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Non-communicable diseases (NCD) are, by definition, those chronic diseases 
that are non-infectious and non-transmissible. The most common NCD are 
diabetes, cancer, cardiovascular disease, chronic respiratory disease and 
neurological disease. All of them together are the commonest cause of death 
and disability in the modern world. They share common molecular 
mechanisms including oxidative stress, inflammation and metabolic 
alterations. Probably, NCD complications are interrelated, leading to an 
increased risk to develop other comorbidities such as non-alcoholic fatty liver 
disease (NAFLD) and atherosclerosis. 

NAFLD comprehends a broad spectrum of liver damage from hepatic 
steatosis to non-alcoholic steatohepatitis (NASH), which could progress to 
cirrhosis, hepatocellular carcinoma and liver failure. In addition, NAFLD is 
associated with insulin resistance and other metabolic risk factors such as 
diabetes mellitus, dyslipidemia, central abdominal obesity and cardiovascular 
disease.  

The paraoxonase (PON) family of enzymes is an important endogenous 
antioxidant system implicated in several biochemical pathways: protection 
against oxidative damage and lipid peroxidation, contribution to innate 
immunity, bioactivation of drugs, detoxification of reactive molecules, 
modulation of endoplasmic reticulum stress, and regulation of cell 
proliferation/apoptosis.        

Taking all these data into account, we hypothesize that PON1 deficiency is 
associated to severe metabolic disturbances that may be related to 
inflammation and the comorbidities of some NCD, such as NAFLD and 
atherosclerosis.  

Consequently, Study 1, published in Journal Proteomic Research, 
investigated the effect of PON1 deficiency on histological alterations and 
hepatic metabolism in mice fed a high-fat high-cholesterol diet. The 
deficiency of PON1 was associated with hepatic steatosis. Moreover, these 
alterations were accompanied by important metabolic alterations, and with 
increased oxidative stress and inflammation. Thereby, PON1 seems to have 
an important protective role in the liver which may have clinical relevance 
since reduced serum and liver PON1 activity is an early alteration in patients 
with liver impairment. 

23
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NAFLD has been demonstrated to be related to subclinical manifestations of 
atherosclerosis. This pathology involves a complex interaction among 
endothelial cells of the arterial wall, blood cells, and circulating lipoproteins. 
In addition, PON1 accumulates in the artery wall during the atherosclerotic 
process, and PON1 deficient mice fed with a proatherogenic diet have 
greater levels of oxidized low density lipoprotein (oxLDL) and larger 
atheromatous plaques. Accordingly, Study 2, published in Mediators of 
Inflammation, studied the influence of PON1 on metabolic alterations when 
oxLDL is incubated with endothelial cells. The results obtained showed that 
HDL from PON1 deficient mice has an impaired capacity to protect 
endothelial cells from oxLDL. We detected important metabolic disturbances 
(impaired glycolysis, tricarboxylic acid cycle, phospholipid metabolism, and 
activation of apoptotic pathways).  

Oxidative stress and insulin resistance have been assumed to be driving 
factors in the progression of NAFLD to NASH, and both are recognized 
contributors to type 2 diabetes. In addition, the accumulation of fatty acid in 
the livers triggers to hepatic insulin resistance that led to accelerated 
atherosclerosis. Beneficial lifestyle changes led to ameliorate insulin 
resistance and hepatic steatosis. Metformin, an activator of the 5´adenosine 
monophosphate-activated protein kinase, regulates hepatic lipid metabolism 
by inducing adipose triglyceride lipases in patients with diabetes. However, 
there are controversial results about the effects of metformin in patients 
with liver impairment. Therefore, in Study 3, published in Chemico-Biological 
Interactions, we wanted to evaluate how the treatment with metformin 
affects the liver of PON1 deficient mice fed a standard chow diet or high-fat 
diet. The results showed that metformin administration produces 
undesirable effects in the liver of PON1 deficient mice. Metfomin 
administration aggravated inflammation in animals given both diets. Also, it 
was associated with a higher degree of steatosis in animals fed a standard 
chow diet. This report was a cautionary note about the prescription of 
metformin for the treatment of diabetes in patients with concomitant liver 
impairment. 
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1. Oxidative stress and inflammation

Non-communicable diseases (NCD) are, by definition, those chronic diseases 
that are non-infectious and non-transmissible. They are of long duration and 
generally slow progression. The most common NCD are diabetes, cancer, 
cardiovascular disease, chronic respiratory disease and neurological diseases 
and all of them together are the commonest cause of death and disability in 
the modern world. In 2012 they caused 68% of all of them (1, 2). NCD share 
common molecular mechanisms that play an important role in their onset 
and development. These mechanisms include oxidative stress, inflammation 
and mitochondrial alterations (3-8).  

The term “oxidative stress” begun to be used frequently in the 1970s, but its 
conceptual origins can be traced back to the 1950s used by researchers 
pondering the toxic effects of ionizing radiation, free radicals, and the similar 
toxic effects of molecular oxygen and the potential contribution of such 
processes to the phenomenon of aging (9). In general, oxidative stress is 
considered as the consequence of an imbalance between pro- and 
antioxidant species, which often result into indiscriminate and global damage 
in the organism (10, 11). Elderly people are more susceptible to oxidative 
stress and this phenomenon depends, almost in part, from an impaired 
performance of their endogenous antioxidant systems (12, 13). 

Reactive oxygen species (ROS) comprise both, non-radical species such as 
hydrogen peroxide (H2O2) and free radicals species such as superoxide (O2

•-) 
(14). These molecules, persistently produced in the cell, are involved in 
physiological events such as primary immune defense, cell differentiation 
and signaling (15-17). Indeed, some ROS such as H2O2 are versatile players of 
the molecular signaling machinery because they are small, highly diffusible, 
and can be rapidly generated and degraded (18). On the other hand, ROS are 
able to oxidize different biomolecules in the cell, leading to a sequence of 
chain reactions that may end up in molecular and cellular damage (17, 19).  

The most extensively studied DNA lesion produced by oxidative stress is the 
formation of 8-oxo-2’-deoxyguanosine (8-oxo-dG). The permanent 
modification of genetic material resulting from this oxidative damage 
represents the first step in mutagenesis, carcinogenesis and ageing. ROS 
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results in an attack not only on DNA, but also on other cellular components 
involving polyunsaturated fatty acid residues of phospholipids, which are 
extremely sensitive to oxidation. The major products of lipid peroxidation are 
malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE). MDA is mutagenic 
in bacterial and mammalian cells and carcinogenic in rats, and HNE is weakly 
mutagenic but appears to be the major toxic product of lipid peroxidation 
(20, 21). Lipid peroxidation is commonly used as an indicator of oxidative 
stress in cells and tissues. On the other hand, proteins are also targets of 
oxidative modifications in cells. Oxidized proteins are accumulated under 
specific conditions (i.e. aging) and their accumulation depends on the 
balance between their generation and their elimination by protein 
degradation or repair pathways. Oxidized proteins often lose their 
biochemical function with downstream effects on various cellular processes. 
Certain oxidation processes are reversible and therefore the oxidized amino 
acid products can be reduced to their initial amino acid. Such modifications 
include oxidative cysteine and methionine products; specific enzymatic 
systems can recycle them into their reduced form. Irreversible oxidation 
products refer mostly to hydroxylated and carbonylated amino acid derivates 
(22). 

The balance between beneficial and detrimental effects of ROS is preserved 
in the cell by the activity of a complex array of non-enzymatic and enzymatic 
detoxification mechanisms collectively known as antioxidants (23, 24).  

1.1.  Enzymatic Antioxidant Systems 

- Superoxide dismutase (SOD)

It is an enzyme that catalyzes the dismutation of the superoxide anion to 
hydrogen peroxide, which is then decomposed by catalases primarily 
located in the peroxisomes (25). Two forms of SOD are known. SOD-1 
contains copper and zinc and is also known as Cu-ZnSOD. This enzyme is 
primary located in the cytosol but also in the nucleus, and is a 
homodimeric protein. Copper is essential for the catalytic reaction, while 
zinc is important for maintaining the structure of the protein. SOD-2, also 
known as manganese-dependent superoxide dismutase MnSOD, is found 
in the mitochondrial matrix (26).  
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- Catalase

It is located in the liver, erythrocytes, kidneys and central nervous 
system. The principal function of this enzyme is convert H2O2 to water 
and molecular oxygen. 

- Glutathion peroxidase

It is an important enzyme in cellular antioxidant defense systems, 
detoxifying peroxides and hydroperoxides. Its function is to reduce H2O2 

to water, oxidizing two molecules of glutathione (GSH) to glutathione 
disulphide (GSSG), which is converted back to GSH by the enzyme, 
glutathione reductase using NADPH (12, 26).  

- Paraoxonases (PON)

It is a family of three enzymes termed PON1, PON2 and PON3. They have 
multifunctional roles in various biochemical pathways such as protection 
against oxidative damage and lipid peroxidation, contribution to innate 
immunity, detoxification of reactive molecules, bio-activation of drugs, 
modulation of endoplasmic reticulum (ER) stress and regulation of cell 
proliferation/apoptosis (27).  

1.2.  Non-enzymatic Antioxidant Systems 

Antioxidant compounds such as ascorbic acid (vitamin C), α-tocopherol 
(vitamin E), GSH, carotenoids, flavonoids, polyphenols and others, play 
an important role in the antioxidant defense systems. 

1.3.  Oxidative stress leads to inflammation 

When the equilibrium between oxidative stress and antioxidants is 
altered in the cells of tissues and organs, it promotes an inflammatory 
response that plays a vital role in host defense.  

Inflammation is an adaptive response of the innate immune system that 
is triggered by noisome stimuli and injury, such as infection and tissue 
injury (28, 29). Generally, it is a controlled process with the objective of 
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restoring homeostasis, but in occasions leads to tissue damage, fibrosis 
and losses of cellular function. 

Briefly, the inflammatory response to infection or tissue injury produces 
a coordinated release of leukocytes to the site of infection or injury (28, 
29). This phenomenon is well characterized in microbial infections, 
where the receptors of the tissue-resident macrophages and mast cells, 
such as NOD (nucleotide-binding oligomerization-domain protein)-like 
receptors (NLRs) and toll-like receptors (TLRs) trigger to the production 
and liberation of a variety of inflammatory mediators, such as cytokines, 
chemokines, eicosanoids, vasoactive amines and products of proteolytic 
cascades. The principal effect of these mediators is an open access to the 
blood vessels, through the postcapillary venules. Having done that, the 
endothelium of the blood vessels is activated and leads to the selective 
extravasation of neutrophils through the junction of endothelial-cell 
selectins with integrins and chemokine receptors on leukocytes, which 
happens at the endothelial surface, as much as in the extravascular 
spaces (30).  

Once the neutrophils go to the affected place, they become activated, 
either by direct contact with pathogens or through the actions of 
cytokines secreted by tissue-resident cells. The neutrophils try to 
eliminate the invading agents by liberation the toxic contents of their 
granules, which include ROS and reactive nitrogen species, cathepsin G, 
proteinase 3 and elastase (Figure 1) (31). This action does not 
discriminate between microbial and host targets, so collateral damage to 
host tissues is inevitable.  
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Figure 1. Schematic illustration of neutrophil recruitment. G protein–coupled receptors 
(GPCR); Intercellullar Adhesion Molecular 1 (ICAM-1); Junctional Adhesion Molecules (JAMs); 
Platelet endothelial cell adhesion molecule (PCAM); cluster of differentiation 99 (CD99). 
Adapted from Mayadas et al. (32) 

A victorious acute inflammatory response results in the elimination of the 
pathogens followed by a resolution and repair phase, which is mediated 
mainly by tissue-resident and recruited macrophages. In this situation, 
the pro-inflammatory prostaglandins change to lipid mediators (lipoxins, 
protectins and resolvins), which are anti-inflammatory; this transition is 
crucial for the resolution of inflammation. The recruitment of neutrophils 
is inhibited by the lipoxins, and in addition, promotes the recruitment of 
monocytes, which remove dead cells and initiate tissue remodeling. 
Protectins, resolvins, growth factors, transforming growth factor-β (TGF-
β) are produced by macrophages and also have an important role in the 
resolution of inflammation, including the initiation of tissue repair (33). 

If the acute inflammatory response is not resolved, the inflammatory 
process persists and acquires new characteristics. The macrophages and T 
cells try to restore the homeostasis and if the result of this combination is 
still not sufficient, a chronic inflammatory state results, leading to the 
formation of granulomas and tertiary lymphoid tissues (34).  
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2. Paraoxonases

There are evidences relating chronic inflammation and deregulation of 
oxidative stress as main pathophysiological hallmarks in diabetes, cancer, 
cardiovascular disease, chronic respiratory disease and neurological diseases 
(3-8).  

The paraoxonase family consists of three members termed PON1, PON2 and 
PON3. They are implicated in various biochemical pathways such as 
protection against oxidative damage and lipid peroxidation, contribution to 
innate immunity, bioactivation of drugs, detoxification of reactive molecules, 
modulation of ER stress, and regulation of cell proliferation/apoptosis (27). 
PON genes are located adjacent to each other on the long arm of 
chromosome 7 (7q21.3-q22.1) in humans and chromosome 6 in mice (35, 
36). PON1 was the first identified enzyme of the family. In 1953, Aldridge was 
evaluating the rates of hydrolysis of organophosphate insecticides in 
different tissues of rabbits and rats and observed that one of the 
organophosphate insecticides, parathion, had a high rate of degradation in 
serum of rabbits, and that this compound was cleaved by an esterase. The 
esterases were classified depending of its hydrolysis capacity into A-esterase 
(hydrolyze substrates) and B-esterases (inhibited by interaction with 
substrates) (37, 38). The name of the paraoxonases comes from the PON1 
capacity of hydrolyze paraoxon, the toxic metabolite of parathion. Years 
later, the other two members of the family were identified and consequently 
termed PON2 and PON3 (35). PON1 and PON3 genes are expressed in the 
majority of tissues, and their protein products are found in circulation bound 
to high density lipoproteins (HDL) (39-41). Contrarily, PON2 protein is an 
intracellular enzyme not found in plasma (42). 
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2.1. Paraoxonase 1 

Initially, PON1 was the studied for its capacity to hydrolyze organophosphate 
compounds and, consequently, by its protective role against poisoning by 
organophosphate derivatives (37, 38). The physiological role of PON1 is 
related to its ability to hydrolyze lipid peroxides and alterations in serum 
PON1 activity are observed in diseases involving oxidative stress (protects 
against oxidation) (43), inflammation (PON1 as a negative acute phase 
protein) (44) and liver diseases (synthesized in this organ) (45). The enzyme 
is a calcium-dependent esterase, its molecular weight is 43-45 kDa and it is 
composed of 354 amino acids.     

PON1 is considered as a “promiscuous” enzyme on account of the ability to 
hydrolyze many other substrates such as other organophosphorous 
compounds, non-phosphorous arylesters and also lactones; the latter being 
considered as its primary substrates. Therefore, PON1 can be evaluated by 
its different activities: 

- Paraoxonase activity:
The enzyme hydrolyzes organophosphorous compounds such as
paraoxon, soman, sarin and others.

- Lactonase activity:
PON1 hydrolyzes aromatic and aliphatic lactones such as 5-thiobutyl
butyrolactone (TBBL) or other lactones such as dihydrocoumarin.

- Arylesterase activity:
When the substrate hydrolyzed is an aromatic ester such as phenyl
acetate or 4 (p)-nitrophenyl acetate (46).

For a long time, it has existed confusion with respect to the structure and 
mechanism-of-action of this enzyme, because its purification is unstable and 
often contaminated. Harel et al. (47) described the structure of PON1 
through directed evolution methodology, and proposed that PON1 is a six-
bladed β propeller with a unique active site that is also important in HDL 
binding (Figure 2). Briefly, the directed evolution methodology to replicate 
the evolutionary process in the laboratory by artificially inducing mutations 
in the gene-of-interest, followed by selection and amplification of the 
variants which show an enhancement of the desired characteristics.  
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Figure 2. Overview of PON1 structure. A) View of the six-bladed β-propeller from above. The 
top of the propeller is, by convention, the face carrying the loops connecting the outer β-
strand of each blade (strand D) with the inner strand of the next blade. Shown are the N and C 
termini and the two calcium atoms in the central tunnel of the propeller. B) A side view of the 
propeller with the three helices at the top (H1-H3). Adapted from Harel et al. (47) 

Due to its capacity to hydrolyze a wide range of substrates research was 
conducted to distinguish the native or “ancestral” function of this enzyme. 
Once more, directed evolution studies, together with structure-function 
studies, identified the primordial function of PON1 as that of a lipolactonase 
(48-51) which subsequently evolved to new substrate specificities. Lactones 
are ubiquitous in nature and are produced in all five kingdoms (Monera, 
Protista, Plantae, Fungi and Animalia) (52). They show a wide phylogenetic 
diversity and have the ability to affect cellular signaling, growth and 
differentiation. The endogenous and exogenous lactones are metabolized by 
lactonases, then altering their biological activity and/or distribution (53). 
Consequently, it is probable that lactonase is the primary activity of PON1, 
while the paraoxonase activity arose as a promiscuous activity during their 
evolution.  

The three activities, paraoxonase, lactonase and arylesterase, share the same 
active site; however, different residues in the active site are involved in their 
activities (47, 54, 55). For example, the residues His115-His134 are involved in 
the lactonase and arylesterase catalytic activity and mutations in one of both 
residues dramatically decreases or abolishes both activities (54). Rosenblat 
et al. (56) reported that, in addition to its ability to degrade lipid peroxides, 

B A 
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PON1 also increases cholesterol efflux from macrophages, which may further 
contribute to the PON1 antiatherogenic effects. 

Several genetic polymorphisms can influence the expression, concentration 
and specific activity of the PON family. Genetic factors, including 
polymorphisms, affected more than 60% of phenotypic variability in PON1 
activity, while demographic environmental factors (such as age and sex) 
reported for only 1-6% of variety and metabolic covariates for 4-19% (57). 
The most studied polymorphisms of PON1 are PON1192 and PON155, both 
affecting PON1 coding region. In the case of PON1192, there is a substitution 
to a glutamine (Q) for arginine (R) at position 192, leading to three 
phenotypic groups: QQ representing low, QR intermediate and RR high PON1 
activities (58-60). Then, the polymorphism PON1192 does not affect PON1 
protein concentrations, but the PON1 activities(61). When analyzing serum 
PON1 activity it is important to consider the type of substrate used, due to 
the fact that a given genotype can produce opposite effects on PON1 
activity, depending on the substrate employed. For example, the highest 
arylesterase and paraoxonase activity was found in RR individuals, but 
highest lactonase activity was observed in QQ individuals (57, 62). 

The PON155 polymorphism is due to amino acid substitutions at position 55, a 
leucine (L) to methionine (M). When the allele that contains leucine is 
present, the PON1 concentration is significantly higher (63). Various reports 
highlighted the importance of the PON1 genotypes reporting an association 
between R and L alleles and a higher risk for cardiovascular disease (64-66). 
The allele frequencies varied greatly among populations of different 
geographical/ethnic groups (67, 68). 

Moreover, several polymorphisms have been described in the promoter 
region of the PON1 gene: PON1-162, PON1-832, PON1-909, PON1-1076, and PON1-

1741, which seem to be significantly associated with changes in PON1 serum 
enzyme activity (Figure 3) (69). 
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Figure 3. A) Schematic representation of the most prevalent polymorphisms of PON1; B) 
Distribution of PON1 genotypes in the healthy population. a Abbreviations of the coding region 
polymorphisms represent changes in the protein amino acid sequence (A, Ala; C, Cys; G, Gly; L, 
Leu; M, Met; Q, Gln; R, Arg), while those of the promoter region represent changes in the 
nucleotide sequence. Adapted from Marsillach et al. (69). 

2.2. Paraoxonase 2 

Although PON1 has been the most extensively studied enzyme, PON2 is 
thought to be the oldest member of the PON family, regarding structural 
homology and predicted evolutionary distance between them. (70).  

PON2 is an intracellular protein, with a molecular weight of 44 kDa. This 
enzyme is not active against organophosphate substrates but has lactonase 
activity (71). 

Research into the physiological role of PON2 and its possible implication in 
human pathophysiology is a young, yet promising, field. Nevertheless, like 
PON1, it has been involved in oxidative stress, inflammation and quorum-
sensing regulation. Ng et al. (42) reported that PON2 was not present in 
circulation, at least not at levels measurable by the current methods, while 
its gene expression was detected in several human tissues with a primary 
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localization in the plasma membrane, suggesting functions that are different 
from those observed for PON1 and PON3. The authors, by using cells 
transfected with the human PON2 gene, demonstrated that these cells have 
a higher antioxidant capacity and are less effective in oxidizing low density 
lipoprotein (LDL) that those cells that were not transfected. Furthermore, 
several studies in genetically modified mice demonstrated again the 
antiatherogenic properties of PON2. PON2 deficient mice present higher 
tissue levels of lipid hydroperoxides, leading to an increase in macrophages 
migration into the arterial wall, and consequently, more severe 
atherosclerosis lesions than control mice. Moreover, LDL isolated from 
theses mice was more susceptible to oxidation and triggered more monocyte 
chemotaxis. Macrophages isolated from PON2 deficient mice are more 
susceptible to oxidative stress and they also show an increase in tumor 
necrosis alpha (TNF-α) and interleukin-1β (IL-1β) gene expression after LPS-
induced inflammation (72). PON2 also protects against macrophage 
triglyceride accumulation, inhibiting their conversion to foam cells (73, 74). 

In addition, PON2 has the capacity to hydrolyze various bacterial products, 
such as acylhomoserine lactones, that permit bacteria to communicate and 
coordinate their infection. This process is known as quorum sensing and it is 
intensified in PON2 deficient mice (75, 76). 

On the other side, PON2 plays an important role in mitochondrial oxidative 
stress and ER stress, which are involved in cell apoptosis, premature aging 
and cancer (77). Several studies showed an increase in PON2 gene 
expression in prostate cancer, hepatocellular carcinoma and acute 
lymphoblastic leukemia (78-80). Altenhofer et al. (81) showed that PON2 
reduced superoxide liberation from the inner mitochondrial membrane, 
irrespective whether resulting from complex I or complex III of the electron 
transport chain by modulating quinones. Rosenblat et al. (82) observed that 
PON2 was located inside the membranes of ER and mitochondria in murine 
macrophages.  

Horke et al. (83) were the first to determine that PON2 reduces ER stress-
induced caspase activation. They observed that PON2 was associated with 
the nuclear membrane and ER and was induced at both the promoter and 
protein levels by ER stress pathway unfolded protein response. One year 
later, the same authors demonstrated that PON2 protects against ER stress 
mediated cell death by regulating calcium homeostasis (84). It has been 

_________________________________________Paraoxonases

UNIVERSITAT ROVIRA I VIRGILI 
INFLUENCE OF PARAOXONASE-1 DEFICIENCY ON METABOLIC ALTERATIONS AND INFLAMMATION 
Anabel  Garcia  Heredia 
 



observed by Devarajan et al. (85) that macrophage PON2 modulates calcium 
homeostasis and cell survival under ER stress conditions and is enough to 
prevent the development of atherosclerosis in PON2 and apoE double-
deficient  mice fed with a Western diet. Their observations suggest that 
PON2 regulates the mechanisms that link mitochondrial dysfunction, ER 
stress and the development of atherosclerosis. 

Two PON2 gene polymorphisms, have been described, PON2148 (A/G) and 
PON2311 (S/C). PON2148 polymorphism involves an amino acid substitution of 
glycine for alanine at position 148 in the coding region and PON2311 involves 
a substitution of serine for cysteine at position 311 in the coding region 
(Figure 4).  

Figure 4. A) Schematic representation of the most prevalent polymorphism of PON2; B) 
Distribution of PON2 genotypes in the healthy population. a Abbreviations of the coding region 
polymorphisms represent changes in the protein amino acid sequence (A, Ala; C, Cys; G, Gly; S, 
Ser), while those of the promoter region represent changes in the nucleotide sequence. 
Adapted from Marsillach et al. (69) 

Hegele et al. (86) reported that PON2148 polymorphism was associated with 
glucose handling in patients with noninsulin-dependent diabetes mellitus in a 
genetically isolated Canadian population; GG individuals show a worst fasting 
hyperglycemia. In addition, both polymorphisms were associated with 
variations in serum cholesterol and apolipoprotein A-I concentration in 
another genetically isolated Canadian population (87), and PON2311 was 
found to affect cardiovascular disease risk in Asian Indians (88). Recently 

_________________________________________Introduction

UNIVERSITAT ROVIRA I VIRGILI 
INFLUENCE OF PARAOXONASE-1 DEFICIENCY ON METABOLIC ALTERATIONS AND INFLAMMATION 
Anabel  Garcia  Heredia 
 



studies showed that PON2148 and PON2311 polymorphisms affect their 
capacity to hydrolyze several lactones (89).  

Despite these results, a recent meta-analysis including seven studies with a 
great number of cases and controls did not observe any significant 
correlation between PON2311 polymorphism and the risk for ischemic stroke 
(90). Furthermore, another study did not show any significant association 
between PON2 gene polymorphisms, diabetes mellitus, cardiovascular 
disease, or renal disease in Mexicans participants (91).  

2.3. Paraoxonase 3 

PON3 is the latest identified enzyme of the PON family and the worst 
characterized. Its molecular weight is approximately 44 kDa and, as PON1, it 
is bound to HDL but in a lower concentration (92). In addition, as PON2, it is 
not able to hydrolyze paraoxon or other xenobiotic compounds, but has 
lactonase activity (71, 92). 

