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Abstract
In order to study the complex relationship between the structure and function of
gene circuits, we focus in the following two properties of circuits : their evolv-
ability and multi-functionality. First, to what extent does the dynamical mech-
anism producing a specific biological phenotype bias the ability to evolve into
new phenotypes? We find that circuits that use alternative mechanisms differ
in the likelihood of reaching novel phenotypes through mutation. Second, how
can a minimal circuit perform two distinct patterning functions? We discover bi-
functional motifs able to perform lateral inhibition or lateral induction depending
on the environment they are embedded in. We explore the design properties of
multi-functional motifs and discover they can use two distinct types of design –
hybrid or emergent– depending on their ability to be decomposed into distinct
sub-circuits, i.e. their modularity.

Resum
Per tal d’estudiar la relació complexa entre l’estructura d’un circuit genètic i la
seva funció, ens centrem en estudiar dues proprietas: la seva capacitat evolutiva i
la seva multi-functionalitat. Primer, fins a quin punt el mecanisme dinàmic por-
tant a terme una funció fenotı́pica té un impacte en la capacitat d’evolucionar a
nous fenotips? Hem descobert que circuits que utilitzen mecanismes alternatius
difereixen en la probabilitat d’assolir noves funcions quan son sotmesos a muta-
cions. Segon, com pot un circuit mı́nim assolir dos patrons cel.lulars diferents?
Hem descobert motius bi-funcionals capaços d’assolir inhibició lateral o bé in-
ducció lateral depenent del teixit on es trobin. Hem estudiat el diseny d’aquest
tipus de circuit i descobert que es poden dividir en dos tipus principals –hybrids o
emergents– que corresponen a la seva capacitat en ser descompostos en differents
sub-circuits, és a dir en la seva modularitat.
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Part I

Global Introduction
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One challenge in modern biology is to understand how complex molecular cir-
cuits in the cell perform a variety of sophisticated regulatory functions. These
biological circuits integrate regulatory events at multiple levels but for simplicity
are generally referred to as gene circuits. The relationship between the structure
of gene circuits and their functionality, i.e. the biological function they perform,
lies at the heart of this thesis.

0.1 Gene circuits

0.1.1 Gene circuits drive particular biological functions

Gene expression is a complex process, which can be regulated at multiple lev-
els – RNA transcription, RNA splicing, transport (in eukaryotes), translation,
post-translational modifications, phosphorylation of proteins, degradation, extra-
cellular signalling and many others. Gene circuits are abstract models that incor-
porate all of this biological complexity. The concept of a gene regulatory circuit
consists of interactions between a closed set of genes [Kumar and Bentley, 2003]
commonly represented as a directed graph. A particular circuit is made of nodes
–genes– and edges –interactions– that define how one gene affects the expression
of another gene in a positive or negative fashion. In that sense, gene circuits do not
aim at explaining a particular step of the regulatory process but instead consider
the resulting causal relationship between the gene expression levels of a group of
genes.

Most models of gene regulation are concerned with genes that encode for tran-
scription factors, proteins involved in regulating the expression of other genes at
the level of RNA transcription [Wolpert et al., 2002]. Indeed, transcription factor
gene products act in combination to generate a lot of the molecular circuitry that
controls both developmental pattern formation and the differentiation of single
cells into a variety of cell types [Davidson and Erwin, 2006].

Gene circuit models have been used to provide intuitive understanding of a vari-
ety of biological functions. The term function can describe very distinct biological
processes. For example, one biologically essential function is to convert a graded
stimulus into a binary, all-or-none cellular response [Shah and Sarkar, 2011]. This
switch-like behaviour is critical to processes ranging from control of lineage com-
mitment and memory to maintenance of gene expression levels [Alon, 2007]. In
other cases, switch-like behaviour can lead to a bi-modal distribution in a cell
population, resulting in a mixed phenotype that can better respond to a fluctuating
environment [Wolf and Arkin, 2003]. Another interesting biological function is a
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particular dynamical behaviour observed in many signalling systems called adap-
tation [Ma et al., 2009]. Biochemical adaptation is a biological function that con-
sists of the ability of a system to respond to a change in input stimulus, and then to
reset back to its original prestimulated output level. This sensory function is com-
monly used to accurately detect changes in the extra-cellular environment and to
maintain homeostasis in the presence of perturbations. Examples of adaptation
range from the chemotaxis of bacteria [Berg and Brown, 1972], to the response of
yeast cells to high external osmolarities –osmo-response– [Muzzey et al., 2009]
and calcium homeostasis in mammals [El-Samad et al., 2002].

Includes multiple levels of regulatory events

PROMOTER GENE

PROTEIN

PROMOTER GENE

PROTEIN

GENE REGULATORY CIRCUITS

2-node 
Positive 
Feedback Incoherent 

Feedforward

Positive 
auto-regulation

Negative 
auto-regulation

Double-negative
Feedback loop

2-node 
Negative 
Feedback

Figure 0.1: Gene circuits integrate multiple regulatory events. Gene circuits are ab-
stract objects that model the complex process of gene regulation. They are represented
as directed graphs where nodes represent genes that encode for transcription factors and
edges define how the expression of a given node affects that of another node or gene in a
positive of negative fashion.

Gene circuits control particular biological functions. For example, both switch-
like behaviours and perfect adaptation can be achieved by very simple gene cir-
cuits. In the first case, a simple positive autoregulation, i.e. a transcription factor
that enhances the transcription of its own gene (see circuit in Figure 0.1), is capa-
ble of a switch-like behaviour that can lead to memory effects or to commitment
to a particular cell differentiation state [Maeda and Sano, 2006, Becskei et al.,
2001, Burrill and Silver, 2010]. In the second case, an incoherent feedforward
circuit – a circuit in which the two arms of the feedforward loop act in opposition,
one repressing and the other activating (see circuit in Figure 0.1) – can achieve
adaptation [Ma et al., 2009].

Notice that these examples concern small gene circuits responsible for distinct
biological functions. However, the transcriptome of a cell is composed of thou-
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sands of genes interacting in a highly complex fashion. A number of studies
support the idea that complex circuits can be divided into simpler circuits that
perform particular underlying functions. In order to understand which features of
the whole transcriptome are responsible for a given function, it has been proposed
that small gene circuits embedded in the entire transcriptome are responsible for
distinct cellular functions. Indeed, small circuits such as negative autoregulations
and feedforward loops are thought to perform precise functions in the cell and
appear in hundreds of gene systems in E.coli and yeast, as well as in other organ-
isms [Shen-Orr et al., 2002, Milo et al., 2002, Alon, 2007]. These findings have
raised the hope that the functioning of large networks can be understood in terms
of elementary circuits. In Part III of this thesis we will discuss more deeply the
idea of the ‘deconstruction’of complex circuits into smaller sub-circuits. Whether
we agree with the decomposability of complex circuits or not, it is undeniable that
the study of small gene circuits provides a minimal representation that allows an
intuitive understanding of a particular process [Alon, 2007, Ma et al., 2009, Hor-
nung and Barkai, 2008, Cotterell and Sharpe, 2010, Shah and Sarkar, 2011, Chau
et al., 2012, Lim et al., 2013].

0.1.2 How to model a gene circuit
Gene circuits are modeled by simulations of the change of the state of the gene
products with time. We will discuss here two prevalent models: the boolean and
continuous formalisms.

The boolean formalism relies on the simplification of gene states to a binary vari-
able: on/1 or off /0. For this type of formalism, the response function of genes
to inputs must also be idealized to on or off, i.e. either the gene is transcribed or
it is not [Thomas, 1973, Kauffman, 1993a]. Genes – nodes – within a boolean
circuit respond to inputs using distinct logic functions. Logic functions follow
particular combinatorial transcription logic, as they lead to transcription only if
a precise combination of requirements is met. Among the most commonly used
logic functions are AND and OR gates. A gene responding following an AND
gate will be transcribed only if all its inputs are present/on. In contrast, a gene
functioning as an OR gate will be transcribed if either of its inputs is present. The
output of a particular boolean circuit is represented by a binary vector of 0’s and 1
’s that represents the transcription state of all genes within the circuit (Fig. 0.2A).
Boolean circuits can easily describe the state of a single cell, as a given differen-
tiation state is associated to a particular combination of transcribed and silenced
genes [Ciliberti et al., 2007].

The continuous approach is currently the most widely used model for gene circuits
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[Kumar and Bentley, 2003]. Indeed, gene expression in real biological systems
can take on a wide range of intermediate concentration values. Also, real interac-
tions between genes depend on a variety of factors such as the distinct molecular
binding affinity of a transcription factor on a given promoter, or the number of dis-
tinct cis regulatory regions [Setty et al., 2003, Prud’homme et al., 2007, Carroll,
2008, Ben-Tabou de-Leon and Davidson, 2009]. These features of real biologi-
cal systems disagree with the all-or-none response inherent in a boolean formal-
ism. Hence, continuous gene circuits consider that both protein concentrations
and gene-gene interactions can hold a wide range of real values.

Boolean formalism Continuous formalism
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Figure 0.2: Distinct formalisms to model a gene circuit. (A) Gene states in a boolean
circuit are binary (ON/1 or OFF/0). Each node behaves as a logic gate following a par-
ticular combinatorial logic. (B) The total input received by gene C (yellow arrow) can
be calculated from the concentration of all genes and the parameters P2, P3 and P4 (C)
Regulatory function describing the relationship between the total input into a gene and
its output concentration. The regulatory function can take many forms such as Hill and
Sigmoidal functions.

The topology of a given circuit describes the nature of the interactions between
genes and can be represented by a matrix where 1, -1 and 0 represent activation,
repression and no interaction respectively (Fig. 0.2B, right table). The gene circuit
itself can be represented by a similar matrix where the previous values (the 1’s,
-1’s and 0’s) are replaced by real parameters that represent particular strengths of
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gene interactions (Fig. 0.2B, center table).

Given this type of continuous description of a gene circuit, its gene regulatory be-
haviour (i.e. how the concentrations of the genes vary over time) can be modeled
by non-linear ordinary differential equations (ODEs) that describe the rate of pro-
duction and decay of each gene as a function of the concentrations of all the genes
in the circuit. Thus, there is a differential equation for each gene of the circuit.
Taking as an example the circuit in Figure 0.2B:

dX

dt
= Φ(A,B,C)− λX (1)

where X = {A,B,C}, Φ(input) is the regulatory function that describes the re-
lationship between the total input into a gene and the rate of change of its output
concentration and λ is the decay. In the majority of models, the total input is taken
as the sum of all incoming inputs onto the gene which are later ‘filtered ’through
the regulatory function. However, this ‘add and filter ’approach implies that infor-
mation on how individual genes combine to induce transcription is lost. In order
to rescue the combinatorial logic of boolean models, a few studies have proposed
distinct strategies where individual contributions are first ‘filtered ’through the
regulatory function then later added or multiplied –respectively analogous to the
functioning of ON and AND logic gates [Uzkudun et al., 2015]. The following
three equations describe (2) an ‘add and filter ’case, (3) a ‘filter and add ’case or
(4) a ‘filter and multiply’case for gene C in the circuit Figure 0.2B:

Φ(P2A+ P3B + P4C) (2)
Φ(P2A) + Φ(P3) + Φ(P4C) (3)
Φ(P2A) ∗ Φ(P3) ∗ Φ(P4C) (4)

Depending on the biological process being modeled, a regulatory function can
take many forms, such as Michaelis-Menten or Sigmoidal functions (Fig. 0.2C).
Each regulatory function holds a precise biological meaning. For example, Michaelis-
Menten functions were first used to described basic enzymatic reactions involving
a substrate reacting with a given enzyme to form a complex, which in turn is con-
verted into a product [Murray, 1989]. It has been proposed that the transcription
process can be considered to be such a reaction, as the substrate is replaced by a
transcription factor, the enzyme by the RNA polymerase, and the product by the
transcribed protein [Karlebach and Shamir, 2008]. Michaelis-Menten functions
are sometimes replaced by Hill functions to account for cooperative phenomena
(the n > 1 curves in Fig. 0.2C, left plot). Cooperativity describes the presence
of more than one binding site in an enzyme, thus the need for various substrate
molecules in order to start an enzymatic reaction. The analogy with the transcrip-
tion process would be when various transcription factor molecules, or possibly
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distinct occupancies of cis-regulatory regions, are essential to start transcription.

Similar to the cooperativity phenomena, a sigmoidal curve does not lead to a re-
sponse unless a certain condition is satisfied. A sigmoidal curve only leads to a
significant response if the input is above a certain threshold. In that sense, sig-
moidal curves sharpen their response to ‘all or nothing ’behaviours that resemble
on-off boolean systems.

However, the use of a particular function over another is rather arbitrary. Indeed,
as shown in Figure 0.1, gene regulatory circuits incorporate many complex bio-
logical processes and it is hard to envisage how they must follow rules from simple
enzyme-substrate biochemistry. Regulatory functions serve only to describe in an
abstract manner the input-output effective response of a gene. Unless there exist
enough experimental data to describe all regulatory details of the system [Schaerli
et al., 2014], it is hard to decide on which regulatory function is the most adequate
to be used. Thus, most gene regulatory models use either Hill or Sigmoidal func-
tions indiscriminately.

The choice between boolean and continuous formalism depends on the biological
process of study. Boolean models show several advantages. As they are com-
putationally less expensive than any other formalism, they are suited to capture
features of large circuits. However, the boolean approximation constitutes a dis-
advantage when comparing to specific real gene circuits for which gene concen-
trations and gene interactions are inherently continuous. Certain pattern formation
mechanisms are impossible to explore using boolean systems. For instance, a spa-
tial gradient cannot be modeled using a basic boolean mode since it requires, by
definition, intermediate values of gene concentrations (see section 0.2.1). Fur-
thermore, a Turing reaction-diffusion model (see section 0.2.2) requires particular
proportions between distinct diffusion constants, proportions that obviously do
not exist in a boolean framework.

Commonly, gene regulatory circuits are used to describe processes occurring in-
side a cell, such as cascades of interactions within a signalling pathway. However,
the concept of a gene regulatory circuit can be extended to understand spatial sys-
tems such as the ones mentioned in the previous paragraph. Indeed, multicellular
pattern formation has been modeled where the same gene circuit is embedded
inside every cell [Salazar-Ciudad et al., 2000, Cotterell and Sharpe, 2010]. The
individual cells in a spatial system can communicate in distinct manners. On one
hand, they can communicate to one another though diffusible products. In this
case, a given product can diffuse and affect the concentration of that same product
in neighboiring cells. On the other hand, cells can communicate through direct
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cell-cell communication – or juxtacrine signalling – where the binding of a par-
ticular ligand to its receptor in a neighbouring cell can trigger changes in gene
expression of gene products in the cell expressing the receptor.

In this thesis we will explore multicellular pattern formation driven by small gene
regulatory circuits. We have chosen to use a continuous formalism due to the
following reasons. First, we are interested in the dynamical properties of gene cir-
cuits. For this, continuous models are the most appropriate to capture dynamical
features. Second, accurately exploring pattern formation necessitates taking into
account real aspects of biological circuits, such as the existence of intermediate
concentration values or the formation of morphogen graded profiles.

0.2 Pattern formation in multicellular systems
The phenomenon of pattern formation poses a simple but fundamental question:
how does a group of originally identical cells develop into a spatially organized
set of different cell types? Many different mechanisms of pattern formation have
been shown experimentally and can be split into three main categories: cell au-
tonomous mechanisms, morphogenetic mechanisms, and inductive mechanisms
[Salazar-Ciudad et al., 2003] (Fig. 0.3).

Cell autonomous patterning mechanisms do not require any mechanical or sig-
nalling interactions between cells. Instead, they all involve a particular cellular
behaviour: mitosis. The division of a heterogeneous egg provides an example of a
cell autonomous mechanism. Indeed, with few exceptions (mammalian and some
turbellarian clades), egg cells usually divide in a heterogeneous manner. This oc-
curs due to differences in concentrations of distinct mRNAs and proteins within
distinct regions of the cell. Thus, as the egg cell divides, each daughter cell inher-
its a different complement of RNA and proteins that will determine its cell state
in the resulting patterned tissue.

Morphogenetic mechanisms can be defined as those that change the relative ar-
rangement of cells over space without affecting their states. Most morphogenetic
mechanisms involve a prior pattern of cells of multiple types. The spatial reor-
ganization of those cells/regions results in a new pattern. One mode by which
cells can rearrange their relative positions is by simple migration. For example,
the migration of neural crest cells in the mouse appears to be directed towards a
chemical gradient of fibroblast growth factors – FGFs – in a migration process
called chemotaxis [Kubota and Ito, 2000].
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Figure 0.3: Basic developmental mechanisms for pattern formation. Division of an
heterogeneous egg: different parts of the egg bind different molecules (indicated by dif-
ferent shading) resulting in different blastomere cells. Asymmetric mitosis: molecules
are differentially transported into different parts of a cell resulting in different daughter
cells. Internal temporal dynamics coupled to mitosis: cells that have oscillating levels
of molecules before their division can produce spatial patterns. Directed mitosis: con-
sistently oriented mitotic spindles may direct tissue growth. Differential growth: cells
dividing at a higher rate (gray) can alter tissue shape. Apoptosis: transformation of an
established pattern into another can result from apoptosis affecting specific cells (gray).
Migration: cells can migrate to a new location. Adhesion: a change in pattern can re-
sult if a set of cells have differential adhesion properties (strong adhesion among gray
cells). Contraction: differential contraction of cells can cause buckling of a tissue. Matrix
swelling, deposition, and loss: matrix swelling can cause budding. Hierarchic induction:
inducing cell (gray) affects neighbouring cells but the induced cells (white) do not affect
the production of the inducing signal. Emergent induction: inducing cell affects neigh-
bouring cells, which in turn signal back affecting the production of the inducing signal.
Extracted from [Salazar-Ciudad et al., 2003]

Lastly, inductive mechanisms involve one cell influencing the fate of another
cell. Cells can affect each other by secreting diffusible molecules, by means
of membrane-bound molecules, or by chemical coupling through gap junctions.
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Thus, in inductive mechanisms, tissue pattern changes as a direct consequence of
changes in cell state. The simpler version of this type of mechanisms is the hierar-
chical one: where one cell (or tissue) influences the fate of another cell (or tissue)
without being affected itself in return. In the more complex emergent form, two
or more cells reciprocally influence each-others fate.

Inductive mechanisms for pattern formation have been explored for several decades
[Turing, 1952, Wolpert, 1969, Artavanis-Tsakonas et al., 1995, Wolpert et al.,
2002]. We will now discuss in more detail three distinct strategies to form a pat-
tern: Wolpert’s French flag model, Turing’s reaction-diffusion model and lateral
inhibition.

0.2.1 Hierarchical mechanisms: the gradient-threshold model
Lewis Wolpert first proposed in 1968 that cells receive ‘positional information
’that allows them to develop distinct cell fates depending on their location within
a tissue [Wolpert, 1968, Wolpert, 1969]. He used the metaphor of the French flag
to illustrate the functioning of his model (Fig. 0.4). The French flag is a simple
pattern in which three distinct fields of cells represent three different cell fates.
One way in which cells could adopt their identity is by acquiring information
about their position in space. Cells would ‘compute ’or ‘measure ’how far they
are from a particular biological boundary, then use this information to adopt dif-
ferent fates (blue, white or red). For this, Wolpert proposed that this positional
cue is provided by diffusible molecules, or morphogens. His model assumed
that there exist a source and a sink of the morphogen at either end of the tis-
sue, resulting in a morphogen gradient. Hence, morphogens are chemical species
whose concentrations vary in space, and can thus control cell fate specification
in a spatially dependent manner. Their graded signal acts directly on cells, in a
concentration-dependent manner, to specify gene expression changes and cell fate
selection [Ashe and Briscoe, 2006, Ibañes and Izpisúa Belmonte, 2008, Kicheva
et al., 2012]. The simplest interpretation of the French flag model describes a
gradient-threshold mechanisms in which cells could respond in 3 different ways
– blue, white and red – depending on the concentration of the gradient – high
medium and low concentrations respectively – making use of distinct thresholds.
However, real biological systems are far more complex and empirical evidence
has typically identified up to seven distinct thresholds [Stathopoulos and Levine,
2002].

Since Wolpert’s first proposal, morphogens have been proven to act as graded po-
sitional cues that control cell fate specification in many developing tissues [Bal-
askas et al., 2012, Takei et al., 2004] – from plant roots to the Drosophila blas-
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Figure 0.4: The gradient-threshold model. Within the French Flag conceptual frame-
work [Wolpert, 1969], a pre-established fixed concentration gradient (input) is interpreted
by a one-dimensional row of cells into different cell fates through a threshold-dependent
mechanism. The concentration of morphogen is indicated by the height of the orange
triangle. At different thresholds of morphogen concentration (2 thresholds are shown by
the dashed lines in the right panel) cells take different fates as indicated by the blue, white
and red colours.

toderm, imaginal discs, and the vertebrate neural tube. In these different tis-
sues, morphogen gradients can span large spatial regions using different transport
mechanisms [Ibañes and Izpisúa Belmonte, 2008]: from simple diffusion arising
from the random motion of molecules [Crick, 1970] to active processes such as
endocytosis and exocytosis of vesicles carrying the molecule [Tanaka et al., 2005]
or cell to cell transport through gap junctions [Esser et al., 2006]. The formation
of morphogen gradients has been modeled through imaging of fluorescent protein-
morphogen fusions over space. This fluorescent data has shown that a wide variety
of gradients – such as maternal Bicoid in the Drosophila syncytium or Dpp and
Wingless in the fly’s wing – show similar approximately exponential shapes. In-
deed, morphogens gradients are commonly modeled as exponential profiles with
characteristic lengths that depend both on the diffusion and degradation rates of
the molecules.

An interesting question not considered in Wolpert’s model is how a continuous
gradient is transformed into the discrete changes in gene expression that result
in distinct cell fates. Is the gradient read out in a defined time-window of devel-
opment, or do cells continuously integrate the changes in morphogen concentra-
tion? [Kicheva et al., 2012]. The second alternative considers that cells interpret
the total amount of morphogen they have been exposed to over time [Ahn and
Joyner, 2004]. This alternative was explored by distinct theoretical models on the
segmentation of Drosophila along the anterior-posterior axis, where the graded
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distributions of maternally provided transcription factors Bicoid and Nanos active
the downstream target gap genes [Jaeger et al., 2007, Manu et al., 2009a]. These
models showed that the experimentally observed spatio-temporal changes in gap
gene expression in the syncytial embryo could occur even when morphogen sig-
nalling is maintained constant. Instead, changes in gene expression are driven by
the dynamics of the underlying gap gene regulatory circuit. In part II of this thesis
we will focus on how the dynamics of gene circuits is required to interpret mor-
phogen gradients.

