
Decoupling State from Control in
Software-Defined Networking

Alberto Rodriguez-Natal

Advisor: Albert Cabellos-Aparicio, PhD

Co-Advisor: Fabio Maino, PhD

Department of Computer Architecture
Technical University of Catalonia

This dissertation is submitted in partial fulfillment of the requirements for the
degree of

Doctor of Philosophy in Computer Science

July 2016

To my parents, to my sister
and to Andrea,

of course

“This is how you do it: you sit down at the keyboard
and you put one word after another until it’s done.

It’s that easy, and that hard.”
- Neil Gaiman

Acknowledgements

I have always thought that the acknowledgments section is the most important part of a thesis
for two reasons. First because you can find the research elsewhere, but you can only find
the acknowledgments here. Second because while the research evolves and the results get
eventually obsoleted, the people you meet along the way remain. Therefore, I have been
thinking on what to put in this section for a long time. However, now that I am finally writing it
down I believe that I am making no justice to the people mentioned here. I can not find the
words to express the gratitude I feel towards them. What follows is only a humble attempt.

As it should be, the first lines are for my advisor, Albert Cabellos. Exceptional researcher,
mentor and individual. With so many PhD advisors out there, I consider myself fortunate for
having ended up under his supervision. His clear vision, endless motivation and pragmatism
drove me through the most challenging periods of this thesis. Thanks also for always giving
me honest feedback, even when I was not going to like it. However, for what I must thank him
most is for his advice beyond what concerns research. His down-to-earth recommendations and
life pro tips came really handy countless times. For those I am as thankful as for his research
guidance. Thanks also for being a proficient geek with whom exchange obscure references on
movies and comics. Unfortunately, at the time of this writing, determining who outperforms
the other on geek knowledge requires further investigation and remains as an open question.

Closely after comes my deep gratitude to my co-advisor, Fabio Maino. My honest apprecia-
tion to him, who believed in my ability from the very beginning and encouraged me with sound
trust even when I hesitated. Thanks for being a guide to the inner dynamics of the industry and
for sharing curated knowledge with a newcomer. Thanks also for periodically giving me the
chance to showcase my work to all sorts of audiences, but specially for doing so with solid
confidence in the successful outcome. I will be eternally indebted to Fabio for sponsoring my
research and for offering me the opportunity to grow professionally, both during my thesis
and afterwards. Thanks also for that conversation we once had in our way to the airport. I
remember vividly the counseling I received that day.

Let me also express my appreciation to the faculty members of the CBA research group at
UPC. First, thanks to professors Jordi Domingo-Pascual and Josep Solé-Pareta, for guiding me
during my first steps as a researcher and for having been a source of advice since then. Thanks

viii

also to Davide Careglio, for the shared sense of humor and for taking me in those trips to my
first project meetings. Finally, thanks to Pere Barlet for his always clever analysis and for the
quality feedback provided at different points of my research.

My deep gratitude goes too to some members of the industry that inspired part of this
thesis. First of all to Sharon Barkai, for being a modern patron of the arts and the greatest
expert I know on combining networks and databases. My great appreciation to Sharon for
completely changing my view on SDN and for being a great source of inspiration for this thesis.
Sharon was the one who coined the idea of "global knowledge, local decisions", and Chapter 4
was only possible thanks to him (kudos also to the rest of the great guys from ConteXtream:
Ariel Noy, Ajay Sahai, Gideon Kaempfer, and the others). My most special thanks also to
Dino Farinacci, one of the fathers of LISP and engineer beyond compare. Capable, like no
one else, of discussing both high-level architectural abstractions and bit-level details of the
implementation. I greatly appreciate those technical discussions on all things LISP, and in
general all the help provided over these years. Finally, my honest gratitude to David Meyer,
truly visionary in the networking field, for sharing his vision. Thanks to Dave for always being
glad to engage on discussions on the future of networking, and for giving me a hand whenever
I needed it.

My sincere appreciation also to those LISP experts at Cisco. First and foremost to Vina
Ermagan, one of the major driving forces of this thesis. Vina’s talent for team building and
gracious management were hugely appreciated when we were struggling to make it through
deadlines. I could not thank her enough for these years of tireless support and guidance, on
this thesis and beyond. Her hard work and sharp advice truly shaped this research. My great
gratitude as well to Marc Portolés, who saved me on my first visit to the bay area and made the
stay much more enjoyable. For that, I owe him countless beers. Thanks also for being such a
passionate researcher and for dragging me into those creative technical discussions. Finally, a
huge thank you to Darrel Lewis for his always realistic technical advice, to Preethi Natarajan
for those early days of research on LISP-MN and to Vasileios Lakafosis for all his help with
LISPmob.

I could not go without mentioning those months spent in Tokyo working at the laboratory
of Professor Yusheng Ji. Among all the great experiences that this thesis has granted me,
I remember my stay in Japan as one of the best. My deep gratitude to Prof. Ji as well for
giving me a different perspective on my research. Her deep knowledge and multidisciplinary
experience truly completed my work. Thanks also to Kien Nguyen for his practical advice on
how to survive in Tokyo and for those discussions about OpenFlow in the coffee room. Thanks
to both for keep supporting me in the present day, long after my internship ended.

ix

A special note also to those I met via the IETF. A huge thanks to Luigi Iannone and Damien
Saucez for the discussions on LISP and for making those IETF meetings more interesting.
Thanks as well to Joel Halpern for sharing his technical wisdom and enlightening me on the
intricate mechanisms of the IETF. Thanks also to Diego López for sharing his perspective on
SDN, and for -unbelievably- always being present in all conferences I go.

A final mention to the people who lived with me in the D6-008 office. First to Florin Coras,
who is ultimately the one to blame for this thesis. Shall I had not listened to him, I would have
not ended up doing a PhD with Albert and Fabio. Fortunately enough, I trusted his word back
then. Sorry for all the silly jokes during these years Florin, it is just my way to pay you back.
Thanks as well to Loránd Jakab, who guided me during the beginning of my research. He
gave me right on the spot technical advices at that time and continues to do so today. Thanks
also to Albert Mestres, Sergi Abadal, Raül Gómez and Valentín Carela for the lunches and
the fun. I could not ask for better people to share an office with. Finally, my most deep and
sincere gratitude to Albert López, an extraordinary research engineer but also a good friend.
His rigorous work, methodical testing, and continuous contributions (often behind the scenes)
can not be thanked enough. May these lines serve to give him part of the credit he deserves.
Gràcies Albert!.

To conclude, I would like to acknowledge the funding that made this thesis possible. Thanks
to Cisco Systems for their generosity supporting this research and to the Spanish Ministry of
Education, Culture and Sport for supporting me trough scholarship FPU2012/01137.

A nivel personal me gustaría agradecer a mis compañeras de piso, Raquel y María, por
aguantarme estos últimos años y en especial estos últimos meses. Sé que a veces no ha sido
fácil. Gracias también a toda esa gente que lleva años on fire y a todos los presentes (físicamente
o no) en ese 28 de mayo. A todos ellos perdón por no haber podido estar en cafés, partidas y
cervezas. Sabéis que os quiero a todos, pero la tesis siempre fue muy celosa.

Quiero dar las gracias de manera especial a mi familia. A mis padres, por darme todo su
apoyo durante estos años, pero sobretodo porque nunca dudaron. Por ellos he llegado hasta
aquí y por ellos ahora tengo que seguir adelante. Perdón por irme, pero gracias por entenderlo.
Gracias también a mi hermana Laura, por todas las llamadas que le debo. Siento que hayas
tenido que ser hija única, pero estoy orgulloso de como has sabido salir adelante.

Las últimas palabras, por supuesto, son para Andrea. Para ella, a quien no hizo falta
explicarle lo que era el índice JCR. Para ella, por todas las noches que tuvo que dormir con la
luz encendida. Para ella, por estar tan loca como para acompañarme en la aventura que empieza
donde acaba este doctorado. Para ella, gracias.

Abstract

Software-Defined Networking (SDN) arose as a solution to address the limitations of traditional
networking. In SDN networks, the control-plane is decoupled from the data-plane devices
and logically centralized in a new network element, the SDN controller. SDN enables easier
network operation and allows forwarding devices and control logic to evolve independently.
The centralization of the control permits to have a global view of the network and act on it as a
whole, but at the same time requires a careful design to keep the controller scalable. Commonly,
a logically centralized controller is instantiated over a physically distributed infrastructure
that leverages on a distributed network state database. Control applications running on top of
the controller modify this state to make it compliant with their control policies or to react to
network events. The controller programs the data-plane devices to reflect these state changes.

Interestingly, current SDN approaches keep the network state architecturally as part of the
controller. However, this thesis arguments that the network state can be an SDN component on
its own, logically separated from the controller. In the same way that originally SDN decoupled
control from data, this thesis lays the foundations to explore the decoupling of state from
control. This logical separation entitles state and control to scale independently and allows
focusing on their individual functionality and requirements. This may be beneficial, at least,
when the control has to be asynchronous and when the control has to be decentralized. For
those scenarios this thesis describes two architectures driven by specific use-cases.

On one hand, when data-plane devices are subject to a high churn they require an asyn-
chronous control communication with the controller. This is the case for end-nodes (e.g.
smartphones, home-routers) since they are transient and/or highly mobile. In this case, pushing
the state to the data-plane devices presents an architectural challenge. As a consequence, to
enable SDN for end-nodes we advocate for a design where the state is rather pushed to a
standalone database disjointed from the controller. Data-plane devices directly access this state
database and retrieve the state they need on demand. Following this idea, we propose an SDN
architecture that leverages on distributed and symmetric controller nodes offering an intent-
driven northbound to the control applications, and on a state database with a connectionless
pull-based southbound towards the data-plane nodes.

xii

On the other hand, SDN centralization comprises several challenges besides keeping the
controller scalable. The control signaling required introduces an inherent latency burden and
the aggregation of local information conceals local details. Therefore, SDN centralization may
result unsuitable for scenarios that require fine local control with minimal latency. This is
the case of Network Function Virtualization (NFV) in operator networks. For that scenario
this thesis describes an architecture where the state remains centralized, but the control is
decentralized and moved close to the data-plane devices. The architecture seeks to find a
balance among the traditional decentralized networks and the centralization brought by SDN. In
contrast to existing SDN deployments, the control is distributed over the network but federated
and coordinated thanks to the central state database.

In both described architectures we use the Locator/Identity Separation Protocol (LISP) for
state exchange. Therefore, another contribution of this thesis is to analyze LISP as an SDN
protocol. Besides, in the second part of the thesis we delve deeper into the implications of
deploying SDN for end-nodes. Particularly, we analyze the mobility aspects of LISP signaling
along with its inherent privacy concerns and we introduce OpenOverlayRouter, a LISP-capable
overlay software for end-nodes SDN deployments.

Resumen

Las redes definidas por software (SDN) aparecen como solución a las limitaciones de las redes
tradicionales. En SDN el control se extrae de los dispositivos del plano de datos y se centraliza
a un nuevo dispositivo llamado controlador. La centralización del control permite tener una
visión y gestión global de la red, sin embargo el controlador se ha de diseñar con cuidado para
que sea escalable. Normalmente, un controlador centralizado lógicamente se despliega sobre
una infraestructura distribuida físicamente, en parte haciendo uso de una base de datos que
almacena el estado de la red. Las aplicaciones de control que se ejecutan sobre el controlador
modifican este estado conforme a sus políticas de control o como reacción a eventos en la red.
En respuesta, el controlador programa el plano de datos para reflejar estos cambios en el estado.

Las propuestas SDN existentes consideran arquitecturalmente el estado como parte del
controlador. Esta tesis, sin embargo, defiende que el estado de la red puede ser un elemento por
si mismo, separado del controlador. De la misma manera que originalmente SDN separó el
plano de control del plano de datos, esta tesis abre el camino para explorar la separación de
estado y control. Esta separación conceptual hace posible escalar estado y control por separado
y permite centrarse de manera individual en las funcionalidades y requerimientos de cada uno.
Esto sirve de ayuda cuando el control tiene que ser asíncrono y/o cuando el control tiene que
ser descentralizado. Para esos dos escenarios, esta tesis describe dos arquitecturas motivadas
por casos de uso concretos.

Por un lado, cuando los dispositivos del plano de datos no están siempre disponibles,
necesitan comunicarse con el controlador de manera asíncrona. Este escenario se da con
dispositivos de red finales (móviles, routers domésticos, etc) que se conectan transitoriamente
a la red y/o cambian de conexión con frecuencia. Este escenario dificulta que el controlador
programe de manera pro-activa el estado en estos dispositivos. Así pues, para integrar estos
dispositivos en despliegues SDN, esta tesis aboga porque el controlador almacene el estado en
una base de datos independiente, separada del controlador, a la que los dispositivos acceden
directamente para obtener el estado que necesiten cuando lo necesiten. Siguiendo esta idea,
proponemos una arquitectura SDN para dispositivos finales basada en un controlador distribuido
con una interfaz declarativa hacia las aplicaciones de control y en una base de datos con una
interfaz sin conexión y bajo demanda hacia el plano de datos.

xiv

Por otro lado, la centralización de SDN presenta varios desafíos más allá de la escalabilidad
del controlador. En concreto, la señalización de control requerida introduce una latencia
adicional y la agregación de la información oculta los detalles locales. Esta centralización
resulta inadecuada cuando se necesita un control local preciso con mínima latencia. Este es el
caso de la virtualización de funciones de red (NFV) en redes de operadores. Para ese escenario
esta tesis describe una arquitectura donde el estado permanece centralizado pero el control
se descentraliza y mueve cerca del plano de datos. Se busca equilibrar la descentralización
de las redes tradicionales y la centralización de SDN. En contraste con los despliegues SDN
existentes, el control está distribuido por la red pero federado y coordinado gracias a la base de
datos central.

En las dos arquitecturas descritas usamos el Protocolo de Separación de Localización e
Identidad (LISP) para el intercambio de estado, por tanto otra contribución de esta tesis es
analizar LISP como protocolo SDN. En la segunda parte de esta tesis profundizamos en las
implicaciones de desplegar SDN para nodos finales. Particularmente, analizamos LISP en
entornos de movilidad junto con su problemática en términos de privacidad y presentamos
OpenOverlayRouter, un software para despliegues SDN basados en LISP.

Contents

List of Figures xix

List of Tables xxi

Nomenclature xxiii

1 Introduction 1
1.1 Background: Legacy networks . 1
1.2 State-of-the-art: Software-Defined Networking (SDN) 3
1.3 Motivation: Decoupling State from Control 8
1.4 Objectives: Decoupled-State Architectures 9
1.5 Methodology: Research-Standardize-Implement 12
1.6 Outline and Contributions of this Thesis . 14

I Decoupled State Architectures 19

2 LISP as a Protocol for State Exchange in SDN 21
2.1 Introduction . 21
2.2 Background: Locator/ID Separation Protocol (LISP) 23
2.3 LISP: An SDN Architecture? . 25
2.4 Architectural Analysis . 26
2.5 Discussion . 32
2.6 Prototype . 34
2.7 Conclusions . 37

3 Asynchronous SDN Architecture for End-Nodes 39
3.1 Introduction . 39
3.2 Use-Cases . 40

xvi Contents

3.3 Challenges . 41
3.4 Design Guidelines . 41
3.5 An SDN Architecture for End-Nodes . 43
3.6 Discussion . 50
3.7 Proof of Concept . 52
3.8 Related Work . 56
3.9 Conclusions . 57

4 Decentralized SDN Architecture for Operators NFV 59
4.1 Introduction . 59
4.2 Scenario Requirements . 60
4.3 Global State, Local Decisions . 61
4.4 Design Principles . 62
4.5 Architecture . 64
4.6 Qualitative Analysis . 69
4.7 Software Switch Implementation . 71
4.8 Related Work . 72
4.9 Conclusions . 73

II Deploying SDN for End-Nodes 75

5 Privacy for LISP Mobile Nodes 77
5.1 Introduction . 77
5.2 Background: LISP-MN . 78
5.3 Privacy in LISP-MN . 82
5.4 Related Work . 88
5.5 Analysis . 88
5.6 Evaluation . 90
5.7 Conclusions . 92

6 OpenOverlayRouter: Architecture and Evaluation 95
6.1 Introduction . 95
6.2 Architecture Overview . 97
6.3 Control-Plane . 98
6.4 Data-Plane . 104
6.5 Evaluation . 107
6.6 Conclusions . 111

Contents xvii

7 Conclusions 113
7.1 Thesis Summary . 113
7.2 Open Research . 114

Bibliography 119

Appendix A Complete List of Publications 129
A.1 Related Publications . 129
A.2 Other Publications . 131

List of Figures

1.1 Original SDN architecture . 5
1.2 State-of-the-art SDN architecture . 7
1.3 Asynchronous SDN architecture . 10
1.4 Decentralized SDN architecture . 12
1.5 Thesis methodology . 13

2.1 LISP Overview . 24
2.2 LISP Mapping System . 28
2.3 LISP Re-Encapsulating Tunnel Router 30
2.4 LISP Traffic Engineering . 31
2.5 LISP SDN prototype . 35
2.6 OOR induced delay . 36

3.1 Architecture . 43
3.2 Controller and NIB nodes detail . 46
3.3 Southbound state retrieval . 48
3.4 PoC topology . 52
3.5 Latency for southbound state retrieval (15K iterations) 55
3.6 Latency for northbound state update (15K iterations) 55
3.7 Latency for end-node bootstrap (7K iterations) 56

4.1 Common centralized NFV approach . 61
4.2 Decentralized NFV based on an enhanced SDN 63
4.3 Proposed architecture . 65
4.4 Edge node internals . 68
4.5 In-house software switch performance with millions of rules 72

5.1 LISP-MN Overview . 79
5.2 LISP-MN using an RTR proxy . 83

xx List of Figures

5.3 MN generated temporary EIDs . 85
5.4 Anonymity Server . 87
5.5 Constant delay introduced by the RTR 91

6.1 Overlay approach . 97
6.2 OOR architecture . 99
6.3 Throughput (Linux) . 107
6.4 Throughput (Android and OpenWrt) . 108
6.5 Multihoming performance . 109
6.6 Handover time . 110
6.7 Data-plane processing latency . 110

List of Tables

3.1 Challenges to design principles . 42
3.2 Average RTT between PoC locations (in milliseconds). 53

5.1 Extra control messages required between entities 92

Nomenclature

Roman Symbols

API Application Program Interface

AS Autonomous System

BGP Border Gateway Protocol

DFZ Default Free Zone

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DPDK Data Plane Development Kit

ETSI European Telecommunications Standards Institute

ForCES Forwarding and Control Element Separation

GPE Generic Protocol Encapsulation

IETF Internet Engineering Task Force

IP Internet Protocol

ISP Internet Service Provider

JNI Java Native Interface

LAN Local Area Network

LISP Locator/ID Separation Protocol

xxiv Nomenclature

LTE Long-Term Evolution

MAC Media Access Control

MANO Management and Orchestration

MN Mobile Node

MPLS Multiprotocol Label Switching

MR Map Resolver

MS Map Server

NAT Network Address Translation

NFV Network Function Virtualization

NIB Network Information Base

NVGRE Network Virtualization Using Generic Routing Encapsulation

OOR OpenOverlayRouter

OSPF Open Shortest Path First

OVS Open vSwitch

PCE Path Computation Element

PxTR Proxy Ingress/Egress Tunnel Router

RTR Re-encapsulating Tunnel Router

SDN Software-Defined Networking

STP Spanning Tree Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

VLAN Virtual LAN

VM Virtual Machine

VNF Virtual Network Function

Nomenclature xxv

VxLAN Virtual Extensible Local Area Network

WAN Wide Area Network

WLAN Wireless Local Area Network

xTR Ingress/Egress Tunnel Router

Chapter 1

Introduction

1.1 Background: Legacy networks

Computer networks have become today an element of utter importance. Nowadays, computer
networks are present in almost all the systems that we interact with on daily basis. The rise of
the Internet over the last decades as a world-wide network publicly accessible to everyone has
shifted the way that people work and interact. However, reaching this point has been an effort
of years of research from individuals, companies and institutions.

