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Introduction

The traditional way to study algebraic cycles on an algebraic variety 𝑋, is via the Chow
groups CHu�(𝑋). In the beginnings of the 90’s, Blaine Lawson and Eric Friedlander devel-
oped a different way to study algebraic cycles on varieties over ℂ. Instead of taking dis-
crete groups of cycles on 𝑋 modulo some equivalence relation, they use the Chow varieties
to provide the spaces of algebraic cycles Zu�(𝑋) with a topology, and they use homotopy
invariants of those cycle spaces as geometric invariants of 𝑋.

In particular, the homotopy groups of those spaces produce a bigraded family of abelian
groups Lu�Hu�(𝑋) called Lawson homology that behave like a Borel-Moore homology. They
also define a contravariant version Lu�Hu�(𝑋) called morphic cohomology, that behaves like
a cohomology theory. Both theories are related by duality in the case 𝑋 is smooth. Lawson
homology extends Chow groups modulo algebraic equivalence in the same way as mo-
tivic cohomology extends Chow groups modulo rational equivalence.

The main interest of such a theory is that, in a sense, it takes an approch to motivic invari-
ants opposed to what Voevodsky does. Voevodsky constructs its motivic cohomology in-
variants from the top down, embedding algebraic varieties in the right category, namely
complexes of presheaves with transfers, and then forcing the desired properties into the
theory: Nisnevich descent, homotopy invariance, cdh descent, etc. This approach is very
general, has excel·lent structural properties, and its power is demonstrated by Voevod-
sky’s proof of the Bloch-Kato conjecture.

On the other hand, the semi-topological ideas of Friedlander and Lawson are a bottom-up
approach. They are not as general, since it is restricted to varieties over ℂ, and only sees cy-
cles modulo algebraic equivalence, but it starts with a very concrete, and very natural con-
struction, which is close to the geometry of the variety 𝑋, and surprisingly they are able
to prove quite a lot of the expected structural properties. Enough to produce a reasonable
theory and establish comparison results with Voevodsky’s theory.

It was expected that it could deliver results complementary to Voevodsky’s techniques.
However, at this point, this promise has not been completely fulfilled. For example, most
results in the semi-topological world of Friedlander and Lawson can be reached via Vo-
evodsky techniques. However, it is the believe of the author that there is still a lot of
unexplored ground in the semi-topological direction, and the possibility of using par-
ticularities of the geometry of cycle spaces to produce results or computations of motivic
invariants seems quite compelling. This thesis attempts to cover a tiny bit of ground in
this direction.

We now briefly describe the individual chapters of this thesis.

In Chapter 1, we collect the basics of the semi-topological theories for algebraic cycles and
cocycles, developed mainly by Friedlander and Lawson. This is an exposition of the state
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of the art, and we do not claim any results. We cover the topology on spaces of cycles,
Lawson homology and morphic cohomology, including the bivariant cocycle spaces, and
end with the duality theorem relating both theories.

There is a lot of literature about a semi-topological version of K-theory, that recently has
found an application by Blanc in constructing topological K-theory of noncommutative
spaces [4], however this is out of the scope of this thesis.

In Chapter 2 we reformulate a descent theorem of Guillén and Navarro [35] in the modern
language of (∞, 1)-categories, following the work of Joyal and particularly Lurie [57]. The
aim is to produce a variant of the main theorem in [35] with a much simpler proof. Our
main theorem is

Theorem 2.3.3. Let (𝒞, 𝜏) be an ∞-category together with a Grothendieck topology, and
let 𝒞0 ⊂ 𝒞 be a full subcategory, such that for any 𝑋 ∈ 𝒞, and any covering sieve 𝑈 ∈
Cov(𝑋), the inclusion 𝑈 ∩ 𝒞0 ⊂ 𝒰 is cofinal. Let 𝒟 be a complete ∞-category 𝒟. Then,
the restriction functor 𝜀∗ induces an equivalence

Shu�(𝒞, 𝒟) Shu�(𝒞0, 𝒟)≃
(0.1)

As a corollary of this, we obtain a theorem analogous to the extension theorem in [35]. We
say analogous, because neither theorem implies the other.

In Chapter 3 we study several flavours of descent for the Lawson homology and morphic
cohomology. Our main contributions are as follows:

We define a refined Gysin maps extending the definition from Friedlander Gabber [17],
following Fulton’s refined Gysin maps for Chow groups. Then we prove an excess inter-
section formula for those refined Gysin maps, and use it to prove a blow-up formula for
the blow-up of a variety 𝑋 along a regularly embedded center. We do not assume smooth-
ness, extending results of Hu in [41] to the singular case.

Theorem 3.3.1. Let 𝑋 be an algebraic variety, with a regularly embedded subvariety 𝑌 of
codimension 𝑐, fitting in the following abstract blow-up square

𝑌 𝑋

𝑌 𝑋

u�

u�

u� u�

Let 𝐸 = 𝑝∗𝑁u�𝑋/𝑁u�𝑋, which is a vector bundle of rank 𝑒 = 𝑐 − 1 on 𝑌. Then, we have a
split short exact sequence

0 Lu�Hu�(𝑌) Lu�Hu�(𝑌) ⊕ Lu�Hu�(𝑋) Lu�Hu�(𝑋) 0
u� u� (0.2)

where

𝑎(𝛼) = (𝑐u�(𝐸) ∩ 𝑝∗(𝛼), 𝑖∗(𝛼))
𝑏(𝛼, 𝛽) = 𝑗∗(𝛼) − 𝑞!(𝛽).
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After that, we collect several flavours of descent properties know for the semi-topological
theories. In particular, we prove cdh descent for the bivariant complexes of cocycles
ℳu�(𝑋, 𝑌) with respect to the second variable. Not much is known regarding descent
properties in the variable 𝑋 on the general case. Not even descent for the Zariski topol-
ogy.

We conclude the chapter by proving a generalized duality theorem relating complexes of
algebraic cocycles, and extending the results in [19]. In particular, we prove

Theorem 3.4.5. Let 𝑋, 𝑌, 𝑊 be algebraic varieties, with 𝑋 normal and quasi-projective, 𝑌
projective and 𝑊 smooth projective. Then, the duality map

ℳ∗
u� (𝑋 × 𝑊, 𝑌) ℳ∗

u� (𝑋, 𝑊 × 𝑌) (0.3)

is a homotopy equivalence.

Finally, in Chapter 4 we study morphic cohomology in the particular case of toric varieties.
Toric varieties are a class of rational varieties which have a very explicit and rich combi-
natorial description. We prove Zariski descent for morphic cohomology of toric varieties,
with respect to torus equivariant open sets.

Then we develop a spectral sequence that computes morphic cohomology for toric vari-
eties.

Theorem 4.2.16. Let 𝑋(Δ) be a toric variety associated to a fan Δ and ℱ∗ a bounded above
cochain complex of sheaves. There is a convergent spectral sequence

𝐸u�,u�
1 = Extu�( ̌𝒞u�(Δ, ℤ), ℱ∗) ⟹ ℍu�+u�(𝑋(Δ), ℱ∗). (0.4)

Moreover, if ℱ∗ has homotopy invariant cohomology,

𝐸u�,u�
1 ≅ ⨁

u�∈Δ(u�)
ℍu�(𝑇u� , ℱ∗), (0.5)

and the differentials on the first page 𝑑1 ∶ 𝐸u�,u�
1 → 𝐸u�+1,u�

1 are given by

𝑑1 = ∑
u�∈Δ(u�)

u�∈Δ(u�+1)
u�≤u�

𝜖(𝜏, 𝜎)𝑟∗
u�,u� (0.6)

This very explicit computation allows us to prove cdh descent for toric varieties and prove
Suslin’s conjecture in this case.

Toric varieties are a very special class of varieties, of course, but the interest of those com-
putations lay in the fact that very few computations of morphic cohomology for singular
varieties are known.
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1 Semi-topological theories

In this chapter we will review the basic material regarding the Friedlander-Lawson ap-
proach to algebraic cycles and Chow groups, that began in [49] and [13].

In the classical approach to algebraic cycles, as beautifully exposed by Fulton in [29], one
attempts to tame the study of algebraic cycles by identifying cycles that “continuously
deform” one to another, the same way we identify homologous singular cycles in singular
homology. This way, we obtain the so called Chow groups of algebraic cycles. Of course,
the algebraic picture is much more subtle than the topological picture, in the sense that
there are different precise meanings for the words “continuously deform”, which lead to
different flavours of Chow groups.

On the other hand, in the Friedlander-Lawson approach, instead of using an equivalence
relation on the abelian group of algebraic cycles, we make use of the fact that the set of
algebraic cycles has itself a topology, then we can compute topological invariants of these
spaces, namely its homotopy groups, as geometrical invariants of 𝑋 analogous to Chow
groups. These Friedlander-Lawson invariants are closely related, to the Chow groups of
algebraic cycles modulo algebraic equivalence, and appear to be at the core of several deep
conjectures on algebraic cycles.

For us, an algebraic variety, will mean an equidimensional integral scheme defined over
ℂ. Although in its foundational paper [13], Friedlander develops the theory for varieties
over an algebraically closed field using étale homotopy types. In this work we will assume
our base field is ℂ.

A good survey for some of the material on this chapter is [50]. Specific references to the
original papers will be provided on the individual results.

1.1 Chow varieties and spaces of algebraic cycles

Let’s start by reviewing some classical constructions on algebraic cycles.

1.1.1 The group of algebraic cycles

Definition 1.1.1. Let 𝑋 be an algebraic variety. An algebraic 𝑘-cycle on 𝑋 is a finite formal
sum

𝛼 = ∑
u�

𝑛u�[𝑉u�]

where 𝑛u� ∈ ℤ and 𝑉u� ⊂ 𝑋 are reduced and irreducible subvarieties of dimension 𝑘. The
set of 𝑘-cycles in 𝑋 together with the addition operation forms an abelian group that we
will denote by Zu�(𝑋).
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1 Semi-topological theories

Definition 1.1.2. A 𝑘-cycle is said to be effective if 𝑛u� ≥ 0. The set of effective 𝑘-cycles on
𝑋 together with the addition operation forms a monoid and we will denote it by Cu�(𝑋).

Remark 1.1.3. Sometimes it will be useful to refer to cycles by codimension. On an equidi-
mensional variety 𝑋 of dimension 𝑑, we will use the following notation:

Zu�(𝑋) = Zu�−u�(𝑋),
Cu�(𝑋) = Cu�−u�(𝑋).

Definition 1.1.4. Let 𝑋 be a projective variety. The degree of an effective algebraic cycle
𝑐 = ∑u� 𝑛u�[𝑉u�] is given by

deg 𝑐 = ∑
u�

𝑛u� deg 𝑉u�,

where deg 𝑉u� means the degree of the projective variety 𝑉u�, namely the intersection num-
ber with a sufficiently generic codimension 𝑘 linear variety inside ℙu� . The set of effective
𝑘-cycles of degree 𝑑 on 𝑋 will be denoted by Cu�,u�(𝑋).

The nilpotent functions in an algebraic scheme may be interpreted as multiplicities in the
following way.

Definition 1.1.5. Let 𝑋 be an algebraic scheme of dimension 𝑛, with irreducible compo-
nents 𝑋1, … , 𝑋u�. Let 𝜂u� be the generic point corresponding to 𝑋u�. The fundamental cycle
[𝑋] ∈ Zu�(𝑋), is defined by

[𝑋] = ∑
u�

length(𝒪u�,u�u�
)[𝑋u�].

There are two possible functorialities we can define on the sets of cycles we have just
defined, one covariant and one contravariant.

Definition 1.1.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a proper morphism of algebraic varieties. The push-
forward of cycles

𝑓∗ ∶ Zu�(𝑋) → Zu�(𝑌)

is the group homomorphism defined on the generators by

𝑓∗([𝑉]) =
⎧{
⎨{⎩

deg(𝑉/𝑓 (𝑉))[𝑓 (𝑉)], if dim 𝑉 = dim 𝑓 (𝑉)
0, otherwise.

where the degree deg(𝑉/𝑓 (𝑉)) is the number of pre-images of a sufficiently generic point
of 𝑓 (𝑉).

Definition 1.1.7. Let 𝑓 ∶ 𝑋 → 𝑌 be a flat morphism of algebraic varieties of relative dimen-
sion 𝑟 (i.e. 𝑟 = dim 𝑋 − dim 𝑌). Then we have a pull-back of cycles

𝑓 ∗ ∶ Zu�(𝑌) → Zu�+u�(𝑋)

which is the abelian group homomorphism defined on generators by

𝑓 ∗([𝑉]) = [𝑋 ×u� 𝑉]

where 𝑋 ×u� 𝑉 is the fibered product as schemes of 𝑋 and 𝑉 over 𝑌.
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1.1 Chow varieties and spaces of algebraic cycles

Remark 1.1.8. Since 𝑋 ×u� 𝑉 in Definition 1.1.7 may have nilpotents, the irreducible com-
ponents of this fibered product may have nontrivial multiplicities.

Finally, there is an exterior, or cartesian product on algebraic cycles, as follows

Definition 1.1.9. Let 𝑋, 𝑌 be algebraic varieties. There is a morphism of abelian groups

⋅ × ⋅ ∶ Zu�(𝑋) ⊗ Zu�(𝑋) → Zu�+u�(𝑋 × 𝑌),

defined on generators by
[𝑉] × [𝑊] = [𝑉 × 𝑊]

and extended as a multilinear map.

1.1.2 The Chow variety of a projective variety

Our aim is to provide the spaces Zu�(𝑋) with a topology. To achieve this, Friedlander and
Lawson use the classical construction of the Chow variety, that provides the space of effec-
tive cycles of bounded degree with the structure of an algebraic variety. See [60], Chapter
21 in [38] or Section 1.3 in Kollár’s book [47] for a more sophisticated approach.

The classical construction of the Chow variety goes as follows. To every 𝑘-cycle on a pro-
jective variety 𝑋, we associate a divisor on another algebraic variety 𝑄u�. There are differ-
ent constructions, involving different choices of 𝑄u�. In the approach we describe, 𝑄u� will
be a product of projective spaces.

Let 𝑋 ⊂ ℙu� be an irreducible projective variety. Let’s take 𝑄u� = ℙu�∨ × ⋯ × ℙu�∨, a
product of 𝑘 + 1 copies of the dual projective space ℙu�∨ which parametrizes hyperplanes
in ℙu� .

Now we pick a cycle of the form 𝑐 = [𝑉] for an irreducible subvariety 𝑉 of dimension 𝑘.
Consider now the incidence relation Θu� ⊂ 𝑋×𝑄u� defined by

Θu� = {(𝑥, ℎ0, … , ℎu�)|𝑥 ∈ ℎ0 ∩ ⋯ ∩ ℎu� ∩ 𝑉}

This incidence relation Θu� is an irreducible subvariety of 𝑋×𝑄u�. Moreover,

dim Θu� = 𝑘 + (𝑛 − 1)(𝑘 + 1) = 𝑛(𝑘 + 1) − 1.

Now, the projection 𝜋2 ∶ 𝑋 × 𝑄u� → 𝑄u� is proper and generically injective when restricted
to Θu� , because the generic intersection of 𝑘 + 1 hyperplanes and 𝑉 is empty. We then
define

Φu� = 𝜋2∗(Θu�),

which, by properness and (generic) injectivity of 𝜋2, is a codimension 1 irreducible sub-
variety of 𝑄u�.

Now let’s fix all ℎu� but one. Since 𝑉 has degree 𝑑, a generic pencil of hyperplanes on the re-
maining ℙu�∨ meets Φu� at exactly 𝑑 points, so Φu� has multi-degree (𝑑, … , 𝑑). This means
that the divisor Φu� is defined, up to a constant by a global section

𝑠u� ∈ Γ((ℙu�∨)u�+1, 𝒪(𝑑) ⊗ ⋯ ⊗ 𝒪(𝑑)).

11



1 Semi-topological theories

Definition 1.1.10. Let 𝑋 ⊂ ℙu� be a projective variety. There is a map

Φ∶ Cu�,u�(𝑋) → ℙΓ((ℙu�∨)u�+1, 𝒪(𝑑)⊗(u�+1))

defined as follows
Φ(𝑛1[𝑉1] + ⋯ + 𝑛u�[𝑉u�]) = 𝑠u�1

u�1
⋯ 𝑠u�u�

u�u�
.

Theorem 1.1.11. The map Φ above is injective, and its image is a closed algebraic subva-
riety.

Proof. See Proposition 1.1 [13] and [60]. Consider the incidence relation

Ψ = {(𝑥, ℎ0, … , ℎu�) ∣ 𝑥 ∈ ℎ0 ∩ ⋯ ∩ ℎu�} ⊂ 𝑋 × 𝑄u�

and denote by Ψu� ⊂ 𝑄u� the fibers of Ψ over 𝑥 ∈ 𝑋.

Then, we can recover the irreducible variety 𝑉 from the divisor 𝐷 = Φ(𝑉) since 𝑥 ∈ 𝑉 if,
and only if Ψu� ⊂ 𝐷. This, together with unicity of the decomposition of a divisor as sum
of irreducibles, gives the injectivity in general.

This theorem allows us to regard Cu�,u�(𝑋) as a projective variety, called the Chow variety
of 𝑘-cycles of degree 𝑑. We will be interested in the complex topology of these varieties.
Let’s look at some examples:

Example 1.1.12 (0-cycles). The case of 0-cycles is particularly simple: an effective 0-cycle
of degree 𝑑 in 𝑋 is just a set of 𝑑 points in 𝑋 counted with multiplicities. This is just a
symmetric product

C0,u�(𝑋) = 𝑋 × ⋯ × 𝑋/𝑆u�.

When 𝑋 = ℙ1, the symmetric product on the right is isomorphic to ℙu� by the map from
ℙ1 × ⋯ × ℙ1 → ℙℂ[𝑥, 𝑦]u� to the projectivization of degree 𝑑 homogeneous polynomials
in two variables.

[𝛼1 ∶ 𝛽1], … , [𝛼u� ∶ 𝛽u�] ↦ ∏
u�

(𝛼u�𝑥 − 𝛽u�𝑦)

If 𝑋 is a more general smooth curve the symmetric product will still be a smooth variety,
however, if 𝑋 is a higher dimensional variety, the symmetric products will become singu-
lar.

Example 1.1.13 (Divisors on ℙu�). The degree 𝑑 effective divisors on ℙu� correspond bijec-
tively to regular sections of the line bundle 𝒪(𝑑) up to scalar multiple. This way, we can
make the following identification

Cu�−1,u�(ℙu�) = ℙ𝐻0(𝒪(𝑑)).

Example 1.1.14 (conic curves in ℙ3). Let 𝐶 be a conic curve on ℙ3. The curve 𝐶 is either
a plane conic or it is the disjoint union of two non-itersecting lines.

C1,2(ℙ3) = 𝐴 ∪ 𝐵,

where 𝐴 is the set of pairs of lines on ℙ3 and 𝐵 is the set of plane conics on ℙ3.

12



1.1 Chow varieties and spaces of algebraic cycles

On one hand, the lines in ℙ3 are parametrized by the grasssmanian Grassℂ(2, 4) so 𝐴 =
Grassℂ(2, 4)2/𝑆2.

On the other hand, plane conics on ℙ3 can be parametrized as follows: First pick a plane in
ℙ3, which belongs to the Grassmanian Grassℂ(3, 4) ≃ ℙ3, and then pick a plane conic on
that plane. Because of Example 1.1.13 above, degree 2 effective divisor on ℙ2 correspond
to points in ℙ(𝐻0(ℙ2, 𝒪(2))) ≃ ℙ5.

In conclusion, C1,2(ℙ3) has two irreducible components, one isomorphic to the Grass-
mannian Grassℂ(2, 4)2/𝑆2, and the other isomorphic to ℙ3 × ℙ5, that meet at the locus of
degenerate plane conics.

In general though, Chow varieties are very difficult to deal with explicitly. Even counting
its irreducible components is a very nontrivial matter. Besides, they are usually badly sin-
gular, and not equidimensional. The fundamental insight of Friedlander and Lawson, was
that even though the Chow varieties are very difficult, and appears to be hopeless to obtain
a well-behaved homology theory of algebraic variaties out of them. Once its homotopy
type is suitably stabilized by group completion, they do indeed produce such a homol-
ogy theory. This will be the topic of the sections that follow.

1.1.3 The space of algebraic cycles

We can use the Chow variety to provide the spaces of cycles Zu�(𝑋) with a topology. Ob-
serve that

Cu�(𝑋) = {0} ⊔ ⨆
u�>0

Cu�,u�(𝑋)

is a disjoint union of projective varieties. If we take all Chow varieties together in this
manner, it becomes a monoid with the addition of cycles.

Cu�,u�(𝑋) × Cu�,u�′(𝑋) → Cu�,u�+u�′(𝑋).

Proposition 1.1.15. Let 𝑋 be a projective algebraic variety. Then

1. The space Cu�(𝑋) together with the addition of cycles is a topological monoid, with
an operation given by an algebraic map.

2. The space Cu�(𝑋) is independent of the projective embedding of 𝑋, up to homeo-
morphism.

Proof. 1) The sum of algebraic cycles corresponds to the product of homogeneous poly-
nomials according to the map Φ in Theorem 1.1.11. But the coefficients of a product of
polynomials depend algebraically on the coefficients of the factors.

2) See Proposition 1.7 in [13].

Algebraically, the monoid Cu�(𝑋) is free and, it has the cancellation property: if 𝑐 + 𝑑 =
𝑐 + 𝑑′, then 𝑑 = 𝑑′. This allows us to describe Zu�(𝑋) as a group completion of Cu�(𝑋) in
the following way

Zu�(𝑋) = Cu�(𝑋)+ = Cu�(𝑋) × Cu�(𝑋)/ ∼, (1.1)

13



1 Semi-topological theories

The right hand side represents the positive and negative part of the cycle, and the equiv-
alence relation ∼ is such that (𝑐+, 𝑐−) ∼ (𝑐+ + 𝑑, 𝑐− + 𝑑) for any 𝑑 ∈ Cu�(𝑋). It is easy
to check that the group operation is continuous with respect to the quotient topology on
Zu�(𝑋), making it a topological abelian group.