Although morphogen gradients can show different dynamics with respect to their
formation, in this thesis we will not be concerned with how their gradients are
formed, but instead with how their steady-states are interpreted. By doing so, we
uncouple the specification of positional information from how that information is
interpreted.

0.2.2 Emergent mechanisms: Turing’s reaction-diffusion model
and direct cell-cell patterning

In 1952 Alan Turing proposed a model whereby periodic patterns could form in
multicellular systems [Turing, 1952] (Fig. 0.5). The model involves two chemical
species that can react with each other and diffuse through the tissue, hence the
common name of reaction-diffusion model. The mechanism works by ‘diffusion
driven instability’whereby amplification of small fluctuations can lead to a spatial
pattern of these chemicals. At that time, the model was counter intuitive, since
diffusion is usually seen as a force for evening out inequalities rather than as the
driving force for the generation of an asymmetry.

The two components of the model are an activator and an inhibitor. While the
activator promotes its own expression and that of the inhibitor, the inhibitor re-
presses that of the activator. If the reaction and diffusion constants are set righto
appropriate values (both species interact with adequate interaction strengths and
the inhibitor diffuses faster than the activator) then an initially homogeneous con-
centration can spontaneously break the uniform state and form periodic patterns
–peaks and valleys of concentration–which in 2D may take the form of spots of
stripes.

As interest in Turing’s model has increased in the last decade, a number of studies
have successfully combined mathematical models with experimental approaches
to show how the structural arrangement of many distinct tissues is controlled by
reaction-diffusion mechanisms [Sheth et al., 2012]. These patterned tissues usu-
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Figure 0.5: Turing’s reaction diffusion model (Top) Two species; A an auto-activator
and B a repressor. (Middle) In a two dimensional spatial context (as illustrated by the
circuit in multiple cells) both A and B can diffuse (yellow dashed arrows). (Bottom) With
appropriate parameters spots or stripes of A will form (concentration of A indicated by
intensity of yellow) Adapted from [Ouyang and Swinney, 1991]

ally involve the positioning of repetitive evenly-spaced structures. As such, the
first molecular evidence for a reaction-diffusion driven pattern was found in the
patterning of skin appendages [Jung et al., 1998]. Particular molecules – Sonic
Hedgehog (SHH) and a member of the Fibroblast Growth Factor family (Fgf4)
acted as activators, while Bone Morphogenetic proteins (Bmps) acted as inhibitors
– were shown to drive the formation of feather primordials. Recently a Turing-
type mechanism was shown to control the patterning of digits during vertebrate
limb development, where the authors uncovered the identity of the molecules that
produce the periodic pattern of digital and interdigital fates [Raspopovic et al.,
2014].

Other organs and tissues in which reaction-diffusion mechanisms control pattern-
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ing include pigment patterning in the butterfly [Nijhout et al., 2003], the formation
of ridges on the roof of the mammalian palate [Economou et al., 2012], and air-
way branching during lung development [Menshykau et al., 2012].

A distinct example of an emergent pattern is lateral inhibition (Fig. 0.6), which
operates by direct cell-cell communication. As previously mentioned, this type
of pattern arises as cells regulate each-others’states through membrane-bound re-
ceptors and ligands. Lateral inhibition is a fine-grained pattern in which adjacent
cells are found in alternating gene expression states.

The notch and delta genes play a key role in lateral inhibition [Artavanis-Tsakonas
et al., 1995, Kimble and Simpson, 1997, Lewis, 1998]. Both the ligand Delta and
its receptor Notch are transmembrane proteins, and ligand-receptor binding be-
tween adjacent cells causes activation and subsequent cleavage of Notch. The
released Notch intracellular domain (NICD) acts as a transcriptional regulator,
leading to regulation of both Notch and Delta expression. Lateral inhibition mod-
els show that NICD downregulates Delta expression. Thus, production of Delta
in one cell represses the transcription of Delta in the adjacent cell, leading to
the formation of two radically different states Delta-on/Noch-off state and Delta-
off/Notch-on state, which lead to different cell fates.

Lateral inhibition drives patterning of a diversity of tissues. For example, these
types of mosaic patterns are a ubiquitous feature of epithelia: as bristle precur-
sor cells differentiate from an initially homogeneous tissue of epithelial cells in
Drosophila [Heitzler and Simpson, 1991]. In vertebrates, lateral inhibition mech-
anisms also governs cell fate decisions between neurons and non-neuronal cells
in the central nervous system [Kawaguchi et al., 2008, Pierfelice et al., 2011], and
hair cells and supporting cells in the inner ear [Daudet and Lewis, 2005, Petrovic
et al., 2014].

A critical difference between patterns generated from a morphogen gradient com-
pared to emergent patterns is how individual cells process information. Along
a morphogen gradient, each position is exposed to a unique morphogen concen-
tration, giving cells precise information about where they are in the field. Thus,
cells make appropriate cell fate choices according to this positional information.
Instead, as an emergent pattern arises, its particular position in space does not
provide a cell with a unique identity. Cells with a maximal ‘peak ’concentration
have no way to distinguish which peak they are in – they do not have unambigu-
ous positional information. This major difference makes a distinction between
positional information and self-organizing patterns [Marcon and Sharpe, 2012].
A possible way to experimentally distinguish between both mechanisms is their
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scalability in a growing tissue. Most morphogen gradients scale with the size of
a tissue. Hence, a stripe generated using a hierarchical mechanism would enlarge
proportionally to tissue growth. Instead, as a tissue grows, stripes generated by an
emergent mechanism would increase in number while the spacing between them
– their wavelength – is conserved.

Figure 0.6: An illustration of lateral inhibition in proneural clusters in the
Drosophila neuroectoderm. Neuroectoderm cells are represented by gray circles. Cells
of a proneural cluster are shown in pink. Once cell at random will become the neuroblast
(darker orange and then red) and inhibit the other cells in the cluster (lighter orange) from
taking the same fate using the notch-delta pathway. These other cells will go on to become
epidermis like the rest of the neuroectoderm.

While a positional information model – Wolpert ’s model – is mostly relevant to
regionalization (e.g. positioning the head at one end of the embryo and the tail at
the other), self-organizing emergent models – Turing’s reaction-diffusion and the
lateral inhibition models – are most relevant to repetitive periodic patterns.

In this work we have chosen to focus on both types of inductive patterning strate-
gies, i.e. both positional information and self-organizing patterns. We explore
how circuits of genes and their products follow distinct inductive mechanisms
to generate pattern formation. In Part II we use a model of positional infor-
mation where cells communicate through diffusible products to interpret a mor-
phogen gradient into a pattern of distinct cell fates. Instead, in Part III we ex-
plore self-organizing patterns that arise as cells regulate each-others’states through
membrane-bound receptors and ligands. While the results of Part II have been
published under the title ‘The dynamics of gene circuits shape evolvability ’in
Proceeding of the National Academy of Science, the results of Part III are cur-
rently being prepared for publication.

0.2.3 Role of noise in pattern formation
Molecular noise in gene expression is due to the occurrence of biochemical pro-
cesses in the cell that work at low molecule numbers. These stochastic fluctua-
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tions are ubiquitous and can affect several levels of gene regulation [Eldar and
Elowitz, 2010, Raj and van Oudenaarden, 2008]. The first concept that we need
to consider is that of bursts. Proteins are produced in stochastic bursts because
their gene’s promoters stochastically switch between on/off states. This results in
bursts of messenger RNA production, later amplified to generate corresponding
protein bursts. A second important concept is that of propagation. Rates of gene
expression are influenced directly by the levels and states of transcription factors
and other upstream components that are themselves subject to bursting. As a re-
sult, fluctuations in the expression of one gene propagate to generate fluctuations
in downstream genes. The gene circuits that regulate biological functions are sub-
ject to both noise-generating bursts (intrinsic noise) at the level of their individual
components and noise-propagation (extrinsic noise) at the level of gene-gene in-
teractions.

Noise plays two contrasting roles in pattern formation. On one hand, noise can
be seen as a nuisance during developmental processes. As such, during the devel-
opment of an embryo, noise needs to be overcome in order to pattern tissues in a
reliable and reproducible manner [Lander, 2013]. From this deterministic point of
view, development processes need to be robust to noise.

On the other hand, noise can also have a positive and functional role in pattern
formation. It can drive probabilistic differentiation strategies that function across
cell populations. In other words, as cells switch between distinct cell fates in
a stochastic fashion, a variety of ’salt and pepper’ type of arrangements are ob-
served at the tissue level. A number of noise-dependent patterning mechanisms
have been observed during development. An example of probabilistic differen-
tiation in stem cells is found in the early mouse embryo, where the inner cell
mass gives rise to distinct epiblast and primitive endoderm lineages. The epiblast
develops into embryonic tissues and expresses the pluripotency regulator Nanog,
whereas the primitive endoderm produces extraembryonic tissue and expresses the
transcription factor Gata6. Before any morphological separation between the two
fates, individual cells begin to express only one transcription factor or the other,
in a heterogeneous ’salt and pepper’ fashion. Subsequently, cells of the same type
’sort out’ to generate the final spatial arrangement [Dietrich and Hiiragi, 2007, Ya-
manaka et al., 2010, Morris et al., 2010].

A distinct example in which noise can drive pattern formation is the lateral inhi-
bition described above. The mutual transcriptional repression of Delta between
adjacent cells is equivalent to an inter-cellular (double-negative) positive feed-
back loop. This cell-cell positive feedback loop has the ability to amplify small
initial differences between cells. In this manner, noise can cause initial asymme-
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tries to amplify and trigger the formation of a fine-grained pattern [Collier et al.,
1996, Barad et al., 2011].

In this thesis we use biologically realistic gene circuits that include noise in gene
expression. We explore the two contrasting roles of noise in pattern formation.
In part II cells interpret a morphogen gradient to produce developmental patterns
robust to noise. In contrast, in part III some of the patterns observed in our direct
cell-cell model arise due to noise.

0.3 Relationship between structure and function of
gene circuits

The structure of a circuit and the biological function it performs do not hold a
one-to-one relationship. By structure we mean the wiring design of a circuit, i.e.
its topology. In the first part of this section (0.3.1) we discuss how the structure
of a circuit defines or constraints its function. Then, in the second part (0.3.2)
we consider how a given function can be achieved by many different circuits. In
the third part (0.3.3) we discuss the concept of dynamical mechanisms. Last, the
fourth part (0.3.4) introduces dynamical systems theory.

0.3.1 From structure to function
Inferring function from structure

A particular type of study predicts the function a circuit performs from its regu-
latory structure [Shen-Orr et al., 2002, Milo et al., 2002]. These studies, inspired
by Uri Alon’s pioneering work [Alon, 2007], are based on detecting network mo-
tifs within large transcriptional regulatory networks. Network motifs are defined
as patterns of connection that occur much more often than would be expected in
random networks. Once these ubiquitous motifs are detected, the cellular function
they perform is extrapolated from their topology. A particular family of network
motifs detected using this methodology is the feed forward loop (FFL). FFLs are
frequently found in transcriptomes of E.coli, yeast and other organisms. This type
of motif consists of three genes, where one of the genes is regulated through two
different feed forward paths, a direct one and an indirect one.

To take an example to consider in more detail, of the eight possible structural
types of FFLs [Alon, 2006], the coherent type-1 (C1-FFL) is the design in which
all three regulatory interactions are activations (Fig. 0.7). Alon et al. [Alon, 2007]
have assigned a particular biological function to this motif: that of ‘persistence
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Figure 0.7: The C1-FFL motif behaves as a persistence detector when the Z pro-
moter behaves as an AND gate. When the signal Sx appears, X becomes active and
rapidly binds its downstream promoters. As a result, Y begins to accumulate. However,
owing to the AND input function, Z production starts only when Y concentrations crosses
the activation threshold for the Z promoter. This results in a delay of Z expression fol-
lowing the appearance of Sx. In contrast, when the signal is removed, X rapidly becomes
inactive. As a result, Z production stops because deactivation of its promoter requires
only one arm of the AND gate to be ‘shut off ’. The delay that is generated by this motif
can be useful to filter out brief pulses of signal with no particular meaning for the cell.
Adapted from [Alon, 2007]

detector’. The C1-FFL shows a dynamic behaviour in which gene Z shows a de-
lay after stimulation, but no delay when stimulation stops (see details in Fig. 0.7).
This way, a signal that appears only briefly does not lead to a response while only
persistent signals lead to Z expression. This sensitive-delay serves a protective
function. Indeed, as the environment of cells is often highly fluctuating, some-
times stimuli can be present for brief pulses that should not elicit a response. Im-
portantly, this type of behaviour is only observed if gene Z integrates both X and
Y inputs using a boolean AND gate. If the Z promoter switches to an OR logic,
the same motif (C1-FFL) loses its previous function and adopts a new one. With
an OR gate, Z is activated immediately upon an ON step of the signal, because it
only takes one input to activate an OR gate. Instead, the motif with an OR gate
will show a delay after and OFF step, i.e. when stimulation stops. Indeed, the OR
gate C1-FFL can maintain expression of Z even if the input signal is momentarily
lost. Thus, the C1-FFL can perform distinct functions –dynamical behaviours–
depending on the regulatory logic in use. This is why predictions about the func-
tion of motifs must be tested experimentally in the different systems in which the
motifs appear. Thus, the structure (i.e. the underlying topology) of a gene cir-
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cuit alone does not define its function – the details of the circuit parameters are
essential to describe the function it performs (see Fig. 0.2B, center table).

A single structure can achieve more than one function

A number of studies have shown that the same regulatory structure (i.e. cir-
cuit topology) can produce several biological functions [Panovska-Griffiths et al.,
2013, Jaeger and Goodwin, 2002, Verd et al., 2014]. These distinct functions
are achieved with distinct relative strengths of gene-gene interactions. Panovska-
Griffiths et al. found a particular motif that they termed the AC-DC motif, the
topology of which allows either switch-like or oscillatory behaviour, depending
on parameter values [Panovska-Griffiths et al., 2013] (Fig. 0.8).
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Figure 0.8: A gene regulatory motif that generates oscillatory or multiway switch
outputs. The AC/DC motif consists on repressive interactions between three transcription
factors. Protein concentrations of the three genes in the circuit for two distinct parameter
sets. Parameter set 1 behaves as a three-state switch that reproduces the formation of the
three most ventral differentiation states in the neural tube. Parameter set 2 behaves as an
oscillator (numerical profiles obtained at a fixed morphogen concentration) reminiscent of
the oscillations observed during somite formation. The transition in dynamical behaviour
is governed by the relative strength of the interactions shown as thick repressive arrows.
Adapted from [Panovska-Griffiths et al., 2013]

The expression of the three transcription factors (Nkx2.2, Pax6 and Olig2) distin-
guishes three distinct domains of neuronal subtypes in the vertebrate neural tube.
Indeed, in response to a gradient of the secreted protein Sonic Hedgehog (Shh),
the vertebrate neural tube is patterned into three most-ventral discrete domains

20



of expression characterized by high expression levels of Nkx2.2, Pax6 and Olig2
respectively. These transcription factors are connected through a set of repres-
sive interactions in a motif termed AC-DC. Panovska-Griffiths et al. [Panovska-
Griffiths et al., 2013] modeled the simple three-node AC-DC motif for distinct
strengths of the regulatory interactions. Their results show that, for a given set of
parameter values, the AC-DC motif is able to show a three-way multistate switch
that reproduces the gene expression pattern observed in the neural tube. However,
the AC-DC motif is also capable of producing oscillations in the expression pro-
file of the three nodes in the circuit. Indeed, by gradually adjusting the strength
of specific repressive interactions within the circuit, they show that it is possible
to transition between the multistate switch to an oscillatory behaviour. Thus, for
distinct parameter sets, the AC-DC motif shows distinct dynamical behaviours. In
Figure 0.8 we show how the transition between behaviours is controlled by the
relative strength of two interactions (thicker black interactions): the repression of
the blue node by the green node and that of the blue node by the red one. The con-
dition for a multi-state behaviour is that the repression green-to-blue is stronger
than that of red-to-blue. In this case, a positive feedback loop forms between
and the green and blue genes leading to a switch-like behaviour. Conversely, a
strong red-to-blue repression approximates the circuit to a repressilator [Elowitz
and Leibler, 2000], i.e. a three-component negative feedback loop exhibiting os-
cillations. These temporal oscillations are reminiscent of those occurring during
the process of somitogenesis, by which somites form along the anterior-posterior
axis of the developing embryo. Hence, from an evolutionary point of view, the
same motif can be used to interpret a spatial morphogen gradient into either dis-
crete domains of gene expression or to generate oscillatory patterns. In general,
motifs such as the AC-DC illustrate that the knowledge of the topology of a circuit
is not sufficient to understand the biological function it performs.

0.3.2 From function to structure
Before going into further detail, the relationship between a biological function and
the structure of a gene circuit needs to be put into the broader context of genotype-
phenotype maps.

Genotype and phenotype are interpreted here as broad concepts holding multiple
meanings. The phenotype refers to any observable trait of an organism – from its
morphology to its behaviour. We will use it to refer to very distinct concepts, from
the secondary structure that an RNA molecule folds into, to any of the biological
functions discussed previously. In contrast, the genotype refers to the heritable
information encoded in DNA. A genotype can be represented by the direct nu-
cleotide sequence of DNA or RNA or, more abstractly, by gene regulatory circuits
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that control gene expression.
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Figure 0.9: Neutral spaces of a RNA sequence-to-shape model. RNA combines in
a single molecule both its genotype (nucleotide sequence) and phenotype (shape given
by its secondary structure). In such a system, a neutral network comprises all sequences
achieving a particular secondary structure. Adapted from [Fontana, 2002]

The correspondence between a whole collection of genotypes and a single phe-
notype was first studied in simple systems such as proteins and RNAs. Indeed,
hundreds of animo-acid sequences can fold into the same three-dimensional pro-
tein structure [Smith, 1970, Li et al., 1996]. Likewise, hundreds of distinct RNA
sequences can fold into the same secondary structure [Schuster et al., 1994]. It
was precisely by exploring the relationship between the nucleotide sequence of an
RNA molecule and its secondary structure, that Walter Fontana’s first discovered
the concept of neutral spaces (Fig. 0.9) [Fontana, 2002]. The layout of an RNA
neutral network – a set of RNA sequences that fold into the same secondary struc-
ture – is the following: it consists on a large connected graph where two nodes
– sequences – appear connected if the sequences differ by a single nucleotide
substitution. As all connected nodes achieve the same secondary structure, this
connectedness implies that, by mutating one nucleotide at a time, one can change
the genotype – sequence – while preserving the phenotype – shape. (Notice that
certain mutations (those that would cause jumps between the differently coloured
neutral networks in Fig. 0.9) lead to the adoption of different phenotypes. We will
cover this topic in part II). The connectedness of a neutral network constitutes its
main feature: by definition, it forms a neutral space where mutations within it
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produce no change in the phenotype. Since Fontana’s pioneering work, a variety
of neutral networks have been explored [Ciliberti et al., 2007, Payne and Wagner,
2014]. Recently, an exhaustive genotype-phenotype map that comprises all DNA
sequences encoding binding sites for a particular transcription factor was built
[Payne and Wagner, 2014].

Importantly, the concept of the neutral network can be extended to study the re-
lationship between structure and function of gene circuits. Many studies have
shown that distinct gene regulatory circuits can produce the same biological func-
tion [Ciliberti et al., 2007, Ma et al., 2009, Ma et al., 2006, Cotterell and Sharpe,
2010, Chau et al., 2012, Lim et al., 2013, Munteanu et al., 2014, Schaerli et al.,
2014, Cotterell et al., 2015]. This has been proven for a wide range of biological
functions: from distinct temporal behaviours to particular patterning functions.
We present next three distinct strategies to identify different gene circuits achiev-
ing a biological function of interest.

Evolutionary search

A distinct search strategy is based on in silico evolution, where a starting set of
random circuits is permuted using genetic algorithms [Stich et al., 2007, François
and Siggia, 2008]. At each round of evolution, these networks are tested for the
target function, and a fraction of the best performing circuits is selected. The se-
lected circuits are then used as the new pool that is subjected to further mutations
(where different type of mutations can be explored such as addition/deletion of
nodes, addition/deletion of links or subtle changes in parameters). After multiple
rounds of mutation and selection (often hundreds of cycles) convergence to par-
ticular circuit structures is often observed.

The choice of fitness (more accurately termed a fitness function, since it assigns a
number to a given circuit) is essential for this type of search and is defined accord-
ing to the biological function of study. For example, François and Siggia [François
and Siggia, 2008] performed an evolutionary search on gene circuits performing
adaptation. As mentioned earlier, adaptation is observed in many sensory sys-
tems as the ability to transiently respond after input stimulus then reset back to
the original steady-state output level [Ma et al., 2009]. The authors defined a fit-
ness function for adaptation in terms of two functional metrics: the sensitivity –
the change in output as a function of the stimulus received – and the precision –
the difference between the output steady-state concentrations before and after the
stimulus (Fig. 0.14A).

Evolutionary search strategies follow individual paths of evolving circuits. Along
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these paths either fitness continuously improves, or the path is discarded. This
strategy has the advantage of highlighting circuits that can potentially be found by
evolution – ones for which there exist a theoretically assessable path in parameter
space between a starting circuit (of low fitness) and a final one (with improved
fitness). However, evolutionary approaches exhibit a certain bias in their search,
as they are more likely than other methods to get trapped at local fitness maxima,
missing large areas of genotype space where more fit genotypes exist. In order to
minimize this, the simulations described earlier are run many independent times.

Exhaustive enumeration

The last search strategy is based on enumerating all possible architectures within
a complete circuit space and evaluating their ability to perform the function. This
strategy has been used to reveal the genotype-phenotype maps of a wide variety of
biological functions, from temporal behaviours –such as adaptation, sensitivity to
noise, or switch-like cellular responses –to spatial patterning functions – such as
cell polarization and morphogen interpretation. The advantage of this technique is
that it provides unbiased results, including plausible circuit solutions that might be
more difficult to reach through random or evolutionary processes. Furthermore,
enumeration approaches can depict the entire neutral space for a given biological
function. However, this kind of methodology is only possible if the space of pos-
sible circuit topologies is computationally feasible to analyze. Indeed, the main
disadvantage of exhaustive enumeration approaches is their restriction to explore
simple circuits. For this reason all mentioned studies consider only small circuits
with two to five genes.

We next discuss two examples of exhaustive searches that built the neutral spaces
of two distinct biological functions. Each example uses a distinct model formal-
ism – boolean or continuous. When the model formalism is boolean, enumeration
consists in the exhaustive list of all possible topologies. In contrast, if the model
formalism is continuous, for each topology many distinct parameters sets are sam-
pled.