The development of packet switching networks over the decade of the 60s was the germ to
the computer networks the way we know them today. The need of researchers to interconnect
computers to enable faster information exchange, long distance communications and no single
point of failure made that different efforts evolved in parallel during the 60s and 70s. Those
efforts, led by different individuals across the world, ended up in designing different methods
and protocols to interconnect computers. Eventually, the different communication proposals
converged into the family of protocols most widely used today, the TCP/IP stack (Transport
Control Protocol / Internet Protocol) [115, 116]. With the advent of TCP/IP as the de facto
standard for computer interconnection it was possible for computers from different manufac-
tures and software from different developers to exchange information packets using common
protocols that both sides understand.

However, computer networking not only requires to enable computers to talk with each
other, but also to deploy and manage a networking infrastructure to carry those packets that the
computers exchange. Computer networks are then composed of packet forwarding elements that
move the packets from one end point to another. Those forwarding elements comprise several
ports and interfaces that link them to other forwarding elements or to end point computers.
Packets are clearly labeled with the addresses of the sender and receiver in order to make
possible to deliver them to the correct destination computer. In order to take a path through the

2 Introduction

network that eventually leads to the packet destination, the forwarding elements must know
which of their available ports they should forward the packet through. Commonly in computer
networks, the part of a networking device that receives and forwards packets is known as the
data-plane while the part that is in charge of learning and deciding how to forward those packets
receives the name of control-plane.

In order to find suitable paths to forward the packets, the control-plane at the networking
elements relies on different control protocols. In the effort to offer no single point of failure,
these protocols operate decentralized across the different forwarding devices. Control protocols
usually implement distributed algorithms derived from graph theory. For instance, in Local
Area Networks (LAN) leveraging on Ethernet technology [92] it is common to implement the
Spanning Tree Protocol (STP) [110] that finds a loop-less tree within the network topology.
In large IP-based networks under a single administrative domain the most common approach
is to use a link state routing [88] protocol. Link state protocols leverage on the idea that each
forwarding element discovers and announces its neighbors to the rest of forwarding elements.
Using variations of the Dijkstra algorithm [17] on that data, each forwarding element is able
to build a map of the network and compute the shortest path per each destination. Notable
examples of link state protocols are Open Shortest Path First (OSPF) [95] and Intermediate
System to Intermediate System (IS-IS) [9]. Finally, to interconnect IP networks under different
administrative domains the most widely used protocol is the Border Gateway Protocol (BGP)
[120]. In BGP each border router connecting to other administrative domains announces the
networks reachable through its domain and in exchange it learns the networks reachable through
the domains of its neighbors.

The described control scheme made the nature of computer networks distributed and
decentralized. At the same time, protocol standardization ensured the correct inter-operation of
different implementations and devices. These two factors combined made possible an organic
growth of the network without the need for a central authority. For the first time in history, it
was feasible to deploy and manage large computer networks and to interconnect networks of
different administrative domains. Thanks to this decentralization and protocol standardization,
computer networks were subject to a rapid spread and expansion. However, in an effort to
remain interoperable and backwards compatible with existing deployments, the core network
protocols (TCP, IP, OSPF, BGP, etc) have seen no fundamental change for the last decades.
Although evolutionary enhancements and new protocols have appeared over the years, the
foundations of networking have remained unmodified to the present day. This has come to be
known as network ossification.

Furthermore, the factors that allowed rapid growth and expansion in the early days of
networking came with a set of inherent drawbacks. The distributed nature of the protocols

1.2 State-of-the-art: Software-Defined Networking (SDN) 3

require to individually configure each network device. In many cases this has to be done
manually by the network operator. Moreover, this decentralization prevents from having
a global view of the network, which greatly increases the complexity of debugging and
optimization. Although some solutions today enable a partially centralized management, the
network itself still operates as a combination of different independent distributed protocols.

Besides, any new protocol to be deployed requires of years of refinement and interoperability
testing to ensure compatibility with deployed networks. Even when a new protocol has been
well-tested and proven to be useful, deploying it in the network is not a trivial task. On one hand,
data-plane protocols (such IP) are in most cases implemented in the hardware of forwarding
devices, and thus any new protocol or protocol update involves to individually upgrade the
boxes across the network. On the other hand, control protocols, that usually run in software
and therefore should be easier to upgrade and replace, are still mostly unmodified. The fact
that control protocols run in a distributed manner within the networking boxes makes any
modification to them a challenge since many boxes need to be upgraded before the protocol
can be put into use.

Due to network ossification, all the described challenges are still present in current networks
today. For a long time, researchers have been looking into ways of dealing with the ossification
of the network and of facing the inherent problems of the current networking paradigm.
Nevertheless, in the later years it has arose a solution that has gained major traction and interest
from both academia and the industry, Software-Defined Networking (SDN).

1.2 State-of-the-art: Software-Defined Networking (SDN)

Software-Defined Networking (SDN) arose as a solution to deal with the limitations of tradi-
tional networking. Although there are different definitions for SDN depending on the focus
and scope [48], [35], [61], it is generally agreed that a SDN solution comprises two main
characteristics. The decoupling of data and control planes and the centralization of network
control. This is possible through the use of well-defined interfaces between the control-plane
and data-plane elements, which in turn enables remote network programability.

In SDN networks, the control-plane is extracted from the data-plane devices and pushed to
a new network element, the SDN controller. This controller centralizes the network control in a
single logical point and via a southbound interface it remotely programs the forwarding rules at
the data-plane devices. The decoupling that SDN introduces allows data and control planes to
evolve independently. Data-plane research can focus on improving the forwarding performance
and on ways to better expose the forwarding internals to the controller while the control logic is
implemented as software running on the controller. The control software instructs the controller

4 Introduction

on how it should program the data-plane and decides what to do when the data-plane receives
new or unexpected traffic.

1.2.1 OpenFlow Protocol

The research community generally agrees on idea that the current SDN trend started with the
OpenFlow [87] protocol developed at the Stanford university. According to Feamster et al. [35]
the term Software-Defined Networking was first coined in a MIT (Massachusetts Institute of
Technology) press article [45] about OpenFlow where the author stated:

Frustrated by this inability to fiddle with Internet routing in the real world, Stanford
computer scientist Nick McKeown and colleagues developed a standard called
OpenFlow that essentially opens up the Internet to researchers, allowing them to
define data flows using software - a sort of "software-defined networking".

However, the ideas of decoupling control from data or centralizing the network control were
not first mentioned with the OpenFlow protocol. On one hand, the trend on active networking
[135] was already discussing network programmability in the decade of 1990. On the other
hand, proposals like Path Computation Element (PCE) [34] or Forwarding and Control Element
Separation (ForCES) [20] respectively offered centralized control or decoupled data and control
planes in the 2000s. Moreover, the work on the Click modular router [68] in 2000 explored the
potential of flexible, modular and highly configurable data-plane devices. Current SDN is the
result of a long history of research from different authors. The OpenFlow specification itself
builds on top of ideas from just prior works like 4D [44] and Ethane [12]. For a summary of
the research history that led to SDN we recommend the work of Feamster et al. in [35].

Despite some misconceptions on the topic, SDN as commonly understand today is not
constrained to the OpenFlow protocol. Although OpenFlow is probably the most notorious
example of a SDN southbound protocol, it is not the only one. The definition and scope
of SDN varies across the research community and in that sense, industry and academia are
experimenting with different SDN protocols. Depending on the use-case and scenario other
protocols can be deployed, sometimes in parallel with OpenFlow. At the time of this writing,
and without trying to be exhaustive, other notable examples of protocols used for SDN are: the
Forwarding and Control Element Separation (ForCES) Protocol [20], the Path Computation
Element (PCE) Communication Protocol (PCEP) [139], Locator/ID Separation Protocol (LISP)
[30], the Border Gateway Protocol (BGP) [120] and the Network Configuration Protocol
(NETCONF) [24]. It is worth to note that some of the protocols used today for SDN were
developed prior to OpenFlow appearance and even before the term SDN was coined.

1.2 State-of-the-art: Software-Defined Networking (SDN) 5

For reference and due to its importance in the evolution of SDN, in what follows we discuss
briefly the OpenFlow architecture. In its very basic form [87, 52], an OpenFlow switch has
a flow table and an OpenFlow channel towards the SDN controller. Flow tables contain flow
rules, each of them is composed by a set of matching fields (e.g. destination IP address, VLAN
tag, etc) and the actions to perform in the packet (e.g. modify source Ethernet address, forward
packet through a specific port, etc). When an incoming packet is received, it is matched against
the flow table and the appropriate actions are taken. If no suitable rule is found (i.e. the packet
matches no rule), the switch has to ask the controller what to do with the packet. It does so
by means of the packet_in OpenFlow message which sends the packet to the controller. The
controller can then insert a new rule in the flow table (or modify an existing one) using the
flow_mod message. In many cases, the controller has proactively programmed the OpenFlow
switch using flow_mod messages rather than waiting for packet_in messages to happen.

1.2.2 Controller Evolution

Controller

Data-plane

Figure 1.1 Original SDN architecture

The early works on OpenFlow focused on the interface to program the data-plane devices,
that is, in the specification of the OpenFlow protocol. At that time the interest was in the
signaling messages required between the controller and data-plane elements and in how the

6 Introduction

former should expose their internal forwarding tables. The first conceptual ideas of SDN, as
imagined by the original OpenFlow article [87], devised a SDN architecture as the one depicted
in Fig. 1.1. In those early architectures there was non distinction between the controller and the
actual software pieces that implemented the control logic. Control applications where part of
the controller itself.

Building on top of the OpenFlow architecture, the research community started to explore
and refine the SDN controller. One of the first controller designs to appear was NOX [47], which
presented the controller as an operating system for networks. NOX introduced the idea of the
controller as a mere programmatic interface to the network where the applications implemented
on top were the ones in charge of the actual network control. Today, the interface that the
controller exposes to the software control applications is usually referred as the northbound
interface. The authors of NOX proposed one of the first northbound SDN interfaces, the
Flow-based Management Language [54]. That interface was still rather simple (and strongly
influenced by the OpenFlow protocol) but provided enough abstraction to enable developing of
applications on top. NOX also introduced another key concept on modern SDN, a database
storing the global view of the network. NOX used this database to store observations made
from the network, such the topology of switches, the location of hosts and middleboxes, the
services offered in the system, etc. Via the controller, the northbound control applications used
the state stored in the database to make control decisions.

As the interest and research on SDN continued over the years, it was clear that this new
paradigm opened new possibilities for networking but also brought new challenges. The
centralization of the control allows to keep a global view of the network and act on the network
as a whole, but at the same time requires of carefully design to keep the controller scalable.
In that sense, both the academia and the industry have discussed different implementation
approaches to scale the SDN controller. Most of them comprise a distributed controller that
is logically centralized but supported by different physical nodes. Such controllers use a
distributed database to store the global network state. One of the first and most well-known
proposals of a distributed controller is Onix [71].

Onix addresses the scalability requirements of the controller by enforcing a strongly dis-
tributed approach. Onix is composed of different controller instances running across different
servers. These servers also store partitions of a distributed database where Onix stores the
network state. A major contribution of Onix to the SDN field is the introduction of the term
Network Information Base (NIB). The NIB refers to the network state stored at the database
that provides detailed information on the network. Compared to NOX, Onix also improves
the northbound interface offering a more general API to northbound applications. Onix has
inspired important following research on distributed controllers such B4 [59] and ONOS [5]. B4

1.2 State-of-the-art: Software-Defined Networking (SDN) 7

Data-plane

Controller State

App App

Figure 1.2 State-of-the-art SDN architecture

proposes a decentralized controller to control a large worldwide WAN network. Building on the
steps of Onix and B4, ONOS (Open Network Operating System) represents the state-of-the-art
on distributed SDN controllers. ONOS offers an optimized architecture that leverages on the
latest advancements on distributed systems and distributed databases to offer high performance,
low latency and great scale-out capabilities.

Besides ONOS, the OpenDaylight [89] controller represents an excellent example of a
modern controller, cluster-oriented and with support for several different northbound and south-
bound protocols. The general architecture of modern controllers (such ONOS or OpenDaylight)
is depicted in Fig. 1.2. As the figure suggests, network applications running on top generate
control policies through the northbound interface. These policies are usually expressed by
means of an intent-driven language (e.g. declarative) that has to be latter processed by the
controller. Examples of such declarative northbound interfaces can be found in [36, 66, 93].
The controller renders these abstract directives into specific data-plane rules making use of the
network state that is stored in the state database. The data-plane specific state is then pushed
to the data-plane devices via a southbound protocol. Despite the reactive (e.g. pull-based)
early works on SDN [12, 47], most of the controller designs today heavily rely on proactively
pushing the state to the data-plane elements in advance.

8 Introduction

In general, the current state-of-the-art shows how the controllers are designed to cope with
the scalability requirements of modern SDN deployments. However, achieving the required
scalability imposes several distribution tradeoffs that controllers need to balance and that are
well-documented in the research literature [76, 53, 112, 10, 131, 130, 19, 5, 71]. This makes the
design of SDN controllers a non-trivial and complex endeavor. Moreover, the design complexity
is expected to rise as SDN moves to new scenarios and has to face additional challenges. In
this thesis we wonder if it is possible to follow a different approach when designing SDN
controllers.

1.3 Motivation: Decoupling State from Control

Interestingly, all current SDN approaches keep the network state architecturally as part of the
controller. The network state, network information base or global network view (depending
on the controller terminology) is always kept within the logical boundaries of the controller.
In terms of deployment this does not constrain the back-end database storing the state to be
physically allocated within the same machines that host the controller instances, although this
is a common scenario. In existing SDN proposals, the state is not directly exposed to the
northbound applications or the southbound data-plane devices, rather southbound events or
northbound updates go through the controller, which is then in charge of modifying the state.

However, there are scenarios with characteristics that would advise to use a design that takes
the state logically out of the controller. This thesis arguments that the network state can be a
SDN component on its own, in the same terms than the controller, the northbound applications
or the data-plane devices. In the same way that SDN originally decoupled control from data,
this thesis lays the foundations to explore the decoupling of state from control. It should be
noted that this thesis does not propose to create the entity of the network state. Such entity is
already well-defined (under different names) on SDN literature. Similarly to the dissociation of
controller and control applications, that led to the definition of the northbound interface, this
thesis does not introduce the state, but rather defines it as a different entity dissociated from the
controller.

This logical separation entitles state and controller to scale independently. This allows to
focus on their different individual requirements, since the set of skills required to design a
scalable controller are different from those needed to design a scalable state database. Moving
the state to a disjoint database moves along many of the scalability requirements of the controller
to this database. Therefore, the scalability of the SDN system is no longer tied to the scalability
of the controller but rather to the scalability of the state database. To scale the database there
is no need to reinvent the wheel and instead all the research and advancements on the field of

1.4 Objectives: Decoupled-State Architectures 9

-distributed- databases can be directly leveraged. Furthermore, state decoupling removes or
minimizes the requirement for an east-west interface across different controller instances. The
requirement of inter-controller communication was mostly due to the need to distribute and
coordinate the state across instances. However, when the state is moved to an external entity, the
distribution task is handed to the back-end database and thus the coordination among controller
instances alleviated. In general, the state-decoupling eases the design of SDN architectures and
particularly of those that require of special interaction with the network state.

1.4 Objectives: Decoupled-State Architectures

Trying to put the state-control decoupling into context, this work describes particular SDN
scenarios where a decoupling of state and control would be more effective than keeping the
state within controller boundaries. Furthermore, it describes SDN architectures, designed for
those scenarios, that take advantage of state-control decoupling. This work identifies two
cases where a decoupled-state approached would be beneficial, when the control has to be
asynchronous and when the control has to be decentralized.

1.4.1 Asynchronous Control

There are scenarios where data-plane devices are subject to a high churn. In such scenarios,
pushing the data-plane state to the data-plane devices presents an architectural challenge.
For those scenarios this work advocates for keeping a standalone data-plane state database,
architecturally disjoint from the controller. In such proposal, the state is pushed to the database
and then retrieved on demand by the data-plane devices. Contrary to existing SDN solutions,
the data-plane devices directly access and retrieve the state rather than being the controller the
one that push the state to them. Data-plane nodes also push the data-plane events directly to the
state database, instead of notifying the controller.

This leaves the controller almost stateless and mostly as a renderer of northbound polices
into data-plane state. The northbound applications will define the data-plane policies in advance
and pass them to the controller through the northbound interface. The controller will then
render those policies into specific data-plane state, based on the state that it sees on the state
database, and then store rendered state in the database. Northbound applications periodically
analyze offline the stored network state (since it may contain new events from the data-plane)
and update northbound policies as they find appropriate.

An example of an asyncronous decoupled-state architecture is depicted in Fig. 1.3. Since
the state can not be pushed to the data-plane, asynchronous state architectures are reactive to the

10 Introduction

Controller

Data-plane

State

App App

Figure 1.3 Asynchronous SDN architecture

data-plane traffic. Similarly to Ethane [12] and NOX architectures [47], they also rely on the
first packet of each flow to trigger the retrieval of state from the controller. A decoupled-state
architecture for asynchronous communication will greatly rely on that mechanism and thus
require state exchange protocols optimized for a pull-based model.

OpenFlow allows to ask the controller for the rules to handle a particular flow or send
packets to the controller for inspection via the packet_in message. The main motivation for
such mechanism was to cover the cases where the data-plane lacks the rules to process certain
incoming traffic. In that sense, OpenFlow is a candidate to be used to reactively program the
data-plane devices as response to the observed data-plane traffic. Other option that we analyze
in this thesis is to use the LISP protocol since it was specifically designed to quickly retrieve
and exchange operational state via pull-based mechanisms.

Furthermore, the scenarios where the control communication with the data-plane has to
be asynchronous may not benefit from a protocol that requires maintaining a connection
established with the controller. Data-plane devices will likely be mobile or transient which
will lead to frequent connection reestablishment. In our work we leverage on LISP since it is

1.4 Objectives: Decoupled-State Architectures 11

already connectionless, but another option is to use connection-oriented protocols that only
established short lived connections, such gRPC [46].

