

3.5) of different individual floret primordia at different positions within the spikelet (the 

higher the rate the more synchronized the development as the time elapsed between the 

initiation of successive floret primordia is the reciprocal of such rate), and (ii) stage of 

development of Floret 1 at the onset of initiation of Florets 3 or 4 (the most frequent 

labile floret primordia) (the earlier the stage more synchronized the development 

between the most advanced floret and those labile florets determining the number of 

fertile florets).  

The former estimate represents an overall assessment of synchrony, generalized over all 

floret primordia (including the most proximal which are always fertile and the most 

distal ones that are never fertile). For its quantification we fitted linear regressions 

between the cumulative number of florets reaching the stage of development 3.5 in the 

Waddington et al., (1983) scale and thermal time from anthesis. All regressions fitted 

(all in all 18 regressions) showed a strong linear pattern (R2 from 0.88 to 0.99 and p-

values from <0.001 to <0.01) (Fig. 3.9, A3.23-24). The latter is a more direct reflection 

of the specific synchronization between the most developed floret primordia and the 

labile florets. For its quantification we determined the thermal time before anthesis 

when each of these primordia (Floret 3 or Floret 4) started their individual development 

(at stage 3.5) and then determined the stage of development of Floret 1 at that time. 

Interestingly, the floret primordia initiation rate and its reciprocal, the “plastochron” for 

floret primordia (the average thermal time interval between the initiation of two 

consecutive floret primordia), differed among cultivars (Fig. 3.9, A3.23-24). During 

both growing seasons floret primordia of Atae tended to initiate at a faster rate than 

those from Nogal (Fig. 3.9), although differences in the slope were statistically 

significant only during the second growing season. 

Despite the existence of genotypic differences in synchrony of floret initiation, it failed 

in being a critical contributor to the genetic differences in either number of maximum 

floret primordia (Fig. 3.10, top panels), floret survival (Fig. 3.10, middle panels) or 

number of fertile florets (Fig. 3.10, bottom panels) in any of the two growing seasons. 

The genotypic differences in stage of development of Floret 1 at the onset of 

development of Florets 3 (ranging from or 3.7 to 5) or 4 (ranging from or 4 to 5.9) were 

not responsible for differences in either of these three parameters of the dynamics of 

living florets (Figs. A3.25 and A3.26). There was no relationship between these 

parameters and the Waddington stage of the most advanced floret (F1) at the thermal 

time when the maximum number of primordia is reached: the beginning of the floret 

death either (Fig. A3.27). 
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Figure 3.7. Dynamics of the floret development of F1, F3, F4 and F6 in central spikelets (A) and the number of living floret primordia (B) through thermal 

time from anthesis for the selected Atae (open triangles) and Nogal (open squares) cultivars during the first (top panels) and the second growing seasons 

(bottom panels). Data average from 3 plants, bars stands for the standard error of the means.  
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Figure 3.8. Relationship between the number of fertile florets in the central spikelets at anthesis 

and the number of maximum floret primordia developed in the central spikelets of the main-

shoots spikes (top panels) and the relationship between the number of fertile florets in the 

central spikelets at anthesis and the floret survival in the central spikelets (bottom panels) 

among the modern cultivars during the first (left column) and the second growing seasons (right 

column). The coefficient of determination (R2) and the level of significance (p-value) for linear 

regression are shown. 

Figure 3.9. Timing of W3.5 for each floret primordium through thermal time from anthesis in 

Atae (open triangle) and Nogal (open square) cultivars during the first (left panel) and the 

second growing seasons (right panel). Inset each panel, the rate of floret initiation expressed in 

florets per 100°C d and the thermal time between the appearance of two following floret 

primordia are indicated. The coefficient of determination (R2) and the level of significance (p-

value) for linear regression are also shown. 
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As the cultivars were all modern well adapted materials, variation in time to anthesis 

was not large (maximum difference was c. 150ºC d). But most of the difference was 

concentrated in genotypic differences in the length of the late reproductive phase, from 

terminal spikelet to anthesis (Fig. 3.11). This relationship seems relevant as what is a 

slight difference in duration for the whole period from sowing to anthesis seems a rather 

relevant difference in duration of the late reproductive phase, as it is during this phase 

when floret development takes place. The genotypic differences in duration of the 

period from the onset of individual floret initiation (when F1 reached the stage 3.5) to 

anthesis seemed to have influenced positively both floret survival and number of fertile 

florets. Although the relationships were significant in the first growing season (Fig. 

3.12, left panels) and only a trend in the second growing season (Fig. 3.12, right panels), 

the trends became much more solid (p=0.06 in floret survival and p=0.07 in the number 

of fertile florets) if Garcia, the single cultivar having the longest duration of this phase -

and one of the highest number of fertile florets-, were not taken into account. 

Figure 3.10. Relationship between the number of maximum floret primordia developed (top 

panels), the floret survival (middle panels) and the number of fertile floret (bottom panels) in 

the central spikelets against floret primordia initiation rate among the modern cultivars during 

the first (left column) and the second growing seasons (right column). The coefficient of 

determination (R2) and the level of significance (p-value) for linear regression are shown. 
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Figure 3.11. Relationship between time to anthesis and late reproductive phase (LRP) length 

among the modern cultivars in the first (left panel) and second growing seasons (right panel). 

The coefficient of determination (R2) and the level of significance (p-value) for linear regression 

are shown. 

Figure 3.12. Relationship between the floret survival in the central spikelets (top panels) and the 

final number of fertile florets in the central spikelets (bottom panels) against the floret initiation 

to anthesis phase among the modern cultivars during the first (left column) and the second 

growing seasons (right column). The coefficient of determination (R2) and the level of 

significance (p-value) for linear regression are shown. 
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4. Discussion 

Modern cultivars were tested to understand the mechanisms that control the number of 

fertile florets at anthesis, whose relevance is critical in determining the number of grains 

at maturity (which in turn dominates yield determination; Peltonen-Sainio et al., 2007; 

Slafer et al., 2014) in cleistogamous plants such as wheat. Even though differences in 

most traits (and particularly so in very detailed ones like floret development patterns 

and the dynamics of floret generation/degeneration) might be much smaller among well 

adapted modern cultivars than among genotypes selected to represent wider ranges of 

variation (e.g. old and modern cultivars, lines derived from wide crosses) or even 

among related but different species, I preferred to identify (likely relatively minor) 

differences in lines that represents actual valuable material for realistic breeding 

programs. In particular, I know that this set of modern cultivars did differ in fruiting 

efficiency (Elía et al., 2016), and therefore they constitute a relevant material to study 

dynamics of floret development. Indeed, significant differences were seen in the number 

of fertile florets at anthesis among the elite cultivars during both growing seasons, and 

although there was a significant GxE interaction, (i) the magnitude of the mean squares 

of GxE was much smaller (c. one third) than that of the genotypes, and (ii) it was mostly 

due to the inconsistent performance of only one cultivar. Thus, not only there were 

differences among elite material for breeders but also these differences were reasonably 

consistent between environments.  

The cultivars studied, even when they were all modern, high-yielding, well adapted 

materials, differed in the number of fertile florets produced and the difference was more 

related to differences in floret survival than in the maximum number of floret primordia 

developed. This is consistent with previous a large body of evidences based on 

environmental effects on spike growth before anthesis, such as shading (Fischer and 

Stockman, 1980), nitrogen availability (Sibony and Pinthus, 1988; Ferrante et al., 

2010), photoperiod condition (González et al., 2003), and combination of some 

environmental treatments (Langer and Hanif, 1973; Whingwiri and Stern, 1982; 

González et al., 2003, González et al., 2005). Much less has been analyzed in terms of 

the organogenesis bases for genotypic differences in spike fertility, and the few works 

available are also consistent with the results reported in this Chapter for a set of modern 

wheat cultivars all well adapted to the region. For instance, analyzing the relationships 

between number of fertile florets and either maximum number of floret primordia or 

floret primordia survival (i) between near-isogenic lines for Rht genes (Miralles et al., 

1998), (ii) among genotypes of a panel selected in CYMMMIT (González-Navarro et 

al., 2015) and (iii) among a wide range of European wheats (Guo et al., 2016) it was 

consistently found that, again, floret survival was more relevant than floret initiation in 

determining differences in spike fertility. Therefore, it seems that results from both 

environmental (being them either resources -like radiation or N- or signals –like 

photoperiod-) and genetic (being these a collection of materials from different regions 

or well adapted cultivars to the same region) effects are consistently evidencing that 

floret survival is pivotal to determine the number of fertile florets.  
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We tested whether differences in synchrony in the initiation of proximal and distal floret 

primordia could part of the explanation, focused on a pure developmental origin of 

genetic variation. To the best of my knowledge this is the first time this sort of 

association is tested in wheat (the idea of synchrony in determining ear fertility in maize 

–with a radically different reproductive system- had been proposed before Cárcova et 

al., 2000). We failed in identifying synchrony of development among florets being 

initiated through time as a relevant origin of genotypic differences in floret survival 

(and consequently in the number of fertile florets), indicating a possible trade-off 

between the rate of initiation and the length of the phase when the initiation and survival 

of primordia takes place. Indeed, during both growing seasons, differences in time to 

anthesis were well explained by differences in the duration of the late reproductive 

phase (in addition, during the first growing season it seemed that floret survival and the 

number of fertile florets were related to the phase from floret intiation until anthesis). 

These results are also in line with previous reports evidencing that a longer floret 

developmental phase may increase floret survival (González et al., 2003; Serrago et al., 

2008). There must be an evolutionary signature in making floret survival so critical for 

the determination of fertile florets: it seems wheat plants grossly overproduce floret 

primordia and then allows a certain number to survive (being this number tightly 

governed by environmental and genetic factors); and this might be seen as unexpectedly 

wasteful and therefore unacceptable in evolutionary terms, unless clear advantages of 

such strategy can be put forward (see General Discussion in the last Chapter of this 

thesis). 

Others experiments were carried out using near isogenic lines (NILs) to refine the 

analyses on the bases of fertile floret determination due to genetic differences in wheat, 

whose results are presented in the following chapters.  
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6. Annex 3: Supplementary data 

 

Figure A3.1. Fertile florets in each spikelet position on the main-shoots (closed circles) and 

tillers spikes (open triangles) for the different modern cultivars during the first growing season. 

Average of 5 plants and the standard error of the means are represented. 
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Figure A3.2. Fertile florets in each spikelet position on the main-shoots (closed circles) and 

tillers spikes (open triangles) for the different modern cultivars during the second growing 

season. Average of 5 plants and the standard error of the means are represented. 
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Figure A3.3. Dynamics of the floret development of F2, F5 and F7 in central spikelets of the 

main-shoot spikes in Nogal cultivar during the first growing season. Data average from 3 plants, 

bars stands for the standard error of the means. 

 

 

 

 

 
 

 

 

 

 

 

Figure A3.4. Dynamics of the floret development of F2, F5, F7 and F8 in central spikelets of the 

main-shoot spikes in Nogal cultivar during the second growing season. Data average from 3 

plants, bars stands for the standard error of the means. 
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Figure A3.5. Dynamics of the floret development of F2, F5 and F7 in central spikelets of the 

main-shoot spikes in Atae cultivar during the first growing season. Data average from 3 plants, 

bars stands for the standard error of the means. 

 

 

 
 

 

 

 

 

 

Figure A3.6. Dynamics of the floret development of F2, F5 and F7 in central spikelets of the 

main-shoot spikes in Atae cultivar during the second growing season. Data average from 3 

plants, bars stands for the standard error of the means. 
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Figure A3.7. Dynamics of the floret development of F1, F2, F3, F4, F5, F6, F7 and F8 in central spikelets of the main-shoot spikes in Tribat I33 cultivar 

during the first growing season. Data average from 3 plants, bars stands for the standard error of the means. 
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Figure A3.8. Dynamics of the floret development of F1, F2, F3, F4, F5, F6, F7 and F8 in central spikelets of the main-shoot spikes in

Tribat I33 cultivar during the second growing season. Data average from 3 plants, bars stands for the standard error of the means.  
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Figure A3.9. Dynamics of the floret development of F1, F2, F3, F4, F5, F6, F7 and F8 in central spikelets of the main-shoot spikes in Califa Sur cultivar 

during the first growing season. Data average from 3 plants, bars stands for the standard error of the means.  
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Figure A3.10. Dynamics of the floret development of F1, F2, F3, F4, F5, F6, F7 and F8 in central spikelets of the main-shoot spikes in Califa Sur cultivar 

during the second growing season. Data average from 3 plants, bars stands for the standard error of the means.  
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Figure A3.11. Dynamics of the floret development of F1, F2, F3, F4, F5, F6 and F7 in central spikelets of the main-shoot spikes in Ingenio cultivar during the 

first growing season. Data average from 3 plants, bars stands for the standard error of the means.  
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Figure A3.12. Dynamics of the floret development of F1, F2, F3, F4, F5, F6, F7 and F8 in central spikelets of the main-shoot spikes in Ingenio cultivar during 

the second growing season. Data average from 3 plants, bars stands for the standard error of the means.  
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Figure A3.13. Dynamics of the floret development of F1, F2, F3, F4, F5, F6 and F7 in central spikelets of the main-shoot spikes in Arthur Nick cultivar during 

the first growing season. Data average from 3 plants, bars stands for the standard error of the means.  
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Figure A3.14. Dynamics of the floret development of F1, F2, F3, F4, F5, F6, F7 and F8 in central spikelets of the main-shoot spikes in Arthur Nick cultivar 

during the second growing season. Data average from 3 plants, bars stands for the standard error of the means.  
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Figure A3.15. Dynamics of the floret development of F1, F2, F3, F4, F5, F6 and F7 in central spikelets of the main-shoot spikes in Sensas cultivar during the 

first growing season. Data average from 3 plants, bars stands for the standard error of the means.  
 

Floret 1

-1000 -500 0 500 1000

0

2

4

6

8

10

Floret 2

-1000 -500 0 500 1000

0

2

4

6

8

10

Floret 3

-1000 -500 0 500 1000

0

2

4

6

8

10

Floret 4

-1000 -500 0 500 1000

0

2

4

6

8

10

Floret 5

-1000 -500 0 500 1000

0

2

4

6

8

10

Floret 6

-1000 -500 0 500 1000

0

2

4

6

8

10

Floret 7

-1000 -500 0 500 1000

0

2

4

6

8

10
Sensas

Thermal time from anthesis (°C d)

F
lo

r
e
t 

s
c
o

r
e
 (

d
im

e
n

s
io

n
le

s
s
)

C
h

a
p

ter III: V
a

ria
tio

n
 b

etw
een

 elite cu
ltiva

rs o
n

 th
e p

h
ysio

lo
g
ica

l d
eterm

in
a
n

ts o
f fertile flo

rets  

5
5
 



  

 

 

 

 

Figure A3.16. Dynamics of the floret development of F1, F2, F3, F4, F5, F6, F7 and F8 in central spikelets of the main-shoot spikes in Sensas cultivar during 

the second growing season. Data average from 3 plants, bars stands for the standard error of the means.  
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Figure A3.17. Dynamics of the floret development of F1, F2 F3, F4, F5, F6, F7 and F8 in central spikelets of the main-shoot spikes in Rodolfo cultivar during 

the first growing season. Data average from 3 plants, bars stands for the standard error of the means.  
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Figure A3.18. Dynamics of the floret development of F1, F2, F3, F4, F5, F6, F7 and F8 in central spikelets of the main-shoot spikes in Rodolfo cultivar during 

the second growing season. Data average from 3 plants, bars stands for the standard error of the means.  
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Figure A3.19. Dynamics of the floret development of F1, F2, F3, F4, F5, F6 and F7 in central spikelets of the main-shoot spikes in Garcia cultivar during the 

first growing season. Data average from 3 plants, bars stands for the standard error of the means.  
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Figure A3.20. Dynamics of the floret development of F1, F2, F3, F4, F5, F6, F7 and F8 in central spikelets of the main-shoot spikes in Garcia cultivar during 

the second growing season. Data average from 3 plants, bars stands for the standard error of the means.  
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Figure A3.21. Number of living floret primordia in the central spikelets through thermal time from anthesis for Tribat I33, Califa Sur, Ingenio, Arthur Nick, 

Sensas, Rodolfo and Garcia cultivars during the first growing seasons.  
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Figure A3.22. Number of living floret primordia in the central spikelets through thermal time from anthesis for Tribat I33, Califa Sur, Ingenio, Arthur Nick, 

Sensas, Rodolfo and Garcia cultivars during the second growing season. 
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Figure A3.23. Timing of W3.5 for each floret primordium through thermal time from anthesis in Tribat I33, Califa Sur, Ingenio, Arthur Nick, Sensas, Rodolfo 

and Garcia cultivars during the first growing season. Inset each panel, the rate of floret initiation expressed in florets per 100°C d and the thermal time 

between the appearance of two following floret primordia are indicated. The coefficient of determination (R2) and the level of significance (p-value) for linear 

regression are also shown.
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Figure A3.24. Timing of W3.5 for each floret primordium through thermal time from anthesis in Tribat I33, Califa Sur, Ingenio, Arthur Nick, Sensas, Rodolfo 

and Garcia cultivars during the second growing season. Inset each panel, the rate of floret initiation expressed in florets per 100°C d and the thermal time 

between the appearance of two following floret primordia are indicated. The coefficient of determination (R2) and the level of significance (p-value) for linear 

regression are also shown.
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Figure A3.25. Relationship between the number of maximum floret primordia developed (top 

panels), the floret survival (middle panels) and the number of fertile floret (bottom panels) in the 

central spikelets against F1 Waddington stage when F3 reached W=3.5 among modern cultivars 

during the first (left column) and the second growing seasons (right column). The coefficient of 

determination (R2) and the level of significance (p-value) for linear regression are shown. 
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Figure A3.26. Relationship between the number of maximum floret primordia developed (top 

panels), the floret survival (middle panels) and the number of fertile floret (bottom panels) in the 

central spikelets against F1 Waddington stage when F4 reached W=3.5 among elite cultivars 

during the first (left column) and the second growing seasons (right column). The coefficient of 

determination (R2) and the level of significance (p-value) for linear regression are shown. 
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Figure A3.27. Relationship between the number of maximum primordia developed (top panels), 

the floret survival (middle panels) and the number of fertile florets (bottom panels) in the central 

spikelets against Waddington (W) stage of F1 at maximum floret primordia thermal time (onset 

of floret death) among the modern cultivars during the first (left panels) and the second growing 

seasons (right panels). The coefficient of determination (R2) and the level of significance (p-

value) for linear regression are shown. 
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1. Introduction

The effects of major photoperiod sensitivity genes on the rate of development have been 

extensively reported for the total time from sowing or seedling emergence to anthesis 

(see Chapter I). However, due to the intrinsic difficulties associated with measurements 

required, the effects of these major Ppd alleles on the specific length of the floret 

development phase immediately preceding flowering have received much less attention, 

and those on the rates and dynamics of the floret development have been only 

exceptionally analyzed. This is rather relevant as wheat is a cleistogamous species and 

consequently most fertile florets, resulted from the survival of floret primordia initiated, 

become grains (Kirby, 1988); and yield is largely determined by the number of grains at 

maturity (Slafer et al., 2006; Reynolds et al., 2009; Sadras and Slafer, 2012; Serrago et 

al., 2013). 