Definition 1.1.16. Let 𝑋 be a projective variety. The space of algebraic 𝑘-cycles on 𝑋,
denoted by Zu�(𝑋), is the free abelian group generated by the reduced and irreducible
𝑘-dimensional subvarieties of 𝑋, together with the quotient topology inherited through
isomorphism (1.1).

Remark 1.1.17. Although we are mainly interested in the homotopy type of Zu�(𝑋), this
space is, in a certain sense, “almost” an algebraic object. It is a quotient of an algebraic
(albeit infinite-dimensional) variety Cu�(𝑋) × Cu�(𝑋), by an algebraic equivalence relation.

For some results, it will be useful to move matters from the category of topological abelian
groups, to that of chain complexes of abelian groups. To do this, we take singular chains
on Zu�(𝑋) as follows

Definition 1.1.18. The complex of algebraic cycles on a variety 𝑋 is the complex of abelian
groups 𝒵u�,∗(𝑋) such that

𝒵u�,u�(𝑋) = Singu�−2u� Zu�(𝑋) = Map(Δu�−2u�, Zu�(𝑋)),

and the differentials 𝜕∶ 𝒵u�,u�(𝑋) → 𝒵u�,u�−1(𝑋) is the usual alternating sum of face maps.

The Dold-Kan theorem tells us that

𝐻u�𝒵∗,u�(𝑋) ≅ 𝜋u�−2u�Zu�(𝑋).

There is a different way to introduce a topology on the space of algebraic cycles Zu�(𝑋),
developed by Lima-Filho in [54], using families of cycles parametrized by an other variety
𝑆. We can use different types of families (flat families or equidimensional families). It
turns out that all three approaches, the Chow topology as described above and the two
topologies defined by families coincide.

Let 𝑆 be an algebraic variety. Let
𝜎 = ∑

u�
𝑛u�[Γu�]

be an algebraic cycle on 𝑆 × 𝑋 which is flat and of relative dimension 𝑘 over 𝑆 (i.e. every
Γu� has this property). This cycle induces naturally a map

𝑓u� ∶ 𝑆 → Zu�(𝑋)

defined by
𝑓u�(𝑠) = ∑

u�
𝑛u�[{𝑠} ×u� Γu�] ∈ Zu�({𝑠} × 𝑋).

Definition 1.1.19. The flat topology on the space of cycles, that we will denote Zfl
u� is the

finest topology that makes continuous all the maps 𝑓u� ∶ 𝑆 → Zu�(𝑋) for every 𝑆 and 𝜎 flat
and equidimensional over 𝑆.
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1.1 Chow varieties and spaces of algebraic cycles

We can make an analogous definition with some small variations in the case of equidi-
mensional families. In this case it is convenient to restrict oneself to consider only smooth
varieties 𝑆, and change the pullback fibre used to build 𝑓u� out of the cycle 𝜎 by an inter-
section theoretic fibre. In this way, given 𝜎 an algebraic cycle on 𝑆 × 𝑋 equidimensional
over 𝑆 but non necessarily flat, we can define

𝑓u� ∶ 𝑆 → Zu�(𝑋)

by
𝑓u�(𝑠) = 𝜎 ⋅ {𝑠} × 𝑋 ∈ Zu�{𝑠} × 𝑋,

where the notation 𝜎 ⋅ {𝑠} × 𝑋 denotes the intersection cycle of 𝜎 and the slice {𝑠} ×
𝑋.

Definition 1.1.20. The equidimensional topology on the space of algebraic cycles Zu�(𝑋)
is the finest one making all the maps 𝑓u� ∶ 𝑆 → Zu�(𝑋) continuous, where 𝑆 is smooth and
𝜎 is a cycle on 𝑆 × 𝑋 equidimensional over 𝑆. We will denote this topology by Zeq

u� (𝑋).

Theorem 1.1.21. Let 𝑋 be an algebraic variety. Then the identity morphism on Zu�(𝑋)
induces homeomorphisms between the equidimensional and flat topologies Zfl

u� (𝑋) ≅
Zeq

u� (𝑋). If in addition 𝑋 is projective, this topology is homeomorphic to the topology
induced by Chow varieties

Zch
u� (𝑋) ≃ Zfl

u� (𝑋) ≃ Zeq
u� (𝑋).

Proof. The comparison between flat and Chow is Theorem 5.8 in [54]. The comparison
between flat and equidimensional is Theorem 3.1 in [54].

Finally, we can define a family of compact subsets of Zu�(𝑋) as follows

𝐾u� = 𝜋( ⨆
u�,u�′≤u�

Cu�,u�(𝑋) × Cu�,u�′(𝑋)). (1.2)

The subsets 𝐾u� ⊂ Zu�(𝑋) define a compact filtration of the space of cycles, and the topology
on Zu�(𝑋) is generated by the topology of this filtration, in the sense that 𝑈 ⊂ Zu�(𝑋) is
open if, and only if it is open for every 𝐾u�.

Proposition 1.1.22. Let 𝑋 ⊂ ℙu� be a projective algebraic variety. The space of cycles
Zu�(𝑋) is a Hausdorff topological abelian group, with the homotopy type of a countable
CW-complex, and compactly generated by the subspaces 𝐾u�.

Proof. See Theorem 4.7 in [54].

Remark 1.1.23. Observe that, using this topology, we no longer require the projective
hypothesis.

It turns out that the constructions from Section 1.1.1 are compatible with the topology on
Zu�(𝑋). In particular

Theorem 1.1.24. Let 𝑋, 𝑌 be algebraic varieties and 𝑓 ∶ 𝑋 → 𝑌 a morphism between them.
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1 Semi-topological theories

1. Assume 𝑓 is proper. Then, the push-forward of cycles 𝑓∗ ∶ Zu�(𝑋) → Zu�(𝑌) is contin-
uous.

2. Assume 𝑓 is flat. Then, the pull-back of cycles 𝑓 ∗ ∶ Zu�(𝑋) → Zu�(𝑌) is continuous.

3. The exterior product of cycles ⋅ × ⋅ ∶ Zu�(𝑋) ⊗ Zu�(𝑌) → Zu�+u�(𝑋 × 𝑌) is continuous.

Proof. See Proposition 2.9 in [54].

Theorem 1.1.25. Let 𝑋 be an algebraic variety, and 𝑌 a closed subvariety with open com-
plement 𝑈. The exact sequence of groups

Zu�(𝑌) Zu�(𝑋) Zu�(𝑈) (1.3)

is a fibration sequence of topological abelian groups. In particular it induces a long exact
sequence on homotopy groups.

Proof. See Theorem 4.9 in [54].

Definition 1.1.26. Let 𝑋 ⊂ ℙu� be a projective variety. Pick a linear embedding ℙu� ⊂
ℙu�+1 and a point 𝑝∞ ∈ ℙu�+1 ∖ ℙu� . The Lawson suspension of 𝑋, that we will denote
by /𝛴 𝑋 is the set of points in ℙu�+1 contained on a line which meets both 𝑝∞ and 𝑋. That
is

/𝛴 𝑋 = {𝑠𝑥 + 𝑡𝑝∞ ∣ 𝑥 ∈ 𝑋, [𝑠 ∶ 𝑡] ∈ ℙ1} .

Taking suspension of cycles, we get a map /𝛴∗ ∶ Zu�(𝑋) → Zu�+1(/𝛴 𝑋), defined as follows

/𝛴∗([𝑉]) = [/𝛴 𝑉]. (1.4)

Theorem 1.1.27 (Lawson suspension theorem). Let 𝑋 be a projective variety. The map
induced by the suspension on spaces of cycles

/𝛴∶ Zu�(𝑋) → Zu�+1(/𝛴 𝑋),

is a homotopy equivalence.

Proof. See Theorem 3 in [49].

Finally, there is one important construction, arising from the fact that Zu�(𝑋) is itself an al-
gebraic object (composed of Chow varieties), and which amounts to taking “cycles on the
space of cycles”. Friedlander calls this the graphing construction.

Theorem 1.1.28. Let 𝑋 be an 𝑛-dimensional algebraic variety, and 𝜉 ∈ Zu�−u�(Cu�,u�(𝑋) × 𝑋)
be the universal cycle associated to the chow variety Cu�,u�(𝑋). There is a continuous map
Γ ∶ Zu�(Cu�,u�(𝑋)) → Zu�+u�(𝑋), which on irreducible varieties is defined by

Γ([𝑉]) = 𝜋2∗([(𝑉 × 𝑋) ×Cu�,u�(u�)×u� 𝜉])

Proof. See [16].
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Using this construction, Friedlander defines a notion of correspondence, which acts on the
space of cycles strictly, i.e. without the need to use any moving lemma, or construction
“up to homotopy”.

Definition 1.1.29. Let 𝑋, 𝑌 be algebraic varieties. A 𝑘-correspondence from 𝑋 to 𝑌 is an
algebraic map 𝑐 ∶ 𝑋 → Cu�,u�(𝑌) for some 𝑑 > 0. We denote by Corru�(𝑋, 𝑌) the space of
such correspondences.

Remark 1.1.30. Because correspondences are a certain kind of cycles on the product va-
riety 𝑋 × Cu�,u�(𝑌), they inherit the topology from the Chow variety.

Theorem 1.1.31. The action by correspondences defines a continuous map Corru�(𝑋, 𝑌) ×
Zu�(𝑋) → Zu�+u�(𝑌).

Proof. See [11].

1.2 Lawson homology

In this section, we will see how the homotopy groups of the cycle spaces Zu�(𝑋) serve as in-
variants of 𝑋, that know a lot about the algebraic geometry of 𝑋.

1.2.1 Definition of Lawson homology

Definition 1.2.1. Let 𝑋 be an algebraic variety. The Lawson homology groups are the
abelian groups defined by

Lu�Hu�(𝑋) = 𝜋u�−2u�Zu�(𝑋).

Remark 1.2.2. The homotopy groups 𝜋u�−2u�Zu�(𝑋) are represented by homotopy classes
of maps from a (𝑛 − 2𝑘)-dimensional sphere to the space of cycles, that is

Lu�Hu�(𝑋) = 𝜋u�−2u�(Zu�(𝑋)) = [𝑆u�−2u�, Zu�(𝑋)].

This way, the Lawson homology group can be understood as representing cycles in 𝑋
with 𝑛 degrees of freedom where 2𝑘 of them are algebraic, and the remaining ones are
topological.

Example 1.2.3. In the 𝑘 = 0 case, the space of degree 𝑑 effective 𝑘-cycles Cu�,u�(𝑋) happens
to be the 𝑑-fold symmetric product 𝑋u�/𝑆u�. A classical theorem of Dold and Thom [9]
asserts that the homotopy groups of the infinite symmetric product coincides with the
Borel-Moore singular homology of 𝑋

L0Hu�(𝑋) ≅ HBM
u� (𝑋, ℤ).

Recall that the Borel-Moore homology is a variation of singular homology that satisfies
Poincaré duality for non-compact varieties. It can be defined via infinite locally finite
singular chains, or alternatively, via a compactificatification of 𝑋 as follows. Let 𝑋 be a
compactification of 𝑋 with complement 𝑋∞. Then

HBM
u� (𝑋, ℤ) = Hu�(𝑋, 𝑋∞, ℤ).
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1 Semi-topological theories

Example 1.2.4. An other interesting case is the following.

Lu�H2u�(𝑋) ≅ CHalg
u� (𝑋),

where CHalg
u� (𝑋) is the group of algebraic cycles modulo algebraic equivalence. See [13].

From this we conclude that the homotopy type of Zu�(𝑋) encodes interesting geometrical
information about 𝑋.

1.2.2 Functorialities and localization

The functorialities on the space of cycles induce the following functorialities on Lawson
homology.

Theorem 1.2.5. Let 𝑋, 𝑌 be algebraic varieties, and 𝑓 ∶ 𝑋 → 𝑌 a morphism between them.

1. If 𝑓 is proper, there are push-forward maps

𝑓∗ ∶ Lu�Hu�(𝑋) → Lu�Hu�(𝑌).

2. If 𝑓 is flat of relative dimension 𝑟, there are pull-back maps

𝑓 ∗ ∶ Lu�Hu�(𝑌) → Lu�+u�Hu�+2u�(𝑋).

Proof. These are just the maps induced on homotopy groups by the pull-back and push-
forward on cycle spaces in Theorem 1.1.24.

Theorem 1.2.6. Let 𝑋 be an algebraic variety, and 𝑌 ⊂ 𝑋 a closed subvariety, with open
complement 𝑈. There is a long exact sequence of Lawson homology groups as follows

⋯ Lu�Hu�(𝑌) Lu�Hu�(𝑋) Lu�Hu�(𝑈) Lu�Hu�−1(𝑌) ⋯

Proof. It follows from Theorem 1.1.25.

Corollary 1.2.7. Lawson homology has the following Mayer-Vietoris propeties

1. Let 𝑋 = 𝑈0 ∪ 𝑈1 be the union of two Zariski open subvarieties. Then there is a long
exact sequence

⋯ Lu�Hu�(𝑋) Lu�Hu�(𝑈0) ⊕ Lu�Hu�(𝑈1) Lu�Hu�(𝑈0 ∩ 𝑈1) Lu�Hu�−1(𝑋) ⋯

2. Let 𝑋 = 𝑋0 ∪ 𝑋1 be the union of two Zariski closed subvarieties. Then there is a
long exact sequence

⋯ Lu�Hu�(𝑋0 ∩ 𝑋1) Lu�Hu�(𝑋0) ⊕ Lu�Hu�(𝑋1) Lu�Hu�(𝑋) Lu�Hu�−1(𝑋0 ∩ 𝑋1) ⋯

Proof. Both are consequences of the localization theorem 1.2.6.
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1.2.3 Homotopy invariance and the s-map

Lawson’s suspension theorem 1.1.27 translates into a homotopy-invariance property on
Lawson homology.

Theorem 1.2.8. Let 𝑋 be an algebraic variety, and 𝐸 → 𝑋 a vector bundle of rank 𝑟 over 𝑋.
Then the flat pullback

𝑓 ∗ ∶ Lu�Hu�(𝑋) Lu�+u�Hu�+2u�(𝐸),

is an isomorphism.

Proof. See Proposition 2.3 in [17].

Remark 1.2.9. This theorem gives a homotopy invariance property for Lawson homology.
In the particular case 𝐸 = 𝑋 × 𝔸1, we get

Lu�Hu�(𝑋) ≅ Lu�+1Hu�+2(𝑋 × 𝔸1).

There is a shift of indices because Lawson homology is a Borel-Moore type theory, and
𝔸1 is not acyclic, but has the same Borel-Moore homology as a 2-sphere.

Let 𝑋 be an algebraic variety. Consider the diagram

Zu�(𝑋) × ℙ1 Zu�(𝑋 × ℙ1)

Zu�(𝑋) ∧ ℙ1 Zu�(𝑋 × 𝔸1) Zu�−1(𝑋)≃
(1.5)

where the top horizontal map sends (𝛼, 𝑝) ↦ 𝛼 × {𝑝}.

Definition 1.2.10. Let 𝑋 be an algebraic variety, the s-map is the continuous map

Zu�(𝑋) Ω2Zu�−1(𝑋)

adjoint to the lower horizontal map in (1.5).

Proposition 1.2.11. The following diagram commutes

Lu�H2u�(𝑋)

L0H2u�(𝑋) HBM
2u� (𝑋)

cyc
u�u�

≅
(1.6)

Proof. See Proposition 6.4 in [22].
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1 Semi-topological theories

The s-map breaks the cycle map to singular homology into steps, where in each step we
“topologize” one algebraic degree of freedom. In general, the s-map is neither injective
nor surjective. We can use it to produce filtrations either at the target or at the source,
which are related to deep conjectures in algebraic geometry, in various ways.

Definition 1.2.12. The s-filtration on Lawson homology is the increasing filtration 𝑆u� ⊂
Lu�Hu�(𝑋) given by the kernel of iterates of the s-map

𝑆u� = ker(𝑠u�).

The topological filtration on Lawson homology is the decreasing filtration on Lawson
homology given by the images of iterates of the s-map

𝑇u� = Img(𝑠u�).

Conjecture 1.2.13 (Generalized Hodge). Let 𝑋 be a smooth projective variety over ℂ. The
piece 𝑇u� ⊂ L0H2u�(𝑋, ℚ) of the topological filtration with rational coefficients coincides
with the largest Hodge structure contained in 𝐻u�−u�,u�+u�(𝑋, ℚ) ⊕ ⋯ ⊕ 𝐻u�+u�,u�−u�(𝑋, ℚ).

Remark 1.2.14. In particular, this conjecture implies the generalized Hodge conjecture as
corrected by Grothendieck in [33].

Conjecture 1.2.15 (Suslin). Let 𝑋 be a smooth projective variety of dimension 𝑑 over ℂ.
The cycle map

𝑠u� ∶ Lu�Hu�(𝑋) L0Hu�(𝑋)

is an isomorphism for 𝑛 ≤ 𝑘 + 𝑑 and is injective for 𝑛 = 𝑘 + 𝑑 − 1.

Remark 1.2.16. One one hand, this conjecture is a Lawson analogue of the Beilinson-
Lichtenbaum conjecture for motivic cohomology, which is now a theorem after Voevod-
sky’s proof of Bloch-Kato. In a sense, Suslin’s conjecture is a version of Beilinson-Lichtenbaum
with integral coefficients instead of torsion. On the other hand Beilinson has proved in
a recent paper [1] that a weak form of Suslin’s conjecture 1.2.15 implies Grothendieck’s
Standard Conjectures. This means that the integral part of the conjecture is a very deep
result about algebraic cycles.

1.2.4 Some computations

In this section we collect some useful computations of Lawson homology.

It is convenient to extend the definition of Lawson homology 𝐿u�𝐻u�(𝑋) for 𝑘 < 0. This can
be done as a result of homotopy invariance.

Definition 1.2.17. Let 𝑋 be an algebraic variety. Let 𝑘, 𝑛 ∈ ℤ. We define

𝐿u�𝐻u�(𝑋) =
⎧{
⎨{⎩

𝜋u�−2u�Zu�+u�(𝑋 × 𝔸u�) if 𝑛 ≥ 2𝑘,
0 if 𝑛 < 2𝑘.

where 𝑟 is an nonnegative integer such that 𝑟 + 𝑘 ≥ 0.
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1.2 Lawson homology

It is an easy consequence of the homotopy invariance for Lawson homology that this is
well defined, i.e. it does not depend on the 𝑟 chosen. Moreover, for 𝑘 > 0 it coincides with
the old definition. In fact, for 𝑘 < 0 it holds

𝐿u�𝐻u�(𝑋) = 𝜋u�−2u�Z0(𝑋 × 𝔸∣u�∣)
= 𝐿0𝐻u�−2u�(𝑋)
= 𝐻BM

u�−2u�(𝑋 × 𝔸∣u�∣)
= 𝐻BM

u� (𝑋)
= 𝐿0𝐻u�(𝑋).

Remark 1.2.18. At first thought we could have defined 𝐿u�𝐻u�(𝑋) = 0 for 𝑘 < 0 but this
would not have been contravariantly functorial. For example pick 𝔸1 × ℙ1 → ℙ1 → ℙ2

and compute 𝐿1𝐻u�.

Now we describe a couple of standard computations. First a computation of Lawson ho-
mology for ℙu�.

Proposition 1.2.19. The Lawson homology of ℙu� is computed as follows

Lu�Hu�(ℙu�) =
⎧{
⎨{⎩

ℤ if 𝑛 = 2𝑘, 2𝑘 + 2 … 2𝑑,
0 otherwise.

Proof. Use induction on 𝑑, and the localization exact sequence from 1.2.6.

⋯ Lu�Hu�(ℙu�−1) Lu�Hu�(ℙu�) Lu�Hu�(𝔸u�) Lu�Hu�−1(ℙu�−1) ⋯

An other accessible computation is in the case of divisors.

Theorem 1.2.20. Let 𝑋 be a smooth algebraic variety of dimension 𝑑. There is a fibration
sequence

ℙ∞ ℤu�−1(𝑋) Pic(𝑋)

that gives

Lu�−1Hu�(𝑋) =

⎧{{{
⎨{{{⎩

NS(𝑋) n = 2d-2,
𝐻1(Pic0(𝑋)) n = 2d-1,
ℤ n = 2d,
0 otherwise.

Proof. See Theorem 4.6 in [13].

Finally, Hu proves the following blow-up formula for Lawson homology of smooth vari-
eties
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1 Semi-topological theories

Theorem 1.2.21. Let 𝑋 be a smooth projective variety and 𝑌 a smooth subvariety of codi-
mension 𝑟. Let’s denote by 𝑋 the blow up of 𝑋 along 𝑌. Then we have the following
formula for Lawson homology

Lu�Hu�(𝑋) ≅
u�−1
⨁
u�=1

Lu�−u�Hu�−2u�(𝑌) ⊕ Lu�Hu�(𝑋).

Proof. See Theorem 3.1 in [42].

1.3 Morphic cohomology

In this section we will describe a theory related to Lawson homology by Poincaré dual-
ity. As we will see, this dual theory, is considerably more difficult to work with. It was
developed by Friedlander and Lawson in [21], [19].

To motivate the definition, observe that Z0(𝔸u�) has the same homotopy type as an Eilen-
berg MacLane space 𝐾(ℤ, 2𝑘). This follows from Theorem 1.2.8. So, singular homology
can be written as

Hu�(𝑋, ℤ) = 𝜋0 Map(𝑋, Z0(𝔸u�)).

Now it seems natural to attempt to define a semi-topological version of singular coho-
mology by replacing the space Map of continuous maps with a space Hom of algebraic
morphisms. The details of this are not immeadiate, because Z0(𝔸u�) is not really an
algebraic variety, but a definition can be made, as we will see in this section. Along
the way, 𝔸u� is replaced by an algebraic variety 𝑌 producing, in fact, a bivariant the-
ory.