1.4.2 Decentralized Control

In general, it is agreed that the control centralization brought by SDN enables many benefits,
but also comprises several drawbacks. On one hand, keeping the centralized controller scalable
is an architectural challenge. Besides, there is an inherent latency burden imposed due to the
inter-controller signaling involved. Part of the research community is starting to wonder if
the required distribution of the controller would not bring the same problems that the original
distribution of network control brought. Although this is arguable, it raises a valid concern. At
the time of this writing it is still too early to evaluate the long time consequences of distributed
controllers.

On the other hand, the centralized design aggregates and combines local information which
may conceal local details. Current centralized approaches may result infeasible in scenarios
that require fine grain control of local traffic while remaining performance efficient and scalable.
For instance, we believe that Network Function Virtualization (NFV) may be one of those
scenarios. Some NFV use-cases may need a fine local control of the traffic while still being
globally orchestrated. NFV is a rising trend in the industry and examples of it are the ETSI
NFV framework [27] or the ETSI-hosted Open Source MANO (OSM) [101] project.

To cope with the decentralization concerns and to allow fine-grain local control in the
scenarios that require it, this thesis describes the idea of a decentralized SDN architecture with
centralized state. A decoupled-state architecture that keeps the state centralized but pushes the
controllers close to the data-plane devices they control, as depicted in Fig. 1.4. In contrast to
existing SDN, the control is distributed over the network, but federated and coordinated thanks
to the shared state database. Such architecture seeks to find a balance among the traditional
decentralized networks and the new centralized approaches brought by SDN. Despite the
decentralization of the control, it is easier to manage decentralized decoupled-state networks
when compared to classical decentralized networks since it is still possible to obtain a global
view of the network from the centralized state.

In decentralized decoupled-state architectures, the global state is partially cached locally at
the controllers. This makes a difference with the case of asynchronous decoupled-state archi-
tectures, since the controllers of the decentralized architectures are not stateless. Furthermore,
to control their local data-plane devices decentralize controllers also generate local state that is
only used locally by the local controller and not pushed to the global state database.

In the context of SDN, it should be noted that a decentralized control is not the same as
a distributed control. While most SDN proposals today comprise distributed control to cope

12 Introduction

Controller

Data-plane

State

App

App

Controller

App

App

Controller

App

App

Figure 1.4 Decentralized SDN architecture

with scalability requirements [130, 19, 11], the controller is still a single logical entity. In the
decentralized approach described in this thesis each controller is standalone and independent
from the others. In distributed architectures the different controllers coordinate among them
through the so called east-west interface. Via east-west communication, the different instances
are tied together into a single logical controller. Contrary, the decentralized controllers do
not exchange messages among themselves (i.e. there is no east-west interface), they only
-indirectly- coordinate through the global state that they share.

1.5 Methodology: Research-Standardize-Implement

First the idea of decoupling state from control and then the development of decoupled-state
architectures, are both the result of an iterative process that involved research, standardization
and implementation. In this section we briefly describe the iterative methodology that has been
applied in this thesis, which we also summarize in Fig. 1.5.

1.5 Methodology: Research-Standardize-Implement 13

Research

Standardization

Implementation

Figure 1.5 Thesis methodology

Research The research contained in this thesis has been performed at the academia, although
due to its applied nature we have been in close contact with the industry. Therefore, the
topics investigated on this thesis have been brought by industry needs and motivated by real
shortcomings of existing deployments. Following that vision, the focus of this thesis has
been to identify functionality gaps and space for improvement in current applied approaches.
Nevertheless, there has been a high awareness of current industry status while investigating how
to push the state of the art on those fronts. In that sense, we have tried to propose approaches
interoperable with existing deployments and solutions feasible in the short or mid term.

Standardization In some cases, the results obtained through research can not be directly
applied to the industry since there is a lack of proper networking protocols or features on
those already existing. Therefore, new protocols or extensions needed to be defined before the
research could be applied. In other cases, defining these protocols and/or extensions was the
objective of the research in the first place. However, to make new protocols/extensions available
and bring them to the industry they need to go through an standardization process. In this thesis
we have extended different existing networking protocols and propose different mechanisms

14 Introduction

to enable new features in existing solutions. This standardization process has been mostly
carried out at the Internet Engineering Task Force (IETF), the major venue for standardization
of Internet related protocols. The standardization process entitled us to bring our tentative ideas
to the community at large and receive feedback from networking experts. This allowed us to
refine our designs and ensure that our proposals were feasible and interoperable with existing
solutions.

Implementation Once required protocols or extensions are available as a result of the stan-
dardization process, it is possible to actually implement the solutions defined in the research
phase. In this thesis we strongly leverage on validating our research via real implementation
rather than using simulation or analytical tools. The architectures and discussions presented in
this thesis are supported by solid prototyping and actual deployments. For that we have made
a strong use of the OpenOverlayRouter (OOR) project [100]. OOR is a project maintained
by our research group that enables to deploy programmable overlay networks and offers a
flexible platform for rapid development and easy prototyping. During the span of this thesis
several features arose as a result of the research conducted and were added to OOR. Besides
our in-house OOR project, we have also leveraged on the OpenDaylight controller [103] to
which we have also contributed. Finally, it should be noted the conclusions gather from the
implementation and prototyping experience leaded to rethink the proposals conceived during
the research phase or opened the path for new research topics.

1.6 Outline and Contributions of this Thesis

To summarize the scope and contributions of this thesis, in this section we briefly describe the
outline of this document, the contents of each part and the contributions associated to each
chapter.

1.6.1 Introduction

To put this work into context, we have given an historical overview of legacy networking and
how it leaded to the need for SDN. After that we have summarized the origin and evolution
of SDN and the different designs for SDN controllers over the years. From this analysis on
the state-of-the-art on SDN we concluded that current controller approaches do not suffice to
fulfill the requirements of certain scenarios. In that sense, we introduced the idea that it may
be beneficial to explore taking the state out of the SDN controller. The concept of decoupling
state and control in SDN is the motivation of this thesis and its main contribution.

1.6 Outline and Contributions of this Thesis 15

1.6.2 Part I: Decoupled-State Architectures

In Part I, we introduce two different types of decoupled-state SDN architectures (asynchronous
and decentralized) and propose instances of both types designed for specific use-cases. Interest-
ingly, the different solutions that we propose leverage on the Locator/ID Separation Protocol
(LISP) [30] as the protocol for state exchange. Therefore prior to delve into the details of the
architectures we analyze LISP as a protocol for SDN.

In Chapter 2 we describe the use of LISP as an SDN protocol and analyze LISP architecture
and components from the point of view of SDN. This leads to highlight the particularities
of LISP and to present the benefits and drawbacks of using LISP for SDN. Furthermore, we
build a prototype to validate the analysis and to show the feasibility of an SDN solution based
on LISP. After analyzing LISP we present two different LISP-based decoupled-state SDN
proposals and the scenarios that motivate them.

On one hand, asynchronous decoupled-state architectures are suitable when data-plane
devices are subject to a high churn. This is the case for end-nodes, such smartphones and
home-routers, since they are transient and/or highly mobile. Following this idea, Chapter 3
proposes a SDN architecture specifically designed for end-nodes. The architecture leverages on
distributed and symmetric controller nodes that offer an intent-driven northbound to the control
applications and on a state database provisioned with a connectionless pull-based southbound
towards the data-plane nodes.

On the other hand, this work highlights the case of Network Function Virtualization (NFV)
for operator networks as one case where the SDN centralization may be impractical. NFV for
operators can benefit from a decoupled-state architecture that decentralizes the control and
achieves better local processing. For this scenario Chapter 4 describes an architecture where
the state remains centralized, but the controllers are pushed close to the data-plane devices.

Contributions of Part I

• Chapter 2 - LISP as a Protocol for State Exchange in SDN

– Paper: Rodriguez-Natal, Alberto, Marc Portoles-Comeras, Vina Ermagan, Darrel
Lewis, Dino Farinacci, Fabio Maino, and Albert Cabellos-Aparicio. "LISP: a
southbound SDN protocol?" Communications Magazine, IEEE 53.7 (2015): 201-
207.

– Code: Original LISP northbound interface for the OpenDaylight SDN controller.
https://github.com/opendaylight/lispflowmapping

– Internet-Draft Ermagan, Vina, Alberto Rodriguez-Natal, Florin Coras, Albert
Cabellos-Aparicio, and Fabio Maino. "LISP Configuration YANG Model", draft-

https://github.com/opendaylight/lispflowmapping

16 Introduction

ietf-lisp-yang-01, December 2015, (work in progress).
https://tools.ietf.org/html/draft-ietf-lisp-yang-01

– Internet-Draft Rodriguez-Natal, Alberto, Albert Cabellos-Aparicio, Vina Erma-
gan, Fabio Maino, and Sharon Barkai. "MS-originated SMRs", draft-rodrigueznatal-
lisp-ms-smr-01, April 2016, (work in progress).
https://tools.ietf.org/html/draft-rodrigueznatal-lisp-ms-smr-01

– Internet-Draft Rodriguez-Natal, Alberto, Albert Cabellos-Aparicio, Sharon Barkai,
Vina Ermagan, Darrel Lewis, Fabio Maino, and Dino Farinacci. "LISP support for
Multi-Tuple EIDs", draft-rodrigueznatal-lisp-multi-tuple-eids-01, January 2016,
(work in progress).
https://tools.ietf.org/html/draft-rodrigueznatal-lisp-multi-tuple-eids-01

• Chapter 3 - Asynchronous SDN Architecture for End-Nodes

– Paper: Rodriguez-Natal, Alberto, Vina Ermagan, Kien Nguyen, Sharon Barkai,
Yusheng Ji, Fabio Maino, and Albert Cabellos-Aparicio. “SDN for End-Nodes.”
(under review).

• Chapter 4 - Decentralized SDN Architecture for Operators NFV

– Paper: Rodriguez-Natal, Alberto, Vina Ermagan, Ariel Noy, Ajay Sahai, Gidi
Kaempfer, Sharon Barkai, Fabio Maino, and Albert Cabellos-Aparicio. “Global
state, local decisions: Decentralized NFV for ISPs via enhanced SDN.” (under
review).

– Internet-Draft: Barkai, Sharon, Dino Farinacci, David Meyer, Fabio Maino, Vina
Ermagan, Alberto Rodriguez-Natal, and Albert Cabellos-Aparicio. "LISP Based
FlowMapping for Scaling NFV", draft-barkai-lisp-nfv-07, December 2015, (work
in progress).
https://tools.ietf.org/html/draft-barkai-lisp-nfv-07

1.6.3 Part II: Deploying SDN for End-Nodes

This thesis identifies SDN for end-nodes as an open-field for study and research. As it has been
already mentioned, in Chapter 3 we explore an asynchronous architecture for end-nodes that
relies on the LISP protocol for state exchange. In Part II we go deeper into the implications of
making SDN available for end-nodes, and particularly of doing so via LISP. In that sense, in
Chapter 5 we analyze the particularities of LISP when applied to mobility scenarios. Particularly,
we discuss location and identity privacy issues of the LISP protocol when used for mobile-nodes.

https://tools.ietf.org/html/draft-ietf-lisp-yang-01
https://tools.ietf.org/html/draft-rodrigueznatal-lisp-ms-smr-01
https://tools.ietf.org/html/draft-rodrigueznatal-lisp-multi-tuple-eids-01
https://tools.ietf.org/html/draft-barkai-lisp-nfv-07

1.6 Outline and Contributions of this Thesis 17

Furthermore, in Chapter 6 we describe and benchmark OpenOverlayRouter, an open-source
overlay software that implements LISP to enable SDN at end-nodes.

Contributions of Part II

• Chapter 5 - Privacy for LISP Mobile Nodes

– Paper: Rodriguez-Natal, Alberto, Lorand Jakab, Marc Portoles-Comeras, Vina
Ermagan, Preethi Natarajan, Fabio Maino, and Albert Cabellos-Aparicio. "LISP-
MN: mobile networking through LISP." Wireless personal communications 70.1
(2013): 253-266.

– Paper: Rodriguez-Natal, Alberto, Lorand Jakab, Vina Ermagan, Preethi Natarajan,
Fabio Maino, and Albert Cabellos-Aparicio. "Location and identity privacy for
LISP-MN." International Conference on Communications (ICC), IEEE, 2015.

• Chapter 6 - OpenOverlayRouter: Architecture and Evaluation

– Paper: Rodriguez-Natal, Alberto, Florin Coras, Albert Lopez-Bresco, Lorand
Jakab, Marc Portoles-Comeras, Preethi Natarajan, Vina Ermagan, David Meyer,
Dino Farinacci, Fabio Maino, and Albert Cabellos-Aparicio. “OpenOverlayRouter:
Architecture and Performance.” (under review).

– Code: Developer and maintainer for the OpenOverlayRouter project (formerly
LISPmob), an open-source implementation to deploy programmable overlays.
http://www.openoverlayrouter.org/

1.6.4 Thesis Summary and Open Research

Finally, this work explores the implications and future work regarding decoupled-state SDN
architectures in Chapter 7. Particularly, we expose that the interfaces to interact with a
decoupled-state require further investigation and that an standalone state database requires of
careful analysis.

http://www.openoverlayrouter.org/

Part I

Decoupled State Architectures

Chapter 2

LISP as a Protocol for State Exchange in
SDN

This chapter describes how the Locator/ID Separation Protocol (LISP) can be used as a protocol
for SDN. LISP basic idea is to split current IP addresses overlapping semantics of identity and
location in two separate namespaces. Since its inception the protocol has gained considerable
attention from both the industry and the academia motivating several new use cases to be
proposed. Despite its inherent control-data decoupling and the abstraction and flexibility it
introduces into the network, little has been said about the role of LISP on the SDN paradigm.
LISP is specially interesting as an SDN protocol since it can fit as a state exchange protocol
for decoupled-state architectures. In this chapter we try to fill the gap and present a systematic
analysis of the relevant SDN requirements and how such requirements can be fulfilled by
the LISP architecture and components. This results in a set of benefits (e.g., incremental
deployment, scalability, flexibility, interoperability and inter-domain support) and drawbacks
(e.g., extra headers and some initial delay) of using LISP for SDN. In order to validate the
analysis, we have built and tested a prototype using the OpenOverlayRouter open-source
implementation of LISP. Finally, it should be noted that although Chapter 3 and Chapter 4 show
the benefits of using LISP for decoupled-state SDN architectures, this chapter present LISP as
a general southbound protocol for SDN, and thus not constrains its usage for decoupled-state
architectures only.

2.1 Introduction

The LISP [30] decouples identity from location on IP addresses by creating two separate
namespaces, EIDs (Endpoint Identifiers) to identify hosts and RLOCs (Routing Locators) to

22 LISP as a Protocol for State Exchange in SDN

route packets over transit networks. LISP follows a map-and-encap approach to map identifiers
to locators and encapsulate EID traffic into RLOC packets. EID packets are intercepted by
border routers and encapsulated towards the RLOC of the router serving the destination EID
domain. On the other hand, the LISP control-plane uses a publicly accessible distributed
database -known as Mapping System- to register and request EID-to-RLOC mappings. With
this LISP effectively decouples control and data planes and creates a dynamic EID-based
overlay network on top of an RLOC-based underlay, that can be programmed by simply
interacting with the Mapping System.

LISP original purpose was to solve the scalability issues of the Internet Default-free Zone
(DFZ) routing tables by pushing traffic engineering practices to the identifiers space while
keeping the locators space quasi-static and highly aggregatable. At the time of this writing LISP
has been deployed in a pilot network [80] that includes more than 20 countries and hundreds
of institutions. LISP hardware and software are also widely available, both in open-source
[100, 104] and proprietary implementations [81].

As a result of the LISP standardization and research efforts, the protocol has grown architec-
turally and has been applied to use cases beyond its original purpose. Since its inception, LISP
has gained a significant traction on both the industry and the academia due to the possibilities
of its programmable overlays [129]. LISP-enabled dynamic overlays provide a standardized,
inter-domain, and programmable framework to enable low-CAPEX innovation at the network
layer. Therefore, there is a growing interest on the role of LISP in Software-Defined Network-
ing (SDN) and on how SDN can benefit from LISP overlays. Interestingly, LISP is already
becoming part of SDN solutions such the OpenDaylight controller [103]. In this chapter we
analyze the relation between the LISP architecture and the SDN paradigm.

As described in Chapter 1, there are two well-defined parts in any SDN deployment: the
northbound and the southbound interfaces. The northbound offers a high level application
programming interface, where control applications can be deployed. The southbound is a low
level interface used to operate with the raw network elements. Currently, there is ongoing effort
in defining the high level abstraction interface (see Frenetic [36] or Procera [66] as examples).
With respect to the southbound interface there are as well several options, being OpenFlow
[87] the one that has gained major widespread on the industry.

One of the contribution of this thesis is to analyze LISP as a southbound SDN protocol. For
this, this chapter presents a systematic analysis of the fundamental SDN requirements -inferred
from the literature [61, 36, 66, 87, 131, 76, 144, 13, 71]- and how such requirements can be
fulfilled by the LISP architecture and components.

The analysis results in a set of qualitative advantages and drawbacks as well as recom-
mended potential improvements to overcome the identified issues. In order to validate the

2.2 Background: Locator/ID Separation Protocol (LISP) 23

analysis, we build and test a prototype using the OpenOverlayRouter (formerly LISPmob)
open-source implementation.

2.2 Background: Locator/ID Separation Protocol (LISP)

Current IP addresses convey the semantics of both identity and location, which has been
considered an issue since the early days of networking [133]. Trying to alleviate this semantic
overload LISP decouples host identity from its location by creating two different namespaces:
Endpoint Identifiers (EIDs) and Routing Locators (RLOCs). Hosts are identified by an EID,
and topological network locations by RLOCs. To keep LISP incrementally deployable, in its
very basic form EIDs and RLOCs are syntactically identical to current IPv4 and IPv6 addresses.
However, the protocol allows arbitrary address families (e.g. MAC addresses) to be used.

Packets are routed based on EIDs at LISP sites and on RLOCs on transit networks. LISP
follows a map-and-encap approach to allow transit between EID and RLOC space. EID
identifiers are mapped to RLOC addresses and EID traffic is encapsulated into RLOC packets.
At the edge points of LISP sites Ingress/Egress Tunnel Routers (xTR) are deployed to serve as
gateway. In the case of a packet willing to leave the LISP site, the xTR performs a lookup at its
map-cache to know how to encapsulate the EID packet into an RLOC packet. The map-cache
contains the mappings from EID to RLOC that the xTR has learned. If there is already an entry,
the xTR can obtain the RLOC that corresponds to the destination EID. Then, it encapsulates
the original packet within a new IP packet, using this RLOC as destination and its own RLOC
as source, and forwards the packet to the transit network. If there is no entry for the destination
EID, the xTR needs to find first the EID-to-RLOC mapping via the Mapping System

The Mapping System is a distributed database containing EID-to-RLOC mappings. A
single EID can be mapped to several RLOCs with different priority and weight values to allow
backup policies and traffic balancing. The Mapping System is composed by Map-Resolvers
and Map-Servers. In short, Map-Servers store mapping information and Map-Resolvers find
the Map-Server storing a specific mapping. There are several approaches for the internal
architecture of the Mapping System, i.e. how a Map-Resolver locates the appropriate Map-
Server, as example see [55, 60]. To populate the Mapping System, xTRs register in the Mapping
System the mappings they are in charge of (i.e. their local RLOC addresses and the EID space
of their LISP site) via Map-Register messages. Depending on the deployment scenario, it is
also possible that Map Servers can be proactively provisioned with mappings without requiring
xTRs to send Map-Register messages.