As stated above, there were very few attempts of quantifying the effects of Ppd alleles 

on the physiological bases of floret fertility. These attempts have considered a very 

limited number of isogenic lines (e.g. González et al., 2005b). As the genetic 

background may affect developmental responses (Jones et al., 2016), it is critical to 

count with more comprehensive studies of the effects of these alleles on the 

developmental processes determining floret fertility. 

The main aim of the work reported in the present chapter was to determine the effects of 

Ppd alleles on the final number of fertile florets at anthesis characterizing floret 

development patterns during the stem elongation phase, and quantifying the dynamics 

of floret primordia initiation and degeneration to shed light on some physiological 

causes of these alleles on the reproductive fertility of the crop. 

2. Materials and methods

2.1 General description 

Two field experiments were carried out during 2012-2013 (first growing season) and 

2013-2014 (second growing season) in two different fields close to Bell·lloc d’Urgell, 

Lleida, NE Spain (Lat. 41°38´11´´N, Long. 0°47´20´´E and Lat. 41º39´2´´N, Long. 

0º46´23´´E, respectively). In both fields the soil type was a complex of Calcisol petric 

and Calcisol haplic, (IUSS Working Group WRB, 2006). Soil status at sowing in both 

growing seasons ensured that there was not a deficit of Nitrogen during the crop growth. 

Experiments were sown on 24 November 2012 and on 12 November 2013 at a rate of 

300 seeds m-2 in both growing seasons. Plots size was 4.8 m2 (6 rows 0.2 m apart and 4 

m long) in both experiments. 

2.2 Treatments and experimental design 

Treatments consisted of wheat NILs differing in photoperiod allelic combinations 

(Table 4.1). These combinations were produced by having lines of the wild type 

Paragon (with sensitive alleles in all three genomes) and introgressing the insensitivity 

alleles in each of the three possible genomes A, B and D, with different doses: i.e. single 

(with insensitive allele in one of the genomes), double (with insensitive alleles in two of 
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the genomes) or triple dose (with insensitive alleles in the three genomes) of 

insensitivity. In addition, for particular loci different sources of the insensitivity alleles 

were used: sources of insensitivity were genotypes GS-100, Chinese Spring, Sonora 64 

and Recital (donors). Photoperiod insensitivity alleles were introgressed in a common 

recipient parent, Paragon, by crossing followed by backcrossing to Paragon at least to 

BC6. These NILs were produced and provided by the John Innes Centre (Norwich-UK). 

The different lines were arranged in a completely randomized design in 2012-13 with an 

irregular number of replicates, from 1 to 5, depending on the amount of seeds available 

for each particular line. Only in two out of the 13 genotypes grown (Paragon with a 

single insensitive allele from Recital in chromosome 2B -aP+BR+dP- and the triple 

insensitive NIL with insensitive alleles from GS-100 in chromosome 2A and from 

Sonora 64 in chromosomes 2B and 2D -AGS+BS+DS-), the available seed was so scarce 

that I could only afford to sow one replicate. The ANOVAs were performed having the 

imbalance into account. As I multiplied the seed and produced our own stock in the first 

growing season, in the second experiment all lines were grown in a completely 

randomized block design with three replicates.  

2.3 Measurements and analyses 

Details of general procedures applied, measurements taken and analyses performed in 

the experiments of this chapter are detailed in Chapter II.  

Results of this chapter are based on determination of the number of fertile florets at 

anthesis, the mapping of fertile florets in main-shoot and tillers spikes, and the 

dynamics of development of floret primordia in the central spikelets of the main-shoots 

spikes, analyzed for each floret position in each of the experimental units (each replicate 

of the 13 genotypes) in both experimental growing seasons. All in all the dynamics of 

floret development were analyzed for between seven and eight individual florets, 

depending on the genotype, in each experimental unit (see Chapter II for detail 

explanation on how these measurements were done). 

To simplify the presentation of the results, in the main body of this chapter, the details 

are shown for 4 genotypes (which represent the ranges exhibited by the 13 lines) and for 

4 floret positions (which represents roughly the range of lability of the floral organs). 

Regarding genotypes, I showed in the main body of the chapter the details for the wild 

type (with three sensitive alleles), and for one NIL with a single, one with a double and 

one with a triple substitution with insensitive alleles. For floret positions the details are 

shown in the main body of the chapter for floret primordia with either very stable final 

outcome (florets 1 and 6) or very labile (florets 3 and 4). Thus, the most proximal floret 

represent cases in which complete development is virtually always achieved, the sixth 

floret primordium from the rachis is never developed enough to reach the fertile floret 

stage at anthesis and florets 3 and 4 are the most labile positions in which the effects of 

treatments affecting floret development to reach a fertile floret can be seen most 

noticeably. However, all floret primordia were analyzed in detail in all the NILs in each 

growing season and the dynamics of the other florets and for each of all other NILs are 

also shown but in an annex to the chapter (Annex 4). 
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Table 4.1. Plant material used in the experiments consisting of NILs carrying one, two or three 

photoperiod insensitivity alleles in chromosome 2 of the different genomes A, B, D (the alleles 

conferring insensitivity are labelled with an “a” and those conferring sensitivity with a “b”) and 

the parental Paragon. The code used for referring to the NILs indicating the genomes with 

insensitivity alleles (in capital) and with the source of such alleles (subscript) is also provided; 

in the case of the sensitive alleles (with the genome letter always in lowercase), the code was 

only P as the unique source of sensitivities is the wild type Paragon. 

Furthermore, the dynamics of living floret primordia was estimated for the apical 

positions of all the NILs and Paragon in both growing seasons comparing the data of the 

dynamics of living floret primordia in the different spikelets positions of four cultivars 

from the bibliography (Ferrante et al., 2013) and using my data of the central spikelets 

and final number of fertile florets in the apical positions measured in the NILs and 

Paragon. 

2.4 Weather conditions 

Main differences between growing seasons were that April and May were hotter (3.7 

and 4.0ºC) in the second than in the first growing season: maximum temperatures 

averaged for April were 18.8ºC in the first growing season and 22.5ºC in the second 

one, and for May they were 20.4ºC in the first growing season and 24.4ºC in the second 

one (Fig. 4.1). All genotypes reached anthesis stage between 25 April and 21 May 

during the first growing season whereas during the second one they flowered between 

21 April and 13 May. Comparing to the average of the six previous years (from 2007 to 

2012, data provided by Xarxa d’Estacions Meteorològiques Automàtiques de 

Catalunya), April was hotter in both growing seasons (maximum temperatures: 1.4 and 

5.1ºC above) while May maximum temperature in the first growing season was 1.8ºC 

lower than the historical maximum and during the second growing season it was 2.1ºC 

warmer (Fig. 4.1).   

Genotype (donor insensitivity allele/alleles) 

Number of 

insensitivity 

alleles 

Genome Allelic combination Code 

Paragon 0 Ppd A1b  Ppd B1b  Ppd D1b aP+bP+dP 

P(GS-100 2A) 1 A Ppd A1a  Ppd B1b  Ppd D1b AGS+bP+dP 

P(Chinese Spring 2B) 1 B Ppd A1b  Ppd B1a  Ppd D1b aP+BCS+dP 

P (Sonora 64 2B) 1 B Ppd A1b  Ppd B1a  Ppd D1b aP+BS+dP 

P (Recital 2B) 1 B Ppd A1b  Ppd B1a  Ppd D1b aP+BR+dP 

P (Sonora 64 2D) 1 D Ppd A1b  Ppd B1b  Ppd D1a aP+bP+DS 

P(GS-100 2A+Chinese Spring 2B) 2 A+B Ppd A1a  Ppd B1a  Ppd D1b AGS+BCS+dP 

P(GS-100 2A+ Sonora 64 2B) 2 A+B Ppd A1a  Ppd B1a  Ppd D1b AGS+BS+dP 

P(GS-100 2A+ Sonora 64 2D) 2 A+D Ppd A1a  Ppd B1b  Ppd D1a AGS+bP+DS 

P(Chinese Spring 2B+ Sonora 64 2D) 2 B+D Ppd A1b  Ppd B1a  Ppd D1a aP+BCS+DS 

P(Sonora 64 2B+Sonora 64 2D) 2 B+D Ppd A1b  Ppd B1a  Ppd D1a aP+BS+ DS 

P(GS-100 2A+Chinese Spring 2B+Sonora 64 2D) 3 A+B+D Ppd A1a  Ppd B1a  Ppd D1a AGS+BCS+DS 

P(GS-100 2A+Sonora 64 2B+Sonora 64 2D) 3 A+B+D Ppd A1a  Ppd B1a  Ppd D1a AGS+BS+DS 
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Figure 4.1. Weather conditions: Minimum (left panel), maximum (middle panel) and mean 

(right panel) temperatures averaged monthly in the first (Exp1) and second growing (Exp2) 

seasons and in the six years previous to the experiments (2007-2012). 

3. Results 

3.1 Number of fertile florets at anthesis 

All NILs developed less fertile florets at anthesis than Paragon, although the differences 

were only consistently significant in the first growing season (Fig. 4.2, top-left panel) 

while only a consistent trend, though mostly non-significant, was evident in the second 

growing season (Fig. 4.2, top-right panel). In the first season the reductions ranged from 

less than 20 to more than 40% among the NILs with a single dose of insensitivity, and 

between almost 30 and 60% when 2 or 3 insensitivity alleles were introgressed (Fig. 

4.2, bottom-left panel). In the second season all NILs exhibited less fertile florets at 

anthesis than Paragon as well, but only in one line, that with an insensitive allele in 

genome B introgressed from Chinese Spring, the reduction was significant and 

noticeable (Fig. 4.2, bottom-right panel). 

Comparing the NILs with only one insensitivity allele, the strongest reduction in final 

number of fertile florets was observed with the insensitivity introgressed in the D 

genome in the first growing season (Fig. 4.2 bottom-left panel) but this allele was not 

consistently the stronger one in the second season (Fig. 4.2 bottom-right panel) and the 

effect of one of the NILs with insensitivity in the B genome introgressed from Sonora 

64 was virtually equally strong to the insensitivity in the D genome (Fig. 4.2 left 

panels). Analyzing the data of the first growing season in which the introgression of 

Ppd alleles had a consistent significant effect, there was a clear overall inverse 

relationship between the number of insensitivity alleles and number of fertile florets 

(Fig. 4.2 top-left panel, inset); but that was true in average, while some individual NILs 

with a single insensitivity allele had stronger reductions in number of fertile florets than 

some particular NILs with more than a single introgression (Fig. 4.2 left-panels). 

In order to find out possible causes behind the differences observed in the number of 

fertile florets at anthesis (i) the number (and the distribution) of fertile florets per spike 

(‘mapping’ the number of these florets at each spikelet position of the main-shoot and 

tillers spikes) and (ii) the developmental processes of floret primordia in the central 

spikelets of the main-shoots spikes were analyzed in detail. This was done for all lines, 
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but to illustrate the results in the main body of this chapter, representative NILs of the 

single (aP+BCS+dP), double (AGS+BCS+dP) and triple (AGS+BCS+DS) insensitivity alleles 

were chosen: aP+BCS+dP presented significant differences in the number of fertile florets 

compared to Paragon in both growing seasons, AGS+BCS+dP presented the highest 

differences from Paragon during the first growing season and AGS+BCS+DS was the 

triple one with significant differences compared to the parent during the first growing 

season. The data from the rest of the NILs are also presented with the same detail but in 

the Annex 4 of the present Thesis, and general relationships and conclusions are based 

on results of the whole set of lines analyzed not just those used to illustrate the results in 

the main body of the chapter. 

 

 

Figure 4.2. Top panels: Number of fertile florets for each of the Ppd NILs (bars) and the wild 

type Paragon (dotted line) during the first (left panel) and the second growing seasons (right 

panel). Error bars stand for the standard error of the means. Inset each panel are the box-plots 

grouping the NILs with the single, double or triple doses of Ppd alleles introgressed. Bottom 

panels: Reduction in the number of fertile florets between each of the Ppd NILs and the wild 

type Paragon during the first (left panel) and second growing seasons (right panel). 
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3.2 Mapping fertile florets 

In general, differences in the number of fertile florets along the spikes between the NILs 

and Paragon were extremely clear only in the first growing season (Fig. 4.3, left 

columns of panels). This is in line with the highest reduction found in the total number 

of fertile florets at anthesis in this growing season (Fig. 4.2, left panels).   

Compared with Paragon carrying one single insensitivity allele reduced the number of 

fertile florets more noticeably in the apical spikelets of the main-shoots and the tillers 

spikes in the first growing season (Fig. 4.3, top-left panel), but not in the second 

growing season, when the reduction was observed across most spikelets mainly in the 

main-shoots spikes (Fig. 4.3, top-right panels). The NILs carrying a double or triple 

doses of insensitivity alleles reduced the number of fertile florets more markedly 

making the difference with Paragon clear in almost all spikelets of both main-shoot and 

tiller spikes during the first growing season (Fig. 4.3, middle- and bottom-left panels), 

while differences in fertile florets per spike tended to be negligible in the second 

growing season (Fig. 4.3, middle- and bottom-right panels). Moreover, NILs spikes 

tended to be shorter than Paragon during the first growing season. Similar responses 

were found for main-shoot and tiller spikes for the rest of the NILs (see Fig. A4.1-4 in 

Annex 4). As the differences between NILs and Paragon in fertile florets per spike 

resembled reasonably well those in the number of fertile florets per unit land area (Fig. 

4.4) the main effects of Ppd alleles were on the fertility of the spikes rather than on the 

fertility of tillers. Particularly, differences already explained in the number of fertile 

florets along the spikes in the NIL carrying one single insensitivity alleles may explain 

at least part of the effect on the reduction of the number of fertile florets at anthesis of c. 

31 and 34% in comparison to Paragon in the first and second growing season, 

respectively (Fig. 4.2, bottom-left and right panels), and in the case of the NILs carrying 

double and triple insensitivity alleles may explain at least part of the highest differences 

of c. 56% and c. 45% respectively during the first growing season (Fig. 4.2, bottom-left 

panel).  

In this context, explaining the causes for the differences in spike fertility between NILs 

with different levels of insensitivity becomes relevant. Due to the large number of 

determinations required for analyzing the developmental rate of single floret primordia 

(see Chapter II), the analysis of the likely origin of differences in floret fertility had to 

be restricted to florets of the central spikelets of the main-shoot spikes (as it was 

explained also in the chapter focused on differences in spike fertility among modern 

cultivars). Even though not perfect, fortunately the fertility of the main-shoot spikes 

reflected well that of the pool of all spikes in the canopy across all NILs (Fig. 4.5). 

Naturally the total number of fertile florets was consistently larger in the main-shoot 

spikes than in the average of all spikes (in all lines, in both growing seasons), but most 

(>86%; p<0.001) of the differences between lines in spike fertility for the average spike 

in the canopy were explained by differences in fertility of the main-shoot spikes. 

Likewise, differences in fertility pooling all the spikelets in the spike were highly 

related to the differences in fertility of the central spikelet (Fig. 4.6), in which I can 
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trace back the developmental process that would have given origin to differences in 

floret fertility for each NIL. 

Figure 4.3. Mapping of fertile florets (fertility of each spikelet position on the main-shoot or 

tiller spikes) for the selected NILs (closed circles) with one (aP+BCS+dP, top panels), two 

(AGS+BCS+dP, middle panels) or three (AGS+BCS+DS, bottom panels) insensitivity alleles in 

comparison to Paragon (aP+bP+dP, open triangles) during the first (two left columns of panels) 

and the second growing seasons (two right columns of panels). Each data-point is the average of 

all replicates and within each replicate the value was the average of 4 plants and the segment in 

each data-point stands for the standard error of the means (not visible when smaller than the size 

of the symbol or absence of replicates in AGS+BCS+DS tillers).  

Figure 4.4. Relationship between the number of fertile florets at anthesis per square meter and 

the number of fertile florets per spike among the Ppd NILs and Paragon during the first (left 

column) and the second growing seasons (right column). The coefficient of determination (R2) 

and the level of significance (p-value) for linear regression are shown.  
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Figure 4.5. Relationship between the number of fertile florets per main-shoot spike and the 

number of fertile florets per spike among the Ppd NILs and Paragon during the first (left 

column) and the second growing seasons (right column). The coefficient of determination (R2) 

and the level of significance (p-value) for linear regression are shown.  