Several studies report that PON2 and PON3 have a similar function and a 
similar cell-type association (93-95). Studies in vitro demonstrated that PON3 
is able to prevent the oxidation of LDL (94). In addition, Shih et al. (96) 
reported that high PON3 expression significantly decreases atherosclerotic 
formation and adiposity in modified mice.  

Interestingly, Schweikert et al. (97) showed that isolated mitochondria from 
PON3 deficient livers have an impaired function compared to the control 
mice. Moreover, the authors demonstrated that there is an increase PON3 
expression in human tumors and that PON3 reduces mitochondrial 
superoxide formation by sequestering ubisemiquinone in cancer cells, 
triggering to improved cell death resistance. 
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PON3 is also a polymorphic enzyme, and its polymorphisms have been 
described recently. They are located in the promoter region, and its 
physiological role is still not clear (Figure5).  

Figure 5. A) Schematic representation of the most prevalent polymorphism of PON3; B) 
Distribution of PON3 genotypes in the healthy population. a Abbreviations of the coding region 
polymorphisms represent changes in the protein amino acid sequence (A, Ala; C, Cys; G, Gly; 
T, Thr), while those of the promoter region represent changes in the nucleotide sequence. 
Adapted from Marsillach et al. (69) 

3. Paraoxonase 1 and non-communicable
diseases.

NCD are underpinned by oxidative stress and inflammation; these 
phenomena are inextricably associated. Chronic inflammation is linked with 
oxidation, anti-inflammatory cascades are associated to reduce oxidation, 
increased oxidative stress produces inflammation, and redox balance inhibits 
the inflammatory cellular response. Whether or not oxidative stress and 
inflammation represent the cause or consequence of cellular pathology, they 
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participate significantly to the pathogenesis and development of NCD. 
Probably, NCD complications are related, increasing their risk to developing 
other comorbidities. For example, patients with obesity have an increased 
risk of developing atherosclerosis, type 2 diabetes mellitus, cancer, and other 
age-related diseases.  

3.1. Cardiovascular disease and PON1 

Cardiovascular diseases (CVDs) include a class of disorders that comprise 
heart and systemic blood vessels (98). Lifestyle, genetic, epigenetic and 
environmental factors may influence the risk of developing CVDs.  

The initial pathological events of CVDs are difficult to ascertain due to their 
multifactorial background, and that they are often subclinical. Inflammation 
is considered to play an important role in the disease initiation and 
progression (99).  

The most common pathological process that triggers to CVDs (myocardial 
infarction, heart failure, stroke and claudication) is atherosclerosis (98). 
Atherosclerosis is defined as a chronic and progressive disease characterized 
by an inflammatory response of arterial wall to injuries promoted by risk 
factors such as diabetes, dyslipidemia, hypertension and others (100). The 
major risk factor of atherosclerosis is hypercholesterolemia. Actually, it is 
well-known that atherosclerosis is the accumulation of fat in arterial walls 
and, in addition it is a complex process involving both innate and adaptive 
immune processes (100, 101).  

Briefly, atherogenic process starts in places where endothelium is submitted 
to shear stress such as aortic arch, aortic root, renal arteries and superior 
mesenteric artery.  Consequently, an endothelial dysfunction and alteration 
of the intimal layer permeability are observed, triggering to LDL migration to 
sub endothelial space (102). The endothelium activated by risk factors leads 
to expression of molecules such as E-selectin, intercellular adhesion 
molecule (I-CAM) and vascular cell adhesion molecules (VCAM), which 
attract monocytes. Once the monocytes have migrated to the media layer of 
the artery, differentiate into tissue macrophages. They express scavenger 
receptors and phagocyte oxidized LDL (oxLDL) yielding  foam cells (103). The 
inflammatory cells release growth factors and cytokines that contribute to 
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the formation of a fibrous cap of smooth muscle and extracellular matrix 
around the lipid core, which compromises lumen of vessels (100, 101, 104). 
Therefore, the rupture of the plaque represents the major problem event 
associated with atherosclerosis (Figure 6). 

Figure 6. Development of atherosclerotic lesions. A) Representation of the normal artery, 
containing three layers (inner layer, tunica intima and adventitia). The human intima has 
resident smooth muscle cells (SMCs). The tunica media has SMCs embedded in a complex 
extracellular matrix; B) Recruitment of monocytes by the activated endothelium, their 
differentiation to macrophages, and their uptake of lipid turning into foam cells; C) Migration 
of SMCs from the media to the intima and synthesis of extracellular matrix macromolecules 
(collagen, elastin and proteoglycans). Occasionally, macrophages and SMCs can die leading to 
liberation of lipids and their accumulation in the central region of a plaque, called it as 
necrotic core. Advancing plaques also contain cholesterol crystals and microvessels; D) 
Rupture of the atherosclerotic plaque triggering to the thrombus that it can obstruct blood 
flow. Adapted from Libby et al. (104). 

The atherosclerotic plaques are characterized by having necrotic areas, 
calcification, accumulation of modified lipids and foam cells and also other 
types of cells (T cells, endothelial cells, smooth muscle cells and vascular 
dendritic cells) (105). The accumulation of monocytes/macrophages at the 
lesion site is a key factor in the atherogenic process and involves various 
steps, such as the expression of adhesion molecules and chemotactic factors 
triggering the monocyte recruitment, and consequently the activation and 
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differentiation processes together with proliferation and immobilization of 
macrophages in the inflamed plaque (106).  

In particular, the chemokine (C-C motif) ligand 2 (CCL2), formerly termed 
monocyte chemoattractant protein-1 (MCP-1), is intimately implicated in the 
inflammatory reaction. This chemokine regulates the migration of monocytes 
into tissues and their subsequent differentiation into macrophages (107). 
CCL2 can be secreted by several cells such as endothelial cells, T cells, 
smooth muscle cells, monocytes, macrophages and foam cells, perpetuating 
inflammation and lipid accumulation in atheroma (108).  

Early studies reported that CCL2 is present in macrophage-rich 
atherosclerotic plaques in humans (109) and primates (110). Oxidized lipids 
have long been implicated as mediators of atherosclerosis and foam cell 
formation (111). Studies by Cushing et al. (112) demonstrated that minimally 
ox-LDLs, but not native LDLs, induced CCL2 production in vascular wall cells 
such as endothelial cells and smooth muscle cells. CCL2 thus emerged as a 
possible molecular link between oxidized lipoproteins and foam cell 
recruitment to the vessel wall. In addition, it is reported by Stephen et al. 
(103) that CCL2 induces a diminution in the expression of LDL receptors and
an increase in the scavenger receptor (responsible to phagocytosis of oxLDL).
Remarkably, Hashizume and Mihara (113) investigated the influence of
interleukin-6 (IL-6) and TNF-α on expression of scavenger receptor in human
arterial endothelial cells. They observed an increased in the expression of
scavenger receptor and they also reported that oxLDL-induced CCL2 was
increased by the presence of IL-6 and TNF-α. Therefore IL-6 and TNF-α
promote a positive feedback of inflammation and atherogenesis and
suggests that both are implicated in atherogenesis process also via
oxLDL/CCL2 induction. Moreover, CCL2 is responsible to the rupture and
thrombosis of atherosclerotic plaque (114).

On the other side, HDL particles have been shown to have antioxidant (115-
117) and anti-inflammatory properties, including the suppression of
cytokine-induced endothelial cell adhesion molecules (CAM) (118).
Moreover, Apolipoprotein A-I (Apo A-I) in HDL was shown to stabilize PON1
and to significantly promote its lactonase activity (119). Conversely, the
presence of Apo AII in HDL is associated with PON1 inactivation (120). In
serum, PON1 protein protects both LDL and HDL against lipid peroxidation
and preserves its anti-atherogenic effects by inhibition of HDL oxidation (121,
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122). Mackness et al. (123) first showed that PON1 inhibits CCL2 production 
in endothelial cells incubated with oxLDL. They found that HDL, as well as 
recombinant PON1, abolished CCL2 production in cultured endothelial cells, 
while HDL from avian was unable to elicit this reaction (avian HDL does not 
have PON1).  

Several studies support the concept of an anti-inflammatory function of 
PON1. Tward et al. (124) evaluated the overexpression of human PON1 in 
mice fed with an atherosclerotic diet. These authors observed that the mice 
developed less atherosclerotic lesions, lower oxidative stress, and about 44% 
lower CCL2 expression in their aortas than their corresponding control mice. 
Rozenberg et al. (125) showed that PON1 deficient mice had higher 
peripheral lipid peroxidation and a higher degree of macrophage oxidative 
stress. Subsequent investigations observed that the function of PON1 
(antioxidant and anti-inflammatory) is multifaceted and may include not only 
an inhibition of lipid peroxidation but also an increase in macrophage 
cholesterol efflux via HDL. Rosenblat et al. (126) incubated cultured 
macrophages with HDL derived from human PON1-trangenic mice. They 
observed that PON1 improved cholesterol efflux, through an increase in 
macrophage lysophosphatidylcholine content, which stimulated the action of 
the ATP-binding cassette transporter A1 (ABCA1), the HDL binding to the 
cells, and the cholesterol uptake by this lipoprotein. Other study (127) in 
mice deficient of both Apo A-I and LDL receptor showed lower serum PON1 
activities, impaired reverse cholesterol transport, increased atherosclerosis 
development, and increased CCL2 concentrations. 

Taking all these data into account, it seems plausible that PON1 inhibits the 
monocyte/macrophage transmigration induced by oxidative stress due to its 
capacity to degrade lipid peroxides and down-regulate CCL2 production by 
vascular endothelial cells as well as to its capacity to increase macrophage-
associated cholesterol efflux via lysophosphatidylcholine synthesis and 
ABCA1 activation. This rationale offers a clear mechanism connecting lipid 
peroxidation, inflammation and the protective functions of PON1 and HDL 
against atherogenesis (Figure7). 
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Figure 7. Representation of the role of PON1 in the atherosclerotic process. Circulating monocytes are 
activated as a consequence of a pro-oxidant and pro-inflammatory environment and become to 
macrophages. LDL particles enter the vessel as well. Macrophages promote LDL oxidation by the liberation 
of free radicals. Oxidized LDL go into macrophages by via the scavenger receptor and contributes to their 
conversion to foam cells. The presence of macrophage oxidations of LDL and foam-cell formation are 
hallmarks of initial atherogenesis. PON1 hydrolysis of oxidized lipids in LDL reverts this lipoprotein to 
normal LDL and, as a result, attenuates the development of atherosclerosis. PON1, by inhibiting the 
production of MCP-1, is anti-inflammatory and favors cholesterol efflux from macrophages. Adapted from 
Camps et al. (128). 

3.2. Diabetes and PON1 

Diabetes is a severe NCD that happens either when the pancreas does not 
produce sufficient insulin or when the organism cannot effectively use it. 
Diabetes is an important public health problem, and the number of cases and 
the prevalence of diabetes have been progressively increasing over the past 
few decades. A statistical study in 2014 showed that 8.5% of adults aged 18 
years and older had diabetes. In 2012 this disease was the direct cause of 1.5 
million deaths and hyperglycemia was the cause of another 2.2 million 
deaths (129).  
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Diabetes is characterized by chronic hyperglycemia, microvascular 
complications (e.g., renal glomerulus, retina, and peripheral nerve), and 
macrovascular complications (e.g., atherosclerosis, CADs, stroke) (130).  

Diabetes is associated with high levels of oxidative stress (131). There are 
data showing that ROS formation is a direct consequence of hyperglycemia  
(132).  Antioxidant systems are important mechanisms for defending 
organism from oxidative stress-induced damage, and disequilibrium in the 
redox mechanism may trigger to the pathology or complications of diabetes 
(133, 134).  

In the 1990s, various reports showed associations between PON1192, PON155, 
and PON1-108 polymorphisms and cardiovascular complications in diabetic 
patients (63, 65, 135). The presence of RR, LL and TT alleles was significantly 
associated with higher rates of adverse cardiac events. In addition, Letellier 
et al. (136) reported also that PON1 activity is decreased in diabetic patients. 
In addition, diabetic patients have their PON1 in HDL glycated and as a result, 
have reduced ability to metabolize membrane lipid hydroperoxides (137, 
138).  Moreover, studies in PON1 deficient mice and PON1 transgenic mice 
showed the protective role of PON1 against streptozotocin-induced diabetes. 
Overexpression of PON1 was linked with reduced diabetes-induced 
macrophage oxidative stress, reduced diabetes development, and reduced 
mortality, in comparison to control mice, and even more so, when compared 
with PON1 deficient mice (139). 

The increased oxidative stress in diabetic patients triggers in a detriment in 
PON1 activity. Indeed, the decrease in PON1 activity is inversely correlated 
with the levels of plasma oxLDL in these patients (140).  

Several studies demonstrated that the administration of nutritional 
antioxidants should be necessary to preserve or maintain PON1 activity in 
patients that present high oxidative stress. The consumption of pomegranate 
juice in diabetic patients caused a significant increase in serum PON1 activity, 
and consequently a reduction in serum oxidative stress (141) and, also 
increased the PON1 binding to HDL, resulting in PON1 activation (142). In 
vitro studies showed that the presence of natural antioxidants such as 
quercetin (from red wine), flavonoids glabridin (from licorice root) or 
punicalagin (from pomegranate), during LDL oxidation, together with PON1, 
reduced the peroxidation and conserved PON1 activities (143). 
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One of the common pharmacological treatments of diabetes is the 
administration of metformin. Metformin is a biguanide and is derived from 
galegrine, extracted from the plant Galega officinalis (144). The drug is 
widely endorsed as initial therapy by professional organizations because of 
its low cost, security profile, and potential cardiovascular benefits (145).  

Metformin acts firstly at the liver by decreasing glucose output, secondarily, 
by increasing glucose uptake in the peripheral tissues (mainly muscle) and, 
finally by increasing β-oxidation in adipose tissue (146-151). These effects 
are mediated by the activation of a 5´adenosine monophosphate (AMP)-
activated protein kinase (AMPK) (148, 150). The AMPK is a heterotrimeric 
complex that is activated by an increase in the AMP/ATP ratio, and is 
considered to be a cellular energy sensor that contributes to regulate energy 
balance and caloric intake. Once activated, AMPK inhibits anabolic processes 
that require energy and, instead, activates catabolic processes that produce 
energy. Then, AMPK participates in glycolysis regulation, glucose uptake, 
lipid oxidation, fatty acid synthesis, cholesterol synthesis and 
gluconeogenesis and, it has been considered as a possible target enzyme in 
the treatment of some diseases such as obesity, type 2 diabetes and hepatic 
steatosis. (150-152). In addition, metformin has antioxidant properties which 
are not completely characterized. It is able to reduce the ROS by inhibiting 
mitochondrial respiration (153) and reduction advanced glycosylation end 
product (AGE) indirectly through diminution of hyperglycemia and directly 
through an insulin-dependent mechanism (154).  

3.3. Cancer and PON1 

Cancer is defined as the uncontrolled growth of cells, which can invade and 
expanded to distant sites of the body. The disease can have severe health 
consequences, and is a leading cause of death. Actually, 8.2 million people 
die each year, approximately 13% of all deaths worldwide (155). 

Oxidative stress in the cell triggering to DNA damage and, could contribute to 
neoplastic growth. Known the extensive antioxidants effects of PON1, 
several studies have investigated the association of the functional PON1 
polymorphism with cancer risk.  
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A recent meta-analysis (including 25 studies) has reported solid evidence of a 
link between the PON155 polymorphism mutation, leading a reduction of 
PON1 enzyme activity, and overall cancer risk. In addition, the investigators 
classified by cancer type, reporting a high risk of prostate and breast cancer 
for patients carrying the MM phenotype. As regards to PON1192, they found a 
reduction risk of cancer for persons of Asian ancestry carrying the RR 
phenotype, which significantly increases PON1 paraoxonase activity (156). 
Moreover, other meta-analysis of breast cancer has reported similar results 
with respect to both PON1192 and PON155 polymorphism (157). 

3.4. Neurological disorders and PON1 

Neurological disorders are diseases that affect the central and peripheral 
nervous system. These disorders include epilepsy, Alzheimer diseases and 
other dementias, cerebrovascular diseases (stroke, migraine and other 
headache disorders), multiple sclerosis, Parkinson´s disease, neuroinfections, 
brain tumors, traumatic disorders of the nervous system, and neurological 
disorders as a result of malnutrition.  

The neurological disorders prevalence is around of 100 million people 
worldwide. Among these, Alzheimer’s disease is the most common cause of 
dementia and may contribute to 60–70% of cases (158). 

Oxidative stress plays a key role in many neurodegerative diseases, such as 
Alzheimer´s and Parkinson diseases, among others. 

Alzheimer´s disease is the principal cause of dementia beginning with 
compromised memory. The pathogenesis of Alzheimer disease comprises 
diffuse and neuritic extracellular amyloid plaques in brain tissue, which are 
often encircled by dystrophic neurites and intraneuronal neurofibrillary 
tangles (159). 

Several studies including patients with Alzheimer disease found a reduction 
in PON1 activity with respect to control subjects (160, 161). In addition, 
Wehr et al. observed a negative correlation between PON1 activity and 
homocysteine (lactonase activity is exerted on oxidized phospholipids and 
homocysteine-thiolactone) levels in patients with Alzheimer disease (161). 
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Several studies have addressed the association between PON1 
polymorphism and Alzheimer´s disease. Nevertheless, there are controversial 
observations with respect to this subject. Wingo et al. observed no 
association between both PON1192 and PON155 polymorphisms in African 
Americans or Caucasians (162). However, another study from China showed 
that PON1192 polymorphism is associated with Alzheimer´s disease in 1000 
subjects (cases and controls) (163). 

A recent meta-analysis conducted in China showed that there was no 
significant association between both polymorphisms and the disease (164). 

On the other side, Parkinson´s disease is a neurodegenerative disorder. It is 
related to with the progressive degeneration of the dopamine producing 
neurons in the substantia nigra of the midbrain. The etiology of the disease is 
not well understood, and interplay of genetic susceptibility with 
environmental factors is suspected (165).  

Organophosphate exposure has been recognized as a risk factor for 
Parkinson´s disease in some epidemiologic studies (166, 167). Multiple 
studies have investigated PON1 as a potential candidate gene for Parkinson´s 
disease risk, but the direct evidence from genetic association studies remains 
controversial.  

A recent meta-analysis of twelve studies (nine involved Caucasians and three 
involved Asians) suggested that the PON155 and PON1192 polymorphisms had 
no association for Parkinson´s disease (168). Conversely, there is existent 
solid evidence suggesting that there is a correlation between the presence of 
certain genotypes and the development of the disease under toxic 
environment (162, 169, 170). 

4. The role of obesity in non-communicable
diseases.

The World Health Organization has considered obesity as the “epidemics of 
the twenty-first century”.  

The worldwide prevalence of obesity more than doubled between 1980 and 
2014. Currently, 42 million children under the age of 5 were overweight or 
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obese. In 2014, more than 1.9 billion adults were overweight and, of these, 
over 600 million were obese. Overweight and obesity are linked to more 
deaths worldwide than underweight. 

Obesity is considered as an important risk factor for the development of 
atherosclerosis, CVDs, type 2 diabetes mellitus, cancer, non-alcoholic fatty 
liver disease (NAFLD) and other age-related diseases (171).  

One of the consequences to overweight or obesity is the alteration of ER 
homeostasis and its correct functionality, triggering a state known ER stress. 
The mechanism by which the cell tries to restore the cellular homeostasis is 
known as unfolded protein response (UPR). The main role of this cellular 
response is to restore the normal functioning of the ER, using several 
strategies. However, if this is insufficient to alleviate the stress, the UPR 
leads to cell death. ER dysfunction, chronic inflammation, and the 
consequent UPR play significant roles in the pathogenesis of induced 
metabolic disturbances. Nutritional excess is commonly stored in the adipose 
tissue, but its capacity is limited. When this happens, adipocytes exhibit signs 
of stress that are linked to metabolic dysfunction and disease (172).  
Moreover, PON2 plays an important role in mitochondrial oxidative stress 
and ER stress (77). Several studies showed that PON2 is located inside the 
membranes of ER (82, 83). PON2 expression is induced at both the promoter 
and protein levels by ER stress inhibiting apoptosis. Moreover, PON2 
protects against ER stress by regulating calcium homeostasis (83, 84). 
Therefore, PON2 is an important endogenous defense mechanism against 
oxidative stress and UPR-induced cell death. 

On the other side, the fast growing prevalence of obesity in both children 
and adults also triggers an increase in NAFLD, accepted worldwide as the 
most common cause of chronic liver disease (173, 174).  

In addition, NAFLD is associated with insulin resistance and other metabolic 
risk factors (diabetes mellitus, dyslipidemia, central abdominal obesity and 
CVD). Its prevalence also increases with the age and it is influenced by 
genetics.  Other risk factors of this disease are gender, ethnicity, and chronic 
infections (173-175).  

NAFLD (also known as hepatic steatosis) is characterized by the presence of a 
significant quantity of lipid accumulation in the liver parenchyma (affecting 
≥5% of hepatocytes), in the absence of excess alcohol consumption. These 
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hepatic deposits lead to a broad spectrum of liver damage. The hepatic 
steatosis may progress to become non-alcoholic steatohepatitis (NASH), 
characterized by the combination of fat in liver parenchyma with 
inflammation, hepatocyte ballooning and lobular inflammation, and to 
fibrosis and cirrhosis which can result in hepatocellular carcinoma and liver 
failure (Figure 8) (176, 177).   

Figure 8. Disease spectrum of non-alcoholic fatty liver disease. A) Overview of NAFLD 
progression. The deposits of fat in hepatocytes produces steatosis. Association of steatosis 
and inflammation, cell death, and fibrosis is known as NASH, which can lead to cirrhosis. B) 
Histological sections of normal liver, steatosis, NASH, and cirrhosis. The Masson trichrome 
stain shows the collagen fibers in blue. Portal triad and central vein are represented such as 
PT and CV, respectively. Adapted from Cohen et al. (176). 
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The liver is a metabolic organ that performs important biochemical functions 
essential for metabolic homeostasis and it is one of the principal regulators 
of glucose and lipid metabolism. In the case of NAFLD, several disorders can 
be found in the liver´s capacity to process lipids and this has been associated 
to multifactorial alterations in diet, genetics, hormone regulation, adipose 
tissue, the immune system and gut microbiota. 

The quantity of lipids existing in hepatocytes represents a multifaceted 
interaction between: a) uptake of circulating plasma triglycerides or free 
fatty acids (coming from lipolysis in adipose tissue), b) de novo lipogenesis in 
the liver, c) fatty acid oxidation and d) fatty acid exportation within very low 
density lipoproteins (VLDL) (175, 178-180).  

The intrahepatic accumulation of fatty acids in the liver is a source of 
inflammation and oxidative stress, which may be responsible for the 
progression from NAFLD to NASH and may predispose to further severe 
lesions. Several enzymatic antioxidant mechanisms protect the liver from 
oxidative injury. One of them is PON1, through its protective role against 
oxidative stress. In addition, the liver plays a key role in the synthesis of 
serum PON1 (40, 181-183). Investigations from Ferré et al. (184) showed a 
reduced microsomal activity of PON1 and an increase of lipid peroxidation in 
rats with CCl4-induced cirrhosis. Moreover, they studied the effect of zinc 
dietary supplementation, which is a metal that possesses antioxidant and 
antifibrogenetic properties and they observed a normalization of lipid 
peroxidation and an enhance of PON1 activity in rats treated with zinc 
dietary supplementation to respect to control rats.  

Initial studies had observed a significant reduction in the serum arylesterase 
activity of PON1 in patients with liver cirrhosis (185-187). These reports were 
confirmed by Ferré et al. (181, 188). They analyzed the PON1 activity in 
patients with various degrees of chronic liver damage and, their studies 
showed a significant diminution of serum PON1 activity in patients with 
chronic hepatitis, and an even greater diminution in cirrhotic patients, 
compared to a control group. 

On the other side, NAFLD is usually an asymptomatic disease. The tests for 
liver dysfunction are insufficiently sensitive for a reliable indication of 
absence or presence of liver disease, and it is often diagnosed fortuitously 
following a routine blood tests or an imaging study done for other reasons.  
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Currently, liver biopsy still represents the gold standard for the diagnosis of 
NAFLD. However, some doctors and patients are indisposed to carry out this 
invasive method. In addition to the sampling error, diagnosis is dependent 
on the experience and subjectivity of the pathologist and its cost and 
morbidity contributes to the search for additional modalities of diagnosis and 
staging of the disease. In the last decade, many non-invasive methods have 
been developed to decrease the number of liver biopsies and to overcome 
their problems (189, 190). 

A growing number of potential biomarkers have been proposed for the 
diagnosis of NAFLD. Some studies reported that the measurement of serum 
PON1 activity may add valuable information in the assessment of the extent 
of liver damage, which may obviate the need for biopsy material for 
histological assessment. Serum PON1 activity has a great diagnostic accuracy 
when differentiating patients with liver disease from control subjects and, 
when added to a standard battery of liver functions testes, increases the 
overall sensitivity without damaging the specificity (69, 181, 191).  

5. Animal models in scientific research

Animal research is imperative to understand the pathophysiology of human 
diseases, contributing to the development of effective medical treatments. 

Research animals share many characteristics with humans such as being 
complex living systems, with striking similarity in physiology, anatomy, a 
genome that is over 95% similar to people, and vulnerability to the same 
health problems.  

The cost, space, and time required to perform research are optimized using 
mice due to their short generation time and overall lifespan, as well as their 
small size (192). 