The first study explores the neutral space of a particular boolean genotype-to-
phenotype model. [Ciliberti et al., 2007] (Fig. 0.10). The phenotype is the steady-
state of a small boolean circuit and consists of a binary vector of 1’s and 0’s that
describe the transcription state of every gene in the circuit. A gene can either be
transcribed (on/1) or not (off/0). As for the biological meaning, a particular pheno-
type can represent a given cell differentiation state, i.e. a particular combination of
expressed transcription factors. Hence, using this particular genotype-phenotype
model, the authors built a neutral space that consists of all boolean topologies
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Figure 0.10: Neutral spaces of a boolean genotype-to-phenotype model. A neutral
space consists of all boolean topologies achieving a particular phenotype, i.e. a specific
combination of transcribed (ON or 1) and untranscribed (OFF or 0) transcription factors.
Mutations consist in the addition/deletion of single gene interaction. Certain mutations
lead to a change in phenotype (i.e. transition into a novel neutral space). Adapted from
[Ciliberti et al., 2007]

achieving a particular cell differentiation state (Fig. 0.10). As previously shown
in the RNA sequence-to-shape model, the resulting neutral space forms a large
connected graph where two gene circuit topologies appear connected if they differ
by a single gene interaction, i.e. here mutations consist in the removal or addition
of a gene interaction. Analogously, one can travel within a boolean neutral space
performing a single structural change at a time while maintaining the phenotype,
i.e. the cell differentiation state. Notice that this type of study explores the rela-
tionship between structure and function but does not take into account the concept
of dynamical mechanism (see section 0.3.4).

The second study is especially relevant to this thesis as Part II is based on its re-
sults. Cotterell and Sharpe chose to address a critical patterning event in embryo’s
morphogenesis [Rogers and Schier, 2011]: the interpretation of a morphogen gra-
dient by a field of cells such that they acquire different cell fates [Cotterell and
Sharpe, 2010]. More precisely, the phenotypes of the study are the result of the
interpretation of a pre-established, fixed concentration gradient (input) by a one-
dimensional row of cells into a stripe-like expression pattern of one of the con-

25



M
or

p
ho

ge
n 

G
ra

di
en

t  
M

IN
P

U
T

P 1

P3

P2

P4

PHENOTYPE
Gene expression pattern over a field of cells

O
U

T
P

U
T

 P
ro

te
in

  C
on

ce
nt

ra
tio

ns

GENOTYPE

M
0

0

1

0

1

1

0

0

-1

1

0

0

topology W

M
0

0

P4

0

P1

P2

0

0

P3

1

0

0

genotype w

Figure 0.11: Morphogen interpretation. A pre-established concentration gradient (i.e.
pre-pattern input) is interpreted by a one-dimensional row of cells into different cell fates.
Genes regulate each others through a three-noded circuit embedded in each of the cells in
the tissue. Additionally, cells communicate to one another through diffusive gene products
(dashed arrows).

stituent genes (Fig. 0.11). The genotype is a three-noded circuit embedded in each
of the cells in the tissue and consists on a particular topology –wiring design– plus
a given set of continuous parameter values for the strengths of gene interactions.
After an exhaustive sampling process (see 2.4 for more details), the authors could
build a particular type of neutral space termed the ’complexity atlas’ holding all
three-noded circuits capable of converting the input morphogen gradient into an
output gene expression stripe.

Random sampling

When the number of possible configurations becomes too large to enumerate, sev-
eral approaches propose to explore genotype space by random sampling. For ex-
ample, the study by Ciliberti et al. [Ciliberti et al., 2007] (previous section 0.3.2)
also explores the properties of neutral spaces for large boolean networks (com-
posed of 20 genes). The authors use a Monte-Carlo algorithm that uniformly
samples the space of all networks. The advantage of this methodology is that it
provides unbiased results. However, neutral spaces cannot be exhaustively de-
picted as this approach is incomplete.

A last approach is that of random boolean networks [Kauffman, 1969, Kauffman,
1993b, Aldana et al., 2007]. The model consists of a set of N genes or binary vari-
ables each acquiring the values 0 or 1 corresponding to the two states of gene ex-
pression (off and on respectively as previously discussed). Each gene has exactly
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K regulatory inputs randomly chosen from anywhere in the network. In addition,
each gene is assigned at random one of the possible boolean logic functions of K
inputs. Both the inputs and the boolean rules of each gene are chosen only once
and remain fixed throughout the temporal evolution of the given network. Hence,
once each gene has been provided with a set of inputs and a boolean rule, the
network dynamics are then given by the simultaneous updating of all genes of the
network. The number of possible configurations of N genes and K inputs per gene
is enormous, even for modest N. Thus, in order to study the generic properties or
random boolean networks, this type of approaches are based on random sampling
of the possible configurations. Interestingly, random boolean networks are be-
lieved to be good candidates for the modeling of real gene regulatory networks.
Large numbers of distinct networks converge to a type of cyclic attractors that can
be interpreted as alternative cell types (networks with a common cyclic attractor
are displayed in fan-like structures, see [Kauffman, 1969, Kauffman, 1993b] for
more details). In a nutshell, random boolean network allow to explore particular
boolean structures with a common biological function (cyclic attractor).

0.3.3 The concept of dynamical mechanism
As mentioned above, many gene circuits can perform a particular function. From
this observation, several questions arise: How do these circuits operate to per-
form that function? How many of these circuits are interestingly different, in
terms of the way they operate? Circuits use a limited number of strategies to
produce a given phenotypic function. These few fundamental solutions are re-
ferred to as dynamical mechanisms [Ma et al., 2009, Ma et al., 2006, Cotterell and
Sharpe, 2010, Chau et al., 2012, Lim et al., 2013, Munteanu et al., 2014, Jaeger
and Sharpe, 2014]. The concept of dynamical mechanisms is tightly related to
that of the minimal motif. Let us next briefly discuss what precisely we mean by
minimal motif and dynamical mechanism.

Minimal motifs

A number of studies have explored the idea that complex circuits can be decon-
structed into simpler circuits that underlie function [Alon, 2007, Lim et al., 2013].
This means that in order to understand which features of the whole circuit are
responsible for a given function, one needs to reduce the complexity of a circuit
until only the minimal necessary gene interactions remain. Hence, reducing the
complexity of a circuit to its minimal configuration(s) allows us to identify the
core underlying mechanism(s) for a given biological function.
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Figure 0.12: Complexity atlas showing the six fundamental mechanisms for mor-
phogen interpretation. (A) The lay-out of the complexity atlas allows to identify six
core motifs for stripe formation. The topologies of the complexity atlas are coloured ac-
cording to the mechanism by which they produce the single stripe of gene expression (see
Fig. 0.13). Topologies that are capable of performing multiple mechanisms are shown in
yellow. Mechanisms occupy locally connected regions of the atlas, and together cover
78% of the topologies. Hence, circuits can be classified into distinct families of circuits
according to their dynamical mechanism. (B) The known biological systems that each
mechanism is associated with are shown beneath the circuits. Three of the mechanisms,
Mutual Inhibition (bicoid-hunchback-knirps), Incoherent Feed-Forward (caudal-knirps-
giant) and Classical (hunchback-krüppel-knirps) are involved in Drosophila anterior-
posterior patterning [Jaeger, 2011], while Incoherent Feed-Forward controls the meso-
derm inducer Xenopus Brachyury [Green, 2002]. Extracted from [Cotterell and Sharpe,
2010]
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Cotterell and Sharpe used a complexity atlas to extract the minimal core motifs for
stripe formation (Fig. 0.12) [Cotterell and Sharpe, 2010]. Indeed, the complexity
atlas is a type of neutral network where the layout helps us to extract the minimal
core motifs for the given phenotype (in this case, stripe formation). It is built
from a topology-focused approach and comprises all topologies with at least one
functional stripe-forming genotype. The rules of connectedness are those used
in the previously described boolean neutral space: two gene circuit topologies –
nodes – appear connected – edges – if they differ by a single gene interaction.
In other words, two gene circuits are neighbours if the gain or removal of any
one interaction can transform one of the circuit topologies into the other. The
layout proposed by the authors orders topologies along the y-axis with respect to
their complexity, i.e. number of regulatory links. This layout helped identify the
six simplest minimal motifs for morphogen interpretation: Bistable, Incoherent
feed-forwards, Mutual Inhibition, Overlapping Domains, Classical, and Frozen
Oscillator, which appear at the bottom of the ’stalactites’ in the complexity atlas
(Fig. 0.12).

Dynamical mechanisms

Cotterell and Sharpe observed that each minimal stripe-forming motif corresponded
to a distinct dynamical mechanism [Cotterell and Sharpe, 2010]. By ’mechanism’
we mean the causal dynamics responsible for the trajectory of the system (i.e.
the spatiotemporal course of gene expression) resulting in the final phenotype.
Figure 0.13 shows how each of the six core motifs uses a distinct spatiotemporal
course of gene expression in order to produce a stripe of gene expression. The au-
thors could assign each of the genotypes producing a stripe to a given mechanism.
They did so by comparing their spatiotemporal dynamics (see section 2.5). Each
genotype could be assigned to only one of the six distinct mechanisms, proving
that distinct mechanisms are unique and incompatible. The atlas appears colour-
coded where each colour represents a distinct dynamical mechanism, and yellow
is used for topologies that contain genotypes employing distinct mechanisms, i.e.
distinct parameter sets lead to distinct dynamics (Fig. 0.12).

Dynamical mechanisms represent distinct, fundamental ways to achieve a given
function (Fig. 0.14). Previous studies have also linked the concepts of mini-
mal motifs and dynamical mechanisms [Ma et al., 2009, Hornung and Barkai,
2008, Shah and Sarkar, 2011, Ma et al., 2006, Chau et al., 2012, Lim et al.,
2013, Munteanu et al., 2014]. Using an enumeration approach Ma et al. explored
all three-gene circuits performing adaptation citeMa2009. The authors identified
two minimal motifs – negative feedback and incoherent feed-forward types of
motifs termed NFBLB and IFFLP respectively – that corresponded to two dis-
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Figure 0.13: Alternative mechanisms to achieve a single phenotype. A stripe-forming
circuit employs one of six distinct fundamental mechanisms [Cotterell and Sharpe, 2010].
Each mechanism uses a distinct gene expression dynamics in space and time to reach the
same phenotype.

tinct dynamical mechanisms. The authors proved that each mechanism holds a
distinct class of phase portrait, which results in distinct dynamic trajectories (see
next section 0.3.4).
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Figure 0.14: Minimal motifs and dynamical mechanisms. (A) Ma et al. [Ma et al.,
2009] identified the two minimal motifs for biochemical adaptation. They correspond to
distinct dynamical mechanisms each holding a distinct class of phase portrait. (B) Like-
wise, the six minimal stripe-forming motifs correspond to six distinct dynamical mecha-
nisms [Cotterell and Sharpe, 2010].

0.3.4 Dynamical systems
As illustrated in cases such as the ACDC or the C1-FFL motif (0.3.1), the study
of the dynamical behaviour of a gene circuit is essential to understand its func-
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tion. Dynamical systems theory provides intuitive understanding on the set of
behaviours that can be implemented by a gene circuit. In this section we pro-
vide a brief introduction to dynamical systems and use as a conceptual model a
double negative feedback loop circuit known as the toggle switch [Gardner et al.,
2000]. We will introduce the following repertoire of concepts: phase space, phase
portrait, trajectory, steady state, attractor, saddle point, flow, nullcline, basin of
attraction, separatrice and bifurcation [Strogatz, 2014]. All of these concepts will
be in use in Part III of this thesis.

The toggle switch is formed of two genes U and V that mutually inhibit each other
(Fig. 0.15A). This circuit’s dynamics can be formulated in terms of the following
ordinary differential equations:

dU

dt
=

α1

1 + V β1
− U (5)

dV

dt
=

α2

1 + Uβ2
− V (6)

(7)

where the regulatory functions and precise parameters (α1 = 4; α2 = 4;β1 = 3;
β2 = 3) were extracted from Gardner’s model [Gardner et al., 2000].

A system’s behaviour is defined by its trajectories, which represent the change
of the state of the system –e.g. consisting of a set of transcription factor con-
centrations over time. The shape of these trajectories depends on the structure
or organization of the underlying regulatory circuit [Goodwin, 1982, Alberch,
1991, Waddington, 1939, Manu et al., 2009b, Verd et al., 2014, François and Sig-
gia, 2012, Jaeger and Crombach, 2012]. Understanding the dynamical behaviour
of the circuit comes from the geometrical analysis of phase space, i.e. the analysis
of the number, nature and relative arrangement of the steady states of the system.

The phase space of a dynamical system is an abstract space, in which each di-
mension represents the value of a specific state variable. In the case of the toggle
switch, the state variables represent the concentrations of U and V . The graphical
representation of phase space is called the phase portrait and shows the rate of
change of the system at any given state. This is known as the flow of the system.
In the phase portrait of the toggle switch in Figure 0.15B, the flow is indicated
by arrows of a given length and direction. If we follow the flow form all possible
initial states, we obtain the totality of possible dynamical trajectories.
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Figure 0.15: Phase portrait of a toggle switch. Phase portrait obtained using the equa-
tions of Gardner et al. [Gardner et al., 2000] (usage of Mathematica). Steady states are
found at the crossing of the yellow and light-blue nullclines. The separatrix (not shown)
is found in the diagonal of phase portrait and separates the bassins of attraction of the two
stable states.

It is clear from the inspection of the flow that trajectories tend to converge to spe-
cific points in phase space: the steady states of the system. There are two kinds
of steady states: stable states (or attractors) and unstable states. We plot steady
states as points coloured according to their stability: stable states in blue and un-
stable states in red. These steady states are found where two nullclines cross. That
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is, nullclines are defined as the curves where either dU
dt

= 0 (yellow nullcline in
Figure 0.15B) or dV

dt
= 0 (light-blue nullcline in Figure 0.15B). Hence, at the

crossing of the two nullclines both conditions are true and the system is at steady
state.

Attractors, as their name implies, draw trajectories towards them. Furthermore,
they have the special property that once a trajectory has reaches an attractor, it will
return to it if the system is slightly perturbed. The region of phase space around
an attractor, from which all trajectories converge towards it is called its basin of
attraction. Curves known as separatrices set apart the different basins and their
attractors.

An example of an unstable steady state is a saddle point. Saddle points attract
trajectories from some directions, but repel them in others. Usually, the system
will move away from a saddle upon perturbation, towards the nearest attractor.

Finally, attractors and saddles, with their associated basins and separatrices, can be
created or annihilated through the process of bifurcation. Bifurcation represents
sudden qualitative changes in the structure of the phase portrait caused by small
changes in the values of a given set of control parameters.

0.4 Objectives of this thesis
The relationship between the structure of a gene circuit and its functionality gives
rise to the two main questions discussed in this thesis. This work will thus be
structured into two parts.

In the first part we explore the following question: To what extent does the dynami-
cal mechanism producing a specific biological phenotype bias the ability to evolve
into new phenotypes? Indeed, biologists are familiar with the concept of develop-
mental constraints [Maynard Smith et al., 1985]. From a given organism, which
undergoes a particular sequence of morphogenetic events, not any new phenotype
can evolve. Instead of considering the sequence of particular patterning events,
we focus on the specific dynamical mechanisms employed to transition between
them. As such, if two organisms both interpret a morphogen gradient into the
same stripe of gene expression, but achieve it following distinct dynamics, do
they have a different potential to evolve novel functions? Particularly, we assess
the ability of the distinct gene circuits that produce a specific biological function
to evolve into novel functions. The results show that the dynamical mechanism of
a gene circuit impacts on its potential to evolve. We will address concepts such as
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evolvability and dynamical mechanism.

In the second part we raise the following question: What is the minimal circuit de-
sign able to perform multiple biological functions? Within large multi-functional
gene circuits, each function can be allocated an independent set of interacting
genes, or structural module [Di Ferdinando et al., 2001, Clune et al., 2013, Ellef-
sen et al., 2015, Kashtan and Alon, 2005]. Modules form independent structures
that do not overlap and are thus believed to work quasi-autonomously [Wagner
and Altenberg, 1996, Raff and Conway Morris, 1996, Kirschner and Gerhart,
1998a]. However, how does modularity evolve as the size of a circuit dimin-
ishes? How can a minimal circuit perform two distinct functions? We explore
small minimal circuits capable of encoding two distinct patterning functions with-
out any changes to their topology or modification of their regulatory parameters.
Particularly, we discuss their design properties and their ability to be decomposed
into distinct sub-circuits. We will address concepts such as multi-functionality and
modularity.
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Part II

Dynamical mechanisms of gene
circuits shape evolvability
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Chapter 1

INTRODUCTION

Evolution occurs through mutations on existing genotypes, potentially transform-
ing the original phenotype or trait into a novel one, with latent beneficial conse-
quences. It is a fundamental problem in biology to understand the relationship be-
tween a genotype and the associated phenotypes accessible through mutations, in
other words, its evolvability. From the many definitions of evolvability [Pigliucci,
2008, Kirschner and Gerhart, 1998b], we refer here to the ability of genotypes to
access novel phenotypes, irrespective of the subsequent process of natural selec-
tion.

What are the features of a genotype that impact on its capacity to evolve? We
introduce three distinct approaches to explore this question. The first approach
(1.1) explores evolvability from the perspective of genotype-phenotype maps. The
second (1.2) studies how particular topological features of gene circuits influence
their evolvability. We propose a third approach (1.3) that focuses on how the
dynamical mechanism employed by a gene circuit impacts on its evolvability.

1.1 Evolvability from the building of genotype-phenotype
maps

The first approach explores how phenotypic novelty arises in the context of neutral
spaces. As previously mentioned, neutral spaces are large connected structures
formed by all genotypes with a common phenotype where, by definition, muta-
tions within the neutral space are neutral, i.e. they change the genotype while
maintaining the phenotype.

In this context, the tendency of a given genotype to conserve its genotype upon
mutation defines its robustness. On the contrary, its tendency to adopt a different
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phenotype upon mutation defines its capacity to evolve or evolvability. Pheno-
typic novelty thus occurs when mutations on a given genotype transform its orig-
inal phenotype into a novel one. In other words, phenotypic novelty occurs when
there is a transition from an original neutral space to a novel one.

The existence of neutral spaces has the following four consequences to the evolu-
tionary process.

1

Legend

Genotypes accessing 
distinct phenotypes

Phenotypic neighborhood  
from a given genotype 

Neutral mutations

Mutations leading 
to innovation

Features of neutral spaces

Phenotype 3

Phenotype 4

Phenotype 1

Phenotype 2

Mutation

Phenotype 1

Evolvability

Robustness

Genotype  space

3

2
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Evolvability
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3 Robust genotypes cause big neutral spaces to access a variety of novel phenotypes

Internalness as a measure of robustness

Phenotypic neighborhoods diverge with distance

4

4 Only certain phenotypic transitions are allowed

Figure 1.1: Features of neutral spaces. Evolvability accounts for the accessible novel
phenotypes, while developmental constraints imply certain hypothetical forms are not
possible: phenotype 2 (purple) is not available by gradual mutation. Innovations acces-
sible from a given genotype constitute its phenotypic neighbourhood. The arrangement
and diversity of this neighbourhood is a measure of the genotype’s evolvability. Genotype
space is high dimensional, but we schematically represent it here in 2D for illustrative
purposes.
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First, a genotype’s position within a neutral space critically determines its poten-
tial to evolve. Indeed, neutral spaces often appear as fully connected and dense
regions [Ciliberti et al., 2007, Draghi et al., 2010, Payne and Wagner, 2014].
Therefore, although genotypes internal to the neutral space are highly robust to
mutations (i.e. not evolvable), only genotypes close to the edge of the neutral
space might access novel phenotypes ([1] in Fig. 1.1). This means the ‘internal-
ness’of a genotype within genotype space is critical to its ability to access novel
phenotypes.

Second, the accessible innovations are critically determined by a genotype’s po-
sition along the edge of a neutral space [Ciliberti et al., 2007, Draghi et al.,
2010, Payne and Wagner, 2014]. These accessible innovations in the vicinity
of a given genotype constitute its phenotypic neighbourhood [Dichtel-Danjoy and
Félix, 2004]. A number of studies have linked the divergence in composition of
phenotypic neighbourhoods to distances in genotype space. These results apply
whether the genotype corresponds to a boolean gene circuit [Ciliberti et al., 2007],
a protein sequence [Ferrada and Wagner, 2010] or an RNA sequence [Huynen,
1996]. This means, the closer two genotypes are, the more similar their pheno-
typic neighbourhoods. Conversely, the increase in distance between two geno-
types correlates with the divergence in the innovations accessible from them ([2]
in Fig. 1.1).

Third, robustness facilitates evolvability. This apparently contradictory statement
is based in the following observation. While low-robust genotypes lead to small
poorly-connected neutral spaces, high robust genotypes ensure the connectedness
of a neutral space and thus impact of its size. In other words, high robustness
of the individual genotypes that form a neutral space facilitates the formation of
large connected structures. Large neutral spaces can then extend throughout geno-
type space, providing mutational access to a diversity of novel phenotypes from
different genotypes ([3] in Fig. 1.1). In this manner, robustness allows for the ac-
cumulation of neutral mutations. This so-called neutral drift enables phenotypic
innovation by improving the changes of encountering distinct novel phenotypes
[Draghi et al., 2010, Hayden et al., 2011, Tóth-Petróczy and Tawfik, 2013, Aguirre
et al., 2011, Manrubia and Cuesta, 2015]. As an example, Toth-Petrozy et al.
[Tóth-Petróczy and Tawfik, 2013] studied how the accumulation of neutral se-
quence changes in a given enzyme improved its potential to acquire new protein
functions, promoting its evolutionary adaptation. This process was called cryptic
genetic variation [Hayden et al., 2011].

Fourth, from a particular phenotype, only certain novel phenotypes are accessible
([4] in Fig. 1.1). Already, Fontana and Schuster [Schuster et al., 1994, Fontana,
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2002] observed in their RNA sequence-to-shape neutral spaces that it was easier
to transition between specific pairs of phenotypes. Indeed, certain phenotypic
transitions (indicated by thick lines with alternating colours in Figure 0.9) were
more probable than others: for example the transition between green and yellow
RNA shapes is highly feasible compared to green to blue transition. Furthermore,
some transitions were not allowed – from yellow to blue shapes.