Figure 4.6. Relationship between the number of fertile florets per spike and the number of 

fertile florets per central spikelet among the Ppd NILs and Paragon during the first (left column) 

and the second growing seasons (right column). The coefficient of determination (R2) and the 

level of significance (p-value) for linear regression are shown.  

3.3 Floret development and living floret primordia dynamics in the central spikelets 

No relevant differences were found in the dynamics of developmental progress of 

florets 1, 3 and 4 between the NIL carrying a single insensitivity allele and Paragon 

during the first growing season (Fig. 4.7A, top panels). Although, floret 6 did not reach 

the fertile floret stage in any of these two genotypes, this floret primordium was clearly 

more developed in Paragon than in the NIL with a single insensitive allele (Fig. 4.7A, 

top panels). As the main difference in developmental rates of floret primordia in the first 

growing season was evidenced in floret positions which were not fertile in any case, the 

dynamics of floret initiation and degeneration showed a similar final number of fertile 

florets in the NIL and in Paragon, even though the period of floret degeneration (when 

survival or death of particular florets is determined) was slightly longer in the wild type 

(Fig. 4.7B, top panel). In the second growing season, no differences were found in the 

dynamics of floret 1 and 3 either, but the fourth floret developed normally until reaching 

the fertile floret stage in Paragon while it did not do so in the NIL with one insensitive 
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allele, and no differences were found in development of floret 6 (Fig. 4.7A, bottom 

panels). Consequently, carrying a single insensitivity allele lowered the number of 

fertile florets compared with Paragon, which again exhibited a longer period of floret 

degeneration which might be responsible for the reduced rate of floret mortality 

increasing the final number of fertile florets at the end of the floret development period 

(Fig 4.7B, bottom panel).  

Comparing the floret development dynamics between a NIL carrying two insensitive 

alleles and Paragon, during the first growing season, no differences were found in floret 

1 but floret 3 reached the fertile stage in all Paragon plants whereas it did so only in 

some of the plants of the NIL (Fig. 4.8A, top panels). In addition, floret 4 reached the 

fertile stage only in Paragon but never in the NIL with two insensitive alleles. Again, 

floret 6 which was not developed enough to reach the fertile floret stage in any 

genotype, presented in the first growing season a less advanced developmental stages in 

the NIL with two insensitive alleles than in Paragon (Fig. 4.8A, top panels). During the 

second growing season, no difference was found for F1 and 3 but floret 4 was fertile 

always in Paragon while it was so only in some plants of the NIL with two insensitive 

alleles (Fig. 4.8A, bottom panels). In this second season floret 6 was actually more 

developed in the NIL with two insensitive alleles than in the wild type (Fig. 4.8A, 

bottom panels). Regarding to the number of living floret primordia dynamics, in both 

growing seasons the NIL with two insensitive alleles had a shorter duration of floret 

death and a lower number of fertile florets at anthesis, in both cases the differences were 

clearer in the first than in the second growing season (Fig. 4.8B).  

In the case of the NIL carrying three insensitivity alleles in comparison to Paragon 

results of developmental progress towards becoming fertile structures of individual 

florets were rather similar to the other two NILs, although more similar to the NIL with 

two than to that with one insensitive allele (Fig. 4.9A). Regarding the resulting 

dynamics of generation and degeneration of floret primordia the NIL with the three 

insensitive alleles presented a reduction in the number of fertile florets at the end of the 

process, which was more clear in the first than in the second growing season but the 

reduction in the duration of the floret death period was clear only in the second season 

(Fig. 4.9B).  

Similar differences with the wild type for the overall patterns of the floret 

developmental progress for individual floret positions and of dynamics of living floret 

primordia were observed in most of the other NILs with also similar differences in 

magnitude of responses between growing seasons (see Annex 4, Fig. A4.5-34); although 

there were some exceptions in which the NILs with insensitivity finally produced more 

fertile florets that Paragon in the central spikelets (e.g. aP+BCS+DS in the first growing 

season; aP+BS+dP and AGS+bP+DS in the second growing season; see A4.30, 32 and 33). 

But these exceptions have to be taken carefully as they are more apparent than real: the 

insensitivity alleles also induced to produce less spikelets per spike  and consequently 

the apparently higher fertility of these exceptional cases mostly reflects that difference 

in spike structure and in all cases introgression of insensitivity alleles reduced the 

overall fertility of the spikes. This can be supported by comparing the estimated 

dynamics of number of living floret primordia in the apical positions in which 
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photoperiod insensitivity caused a reduction in the number of  fertile florets in all the 

NILs in comparison to Paragon in the first growing season (Fig. 4.10) and in most of 

them during the second one (4.11). 

In general the effects of the photoperiod insensitivity alleles on the final number of 

fertile florets were mainly due to their effects on floret death determining the level of 

floret survival. Although there was variation in the maximum number of floret 

primordia initiated, overall NILs there was no relationship between the number of fertile 

florets at anthesis and the maximum number of floret primordia developed in any of the 

two growing seasons (Fig. 4.12, top panels). On the other hand, the number of fertile 

florets was highly and positively related to floret survival in both growing seasons (Fig 

4.12, bottom panels).  

At least in part the difference in likelihood of a floret primordium to become a fertile 

floret may be related to the differential level of competition that could be established 

between developing floret primordia governing the rate of floret death. Two major 

issues may be behind the establishment of different levels of competition, resulting in 

different levels of floret mortality: (i) the degree of synchronization of floret initiation 

and (ii) the timing available for floret development. To find out if photoperiod 

insensitivity alleles were affecting the synchrony I analyzed the linear regressions 

between the floret position, from 1 to 7-8 and thermal time (from anthesis) when these 

florets reached stage 3.5 in the Waddington et al., 1983 scale (W3.5). The slopes of 

these relationships were compared (for more details see Chapter II). 



 
 

 

 

 

 

 

 

Figure 4.7. Dynamics of the floret development of F1, F3, F4 and F6 in central spikelets of the main-shoot (A) and the number of living floret primordia (B) 

through thermal time from anthesis in aP+BCS+dP carrying one single change (closed circles), in comparison to Paragon (aP+bP+dP, open triangles) during the 

first (top panels) and the second growing seasons (bottom panels). Data-points are average from replicates (see Materials and methods), bars stands for the 

standard error of the means. 
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Figure 4.8. Dynamics of the floret development of F1, F3, F4 and F6 in central spikelets of the main-shoot (A) and the number of living floret primordia (B) 

through thermal time from anthesis in AGS+BCS+dP carrying double change (closed circles), in comparison to Paragon (aP+bP+dP, open triangles) during the 

first (top panels) and the second growing seasons (bottom panels). Data-points are average from replicates (see Materials and methods), bars stands for the 

standard error of the means.  
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Figure 4.9. Dynamics of the floret development of F1, F3, F4 and F6 in central spikelets of the main-shoot (A) and the number of living floret primordia (B) 

through thermal time from anthesis in AGS+BCS+DS carrying triple change (closed circles), in comparison to Paragon (aP+bP+dP, open triangles) during the first 

(top panels) and the second growing seasons (bottom panels). Data-points are average from replicates (see Materials and methods), bars stands for the 

standard error of the means. 
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Figure 4.10. Number of living floret primordia in the apical spikelets through thermal time from sowing in NILs carrying single, double or triple changes 

(continuous line) in comparison to Paragon (dotted line) during the first growing season. Data was estimated using the data of the central spikelets measured 

and on the basis of the differences in the dynamics of living floret primordia among the different spikelets positions from Ferrante et al., 2013.  
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Figure 4.11. Number of living floret primordia in the apical spikelets through thermal time from sowing in NILs carrying single, double or triple changes 

(continuous line) in comparison to Paragon (dotted line) during the second growing season. Data was estimated using the data of the central spikelets 

measured and on the basis of the differences in the dynamics of living floret primordia among the different spikelets positions from Ferrante et al., 2013. 
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3.4 Synchrony in floret primordia initiation  

The relationships between the floret position and the thermal time before anthesis when 

each floret initiated were clearly curvilinear in almost all cases, mainly because the most 

proximal floret primordia were initiated quickly after the previous primordium while the 

initiation of the most distal primordium tended to be noticeably delayed (remarkably so 

in the wild type in the second growing season) (Fig. 4.13). Disregarding this 

curvilinearity, as the trend has a strong linear component, in all cases the linear 

regression showed a highly significant coefficient of determination (R2 ranging from 

0.71, p<0.05, to 0.98, p<0.001; Figs. 4.13 and A4.35-36). During the first growing 

season, there was a trend to increase the rate of floret primordia initiation with the 

introgression of photoperiod insensitivity alleles, 

the difference with the rate of the wild type was not significant for the NIL carrying a 

single dose of insensitivity alleles (Fig.4.13, top-left panel) but it was larger and 

significant for the NILs carrying double and triple doses of insensitivity alleles (Fig. 

4.13, top-middle and -right panels). During the second growing season, differences were 

not significant (Fig.4.13, bottom panels). These results reflected well the overall results 

observed for each of the NILs (Fig. A4.35-36). 

However, the differences in rates of floret initiation and consequently in synchrony 

between the initiation of early- and late-initiated primordia, which were clear in the first 

year and only minor in the second seemed largely inconsequential for the maximum 

number of floret primordia initiated (Fig. 4.14, top panels), the floret survival rate (Fig. 

4.14, middle panels) and for the number of fertile florets at anthesis (Fig. 4.14, bottom 

panels). 

Finally, there was not a clear relationship between (i) the maximum number of floret 

primordia initiated (Fig. 4.15, top panels), (ii) the floret survival rate (Fig. 4.15, middle 

panels), or (iii) the resulting number of fertile florets (Fig. 4.15, bottom panels) and the 

stage of development of the floret primordium nearest the rachis (the most advanced 

floret) at the timing when the maximum floret primordia is reached (the onset of floret 

death).  

As it was seen among modern cultivars, the lack of consequences of synchrony on floret 

generation and survival would be likely reflecting a biological compensation between 

the rate of floret primordia initiation and the duration of the process.  
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Figure 4.12. Relationship between the number of fertile florets at anthesis and the number of 

maximum floret primordia developed in the central spikelets of the main-shoots spikes (top 

panels) and relationship between the number of fertile florets at anthesis and the floret survival 

in the central spikelets from the main-shoots spikes (bottom panels) among Ppd NILs and 

Paragon during the first (left panels) and the second growing seasons (right panels). The 

coefficient of determination (R2) and the level of significance (p-value) for linear regression are 

shown.
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Figure 4.13. Timing of W3.5 for each floret primordium through thermal time from anthesis in selected NILs (closed circles) carrying one single (aP+BCS+dP,

left column), double (AGS+BCS+dP, middle column) and triple change (AGS+BCS+DS, right column) in comparison to Paragon (aP+bP+dP, open triangles) which 

rate of floret initiation was: 2.53±0.30 (R2=0.92***) during the first growing season (top panels) while it was 2.52±0.72 (R2=0.71*) during the second 

growing seasons (bottom panels). In all the cases the floret initiation rates are expressed in florets per 100°C d. The coefficient of determination (R2) and the 

level of significance for each NIL linear regression are shown. Inset each panel, thermal time between the appearance of two following floret primordia are 

indicated, for Paragon was 39.5 and 39.7°C d during the first and the second growing seasons, respectively.  

27.1ºC d

yAGS+BCS+DS=3.69±0.47 per 100ºC d

R2=0.92***

Triple (AGS+BCS+DS)Double (AGS+BCS+dP)

S
e
c
o

n
d

 g
r
o

w
in

g
 s

e
a

so
n

F
ir

st
 g

r
o

w
in

g
 s

e
a

so
n

1

2

3

4

5

6

7

8

9

40.4ºC d

yaP+BCS+dP=2.48±0.40 per 100ºC d

R2=0.89**

24.1ºC d

yAGS+BCS+dP=4.14±0.48 per 100ºC d

R2=0.94**

-600 -500 -400 -300 -200

1

2

3

4

5

6

7

8

9

42.9ºC d

yaP+BCS+dP=2.33±0.17 per 100ºC d

R2=0.97***

-600 -500 -400 -300 -200

41.0ºC d

yAGS+BCS+dP=2.44±0.36 per 100ºC d

R2=0.90**

-600 -500 -400 -300 -200

42.2ºC d

yAGS+BCS+DS=2.37±0.21 per 100ºC d

R2=0.96***

F
lo

r
et

 n
u

m
b

er
 (

F
r
o

m
 m

o
s
t 

p
r
o

x
im

a
l 

to
 t

h
e 

ra
ch

is
)

W3.5 thermal time from anthesis (ºC d)

Single (aP+BCS+dP)

C
h

a
p

ter IV
: P

h
ysio

lo
g

ica
l d

eterm
in

a
n

ts o
f fertile flo

rets a
s a

ffected
 b

y P
p
d

 g
en

es 

8
8 



 Chapter IV: Physiological determinants of fertile florets as affected by Ppd genes 

89 

Figure 4.14. Relationship between the number of maximum floret primordia developed (top 

panels), the floret survival (middle panels) and the number of fertile floret (bottom panels) in 

the central spikelets against floret primordia initiation rate among the Ppd NILs and Paragon 

during the first (left panels) and the second growing seasons (right panels). The coefficient of 

determination (R2) and the level of significance (p-value) for linear regression are shown. 
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Figure 4.15. Relationship between the number of maximum floret primordia developed (top 

panels), the floret survival (middle panels) and the number of fertile florets (bottom panels) in 

the central spikelets against Waddington (W) stage of F1 at maximum floret primordia thermal 

time (onset of floret death) among the Ppd NILs and Paragon during the first (left panels) and 

the second growing seasons (right panels). The coefficient of determination (R2) and the level 

of significance (p-value) for linear regression are shown. 
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3.5 Duration of floret development 

Carrying the insensitivity allele/s in most of the cases caused a reduction in time to 

anthesis due to a reduction in the duration of the late reproductive phase from terminal 

spikelet initiation to anthesis. This result was clear and highly significant in the first 

growing season but only a trend in the second growing season (Fig. 4.16). 

Figure 4.16. Relationship between time to anthesis and the late reproductive phase length (LRP) 

among the NILs and Paragon during the first (left) and the second growing seasons (right). The 

coefficient of determination (R2) and the level of significance (p-value) for linear regression are 

shown. 

Alike what happened with the synchrony in floret development, there was no clear 

relationships between the rate of floret survival or its consequence, the number of fertile 

florets, and any of the durations of floret development. Neither the whole period of stem 

elongation, nor the specific period of floret initiation, or the period of floret primordia 

generation, or the period of floret degeneration were relevant for explaining by 

themselves the rate of floret mortality or the final number of fertile florets (Figs. 4.17-

4.18). 

400 500 600 700
1000

1200

1400

1600

y=1.34±0.33x + 509.7±177.2

R2=0.60 p<0.01

T
im

e 
to

 a
n

th
es

is
 (

ºC
 d

)

400 500 600 700

AGS+bP+dP
aP+BCS+dP

aP+BS+dP

aP+BR+dP

aP+bP+DS

AGS+BCS+dP

AGS+bP+DS

aP+BCS+DS

AGS+BS+dP

aP+BS+DS

AGS+BCS+DS

AGS+BS+DS

aP+bP+dP

R2=0.18 ns

LRP length (ºC d)

First growing season Second growing season



 Chapter IV: Physiological determinants of fertile florets as affected by Ppd genes 

92 

Figure 4.17. Relationship between the floret survival in the central spikelets and i) the late 

reproductive phase, ii) floret initiation to anthesis phase, iii) floret generation phase and i) floret 

degeneration phase among the Ppd NILs and Paragon during the first (left column) and the 

second growing seasons (right column). The coefficient of determination (R2) and the level of 

significance (p-value) for linear regression are shown. 
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Figure 4.18. Relationship between the final number of fertile florets in the central spikelets and 

i) the late reproductive phase, ii) floret initiation to anthesis phase, iii) floret generation phase

and i) floret degeneration phase among the Ppd NILs and Paragon during the first (left column) 

and the second growing seasons (right column). The coefficient of determination (R2) and the 

level of significance (p-value) for linear regression are shown. 
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4. Discussion

Ppd NILs and their parental Paragon represented a good population to study complex 

mechanisms that control floret development and consequently the bases of the 

determination of the number of fertile florets. This is because they are NILs backcrossed 

to the recurrent parent for at least 6 generations so genetic differences beyond the alleles 

involved in the study are minimized and the constitution of the NILs included an 

arrangement that allowed to analyze in detail not only the effect of the insensitivity in 

each of the three possible genomes and in their combinations (different doses), but also 

to elucidate the importance of the source of the alleles. 

Carrying photoperiod insensitivity alleles caused a reduction in the number of fertile 

florets. This result is in agreement with the general effects of Ppd alleles on the number 

of organs being developed during the phase whose duration is affected by these genes. 

This has been established for leaf and spikelet primordia (i.e. that when photoperiod 

changes the duration of a phase it does change more or less proportionally the number 

of primordia initiated; Slafer and Rawson, 1994), but to the best of my knowledge the 

same effect on fertile florets was hypothesized (Slafer et al., 2001) but not demonstrated 

and, as far as I am aware, this is the first time they are documented for floret primordia. 

It might not have been similar because, unlike the determination of leaves and spikelets 

in which all the primordia initiated will contribute to the final number achieved, the 

number of florets follows a process of generation followed by degeneration, 

determining the outcome of these two processes the number of fertile florets at anthesis. 

In fact, the processes are not parallel: in leaf and spikelet initiation phases it seems that 

Ppd alleles alter the rate of phasic development (changing the duration of the phase; 

González et al., 2002; Whitechurch and Slafer, 2001; 2002; Foulkes et al., 2004;) but do 

not noticeably affect the rate of organogenesis and consequently the number of organs 

initiated is rather linearly related to the duration of the phase when they are initiated 

(Slafer and Rawson, 1994). In this study it was shown that synchrony was improved 

with the introgression of insensitive alleles, which implies that unlike what happens 

with leaf and spikelet primordia, the rate of floret primordia initiation was positively 

affected by insensitivity to photoperiod, as much as these alleles positively affects the 

rate of phasic development of the late reproductive phase. Consequently the maximum 

number of floret primordia was not largely affected by Ppd alleles. Thus, the effect on 

the number of fertile florets seemed to have occurred indirectly, through the reduction in 

time making fewer resources available for the most labile floret primordia to continue 

developing normally towards producing fertile florets during the floret mortality phase. 