1.3.1 The spaces of algebraic cocycles

Friedlander and Lawson construct a theory of algebraic cocycles in [21] and [12].

Let 𝑋 and 𝑌 be algebraic varieties, and 𝑈 ⊂ 𝑋 a subvariety. We define the subspace
Zequi/u�

u� (𝑋×𝑌) ⊂ Zu�+dim(u�)(𝑋×𝑌) of cycles equidimensional over 𝑈 as follows

Zequi/u�
u� (𝑋 × 𝑌) = {𝑛1[𝑊1] + ⋯ + 𝑛u�[𝑊u�] ∣ 𝑊u�|u� → 𝑈 is equidimensional of rel. dim. 𝑘} .

Definition 1.3.1. Let 𝑋 be a normal quasi-projective variety of dimension 𝑑, with projec-
tive closure 𝑋 and closed complement 𝑋∞. Let 𝑌 be an other quasi-projective with closure
𝑌 and closed complement 𝑌∞. The spaces of algebraic cocycles, or morphic cohomology
spaces Mu�(𝑋, 𝑌) are

Mu�(𝑋, 𝑌) = Zequi/u�
u�+u� (𝑋 × 𝑌)/(Zu�+u�(𝑋∞ × 𝑌) + Zu�+u�(𝑋 × 𝑌∞)).

together with the quotient topology.

Remark 1.3.2. The hypothesis of normality is needed to have contravariant functioriality
for the cocycle spaces on the first variable, since this functoriality is a consequence of
Theorem 1.3.4 above.
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1.3 Morphic cohomology

As in the case of spaces of cycles, it is useful to use the complexes of singular chains on
the spaces of cocycles.

Definition 1.3.3. The complex of algebraic cocycles associated to 𝑋 and 𝑌 is the cochain
complex of abelian groups ℳ∗

u� (𝑋, 𝑌) defined as follows

ℳu�
u� (𝑋, 𝑌) = Sing2u�−u� Mu�(𝑋, 𝑌) = Map(Δ2u�−u�, Mu�(𝑋, 𝑌)).

The differential is given by the alternating sum of the face maps.

By the Dold-Kan theorem, we know that

𝐻u�ℳ∗
u� (𝑋, 𝑌) ≅ 𝜋2u�−u�Mu�(𝑋, 𝑌) (1.7)

The spaces Mu�(𝑋, 𝑌) have an alternative interpretation as function spaces.

Theorem 1.3.4. Let 𝑋 be a normal quasi-projective variety and 𝑌 a projective variety. The
graph map

Γ ∶ Hom(𝑋, Cu�(𝑌))+ Mu�(𝑋, 𝑌)

is a homeomorphism of topological spaces, where the topology on Hom(𝑋, Cu�(𝑌)) is such
that {𝛼u�}u� → 𝛼 in Hom(𝑋, Cu�(𝑌)) if, and only if

1. {𝛼u�}u� → 𝛼 for the compact-open topology.

2. For some closure 𝑋 of 𝑋, the closures of the graphs {Γ(𝛼u�)}u� have degree uniformly
bounded by some 𝑁 ≥ 0.

Proof. See Proposition 1.9 in [12].

1.3.2 Definition of morphic cohomology

Having developed the bivariant spaces Mu�(𝑋, 𝑌), there is a natural way to define a semi-
topological cohomology: take algebraic maps to some algebraic model of an Eilenberg-
Maclane space.

From the homotopy invariance theorem 1.2.8, we see that

𝜋u�Zu�(𝔸u�) =
⎧{
⎨{⎩

ℤ if 𝑙 = 2𝑟 − 2𝑘,
0 otherwise.

We can use this to define morphic cohomology, as follows.

Definition 1.3.5. Let 𝑋 be a normal quasi-projective variety. The morphic cohomology
spaces are defined as

Mu�(𝑋) = M0(𝑋, 𝔸u�). (1.8)

with associated complexes

ℳu�,u�(𝑋) = 𝜋2u�−u�M0(𝑋, 𝔸u�). (1.9)
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1 Semi-topological theories

Definition 1.3.6. The morphic cohomology groups are defined by

Lu�Hu�(𝑋) = 𝜋2u�−u�Mu�(𝑋).

There is a cup product in morphic cohomology. Let 𝑋, 𝑋′ be varieties over ℂ. The projec-
tions from 𝑋 × 𝑋′ to the factors induce an exterior product

Lu�Hu�(𝑋) ⊗ Lu�′Hu�′(𝑋′) // Lu�+u�′Hu�+u�′(𝑋 × 𝑋′). (1.10)

Theorem 1.3.7. Composing the exterior product (1.10) with the diagonal embedding de-
fines a cup product in morphic cohomology

Lu�Hu�(𝑋) ⊗ Lu�′Hu�′(𝑋) // Lu�+u�′Hu�+u�′(𝑋). (1.11)

which is graded commutative: 𝑎 ⋅ 𝑏 = (−1)u�u�′𝑏 ⋅ 𝑎 for 𝑎 ∈ Lu�Hu�(𝑋), 𝑏 ∈ Lu�′Hu�′(𝑋).

Proof. See Corollary 6.2 in [21].

Remark 1.3.8. Let us denote by LH the morphic cohomology ring of a point. As stated
in Proposition 1.3.17 below, LH is a graded ring concentrated in cohomological degree 0,
where the grading comes from the 𝑞-index. Then, the structure map 𝑋 → Spec ℂ provides
L∗Hu�(𝑋) with the structure of a graded LH-module.

1.3.3 The duality map

The main technical tool to prove the duality theorem is the follwing result.

Theorem 1.3.9. Let 𝑋 be a projective variety of dimension 𝑑, over ℂ. Let 𝑟, 𝑠, 𝑒 ≥ 0 with
𝑟 + 𝑠 > 𝑑. Then, there exist a Zariski open set 𝑈 ⊂ ℙ1 such that 0 ∈ 𝑈, and a continuous
algebraic map

Ψ = (Ψ+, Ψ−) ∶ Cu�(𝑋) × 𝑈 Cu�(𝑋)2

such that

1. For any cycle 𝛼 ∈ Cu�(𝑋),
𝛼 = Ψ+(𝛼, 0) − Ψ−(𝛼, 0).

2. For any 𝑝 ∈ 𝑈, Ψ±(−, 𝑝) are morphisms of groups.

3. For any effective cycle 𝛼 ∈ Cu�(𝑋), the restriction Ψ(𝛼, −) produces a rational equiv-
alence from 𝛼 to Ψ+(𝛼, 𝑝) − Ψ−(𝛼, 𝑝).

4. Let 𝛼, 𝛽 in 𝑋, of dimensions 𝑟, 𝑠 and degree ≤ 𝑒, and let 𝑝 ∈ 𝑈 ∖ {0}. Then, any
component in the scheme-theoretic intersections 𝛼∩Ψ+(𝛽, 𝑝) or 𝛼∩Ψ−(𝛽, 𝑝), which
intersect non-properly (i.e. in dimension > 𝑟 + 𝑠 − 𝑑), belongs to the singular locus
of 𝑋.

Proof. See Theorem 3.1 in [20].
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1.3 Morphic cohomology

Remark 1.3.10. Theorem 1.3.9 above says that given a couple of families of cycles on 𝑋
of degree bounded by 𝑒, there is a homotopy in Cu�(𝑋) which moves one family so that
any pair of cycles intersect in proper dimension. This is the key to prove an analogue of
Poincaré duality between Lawson and morphic homologies.

Definition 1.3.11. Let 𝑋 be a quasi-projective variety of dimension 𝑑. The duality map, is
the morphism of abelian groups

𝐷∶ Lu�Hu�(𝑋) Lu�−u�H2u�−u�(𝑋)

induced by the chain of continuous maps of spaces of cycles

Mu�(𝑋) Zequi/u�
u� (𝑋 × 𝔸u�) Zu�(𝑋 × 𝔸u�) Zu�−u�(𝑋)≃

Theorem 1.3.12. Let 𝑋 be a smooth quasi-projective variety. Then the duality map from
Definition 1.3.11 is an isomorphism. In particular

Lu�Hu�(𝑋) ≅ Lu�−u�H2u�−u�(𝑋).

Proof. See Theorem 3.3 in [19] for the projective case and Theorem 5.2 in [12] for the
quasi-projective case.

1.3.4 Functoriality and the Mayer-Vietoris property

For 𝑔 ∶ 𝑌′ → 𝑌 be a proper morphism, there is an induced homomorphism 𝑔∗ ∶ Mu�(𝑋, 𝑌′) →
Mu�(𝑋, 𝑌) given by the push-forward of cycles.

Theorem 1.3.13. Let 𝑓 ∶ 𝑋′ → 𝑋 be a morphism of normal quasi-projective varieties and
𝑔 ∶ 𝑌′ → 𝑌 a morphism of quasi-projective varieties. Then

1. There is a continuous pull-back 𝑓 ∗ ∶ Mu�(𝑋, 𝑌) → Mu�(𝑋′, 𝑌).

2. If 𝑔 is proper, there is a continuous push-forward 𝑔∗ ∶ Mu�(𝑋, 𝑌′) → Mu�(𝑋, 𝑌).

3. If 𝑔 is flat, there is a continuous pull-back 𝑔∗ ∶ Mu�(𝑋, 𝑌) → Mu�(𝑋, 𝑌′).

This makes the cocycle spaces Mu�(𝑋, 𝑌) into a covariant functor for proper morphisms
on 𝑌, and contravariant for morphisms of normal varieties on 𝑋.

Proof. See Propositions 3.1 and 3.3 in [12].

These bivariant cocycle spaces, behave like cycle spaces on 𝑌 and like function spaces on
𝑋. In particular, we have a localization exact sequence for 𝑌.

Theorem 1.3.14. Let 𝑋, 𝑌 be quasi-projective varieties with 𝑋 normal. Let 𝑌 be a projective
closure with closed complement 𝑌∞. Then there is a triangle in the derived category of
chain complexes of abelian groups D(ℤ)

ℳu�(𝑋, 𝑌∞) ℳu�(𝑋, 𝑌) ℳu�(𝑋, 𝑌) ℳu�(𝑋, 𝑌∞)[1]
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1 Semi-topological theories

Proof. See Proposition 2.2 [12].

From this, it follows a Mayer-Vietoris property for Zariski covers of 𝑌, and for closed
covers, the same way as for cycle spaces.

On the other hand, it is not known whether the Mayer-Vietoris property for the Zariski
topology on 𝑋 holds in general. We have an exact sequence of abelian groups

Mu�(𝑋, 𝑌) Mu�(𝑈, 𝑌) ⊕ Mu�(𝑉, 𝑌) Mu�(𝑈 ∩ 𝑉, 𝑌)

However, the available techniques do not seem to be enough to prove that this is a fibration
or, at least, that it produces long exact sequences.

1.3.5 Homotopy invariance

The spaces of cocycles Mu�(𝑋, 𝑌) have homotopy invariance property with respect to both
variables.

Theorem 1.3.15. Let 𝑋, 𝑌 be quasi-projective varieties, with 𝑋 normal.

1. The projection 𝑝∶ 𝑋 × 𝔸1 → 𝑋 induces a homotopy equivalence

𝑝∗ ∶ Mu�(𝑋, 𝑌) Mu�(𝑋 × 𝔸1, 𝑌)

2. The projection 𝑝∶ 𝑌 × 𝔸1 → 𝑌 induces a homotopy equivalence

𝑞∗ ∶ Mu�(𝑋, 𝑌) Mu�(𝑋, 𝑌 × 𝔸1)

Proof. See Proposition 3.5 in [12].

Remark 1.3.16. The homotopy invariance with respect to 𝑋 is somewhat surprising, hav-
ing in mind that the Mayer-Vietoris property is unknown. Even worse, if one uses descent
techniques to force the Mayer-Vietoris property, like Friedlander does in [14], the homo-
topy invariance property is lost.

1.3.6 Computations

There are essentially two methods to perform computations in morphic cohomology, and
both require the varieties to be smooth. The first method consists in using the duality the-
orem and performing the computation for Lawson homology. In other words, for smooth
varieties, every computation of Lawson homology leads to a computation for morphic
cohomology.

The second method uses comparison maps with motivic and singular homology. In par-
ticular, one can use Bloch-Kato’s theorem to obtain computations of morphic cohomology
on a certain range of indices. This technique is used, for example in [68].
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1.3 Morphic cohomology

Both of this methods, however, require the smoothness hypothesis. For singular varieties,
there are virtually no nontrivial computations available. Part of the problem, is that mor-
phic cohomology for singular varieties is much more subtle than Lawson homology. In
particular it is not known whether the Mayer-Vietoris property for the Zariski topology
holds in the singular case.

Now we collect some basic computations

Proposition 1.3.17. 1. For 𝑘 ≥ 0, L∗H∗(𝔸u�) ≅ ℤ[𝑠], where 𝑠 is a free generator of
bidegree (1, 0) (degree 1 with respect to the 𝑞-grading).

2. For 𝑘 ≥ 0, L∗H∗(ℙu�) ≅ ℤ[𝑠, ℎ]/(ℎu�+1), where 𝑠 has bidegree (1, 0) and ℎ has bidegree
(1, 2).

3. L∗H∗(𝔾u�) ≅ ℤ[𝑠, 𝑒]/(𝑒2), where 𝑠 is a generator of bidegree (1, 0) and 𝑒 is a gener-
ator of bidegree (1, 1).

Proof. 1) and 2) follow from duality and the computation of Lawson homology of ℙu�.

3) Take the open cover of ℙ1 by two affine spaces. Then we have the following piece of
Mayer-Vietoris sequence

L∗Hu�(ℙ1) // L∗Hu�(𝔸1)⊕2 // L∗Hu�(𝔾u�) // L∗Hu�+1(ℙ1) // L∗Hu�+1(𝔸1)⊕2

which, using 1) and 2) for the computations of ℙ1 and 𝔸1 gives the result.

Remark 1.3.18. Note that, in particular, LH ≅ ℤ[𝑠]. Then, by Remark 1.3.8 the morphic
cohomology groups L∗Hu�(𝑋) are ℤ[𝑠]-modules. The action by 𝑠 on L∗Hu�(𝑋) corresponds
to the 𝑠-maps in morphic cohomology.

As this structure of LH-module in morphic cohomology is functorial, the exterior product
(1.10) factors through

L∗H∗(𝑋) ⊗LH L∗H∗(𝑌) // L∗H∗(𝑋 × 𝑌). (1.12)

Remark 1.3.19. The Künneth homomorphism (1.12) is not an isomorphism in general.
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2 Descent and the extension theorem

In this section we discuss a proof of a version of the main theorem in [35] using techniques
of ∞-categories. The virtue of this approach is that it simplifies the proof, at least concep-
tually, and makes the theorem applicable in new contexts.

2.1 Preliminaries on infinity-sheaves

2.1.1 Infinity-categories

For us, ∞-category will mean (∞, 1)-category, in the sense that all 𝑘-morphisms for 𝑘 > 1
are invertible. Following Lurie’s work [57], we will take quasi-categories as our model for
∞-categories.

Definition 2.1.1. An ∞-category is a simplicial set that has the lifting propery for all inner
horns Λu�

u� ↪ Δu� with 0 < 𝑘 < 𝑛.

The 0-cells correspond to objects, the 1-cells to morphisms and the filling of 2-cells give
weak compositions of morphisms. Finally the filling for higher cells represent a tower of
coherent weak associativities.

u� u� u�

u�u�

u� u�
ℎ

u� u�
ℎ

u� u�
ℎ

u�u�

ℎu�

u� u�
ℎ

ℎu�u�

Remark 2.1.2. An ∞-category which also, satisfies the lifting property for the exterior
horns, i.e. a Kan complex, is an ∞-groupoid: the lifting for external 2-cells produces
homotopy inverses for all 1-morphisms.

Once we believe that Kan complexes model ∞-groupoids, which is, after all, an old idea
going back to Grothendieck [34], we expect an ∞-category to be a category weakly en-
riched in Kan complexes. The most naïve model for this are simplicially enriched cate-
gories, where the enrichment is strict.

Both, quasi-categories and simplicially enriched categories are equivalent presentations
for the theory of (∞, 1)-categories, in the sense that there are model category structures on
both, which happen to be Quillen equivalent. See [3] for more details.
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2 Descent and the extension theorem

To any simplicially enriched category, we can assign its homotopy coherent nerve 𝑁𝒞.
This construction has a left adjoint 𝔊, that produces a simplicially enriched category out
of a simplicial set.

sSet sCat
𝔊

u�
(2.1)

In a simplicially enriched category 𝒞, we have a mapping space Mapu�(𝑎, 𝑏) between any
two objects 𝑎, 𝑏. Also, we define its homotopy category ℎ0𝒞 as the category with the same
objects as 𝒞, and Homℎ0u�(𝑎, 𝑏) = 𝜋0 Mapu�(𝑎, 𝑏). Note that ℎ0𝒞 is a plain 1-category.

Now, simplicially enriched categories have a model structure [2] for which weak equiv-
alences are simplicial functors that induce categorical equivalences on homotopy cate-
gories, and weak homotopy equivalences on mapping spaces. These equivalences can be
transported to sSet via the functor 𝔊. Then, there is a model structure on sSet with such
morphisms as weak equivalences, and whose fibrant objects are the quasi-categories (un-
published) and [57] Theorem 2.2.5.1. With these two model structures on sSet and sCat,
the adjunction (2.1) becomes a Quillen equivalence ([57] Theorem 2.2.5.1).

Example 2.1.3. Let 𝒞 be a 1-category, together with a class of morphisms 𝒲. From this,
we can construct the Dwyer-Kan [10] simplicial localization 𝐿u�𝒞, a simplicially enriched
category which we interpret as an ∞-category via the homotopy coherent nerve.

In the particular case where (𝒞, 𝒲) has the structure of a simplicial model category, we
have a more convenient route to produce an ∞-category. We take 𝒞u�u� the subcategory of
cofibrant-fibrant objects in 𝒞 with the usual mapping spaces as the resulting ∞-category.

Example 2.1.4. The ∞-category of spaces Spc is the one obtained from the usual model
category structure on spaces. For concreteness, we use the simplicial category of Kan
complexes, or its corresponding quasi-category as a model for Spc.

In this language, let 𝒞, 𝒟 be quasi-categories. We can easily construct the functor category
Func(𝒞, 𝒟) as the usual mapping space in sSet.

Func(𝒞, 𝒟) = MapsSet(𝒞, 𝒟),

which happens to be a quasi-category ([57] Proposition 1.2.7.3). This is particularly inter-
esting, as this notion of functor is inherently weak (the higher simplices constitute an
infinite chain of coherence diagrams), yet it is defined in terms of a mapping space of
simplicial sets, an object we are very familiar with.

2.1.2 Limits and colimits

Limits and colimits are defined in the context of ∞-categorgies, by an universal property.
Let’s look at one particularly simple type of limits first:

Definition 2.1.5. An object 𝑋 ∈ 𝒞 is a final object if for any 𝐴 ∈ 𝒞, the mapping spaces
Map(𝐴, 𝑋) is contractible. Dually, 𝑋 is said to be initial if for any 𝐴 ∈ 𝒞, the mapping
spaces Map(𝑋, 𝐴) are contractible.
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Definition 2.1.6. The join of two simplicial sets 𝐾, 𝐿 is a new simplicial set denoted by
𝐾 ∗ 𝐿 and defined as follows:

(𝐾 ∗ 𝐿)0 = 𝐾0 ⊔ 𝐿0,
(𝐾 ∗ 𝐿)1 = 𝐾1 ⊔ 𝐿1 ⊔ 𝐾0 × 𝐿0,
(𝐾 ∗ 𝐿)u� = 𝐾u� ⊔ 𝐿u� ⊔ ⨆

u�+u�=u�−1
𝐾u� × 𝐾u�.

𝐾
𝐿

𝐾 ∗ 𝐿

𝐾
𝐿

Let 𝑝∶ 𝐿 → 𝒞 be a map of ∞-categories. There exist ∞-categories 𝒞/u� and 𝒞u�/ satisfying
the following properties

Hom(𝐾, 𝒞/u�) = Homu�(𝐾 ∗ 𝐿, 𝒞) (2.2)
Hom(𝐾, 𝒞u�/) = Homu�(𝐿 ∗ 𝐾, 𝒞) (2.3)

Where the right hand side refers to the subset of morphisms 𝑓 ∈ Hom(𝐾 ∗ 𝐿, 𝒞) such that
𝑓 |𝐿 = 𝑝.

Definition 2.1.7. Let 𝑝∶ 𝐿 → 𝒞 be a diagram in 𝒞. A limit of 𝑝 is an initial object in 𝒞/u�. A
colimit of 𝑝 is a final object in 𝒞/u�.

We denote by FuncL(𝒞, 𝒟) the full subcategory of Func(𝒞, 𝒟) generated by functors that
preserve limit diagrams.

Remark 2.1.8. There is an ∞-categorical notion of adjoint functors. In essence, an adjoint
pair of functors between 𝒞 and 𝒟 consists of a fibration

ℳ → Δ1,

that satisfies a cartesian and cocartesian fibration conditions, together with identifications
of 𝒞 ≅ ℳ0 and 𝒟 ≅ ℳ1. With this notion of adjoint-ness and certain accessibility as-
sumptions on 𝒞 and 𝒟, there is an adjoint function theorem stating that limit-preserving
functors coincide with the ones having a left adjoint.

Since we will not use the details, we refrain from deepening into the technicalities of this
construction. It can be found in Section 5.2.2 in [57].

2.1.3 Space-valued sheaves

The role played by Set in the category Cat of 1-categories is played by the ∞-category Spc
in the category Cat∞ of ∞-categories.
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2 Descent and the extension theorem

Definition 2.1.9. Let 𝒞 be an ∞-category. The category of presheaves on 𝒞 is the ∞-
category of functors pSh(𝒞) = Func(𝒞op, Spc).