1.2 Evolvability from the topological features of gene
circuits

The second approach explores the relationship between a gene circuit’s evolvabil-
ity and its topology [Salazar-Ciudad et al., 2001, Fujimoto et al., 2008]. Salazar
et al. [Salazar-Ciudad et al., 2001] classified gene circuits able to produce multi-
cellular patterns into two distinct categories based on their topology. These cat-
egories broadly corresponded to circuits containing either feed-forward of feed-
back motifs. They observed that the capacity of such networks to access novel
patterns when subject to mutation depends on their topological features. This
type of study aims at predicting the evolvability of genotypes from their particular
topological features. We believe these results are not in contradiction with the
previous observations. Instead, they provide a distinct and relevant perspective on
evovability. However, we will focus on exploring evolvability through the use of
neutral spaces.

1.3 Mechanism-view on evolvability
While many features of genotype-phenotype maps have been much studied, none
of the existing studies have addressed the impact of the underlying dynamical
mechanism of a gene circuit on its evolvability. As pointed out earlier, circuits
achieving a biological function can be classified into families of core dynamical
mechanisms. Do circuits that function under distinct mechanisms differ in their
ability to evolve?

The existence of distinct dynamical mechanisms to achieve a single phenotype
suggests the following mechanism-view on evolvability. That is, the discrete na-
ture of mechanisms suggests that neutral spaces do not always form fully con-
nected regions but might instead have sparse structures. Thus, when mechanisms
are taken into account, the neutral space of a function breaks up into scattered
islands of genotypes characterized by distinct underlying mechanisms. These ob-
servations suggest that evolvability may be constrained specifically by the dy-
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namical mechanism of the gene circuit. As neutral spaces can be broken up into a
discrete collection of separate islands, the process of neutral drift may be limited
to these mechanisms-specific regions.

In order to assess the impact of dynamical mechanism, we take inspiration from
the work of Cotterell and Sharpe [Cotterell and Sharpe, 2010] on alternative mech-
anisms for morphogen interpretation (Fig. 0.11- 0.13). Importantly, the authors
had previously shown that mechanisms have a discrete nature, i.e. it was not pos-
sible to smoothly and functionally transition from one mechanisms to another.

The choice of a model for morphogen interpretation imposes to study evolvability
from the perspective of pattern formation. The evolvability of circuits control-
ling gene expression patterns is especially relevant for the field of developmental
biology. Indeed, the spatial organization of gene expression orchestrates cell dif-
ferentiation. Their diversification causes evolution of both modest morphological
traits, such as novel pigmentation patterns in the wings of a butterfly [Werner
et al., 2010], and major evolutionary breakthrough, such as new body structures,
for example the transformation of two-winged insects into four-winged insects
[Prud’homme et al., 2007, Guerreiro et al., 2013].

For the current study, we analyzed each of the six mechanisms for morphogen in-
terpretation independently and obtained a mechanism-specific measure of evolv-
ability. We found that, indeed, the likelihood of accessing distinct phenotypic
innovations is different for each dynamical mechanism, despite the fact that they
all produce the same phenotype. Our analysis uncovers key features of the mech-
anistic neutral spaces and provides useful insight into how phenotypic transitions
and thus innovations occur.
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Chapter 2

METHODS

2.1 The phenotype

The phenotype of study consists on the interpretation of a pre-established mor-
phogen gradient by a one-dimensional row of cells into different cell fates (Fig. 0.11).
The choice on this particular phenotype is based on the knowledge that multiple
dynamical mechanisms exist in order to interpret a concentration gradient into a
stripe of gene-expression [Cotterell and Sharpe, 2010] (Fig. 0.12).

2.2 The genotype

The genotype is represented by a small three-gene circuit. The same circuit is em-
bedded in each of the cells of the tissue and consists of a particular wiring design
–topology– plus a given set of continuous parameter values for the strengths of
gene interactions.

As previously defined in section 0.1.2, the topology is represented by a 3x3 matrix
Wij where value at the ith row and jth column indicates how gene j regulates
gene i. An additional column indicates which gene receives the morphogen input
(Fig. 0.11). In the process of parameter sampling (section 2.4), the values of the
original topology Wij will be replaced by real parameter values wij with a [0:10]
range for activation and [-10:0] range for repression. Hence, a genotype holds a
particular set of precisely 12 parameters: 9 for the strengths of gene interactions
(wij) and 3 for diffusion coefficients of each individual gene.
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2.3 The gene regulatory model
For reasons explained in section 0.1.2 of the global introduction, we describe a
multi-cellular tissue using a continuous gene regulatory model. The simulation
takes places in a one-dimensional row of 32 cells that communicate to one an-
other through diffusive gene products (dashed arrows in Figure 0.11). We use
reflective or zero-flux boundary conditions that do not allow any diffusion in or
out of the system, therefore modeling the system as isolated from other tissues.
Indeed, patterning fields are often boundary restricted zones that are patterned rel-
atively independently.

The pre-pattern takes the form of a gradient described as an exponential profile
(see section 0.2.1):

M = Idc (2.1)

where I is the morphogen concentration in the left-most cell of the field (set to
1); d is the reduction of morphogen concentration in each subsequent cell (set to
0.93) and c is the cell position. This pre-pattern does not change throughout the
simulation and activates only one of the genes. Thus, although morphogen gradi-
ents can form according to distinct dynamics, we consider a steady-state gradient.

The model captures the spatiotemporal dynamics of gene patterning and is de-
scribed by:

∂gij
∂t

= χ[Φ[
3∑
l=1

wilglj +M ]] +Di∇2gij − λgij + η(t)gij (2.2)

where gij is the concentration of the ith in the jth cell initially set to 0.1 for every
gene in every cell; φ is the regulatory function that takes the form of a Michaelis-
Menten function (see section 0.1.2); w is the matrix containing the strengths of
gene-gene interactions; M is the morphogen input; χ is the Heaviside function to
prevent negative gene product production rates; Di is the diffusion constant for
the ith gene and λ is the decay rate equal for all genes.

We chose to include multiplicative noise in the system through the η(t) term,
which adds uniformly distributed fluctuations (±1%) to the concentration of every
gene in every cell at every time step. As mentioned in section 0.2.3, in this part
of the thesis we exclusively model development processes that are robust to noise.
All patterns studied are robust, i.e. they form in a reliable and reproducible manner
in a noisy environment. Hence, noise is included in the model to distinguish
between robust and non-robust solutions.
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2.4 Exploring the space for solutions

Solutions of our search are genotypes able to interpret the morphogen gradient
into a band of gene expression. We search for genotypic solutions in a two-step
process. First, we exhaustively enumerate all possible three-gene circuit topolo-
gies. Second we sample large numbers of genotypes (i.e. parameter values) for
each topology.

Following the method employed by Cotterell and Sharpe [Cotterell and Sharpe,
2010], we generated 9710 unique topologies. Next, we tested 106 random param-
eter sets for each topology. Parameters were generated randomly using uniform
distributions of ranges [0:10] for interaction strengths and [0:0.05] for diffusion
coefficients. We obtained 103,916 successful genotypes successful at producing a
stripe with 702 distinct underlying topologies.

2.5 Building mechanism-specific neutral spaces

As described in section 0.3.3, the original complexity atlas build by Cotterell and
Sharpe extracted the minimal core motifs for stripe formation. In the atlas, topolo-
gies appear colour-coded according to their mechanism. However, because the
atlas is built from a topology-focused perspective, a single topology –node– can
hold within it distinct genotypes (yellow topologies in Figure 0.12) making use
of distinct dynamics. Because the focus of our study is to explore how distinct
mechanisms affect the evolvability of gene circuits, we consider each mechanism
separately. We thus propose to display the results through separated complexity
atlases each containing all genotypes operating under a given dynamical mecha-
nisms (Fig. 2.1).

For that, we use the same methodology employed in the original study where
each genotype –geno– in the original atlas is assigned to the mechanism –mech–
to which it holds the smallest distanceDgeno−mech. We calculate this distance with
the following method. On one hand, a particular genotype –geno– is character-
ized by an array Y that contains the values of its spatiotemporal gene expression.
On the other hand, a mechanisms –mech– is characterized by the spatiotemporal
expression arrays Y of all its ‘core genotypes’, i.e. all genotypes with the under-
lying core minimal topology of the mechanism. In order to find Dgeno−mech, the
spatiotemporal gene expression of a genotype is compared, one by one, to those
‘core’profiles. For each genotype-to-genotype comparison, we use a Euclidean
distance that measures the differences in time and space between two dynamical
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Figure 2.1: Dynamical mechanisms impose a scattered structure of neutral spaces.
The neutral space for morphogen interpretation is broken-up into six alternative mecha-
nisms. (A) Original atlas [Cotterell and Sharpe, 2010] where core motifs represent each of
the six alternative mechanisms for morphogen interpretation. (B) Mechanisms are found
in disconnected regions of genotype space. (C) Building individual complexity atlases for
each mechanism. The size of each mechanisms can be measured according to the number
of genotypes, of topologies, or using Hamming Distance.

patterns. For example, the distance between two genotypes genoa and genob is:

Dgenoa−genob =

∑G
1

∑C
1

∑T
0

√
(Ya,g,c,t − Yb,g,c,t)2

GCT
(2.3)

where the two spatiotemporal arrays Y –that contain the concentrations of every
gene g, in every cell c at every time step t– are compared for every gene (G set to
3), every time step (T set to 1000) but for only 3 cells (C set to 3). Indeed, in order
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to control for differences in the position and size of the stripe, we only compare
three cells for each space-time plot –at the center of each of the low-high-low re-
gions of the stripe pattern.

This calculation is repeated for every pair-wise combination between the genotype
to assign genoa and each ‘core genotype’of the mechanism:

Dgenoa−mech =

∑Ncore
l=1 Dgenoa−genol

Ncore

(2.4)

where Ncore is the total number of ‘core genotypes’of the mechanism.

Following this method, we obtained six mechanism-specific neutral spaces that
represent six disconnected regions of genotype space each making use of a partic-
ular dynamics. The size of the distinct neutral spaces can be measured in various
manners: according to the number of genotypes, the number of topologies, or the
maximal Hamming Distance between any two topologies in the dynamical regions
(Fig. 2.1).

The Hamming Distance –HD– measures how dissimilar the architectures of two
gene circuits are. Its maximal value within a three-node circuit space is 18. The
distance between the topology matrices of two gene circuits W and W ′ can be
measured as:

HammingDistance(W,W ′) =
∑
i,j

∣∣∣sgn(Wij)− sgn(W ′
ij)
∣∣∣ (2.5)

where i and j represent the position in those matrices. As the matrices are com-
pared in every permutation, the Hamming Distance corresponds to the lowest
value obtained. We notice that all mechanism-specific neutral spaces are large as
they hold a maximal Hamming Distances from 6 to 9. This means that topologies
within a given mechanism can be very dissimilar, suggesting that mechanism-
specific neutral spaces percolate through large portions of genotype space.

2.6 Evolvability: defined and measured

The measure of a genotypes’ evolvability is tightly linked to the type of mutations
the genotype is subject to. Indeed, evolvability can only be assessed if we first
define the mutation process we are interested in.

49



2.6.1 Choice of mutation process
The possible ways in which a genotype can be mutated are defined and constrained
by the modeling approach. General considerations of the differences between con-
tinuous and discrete models were described earlier in section 0.1.2. Here, we will
comment specifically on their impact on the type of mutations they allow.

Boolean circuits use a discretization of gene interactions that implies that only
large/dramatic mutations are contemplated. Thus, boolean mutations consist on
the complete removal or addition of entire gene interactions. Besides admitting
this type of mutations, continuous circuits also allow for smoother mutations.
These smoother mutations consist in ‘fine-tuning’the values of single interactions
and can thus occur without a change in the underlying topology. These mutations
are more biologically realistic, as a change in the strength of a given interaction
can represent, for example, a slight modification in the binding affinity of a tran-
scription factor (e.g. a mutation in the sequence of a cis-regulatory region). Thus,
in accordance to the continuous model in use, we thus chose to implement mini-
mal mutations that affect only the strength of single gene interactions, in a process
that takes into account real aspects of biological circuits.

Furthermore, as will be shown later, our goal is to map the possible phenotypic
transitions within parameter space: which phenotypes directly touch each other
and how do these transitions occur? For this purpose, the ability to ‘fine-tune
’parameters is important. If instead we were to apply boolean mutations –drastic
addition or removal of interactions– on our continuous genotypes, this mutations
would easily ‘jump over’relevant regions of parameter space.

2.6.2 The mutation process
We explore the genotype space around a given genotype in an exhaustive and sys-
tematic manner by mutating all its gene interactions one by one. A mutation af-
fects only one gene interaction, whereas the rest of interactions remain unchanged.
This way, a genotype with n gene interactions is subject to 2n independent mu-
tations: each interaction has its original value (Pi) decreased (P−i ) or increased
(P+

i ) by a magnitude referred to as mutational strength:

P+
i = Pi(1 +mutational strength) (2.6a)

P−i = Pi(1−mutational strength) (2.6b)

We will discuss later how this strength represents distinct mutation intensities but
for now we assume it is set fixed at 50%. In the example of Figure 2.2A, a geno-
type with four interactions undergoes eight distinct mutations. In order to have
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a mechanism-based measure of evolvability, this same process is repeated for all
genotypes that belong to a given mechanisms.
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Figure 2.2: Measuring evolvability. (A) Mutating a genotype consists of perturbing
all its gene interactions. A mutations affects only one interaction while the rest of inter-
actions remain unchanged. Each interaction has its value increased or decreased by the
mutation strength. (B) At a fixed mutation strength, all genotypes belonging to a mech-
anism undergo the process in (A). Evolvability accounts for the proportion of mutants
reaching novel phenotypes.

We measure evolvability as the proportion of genotypes within a mechanism that
reach phenotypic innovation when subject to mutation. In other words, evolvabil-
ity accounts for the likelihood of a genotype with specific dynamics to drift into
a novel and stable phenotype. Respectively, robustness is measured as the pro-
portion of genotypes that maintain the original stripe phenotype when undergoing
mutation (Fig. 2.2B).

2.6.3 Functional versus non-functional phenotypes
For any given mutation, three phenotypic outcomes are possible: phenotypic in-
novation –novel pattern– phenotypic maintenance –stripe-pattern– or phenotypic
loss –null or oscillatory phenotype (Fig. 2.2B). To assess these three possible out-
comes, we established criteria that distinguish functional phenotypes – stripe pat-
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tern and novel patterns– from non-functional phenotypes -null or oscillatory phe-
notypes. Two criteria were chosen: the pattern criterion and the stability criterion.

The pattern criterion, considers that a gene profile conforms a pattern when the
level of heterogeneity within its cells (left term of the inequality) is above a certain
threshold:∑

cells

√
(Yg,c,teq − σ)2

cells
> 10 with σ =

∑
cells Yg,c,teq
cells

(2.7)

Yg,c,teq being the gene expression profile of gene g at the time when the pattern has
reached equilibrium teq and σ being the average concentration of gene g through-
out the tissue.

The stability criterion considers that a gene expression profile has reached equi-
librium when it remains stable for more than 100 consecutive time steps. Further-
more, stable profiles need to reach equilibrium for each of the four different noise
runs.

Functional phenotypes (i.e. stable patterns) fulfill both criteria. Instead, non-
functional phenotypes dissatisfy at least one of the criterion. A kind of non-
functional phenotype is the ‘flat phenotype’that does not fulfill the pattern cri-
terion as it does not reach enough heterogeneity level in its profile. Another kind
of non-functional phenotype is an oscillatory phenotype, which does not fulfill
the stability criterion, as it does not reach equilibrium. Oscillatory phenotypes
consist of all kinds of unstable solutions. Although oscillatory phenotypes are
biologically relevant, for the purpose of the main study, we included oscillatory
phenotypes as phenotypic loss. However, although it is not the main focus of
this thesis, we will briefly discuss in section 3.1.4 the relation between oscillatory
phenotypes and stable patterns.

2.6.4 Classifying functional phenotypes into different patterns

Functional phenotypes can be classified into 8 categories: the stripe pattern and 7
novel patterns. The criteria to define each pattern were first defined by J.Cotterell
and later refined by the authors of this thesis (Fig. 2.3). In order to character-
ize particular spatial features of some of the patterns we introduce a measure of
change in concentration between two consecutive cells

δ =
√

(gi,j)2 − (gi,j+1)2 (2.8)
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where gij is the concentration of the gene of interest i in the cell at position j. This
measure is relevant to identify gradients and sudden spatial changes in concentra-
tion –peaks and kinks.

The definitions in Figure 2.3 are intentionally loose. For example, whether we
consider single or multiple stripes, stripes can be of any width and at any position
in the spatial domain. Hence, although the levels of gene expression in individual
cells can vary widely between two phenotypes classified as Stripes (position and
width of the stripe), the above-mentioned behavioural rules are respected. These
definitions are also mutually exclusive, in the sense that a pattern cannot belong to
two categories at the same time. Following these criteria, we were able to classify
93% of all novel phenotypes into one of the seven novel categories described.
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Dip
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Gradient and Peak

The gene's concentration alternates between high and null expression levels. 
The null concentration needs to be reached at least three times. 

This pattern holds a single difference with the Stripe: within the plateau of 
cells at high concentration there is a decrease followed by an increase in 
concentration. This low peak within the plateau of cells cannot reach null 
concentration, making a distinction between this pattern and Multiple Stripes. 

Definition complementary to that of the Stripe. Two high regions of cells at the 
extremities of the field are separated by a single region of cells at null 
concentration. 

Two regions of cells at the lowest expression level are separated by a single 
region of cells at high expression level. Within the plateau of cells at high 
concentration, the expression level needs to remain constant. Also, the two 
low regions must occur at the extremities of the field. 

δ does not exceed 1 along the whole tissue and the difference in 
concentration between the first and the last cell of the domain is higher than 
4. 

The transition between two regions at high and low expression levels is a kink 
that denotes a sudden drop in the concentration. This transition region, or 
kink, is thinner than 4 cells. A kink is detected when (δ>1.5) 

Two regions at low and high expression levels are separated by a kink 
denoting a sudden increase in concentration.   

First a gradient (δ<1) then a peak followed by a plateau of cells at null 
concentration. The peak is detected as two kinks  (δ>1.5) at less than 4 cells 
distance from each other.

Figure 2.3: The stripe and seven novel patterns. Criteria for pattern classification.
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Chapter 3

RESULTS

3.1 Evolutionary potential is mechanism-dependent

3.1.1 Evolutionary potential at a fixed mutation strength
First, we separately monitor the evolvability of the six distinct mechanisms, i.e.
each regulatory parameter was increased or decreased by 50% of its ‘wild-type
’value (50% mutation strength). Although the measure of evolvability depends
on the mutation strength considered, we believe that performing the analysis at a
given mutation strength will help us get a first intuition on the results.

With this simple initial analysis, we found that circuits using distinct mechanisms
for stripe formation differ substantially in the likelihood of reaching novel phe-
notypes. For each mechanism, Figure 3.1 shows the range of novel phenotypes
occurring at a frequency above 1/10,000. In other words, which novel phenotypes
are most easily accessible from the original stripe phenotype and how many mu-
tations, out of 10,000, allow access to that phenotype. Here we chose to schemat-
ically show novel phenotypes as patterns in a Drosophila embryo.

It is clear that some of the mechanisms have a much higher chance of evolving
a novel phenotype than others. For example, mutations to Classical (top) have
10 times higher chance of producing a novel phenotype than mutations to Over-
lapping Domains (bottom). Additionally, the actual novel phenotypes that can be
easily reached are different for each of the mechanisms. While all mechanisms
are able to access Left and Right-handed thresholds easily, the access to Gradi-
ent, Double Peak, and Multiple Stripes is mechanism-dependent. Indeed, Frozen
Oscillator is the only mechanism from with Multiple Stripes is easily accessed
while Incoherent feed-forward and Mutual Inhibition are the two mechanisms
from which the Cradient is most likely to be reached (Fig. 3.1).
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Figure 3.1: Differences in evolvability: schematics of novel phenotypes. Evolutionary
potential is shown as the number of mutations out of 10,000 that permit access to distinct
novel phenotypes. Values correspond to 50% mutation strength. Phenotypes accessible
with a frequency below 1/10,000 (0.01% chance to be accessed through mutation) are not
considered.

Novel patterns can be classified as major or minor according to how common they
are, i.e. their accessibility by random mutation (see classification Fig. 3.2A). We
remark that major patterns –Left and Right-handed thresholds– are highly acces-
sible from all mechanisms, whereas minor patterns are more restricted to specific
mechanisms (also observed in later results Fig. 3.2B). Understanding the stripe-
forming process of each mechanism can offer an intuitive explanation of these
differences in accessibility. Indeed, the stripe phenotype is created through the
establishment of a left and a right expression boundary, being the superposition of
these two patterns. Any mutation that disrupts the establishment of one boundary
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leads to the complementary phenotype. This explains why the major patterns of
right and left-handed thresholds are easily accessible, as they constitute a func-
tional loss of one of the two modules. By contrast, a single mutation that simulta-
neously disrupts the establishment of both boundaries, leading for example to the
gradient phenotype, is less likely to occur.

3.1.2 Evolvability profiles obtained as mutation strength is var-
ied

Next, we explored how the evolvability of each mechanism changes as the muta-
tion strength is varied. For that, we repeat the previous analysis as the mutation
strength ranges from ±1% to ±99%. Figure 3.2 shows how evolvability varies as
the intensity of the mutational environment increases. For each mechanism, the
black line depicts the whole evolvability profile, i.e. the likelihood of a genotype
to drift into any novel phenotype. Evolvability is then subdivided into the seven
colour-coded novel categories (Fig. 3.2A). The specific fractions of novel pheno-
types appear in stacked area charts.

The six mechanisms clearly have different evolvability profiles. For all mecha-
nisms, the percentage of novel phenotypes initially increases as the mutational
strength is raised. However, beyond a mutational strength of 20%, two mech-
anisms start to decrease again, Incoherent feed-forward and Mutual Inhibition,
whereas other mechanisms continue a slower increase until saturating around 50%
(Classical and Bistable). We suggest that these differences can be considered a
reflection of the geometry of local phenotype space, i.e. the distance, shape and
extension of novel neutral spaces adjacent to the original mechanism.