Thus, despite that insensitive alleles frequently improved the synchrony in floret 

primordia initiation there was compensation with the effects of these alleles in 

shortening the duration of the processes and finally synchrony was not related to floret 

survival or final number of fertile florets. 

Even though the effect of Ppd insensitivity alleles on the number of spike-bearing tillers 

and on the number of leaves and spikelets developed in the previous phases can be 

contributing to the differences in the number of fertile florets per m2 observed among 

the NILs and Paragon, the likelihood of the alleles to reduce the number of spikes per 
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unit land area is lower than reducing the number of florets per spike due to the number 

of floret per spike implicates a more refined regulation (Slafer et al., 2014) more 

consistent with the strength of the effects of the alleles on the reproductive phases. In 

addition, the results showed that differences in the number of fertile floret per m2 were 

well explained by differences in the number of fertile florets seen in the spikes. 

In line with previous reports (González et al., 2005a; González-Navarro et al., 2015; 

Guo et al., 2016) differences seen in the number of fertile florets in the spikelets were 

better related to the floret survival than to the maximum number of primordia developed 

and seemed not to be related to particular developmental stages of the more advanced 

florets.  

The strength of the effects on the traits measured was rather independent of the 

particular genome of Paragon in which the sensitive allele was substituted by an 

insensitive allele. This is in line with differences reported in the order of strength of the 

genomes for time to heading or anthesis: while Scarth and Law, 1984; Law, 1987; 

Worland, 1996; Stelmakh 1998; Worland et al., 1998; González et al., 2005b; Díaz et 

al., 2012; reported the Ppd-D1 gene to be the strongest one; Tanio and Kato, 2007 

remarked the importance of Ppd-B1 comparable to Ppd-D1; and Bentley et al., 2011 

reported the strength in the A genome in synthetic hexaploid wheats with intermediate 

effects between D and B. This emphasizes the importance of the allelic form (source) 

being used for substitution in a particular genome. In addition, increasing the dose of 

insensitivity alleles tended to produce larger differences on traits although, it was not 

fully consistent. This lack of consistency may well be again due to the effect of the 

source of the alleles. These results and interpretations are in line with a previous 

discussion in González et al., 2005b who compared the effects of Ppd-D1 and Ppd-B1, 

mainly on phenology, that they found with those reported in other studies. That 

discussion highlighted lack of consistency implying that other elements would be more 

relevant than the genome in which the allele was substituted in determining the strength 

of the effect; remarking the importance of the source of the alleles over that of the 

genome in which the insensitive allele substituted the sensitive one, something already 

hypothesized long time ago (Scarth and Law, 1984).  

As explained in the Results section, the effects of introgressing the Ppd alleles were of 

strongly different magnitude in the two growing seasons. Whilst major effects were 

evident in the first growing season, in the second growing season the results of the 

action of these alleles became only trends, mostly non-significant. Attempting to 

understand why the responses were different in the two seasons I analyzed different 

climatic characteristics (soils were similar and in both seasons experiments were well 

irrigated and fertilized). The hypothesis was that perhaps an interaction with 

temperature could be possible. This was based on the fact that temperature and 

photoperiod seem to act interactively, rather than additively (Slafer and Rawson, 1996). 

In fact, there was an increment in maximum temperatures at the field around the 

flowering time in the second growing season respect to the first one. Floral development 

has been identified as sensitive to climatic stress including pollen formation (Saini and 

Aspinall, 1982; Lalonde et al., 1997) and floral abnormalities induced by heat stress (i.e. 

stamen hypoplasia and pistil hyperplasia) were also reported in rice (Takeoka et al., 
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1991). A modelling exercise parameterized by flowering observations indicated that the 

temporal and spatial variability of anther activity within and between spikes may 

influence the relative resilience of wheat to sudden extreme climatic events (Lukac et 

al., 2012). Furthermore, even the lines with different degrees of insensitivity and also 

Paragon presented lower number of fertile florets during the second growing season, the 

effect seemed to be stronger in Paragon rather than in the NILs (that is why significance 

of the differences were mostly lost in the second growing season) suggesting an 

interaction between temperatures and photoperiod sensitivity.   

In general the main effects that explained the proposal aims are summarized and 

represented in Fig. 4.19 taking into account the effects of most NILs (Ppd a) in 

comparison to Paragon (Ppd b) in both growing seasons: Under moderate temperatures, 

carrying insensitivity (Ppd a) reduced time to flowering at least due to reducing the late 

reproductive phase, particularly the floret generation phase. This caused in most NILs 

the reduction in the maximum and final number of florets in central spikelets which 

together with possible decreases in floret primordia in other spikelets positions plus in 

the spikelets and tillers number caused a lower number of fertile florets per surface unit. 

However, when flowering happened under high temperature conditions even 

photoperiod insensitivity (Ppd a) still reduced time to anthesis and the late reproductive 

phase, the floret generation period was longer than in Ppd b and the floret degeneration 

shorter which caused the lack of the effects seen under moderate temperatures on the 

maximum and almost in the final number of florets in the central spikelets. Although 

still may exist reduction in the florets number in the other floret positions, spikelets and 

tillers number which contributed to reduce, even not significant, the number of fertile 

florets per unit surface. In addition, comparing Ppd b, which seemed to be more 

affected by temperature (temperature x photoperiod sensitivity), under moderate and 

high temperatures around anthesis, it could be seen that high temperatures reduced time 

to anthesis and the floret generation phase and increased the floret degeneration period 

lowering the number of fertile florets. 
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Figure 4.19. Schematic representation of the effects of carrying photoperiod insensitivity alleles 

(-a-), in comparison to Paragon (sensitive –b-), on developmental processes and the consequent 

overall effect on the number of fertile florets in two growing seasons contrasting in temperatures 

during the floret development period. Top: expected effects at moderate temperatures on the 

length of developmental phases until anthesis, particularly in that of floret primordia generation 

and degeneration determining the maximum and final (fertile) numbers of florets in central 

spikelets and their impact on the number of fertile florets per square meter. Bottom, at higher 

temperatures, the the differences due to the effect of photoperiod insensitivity on the duration of 

the floret development phases were minimized (becoming non-significant in most cases) with 

the concomitant loss of effect on the number of fertile florets. 
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Figure A4.1. Mapping of fertile florets (fertility of each spikelet position on the main-shoot spikes) during the first growing season for the NILs (closed 

circles) with one, two or three insensitivity alleles in comparison to Paragon (open triangles). Each data-point is the average of all replicates and within each 

replicate the value was the average of 4 plants and the segment in each data-point stands for the standard error of the means (not visible when smaller than the 

size of the symbol or absence of replicates). 
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Figure A4.2. Mapping of fertile florets (fertility of each spikelet position on the tiller spikes) during the first growing season for the NILs (closed circles) with 

one, two or three insensitivity alleles in comparison to Paragon (open triangles). Each data-point is the average of all replicates and within each replicate the 

value was the average of 4 plants and the segment in each data-point stands for the standard error of the means (not visible when smaller than the size of the 

symbol or absence of replicates).  
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Figure A4.3. Mapping of fertile florets (fertility of each spikelet position on the main-shoot spikes) during the second growing season for the NILs (closed 

circles) with one, two or three insensitivity alleles in comparison to Paragon (open triangles). Each data-point is the average of all replicates and within each 

replicate the value was the average of 4 plants and the segment in each data-point stands for the standard error of the means (not visible when smaller than the 

size of the symbol or absence of replicates).  

C
h

a
p

ter IV
: P

h
ysio

lo
g

ica
l d

eterm
in

a
n

ts o
f fertile flo

rets a
s a

ffected
 b

y P
p
d

 g
en

es 

0

10

20

30

AGS+bP+dP

aP+bP+dP

aP+BS+dP

aP+bP+dP

aP+BR+dP

aP+bP+dP

aP+bP+DS

aP+bP+dP

Number of fertile florets per spikelet

S
p

ik
e
le

t 
p

o
si

ti
o

n

0

10

20

30
AGS+BS+dP

aP+bP+dP

0 2 4 6

AGS+bP+DS

aP+bP+dP

0 2 4 6

aP+BCS+DS

aP+bP+dP

0 2 4 6

aP+BS+DS

aP+bP+dP

0 2 4 6

0

10

20

30
AGS+BS+DS

aP+bP+dP

T
ri

p
le

s

D
o

u
b

le
s

S
in

g
le

s

Second growing season

1
0

2
 



Figure A4.4. Mapping of fertile florets (fertility of each spikelet position on the tiller spikes) during the second growing season for the NILs (closed circles) 

with one, two or three insensitivity alleles in comparison to Paragon (open triangles). Each data-point is the average of all replicates and within each replicate 

the value was the average of 4 plants and the segment in each data-point stands for the standard error of the means (not visible when smaller than the size of 

the symbol or absence of replicates).  
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Figure A4.5. Dynamics of the floret development of F2, F5 and F8 in central spikelets of the main-shoots through thermal time from anthesis in aP+BCS+dP 

(closed circles), a NIL carrying one single change, in comparison to Paragon (open triangles) during the first growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means. 

Figure A4.6. Dynamics of the floret development of F2, F5, F7 and F8 in central spikelets of the main-shoots through thermal time from anthesis in aP+BCS+dP 

(closed circles), a NIL carrying one single change, in comparison to Paragon (open triangles) during the second growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means. 
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Figure A4.7. Dynamics of the floret development of F2, F5 and F7 in central spikelets of the main-shoots through thermal time from anthesis in AGS+BCS+dP 

(closed circles), a NIL carrying double change, in comparison to Paragon (open triangles) during the first growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means. 

Figure A4.8. Dynamics of the floret development of F2, F5, F7 and F8 in central spikelets of the main-shoots through thermal time from anthesis in 

AGS+BCS+dP (closed circles), a NIL carrying double change, in comparison to Paragon (open triangles) during the second growing season. Data-points are 

average from replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.9. Dynamics of the floret development of F2, F5, F7 and F8 in central spikelets of the main-shoots through thermal time from anthesis in 

AGS+BCS+DS (closed circles), a NIL carrying triple change, in comparison to Paragon (open triangles) during the first growing season. Data-points are average 

from replicates (see Materials and methods), bars stands for the standard error of the means. 

Figure A4.10. Dynamics of the floret development of F2, F5, F7 and F8 in central spikelets of the main-shoots through thermal time from anthesis in 

AGS+BCS+DS (closed circles), a NIL carrying triple change, in comparison to Paragon (open triangles) during the second growing season. Data-points are 

average from replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.11. Dynamics of the floret development from F1 to F8 in central spikelets of the main-shoots through thermal time from anthesis in AGS+bP+dP 

(closed circles), a NIL carrying one single change, in comparison to Paragon (open triangles) during the first growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.12. Dynamics of the floret development from F1 to F8 in central spikelets of the main-shoots through thermal time from anthesis in AGS+bP+dP 

(closed circles), a NIL carrying one single change, in comparison to Paragon (open triangles) during the second growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.13. Dynamics of the floret development from F1 to F8 in central spikelets of the main-shoots through thermal time from anthesis in aP+BS+dP 

(closed circles), a NIL carrying one single change, in comparison to Paragon (open triangles) during the first growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.14. Dynamics of the floret development from F1 to F8 in central spikelets of the main-shoots through thermal time from anthesis in aP+BS+dP 

(closed circles), a NIL carrying one single change, in comparison to Paragon (open triangles) during the second growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.15. Dynamics of the floret development from F1 to F7 in central spikelets of the main-shoots through thermal time from anthesis in aP+bP+DS 

(closed circles), a NIL carrying one single change, in comparison to Paragon (open triangles) during the first growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means. 
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Figure A4.16. Dynamics of the floret development from F1 to F8 in central spikelets of the main-shoots through thermal time from anthesis in aP+bP+DS 

(closed circles), a NIL carrying one single change, in comparison to Paragon (open triangles) during the second growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.17. Dynamics of the floret development from F1 to F7 in central spikelets of the main-shoots through thermal time from anthesis in aP+BR+dP 

(closed circles), a NIL carrying one single change, in comparison to Paragon (open triangles) during the first growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.18. Dynamics of the floret development from F1 to F7 in central spikelets of the main-shoots through thermal time from anthesis in ap+BR+dP 

(closed circles), a NIL carrying one single change, in comparison to Paragon (open triangles) during the second growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.19. Dynamics of the floret development from F1 to F7 in central spikelets of the main-shoots through thermal time from anthesis in AGS+bP+DS 

(closed circles), a NIL carrying double change, in comparison to Paragon (open triangles) during the first growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.20. Dynamics of the floret development from F1 to F8 in central spikelets of the main-shoots through thermal time from anthesis in AGS+bP+DS 

(closed circles), a NIL carrying double change, in comparison to Paragon (open triangles) during the second growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.21. Dynamics of the floret development from F1 to F8 in central spikelets of the main-shoots through thermal time from anthesis in aP+BCS+DS 

(closed circles), a NIL carrying double change, in comparison to Paragon (open triangles) during the first growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.22. Dynamics of the floret development from F1 to F8 in central spikelets of the main-shoots through thermal time from anthesis in aP+BCS+DS 

(closed circles), a NIL carrying double change, in comparison to Paragon (open triangles) during the second growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.23. Dynamics of the floret development from F1 to F7 in central spikelets of the main-shoots through thermal time from anthesis in AGS+BS+dP

(closed circles), a NIL carrying double change, in comparison to Paragon (open triangles) during the first growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.24. Dynamics of the floret development from F1 to F8 in central spikelets of the main-shoots through thermal time from anthesis in AGS+BS+dP 

(closed circles), a NIL carrying double change, in comparison to Paragon (open triangles) during the second growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.25. Dynamics of the floret development from F1 to F8 in central spikelets of the main-shoots through thermal time from anthesis in aP+BS+DS 

(closed circles), a NIL carrying double change, in comparison to Paragon (open triangles) during the first growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.26. Dynamics of the floret development from F1 to F8 in central spikelets of the main-shoots through thermal time from anthesis in aP+BS+DS 

(closed circles), a NIL carrying double change, in comparison to Paragon (open triangles) during the second growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.27. Dynamics of the floret development from F1 to F8 in central spikelets of the main-shoots through thermal time from anthesis in AGS+BS+DS 

(closed circles), a NIL carrying triple change, in comparison to Paragon (open triangles) during the first growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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Figure A4.28. Dynamics of the floret development from F1 to F8 in central spikelets of the main-shoots through thermal time from anthesis in AGS+BS+DS 

(closed circles), a NIL carrying triple change, in comparison to Paragon (open triangles) during the second growing season. Data-points are average from 

replicates (see Materials and methods), bars stands for the standard error of the means.  
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 Chapter IV: Physiological determinants of fertile florets as affected by Ppd genes 

Figure A4.29. Number of living floret primordia in the central spikelets through thermal time 

from anthesis in NILs carrying one change (closed circles), in comparison to Paragon (open 

triangles) during the first growing season. Data-points are average from replicates (see Materials 

and methods). 

Figure A4.30. Number of living floret primordia in the central spikelets through thermal time 

from anthesis in NILs carrying two changes (closed circles), in comparison to Paragon (open 

triangles) during the first growing season. Data-points are average from replicates (see Materials 

and methods).  
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 Chapter IV: Physiological determinants of fertile florets as affected by Ppd genes 

Figure A4.31. Number of living floret primordia in the central spikelets through thermal time 

from anthesis in a NIL carrying three changes (closed circles), in comparison to Paragon (open 

triangles) during the first growing season. Data-points are average from replicates (see Materials 

and methods). 

Figure A4.32. Number of living floret primordia in the central spikelets through thermal time 

from anthesis in NILs carrying one change (closed circles), in comparison to Paragon (open 

triangles) during the second growing season. Data-points are average from replicates (see 

Materials and methods).  
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 Chapter IV: Physiological determinants of fertile florets as affected by Ppd genes 

Figure A4.33. Number of living floret primordia in the central spikelets through thermal time 

from anthesis in NILs carrying two changes (closed circles), in comparison to Paragon (open 

triangles) during the second growing season. Data-points are average from replicates (see 

Materials and methods). 

Figure A4.34. Number of living floret primordia in the central spikelets through thermal time 

from anthesis in a NIL carrying three changes (closed circles), in comparison to Paragon (open 

triangles) during the second growing season. Data-points are average from replicates (see 

Materials and methods). 
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Figure A4.35. Timing of W3.5 for each floret primordium through thermal time from anthesis in NILs (closed circles) carrying one single (top panels), double 

(middle panels) and triple change (bottom panels) in comparison to Paragon (aP+bP+dP, open triangles) which rate of floret initiation was: 2.53±0.30 

(R2=0.92***), during the first growing season. In all the cases the floret initiation rates are expressed in florets per 100°C d. The coefficient of determination 

(R2) and the level of significance for each NIL linear regression are shown. Inset each panel, thermal time between the appearance of two following floret 

primordia are indicated, for Paragon was 39.5ºC d.  
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Figure A4.36. Timing of W3.5 for each floret primordium through thermal time from anthesis in NILs (closed circles) carrying one single (top panels), double 

(middle panels) and triple change (bottom panels) in comparison to Paragon (aP+bP+dP, open triangles) which rate of floret initiation was: 2.52±0.72 

(R2=0.71*), during the second growing season. In all the cases the floret initiation rates are expressed in florets per 100°C d. The coefficient of determination 

(R2) and the level of significance for each NIL linear regression are shown. Inset each panel, thermal time between the appearance of two following floret 

primordia are indicated, for Paragon was 39.7°C d.  
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1. Introduction 

Earliness ‘per se’ (Eps) genes are within the most relevant genes that govern the wide 

wheat adaptability (Herndl et al., 2008) and it has been shown to affect the duration of 

the phases to flowering once the photoperiod and vernalisation are fully satisfied (Slafer 

et al., 2015, and references quoted therein). Although they are within the most relevant 

genes affecting development, the magnitude of their effects are frequently minor, being 

useful mainly for fine-tuning of flowering time in a regional adaptation (Griffiths et al., 

2009). 