The mapping space functor Map ∶ 𝒞op × 𝒞 → Spc gives, by adjunction, a Yonneda embed-
ding ([57] Section 5.1.3)

ℎ∶ 𝒞 pSh(𝒞)

This Yonneda embedding realizes pSh(𝒞) as a free cocompletion of 𝒞 in the following
sense.

Proposition 2.1.10. Let 𝒞, 𝒟 be ∞-categories. Then, the Yonneda embedding induces an
equivalence of ∞-categories

FuncL(pSh(𝒞), 𝒟) Func(𝒞, 𝒟)≃
(2.4)

Proof. See [57] Theorem 5.1.5.6.

In order to define sheaves, we need to recall the notion of a Grothendieck topology in the
context of ∞-categories ([57] Definition 6.2.2.1).

Definition 2.1.11. Let 𝒞 be an ∞-category. A sieve on an object 𝑋 is a subcategory 𝑈 ⊂
𝒞/u� closed by precomposition, in the sense that

• For every 𝑓 ∈ Homu�/u�
(𝐴, 𝐵) and 𝑔 ∈ Homu�(𝐵, 𝐶), the composition 𝑔 ∘ 𝑓 belongs to

Homu�(𝐴, 𝐶).

A Grothendieck topology on 𝒞, is a choice of a distinguished class Cov(𝑋) of sieves (the
covering sieves) for any object 𝑋 ∈ 𝒞, such that

1. 𝒞/u� ∈ Cov(𝑋).

2. for every 𝑓 ∶ 𝑌 → 𝑋 and 𝑈 ∈ Cov(𝑋), we have 𝑓 ∗𝑈 ∈ Cov(𝑌).

3. Let 𝑈 be a sieve on 𝑋 and 𝑉 ∈ Cov(𝑋). If 𝑓 ∗(𝑈) ∈ Cov(𝑍) for any 𝑍 ∈ 𝑉 and any
morphism 𝑓 ∈ Homu�(𝑍, 𝑋), then 𝑈 ∈ Cov(𝑋).

Remark 2.1.12. The notion of sieve has an alternative point of view, which sometimes may
be more convenient. To any sieve 𝑈 ⊂ 𝒞/u� we can assign a subfunctor ℎu� ↪ ℎu� as follows

ℎu�(𝑌) = Homu�(𝑌, 𝑋) ↪ Homu�(𝑌, 𝑋).

Then, the set of sieves on an object 𝑋 ∈ 𝒞 is in bijection with the set of subfunctors of the
representable functor ℎu� ([57] Proposition 6.2.2.5).

Remark 2.1.13. Some care must be taken with the notion of subobject in an ∞-category.
A morphism 𝑓 ∶ 𝑌 → 𝑍 in 𝒞 is a monomorphism when, for every object 𝑋, the continuous
map Map(𝑋, 𝑌) → Map(𝑋, 𝑍) is split, in the sense that Map(𝑋, 𝑌) is homotopy equivalent
to a union of connected components in Map(𝑋, 𝑍).
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Definition 2.1.14. Let 𝒞 be an ∞-category together with a Grothendieck topology 𝜏. The
∞-category of sheaves on 𝒞 is the full subcategory of pSh(𝒞) generated by the presheaves
ℱ such that the map

Map(ℎu� , ℱ) Map(ℎu� , ℱ)≃
(2.5)

is a weak homotopy equivalence for any object 𝑋 and any covering sieve 𝑈 ∈ Cov(𝑋).

Remark 2.1.15. The ∞-category of sheaves Shu�(𝒞) is a Bousfield localization of pSh(𝒞)
for the class of covering sieve inclusions ℎu� ↪ ℎu� ([57] Lemma 6.2.2.7). The sheaves are
the local objects with respect to this class of morphisms. In particular, there is a left ad-
joint shu� ∶ pSh(𝒞) → Shu�(𝒞) which commutes with finite limits. This is an ∞-categorical
analogue of the associated sheaf functor.

Remark 2.1.16. Let 𝑈 ∈ Cov(𝑋) be a covering sieve. Then, ℎu� is a colimit of representa-
bles as follows

ℎu� = colim
u�∈u�

ℎu�.

It then follows that, for any sheaf ℱ, we have

Map(𝑈, ℱ) ≃ Map(colim
u�∈u�

ℎu�, ℱ)

≃ lim
u�∈u�

ℱ(𝑍).

So, the sheaf condition (2.5) says exactly that ℱ sends the colimit cones {ℎu� → ℎu�}u�∈u� to
limit cones in Spc.

2.1.4 The internal homotopy

The categories of sheaves have an internal homotopy theory, in the sense that there is a
notion of homotopy sheaves, that can be used to detect weak equivalences of objects, in the
same way homotopy groups detect weak homotopy equivalences in Spc.

Definition 2.1.17. Let (𝒞, 𝜏) be an ∞-category together with a Grothendieck topology. We
can associate to any sheaf ℱ ∈ Shu�(𝒞), its homotopy sheaves 𝜋u�ℱ ∈ Shu�(ℎ0𝒞), which
are the set-valued sheaves on ℎ0𝒞 defined as

𝜋u�ℱ = shu�(𝑈 ↦ 𝜋u�ℱ(𝑈)). (2.6)

One natural question that comes to mind is whether we can detect weak equivalences
in 𝒞 using these homotopy sheaves. This would be an abstract version of Whitehead’s
theorem in classical homotopy theory. The answer is “no” in general, there may be mor-
phisms inducing isomorphisms on all homotopy sheaves, which are not weak equiva-
lences.

Definition 2.1.18. Let 𝒞 be an ∞-topos. If the class of weak equivalences 𝒲 (i.e. the
morphisms which become isomorphisms on ℎ0𝒞) coincides with the morphisms inducing
isomorphisms on homotopy sheaves, then the topos 𝒞 is called hypercomplete.

Example 2.1.19. 1. Any ∞-topos with enough points is hypercomplete (Remark 6.5.4.7
in [57]).
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2. An ∞-topos locally of bounded homotopical dimension is hypercomplete (Corollary
7.2.1.12 in [57]).

Proposition 2.1.20. Let (𝒞, 𝜏), be an ∞-category, together with a hypercomplete Grothendieck
topology. Let 𝒲u� be the class of morphisms in pSh(𝒞) that are sent to equivalences by
shu� . Then, 𝑓 ∶ ℱ → 𝒢 belongs to 𝑊u� if, and only if 𝜋u�𝑓 ∶ 𝜋u�ℱ → 𝜋u�𝒢 are isomorphisms of
sheaves of sets, for every 𝑛 ≥ 0.

Proof. Because Shu�(𝒞) is hypercomplete, Proposition 6.5.2.14 in [57], tells us that Shu�(𝒞)
is equivalent to the ∞-category underlying the Joyal model structure on simplicial presheaves.
Since weak equivalences in the Joyal model structure are the ones inducing isomorphisms
on homotopy sheaves, we are done.

2.1.5 𝒟-valued sheaves

The following definition in [55] Definition 1.1.9, is inspired by Remark 2.1.16 above.
Definition 2.1.21. Let 𝒞 be an ∞-category, with a Grothendieck topology 𝜏 and let 𝒟 be
a complete ∞-category. The category of 𝒟-valued sheaves Shu�(𝒞, 𝒟) is the full subcat-
egory of functors ℱ ∈ Func(𝒞op, 𝒟) such that, for any 𝑋 ∈ 𝒞 and 𝑈 ∈ Cov(𝑋), the
induced map

ℱ(𝑋) limu�∈u� ℱ(𝑍)≃
(2.7)

is an equivalence in 𝒟.
Theorem 2.1.22. The Yonneda embedding induces a commutative diagram of ∞-categories

FuncL(pSh(𝒞), 𝒟) Func(𝒞op, 𝒟)

FuncL(Shu�(𝒞), 𝒟) Shu�(𝒞, 𝒟)

≃

≃
(2.8)

where the horizontal maps are equivalences. In particular

Shu�(𝒞, 𝒟) ≃ FuncL(Shu�(𝒞), 𝒟) (2.9)

Proof. This is [55], Proposition 1.1.12. The proof goes as follows. Because of the universal
property of pSh(𝒞) (Proposition 2.1.10), the top functor is an equivalence. Now Shu�(𝒞, 𝒟)
can be regarded as a full subcategory of Func(𝒞op, 𝒟) spanned by those functors ℱ ∈
𝒞op → 𝒟 such that, for any covering sieve 𝑈 ∈ Cov(𝑋)

ℱ(𝑋) ≃ lim
u�∈u�

ℱ(𝑍). (2.10)

But this condition translates, via the top equivalence, to the fact that the correspond-
ing functor on the left ℱ ∶ FuncL(pSh(𝒞), 𝒟) keeps being left-exact when restricted to
Shu�(𝒞).

Remark 2.1.23. Equation (2.9) decouples the sheaf condition, which depends on the topol-
ogy, from the target category 𝒟. This fact will let us transfer results from Shu�(𝒞) to
Shu�(𝒞, 𝒟).
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2.2 Some Grothendieck topologies on schemes

2.2 Some Grothendieck topologies on schemes

In this section we collect the definitions of some Grothendieck topologies we will use. The
first section describes Voevodsky’s notion of cd-structures, a way to describe Grothendieck
topologies via commutative squares [66].

2.2.1 cd-structures and topologies defined by squares

Definition 2.2.1. Let 𝒞 be a category with an initial object 0. A cd-structure on 𝒞 is a class
𝒫 of commutative squares in 𝒞 closed under isomorphism of squares. The squares in 𝒫
will often be called distinguished squares.

A cd-structure 𝒫 on 𝒞 gives an associated Grothendieck topology 𝜏u�, the coarsest one for
which every commutative square

𝐵 //

��

𝑌

��
𝐴 // 𝑋

in 𝒫 gives a covering {𝐴 → 𝑋, 𝑌 → 𝑋} for 𝜏u�.

Definition 2.2.2. Let 𝒫 be a cd-structure on 𝒞 and 𝜏u� the associated Grothendieck topol-
ogy. The class of simple coverings is the smallest class of coverings of 𝜏u� such that

1. The isomorphisms are simple coverings.

2. Every distinguished square
𝐵 //

��

𝑌

��
𝐴 // 𝑋

in 𝒫 gives a simple covering {𝐴 → 𝑋, 𝑌 → 𝑋}.

3. The composition of simple coverings is simple.

Remark 2.2.3. The finite simple coverings are the coverings obtained composing a finite
number of coverings coming from distinguished squares.

Voevodsky defines three important properties for the topologies coming from cd-structures:
completeness, regularity and boundedness. What matters to our discussion is that com-
plete and regular cd-topologies are nice because the sheaf condition can be checked only
on distinguished squares.

Theorem 2.2.4. Let 𝒫 be a complete and regular cd-structure on 𝒞. Then, a presheaf
ℱ ∈ pSh(𝒞) is a sheaf for the associated topology 𝜏u� if, and only if

1. ℱ(∅) = pt.
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2 Descent and the extension theorem

2. Every distinguished square
𝐵 //

��

𝑌

��
𝐴 // 𝑋

induces a pull-back diagram

ℱ(𝑋) //

��

ℱ(𝑌)

��
ℱ(𝐴) // ℱ(𝐵)

Then ℱ ∈ Shu�u�
.

Proof. This is Corollary 2.17 in [66].

The boundedness condition on cd-structure guarantees boundedness of sheaf cohomol-
ogy

Theorem 2.2.5. Let 𝒫 be a complete, regular and bounded cd-structure on 𝒞. Then, for
any object 𝑋 ∈ 𝒞 and any sheaf of abelian groups on 𝒞, the cohomology groups 𝐻u�(𝑋, ℱ)
are bounded.

Proof. See Theorem 2.27 in [66].

2.2.2 Completely decomposed topologies

Now we restrict to the category 𝒞 = Schu� of finite-dimensional schemes over a field
𝑘.

Definition 2.2.6. A splitting sequence for a morphism of schemes 𝑓 ∶ 𝑈 → 𝑋 is a finite
filtration

∅ = 𝑋0 ⊂ 𝑋1 ⊂ ⋯ ⊂ 𝑋u� = 𝑋
of 𝑋 such that

1. Every morphism 𝑋u� → 𝑋u�+1 is a closed embedding

2. The morphism 𝑈 ×u� 𝑋u� → 𝑋u� admits a section over 𝑋u� ∖ 𝑋u�−1 for every 𝑖, i.e. there
are morphisms 𝜎u� ∶ 𝑋u� ∖ 𝑋u�−1 → 𝑈 ×u� 𝑋u� such that 𝑓 𝜎u� = idu�u�∖u�u�−1

.

Definition 2.2.7. A morphism 𝑓 ∶ 𝑈 → 𝑋 is completely decomposed if every 𝑘-rational
point 𝑥 ∶ Spec 𝑘 → 𝑋 admits a lifting ̃𝑥 ∶ Spec 𝑘 → 𝑈 such that

1. The diagram
𝑈

u�
��

Spec 𝑘 u� //

̃u�
<<

𝑋

is commutative,
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2. 𝑓 induces an isomorphism on residue fields 𝑘(𝑥) → 𝑘( ̃𝑥).

Proposition 2.2.8. A morphism of schemes 𝑓 ∶ 𝑈 → 𝑋 has a splitting sequence if, and only
if it is completely decomposed.

Proof. See Lemma 2.15 in [67].

Remark 2.2.9. In particular, in a completely decomposed morphism there is always a
Zariski open 𝑉 ⊂ 𝑋 that factors through 𝑈 → 𝑋.

2.2.3 The Nisnevich topology

The Nisnevich topology is a Grothendieck topology (strictly) in between the Zariski and
the étale topologies. In a sense, it has the good properties of both topologies avoiding the
bad ones. For example, We will see that the Nisnevich topology is generated by distin-
guished squares, like the Zariski topology, and is fine enough to allow an easy local de-
scription of closed embeddings of smooth schemes. They are, Nisnevich locally, like the
zero section embedding of a vector bundle.

Definition 2.2.10. The étale topology on Schu� is the Grothendieck topology given by the
covering families {𝑈u� → 𝑋} such that

1. The morphisms 𝑈u� → 𝑋 are étale.

2. The morphism 𝑈 = ∐ 𝑈u� → 𝑋 is an epimorphism.

Definition 2.2.11. The Nisnevich topology on Schu� is the Grothendieck topology given
by the covering families {𝑈u� → 𝑋} such that

1. The morphisms 𝑈u� → 𝑋 are étale.

2. The morphism 𝑈 = ∐ 𝑈u� → 𝑋 is an epimorphism.

3. The morphism 𝑈 = ∐ 𝑈u� → 𝑋 is completely decomposed.

Because of the completely decomposed condition, the Nisnevich topology can be de-
scribed by a cd-structure.

Definition 2.2.12. We say that a diagram of schemes

𝑊 //

��

𝑍

��
𝑈 // 𝑋

is a Nisnevich distinguished square if

1. it is pull-back diagram,

2. the map 𝑈 → 𝑋 is an open embedding,

3. the map 𝑍 → 𝑋 is an étale morphism which induces an isomorphism (𝑍 ∖ 𝑊)red →
(𝑋 ∖ 𝑈)red with the reduced scheme structures.
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The Nisnevich distinguished squares form a cd-structure on Schu�.

Proposition 2.2.13. Every Nisnevich covering in Schu� admits a finite simple refinement
for the Nisnevich cd-structure.

Proof. See Proposition 2.16 in [67].

Theorem 2.2.14. The Nisnevich cd-structure on Schu� is complete regular and bounded.

Proof. See Theorem 2.2 in [67].

Remark 2.2.15. In particular, sheaves are detected on distinguished squares, and every
sheaf of abelian groups is cohomologically bounded by the dimension of the variety.

2.2.4 The cdh topology

Definition 2.2.16. A morphism of schemes 𝑓 ∶ 𝑌 → 𝑋 is called a topological epimorphism
if it is a quotient map for the underlying topological spaces.

If this property is stable by base change through any morphism 𝑋′ → 𝑋, we will say 𝑓 is
a universal topological epimorphism.

Definition 2.2.17. The h-topology on Schu� is the Grothendieck topology given by the fi-
nite covering families {𝑈u� → 𝑋} such that ∐ 𝑈u� → 𝑋 is a universal topological epimor-
phism.

The qfh-topology on Schu� is the Grothendieck topology given by the h-coverings {𝑈u� → 𝑋}
which, in addition are quasi-finite.

Theorem 2.2.18. Let 𝑋 be a reduced Noetherian scheme over 𝑘, and {𝑈u� → 𝑋} a covering
for the h-topology. Then it has a refinement {𝑉u� → 𝑋} such that every map 𝑝u� ∶ 𝑉u� → 𝑋
factors as a composition

𝑉u� 𝑉′
u� 𝑋u� 𝑋

u� u� u�

where the left map is a Zariski open embedding, the middle map is finite, and the one at
the right hand side is a blow-up along a closed subscheme in 𝑋.

Proof. See Theorem 3.1.9 in [65].

Remark 2.2.19. In case {𝑈u� → 𝑋} is a qfh-covering, the right hand side map in the factor-
ization from Theorem 2.2.18 is the identity.

Definition 2.2.20. The cdh-topology on Schu� is the Grothendieck topology given by cov-
ering families {𝑈u� → 𝑋} such that

1. {𝑈u� → 𝑋} is a covering for the h-topology.

2. The map ∐ 𝑈u� → 𝑋 is completely decomposed.
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Theorem 2.2.21. Let 𝑋 be a reduced Noetherian scheme over 𝑘 and {𝑈u� → 𝑋} a covering
for the cdh topology. Then it admits a refinement {𝑉u� → 𝑋} such that every map 𝑝u� ∶ 𝑉u� →
𝑋 factors as a composition of a Zariski open embedding and an abstract blow-up of 𝑋
along a closed center.

Proof. See Proposition 5.9 [62].

Definition 2.2.22. An abstract blow-up square is a commutative diagram

𝑌 𝑋

𝑌 𝑋

u�′

u�u�
u�

such that

1. It is a pull-back square.

2. 𝑞 is proper.

3. 𝑖 is a closed embedding.

4. 𝑞 induces an isomorphism 𝑞∶ 𝑋 ∖ 𝑌 → 𝑋 ∖ 𝑌.

The family of abstract blow-ups define a cd-structure on Schu�. We will refer to the Grothendieck
topology it generates as the abstract blow-up topology.

Proposition 2.2.23. Every abstract blow-up (resp. cdh) covering {𝑈u� → 𝑋} admits a finite
simple refinement in the abstract blow-up (resp. cdh) cd-structure.

Proof. See Proposition 2.17 in [67].

Theorem 2.2.24. The abstract blow-up (resp. cdh) squares generate a complete regular
and bounded cd-structure on the category Schu�.

Proof. This is Theorem 2.2 in [66]. What we call “abstract blow-up topology” is called
lower-cd-structure by Voevodsky.

The main point of the abstract blow-up topology is that we can build smooth coverings
for this topology via Hironaka’s resolution of singularities. It is needed a strong version
of this theorem, as follows

Theorem 2.2.25 (Hironaka). Let 𝑋 be an algebraic variety defined over a field 𝑘 of charac-
teristic zero. Then, there exist a sequence of varieties

𝑋u� 𝑋u�−1 ⋯ 𝑋0 = 𝑋
u�u� u�u�−1 u�1

such that
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1. 𝑋u� is smooth.

2. The maps 𝑝u� ∶ 𝑋u� → 𝑋u�−1 are blow-ups along a smooth center 𝑍u�−1

3. The centers 𝑍u� are contained in the singular locus of 𝑋u�.

Proof. See Theorem 3.36 in [46].

An other source of coverings for the abstract blow-up topology is the following lemma
due to Chow.

Lemma 2.2.26 (Chow). Let 𝑋 be an algebraic variety. There exists a quasi-projective vari-
ety 𝑋′, a proper map 𝑝∶ 𝑋′ → 𝑋 and a dense open subset 𝑈 ⊂ 𝑋 such that 𝑝∶ 𝑝−1(𝑈) → 𝑈
is an isomorphism.

Proof. See Theorem 5.6.1 in [32].

Proposition 2.2.27. If 𝑘 admits resolution of singularities (for example if char 𝑘 = 0), every
abstract blow-up covering {𝑈u� → 𝑋} of a smooth scheme 𝑋 by smooth schemes admits a
finite simple refinement in the abstract blow-up topology.

Proof. By the proposition 2.2.23 it only remains to check that a covering {𝑌 → 𝑋, 𝑍 → 𝑋}
coming from an abstract blow-up square can be refined to a covering obtained by compo-
sition of blow-up’s of smooth schemes with smooth centers. But this follows from resolu-
tion of singularities.

2.2.5 Cubical hyperresolutions

Cubical hyperresolutions is a technique introduced in [36], that produces smooth cover-
ings for the abstract blow-up topology, which are particularly nice to use for computing
Cech-style cohomologies, because not only the elements in the covering, but all the fibered
products involved in Cech-style complexes are made smooth.

Let �1 = {1 → 0} be the category with two objects and a single morphism between them.
We denote by�u� = �1×⋯×�1 the indexing category for cubical diagrams.

Definition 2.2.28. Let 𝑋• ∶ 𝐽 → Schu� be a finite diagram of schemes. A cubical hyperres-
olution of 𝑋• is a diagram 𝑋•• ∶ �u� × 𝐽 → Schu� of schemes such that

1. 𝑋0…0,• = 𝑋•,

2. There exists a diagram of schemes 𝑌•,• ∶ �1 × 𝐽 → Schu� together with a factorization
of 𝑋•,• like this

𝑋u�′1,u� 𝑌1,u� 𝑋0…01,u�

𝑋u�′0,u� 𝑌0,u� 𝑋0…00,u�

u� u�

u� u�

u� u� u� (2.11)
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for every 𝐼′ ≠ (0 … 0) ∈ �u�−1 and 𝑗 ∈ 𝐽, where 𝑖 are closed embeddings of codimen-
sion at least 1, and 𝑝, 𝑞 are proper morphisms.