In addition, our ability to directly manipulate its genome provides an 
incredible powerful tool to model specific diseases. Depending on the target 
in question, there are a number of models that can be applied. Perhaps, this 
is the most important advantage to use mice for biomedical research (193). 
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During the last 20 years, scientists developed techniques that allowed them 
to target genes within the mouse genome. Mice with an inactivated gene 
(knockout mice) are a resource to understand the genetic basis of different 
metabolic diseases such as atherosclerosis, obesity and fatty liver, among 
others. 

With these animal studies scientists are able to expand their ability to 
accurately develop models of disease to directly test their theories and novel 
therapeutic approaches.  
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Hypothesis 

Non-communicable diseases (NCD) share common molecular mechanisms 
including oxidative stress, inflammation and metabolic alterations. Chronic 
inflammation is linked to oxidation, anti-inflammatory cascades are 
associated to reduced oxidation, increased oxidative stress produces 
inflammation, and redox balance inhibits the inflammatory cellular response. 
PON1 is an important enzyme in the defense of the organism against 
oxidative stress. We hypothesize that PON1 deficiency is associated to severe 
metabolic disturbances that may be related to inflammation and the 
comorbidities of some NCD, such as NAFLD and atherosclerosis. 

Aims 

• To study the metabolic and histological effects of PON1 deficiency in
the liver of mice fed a high-fat and high-cholesterol diet.

• To investigate the influence of PON1 on metabolic alterations when
oxidized LDL is incubated with endothelial cells.

• To evaluate whether metformin elicits toxic effects in the livers of
PON1 deficient mice fed a standard chow diet or a high-fat diet.
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STUDY 1 

Paraoxonase-1 Deficiency is Associated with Severe Liver 
Steatosis in Mice Fed a High-fat High-cholesterol Diet: A 

Metabolomic Approach 

J Proteome Res 2013; 12(4):1946-55 

UNIVERSITAT ROVIRA I VIRGILI 
INFLUENCE OF PARAOXONASE-1 DEFICIENCY ON METABOLIC ALTERATIONS AND INFLAMMATION 
Anabel  Garcia  Heredia 
 



UNIVERSITAT ROVIRA I VIRGILI 
INFLUENCE OF PARAOXONASE-1 DEFICIENCY ON METABOLIC ALTERATIONS AND INFLAMMATION 
Anabel  Garcia  Heredia 
 



Abstract 

Oxidative stress is a determinant of liver steatosis and the progression to 
more severe forms of disease. The present study investigated the effect of 
paraoxonase-1 (PON1) deficiency on histological alterations and hepatic 
metabolism in mice fed a high-fat high-cholesterol diet. We performed non-
targeted metabolomics on liver tissues from 8 male PON1-deficient mice and 
8 wild-type animals fed a high-fat, high-cholesterol diet for 22 weeks. We 
also measured 8-oxo-20-deoxyguanosine, reduced and oxidized glutathione, 
malondialdehyde, 8-isoprostanes and protein carbonyl concentrations. 
Results indicated lipid droplets in 14.5% of the hepatocytes of wild-type mice 
and in 83.3% of the PON1-deficient animals (P < 0.001). The metabolomic 
assay included 322 biochemical compounds, 169 of which were significantly 
decreased and 16 increased in PON1-deficient mice. There were significant 
increases in lipid peroxide concentrations and oxidative stress markers. We 
also found decreased glycolysis and the Krebs cycle. The urea cycle was 
decreased, and the pyrimidine cycle had a significant increase in orotate. The 
pathways of triglyceride and phospholipid synthesis were significantly 
increased. We conclude that PON1 deficiency is associated with oxidative 
stress and metabolic alterations leading to steatosis in the livers of mice 
receiving a high-fat high-cholesterol diet.  

Introduction 

Paraoxonase-1 (PON1) is an enzyme synthesized mainly by the liver, and 
found in the circulation bound to high-density lipoproteins (1,2). The 
original function attributed to PON1 was that of a lactonase; lipophylic 
lactones constituting its primary substrates (3). PON1 also degrades 
oxidized phospholipids and, as such, plays a role in the organism’s 
antioxidant system (2). Alterations in circulating PON1 levels are associated 
with a variety of diseases involving oxidative stress (2). 
Hepatic steatosis represents the most common form of liver disease in 
Western societies (4). In addition to being a precursor of fibrosis, cirrhosis, 
and hepatoma, hepatic steatosis is linked to diabetes, obesity, and 
cardiovascular disease (5). It is also an important feature of the metabolic 
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syndrome (6). Oxidative stress plays a determinant role in the onset of 
steatosis and its progression to more severe forms of liver disease (7). Also, it 
plays an important role in the development of inflammation, (8) and 
fibrogenesis (9). 

Since oxidative stress influences the changes leading to fatty liver and 
cirrhosis and, since PON1 exerts a protective effect against oxidative stress, it 
would be logical to infer an association between this enzyme and liver-
function impairment. We had observed, in rats with experimental fibrosis, 
decreased hepatic PON1 activity related to enhanced lipid peroxidation and 
liver damage (10). Moreover, serum PON1 activity was found to be 
decreased in patients with chronic hepatitis or cirrhosis, and the magnitude 
of the alteration was related to the extent of liver damage (11, 12). Evidence 
also indicated that PON1 over-expression provided strong protection against 
the development of experimental liver disease (13).  

Despite these potentially important pointers, there is a dearth of 
experimental data on the biochemical mechanisms underlying the putative 
protective role of PON1 in liver disease. The present study sought to 
investigate the effect of PON1 deficiency in the livers of mice fed a high-fat 
high-cholesterol diet.  

Materials and Methods 

1.1. Experimental animals and dietary intervention 

Male PON1-deficient animals of the C57BL/6J genetic background (14) were 
the progeny of mice provided by the Division of Cardiology of the University 
of California in Los Angeles. Wild-type animals were from the C57BL/6J strain 
(Charles River Labs., Wilmington, MA, USA). At 10 weeks of age, eight mice of 
each strain were fed a high-fat high-cholesterol diet (w/w 20% fat and 1.00% 
cholesterol; Harlan, Barcelona, Spain). At 32 weeks of age, animals were 
sacrificed after an overnight fast. Livers were removed and stored at −80 °C 
until standard analyses of oxidative stress markers, or metabolomics 
analyses were performed. A portion of liver was fixed for 24 h in 10% 
neutral-buffered formalin for histological evaluation. Wild-type (n = 8) and 
PON1-deficient mice (n = 8) fed with a standard mouse chow (Charles River 
Labs.) were used as controls.  All procedures followed those set by the Ethics 
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Committee on Animal Experimentation of the Faculty of Medicine of Reus 
which, in turn, reflected the Helsinki requirements.  

Metabolomic analyses of liver tissue 

The metabolomics platform employed in the present study has been 
described in detail (15). Briefly, small-molecule metabolites from slivers of 
liver tissue were extracted with methanol. The resulting extract was divided 
into aliquots for analysis by ultra-high performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS; separately under positive as well 
as negative mode) and gas chromatography-mass spectrometry (GC-MS). 
Metabolites were identified relative to ion data of a reference library of 
approximately 2,800 standard chemical entries that included retention 
times, mass (m/z), and MS or MS/MS spectra. Results of metabolomic 
measurements are expressed as the means of areas under the peaks of the 
PON1-deficient mice divided by the corresponding peaks of the wild-type 
mice.   

Standard biochemical analyses of oxidative stress markers 

Hepatic concentrations of malondialdehyde (MDA), oxidized and reduced 
glutathione (GSSG and GSH, respectively), and 8-oxo-20-deoxyguanosine (8-
oxo-dG) were measured by HPLC, as previously described (16-18). Tissue 
levels of 8-isoprostanes and protein carbonyls were determined using 
commercial ELISA assays (Cayman Chemical Co., Ann Arbor, MI, USA).  

Histological analyses 

Liver sections of 2 μm thickness were stained with hematoxylin and eosin to 
evaluate histological alterations. The degree of steatosis was evaluated by 
image analysis software (AnalySISTM image software system, Soft Imaging 
System, Munster, Germany) together with a semi-quantitative score 
reflecting the percentage of hepatocytes containing lipid droplets. The scores 
were arbitrarily dichotomized as 1: <33%; 2: 33-66%; 3: >66% (19). Monocyte 
chemoattractant protein-1 (MCP-1) expression as a marker of inflammation 
was measured by immunohistochemistry using specific antibodies (Santa 
Cruz Biotechnology Inc. Santa Cruz, CA, USA). 4-hydroxy-2-nonenal (4-HNE) 
protein adducts as an index of lipid peroxidation were analyzed with a 
specific antibody purchased from the Japan Institute for the Control of 
Ageing (Shizuoka, Japan). All immunohistochemical methods had negative 
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controls which were treated similarly to test samples, but with the primary 
antibody omitted from the incubations 

Statistical analyses 

Differences between any two groups were assessed with the Mann-Whitney 
U test. Spearman correlation coefficients were used to evaluate the degree 
of association between variables. Welch’s t-test for group comparisons was 
used for metabolomic analyses. Statistical software employed was either the 
program “R” http://cran.r-project.org/ (for metabolomic analyses) or the 
SPSS 18.0 package (standard biochemical analyses).    

Results 

Histological analyses 

Histological examination showed a marked steatosis in the liver tissue of 
PON1-deficient mice fed with a high-fat high-cholesterol diet (Figure 1 A); 
the steatosis score being significantly increased (p < 0.001) in these animals 
compared to the wild-type mice (Figure 1 B). Lipid droplets were present in 
14.5% (on average) of the hepatocytes of wild-type mice and in 83.3% of the 
PON1-deficient animals. Immunohistochemical analyses showed an 
increased expression of 4-HNE and MCP-1 (markers of oxidative stress and 
inflammation, respectively) in PON1-deficient mice, compared to their wild-
type counterparts (Figure 1 C to F). On the contrary, PON1-deficient mice fed 
with a standard mice diet did not show any evidence of  histological hepatic 
alterations, increased inflammation or oxidative stress compared to wild 
type animals (Figure 2) and, for this reason, the metabolomic and 
biochemical study was only continued in animals fed with a high-fat high-
cholesterol diet.  
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Figure 1. Histological analyses of liver tissue sections of PON1-deficient mice (right panels) and 
wild-type animals (left panels) fed with a high-fat high-cholesterol diet. A and B: Hematoxylin-
eosin. C and D: 4-OH-nonenal immunohistochemistry. E and F: MCP-1 immunohistochemistry. 
The insert in B is the steatosis score measurement in both types of mice. LD: lipid droplets. 
The arrows in F show positive MCP-1 immunostaining around l ipid droplets. 
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Figure 2. Histological analyses of liver tissue sections of PON1-deficient mice (right panels) and 
wild-type animals (left panels) fed with a standard mouse chow. A and B: Hematoxylin-eosin. 
C and D: 4-OH-nonenal immunohistochemistry. E and F: MCP-1 immunohistochemistry. 

Metabolomic profiling 

Results of the global metabolomic analyses, including an exhaustive list of 
the measured metabolites, unadjusted data, and heat map, are shown in 
Supplementary Table 1. We analyzed 322 biochemical compounds and, 
relative to the wild-type animals, 169 were significantly decreased and 16 
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were increased in PON1-deficient mice. The main findings are highlighted 
below. 

Glutathione metabolism. GSH reduces peroxides and free radicals in a non-
enzymatic process, to produce GSSG. Normally, GSH levels are modulated to 
meet oxidative demands by regulated rates of synthesis as well as significant 
recycling via the gamma-glutamyl cycle. Liver tissue PON1(-/-) showed 
significant GSH and GSSG depletion (Figure 3). GSSG levels decreased 
moderately (to approximately 80% of control mice values) while hepatic GSH 
content showed a considerable depletion (to approximately 27% of control 
mice values). As such, the ratio of GSSG/GSH was increased in PON1-
deficient liver tissue; strongly indicative of exposure to oxidative stress. We 
also observed significantly lower levels of GSH precursors, and recycling 
pathway metabolites, in PON1-deficient mice. Methionine, an essential 
amino acid, was significantly reduced in the PON1-deficient liver tissue, as 
were most metabolites involved in the biosynthetic pathway between 
methionine and the GSH biosynthetic precursor cysteine. Also affected were 
the metabolites reflecting the alternate pathways of methionine salvage. 
Comparable changes in the parallel metabolic pathway of α-ketobutyrate to 
ophthalmate are in agreement with these precursor-limiting influences 
(Figure 3).  

Figure 3. Alterations in the glutathione pathway in PON1-deficient mice compared to wild-
type animals. The data on the right show the quotients of the areas-under-the-peak of the 
PON1-deficient mice relative to those of the wild-type animals. Decreased and increased 
metabolites that achieve statistical significance are shown in green and red, respectively. 
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Other oxidative stress markers. The hepatic concentrations of α-tocopherol 
and ascorbate (and their biosynthetic precursor in rodents, gulono-1,4-
lactone) were significantly lower in PON1-deficient mice. Significant 
increases in levels of 13-hydroxy-octadecadienoate (13-HODE) and 9-
hydroxy-octadecadienoate (9-HODE) are indicators of elevated lipid 
peroxidation, and provide evidence of an oxidizing environment in liver 
tissue with PON1 deficiency. Likewise, an elevated level of the oxidized 
amino acid methionine sulfoxide provides additional support for this concept 
(Supplementary Table 1).  
Alterations in hepatic lipid metabolism. Liver metabolism is assessed here 
following an overnight fast, thus the predominant metabolic activity under 
normal conditions would encompass gluconeogenesis from lactate, glycerol, 
and amino acids to generate glucose for release to the circulation and use of 
fatty acids released from adipose tissue lipid stores for ketogenesis. Glycerol, 
mono- and di-acylglycerol levels showed a significant decrease in PON1-
deficient mice, suggesting decreased triacylglyceride lipolysis or increased 
synthesis (Supplementary Table 1). Free fatty acid levels were altered with 
PON1 deficiency. Seven polyunsaturated fatty acids (PUFA) were decreased, 
while three monounsaturated fatty acids (MUFA) were increased i.e. the 
ratio of PUFA/MUFA was lower in PON1-deficient mice than in wild-type 
animals. In addition, we observed a decrease in carnitine levels. Carnitine is a 
quaternary ammonium compound necessary for the transport of long-chain 
fatty acids into the mitochondria. Carnitine can be diet-derived or 
synthesized from lysine and proline; amino acids that are decreased in PON1-
deficient mice. The overall outcome would be a depressed fatty acid 
oxidation, which is supported by significantly lower levels of the ketone body 
3-hydroxybutyrate. Phospholipid precursors, lysolipid intermediates, and
breakdown products showed complex alterations in livers of PON1-deficient
mice. Lysolipid levels, for example, can reflect relative rates of membrane
remodeling. Levels of multiple lysolipids were reduced by PON1 deficiency,
which indicates relatively reduced membrane remodeling and/or breakdown
under these conditions. Metabolism of bile acids is also reduced, with a
decrease in the levels of squalene, which is the precursor of cholesterol and
bile acid synthesis and which is necessary for the absorption of dietary lipids
and hydrophobic vitamins A, D, E and K.
Glucose metabolism. Glucose metabolism in liver is impacted upon by the
reciprocally regulated pathways of glycolysis and gluconeogenesis. We
observed, in PON1-deficient mice, a significant alteration in intermediates
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that are shared by these opposing glucose metabolism pathways including 
lover levels of 3-phosphoglycerate and phosphoenolpyruvate, but elevated 
fructose 1,6-diphosphate (observed as a isobar with glucose 1,6-diphosphate 
because they are indistinguishable on the metabolomics platform). Together, 
ketogenesis is reduced which is consistent with relatively low acetyl-CoA and 
thus relatively low activation of pyuvate carboxylase (gluconeogenesis) and 
the fructose 1,6-diphosphate is elevated, which is an allosteric activator of 
the enzyme pyruvate kinase (glycolysis). These findings indicate aberrant 
regulation of liver glucose metabolism in PON1-deficient mice in the fasted 
condition. Low levels of the 3-carbon intermediates as well as lactate suggest 
that despite high fructose 1,6-diphosphate, glycolysis is not activated. 
Moreover, these changes were accompanied by a reduction in Krebs cycle 
activity, as indicated by significantly lower levels of several intermediates. In 
addition, increased levels of several intermediates in the pentose phosphate 
pathway (PPP) including ribulose 5-phosphate/xylulose 5-phosphate 
(isobars) and ribose 5-phosphate were observed in PON1-deficient mice 
relative to wild-type, which suggest a shift from glycolysis to the PPP. 
Because the early steps in the PPP are important for generating reducing 
equivalents in the form of NADPH, this elevation may reflect higher 
requirements to regenerate reduced glutathione. Overall, livers from PON1-
deficient mice showed an impaired ability to obtain energy from sugar 
(Figure 4) or fat.   
Amino acid and nucleotide metabolism. Amino acid levels were significantly 
lower in PON1-deficient liver tissue (Figure 4). The values reflect the 
combined influence of uptake from the circulation, de novo synthesis, 
protein synthesis and degradation rates, as well as amino acid catabolism. 
The urea cycle, a key aspect of the nitrogen biochemical pathway, can serve 
as a marker of amino acid catabolic rates. Intermediates in this cycle were 
also reduced in livers of PON1-deficient mice suggesting that the low amino 
acid levels are present even in the circumstance of reduced catabolism. 
Although liver can extract amino acids from the circulation via specific amino 
acid transporters, one hypothesis to explain this impact of PON1 deficiency 
on amino acid levels in the liver is that the severe depletion of glutathione, 
as a result of high oxidative demands, reduces the γ-glutamyl cycle activity. 
This not only serves to recycle glutathione but also to transfer amino acids 
across the plasma membrane.  
With regard to nucleotide metabolism, we observed significant increases in 
orotate and inosine in PON1-deficient mice, relative to their wild-type 
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counterparts. Orotate is known to accumulate under conditions in which 
ornithine, as a substrate for ornithine transcarbamoylase, is limited and, as 
such, this suggests that the two impacts of PON1 deficiency in the liver may 
be related (Supplementary Table 1). 

Figure 4. Alterations in the glycolytic pathway, Krebs cycle, and amino acid pathways in PON1-
deficient mice compared to wild-type animals. The data on the right show the quotient of the 
areas-under-the-peak of the PON1-deficient mice relative to those of the wild-type animals. 
Decreased and increased metabolites that achieve statistical significance are shown in green 
and red, respectively. 

Cofactors and vitamins. Coenzyme A is synthesized via a multi-step, 
ATP-dependent pathway from the vitamin pantothenate. This precursor was 
significantly reduced in the livers of PON1-deficient mice. Similar changes 
were also observed for several other vitamins and cofactors, including 
several B-vitamins and the cofactors flavin adenine dinucleotide and flavin 
mononucleotide (Supplementary Table 1). Cofactor and vitamin limiting 
levels in the PON1-deficient animals are likely to have profound impacts on 
multiple biochemical pathways. 
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Standard biochemical analysis of oxidative stress markers 

Metabolomic analyses of oxidative stress markers were confirmed by 
standard biochemical methods. We observed that PON1-deficient mice had 
significant increases in the hepatic content of MDA, GSSG and 8-isoprostanes 
(indices of lipid peroxidation), protein carbonyls (indices of protein 
oxidation), and 8-oxo-dG (an index of DNA oxidation) (Figure 5). 

Figure 5. Results of oxidative stress markers in PON1-deficient mice compared to wild-type 
animals. 
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Discussion 

Non-alcoholic fatty liver disease (NAFLD) is defined, in humans, as the 
accumulation of triglycerides within hepatocytes that exceeds 5% of liver 
weight. This alteration is gradually becoming one of the most common 
observations in liver diseases, and is identified using imaging techniques in 
about 30% of adults (20). Excessive food intake is perceived as one of the 
main causes of NAFLD (21). Recent studies show that a high cholesterol 
intake is a major stimulant in the development of NAFLD (22). The present 
study shows dramatic metabolic and histological alterations in the livers of 
PON1-deficient mice fed a high-fat high-cholesterol diet, suggesting that this 
enzyme plays a major role in the protection against diet-induced fatty liver. 
Enhanced hepatic oxidative stress is demonstrated in our PON1-deficient 
mice by the increased concentrations of several biochemical markers of lipid, 
protein and DNA oxidation, and by the increased GSSG/GSH ratio. A notable 
consequence of oxidative stress is the increased concentration of the 
peroxidized lipids 9-HODE and 13-HODE. These compounds inhibit the 
incorporation of triglycerides into lipoproteins (23) and, as such, may 
contribute to the development of steatosis. They also stimulate extracellular 
matrix synthesis, (24) and thus provide a link between benign steatosis and 
fibrosis.  

Several studies indicate a strong association between oxidative stress and 
lipid alterations in steatosis and steatohepatitis (25). The present study 
showed PON1 deficiency to be associated with decreased carnitine levels 
which, in turn, may be explained by altered amino acid metabolism. 
Carnitine is a key factor in fatty acid oxidation i.e. the transport of free fatty 
acids into the mitochondrial matrix is regulated by the carnitine-dependent 
enzyme shuttle (26). A decreased hepatic carnitine concentration could 
result in inhibition of free fatty acid oxidation, and this derangement is 
associated with increased fat content (27). Our model may differ, perhaps, 
from human steatosis, since it is not clearly evident whether downregulation 
of fatty acid oxidation is involved in the onset of this derangement (22) 
Kotronen et al. (27) had not found any alterations in hepatic fatty acid 
oxidation in patients with NAFLD, both in the basal state and after 
exogenously-induced hyperinsulinemia.  
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Data are scarce regarding the pattern of hepatic fatty acid composition in 
NAFLD. We observed decreased concentrations of most free fatty acids in 
PON1-deficient mice, and a decreased PUFA/MUFA ratio. These results are 
similar to those of De Almeida et al. (28) showing that patients with 
steatohepatitis had higher MUFA concentrations than control subjects. In 
addition, Wang et al. (29) observed a decrease in PUFA and in PUFA and 
saturated fatty acids in mice receiving a high-fat, high-cholesterol diet 
supplemented with 0.5% bile. PUFA are known to play an important role in 
stimulating the expression of PPARα, and they play an anti-inflammatory and 
hepatoprotective role as well (30). Hepatic lipid metabolism is closely linked 
to glucose metabolism. Our results show that PON1 deficiency is associated 
with a general decrease in the glycolytic and Krebs cycle pathways, indicating 
a decreased ability to obtain energy. The mechanisms underlying these 
alterations cannot be fully ascertained from the present study, but we also 
observed significant decreases in the hepatic concentrations of cofactors 
that play key roles in these pathways. We also observed increased 
concentrations of ribose 5-phosphate, ribulose 5-phosphate/xylulose 5-
phosphate (isobars) and xylonate. These data suggest a shift of glucose 
metabolism from the glycolytic to the pentose phosphate pathway. This 
concept is supported by the observed increased concentrations of mannose 
and fructose. Alterations in glycolysis and Krebs cycle may influence lipid 
metabolism in several ways. For example, decreased Krebs cycle may 
decrease acetyl-CoA carboxylase and, subsequently, fatty acid synthase (FAS) 
leading to an inhibition of fatty acid synthesis. This mechanism would explain 
the general decrease in fatty acid concentrations observed in our study. 
However, this effect could be partially counteracted by the increased 
xylulose 5-phosphate, which stimulates the carbohydrate responsive 
element binding protein, and stimulates FAS activity (31). 

Hepatic amino acid concentrations were notably decreased in PON1-
deficient mice, with the exceptions of methionine sulfoxide and taurine, 
which were increased. Methionine sulfoxide is the oxidized form of 
methionine and cannot be utilized by tissues. An increase in the 
concentration of this metabolite could result in a decreased methionine 
availability. Methionine, as a key methyl group donor for choline 
biosynthesis, is a precursor for phospholipid synthesis. Hence, a decrease 
would imply impairment in the synthesis and secretion of very-low density 
lipoproteins which, in turn, would contribute to the development of steatosis 
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(32). Indeed, the administration of a choline- and methionine-deficient diet 
to mice is widely employed as an experimental model of stetatohepatitis 
(33). Taurine plays an important role in several metabolic functions such as 
detoxification, membrane stabilization, and antioxidation, suggesting that 
the observed increase is a compensatory defense mechanism. This 
hypothesis is supported by data from Chang et al.(34) who observed that the 
administration of taurine produced a decrease in the hepatic accumulation 
of triglycerides in hamsters receiving a high-fat diet. They also observed that 
taurine increased the cytochrome 7A1 levels, which intervenes in the 
catabolism and secretion of cholesterol. Further, Chen et al. (35) reported 
that the administration of taurine protected against the development of 
steatosis in rats fed ethanol, by reducing oxidative stress and downregulating 
the expression of adiponectin and tumor necrosis factor.  

Our results identified intense MCP-1 immunostaining around lipid droplets in 
hepatic tissue sections of PON1-deficient mice, which were not observed in 
wild-type animals. We previously reported similar findings (including high 
plasma MCP-1 concentrations) in low-density lipoprotein receptor-deficient 
mice fed a high-fat high-cholesterol diet (36). In both models, MCP-1 hepatic 
expression is detected around lipid droplets, suggesting a close link between 
steatosis and the inflammatory response. Taken together, these data suggest 
that the liver is a significant contributor to the organism’s MCP-1 pool. This is 
a novel concept, since it is generally accepted that the hepatic inflammation 
in NAFLD and NASH is related to adipose tissue MCP-1 overexpression which 
would indirectly influence hepatic inflammation (21). We suggest that, on 
the contrary, it is the hepatic MCP-1 synthesis that plays the significant role 
in this process. The finding that PON1 deficiency is associated with increased 
MCP-1 expression is not surprising since, as we had demonstrated several 
years ago, PON1 inhibits MCP-1 production in endothelial cells incubated 
with oxidized low density lipoproteins (37).  