To explore this issue, we use a toy model that simplifies the high dimensional ge-
ometries of neutral spaces (holding genotypes with up to 9 gene-interactions and
thus 9 distinct dimensions in genotype space) into simple 2D cartoons (Fig. 3.3).
In this simplified 2D space, evolvability at a particular mutation strength would
correspond to the intersection between the perturbed –enlarged– mechanism and
the novel neutral space. Intuitively, as mutation strength increases, we further ex-
plore the adjacent novel neutral space. In this 2D hypothetical space, we propose
four distinct geometries for adjacent neutral spaces. They consist on four possible
simple shapes represented by cartoons. As illustrated in Figure 3.3, the four dis-
tinct geometries can cause (a) a continuous increase in evolvability (b) an increase
followed by a stabilization (c) an increase followed by a decrease (d) an increase
then a sudden drop. The difference between a decrease or a drop depends on how
smooth or sudden are changes in the geometry of the novel space.
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Figure 3.3: Impact of the geometry of adjacent neutral spaces on evolvability. (A)
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For each mechanism, we separately measure the probability to access each novel
phenotype as mutation strength increases (Fig. 3.3). According to the profiles ob-
tained, we can allocate distinct geometries to each novel neutral space. For exam-
ple, we observe an ‘increase and drop’in the evolvability profile of Right-handed
threshold pattern for Incoherent feed-forward mechanism. Particularly, this pro-
file is the one that most influences the global evolvability profile –all patterns
considered– observed for Incoherent feed-forward mechanism (Fig. 3.2B). Like-
wise, the slow increase -from 50% mutation strength on- in the global evolvability
profile of Frozen Oscillator (Fig. 3.2B) can be explained by the individual Left-
handed threshold profile. In this manner, certain adjacent geometries –marked
with a small cartoon– have a greater impact on the global evolvability profiles of
Figure 3.2B. Although this type of toy model has strong limitations, it can help us
acquire some intuition on the impact of the geometry of adjacent neutral spaces
on evolvability.

3.1.3 Explaining the differences in evolvability by mechanism

Here we aim at understanding why minor patterns are easier to access from spe-
cific mechanisms. For example, the modular design of Frozen Oscillator explains
why it is the mechanism from which the Multiple stripes pattern is most readily
accessible. Indeed, Frozen Oscillator consists of two modules: the negative feed-
back loop formed by the green and blue genes (Fig. 0.13) forms an oscillator that
is represented by the red gene acting to freeze these oscillations. A stripe corre-
sponds to a single frozen oscillation. Hence, mutations modifying the frequency
of oscillations can produce more than a single oscillation and therefore lead to a
periodic patterns such as multiple stripes.

Likewise, Incoherent Feed-Forward and Mutual Inhibition patterns easily access
the Gradient phenotype. This means that single mutations on those mechanisms
are able to completely disrupt the establishment of both boundaries of the stripe,
suggesting that the stripe is formed in an integrated and non-modular way.

In brief, in these first part of the results we have observed that, consistent with
our hypothesis on a mechanism-based view, the likelihood of accessing distinct
innovations (i.e. the evolvability) varies for each mechanism. Furthermore, we
provide intuitive understanding of why particular phenotypic innovations are more
probable from certain mechanisms.

60



3.1.4 Oscillatory phenotypes
The relation between oscillatory phenotypes and stable patterns is an interest-
ing question, as the oscillatory behaviour is of interest in several developmental
stages, such as somitogenesis, which produces a spatial pattern as a result of a
temporal oscillation. Indeed, later on, some of the examples of phenotypic neigh-
bourhoods (Fig. 3.9) will show that it is possible to transition in and out of oscil-
latory regions.

We explore the capacity of distinct mechanisms to access non-stable patterns
(Fig. 3.4). For that, we classify the phenotypic outcomes into four classes -
innovation, phenotypic maintenance, null phenotype and oscillatory phenotypes-
that sum 100% of the possible outcomes. Again, we consider the whole range
of mutation strengths and monitor how each of the four phenotypic outcomes
evolves as the mutation strength increases. We observe that mechanisms not only
differ in their evolvability for stable patterns but also in their capacity to achieve
non-stable patterns. Of these, Overlapping Domains has the highest capacity to
achieve oscillatory phenotypes.

3.1.5 Influence of the model formalism on the results
In order to strengthen the results obtained, we aim at showing that the former con-
clusions do not depend on the particularities of our model. Indeed, an important
question in any theoretical study is to what extent the main conclusions depend on
the assumptions of the model. Next we show that the results obtained are consis-
tent when we vary some of the assumptions of the model, such as the regulatory
function or the size of the field of cells.

For each change on the model, we re-built a complete atlas (Fig. 3.5B-D) and
obtained evolvability profiles for each mechanism (Fig. 3.6B-D) to further com-
pare them to the original results (Fig. 3.5A-Fig. 3.6A). Precisely, these changes
concern:
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Influence of the size of the field of cells

We change the number of cells in the tissue from 32 to 64 cells. The complex-
ity atlas and the evolvability profiles obtained under this assumption (Fig. 3.5B-
Fig. 3.6B) show only minor changes with respect to the original result.

Influence of diffusion

We switched diffusion off for all genes’ products. Only one of the mechanisms
is significantly affected: the core circuit of Overlapping Domains is not able to
form a stripe. Nevertheless, additional links onto the core circuit can compensate
for the lack of diffusion, as seen in the complexity atlas from Figure 3.5C. Geno-
types of higher complexity than the 4-link level (1,2,3 in Figure 3.5C) are a subset
of the original genotypes working under the dynamics of Overlapping Domains
mechanism. However, as the 4-link core circuit does not form a stripe in the ab-
sence of diffusion, we consider that Overlapping Domains does not operate as a
valid mechanism when diffusion is switched off. Therefore, we include the results
for that mechanism (Fig. 3.6C) under a shaded mask, and we will not use them
for comparison. Among the other mechanisms, we remark that Frozen Oscillator
and Bistable need diffusion to access minor patterns Multiple Stripes and Double
peak.

Influence of the regulatory function

We employed the Sigmoidal regulatory function instead of the Michaelis-Menten
one. The total number of mechanisms is now 5 (Fig. 3.5D). While Mutual In-
hibition and Incoherent feed-forward fuse into Incoherent feed-forward type 1,
Overlapping Domains mechanism is able to create a stripe with one regulatory
interaction less, becoming Incoherent feed-forward 3 (under the nomenclature of
U.Alon [Alon, 2006, ?]). Hence, we remark that the Sigmoidal function facilitates
the development of the stripe phenotype using circuits of lower complexity. Ad-
ditionally, the Incoherent feed-forward mechanism is not able to achieve the Gra-
dient phenotype under mutation (Fig. 3.6D). This could be a direct effect of the
higher steepness of the Sigmoidal regulatory function compared to the Michaelis-
Menten one, translating into the difficulty of reproducing the smoothness of the
input gradient.

In a nutshell, under distinct assumptions, the key original results are conserved:
the evolvability of a circuit varies according to its underlying mechanism, as dis-
tinct mechanisms show specific likelihoods to access distinct novel phenotypes.
Moreover, we remark the homogeneity of the evolvability profiles in spite of the
variety of theses assumptions.
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Figure 3.6: Evolvability measured under distinct particularities of the model. La-
belling corresponds to that of Fig. 3.5. Results sampling 500.000 parameter sets instead
of the 106 sampled in Fig. 3.2.
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3.2 Exploring phenotypic transitions

3.2.1 Depicting the phenotypic neighbourhood from a given
genotype: phenotype-transition diagrams

To illustrate how the original phenotype is transformed into a novel phenotype,
we use phenotype-transition diagrams to visualize transitions between patterns.
The objective of these phenotype-transitions diagrams is to exhaustively depict
the phenotypic neighbourhood from a given genotype and thus explore the nature
of transitions between phenotypes. Hence, for this part of the study, we switch
from a mechanisms perspective to a single-genotype perspective.

Because individual genotypes reside in a high-dimensional genotype space (i.e the
number of gene interactions determines the dimension), we construct all possible
2D sections through this genotype space. A section is created by choosing two
gene interactions and allowing their value to vary while the rest of interactions are
fixed. For each couple of interaction values, we assess the resulting phenotype
and colour-code the corresponding ‘pixel’accordingly. Because the value of inter-
actions is varied at very small intervals, these diagrams resemble high-resolution
images made of coloured pixels. As such, the phenotypic neighbourhood from
a given genotype is composed of neutral spaces depicted as continuous coloured
zones.

As an illustrative example, we include all phenotype-transition diagrams for an
original genotype producing the Stripe phenotype with underlying Bistable mech-
anism (Fig. 3.7). The original genotype (pink box) is projected into six distinct
sections that help us visualize the surrounding phenotypic neighbourhood.

First, by predicting the phenotypic outcome of a circuit subject to perturbation,
these diagrams point out which specific gene interaction needs to be mutated, and
with which intensity, in order for the circuit to produce a given novel phenotype.
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the nearest novel phenotype provides a measure of the mutation strength needed to switch
phenotype.

Second, these diagrams make it clear and understandable why for certain gene
circuits, many parameter changes lead to novel phenotypes (Fig. 3.8), whereas for
others, very few parameter changes are innovative (Fig. 3.9). Indeed, even within
a single mechanism, phenotypic neighbourhoods can be highly heterogeneous.
We studied two genotypes with underlying Mutual Inhibition mechanism, which
topologies are at a Hamming Distance 3 (i.e. three interactions away) (Fig. 3.8-
3.9). These genotypes present very distinct neighbourhoods: while the first geno-
type can access four distinct patterns (Fig. 3.8), the second can only transition to
a single novel phenotype (Fig. 3.9). This is an expected result: as we pointed out
in the introduction, distances in genotype space lead to the divergence in compo-
sition of phenotypic neighbourhoods. We expect this heterogeneity to be a feature
of all mechanisms, as their neutral spaces are large -large Hamming Distances
(Fig. 2.1)- and can thus extend throughout genotype space, providing mutational
access to a diversity of novel phenotypes from different genotypes.

If we could simultaneously visualize all phenotypic neighbourhoods around a
given mechanism, we would see that the proportions of coloured zones representa-
tive of novel neutral spaces would correspond to the distinct proportions observed
within the evolvability profiles shown in Figure 3.2. That is why, as a case study,
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Figure 3.10 shows two characteristic sections from genotypes belonging to Frozen
Oscillator and Bistable mechanisms.

3.2.2 Phenotypic transitions are continuous
As we already mentioned, phenotype-transition diagrams point out how given mu-
tations lead to specific phenotypes. However, how does the drifting between phe-
notypes occur? We observe that a transition from a phenotype to another does
not require a transient loss of phenotype. In Figure 3.11, we illustrate the conti-
nuity of phenotypic transitions by smoothly changing particular interactions in a
genotype. Some of the transitions reveal the role of particular gene interactions in
pattern formation. For example, the strength of interaction P6 controls the shift of
the stripe’s right boundary (Fig. 3.11, frames 2-7), whereas the strength of both P1

and P5 interactions controls the shift of the stripe’s left boundary (Fig. 3.11). We
observe that P5 allows a switch from the Stripe phenotype to Left-handed thresh-
old and Multiple stripes patterns, whereas P6 allows access to the Right-handed
threshold phenotype and then to the Dip phenotype. These particular interactions,
which can be tuned to access more than one novel phenotype, behave as sensitive
interactions.

Although a direct equivalent of these conclusions cannot (as yet) be supported
from studies of real species, we do mention a related example: a well-studied
stripe domain (giant) can indeed shift, through mutation, from a Stripe to a Right-
handed threshold (Fig. 3.12). During early embryogenesis, Drosophila’s gap gene
giant (gt) protein is expressed in two broad anterior and posterior regions. These
two domains of gt expression can be treated as two separate entities as they are
under the separate control of different maternal morphogens: while Bicoid defines
the anterior gt domain, Caudal activates the posterior gt domain. We thus focus
on the generation of the gt posterior domain under control of maternal morphogen
Caudal. In a series of gap gene mutants, Kraut and Levine [Kraut and Levine,
1991] observed how the phenotype could shift from a Stripe to a Right-handed
threshold. Particularly, the position of the left boundary of the stripe slides to
distinct positions in different mutants, until it completely disappears in the Torso
mutant (Fig. 3.12-[5]). It is important to keep in mind that this type of mutations
are distinct from our model formalism in which mutations are done in particular
gene-gene interactions at fixed mutations strengths. Indeed, this series of pheno-
types is not from an allelic series of a given mutation, neither do we know the
regulatory mechanism of gt in detail.
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Figure 3.11: Continuous phenotypic transitions. (A) Various phenotypic-diagrams
from the Frozen Oscillator genotype of figure 3.10 (B) Evaluating the resulting phenotype
while varying interactions 6, 1 and 5 shows transitions between phenotypes are contin-
uous. Particularly, frames 2 to 7 suggest interaction 6 governs the position of the right
boundary of the stripe (black arrows). Frames 3’ to 5’ and b to f suggest both interactions
1 and 5 control the position of the stripe’s left boundary (black arrows)

3.2.3 Phenotypic hubs

Phenotype-transition diagrams reveal the richness of phenotypes around specific
regions of genotype space –such as the previously shown neighbourhood in Fig-
ure 3.8. Indeed, certain genotypes can access a high diversity of innovations when
different gene interactions are mutated (Fig. 3.13).

Here we propose an alternative measure of evolvability: instead of measuring the
likelihood to transition into novel phenotypes like we have done in Figure 3.2,
we now chose to measure evolvability as the number of accessible distinct phe-
notypes per genotype: phenotypic diversity. We observe that its spectrum is quite
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Figure 3.12: Gene expression patterns of gap gene giant in several Drosophila mu-
tants. (A) Gene expression patterns of giant at cleavage cycle 14. Data obtained from
Kraut and Levine [Kraut and Levine, 1991]. Anterior end to the left and dorsal side up.
Red arrows indicate the shifts in the stripe boundaries of giant posterior domain (stripe
number 4). 1) Krüppel mutant. Stripe 4 expands anteriorly to mid-embryo. 2) Wild-type
expression. 3) Hunchback mutant. Stripe 4 expands posteriorly. 4) Tailless mutant. Stripe
4 retracts only partially from the posterior tip, it expands more posteriorly compared to
Hunchback mutant. 5) Embryo lacking maternal product Torso. Posterior expansion, ex-
tending all the way to posterior pole, showing a left-handed threshold (note that the Cau-
dal gradient is inverted compared to the one in our model (Fig. 0.11)). (B) Some of the
phenotypic changes discussed in the paper are at least biologically plausible (Fig. 3.11).

wide (0-6), as certain genotypes can access no novel phenotype, whereas others
connect the stripe phenotype to more than one novel phenotype (Fig. 3.14). We
refer to the genotypes that can reach a high diversity of distinct innovations as phe-
notypic hubs (phenotypic diversity ≥ 3). In this alternative measure, mechanisms
show distinct proportions of phenotypic hubs, with certain mechanisms showing
a sevenfold higher proportion of hubs than others (Frozen Oscillator compared to
Classical).
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Figure 3.13: Phenotypic diversity accessible from a genotype: the existence of phe-
notypic hubs. From an original genotype producing the stripe phenotype with underlying
Mutual Inhibition mechanism and interaction strengthsP1-P7={0.35; 5.84; -5.35; -0.08;
-0.48; 0.33; -0.25}, 4 novel phenotypes are accessible. Single mutations lead to Gra-
dient and peak(P ∗5 =-0.15), Left-handed threshold (P ∗6 =0.9),Gradient (P ∗3 =-3) and Right-
handed threshold (P ∗7 =-0.05).
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Figure 3.14: Distribution of phenotypic diversity per mechanism. Proportion of geno-
types with different phenotypic diversity within their neighbourhoods. Phenotypic diver-
sity measures the number of distinct phenotypes accessible in the neighbourhood of a
genotype for the whole range of mutation strengths. Percentages over red bars indicate
the proportion of genotypes behaving as phenotypic hubs (phenotypic diversity ≥3). The
existence of phenotypic hubs is a characteristic of all mechanisms but their proportion
varies.
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Chapter 4

DISCUSSION

To summarize, we measured the evolvability of different gene circuits that use
different dynamical mechanisms to achieve the same function: to convert a mor-
phogen gradient into a single stripe of gene expression. For each mechanism, we
explored the landscape of accessible novel phenotypes and found that the evolu-
tionary potential clearly varies between alternative mechanisms.

Many previous studies emphasized that the majority of successful genotypes are
grouped together into a large and connected neutral region of genotype space
(Fig. 1.1). Our mechanisms-based view makes an important distinction. By using
a biologically realistic model, with continuous variables, parameters, and regula-
tory functions, our neutral region within genotype space is broken up into sep-
arate islands, which represent distinct dynamical mechanisms (Fig. 2.1). As a
consequence, genotypes can neutrally drift only within the region of their dynam-
ical mechanism and therefore access only the phenotypes adjacent to this region
(Fig. 4.1). In other words, neutral drift, which is considered to have a key role in
evolution, is strongly restricted by genotype’s dynamics.

A distinctive feature of the current study stands out in the general context of
genotype-phenotype studies. Because our emphasis is on evolution of novel phe-
notypes, we chose to make our phenotypic categories represent qualitatively dis-
tinct patterns. A small qualitative shift in an expression pattern (e.g. 2% wider
stripe) could theoretically have functional (selectable) consequences, but we do
not consider it a novel phenotype for this study. This choice differs from the
approaches taken in previous studies. For example, in studies of the relationship
between RNA sequence and secondary structure, the phenotype space for an RNA
molecule of N bases is considered to have approximately 1.8N distinct phenotypes
citeHuynen1996, even though many of these are only tiny alterations in secondary
structure. This approach has led to the finding of perpetual innovation: the con-
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cept that the number of accessible novel structures is roughly constant irrespective
of the molecule’s position in its neutral space [Huynen, 1996]. Hence, in contrast
to the vastness of RNA phenotype space, our definition of phenotypes reduces the
diversity of the phenotype space itself and therefore impacts on the measure of
evolvability. We consider this definition to be more appropriate for the question
of phenotypic novelty.

From the broad perspective of developmental biology, the concept of evolvability
focuses on the generation of novel phenotypes (i.e. a potential), whereas the con-
cept of developmental constraints refers to restrictions on the production of certain
phenotypes (i.e. a limitation). Independent of the context, both evolvability and
developmental constraints describe the available novelties. Our results show that
the dynamics of gene circuits itself constitutes a developmental constraint, as ini-
tially envisioned by Maynard Smith in the 1980s who defined the constraints as the
‘biases on the production of variant phenotypes...caused by the structure, charac-
ter, composition, or dynamics of the developmental system’[Maynard Smith et al.,
1985].
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Figure 4.1: Mechanism-based view on evolvability. (A) Distinct mechanisms to
achieve a common phenotype have access to distinct phenotypes: Gradient phenotype
appears exclusively accessible from Mechanism A– Bistable or Overlapping Domains–as
is Double Peak from Mechanism B – Incoherent Feed-Forward or Mutual Inhibition. (B)
Main features of genotype space: existence of phenotypic hubs (1), ubiquitously acces-
sible phenotypes (2) and continuous phenotypic transitions (3). Four phenotypic neigh-
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found close to the edge of the neutral space (panels a,b and d) and completely robust –
internal – genotypes (panel c).
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Chapter 5

INTRODUCTION

The genome encodes a variety of different biological functions through the use of
gene regulatory circuits. For example, the transcriptome of a cell can be pictured
as a large circuit of interacting genes responsible for the many functions a cell
performs. From a wider perspective, gene circuits can drive multiple functions
at distinct levels: from differentiation of single cells into distinct cell types to
the formation of a variety of multi-cellular patterns and organs. Which are the
design properties of circuits with the capability to perform distinct functions –i.e.
multi-functional circuits?

5.1 Structural modularity

In order to understand their capability to perform distinct functions, it has been
proposed that biological circuits are modular, i.e. composed of distinct modules
each performing a particular biological process. Although a module is essen-
tially defined by its function –one module/one function– [Kholodenko et al., 2002,
Eisen et al., 1998, Segal et al., 2003, Ten Tusscher and Hogeweg, 2011, Irons and
Monk, 2007, Alexander et al., 2009], it is most frequently detected according to
its structure. Indeed, from the many meanings of modularity, the most popular
is structural modularity. Structural –or architectural– modularity considers mod-
ules as highly interconnected sets of genes. Structural modules are composed of
genes that share more regulatory interactions among them than with genes out-
side the module [Hartwell et al., 1999, Wagner et al., 2007]. In this sense, struc-
tural modularity allows a large circuit to be decomposed into separate groups of
genes –each group performing a distinct function. This type of arrangement is
believed to confer several advantages such as high robustness and evolvability:
the change or failure of one function does not necessarily lead to the malfunc-
tioning of the rest, and each module/function can thus evolve relatively indepen-
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dently [Wagner and Altenberg, 1996, Raff and Conway Morris, 1996, Kirschner
and Gerhart, 1998a, Brandon, 1999, von Dassow and Munro, 1999, Raff and Sly,
2000, Schlosser and Wagner, 2004]. In addition to these evolutionary advantages,
structural modularity is also popular due to its reductionist nature –decomposing
a large circuit into quasi-independent structures, and separably associating them
to distinct biological functions, provides an intuitive understanding on how each
biological process occurs. Because of the advantages it confers –high robustness
and evolvability, intuitive understanding on independent biological processes –
structural modularity is proposed as a suitable arrangement for circuits to per-
form multiple functions [Wagner and Altenberg, 1996, Raff and Conway Morris,
1996, Hartwell et al., 1999, Wagner et al., 2001, Wagner et al., 2007, Gerhart and
Kirschner, 2007, Shubin et al., 2009, Espinosa-Soto and Wagner, 2010, Davidson,
2010]. Next we introduce two distinct classes of studies that promote structural
modularity through distinct modelling criteria.

5.1.1 Structural modularity arises as large circuits adapt to
perform multiple functions

A first class of studies evolves large circuits to achieve multiple goals or tasks.
When large circuits are evolved to perform multiple biological functions, they
tend to allocate distinct interconnected sets of genes –or modules- to each function
[Di Ferdinando et al., 2001, Kashtan and Alon, 2005, Kashtan et al., 2009, Clune
et al., 2013, Ellefsen et al., 2015, Espinosa-Soto and Wagner, 2010, Ten Tusscher
and Hogeweg, 2011, Solé and Valverde, 2008].