Probably due to the complex experimental setup required (all photoperiod and 

vernalisation requirements must be fully satisfied to identify these genes), due to the 

expected relatively minor effects (which would be more difficult to detect for more 

detailed variables), or to assumptions commonly made in the literature (see Slafer, 

1996), most reports on Eps effects focused on time to anthesis or heading, not normally 

on the effects these alleles might have on the development of particular organs. 

However, it was reported that the gene Eps-A
m
1 (an exceptional case of an Eps gene 

with a rather large effect on development in diploid wheat) not only affected the 

duration to heading, but also the number of spikelets and grains per spike (Lewis et 

al., 2008). However, to the best of my knowledge there have been no studies reporting 

the effects of Eps genes in hexaploid wheat on the wheat floret development dynamics 

and on the setting of a particular level of the spike fertility. 

The aim of this work was to identify (and if identified to quantify) changes in the 

number of fertile florets at anthesis, as well as in the dynamics of floret development 

among different wheat Near Isogenic Lines (NILs) for Eps genes under field conditions.  

2. Materials and methods 

2.1 General description 

Fields experiments were carried out during three consecutive growing seasons: 2012-13 

(first growing season), 2013-14 (second growing season) and 2014-15 (third growing 

season) as it is described in Table 5.1. In the first and second growing seasons the soil 

was classified as Fluvisol calcari (FAO, 1988) and Calcisol Petric (FAO, 1987) while in 

the third growing season, it was a complex of Calcisol petric and Calcisol haplic, (IUSS 

Working Group WRB, 2006). Soil status at sowing in both growing seasons ensured 

that there was not a deficit of Nitrogen during the crop growth. Plots size was 6m
2
 (6 

rows 0.20 m apart and 5 m long) in the first and second growing seasons while in the 

third one it was 4.8m
2
 (6 rows 0.20 m apart and 4 m long). Sowing rates were 300 seeds 

m
-2

 during all growing seasons. 

 

 

 

 

 

http://link.springer.com/article/10.1007/s10142-009-0146-7#CR43
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Table 5.1. Field experiments details: Growing season, location, coordinates and sowing date.   

Growing season  Location Coordinates Sowing date 

First Algerri, Lleida, NE Spain. 
lat. 41º 46’ 49.19’’ N, 

long. 0º 38’ 18.49’’ E  
02/11/2012 

Second Algerri, Lleida, NE Spain. 
lat. 41º48´12.85´´N,      

long. 0º37´8.85´´E 
07/11/2013 

Third Bell-lloc d’Urgell, Lleida, NE Spain. 
lat. 41º39´7.07´´ N,      

long. 0º46´19.70´´E 
14/11/2014 

 

2.2 Treatments and experimental design  

Treatments consisted of wheat NILs differing in earliness per se alleles resulted from 

the crosses of Avalon x Cadenza (AxC) or Spark x Rialto (SxR), each pair of NILs 

carrying either the early or the late allele in Chromosome 1D (in both AxC and SxR) or 

in 3A (in AxC; Table 5.2). For the Eps in chromosome 1D of AxC there were 6 pairs of 

NILs (6 lines with the Eps-early and 6 with the Eps-late) and therefore all in all 12 lines. 

This was the same in the case of the Eps in chromosome 3A of AxC. Finally, for the 

Eps in chromosome 1D of SxR there were 4 pairs of NILs (4 lines with the Eps-early 

and 4 with the Eps-late) and therefore all in all 8 lines. In the cases of Eps alleles in 

chromosome 1D, all pairs were made on a single recurrent parent (Cadenza and Rialto, 

respectively), whilst in the case of Eps alleles in chromosome 3A, half of the pairs were 

made on Cadenza and the other half with Avalon as recurrent parents. Each individual 

NIL pairs were developed by making the double haploid to cross into the recurrent 

parent, a  progeny of this cross was crossed twice into the recurrent parent (two back-

crosses) and after the lines were selfed (3 cycles)  (BC2F3), produced in Dr Simon 

Griffiths’s lab at the John Innes Centre (Norwich-UK). Within each of the three families 

of NIL pairs, all differences could be only ascribed to the effect of that of the specific 

Eps gene, and therefore I analyzed the effect of each specific Eps as the average in the 

variables analyzed between the 2 lines in each of the NIL pairs within a family. Each of 

the three “families” of NILs (AxC 1D; SxR 1D; AxC 3A) were grown over two 

consecutive growing seasons and each family was sown in a different experiment in 

adjacent parts of the field (they were side-by-side). As treatments (lines) were arranged 

in three completely randomized blocks we had in each case either 18 or 12 replications 

(Table 5.2).  

2.3 Measurements and analyses 

We determined the number and Waddington stage of floret primordia periodically from 

terminal spikelet initiation to anthesis, when the number of fertile florets was counted in 

detail for each spikelet in both main-shoot and tiller spikes. The general procedures and 

all measurements and analyses were presented in detail in Chapter II. In all cases the 

analyses were done line per line individually but results are based on the average 

differences between late and early NIL pairs within families. 
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Table 5.2. Plant material used in the experiments consisting of Eps NILs resulted from the 

Avalon x Cadenza cross (AxC) differing in early or late alleles in chromosome 1D (lateAxC_1D vs 

earlyAxC_1D) or in chromosome 3A (lateAxC_3A vs earlyAxC_3A) and the Eps NILs resulted from the 

Spark x Rialto cross (SxR) differing in in early or late alleles in chromosome 1D (LateSxR_1D vs 

EarlySxR_1D). The growing seasons and the number of replicates are also given.  

 

Parentals  Background 
     Source of Eps 

allele           
Chromosome Allele Code 

Growing 

seasons 

Overall 

replicates 

      

  

AvalonxCadenza Cadenza 
Avalon  

1D 
Eps-Am1-l* lateAxC_1D First and 

second 
18 

Cadenza Eps-Am1-e earlyAxC_1D 

AvalonxCadenza 
Cadenza & Cadenza  

3A 
Eps-Am1-l lateAxC_3A Second 

and third 
18 

Avalon Avalon Eps-Am1-e earlyAxC_3A 

SparkxRialto Rialto 
Rialto  

1D 
Eps-Am1-l lateSxR_1D First and 

second 
12 

Spark Eps-Am1-e earlySxR_1D 

*l = allele conferring lateness; e = allele conferring earliness 

The results showed in this chapter include the analysis of the effects of carrying the 

Eps-early allele in comparison to the Eps-late on the number of fertile florets along the 

spikes position due to changes in the floret development dynamics in the central 

spikelets. However, to summarize, only the dynamics for 4 contrasting floret positions 

are shown in the main body of the chapter, in which the effects of the treatment (genetic 

allelic variation) can be found. All the rest of floret positions can be found in Annex 5.  

2.4 Weather conditions 

Main difference on weather conditions among growing seasons is the averaged 

maximum temperature on May in which all the NILs from the different parental cross 

and chromosomes reached anthesis stage in all the growing seasons. Averaged 

maximum temperatures were: 20.0°C, 23.4°C and 27.6°C during the first, second and 

third growing seasons respectively (Fig. 5.1).   

 

Figure 5.1. Minimum (left panel), maximum (middle panel) and mean (right panel) 

temperatures average monthly along the crop cycle at Algerri during the first and second 

growing seasons and at Bell-lloc d’Urgell during the third one. 
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3. Results 

3.1 Spike fertility 

The Eps-late alleles considered in this study increased the number of fertile florets 

respect the NILs with the Eps-early along the spikes of both main-shoots and tillers in at 

least one of the two growing seasons in which they were grown. 

In the case of the Eps gene in chromosome 1D of AxC the number of fertile florets 

along the main-shoot and tiller spikes Eps were not significantly different in the first 

growing season (when curiously the Eps early variant tended to have a higher number 

than the late variant; Fig. 5.2, top panels). During the second growing season 

differences were higher and the Eps-late variant presented a higher number of fertile 

florets in the most spikelets than the early variant in both main-shoot and tiller spikes, 

which resulted in a significantly higher number of fertile florets per spike (Fig. 5.2, 

bottom panels).  

The Eps-late allele in chromosome 3A of AxC showed similar results than that allele in 

chromosome 1D of the same cross but with more clear impact: in the first growing 

season in which it was grown the difference was not significant either, but the trend was 

for the late allele to induce higher fertility in the spike than the early allele (Fig. 5.3, top 

panels), while in the last growing season the difference became much larger and even 

more significant than in the case of the allele in 1D, being the spike fertility improved 

evident in almost all the spikelets in both the main-shoot and tiller spikes (Fig. 5.3, 

bottom panels). 

When NILs from the SxR cross with contrasting alleles of the Eps gene in chromosome 

1D were compared, again the lines carrying the Eps-early exhibited spikes with reduced 

fertility, though the number of fertile floret per spike was significantly higher in lines 

with the late allele than in those with the early allele in the main-shoots in the first 

growing season and in the tillers in the second growing season (Fig. 5.4). 

As whenever a difference between NILs in spike fertility was detected, it was 

representative of most spikelets but clearer in the more fertile spikelets, those in the 

central part of the spikes, a detailed analysis of floret development in these spikelets 

could shed light on the origin of the differences in spike fertility. 

3.2 Floret development and living floret primordia dynamics in the central spikelets 

More detailed analysis was carried out to try to find out the likely origin of the overall 

slight increase in number of fertile florets due to the introgression of the late form of 

these Eps genes. Dynamics of development of each individual floret primordium as well 

as that of all living floret primordia were studied for each of the NILs. Florets 1, 3, 4 

and 6 were chosen to illustrate the main results because they represent extreme cases of 

floret development: while floret 1 always reaches the fertile stage, floret 6 does never 

develop that much and florets 3 and 4 are those most commonly labile, determining 

their developmental dynamics whether or not the treatments affect floret fertility. 

Although not in the main body of this chapter, the dynamics of other floret positions are 

shown in the Annex 5 (A5.1, 2, 3). 
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Figure 5.2. Mapping of fertile florets (fertility of each spikelet position on the main-shoot or 

tiller spike) (left and right columns) for the Eps NILs AxC 1D carrying the Eps-early allele 

(open triangle) or the Eps-late allele (closed circles) during the first (top panels) and the second 

growing seasons (bottom panels). Each data-point is the average of all replicates and within 

each replicate the value was the average of 4 plants and the segment in each data-point stands 

for the standard error of the means. The average of the number of fertile florets per spike and 

the standard error of the means are indicated in brackets, in bold when differences between early 

and late were significant. 
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Figure 5.3. Mapping of fertile florets (fertility of each spikelet position on the main-shoot or 

tiller spike) (left and right columns) for the Eps NILs AxC 3A carrying the Eps-early allele 

(open triangle) or the Eps-late allele (closed circles) during the first (top panels) and the second 

growing seasons (bottom panels). Each data-point is the average of all replicates and within 

each replicate the value was the average of 4 plants and the segment in each data-point stands 

for the standard error of the means. The average of the number of fertile florets per spike and 

the standard error of the means are indicated in brackets, in bold when differences between early 

and late were significant. 
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Figure 5.4. Mapping of fertile florets (fertility of each spikelet position on the main-shoot or 

tiller spike) (left and right columns) for the Eps NILs SxR 1D carrying the Eps-early allele 

(open triangle) or the Eps-late allele (closed circles) during the first (top panels) and the second 

growing seasons (bottom panels). Each data-point is the average of all replicates and within 

each replicate the value was the average of 4 plants and the segment in each data-point stands 

for the standard error of the means. The average of the number of fertile florets per spike and 

the standard error of the means are indicated in brackets, in bold when differences between early 

and late were significant. 
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There were no clear differences in the dynamics of development of the three most 

proximal floret primordia between NILs carrying the late and early Eps alleles in 

chromosome 1D resulted from the AxC cross in any of the two growing season in which 

all reached the stage of fertile floret (score 10) (Fig. 5.5A Florets 1 and 3; Fig. A5.1 

Floret 2). On the other hand floret 4 reached that stage only in some of the plants of 

NILs carrying the Eps-early allele but not in others, whilst did so in most plants of NILs 

carrying the late allele in the second growing season (Fig. 5.5A) explaining the slight 

difference in spike fertility in that season (a difference not seen in the first growing 

season). Florets in more distal positions did never develop to stages even close to fertile 

florets in any NILs and growing seasons (Fig. 5.5A Floret 6; Fig. A5.1 Florets 5,7,8) 

and did not exhibit any difference in development between NILs, with the exception of 

Floret 5 in the second season that like in the case of floret 4, the NILs with the Eps-late 

allele tended to reach advanced stages than those with the early allele (Fig. A5.1 Florets 

5, bottom panel). Consequently, there were no differences between the Eps-late or Eps-

early NILs in the dynamics of generation and degeneration of floret primordia nor in the 

final number of fertile florets in the first growing season (Fig. 5.5B, top panel), whilst in 

the second season plants of both NILs initiated a similar number of floret primordia but 

the plants carrying the Eps-late allele showed a slightly slower rate of death towards the 

end of the floret mortality period, resulting in higher number of fertile florets at anthesis 

(Fig. 5.5B, bottom).  

Similarly to what was described for the NILs varying in Eps from in chromosome 1D of 

AxC, when the effects of possessing the Eps-late vs -early allele in chromosome 3A, 

there were no clear differences in the dynamics of either developmental progress of 

particular floret primordia (Fig. 5.6A top panels; Fig. A5.2 top panels), or in the floret 

primordia generation/degeneration (Fig. 5.6B top panels), in the first growing season in 

which it was grown. Florets 1, 2 and 3 always reached the fertile stage simultaneously, 

and floret 4 did so only in part of the plants analyzed but not in the others, in the 

contrasting NILs; while more distal florets (5-8) (Fig. 5.6A top panels; Fig. A5.2 top 

panels) never reached this stage. In the second growing season in which it was grown, 

when spike fertility was more clearly affected (see above), developmental rates of 

florets 1-3 were again virtually unaffected by the Eps alleles (Fig. 5.6A bottom panels; 

Fig. A5.2 bottom panels), whilst floret 4 always was fertile in the plants of NILs with 

Eps-late allele while only in some plants with the Eps-early allele (Fig. 5.6A bottom 

panel); and more distal florets did not reach the stage of fertile florets in any case, 

though Floret 5 tended to reach advanced stages in the plants of NILs with the Eps-late 

allele (Fig. A5.2 bottom panel). Consequently, the Eps-late allele reduced the mortality 

of floret primordia (by maintaining further the development of labile florets), increasing 

the number of fertile florets at anthesis even when Eps NILs carrying either the early or 

late variant initiated the same number of floret primordia (Fig. 5.6B, bottom panel).  

Finally, dynamics of floret 1 and 3 of the NILs carrying either the Eps-early or the late 

variant resulted from the SxR in 1D did not show any clear differences in either of the 

two growing season alike floret 4 in the second season, while floret 4 was fertile in all 

plants of the NILs carrying the Eps-late variant but only in several (though not all) 

plants carrying the Eps-early in the first growing season (Fig. 5.7A; Fig. A5.3). More 
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distal florets (5-8/9) (Fig. 5.7A; Fig. A5.3) did never reach the stage of fertile florets at 

anthesis in NILs with Eps-early alleles, in the lines with the Eps-late at least few plants 

had the fifth floret primordium developing normally to become a fertile floret at 

anthesis in the first growing season (Fig. A5.3, top panel). Therefore, the slight 

differences in the final number of fertile floret in the first growing season was again 

related to a reduced floret mortality due to an improved development of labile florets 

when the Eps allele was the late form (Fig. 5.7B, top panel) even though both NILs 

variants initiated the same maximum floret primordia in both growing seasons (Fig. 

5.10B).  

3.3 Duration of late reproductive phase  

With the exception of the differences between NILs for Eps alleles in chromosome 1D, 

being significantly shorter in NILs carrying the Eps-early than in those with the Eps-late 

from AxC, during the first growing season (Fig. 5.8, left panel), differences between 

NILs in duration of the period from terminal spikelet to anthesis were small and not 

significant with the Eps-late only tending to increase duration of this phase (Fig. 5.8, 

right panel; Fig. 5.10). Although differences were not significant between NILs for Eps 

alleles in chromosome 3A in either of the two growing seasons, the trend was the 

opposite: the later reproductive phase tended to be longer in NILs with the Eps-early 

than in those with the Eps-late alleles (Fig. 5.9, right panel).  