Finally, the present study provides new data on the relationships between 
steatosis and hepatocellular carcinoma (HCC). This type of cancer can occur 
in livers without underlying cirrhosis (38,39). The present study has identified 
two pro-oncogenic molecules: orotate and 8-oxo-dG, the concentrations of 
which are increased in the livers of PON1-deficient mice. Hepatic 
concentrations of orotate in PON1-deficient mice are 2-fold that in control 
animals. This compound is a precursor of pyrimidine nucleotides, and its 
excess has been shown to alter DNA synthesis (40) and to promote liver 
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carcinogenesis (40,41). Conversely, 8-oxo-dG-adducts are produced as a 
consequence of oxidative DNA damage (18); the adducts being mutagenic 
and the cause of G-to-T transversions (42). Concentrations of 8-oxo-dG have 
been reported to be notably increased in the livers of rats treated with the 
powerful hepatocarcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (43). The 
association between NAFLD and HCC represents a growing area of study, 
albeit the specific sequence of events leading to HCC in the setting of NAFLD 
is still unresolved. We present novel data indicating that steatosis induced by 
PON1 deficiency is associated with increased concentrations of at least two 
pro-oncogenic molecules which could explain, at least in part, the increased 
susceptibility of fatty liver towards cancer. Our study also suggests that the 
measurement of orotate and 8-oxo-dG could be useful biomarkers in 
estimating the probability of HCC development in patients with NAFLD. 
However, we had not specifically investigated HCC in the present work, and 
further studies are warranted in appropriate patients to explore this 
hypothesis.  

Nutritional investigations in humans have suggested that high-fat high-
cholesterol diets are important determinants in NAFLD, independently of the 
concomitant development of insulin resistance or metabolic syndrome (22). 
High cholesterol intake and increased serum cholesterol concentrations have 
been reported to be among the strongest risk factors in the development of 
NAFLD (44,45). Cholesterol overload can upregulate LXRα-SREBP-1c pathway 
in the liver, and activate fatty acid synthesis which, in turn, would lead to 
steatosis (22). Previous studies have shown that NAFLD is associated with 
oxidative stress and low serum and hepatic PON1 levels in patients and in 
rats with fatty liver induced by a methionine-choline-deficient diet (46-48). 
The finding of reduced hepatic PON1 activity in rats with experimental 
steatosis is interesting and, together with the present investigation, suggest 
that intracellular PON1 is more important than circulating PON1 in protecting 
liver tissue from dietary-induced changes leading to NAFLD.  

A caveat to the present results is that, since NAFLD is not a monogenic 
disorder in humans, studies in animals with merely a single gene deletion 
may not mimic the etiology of the human disease at the molecular level. In 
addition, the small number of animals in the present study would suggest 
that our findings be considered preliminary. However, the phenotypic 
alterations observed in our experimental model are essentially consistent 
with the current knowledge of human NAFLD.  
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Conclusion 

The main goal of the present investigation has been to demonstrate that 
PON1 plays a protective role against hepatic derangements, secondary to fat 
and cholesterol overnutrition. We highlight, as well, some biochemical 
pathways that could explain the observed relationships between the 
“benign” steatosis and more severe forms of liver disease, such as fibrosis or 
HCC. Our findings could have considerable clinical relevance since decreased 
serum and liver PON1 activity is an early alteration in patients with liver 
impairment (10-13). 
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Abstract 

We studied the influence of PON1 on metabolic alterations induced by 
oxidized LDL when incubated with endothelial cells. HUVEC cells were 
incubated with native LDL, oxidized LDL, oxidized LDL plus HDL from wild 
type mice, and oxidized LDL plus HDL from PON1-deficient mice. Results 
showed alterations in carbohydrate and phospholipid metabolism and 
increased apoptosis in cells incubated with oxidized LDL. These changes were 
partially prevented by wild type mouse HDL, but the effects were less 
effective with HDL from PON1-deficient mice. Our results suggest that PON1 
may play a significant role in endothelial cell survival by protecting cells from 
alterations in the respiratory chain induced by oxidized LDL. These results 
extend current knowledge on the protective role of HDL and PON1 against 
oxidation and apoptosis in endothelial cells.  

Introduction 

Atherosclerosis, one of the major causes of morbidity and mortality in the 
Western World involves complex interactions among endothelial cells of the 
arterial wall, blood cells, and circulating lipoproteins (1). Oxidative stress, 
which is mainly derived from mitochondrial dysfunction, decreases nitrous 
oxide (NO) synthesis, up-regulates the secretion of adhesion molecules and 
inflammatory cytokines, and is responsible for the oxidation of low-density 
lipoproteins (LDL) (2, 3). These events play a key role in the pathogenesis of 
atherosclerosis (4, 5). 

Paraoxonase-1 (PON1) is an enzyme found in the circulation associated with 
high-density lipoproteins (HDL) (6, 7). The original function attributed to 
PON1 was that of a lactonase, and lipophylic lactones constitute its primary 
substrates (8). PON1 also degrades oxidized phospholipids and, as such, plays 
a role in an organism’s antioxidant system (7). In the atherosclerosis process, 
PON1 accumulates in the artery wall (9), and PON1(-/-) mice have been shown 
to have greater levels of oxidized LDL and larger atheromatous plaques when 
fed a pro-atherogenic diet (10). PON1 also inhibits the production of the pro-  

_________________________________________Study 2

UNIVERSITAT ROVIRA I VIRGILI 
INFLUENCE OF PARAOXONASE-1 DEFICIENCY ON METABOLIC ALTERATIONS AND INFLAMMATION 
Anabel  Garcia  Heredia 
 



inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1), 
induced by oxidized LDL in endothelial cells (11).  

Despite its potential clinical and biochemical relevance, there is a paucity of 
studies investigating the influence of PON1 on metabolic alterations when 
oxidized LDL is incubated with endothelial cells. We reasoned that 
metabolomics might be a useful tool to evaluate the effects of this enzyme. 
The study was complemented with an evaluation of oxidative stress and 
apoptosis in this cell line.  

Materials and methods 

Experimental design 

We employed primary cultures of human umbilical vein endothelial cells 
(HUVEC), cultured according to the manufacturer’s instructions (Invitrogen, 
Carlsbad, CA, USA). HUVEC were grown in medium 200 supplemented with 
low serum growth, 10 mg/L gentamicin and 0.25 mg/L amphotericin (all 
these reagents were from Invitrogen), and maintained in a humidified 
incubator at 37°C, with 5% CO2. Cells were sub-cultured when 80%-90% 
confluent. In all the experiments, cells were plated in 10 cm Petri dishes at a 
density of 2.5 x 103 cells per dish, and at passage 3. Petri dishes at 70% 
confluence were incubated over 24h with isolated human LDL (50 mg/L), 
oxidized LDL (50 mg/L), oxidized LDL (50 mg/L) + HDL (40 mg/L) from wild 
type mice, oxidized LDL (50 mg/L) + HDL (40 mg/L) from PON1 (-/-) mice, or 
with serum-free media as controls. All incubations were performed in serum-
free media. 

Normal human sera were obtained from healthy individuals participating in a 
population-based study being conducted in our institution. The study was 
approved by the Ethics Committee (Institutional Review Board) of the 
Hospital Universitari Sant Joan de Reus. Sera were pooled and used for 
lipoprotein fractionation and LDL isolation by sequential preparative 
ultracentrifugation (12, 13). Human oxidized LDL was prepared by incubation 
of native LDL with 5 µM CuSO4, as described previously (11). Increased 
thiobarbituric acid-reactive substances levels were detected in LDL after 
oxidation (45 vs. <0.5 mmol/g protein). 

_________________________________________Results

UNIVERSITAT ROVIRA I VIRGILI 
INFLUENCE OF PARAOXONASE-1 DEFICIENCY ON METABOLIC ALTERATIONS AND INFLAMMATION 
Anabel  Garcia  Heredia 
 



Normal mice were from the C57BL/6J strain (Charles River Labs., Wilmington, 
MA, USA), and PON1 (-/-) mice were the progeny of those provided by the 
Division of Cardiology of the University of California in Los Angeles and were 
of a C57BL/6J genetic background (10). Animals were housed under standard 
conditions and given a commercial mouse diet (14% Protein Rodent 
Maintenance diet, Harlan, Barcelona, Spain) in accordance with our 
institutional guidelines. At 16 weeks of age they were sacrificed and 
approximately 30 mL of sera were pooled for HDL isolation (12,13).  

Metabolomics analyses. 

The metabolomics platform employed in the present study has been 
previously described in detail (14). Briefly, small molecule metabolites from 
an equivalent amount of cell cytoplasm homogenates were extracted with 
methanol, and the resulting extract divided into equal fractions for analysis 
by ultra high performance liquid chromatography-tandem mass 
spectrometry (UPLC-MS/MS; separately under positive mode and negative 
mode) and gas chromatography-mass spectrometry (GC-MS). Metabolites 
were identified by comparing the ion data obtained to a reference library of 
~2,800 chemical standard entries. Comparisons included retention times, 
mass (m/z), and MS or MS/MS spectra. Results of metabolomics 
measurements are expressed as the mean quotients between the areas 
under the peak of the different experimental conditions.   

Differences between groups were assessed with Welch’s t-test for group 
comparisons. Statistical analyses were performed with the program “R” 
http://cran.r-project.org/.    

Caspase 9 western blot. 

We analyzed caspase 9 expression in endothelial cell homogenates as a 
marker of apoptosis pathways. The cytoplasmic homogenates were prepared 
with a Precellys 24 homogenizer (Bertin Technologies, Montigny-le-
Bretonneux, France) [15]. Denaturing electrophoresis was performed in 
polyacrylamide gels (4-12%) from Invitrogen (Carlsbad, CA, USA). Transfer 
was performed with the iBlot Gel Transfer Device (Invitrogen). Blotting was 
performed with the ECL Advanced Western Blotting Detection kit (GE 
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Healthcare, Fairfield, CT, USA) using a rabbit anti-caspase 9 antibody at 
1:2000 dilution (Abcam, Cambridge, UK) (13). 

Measurement of apoptosis by flow cytometry. 

Cells (300 µL of cell suspension at approximately 109 cells/L) were stained 
with annexin V conjugated with fluorescein isothiocianate in the presence of 
propidium iodide. This enables the detection of phosphatidylserine on the 
surface of apoptotic cells. We used the annexin-FITC kit (Beckman-Coulter, 
Fullerton, CA, USA) according to the manufacturer’s instructions, in a 
Coulter Epics XL-MLCTM flow cytometer (Beckman-Coulter). 

Measurement of PON1 activities and total peroxide 
concentrations. 

PON1 lactonase activity in the culture’s supernatant was measured as the 
hydrolysis of 5-thiobutyl butyrolactone (TBBL), as described (16). The assay 
reagent contained 1 mmol/L CaCl2, 0.25 mmol/L TBBL and 0.5 mmol/L 5,5’-
dithio-bis-2-nitrobenzoic acid (DTNB) in 0.05 mmol/L Tris-HCl buffer (pH = 
8.0). The change in absorbance was monitored at 412 nm. Activities were 
expressed as U/L (1 U = 1 mmol of TBBL hydrolyzed per minute). The 
concentration of total peroxides in the supernatant was determined by a 
colorimetric enzymatic assay (Immun-Diagnostik, AG, Benshein, Germany). 

Results and Discussion 

PON1 lactonase activity remained relatively low in supernatants of those 
cultures not containing added HDL. PON1 lactonase activity significantly 
increased in those cultures with normal HDL, and returned to low levels in 
those cultures with HDL from PON1(-/-) mice. These results were as expected, 
and provide a quality control of the HDL preparations obtained (Fig. 1A). 
Total peroxide concentrations in the supernatants were maximal in the 
cultures with added oxidized LDL, and showed a significant decrease 
following the addition of normal HDL. This decrease was not as marked 
following the addition of HDL from PON1(-/-) mice (Fig. 1B). 
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Figure 1. PON1 lactonase activity (A) and total peroxide concentrations (B) in the supernatant of the 
HUVEC cell culture (n = 3, for each experiment). Endothelial cells were incubated over 24h with 50 mg/L 
isolated human LDL (L); 50 mg/L oxidized LDL (O); 50 mg/L oxidized LDL + 40 mg/L HDL from wild type 
mice (OH); 50 mg/L oxidized LDL + 40 mg/L HDL from PON1 (-/-) mice (KO); or with serum-free media as 
controls (C). *: P < 0.05; †: P < 0.05, with respect to O; ‡: P < 0.01, with respect to C. 

We analyzed 124 biochemical compounds by non-directed metabolomics, 
corresponding to carbohydrate, lipid, amino acid, and nucleotide 
metabolism, as well as vitamins and xenobiotics. We obtained statistically 
significant variations in 37 metabolites (Table 1). The main findings 
corresponded to carbohydrate and phospholipid metabolism, and are 
summarized in the following sections (below). 

A) B) 
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Table 1.  Heat map of metabolites showing statistically significant differences between groups. 

Pathway Metabolite L/C* O/C* O/L* OH/O* KO/O* K0/OH* 
Glycine, serine, and threonine metabolism Threonine 1.40 0.80 0.57 0.96 1.10 1.16 
Glutamate metabolism N-acetylglutamate 1.14 0.84 0.73 1.10 0.92 0.83 
Phenylalanine and tyrosine metabolism Phenylalanine 1.12 0.63 0.56 1.41 1.19 0.84 

Tyrosine 1.11 0.62 0.56 1.57 1.37 0.87 
Valine, leucine, and isoleucine metabolism Isoleucine 1.36 0.65 0.48 1.57 1.38 0.88 

Leucine 1.09 0.70 0.64 1.25 1.07 0.85 
Valine 1.26 0.72 0.57 1.18 1.08 0.91 

Urea cycle; arginine-, proline-, metabolism Praline 1.18 0.89 0.75 0.92 0.97 1.05 
Gamma-glutamyl peptides Gamma-glutamyl-leucine 0.73 0.87 1.19 1.09 1.48 1.36 
Amino-sugar metabolism Fucose 0.72 0.76 1.05 1.25 1.06 0.85 

Galactose 0.37 0.94 2.58 1.04 0.73 0.70 
Mannose-6-phosphate 0.64 2.21 3.44 1.01 0.87 0.87 
Glucose-6-phosphate 0.33 2.06 6.20 1.22 1.17 0.96 
Fructose-6-phosphate 0.50 2.50 5.01 1.13 0.94 0.83 
2-phosphoglycerate 2.28 0.67 0.29 2.17 1.05 0.48 
3-phosphoglycerate 1.62 0.42 0.26 2.92 1.94 0.67 
1,3-dihydroxyacetone 0.85 0.98 1.15 0.80 0.60 0.75 
Phosphoenolpyruvate 1.06 0.23 0.22 4.66 3.05 0.66 

Nucleotide sugars, pentose metabolism Gluconate 0.43 0.89 2.07 1.06 0.86 0.81 
TCA cycle Fumarate 1.35 0.84 0.62 1.10 1.12 1.02 

Malate 1.31 0.89 0.68 1.21 1.07 0.88 
Oxidative phophorylation Acetyl phosphate 1.00 1.12 1.12 0.84 0.59 0.70 
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Phosphate 0.96 1.45 1.52 0.89 0.70 0.78 
Medium chain fatty acid Laurate (12:0) 0.98 1.15 1.17 0.92 0.74 0.81 
Fatty acid, dicarboxylate Undecanedioate 1.28 1.52 1.19 2.55 0.70 0.28 
Glycerolipid metabolism Ethanolamine 1.00 0.68 0.68 1.28 1.55 1.21 

Choline 1.07 0.84 0.78 1.29 1.25 0.96 
Glycerol 3-phosphate 1.54 0.31 0.20 4.13 2.87 0.69 
Glycerophosphorylcholine 0.60 1.17 1.97 0.80 0.78 0.97 

Purine metabolism, adenine containing Adenosine 3´-monophosphate 2.38 0.73 0.31 1.70 1.09 0.64 
Pyrimidine metabolism, uracil containing Uracil 1.22 0.48 0.40 1.94 1.91 0.99 

Uridine 5´-monophosphate 0.50 1.19 2.38 0.84 0.92 1.10 
Pantothenate and CoA metabolism Pantothenate 0.98 0.87 0.89 1.19 1.13 0.95 
Rivoflavin metabolism Riboflavin (Vitamin B2) 0.68 0.76 1.11 1.15 1.11 0.97 
Benzoate metabolism 4-hydroxy catechol 1.23 1.37 1.11 0.79 0.43 0.54 
Chemicals Glycolate (hydroxyacetate) 1.12 1.55 1.38 0.47 0.77 1.64 

Glycerol 2-phosphate 0.98 0.65 0.67 1.96 1.11 0.57 
Endothelial cells were incubated over 24h with 50 mg/L isolated human LDL (L); 50 mg/L oxidized LDL (O); 50 mg/L oxidized LDL + 40 mg/L HDL from wild type 
mice (OH); 50 mg/L oxidized LDL + 40 mg/L HDL from PON-/-) mice (KO); or with serum-free media as controls (C). Bold italic and italic cells in the Table indicate 
P≤ 0.05. Bold italic indicates that the mean values are significantly higher; italic indicates significantly lower. Bold text indicates 0.05 ˂ P ˂ 0.10. *Results are 
expressed as the mean quotients of the areas under the peak of the different experimental conditions. For example, galactose values are, on average, 2.58 
times higher when endothelial cells are incubated with oxidized LDL than when incubated with native LDL. All measurements were performed in triplicate.             
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Hexose metabolism. 

The addition of LDL to cultured endothelial cells decreased the levels of 
gluconate, galactose, and phosphorylated hexose intermediates. These 
molecules are important entrance intermediates in energy- and biomass-
generating pathways such as glycolysis, pentose phosphate, and protein 
glycosylation. Their decreases suggest that these pathways were activated to 
a greater extent in endothelial cells treated with LDL, compared to control-
treated cells. In contrast, increased levels of gluconate, galactose, and 
phosphorylated hexose intermediates were seen in all cells that were treated 
with oxidized LDL, relative to LDL alone, and regardless of whether HDL was 
also added to the cultures (Fig. 2). 

Figure 2. Variations in the hexose metabolites in HUVEC cell homogenates (n = 3, for each 
experiment). Endothelial cells were incubated over 24h with 50 mg/L isolated human LDL (L); 
50 mg/L oxidized LDL (O); 50 mg/L oxidized LDL + 40 mg/L HDL from wild type mice (OH); 50 
mg/L oxidized LDL + 40 mg/L HDL from PON1 (-/-) mice (KO); or with serum-free media as 
controls (C). *: P < 0.05 with respect to C; †: P < 0.05 with respect to L. 
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Glycolysis and tricarboxylic acid (TCA) cycle. 

Relative to control cultures, the addition of LDL resulted in increased levels 
of 3-phosphoglycerate and 2-phosphoglycerate (which are 3-carbon 
glycolytic intermediates). This same treatment also increased the levels of 
the TCA cycle intermediates (fumarate and malate) relative to control 
cultures. An interpretation of these data is that uptake of LDL by endothelial 
cells results in the generation of acetyl-CoA, which drives flux through the 
TCA cycle. Increased levels of LDL-generated acetyl-CoA may have relieved 
the need for carbohydrate-derived precursors, thereby inhibiting glycolytic 
flux into the TCA cycle and elevating the 3-carbon intermediates.   

By comparison, treatment of endothelial cells with oxidized LDL may have 
induced levels of oxidative stress that were sufficient to impair normal 
energy pathways. For example, in cells treated with oxidized LDL, 6-carbon 
glycolytic intermediates accumulated, whereas the 3-carbon intermediates 
were reduced. This may be due to changes in glyceraldehyde-3-phosphate 
dehydrogenase (GADPH; levels or activity) in response to oxidized LDL, since 
superoxide overproduction inhibits GADPH through a mechanism that 
involves poly (ADP-ribose) polymerase (PARP) activation (16). Likewise, TCA 
cycle intermediates were lower in oxidized LDL-treated cells due, most likely, 
to the attenuated conversion of 6-carbon glycolytic intermediates to 3-
carbon compounds that feed into this cycle through pyruvate and acetyl-
CoA. These changes suggest that energy production through glycolysis is 
impaired, since ATP generation occurs downstream of GADPH activity.  

The addition of normal HDL to oxidized LDL-treated cells partially reverses its 
impact on energy metabolism pathways, since levels of the 3-carbon 
glycolytic intermediates as well as TCA cycle intermediates are more similar 
to levels observed after LDL treatment alone. It is of note that the impact of 
addition of HDL from PON1(-/-) mice on these molecules was intermediate 
between the effects produced by treatment with PON1-containing HDL and 
of no HDL (Fig. 3). This observation is of considerable importance because 
PARP activation and its consequent metabolic changes have been associated 
with endothelial dysfunction in diseases such as atherosclerosis and diabetes 
(17, 18). Indeed, the levels of circulating endothelial cells are increased in 
patients with diabetes mellitus (19), and PON1 has been shown to attenuate 
diabetes development in mice (20, 21). Our results suggest that the 
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beneficial role of PON1 may involve, at least in part, a protection against the 
biochemical changes leading to endothelial dysfunction. 

Figure 3. Variations in the metabolites of the glycolytic pathway and tricarboxylic acid cycle in 
HUVEC cell homogenates (n = 3, for each experiment). Endothelial cells were incubated over 
24h with 50 mg/L isolated human LDL (L); 50 mg/L oxidized LDL (O); 50 mg/L oxidized LDL + 40 
mg/L HDL from wild type mice (OH); 50 mg/L oxidized LDL + 40 mg/L HDL from PON1 (-/-) mice 
(KO); or with serum-free media as controls (C). *: P < 0.05 with respect to L; †: P < 0.05 with 
respect to O; ‡: P < 0.05 with respect to OH. 

Phospholipid metabolism. 

Levels of choline, ethanolamine and glycerol-3-phosphate – key building 
blocks for phospholipids – were similar in endothelial cells following 
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treatment with LDL, when compared to levels in control cells. By comparison, 
oxidized LDL reduced levels of phospholipid precursors and increased the 
levels of at least one phospholipid breakdown product. This could indicate 
that oxidized LDL induces membrane damage, breakdown, or remodeling. As 
was observed for the energy metabolism pathways, co-administration of 
normal HDL to oxidized LDL-treated cells reversed, or partially reversed, 
these deleterious effects. However, the addition of HDL from PON1(-/-) mice 
only generated subtle changes in phospholipid-related compounds, when 
compared to treatment with normal HDL (Fig. 4).   

Figure 4. Variations in phospholipid metabolites in HUVEC cell homogenates (n = 3, for each 
experiment). Endothelial cells were incubated over 24h with 50 mg/L isolated human LDL (L); 
50 mg/L oxidized LDL (O); 50 mg/L oxidized LDL + 40 mg/L HDL from wild type mice (OH); 50 
mg/L oxidized LDL + 40 mg/L HDL from PON1 (-/-) mice (KO); or with serum-free media as 
controls (C). *: P < 0.05 with respect to L; †: P < 0.05 with respect to O; ‡: P < 0.05 with respect 
to OH. 

_________________________________________Study 2

UNIVERSITAT ROVIRA I VIRGILI 
INFLUENCE OF PARAOXONASE-1 DEFICIENCY ON METABOLIC ALTERATIONS AND INFLAMMATION 
Anabel  Garcia  Heredia 
 



Apoptosis. 

The observation of alterations in phospholipids levels and the suggested 
membrane damage channeled us towards investigating the possibility of an 
increased apoptosis in endothelial cells incubated with oxidized LDL, and a 
possible protection by introducing HDL as co-incubation. Hence, we analyzed 
caspase 9 protein expression. The activation of this enzyme is a good 
indicator of apoptosis induction, since caspase 9 plays a determinant role in 
apoptosome formation (22), Also, we measured the numbers of apoptotic 
cells by flow cytometry. We observed that oxidized LDL addition increased 
caspase 9 expression and the percentage of apoptotic endothelial cells, when 
compared to control cells and cells treated with normal LDL. Co-incubation 
with normal HDL completely pre-empted this effect. However, the influence 
of HDL from PON1(-/-) animals was much lower (Fig. 5 A and B). We observed 
a strong direct correlation (r = 0.91; P < 0.001) between total peroxides 
concentrations and the percentage of apoptotic cells (Fig. 5C). Previous 
studies had shown that increased lipid peroxidation in HDL particles from 
coronary artery disease patients was associated with an impaired capacity of 
this particle to stimulate endothelial NO production (23). Notably, PON1 has 
been reported to prevent lipid peroxidation in HDL particles, and to promote 
HDL-mediated inactivation of oxidized lipids in LDL. Its activity was shown to 
be decreased in patients with coronary disease (7). Further, HDL and PON1 
decreased the formation of malondialdehyde-like epitopes and the 
formation of apoptotic particles in monocytes (24). A very recent study 
showed that HDL from healthy people induced the expression of endothelial 
anti-apoptotic protein Bcl-xL and reduced endothelial cell apoptosis in vitro 
as well as in vivo in apoE-deficient mice. In contrast, HDL from coronary 
artery disease patients did not inhibit endothelial apoptosis, failed to 
activate endothelial Bcl-xL, and stimulated endothelial pro-apoptotic 
pathways (25). Our findings of a decreased oxidized LDL-induced apoptosis 
by normal HDL, but not by HDL from PON1(-/-) mice, together with a 
significant association between lipid peroxidation (as measured by total 
peroxides concentrations) and the percentage of the apoptotic cells would 
tend to confirm this very recent information.  