In these studies, the tasks –or biological functions– that circuits must achieve can
be very distinct. For example, a neuronal circuit is asked to visually recognize
whether an object appears in the left and right side of the retina (Fig. 5.1A). A
particular object, or image, is divided into two distinct groups of pixels for the left
and right sides of the image. The left and right pixels respectively feed into two
separate groups of nodes in the circuit. As the neural circuit is trained to recog-
nize a number of objects, i.e. input patterns, it evolves into the following structure:
the large circuit separates into two modules, each detecting a different side of the
retina. Likewise, other studies consider similar neuronal circuits able to learn dis-
tinct independent tasks [Di Ferdinando et al., 2001, Clune et al., 2013, Ellefsen
et al., 2015]. In this case, in order to perform task A while retaining the ability
to perform task B, the circuit evolves to allocate a different set of neurons to each
of the tasks (Fig. 5.1B). Both cases consider circuits that are bi-functional as they
can simultaneously perform two distinct functions: monitoring both sides of the
retina or achieving two distinct tasks.
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Figure 5.1: Structural modularity. (A) and (B) display boolean neuronal circuits
evolved to solve distinct modular problems. Each panel is adapted from [Clune et al.,
2013] and [Ellefsen et al., 2015] respectively. (C) Structural modularity observed under
modularly varying environments. Adapted from [Kashtan et al., 2009]. (D) A modular
network is illustrated by means of the human proteome, i.e. a web of interactions where
nodes are proteins and links indicate their physical (protein-protein) interaction. Gene du-
plication events can explain the structural modularity observed in such cellular networks.
Adapted from [Solé and Valverde, 2008]

A similar approach reveals that modularity arises when circuits adapt under chang-
ing environments [Kashtan and Alon, 2005, Kashtan et al., 2009] (Fig. 5.1C).
Large circuits are evolved to adapt to ‘modularily varying goals’–MVG, i.e. the
environment periodically switches between two distinct objective functions. As
goals switch periodically, the circuit is left to modify its interactions –mutate– in
order to adapt between them. For example, a first goal is to perform a boolean
calculation goal 1: (X XOR Y) AND (Z XOR W) while a second goal consists
in a different computation goal 2: (X XOR Y) OR (Z XOR W). Both goals can
be divided into sub-goals –(X XOR Y) and (Z XOR W)– that are shared be-
tween both tasks. Intuitively, the circuit evolves to form two distinct structural
modules for each of the sub-goals. Indeed, structural modularity is the most effi-
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cient arrangement in order to perform periodically changing tasks, as the circuit
can switch between functions solely by changing a few interactions. Any other
more complex wiring design would adapt slower between goals –more mutations
needed. Although this type of circuit shows structural modularity it is not multi-
functional. Unlike the previous neuronal circuits, this circuit cannot perform two
functions simultaneously. Instead, as the circuit constantly modifies its interac-
tions, two distinct effective circuits perform each of the two functions.

As we analyse the previous models, two critical issues arise. First, in all these
cases structural modularity is clearly promoted/forced due to the decomposable
nature of the functions to perform. Every problem to solve is decomposable into
distinct sub-problems: two sides of the retina, two independent tasks, two sub-
goals within boolean calculations. Hence, the resulting structural modularity ap-
pears as rather predictable. Would a circuit separate into distinct structural mod-
ules in a randomly varying environment? Indeed, as the same authors replace an
MVG environment by a freely changing one where random goals, i.e. goals non
decomposable into modular sub-goals, are changed periodically, complex wired
solutions appear with no clear separable modules [Kashtan and Alon, 2005, Kash-
tan et al., 2009].

The second critical issue in these studies is circuit size (Fig. 5.1A-C). If a circuit
is large enough to contain two non-overlapping modules, then it can split into two
mono-functional circuits. Would instead a small circuit be able to separate into
distinct modular components? Hence, it is not clear how a more limited amount
of resources –fewer genes or neurons- would impact on structural modularity.

5.1.2 Structural modularity arises as specific ‘circuit building
rules’are considered

A second class of studies aims at explaining the structural modularity observed
in real biological circuits. These studies promote structural modularity impos-
ing criteria such as neural connection costs or gene duplication events [Solé and
Valverde, 2008, Ellefsen et al., 2015] (Fig. 5.1D). These criteria impact on the
architecture of the circuit. For example, the rules on gene duplication events –as
a gene (node) is duplicated, the new node inherits all original interactions with
the rest of nodes– impose non-random patterns of connections that favour the for-
mation of highly interconnected structures –structural modules. Interestingly, the
authors believe this type of model can explain the structural modularity observed
in cellular networks such as the human proteome.
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5.2 Revisiting modularity
In all studies previously mentioned, there exists a bias towards picturing networks
as composed of quasi-autonomous structures, i.e. structural modules. Struc-
tural modularity is promoted through distinct model formalisms –either imposing
the solving of a modular problem, or considering distinct rules on gene inter-
actions such as connection costs or gene duplication events. In contrast, non-
modular solutions (i.e. multi-functional circuits that perform two functions in
a non-decomposable manner) are rarely considered. However, integrated com-
plex solutions have been proven to be as efficient in a few approaches [Bullinaria,
2007, Tosh and McNally, 2015, Ellefsen et al., 2015].

A particular observation in developmental an evolutionary biology question the
separability of circuits into distinct functional groups of genes. Indeed, during
the development of an individual organism, pleiotropy is the norm: the same sets
of genes are essential for the morphogenesis of many different organs [Carroll
et al., 2013]. This is exemplified by mutations in a single gene having phenotypic
effects in distinct organs. Not only the same genes but also often the same en-
tire signalling pathway plays multiple patterning roles. As such, just a handful
of cell-cell signalling pathways (Hedgehog (Hh), wingless related (Wnt), trans-
forming growth factor-B (TGF-B), receptor-tyrosine kinase (RTK), Notch, Janus
kinase signal transducer and activator of transcription (JAK/STAT) and nuclear
hormone pathways) are used repeatedly throughout development to drive pattern-
ing of many different organs [Pires-daSilva and Sommer, 2003]. In other words,
the same sets of genes contribute to a variety of biological functions, and therefore
are shared between functions. Hence, the phenomenon of pleiotropy challenges
that of structural modularity as it suggest that the overlapping of modules within
circuits may be common.

5.3 Search for compact circuits
In order to understand the multi-functional properties of circuits two contrasting
views arise. On one hand, structural modularity suggests that large circuits can
be broken up into distinct structural modules each performing a distinct function.
On the other hand, observations such as pleitropy suggest that multiple functions
might be encoded into the same small collection of genes.

We chose to explore this alternative scenario and search for small circuits that have
the capability to perform multiple functions. Precisely, we explore how two func-
tions can be encoded into the minimal collection of genes. This corresponds to
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Figure 5.2: Compact encoding of multi-functional circuits. (A) In large multi-
functional circuits, each function can be allocated an independent module [Di Ferdinando
et al., 2001, Kashtan and Alon, 2005, Kashtan et al., 2009, Ten Tusscher and Hogeweg,
2011, Clune et al., 2013, Ellefsen et al., 2015]. (B, C) As circuits decrease in size there is a
progressive overlap of functional modules. (B) Pink arrows represent the selective regula-
tion of numerous specific genes in a context dependent manner. This selective regulation
has been observed within single cells that adapt to different cell cycle states or stress
conditions [Luscombe et al., 2004, Bandyopadhyay et al., 2010]. (C) Could a minimal
circuit achieve multiple functions using the same collection of interacting genes? Genes
would interact identically in distinct contexts but the production rate of a single gene
(pink arrow) changes in a context-specific manner, allowing a function-switch. These
small multi-functional circuit confer strong information compression.

the strongest case of information compression –more functions encoded by fewer
genes. The focus of this part of the thesis is thus to search for compact circuits
that compress two different functions into the smallest collection of interacting
genes; in other words, the search for minimal multi-functional circuits (Fig. 5.2).

5.4 Defining a multi-functional circuit

n order to precisely define a multi-functional circuit we need to make the following
distinction. We have reviewed in the introduction a particular motif –the AC/DC
circuit– able to perform two distinct functions –a switch-like behaviour and an os-
cillatory one– depending on the strengths of gene interactions [Panovska-Griffiths
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et al., 2013] (Fig. 0.8). Indeed, adjusting the strength of specific repressive interac-
tions within the circuit causes a switch from one function to another. The AC/DC
circuit describes a case of a particular topology achieving multiple functions for
distinct parameter sets. While a given topology can display multiple behaviours
or functions, mutations are necessary to evolve between the two distinct functions.
We do not consider this type of circuit as multi-functional. Instead, we define a
multi-functional circuit as a set of genes interacting with a fixed set of parame-
ters –interaction strengths– able to achieve multiple functions. A multi-functional
circuit can be assimilated to single signalling pathway, where genes that interact
in the same manner are able to perform distinct patterning functions in a single
embryo.

We take inspiration from the Notch-Delta signalling pathway, which exhibits two
mutually exclusive, and qualitatively distinct behaviours: lateral induction or lat-
eral inhibition. Lateral induction is the process by which a cell signals to its
neighbours to adopt the same gene expression state. It causes a dynamic, pro-
gressive spreading of this state across the tissue, finally resulting in continuous
domains of cells expressing the same genes. In contrast, during lateral inhibition,
a cell inhibits its neighbours from adopting its own fate, leading to a ‘salt and
pepper’pattern of cells in alternating differentiation states. Within a single organ-
ism, Notch can drive induction in one tissue (e.g. patches of pro-sensory cells in
the chick inner ear [Formosa-Jordan et al., 2012]) and inhibition in another tissue
(e.g. the mosaic of neurogenic versus non-neurogenic cells in the chick’s retina
[Petrovic et al., 2014, Daudet and Lewis, 2005]). Many studies have modelled the
molecular details of how Notch and Delta interact in real systems [Collier et al.,
1996, de Celis and Bray, 1997, Panin et al., 1997, Lewis, 1996, Huppert et al.,
1997, Horikawa et al., 2006, Formosa-Jordan and Ibanes, 2009]. By contrast,
here we use this cell-signalling paradigm as the inspiration for a purely concep-
tual model, to answer a broader question on the possible design features of multi-
functional circuits.

We find that indeed bi-functional circuits exist, which can switch between two
qualitatively different patterning functions without any changes to their topology
or regulatory parameters, but simply by changing the basal expression level of one
gene in the circuit (which could be controlled by a tissue-specific transcription
factor). Furthermore, our analysis uncovers two types of circuit designs: firstly,
those which are composed in an intuitive way from two simpler mono-functional
circuits, and secondly, emergent designs which cannot be easily decomposed into
their component sub-circuits. These findings illustrate the potential complexity
and efficiency regarding how phenotypic information is encoded in the genome.
Importantly, both genes in these circuits are essential for both functions, and this
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has important consequences for our understanding of modularity.
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Chapter 6

METHODS

6.1 Choice of the model
We aim at exploring the design features of a minimal circuit with the capability
to perform distinct patterning functions. The search for multi-functional circuits
has been explored from a distinct perspective: that of multi-stable boolean cir-
cuit [Martin and Wagner, 2008, Payne and Wagner, 2013] (Fig. 6.1). Indeed,
certain boolean circuits can show multi-stability, which is used as a proxy for
multi-functionality. As previously described, a given boolean circuit can achieve
a particular phenotype, or function, that corresponds to a binary vector describ-
ing the transcription state of a groups of genes –either transcribed on/1 or not
off/0. Martin et al. [Martin and Wagner, 2008] have shown that, as a boolean cir-
cuit is initialized from different initial states, it is able to reach distinct functions,
i.e. single-cell differentiation states. Thus, each of the attractors of the system
corresponds to a particular abstract biological function (Fig. 6.1). Instead, we
chose a model of tissue patterning where the functions we explore are specific bi-
ological patterning functions. Although there exist similarities between the more
abstract boolean model and our model, we investigate innovative aspects such as
the formation of real and concrete multi-cellular patterns and, more importantly,
the modular properties of multi-functional circuits.
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Figure 6.1: Multi-stable boolean circuits. Boolean circuit where each node behaves as
a logic gate (see Fig. 0.2). Different initial conditions –inputs, lead to distinct attractors –
outputs. Each attractor can represent a distinct biological function, where a given function
corresponds to a particular single cell differentiation state. Adapted from [Payne and
Wagner, 2013]

6.2 The gene regulatory model

6.2.1 Spatial model

To explore how paracrine-signalling leads to distinct patterns, we developed a
simple model of direct cell-cell communication (similar to [Salazar-Ciudad et al.,
2000, Plahte, 2001]) which considers both intra-cellular and inter-cellular gene
regulation in a one-dimensional spatial system comprising 33 cells (Fig. 6.2). To
search for minimal multi-functional circuits, we consider two-gene circuits with
only one gene (the black node in Figure 6.2A) able to regulate expression of either
gene in neighbouring cells.
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The molecular details that characterize paracrine-signalling are implicit within the
model. For example, an inter-cellular auto-inhibition of the signalling gene could
encapsulate distinct molecular regulatory steps in a real biological system: delta
binds to notch in a neighbouring cell, triggers cleavage of notch intra-cellular do-
main and inhibits its own expression.

Analogous to the model previously described in section 2.3, a circuit holds an
underlying topology and a specific set of parameters. Notice that in this part of
the thesis we have replaced the terminology of genotype for that of circuit. Here
the topology is composed of a 2x2 intra-cellular matrix Wintra that describes how
genes interact among them within the cell, and a 2x1 inter-cellular matrix Winter

specifying how the signalling black gene regulates genes in neighbouring cells.
Within those matrices, the values 1, -1 and 0 represent activation, repression and
no interaction, respectively.

A circuit holds a particular set of precisely 9 parameters: 6 for the strengths of
gene interactions wintra and winter, 2 to control gene-specific regulatory func-
tions (1 parameter α per gene), and 1 controlling the steepness of the regulatory
function β. In the process of parameter sampling (see section 7.1), parameters
were generated randomly within the following ranges: regulation [0:10] range for
activation and [-10:0] range for repression, α [-60;60] and β5, 10.

The model captures the spatiotemporal dynamics of gene patterning and is de-
scribed by:

∂gij
∂t

= χ[Φ[
2∑
l=1

wliintra glj + wliinter glj + +S + C]]− λgij + η(t)gij (6.1)

where gij is the concentration of the ith gene in the jth cell initially set to 0.1 for
every gene in every cell; φ is the sigmoidal regulatory function–see details 6.2.2;
wintra and winter are matrixes containing the strengths of gene-gene interactions;
we use two types of inputs kept constant throughout the simulation: S is the
central signal, or trigger, received by one of the genes in the central cell (set to
1) and C is the context signal received by one of the genes in all cells throughout
the tissue (set to 1 or 0 depending on the tissue-type); χ is the Heaviside function
to prevent negative gene product production rates; λ is the decay rate (set to 0.05)
and η(t) is a noise term, which adds uniformly distributed fluctuations (±1%)
to the concentration of every gene in every cell at every time step. Zero-flux
boundary conditions are used throughout this work.
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Figure 6.2: Defining a bi-functional circuit. (A) Gene expression is regulated through
intra-cellular and inter-cellular circuits. An homogeneous signal specific to the tissue
affects the production rate of one of the genes in all cells. Throughout the study, we
use a simplified representation of a circuit consisting of the central cell and one of its
neighbours. For simplicity, the inter-cellular circuit is only partially shown. (B) A multi-
functional circuits switches between two qualitatively distinct multicellular patterns ac-
cording to the tissue context it is embedded in. Analogous to biological processes such
as the progression of the morphogenetic furrow in Drosophila [Sato et al., 2013], lateral
induction leads to the propagation in time and space of a given gene expression state.
Instead, lateral inhibition describes processes such as neurogenesis, where a fine-grained
pattern of alternating cell fates is formed.
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6.2.2 Flexibility of the regulatory function

As previously shown in the introduction, the regulatory function describes how
genes respond to the various inputs they receive –integrated at the level of their
cis-regulatory regions. We use an innovative function φ that includes a parameter
– α— allowing for distinct regulatory logic. α controls the position of the steep-
est part of the sigmoidal curve and allows the effective logic of the integration
function to be adjusted (Fig. 6.3). Depending on the range of values, alpha con-
trols whether the gene responds to low or high levels of activation, i.e. whether
it acts like and AND gate or and OR gate. It also allows adjustment of whether
the gene shows a basal constitutive expression (in the absence of input values). In
this manner, each gene within the circuit can adopt a range of distinct regulatory
behaviours. This versatility is key to the results obtained.

6.3 Tissue specificity
Here we set out to identify a clear theoretical example in which two distinct pat-
terning functions are performed by a small circuit, without any changes to its
topology or modulation of regulatory parameters. As we have shown in the in-
troduction, a single topology can achieve distinct patterning functions by mod-
ulation of its regulatory parameters. Instead, we propose that the circuit is kept
unchanged. The change in function is triggered by the type of environment the cir-
cuit is embedded in (Fig. 6.2B). This way, as distinct patterning functions occur
in distinct tissues, we seek circuits able to switch function depending on which
tissue they are active in –provided by the context signal C. Tissue specificity is
provided by the minimal conceivable influence on the circuit –just altering the
basal expression level of one gene in the circuit –, which in a real embryo could
be controlled by a tissue-specific transcription factor such as a Hox protein. In-
deed, Hox proteins, are known to control cellular patterning in many contexts
including the segmental organization of the hindbrain [Narita and Rijli, 2009].

6.4 Objective functions: lateral induction and lat-
eral inhibition

Analogous to biological processes such as the progression of the morphogenetic
furrow in Drosophila [Sato et al., 2013], lateral induction leads to the propagation
in time and space of a given gene expression state. A circuit achieves induction
when it causes the progressive spread of a trigger received by the central cell of
the tissue.
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Figure 6.3: Versatility of the regulatory function. A regulatory function describes the
relationship between the total input into a gene and its output concentration. The regula-
tory function we use holds gene-specific parameters α that allow for distinct regulatory
logics. The value of α controls the position in the x-axis of the steepest part of the curve.
α ranges from 60 to -60 and discriminates between distinct regulatory logics. For a [-
60:0] range, a gene is constitutively expressed -if the gene does not receive input it is
still transcribed. When α belongs to [0:15] range, the regulatory logic is analogous to a
boolean OR gate: only a relatively small amount of input is necessary for the gene to be
expressed. Last, for a [15:60] range, the regulatory function is analogous to an AND gate:
large amounts of input are necessary for transcription.

Instead, lateral inhibition describes processes such as neurogenesis, where a fine-
grained pattern of alternating cell fates is formed. A circuit achieves inhibition
when it causes consecutive cells to be in alternating gene expression states. Hence,
an induction pattern is assessed dynamically throughout the simulation while an
inhibition pattern is assessed once the pattern has reached equilibrium.
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An induction pattern occurs when the central signal S expands through the tissue.
At specific time steps –every 50 time steps–, we measure the expansion of a gene
as the number of cells adjacent to the central cell for which the expression level is
high. During the simulation, the expansion level needs to increase at least 5 times
in order to prove a progressive spreading through the tissue. Finally, at equilib-
rium, the expansion level is equal to the total number of cells, i.e. all cells express
homogeneous high expression level for the gene (Fig. 6.2B).

An inhibition pattern occurs when a given gene sees its steady state expression
level alternate between high and low expression states at least 14 times. In a model
composed of 33 cells, a perfect ‘salt-and-pepper’pattern of single-cell wavelength
would require 16 single-cell alternations. Hence, we do not select only for perfect
patterns but accept imperfections where two consecutive cells are found in the
same state (Fig. 6.2B).

Besides these two particular patterns –induction and inhibition–, Notch-Delta or-
chestrates a variety of other processes, from the formation and sharpening of a
boundary –such as the establishment of vein thickness in the adult Drosophila
wing[Huppert et al., 1997, de Celis et al., 1997] or the formation of the dorso-
ventral boundary in Drosophila wing imaginal disc [de Celis and Bray, 1997,
Panin et al., 1997]–to the regulation of the mouse segmentation clock during somi-
togenesis [Dequéant et al., 2006, Horikawa et al., 2006]. However, we believe
these more complex patterns results from combinations of the two core induction
and inhibition behaviours. For example, boundary specification uses both inhibi-
tion and induction in a complex fashion to control for the thickness of the veins
[de Celis and Bray, 1997, Huppert et al., 1997] while during somitogenesis lateral
induction facilitates synchronized oscillations [Dequéant et al., 2006, Horikawa
et al., 2006]. Thus, from the many Notch-Delta driven patterns, we chose to study
induction and inhibition as they constitute basic building blocks to build a variety
of patterns and organs.
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Chapter 7

RESULTS

Our goal is to understand the design properties of bi-functional circuits – in par-
ticular, the degree to which they are composed of distinct sub-circuits, i.e. their
modularity. We follow a two-step process. First, we explore circuit space to de-
tect all circuits performing lateral inhibition or lateral induction (7.1). This search
is done in the absence of tissue-specific signals. As the switch between func-
tions is triggered by a change in the tissue environment, these circuits are thus
mono-functional. Second, we use the results obtained in this first search to find
bi-functional circuits (7.2). For that, we subject the initial pool of mono-functional
circuits to a different tissue environment and select those able to switch function,
i.e. bi-functional.

7.1 Mono-functional circuits
To identify mono-functional circuits able to perform induction or inhibition, we
performed an unbiased search through parameter space by enumerating all the
1,200 possible two-gene topologies and sampling large numbers of parameter sets
(107 per topology). This search is done in a two-step process analogous to (2.4).

We selected successful mono-functional circuits (601 topologies were found for
lateral induction and 655 for lateral inhibition) and constructed a complexity atlas
[Cotterell and Sharpe, 2010] (Fig. 7.1A). As discussed in 0.3.3, the layout of
the atlas is designed to illustrate relationships between circuit designs (pairs of
topologies are linked if differ by the addition/deletion of a single interaction),
and is arranged such that the simplest circuits (fewer gene-gene interactions) are
found at the bottom of the atlas. In this way, the minimal designs corresponding
to different ways to achieve each function (dynamical mechanisms) are found in
different ‘stalactites’[Cotterell and Sharpe, 2010] (Fig. 7.1A).
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In this case, our atlas is colour-coded to illustrate the two different patterning
functions: blue for lateral induction, red for lateral inhibition and green for those
topologies that can perform both functions. Figure 7.1A shows three distinct
topologies among which two exclusively contain circuits performing induction
or inhibition. A third topology is bi-modal, i.e. it holds within a single archi-
tecture circuits with both behaviours depending on parameter values. Indeed, we
observe that induction and inhibition occupy distinct regions in parameter space.

From the structure of stalactites we identify the minimal induction [D0 to D5] and
inhibition [H0-H5] circuits (Fig. 7.1B) that make use of six distinct dynamical
mechanisms –three for each function (Fig. 7.2). Notice that within a mechanism,
we find at least two equivalent circuits –for example D0 and D1, depending on
which gene receives the central signal. They essentially use the same dynamical
strategy. In order to achieve induction, three mechanisms are found, using distinct
gene expression dynamics in time and space. The unique time-course of gene
expression profiles is plotted under each mechanism. Auto-activation leads to an
independent expansion of the signalling gene. Instead, activate-activator results
in a synchronous expansion of both genes. Last, a non-overlapping complemen-
tary expansion is unique of inhibit-inhibition, as the signalling gene inhibits its
intra-cellular inhibitor, ‘pushing-away’its expression. Within inhibition mecha-
nisms, inter-cellular auto-inhibition of the signalling gene causes the neighbour
cell to lose its inhibitory potential on next cell, which in turn adopts a constitutive
high concentration. In activate-inhibitor, intra-cellular inhibition causes single
cells to adopt opposite concentration levels for each gene, leading to an alter-
nating expansion. Last, if the signalling gene inhibits its intra-cellular activator,
single cells adopt high expression levels for both genes in a coupled expansion.