These mappings are requested by the xTRs, when they have a map-cache miss, via a
Map-Request message sent to a Map Resolver. The Map-Request is routed internally within the

24 LISP as a Protocol for State Exchange in SDN

Host A Tunnel Router X Host B

Mapping System

EID space EID spaceRLOC space

Tunnel Router Y

XA

YB
Control

Data

Identifier

Locator

Encap.
Data

Figure 2.1 LISP Overview

Mapping System until it is received by the Map-Server storing the mapping. The Map-Server
then sends the requested mapping to the requester xTR via a Map-Reply message (in some
cases, if the mapping was registered by an xTR the Map-Server may instead forward the
Map-Request to it). The retrieved mapping is stored in the xTR’s map-cache for future use.

If there is no mapping information stored on the Mapping System for the EID requested,
the xTR will receive an empty Map-Reply. That way the xTR knows the destination is not in
the LISP space. However, in some cases it can encapsulate the traffic towards a Proxy xTR
(PxTR). The PxTR will decapsulate the LISP packets and forward the regular traffic towards
the legacy Internet. Furthermore, it is possible to enforce path policies for encapsulated packets
by means of deploying Re-Encapsulation Tunnel Routers (RTRs) on the transit network. LISP
encapsulated traffic can be forwarded to an RTR instead of to its destination xTR. At the RTR
the traffic will be then re-encapsulated towards a next hop (either its destination xTR or another
RTR). Finally, end-nodes may be provisioned directly with LISP capabilities if they implement
the LISP Mobile Node (LISP-MN) specification [32, 125] described in Section 5.2.

2.3 LISP: An SDN Architecture? 25

Figure 2.1 depicts LISP common operation. Packets are routed based on EIDs within host
sites and on RLOCs on transit networks. Since host A and host B are in different sites (e.g. two
offices geographically separated), the packets from A to B have to traverse a transit network
(e.g. the Internet). To allow transit between EID and RLOC space, a map-and-encap approach
is performed by the LISP Tunnel Router X (i.e. xTR X) deployed at the edge point. Tunnel
Router X receives the packet from host A addressed to host B 1⃝. It knows that host B is in a
different EID site, but it does not know where to reach that site (i.e. its RLOC). Tunnel Router
X requests this information to the Mapping System 2⃝, the distributed database that stores EID
to RLOC mappings. Tunnel Router Y has previously registered its location and the set of EIDs
it is in charge of in one of the Mapping System internal servers. The Mapping System routes
the request internally 3⃝ to find that server, and eventually it replies back with the requested
location 4⃝. Tunnel Router X gets this information and caches it for future use. From now on,
all EID packets from host A to host B will be encapsulated into an RLOC packet in Tunnel
Router X and routed towards Tunnel Router Y 5⃝. Upon arrival at destination, Tunnel Router
Y will decapsulate the packets and forward them natively to host B 6⃝.

2.3 LISP: An SDN Architecture?

In this section we analyze if the LISP architecture -as is- can fulfill the requirements stemming
from the SDN paradigm. Even though a formal definition of such requirements cannot be found
in the literature, we infer the key SDN requirements by revisiting the design principles of the
state-of-the-art SDN literature.

Control-Data decoupling One of the main reasons that motivated the emergence of Open-
Flow [87] was to decouple the network control from the data forwarding devices. With its
Mapping System in place, LISP is capable of maintaining a distributed database where the net-
work state and control information are stored. This database can be updated and queried by the
LISP network elements in real time, and any change on it is propagated over the network. With
this approach LISP is effectively decoupling control from data: while the data-plane remains at
router level, implemented on the Tunnel Routers, all control is pushed to the Mapping System.

Network programmability Frenetic [36] and Procera [66] are two examples of the interest
of the community on programing the network and improving its management. The LISP
paradigm does not program the network but rather the Mapping System. The control policies
can be programmed and stored on the Mapping System, then the LISP data-plane will operate
accordingly. LISP semantics are poor when compared to state-of-the-art languages ([36, 66])

26 LISP as a Protocol for State Exchange in SDN

and focuses on representing network state, therefore LISP should be complemented by a rich
northbound language.

Centralized control Levin, et al. [76] expose that one core benefit of SDN is that it enables
the network control logic to be designed and operated on a global network view, as though it
were a centralized application. Since the LISP Mapping System stores all network control
state and can be remotely accessed and updated in real time, it provides a global view of the
network that effectively centralizes the control.

Scalability Yeganeh et al. [144] show the concern of the SDN community about SDN
scalability. LISP is a pull-based architecture that stores the state in the Mapping System,
network entities (e.g, LISP Tunnel Routers) retrieve and cache only locally relevant state on
demand. The literature shows that the Mapping System internals can be designed to be scalable
[60]. Furthermore, the connectionless approach used by LISP reduces the signaling overhead
and the burden on the controller to establish and maintain sessions.

Core-Edge split Casado et al. [13] analyze the main shortcomings of existing SDN archi-
tectures and point the Fabric architecture as a solution. Fabric is based on an element called
network fabric, a set of forwarding elements whose main function is packet forwarding. By
taking base on this concept, they split the network into three components, hosts, edge switches
and core fabric. With this, rich network services such as isolation, mobility or security are
performed at the edge while fabric control is only responsible for packet forwarding. It is
simple to establish a bijective relationship from Fabric components to LISP elements: Tunnel
Routers perform edge switches function, hosts are located on the EID space and the core fabric
corresponds to the RLOC space. From an abstract point of view, LISP offers an equivalent
architecture to the one proposed by Fabric.

2.4 Architectural Analysis

In this section we analyze how specific LISP architectural elements can be used as SDN
building blocks to understand the technical advantages and disadvantages of LISP as an SDN
solution.

2.4 Architectural Analysis 27

2.4.1 Flexible Namespace

The main LISP specification assumes IPv4 and IPv6 as address families, however it is flexible
enough to allow using any other address families (for instance MAC addresses). LISP Canonical
Address Format (LCAF) allows defining ad-hoc address types that can be used for any purpose
on a LISP system.

The template to define this type of addresses follows a simple TLV format (type-length-
value). With this format, it is possible to define any address type including nested addresses of
the same or different type. There are several address types defined at the time of this writing:
AS number, Geo-coordinates, Application data, NAT-Traversal data, Multicast info, etc. As an
example, Geo-coordinates addresses are used to carry geographical information along with any
other address.

In general such addresses allow LISP to map from any kind of identifier to any kind of
locator which means that, from an abstract point of view, LISP can map from any namespace
to another. This address agnosticism enables rich network state programmability and can help
to ease the interoperability challenges of heterogeneous SDN deployments

2.4.2 Distributed Mapping Database

Interface The interface to exchange information with the Mapping System is standard and
open, and all the Mapping System internal elements are hidden behind this interface -see figure
2.2. This allows the LISP data-plane devices to remain agnostic of the Mapping System internal
implementation. Such decoupling was put into test when the LISP beta-network deployed on
the Internet (lisp4.net) replaced the existing Mapping System -based on BGP- to a new one
-based on DNS- without interfering with any of the LISP data-plane elements.

Arbitrary information Using the LISP flexible addresses (LCAF) described in the previous
section the mappings can contain any arbitrary information and be read/written from the
Mapping System using a standard interface. An SDN system can take advantage of this feature
to store the network state. This is similar to what Onix [71] does with its own distributed
databases.

Onix is a well-known wide-area SDN deployment, it addresses the lack of a general SDN
control platform that can provide network-wide management abstractions. Onix provides an
infrastructure to manage network state on top of which, different control-plane applications
can be implemented. To offer this, Onix deploys its own database system to keep the network
state and relies on the OpenFlow protocol to communicate with the network devices. Onix
takes care of keeping consistent and distributed this network state over all network elements.

28 LISP as a Protocol for State Exchange in SDN

Mapping System interface

… DHT

DNS

Others

Mapping System internals

LISP data-plane devices

Figure 2.2 LISP Mapping System

With a LISP deployment, Onix (or any later Onix-based architecture) could take advantage
of LISP capabilities to provide similar functionality. First, it could use the Mapping System
with flexible addresses to keep network state and policies instead of deploying its own database
system and second, it could automatically reflect this state on the actual network if the network
devices directly pull these policies from the Mapping System using the LISP protocol.

Internal scalability The internal architecture of a specific Mapping System varies depending
on the type of information it is expected to store. Figure 2.2 also shows how the Mapping
System can use different internal implementations.

A Mapping System indexing common IP addresses benefits from a hierarchical structure,
such DNS. This is the approach followed by the Delegated Database Tree (DDT) based on
[60], the Mapping System design used on the current LISP Internet deployment (lisp4.net).
On the other hand, some deployments could require a flat name space, this is the case of
non-aggregatable data such as character strings. For such requirements, a Distributed Hash

2.4 Architectural Analysis 29

Table (DHT) design, rather than a DNS-like one, should be used. Although some initial efforts
towards a DHT-like Mapping System can be found in the literature [85], at the time of this
writing only a hierarchical Mapping System (DDT) has been successfully widely deployed.

Consistency Levin, et al. [76] expose the impact of a distributed SDN state on a logical
centralized control application. While LISP still needs to deal with distributed trade-offs, its
design allows mitigating them. LISP Mapping System is consistent and any snapshot of the
distributed information reflects the desired control state. However, LISP network elements are
eventually inconsistent, since an update on the Mapping System is not instantaneous reflected
on the data-plane. For instance a LISP Tunnel Router can register new mapping information
into the Mapping System at any time, however an old version of the mapping can still be cached
by remote Tunnel Routers. In order to minimize network inconsistency time, LISP defines two
mechanisms to enforce up-to-date information at the data-plane. First, data-packets can carry
an index of the current version of the mapping [57] and second, a special control message can
be used to explicitly notify remote parties of the mapping update [30].

2.4.3 Network landmarks

Re-encapsulating Tunnel Routers (RTR) are special LISP Tunnel Routers that can be deployed
on the RLOC space, rather than on the EID-RLOC edges. They receive LISP traffic, decapsulate
it, look-up on the Mapping System for the next hop, re-encapsulate the traffic and forward it.
They give flexibility to the data path, offering network landmarks that data-packets can use.

These routers are a key element of a LISP SDN deployment. They can process the
decapsulated traffic prior to re-encapsulate it again. This means, for instance, that traffic can be
inspected, accounted, dropped or modified at the Re-encapsulating Tunnel Routers. An SDN
approach can take advantage of these elements to set up network function devices. Devices like
firewalls, traffic analyzers, accounting points, can be plugged, implemented or virtualized on
top of re-encapsulating devices. In that sense, figure 2.3 shows the abstract representation of a
Re-Encapsulating Tunnel Router device with some network functions integrated that are used
on demand.

2.4.4 Traffic Engineering

A mapping on the LISP Mapping System can link an identifier to several locators. LISP
allows defining a different priority and weight per locator. These values are used to specify
the preference of the RLOCs to use to reach an EID as well as how to balance traffic among
them. Besides that, LISP also introduces advanced Traffic Engineering capabilities by means

30 LISP as a Protocol for State Exchange in SDN

LISP in LISP out

Re-encapsulation logic

Network function Network function

Mapping
System

Data path

Optional path

Control

Figure 2.3 LISP Re-Encapsulating Tunnel Router

of the Explicit Locator Path (ELP). An Explicit Locator Path is a list of hops through where
packets have to be routed. The packets have to visit those locators in the same order as they are
listed in the explicit path. These explicit paths serve as a mechanism to force traffic to follow a
certain path on the locators space.

Priorities and weights also apply to locators paths, which means that an EID can map to
several locator paths with different priority/weight attributes. Furthermore, such paths can be
nested, creating sub-paths. This is done using EIDs instead of RLOCs as hops in the path. The
final locator-only path will be obtained by a recursive look-up process. When a device finds
that the next hop of the path is an EID, it will look-up on the Mapping System to know the
sub-path that this EID represents. Note that these sub-paths are subject to priority and weight
values the same way as any other locator on the path. Using priority and weight, a LISP system
can use different paths for the same destination where one path could be the most preferable
while the others serve as backup, or many paths can be used at the same time to balance traffic.

Figure 2.4 shows an example. The traffic going to endpoint C should first go through M and
N before being delivered at U. If that path is not available, then the traffic should be balanced
in a 70/30 fashion over locators V and W. The traffic going to D should follow the path defined
by α before reaching Z. As a backup, it can be also delivered directly on Z. In the example, α

is used as a special identifier that represents a path instead of an endpoint.

2.4 Architectural Analysis 31

M1st 100% N U

V

2nd

70%

W30%

Z

1st α

2nd

Z

D

C

100%

100%

P1st 100% Qα

Identifier

Locator

Priority

Weight

Figure 2.4 LISP Traffic Engineering

Locator paths and re-encapsulating devices are tightly coupled, since in most of the cases
the locator paths are used to force traffic to go through re-encapsulating devices. Explicit
locator paths combined with re-encapsulating devices enables network programmability due to
the ability to define custom programmable paths for packets on real time. Priority and weight
parameters serve a fundamental role when deploying traffic rules. Traffic can be balanced
among several paths and, thanks to recursion, to an arbitrary number of sub-paths. An SDN
approach can deploy several re-encapsulating devices, that also may implement (virtualized
or not) network functions, and then program the Mapping System to force the traffic to flow
through these devices using explicit paths. Path nesting allows defining common sets of
re-encapsulating devices that can be applied at once to specific traffic.

2.4.5 Label system

Instance-ID is a 24 bit length identifier that can be associated to a certain EID. The identifier
is included in the LISP header, and hence in all data-packets. Typically, this is used to carry
VLAN tags or VPN identifiers. With this, network operators can split network policies and
traffic enabling multi-tenancy deployments.

However, Instance-ID can be used beyond its original purpose. It is a 24 bit tag that can
be appended to any data-packet to enable further features, not only multi-tenancy or address
reusing. Specifically it can be used for routing scalability as well as management. In an SDN

32 LISP as a Protocol for State Exchange in SDN

proposal like Fabric [13], Instance-ID can be used to tag flows that should be forwarded in
the same way, simplifying forwarding on the core fabric and improving management and
scalability.

2.5 Discussion

Based on the previous analysis, this section discusses the advantages and drawbacks of applying
LISP for SDN.

2.5.1 Highlights

Based on the analysis of Section 2.3 and Section 2.4 we highlight the most relevant features of
LISP in SDN environments.

• Scalability: As described on Section 2.3 and Section 2.4.2, the Mapping System and
LISP connectionless pull-based signaling eases the scalability of LISP system. An SDN
solution can use LISP to provide a scalable network state database that can be directly
queried by both data and control devices

• Interoperability: Given its flexible namespace (Section 2.4.1) and its label system (Section
2.4.5), LISP is agnostic to the protocols it encapsulates and is well-suited to deploy cross-
technology overlays.

• Inter-domain: Network landmarks (Section 2.4.3) and LISP traffic engineering capa-
bilities (Section 2.4.4) allow LISP to enforce policies on transit networks and make it
suitable for inter-domain deployments.

2.5.2 Benefits

First LISP has been designed to be incrementally deployable and to leverage on current IP-based
networks. Any existing IP-based network can incorporate common SDN features by simply
upgrading some routers to LISP Tunnel Routers and connecting them to a Mapping System.

Second, the shortcomings of traditional SDN protocols are motivating the emergence of
hybrid SDN proposals that combine SDN with traditional network solutions [140]. Interestingly,
due to its scalability and interoperability LISP eases the deployment of the aforementioned
hybrid SDN networks, specially since LISP can be incrementally deployed. Furthermore,
thanks to its flexibility LISP is well-suited to accommodate future protocols and new network
approaches.

2.5 Discussion 33

Finally, in contrast to common SDN protocols that are designed to operate mostly within
a single domain, LISP allows SDN policies to be enforced across domains (e.g., DC-to-DC,
DC-to-user’s home). Well-placed LISP elements (e.g., Re-encapsulating Tunnel Routers) make
possible a programmable SDN deployment over a transit network (e.g., the Internet), something
that is more complex to accomplish with traditional SDN protocols.

2.5.3 Drawbacks

Due to both how the protocol operates and its nature as a map-and-encap approach, LISP has
some limitations that must be taken into account when considering LISP as a southbound SDN
protocol.

• Extra headers: In order to encapsulate the traffic, LISP adds extra headers to the packets.
This increments the packet size and reduces the available payload.

• Mapping resolution: LISP devices resolve and cache the mapping information on demand.
The first packets of non-cached flows need to be either buffered or dropped until the
mapping resolution process has been completed.

• Mapping updates: Any update on the Mapping System is propagated over the network.
However, this propagation involves some delay due to the signaling process. This can
introduce latency in the system and/or produce packet losses.

• Look-up support: While LISP defines how to convey different types of addresses in
control messages, it does not define how to use all of those addresses to perform look-up
operations.

• Flat data support: Generally, Mapping System implementations have been designed
with hierarchical data in mind (e.g., IP addresses) and as such do not perform well when
storing flat data (e.g., character strings).

Both Extra headers and Mapping Resolution drawbacks are inherent to the LISP architecture,
however they do not have a strong impact on performance given that first, LISP encapsulation
typically adds only 36 bytes (IPv4) or 56 bytes (IPv6) [30], and second the LISP entities cache
the mappings and because of the strong locality of traffic [16] achieve a hit-rate above 99%.

Regarding Flat data support, the limitation can be solved with a DHT-based Mapping
System [85]. Given that the interface to read/write mappings is open and standard, this
limitation is not architectural and can be solved taking advantage of existing DHT databases.

To overcome the rest of the drawbacks we propose potential enhancements for the protocol
in Section 2.5.4.

34 LISP as a Protocol for State Exchange in SDN

2.5.4 Proposed Improvements

The Mapping updates limitation requires optimizing the mapping update signaling on SDN
scenarios. In this context, we propose implementing a publish/subscribe mechanism for
LISP mappings. The proposed mechanism is already being prototyped for the LISP project
in OpenDaylight [99] and standardized at the IETF [123]. The system operates as follows,
whenever a LISP data-plane device requests a mapping, the Mapping System adds it to the list
of subscribers for that mapping. Whenever the mapping data changes, the subscribers of that
mapping are immediately notified, and thus they do not need to wait for the standard mapping
update propagation. The requester has to renew its subscription by explicitly requesting the
mapping before a time-out. For scenarios where scalability and/or security is a concern the
subscription may be restricted to a set of pre-defined mappings or subscribers.