Our results suggest that PON1 may play a significant role in cell survival by 
improving mitochondrial function. Indeed, mitochondria regulate apoptosis 
in response to cellular stress signals and, hence, determine whether cells live 
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or die. As such, it is probable that peroxides constitute important candidates 
in the regulation of cell death, and that mitochondria act as both sensor and 
effector sites (26). This could explain the influence of apoptosis-related 
proteins on mitochondrial respiration. Whether or not this finding has any 
impact on the atherosclerosis process warrants further exploration.  

Figure 5. (A) Western blot analyses for caspase 9; (B) percentage of apoptotic cells; (C) 
relationship between total peroxide concentrations and the percentage of apoptotic cells in 
HUVEC cell homogenates (n = 3, for each experiment). Endothelial cells were incubated over 
24h with 50 mg/L isolated human LDL (L); 50 mg/L oxidized LDL (O); 50 mg/L oxidized LDL + 40 
mg/L HDL from wild type mice (OH); 50 mg/L oxidized LDL + 40 mg/L HDL from PON1 (-/-) mice 
(KO); or with serum-free media as controls (C). MW: Molecular weight marker. *: P < 0.01 with 
respect to C; †: P < 0.05 with respect to OH; ‡: P < 0.01 with respect to O. 
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Conclusion 

Epidemiological studies have shown that the risk of atherosclerosis is 
inversely associated with HDL concentrations. The protective effect of this 
lipoprotein has been attributed, in part, to the antioxidant and anti-
inflammatory action of PON1 (27). We have showed, previously, that PON1 
inhibits MCP-1 induction in endothelial cells (11), and which suggested a 
protective role against liver inflammation mediated by MCP-1 (28). More 
recent studies indicated that the anti-inflammatory effect of PON1 depends 
on its association with HDL (29), and that PON1 stimulates HDL anti-
atherogenicity (30), and macrophage response (31), and increases the 
duration over which HDL is able to prevent LDL oxidation (32).   

The present study is novel in using a metabolomic approach to investigate 
the protective effect of PON1 on endothelial cells incubated with oxidized 
LDL. We observed important metabolic alterations in human endothelial cells 
incubated with oxidized LDL. These include an impaired glycolysis, TCA cycle, 
phospholipids, and activation of apoptotic pathways. These changes were 
ameliorated by incubation with normal HDL, while HDL isolated from PON1(-/-

) mice showed an impaired efficiency to protect against the oxLDL-induced 
changes. These results extend the current knowledge on the protective role 
of HDL and PON1 against oxidation in endothelial cells.  
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STUDY 3 

Metformin administration induces hepatotoxic effects in 
paraoxonase-1 deficient mice 
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Abstract 

Metformin is the first-line pharmacological treatment of diabetes. In these 
patients, metformin reduces body weight and decreases the risk of 
diabetes-related complications such as cardiovascular disease. However, 
whether metformin elicits beneficial effects on liver histology is a 
controversial issue and, as yet, there is no consensus. Paraoxonase-1 
(PON1), an enzyme synthesized mainly by the liver, degrades lipid 
peroxides and reduces oxidative stress. PON1 activities are decreased in 
chronic liver diseases. We evaluated the effects of metformin in the liver of 
PON1-deficient mice which, untreated, present a mild degree of liver 
steatosis. Metformin administration aggravated inflammation in animals 
given a standard mouse chow and in those fed a high-fat diet. Also, it was 
associated with a higher degree of steatosis in animals fed a standard 
chow diet. This report is a cautionary note regarding the prescription of 
metformin for the treatment of diabetes in patients with concomitant liver 
impairment.  

Introduction 

Metformin (dimethylbyguanidine) is the first-line pharmacological 
treatment of diabetes. In these patients, metformin assists weight loss and 
reduces the risk of diabetes-related end-points such as microvascular 
disease, myocardial infarction (large vessel disease) and all-cause 
mortality. This drug has also been reported to elicit beneficial effects on 
liver histology, by reducing hepatic steatosis (1). In normal mice fed with a 
high-fat diet, metformin has been reported to fully reverse hepatic 
steatosis and inflammation; effects that appear to be mediated by 
upregulation of hepatic adenosine monophosphate-activated protein 
kinase (AMPK) and, as well, to be associated with changes in lipogenic 
gene expression, such as fatty acid synthase (FASn) (2). However, clinical 
studies investigating the effects of metformin on the liver have not 
reached a consensus (3-6). Metformin possesses multiple pleiotropic 
effects (7-10), and one of the most important is to decrease oxidative 
stress by enhancing the hepatic levels of antioxidant enzymes such as 
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paraoxonase-1 (PON1) (11,12). PON1 is a lipolactonase synthesized, 
mainly, by the liver. It degrades oxidized phospholipids and, as such, plays 
a role in an organism’s antioxidant system (13,14). Preliminary 
observations from our laboratory suggest that PON1 is an important factor 
in explaining the beneficial effects of metformin in the liver (15).  

Some reports have suggested that metformin may be useful in the 
treatment of hepatitis or hepatocellular carcinoma (16). Conversely, 
however, several cases of metformin-induced aggravation of liver injury 
have been reported in patients with liver disease (17-20); liver damage 
being documented as the elevation of serum liver enzymes, and 
improvement in liver function being documented following discontinuation 
of the drug for 1 week. Unfortunately, the mechanism by which metformin 
may induce liver injury is unknown. Severe liver impairment is associated 
with inhibited hepatic and circulating PON1 levels. Indeed, serum PON1 
activity is strongly decreased in patients with chronic hepatitis or cirrhosis, 
and the magnitude of the decrease is related to the extent of liver damage 
(21,22). Moreover, a study found a decreased hepatic PON1 activity 
related to enhanced lipid peroxidation and liver damage in rats with 
experimental fibrosis (23). In addition, PON1 over-expression provided 
strong protection against the development of experimentally-induced liver 
disease (24).  

With all these pointers in mind, the possibility that PON1 deficiency itself is 
associated with toxic effects of metformin in the liver warrants 
investigation. The objective of this study was to evaluate whether 
metformin elicits toxic effects in the livers of PON1-deficient mice fed a 
standard chow diet or a high-fat diet. 

Methods 

Experimental animals and dietary intervention 

Male PON1-deficient mice of the C57BL/6J genetic background were the 
progeny of those provided to us by the Division of Cardiology of the 
University of California in Los Angeles (25). These mice develop a mild 
degree of spontaneous liver steatosis even on a standard chow diet (26). 
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At 10 weeks of age, mice were fed a high-fat and high-cholesterol diet 
[HFD group; n=16; the diet contained w/w 20% fat and 1.00% cholesterol 
(Harlan, Barcelona, Spain)], or a chow diet [CD group; n = 16; the diet 
contained w/w 14% protein and 0.03 cholesterol (Harlan, Barcelona, 
Spain)]. The groups were further divided to receive metformin (n = 8) or 
placebo (regular drinking water; n = 8). Metformin (DIANBEN® 850 mg) 
was added to the water to achieve a dose of 166 mg.Kg-1.day-1. At 24 
weeks of age, animals were sacrificed after an overnight fast. Liver, 
pancreas, visceral white adipose tissue (vWAT), epididimal white adipose 
tissue (eWAT), inguinal white adipose tissue (iWAT), and brown adipose 
tissue (BAT) were removed and weighed. Portions of tissue were stored at 
−80° C until needed for histological examination, at which stage the tissues 
were fixed for 24 h in 10% neutral-buffered formalin, embedded in wax, 
and microtome sectioned for microscopy. Glucose tolerance tests (GTT) 
were performed in all mice at one week before sacrifice. Glucose (2 mg.g-1 
of body weight) was administered as an intraperitoneal injection under 
anesthesia. Measurements of blood glucose concentrations were made at 
t = 0, 15, 30, 60 and 120 min. Glucose was measured with glucose strips 
adapted to the Accucheck sensor system (Roche Diagnostics).  

Wild-type mice fed with chow diet or HFD and receiving metformin or 
placebo (n = 8, for each group) were used to investigate the effect of 
PON1-deficiency in liver histology. All procedures adhered to those 
described by the Helsinki accord on animal experimentation. The study 
protocol was accepted by the Ethics Committee on Animal 
Experimentation of the Faculty of Medicine of the Universitat Rovira i 
Virgili (Reus). 

Biochemical measurements 

Following an overnight fast, blood samples were collected from 
anesthetized animals into blood collection tubes not containing anti-
coagulant. Serum glucose, cholesterol and triglyceride concentrations 
together with alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) activities were determined by standard clinical 
laboratory procedures. Analysis of serum lipoprotein profiles was 
performed using fast protein liquid chromatography (FPLC), to evaluate 
differences in cholesterol and triglyceride distributions among the 
lipoprotein fractions in the different experimental groups. Briefly, a pooled 
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serum (200 µL from each experimental group) was fractionated in a 
Superose 6/300 GL column (GE Healthcare Europe, Glattbrugg, 
Switzerland) equilibrated with phosphate buffer (NaPi) 50 mM, with NaCl 
0.150 M, pH = 7.0  and eluted (500 μl fractions) with the same buffer. 
Cholesterol and triglycerides were measured in the eluted fractions using 
photometry, with reagents obtained from Beckman Coulter (Brea, CA, 
USA) and read with an automated microplate reader (BioTeK Instruments 
Inc., Winooski, VT, USA). 

Histology analyses 

Liver and eWAT sections of 2 μm thickness were stained with hematoxylin 
and eosin to evaluate histological alterations. Steatosis extent and eWAT 
adipocyte size were estimated by image analysis software (AnalySIS, Soft 
Imaging System, Munster, Germany). The degree of steatosis was further 
evaluated using a semi-quantitative score (percentage) of hepatocytes 
containing lipid droplets. The scores were arbitrarily dichotomized as 1: 
<33%; 2: 33−66%; 3: >66%, as previously reported [26]. Chemokine (C-C 
motif) ligand-2 (CCL2) expression was measured as a marker of 
inflammation using immunohistochemistry with specific antibodies from 
Santa Cruz Biotechnology (Heidelberg, Germany). F4/80 antigen was 
determined as a widely-accepted marker of macrophages, using specific 
antibodies from Serotec (Oxford, UK). For each sample, we included a 
negative control that was treated exactly as the test samples throughout, 
except with the primary antibody omitted from the incubations. 

Western blot analysis 

Using a Precellys 24 (Bertin Technologies, France) homogenizer, liver 
samples were homogenized in a lysis buffer containing an inhibitor of the 
proteases. FASn, AMPK, and its active form phosphorylated AMPK 
(pAMPK), were measured using specific antibodies from Cell Signaling 
Tech. (Danvers, MA, USA). Arginase and caspase-9 were measured using 
antibodies from Abcam Inc. (Cambridge, UK). Actin expression was used as 
control (antibodies from Sta. Cruz Biotech, CA, USA). 

Statistical Analysis 

Results are shown as means ± SD. Between group comparisons were with 
the Mann-Whitney U test. Statistical significance was set at P ≤ 0.05. 
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Results 

Food intake and weight control 

As expected, mice fed with HFD weighed more than animals fed with CD. 
Metformin administration did not produce any significant change in 
weight, nor in the cumulative food ingested in any of the animal groups 
(Fig. 1A). Metformin produced a significant increase of eWAT and vWAT 
weights, and a small reduction in liver weights in mice fed with CD, but not 
in animals fed with HFD. Metformin also produced a significant increase in 
pancreas weight in experimental groups of animals, relative to the group 
of control animals. We did not observe any significant differences in BAT 
and iWAT in relation to metformin administration (Fig. 1B).  

Glucose tolerance test 

Glucose tolerance was impaired in mice fed HFD compared to animals with 
CD, as shown by the areas under the curve of the GTT test results. 
Metformin administration significantly improved glucose tolerance in mice 
fed HFD, but did not produce any significant effect in mice fed CD (Fig. 1C).  
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Figure 1. Effects of metformin administration in PON1-deficient mice fed a chow diet (CD) 
and a high fat diet (HFD). A) Cumulative food intake and weight increase in mice having 
metformin administered and fed CD (left panel) and HFD (right panel) from 10 to 24 weeks 
of age. There were significant differences in weight increase between animals given CD or 
HFD at all time-points (P < 0.01). B) Relative weight of liver, pancreas, brown adipose tissue 
(BAT), visceral adipose tissue (vWAT), inguinal adipose tissue (iWAT) and epididimal white 
adipose tissue (eWAT) in mice fed CD or HFD. aP < 0.05, with respect to the control group; b 
P < 0.01, c P < 0.001, with respect to mice given CD diet. C) Metformin effect on blood 
glucose levels and area under the curve (AUC) in the glucose tolerance test in animals fed 
CD or HFD. AUC values are presented as means and SD 

Biochemical measurements 

Metformin administration was associated with mild, but significant, 
reductions in baseline serum glucose concentration and AST activity in 
mice fed CD, and an important increase in serum triglycerides in animals 
fed HFD (Table 1). We did not observe any significant change, associated 
with metformin administration, with respect to cholesterol or triglyceride 
distributions among lipoprotein fractions; neither in animals fed CD or 
those fed HFD (Supplementary Fig. 1). 
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Table 1. Selected serum biochemical variables in PON1-deficient mice. Data presented as means (SD). 

Chow Diet High Fat Diet 

Control Metformin P 
value 

Control Metformin P 
value 

Glucose; mmol/L 14.9 
(1.5) 

12.9 (1.8) 0.0281 19.5 
(3.2) 

21.5 (3.8) 0.2766 

Cholesterol; 
mmol/L 

1.8 (0.2) 1.7 (0.2) 0.1949 3.8 (0.5) 3.7 (0.3) 0.7430 

Triglycerides; 
mmol/L 

0.7 (0.2) 0.5 (0.1) 0.0721 0.3 (0.1) 0.5 (0.2) 0.0148 

ALT; µkat/L 2.8 (1.8) 1.6 (0.60) 0.2345 2.2 (1.0) 3.2 (1.5) 0.1996 

AST; µkat/L 0.6 (0.2) 0.4 (0.1) 0.0426 0.6 (0.1) 1.0 (0.4) 0.1520 

Bilirubin; µmol/L 3.4 (1.7) 3.3 (1.6) 0.1605 5.1 (1.4) 5.0 (1.3) 0.6730 

Histological analyses 

Hepatic steatosis scores were significantly increased in mice receiving 
metformin and CD compared to controls (CD and no metformin), while 
there was a trend, albeit statistically non-significant, towards a decrease in 
the scores in animals receiving HFD + metformin (Fig. 2A). With respect to 
eWAT, metformin administration was associated with a mild, but 
statistically significant, increase in adipocyte size in mice fed HFD but not in 
those fed CD (Fig. 2B). We did not observe any significant changes in iWAT, 
vWAT or BAT associated with metformin administration (data not shown). 
Metformin administration was associated with an increase in the staining 
of the pro-inflammatory marker CCL2 in CD as well as HFD-fed mice. 
However, the number of macrophages was increased only in animals fed 
HFD (Fig. 3). 

_________________________________________Study 3

UNIVERSITAT ROVIRA I VIRGILI 
INFLUENCE OF PARAOXONASE-1 DEFICIENCY ON METABOLIC ALTERATIONS AND INFLAMMATION 
Anabel  Garcia  Heredia 
 



Figure 2. Hematoxylin-eosin staining of the liver and eWAT of PON1-deficient mice fed 
chow diet (CD) and high fat diet (HFD). The arrows show ballooning hepatocytes. 
Magnification x10  
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Figure 3. Immunohistochemical analyses of liver tissues of PON1-deficient mice fed chow diet (CD) and 
high fat diet (HFD). A) Immunochemical staining for CCL2. The arrows show positively-stained areas. B) 
Immunochemical staining for F4/80 and macrophage area quantification. The arrows show positive 
staining for F4/80. Magnification x20
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Western blot analyses 

Treatment with metformin produced a significant decrease in the 
pAMPK/AMPK ratio and in arginase expression in mice fed CD, and a 
significant decrease in FASn expression in mice fed HFD. With respect to 
caspase-9, we detected two bands of molecular weight 45 and 35 KDa. The 
45 KDa band corresponded to the inactive form (procaspase-9). Mature 
procaspase-9 expression (35 KDa) was enhanced in mice fed HFD, 
compared to those fed CD. The administration of metformin in HFD mice 
produced an important reduction in procaspase-9 and a small reduction in 
caspase-9, while producing a significant increase in caspase-9 in CD 
animals. Arginase expression was significantly decreased in mice fed CD, 
and there was no significant change in HFD animals (Fig. 4).  

 

Figure 4. Western blot analyses of liver in PON1-deficient mice fed chow diet (CD) and high 
fat diet (HFD). A) Immunoblots for pAMPK, AMPK, FASn, arginase, procaspase-9 and 
caspase-9. B) Quantification of these immunoblots. Results are shown as arbitrary units 
(AU).  a P < 0.05 with respect to the control group; b P < 0.01 with respect to mice given CD 
diet.  

A) 

B) 
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Effect of metformin in liver histology in wild-type mice 

To assess whether the deleterious effects of metformin were 
specific to PON1-deficient mice, we analyzed the influence of this product 
on hepatic steatosis and the number of macrophages in wild-type mice. 
Metformin administration did not produce any significant alteration in any 
of these parameters (Supplementary Fig. 2).  

Discussion 

Results of the present study show that metformin caused an aggravation 
of hepatic steatosis in the livers of PON1-deficient mice receiving CD, and a 
general increase in inflammation markers in animals fed either CD or HFD. 
Zhou et al. (27) reported that, in primary hepatocyte cultures, the 
activation of AMPK (measured as an increase of the ratio pAMPK/AMPK) 
was intimately associated with the pleiotropic actions of metformin. AMPK 
is activated by an enhancement in the intracellular AMP/ATP ratio 
resulting from an imbalance between ATP production and consumption. 
Further, metformin improved lipid metabolism by increasing fatty acid 
oxidation and inhibiting lipogenesis; an effect mediated, presumably, by 
AMPK activation (27-29). Surprisingly, we did not observe an activation of 
AMPK in the liver of mice receiving metformin and fed either of the diets. 
We even found a decrease in pAMPK/AMPK ratio associated with 
metformin administration in mice fed CD. The explanation for these 
contradictory results might be due to our mice being PON1-deficient and 
having a certain degree of (mild) spontaneous steatosis. The effects of 
metformin in livers with steatosis remain unclear (30-32). In our model, 
AMPK inactivation in mice receiving CD and metformin could explain the 
accumulation of fat, resulting in an increase in hepatic steatosis. 
Nevertheless, in mice receiving HFD, metformin administration produces 
the opposite effect i.e. a reduction in the accumulation of fat in the liver. 
This effect was associated with a reduction in FASn protein expression. 
Indeed, Kita et al. 832) had shown that hepatic FAS expression in 
metformin-treated mice was decreased. In our study, these observations 
were associated with an increase in eWAT adipocyte size. A possible 
explanation for this observation is that, in mice fed HFD, the channeling of 
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fat towards an accumulation in eWAT is, perhaps, a defense mechanism to 
protect the liver.   

Several studies have shown that metformin induces caspase-9 expression 
and apoptosis in several cell lines (33-35). The caspase-9 findings are 
confirmed by the present investigation. For example, mice given CD and 
metformin had a significant increase in caspase-9 in its active form, while 
animals fed HFD had an important reduction in the expression of the 
inactive procaspase-9. However, the above-mentioned studies suggest 
that this effect is mediated through AMPK activation while our results 
suggest that, on the contrary, AMPK is not necessary to explain the effects 
of metformin on caspase-9.  

An unexpected result from the present investigation was that metformin 
administration caused pro-inflammatory changes in the livers of CD as well 
as HFD mice. All the animals had an increased presence of CCL2 in the liver. 
This chemokine is responsible for the recruitment of monocytes to sites of 
inflammation, followed by their differentiation to macrophages (36) and is 
considered pathognomonic of the onset of the inflammatory reaction. 
Previous studies from our group showed that it is a good marker of the 
severity of inflammation in patients with liver disease (37). In addition, 
metformin was associated with an increase in the total number of 
macrophages in HFD-fed mice and, although the number of macrophages 
did not change in CD-fed animals, they had a significant decrease in 
arginase expression. Arginase is a marker of M2 macrophages (which play 
an anti-inflammatory role) and their decrease suggests an enhancement of 
the liver pro-inflammatory state (38).  

We did not observe any significant deleterious effect of metformin 
administration with respect to the degree of steatosis or the number of 
macrophages in the livers of wild-type mice fed with either CD or HFD. This 
is not surprising since the beneficial effects of metformin in lean or obese 
mice have been documented extensively, already (39,40). Indeed, the main 
goal of the present study was to show that these beneficial effects of 
metformin are completely reversed when PON1 is lacking (as in PON1-
deficient mice).  
In conclusion metformin administration in PON1-deficient mice produces 
significant undesirable effects in the liver. These effects vary depending on 
the diet administered. An increase in the severity of steatosis was 
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observed in animals fed CD, together with an aggravation of inflammation 
irrespective of the diet administered. Since individuals with liver 
impairment have low hepatic and serum PON1 activities, this report is a 
cautionary note on the administration of metformin in these patients. In 
the case of therapeutic metformin in diabetes type 2, the advice would be 
regular monitoring of the patient to detect hepatic impairment and its 
progression.  
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As stated in the Introduction, the most important NCD are diabetes, cancer, 
cardiovascular disease, chronic respiratory disease and neurological diseases 
(1, 2). Their most common and preventable risk factors are smoking, 
sedentary lifestyle, unhealthy diet and the damaging use of alcohol. The 
combination of these factors triggers to key metabolic/physiological changes 
such as high blood pressure, overweight/obesity, and high blood glucose and 
cholesterol concentration (194).  

NCD share common molecular mechanisms including oxidative stress, 
inflammation and mitochondrial alterations (3-8). The PON family of 
enzymes is an important endogenous antioxidant system implicated in 
several biochemical pathways: protection against oxidative damage and lipid 
peroxidation, contribution to innate immunity, bioactivation of drugs, 
detoxification of reactive molecules, modulation of endoplasmic reticulum 
stress and regulation of cell proliferation/apoptosis (27). 

NAFLD, an important comorbidity of obesity, is accepted worldwide as the 
most common cause of chronic liver disease. Its incidence and prevalence 
are constantly increasing (173, 174). This disease is closely associated with 
the metabolic syndrome (MS), with approximately 90% of NAFLD patients 
having more than one of the following disorders: type 2 diabetes mellitus, 
obesity, dyslipidemia or hypertension (195). Previous studies from our group 
reported that serum PON1 activity may add relevant clinical information to 
the evaluation of chronic liver diseases. We also previously reported that 
patients with chronic liver diseases showed a significant increase of both 
serum PON1 concentration and hepatic PON1 expression, and reduced PON1 
enzymatic activity. We also found that there were significant relationships 
between PON1, liver damage, liver fibrosis, fatty acid synthase (FAS) 
concentration and FAS expression in these patients (181, 196). The 
pathogenic mechanisms responsible for fatty liver disease are still not fully 
clarified.  

Metabolomics is commonly employed to the study of part or the complete 
set of small molecules in biological samples. It has emerged as a powerful 
tool to discover novel biomarkers. One of its most important advantages is 
that this method can be used to identify an exclusive “metabolomic 
signature” of disease through the detection of changes in metabolite levels 
(197, 198). Several studies have identified new biomarkers for Parkinson´s 
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disease (199), prostate cancer (200) and type 2 diabetes mellitus  among 
other important NCD (201, 202). 

On the other side, when PON1 deficient mice are fed high-fat high-
cholesterol diet, are more susceptible to present with inflammation, 
lipoprotein oxidation, atherosclerosis and hepatic steatosis when compared 
to wild type littermates (203, 204). The first objective of the present Thesis 
was to better understand how the deficiency of PON1 influences to the 
pathogenesis of NAFLD in mice. 

The results showed dramatic metabolic and histological alterations in the 
livers of PON1 deficient mice fed a high-fat and high-cholesterol diet. PON1 
deficient mice showed an increase in oxidative stress. Increased 
concentrations of peroxides 9-HODE and 13-HODE (which participate in the 
inhibition of triglyceride incorporation into lipoproteins and also stimulate 
extracellular matrix synthesis), provided a link between steatosis and fibrosis 
(205, 206). In addition, we observed a reduction in carnitine levels, which is 
an important factor in fatty acids transport to the mitochondrial matrix for 
their oxidation. Moreover, the amino acid methionine sulfoxide was 
increased. Methionine is a precursor for phospholipid synthesis. Hence, its 
reduction would imply impairment in the synthesis and secretion of very-low 
density lipoproteins. Therefore, these alterations would contribute to the 
development of steatosis in PON1 deficient mice.  
We also observed a possible compensatory defense mechanism by the 
increase of the amino acid taurine in those mice. Studies reported that, in 
animals, the administration of taurine produces a decrease in the hepatic 
accumulation of triglycerides (207, 208). On the contrary, a decreased 
PUFA/MUFA ratio is observed in PON1 deficient mice. It is well known that 
PUFA play an important role in stimulating the expression of PPARα, and 
they play an anti-inflammatory and hepatoprotective role (209).  
Several years ago Mackness et al. (123) demonstrated that PON1 inhibits 
CCL2 production in endothelial cells incubated with oxidized low density 
lipoproteins. We found an intense CCL2 immunostaining around lipid 
droplets in hepatic tissue sections of PON1 deficient mice, suggesting a close 
link between steatosis and the inflammatory response. 
When steatosis is associated with inflammation, cell death, and fibrosis, it is 
called NASH. It can progress to cirrhosis, and then the risk of hepatocellular 
carcinoma is increased. Interestingly, the present study identified two pro-
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oncogenic molecules (oratate and 8-oxo-dG) that were increased in PON1 
deficient mice. Orotate is a precursor of pyrimidine nucleotides, and its 
excess is related to alterations in DNA synthesis (210) and the promotion of 
liver carcinogenesis (210, 211). Moreover, concentrations of 8-oxo-dG have 
been reported to be notably increased in the livers of rats treated with the 
powerful hepatocarcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (212). 
Hence, our study also suggests that the measurement of orotate and 8-oxo-
dG could be useful biomarkers in estimating the probability of 
hepatocarcinoma development in patients with NAFLD. 