The differences in late reproductive phase, although slight between NILs in most cases, 

exerted a clear positive effect on spike fertility if the case of NILs for chromosome 3A 

in the second growing season are excluded (Fig. 5.11, left panel), and the relationship 

was even stronger if the actual duration of floret initiation (F1 at stage 3.5) to anthesis is 

considered (Fig. 5.11, right panel). The relationship was not only due to differences in 

backgrounds (genetic and environmental backgrounds) but also genuinely due to the 

action of Eps-late alleles in chromosome 1D: excluding the cases of chromosome 3A 

(squares in Fig. 5.11), in general it seems that within genetic backgrounds (AxC or SxR) 

and within growing seasons, the NILs with Eps-late alleles tended to exhibit a longer 

duration of the phases when floret development takes place and tended to increase the 

spike fertility as well (Fig. 5.11). 
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Figure 5.5. Dynamics of the floret development of F1, F3, F4 and F6 in central spikelets of the main-shoot (A) and the number of living floret primordia (B) 

through thermal time from anthesis in the Eps NILs carrying either the late (closed circles) or the early allele (open triangles) from the AxC in 1D during the 

first (top panels) and the second growing seasons (bottom panels). Each data-point is the average of all replicates and within each replicate the value was the 

average of 3 plants, bars stands for the standard error of the means. 
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Figure 5.6. Dynamics of the floret development of F1, F3, F4 and F6 in central spikelets of the main-shoot (A) and the number of living floret primordia (B) 

through thermal time from anthesis in the Eps NILs carrying either the late (closed circles) or the early allele (open triangles) from the AxC in 3A during the 

first (top panels) and the second growing seasons (bottom panels). Each data-point is the average of all replicates and within each replicate the value was the 

average of 3 plants, bars stands for the standard error of the means.  
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Figure 5.7. Dynamics of the floret development of F1, F3, F4 and F6 in central spikelets of the main-shoot (A) and the number of living floret primordia (B) 

through thermal time from anthesis in the Eps NILs carrying either the late (closed circles) or the early allele (open triangles) from the SxR in 1D during the 

first (top panels) and the second growing seasons (bottom panels). Each data-point is the average of all replicates and within each replicate the value was the 

average of 3 plants, bars stands for the standard error of the means. 
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Figure 5.8. Late reproductive phase (LRP) length in the Eps NILs AxC 1D late and early variant 

in both growing seasons. Error bars stand for the standard error of the means. The level of 

significance (p-value) resulted from the comparison between the NILs is indicated inside each 

panel. 

 

  

Figure 5.9. Late reproductive phase (LRP) length in the Eps NILs AxC 3A late and early variant 

in both growing seasons. Error bars stand for the standard error of the means. The level of 

significance (p-value) resulted from the comparison between the NILs is indicated inside each 

panel. 
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Figure 5.10. Late reproductive phase (LRP) length in the Eps NILs SxR 1D late and early 

variant in both growing seasons. Error bars stand for the standard error of the means. The level 

of significance (p-value) resulted from the comparison between the NILs is indicated inside 

each panel. 

Figure 5.11. Number of fertile florets per spike against the LRP (left panel) and the floret 

intiation to anthesis phase (right panel) among the Eps NILs early and late from  the AxC_1D 

(circles), AxC_3A (squares) and SxR_1D (triangles) during the first (black) and second (green) 

growing seasons. The coefficient of determination (R2) and the level of significance (p-value) 

for linear regression are shown. 
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environmental factors) whilst spike fertility is the component of grain number more 

likely responding as a fine regulator to more subtle changes in grain number (Slafer et 

al., 2014). As Eps effects on developmental processes are relatively small, expectedly 

they did not include major changes in dynamics of tillering and tiller mortality 

(Ochagavía et al., 2016). Thus, effects on the number of fertile florets had to operate, if 

existing, on the number of fertile florets per spike, through effects on floret 

development. 

Coinciding with most literature (Lewis, et al., 2008; Bullrich et al., 2002) the Eps 

alleles had only minor effects on time to anthesis under field conditions, which was 

slightly less in NILs with Eps-early than in those with Eps-late alleles (Ochagavía et al., 

2016). Most literature on the effects of these alleles have been focused exclusively on 

the duration of the whole cycle (see above), assuming most commonly that any 

difference seen in time to heading would be either reflecting differences in duration of 

vegetative phases or the consequence of affecting all pre-anthesis phases equally (see 

Slafer, 1996). However, there are not solid evidences to support these assumptions. In a 

previous study it was shown that there is genotypic variation (comparing cultivars) that 

were not restricted to particular phases (Slafer and Rawson, 1995); the results in this 

chapter further shows that Eps alleles on chromosome 1D affected the late reproductive 

phase, while those in chromosome 3A did the opposite. This proves that quantifying in 

detail the phenological differences between NILs of particular Eps genes it might be 

possible to fine-tuning not only the time to anthesis but also the partitioning of time 

among pre-anthesis phases. 

Even though results were not always consistent between growing seasons, in general it 

seemed that there tended to be a subtle effect of Eps genes on the number of fertile 

florets at anthesis: the NILs with the Eps-late alleles did always produce more or similar 

number of fertile florets per spike, and when this happened, the increased spike fertility 

was apparent in most spikelets, likely through reducing the rate of floret mortality (the 

main determinant of floret survival) immediately before flowering. This is in line with 

most literature in that whenever a treatment increases spike fertility it does so most 

frequently through floret survival (e.g. Siddique et al., 1989; Miralles et al., 1998). 

There are evolutionary reasons for this to be so, as it will be discussed in the last 

Chapter of the thesis on General Discussion. The mechanism by which the late alleles 

seemed to have decreased floret mortality was by allowing a slightly longer 

developmental period of labile florets: whilst these florets (e.g. Floret 4 in central 

spikelets) developed insufficiently to reach the stage of fertile florets and were induced 

to a late mortality in NILs with the Eps-early allele, when the late allele was 

introgressed that late mortality of labile florets was prevented. In many cases the same 

effect on extending the developmental phase of particular floret primordia was also seen 

in more distal positions which would have never reach the stage of fertile florets, 

suggesting that the effect of floret development is generic (not linked to particular 

florets). 

Thus, as the bibliography reported weak effect of the Eps genes on the developmental 

phases length (Bullrich et al., 2002; Slafer et al., 2015) it was almost expected to find 

only slight, and not strongly consistent, differences in detailed traits analyzed in this 
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Chapter. The outcome is that Eps genes still might be useful to fine-tune time to 

flowering and it might also be helpful for slightly manipulating in spike fertility.  

It has been shown that the effects of Eps genes may also depend on the temperature 

(Appendino and Slafer, 2003) and the results from this work may support that finding as 

the inconsistency found between growing seasons would be related to changes in 

temperatures. Therefore, experiments which included selected Eps NILs across different 

temperatures were set to find out a possible interaction with temperature on 

developmental processes. These experiments are presented in the following Chapter VI. 
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Figure A5.1. Dynamics of the floret development of F2, F5, F7 and F8 in central spikelets of the main-shoot  through thermal time from anthesis in the Eps 

NILs carrying either the Eps late (closed circles) or the early allele (open triangles) from the AxC in 1D during the first (top panels) and the second growing 

seasons (bottom panels). Each data-point is the average of all replicates and within each replicate the value was the average of 3 plants, bars stands for the 

standard error of the means. 
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Figure A5.2. Dynamics of the floret development of F2, F5, F6, F7 and F8 in central spikelets of the main-shoot through thermal time from anthesis in the Eps 

NILs carrying either the Eps late (closed circles) or the early allele (open triangles) from the AxC in 3A during the first (top panels) and the second growing 

seasons (bottom panels). Each data-point is the average of all replicates and within each replicate the value was the average of 3 plants, bars stands for the 

standard error of the means. 
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Figure A5.3. Dynamics of the floret development of F2, F5, F7, F8 and F9 in central spikelets of the main-shoot through thermal time from anthesis in the Eps 

NILs carrying either the Eps late (closed circles) or the early allele (open triangles) from the SxR in 1D during the first (top panels) and the second growing 

seasons (bottom panels). Each data-point is the average of all replicates and within each replicate the value was the average of 3 plants, bars stands for the 

standard error of the means.
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Chapter VI: Physiological determinants of fertile 

florets as affected by Eps genes x temperature 
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1. Introduction

Wheat adaptability to a wide range of environmental conditions becomes necessary in 

front the variable scenarios due to climate change effects. Major genes controlling 

adaptability involve Ppd, Vrn and Eps. The latter, normally with smaller effects, are 

quite relevant in regions where the crop has been already reasonably well adapted as 

they allow for fine-tuning adaptation (Slafer, 2012; Gomez et al., 2014). Early 

flowering was reported in Triticum aestivum by Zikhali et al., (2015) due to a deletion 

of the chromosomal region including ELF3 linked to the earliness per se locus Eps-D1. 

In addition, the Eps-A
m
1 allele from cultivated T. monococcum ssp. Monococcum,

colinear to Eps-D1 (Alvarez et al., 2016 and references quoted therein), was associated 

with delayed heading time and increased number of spikelets per spike relative to the 

allele from wild T. monococcum ssp. (Lewis et al., 2008)  

Even though the trait is expected to produce an effect in wheat (and other crops) 

phenology independent of the environment (and that is why it is named “per se”), the 

effect of this locus was larger when plants were grown at 16 than at 23°C suggesting a 

role of temperature on the modulation of the effects of this gene (Bullrich et al., 2002; 

Appendino and Slafer 2003; Lewis et al., 2008), which may be not only quantitative but 

also qualitative (changing the ranking of earliness depending on the range of growing 

temperatures explored; Slafer, 1996). Moreover, the Eps-3A
m
 loci were also reported to

determine the number of spikelets and regulate flowering time, responses whose 

magnitude depended on growing temperature (Gawroński et al., 2014).  

The dynamics of floret generation/degeneration and consequently on the number of 

fertile florets are the critical processes between the determination of spikelet number 

and grains per spike and, to the best of my knowledge, the interaction of these genes 

with the growing temperature on floret number determination has not been studied yet. 

Results previously described in Chapter V revealed the importance of few Eps gene to 

fine-tuning flowering time with effects on floret fertility that were small but relevant. 

Some differences in responses between two different growing seasons highlighted the 

more than likely dependence of these Eps genes on environmental conditions to 

determine their effects (quantitatively and qualitatively) on the determination of fertile 

florets. As these effects are expected to produce a difference between genotypes after 

requirements of vernalisation were satisfied and photoperiod was long, the main 

environmental factor likely responsible for the interaction shown with the growing 

season (Chapter V) is the temperature. 

The main aim of this Chapter was to analyse the effect of the Eps genes across a wide 

range of temperatures on the number of fertile florets at anthesis as result of the effects 

on the floret development patterns. For this purpose I conducted a series of controlled-

conditions experiments with vernalised plants under long photoperiod with selected 

NILs for Eps under contrasting temperatures.  
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2. Materials and methods

2.1 General description 

Different experiments were carried out under controlled conditions in order to test the 

effect of Eps genes at a wide range of temperatures. These experiments were carried out 

in chambers (GER-1400 ESP, Radiber, S.A) at the University of Lleida (UdL) and in 

controlled environment room (CER) at the John Innes Centre (JIC).  

Before starting the experiments, seedlings were subjected to a vernalisation pre-

treatment (to minimise any interference from vernalisation responsiveness). 

Vernalisation was carried out in a cool room with the seeds directly germinating in the 

pots used in the experiment (i.e. there was no transplanting of seedlings to pots after the 

vernalisation pre-treatment avoiding any stress from transplanting plants, but simply a 

transfer of pots from the vernalisation room to the growth chamber). Seeds were sown 

directly in pots (200 or 400 cm
3
, at the UdL and JIC, respectively) filled with a mixture

of 30% peat and 70% soil (UdL) or a cereal mix compost (JIC) at a rate of a single seed 

per pot. All experiments were fertilised (N, P, K) and irrigated so that there were no 

nutrient or water limitations to growth. We sowed pots in excess (50-100% more pots 

than those required for the experiment, see below) in order to be able to select the 

required number of pots of each NIL for each temperature condition that were equally 

developed at the onset of the experiment (after 49 days of vernalisation pre-treatment). 

Pots were sown at a 1 cm depth, irrigated to warrant seed imbibition and left one day at 

room temperature to trigger the germination process. Then all pots were moved to a 

cool room at 4°C in dark conditions and maintained in that room during 49 days to 

satisfy vernalisation requirements.  

In all the experiments (both sites and all temperatures) photoperiod was set under long 

conditions (18 h). Radiation was 110 μmol m
-2

 s
-1

 of photosynthetically active radiation

at the plant level in the UdL chambers, whilst radiation was almost thrice that value in 

chambers at JIC. Within each chamber all pots were rotated once a week during the 

whole duration of the experiments and when samples were taken (see below) pots were 

re-arranged to maintain the structure “close to a canopy” throughout. 

In both locations plants grew normally within the chambers (Fig. 6.1). 

2.2 Treatments 

Treatments consisted of the factorial combination of Eps NILs and temperatures. The 

Eps NILs selected resulted from the cross of Spark and Rialto (chromosome 1D) (Table 

6.1). I selected two pairs of NILs (4 genotypes) for the experiment but as the differences 

of the two pairs were only their source of seed, all differences were only ascribed to the 

effect of that of the specific Eps gene, the effects were analyzed as the average in the 

variables between the 2 lines.  
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Figure 6.1. Image of plants growing in growth chambers at both UdL (left) and JIC (right). 

Table 6.1. Plant material used in the experiments consisting of Eps NILs resulted from the 

Spark x Rialto cross differing in in early or late alleles in chromosome 1D.  

Parentals Background Donor Allele Code 

 Spark x Rialto Rialto Rialto late lateSxR_1D 

 Spark x Rialto Rialto Spark early earlySxR_1D 

The temperatures tested at UdL were 6, 9, 15, 21 and 24ºC and those tested at JIC were 

12 and 18ºC. 

In the UdL experiments 55 pots per genotype (all in all 220 pots) while in JIC 

experiments 63 pots per genotype (all in all 252) pots were arranged in a complete 

randomized design with three replicates at each temperature regime. Therefore, within 

each chamber, genotypes were arranged in three replicates with 18 (UdL) or 21 (JIC) 

pots per genotype each. These pots were used for dissection throughout development 

(see below), leaving always at least 3 pots per replicate for the determination of fertile 

florets at anthesis.  

2.3 Measurements and analysis 

From the onset of stem elongation onwards, three plants from each genotype, 1 pot per 

replicate (3 pots per genotype and 6 pots per Eps allele), were sampled frequently (the 

actual frequency depended on the speed of development exhibited by the plants, in turn 
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depending on the temperature regimes). Floret development dynamics were followed in 

basal (the fifth position counting from the base of the spike), in central (exactly the 

central position in each spike, when even spikelet positions was the central minus one) 

and apical (one positions below the terminal spikelet) spikelets. The number of floret 

primordia was counted and the Waddington scale (Waddington et al., 1983) was used to 

determine the stage of development of each primordium analyzed, as explained in 

Chapter II. At anthesis, at least 3 plants per genotype and replicate (all in all at each 

temperature regime 9 pots per genotype and 18 pots per Eps allele) were sampled. In 

these plants the number of fertile florets in each spike was counted, plants were 

separated into stems, leaves and spike and biomass and its partitioning determined. 

The results from each experiment (UdL and JIC) were analyzed separately because even 

though the main developmental background factors (vernalisation, photoperiod) were 

the same, some other conditions such as radiation and soil were different. 

In order to illustrate floret development dynamics some particular florets positions were 

chosen and presented in this Chapter, the rest of the cases are presented in Annex 6 of 

the present Thesis.   

3. Results

3.1 Abnormalities in development under extreme temperatures 

Growing the isogenic lines under long photoperiod and at temperatures of 6, 21 or 24°C 

resulted in patterns of plant development with different types of abnormalities.  

Plants growing under 6°C expectedly showed a slow developmental rate until heading; 

but the delay from then on was much longer than expected from the developmental rates 

at intermediate temperatures. Even though the experiment at this lowest temperature 

was continued for a rather long time (to maximize the likelihood of observing anthesis) 

and that the external aspect of the spikes seemed morphologically normal, the florets 

within the spikelets did not show a normal morphology and the anthers lost their color 

and the florets seemed to be aborted before pollination. In addition, apical spikelets 

started to lose colour before flowering (Fig. 6.2 A, B).  

At 21°C plants showed high senescence levels from early stages of the developmental 

phases (Fig. 6.2 C) although there was no water limitation affecting growth.  Some 

NILs carrying the Eps-early allele reached more advanced phenological stages than 

those with the Eps-late, although none of them presented a normal appearance (Fig. 6.2 

D). In the case of the experiment at 24°C the appearance was even worst with higher 

levels of senescence affecting all the genotypes and when the spikes were removed from 

the shoots they presented a very abnormal development with low number of spikelets 

and very different morphology and colour among spikelets positions (Fig. 6.2 E, F).  
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Figure 6.2. External view of the spikes of Eps NILs plants growing in growth chambers under 

6° C (A, B). External view of Eps NILs plants carrying either early or late variant (C) and their 

spikes/apex view (D) under 21°C. External (E) and spikes view (F) of Eps NILs plants growing 

under 24°C. 

Due to the abnormalities in development under the extreme temperatures analyzed in 

the present study (6, 21 and 24ºC), which always affected the floret developmental 

phase, the actions of, and interactions between, Eps alleles and temperatures on fertile 

florets and their determinants will be focused in the intermediate thermal regimes (9-

18ºC) which did not impair normal development until flowering and the establishment 

of a particular level of spike fertility. 

3.2 Number of fertile florets at anthesis 

In the experiments carried out in both locations an interaction of Eps allele and 

temperature was, at least, apparent. In the UdL, the difference in number of fertile 

florets between NILs was clearer at 9 than at 15°C (Fig. 6.3). In JIC the number of 

fertile florets per plants was virtually the same for both NILs when growing at 12°C 

(Fig. 6.4 left panels), while NILs differed significantly in fertile florets per plant when 

growing at 18°C (Fig. 6.4, top-right panel) with large effect on tiller spikes (Fig. 6.4, 

bottom-right panel). But, rather relevantly, the nature of the interactions in both 

locations was opposite: while in UdL the Eps-early alleles tended to have more fertile 

florets than the NILs with the Eps-late alleles at the lowest temperature, in JIC the Eps-

late alleles induced an increase in number of fertile florets at the highest temperature 

(Figs. 6.3 and 6.4). 
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Figure 6.3. Number of fertile florets per main-shoot spike at anthesis between the Eps NILs 

carrying either the late or early variant at 9ºC (left panel) and 15ºC (right panel). Error bars 

stand for the standard error of the means.  P-value resulted from t-test is shown inside each 

panel. The level of significance (p-value) is indicated inside each panel. 