3. The induced maps 𝑋0…01,u� ∖ 𝑌1,u� → 𝑋0…00,u� ∖ 𝑌0,u� are isomorphisms.

4. The right square in 2.11 is a pull-back diagram.

5. The left square in 2.11 is a cubical hyperresolution of the diagram 𝑌 ∶ �1 ×𝐽 → Schu�.

Remark 2.2.29. Note that the Definition 2.2.28 of cubical hyperresolution is recursive with
respect to the dimension of the cubes.

Theorem 2.2.30. Assume 𝑘 is a field of characteristic 0. Let 𝑋• ∶ 𝐽 → Schu� be a finite dia-
gram of finite dimensional schemes. Then, there exists a cubical hyperresolution 𝑋•,• ∶ �u�×
𝐽 → Schu� such that

1. 𝑋u�,u� is smooth whenever 𝐼 ≠ (0 … 0).

2. dim 𝑋u�,u� ≤ dim 𝑋u� − |𝐼| + 1.

Proof. See Theorem 2.15 in [36].

Remark 2.2.31. A smooth cubical hyperresolution 𝑋• of a scheme 𝑋, gives a finite cover
{𝑈u� = 𝑋0…1…0 → 𝑋} for the topology of abstract blow-ups, with the following additional
properties:

1. All the fibered products in the covering 𝑈u�1 ×⋯×𝑈u�u� are refined by a corresponding
scheme in the cubical diagram 𝑋• which is smooth.

2. There is a bound on the size of the covering by the dimension of 𝑋.

For this reason, smooth hyperresolutions are particularly useful to build Cech-style spec-
tral sequences.

2.3 The extension theorem

2.3.1 An abstract extension theorem

Let (𝒞, 𝜏) be an ∞-category together with a Grothendieck topology, and let 𝒞0 ⊂ 𝒞 be a
full subcategory.

Theorem 2.3.1. The restriction functor 𝜀u�∗ ∶ pSh(𝒞0) → pSh(𝒞) admits a left adjoint 𝜀u�
∗.

pSh(𝒞0) pSh(𝒞)
u�u�∗

u�u�
∗

(2.12)

Proof. See [57], Corollary 4.3.2.14 for the existence of left Kan extensions, and Proposition
4.3.2.17 for the characterization of a left Kan extensions as a left adjoint.
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2 Descent and the extension theorem

This, in turn induces an adjoint pair on the respective categories of sheaves

Shu�(𝒞0) Shu�(𝒞) 𝜀∗ = 𝜀u�
∗

𝜀∗ = shu� 𝜀u�∗

u�∗

u�∗

(2.13)

The categories of sheaves are localizations of the respective categories of presheaves, by
a class of morphisms 𝒲. Let 𝒲 (resp. 𝒲0) be the class of morphisms in pSh(𝒞) (resp.
pSh(𝒞0)) that become equivalences after applying the sheafification functor shu� .

Theorem 2.3.2. Let (𝒞, 𝜏) be an ∞-category with a hypercomplete Grothendieck topology.
Let 𝒞0 be a full subcategory, such that the following condition holds:

• For every covering sieve 𝑈 ∈ Cov(𝑋), the subcategory 𝑈0 = 𝑈 ∩ 𝒞0 generated by
the objects in 𝒞0 is cofinal with 𝑈.

Then a morphism 𝑓 ∶ ℱ → 𝒢 in pSh(𝒞) belongs to 𝒲 if, and only if 𝜀∗𝑓 ∈ 𝒲0.

Proof. Because of Proposition 2.1.20 we can detect morphisms in 𝒲 using the internal
homotopy theory in Shu�(𝒞). Concretely, 𝑓 ∈ 𝒲 if, and only if 𝜋u�𝑓 ∶ shu� 𝜋u�ℱ → shu� 𝜋u�𝒢
is an isomorphism of sheaves for every 𝑛 ≥ 0. The same happens for 𝒲0.

Now, we only need to prove that 𝜋u�𝑓 is an isomorphism of sheaves if, and only if 𝜋u�𝜀∗(𝑓 )
is. For this, we use the fact that 𝜋u�ℱ and 𝜋u�𝒢 are pre-sheaves of sets. In this case we can
write the global sections of the associated sheaf over 𝑋 as follows

shu� 𝜋u�ℱ(𝑋) = ((𝜋u�ℱ)+)+,

where

ℋ+ = colim
u�∈Cov(u�)

Homu�(ℎu� , ℋ)

= colim
u�∈Cov(u�)

Homu�0
(ℎu�0

, ℋ).

This means that the value of ℋ+ is determined by the value of ℋ on the objects of 𝒞0. It
follows then, that 𝜋u�𝑓 is an isomorphism if, and only if 𝜋u�𝜀∗(𝑓 ) is, and we are done.

Theorem 2.3.3. Let (𝒞, 𝜏) be an ∞-category together with a Grothendieck topology, and
let 𝒞0 ⊂ 𝒞 be a full subcategory, satisfying the conditions of Theorem 2.3.2. Let 𝒟 be a
complete ∞-category 𝒟. Then, the restriction functor 𝜀∗ induces an equivalence

Shu�(𝒞, 𝒟) Shu�(𝒞0, 𝒟)≃
(2.14)

Proof. First observe that the theorem holds in the case 𝒟 = Spc. The unit of the adjunc-
tion (𝜀∗, 𝜀∗) factors as

ℱ 𝜀u�
∗𝜀∗u�ℱ 𝜀u�

∗ shu� 𝜀∗u�ℱ (2.15)
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The left arrow is an equivalence of presheaves because 𝜀∗u�ℱ is a Kan extension along a
fully faithful inclusion 𝒞0 ↪ 𝒞 (see section 4.3.2 in [57]). The second arrow in (2.15), is
a weak equivalence, because of Theorem 2.3.2, and the fact that 𝜀∗u�ℱ → shu� 𝜀∗u� is an
equivalence.

As for the counit
𝑐 ∶ 𝜀∗𝜀∗ℱ ℱ (2.16)

Because of Theorem 2.3.2, the morphism 𝑐 in (2.16) is an equivalence if, and only if its
restriction 𝜀∗𝑐 is. But then, the unit applied to 𝜀∗ℱ gives an equivalence

𝜀∗ℱ 𝜀∗𝜀∗𝜀∗ℱ (2.17)

which is right inverse to 𝜀∗𝑐, so (2.16) is also an equivalence.

Now, for a general 𝒟, because of Theorem 2.1.22, we can factor 𝜀∗ through the following
chain of equivalences

Shu�(𝒞, 𝒟) ≃ FuncL(Shu�(𝒞), 𝒟)
≃ FuncL(Shu�(𝒞0), 𝒟)
≃ Shu�(𝒞0, 𝒟)

Remark 2.3.4. The hypothesis of Theorem 2.3.3, namely that any covering sieve 𝑈 ∈
Cov(𝑋), the subcategory 𝑈0 = 𝑈 ∩ 𝒞0 generated by the objects in 𝒞0 is cofinal with
𝑈, is fullfilled when any object 𝑋 in 𝒞 admits a covering by objects in 𝒞0.

2.3.2 An extension theorem on the category of schemes

We now formulate an analogue of Guillén-Navarro’s extension theorem 2.1.5 in [35].

Theorem 2.3.5. Assume 𝑘 is a field of characteristic zero, and let 𝐹 ∶ Smop
u� → 𝒟 be a functor

from the category of smooth schemes over 𝑘 to an ∞-category 𝒟, such that 𝐹() = pt and
for any blow-up square on Smu�

𝑌 𝑋

𝑌 𝑋

The corresponding image by 𝐹 is

𝐹(𝑋) 𝐹(𝑋)

𝐹(𝑌) 𝐹(𝑌)
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2 Descent and the extension theorem

is a pull-back diagram in 𝒟.

Then, there exists a functor 𝐹u� ∶ Schop
u� → 𝒟 extending ℱ such that any abstract blow-up

square in Schu� is sent to a pull-back diagram in 𝒟.

Proof. Observe that functors ℱ ∈ Func(Smop
u� , 𝒟) with the hypothesis of the theorem are

exactly the sheaves for the abstract blow-up topology on the category of smooth schemes.
Then, Theorem 2.3.3 establishes an equivalence

Sh(Smu�, 𝒟) ≃ Sh(Schu�, 𝒟),

in particular, there is a unique object on the right matching 𝐹, this is the extension 𝐹u�.

Remark 2.3.6. This theorem is an analogue of Theorem 2.1.5 in [35]. Neither one of those
implies the other. Here is a list of differences

1. The theorem in [35] starts with a functor that takes values on a homotopy category
ℎ𝒟, with the rectificability hypothesis on cubical diagrams. On the other hand,
we require an ∞-functor with values in the ∞-category 𝒟. Our hypothesis is still
weaker than asking a strict functor with values in 𝒟 (assuming 𝒟 has a strict model).
In a sense, we require a functor which is weak up to coherent homotopies.

2. The functors in [35] take values in a descent category (analogue to our 𝒟). A de-
scent category is a concept defined in that paper, that encodes a category with weak
equivalences, together with a simple functor 𝑠 ∶ Func(�u�, 𝒟) → 𝒟, that plays the
role of the total complex in diagrams of chain complexes. On the other hand, in our
formulation the simple functor is replaced by limit in the ∞-category 𝒟.
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3 Descent for semi-topological theories

3.1 Intersections in Lawson homology

In this section we will describe an intersection pairing in Lawson homology. The material
in this section is taken from [17], and directly inspired by the intersection pairing in Chow
groups developed in [29].

In order to construct intersections of cycles, one needs to be able to move the cycles in their
equivalence class so that they meet properly (the codimension of the intersection is the
sum of the codimensions of the cycles). This is classically achieved by a moving lemma,
or by a deformation to the normal cone due to Fulton.

To construct intersections in Lawson homology, Friedlander and Gabber follow Fulton’s
approach. The novelty of this approach is that the actual moving of cycles is encoded in
homotopy equivalences of spaces of cycles.

3.1.1 Intersection with a Cartier divisor

As a first step, we will construct intersections with a Cartier divisor. Let 𝑋 be an algebraic
variety, and 𝑖 ∶ 𝐷 → 𝑋 the inclusion of a Cartier divisor, with open complement 𝑈. Let
𝒪(𝐷) be the line bundle associated to the divisor [𝐷], with total space 𝐿. Let 𝑁u�𝑋 denote
the total space of the normal bundle of 𝐷 in 𝑋, which coincides with 𝒪(𝐷)|u�. There is
a section 𝑠u� ∶ 𝑋 → 𝐿 that picks 𝐷 amongst the linear equivalence class of divisors repre-
sented by 𝐿, that is, we have 𝐷 = {𝑥 ∈ 𝑋|𝑠u�(𝑥) = 𝑠0(𝑥)}.

Lemma 3.1.1.
Zu�(𝑋)

Zu�(𝑁u�𝑋) Zu�(𝐿) Zu�(𝐿|u�)
u�∗ u�∗

u�u�∗u�u�

Proof. This is Theorem 2.4 in [17].

We need to prove the existence of the dashed arrow 𝜎u�. Since the 3-step row is a fibration
sequence because of the localization theorem 1.2.6. It is enough to prove that the compo-
sition 𝑝∗ ∘ 𝑠u�∗ is homotopy equivalent to the zero map.

Remark 3.1.2. The map 𝜎u� in Lemma 3.1.1 is the Lawson incarnation of Fulton’s special-
ization to the normal cone.
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3 Descent for semi-topological theories

This way, for any Cartier divisor 𝑖 ∶ 𝐷 → 𝑋, we have a Gysin map on Lawson homol-
ogy

Lu�Hu�(𝑋) Lu�−1Hu�(𝐷)

Lu�Hu�(𝑁u�𝑋)

u�!

u�u�∗

≃ (3.1)

Remark 3.1.3. To construct the Gysin map we go backwards through the homotopy equiv-
alence Zu�−1(𝑋) → Zu�(𝑁u�𝑋). In particular this means that we do not have canonical
representative of the Gysin map as a strict map on the level of cycle spaces. This is to
be expected though, and is a reflection of the need to move cycles so they meet at proper
dimension.

3.1.2 Deformation to the normal cone

This construction is described Chapter 5 of Fulton’s book [29], and provides the funda-
mental “moving tool” to produce intersections of algebraic cycles.

Let 𝑋 be an algebraic scheme and 𝑌 a closed subscheme, defined by a sheaf of ideals
ℐ ⊂ 𝒪u� .

First some notation:

𝑋 = Blu� 𝑋 = Proj ⨁ ℐu� blow-up of 𝑋 along 𝑌,
𝐶u�𝑋 = Spec ⨁ ℐu�/ℐu�+1 normal cone,

𝑌 = Proj 𝐶u�𝑋 exceptional divisor,
𝐶u�𝑋 = Proj(𝐶u�𝑋 ⊕ 𝒪u�) projective completion of the normal cone
𝑀u�𝑋 = Blu�×{∞}(𝑋 × ℙ1) deformation space

Then, there are the following closed embeddings, inside the deformation space 𝑀u�𝑋.

𝑌 → 𝑋 as the exceptional divisor,
𝑌 → 𝐶u�𝑋 as the points at infinity,

𝑌 × ℙ1 → 𝑀u�𝑋
𝑋 × {∞} → 𝑀u�𝑋

𝐶u�𝑋 × {∞} → 𝑀u�𝑋

such that 𝑋 and 𝐶u�𝑋 intersect along 𝑌.
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3.1 Intersections in Lawson homology

𝑌 × {∞} 𝑌 × ℙ1 𝑌 × 𝔸1

𝐶u�𝑋 ∪ 𝑋 𝑀u�𝑋 𝑋 × 𝔸1

{∞} ℙ1 𝔸1

(3.2)

Theorem 3.1.4. Let 𝑋 be a an algebraic variety and 𝑖 ∶ 𝑌 → 𝑋 a regular embedding of
codimension 𝑐. Then there is a commutative diagram of continuous maps as follows

Zu�(𝑋) Zu�(𝑋 × 𝔸1)

Zu�(𝐶u�𝑋) Zu�(𝑀u�𝑋 ∖ 𝑋) Zu�(𝑀u�𝑋 ∖ 𝑝−1(∞))

≅
u�u�

Proof. See Proposition 3.3 in [17].

Remark 3.1.5. The map 𝜎u� defined in Theorem 3.1.4 above is a Lawson homology version
of Fulton’s specialization to the normal cone, and lets us define a Gysin map as follows.

Definition 3.1.6. Let 𝑋 be an algebraic variety and 𝑖 ∶ 𝑌 → 𝑋 a regular embedding of
codimension 𝑐. Then, there is a Gysin map 𝑖!,

Lu�Hu�(𝑋) Lu�−u�Hu�−2u�(𝑌)

Lu�Hu�(𝑁u�𝑋)

u�!

u�u�∗

≃ (3.3)

Remark 3.1.7. The Gysin map for a regular embedding coincides with the one defined
for a divisor described before.

3.1.3 Action by Chern classes

As sketched in [17] after Proposition 2.5, we can do Chern classes in Lawson homology es-
sentialy the same way Fulton defines them in [29] for Chow groups.

The Gysin map 𝑖! ∶ Lu�Hu�(𝑋) → Lu�−1Hu�−2(𝐷) for a divisor, can be interpreted as acting by
the first Chern class 𝑐1(𝒪(𝐷)).

As for the higher Chern classes, we proceed by defining the total Segre class

Definition 3.1.8. Let 𝑝∶ 𝐸 → 𝑋 be a vector bundle of rank 𝑟, with associated projective
bundle 𝑝∶ ℙ𝐸 → 𝑋. Its Segre class is

𝑠u�(𝐸) ∩ 𝛼 = 𝑝∗(𝑐1(𝒪(1))u�−1+u� ∩ 𝑝∗(𝛼)).
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3 Descent for semi-topological theories

From this, we define the Chern classes as

Definition 3.1.9. Let 𝑝∶ 𝐸 → 𝑋 be a rank 𝑟 vector bundle on 𝑋. The Chern classes 𝑐u�(𝐸)
are the operations Lu�Hu�(𝑋) → Lu�−u�Hu�−2u�(𝑋) such that

1 + 𝑐1(𝐸)𝑡 + 𝑐2(𝐸)𝑡2 + ⋯ = (1 + 𝑠1(𝐸)𝑡 + 𝑠2(𝐸)𝑡2 + ⋯)−1

as End(L∗H∗(𝑋))-valued power series in the formal variable 𝑡.

3.1.4 Some intersection formulas

First of all, using intersectons by divisors, we can prove the following projective bundle
formula

Theorem 3.1.10. Let 𝑝∶ 𝐸 → 𝑋 be a rank 𝑟 vector bundle over an algebraic variety 𝑋. Then
for every 𝑘 ≥ 0 the map

𝜙∶ ⨁u�−1
u�=0 Lu�−u�Hu�−2u�(𝑋) 𝐿u�𝐻u�(ℙ(𝐸))

given by

𝜙(𝛼0, … , 𝛼u�−1) =
u�−1
∑
u�=0

𝑐1(𝒪ℙ(u�)(1))u� ∩ 𝑝∗(𝛼u�).

is an isomorphism.

Proof. See Theorem 2.5 in [17].

The Gysin map satisfies the usual commutativity formulas in relation to flat pull-backs
and proper push-forwards

Theorem 3.1.11. Consider a pull-back diagram

𝑌′ 𝑋′

𝑌 𝑋

u�′

u�

u� u�

where both 𝑖 and 𝑖′ are regular embeddings of codimension 𝑐. Then,

1. If 𝑞 is proper, 𝑖!𝑞∗ = 𝑝∗𝑖′!.

2. If 𝑞 is flat, 𝑖′!𝑞∗ = 𝑝∗𝑖!.

Proof. See Theorem 3.4 in [17].
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3.2 Refined Gysin maps

In this section we generalize the Friedlander-Gabber Gysin maps in Lawson homology,
to construct refined Gysin homomorphisms, as developed in Section 6.2 of Fulton’s book
[29]. We prove an excess intersection formula for the refined Gysin map, and use it to
produce a blow-up formula for Lawson homology of a regular embedding of possibly
singular varieties.

Consider a pull-back diagram of varieties, where 𝑖 is a regular embedding of codimension
𝑐.

𝑌′ 𝑋′

𝑌 𝑋

u�′

u�

u� u�

Definition 3.2.1. The refined Gysin maps 𝑖! ∶ Lu�Hu�(𝑋′) → Lu�−u�Hu�−2u�(𝑌′) is defined by
the following composition

Lu�Hu�(𝑋′) Lu�Hu�(𝑁u�′𝑋′) Lu�Hu�(𝑝∗𝑁u�𝑋) Lu�−u�Hu�−2u�(𝑌′)
u�u�∗ ≅

Where the first map is the specialization to the normal cone defined in Theorem 3.1.4, the
second map is the push-forward along the closed embedding of normal cones

𝐶u�′𝑋′ → 𝐶u�𝑋 = 𝑁u�𝑋

and the third map is a homotopy inverse of the flat pull-back induced by the bundle map
𝑝∗𝑁u�𝑋 → 𝑌′.

Remark 3.2.2. Note that, the same as in Fulton’s refined Gysin for Chow groups, the re-
fined Gysin 𝑖! on 𝑋′ is not the same as the refined Gysin 𝑖′!. In particular, 𝑖! decreases the
dimension by dim 𝑋 − dim 𝑌, while 𝑖′! decreases it by dim 𝑋′ − dim 𝑌′, and the latter may
be smaller than the former. The connection between 𝑖′! and 𝑖! is given by the excess inter-
section formula.

3.2.1 Excess intersection formula

Theorem 3.2.3 (Excess intersection formula). Consider a diagram of varieties as follows

𝑌″ 𝑋″

𝑌′ 𝑋′

𝑌 𝑋

u�″

u�′

u�

u�2

u�1

u�2

u�1

(3.4)
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3 Descent for semi-topological theories

Where 𝑖 and 𝑖′ are regular embeddings of codimension 𝑐 and 𝑐′, and normal bundles 𝑁
and 𝑁′ respectively. Let

𝐸 = 𝑝∗
1𝑁/𝑁′

which is a vector bundle of rank 𝑒 = 𝑐−𝑐′ on 𝑌′. Then, for any Lawson cycle 𝛼 ∈ Lu�Hu�(𝑋″)
we have the following excess intersection formula relating refined Gysin maps for 𝑖 and 𝑖′

𝑖!(𝛼) = 𝑐u�(𝑝∗
2𝐸) ∩ (𝑖′)!(𝛼). (3.5)

Proof. Consider the diagram

Lu�Hu�(𝑋″) Lu�Hu�(𝑁u�″𝑋″) Lu�Hu�(𝑝∗
2𝑁u�′𝑋′) Lu�−u�′Hu�−2u�′(𝑌″)

Lu�Hu�(𝑋″) Lu�Hu�(𝑁u�″𝑋″) Lu�Hu�((𝑝2𝑝1)∗𝑁u�𝑋) Lu�−u�Hu�−2u�(𝑌″)

u�u�″

u�u�″

≅ ≅ u�u�(u�)∩

where the rows represent 𝑖′! and 𝑖! respectively.

We need to prove commutativity on the right square. Consider the projective bundles

𝑃 = ℙ(𝑝∗
1𝑁u�𝑋 ⊕ 𝒪u�″)

𝑃′ = ℙ(𝑝∗
1𝑁u�′𝑋′ ⊕ 𝒪u�″)

𝑃′ is embedded in 𝑃, and we have a projection 𝑞∶ 𝑃′ → 𝑌″. Let 𝜉 and 𝜉 ′ be the canonical
quotient bundles on 𝑄 and 𝑄′, of ranks 𝑐 and 𝑐′ respectively. We have

0 𝜉 ′ 𝜉 𝑞∗𝐸 0

By the Whitney formula for Chern classes we have

𝑐u�(𝜉) = 𝑐u�′(𝜉 ′)𝑐u�(𝑞∗𝐸),

Since the inverse of the isomorphism Lu�−u�Hu�−2u�(𝑌″) → Lu�Hu�((𝑝2𝑝1)∗𝑁u�𝑋) is realized by
acting with 𝑐u�(𝜉), we are done.