Recent studies report that NAFLD is associated to increased cardiovascular 
risk. Accumulated evidence suggests that the clinical burden of NAFLD is not 
restricted to liver associated mortality, but also with a large amount of 
deaths associated to cancer (213, 214) and CVD (214, 215). Moreover, there 
is growing evidence that NAFLD is a risk factor by itself contributing to the 
development of CVD, independently of classical known risk factors (216). 
NAFLD has been demonstrated to be related with subclinical manifestations 
of atherosclerosis (216-219).  
Atherosclerosis involves a complex interaction among endothelial cells of the 
arterial wall, blood cells, and circulating lipoproteins (100). Previous studies 
showed that in the atherosclerotic process, PON1 is accumulated in the 
artery wall (220). PON1 deficient mice fed with a proatherogenic diet have 
greater levels of oxLDL and larger atheromatous plaques (203). Hence, we 
decided to investigate  the metabolic alterations in endothelial cells, when 
they were incubated with oxLDL and treated with HDL from PON1 deficient 
mice and wild type mice. Our study reported alterations in carbohydrate and 
phospholipid metabolism and increased apoptosis in cells incubated with 
oxLDL. These changes were partially prevented by wild type mouse HDL, but 
the effects were less effective with HDL from PON1 deficient mice. The risk 
of atherosclerosis is inversely associated with HDL concentration. The 
antioxidant and anti-inflammatory action of this lipoprotein is attributed, in 
part, to PON1 (221).  Our results suggest that PON1 plays a significant role in 
endothelial cell survival by protecting cells from modifications induced by 
oxLDL in the respiratory chain. These results amplify current knowledge on 
the protective role of HDL and PON1 against oxidation and apoptosis in 
endothelial cells. 
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The fact that many NAFLD patients develop CVD (214, 215), suggests that 
there is potential association between NAFLD and cardiometabolic disorders. 
Oxidative stress and insulin resistance have been assumed to be driving 
factors in the progression of NAFLD to NASH, and both are recognized 
contributors to type 2 diabetes (222). In addition, the accumulation of fatty 
acid in the liver triggers to hepatic insulin resistance characterized by a 
higher production of endogenous liver glucose and also acts as a stimulus for 
further increased whole-body insulin resistance and dyslipidemia, leading to 
accelerated atherosclerosis (223). 

Beneficial lifestyle changes led to ameliorate insulin resistance and hepatic 
steatosis (224). Metformin, an AMPK activator, regulates hepatic lipid 
metabolism by inducing adipose triglyceride lipase in patients with diabetes 
(150). Several studies supported the beneficial role of metformin in patients 
with NAFLD, showing an improvement on liver biochemistry, histology, and 
metabolic syndrome features (225-227). However, some recent studies have 
found no benefit of metformin treatment on liver steatosis, 
aminotransferase levels, and insulin resistance (228-230). In addition, several 
cases of metformin-induced aggravation of liver injury have been reported in 
patients with liver disease (228, 229, 231, 232); liver damage being 
documented as the elevation of serum liver enzymes, and improvement in 
liver function being documented following discontinuation of the drug for 1 
week. Unfortunately, the mechanism by which metformin may induce liver 
injury is unknown.  

For this reason, we wanted to evaluate how the treatment of metformin 
affects the liver of PON1 deficient mice. Our results showed that the 
administration of metformin produced an aggravation of hepatic steatosis in 
the livers of PON1 deficient mice receiving a chow diet, and a general 
increased presence of CCL2 in the liver of animals fed either chow diet or 
high fat diet. This chemokine is responsible for the recruitment of monocytes 
to sites of inflammation, followed by their differentiation to macrophages 
(172) and is considered pathognomonic of the onset of the inflammatory
reaction. Previous studies from our group reported that CCL2 is a good
marker of the severity of inflammation in patients with liver disease (233).
Moreover, several studies demonstrated that there is an inverse close
relationship between PON1 and CCL2 (123, 234). We found that metformin
administration under high fat diet was associated to an increase in the total
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number of macrophages, and, although this number did not change in chow 
diet-fed animals, they had a significant reduction in arginase expression. 
Arginase is a marker of M2 macrophages (which play an anti-inflammatory 
role) and their decrease suggests an enhancement of the liver pro-
inflammatory state (235). Unexpectedly, metformin did not produce an 
activation of AMPK in the liver of the mice fed either of the diets. These 
results could be due to our mice being PON1 deficient and having a certain 
degree of spontaneous steatosis. The effects of metformin in livers with 
steatosis remain unclear (148, 236, 237). In our model, AMPK inactivation in 
mice receiving chow diet and metformin could explain the accumulation of 
fat, resulting in an increase in hepatic steatosis. Nevertheless, in mice 
receiving high fat diet, metformin administration produces the opposite 
effect i.e. a reduction in the accumulation of fat in the liver. We propose a 
possible channeling of fat towards and accumulation in epididimal white 
adipose tissue, which is perhaps, a defense mechanism to protect the liver, 
due to a reduction observed in fatty acid synthase (FASn) protein expression 
in mice fed with high fat diet together its lower grade of steatosis. This 
reduction of FASn was also observed by Kita et al. (148) in metformin-treated 
mice.  

Taking all these data into account and since patients with liver impairment 
have low hepatic and serum PON1 activities, our results suggest that 
metformin should be administered with caution in these patients. With 
respect to patients with type 2 diabetes, it would be interesting to monitor 
their liver function in for a possible hepatic dysfunction. We propose that 
PON1 is an important enzyme necessary for the beneficial effects of 
metformin in the liver. 
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• PON1 deficiency is associated to hepatic steatosis in mice fed a high fat and
cholesterol intake. These changes are accompanied by severe metabolic
alterations, and with increased oxidative stress and inflammation. Our
results highlight the protective role of PON1 as an intracellular antioxidant
in the liver. These findings could have clinical relevance since decreased
serum and liver PON1 activity is an early alteration in patients with liver
impairment.

• HDL from PON1 deficient mice has an impaired capacity to protect
endothelial cells from oxLDL. We observed important metabolic
disturbances when cells are incubated with HDL from PON1 deficient
animals. These alterations include an impaired glycolysis, TCA cycle,
phospholipid metabolism, and activation of apoptotic pathways.

• Metformin administration produces undesirable effects in the liver of PON1
deficient mice. An increase in the severity of steatosis was observed in
animals fed a chow diet together with an aggravation of inflammation
irrespective of the diet administered. Since individuals with liver
impairment have low hepatic and serum PON1 activities, our results suggest
caution on the administration of metformin in these patients.
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ABSTRACT: Oxidative stress is a determinant of liver steatosis and the
progression to more severe forms of disease. The present study investigated
the effect of paraoxonase-1 (PON1) deficiency on histological alterations and
hepatic metabolism in mice fed a high-fat high-cholesterol diet. We performed
nontargeted metabolomics on liver tissues from 8 male PON1-deficient mice
and 8 wild-type animals fed a high-fat, high-cholesterol diet for 22 weeks. We
also measured 8-oxo-20-deoxyguanosine, reduced and oxidized glutathione,
malondialdehyde, 8-isoprostanes and protein carbonyl concentrations. Results
indicated lipid droplets in 14.5% of the hepatocytes of wild-type mice and in
83.3% of the PON1-deficient animals (P < 0.001). The metabolomic assay
included 322 biochemical compounds, 169 of which were significantly
decreased and 16 increased in PON1-deficient mice. There were significant
increases in lipid peroxide concentrations and oxidative stress markers. We also
found decreased glycolysis and the Krebs cycle. The urea cycle was decreased, and the pyrimidine cycle had a significant increase
in orotate. The pathways of triglyceride and phospholipid synthesis were significantly increased. We conclude that PON1
deficiency is associated with oxidative stress and metabolic alterations leading to steatosis in the livers of mice receiving a high-fat
high-cholesterol diet.

KEYWORDS: metabolomics, nonalcoholic fatty liver disease, oxidative stress, paraoxonase-1, steatosis

■ INTRODUCTION

Paraoxonase-1 (PON1) is an enzyme synthesized mainly by the
liver and found in the circulation bound to high-density
lipoproteins.1,2 The original function attributed to PON1 was
that of a lactonase, lipophilic lactones constituting its primary
substrates.3 PON1 also degrades oxidized phospholipids and, as
such, plays a role in the organism’s antioxidant system.2

Alterations in circulating PON1 levels are associated with a
variety of diseases involving oxidative stress.2

Hepatic steatosis represents the most common form of liver
disease in Western societies.4 In addition to being a precursor
of fibrosis, cirrhosis, and hepatoma, hepatic steatosis is linked to
diabetes, obesity, and cardiovascular disease.5 It is also an
important feature of the metabolic syndrome.6 Oxidative stress
plays a determinant role in the onset of steatosis and its

progression to more severe forms of liver disease.7 Also, it plays
an important role in the development of inflammation,8 and
fibrogenesis.9

Since oxidative stress influences the changes leading to fatty
liver and cirrhosis and, since PON1 exerts a protective effect
against oxidative stress, it would be logical to infer an
association between this enzyme and liver-function impairment.
We had observed, in rats with experimental fibrosis, decreased
hepatic PON1 activity related to enhanced lipid peroxidation
and liver damage.10 Moreover, serum PON1 activity was found
to be decreased in patients with chronic hepatitis or cirrhosis,
and the magnitude of the alteration was related to the extent of
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liver damage.11,12 Evidence also indicated that PON1 over-
expression provided strong protection against the development
of experimental liver disease.13

Despite these potentially important pointers, there is a dearth
of experimental data on the biochemical mechanisms under-
lying the putative protective role of PON1 in liver disease. The
present study sought to investigate the effect of PON1
deficiency in the livers of mice fed a high-fat high-cholesterol
diet.

■ MATERIALS AND METHODS

Experimental Animals and Dietary Intervention

Male PON1-deficient animals of the C57BL/6J genetic
background14 were the progeny of mice provided by the
Division of Cardiology of the University of California in Los
Angeles. Wild-type animals were from the C57BL/6J strain
(Charles River Laboratories, Wilmington, MA). At 10 weeks of

age, eight mice of each strain were fed a high-fat high-
cholesterol diet (w/w 20% fat and 1.00% cholesterol; Harlan,
Barcelona, Spain). At 32 weeks of age, animals were sacrificed
after an overnight fast. Livers were removed and stored at −80
°C until standard analyses of oxidative stress markers, or
metabolomics analyses were performed. A portion of liver was
fixed for 24 h in 10% neutral-buffered formalin for histological
evaluation. Wild-type (n = 8) and PON1-deficient mice (n = 8)
fed with a standard mouse chow (Charles River Laboratories)
were used as controls. All procedures followed those set by the
Ethics Committee on Animal Experimentation of the Faculty of
Medicine of Reus which, in turn, reflected the Helsinki
requirements.

Metabolomic Analyses of Liver Tissue

The metabolomics platform employed in the present study has
been described in detail.15 Briefly, small-molecule metabolites
from slivers of liver tissue were extracted with methanol. The

Figure 1. Histological analyses of liver tissue sections of PON1-deficient mice (right panels) and wild-type animals (left panels) fed with a high-fat
high-cholesterol diet. (A and B) Hematoxylin-eosin. (C and D) 4-OH-nonenal immunohistochemistry. (E and F) MCP-1 immunohistochemistry.
The insert in B is the steatosis score measurement in both types of mice. LD, lipid droplets. The arrows in F show positive MCP-1 immunostaining
around lipid droplets.
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resulting extract was divided into aliquots for analysis by ultra
high performance liquid chromatography−tandem mass
spectrometry (UPLC−MS/MS; separately under positive as
well as negative mode) and gas chromatography−mass
spectrometry (GC−MS). Metabolites were identified relative
to ion data of a reference library of approximately 2800
standard chemical entries that included retention times, mass
(m/z), and MS or MS/MS spectra. Results of metabolomic
measurements are expressed as the means of areas under the
peaks of the PON1-deficient mice divided by the corresponding
peaks of the wild-type mice.

Standard Biochemical Analyses of Oxidative Stress
Markers

Hepatic concentrations of malondialdehyde (MDA), oxidized
and reduced glutathione (GSSG and GSH, respectively), and 8-
oxo-20-deoxyguanosine (8-oxo-dG) were measured by HPLC,
as previously described.16−18 Tissue levels of 8-isoprostanes and
protein carbonyls were determined using commercial ELISA
assays (Cayman Chemical Co., Ann Arbor, MI).

Histological Analyses

Liver sections of 2 μm thickness were stained with hematoxylin
and eosin to evaluate histological alterations. The degree of

steatosis was evaluated by image analysis software (AnalySIS
image software system, Soft Imaging System, Munster,
Germany) together with a semiquantitative score reflecting
the percentage of hepatocytes containing lipid droplets. The
scores were arbitrarily dichotomized as 1: <33%; 2: 33−66%; 3:
>66%.19 Monocyte chemoattractant protein-1 (MCP-1)
expression as a marker of inflammation was measured by
immunohistochemistry using specific antibodies (Santa Cruz
Biotechnology Inc. Santa Cruz, CA). 4-hydroxy-2-nonenal (4-
HNE) protein adducts as an index of lipid peroxidation were
analyzed with a specific antibody purchased from the Japan
Institute for the Control of Aging (Shizuoka, Japan). All
immunohistochemical methods had negative controls which
were treated similarly to test samples, but with the primary
antibody omitted from the incubations.

Statistical Analyses

Differences between any two groups were assessed with the
Mann−Whitney U test. Spearman correlation coefficients were
used to evaluate the degree of association between variables.
Welch’s t-test for group comparisons was used for metabolomic
analyses. Statistical software employed was either the program

Figure 2. Histological analyses of liver tissue sections of PON1-deficient mice (right panels) and wild-type animals (left panels) fed with a standard
mouse chow. (A and B) Hematoxylin-eosin. (C and D) 4-OH-nonenal immunohistochemistry. (E and F) MCP-1 immunohistochemistry.
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“R” http://cran.r-project.org/ (for metabolomic analyses) or
the SPSS 18.0 package (standard biochemical analyses).

■ RESULTS

Histological Analyses

Histological examination showed a marked steatosis in the liver
tissue of PON1-deficient mice fed with a high-fat high-
cholesterol diet; the steatosis score being significantly increased
(p < 0.001) in these animals compared to the wild-type mice
(Figure 1A-B). Lipid droplets were present in 14.5% (on
average) of the hepatocytes of wild-type mice and in 83.3% of
the PON1-deficient animals. Immunohistochemical analyses
showed an increased expression of 4-HNE and MCP-1
(markers of oxidative stress and inflammation, respectively)
in PON1-deficient mice, compared to their wild-type counter-
parts (Figure 1C−F). On the contrary, PON1-deficient mice
fed with a standard mice diet did not show any evidence of
histological hepatic alterations, increased inflammation or
oxidative stress compared to wild type animals (Figure 2),
and for this reason, the metabolomic and biochemical study was
only continued in animals fed with a high-fat high-cholesterol
diet.

Metabolomic Profiling

Results of the global metabolomic analyses, including an
exhaustive list of the measured metabolites, unadjusted data,
and heat map, are shown in Supplementary Table 1
(Supporting Information). We analyzed 322 biochemical
compounds and, relative to the wild-type animals, 169 were
significantly decreased and 16 were increased in PON1-
deficient mice. The main findings are highlighted below.
Glutathione Metabolism. GSH reduces peroxides and free

radicals in a nonenzymatic process, to produce GSSG.

Normally, GSH levels are modulated to meet oxidative
demands by regulated rates of synthesis as well as significant
recycling via the gamma-glutamyl cycle. Liver tissue PON1(−/−)

showed significant GSH and GSSG depletion (Figure 3). GSSG
levels decreased moderately (to approximately 80% of control
mice values) while hepatic GSH content showed a considerable
depletion (to approximately 27% of control mice values). As
such, the ratio of GSSG/GSH was increased in PON1-deficient
liver tissue; strongly indicative of exposure to oxidative stress.
We also observed significantly lower levels of GSH precursors,
and recycling pathway metabolites, in PON1-deficient mice.
Methionine, an essential amino acid, was significantly reduced
in the PON1-deficient liver tissue, as were most metabolites
involved in the biosynthetic pathway between methionine and
the GSH biosynthetic precursor cysteine. Also affected were the
metabolites reflecting the alternate pathways of methionine
salvage. Comparable changes in the parallel metabolic pathway
of α-ketobutyrate to ophthalmate are in agreement with these
precursor-limiting influences (Figure 3).

Other Oxidative Stress Markers. The hepatic concen-
trations of α-tocopherol and ascorbate (and their biosynthetic
precursor in rodents, gulono-1,4-lactone) were significantly
lower in PON1-deficient mice. Significant increases in levels of
13-hydroxy-octadecadienoate (13-HODE) and 9-hydroxy-
octadecadienoate (9-HODE) are indicators of elevated lipid
peroxidation, and provide evidence of an oxidizing environment
in liver tissue with PON1 deficiency. Likewise, an elevated level
of the oxidized amino acid methionine sulfoxide provides
additional support for this concept (Supplementary Table 1,
Supporting Information).

Alterations in Hepatic Lipid Metabolism. Liver
metabolism is assessed here following an overnight fast, thus
the predominant metabolic activity under normal conditions
would encompass gluconeogenesis from lactate, glycerol, and

Figure 3. Alterations in the glutathione pathway in PON1-deficient mice compared to wild-type animals. The data on the right show the quotients of
the areas-under-the-peak of the PON1-deficient mice relative to those of the wild-type animals. Decreased and increased metabolites that achieve
statistical significance are shown in green and red, respectively.
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amino acids to generate glucose for release to the circulation
and use of fatty acids released from adipose tissue lipid stores
for ketogenesis. Glycerol, mono- and diacylglycerol levels
showed a significant decrease in PON1-deficient mice,
suggesting decreased triacylglyceride lipolysis or increased
synthesis (Supplementary Table 1, Supporting Information).
Free fatty acid levels were altered with PON1 deficiency. Seven
polyunsaturated fatty acids (PUFA) were decreased, while three
monounsaturated fatty acids (MUFA) were increased, that is,
the ratio of PUFA/MUFA was lower in PON1-deficient mice
than in wild-type animals. In addition, we observed a decrease
in carnitine levels. Carnitine is a quaternary ammonium
compound necessary for the transport of long-chain fatty
acids into the mitochondria. Carnitine can be diet-derived or
synthesized from lysine and proline; amino acids that are
decreased in PON1-deficient mice. The overall outcome would
be a depressed fatty acid oxidation, which is supported by
significantly lower levels of the ketone body 3-hydroxybutyrate.
Phospholipid precursors, lysolipid intermediates, and break-
down products showed complex alterations in livers of PON1-
deficient mice. Lysolipid levels, for example, can reflect relative
rates of membrane remodeling. Levels of multiple lysolipids
were reduced by PON1 deficiency, which indicates relatively
reduced membrane remodeling and/or breakdown under these
conditions. Metabolism of bile acids is also reduced, with a
decrease in the levels of squalene, which is the precursor of
cholesterol and bile acid synthesis and which is necessary for

the absorption of dietary lipids and hydrophobic vitamins A, D,
E and K.

Glucose Metabolism. Glucose metabolism in liver is
impacted upon by the reciprocally regulated pathways of
glycolysis and gluconeogenesis. We observed, in PON1-
deficient mice, a significant alteration in intermediates that
are shared by these opposing glucose metabolism pathways
including lover levels of 3-phosphoglycerate and phosphoe-
nolpyruvate, but elevated fructose 1,6-diphosphate (observed as
a isobar with glucose 1,6-diphosphate because they are
indistinguishable on the metabolomics platform). Together,
ketogenesis is reduced which is consistent with relatively low
acetyl-CoA and thus relatively low activation of pyuvate
carboxylase (gluconeogenesis) and the fructose 1,6-diphosphate
is elevated, which is an allosteric activator of the enzyme
pyruvate kinase (glycolysis). These findings indicate aberrant
regulation of liver glucose metabolism in PON1-deficient mice
in the fasted condition. Low levels of the 3-carbon
intermediates as well as lactate suggest that despite high
fructose 1,6-diphosphate, glycolysis is not activated. Moreover,
these changes were accompanied by a reduction in Krebs cycle
activity, as indicated by significantly lower levels of several
intermediates. In addition, increased levels of several
intermediates in the pentose phosphate pathway (PPP)
including ribulose 5-phosphate/xylulose 5-phosphate (isobars)
and ribose 5-phosphate were observed in PON1-deficient mice
relative to wild-type, which suggest a shift from glycolysis to the
PPP. Because the early steps in the PPP are important for

Figure 4. Alterations in the glycolytic pathway, Krebs cycle, and amino acid pathways in PON1-deficient mice compared to wild-type animals. The
data on the right show the quotient of the areas-under-the-peak of the PON1-deficient mice relative to those of the wild-type animals. Decreased and
increased metabolites that achieve statistical significance are shown in green and red, respectively.
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generating reducing equivalents in the form of NADPH, this
elevation may reflect higher requirements to regenerate
reduced glutathione. Overall, livers from PON1-deficient mice
showed an impaired ability to obtain energy from sugar (Figure
4) or fat.
Amino Acid and Nucleotide Metabolism. Amino acid

levels were significantly lower in PON1-deficient liver tissue
(Figure 4). The values reflect the combined influence of uptake
from the circulation, de novo synthesis, protein synthesis and
degradation rates, as well as amino acid catabolism. The urea
cycle, a key aspect of the nitrogen biochemical pathway, can
serve as a marker of amino acid catabolic rates. Intermediates in
this cycle were also reduced in livers of PON1-deficient mice
suggesting that the low amino acid levels are present even in
the circumstance of reduced catabolism. Although liver can
extract amino acids from the circulation via specific amino acid
transporters, one hypothesis to explain this impact of PON1
deficiency on amino acid levels in the liver is that the severe
depletion of glutathione, as a result of high oxidative demands,
reduces the γ-glutamyl cycle activity. This not only serves to
recycle glutathione but also to transfer amino acids across the
plasma membrane.
With regard to nucleotide metabolism, we observed

significant increases in orotate and inosine in PON1-deficient
mice, relative to their wild-type counterparts. Orotate is known
to accumulate under conditions in which ornithine, as a
substrate for ornithine transcarbamoylase, is limited, and as
such, this suggests that the two impacts of PON1 deficiency in

the liver may be related (Supplementary Table 1, Supporting
Information).

Cofactors and Vitamins. Coenzyme A is synthesized via a
multistep, ATP-dependent pathway from the vitamin pan-
tothenate. This precursor was significantly reduced in the livers
of PON1-deficient mice. Similar changes were also observed for
several other vitamins and cofactors, including several B-
vitamins and the cofactors flavin adenine dinucleotide and
flavin mononucleotide (Supplementary Table 1, Supporting
Information). Cofactor and vitamin limiting levels in the
PON1-deficient animals are likely to have profound impacts on
multiple biochemical pathways.

Standard Biochemical Analysis of Oxidative Stress Markers

Metabolomic analyses of oxidative stress markers were
confirmed by standard biochemical methods. We observed
that PON1-deficient mice had significant increases in the
hepatic content of MDA, GSSG and 8-isoprostanes (indices of
lipid peroxidation), protein carbonyls (indices of protein
oxidation), and 8-oxo-dG (an index of DNA oxidation) (Figure
5).