Indeed, if I considered the four temperatures together a more clear evidence of the 

temperature effect on the impact of this Eps gene on the final outcome of floret 

development emerges. As the background growing conditions (beyond photoperiod and 

pre-vernalisation treatments that were uniform in both locations) were different I cannot 

compare fertile florets across locations but I can analyze the effect of Eps alleles 

(differences between contrasting NILs) across the conditions. I have done so by 

calculating the difference in number of fertile florets between NILs carrying the late Eps 

allele and those carrying the early allele, both in absolute (fertile florets) and relative 

(proportion) terms, against the growing temperature (Fig. 6.5). The impact of the 

growing temperature on the effect of the Eps alleles on the number of fertile florets was 

noticeable and not only in quantitative but also in qualitative terms. Quantitatively, it 

was clear a positive trend, largely linear, of the difference with the growing 

temperatures (i.e. the higher the temperature condition of growth the larger the 

difference in favor of the NILs with the late Eps alleles; Fig. 6.5). The qualitative 

impact of temperature on the effects of Eps alleles on fertile florets is evidenced by the 

fact that the relationship explored both positive and negative values of the difference in 

fertile florets (Fig. 6.5); when negative -at the lowest temperature analyzed- it implies 

that, compared with the NILs carrying the Eps-early alleles, the Eps-late alleles reduced 

the number of fertile florets and when positive -at the highest temperature analyzed- it 

reflects that these alleles increased the number of fertile florets per spike and per plant. 

At the intermediate temperatures the differences were negligible (Fig. 6.5). 
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Figure 6.4. Number of fertile florets per plant (top panels), main-shoot spike (middle panels) 

and per tiller spike (bottom panels) at anthesis between the Eps NILs carrying either the late or 

early variant at 12ºC (left panels) and 18ºC (right panels). Error bars stand for the standard error 

of the means. P-value resulted from t-test is shown inside each panel. The level of significance 

(p-value) is indicated inside each panel. 
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Figure 6.5. Differences in the number of fertile florets per spike (left panels) and per plant (right 

panels) at anthesis between the NILs carrying the Eps-late and the Eps-early plotted against the 

thermal regime of the experiment within the range of temperatures in which abnormal 

developmental processes were not observed; both in absolute (top panels) and relative values 

(bottom panels). Each data-point is the average of all the plants of all replicates (18) and the 

segment in each datapoint stands for the standard error of the means. 

3.3 Mapping fertile florets 

In the experiments carried out at the University of Lleida, the trend to increase the 

number of fertile florets per spike due to the action of the Eps-early alleles at the lowest 

temperature (9°C) was clear in the bottom half of the spike, in which the difference was 

significant in a number of spikelets (Fig. 6.6, left panel). At 15ºC, where the differences 

in florets per spike were negligible, there was no clear differences between NILs with 

Eps-late and -early alleles at any of the spikelets (Fig. 6.6, left panel), though there 

seemed to have been a slight trend for the NILs with the late allele to increase fertile 

florets in the bottom half of the spike and vice-versa in the top half. Regarding the 

experiments conducted at the John Innes Centre, although the differences between 

contrasting NILs at 12ºC were negligible in florets per spike, the NILs with Eps-late 

alleles tended to show more fertile florets in many spikelets than the NILs with Eps-

early alleles, particularly in tiller spikes and in the apical positions of main-shoot spikes 

(Fig. 6.7, left panels). When grown under warmer conditions (18°C) differences in favor 

of the NILs with late alleles were more consistent and larger, particularly in the tiller 

spikes (Fig. 6.7, right panels).  
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Figure 6.6. Number of fertile florets in each spikelet position on the main-shoot spike at 9ºC 

(left panel) and 15ºC (right panel) between Eps NILs carrying the late (closed circles) or early 

variant (open triangles). Each data-point is the average of all the plants of all replicates (18) and 

the segment in each datapoint stands for the standard error of the means. 

Figure 6.7. Number of fertile florets in each spikelet position on the main-shoot spike (top 

panels) and tiller spike (bottom panels) at 12ºC (left panels) and 18ºC (right panels) between 

Eps NILs carrying the late (closed circles) or early variant (open triangles). Each data-point is 

the average of all the plants of all replicates (18) and the segment in each datapoint stands for 

the standard error of the means. 
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3.4 Dynamics of development of individual floret primordia and of living florets  

At 9°C floret development dynamics between NILs of the different florets (F1, F3, F4) 

and from different spikelet positions (apical, central and basal) did not show noticeable 

differences (Fig. 6.8A and Fig. A6.1) except of F1 in the apical positions which was 

fertile in all the plants with the Eps-late allele and only in the 78% of the those with the 

Eps-early allele (Fig. 6.8A, top-left panel); and the F3 in the basal position which was 

always fertile in the early type but only in a 67% in the late ones (Fig. 6.8A, bottom-

middle panel). In addition, the Eps-early lines tended to present advanced stages of 

development of F4: in central spikelets 25% of the plants reached the fertile stage while 

this occurred only the 8% of the plants with Eps-late; in the basal positions 33% of the 

plants of the early variant reached the fertile stage while none of the late variant reached 

that stage (Fig. 6.8A middle, bottom-left panels). Moreover, in any spikelet position the 

length of the floret development phase, the maximum number of floret primordia 

developed and the final number at anthesis differed between NILs (Fig. 6.8B) despite 

the difference in the basal spikelets in which seemed that the Eps-early presented higher 

number of fertile floret at anthesis than the late one (Fig. 6.8B, bottom panel) which was 

consistent with the slight difference seen in the mapping in these positions. At 15°C 

almost no differences were seen on the floret development between the Eps-early and 

late (Fig. 6.9A and A6.2) with a slightly difference in the F3 in the central positions 

which was always fertile in the early variant and in the 91% of the plants in the late 

variant (Fig. 6.9A, middle-middle panel) and in the F2 in the basal position (A6.2) the 

75% of the late variant reached the fertile stage while only the 46% of the early one. No 

differences were clear on the number of living floret primordia dynamics at 15°C (Fig. 

6.9B), without differences in the length of the floret development phase or in the 

maximum and final floret number. 

At 12°C differences were seen only in the F1 in the apical positions which was always 

fertile in the late variant while only in the 67% of the early plants (Fig. 6.10A top-left 

panel) and even more the 25% of the plants of the late variant presented the F2 fertile 

(A6.3, top-left panel) which was reflected in the final number of floret primordia 

dynamics (6.10B, top panel) despite no other major differences were seen in either of 

the parameters of the floret dynamics in any of the three spikelet positions analyzed 

(6.10 A, B and A6.3). At 18°C main differences between NILs carrying either the Eps-

late or early alleles were in the central positions where F4 of all the late plants reached 

the fertile stage (and even 8% of the plants presented a F5 fertile as well, Fig A6.4) 

while only the 85% of the plants with the early variant presented F4 reaching the fertile 

stage (Fig. 6.11A, middle-left panel). In addition, in basal spikelets, F4 was fertile in 

83% of the late plants while this was so in just 53% of the early ones (Fig. 6.11A, 

bottom-right, panel). At 18°C the NILs did not differ in the floret development phase 

length in any of the spikelet positions (Fig. 6.11B). Carrying the Eps-late allele 

developed higher maximum number of floret primordia than the early one in the apical 

and central positions (Fig. 6.11B, top and middle panels) and tended to present higher 

final number of fertile florets in all the positions (Fig. 6.11B).  
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Figure 6.8. Dynamics of the floret development of floret F1, F3 and F4 (A) and the number of living floret primordia (B) through thermal time from anthesis 

in the apical (top panels), central (middle panels) and basal (bottom panels) spikelets between NILs carrying either the Eps-late (closed circles) or early variant 

(open triangles) growing at 9º. Each data-point is the average of 2 plants per 3 replicates and the segment in each datapoint stands for the standard error of the 

means. 
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Figure 6.9. Dynamics of the floret development of floret F1, F3 and F4 (A) and the number of living floret primordia (B) through thermal time from anthesis 

in the apical (top panels), central (middle panels) and basal (bottom panels) spikelets between NILs carrying either the Eps-late (closed circles) or early variant 

(open triangles) growing at 15º. Each data-point is the average of 2 plants per 3 replicates and the segment in each datapoint stands for the standard error of the 

means. 
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Figure 6.10. Dynamics of the floret development of floret F1, F3 and F4 (A) and the number of living floret primordia (B) through thermal time from anthesis 

in the apical (top panels), central (middle panels) and basal (bottom panels) spikelets between NILs carrying either the Eps-late (closed circles) or early variant 

(open triangles) growing at 12º. Each data-point is the average of 2 plants per 3 replicates and the segment in each datapoint stands for the standard error of the 

means.  
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 Figure 6.11. Dynamics of the floret development of floret F1, F3 and F4 (A) and the number of living floret primordia (B) through thermal time from anthesis 

in the apical (top panels), central (middle panels) and basal (bottom panels) spikelets between NILs carrying either the Eps-late (closed circles) or early variant 

(open triangles) growing at 18º. Each data-point is the average of 2 plants per 3 replicates and the segment in each datapoint stands for the standard error of the 

means. 
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Floret development was followed in the main-shoot spikes; however, as it was seen in 

the spike mapping, important differences were seen at 18°C in the tillers spikes. Even 

we did not measured on them due to the time-consuming it was shown that they 

presented lower number of fertile florets than the main-shoots (Fig. 6.4) they should 

present shorter floret development phase length (due to the own tiller development 

dynamics) in comparison to what was seen in the main-shoots and a higher differences 

between the Eps-early and late in the final number of fertile florets per spikelet. 

3.5 Number of fertile florets and spike dry weight at anthesis  

Strong positive relationship was found between the number of fertile florets and the 

spike dry weight (SDW) at anthesis (Fig. 6.12, left panel); which in turn were related to 

differences in growth more than in partitioning (Fig. 6.12, right panel).  

Figure 6.12. Relationship between the number of fertile florets per spike at anthesis and the 

spike dry weight (SDW, left panel) and relationship between the SDW and the biomass (right 

panel) for the NILs carrying either the Eps-late or early variant growing at 9, 12, 15 and 18° C. 

Each data-point is the average of all the plants of all replicates (18). The coefficient of 

determination (R2) and the level of significance (p-value) for linear regression are shown. 

However, much of the relationships were driven by the differential growing conditions 

(mainly between JIC and UdL). Within each of the growth chambers, the difference in 

spike fertility, when existed, were not well explained by the effect of the alleles on spike 

dry weight: in fact in the chamber at 9ºC (where the Eps-early alleles increased the 

number of fertile florets) the early lines produced an average of 103.6 fertile florets per 

gram of spike at anthesis, slightly higher than the 100.9 florets gspike
-1

 of the late lines; 

whilst in the chamber at 18ºC (in which the difference in favor of the Eps-late lines was 

maximized) the late lines produced a clearly higher average number of fertile florets per 

gram of spike at anthesis than the of the early lines (123.8 and 113.1 florets gspike
-1

, 

respectively).  
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4. Discussion 

Understanding the effect of Eps genes x temperature interaction on the setting of the 

spike fertility level resulted in a complex challenge mainly due to the effects reported of 

these genes were unsurprisingly weak (Chapter 5), as expected for genes useful for fine-

tuning plant development (Griffiths et al., 2009). Notwithstanding the risks, we found in 

line with previous results focused on phasic development (Appendino and Slafer 2003) 

that the effects of the Eps genes analyzed on fertile florets were different depending on 

the temperature. And remarkably, the impact of the thermal regime of growth seemed 

even qualitative: depending on the growing temperature the particular Eps alleles may 

have increased or decreased (or unaffected) the number of fertile florets per spike and 

per plant.  

In addition, abnormal development at 6, 21 and 24ºC was seen among the NILs 

indicating the importance of the temperature and the Eps x temperature interaction. The 

abnormality seen at 6°C was related to the latest developmental phases: development 

seemed not to continue to the following developmental stage and the flowering did 

never happen, this may suggest an increment of the base temperature along the plant 

developmental phases, which is in line with previous reports (e.g. Slafer and Savin, 

1991), and the base temperature could be around 6°C near anthesis stage. Regarding to 

the abnormal development seen at 21 and 24°C it may be due to that these temperatures 

might have been higher than the optimum temperature for normal development. 

Moreover, at 21°C different developmental pattern was seen between carrying early or 

late variant while the early reached advanced stages of development the late one 

remained in the very early reproductive stages, which may indicate a different optimum 

temperature for each one of the Eps variant.   

Main results showed that the effect of carrying either the Eps-late or early variant, an 

important tool to fine-tuning flowering time, depends on the temperature and could be 

regulating the number of fertile florets through survival mechanisms. The influence of 

these Eps alleles on the survival of fertile florets seemed largely independent to changes 

in the amount of assimilates partitioned to the spikes. When analyzing rather large 

genetic effects on biomass partitioning to reproductive structures (and dry matter 

allocation to the juvenile spikes immediately before anthesis) due to comparisons 

between old or modern cultivars or tall vs dwarf wheats floret survival at anthesis linked 

was clearly linked to the proportion of assimilates partitioned to the spikes (Slafer and 

Andrade, 1993; Miralles et al., 1998). In the case analyzed in this study, the genetic 

effects were much more subtle and the effect, when occurred, seemed to have been 

more related to the efficiency with which spike dry weight was used to set a particular 

level of spike fertility. This is commensurate with the differences in spike fertility 

between elite lines of wheat, where differences are also much weaker than when 

comparing extremely different materials, in which fruiting efficiency seemed much 

more relevant than spike dry matter to explain genetic differences in spike fertility (Elia 

et al., 2016). 
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Figure A6.1. Dynamics of the floret development of floret F2, F5, F6, F7 and F8 through thermal time from anthesis in the apical (top panels), central (middle 

panels) and basal (bottom panels) spikelets between NILs carrying either the Eps-late (closed circles) or early variant (open triangles) growing at 9º. Each 

data-point is the average of 2 plants per 3 replicates and the segment in each datapoint stands for the standard error of the means. 
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Figure A6.2. Dynamics of the floret development of floret F2, F5, F6 and F7 through thermal time from anthesis in the apical (top panels), central  (middle 

panels) and basal (bottom panels) spikelets between NILs carrying either the Eps-late (closed circles) or early variant (open triangles) growing at 15º. Each 

data-point is the average of 3 plants per replicate, bars stands for the standard error of the means. Each data-point is the average of 2 plants per 3 replicates and 

the segment in each datapoint stands for the standard error of the means. 
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Figure A6.3. Dynamics of the floret development of floret F2, F5, F6, F7 and F8 through thermal time from anthesis in the apical (top panels), central (middle 

panels) and basal (bottom panels) spikelets between NILs carrying either the Eps-late (closed circles) or early variant (open triangles) growing at 12º. Each 

data-point is the average of 2 plants per 3 replicates and the segment in each datapoint stands for the standard error of the means. 

0

2

4

6

8

10

-1000 -500 0 500 1000

0

2

4

6

8

10

-1000 -500 0 500 1000

0

2

4

6

8

10

-1000 -500 0 500 1000 -1000 -500 0 500 1000

A
p

ic
a
l

C
e
n

tr
a
l

B
a

sa
l

TT from anthesis

F
lo

r
e
t 

sc
o
r
e
 (

d
im

e
n

si
o
n

le
ss

)

12º

F2 F5 F6 F7 F8

-1000 -500 0 500 1000

C
h

a
p

ter V
I. P

h
ysio

lo
g

ica
l d

eterm
in

a
n

ts o
f fertile flo

rets a
s a

ffected
 b

y E
p

s g
en

es x tem
p

era
tu

re  

1
7
4
 



 

Figure A6.4. Dynamics of the floret development of floret F2, F5, F6, F7 and F8 through thermal time from anthesis in the apical (top panels), central (middle 

panels) and basal (bottom panels) spikelets between NILs carrying either the Eps-late (closed circles) or early variant (open triangles) growing at 18º. Each 

data-point is the average of 2 plants per 3 replicates and the segment in each datapoint stands for the standard error of the means. 
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1. Briefly recapping context 

Breeders have always tried to fine-tune flowering time to avoid stresses affecting grain 

yield. The main avenue to achieve this aim is manipulating the developmental 

controlling genes: Ppd, Eps, Vrn. In order to be able to predict to what degree such 

changes in development would affect yield we need to understand how these genes 

affect major yield components. When breeders try to improve yield (or other complex 

traits) they are reluctant to use wide crosses, to avoid introgressing agronomically poor 

traits, and normally restrict the crosses to elite material (Rasmusson, 1996), mainly 

current commercial cultivars. So that they may pyramid well adapted traits. Thus, 

determining the range of genotypic variation in critical traits within elite material is of 

paramount importance. 

In wheat grain number is related to the number of fertile florets (this is self-evident in 

cleistogamous plants; but even in self-incompatible species this would be true if pollen 

availability were not scarce). As grain weight is much more conservative than grain 

number (which is then far more plastic; Sadras, 2007), to understand how genetic 

factors related to development may affect yield we need to understand how they affect 

the generation of fertile florets, as the number of fertile florets determines the number of 

grains (Kirby, 1988; Slafer and Andrade, 1993; Miralles et al., 1998, 2000). Very few 

works focused on understanding the effects of developmental changes on the floret 

generation/degeneration process.  

The advantage that the number of fertile florets is indeterminate (which is a biological 

basis for its plasticity) becomes an important tool for breeding. Variability in the 

number of fertile florets were reported due to both differences in genetic constitution 

(Miralles et al., 1998) and responses to environmental factors, including resources and 

signals (Sibony and Pinthus, 1988; Ferrante et al., 2010; Ugarte et al., 2010; Miralles, et 

al., 2000; González, et al.,  2003a; González, et al.,  2003b; González, et al., 2005a; 

González et al., 2005b; Ghiglione et al., 2008; Serrago, et al., 2008). In all these cases a 

great plasticity of the major developmental components determining the number of 

fertile florets was exhibited; commensurate with the large plasticity of grain number 

(Sadras, 2007; Sadras and Slafer, 2012). These major components are the duration of 

the phase of floret generation/degeneration, the maximum number of floret priomordia 

initiated (in response to the floret generation dynamics) and the rate of floret survival (in 

response to the floret mortality dynamics). 