The Look-up support needs to be extended beyond its current focus mostly in IP-prefixes.
Most of the current SDN solutions operate the network in terms of flows. Traditionally, the
minimal amount of information to identify a flow is its 5-tuple, even though normally in SDN
more fields are used (e.g. OpenFlow). We advocate that LISP requires, at least, a look-up
mechanism based on 5-tuples [122], despite in the future further look-up processes can be
implemented, potentially leveraging on OpenFlow tuple matching process.

2.6 Prototype

This section presents a prototype of a LISP-based SDN solution in order to validate its feasibil-
ity.

2.6.1 Setup

The prototype topology is depicted in figure 2.5. Two hosts (A and B) in different LISP sites are
connected through the transit network via two Tunnel Routers (X and Y) and optionally via a
Re-Encapsulating Tunnel Router. The Mapping System stores mappings of source-destination
EID tuples to RLOC space paths. These mappings are loaded by (borrowing OpenFlow
terminology) a controller.

To implement the prototype, we instantiate a virtual machine running Linux for each of
the elements on the topology. We connect the machines using virtual networks, emulating
the topology depicted in the figure. On the machines that need LISP capabilities we run the
open-source OpenOverlayRouter (OOR) implementation (formerly LISPmob), that implements
both LISP control and data planes. We slightly modified OOR to support look-ups based on
destination-source EID tuples.

2.6 Prototype 35

Host A Host B

EID space EID spaceRLOC space

Controller

Control

Data

Tunnel Router X Tunnel Router Y

Re-Encapsulating
Tunnel Router R

R Y

Y

A->B

Identifier

Locator
R X

X

B->A

Mapping SystemEncap.
Data

Figure 2.5 LISP SDN prototype

On the described prototype we test two different scenarios, one where the traffic goes
directly to its destination and another one where the traffic goes through the detour introduced
by the Re-Encapsulating Tunnel Router. We have a simple SDN application running on the
controller that can dynamically set which path has more priority.

2.6.2 Metrics

To extract relevant metrics we run 10 iterations injecting ping packets traffic during 10 secs per
scenario (with and without detour) at a data-rate of 1000 pkts/s.

Packet loss The initial packet loss is due to the required mapping resolution signaling (see
Section 2.5.3) when we send a flow over a new path. OOR does not put any packet on hold on
this scenario, therefore the packets are dropped until the mapping has been resolved. We have
measured an average initial packet loss of 3.0 packets dropped per iteration on the scenario

36 LISP as a Protocol for State Exchange in SDN

without detour. This average packet loss goes up to 5.1 packets per iteration on the scenario
with the extra LISP router due to the introduction of additional mapping resolution operations.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RTT (in miliseconds)

Linux (2+2 hops)
Linux (3+3 hops)
OOR (2+2 hops)
OOR (3+3 hops)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time (in miliseconds)

OOR look-up & encap

Figure 2.6 OOR induced delay

Delay To measure how much delay is introduced by OOR we built an equivalent prototype
without LISP capabilities, where traffic paths were configured modifying the routing tables
on the Linux boxes. The top of figure 2.6 shows the PDF (Probability Distribution Function)
of the RTT (Round Trip Time) for the scenarios considered. Note that without the detour
round-trip traffic goes through 4 hops (i.e. 2 from A to B and 2 from B to A), while the detour
introduces one extra hop in each direction (3+3) for a total of 6 hops. The bottom part of figure
2.6 shows how much time elapses since OOR receives a new packet until it delivers the LISP
encapsulated packet, i.e. LISP look-up and encapsulation. The plots in figure 2.6 show that
each LISP hop adds roughly 50 microseconds to the RTT, of which no more than 30 are due to
LISP operations. The remaining latency is mostly due to the user ↔ kernel communication
required by OOR. Nevertheless, the lookup and encapsulation operations may be optimized by
router manufactures to enable the performance of hardware implementations to be similar to
that of traditional IP datagram forwarding.

2.7 Conclusions 37

2.7 Conclusions

In this chapter we have analyzed if LISP -as is- can be used for SDN. Our analysis concludes
that the control-data decoupling, the network programability and the centralized control enabled
by traditional SDN solutions are already enabled by the LISP Mapping System and supported
by the rest of the LISP components. The major benefits of using LISP for SDN are that it keeps
its incremental deployability and flexibility while providing scalability, interoperability and
inter-domain support, making LISP specially suitable for SDN deployments over legacy or
transit networks, such the Internet. However, despite its potential as an SDN enabler, there are
some aspects of the protocol that should be extended to better fit the SDN use-case, mainly the
signaling for the mapping updates and implementing support for advanced look-up process.
Finally, the presented prototype demonstrates that LISP is feasible for SDN scenarios.

Chapter 3

Asynchronous SDN Architecture for
End-Nodes

The advent of SDN has brought a plethora of new architectures and controller designs for many
use-cases and scenarios. Existing SDN deployments focus on campus, datacenter and WAN
networks. However, little research efforts have been devoted to the scenario of effectively
controlling a full deployment of end-nodes (e.g. mobile devices, home routers, etc.) that are
transient and scattered across the Internet. In this chapter we present a rigorous analysis of the
challenges associated with an SDN architecture for end-nodes, show that such challenges are
not found in existing SDN scenarios, and provide practical design guidelines to address them.
Then, and following these guidelines we present an decoupled-state architecture specifically
designed for the end-nodes scenario. This architecture is based on the combination of a
distributed controller with an intent-driven northbound and a decoupled Network Information
Base provisioned with a connectionless pull-oriented southbound. Finally, we measure a
proof-of-concept deployment to assess the validity of the analysis as well as the architecture.

3.1 Introduction

In the recent years the Software-Defined Networking (SDN) [74] paradigm has been applied
to different scenarios, namely campus, datacenter and WAN networks [74, 71, 5]. However,
little research efforts have been devoted to scenarios where the controlees are end-nodes, e.g.
mobile nodes (smartphones, tablets, etc), personal computers, home or SOHO (Small Office
or Home Office) routers, etc. Despite the scarce literature on the topic, we believe that an
SDN architecture designed for end-nodes enables interesting use-cases, since companies and
operators can push policies and control the traffic from its very origin.

40 Asynchronous SDN Architecture for End-Nodes

However, this novel SDN scenario brings a set of challenges that are not found in existing
SDN deployments or that are strongly exacerbated in the end-nodes case. On one hand, the
number of controlees is very large and they are typically scattered through various networks,
this imposes very high scalability and availability requirements to the controller. On the other
hand, this scenario comes with a high churn, since end-nodes are transient and mobile and
might connect and disconnect randomly [29]. Finally, the architecture has to face an additional
complexity burden to operate the data-plane. As opposed to transit routers and switches,
end-nodes do not aggregate traffic and thus, require fine-grain policies.

In this chapter we analyze the challenges of deploying SDN for end-nodes and discuss
practical design guidelines. As a result, we present a specific architecture based on a decentral-
ized and symmetric controller with an intent-driven northbound and a pull-based southbound.
We discuss the implications of the architecture and provide a proof-of-concept prototype that
shows the validity of the analysis and the feasibility of the architecture. To conclude the chapter
we provide a quantitative comparison of the proposed architecture with relevant related work.

3.2 Use-Cases

Network administrators can enhance the effective control that they have over end-nodes by
provisioning them with SDN-capabilities. This entitles to extend the fine-grain control and
centralized management enabled by SDN to the very end of the network. We can differentiate
three different use-cases categories.

Source control SDN capabilities at end-nodes enable dynamic and remote control of their
interfaces, which enables centralized management for load balancing and bandwidth aggrega-
tion. An operator would be able to balance a smartphone’s traffic between Wi-Fi and cellular
interfaces based on business agreements, remaining battery and/or device’s geo-location (e.g.
avoid traffic over cellular network when abroad). A remote backup company can leverage on
multi-homed end-nodes to aggregate the bandwidth of all available interfaces and speed up
transmissions.

Destination control SDN for end-nodes enables simpler and fine-grain control on the traffic
destination. For instance, a content provider can detour traffic to one datacenter or another
based on central control per end-node basis (e.g. to offer personalized content per end-user).
Similarly, another company can offer remote VPN (Virtual Private Network) management on
the devices of its employees dynamically tunneling the traffic depending on the destination (e.g.
to decide on-the-fly which traffic should be encrypted).

3.3 Challenges 41

Path control : Path control can be achieved by combining SDN-capable end-nodes with
some well-placed SDN nodes on transit networks. This allows companies to steer traffic
through transit SDN nodes to, for instance, optimize routing or apply in-path functions. As an
example, a parental filtering company can make use of such capabilities to filter traffic going to
the end-nodes and block inappropriate content.

3.3 Challenges

Achieving SDN support at the end-nodes is not straightforward since it presents a set of novel
challenges when compared to existing SDN deployments. First of all, there is a high number
of controlees, potentially reaching hundreds of thousands of nodes. Although existing SDN
deployments may handle a large number of controlees, this burden is heightened in the end-node
scenario when combined with the rest of its challenges.

In addition, in existing SDN deployments controlees are physically connected to the SDN
network, however in the end-nodes scenario the controlees are attached to legacy networks
at the edge. Such networks are usually out of the administrative control of the SDN domain.
Moreover, the controlees are scattered over these edge networks, potentially at a worldwide
scale.

Furthermore, the discussed scenario suffers from a high churn since end-nodes are transient
and highly mobile, this makes a difference with regular SDN where typically controlees are
stationary and always available. Besides, and contrary to common SDN devices, end-nodes
are subject to high heterogeneity in terms of capabilities and conditions (e.g. geo-location,
spectrum usage, remaining battery, etc). Finally, end-nodes have to face lower traffic locality
in contrast to typical SDN devices that usually aggregate traffic and take advantage of this to
speedup data-plane performance using caches, wildcards and/or longest prefix matches.

3.4 Design Guidelines

The resulting design principles to overcome the scenario challenges are summarized in Table
3.1. First, an overlay approach that encapsulates traffic at the data-plane is required to bypass
in-place networks and to offer a homogeneous view of the heterogeneous controlees. To be able
to encapsulate overlay traffic into underlay packets, the end-node has to retrieve the appropriate
rules by querying the NIB (Network Information Base), term that we borrow from [71]. Due to
the large number of data-plane nodes and the low traffic locality, this generates a high ratio
of requests from the southbound to the NIB. Therefore, the controller must be able to scale-
out to accommodate this very high volume of messages, while remaining decentralized and

42 Asynchronous SDN Architecture for End-Nodes

In-place networks

High # of controlees

Scattered nodes

Low traffic locality

Transient devices

Heterogeneity

• • Overlay deployment
• • Scale-out architecture

• • Decentralized/symmetric
• • • Connectionless pull-based
• • • Intent-driven

• IP granularity

Table 3.1 Challenges to design principles

symmetric since end-nodes are scattered and mobile and the queries may reach any controller
node. Considering these requirements we propose to use as NIB back-end a distributed database
designed for availability and partition tolerance, even if it offers eventual consistency.

Generally in SDN, data-plane nodes establish a connection with the controller to exchange
state, however end-nodes are transient and mobile, thus a regular connection-based southbound
protocol would impose frequent connection reestablishment. As a consequence an important
design guideline is to use a connectionless southbound that mitigates this burden and takes ad-
vantage of the symmetry of the controller to decouple controlees from specific controller nodes.
This eases end-nodes roaming and also simplifies on-demand controller nodes instantiation (i.e.
a new controller node can transparently start serving end-nodes previously served by another).
On the other hand, the controller can not push the state to transient nodes, since they might be
not available at the time the state is generated. To address this constrain, end-nodes must use a
pull-based mechanism for the southbound that allow them to retrieve the state on demand.

In addition, as opposed to transit routers and switches, end-nodes do not aggregate traffic,
which results in low traffic locality and a poor performance of caching techniques. In this
context it is not advisable to follow the common multi-tuple lookup granularity used in SDN
deployments, and rather it is recommended to use just IP granularity. This simplifies data-plane
implementation and reduces the complexity at the NIB. We have also carefully reviewed all the
use-cases discussed in Section 3.2 and found that IP granularity is enough to implement them.
It is also worth noting that if a new use-case requires per-flow granularity, then the NIB data-
model has to be carefully designed to trade-off the extra complexity (and associated increased
latency) with the requirements of the new use-case. Additionally, it has to be considered the
added flow setup time at the controlees against the latency requirements of the use-case.

3.5 An SDN Architecture for End-Nodes 43

Furthermore, the very large number of nodes to control, as well as the fact that they are
mobile and transient, makes programming via imperative northbound interfaces very complex.
In addition, the heterogeneity of the devices and their network conditions make challenging
defining per end-node policies. As a result we suggest to use an intent-driven approach (i.e.
a declarative language [36, 66, 93]) as the northbound interface, to define abstract policies to
apply to data-plane traffic.

Network Information Base

Controller
Node 1

Overlay

Pull-based
Connectionless

Intent-driven language
NB APP

D
at

a
p

la
n

e
N

B
C

o
n

tr
o

l
SB

Controller
Node 2

Controller
Node n

St
at

e

Figure 3.1 Architecture

3.5 An SDN Architecture for End-Nodes

Following the design principles from Section 3.4, we propose the decoupled-state architecture
depicted in Fig. 3.1. The architecture centralizes all the state in the NIB, composed by different
NIB nodes storing the partitions of a Cassandra database [75]. These NIB nodes are accessed
by distributed and symmetric controller nodes. To simplify the description of the architecture,
we consider that the physical machines hosting controller nodes also host NIB nodes (i.e.
Cassandra partitions plus state exchange logic), although decoupled-state architecture does not
impose such requirement.

44 Asynchronous SDN Architecture for End-Nodes

The controller nodes offer an intent-driven northbound based on the GBP (Group Based
Policy) [41] project to the control applications. The NIB nodes offer a connectionless pull-based
southbound implemented via LISP (Locator/ID Separation Protocol) [30, 126] to the data-plane
nodes. The data-plane nodes are provisioned with encapsulation capabilities to join a common
overlay.

3.5.1 Northbound

The policies are enforced from the northbound using a declarative intent-driven language that
is rendered at the controller to generate the data-plane state stored in the NIB. In particular we
propose to use a group-oriented declarative language given that related nodes will likely share
the same policies. To ease the implementation of the architecture we use the OpenStack [106]
backed GBP project as the northbound language since we can leverage on its already defined
syntax. Although, depending on the specific use-case, its syntax may need to be extended to
support further primitives (e.g. geo-location).

In the GBP language, end-nodes belong to groups and policies define how to prioritize links,
balance traffic or chain hops on the underlay. The policies can be defined for a pair of groups,
when one sends traffic to the other, or in general for the group’s default ingress and egress
policies, thus avoiding defining all possible group pairs. For instance, a particular use-case can
define the groups Employees’ Laptops and West Coast Office with the following default policies,
Employees’ laptops should use Ethernet for egress traffic and West Coast Office ingress traffic
should be balanced between Link-1 and Link-2. However, the use-case may also define that
when the traffic from Employees’ Laptops goes to West Coast Office it should use LTE as egress,
pass trough hop Firewall and use Link-3 as ingress. More complex groups are possible, such
Employees’ Laptops with battery below 15%, however complex use-cases require carefully
design, see Section 3.6.1.

3.5.2 Controller

The controller is supported by distributed, decentralized and symmetric nodes as the one
depicted in Fig. 3.2. They have an intent parser module that processes the northbound polices
that result in NIB state. The bootstrap module is used to initialize via NETCONF (Network
Configuration Protocol) [24] data-plane nodes.

The controller nodes receive abstract policies from the northbound and render them into
specific state to be stored at the NIB nodes. All the controller nodes have a connection to a
Cassandra database where the NIB is stored. The controller nodes coordinate among themselves
using a ZooKeeper [56] subsystem.

3.5 An SDN Architecture for End-Nodes 45

System Scalability

The architecture is able to scale-out using the Cassandra backend and symmetric design for
both the controller and NIB nodes. On one hand, the NIB is stored in Cassandra and thus the
system state will scale as good as Cassandra does. On the other hand, the controller and NIB
nodes have been designed to be analogous and to be used indifferently, and since they are all
connected to the same Cassandra back-end, they can all access the same state.

Since all the controller and NIB nodes are interchangeable and offer the same functionality,
the system can be scaled-out smoothly and presents no single point of failure. If the number
of controlees or the ratio of northbound operations increases, the controller can automatically
coordinate (via the ZooKeeper subsystem) the instantiation of a new NIB node or a new
controller node to redistribute the load.

This process is transparent to the data-plane nodes. From the southbound point of view,
data-plane nodes will detect an overloaded (or down) NIB node by the lack of acknowledgment
of their southbound requests and will eventually switch to a different one. This automatically
balances the load across different nodes. The distributed and symmetric schema for the NIB
nodes also encourages data-plane nodes to communicate with the NIB node that offers less
latency and to seamlessly move to a different one if needed.

It is also interesting to point that the state cached in data-plane nodes, and the ephemeral
state at the NIB (e.g. the list data-plane nodes registered) will eventually expire and be
automatically removed. This solves the problem of unnecessary state stored that can burden the
system performance and/or increase query time.

3.5.3 Network Information Base (NIB)

Each NIB node stores a Cassandra partition and is provisioned with a LISP interface, as shown
in Fig. 3.2. Among the available NoSQL databases we choose Cassandra [75] as the back-end
for the NIB since it is a general purpose database that offers huge scalability and almost constant
query latency time regardless of the size of the stored state [119], see Section 3.6.2. Via a LISP
interface each NIB node can exchange state with the southbound nodes.

Information Tables

For the scenario considered, the NIB does not need to represent a complete view of the network
topology, just the relations and interactions among the groups and the nodes belonging to
them. To that end, the NIB stored in Cassandra comprises three main tables, nodes, groups and
paths. Queries to the NIB will result (through one or more database queries) into rendered state
specific to the requester node (see Section 3.6.1).

46 Asynchronous SDN Architecture for End-Nodes

DB interface

Data-plane node

LISP

Northbound APP
Group-Based Policy

State exchange

Bootstrap

N
ET

C
O

N
F

Zookeeper

traffic encapsulated traffic

Intent parser

Cassandra
NIB

C
o

n
tr

o
lle

r

Figure 3.2 Controller and NIB nodes detail

Both groups and nodes provide ingress and egress policies pear each group/node. The paths
table includes policies to apply only to traffic between a specific group pair. While for groups
and paths the policies are in abstract form (e.g. ethernet preferred over Wi-Fi), in nodes they
are rendered into specific network state per node. All the tables include a timeout-evicted list of
requesters per entry, this is used to notify state changes if needed. The groups table also stores
per each group, the current active nodes and group proxies (see Sections 3.5.4 and 3.5.5). The
nodes table contains, besides the per-node-rendered policies, the node status (e.g. geo-location,
remaining battery, last time seen). Finally, other auxiliary tables store information about the
controller and NIB nodes themselves (underlay address, hardware specifications, recent load,
etc). An example of the information that could be stored in the different NIB tables is provided
below.