At this point, we aim to clarify the role of noise in our model. Noise can drive
lateral inhibition without the need of an initial trigger. Indeed, noise helps initial
asymmetries self-amplify and can trigger the formation of a fine-grained patterns
[Collier et al., 1996, Barad et al., 2011]. In Figure 7.3 we show for the same cir-
cuit, how lateral inhibition is formed with and without an initial trigger. Therefore,
an underlying mechanism that is not detectable as a ‘stalactite’is noise. Although
noise can drive lateral inhibition on its own, it has also been suggested that it has
a beneficial role into refining lateral inhibition patterns [Barad et al., 2011]. How-
ever, with respect to lateral induction, we discard noise as having an essential role
in pattern formation, as a progressive spreading from the centre of the tissue can-
not be triggered by random perturbations.

In a nutshell, our findings propose a handful of mechanisms likely to be used in
real biological systems. Indeed, some of the mechanisms found –marked with
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Figure 7.2: Alternative mechanisms to achieve induction and inhibition. Core cir-
cuits are classified into three distinct mechanisms for each function. Each mechanism
makes use of a different dynamical strategy, captured in the unique final profile. Within
a given mechanism we find at least two equivalent topologies, depending on which gene
receives the central trigger. Three distinct strategies are found for each of the functions.
Among the core circuits found, some have been proposed to orchestrate several biologi-
cal processes and are marked with a Drosophila cartoon. Although the simulation takes
places in one a one-dimensional row of 33 cells, most graphic representations show 15
cells for a matter of clarity.

a Drosophila cartoon in Figure 6.3–are associated to known biological systems:
activate-activator directs dorsoventral boundary formation in the Drosophila wing
[de Celis and Bray, 1997, Panin et al., 1997] while activate-inhibitor has been
proposed to orchestrate several biological processes such as regulation of neuro-
genesis [Lewis, 1996], morphogenesis of Drosophila wing veins [Huppert et al.,
1997] or synchronization of oscillations during somitogenesis [Horikawa et al.,
2006].

The diversity of mechanisms found here does depend on the versatility of our reg-
ulatory function, which is capable of AND-logic, OR-logic or constitutive activity
(Fig. 6.1). Indeed, the mechanisms each use unique combinations of regulatory
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Figure 7.3: Noise can drive lateral inhibition. A signal in the center of the tissue
is not necessary to obtain a fine-grained pattern. Indeed, it has already been observed
that noise helps initial asymmetries self-amplify, thus triggering the formation of a fine-
grained pattern [Collier et al., 1996, Barad et al., 2011]. We show how the same circuit can
achieve inhibition with or without an initial trigger. Simulations are shown with distinct
numbers of cells: 15 (A) or 33 (B).

logic within their circuitry. In Figure 7.4 we plot the range of α parameter for
each minimal induction and inhibition circuit. First, we observe that within a
mechanism, minimal circuits share a common arrangement of regulatory logic
–for example circuits H2 and H3 or H4 and H5 hold the same combination of
regulatory logic. Second, genes which receive only negative inputs –for exam-
ple the signalling black gene in D4-H2-H3 or the golden gene in H4-H5– require
constitutive expression in order for the circuit to function.
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Figure 7.4: Distinct mechanisms make use of distinct regulatory logic. The high
diversity of mechanisms found is allowed by the versatility of the regulatory function.
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7.2 Bi-functional circuits

7.2.1 Candidates for bi-functionality
Which design features would a multi-functional circuit tend to employ? As we
pointed out, the atlas illustrates that certain topologies (green nodes) are bi-modal,
i.e. depending on parameter values they can be a mono-functional induction cir-
cuit, or alternatively a mono-functional inhibition circuit (Fig. 7.1A). We observe
that bi-modal topologies are often the union of a core induction and inhibition cir-
cuits (for example, the union of D3 and H1 in Figure 7.1A, and all cases shown in
Figure 7.5A). Could bi-modal topologies contain genuinely bi-functional circuits?
In other words, could a version of these circuits be found in which the switching
between induction and inhibition depends only on changing the basal expression
level of one of the genes, rather than requiring a modification of the parameter
values?

To explore this hypothesis we first determined all the possible hybrid circuits. Not
all pair wise combinations of a D core circuit and an H core circuit are topologi-
cally possible. For example, D1 and H1 cannot be combined, because they have
opposite signs for the same regulatory interaction. On this basis we found that
of all the 42 hypothetical combinations, 7 are compatible which we label A to G
(Fig. 7.5B). Hybrids conform modular candidates as they are composed of two
separable sub-circuits. Each module, or sub-circuit, is composed of a subset of
interactions. From a modular perspective, hybrid circuits could make use of each
of their sub-structures to perform each function.

105



D0

D2

H0

D4 H2 H4

co
m
pl
ex
ity

D5 H3H1'

co
m
pl
ex
ity

inHibition topologies 
inDuction topologies

bimodal topologies

D1 D3 H1 H5

Hybrid circuits: modular candidates for multifunctionality

Hybrid CHybrid G Hybrid D

Hybrid A Hybrid B Hybrid E Hybrid F

in
H

ib
it

io
n
 m

o
ti

fs

inDuction motifs

Hybrid A+

H0D2

=

Hybrid B+

H0D4

=

Hybrid C=+

H1D3

Hybrid D +

H1'D5

=

Hybrid E+

H2D0

=

Hybrid F+

H4D0

=

Hybrid G+

H5D1

=

D2 D3D1 D5D4D0

H0

H1

H1'

H2

H3

H4

H5

C

E

A

F

G

B

D

Incompatible 
combination

+

D1 H1

?

A

B

Compatible 
combinations

Figure 7.5: Modular candidates for multi-functionality. (A) Hybrid circuits are the
compatible union between a core induction and inhibition circuit (B) Hybrids (labelled A
to G) combine within their topology core induction and inhibition circuits.

106



7.2.2 Search for bi-functional circuits
To search for bi-functional circuits, we subject all mono-functional circuits to a
new tissue context. The tissue context consists in an external input signal that ac-
tivates the expression level of one of the genes in all the cells of the tissue. While
in the search for mono-functional circuits, this tissue context was not present (i.e.
context signal equals to 0), in the new tissue the context is present (i.e. con-
text signal equals to 0) and boosts the basal expression level of one of the genes.
We simulate all mono-functional circuits in the new tissue environment and se-
lect those able to switch function. In other words, a successful bi-functional cir-
cuit must perform lateral induction in the first tissue, and lateral inhibition in the
other, or vice versa. This analysis identified 72 different topologies capable of
bi-functional behaviour (1130 circuits in total). Bi-functional designs can now be
highlighted within our atlas (thick black lines in Figure 7.6A), showing that most
bi-functional designs are within bi-modal regions (green). A full classification of
the minimal designs for bi-functional circuits is given in Figure 7.6B.

We can now examine whether the hybrid designs (A-G) are bi-functional. Not
every minimal hybrid gave bi-functional behaviour. For example, C (which is
the hybrid of D3 and H1) does produce a bi-functional circuit, while G does not.
However, we found that for all non bi-functional hybrids, the addition of an extra
regulatory link could render the circuit successfully bi-functional. For example,
the addition of positive auto-regulation to the golden gene of G, produces a bi-
functional circuit which we label G’. All these modified hybrids are found one
level higher in the atlas, and are listed as A’ to G’ (Fig. 7.6B).

However, more intriguingly, we found a second class of bi-functional circuits
which are not hybrids of mono-functional designs. Instead they show a non-
modular design which is not an intuitive composite of two separate circuits. Within
this second class we find abundant Activation-Inhibition circuits that depend on
intra-cellular negative feedback loops (Fig. 7.6B).

We have found two distinct classes of circuits –hybrid and emergent– which build-
ing principles allow us to visually detect them from their location within the com-
plexity atlas (Fig. 7.7). While hybrid designs can always be seen at the point where
two mono-functional stalactites unite, emergent designs emerge from within a
mono-functional stalactite. The ‘emergent’, non-modular design of these circuits
can be appreciated from their position within the complexity atlas. Instead of
arising at the point where two mono-functional stalactites intersect, they emerge
in the centre of a single mono-functional region. Their bi-functionality is thus not
reducible to two distinct sub-circuits.
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the sum of two induction and inhibition circuits while emergent circuits emerge as more
complex forms of mono-functional circuits. In this manner, the modular properties of
multi-functional circuits can be visually detected.

When comparing both classes, while the design of hybrid circuits was predictable
–as the union of two mono-functional circuits –that of emergent designs is not
intuitive to predict. Therefore, it might seem that such non-intuitive, tightly over-
lapping emergent designs might be expected to have lower robustness. We show
in Table 7.1 the robustness of every minimal bi-functional circuit. Robustness is
measured as parameter robustness, i.e. the number of successful multi-functional
circuits out of 107 parameter sets sampled. It provides an intuition on the dimen-
sions of the parameter space for that specific circuit and often correlates to muta-
tional robustness –how probable is it to maintain the phenotype –multi-functional
capacity– as gene interactions are mutated. Table 7.1 shows no dramatic differ-
ence between the classes, highlighting that both design strategies may be equally
plausible in real biological systems.
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Hybrid A’ 63
Hybrid A” 56 336
Hybrid C 7
Hybrid D’ 1
Hybrid D” 2
Hybrid E 1
Hybrid F’ 1
Hybrid G’ 8

Emergent AI1 10
Emergent AI2 35
Emergent AI3 2
Emergent PC 2
Emergent I3 2

Table 7.1: Robustness of multi-functional hybrid and emergent motifs. Parameter
robustness is measured as number of successful multi-functional genotypes out of 107

sampled.

7.3 Mechanisms for function switching
How does a small change in the tissue context drive a change in pattern? Here we
explore the changes in phase portrait of the system upon the change in basal ex-
pression level for the context gene, and compare the underlying mechanisms used
by hybrid and emergent circuits in order to switch between functions (Fig. 7.8-
7.10). We use hybrid C (Fig. 7.8) and emergent circuitsAI1 and Pattern-Convertor
(Fig. 7.9-7.10) as representative of each type of multi-functional circuit.

For such simple circuits, we use a 2-cell model and follow the concentrations of
each of the species in time. For simplicity, we refer to the black signalling gene
as Delta and to the golden gene as Notch.

7.3.1 Underlying mechanisms of hybrid circuits
We first study the underlying switching mechanisms of hybrid C. We can follow
how the concentration of the four species evolves in time (Fig. 7.8B):

dN1

dt
=

1

1 + exp αN−5 (S+wBD2)
− λN1 (7.1)

dD1

dt
=

1

1 + exp αD−5 (C+wAN1+wCD2)
− λD1 (7.2)

dN2

dt
=

1

1 + exp αN−5 (wBD1)
− λN2 (7.3)

dD2

dt
=

1

1 + exp αD−5 (C+wAN2+wCD1)
− λD2 (7.4)

where N1(t), D1(t), N2(t) and D2(t) are the concentrations of Notch and Delta
in the central cell –cell1- and its immediate neighbour –cell2.

110



We can then numerically solve this system for distinct values of C –two distinct
tissues– to obtainN1(t),D1(t),N2(t) andD2(t). The species of interest areD1(t)
and D1(t), as Delta is the gene which gene expression switches form inhibition to
induction.

Thus, we aim at drawing a 2-dimensional phase portrait where each dimension
corresponds to D1 and D2. For that, we reduce the dimension of the system. We
impose equilibrium for Notch genes:

dN1

dt
= 0→ N1 =

1

λ (1 + exp αN−5 (S+wBD2))
(7.5)

dN2

dt
= 0→ N2 =

1

λ (1 + exp αN−5 (wBD1))
(7.6)

then replace N1 and N2 into equations (7.2) and (7.4) to obtain a reduced two-
dimensional system:

dD1(D1, D2)

dt
=

1

1 + exp
αD−5 (C+

wA

λ (1+expαN−5 (S+wBD2))
+wCD2)

− λD1 (7.7)

dD2(D1, D2)

dt
=

1

1 + exp
αD−5 (C+

wA

λ (1+expαN−5 (wBD1))
+wCD1)

− λD2 (7.8)

For this reduced system, a phase portrait with the corresponding nullclines and
steady states [Strogatz, 2014] can be drawn with Mathematica.

We show the trajectory of the system (black-dotted line) in two distinct phase por-
traits each corresponding to a different tissue. For a given phase portrait, specific
stable states can represent a given pattern: for example, in the current [D1, D2]
portrait, a stable state in the upper corner represents lateral induction as it cor-
responds to high expression level for the same species in two consecutive cells.
Likewise, in the same portrait, a [high, low] or [low, high] stable state would rep-
resent lateral inhibition (Fig. 7.8C).

We compare the phase portraits under distinct tissue-context and observe that the
tissue signal radically changes the phase portrait by changing the number and
stability of stable states. For example, for hybrid C, in the first tissue the system
is attracted to a [high D1, low D2] inhibition state, while in the second tissue it
switches to a [high D1, high D2] induction one (Fig. 7.8C).
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Analysis of Hybrid C
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Figure 7.8: Underlying mechanisms of hybrid circuits. We model a hybrid C circuit
with parameters wA = 0.41, wB = 5.49, wC = −0.30, αN = 6.93 and αD = 12.79. (A)
The tissue signal balances the weight of each module or sub-circuit in order to achieve
each pattern. In the absence of the signal –tissue A, the first sub-circuit – core H1– drives
inhibition: concentrations of delta in two consecutive cells (D1, D2) diverge to reach
high and low alternating states. By contrast, in the presence of the signal –tissue B, the
circuit switches to the second module -core D3- to produce induction: both cells show
high expression levels for delta. (B-C) Changes in the phase portrait of the system upon
distinct contexts. Each dimension in the phase portraits represents a species (D1 and D2).
Attractors represent distinct possible final patterns and the trajectory of the system -black
dotted line- traces how D1(t) and D2(t) evolve in time. The tissue context changes the
number and stability of steady states. The trajectory is modified to reach inhibition or
induction attractors.

7.3.2 Underlying mechanisms of emergent circuits
Emergent Activation-Inhibition circuits

We chose to study the underlying dynamics of emergent AI1 as representative for
Activation-Inhibition circuits (Fig. 7.9). In this circuit, gene Delta switches from112



induction to inhibition as the tissue context changes. Ideally, we would like to plot
[D1, D2] phase portraits for each tissue context. Hence, we write the equations of
the system:

dN1

dt
=

1

1 + exp αN−10 (S+wDN1+wBD1)
− λN1 (7.9)

dD1

dt
=

1

1 + exp αD−10 (C+wCN1+wAD2)
− λD1 (7.10)

dN2

dt
=

1

1 + exp αN−10 (wDN2+wBD2)
− λN2 (7.11)

dD2

dt
=

1

1 + exp αD−10 (C+wCN2+wAD1)
− λD2 (7.12)

We can once more numerically solve the system and follow its trajectory –N1(t),
D1(t), N2(t) and D2(t). However, this complex system cannot be reduced to a
two-dimensional [D1, D2] system. Instead, we can benefit from studying a [N2,
D2] system. Independently of the pattern achieved –induction or inhibition– the
central cell 1 reaches high-expression levels for both of its genes N1 and D1.
We thus focus on cell 2 to explain the switch in pattern. Indeed, cell 2 solely
receives a single inter-cellular input from D1. In order to reduce the system to a
two-dimensional [N2, D2] system, we treat the input from D1 as a fixed external
signal Ext:

dN2

dt
=

1

1 + exp αN−10 (wDN2+wBD2)
− λN2 (7.13)

dD2

dt
=

1

1 + exp αD−10 (C+wCN2+wAExt)
− λD2 (7.14)

Next, we can draw a series of instantaneous [N2, D2] phase portraits at particular
time steps (t1 to tfinal) where, for each time step, D1 holds a fixed Ext value
(Fig. 7.9).

We observe that the dynamics of emergent circuits appear more complex than that
of hybrid circuits (Fig. 7.8-7.9). Indeed, while in hybrid dynamics stable states are
maintained fixed in a given tissue environment, in emergent dynamics we observe
movements of attractors leading to complex trajectories. Here we briefly summa-
rize how lateral induction and lateral induction are achieved by AI1 (Fig. 7.9A).
Depending on the tissue context, the circuit implements distinct dynamical be-
haviours termed captures and pursuits.
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Figure 7.9: Underlying mechanisms of emergent Activation-Inhibition circuits. We
model a particular AI1 circuit with parameters wA = −0.05, wB = −7.98, wC = 6.47,
wD = 9.61, αN = 6.40 and αD = 6.81. We draw a series of instantaneous [N2-D2]
phase portraits. At different time points (t1-tf inal) D1 is treated as and external fixed
value.(A) During this capture event, the vertical movement of the attractor causes the
trajectory to be deviated and finally reach a [high N2-high D2] induction state. Each
interaction is responsible for a sudden change in the trajectory (1) D1 inter-cellular in-
hibition on D2 causes D2 to decrease (2) accordingly, D2 inhibition on N2 is weakened
and N2 increases (3) therefore, N2 activation on D2 is powered, as a result D2 increases.
(B) During this pursuit event, the trajectory is deviated towards the moving attractor. The
moving attractor is finally reached at a [low N2-low D2] state that corresponds to lateral
inhibition.
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First, lateral induction pattern results from a capture behaviour. A capture event
occurs when the trajectory at its beginning and its end is attracted towards dif-
ferent attractors. In Figure 7.9A we show how the movement of a particular at-
tractor causes the trajectory to be overtaken by a moving separatrice and then
recruited into a new basin of attraction. As such, the trajectory is deviated and
finally reaches a distinct attractor in the upper corner of the phase portrait. The
reached attractor corresponds to a induction pattern as N2 and D2 reach high ex-
pression levels and the final state corresponds to [highD1, highD2]. Importantly,
as the trajectory progresses, each individual interaction is responsible for one sud-
den change in its direction. The contributions of all interactions to form a pattern
illustrate the non-decomposable properties of emergent circuits as all interactions
–and not only a sub-set- are essential to generate the pattern.

Second, lateral inhibition pattern results from a pursuit behaviour. During a pur-
suit event, the trajectory is attracted towards a single moving attractor that is fi-
nally reached. The movement of the attractor shown in Figure 7.9B alters the di-
rection of the trajectory. The system finally reaches [lowN2, lowD2] state which,
considering the states of both cells, represents an inhibition pattern [highD1, lowD2].

Summarizing, following complex dynamics, emergent circuit AI1 switches pat-
tern by transitioning from a capture to a pursuit mechanism. This type of dynam-
ical mechanism are specially relevant in biology. Remarkably, there exist specific
biological examples where pattern formation is shaped by pursuit mechanisms,
such as the transient domain shifts observed in gap genes in Drosophila [Manu
et al., 2009a, Manu et al., 2009b].

Emergent circuit Pattern Convertor

A different case of an emergent circuit is Pattern-Convertor. As a character-
istic feature of emergent circuits, Pattern-Convertor is connected to two lower-
complexity mono-functional circuits (Fig. 7.10A). Its function-switching mech-
anism can be understood following a simple toy model (Fig. 7.10B-C). On one
hand, the auto-inhibition H0 core circuit found within its architecture, drives an al-
ternating pattern for the signalling gene, independently of the tissue context. How-
ever, when the context is present/ON, the amplitude of the pattern –difference in
concentration of the black gene in two consecutive cells– increases. On the other
hand, the golden gene feeds from the black gene and functions as a convertor.
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Figure 7.10: Underlying mechanism of emergent Pattern Convertor. (A) Emer-
gent circuit connected to two lower-complexity mono-functional nodes (extracted from
Fig. 7.6). (B) The black gene holds low and high-amplitude alternating patterns depend-
ing on the tissue context. The golden gene converts the low-amplitude pattern into an
inhibition pattern and the high-amplitude pattern into an induction one. The golden gene
reads-out three positive inputs from the black gene: two from neighbouring cells and one
from the same cell. (C) We map the inputs received by the golden gene in two consecutive
cells in both tissue contexts. The shape of the regulatory function leads to the following
switching-mechanism: when the context is OFF the input received by the golden gene in
one of the cells is sufficient for activation, while in its neighbour cell it is not (inhibition);
instead when context is ON both cells receive sufficient input (induction).
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In the first tissue, we observe that the golden gene converts the low-amplitude in-
hibition pattern into a high-amplitude inhibition pattern. In the second tissue, the
golden gene converts a high-amplitude inhibition pattern into an induction pattern.
By plotting the inputs received by the golden gene on the regulatory function, we
provide intuitive understanding on this process. In the first tissue, when the con-
text is OFF, the input received by the golden gene in one of the cells is sufficient
to activate is expression, while in its neighbour cell it is not (leads to inhibition).
Instead, when the context is ON, both cells receive sufficient input to reach high
expression levels (leads to induction).

Characteristic of emergent circuits, the behaviour of Pattern-Convertor cannot be
reduced to that of two separable sub-circuits.

7.4 Continuous versus discontinuous pattern tran-
sitions

The tissue context has been interpreted up to now as characterizing two distinct
tissues. However, context can also represent different developmental stages of the
same tissue. In order to study the transient nature of tissue environment we treat
the context as a time-dependent cue. This study is thus particularly relevant for
biological systems that are exposed to a changing environment or variable tissue
context (e.g. signalling input).

Precisely, in real biological systems induction and inhibition can occur in distinct
tissues but also succeed each other in a single tissue: in the retina of Drosophila
a wave of cellular differentiation known as the morphogenetic furrow progresses
through the tissue –induction– to later give rise to a fine-grained pattern of R8
photoreceptor cells –inhibition– [Sato et al., 2013]. Likewise, in the chick’s inn-
ear ear induction first leads to a continuous domain of precursor cells , i.e. patch
of prosensory cells. Subsequently, within each patch inhibition mediates differ-
entiation into hair cells and supporting cells [Daudet and Lewis, 2005, Petrovic
et al., 2014]. In both cases, lateral induction precedes lateral inhibition. Indeed,
lateral induction seems adequate to first establish the progenitor field of cells, i.e.
maintaining a given regulatory state in a field of cells, while lateral induction pro-
motes further differentiation in a later step. We believe this succession of events
is biologically relevant as the establishment of the progenitor field of cells is one
of the first steps of organogenesis.