3.2.2 Gysin map for a local complete intersection morphism

The Gysin map can be used to produce pull-back maps for more general morphism than
regular embeddings.

Definition 3.2.4. A morphism 𝑓 ∶ 𝑋 → 𝑌 is called local complete intersection of codi-
mension 𝑐 if it factors as a composition of a closed regular embedding 𝑖 of codimension 𝑒,
followed by a smooth morphism 𝑝 of relative dimension 𝑒 − 𝑐.

𝑋 𝑃 𝑌
u� u�
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We can use this decomposition to produce refined Gysin maps along such local complete
intersection morphisms

Definition 3.2.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a local complete intersection morphism of codimension
𝑐, that factorizes as 𝑓 = 𝑝𝑖. Consider a pullback diagram

𝑋′ 𝑃′ 𝑌′

𝑋 𝑃 𝑌

u�′ u�′

u� u�

Then the associated refined Gysin map is the composition

Lu�Hu�(𝑌′) Lu�+u�−u�Hu�+2u�−2u�(𝑃′) Lu�−u�Hu�−2u�(𝑋′)
u�′∗ u�!

Remark 3.2.6. The Gysin map decreases dimension if dim 𝑋 < dim 𝑌 and increases it if
dim 𝑋 > dim 𝑌 (negative codimension).

3.3 Descent theorems for Lawson homology and morphic
cohomology

3.3.1 Blow-ups of regular embeddings

In [41] Hu proves a blow-up formula for Lawson homology on smooth varieties. We now
use the intersection theory on Lawson homology developed by Friedlander-Gabber to
prove a blow-up formula for a blow-up of possibly singular varieties along a regularly
embedded center.

Compare this result with the blow-up formulas for Chow groups [29] Theorem 6.7 and
algebraic K-theory [63] Theorem 2.1, which are also formulated for a regularly embedded
center of possibly singular varieties.

Theorem 3.3.1. Let 𝑋 be an algebraic variety, with a regularly embedded subvariety 𝑌 of
codimension 𝑐, fitting in the following abstract blow-up square

𝑌 𝑋

𝑌 𝑋

u�

u�

u� u�

Let 𝐸 = 𝑝∗𝑁u�𝑋/𝑁u�𝑋, which is a vector bundle of rank 𝑒 = 𝑐 − 1 on 𝑌. Then, we have a
split short exact sequence

0 Lu�Hu�(𝑌) Lu�Hu�(𝑌) ⊕ Lu�Hu�(𝑋) Lu�Hu�(𝑋) 0
u� u� (3.6)

51



3 Descent for semi-topological theories

where

𝑎(𝛼) = (𝑐u�(𝐸) ∩ 𝑝∗(𝛼), 𝑖∗(𝛼))
𝑏(𝛼, 𝛽) = 𝑗∗(𝛼) − 𝑞!(𝛽).

Proof. Consider the piece of the localization exact sequence

⋯ Lu�Hu�(𝑌) Lu�Hu�(𝑋) Lu�Hu�(𝑈) Lu�Hu�−1(𝑌) ⋯

⋯ Lu�Hu�(𝑌) Lu�Hu�(𝑋) Lu�Hu�(𝑈) Lu�Hu�(𝑌) ⋯

u�

u�

u� u� ≅ u�

Since 𝑌 ⊂ 𝑋 is a regular embedding, we know that 𝑌 = ℙ𝑁u�𝑋 is the total space of the
projectivization of the normal bundle. Then by the projective bundle theorem 3.1.10,

𝑝∗(𝑐u�(𝐸) ∩ 𝑝∗(𝛼)) = 𝛼.

This gives the injectivity of 𝑎, and the map

𝑟 ∶ Lu�Hu�(𝑌) ⊕ Lu�Hu�(𝑋) Lu�Hu�(𝑌)

given by
𝑟(𝛼, 𝛽) = 𝑝∗(𝛼).

is a right inverse.

Now we can relate 𝑝∗ with 𝑞! via the excess intersection formula

𝑞!(𝛼) = 𝑐u�(𝐸) ∩ 𝑝∗(𝛼),

and since 𝑞! and 𝑖∗ commute by 3.1.11, we conclude that 𝑎𝑏 = 0.

A left inverse for 𝑏 is given by

𝑠 ∶ Lu�Hu�(𝑋) Lu�Hu�(𝑌) ⊕ Lu�Hu�(𝑋)

where
𝑠(𝛾) = (0, 𝑞∗(𝛾))

52



3.3 Descent theorems for Lawson homology and morphic cohomology

3.3.2 Nisnevich and cdh descent

The localization Theorem 1.3.14 has the following immediate corollary

Corollary 3.3.2. Lawson homology satisfies Nisnevich descent. That is, every Nisnevich
distinguished square

𝑊 𝑉

𝑈 𝑋

u�

u�u�

u�

induces a long exact sequence of Lawson homology

⋯ Lu�Hu�(𝑋) Lu�Hu�(𝑈) ⊕ Lu�Hu�(𝑉) Lu�Hu�(𝑊) ⋯

Proof. This follow immediately from using the localization exact 1.3.14 sequences on the
rows.

An analogous result holds for abstract blow-up squares

Corollary 3.3.3. Lawson homology satisfies descent for abstract blow-ups. That is, every
abstract blow-up square

𝑌 𝑋

𝑌 𝑋

u�

u�u�

u�

induces a long exact sequence of Lawson homology

⋯ Lu�Hu�(𝑌) Lu�Hu�(𝑌) ⊕ Lu�Hu�(𝑋) Lu�Hu�(𝑋) ⋯

Proof. Follows immediately by applying the localization theorem on the rows.

Remark 3.3.4. Observe that Lawson homology, being a Borel-Moore type theory is co-
variantly functorial for proper maps but contravariantly functorial for étale morphisms.
So, in a sense, Lawson homology satisfies cdh descent, but with different functorialities
on the flat, and the proper parts of the cdh topology.

As a consequence of the descent for blow-ups, we have a spectral sequence as follows

Corollary 3.3.5. Let 𝑋 be an algebraic variety. and 𝑋• a cubical hyperresolution. Then,
there is a a convergent spectral sequence

𝐸1
u�,u� = ⨁

|u�|=u�
Lu�Hu�(𝑋u�) ⟹ Lu�Hu�+u�(𝑋).
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3 Descent for semi-topological theories

Proof. This is the spectral sequence associated to the double complex

𝐶u�,u� = ⨁
|u�|=u�

𝒵u�
u� (𝑋u�).

Theorem 3.3.6. The complexes of cocycles ℳu�(𝑋, 𝑌) satisfy descent for abstract blow-ups
with respect to push-forwards on the variable 𝑌.

Proof. This follows for the localization exact triangle in Theorem 1.3.14.

It is not known whether the bivariant complexes satisfy descent with respect to the vari-
able 𝑋 in general. For smooth varieties, the duality theorem gives the following result

Theorem 3.3.7. The morphic complexes ℳu�(𝑋, 𝑌) satisfy descent with respect to the cdh
topology on the category of smooth varieties.

Proof. Because of the duality Theorem 3.4.5, we know that in the case 𝑋 is smooth

𝐻u�ℳu�(𝑋, 𝑌) ≅ 𝐻u�+u�ℳu�+u�(pt, 𝑋 × 𝑌) ≅ Lu�+u�Hu�+u�(𝑋 × 𝑌).

From the blow-up formula 3.3.1 we deduce descent with respect to abstract blow-ups,
and from the localization theorem 1.1.25 we obtain descent for Nisnevich distinguished
squares.

Then, we can use the extension theorem 2.3.5 to the functor

ℳu�(-, 𝑌) ∶ Smu� → D(ℤ).

Theorem 3.3.8. There exist unique extension of of the bivariant cocycle complex

ℳu�(-, 𝑌) → ℳ cdh
u� (-, 𝑌)

such that

1. ℳabs
u� (-, 𝑌) satisfies descent for the abstract blow-up topology,

2. ℳu�(𝑋, 𝑌) ≃ ℳabs
u� (𝑋, 𝑌) for all smooth varieties 𝑋.

In addition, ℳabs
u� is unique, up to homotopy, with such properties.

Proof. Here we regard ℳabs
u� (-, 𝑌) as a functor taking values on an ∞-enhancement of

the derived category of abelian groups D(ℤ). The functor ℳu�(hi, 𝑌) satisfies descent for
abstract blow-ups of smooth varieties because of 3.3.7. Then, Theorem 2.3.5 applies.

And finally, we have the following corollary

Corollary 3.3.9. The extended theory ℳabs
u� (𝑋, 𝑌) satisfies Nisnevich descent on the vari-

able 𝑋. In particular
ℳæbs

u� (𝑋, 𝑌) ≃ ℳ cdh
u� .
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3.4 A generalized duality theorem

Proof. Consider the extended functor ℳ cdh
u� (-, 𝑌) with respect to the cdh topology. The

natural map
ℳabs

u� (-, 𝑌) → ℳ cdh
u� (-, 𝑌),

induces a comparison of spectral sequences

𝐸u�,u�
1 = ⨁|u�|=u� Hu�ℳabs

u�,∗ (𝑋u� , 𝑌) +3

��

Hu�+u�ℳabs
u�,∗ (𝑋, 𝑌)

��
𝐸

′u�,u�
1 = ⨁|u�|=u� Hu�ℳ cdh

u�,∗ (𝑋u� , 𝑌) +3 Hu�+u�ℳ cdh
u�,∗ (𝑋, 𝑌)

Since by construction, when 𝑋 is smooth we have

ℳu�(𝑋, 𝑌) ≃ ℳabs
u� (𝑋, 𝑌) ≃ ℳabs

u� (𝑋, 𝑌).

the left vertical maps are isomorphisms, inducing isomorphisms on the abutment of the
spectral sequences.

3.4 A generalized duality theorem

The duality theorem 1.3.12 tells us that that when all varieties are smooth in ℳu�(𝑋, 𝑌), the
variety 𝑋 can jump to the right ℳu�(𝑝𝑡, 𝑋 × 𝑌), up to homotopy. In this section we prove a
generalized duality map, valid for quasi-projective 𝑋, a general variety 𝑌 and a smooth va-
riety 𝑊 that jumps from left to right, namely, we prove that the natural map

ℳu�(𝑋 × 𝑊, 𝑌) → ℳu�(𝑋, 𝑊 × 𝑌),

is a homotopy equivalence. From the motivic point of view it is no surprise a result like
this: the motive of a smooth variety is dualizable. Having a result like this for the down-
to-earh spaces of cycles, instead of as a consequence of an abstract construction has the
value of connecting the abstract theory with the spaces of cocycles, very geometric in
nature.

3.4.1 Topological tools

Here we recall a result to detect weak homotopy equivalences from Section 3 in [19].

Definition 3.4.1. Let 𝑇 be a topological space. A filtration 𝑇0 ⊂ 𝑇1 ⊂ ⋯ is said to be
a good filtration if whenever 𝑓 ∶ 𝐾 → 𝑇 is a continuous map from a compact space 𝐾, 𝑓
factors through some 𝑇u� in the filtration.

Definition 3.4.2. Let 𝑆, 𝑇 filtered topological spaces and 𝑓 ∶ 𝑆 → 𝑇 a filtration preserving
continuous map. Then 𝑓 is a very weak deformation retract if for every 𝑒 ≥ 0 there are
maps 𝛼u� ∶ 𝑆u�×𝐼 → 𝑆, 𝛽u� ∶ 𝑇u�×𝐼 → 𝑇, 𝜆u� ∶ 𝑇u� → 𝑆 such that the following diagrams commute:

𝑆u� × {0} //

id×u�0
��

𝑆

𝑆u� × 𝐼
u�u�

<< 𝑇u� × {0} //

id×u�0
��

𝑇

𝑇u� × 𝐼
u�u�

;;
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3 Descent for semi-topological theories

𝑆u� × 𝐼 u�u� //

u�u�×id
��

𝑆

u�
��

𝑇u� × 𝐼
u�u�

// 𝑇

𝑆u� × {1}

u�u�
��

id×u�1 // 𝑆u� × 𝐼 u�u� // 𝑆

u�
��

𝑇u� × {1}

u�u�
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id×u�1
// 𝑇u� × 𝐼

u�u�

// 𝑇

where 𝑖0 ∶ {0} → 𝐼 and 𝑖1 ∶ {1} → 𝐼 are the obvious inclusions.

Remark 3.4.3. This somewat opaque definition, is saying that, over any finite step in the
filtration, we have homotopies on 𝑆u� and 𝑇u� which are compatible via 𝑓 , so that on one
end of the homotopy they are the identity, and on the other end, the map 𝑇u� × {1} → 𝑇
factors through 𝑓 .

The usefulness of this definition comes from the following

Lemma 3.4.4. A very weak deformation retract 𝑓 ∶ 𝑆 → 𝑇 between topological spaces with
good filtrations is a weak homotopy equivalence.

Proof. See Lemma 3.2 in [19].

3.4.2 generalized duality

Theorem 3.4.5. Let 𝑋, 𝑌, 𝑊 be algebraic varieties, with 𝑋 normal and quasi-projective, 𝑌
projective and 𝑊 smooth projective. Then, the duality map

ℳ∗
u� (𝑋 × 𝑊, 𝑌) ℳ∗

u� (𝑋, 𝑊 × 𝑌)u� (3.7)

is a homotopy equivalence.

Proof. First, assume 𝑌 is smooth. If 𝑋 were also smooth, the proof would be the same
as the one for Theorem 1.3.12 given in [19]. If now 𝑋 is normal, quasi-projective, we can
represent

Mu�(𝑋 × 𝑊, 𝑌) = Hom(𝑋 × 𝑊, Cu�(𝑌))+ = Hom(𝑋, Hom(𝑊, Cu�(𝑌)))+.

The aim is to produce a homotopy equivalence that moves any cycle in 𝑊 ×𝑌 to a position
equidimensional over 𝑊, so that it can be represented by a morphism to a Chow variety,
like the proof of the original theorem. The new ingredient is moving the entire family of
cycles parametrized by 𝑋.

To realize this idea, consider the diagram

Mu�(𝑋 × 𝑊, 𝑌) Hom(𝑋, Hom(𝑊, Cu�(𝑌)))+

Mu�+u�(𝑋, 𝑊 × 𝑌) Hom(𝑋, Cu�+u�(𝑊 × 𝑌))+

(3.8)
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3.4 A generalized duality theorem

All those spaces have injective maps to Zu�+u�+dim(u�)(𝑋 × 𝑊 × 𝑌) and there we have a good
filtration by compacts 𝐾u� where

𝐾u� = {𝛼 = 𝛼+ − 𝛼− ∣ deg 𝛼+ + deg 𝛼− ≤ 𝑒} .

Then let

𝑆u� = 𝐾u� ∩ Hom(𝑋, Hom(𝑊, Cu�(𝑌)))+

𝑇u� = 𝐾u� ∩ Hom(𝑋, Cu�+u�(𝑊 × 𝑌))+.

Both are good filtrations, since a compact family of algebraic cocycles has bounded degree,
and the vertical duality maps are compatible with those filtrations.

At this point, we use Friedlander-Lawson’s moving lemma 1.3.9, to produce homotopies

𝛼u� ∶ 𝑆u� × 𝐼 → Hom(𝑋, Hom(𝑊, Cu�(𝑌)))+,
𝛽u� ∶ 𝑇u� × 𝐼 → Hom(𝑋, Cu�+u�(𝑊 × 𝑌))+,

so that 𝛼0 = id, 𝛽0 = id and 𝛽u� for all 𝑡 > 0 factors through the duality map

Hom(𝑋, Hom(𝑊, Cu�(𝑌)))+ → Hom(𝑋, Cu�+u�(𝑊 × 𝑌))+.

We have constructed a very weak deformation retract hence, by Lemma 3.4.4 the vertical
duality map in 3.8 is a weak homotopy equivalence. This proves the duality theorem in
the case 𝑌 is smooth.

Now we extend the result to possibly singular varieties 𝑌. To do so, take a smooth cubical
hyperresolution 𝑌• of 𝑌. Since the bivariant complexes of cocycles satisfy cdh descent
on the sencond variable by Theorem 3.3.6, we have a comparison diagram of spectral
sequences

𝐸u�,u�
1 = ⨁|u�|=u� 𝐻u�ℳu�(𝑋 × 𝑊, 𝑌u�) +3

��

𝐻u�+u�ℳu�(𝑋 × 𝑊, 𝑌)

��
𝐸

′u�,u�
1 = ⨁|u�|=u� 𝐻u�ℳu�(𝑋, 𝑊 × 𝑌u�) +3 𝐻u�+u�ℳu�(𝑋, 𝑊 × 𝑌)

where the vertical maps are the duality morphisms. We have already proved that on the
left they are isomorphisms, as 𝑌u� are all smooth for 𝐼 ≠ (0 … 0). We conclude that the
duality map on the abutement is also an isomorphism, proving the result.
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4 Morphic cohomology of toric varieties

4.1 Toric varieties

4.1.1 Definitions and notation

First we set the notation following [30]. Let 𝑁 ≅ ℤu� be a free ℤ-module of rank 𝑛, and
𝑀 = Hom(𝑁, ℤ) its dual ℤ-module. We will denote by 𝑁ℝ = 𝑁 ⊗ ℝ and 𝑀ℝ = 𝑀 ⊗ ℝ.
In this way, 𝑁 and 𝑀 are to be thought as lattices on 𝑁ℝ and 𝑀ℝ. Moreover, there is a
duality pairing ⟨𝑢, 𝑣⟩ for 𝑢 ∈ 𝑁ℝ and 𝑣 ∈ 𝑀ℝ.

Definition 4.1.1. A convex polyhedral cone in 𝑁ℝ is a set of the form 𝜆1𝑣1 + ⋯ + 𝜆u�𝑣u�
for some vectors 𝑣u� ∈ 𝑁 and positive scalars 𝜆u� ≥ 0. A fan Δ is a collection of convex
polyhedral cones, closed under taking faces (i.e. making some 𝜆u�’s equal to zero) and
taking intersections.

For any cone 𝜎 ∈ Δ we build an affine scheme 𝑋u� such that

𝑋u� = Spec ℂ[𝜎∨ ∩ 𝑀],

where 𝜎∨ = {𝑣 ∈ 𝑀ℝ ∣ ⟨𝑢, 𝑣⟩ ≥ 0, ∀𝑢 ∈ 𝜎} is the dual cone.

If 𝜏 ≤ 𝜎 , then 𝑋u� ⊂ 𝑋u� . We denote by 𝑖u�,u� ∶ 𝑋u� ↪ 𝑋u� this inclusion, which is induced by
the morphism of rings ℂ[𝜎∨ ∩ 𝑀] → ℂ[𝜏∨ ∩ 𝑀].

Moreover, inside 𝑋u� there is a distinguished closed subvariety 𝑇u� such that

𝑇u� = Spec ℂ[𝜎⊥ ∩ 𝑀],

where 𝜎⊥ = {𝑣 ∈ 𝑀ℝ ∣ ⟨𝑢, 𝑣⟩ = 0, ∀𝑢 ∈ 𝜎} is the orthogonal cone. Observe that 𝜎⊥ is
a vector space of dimension codim 𝜎 . This means that 𝑇u� ≅ 𝔾codim u�

u� is an algebraic
torus. In fact, when we globalize this construction, the torus 𝑇0 will act on the entire
toric variety. Then, the torus 𝑇u� is the lowest dimensional orbit for this action contained
in 𝑋u� .

For any cone 𝜎 , the closed embedding 𝑗u� ∶ 𝑇u� ↪ 𝑋u� is induced by the morphism of rings
ℂ[𝜎∨ ∩ 𝑀] → ℂ[𝜎⊥ ∩ 𝑀] which sends the lattice vectors in 𝜎⊥ to themselves and the
others to 0.

Finally, there is a retraction 𝑟u� ∶ 𝑋u� → 𝑇u� induced by the monomorphism of rings ℂ[𝜎⊥ ∩
𝑀] → ℂ[𝜎∨ ∩ 𝑀] which includes 𝜎⊥ into 𝜎∨.

Theorem 4.1.2. For any fan Δ, The collection of schemes 𝑋u� together with the inclusions
𝑖u�,u� glue together into a global scheme 𝑋(Δ).
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Proof. See Section 1.4 in [30].

A variety 𝑋(Δ) constructed from a fan in this fashion is called a toric variety, and the
collection {𝑋u�}u�∈Δ is an open affine cover of 𝑋(Δ). We will denote these open embeddings
by 𝑖u� ∶ 𝑋u� ↪ 𝑋(Δ).

Proposition 4.1.3. Let 𝑋(Δ) be a toric variety and 𝜎 a cone in Δ. There is a morphism

ℎ∶ 𝑋u� × 𝔸1
ℂ

// 𝑋u�

such that ℎ(−, 1) = id, ℎ(−, 0) = 𝑗u�𝑟u� and ℎ(−, 𝑡) restricts to the identity on 𝑇u� for every
𝑡. That is, the morphism ℎ gives an algebraic homotopy equivalence between 𝑋u� and 𝑇u� .

Proof. Recall that 𝑋u� = Spec ℂ[𝜎∨ ∩ 𝑀], 𝑇u� = Spec ℂ[𝜎⊥ ∩ 𝑀] and the inclusion 𝑇u� →
𝑋u� is given by the quotient ℂ[𝜎∨ ∩ 𝑀] → ℂ[𝜎⊥ ∩ 𝑀], which is the identity on 𝜎⊥ and
sends any element 𝑣 ∈ 𝜎∨ not in 𝜎⊥ to 0 ∈ ℂ[𝜎⊥ ∩ 𝑀].