• Data-plane nodes: Node name (e.g. "Prof Alice’s phone"), overlay identifier (e.g intranet
IP address), node group (e.g. "Faculty phones"), general ingress/egress policies (e.g.
prioritize WLAN over LTE), current points of attachment (e.g. current public IP of the
WLAN iface), device state and status (e.g. geo-location, remaining battery), last time
online (e.g. Unix timestamp), proxy nodes to use (e.g. "North Campus" proxy), network
locators of requesters of their ingress data (e.g. a list of public IP addresses).

3.5 An SDN Architecture for End-Nodes 47

• Groups: Group name (e.g. "Faculty phones"), overlay identifier (e.g. intranet IP prefix),
general policies per group (e.g. prioritize WLAN over cellular networks), policies to
connect to other groups (e.g. when connecting to "Office network" use LTE), proxy nodes
to use by its members (e.g. "North Campus" proxy), data-plane nodes belonging to the
group (e.g. "Prof Alice’s phone", "Ass. Prof. Bob’s phone"), current active data-plane
nodes (e.g. "Prof Alice’s phone").

• Paths: Path name (e.g. "Secure access to office"), group-pair connected by the path
(e.g. "Faculty phones" to "Office network"), overlay identifier (e.g. phones prefix to
office prefix tuple), path-specific policies (e.g. overwrite interface priorities and prioritize
LTE), path logical hops (e.g. "CS building" gateway → "Firewall" → "Office network"
gateway), network locators of requesters of the path (e.g. a list of public IP addresses).

• Controller/NIB nodes: Location (e.g. public IP), hardware and network specifications
(e.g. memory size, link throughput), average recent load (e.g. low).

State consistency

To keep the state updated at the NIB, data-plane nodes send periodical keep-alive LISP control
messages registering their current status (e.g. battery, geo-location) at the NIB. These control
messages can also be triggered as a response to a data-plane event. When there is a state update
from a data-plane node (e.g. an interface goes down) the end-node sends an update to the
NIB and notifies other interested data-plane nodes of the change (e.g. peers with which it is
communicating).

When the state update comes from a northbound application (e.g. a modified group policy
changes the interface priorities for a set of nodes) the controller renders the new state and
installs it at the NIB. The insertion of new state may activate some database mechanisms that
trigger state consistency callback operations (see [136] for details). Using this, the NIB notifies
via the LISP protocol the state change to the data-plane nodes affected by it. If the change
modifies state that other data-plane nodes may have cached, the NIB notifies those too (e.g. a
node new ingress policy is notified to its requesters). Besides, the NIB has also to verify if any
new state introduced by the northbound (e.g. creation of a path policy for a group-pair) should
overwrite state previously cached at data-plane nodes (e.g. general destination-based cached
state), in that case the NIB notifies the relevant parties of the insertion of this new state.

48 Asynchronous SDN Architecture for End-Nodes

3.5.4 Southbound

The NIB state is pulled on demand by southbound nodes via LISP, a protocol to map overlay
identifiers to underlay network locators. LISP expresses policies on the overlay as priorities
and weights for the locators in the underlay. We advocate for LISP as the southbound protocol
since it is connectionless, pull-based and overlay oriented [126].

State Retrieval

Legacy Host
SDN-enabled
Home Router

Controller
Node A

Overlay Overlay

Underlay
SDN-enabled
Smartphone

Control

Data

Encap.
Data

Controller
Node B

NIB
Node B

NIB
Node A

Figure 3.3 Southbound state retrieval

Whenever there is new overlay traffic detected at a data-plane node, the node checks
its cache to get the information on how to encapsulate and forward the traffic. If there is no
information available for the requested traffic, the data-plane node has to request the appropriate
network state to the NIB.

To illustrate southbound state retrieval and its sequence, Fig. 3.3 shows an SDN-enabled
home router encapsulating overlay traffic (1) towards an SDN-enabled smartphone. To do so,

3.5 An SDN Architecture for End-Nodes 49

the home router requests the appropriate state to its nearest NIB node via the LISP protocol (2).
In the example depicted, the required state is not stored in the queried node and thus has to be
obtained from another Cassandra partition (3)(4). The state is then sent to the home router (5)
which uses it to encapsulate the overlay traffic through the underlay (6).

Generally, state requests include overlay traffic source and destination. Some use-cases may
include also port or protocol information, or even end-node details, such as current geo-location
or wireless channel(s) in use. For most of the use-cases, the NIB tries first to find if there is a
path available for the source-destination group-pair, if none is available it will then return the
default ingress policies of the destination. Different use-cases may require extra information
and NIB processing, but in all cases the reply from the NIB (that the data-plane node caches)
only contains source-destination based state (i.e. IP granularity). Moreover, if the data-plane
node is a standalone end-node (e.g. a smartphone), it can disregard source information and
index just by destination.

Finally, the NIB stores the network locator of the requester to notify updates if needed. This
requester data will eventually expire, therefore the data-plane node has to request periodically
the state to refresh this cache or to update its stored network locator (for instance, in the case of
a handover event).

While the state is being retrieved, the data-plane node can choose to either buffer the traffic
(if the node has available resources) or rather encapsulate the traffic towards a re-encapsulation
node. These re-encapsulation nodes have larger hardware capabilities and can offer more
buffering. In addition, they are provisioned per-group and therefore they can aggregate traffic,
resulting in a high cache hit ratio.

3.5.5 Data-Plane

The architecture considers all data-plane nodes alike, regardless if they are smartphones, home
routers or, for instance, datacenter gateways.

End-Nodes Bootstrap

Data-plane nodes should be statically provisioned beforehand with their overlay address -or
prefix- and the address of at least one controller node. How this provision is done is out to the
scope of the architecture, it could be factory settings, based on node specifications or configured
by the user. Data-plane node use the controller address to retrieve bootstrap configuration
via NETCONF. Once the bootstrap is done, any future control communication will be done
connectionless via LISP signaling. During the bootstrap, the controller provisions the nodes

50 Asynchronous SDN Architecture for End-Nodes

with an up-to-date list of NIB nodes, the list of their proxy nodes (see Sections 3.5.4 and 3.5.5),
and the default egress policies for their data-plane traffic.

Overlay Encapsulation

The architecture is agnostic to the specific encapsulation format used -e.g. VxLAN (Virtual
Extensible Local Area Network) [83]- and the choice must be made per use-case basis. The en-
capsulation chosen partially defines the rendered state that the NIB stores and the configuration
to be provided during the bootstrap.

Traffic encapsulation entitles to circumvent the traffic policies of the underlay and apply
overlay policies instead. Different priorities and weights can be set for underlay locators and
thus overlay routing can be enforced. Moreover, SDN-controlled data-plane elements can be
deployed in transit networks to help to bypass underlay out-of-scope policies. Re-encapsulating
data-plane packets at these nodes enables to effectively detour traffic. In order to use them,
re-encapsulating nodes are added as intermediate hops in certain path policies.

On the other hand, if a data-plane node needs to communicate to a host outside the overlay
namespace it can redirect the traffic to a proxy node connected to the legacy Internet. The proxy
node receives the traffic and takes care of decapsulating it and applying any NAT (Network
Address Translation) operation required (if the overlay traffic is not routable in the public
Internet).

3.6 Discussion

3.6.1 Use-Cases Complexity

Complex use-cases results in more database queries and potentially less parallelization of such
queries. The consequence is increased latency per request and more database nodes needed. For
instance, a use-case where groups depend on remaining battery and current geo-location makes
necessary to obtain first the proper group prior to query for group-based path policies. The
architecture has to keep a balance between the complexity of the queries (defined by the use
case), the number of southbound requests (defined by the traffic and its locality), the maximum
latency accepted and the number of database nodes. This trade-off has to be carefully analyzed
per use-case.

In the case of the PoC presented in this work in section 3.7 the database consumes the
time of one select operation per southbound state request. The main reason is that we use
IP addresses both to identify groups and nodes. This allows us not only to use directly the
information carried in the request to query the database without any pre-processing, but also

3.6 Discussion 51

to take advantage of parallelization to obtain at the same time group-based source-destination
policies and destination-only default ingress policies. Other use-cases that may not take
advantage of such optimization (e.g., groups depending on the remaining battery) may need
two or more sequential select operations (first to find the group and then the group-based path).

3.6.2 NIB Scalability

From our analysis and proof-of-concept we conclude that the main bottleneck of the system
is at the NIB, specifically at the database state-retrieval, given that the NIB has to support the
scalability requirements of the scenario. The NIB can be overloaded by the huge amount of
nodes pulling state, although this strongly depends on the characteristics of the use-case and
the complexity of the associated queries. Complex use-cases will require more (and potentially
more complex) queries and thus will impose more burden in the NIB.

To allocate the requirements of different use-cases, we have chosen Cassandra as the NIB
back-end since it is a general-purpose database that ensures constant latency times regardless
of the number of entries stored. Furthermore, it offers an operations per second ratio linear to
the number of database nodes. The authors of [119] show that under a stressful benchmark
with mostly read/scan operations, Cassandra is capable of keeping a latency of 20 ms and a
throughput of 20K operations per second on a 4-node cluster storing a dataset with millions of
entries. In a 12-node cluster the throughput goes up to almost 60K operations per second.

3.6.3 Security and Privacy

In the scenario and architecture discussed, the control of the end-nodes is partially relinquished
to the operator of the SDN infrastructure (e.g the network operator, the company owning the
end-device or a third party providing SDN-based services). There is a tradeoff between the
benefits brought by the SDN architecture and the lack of control at the end-node. This may
result in security and privacy concerns for end-users.

In general, SDN advocates for decoupling and centralizing the control. Thus, the lack of
control at the data-plane devices is not exclusive to the end-node scenario. Users have to decide
if they are willing to trust their SDN providers in the same way that they trust, for instance, the
manufacturer of their smartphone. However, under certain conditions privacy may enhanced by
adapting some of the mechanisms proposed in [124] and explained in Chapter 5.

52 Asynchronous SDN Architecture for End-Nodes

3.6.4 Architecture Resilience

The keep-alive southbound signaling will detect failures at data-plane nodes and update the
NIB state. Moreover, LISP supports active data-plane probing and if a problem is detected,
nodes can fast fail-over to backup data-plane policies. NIB-level failures are covered by
Cassandra background data-recovering mechanisms and ZooKeeper coordination will detect
and re-instantiate any down controller or NIB node if needed.

3.6.5 Signaling Overhead

Mobility generates frequent state updates, however this has to be notified to just a few nodes:
the requesters of the particular mobile node. On the other hand northbound policy changes (e.g.,
a new ingress policy for a datacenter) will generate a large amount of notifications, however
it is expected that such changes occur less frequently. In addition, the use-cases considered
in section 3.2 can operate well with partially outdated state for a certain period, this is not
typically possible in existing SDN deployments.

3.7 Proof of Concept

3.7.1 Setup

Figure 3.4 PoC topology

3.7 Proof of Concept 53

To evaluate the feasibility of the architecture, we have built a proof-of-concept (PoC)
by means of allocating five virtual machines (Ubuntu 14.04, dual-core, 4GB of RAM) on
the Amazon Web Services platform [1]. The machines are geographically located at Europe
(Ireland and Frankfurt), US East Coast (Virginia) and US West Coast (California and Oregon).
Each virtual machine hosts an instance of an in-house controller and a node of a Cassandra
cluster (ver. 3.1) that stores the NIB. Additionally, to serve as end-node we deploy a laptop at
our facilities at Barcelona running OpenOverlayRouter [100] (an open-source overlay software
with LISP support). Fig. 3.4 shows the PoC topology, controller/NIB nodes are in red (Ireland,
Frankfurt, Virginia, California, Oregon) and the end-node in blue (Barcelona). For reference,
we provide the average Round Trip Time (RTT) between all the PoC locations in Table 3.2. To
obtain the average RTT we measured 1K ping iterations per pair (standard deviation was less
than 1 millisecond in all cases).

Barcelona

Ireland
Frankfurt

Virginia
Califo

rnia

Oreg
on

Barcelona - 53 47 108 181 177

Ireland 53 - 20 81 155 138

Frankfurt 47 20 - 89 166 165

Virginia 108 81 89 - 81 80

California 181 155 166 81 - 20

Oregon 177 138 165 80 20 -

Table 3.2 Average RTT between PoC locations (in milliseconds).

We artificially generate state and populate Cassandra for three different NIB sizes: 100K,
200K and 400K end-nodes. In all cases, the set of end-nodes is composed of -approximately-
0.2% datacenter gateways, 49.9% home routers and 49.9% mobile nodes. We use IPv4 prefixes
as overlay identifiers for both abstract groups and specific nodes, in particular we select /12
prefixes for groups, and then /16 for datacenter gateways, /27 for home routers and /32 for
mobile nodes. Respectively to the NIB size, we distribute the end-nodes across 100, 200 and
400 different groups.

54 Asynchronous SDN Architecture for End-Nodes

3.7.2 Experiments

To asses the PoC implementation, we run three different experiments. First, we generate traffic
in our end-node addressed to end-nodes stored in the NIB and measure the time the end-node
takes to retrieve the appropriate routing policies from the NIB. We configure our end-node in
Barcelona to use the NIB node in Ireland. For each of the three different NIB sizes we generate
15K unique flows. We plot the latency results as Cumulative Distribution Functions (CDF) in
Fig. 3.5. The results show that the latency is independent of the NIB size, which is coherent
with the discussion in Section 3.6.2. The figure also shows that the latency has a constant
component (NIB processing and NIB to end-node transmission) and then a variable component,
depending on from which Cassandra partition the state has to be retrieved. Latency values tend
to cluster around roughly three points, that can be associated with the different delays involved
to retrieve state stored in either Europe, US West or US East.

For a second experiment, we update the NIB state through the northbound and measure the
time since the controller node (at Ireland) receives the northbound message until the NIB node
collocated within the same VM sends the state-updated notification to the southbound. For
each NIB size, we update state for 15K different end-nodes and plot the CDF in Fig. 3.6. The
figure resembles Fig. 3.5 since most of the latency is due again to the network transmission
delay between the different Cassandra nodes. Northbound update time is measured directly at
the controller node and thus no latency is induced by the NIB to end-node transmission. This
makes Fig. 3.6 to be shifted to the left around 50ms (Barcelona-Ireland RTT) when compared
to Fig. 3.5. Besides, both Fig. 3.5 and Fig. 3.6 show minor latency variation across NIB
sizes. This is due to the variation of network conditions over different iterations (since the
PoC runs over the Internet) and to the randomness introduced during the process of generating
traffic/updates.

Finally, we perform a test where we bootstrap the end-node and measure the time since it
notifies its presence to the controller until the end-node acknowledges correct configuration
installed. In this case the end-node uses a random controller node on each iteration. We perform
7K iterations for the worst-case of 400K end-nodes. In the bootstrap case, the latency depends
not only on Cassandra delay, but also on the NETCONF communication between the controller
and the end-node. This explains why the slope is softer in Fig. 3.7. Nevertheless, it is still
possible to identify clustering regions, depending on how close the NIB node reached is to the
Cassandra partition storing the state.

3.7 Proof of Concept 55

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400

P
ro

ba
bi

lit
y

Time (in miliseconds)

100k end-nodes
200k end-nodes
400k end-nodes

Figure 3.5 Latency for southbound state retrieval (15K iterations)

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400

P
ro

ba
bi

lit
y

Time (in miliseconds)

100k end-nodes
200k end-nodes
400k end-nodes

Figure 3.6 Latency for northbound state update (15K iterations)

56 Asynchronous SDN Architecture for End-Nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4

P
ro

ba
bi

lit
y

Time (in seconds)

400k end-nodes

Figure 3.7 Latency for end-node bootstrap (7K iterations)

3.8 Related Work

There have been other works that discussed the interactions of end-nodes and SDN, nevertheless
and to the best of our knowledge, this thesis is the first ever to carefully explore all implications
of a full deployment of end-nodes. For instance, the authors of [143] enable SDN within a
mobile device to aggregate all its available interfaces. However, and contrary to our work, they
do not consider that end-nodes can be transient, scattered, with low traffic locality and very
numerous. Similarly, the authors of [90] extend OpenFlow [87] to bring SDN to end-nodes and
complement existing approaches in the field of Software-defined Radio. They -intentionally-
kept out the scope the complete architecture to support SDN-aware nodes, which we address in
this thesis.

On the field of service-centric networking, previous work has shown the value of enhancing
the network capabilities of end-nodes. The authors of Serval [98] propose a service-oriented
end-host stack to seamlessly change network addresses, migrate flows across interfaces or
establish additional flows towards services. Despite its inherent benefits, Serval is not designed
to be an SDN solution. Therefore, and as opposed to our proposal, it does not offer some
SDN features, such centralized control or network programability. In a posterior work, the
authors of OpenADN [108] envision a similar service-centric architecture but enhanced with
an OpenFlow SDN controller. Similarly to our work, they also use an overlay approach to

3.9 Conclusions 57

bypass the limitations of the underlay network. OpenADN framework focuses on switches at
access networks and does not include devices at the very end of the network (e.g. smartphones).
Consequently, OpenADN does not discuss OpenFlow drawbacks when the controlees are
transient and highly mobile, or the challenges associated to programming highly heterogeneous
data-plane devices. In our proposal we address such issues by a connectionless pull-based
southbound and an intent-driven northbound.

In terms of the specific engineering solution proposed, our proposal follows some of
the architectural principles of ONOS [5], a highly-scalable architecture for regular SDN
deployments. ONOS proposal optimizes the system and reduces generality in order to achieve
a high performance (e.g. it stores the NIB in a graph database with an optimized back-end
rather than in Cassandra). Contrary, we prioritize generality to allow different use-cases and
support highly heterogeneous end-devices. In the end-node scenario it is possible to keep
high generality without comprising system performance given that first, the scenario does not
require a real-time detailed view of the network (thus state transactions impose less burden)
and second, end-nodes do not need to react as fast as typical SDN equipment to state changes
(therefore more complex state processing is possible).

3.9 Conclusions

This chapter describes the specific challenges of the end-nodes scenario and why existing SDN
approaches can not be directly applied to it. In that sense, we have provided a set of design
guidelines for the scenario and engineered a possible architecture following these guidelines.
The proof of concept shows that the architecture is feasible as long as the network operator is
able to balance the complexity of the specific use-case with the requirements in terms of latency
and number of NIB and controller nodes. To minimize this latency, the state has to be -partially-
rendered in advance in order to decouple state rendering from state retrieval. Furthermore, this
work also highlights the benefits of directly exposing the NIB to data-plane devices to let them
retrieve the state they need on demand. We believe that SDN for end-nodes is a new scenario
to explore and future work can be carried out to optimize the architecture presented in this
chapter.