These two real biological examples suggest that the key molecule driving a change
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in pattern is a time-dependent cue that gradually accumulates in the tissue. We
thus explore how the dynamic nature of tissues directs pattern transitions. Here,
instead of using a binary signal –context OFF/0 or ON/1–, we mimic time-dependent
cues by gradually increasing the value of the tissue signal from 0 to 1. We find ex-
amples of both continuous and discontinuous pattern transitions (Fig. 7.11-7.12).
Like we did in section 7.3, we draw phase portraits for Hybrids C and E, this time
gradually increasing the context value C.

Hybrid E (Fig. 7.12B) is described by the following equations:

dN1

dt
=

1

1 + exp αN−5 (C+wDD2)
− λN1 (7.15)

dD1

dt
=

1

1 + exp αD−5 (S+wAN1+wBD1+wCD2)
− λD1 (7.16)

dN2

dt
=

1

1 + exp αN−5 (C+wDD1)
− λN2 (7.17)

dD2

dt
=

1

1 + exp αD−5 (wAN2+wBD2+wCD1)
− λD2 (7.18)

Analogous to 7.3.1, we impose equilibrium for Notch genes in equations (7.15)
and (7.17) and obtain a two dimensional reduced system:

dD1(D1, D2)

dt
=

1

1 + exp
αD−5 (S+

wA

λ (1+expαN−5 (C+wDD2))
+wBD1+wCD2)

− λD1

(7.19)
dD2(D1, D2)

dt
=

1

1 + exp
αD−5 (

wA

λ (1+expαN−5 (C+wDD1))
+wBD2+wCD1)

− λD2

(7.20)

Both hybrids (Fig. 7.11-7.12) show a type of bifurcation –pichfork– in which at-
tractors tend to appear and disappear in symmetrical pairs. As such, the context
behaves as a bifurcation parameter leading two different types of bifurcation. The
continuity of pattern transition depends on the type of bifurcation.

For hybrid C, context directs a supercritical pitchfork bifurcation where two stable
states move towards each other, later collide and mutually annihilate to create a
new stable state (Fig. 7.11). Because of the shift between attractors is continuous,
the pattern also transitions continuously. We observe how from an initial [highD1,
lowD2] inhibition state, the systems follows the moving attractor as D1 is kept
high and D2 increases to transition to [highD1, highD2] inductive state. This way,
an inhibition pattern gradually reduces its amplitude to continuously transition to
induction.
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Figure 7.11: Continuous pattern transitions. For this figure and figure 7.12, at differ-
ent context values, three panel rows show the final multicellular pattern, concentrations
D1(t) and D2(t) and the corresponding phase portraits, respectively. We use different
values of C {0; 0, 2; 0, 5; 0, 7; 0, 9; 1} that are replaced in the systems of equations (7.7-
7.8) and (7.19-7.20). We observe how D1(t) and D2(t) evolve as C increases. Hybrid C
shows a type of bifurcation -pitchfork- in which attractors tend to appear and disappear
in symmetrical pairs: the context parameter C directs a supercritical pitchfork bifurcation
where two stables states move towards each other, later collide and mutually annihilate to
create a new stable state. Because the shift between attractors is continuous, the pattern
transitions continuously. From an initial [high D1 -low D2] inhibition state, the system
follows the moving attractor as D1 is kept high and D2 increases to transition to [high D1

-high D2] inductive state. This way, an inhibition pattern gradually reduces its amplitude
to continuously transition to induction.
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Figure 7.12: Discontinuous pattern transitions. Circuit with parameters wA = −4.93,
wB = 3.22, wC = 0.43, wD = 0.14, αN = 15.86 and αD = 8.62. The system undergoes
a subcritical pitchfork bifurcation: two unstable states coalesce into a new fixed point
that changes its stability from stable to unstable, causing an abrupt and discontinuous
pattern transition. This model mimics known biological processes where lateral induction
precedes lateral inhibition in the same tissue such as in the Drosophila retina [Sato et al.,
2013] or the Chick inner ear [Daudet and Lewis, 2005, Petrovic et al., 2014].
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Instead, for hybrid E, the system undergoes a subcritical pitchfork bifurcation:
two unstable states coalesce into a new fixed point that changes its stability from
stable to unstable (Fig. 7.12). This change of stability makes the system –initially
at [highD1, highD2] induction state– to suddenly switch to an attractor in a dif-
ferent position in the phase portrait –[highD1, lowD2] inhibition state–. This sud-
den switch leads to an abrupt and discontinuous pattern transition. Interestingly,
hybrid E mimics the previously mentioned biological processes where lateral in-
duction precedes lateral inhibition. This alternative scenario suggests that multi-
functional circuits can achieve each of their function guided by time-dependent
signals.

7.5 Conservation of design principles in higher-order
circuits

The above analyses focused on minimal two-node circuits and identified simple
circuits that are sufficient to achieve two distinct biological functions. But are the
designs found universal, i.e. unique? In other words, are the identified 13 minimal
circuits the foundation of all possible bi-functional -induction/inhibition- circuits,
or are there more complex higher-order solutions that do not contain these mini-
mal circuits? More importantly, are the design principles of hybrid and emergent
circuits conserved among higher-order circuits? To explore this question we ex-
panded our study and consider all possible three-node circuits. Again, for each cir-
cuit topology we sampled large numbers of parameter sets. Because the number of
topological designs increases from 1200 two-gene topological designs to 731,250
possible three-gene circuits, the computational cost of the simulation explodes
and we had to sample fewer parameter sets (from the 107 previously sampled for
two-gene circuits to 30.000 for three-gene circuits). Due to the high number of
solutions (32,956 topologies), we show a truncated complexity atlas that includes
only low-complexity multi-functional circuits. The atlas shows dozens of stalac-
tites (Fig. 7.13A-B) –core circuits. For all of them, we compared their topology
to that of the basic multi-functional two-gene circuits. Strikingly, all topologies
contain at least one of the 13 minimal circuits or hold equivalent forms. Within
these equivalences, the third gene performs a variety of roles (Fig. 7.13C): from
simple roles such as a downstream read-out or an upstream moderator, to more
complex roles such as intermediate positions or the specific transition from a 2-
gene negative feedback to a 3-gene repressilator [Elowitz and Leibler, 2000].

These results indicate that hybrid and emergent designs are conserved in high-
dimensional circuits and conform the two prevalent forms of information com-
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pression. Interestingly, the conservation of design principles as the dimensional-
ity of a system increases has already been observed in a number of studies, for
example, in circuits achieving biochemical adaptation. Indeed, as Ma et al. ex-
plored gene circuits performing adaptation [Ma et al., 2009] –a function observed
in many sensory systems that consists on the ability of that system to transiently
respond after input stimulus then reset itself back to its original steady-state out-
put level–, they observed that higher-order circuits contained within their topology
lower-order core circuits. These results highlight the value of minimal circuits in
understanding the designs principles underlying biological processes.
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Chapter 8

DISCUSSION

It is not obvious how a circuit could be designed to perform 2 distinct functions
such that both functions depend on all genes in the circuit. Here we have taken
inspiration from the Notch-Delta signalling system to create a purely theoreti-
cal model to explore this question. The goal of this model is not to understand
the details of Notch-Delta signalling in a real biological system (which is an-
other on-going area of research [Collier et al., 1996, Formosa-Jordan and Ibanes,
2009, Petrovic et al., 2014, Palau-Ortin et al., 2015]), but instead to provide an
abstract but biologically relevant model of bi-functionality. Using this model we
have been able to demonstrate concrete cases of bi-functionality where the same
minimal circuit of genes is able to perform two distinct patterning functions with-
out any modulation of its regulatory parameters. The switch in behaviour is trig-
gered just by changing the basal expression level of one of the two genes. In a real
system, this could be accomplished by differential expression of a transcription
factor in a tissue-specific or time-specific manner.

Gene circuits are believed to be decomposable into structural modules. Due to
the advantages structural modularity provides, there exist a bias towards pictur-
ing networks as composed of such non-overlapping structures [Solé and Valverde,
2008, Clune et al., 2013, Ellefsen et al., 2015, Kashtan and Alon, 2005, Kash-
tan et al., 2009] (Fig. 5.2A). However, observations such as the prevalence of
pleiotropy in development force us to revisit the concept of structural modularity.
For that, we performed a theoretical search to reveal minimal designs where all
components are essential to perform two distinct functions. These minimal de-
signs stand as concrete examples of complete circuit overlap (Fig. 5.2C). Reveal-
ing such compact multi-functional circuits has the following three consequences
for our understanding of modularity.

First, by finding such compact circuits, we reveal the limits of the concept of struc-
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tural modularity, and strengthen the need to consider instead functional modularity
[Kholodenko et al., 2002, Eisen et al., 1998, Segal et al., 2003, Ten Tusscher and
Hogeweg, 2011, Irons and Monk, 2007, Alexander et al., 2009]. We propose to
change our notion of modularity –rather than being structurally distinct, the mod-
ules can now only be defined by which set of gene interactions are responsible
for which function, thus transitioning from ‘set of genes’to ‘set of interactions’.
In that sense, among multi-functional designs, hybrid circuits are indeed modular.
They can be decomposed into distinct sub-circuits that underlie function where
each module consist on a distinct gene interaction path.

Second, the compact structure of multi-functional circuits has an impact on motif
detection. Indeed, a particular kind of study detects network motifs within large
transcriptional regulatory networks [Shen-Orr et al., 2002, Milo et al., 2002, Alon,
2007]. Networks motifs are detected as patterns that occurred much more often
than would be expected in random networks [Alon, 2007]. Once detected, the
cellular function a motif performs is extrapolated from its topology. Motifs cor-
respond to particular groups of interacting genes. In that sense, they are analo-
gous to a structural module. However, the lack of structural modularity of our
compact circuits will make them very hard to detect by motif-finding methods.
Instead, methods based on the dynamic properties of networks [Irons and Monk,
2007, Alexander et al., 2009] will be more adequate to detect multi-functional cir-
cuits.

Third, the compact structure of multi-functional circuits has consequences for evo-
lution: while structural modularity could explain the ability of two traits to evolve
autonomously, the existence of compact overlapping modules could instead ac-
count for their covariation [Wagner and Altenberg, 1996]. We believe that the real
structure of gene circuits combines this two distinct scenarios.

In addition to revealing concrete examples of tightly overlapping bi-functional
circuits, we have also found two distinct design principles. In the first case, the
circuit directly combines 2 mono-functional circuits. These hybrid designs are
intuitively understandable from the functionality of their two sub-modules, and in
the atlas they can always be seen as the point where two mono-functional stalac-
tites unite (Fig. 7.7). In the second case, bi-functionality is emergent because the
circuit cannot be deconstructed into 2 different sub-circuits – at least one of the
functions is dependent on every regulatory interaction within the circuit. The lo-
cation of these circuits within the complexity atlas reveals how this second design
type always emerges from within a single mono-functional stalactite. The design
of these circuits can be considered by starting with a minimal mono-functional cir-
cuit at the base of a stalactite, and then adding specific extra regulatory links such
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that a new non-reducible mechanism is created for the second function (Fig. 7.7).

Interestingly, there is no clear difference between the two design classes in terms
of their robustness to parameter variations, and thus we suggest they are equally
plausible to occur in real biological systems. Indeed, although modular solutions
are more widely discussed than non-modular ones, our unbiased search finds that
both designs are as efficient. Non-modular solutions are rarely discussed, as their
integrated and complex wiring makes them non-intuitive to understand. However,
the low-dimensionality of our model (only two genes) allows phase portraits to be
visualized providing an intuitive understanding of their dynamical mechanisms.

We believe that the approach of mapping out landscapes of dynamical mecha-
nisms, using tools such as the complexity atlas, will remain essential to our engi-
neering attempt to design new circuits synthetically [Matsuda et al., 2012, Mat-
suda et al., 2015, Schaerli et al., 2014]. In that sense, the finding of bi-functional
designs is of relevant interest in synthetic biology. Already, distinct circuits have
been successfully engineered that propagate a signal throughout a cell population
under induction [Matsuda et al., 2012] or inhibition [Matsuda et al., 2015] modes,
where D2 and H2 core circuits have respectively been implemented. Despite the
many technical challenges, the simple designs found here can potentially be syn-
thetically built as pattern-switch circuits able to achieve distinct patterns upon a
tunable input.
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Part IV

Global Discussion
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Both projects of this thesis are related to the concept of developmental constraints,
a concept first defined in the 1980s by Maynard-Smith as the ‘biases on the pro-
duction of variant phenotypes ... caused by the structure, character, composition,
or dynamics of the developmental system ’[Maynard Smith et al., 1985]. While
our first project focuses on dynamic constraints, the second does consider struc-
tural ones.

The results of our first project show that the dynamics of gene circuits itself consti-
tutes a developmental constraint, as it restricts the phenotypic novelties available
from a particular genotype. Indeed, from the broad perspective of developmental
biology, the concept of evolvability [Pigliucci, 2008] focuses on the generation
of novel phenotypes (i.e. a potential), while the concept of developmental con-
straints [Maynard Smith et al., 1985] refers to restrictions on the production of
certain phenotypes (i.e. a limitation). Independent of the context, both evolvabil-
ity and developmental constraints describe the available novelties.

In order to better understand the concept of developmental constraints, we con-
sider the following analogy: many human inventions can achieve the function
of flight: aeroplanes, hot-air balloons, helicopters and other curious creations
(Fig. 8.1). From a functional perspective, all inventions achieve the same phe-
notype –transporting humans by flight– in a distinct way, i.e. using a different
mechanism. If we were to tinker with these designs, or ‘mutate ’them, to invent
a new mode of transport, each of them would result in a distinct type of vehicle.
Intuitively, the transition from Leonardo da Vinci ’s flying machine to a space
craft is constrained while that between an aeroplane and a space craft is easier
to achieve. The same principle applies to gene regulatory circuits in biological
systems. In order to generate a given gene expression pattern a gene circuit can
use few mechanisms which correspond to distinct dynamical trajectories. We ob-
serve that the dynamical mechanisms of a circuit determines which phenotypes
are easier or harder to reach. We have provided a theoretical proof that indeed the
dynamics of a gene circuit constitute a specific type of developmental constraint
on the search for new phenotypes.

Regarding the second project, in order to understand the capacity of gene cir-
cuits to perform multiple function we have imposed the following constraint:
gene circuits need to encode a high number of functions with a minimal set of
genes, providing a form of information compression. Most previous studies on
multi-functionality consider large gene circuits [Kashtan and Alon, 2005, Kashtan
et al., 2009, Clune et al., 2013, Ellefsen et al., 2015, Espinosa-Soto and Wagner,
2010, Ten Tusscher and Hogeweg, 2011]. The dimension of those circuits al-
lows them to split into independent mono-functional circuits where different sets
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Figure 8.1: Impact on evolvability of alternative mechanisms to produce a pheno-
type. Distinct flying devices can achieve the flying phenotype. Similarly, distinct gene
circuits can produce the stripe phenotype. As an analogy, the use of a particular device or
a particular dynamical mechanism both impact on the novel phenotypes accessible.

of genes perform distinct tasks or functions. However, the knowledge that the
same set of genes generates a diversity of functions imposes a certain degree of
functional overlap. The necessity of a structural overlap is a constraint in itself.
Hence, the bi-functional designs revealed are found under the limitation/potential
for compact encoding.

The search for a multi-functional behaviour constitutes an innovative perspective.
Indeed, developmental biologists studying pattern formation often restrict their
analysis to a single function. This way, the currently studied developmental gene
regulatory circuits are mostly constructed by gathering the minimal number of
proteins, genes and molecules sufficient for the formation of a single organ or
particular part of an embryo [Raff and Conway Morris, 1996, von Dassow et al.,
2000, Davidson et al., 2002, Ma et al., 2006, Alvarez-Buylla et al., 2010]. Instead
of studying biological functions independently, we propose to study gene regu-
latory circuits performing multiple functions, considering the bigger picture and
provide intuitive understanding on multi-functionality.

An interesting aspect of both projects, is the use of such small 2 and 3-noded cir-
cuits to explore relevant biological questions. On one hand, small circuits show
a handful of complex dynamical mechanisms. Their impact on evolvability can
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be observed even for such an apparently simple patterning task and using very
simple criteria to define novel patterns. On the other hand, it is notable how con-
trasting and qualitatively distinct functions can be encoded within such a small set
of genes.

Our finding of compact multi-functional circuits provides and answer to the G-
value paradox [Hahn and Wray, 2002]. Indeed, as the number of genes does
not increase with organismal complexity, compact circuits provide a plausible so-
lution. However, a broad approach to the G-value paradox has been to search
for further sources of complexity within the genome [Mattick et al., 2010, Schad
et al., 2011]– other distinct molecular ‘components ’– such as modulation of chro-
matin [Kouzarides, 2007, Cairns, 2009], alternative splicing [Kim et al., 2007], the
multi-functionality of proteins [Jeffery, 1999] or the newly discovered regulatory
functions of dozens of types of non-protein coding RNAs such as lncRNAs or
miRNAs [Sempere et al., 2006, Taft et al., 2007]. In principle, additional ele-
ments found within the genome could account for the acquisition of additional
biological functions – the complexity of an organism might be in some way ‘pro-
portional ’to the list of distinct molecular components in the genome. Instead,
we have proposed and alternative scenario where organismal complexity does not
directly follow from molecular complexity, but instead arises as the emergent be-
haviour of dynamic regulatory circuits [Kauffman, 1993b, Solé and Fernández,
Pau and Kauffman, Stuart A, ]. Rather on focusing on the number and various de-
tails of molecular components, we give a concrete theoretical example of tightly
compact encoding of biological information – multiple distinct functions encoded
within a small set of genes – suggesting that organismal complexity shows a com-
plex and non-trivial relationship to genomic complexity. Hence, we believe that
circuit designs can show interesting and complex behaviours that help us under-
stand biological processes. Furthermore, we believe that the approach of mapping
out genotype-phenotype landscapes using tools such as the complexity atlas, will
remain essential to reveal the function of biological circuits.
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[Becskei et al., 2001] Becskei, A., Séraphin, B., and Serrano, L. (2001). Positive
feedback in eukaryotic gene networks: cell differentiation by graded to binary
response conversion. EMBO J, 20(10):2528–2535.

[Ben-Tabou de-Leon and Davidson, 2009] Ben-Tabou de-Leon, S. and Davidson,
E. H. (2009). Modeling the dynamics of transcriptional gene regulatory net-
works for animal development. Dev Biol, 325(2):317–328.

[Berg and Brown, 1972] Berg, H. C. and Brown, D. A. (1972). Chemotaxis in es-
cherichia coli analysed by three-dimensional tracking. Nature, 239(5374):500–
504.

[Brandon, 1999] Brandon, R. N. (1999). The units of selection revisited: the
modules of selection. Biology and Philosophy, 14(2):167–180.

[Bullinaria, 2007] Bullinaria, J. A. (2007). Understanding the emergence of mod-
ularity in neural systems. Cogn Sci, 31(4):673–695.

[Burrill and Silver, 2010] Burrill, D. R. and Silver, P. A. (2010). Making cellular
memories. Cell, 140(1):13–18.

[Cairns, 2009] Cairns, B. R. (2009). The logic of chromatin architecture and
remodelling at promoters. Nature, 461(7261):193–198.

[Carroll, 2008] Carroll, S. B. (2008). Evo-devo and an expanding evolutionary
synthesis: a genetic theory of morphological evolution. Cell, 134(1):25–36.

136



[Carroll et al., 2013] Carroll, S. B., Grenier, J. K., and Weatherbee, S. D. (2013).
From DNA to diversity: molecular genetics and the evolution of animal design.
John Wiley & Sons.

[Chau et al., 2012] Chau, A. H., Walter, J. M., Gerardin, J., Tang, C., and Lim,
W. A. (2012). Designing synthetic regulatory networks capable of self-
organizing cell polarization. Cell, 151(2):320–332.

[Ciliberti et al., 2007] Ciliberti, S., Martin, O. C., and Wagner, A. (2007). Inno-
vation and robustness in complex regulatory gene networks. Proc Natl Acad
Sci U S A, 104(34):13591–13596.

[Clune et al., 2013] Clune, J., Mouret, J.-B., and Lipson, H. (2013). The evolu-
tionary origins of modularity. Proc Biol Sci, 280(1755):20122863.

[Collier et al., 1996] Collier, J. R., Monk, N. A., Maini, P. K., and Lewis, J. H.
(1996). Pattern formation by lateral inhibition with feedback: a mathematical
model of delta-notch intercellular signalling. J Theor Biol, 183(4):429–446.

[Cotterell et al., 2015] Cotterell, J., Robert-Moreno, A., and Sharpe, J. (2015). A
local, self-organizing reaction-diffusion model can explain somite patterning
in embryos. Cell Systems, 1(4):257–269.

[Cotterell and Sharpe, 2010] Cotterell, J. and Sharpe, J. (2010). An atlas of gene
regulatory networks reveals multiple three-gene mechanisms for interpreting
morphogen gradients. Mol Syst Biol, 6:425.

[Crick, 1970] Crick, F. (1970). Diffusion in embryogenesis. Nature,
225(5231):420–422.

[Daudet and Lewis, 2005] Daudet, N. and Lewis, J. (2005). Two contrasting roles
for notch activity in chick inner ear development: specification of prosen-
sory patches and lateral inhibition of hair-cell differentiation. Development,
132(3):541–551.

[Davidson, 2010] Davidson, E. H. (2010). Emerging properties of animal gene
regulatory networks. Nature, 468(7326):911–920.

[Davidson and Erwin, 2006] Davidson, E. H. and Erwin, D. H. (2006). Gene
regulatory networks and the evolution of animal body plans. Science,
311(5762):796–800.

[Davidson et al., 2002] Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A.,
Calestani, C., Yuh, C.-H., Minokawa, T., Amore, G., Hinman, V., Arenas-
Mena, C., Otim, O., Brown, C. T., Livi, C. B., Lee, P. Y., Revilla, R., Rust,

137



A. G., Pan, Z. j., Schilstra, M. J., Clarke, P. J. C., Arnone, M. I., Rowen, L.,
Cameron, R. A., McClay, D. R., Hood, L., and Bolouri, H. (2002). A genomic
regulatory network for development. Science, 295(5560):1669–1678.

[de Celis and Bray, 1997] de Celis, J. F. and Bray, S. (1997). Feed-back mecha-
nisms affecting notch activation at the dorsoventral boundary in the drosophila
wing. Development, 124(17):3241–3251.

[de Celis et al., 1997] de Celis, J. F., Bray, S., and Garcia-Bellido, A. (1997).
Notch signalling regulates veinlet expression and establishes boundaries
between veins and interveins in the drosophila wing. Development,
124(10):1919–1928.
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