Pick 𝑢0 ∈ 𝜎 such that 𝜎⊥ = 𝜎∨ ∩ 𝑢⊥
0 . Then define

ℎ∗ ∶ ℂ[𝜎∨ ∩ 𝑀] → ℂ[𝜎∨ ∩ 𝑀] ⊗ ℂ[𝑡],

by ℎ∗(𝑣) = 𝑣⊗𝑡⟨u�0,u�⟩ for every 𝑣 ∈ 𝜎∨. This gives a morphism of schemes ℎ∶ 𝑋u�×𝔸1
ℂ → 𝑋u�

with the desired properties.

We will use the notation Δ(u�) for the set of all cones of codimension 𝑘 in Δ.

Definition 4.1.4. An orientation of a cone 𝜎 is an orientation of the vector spaces ℝ𝜎 . An
orientation of a fan Δ will be a choice of an orientation for every cone in Δ.

We will always use fans with a fixed orientation.

Remark 4.1.5. Recall that any face 𝜏 ≤ 𝜎 is given as 𝜏 = 𝜎 ∩ 𝑢⊥ for some 𝑢 ∈ 𝑀ℝ. Let
𝜏 ≤ 𝜎 be a face of codimension 1, given as 𝜏 = 𝜎 ∩ 𝑢⊥. Then there exists 𝑣 ∈ 𝜎 such that
⟨𝑣, 𝑢⟩ > 0 and

ℝ𝜎 = ℝ𝑣 + ℝ𝜏 (4.1)

as subspaces of 𝑁ℝ. This last identity allows us to transfer the orientation of 𝜎 to 𝜏 as
follows: the orientation induced on 𝜏 by 𝜎 is the one compatible with the identity (4.1)
and taking the orientation on ℝ𝑣 given by the vector 𝑣.

Alternatively, one may think of toric varieties as categorical quotients of certain Zariski
open subsets of 𝔸u� modulo a torus action, the same way as ℙu� is the quotient of 𝔸u�+1

modulo 𝔾u�. We describe this construction following [8].

Let 𝑋(Δ) be a toric variety. Let 𝐸 be the free ℤ-module generated by the 1-dimensional
cones in Δ, and let 𝐸ℂ = 𝐸 ⊗ ℂ. There is a linear map 𝐸 → 𝑁 that sends basis elements
𝑒u� ∈ 𝐸 to the generator of the 1-dimensional cone 𝜏 in 𝑁. This map extends to a morphism
of tori with kernel 𝑇, as follows

1 𝑇 𝐸 ⊗ ℂ∗ 𝑁 ⊗ ℂ∗ 1 (4.2)
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Now, for every 1-dimensional cone 𝜏 ∈ Δ(1), we associate a coordinate 𝑥u� in the polyno-
mial ring on 𝐸ℂ, and to every cone 𝜎 ∈ Δ, a monomial defined as

̂𝑥u� = ∏
u�∈Δ(1)
u�6⊂u�

𝑥u� .

Let 𝑍 = { ̂𝑥u� = 0 ∣ 𝜎 ∈ Δ} be the associated variety. Observe that there is a canonical action
of 𝑇 on 𝐸ℂ, which descends to 𝐸ℂ ∖ 𝑍. Then,

Theorem 4.1.6. The toric variety 𝑋(Δ) is isomorphic to the categorical quotient of 𝐸ℂ ∖ 𝑍
by the action of 𝑇.

Proof. See Theorem 2.1 in [8].

4.1.2 Morphic cohomology of an algebraic torus

Now we compute the morphic cohomology ring of an algebraic torus. As we will need this
computation for subtori of a toric variety, it will be useful to have a canonical description
of this ring in terms of the lattice defining the toric variety.

Let 𝑁 be a lattice of rank 𝑛, and 𝐿ℝ ⊂ 𝑀ℝ = 𝑁∨
ℝ a subspace of dimension 𝑟 generated

by vectors in the lattice 𝑀. Consider the rank 𝑟 sublattice 𝐿 = 𝐿ℝ ∩ 𝑀, and its associated
torus 𝑇u� = Spec ℂ[𝐿].

We introduce a bit of notation. Let LH = L∗H∗(pt) be the morphic cohomology ring of a
point. It is isomorphic to ℤ[𝑠] with the free generator 𝑠 ∈ L1H0(pt). Let 𝐾 be a graded LH-
module. We denote by 𝐾[𝑙]u� the graded LH-module obtained from 𝐾 by shifting it 𝑙 steps
into the increasing direction for the 𝑞-degree, that is, (𝐾[𝑙]u�)u� = 𝐾u�−u�.

It follows from Proposition 1.3.17 that the piece of homological degree 1 L∗H1(𝔾u�), is
isomorphic, as an LH-module, to LH[1]u�. This is a free graded LH-module with one
generator in 𝑞-degree 1, we called this generator 𝑒 in Proposition 1.3.17. It corresponds,
by duality, to a radial Borel-Moore chain joining 0 and ∞ in 𝔾u�. Now, any 𝑣 ∈ 𝐿 defines
a character 𝜒u� ∶ 𝑇u� → Spec ℂ[𝑣, 𝑣−1] = 𝔾u�. Then, we define a graded morphism of
rings

𝜑∶ ⨁u�≥0(⋀u� 𝐿 ⊗ LH)[𝑛]u� // L∗H∗(𝑇u�) (4.3)

by
𝜑(𝑣 ⊗ 1) = 𝜒∗

u�(𝑒),

for 𝑣 ∈ 𝐿, and extended in the obvious way to the exterior algebra because L∗H∗(𝑇u�) is a
graded commutative algebra (Theorem 1.3.7).

Proposition 4.1.7. Let 𝑋 be a smooth quasi-projective variety. The Künneth homomor-
phism

L∗H∗(𝑋) ⊗LH L∗H∗(𝔾u�) // L∗H∗(𝑋 × 𝔾u�). (4.4)

is an isomorphism.
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Proof. Let 𝑖 ∶ pt → 𝔸1 be the inclusion of a point and 𝑗 ∶ 𝔾u� → 𝔸1 its open complement.
We have the following commutative diagram of long exact sequences

⋯ L∗H∗(𝑋) ⊗LH LH u�u�⊗u�! //

≅
��

L∗H∗(𝑋) ⊗LH LH
u�u�⊗u�∗

//

≅
��

L∗H∗(𝑋) ⊗LH L∗H∗(𝔾u�) ⋯

��
⋯ L∗H∗(𝑋 × pt) (u�u�×u�)! // L∗H∗(𝑋 × 𝔸1)

(u�u�×u�)∗
// L∗H∗(𝑋 × 𝔾u�) ⋯

The vertical maps are the Künneth morphisms, and 𝑖! is the Gysin map defined by duality
(Theorem 1.3.12) as 𝑖! = Γ−1𝑖∗Γ. The exactness of the rows comes, by duality, from the
localization theorem 1.2.6. For the first row, we also need the computation in 1.3.17 to
ensure that all LH-modules in the exact sequence

⋯ // L∗H∗(pt) u�! // L∗H∗(𝔸1)
u�∗
//// L∗H∗(𝔾u�) // ⋯

are flat, so that when tensoring with L∗H∗(𝑋) the exactness is preserved.

Now the first two vertical maps are isomorphisms. The first by definition, while the sec-
ond as a consequence of homotopy invariance Theorem 1.3.15. Then a standard applica-
tion of the five lemma proves the desired isomorphism.

Theorem 4.1.8. The morphism 𝜑 is an isomorphism.

Proof. We argue by induction on the rank of 𝐿. The isomorphism is clear when rank 𝐿 = 1
by the computation in 1.3.17. Let 𝐿 = 𝐿0 ⊕ ℤ𝑣. This gives a product decomposition 𝑇u� =
𝑇u�0

× 𝔾u�. Now, because the Künneth isomorphism in 4.1.7 preserves the cup product,
we get a commutative diagram

(⋀u� 𝐿 ⊗ LH)[𝑛]u� //

u�u�

��

⨁u�+u�=u�(⋀u� 𝐿0 ⊗ LH)[𝑟]u� ⊗LH (⋀u� ℤ𝑣 ⊗ LH)[𝑠]u�

��
L∗Hu�(𝑇u�) //⨁u�+u�=u� L∗Hu�(𝑇u�0

) ⊗LH L∗Hu�(𝔾u�)

The upper row is an isomorphism by multilinear algebra results, while the lower row is
an isomorphism by the Künneth isomorphism 4.1.7. The right vertical map is a sum of
tensor products of 𝜑’s corresponding to lower dimensional tori, so are isomorphisms by
induction hypothesis. We conclude then that the left vertical map is an isomorphism.

4.1.3 Mayer-Vietoris for morphic cohomology of toric varieties

Definition 4.1.9. Let 𝑋 be an algebraic variety acted on by an algebraic group 𝐺. A cate-
gorical quotient of 𝑋 by 𝐺 is a map 𝜋 ∶ 𝑋 → 𝑋/𝐺 to some variety 𝑋/𝐺 such that this map
is equivariant with respect to the trivial 𝐺-action on 𝑋/𝐺, and universal amongst all maps
𝑋 → 𝑍 having this property.
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Theorem 4.1.10. Let 𝑋 be a normal quasi-projective algebraic variety acted on by an alge-
braic group 𝐺. Let 𝑋/𝐺 be the categorical quotient for this action. Then, the pull-back by
the quotient 𝜋 induces an isomorphism

ℳ∗,u�(𝑋/𝐺) ≅ ℳ∗,u�(𝑋)u�,

where the right hand side represents the space of invariants by the induced 𝐺-action on
the morphic complex.

Proof. Take a singular chain 𝛼∶ Δu� → Mu�(𝑋/𝐺). The pull-back by 𝜋 produces a chain
𝜋∗(𝛼) ∶ Δu� → Mu�(𝑋), which happens to be invariant by 𝐺. So this map is injective.

Reciprocally, given a chain 𝛼∶ Δu� → Mu�(𝑋) invariant with respect to 𝐺, it factors through
the subspace of invariants 𝛼∶ Δu� → Mu�(𝑋)u�.

Thanks to Theorem 1.3.4 The cochain 𝛼 is represented by a map

(𝛼+, 𝛼−) ∶ Δu� → Hom(𝑋, C0(𝔸u�)) × Hom(𝑋, C0(𝔸u�))

corresponding to the positive and negative parts in the group completion. Since 𝛼 is fixed
by 𝐺, both components 𝛼+ and 𝛼− must be fixed by 𝐺, and by the universal property of
the categorical quotient, we see that 𝛼± factors through

(𝛼′+, 𝛼′−) ∶ Δu� → Hom(𝑋/𝐺, C0(𝔸u�)) × Hom(𝑋/𝐺, C0(𝔸u�))

which represents a morphic cocycle 𝛼′ ∈ ℳ u�,u�(𝑋/𝐺), with the property that 𝛼 = 𝜋∗(𝛼′).
This proves that 𝜋∗ is an isomorphism of complexes.

We now prove that morphic cohomology satisfies Zariski descent for equivariant covers
of a toric variety.

Theorem 4.1.11. Let 𝑋(Δ) be a toric variety, and 𝑈1, 𝑈2 ⊂ 𝑋(Δ) a Zariski open cover
equivariant with respect to the torus action on 𝑋(Δ). Then it induces a long exact sequence
in morphic cohomology

⋯ Lu�Hu�(𝑈1 ∩ 𝑈2) Lu�Hu�(𝑈1) ⊕ Lu�Hu�(𝑈2) Lu�Hu�(𝑋) ⋯

Proof. First observe that the equivariant Zariski open sets 𝑈1 and 𝑈2 are themselves toric
varieties, 𝑈1 = 𝑋(Δ1), 𝑈2 = 𝑋(Δ2) where the fans Δ1, Δ2 ⊂ Δ are subfans of Δ. Now we
consider the free module 𝐸 generated by the 1-dimensional cones in Δ, and 𝑇 the torus as
in Theorem 4.1.6.

Now consider the open sets 𝑉u� ⊂ 𝐸 given by

𝑉u� = { ̂𝑥u� ≠ 0} .

Then,
𝐸 ∖ 𝑍u� = ⋃

u�∈Δu�

𝑉u� ,
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moreover, from the fact that 𝑉u� are defined by monomials, it follows that
𝑉u� ∩ 𝑉u� = 𝑉u�∩u� .

Assume for the moment, that Δ1∩Δ2 contain all 1-dimensional cones in Δ. Using Theorem
4.1.6 we have

𝑈1 = (𝐸 ∖ 𝑍1)/𝑇
𝑈2 = (𝐸 ∖ 𝑍2)/𝑇

𝑈1 ∩ 𝑈2 = (𝐸 ∖ 𝑍1 ∪ 𝑍2)/𝑇
𝑋(Δ) = (𝐸 ∖ 𝑍1 ∩ 𝑍2)/𝑇.

If the assumption does not hold, that is, Δ1 or Δ2 may not contain all 1-cones in Δ, it
means that the free modules 𝐸1 and 𝐸2 associated to Δ1 and Δ2 have lower rank. There are
canonical projections 𝐸 → 𝐸u�, that send the basis elements corresponding to the missing
1-dimensional cones to zero. Then, we define the following tori associated to Δ1 and Δ2

𝑇u� = ker(𝐸 ⊗ ℂ∗ → 𝐸u� ⊗ ℂ∗ → 𝑁 ⊗ ℂ∗).

Now, in this setting, the formulas above generalize as follows
𝑈1 = (𝐸 ∖ 𝑍1)/𝑇1

𝑈2 = (𝐸 ∖ 𝑍2)/𝑇2

𝑈1 ∩ 𝑈2 = (𝐸 ∖ 𝑍1 ∪ 𝑍2)/𝑇1𝑇2

𝑋(Δ) = (𝐸 ∖ 𝑍1 ∩ 𝑍2)/𝑇1 ∩ 𝑇2.
Observe that under the assumption above, 𝑇1 = 𝑇2 = 𝑇 and we recover the formulas
above.

Since 𝐸 ∖ 𝑍u� are smooth Zariski open subsets of 𝐸, we have a Mayer-Vietoris short exact
sequence for morphic cohomology complexes

0 ℳ∗,u�(𝐸 ∖ 𝑍1 ∩ 𝑍2) ℳ∗,u�(𝐸 ∖ 𝑍1) ⊕ ℳ∗,u�(𝐸 ∖ 𝑍2) ℳ∗,u�(𝐸 ∖ 𝑍1 ∪ 𝑍2) 0

Taking invariants by the corresponding tori, we get a short exact sequence

0 ℳ∗,u�(𝐸 ∖ 𝑍1 ∩ 𝑍2)u�1∩u�2 ℳ∗,u�(𝐸 ∖ 𝑍1)u�1 ⊕ ℳ∗,u�(𝐸 ∖ 𝑍2)u�2 ℳ∗,u�(𝐸 ∖ 𝑍1 ∪ 𝑍2)u�1u�2 0

The operation of taking 𝐺-invariants is left-exact in general. In this case, we have exactness
on the right, because 𝐸 ∖ 𝑍1 ∪ 𝑍2 is Zariski dense in both 𝐸 ∖ 𝑍1 and 𝐸 ∖ 𝑍2, so if we
have a cocycle in 𝐸 ∖ 𝑍1 ∪ 𝑍2 invariant by 𝑇1𝑇2 which extends to the middle spot, it must
necessarily be invariant by the extended actions.

ℳ∗,u�(𝑋(Δ)) ℳ∗,u�(𝑈1) ⊕ ℳ∗,u�(𝑈2) ℳ∗,u�(𝑈1 ∩ 𝑈2)

ℳ∗,u�(𝐸 ∖ 𝑍1 ∩ 𝑍2)u�1∩u�2 ℳ∗,u�(𝐸 ∖ 𝑍1)u�1 ⊕ ℳ∗,u�(𝐸 ∖ 𝑍2)u�2 ℳ∗,u�(𝐸 ∖ 𝑍1 ∪ 𝑍2)u�1u�2

Where all the vertical maps are isomorphisms by Theorem 4.1.10. We conclude that the
top row is a short exact sequence of complexes, which proves the Mayer-Vietoris property
we were looking for.
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4.2 Spectral sequence associated to a toric variety

Let 𝑋(Δ) be a toric variety of dimension 𝑛, 𝑅 a ring and ℱ∗ a cochain complex of sheaves
of 𝑅-modules on 𝑋. As usual, the hypercohomology of ℱ∗ is

ℍu�(𝑋(Δ), ℱ∗) = Hu�Γ(𝑋(Δ), ℐ∗)

where ℐ∗ is a K-injective resolution ℱ∗ → ℐ∗.

In this section we will write down a spectral sequence converging to the hypercohomology
ℍu�(𝑋(Δ), ℱ∗) whose 𝐸2 page is computable in terms of the combinatorics of the toric
variety, and the hypercohomology of ℱ∗ on algebraic tori. The spectral sequence comes
from the identification

ℍu�(𝑋(Δ), ℱ∗) = Extu�(𝑅u� , ℱ∗),

and the fact that the hyper-ext can be computed resolving either variable. We will chose
to resolve the constant sheaf 𝑅u� producing a Čech-like resolution ̌𝒞∗(Δ, 𝑅) → 𝑅u� from
the combinatorics of the toric variety.

A similar idea, applied to singular homology and cohomology, was exploited in the thesis
[44].

4.2.1 Resolution associated to a fan

Let 𝑋(Δ) be a toric variety defined by a fan Δ, and let 𝑅 be a commutative ring.

Definition 4.2.1. Let ̌𝒞u�(Δ, 𝑅) for 𝑘 ≥ 0 be the sequence of sheaves of 𝑅-modules on 𝑋(Δ)
given by

̌𝒞u�(Δ, 𝑅) = ⨁
u�∈Δ(u�)

𝑖u�!𝑖∗u�𝑅u� ,

where 𝑅u� is the constant sheaf on 𝑋(Δ) and 𝑖u� ∶ 𝑋u� → 𝑋(Δ) is the inclusion of 𝑋u� .

Moreover, we define, a sequence of morphisms 𝑑u� ∶ ̌𝒞u�(Δ, 𝑅) → ̌𝒞u�−1(Δ, 𝑅) given by

𝑑u� = ⨁
u�∈Δ(u�−1)

u�∈Δ(u�)
u�≤u�

𝜖(𝜏, 𝜎)𝜇u�,u�

where 𝜇u�,u� ∶ 𝑖u�!𝑖∗u�𝑅u� → 𝑖u�!𝑖∗u�𝑅u� is the natural inclusion of sheaves inducing the identity
on the nonzero stalks, and 𝜖(𝜏, 𝜎) = ±1 according to whether the orientation induced by
𝜎 on 𝜏 coincides or not with the fixed orientation in 𝜏.

Definition 4.2.2. Given a fan Δ and a cone 𝜎 ∈ Δ of codimension 𝑘, there is a fan Δu�
defined on the lattice 𝑁u� = 𝑁/(ℝ𝜎 ∩ 𝑁) of dimension 𝑘, whose cones are the projection
of cones in Δ having 𝜎 as a face.

This way, the cones in Δu� correspond bijectively with the cones 𝜏 ∈ Δ having 𝜎 as a face.
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Remark 4.2.3. Let 𝑥 ∈ 𝑋(Δ) be a point. We denote by 𝜎(𝑥) the unique cone in Δ such that
𝑥 ∈ 𝑇u�(u�). Observe that

(𝑖u�!𝑖∗u�𝑅u�)u� =
⎧{
⎨{⎩

𝑅 if 𝜎(𝑥) ≤ 𝜏,
0 otherwise.

In other words, the stalk (𝑖u�!𝑖∗u�𝑅u�)u� is nonzero exactly for the cones 𝜏 ∈ Δ which represent
cones in Δu�(u�).

Proposition 4.2.4. Let 𝑋(Δ) be a toric variety associated to a fan Δ.

1. There is a canonical isomorphism

̌𝒞u�(Δ, 𝑅)u� ≅ ⨁
u�∈Δ(u�)
u�(u�)≤u�

𝑅

and the morphism induced on this stalk by 𝑑u� is given by

𝑑u�,u�([𝜏]) = ∑
u�∈Δ(u�−1)

u�≤u�

𝜖(𝜏, 𝜎)[𝜎],

2. The sequence of sheaves ̌𝒞u�(Δ, 𝑅) together with the morphisms 𝑑u� form a chain com-
plex of sheaves of 𝑅-modules.

3. Let Δ ⊂ Δ be an inclusion of fans on the same lattice, giving an open embedding
𝑢∶ 𝑋(Δ) ↪ 𝑋(Δ). Then, there is a canonical isomorphism of complexes of sheaves

̌𝒞∗(Δ, 𝑅) ≅ 𝑢∗ ̌𝒞∗(Δ, 𝑅).

Proof. 1) This follows from the definition 4.2.1 and Remark 4.2.3.

2) For this, we need only to check that (𝑑u�−1𝑑u�) = 0 on stalks. Using the identification of
these stalks in 1), we see that for [𝜏] an element of the basis of ̌𝒞u�(Δ, 𝑅)u�, we have

𝑑u�−1,u�𝑑u�,u�([𝜏]) = ∑
u�<u�<u�

𝜖(𝜏, 𝜎)𝜖(𝜎, 𝜂)[𝜂]

Then, for fixed 𝜏 and 𝜂 there are exactly two faces in between, giving opposite signs. One
can see this by looking at the image of 𝜂 in 𝑁ℝ/ℝ𝜏. This image is a two-dimensional
cone that obviously has exactly two faces with opposite orientation. This shows that
𝑑u�−1,u�𝑑u�,u� = (𝑑u�−1𝑑u�)u� = 0.

3) It follows from the following computation

𝑢∗ ̌𝒞u�(Δ, 𝑅) = 𝑢∗( ⨁
u�∈Δ(u�)

𝑖u�!𝑖∗u�𝑅u�(Δ))

= 𝑢∗( ⨁
u�∈Δ(u�)

(𝑢𝑖u�)!(𝑢𝑖u�)∗𝑅u�(Δ))

= ⨁
u�∈Δ(u�)

𝑢∗𝑢!𝑖u�!𝑖∗u�𝑢∗𝑅u�(Δ)

≅ ⨁
u�∈Δ(u�)

𝑖u�!𝑖∗u�𝑅u�(Δ) = ̌𝒞u�(Δ, 𝑅).
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Definition 4.2.5. Let 𝑎 ∶ ̌𝒞∗(Δ, 𝑅) → 𝑅u� be the augmentation morphism induced by the
morphisms 𝑖u�!𝑖∗u�𝑅u� → 𝑅u�(Δ).