Chapter 4

Decentralized SDN Architecture for
Operators NFV

The Network Function Virtualization (NFV) paradigm is rapidly gaining interest among Internet
Service Providers (ISPs). However, the transition to this paradigm on ISP networks comes with
a unique set of challenges, namely legacy equipment already in-place, heterogeneous traffic
from multiple clients, and very large scalability requirements. In this chapter we thoroughly
analyze such challenges and discuss NFV design guidelines that address them efficiently.
Particularly, we show that a decentralization of the NFV control while maintaining global
state improves scalability, offers better per-flow decisions and simplifies the implementation of
Virtual Network Functions (VNFs). Building on top of such principles, we propose a partially
decentralized NFV architecture enabled via an enhanced decoupled-state SDN infrastructure.
We also perform a qualitative analysis of the architecture to identify advantages and challenges.
Finally, we determine the bottleneck component, based on the qualitative analysis, which we
implement and benchmark in order to assess the feasibility of the architecture.

4.1 Introduction

The Network Function Virtualization (NFV) paradigm enables software-hardware decoupling,
flexible deployment of network functions and dynamic service provisioning [49]. Consequen-
tially, it is raising special interest for Internet Service Providers (ISPs) since it will help reduce
operational costs and network complexity.

However, ISP networks are challenging due to its large size, the legacy networking hardware
already in-place and the heterogeneous traffic generated by ISP’s customers. Therefore, an
NFV architecture for ISPs must offer a platform able to scale to a wide range of different

60 Decentralized SDN Architecture for Operators NFV

workloads and network conditions, while remaining agnostic to the Virtual Network Function
(VNF) types required to process the different kinds of traffic.

These requirements dramatically increase the complexity of centralized control. Therefore,
we suggest that typical NFV approaches with centralized control fall short for the ISP scale.
Those solutions tend to leverage on Software-Defined Networking (SDN) [74] approaches that
-logically- centralize both the state and the control. We advocate that, while the network state
should be centralized, the control decisions must be decentralized and made locally.

In this chapter, we analyze these requirements and propose a set of design guidelines to
address them. Based on these principles, we describe a novel decentralized architecture that
offloads part of the control to an enhanced SDN infrastructure and that federates local state
through a global database. This makes possible to make efficient local decisions based on
global knowledge, allowing to elastically accommodate VNFs and client flows. The enhanced
SDN is enabled by collocating NFV modules within the SDN controllers and then pushing the
controllers close to the data-plane devices they control.

Along with the architecture we present a qualitative analysis that highlights the architectural
advantages -easy VNF provisioning, enhanced flow granularity and improved scalability- and
challenges -induced latency, lack of control on the underlay network and implementation com-
plexity of the decentralized components-. Based on this analysis we identify the performance
bottleneck of the system. To assess the feasibility of the architecture, we provide and evaluate
an implementation for this element that we support with experimental performance results.

4.2 Scenario Requirements

ISPs deploy in-network functions to efficiently manage the traffic and offer value-added services
to their costumers. The NFV paradigm allows providers to reduce both capital and operational
expenses by enabling easier and cheaper deployment and simplified management of network
functions. However, bringing NFV to ISP networks present a unique set of challenges. In
addition to performance, manageability, reliability, stability, and security [49, 51], an NFV
solution for ISP networks has the following requirements:

Compatibility with legacy hardware Usually, ISP networks are long-run deployments
where there has been a significant investment in network equipment. Contrary to enterprise or
public IaaS cloud datacenters which in many cases are greenfield deployments, the networking
hardware of ISPs is already in place and in most cases it is not simple to update, upgrade or
replace. The architecture should remain agnostic to the underlaying devices and thus be able to
be deployed on top of current networks.

4.3 Global State, Local Decisions 61

Support for heterogeneous traffic As opposed to the traffic observed in a data center net-
work, the expected traffic in an ISP network will likely come from a wide range of costumers
and presents diverse characteristics. Such traffic will require different kinds of processing by
large sets of heterogeneous network functions.

High scalability Although scalability is a general requirement for NFV, in the case of ISP
networks the size of the deployment becomes the major concern for any NFV architecture.
These networks are typically very large and comprise millions of users. To accommodate such
huge deployments the architecture needs to scale-out smoothly.

VNF 1

VNF n

State database

VNF 1

VNF n

VNF 1

VNF n

NFV Management and Orchestration (MANO)

SDN
controller

SDN
controller

SDN
controller

Figure 4.1 Common centralized NFV approach

4.3 Global State, Local Decisions

With the advent of SDN and the possibilities of control-data decoupling, network architectures
usually centralize the control to ease network deployments. However, we believe that the major
challenge of an NFV deployment for ISP networks is that their scale, in terms both of traffic and
number of independent subscribers, increases the complexity of keeping a scalable -logically-
centralized control.

In that sense, we take base on the existing work on SDN [5, 59] that proposes a distributed
control, and take that approach further advocating for an NFV architecture where the control is

62 Decentralized SDN Architecture for Operators NFV

not only distributed but also partially decentralized. We seek to find a middle ground, between
the decentralization of legacy networks and the centralization brought by SDN, where the
benefits of both approaches can be combined and maximized.

We argue that this optimal balance can be achieved by enforcing local decisions while
keeping global state. That is, federating the state generated locally to make the outcome of
the local decisions globally available. As a result, the decision on how to act on a flow can be
made by the node that detects the flow, but taking into account the global state of the system at
that time. This approach is possible thanks to applying the principle of decoupling state from
control proposed in this thesis.

4.4 Design Principles

In what follows we propose a set of design guidelines to achieve this partial decentralization as
well as to face the other requirements of the ISP scenario.

MANO disassembling We refer to the ETSI architectural framework [27] that defines the
Management and Orchestration (MANO) system as the central point for NFV control [28].
The MANO system comprises the global orchestration of the architecture and the management
of the VNFs and the virtualized infrastructure. Albeit this system may be -and in most cases
is- physically distributed, it remains as a logically centralized point of control as shown in
Fig. 4.1. We propose to keep centralized the service/functions catalogs and the general NFV
orchestration, and partially the management of the virtual resources other than network (storage,
computing), since this management is local per each datacenter but centralized within its locality.
However, we advocate that the management of the virtual network can be completely offloaded
to the infrastructure and totally decentralized and auto-coordinated thanks to an enhanced SDN
infrastructure. In a similar fashion, the VNF management can be also partially offloaded. While
the creation and destruction of VNF instances should be still coordinated by a centralized entity
(e.g. OpenStack [106]), the monitoring, balancing and load assignment can be decentralized
and coordinated directly by the enhanced SDN infrastructure. In this chapter we use the
term MANO loosely and focus on the networking aspects of the system, i.e. the enhanced
SDN-fabric. For the rest of the MANO components not discussed in detail we leverage on the
existing solutions.

SDN infrastructure enhancement To achieve an enhanced SDN infrastructure the different
instances of the SDN controller (located at the MANO system and used to control the network)
must be isolated and pushed close to the data-plane devices they control, effectively enabling a

4.4 Design Principles 63

decoupled-state SDN architecture. Furthermore, part of the MANO system itself should be
partially distributed over those controller instances to achieve better local control, as shown
in Fig. 4.2. We seek not only to put some NFV and SDN elements collocated with the
data-plane nodes (as the authors of [86] propose), but also to effectively offload the control
to those elements. The state database remains as part of the centralized MANO, but it is
mostly updated by the decentralized controllers. Since these controllers are collocated with the
data-plane devices, they have rich information about the traffic and thus can make faster and
better decisions than a centralized MANO.

Offload redundant VNF functionality This decentralized and enhanced SDN infrastructure
with distributed MANO modules offers a general framework where different VNF types can be
allocated. This framework allows offloading redundant features of VNFs (e.g. VNF resilience,
load balancing, etc) to their local MANO modules that coordinate among themselves thanks to
the federated global state (see Fig. 4.2). This results in modular, optimized and compact VNFs,
which enables a VNF-agnostic architecture that can efficiently handle the different kinds of
traffic expected on ISP networks.

SDN controller

NFV Management and Orchestration (MANO)

State database

VNF 1

VNF n

VNF 1

VNF n

VNF 1

VNF n

MANO
module

SDN controller
MANO
module

SDN controller
MANO
module

Figure 4.2 Decentralized NFV based on an enhanced SDN

Overlay encapsulation To overcome the constraint of the network equipment already in
place, the architecture should leverage on deploying an overlay that encapsulates traffic over

64 Decentralized SDN Architecture for Operators NFV

the legacy infrastructure. In this context, we differentiate three parts in the network, overlay,
underlay and outerlay. The first is the virtual network instantiated by the architecture through
encapsulation and the second is the legacy network beneath based on off-the-shelf hardware.
We use the term outerlay to refer to the external networks that generate/receive the traffic and
that connect to the overlay through enhanced SDN edge nodes. The specific encapsulation
(e.g. VxLAN [83], NVGRE [40], MPLS [127], etc) used to instantiate the overlay is not
architecturally relevant and will depend on the specific underlay beneath.

Strong identity-location decoupling Finally, to support the model of an VNF-agnostic
overlay-based system with decentralized control, the architecture must enforce a strong de-
coupling of identity and location semantics and introduce different levels of indirection. In
general, we aim to solve NFV challenges by moving the network appliances to the datacenter
and then getting the outerlay traffic there. Identity-location split is required to maintain real
time mappings of VNFs to datacenter servers, overlay traffic to underlay tunnels and outerlay
clients to offered services.

4.5 Architecture

Building on the design principles discussed in Section 4.4, we propose an NFV architecture
(see Fig. 4.3) that leverages on two main components. First, a set of edge nodes comprising
hardware and software SDN switches and an SDN controller (provisioned with some MANO
modules), and second, a distributed database that federates the state across the system.

4.5.1 Edge Nodes

Due to the legacy equipment already in place it is not cost-effective to upgrade all nodes in the
network to support the required NFV capabilities. Therefore, the architecture relies on just
upgrading the nodes at the network edges, i.e. the ingress/egress points of clients’ networks
and the ToR (top of rack) switches of the VNFs virtualization racks. Given the characteristics
of ISP networks, these edge nodes should offer flow granularity for packet processing while
keeping line-rate throughput on the data-plane and low-latency times for the control-plane.

To achieve this, we propose the edge node design depicted in Fig. 4.4 where an SDN
controller is collocated with a hardware SDN switch to minimize switch-controller latencies.
On the other hand, this hardware SDN switch is able to process the traffic at flow granularity
and line-rate speed via minimizing the lookup time i.e. only performing exact match lookup
over a minimal set of packet fields (e.g. 3-tuple). Any packet that does not hit an exact match

4.5 Architecture 65

entry (i.e. no rule available for its flow) is sent upwards to the control-plane through a software
SDN switch. Although slower, the software SDN switch allows performing as granular flow
look-ups as required (e.g. coarse 5-tuple) and define as many rules as needed. The software
SDN switch contains detailed rules to classify the flow according to a given profile and hand it
to the appropriate MANO service module located within the SDN controller.

These MANO modules are per-service specific software pieces that can assign flows to VNF
chains and program accordingly the hardware switch (see Section 4.5.4). Once the software
switch has classified the flow and handed it to the proper MANO module, the module will
check if there is already cached an VNF chain suitable for the flow. If that is not the case, it uses
the controller’s database interface to retrieve a suitable chain from the federated information
(see Section 4.5.2). If no suitable chain exists for that specific flow, the service module has to
compute one itself as described in Section 4.5.4. After retrieving/computing the VNF chain,
the MANO service module uses the controller’s southbound interface to program (e.g. via
OpenFlow [87]) the exact match rules in the hardware switch. Subsequent packets of the flow
will hit the exact match entry and be processed at hardware level.

Global state database

Underlay

Subscribers Internet

V
N

F 1

V
N

F 2

V
N

F 3

V
N

F 4

Traffic
classification

Traffic
forwarding

State
exchange

Encapsulated
traffic

Traffic

M
A

N
O

Edge
node

M
A

N
O

Edge
node

Edge
node

M
A

N
O

Edge
node

M
A

N
O

NFV Management and Orchestration (MANO)

Figure 4.3 Proposed architecture

66 Decentralized SDN Architecture for Operators NFV

4.5.2 Federated Global State

A physically distributed, but logically centralized, database federates all the state generated
locally at the edge nodes (e.g. computed VNF chains, etc) and makes it globally available to
the whole infrastructure. It also stores general MANO information (network services catalog,
VNF catalog, VNF instances, infrastructure status, etc) [28] and in this sense is populated both
by the distributed MANO elements and by the centralized MANO subsystem. A summary of
the information stored is provided below.

• VNF class → VNF instances: The abstract VNF classes that the different service use are
instantiated into (and mapped to) specific VNF instances.

• Flow → VNF chain: Each flow already processed is mapped to its assigned chain of
VNF instances.

• VNF instance → Instance status: Per each VNF instance the database stores i.e. its
current location, the number of flows assigned to it, its reachability, etc.

The database follows a strong location-identity decoupling model to store the information
which allows to easily introduce different levels of indirection. This entitles end-points to
smoothly move across different access networks and allows VNFs to be elastically allocated
both inside and outside a datacenter. Following this model, the edge nodes have to register
in the global state their network location mapped to the subscribers they are serving, and the
MANO system has to register the locations where it is allocating the VNFs.

For the database implementation, the architecture uses a DHT database back-end in order to
offer a scalable storage with a delimited query time. In terms of available solutions, Cassandra
[75] can fulfill the requirements due to its good availability and excellent scale-out capacity
[119]. For the front-end interface to the database, the architecture uses LISP [30, 126], a pull-
based protocol that allows retrieving identity-to-location mappings from a central repository.
LISP fits well the identity-location split model required by the architecture and offers an
interoperable (i.e. IETF-baked) and lightweight mechanism to retrieve state.

Given that the large size of the network leads to considerable state to store, to keep the
architecture scalable the state is only pulled on demand by edge nodes. Therefore, in order to
notify changes and keep the state consistent the database follows a publish-subscribe mechanism
[4]. As an example, if a VNF instance has to be moved to a different physical host, the edge
nodes making use of the instance will be notified in order to allow them to encapsulate the
flows towards the new location of the instance.

4.5 Architecture 67

4.5.3 Virtual Network Functions (VNFs)

The VNFs are allocated in generic virtualization racks with an edge node as ToR switch.
Due to the encapsulation and the location-identity split, the VNFs can be dynamically moved
across hosts, racks or datacenters. Therefore, the model allows to both encapsulate the traffic
towards where the VNFs are and/or move the VNFs close to where the traffic is. All this path
computation complexity is offloaded to the MANO service modules at the edge nodes.

In this architecture, the VNFs are unaware of the rest of the system (i.e. they do not know
the next hop for a flow) therefore the scope of the VNF state is restricted to flow processing.
The fact that the VNFs are unaware of each other simplifies their elastic allocation and the
deployment of new services, since different VNFs from different services can be easily chained.

The architecture keeps VNFs as simple as possible. Ideally each VNF should do only one
single task. The idea is to be able to create complex services by chaining several VNFs while
maintaining a flexible system that can scale-out in a modular fashion. That is, if a VNF is
experiencing high load, that specific VNF can be scaled-out independently without affecting
other VNFs in the chain.

In this sense, the architecture trims out redundant logic common to all VNFs and moves
it to the distributed MANO modules. Scalability, load balancing, high availability, etc, are
decoupled from the VNFs and offloaded to the infrastructure. For instance, a VNF processes
packets unaware of any balancing policies and it is its local MANO module that monitors the
load and takes care of tuning the general system to properly balance flows among different
VNFs.

The combination of an architecture that is VNF-agnostic and of VNFs that are simple, light
and interoperable, enables VNF outsourcing. The VNFs do not need to be specifically developed
for the particular NFV system but rather can be developed by third parties and smoothly
integrated with other VNFs. The architecture eases the development of such outsourced VNFs,
since VNF-vendors can leverage on the mechanisms offered by the infrastructure and thus
avoid dealing with ISP networks scalability or availability requirements.

4.5.4 Management and orchestration (MANO)

The architecture leverages on a service-based model where the centralized MANO installs
distributed service-specific modules in the edge node controllers, and programs the software
SDN switches to redirect service-specific traffic to the proper MANO module. Services use the
centralized MANO subsystem to create the VNFs, but through these distributed modules, each
service defines the traffic to be processed by the service, the VNF classes that should process

68 Decentralized SDN Architecture for Operators NFV

MANO
service
module

MANO
service
module

MANO
service
module

SDN switch (Per-service match)

Southbound interface

OF

Database interface

LISP

SW

HW

SD
N

 C
o

n
tro

ller

SDN switch (Exact match)
Data Encap.

data

Figure 4.4 Edge node internals

the traffic, how to build on-demand VNF chains based on available VNF instances and how to
re-allocate and move the traffic and the VNFs.

To program the hardware switches at the edge nodes, the decentralized MANO modules
need to know the VNF chain assigned to a flow or compute one if none exists. The service
description defines the classes of VNF to chain, but the service implementation per module
decides which is the best VNF chain among all possible VNF instances. For instance, for
a real-time analytics service the best chain may be composed of VNF instances placed in
low-latency locations while for an on-the-fly video decoding service the chain may comprise
the currently less loaded VNF instances. A computed VNF chain is stored in the database
to make it available globally and cached locally to assign it to similar flows in the future.
The distributed service-specific MANO modules monitor the traffic and the VNFs and are
synchronized with the federated global state and with the central MANO subsystem. Therefore,
they can reassign flows to different chains or recompute chains if required. Such changes will
be notified to the rest of the system as described in Section 4.5.2.

4.6 Qualitative Analysis 69

4.6 Qualitative Analysis

The proposed architecture results in a set of qualitative advantages and technical challenges
that we analyze in this section.

4.6.1 Advantages

Decentralization boosts scale-out

Since the coordination required among the different parts of the architecture is relaxed, it is
easier for these parts to scale-out independently. This can be achieved for the architecture as a
whole (e.g. adding more edge nodes) or for each component individually (e.g. adding more
physical servers to an edge node cluster).

Flow granularity even at large networks

The optimized flow lookup allows for more flows to be handled per each hardware switch and
thus reduces the cost of scaling-out the edge nodes to allocate more traffic. In general, all
architecture components are designed to keep flow granularity despite the network size. Edge
nodes process flows in parallel independently, VNFs keep only per-flow state and the federated
database uses a plain namespace with constant access time.

Better per-flow decisions

The decisions on how to process a flow are taken close to the data-plane devices carrying the
flow itself. Therefore, more and richer per-flow information is available. The flow granular-
ity processing and this detailed per-flow information entitle for complex per-flow decisions,
something that is challenging to accomplish with traditional logically centralized architectures.

Simpler VNFs and VNF outsourcing

Offloading redundant network functions features to the enhanced SDN infrastructure enables to
reduce VNF complexity. This combined with the VNF agnosticism enabled by the architecture
offers the possibility of outsourcing the VNF development to third parties.

70 Decentralized SDN Architecture for Operators NFV

4.6.2 Challenges

Global state query latency

The architecture forces edge nodes to retrieve state from the global database (e.g. to check
if there is already a VNF chain associate to a flow) and to keep this state updated. Although
state queries are done in parallel (i.e. they do not affect architecture’s scale-out properties),
the architecture needs to ensure that this state retrieval is fast enough in order to avoid being a
burden for the system performance.