This Thesis was focused on the study of the mechanisms behind the setting of the spike 

fertility due to the variation in the number of fertile florets at anthesis related to the 

different floret development dynamics due to genetic variation in wheat. For this 

purpose, I considered both unspecific sources of variation by comparing modern 

cultivars (whose characterization would provide relevant information for breeding 

programs interested in using in their crosses parents with particular dynamics), and 

specific effects of particular alleles through the exploitation of near isogenic lines for 

Ppd  and Eps genes (whose characterization would provide relevant information on the 

effects of these particular genes on the developmental processes determining spike 

fertility). Furthermore I also analyzed the interaction Eps x temperature on floret 
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development and the consequent number of fertile florets. It has been hypothesized in 

this Thesis that (i) the length of the floret development phase would be affected by 

genetic variability among elite genotypes and reduced by the introgression of either 

Ppd-insensitivity or Eps-early alleles, (ii) changes in the duration of this phase would 

bring about parallel changes in the final number of fertile florets at anthesis, due to (iii) 

affecting the floret primordia generation/degeneration dynamics. In addition, based on 

the emerging evidences that earliness per se would be likely influenced by temperature 

it was also inferred that the effects the Eps alleles on the determination of fertile florets 

in wheat would be dependent upon the temperature in which plant growth took place.  

In this final chapter I avoided repeating the results described in the experimental 

chapters and after making explicit the singularity of the approach (a major reason for 

this sort of studies have not been carried out frequently), I have mainly focused in 

integrating, when possible, some results across chapters, in summarizing the outcomes 

of testing of the main hypotheses (explicitly mentioned, or implicit in objectives, of 

previous chapters), in highlighting the contributions to knowledge achieved, and in 

offering ideas on future research derived from the work presented herein; before 

finishing with revisiting major conclusions. 

2. Singularity of the approach 

This Thesis was based on research focused on accurate, though rather low-throughput, 

detailed analyzes of the main physiological determinants of the fertile florets among 

elite cultivars and as affected by NILs for Ppd and Eps genes (and the effects of the 

latter under a wide range of temperatures). Although there exists many reports using 

similar populations they focused mainly on effects on phenology and some of them on 

grain yield components (particularly, number of grains); very few concentrated on the 

effects on floret fertility, a major determinant of the number of grains; and even less was 

it described the effects on floret primordia development dynamics, in turn the 

physiological bases of the final number of fertile florets. In addition, these very few 

reports only showed differences in the floret development dynamics basing their results 

on differences in stages of floret development at particular sampling timings rather than 

doing dissections systematically for each particular genotype (and environmental 

condition) (Guo et al., 2016); and in the cases in which dynamics were properly 

followed far less treatments were analyzed (Miralles et al,. 1998; González et al., 

2005a; Ferrante et al., 2013a). Thus, the present Thesis is quite unique in terms of 

offering results that, to the best of my knowledge, were never published using such a 

valuable (though terribly time-consuming) approach considering: different genetic 

background, the effect of the Ppd and Eps genes in the same background but 

considering not only a relative high number of alleles source also for the Eps two 

different chromosomes and the effects under different temperatures giving a wide range 

of very detailed analyzed of floret development patterns. Furthermore almost all 

experiments were carried out in the field with a normal crop structure which, although 

reducing the accuracy of the results, produces results that are expected to be much more 

extrapolated to real agronomic conditions. In the experiments testing the effect of Eps x 
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temperature controlled conditions were needed as accurate control of temperatures in 

the field are not possible and this was the unique exception in which conclusions were 

not reached with field plots.  

3. Integrating main results across chapters 

Across the different experimental chapters, I characterized in detail the dynamics of 

floret primordia initiation and degeneration and the consequent effect of these processes 

on the number of fertile florets in a set of modern cultivars of hexaploid wheat and in 

NILs for Ppd and Eps genes.  

Overall sources of genetic variation (both unspecific when compared modern cultivars 

and specific when comparing NILs), changes in the number of fertile florets at anthesis 

was mainly due to differences in floret survival and, at least in part, in the length of the 

floret development phase.  

This is reflected in the Fig. 7.1 in which my results from modern cultivars and 

Ppd+Paragon and Eps NILs from all growing seasons were analyzed together. Similar 

pathway seemed to be involved in the effects on floret survival due to genetic 

differences among modern cultivars, differences in Ppd insensitivity and earliness per 

se in comparison to the effects of different environmental conditions such as resources 

availability (Ferrante et al., 2013b).   

Figure 7.1. Relationship between the number of fertile florets in the central spikelet and the 

number of maximum floret primordia achieved (right panel) and the floret survival (left panel) 

among modern cultivars and Ppd NILs+Paragon and Eps NILs during all growing seasons. The 

coefficient of determination (R2) and the level of significance (p-value) for linear regression are 

shown. 

In this report the improvement of floret survival was associated to better growing 

conditions (nitrogen availability) which is compatible with what had been described 

earlier by González et al., (2005a) about the relationship between the fate of floret 
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primordia and the spike growth as affected by photoperiod treatments during stem 

elongation. Similarly, but based on differences due to a genetic factor, Miralles et al. 

(1998) showed higher rates of spike growth before anthesis and higher floret survival 

due to the effects of introgressing Rht genes. This has been integrated in a later 

discussion by Sadras and Slafer (2012) about the adjustment of the number of florets 

that become fertile to the availability of the resources during the few weeks preceding 

anthesis when the juvenile spikes, where florets are developing, do grow. Theory for 

this is based on the fact that a virtually unlimited number of floret primordia can be 

initiated while their size (dry matter) is negligible, as building up these microscopic 

structures would imply negligible energy costs providing an exceptional resource of 

organs potentially able to grow if resources were available at the time the requirements 

stop being negligible. This is an essential evolutionary strategy for crops (and plants in 

general) whose yield (or the amount of offspring in natural conditions) is heavily 

source-limited at the critical time for defining the number of grains (or of offspring) 

immediately before anthesis in the case of wheat, even when they become mostly sink-

limited during grain filling (Reynolds et al., 2005; Slafer and Savin, 2006). Thus, when 

primordia structures start to grow (which is essential if development proceeds normally) 

the availability of resources become more limiting and the fate of the primordia is 

defined triggering the floret survival mechanism González et al., (2011) and Ferrante et 

al., (2013b) associated the onset of floret death to the resources availability, even 

though it had been proposed earlier that the onset of floret death would be a pure 

developmental feature (depending on the degree of development of the oldest floret 

primordia; Bancal, 2008 and 2009). Results from both different modern cultivars and 

Ppd NILs in the present Thesis further reinforced the fact that the onset of floret death 

would not be triggered by the stage of development of the most proximal floret of 

central spikelets (Fig. 7.2), as the stage of floret 1 from central spikelets ranged between 

c. 5 to more than c. 9 when the maximum of floret primordia is achieved (onset of floret

death). 

Once floret mortality is triggered, the rate of floret mortality, largely determining the 

final rate of floret survival (the proportion of floret primordia initiated that produced a 

fertile floret) has also been related to flux of assimilates to the spikes from the onset of 

floret death to anthesis (see above), but when the effects on development are subtle (e.g. 

comparing modern well adapted cultivars, or NILs for Eps genes) differences in spike 

dry matter allocation are not clear and there is still possibilities for differences in 

survival due to slightly longer mortality periods, increasing the likelihood of a labile 

primordia to continue developing normally to become a fertile floret. When this 

happens, the improved fertility is associated to improvements in fruiting efficiency, and 

this seemed to have been the mechanism acting in the processes analyzed in the present 

Thesis, chiefly in Chapters III, V and VI. 
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In addition, there existed genetic variation in synchrony of floret initiation and in the 

duration of the period from the onset of floret initiation to anthesis (Chapters III and 

IV). Floral synchrony has been shown to affect the levels of abortion in maize, 

increasing the synchrony of pollination improving the number of grains set (Cárcova et 

al., 2000), but to the best of my knowledge, it had never been tested whether the 

synchrony in primordia development might be regulating the rate of floret mortality 

(associated to a sort of apical dominance process). In this Thesis I developed a model to 

estimate the degree of synchrony in development of different floret primordia and it 

seemed to have influenced positively in both floret survival and number of fertile florets 

at least in some cases (Chapter III). 

Figure 7.2. Relationship between Waddington stage of F1 at maximum number of primordia 

achieved against thermal time at maximum number of primordia achieved among Ppd NILs+ 

Paragon (top panels) and modern cultivars (bottom panels) during the first (left panels) and the 

second growing seasons (right panels). The coefficient of determination (R2) and the level of 

significance (p-value) for linear regression are shown.  

4. Appraising the outcome of testing of the hypotheses 

The global hypothesis of the Thesis implied that the number of fertile florets at 

anthesis resulted from the floret generation/degeneration dynamics would be 

reduced as the duration of the phase of floret development was reduced by genetic 

differences between modern cultivars or by the introgression of Ppd-insensitivity alleles 

or Eps-early alleles. Results of most genotypes from the different experimental chapters 

indicated that the hypothesis was accepted. In particular, is important to notice that the 

amount of variation seen in the number of fertile florets and in the phase duration 

among the genotypes analyzed depended strongly on the different backgrounds in the 

elite cultivars and in the particular Ppd and Eps genes and in, most cases, in the 

background growing conditions.  
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To contrast the general hypothesis different specific objectives were outlined and to 

avoid inconsistencies in this Chapter, I transformed them to specific hypothesis, simply 

by making explicit the implicit hypotheses behind the objectives:  

i) (a) number of fertile florets at anthesis would be variable among 

modern cultivars due to difference in the dynamics of floret initiation 

and degeneration associated to variability in the maximum floret 

primordia developed or in the floret survival. The results of the Chapter 

III let us partially accept the hypothesis due to even differences in the 

number of fertile florets were well-explained for differences in the floret 

generation/degeneration dynamics were related to different floret survival. 

(b) synchrony in floret primordia development would explain the 

differences among cultivars in the maximum, final floret primordia or 

in the floret survival. I failed to explain differences among modern 

cultivars in the maximum, final floret primordia and the floret survival due 

to only the synchrony of the floret primordia development, then this 

particular hypothesis was rejected.  

ii) (a) photoperiod insensitivity would reduce the number of fertile florets 

at anthesis due to reducing the floret development phase which would 

cause a reduction in the maximum and final number of fertile florets 

and a reduction in the floret survival.  This hypothesis again was 

partially accepted, the insensitivity reduced the number of fertile florets at 

anthesis and presented a shorter floret development phase although the 

reduction was more linked to the floret survival rather than the maximum 

number of floret primordia developed 

(b) photoperiod effects would be stronger as the number of insensitivity 

alleles increase and particularly the stronger effects would involve the 

insensitivity in D genome. No clear pattern was found regarding the doses 

of Ppd alleles considering all the variation sources. Although a trend was 

reported that increasing the number of insensitive alleles would in average 

increase the magnitude of the effect, the individual NILs showed contrasting 

effects evidencing that even when the dose may have a role this is not 

dominant. Also it was not identified a particular stronger effects of D 

genome across the different NILs considered. This hypothesis was 

rejected. 

iii) Eps early alleles would affect the number of fertile florets at anthesis 

through reducing the floret development phase due to a reduction in 

either the maximum floret primordia developed or floret survival. Even 

though the effects were subtle and depended on the background and 
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particular Eps genes considered, results of the Chapter V allows the 

hypothesis be in general accepted. 

iv) the strength Eps effects on the number of fertile florets and the floret 

development dynamics and phase length would depend on the growing 

temperature. The hypothesis was accepted and the results of Chapter VI 

showed not only the quantitative effects hypothesised but also much stronger 

becoming at extreme temperatures tested (which were not extreme 

temperature strictly talking) and also qualitative effects.   

5.  Main contributions to knowledge 

 

In the experimental work done in the context of the present Thesis I made contributions 

to knowledge ranging from original, completely novel (as far as I am aware), through 

confirmations of issues that were analyzed earlier by others but that could not be 

considered as established knowledge yet (i.e. consolidating with the results reported 

emerging knowledge), to confirmation of things already known, reasonably well 

established in the literature.  

I did not aim to produce a comprehensive list of these types of contributions. I did rather 

aim to highlight below the existence of the three types of contributions, mentioning only 

an example of each. 

i) Original contributions to knowledge 

The analysis of the floret appearance rate and its reciprocal the “floret plastochron” 

(average time interval between the initiation of two consecutive floret primordia) was 

never published before and, more relevant, the use of this rate to assess the degree of 

synchrony (the shorter this plastochron the more synchronous the development of 

florets developed across time). The results are not comparable with anything reported, 

but establishing a parallelism with the organogenesis of other organs, they are different 

from what was reported for leaf and spikelet phyllochron, where the effects of Ppd 

alleles altering the rate of phasic development (changing the duration of the phase; 

González et al., 2002; Whitechurch and Slafer, 2001; 2002; Foulkes et al., 2004) did not 

noticeably affect the rate of organogenesis.  

Furthermore, I used this assessment of synchrony in floret development to test whether 

it might have been responsible for differences in floret fertility, again something never 

done before and therefore a completely novel contribution from this Thesis. As 

discussed in Chapters III and IV there must have existed a compensation between the 

rate of floret appearance and the length of the phase, as faster rates did not show 

necessary higher number of primordia reached and on the other hand the reduction in 

the floret development phase did not cause necessarily a reduction in the maximum 

number of floret primordia developed.  

ii) Consolidating emerging new knowledge 

As illustrated in Fig. 7.2, joining my results from the different experimental Chapters 

(III, IV and V) the number of fertile florets was associated more to the variability in the 
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floret survival rather than in the maximum floret primordia developed. This confirms 

for a wider range of conditions (as it were never proven for modern commercial 

cultivars nor for the action of particular Ppd or Eps genes) which was previously 

described by Ferrante et al. (2013a); González-Navarro et al. (2015) and Guo, et al. 

(2016). 

iii) Confirming established knowledge 

Considering globally the results shown, most of them were consistent with all the 

previous reports about differences in the developmental phases length due to: i) genetic 

differences, although slightly among modern cultivars (Elia et al., 2016), ii) different 

photoperiod environments (Miralles et al., 2000; González et al., 2003b) or due to iii) 

the effects of Eps alleles (Lewis et al., 2008) and their interaction with the temperature 

(Bullrich et al., 2002; Appendino and Slafer 2003; Lewis et al., 2008). In addition, 

results were consistent with the effects described on the number of fertile florets due to 

genotypic and), environmental effects (e.g. Sibony and Pinthus, 1988; Miralles et al., 

1998; Miralles, et al., 2000; González, et al., 2003a; González, et al., 2003b; González, 

et al., 2005a; González et al., 2005b; Ghiglione et al., 2008; Serrago, et al., 2008; 

Ferrante et al., 2010). 

 

6. Future research 

As always, the achievements of a research process open room for further research in 

many directions. Just to illustrate some of them, further studies may focus on: 

 The results of the Ppd effects not being consistent completely across growing 

seasons suggest that it might be interesting to analyze and quantify photoperiod 

x temperature interactions identifying the developmental phases most strongly 

affected by this interaction, if it were significant, including how the parameters 

of response (daylength thresholds and sensitivity) are affected. As the two 

growing seasons explored very similar daylengths, the main cause of the 

inconsistency in sensitivity would be temperature. Determining the existence, 

characterizing the response models and quantifying the effects would be 

empirically relevant in the context of temperature increments. 

 

The concept developed of synchrony of floret development should be further 

explored and exploited, firstly challenging to what degree the synchrony may be 

altered by (environmental and genetic) manipulations, and secondly by 

analyzing with these sources of variation recognized to what degree the changes 

in synchrony may be responsible for differences in rate of floret mortality. 

 

 Combine different treatments using the modern cultivars under photoperiod 

treatments and the Ppd NILs as well with different resources availability such as 

nitrogen, water-soluble carbohydrates or spikelet-trimming in order to analyze if 

there exist compensation between the duration of the developmental phases and 

the assimilates availability and how the synchrony of floret primordia 

http://link.springer.com/article/10.1007/s10142-009-0146-7#CR43
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appearance, the maximum floret primordia developed and the floret survival are 

affected and how these affect the number of fertile florets.  

 

 7.   Major Conclusions 

 

 Modern cultivars well adapted from the Mediterranean region presented 

differences in the number of fertile florets due to a combination of differences in 

floret development phase length, the rate of floret appearance and the floret 

survival. Advantageous cultivars (those possessing contrasting attributes 

contributing to improved spike fertility) could be taken into account for strategic 

crosses in future breeding. 

 

 Photoperiod insensitivity did affect spike fertility. Carrying the photoperiod 

insensitivity reduced the number of fertile florets due to a combination of effects 

on floret development phase length, the rate of floret appearance and the floret 

survival. 

 

 There was not a clear pattern of the strength effects depending of the genome 

from which the insensitivity came from and it was not seen a clear doses 

response.  

 

 Earliness per se alleles did show slight effects on spike fertility under natural 

conditions, even slightly trends were seen depending on the different genetic 

background and the specific Eps gene.  

 

 Importantly, both qualitative and quantitative temperature effects on the Eps 

action were identified. The qualitative effects would be revealing that threshold 

temperatures would not be really extremes (and therefore easily found in 

realistic field growing conditions), and there was apparently a difference 

between NILs carrying the early or late allele in optimum temperature.  

 

 Floret development and the number of living floret primordia dynamics are 

useful tools to compare treatments and for reflect the nature behind the 

differences in the number of fertile florets at anthesis. 
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