We will prove that 𝑎 ∶ ̌𝒞∗(Δ, 𝑅) → 𝑅u� is a quasi-isomorphism. To do so, we will relate the
stalk complexes ̌𝒞∗(Δ, 𝑅)u� with the cellular homology complex of a cellular decomposition
on a ball of dimension codim 𝜎(𝑥).

Let Δ be a fan on a lattice 𝑁. We define

𝐵(Δ) = {𝑝 ∈ 𝑁ℝ ∣ ∥𝑝∥ ≤ 1} ,
𝑆(Δ) = {𝑝 ∈ 𝑁ℝ ∣ ∥𝑝∥ = 1} .

Pick 𝑥 ∈ 𝑋(Δ). Then, the space 𝑆(Δu�(u�)) is a sphere of dimension codim 𝜎(𝑥) − 1, and
every non-zero cone 𝜎 ∈ Δu�(u�), gives a cell of dimension dim 𝜎 − 1 on 𝑆(Δu�(u�)), defined
by 𝑒u� = 𝜎 ∩ 𝑆(Δu�(u�)). The set {𝑒u�}u�∈Δu�(u�)

, together with the entire ball, gives a cellular
decomposition of 𝐵(Δu�(u�)). However, we are interested in a dual cellular decomposition
𝑒∨
u� which we proceed to describe now.

Definition 4.2.6. To any complete fan Δ we associate an abstract simplicial complex 𝐾(Δ)
as follows:

1. The vertices in 𝐾(Δ) correspond to the cones in Δ.

2. The 𝑘-simplexes in 𝐾(Δ) are the sets of vertices belonging to flags in Δ of length 𝑘,
that is, sequences of strictly included cones

𝜏0 < 𝜏1 < ⋯ < 𝜏u�.

Remark 4.2.7. If we had omitted the cone 0 in the definition of 𝐾(Δ) we would have ob-
tained a combinatorial model of the barycentric subdivision of the fan Δ.

For every 1-dimensional cone 𝜏 ∈ Δ(u�−1) let 𝑢u� ∈ 𝑁ℝ be the unique unit vector generating
it. Then, for any non-zero cone 𝜎 ∈ Δ, let 𝑣u� be the vector

𝑣u� = ∑
u�∈Δ(u�−1)

u�≤u�

𝑢u� .

Definition 4.2.8. For every 𝑘-simplex (𝜏0, … , 𝜏u�) ∈ 𝐾(Δ) given by a flag of cones 𝜏0 <
⋯ < 𝜏u�, we define a subset 𝑑(u�0,…,u�u�) ⊂ 𝐵(Δ) as follows,

𝑑(u�0,…,u�u�) =
⎧{{
⎨{{⎩

{0} if 𝜏0 = 0 and 𝑘 = 0,
ℝ≥0 ⟨𝑣u�1

, … , 𝑣u�u�
⟩ ∩ 𝐵(Δ) if 𝜏0 = 0 and 𝑘 > 0,

ℝ≥0 ⟨𝑣u�0
, … , 𝑣u�u�

⟩ ∩ 𝑆(Δ) if 𝜏0 ≠ 0.
(4.5)

Proposition 4.2.9. Let Δ be a complete fan. The subsets 𝑑(u�0,…,u�u�) ⊂ 𝐵(Δ) are homeomor-
phic to closed balls of dimension 𝑘. Together form a cellular decomposition of the ball
𝐵(Δ), giving a geometric realization of the abstract simplicial complex 𝐾(Δ).
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Proof. Let (𝜏0, … , 𝜏u�) ∈ 𝐾(Δ). Because the vectors 𝑣u�u�
all belong to the cone 𝜏u�, the

subsets ℝ≥0 ⟨𝑣u�0
, … , 𝑣u�u�

⟩ are strictly convex cones, so in either case of the definition 4.2.8,
the resulting set 𝑑(u�0,…,u�u�) is a cell: it is either a connected convex subset of 𝐵(Δ), or a
connected and geodesically convex subset of 𝑆(Δ). The statement about the dimension
of 𝑑(u�0,…,u�u�) follows from the linear independence of the vectors 𝑣u�u�

associated to the flag
0 ≠ 𝜏0 < ⋯ < 𝜏u�.

Finally, observe that the boundary of a cell 𝑑(u�0,…,u�u�) is formed by the cells resulting from
removing one cone in the flag, all of lower dimension. This proves that the cells 𝑑(u�0,…,u�u�)
give a cellular decomposition of the ball 𝐵(Δ).

Definition 4.2.10. For every cone 𝜎 ∈ Δ, let 𝑒∨
u� ⊂ 𝐵(Δ) be the subset defined by

𝑒∨
u� = ⋃

u�≥0
(u�0,…,u�u�)∈u�(Δ)

u�≤u�0

𝑑(u�0,…,u�u�) (4.6)

Proposition 4.2.11. Let Δ be a complete fan. The subsets 𝑒∨
u� ⊂ 𝐵(Δ) are homeomorphic

to closed balls of dimension codim 𝜎 and form a cellular decomposition of the ball 𝐵(Δ).
The ball together with this decomposition will be denoted by 𝐵(Δ)∨.

Proof. Observe that 𝑒∨
u� is a geometric realization of a subcomplex of 𝐾(Δ) which is iso-

morphic to 𝐾(Δu�) (follows directly from the definitions). Now, Proposition 4.2.9 applied
to the simplicial complex 𝐾(Δu�) realizes 𝐾(Δu�) as a (codim 𝜎)-dimensional ball 𝐵(Δu�).
So, 𝑒∨

u� is homeomorphic to this ball.

The cells 𝑒∨
u� cover all the ball 𝐵(Δ) by completeness of the fan, and they are attached prop-

erly because the 𝑑(u�0,…,u�u�) are.

Proposition 4.2.12. Let Δ be a complete fan. There is a canonical isomorphism of chain
complexes

̌𝒞∗(Δ, 𝑅)u� ≅ Ccell
∗ (𝐵(Δu�(u�))∨, 𝑅).

Proof. There is a canonical isomorphism of 𝑅-modules

̌𝒞u�(Δ, 𝑅)u� ≅ Ccell
u� (𝐵(Δu�(u�))∨, 𝑅),

as both are generated by the cones in Δu�(u�) of codimension 𝑘 (see Proposition 4.2.4).

It only remains to check that the differentials in ̌𝒞∗(Δ, 𝑅)u� coincide with the cellular ones.
Note that the attaching maps 𝑓u� ∶ 𝜕𝑒∨

u� → Skcodim u�−1𝐵(Δu�(u�))∨ are homeomorphisms with
the image. So, for any lower dimensional cell 𝑒∨

u� on the boundary of 𝑒∨
u� , the corresponding

matrix element in the cellular differential is a sign, according to the relative orientation of
the cells 𝑒∨

u� and 𝑒∨
u� . This is exactly the differential in ̌𝒞∗(Δ, 𝑅)u�.

Corollary 4.2.13. Let Δ be an arbitrary fan. Then, the augmentation 𝑎 ∶ ̌𝒞∗(Δ, 𝑅) → 𝑅u� is
a quasi-isomorphism.
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Proof. First Take Δ ⊂ Δ a completion of the fan Δ. Because of 3 in Proposition 4.2.4, it is
enough to check that ̌𝒞∗(Δ, 𝑅) → 𝑅u�(Δ) is a quasi-isomorphism for the complete fan Δ.

Now, Proposition 4.2.12 tells us that the stalk complex ̌𝒞∗(Δ, 𝑅)u� is isomorphic to the cellu-
lar complex associated to the cellular decomposition of the ball 𝐵(Δu�(u�))∨, so its homology
is

Hu� ̌𝒞∗(Δ, 𝑅) ≅ Hu�Ccell
∗ (𝐵(Δu�(u�))∨, 𝑅) =

⎧{
⎨{⎩

𝑅 for 𝑘 = 0,
0 for 𝑘 > 0.

And we conclude that the augmentation 𝑎u� ∶ ̌𝒞∗(Δ, 𝑅)u� → 𝑅 on the stalks is a quasi-
isomorphism. As quasi-isomorphisms of complexes of sheaves are detected on stalks,
we are done.

4.2.2 The spectral sequence

Let 𝑋(Δ) be a toric variety and ℱ∗ be a complex of sheaves on 𝑋. We describe a spectral se-
quence converging to the hypercohomology ℍu�(𝑋(Δ), ℱ∗).

Definition 4.2.14. A complex of sheaves ℱ∗ is said to have homotopy invariant coho-
mology if for every variety 𝑋 the projection 𝑝∶ 𝑋 × 𝔸1 → 𝑋 induces an isomorphisms in
hypercohomology ℍu�(𝑋, ℱ∗) ≅ ℍu�(𝑋 × 𝔸1, ℱ∗).

Remark 4.2.15. The complex of sheaves ℳu�,∗ defining morphic cohomology has homo-
topy invariant cohomology by Theorem 1.3.15.

Theorem 4.2.16. Let 𝑋(Δ) be a toric variety associated to a fan Δ and ℱ∗ a bounded above
cochain complex of sheaves. There is a convergent spectral sequence

𝐸u�,u�
1 = Extu�( ̌𝒞u�(Δ, ℤ), ℱ∗) ⟹ ℍu�+u�(𝑋(Δ), ℱ∗). (4.7)

Moreover, if ℱ∗ has homotopy invariant cohomology,

𝐸u�,u�
1 ≅ ⨁

u�∈Δ(u�)
ℍu�(𝑇u� , ℱ∗), (4.8)

and the differentials on the first page 𝑑1 ∶ 𝐸u�,u�
1 → 𝐸u�+1,u�

1 are given by

𝑑1 = ∑
u�∈Δ(u�)

u�∈Δ(u�+1)
u�≤u�

𝜖(𝜏, 𝜎)𝑟∗
u�,u� (4.9)

where
𝑟u�,u� ∶ 𝑇u� = Spec ℂ[𝜏⊥] // 𝑇u� = Spec ℂ[𝜎⊥],

are the morphisms induced by the natural inclusion 𝜎⊥ → 𝜏⊥.

Proof. Let ℱ∗ → ℐ∗ be a K-injective resolution of ℱ∗. Let ̌𝒞∗(Δ, ℤ) → ℤu� be the resolution
of the constant sheaf ℤu� from Corollary 4.2.13. We build a double complex

𝐶u�,u� = Hom( ̌𝒞u�(Δ, ℤ), ℐu�),
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with the induced differentials (going in the increasing direction of 𝑟 and 𝑠). The homol-
ogy of this double complex in the 𝑠 direction is Extu�( ̌𝒞u�(Δ, ℤ), ℱ∗), giving the spectral
sequence

𝐸u�,u�
1 = Extu�( ̌𝒞u�(Δ, ℤ), ℱ∗) ⟹ ℍu�+u�(𝑋(Δ), ℱ∗).

As for the convergence, the complex of sheaves ℐ∗ is bounded above, and the schemes 𝑋u�
have finite cohomological dimension. Using the hypercohomology spectral sequence we
conclude that ℍu�(𝑋u� , ℱ∗) vanishes for large 𝑘. In other words, the first page is bounded
above in the 𝑠 direction. By construction, it is bounded (from both sides) in the 𝑟 direction,
and this is enough to establish the convergence.

If ℱ∗ is homotopy invariant, as the immersion 𝑇u� → 𝑋u� are algebraic homotopy equiva-
lences we get the isomorphism (4.8).

Finally, the differentials on the first page are induced by the 𝑟-differentials in the double
complex 𝐶u�,u�, which are given by the formula

𝑑1 = ∑
u�∈Δ(u�)

u�∈Δ(u�+1)
u�≤u�

𝜖(𝜏, 𝜎)𝑖∗u�,u�

where 𝑖u�,u� ∶ 𝑋u� → 𝑋u� is the inclusion. The formula (4.9) follows from the equation
𝑟∗
u�,u� = 𝑗∗u� 𝑖∗u�,u�𝑟∗

u� and the fact that 𝑗∗u� and 𝑟∗
u� are mutually inverse isomorphisms giving

the identification ℍu�(𝑇u� , ℱ∗) ≅ ℍu�(𝑋u� , ℱ∗).

We have a rather explicit description of the first page and differentials of the spectral se-
quence in 4.2.16. Together with the computation in Theorem 4.1.8 of the morphic coho-
mology of a torus we can make it still more explicit.

Corollary 4.2.17. Let ℳu�,∗ be the complex defining morphic cohomology. Then, the first
page of the spectral sequence in 4.2.16 is

𝐸u�,u�
1 ≅ ⨁

u�∈Δ(u�)
(

u�
⋀(𝜎⊥ ∩ 𝑀) ⊗ LH)[𝑠]u� (4.10)

and the differentials 𝑑u�
1 ∶ 𝐸u�,u�

1 → 𝐸u�+1,u�
1 are given by

𝑑u�
1( ∑

u�∈Δ(u�)

𝑥u�𝑣1,u� ∧ ⋯ ∧ 𝑣u�,u�) = ∑
u�∈Δ(u�)

𝑥u� ∑
u�∈Δ(u�+1)

u�≤u�

𝜖(𝜏, 𝜎)𝑣1,u� ∧ ⋯ ∧ 𝑣u�,u�

Proof. Follows from Theorem 4.2.16 and the computation 4.1.8.

Finally, using an idea from [44] which can be traced back to [64] we show that this spectral
sequence degenerates rationally.

Theorem 4.2.18. The spectral sequence from Corollary 4.2.17 degenerates on the second
page when tensored with ℚ.
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Proof. Let LHℚ = LH ⊗ℤ ℚ. The toric variety 𝑋(Δ) admits an ℕ-action. Let 𝑚 ∈ ℕ,
then [𝑚]∶ 𝑋(Δ) → 𝑋(Δ) is the morphism which on the open sets 𝑋u� = Spec ℂ[𝜎∨ ∩ 𝑀]
is defined through the ring homomorphism [𝑚]∗ ∶ ℂ[𝜎∨ ∩ 𝑀] → ℂ[𝜎∨ ∩ 𝑀] given by
[𝑣] ↦ [𝑚𝑣] (see [64] for details).

The ℕ-action on 𝑋(Δ) induces an ℕ-action on the spectral sequence from Corollary 4.2.17.
As the rational morphic cohomology of a torus 𝑇u� = Spec ℂ[𝐿] is

L∗Hu�(𝑇u�)ℚ = (
u�

⋀ 𝐿 ⊗ LHℚ)[𝑠]u�,

The ℕ-action on on the page 𝐸u�,u�
1 is just multiplication by 𝑚u�. As the next pages 𝐸u�,u�

u� of the
spectral sequence are subquotients of 𝐸∗,∗

1 , the action on those pages is also given by 𝑚u�.
On the other hand the differentials go 𝑑u� ∶ 𝐸u�,u�

u� → 𝐸u�+u�,u�+1−u�
u� and the ℕ-action commutes

with them, so

𝑚u�𝑑u�(𝑥) = 𝑑u�(𝑚u�𝑥) = 𝑑u�([𝑚]𝑥) = [𝑚]𝑑u�(𝑥) = 𝑚u�+1−u�𝑑u�(𝑥),

where 𝑥 ∈ 𝐸u�,u�
u� . Rationally, this implies 𝑑u�(𝑥) = 0 when 𝑘 ≥ 2.

4.2.3 An example and an application

As an example of how the spectral sequence works, we give a sample computation. Con-
sider the following fan Δ in ℤ2 as pictured in Figure 4.1.

u�1 u�2

u�3

u�1

u�2u�3

𝑣1 = (−1, −1),
𝑣2 = (2, −1),
𝑣3 = (−1, 2),

𝑣⊥
1 = ⟨(1, −1)⟩ ,

𝑣⊥
2 = ⟨(1, 2)⟩ ,

𝑣⊥
3 = ⟨(−2, −1)⟩ .

Figure 4.1: Fan Δ.

The associated toric variety 𝑋(Δ) is the quotient ℙ2/𝜇3, where the action of a cubic root
of unity 𝜁 ∈ 𝜇3 is given by 𝜁[𝑥 ∶ 𝑦 ∶ 𝑧] = [𝑥 ∶ 𝜁𝑦 ∶ 𝜁2𝑧].

Let 𝑅 = LH ≅ ℤ[𝑠]. Then, the spectral sequence is represented in Figures 4.2 and 4.3. The
differentials on the first page are given by the matrices

𝑑00
1 ∶

⎛⎜⎜⎜
⎝

1 0 −1
−1 1 0

0 −1 1

⎞⎟⎟⎟
⎠

𝑑10
1 ∶ ( 1 1 1 ) 𝑑11

1 ∶ ( 1 1 −2
−1 2 −1 )

So, the convergence of the spectral sequence tells us that

L∗Hu�(𝑋) =
⎧{{
⎨{{⎩

𝑅[𝑘]u� for 𝑛 = 2𝑘 and 𝑘 ∈ {0, 1, 2},
𝑅/3[1]u� for 𝑛 = 3,
0 otherwise.
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𝑠

2 0 0 𝑅

1 0 𝑅3 𝑅2

0 𝑅3 𝑅3 𝑅

0 1 2 𝑟

u�00
1 u�10

1

u�11
1

Figure 4.2: Page 𝐸u�,u�
1 .

𝑠

2 0 0 𝑅

1 0 𝑅 𝑅/3

0 𝑅 0 0

0 1 2 𝑟

Figure 4.3: Page 𝐸u�,u�
2 .

Now we describe an application to the Suslin conjecture. Let 𝜀 ∶ Top → qProjℂ be the
morphism of sites, with the usual topology in Top and the Zariski topology on qProjℂ.
Let R𝜀∗ℤ be the derived push-forward of the constant sheaf ℤ on Top to the Zariski
site qProjℂ. There is a natural map ℳu�,∗ → R𝜀∗ℤ which, on smooth varieties, factors
as

ℳu�,∗ // 𝜏≤u�R𝜀∗ℤ. (4.11)

See [18] for details.

There is the following conjecture, a morphic analogue of the Beilinson-Lichtenbaum con-
jecture in the motivic world.

Conjecture 4.2.19 (Suslin). The comparison morphism (4.11) above is a quasi-isomorphism
on smooth varieties.

This conjecture is proved for the class of smooth linear varieties (which include smooth
toric varieties) in [18] Theorem 7.14.

The spectral sequence 4.2.16 has the following Corollary.

Corollary 4.2.20. The Suslin conjecture holds for all quasi-projective toric varieties (not
necessarily smooth).

Proof. First of all, we have to check that ℳu�,∗|u�(Δ) is exact above degree 𝑞, in order to have
a factorization ℳu�,∗|u�(Δ) → 𝜏≤u�R𝜀∗ℤ|u�(Δ) as in (4.11). This is a local statement on 𝑋(Δ), so
we can restrict to an open 𝑋u� . Now the inclusion 𝑗u� ∶ 𝑇u� → 𝑋u� is an algebraic homotopy
equivalence, and they induce isomorphisms on hypercohomology

ℍu�(𝑋u� , ℳu�,∗|u�u�
) ≅ //ℍu�(𝑇u� , ℳu�,∗|u�u�

) ,

so the natural map ℳu�,∗|u�u�
→ R𝑗u�∗ℳu�,∗|u�u�

is a quasi-isomorphism. As 𝑇u� is smooth, its
cohomology vanishes above 𝑞, and we have the desired factorization.
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Now, 𝜏≤u�R𝜀∗ℤ has homotopy invariant cohomology, because R𝜀∗ℤ does, and the trunca-
tion preserves the homotopy invariance of the cohomology sheaves. We can apply Theo-
rem 4.2.16 and get a spectral sequence converging to ℍu�(𝑋(Δ), 𝜏≤u�R𝜀∗ℤ). Moreover, the
comparison map (4.11) gives a morphism of spectral sequences

𝐸u�,u�
1 = ⨁u�∈Δ(u�) ℍu�(𝑇u� , ℳu�,∗) +3

��

ℍu�+u�(𝑋(Δ), ℳu�,∗)

��
𝐸

′u�,u�
1 = ⨁u�∈Δ(u�) ℍu�(𝑇u� , 𝜏≤u�R𝜀∗ℤ) +3ℍu�+u�(𝑋(Δ), 𝜏≤u�R𝜀∗ℤ)

which is an isomorphism on the first page by Theorem 7.14 in [18], so it gives an isomor-
phism on the right, as claimed.

4.2.4 cdh descent for morphic cohomology

Finally, we prove that morphic cohomology satisfies cdh descent for toric varieties.

Let
ℳu�,∗(𝑋) ℳu�,∗

cdh(𝑋)

be the natural transformation to the version of morphic cohomology with cdh descent, as
produced by Theorem 3.3.8.

Theorem 4.2.21. The natural transformation (4.2.4) is a quasi-isomorphism.

Proof. We apply Theorem 4.2.16 both complexes of sheaves ℳu�,∗ and ℳu�,∗
cdh. Then, the

comparison morphism (4.2.4) gives a morphism of spectral sequences

𝐸u�,u�
1 = ⨁u�∈Δ(u�) ℍu�(𝑇u� , ℳu�,∗) +3

��

ℍu�+u�(𝑋(Δ), ℳu�,∗)

��
𝐸

′u�,u�
1 = ⨁u�∈Δ(u�) ℍu�(𝑇u� , ℳu�,∗

cdh) +3ℍu�+u�(𝑋(Δ), ℳu�,∗
cdh)

Because on smooth varieties, ℳu�,∗(𝑋) ≃ ℳu�,∗
cdh(𝑋), we get isomorphism on the first page

so the vertical map on the right is also an isomorphism.

Corollary 4.2.22. Morphic cohomology satisfies cdh descent on the class of toric varieties.

Proof. Immediate from 4.2.21, since ℳu�,∗
cdh satisfies cdh descent by construction.
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