■ DISCUSSION

Nonalcoholic fatty liver disease (NAFLD) is defined, in
humans, as the accumulation of triglycerides within hepatocytes
that exceeds 5% of liver weight. This alteration is gradually
becoming one of the most common observations in liver
diseases, and is identified using imaging techniques in about
30% of adults.20 Excessive food intake is perceived as one of the

Figure 5. Results of oxidative stress markers in PON1-deficient mice compared to wild-type animals.
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main causes of NAFLD.21 Recent studies show that a high
cholesterol intake is a major stimulant in the development of
NAFLD.22 The present study shows dramatic metabolic and
histological alterations in the livers of PON1-deficient mice fed
a high-fat high-cholesterol diet, suggesting that this enzyme
plays a major role in the protection against diet-induced fatty
liver. Enhanced hepatic oxidative stress is demonstrated in our
PON1-deficient mice by the increased concentrations of several
biochemical markers of lipid, protein and DNA oxidation, and
by the increased GSSG/GSH ratio. A notable consequence of
oxidative stress is the increased concentration of the
peroxidized lipids 9-HODE and 13-HODE. These compounds
inhibit the incorporation of triglycerides into lipoproteins23

and, as such, may contribute to the development of steatosis.
They also stimulate extracellular matrix synthesis,24 and thus
provide a link between benign steatosis and fibrosis.
Several studies indicate a strong association between

oxidative stress and lipid alterations in steatosis and
steatohepatitis.25 The present study showed PON1 deficiency
to be associated with decreased carnitine levels which, in turn,
may be explained by altered amino acid metabolism. Carnitine
is a key factor in fatty acid oxidation, that is, the transport of
free fatty acids into the mitochondrial matrix is regulated by the
carnitine-dependent enzyme shuttle.26 A decreased hepatic
carnitine concentration could result in inhibition of free fatty
acid oxidation, and this derangement is associated with
increased fat content.27 Our model may differ, perhaps, from
human steatosis, since it is not clearly evident whether
downregulation of fatty acid oxidation is involved in the
onset of this derangement.22 Kotronen et al.27 had not found
any alterations in hepatic fatty acid oxidation in patients with
NAFLD, both in the basal state and after exogenously induced
hyperinsulinemia.
Data are scarce regarding the pattern of hepatic fatty acid

composition in NAFLD. We observed decreased concen-
trations of most free fatty acids in PON1-deficient mice, and a
decreased PUFA/MUFA ratio. These results are similar to
those of De Almeida et al.28 showing that patients with
steatohepatitis had higher MUFA concentrations than control
subjects. In addition, Wang et al.29 observed a decrease in
PUFA and in PUFA and saturated fatty acids in mice receiving
a high-fat, high-cholesterol diet supplemented with 0.5% bile.
PUFA are known to play an important role in stimulating the
expression of PPARα, and they play an anti-inflammatory and
hepatoprotective role as well.30

Hepatic lipid metabolism is closely linked to glucose
metabolism. Our results show that PON1 deficiency is
associated with a general decrease in the glycolytic and Krebs
cycle pathways, indicating a decreased ability to obtain energy.
The mechanisms underlying these alterations cannot be fully
ascertained from the present study, but we also observed
significant decreases in the hepatic concentrations of cofactors
that play key roles in these pathways. We also observed
increased concentrations of ribose 5-phosphate, ribulose 5-
phosphate/xylulose 5-phosphate (isobars) and xylonate. These
data suggest a shift of glucose metabolism from the glycolytic to
the pentose phosphate pathway. This concept is supported by
the observed increased concentrations of mannose and
fructose. Alterations in glycolysis and Krebs cycle may influence
lipid metabolism in several ways. For example, decreased Krebs
cycle may decrease acetyl-CoA carboxylase and, subsequently,
fatty acid synthase (FAS) leading to an inhibition of fatty acid
synthesis. This mechanism would explain the general decrease

in fatty acid concentrations observed in our study. However,
this effect could be partially counteracted by the increased
xylulose 5-phosphate, which stimulates the carbohydrate
responsive element binding protein, and stimulates FAS
activity.31

Hepatic amino acid concentrations were notably decreased in
PON1-deficient mice, with the exceptions of methionine
sulfoxide and taurine, which were increased. Methionine
sulfoxide is the oxidized form of methionine and cannot be
utilized by tissues. An increase in the concentration of this
metabolite could result in a decreased methionine availability.
Methionine, as a key methyl group donor for choline
biosynthesis, is a precursor for phospholipid synthesis. Hence,
a decrease would imply impairment in the synthesis and
secretion of very-low density lipoproteins which, in turn, would
contribute to the development of steatosis.32 Indeed, the
administration of a choline- and methionine-deficient diet to
mice is widely employed as an experimental model of
stetatohepatitis.33 Taurine plays an important role in several
metabolic functions such as detoxification, membrane stabiliza-
tion, and antioxidation, suggesting that the observed increase is
a compensatory defense mechanism. This hypothesis is
supported by data from Chang et al.34 who observed that the
administration of taurine produced a decrease in the hepatic
accumulation of triglycerides in hamsters receiving a high-fat
diet. They also observed that taurine increased the cytochrome
7A1 levels, which intervenes in the catabolism and secretion of
cholesterol. Further, Chen et al.35 reported that the
administration of taurine protected against the development
of steatosis in rats fed ethanol, by reducing oxidative stress and
downregulating the expression of adiponectin and tumor
necrosis factor.
Our results identified intense MCP-1 immunostaining

around lipid droplets in hepatic tissue sections of PON1-
deficient mice, which were not observed in wild-type animals.
We previously reported similar findings (including high plasma
MCP-1 concentrations) in low-density lipoprotein receptor-
deficient mice fed a high-fat high-cholesterol diet.36 In both
models, MCP-1 hepatic expression is detected around lipid
droplets, suggesting a close link between steatosis and the
inflammatory response. Taken together, these data suggest that
the liver is a significant contributor to the organism’s MCP-1
pool. This is a novel concept, since it is generally accepted that
the hepatic inflammation in NAFLD and NASH is related to
adipose tissue MCP-1 overexpression which would indirectly
influence hepatic inflammation.21 We suggest that, on the
contrary, it is the hepatic MCP-1 synthesis that plays the
significant role in this process. The finding that PON1
deficiency is associated with increased MCP-1 expression is
not surprising since, as we had demonstrated several years ago,
PON1 inhibits MCP-1 production in endothelial cells
incubated with oxidized low density lipoproteins.37

Finally, the present study provides new data on the
relationships between steatosis and hepatocellular carcinoma
(HCC). This type of cancer can occur in livers without
underlying cirrhosis.38,39 The present study has identified two
pro-oncogenic molecules: orotate and 8-oxo-dG, the concen-
trations of which are increased in the livers of PON1-deficient
mice. Hepatic concentrations of orotate in PON1-deficient
mice are 2-fold that in control animals. This compound is a
precursor of pyrimidine nucleotides, and its excess has been
shown to alter DNA synthesis40 and to promote liver
carcinogenesis.40,41 Conversely, 8-oxo-dG-adducts are produced
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as a consequence of oxidative DNA damage;18 the adducts
being mutagenic and the cause of G-to-T transversions.42

Concentrations of 8-oxo-dG have been reported to be notably
increased in the livers of rats treated with the powerful
hepatocarcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin.43 The
association between NAFLD and HCC represents a growing
area of study, albeit the specific sequence of events leading to
HCC in the setting of NAFLD is still unresolved. We present
novel data indicating that steatosis induced by PON1 deficiency
is associated with increased concentrations of at least two pro-
oncogenic molecules which could explain, at least in part, the
increased susceptibility of fatty liver toward cancer. Our study
also suggests that the measurement of orotate and 8-oxo-dG
could be useful biomarkers in estimating the probability of
HCC development in patients with NAFLD. However, we did
not specifically investigate HCC in the present work, and
further studies are warranted in appropriate patients to explore
this hypothesis.
Nutritional investigations in humans have suggested that

high-fat high-cholesterol diets are important determinants in
NAFLD, independently of the concomitant development of
insulin resistance or metabolic syndrome.22 High cholesterol
intake and increased serum cholesterol concentrations have
been reported to be among the strongest risk factors in the
development of NAFLD.44,45 Cholesterol overload can
upregulate the LXRα-SREBP-1c pathway in the liver and
activate fatty acid synthesis which, in turn, would lead to
steatosis.22 Previous studies have shown that NAFLD is
associated with oxidative stress and low serum and hepatic
PON1 levels in patients and in rats with fatty liver induced by a
methionine-choline-deficient diet.46−48 The finding of reduced
hepatic PON1 activity in rats with experimental steatosis is
interesting and, together with the present investigation, suggest
that intracellular PON1 is more important than circulating
PON1 in protecting liver tissue from dietary-induced changes
leading to NAFLD.
A caveat to the present results is that, since NAFLD is not a

monogenic disorder in humans, studies in animals with merely
a single gene deletion may not mimic the etiology of the human
disease at the molecular level. In addition, the small number of
animals in the present study would suggest that our findings be
considered preliminary. However, the phenotypic alterations
observed in our experimental model are essentially consistent
with the current knowledge of human NAFLD.

■ CONCLUSION

The main goal of the present investigation was to demonstrate
that PON1 plays a protective role against hepatic derange-
ments, secondary to fat and cholesterol overnutrition. We
highlight, as well, some biochemical pathways that could
explain the observed relationships between the “benign”
steatosis and more severe forms of liver disease, such as
fibrosis or HCC. Our findings could have considerable clinical
relevance since decreased serum and liver PON1 activity is an
early alteration in patients with liver impairment.10−13
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Tapia, G.; Videla, L. A.; Fernańdez, V. N-3 PUFA supplementation
triggers PPAR-α activation and PPAR-α/NF-κB interaction: anti-
inflammatory implications in liver ischemia-reperfusion injury. PLoS
One 2011, 6 (12), e28502.
(31) Robichon, C.; Girard, J.; Postic, C. L’hyperactivite ́ de la
lipogenes̀e Peut-elle conduire a ̀ la steátose heṕatique? Med. Sci. 2008,
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Universitat Rovira i Virgili, C. Sant Joan s/n, 43201 Reus, Catalonia, Spain

2Departments of Medicine (Division of Medical Genetics) and Genome Sciences, University of Washington, 3720 15th Avenue NE,
Seattle, WA 98195-5065, USA
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We studied the in7uence of PON1 onmetabolic alterations induced by oxidized LDLwhen incubatedwith endothelial cells.HUVEC
cells were incubated with native LDL, oxidized LDL, oxidized LDL plus HDL from wild type mice, and oxidized LDL plus HDL
from PON1-de`cient mice. Results showed alterations in carbohydrate and phospholipid metabolism and increased apoptosis in
cells incubated with oxidized LDL. Xese changes were partially prevented by wild type mouse HDL, but the eaects were less
eaective with HDL from PON1-de`cient mice. Our results suggest that PON1may play a signi`cant role in endothelial cell survival
by protecting cells from alterations in the respiratory chain induced by oxidized LDL. Xese results extend current knowledge on
the protective role of HDL and PON1 against oxidation and apoptosis in endothelial cells.

1. Introduction

Atherosclerosis, one of the major causes of morbidity and
mortality in theWesternworld, involves complex interactions
among endothelial cells of the arterial wall, blood cells, and
circulating lipoproteins [1]. Oxidative stress, which is mainly
derived from mitochondrial dysfunction, decreases nitrous
oxide (NO) synthesis, upregulates the secretion of adhesion
molecules and in7ammatory cytokines, and is responsible for
the oxidation of low-density lipoproteins (LDLs) [2, 3].Xese
events play a key role in the pathogenesis of atherosclerosis
[4, 5].

Paraoxonase-1 (PON1) is an enzyme found in the cir-
culation associated with high-density lipoproteins (HDLs)
[6, 7]. Xe original function attributed to PON1 was that of
a lactonase, and lipophylic lactones constitute its primary

substrates [8]. PON1 also degrades oxidized phospholipids
and, as such, plays a role in an organism’s antioxidant system
[7]. In the atherosclerosis process, PON1 accumulates in the

artery wall [9], and PON1(−/−) mice have been shown to
have greater levels of oxidized LDL and larger atheromatous
plaques when fed a proatherogenic diet [10]. PON1 also
inhibits the production of the proin7ammatory chemokine
monocyte chemoattractant protein-1 (MCP-1), induced by
oxidized LDL in endothelial cells [11].

Despite its potential clinical and biochemical relevance,
there is a paucity of studies investigating the in7uence of
PON1 on metabolic alterations when oxidized LDL is incu-
bated with endothelial cells. We reasoned that metabolomics
might be a useful tool to evaluate the eaects of this enzyme.
Xe study was complemented with an evaluation of oxidative
stress and apoptosis in this cell line.
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2 Mediators of In7ammation

2. Materials and Methods

2.1. Experimental Design. We employed primary cultures of
human umbilical vein endothelial cells (HUVECs), cultured
according to the manufacturer’s instructions (Invitrogen,
Carlsbad, CA, USA). HUVECs were grown in medium 200
supplemented with low serum growth, 10mg/L gentamicin
and 0.25mg/L amphotericin (all these reagents were from
Invitrogen), and maintained in a humidi`ed incubator at
37∘C, with 5% CO2. Cells were subcultured when 80%–90%
con7uent. In all the experiments, cells were plated in 10 cm
Petri dishes at a density of 2.5 × 103 cells per dish, and at
passage 3. Petri dishes at 70% con7uence were incubated
over 24 h with isolated human LDL (50mg/L), oxidized
LDL (50mg/L), oxidized LDL (50mg/L) + HDL (40mg/L)
from wild type mice, oxidized LDL (50mg/L) + HDL

(40mg/L) from PON1(−/−) mice, or with serum-free media
as controls. All incubations were performed in serum-free
media.

Normal human sera were obtained from healthy indi-
viduals participating in a population-based study being
conducted in our institution. Xe study was approved by
the Ethics Committee (Institutional Review Board) of the
Hospital Universitari Sant Joan de Reus. Sera were pooled
and used for lipoprotein fractionation and LDL isolation by
sequential preparative ultracentrifugation [12, 13]. Human
oxidized LDL was prepared by incubation of native LDL
with 5"M CuSO4, as described previously [11]. Increased
thiobarbituric acid-reactive substances levels were detected
in LDL aoer oxidation (45 versus <0.5mmol/g protein).

Normal mice were from the C57BL/6J strain (Charles
River Labs., Wilmington, MA, USA), and PON1(−/−) mice
were the progeny of those provided by the Division of
Cardiology of the University of California in Los Angeles and
were of a C57BL/6J genetic background [10]. Animals were
housed under standard conditions and given a commercial
mouse diet (14% Protein Rodent Maintenance Diet, Har-
lan, Barcelona, Spain) in accordance with our institutional
guidelines. At 16 weeks of age, they were sacri`ced and
approximately 30mL of sera were pooled for HDL isolation
[12, 13].

2.2. Metabolomics Analyses. Xe metabolomics platform
employed in the present study has been previously described
in detail [14]. Brie7y, small molecule metabolites from an
equivalent amount of cell cytoplasm homogenates were
extracted with methanol, and the resulting extract divided
into equal fractions for analysis by ultrahigh performance
liquid chromatography-tandem mass spectrometry (UPLC-
MS/MS; separately under positive mode and negative
mode) and gas chromatography-mass spectrometry (GC-
MS). Metabolites were identi`ed by comparing the ion data
obtained to a reference library of ∼2,800 chemical stan-
dard entries. Comparisons included retention times, mass
($/%), and MS or MS/MS spectra. Results of metabolomics
measurements are expressed as the mean quotients between
the areas under the peak of the diaerent experimental
conditions.

Diaerences between groups were assessed with Welch’s
&-test for group comparisons. Statistical analyses were per-
formed with the program “R” http://cran.r-project.org/.

2.3. Caspase 9 Western Blot. We analyzed caspase 9 expres-
sion in endothelial cell homogenates as a marker of apoptosis
pathways. Xe cytoplasmic homogenates were prepared with
a Precellys 24 homogenizer (Bertin Technologies, Montigny-
le-Bretonneux, France) [15]. Denaturing electrophoresis was
performed in polyacrylamide gels (4–12%) from Invitrogen
(Carlsbad, CA, USA). Transfer was performed with the iBlot
Gel Transfer Device (Invitrogen). Blotting was performed
with the ECL Advanced Western Blotting Detection Kit (GE
Healthcare, Fair`eld, CT, USA) using a rabbit anticaspase 9
antibody at 1 : 2000 dilution (Abcam, Cambridge, UK) [13].

2.4. Measurement of Apoptosis by Flow Cytometry. Cells

(300 "L of cell suspension at approximately 109 cells/L) were
stained with annexin V conjugated with 7uorescein isothio-
cyanate in the presence of propidium iodide.Xis enables the
detection of phosphatidylserine on the surface of apoptotic
cells. We used the Annexin-FITC Kit (Beckman-Coulter,
Fullerton, CA, USA) according to themanufacturer’s instruc-
tions, in a Coulter Epics XL-MLC 7ow cytometer (Beckman-
Coulter).

2.5. Measurement of PON1 Activities and Total Peroxide Con-
centrations. PON1 lactonase activity in the culture’s super-
natant was measured as the hydrolysis of 5-thiobutyl buty-
rolactone (TBBL), as described [16]. Xe assay reagent con-
tained 1mmol/L CaCl2, 0.25mmol/L TBBL, and 0.5mmol/L
5,5#-dithio-bis-2-nitrobenzoic acid (DTNB) in 0.05mmol/L
Tris-HCl buaer (pH = 8.0). Xe change in absorbance was
monitored at 412 nm. Activities were expressed as U/L (1U =
1mmol of TBBL hydrolyzed per minute). Xe concentration
of total peroxides in the supernatant was determined by a
colorimetric enzymatic assay (Immundiagnostik, AG, Ben-
sheim, Germany).

3. Results and Discussion

PON1 lactonase activity remained relatively low in super-
natants of those cultures not containing added HDL. PON1
lactonase activity signi`cantly increased in those cultures
with normal HDL and returned to low levels in those
cultures with HDL from PON1(−/−) mice. Xese results were
as expected and provide a quality control of the HDL prepa-
rations obtained (Figure 1(a)). Total peroxide concentrations
in the supernatants were maximal in the cultures with added
oxidized LDL and showed a signi`cant decrease following
the addition of normal HDL. Xis decrease was not as
marked following the addition of HDL from PON1(−/−) mice
(Figure 1(b)).

We analyzed 124 biochemical compounds by nondirected
metabolomics, corresponding to carbohydrate, lipid, amino
acid, and nucleotide metabolism, as well as vitamins and
xenobiotics.We obtained statistically signi`cant variations in
37 metabolites (Table 1). Xe main `ndings corresponded to
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Figure 1: PON1 lactonase activity (a) and total peroxide concentrations (b) in the supernatant of the HUVEC cell culture (' = 3, for each
experiment). Endothelial cells were incubated over 24 h with 50mg/L isolated human LDL (L); 50mg/L oxidized LDL (O); 50mg/L oxidized

LDL + 40mg/L HDL from wild type mice (OH); 50mg/L oxidized LDL + 40mg/L HDL from PON1(−/−) mice (KO); or with serum-free

media as controls (C). ∗( < 0.05, with respect to C; †( < 0.05, with respect to O; ‡( < 0.01, with respect to C.

carbohydrate and phospholipid metabolism and are summa-
rized in the following sections.

3.1. Hexose Metabolism. Xe addition of LDL to cul-
tured endothelial cells decreased the levels of gluconate,
galactose, and phosphorylated hexose intermediates. Xese
molecules are important entrance intermediates in energy-
and biomass-generating pathways such as glycolysis, pentose
phosphate, and protein glycosylation.Xeir decreases suggest
that these pathways were activated to a greater extent in
endothelial cells treated with LDL, compared to control-
treated cells. In contrast, increased levels of gluconate, galac-
tose, and phosphorylated hexose intermediates were seen in
all cells that were treated with oxidized LDL, relative to LDL
alone, and regardless of whether HDL was also added to the
cultures (Figure 2).

3.2. Glycolysis and Tricarboxylic Acid (TCA) Cycle. Relative
to control cultures, the addition of LDL resulted in increased
levels of 3-phosphoglycerate and 2-phosphoglycerate (which
are 3-carbon glycolytic intermediates). Xis same treatment
also increased the levels of the TCA cycle intermediates
(fumarate and malate) relative to control cultures. An inter-
pretation of these data is that uptake of LDL by endothelial
cells results in the generation of acetyl-CoA, which drives 7ux
through the TCA cycle. Increased levels of LDL-generated
acetyl-CoA may have relieved the need for carbohydrate-
derived precursors, thereby inhibiting glycolytic 7ux into the
TCA cycle and elevating the 3-carbon intermediates.

By comparison, treatment of endothelial cells with oxi-
dized LDL may have induced levels of oxidative stress
that were su{cient to impair normal energy pathways.
For example, in cells treated with oxidized LDL, 6-carbon
glycolytic intermediates accumulated, whereas the 3-carbon
intermediates were reduced. Xis may be due to changes in
glyceraldehyde-3-phosphate dehydrogenase (GADPH; levels
or activity) in response to oxidized LDL, since superox-
ide overproduction inhibits GADPH through a mecha-
nism that involves poly (ADP-ribose) polymerase (PARP)

activation [16]. Likewise, TCA cycle intermediates were
lower in oxidized LDL-treated cells due, most likely, to the
attenuated conversion of 6-carbon glycolytic intermediates
to 3-carbon compounds that feed into this cycle through
pyruvate and acetyl-CoA. Xese changes suggest that energy
production through glycolysis is impaired, since ATP gener-
ation occurs downstream of GADPH activity.

Xe addition of normal HDL to oxidized LDL-treated
cells partially reverses its impact on energy metabolism
pathways, since levels of the 3-carbon glycolytic intermedi-
ates as well as TCA cycle intermediates are more similar
to levels observed aoer LDL treatment alone. It is of note
that the impact of addition of HDL from PON1(−/−) mice
on these molecules was intermediate between the eaects
produced by treatment with PON1-containing HDL and
of no HDL (Figure 3). Xis observation is of considerable
importance, because PARP activation and its consequent
metabolic changes have been associated with endothelial
dysfunction in diseases such as atherosclerosis and diabetes
[17, 18]. Indeed, the levels of circulating endothelial cells
are increased in patients with diabetes mellitus [19], and
PON1 has been shown to attenuate diabetes development in
mice [20, 21]. Our results suggest that the bene`cial role of
PON1 may involve, at least in part, a protection against the
biochemical changes leading to endothelial dysfunction.

3.3. Phospholipid Metabolism. Levels of choline, ethanola-
mine, and glycerol-3-phosphate—key building blocks for
phospholipids—were similar in endothelial cells following
treatment with LDL, when compared to levels in control
cells. By comparison, oxidized LDL reduced levels of phos-
pholipid precursors and increased the levels of at least one
phospholipid breakdown product. Xis could indicate that
oxidized LDL induces membrane damage, breakdown, or
remodeling. As was observed for the energy metabolism
pathways, coadministration of normalHDL to oxidized LDL-
treated cells reversed, or partially reversed, these deleteri-

ous eaects. However, the addition of HDL from PON1(−/−)

mice only generated subtle changes in phospholipid-related

UNIVERSITAT ROVIRA I VIRGILI 
INFLUENCE OF PARAOXONASE-1 DEFICIENCY ON METABOLIC ALTERATIONS AND INFLAMMATION 
Anabel  Garcia  Heredia 
 



4 Mediators of In7ammation

Table 1: Heat map of metabolites showing statistically signi`cant diaerences between groups.

Pathway Metabolite L/C∗ O/C∗ O/L∗ OH/O∗ KO/O∗ KO/OH∗

Glycine, serine, and threonine metabolism Xreonine 1.40 0.80 0.57 0.96 1.10 1.16

Glutamate metabolism N-acetylglutamate 1.14 0.84 0.73 1.10 0.92 0.83

Phenylalanine and tyrosine metabolism
Phenylalanine 1.12 0.63 0.56 1.41 1.19 0.84

Tyrosine 1.11 0.62 0.56 1.57 1.37 0.87

Valine, leucine, and isoleucine metabolism

Isoleucine 1.36 0.65 0.48 1.57 1.38 0.88

Leucine 1.09 0.70 0.64 1.25 1.07 0.85

Valine 1.26 0.72 0.57 1.18 1.08 0.91

Urea cycle; arginine-, proline-, metabolism Praline 1.18 0.89 0.75 0.92 0.97 1.05

Gamma-glutamyl peptides Gamma-glutamyl-leucine 0.73 0.87 1.19 1.09 1.48 1.36

Amino-sugar metabolism Fucose 0.72 0.76 1.05 1.25 1.06 0.85

Fructose, mannose, galactose, starch, and
sucrose metabolism

Galactose 0.37 0.94 2.58 1.04 0.73 0.7

Mannose-6-phosphate 0.64 2.21 3.44 1.01 0.87 0.87

Glucose-6-phosphate 0.33 2.06 6.20 1.22 1.17 0.96

Fructose-6-phosphate 0.50 2.50 5.01 1.13 0.94 0.83

2-phosphoglycerate 2.28 0.67 0.29 2.17 1.05 0.48

3-phosphoglycerate 1.62 0.42 0.26 2.92 1.94 0.67

1,3-dihydroxyacetone 0.85 0.98 1.15 0.80 0.60 0.75

Phosphoenolpyruvate 1.06 0.23 0.22 4.66 3.05 0.66

Nucleotide sugars, pentose metabolism Gluconate 0.43 0.89 2.07 1.06 0.86 0.81

TCA cycle
Fumarate 1.35 0.84 0.62 1.10 1.12 1.02

Malate 1.31 0.89 0.68 1.21 1.07 0.88

Oxidative phosphorylation
Acetyl phosphate 1.00 1.12 1.12 0.84 0.59 0.70

Phosphate 0.96 1.45 1.52 0.89 0.70 0.78

Medium chain fatty acid Laurate (12 : 0) 0.98 1.15 1.17 0.92 0.74 0.81

Fatty acid, dicarboxylate Undecanedioate 1.28 1.52 1.19 2.55 0.70 0.28

Glycerolipid metabolism

Ethanolamine 1.00 0.68 0.68 1.28 1.55 1.21

Choline 1.07 0.84 0.78 1.29 1.25 0.96

Glycerol 3-phosphate 1.54 0.31 0.20 4.13 2.87 0.69

Glycerophosphorylcholine 0.60 1.17 1.97 0.80 0.78 0.97

Purine metabolism, adenine containing Adenosine 3#-monophosphate 2.38 0.73 0.31 1.70 1.09 0.64

Pyrimidine metabolism, uracil containing
Uracil 1.22 0.48 0.40 1.94 1.91 0.99

Uridine 5#-monophosphate 0.50 1.19 2.38 0.84 0.92 1.10

Pantothenate and CoA metabolism Pantothenate 0.98 0.87 0.89 1.19 1.13 0.95

Ribo7avin metabolism Ribo7avin (Vitamin B2) 0.68 0.76 1.11 1.15 1.11 0.97

Benzoate metabolism 4-hydroxy catechol 1.23 1.37 1.11 0.79 0.43 0.54

Chemicals
Glycolate (hydroxyacetate) 1.12 1.55 1.38 0.47 0.77 1.64

Glycerol 2-phosphate 0.98 0.65 0.67 1.96 1.11 0.57

Endothelial cells were incubated over 24 h with 50mg/L isolated human LDL (L); 50mg/L oxidized LDL (O); 50mg/L oxidized LDL + 40mg/L HDL fromwild

type mice (OH); 50mg/L oxidized LDL + 40mg/L HDL from PON1(−/−) mice (KO); or with serum-free media as controls (C). Bold italic and italic cells in the
Table indicate% ≤ 0.05. Bold italic indicates that themean values are signi`cantly higher; italic indicates signi`cantly lower. Bold text indicates 0.05 < % < 0.10.
∗Results are expressed as themean quotients of the areas under the peak of the diaerent experimental conditions. For example, galactose values are, on average,
2.58 times higherwhen endothelial cells are incubatedwith oxidized LDL thanwhen incubatedwith native LDL.Allmeasurements were performed in triplicate.

compounds, when compared to treatment with normal HDL
(Figure 4).

3.4. Apoptosis. Xe observation of alterationsin phospho-
lipids levels and the suggested membrane damage channeled

us towards investigating the possibility of an increased
apoptosis in endothelial cells incubated with oxidized LDL,
and a possible protection by introducing HDL as coincu-
bation. Hence, we analyzed caspase 9 protein expression.
Xe activation of this enzyme is a good indicator of apop-
tosis induction, since caspase 9 plays a determinant role in
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Figure 2: Variations in the hexose metabolites in HUVEC cell homogenates (' = 3, for each experiment). Endothelial cells were incubated
over 24 h with 50mg/L isolated human LDL (L); 50mg/L oxidized LDL (O); 50mg/L oxidized LDL + 40mg/L HDL from wild type mice

(OH); 50mg/L oxidized LDL + 40mg/L HDL from PON1(−/−) mice (KO); or with serum-free media as controls (C). ∗( < 0.05 with respect

to C; †( < 0.05 with respect to L.

apoptosome formation [22]. Also, we measured the numbers
of apoptotic cells by 7ow cytometry. We observed that
oxidized LDL addition increased caspase 9 expression and the
percentage of apoptotic endothelial cells, when compared to
control cells and cells treatedwith normal LDL.Coincubation
with normalHDL completely preempted this eaect.However,

the in7uence of HDL from PON1(−/−) animals was much
lower (Figures 5(a) and 5(b)). We observed a strong direct
correlation () = 0.91; ( < 0.001) between total perox-
ides concentrations and the percentage of apoptotic cells
(Figure 5(c)). Previous studies had shown that increased lipid
peroxidation in HDL particles from coronary artery disease
patients was associated with an impaired capacity of this par-
ticle to stimulate endothelial NO production [23]. Notably,
PON1 has been reported to prevent lipid peroxidation in
HDL particles and to promote HDL-mediated inactivation of
oxidized lipids in LDL. Its activity was shown to be decreased
in patientswith coronary disease [7]. Further,HDLandPON1
decreased the formation of malondialdehyde-like epitopes
and the formation of apoptotic particles in monocytes [24].
A very recent study showed that HDL from healthy people
induced the expression of endothelial antiapoptotic protein

Bcl-xL and reduced endothelial cell apoptosis in vitro as well
as in vivo in apoE-de`cient mice. In contrast, HDL from
coronary artery disease patients did not inhibit endothelial
apoptosis, failed to activate endothelial Bcl-xL, and stimu-
lated endothelial proapoptotic pathways [25]. Our `ndings
of a decreased oxidized LDL-induced apoptosis by normal

HDL, but not by HDL from PON1(−/−) mice, together with
a signi`cant association between lipid peroxidation (as mea-
sured by total peroxides concentrations) and the percentage
of the apoptotic cells would tend to con`rm this very recent
information.

Our results suggest that PON1 may play a signi`cant
role in cell survival by improving mitochondrial function.
Indeed, mitochondria regulate apoptosis in response to
cellular stress signals and, hence, determine whether cells
live or die. As such, it is probable that peroxides constitute
important candidates in the regulation of cell death, and that
mitochondria act as both sensor and eaector sites [26]. Xis
could explain the in7uence of apoptosis-related proteins on
mitochondrial respiration. Whether or not this `nding has
any impact on the atherosclerosis process warrants further
exploration.
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Figure 3: Variations in the metabolites of the glycolytic pathway and tricarboxylic acid cycle in HUVEC cell homogenates (' = 3, for each
experiment). Endothelial cells were incubated over 24 h with 50mg/L isolated human LDL (L); 50mg/L oxidized LDL (O); 50mg/L oxidized

LDL + 40mg/L HDL from wild type mice (OH); 50mg/L oxidized LDL + 40mg/L HDL from PON1(−/−) mice (KO); or with serum-free
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4. Conclusion

Epidemiological studies have shown that the risk of
atherosclerosis is inversely associated with HDL concen-
trations. Xe protective eaect of this lipoprotein has been
attributed, in part, to the antioxidant and anti-in7ammatory
action of PON1 [27]. We have showed, previously, that
PON1 inhibits MCP-1 induction in endothelial cells [11],
which suggested a protective role against liver in7ammation
mediated by MCP-1 [28]. More recent studies indicated
that the anti-in7ammatory eaect of PON1 depends on its

association with HDL [29], and that PON1 stimulates HDL
antiatherogenicity [30], and macrophage response [31], and
increases the duration over which HDL is able to prevent
LDL oxidation [32].

Xe present study is novel in using a metabolomic
approach to investigate the protective eaect of PON1 on
endothelial cells incubated with oxidized LDL. We observed
important metabolic alterations in human endothelial cells
incubated with oxidized LDL.Xese include an impaired gly-
colysis, TCA cycle, phospholipids, and activation of apoptotic
pathways. Xese changes were ameliorated by incubation
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with normal HDL, while HDL isolated from PON1(−/−) mice
showed an impaired e{ciency to protect against the oxLDL-
induced changes.Xese results extend the current knowledge
on the protective role of HDL and PON1 against oxidation in
endothelial cells.
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a b s t r a c t

Metformin is the first-line pharmacological treatment of diabetes. In these patients, metformin reduces

body weight and decreases the risk of diabetes-related complications such as cardiovascular disease.

However, whether metformin elicits beneficial effects on liver histology is a controversial issue and, as

yet, there is no consensus. Paraoxonase-1 (PON1), an enzyme synthesized mainly by the liver, degrades

lipid peroxides and reduces oxidative stress. PON1 activities are decreased in chronic liver diseases. We

evaluated the effects of metformin in the liver of PON1-deficient mice which, untreated, present a mild

degree of liver steatosis. Metformin administration aggravated inflammation in animals given a standard

mouse chow and in those fed a high-fat diet. Also, it was associated with a higher degree of steatosis in

animals fed a standard chow diet. This report is a cautionary note regarding the prescription of met-

formin for the treatment of diabetes in patients with concomitant liver impairment.

© 2016 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Metformin (dimethylbyguanidine) is the first-line pharmaco-

logical treatment of diabetes. In these patients, metformin assists

weight loss and reduces the risk of diabetes-related end-points

such as microvascular disease, myocardial infarction (large vessel

disease) and all-causemortality. This drug has also been reported to

elicit beneficial effects on liver histology, by reducing hepatic

steatosis [1]. In normal mice fed with a high-fat diet, metformin has

been reported to fully reverse hepatic steatosis and inflammation;

effects that appear to be mediated by upregulation of hepatic

adenosine monophosphate-activated protein kinase (AMPK) and,

as well, to be associated with changes in lipogenic gene expression,

such as fatty acid synthase (FASn) [2]. However, clinical studies

investigating the effects of metformin on the liver have not reached

a consensus [3e6]. Metformin possesses multiple pleiotropic ef-

fects [7e10], and one of the most important is to decrease oxidative

stress by enhancing the hepatic levels of antioxidant enzymes such

as paraoxonase-1 (PON1) [11,12]. PON1 is a lipolactonase synthe-

sized, mainly, by the liver. It degrades oxidized phospholipids and,

as such, plays a role in an organism's antioxidant system [13,14].

Preliminary observations from our laboratory suggest that PON1 is

an important factor in explaining the beneficial effects of metfor-

min in the liver [15].

Some reports have suggested that metformin may be useful in

the treatment of hepatitis or hepatocellular carcinoma [16].

Conversely, however, several cases of metformin-induced aggra-

vation of liver injury have been reported in patients with liver

disease [17e20]; liver damage being documented as the elevation

of serum liver enzymes, and improvement in liver function being

Abbreviations: ALT, Alanine aminotransferase; AMPK, Adenosine

monophosphate-activated protein kinase; AST, Aspartate aminotransferase; BAT,

Brown adipose tissue; CD, Chow diet; eWAT, Epididimal white adipose tissue; FASn,

Fatty acid synthase; FPLC, Fast protein liquid chromatography; GTT, Glucose toler-

ance test; HDL, High-density lipoproteins; HFD, High-fat and high-cholesterol diet;

iWAT, Inguinal white adipose tissue; CCL2, Chemokine (CeC motif) ligand-2;

pAMPK, Phosphorylated AMPK; PON1, Paraoxonase-1; vWAT, Visceral white adi-

pose tissue.
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documented following discontinuation of the drug for 1 week.

Unfortunately, the mechanism by which metformin may induce

liver injury is unknown. Severe liver impairment is associated with

inhibited hepatic and circulating PON1 levels. Indeed, serum PON1

activity is strongly decreased in patients with chronic hepatitis or

cirrhosis, and the magnitude of the decrease is related to the extent

of liver damage [21,22]. Moreover, a study found a decreased he-

patic PON1 activity related to enhanced lipid peroxidation and liver

damage in rats with experimental fibrosis [23]. In addition, PON1

over-expression provided strong protection against the develop-

ment of experimentally-induced liver disease [24].

With all these pointers in mind, the possibility that PON1 defi-

ciency itself is associatedwith toxic effects of metformin in the liver

warrants investigation. The objective of this study was to evaluate

whether metformin elicits toxic effects in the livers of PON1-

deficient mice fed a standard chow diet or a high-fat diet.

2. Methods

2.1. Experimental animals and dietary intervention

Male PON1-deficient mice of the C57BL/6J genetic background

were the progeny of those provided to us by the Division of Car-

diology of the University of California in Los Angeles [25]. These

mice develop amild degree of spontaneous liver steatosis even on a

standard chow diet [26]. At 10 weeks of age, mice were fed a high-

fat and high-cholesterol diet [HFD group; n¼ 16; the diet contained

w/w 20% fat and 1.00% cholesterol (Harlan, Barcelona, Spain)], or a

chow diet [CD group; n ¼ 16; the diet contained w/w 14% protein

and 0.03 cholesterol (Harlan, Barcelona, Spain)]. The groups were

further divided to receive metformin (n ¼ 8) or placebo (regular

drinking water; n ¼ 8). Metformin (DIANBEN® 850 mg) was added

to the water to achieve a dose of 166 mg Kg"1 day"1. At 24 weeks of

age, animals were sacrificed after an overnight fast. Liver, pancreas,

visceral white adipose tissue (vWAT), epididimal white adipose

tissue (eWAT), inguinal white adipose tissue (iWAT), and brown

adipose tissue (BAT) were removed and weighed. Portions of tissue

were stored at "80 #C until needed for histological examination, at

which stage the tissues were fixed for 24 h in 10% neutral-buffered

formalin, embedded in wax, and microtome sectioned for micro-

scopy. Glucose tolerance tests (GTT) were performed in all mice at

one week before sacrifice. Glucose (2 mg g"1 of body weight) was

administered as an intraperitoneal injection under anesthesia.

Measurements of blood glucose concentrations were made at t¼ 0,

15, 30, 60 and 120 min. Glucose was measured with glucose strips

adapted to the Accucheck sensor system (Roche Diagnostics).

Wild-type mice fed with chow diet or HFD and receiving met-

formin or placebo (n ¼ 8, for each group) were used to investigate

the effect of PON1-deficiency in liver histology. All procedures

adhered to those described by the Helsinki accord on animal

experimentation. The study protocol was accepted by the Ethics

Committee on Animal Experimentation of the Faculty of Medicine

of the Universitat Rovira i Virgili (Reus).

2.2. Biochemical measurements

Following an overnight fast, blood samples were collected from

anesthetized animals into blood collection tubes not containing

anti-coagulant. Serum glucose, cholesterol and triglyceride con-

centrations together with alanine aminotransferase (ALT) and

aspartate aminotransferase (AST) activities were determined by

standard clinical laboratory procedures. Analysis of serum lipo-

protein profiles was performed using fast protein liquid chroma-

tography (FPLC), to evaluate differences in cholesterol and

triglyceride distributions among the lipoprotein fractions in the

different experimental groups. Briefly, a pooled serum (200 mL from

each experimental group) was fractionated in a Superose 6/300 GL

column (GE Healthcare Europe, Glattbrugg, Switzerland) equili-

brated with phosphate buffer (NaPi) 50 mM, with NaCl 0.150 M,

pH ¼ 7.0 and eluted (500 ml fractions) with the same buffer.

Cholesterol and triglycerides were measured in the eluted fractions

using photometry, with reagents obtained from Beckman Coulter

(Brea, CA, USA) and read with an automated microplate reader

(BioTeK Instruments Inc., Winooski, VT, USA).

2.3. Histology analyses

Liver and eWAT sections of 2 mm thickness were stained with

hematoxylin and eosin to evaluate histological alterations. Steatosis

extent and eWAT adipocyte size were estimated by image analysis

software (AnalySIS, Soft Imaging System, Munster, Germany). The

degree of steatosis was further evaluated using a semi-quantitative

score (percentage) of hepatocytes containing lipid droplets. The

scores were arbitrarily dichotomized as 1: <33%; 2: 33e66%; 3:

>66%, as previously reported [26]. Chemokine (CeC motif) ligand-2

(CCL2) expressionwas measured as a marker of inflammation using

immunohistochemistry with specific antibodies from Santa Cruz

Biotechnology (Heidelberg, Germany). F4/80 antigen was deter-

mined as a widely-accepted marker of macrophages, using specific

antibodies from Serotec (Oxford, UK). For each sample, we included

a negative control that was treated exactly as the test samples

throughout, except with the primary antibody omitted from the

incubations.

2.4. Western blot analysis

Using a Precellys 24 (Bertin Technologies, France) homogenizer,

liver samples were homogenized in a lysis buffer containing an

inhibitor of the proteases. FASn, AMPK, and its active form phos-

phorylated AMPK (pAMPK), were measured using specific anti-

bodies from Cell Signaling Tech. (Danvers, MA, USA). Arginase and

caspase-9 were measured using antibodies from Abcam Inc.

(Cambridge, UK). Actin expression was used as control (antibodies

from Sta. Cruz Biotech, CA, USA).

2.5. Statistical analysis

Results are shown as means ± SD. Between group comparisons

werewith the Mann-Whitney U test. Statistical significance was set

at P $ 0.05.

3. Results

3.1. Food intake and weight control

As expected, mice fed with HFD weighed more than animals fed

with CD. Metformin administration did not produce any significant

change in weight, nor in the cumulative food ingested in any of the

animal groups (Fig. 1A). Metformin produced a significant increase

of eWAT and vWAT weights, and a small reduction in liver weights

in mice fed with CD, but not in animals fed with HFD. Metformin

also produced a significant increase in pancreas weight in experi-

mental groups of animals, relative to the group of control animals.

We did not observe any significant differences in BAT and iWAT in

relation to metformin administration (Fig. 1B).

3.2. Glucose tolerance test

Glucose tolerance was impaired in mice fed HFD compared to

animals with CD, as shown by the areas under the curve of the GTT
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test results. Metformin administration significantly improved

glucose tolerance in mice fed HFD, but did not produce any sig-

nificant effect in mice fed CD (Fig. 1C).

3.3. Biochemical measurements

Metformin administration was associated with mild, but sig-

nificant, reductions in baseline serum glucose concentration and

AST activity in mice fed CD, and an important increase in serum

triglycerides in animals fed HFD (Table 1). We did not observe any

significant change, associated with metformin administration, with

respect to cholesterol or triglyceride distributions among lipopro-

tein fractions; neither in animals fed CD or those fed HFD

(Supplementary Fig. 1).

3.4. Histological analyses

Hepatic steatosis scores were significantly increased in mice

receiving metformin and CD compared to controls (CD and no

metformin), while there was a trend, albeit statistically non-

significant, towards a decrease in the scores in animals receiving

HFD þ metformin (Fig. 2A). With respect to eWAT, metformin

administration was associated with a mild, but statistically signif-

icant, increase in adipocyte size inmice fed HFD but not in those fed

CD (Fig. 2B). We did not observe any significant changes in iWAT,

vWAT or BAT associated with metformin administration (data not

shown). Metformin administrationwas associated with an increase

in the staining of the pro-inflammatory marker CCL2 in CD as well

as HFD-fed mice. However, the number of macrophages was

increased only in animals fed HFD (Fig. 3).

Fig. 1. Effects of metformin administration in PON1-deficient mice fed a chow diet (CD) and a high fat diet (HFD). A) Cumulative food intake and weight increase in mice having

metformin administered and fed CD (left panel) and HFD (right panel) from 10 to 24 weeks of age. There were significant differences in weight increase between animals given CD

or HFD at all time-points (P < 0.01). B) Relative weight of liver, pancreas, brown adipose tissue (BAT), visceral adipose tissue (vWAT), inguinal adipose tissue (iWAT) and epididimal

white adipose tissue (eWAT) in mice fed CD or HFD. aP < 0.05, with respect to the control group; b P < 0.01, c P < 0.001, with respect to mice given CD diet. C) Metformin effect on

blood glucose levels and area under the curve (AUC) in the glucose tolerance test in animals fed CD or HFD. AUC values are presented as means and SD.

Table 1

Selected serum biochemical variables in PON1-deficient mice. Data presented as means (SD).

Chow diet High fat diet

Control Metformin P value Control Metformin P value

Glucose; mmol/L 14.9 (1.5) 12.9 (1.8) 0.0281 19.5 (3.2) 21.5 (3.8) 0.2766

Cholesterol; mmol/L 1.8 (0.2) 1.7 (0.2) 0.1949 3.8 (0.5) 3.7 (0.3) 0.7430

Triglycerides; mmol/L 0.7 (0.2) 0.5 (0.1) 0.0721 0.3 (0.1) 0.5 (0.2) 0.0148

ALT; mkat/L 2.8 (1.8) 1.6 (0.60) 0.2345 2.2 (1.0) 3.2 (1.5) 0.1996

AST; mkat/L 0.6 (0.2) 0.4 (0.1) 0.0426 0.6 (0.1) 1.0 (0.4) 0.1520

Bilirubin; mmol/L 3.4 (1.7) 3.3 (1.6) 0.1605 5.1 (1.4) 5.0 (1.3) 0.6730
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3.5. Western blot analyses

Treatment with metformin produced a significant decrease in

the pAMPK/AMPK ratio and in arginase expression in mice fed CD,

and a significant decrease in FASn expression inmice fed HFD.With

respect to caspase-9, we detected two bands of molecular weight

45 and 35 KDa. The 45 KDa band corresponded to the inactive form

(procaspase-9). Mature procaspase-9 expression (35 KDa) was

enhanced in mice fed HFD, compared to those fed CD. The

administration of metformin in HFD mice produced an important

reduction in procaspase-9 and a small reduction in caspase-9, while

producing a significant increase in caspase-9 in CD animals. Argi-

nase expression was significantly decreased in mice fed CD, and

there was no significant change in HFD animals (Fig. 4).

3.6. Effect of metformin in liver histology in wild-type mice

To assess whether the deleterious effects of metformin were

specific to PON1-deficient mice, we analyzed the influence of this

product on hepatic steatosis and the number of macrophages in

Fig. 2. Hematoxylin-eosin staining of the liver and eWAT of PON1-deficient mice fed chow diet (CD) and high fat diet (HFD). The arrows show ballooning hepatocytes. Magnification

&10.
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wild-type mice. Metformin administration did not produce any

significant alteration in any of these parameters (Supplementary

Fig. 2).

4. Discussion

Results of the present study show that metformin caused an

aggravation of hepatic steatosis in the livers of PON1-deficient mice

receiving CD, and a general increase in inflammation markers in

animals fed either CD or HFD. Zhou et al. [27] reported that, in

primary hepatocyte cultures, the activation of AMPK (measured as

an increase of the ratio pAMPK/AMPK) was intimately associated

with the pleiotropic actions of metformin. AMPK is activated by an

enhancement in the intracellular AMP/ATP ratio resulting from an

imbalance between ATP production and consumption. Further,

metformin improved lipid metabolism by increasing fatty acid

oxidation and inhibiting lipogenesis; an effect mediated, presum-

ably, by AMPK activation [27e29]. Surprisingly, we did not observe

an activation of AMPK in the liver of mice receiving metformin and

fed either of the diets. We even found a decrease in pAMPK/AMPK

Fig. 3. Immunohistochemical analyses of liver tissues of PON1-deficient mice fed chow diet (CD) and high fat diet (HFD). A) Immunochemical staining for CCL2. The arrows show

positively-stained areas. B) Immunochemical staining for F4/80 and macrophage area quantification. The arrows show positive staining for F4/80. Magnification &20.
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ratio associated with metformin administration in mice fed CD. The

explanation for these contradictory results might be due to our

mice being PON1-deficient and having a certain degree of (mild)

spontaneous steatosis. The effects of metformin in livers with

steatosis remain unclear [30e32]. In our model, AMPK inactivation

in mice receiving CD and metformin could explain the accumula-

tion of fat, resulting in an increase in hepatic steatosis. Neverthe-

less, in mice receiving HFD, metformin administration produces the

opposite effect i.e. a reduction in the accumulation of fat in the liver.

This effect was associated with a reduction in FASn protein

expression. Indeed, Kita et al. [32] had shown that hepatic FAS

expression in metformin-treated mice was decreased. In our study,

these observations were associated with an increase in eWAT

adipocyte size. A possible explanation for this observation is that, in

mice fed HFD, the channeling of fat towards an accumulation in

eWAT is, perhaps, a defense mechanism to protect the liver.

Several studies have shown that metformin induces caspase-9

expression and apoptosis in several cell lines [33e35]. The

Fig. 4. Western blot analyses of liver in PON1-deficient mice fed chow diet (CD) and high fat diet (HFD). A) Immunoblots for pAMPK, AMPK, FASn, arginase, procaspase-9 and

caspase-9. B) Quantification of these immunoblots. Results are shown as arbitrary units (AU). a P < 0.05 with respect to the control group; b P < 0.01 with respect to mice given CD

diet.
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caspase-9 findings are confirmed by the present investigation. For

example, mice given CD andmetformin had a significant increase in

caspase-9 in its active form, while animals fed HFD had an impor-

tant reduction in the expression of the inactive procaspase-9.

However, the above-mentioned studies suggest that this effect is

mediated through AMPK activation while our results suggest that,

on the contrary, AMPK is not necessary to explain the effects of

metformin on caspase-9.

An unexpected result from the present investigation was that

metformin administration caused pro-inflammatory changes in the

livers of CD as well as HFD mice. All the animals had an increased

presence of CCL2 in the liver. This chemokine is responsible for the

recruitment of monocytes to sites of inflammation, followed by

their differentiation to macrophages [36] and is considered

pathognomonic of the onset of the inflammatory reaction. Previous

studies from our group showed that it is a good marker of the

severity of inflammation in patients with liver disease [37]. In

addition, metformin was associated with an increase in the total

number of macrophages in HFD-fed mice and, although the num-

ber of macrophages did not change in CD-fed animals, they had a

significant decrease in arginase expression. Arginase is a marker of

M2 macrophages (which play an anti-inflammatory role) and their

decrease suggests an enhancement of the liver pro-inflammatory

state [38].

We did not observe any significant deleterious effect of met-

formin administrationwith respect to the degree of steatosis or the

number of macrophages in the livers of wild-type mice fed with

either CD or HFD. This is not surprising since the beneficial effects

of metformin in lean or obese mice have been documented

extensively, already [39,40]. Indeed, the main goal of the present

study was to show that these beneficial effects of metformin are

completely reversed when PON1 is lacking (as in PON1-deficient

mice).

In conclusion metformin administration in PON1-deficient mice

produces significant undesirable effects in the liver. These effects

vary depending on the diet administered. An increase in the

severity of steatosis was observed in animals fed CD, together with

an aggravation of inflammation irrespective of the diet adminis-

tered. Since individuals with liver impairment have low hepatic and

serum PON1 activities, this report is a cautionary note on the

administration of metformin in these patients. In the case of ther-

apeutic metformin in diabetes type 2, the advice would be regular

monitoring of the patient to detect hepatic impairment and its

progression.
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Metformin administration induces hepatotoxic effects in 
paraoxonase-1-deficient mice 
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Supplementary Fig. 1. Serum lipoprotein distribution in PON1-deficient mice. A) 
Mice fed chow diet. B) Mice fed high fat diet. HDL: high-density lipoproteins; 
LDL: low-density lipoproteins; VLDL: very low-density lipoproteins  
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Supplementary Fig. 2. A) Hematoxylin-eosin staining of the liver of wild-type mice fed 
chow diet (CD) and high fat diet (HFD). Magnification x10. B) Immunochemical staining 
for F4/80 and macrophage area quantification. The arrows show positive staining for 
F4/80. Magnification x20. 
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