However, technologies already available should offer low enough query time. In particular,
the read operation of a Cassandra (or equivalent) DHT database will add no more than a few
milliseconds even under high loads [119] and an optical underlying transport connecting the
edge nodes to the database will only induce latency in the order of microseconds [64].

Lack of control for the underlay network

The architecture uses the underlay network and has to rely on its correct operation. If that is
not the case the architecture has no control over it and is unable to fix the problem.

However, ISP networks will likely have their own troubleshooting and healing mechanisms,
as assumed in [59], and be reliable enough to allow the correct operation of the architecture.
Even though, in the case of a major connectivity problem, the enhanced SDN infrastructure may
be able to transparently redirect the traffic to a reachable point thanks to the identity-location
split schema enforced.

Edge node implementation

The proposed service-based decentralization presents a particular challenge at the edge nodes
since it requires complex classifying and forwarding mechanisms that need to remain scalable.

For the embedded controller, each MANO module is independent of the others and its
performance is not affected by the number or complexity of other modules and therefore
scale-out requirements can be met with a cluster-friendly controller (e.g. OpenDaylight [103])
able to distribute the load. On the other hand, the hardware switch is agnostic to the service
complexity or its number since it only considers independent exact match rules, and thus it can
be scaled-out across several hardware devices.

The bottleneck of the system is the software switch. In this case, contrary to the rules
allocated in the hardware switch, the rules required to support more services or more complex
ones comprise wildcarded fields, longest prefix match lookups and different priorities (since
these rules will likely overlap). This makes the complexity of flow classification at the software

4.7 Software Switch Implementation 71

switch to increase non-linearly with respect to the complexity or number of services. As a result,
the architecture needs a software switch capable of achieving the linear scalability required
by the large number of flows expected, despite the non-linear complexity faced in the flow
classification. This makes the software switch the greatest challenge of the architecture.

4.7 Software Switch Implementation

From the analysis on Section 4.6, we conclude that the scalability on the system will be capped
out by the performance achieved by the software switch. In the related research literature it
is possible to find different performance evaluations for software switches reporting different
results [114, 145, 23, 111]. To asses the feasibility of the architecture, in this section we discuss
the software switch implementation.

We measured the performance of currently available software switches, particularly Open
vSwitch [111], and we were able to achieve 11M packets per second (pps) using OVS 2.3.1
(DPDK-optimized [58]) on a single core with 100 OpenFlow rules and less than 100 traffic
flows. This number is similar to the one reported in [23] and, at the best of our knowledge, this
is due to caching lookup results for known flows to effectively bypassing the OpenFlow lookup
tables. When we raised the number of flows to 500K, a number closer to the ISP scenario,
the performance dropped to 300K pps. We observed also non-linear scaling since a 8-core
configuration only achieved 1.2M pps. The hardware used for these tests was similar to the one
described latter in this section.

To achieve ISP performance requirements we implemented our own in-house software
switch, written in C and leveraging on DPDK. It is based in a multithreaded design where all
threads have access to the rules from a common memory space. Each thread handles a subset
of the flows distributed to it based on 5-tuple hashing performed by the NICs, using Receive
Side Scaling (RSS) technology with a queue per thread. The OpenFlow tables are presented
as static tables and updates are performed on a shadow copy of those tables. Periodically
the shadow copy is switched with the active table set, updated with the changes made on the
shadow copy and from there updates commence on the new shadow. The key to the high
performance implementation is that for every packet, the relevant rules are fetched into cache
memory just in time for lookup. By pipelining the rule prefetching (i.e. handling a few packets
in parallel by each thread) the throughput is achieved by effectively always referencing rules
that reside in the CPU cache (and not in off-chip memory). As a result, the performance is
almost independent of the number of rules.

To measure the scalability of the proposed software switch we performed the following
benchmark. We ran the switch on an Intel-based server with dual Intel Xeon E5-2690 2.9GHz

72 Decentralized SDN Architecture for Operators NFV

 0

 5

 10

 15

 20

 25

 30

 35

100 100K 100M

M
ill

io
n
s

o
f

p
a
ck

e
ts

 p
e
r

se
co

n
d

Number of OpenFlow rules

Packet size
64 bytes

100 bytes
500 bytes

1400 bytes

Figure 4.5 In-house software switch performance with millions of rules

8-core per socket CPU (i.e. 16 total cores) with 128GB of RAM and a set of 16 interfaces of
10Gbps each. We populated the switch with rules ranged from 100 to 100M and we generated
traffic evenly distributed across all rules (i.e. the traffic was forged to hit all rules at the same
rate). Fig. 4.5 shows the packets per second processed by the switch for different numbers
of rules and packet sizes. In all cases the delay per packet was constant and around 50 µs.
The figure shows how the switch scales almost linearly and achieves the requirements of the
architecture.

4.8 Related Work

Recent research directions seem to point to an interest of the community into achieving better
control of the underlying resources, however there is a lack of an architecture able to fulfill the
requirements of all the different research proposals. In this sense, the architecture discussed in
this chapter can fill this gap with its decentralized approach and its autonomous NFV modules
collocated in the SDN controllers. Moreover, it can lay the foundations for the advent of
this new generation of architectures where the NFV control is thigh coupled with the SDN
infrastructure.

4.9 Conclusions 73

An early example on how to enhance SDN data-plane devices by pushing some control to
them can be found in the work of Risso et al. [121]. The same authors later proposed in [14]
an extended framework where they describe a dynamic NFV architecture targeting operator
networks. In our work we move forward on that direction by collocating all the SDN control
with the data-plane elements.

One example of such research is the work by Gember-Jacobson et al. [42] where they design
an API to allow network functions to coordinate among themselves in an NFV-SDN scenario to
offer better packet processing. The decentralized MANO modules of the presented architecture
can intercommunicate with API-enabled network functions and thus enable enhanced flow
processing.

Another example of this research trend is the work of Matias et al. [86] that propose to
leverage on the SDN capabilities of the network to directly implement some VNFs without
the need of allocating a VM with the VNF. For instance they argue that a firewall can be
implemented by means of OpenFlow rules installed in the networking devices that drop (or
allow) packet belonging to target flows. This proposal can use the architecture presented in this
chapter to efficiently program the edge node switches to implement SDN-based VNFs.

Beyond academic initiatives, industry-driven projects like Telefonica’s OpenMANO [105]
also shows an interest in modifying existing NFV solutions to, among other goals, achieve
a closer control of the network fabric. To that end, they modify OpenStack to better control
a networking infrastructure based on Intel’s DPDK. The architecture that we propose can
similarly program a DPDK data-plane in the same way it programs the edge node hardware
switches.

4.9 Conclusions

The architecture presented in this chapter aims to address the scalability concerns of large ISP
networks via partially decentralizing the MANO system. Contrary to most NFV proposals, the
SDN controllers used by the MANO are collocated with their controlees and provisioned with
NFV modules. This enables faster local processing by means of reducing centralization. In
general the architecture seeks to find a good tradeoff of complexity, performance and scalability
by decentralizing some components while keeping a centralized state. This results in a set of
benefits for NFV deployments on ISP networks such as, enhanced scale-out capacity, flow
granularity decisions and optimized VNFs. However, these benefits come at the cost of some
associated challenges, particularly the egde node complexity introduced by the decentralization.
We identified the software switch needed for flow classification at the edge nodes as the

74 Decentralized SDN Architecture for Operators NFV

bottleneck of the system and proposed a switch implementation able to fulfill the performance
requirements of ISP networks.

Part II

Deploying SDN for End-Nodes

Chapter 5

Privacy for LISP Mobile Nodes

LISP offers native mobility by decoupling IP addresses semantics into Endpoint Identifiers
(EIDs) and Routing Locators (RLOCs). LISP Mobile Node (LISP-MN) is the particular case of
LISP that specifies mobility. Supporting LISP-MN is a key point to enable SDN for end-nodes
in the way described in Chapter 3. However, mobility protocols have an inherent issue with
privacy since some users may not want to reveal their location or their identity. In this aspect,
LISP-MN is no different from other mobility protocols and thus privacy issues should be
considered to effective deploy an infrastructure relaying in LISP-MN. In this chapter, we review
LISP-MN and its privacy concerns and propose solutions to enable privacy, both in terms of
location and identity.

5.1 Introduction

In the LISP architecture, EIDs identify hosts and are assigned independently of the network
topology while RLOCs identify network attachment points and are used for routing. LISP
design allows EIDs to remain unchanged even if a topological change (such as a handover)
occurs. This makes the protocol well suited for mobility [125, 39]. Indeed, the mobility version
of the LISP protocol (LISP-MN [32, 125]) proposes LISP-enabled endpoints, which enables
legacy applications to smoothly roam across access technologies and service providers. The
LISP-MN protocol uses the Mapping System [38] to disseminate the EID-to-RLOC bindings.

Since mobility protocols typically use addresses to locate users, they raise privacy concerns,
and in this context LISP-MN is not an exception. An attacker could learn the (approximate)
physical location of a user by monitoring its locator address, for instance by using IP geograph-
ical localization techniques [142]. This issue is exacerbated in LISP-MN when compared to
other mobility protocols, such as Mobile IP [109, 63]. In Mobile IP an attacker has to establish
a connection with the mobile node to learn its location, this way a mobile node can reject

78 Privacy for LISP Mobile Nodes

inbound connections from untrusted peers. However, in LISP-MN an attacker has just to query
the (publicly accessible) LISP Mapping System to learn the location (RLOC) of a user, which
is beyond its control.

In addition to location privacy, anonymity is of an increasing concern as well for a subset
of today’s Internet users. As a result of these concerns, the industry is developing mechanisms
to improve online anonymity. For instance, some popular web browsers include a private
browsing mode, where tracking cookies have the lifetime of a single browsing session, and a
”Do Not Track” option to opt-out from advertising network behavioral tracking. However, a
LISP-MN host still discloses its unique EID even in these browsers operating mode, making
EID based tracking possible. Given the fact that an assigned EID rarely changes (e.g., a mobile
phone number), it can be easily associated to the user’s identity and might be desirable to not
disclose it in order to protect user’s anonymity.

In this chapter we discuss how LISP-MN can address both issues: location and identity
privacy. It is important to note that we take a realistic approach when extending LISP-MN,
since we aim to propose deployable solutions, and minimize the changes to the main LISP
protocol. Although some parts of the LISP protocol are currently under development, some
of its elements and specifications are not trivial to redefine and hence, we want to minimize
the changes to the main LISP protocol specification. Further, we also analyze the level of
security achieved with the proposals that appear in this chapter, their required trade-offs and the
feasibility of their implementation. Finally, we evaluate the burden introduced by the proposals
in both the data and control planes.

5.2 Background: LISP-MN

To put this work into context, in this section we provide an overview of the LISP-MN spec-
ification, its particularities regarding the main LISP specification and how it relates with
other mobility protocols, such Mobile IP [109, 63]. LISP Mobile Node (LISP-MN) [32] is a
lightweight implementation of the LISP protocol intended for mobile use. It uses LISP mobility
features to build a LISP-based mobility architecture and protocol. Separating the host identity
(EID) from its locator (RLOC) enables seamless endpoint mobility by allowing the applications
to bind to a permanent address while the RLOC of the host can change many times during an
ongoing connection.

In LISP-MN, a Mobile Node (MN) is typically statically provisioned with an EID that is
used for all its connections, to enable applications to bind to a static address. The current point
of attachment to the network defines the current RLOC for the MN and is subject to change over
time. LISP-MN allows the location of the host to change without breaking the transport layer

5.2 Background: LISP-MN 79

connection. This is possible since the MN implements a lightweight LISP tunnel router that
performs mapping resolution and encapsulation operations directly on the MN. Packets - except
for management protocols such as DHCP - are LISP encapsulated by the lightweight LISP
tunnel at the mobile node, and routed based on the RLOCs to the destination site. The mobile
node tunnel routers remove also the LISP header from incoming packets before sending them
to upper layers to ultimately reaching the destination application. In the event of a handover
(e.g. when the location of the MN changes), the MN receives a new RLOC from the network
and it updates its EID-to-RLOC bindings at the Mapping-System to maintain reachability at its
new location. Thanks to those updated bindings, other LISP tunnel routers can learn the new
RLOC of the MN. More details and discussion of LISP-MN can be found in [32, 125, 91].

Fig. 5.1 summarizes the basic operation of LISP-MN. In the figure, the MN wants to
communicate with its peer, from which only knows its EID. It sends (1) a Map-Request (MRq)
to obtain the RLOC of the peer. This MRq is routed (2) through the Mapping System to finally
reach (3) the Tunnel Router (xTR) of the LISP site where the peer is. The xTR replies (4) to
the MN with its RLOC in a Map-Reply message (MRp). Finally, the MN sends (5) the data to
the xTR which forwards (6) it to the peer.

xTR

RLOC space

Mapping System

MRq:
EID_B?

MN
EID_A

Peer
EID_B

Data
Data

MRq:
EID_B?

MRq:
EID_B?

MRp:
EID_B-RLOC_2

LISP site

RLOC_2RLOC_1

1

2

3

4

5
6

Figure 5.1 LISP-MN Overview

80 Privacy for LISP Mobile Nodes

5.2.1 LISP-MN specifics

There are a few LISP specific aspects that need to be carefully considered in the LISP-MN
mobility scenario. On one hand, the handover process (e.g. switch network access point) for a
LISP-MN provisioned mobile node happens as follows. When a MN changes its attachment it
regains connectivity in a new subnetwork. It first obtains a new RLOC and notifies the new
EID-to-RLOC binding to its Map-Server. The MN has to update also all the bindings stored
in the Map-Cache of the peers, either LISP routers or nodes, with which it is communicating.
In order to do it uses the special signaling message called Solicit-Map-Request (SMR). The
reception of such message triggers a Map-Request to refresh the binding, it is important to note
that such message is transmitted over the Mapping-System, and hence prevents the double-jump
problem (i.e. two MNs changing location at the same time). Overall, the handover latency in
LISP is 1.5 Round Trip Times. Research efforts to optimize such handover latency are already
under development and take base on LISP-SEC [84].

On the other hand, in the case of a LISP-MN mobile node behind a LISP site, double
encapsulation is required. The RLOC of the MN is in fact an EID assigned by the xTR
in charge of the LISP site. We refer to this EID as Location EID and to the permanently
assigned MN’s EID as Permanent EID. In this scenario, when the MN roams into a LISP site,
the xTR assigns (by means of DHCP) the location EID. The MN registers this EID into the
Mapping-System as its RLOC. The peer that wants to communicate with the MN queries the
Mapping-System and receives the Location EID as the RLOC of the MN. The peer will then
realize that the Location EID is not routable and will consequently query again the Mapping-
System to obtain the RLOC, this is the IP address assigned to the xTR where the MN is attached.
At this point the peer (typically an xTR, or another MN) will then double encapsulate the
packets towards the MN. Upon reception, these packets will be first decapsulated by the xTR,
and then by the MN.

5.2.2 LISP-MN vs. Mobile IP

Leveraging on LISP’s locator-identity decoupling, LISP-MN is a fully featured mobility
protocol that supports both IPv4 and IPv6, network mobility, route optimization and native
multihoming. Compared to other identity-location split schemes, LISP has a unique position
since it is incrementally deployable and it does not require changes to transport/application
implementations. This makes LISP-MN a real alternative to provide mobility to the Internet.

During the last decade we have witnessed huge progress in wireless access technologies.
This has lead to an increase in the adoption of mobile devices and demand for mobile Internet.
Consequently, a plethora of solutions and protocols have been proposed (see [22] and the

5.2 Background: LISP-MN 81

references therein). Arguably, the most popular is the Mobile IP [109, 63] family of protocols.
LISP-MN has a set of features with respect to Mobile IP that makes it an interesting alternative.
In the following we detail the main reasons that support such statement:

• The Mobile IP family of protocols is a set of protocols that provides basic and advanced
functionalities to mobile nodes. For instance there are two separate versions for IPv4
[109] and IPv6 [63], and additional protocols for network (prefix) mobility. Furthermore,
advanced features such as fast handovers [69] or multihoming [137] are again defined in
separate specifications. As a result, a developer willing to adopt Mobile IP must read
and implement different protocols defined in several specifications. In LISP-MN all the
features are defined in a single protocol, and thus only require a single implementation.
Currently LISP-MN supports IPv4, IPv6, network mobility and multihoming natively.
The benefits of the native multihoming of LISP are inhered by LISP-MN: each EID prefix
can be mapped to more than one RLOC, and each RLOC can be assigned specific priority
and weight. This simplifies adoption and reduces significantly capital expenditure costs.

• LISP-MN separates the control plane functionality from the data plane, allowing each to
scale independently. Since LISP-MN does not require Home Agent or Foreign Agent
network elements in the data plane, it avoids triangle routing at the data plane level, for
both IPv4 and IPv6 address families, along with network mobility data packets always
follow the shortest path and hence, in this context LISP-MN incorporates native route
optimization support. It is worth to note that when communicating with non-LISP sites,
communications must be forwarded through a proxy.

• Separation of control plane from data plane in LISP-MN facilitates the decoupling of
end-point identity from the mobility service provider. The sole functionality of the
control plane is to locate a mobile node, much like DNS locating a service or a host name
today. Similar to DNS, LISP control plane has a distributed and federated Mapping-
System. Mobility becomes a native feature of the network architecture and avoids
mobility provider lock-in. In this context, LISP-MNs can change their RLOC provider
-typically an Internet Service Provider (ISP)- and are tied to their EID provider, however
and unlike in Mobile IP, such EID provider may not be an ISP (i.e, the home of the
mobile node) but rather a third-party company. EID providers do not operate in the data
plane as Home Address providers in Mobile IP, but in the control plane, and represent
new business opportunities.

82 Privacy for LISP Mobile Nodes

5.3 Privacy in LISP-MN

After describing the LISP-MN protocol in the previous section, in this section we discuss the
privacy concerns of the protocol and propose solutions to provide both location and identity
privacy. Although we present different solutions that address these issues independently, both
proposals can be combined to provide full privacy to LISP-MN.

5.3.1 Location Privacy

Location privacy is a well-known problem in mobility and the most common solution is to use
a trusted proxy. This way the proxy forwards the traffic from the MN and only the locator of
the proxy is exposed. The LISP architecture offers proxies called RTRs (Re-Encapsulation
Tunnel Routers) that can be used for this purpose. The RTRs receive LISP traffic, decapsulate
it and rather than forward the traffic to end-hosts, they lookup in the Mapping System for
an appropriate next LISP hop and re-encapsulate the traffic towards it. They serve in LISP
deployments to provide Traffic Engineering possibilities [31] and NAT Traversal capabilities
[25] to LISP nodes.

In order to achieve location privacy for LISP-MN using an RTR proxy, we can leverage on
the NAT traversal mechanism. NAT traversal in LISP is needed since LISP control and data
messages are UDP encapsulated and they use the destination port 4342 and 4341 respectively.
However, without prior configuration, NAT-boxes do not allow incoming packets addressed to
these ports. The operations of a MN behind a NAT are as follows.

First the MN must check weather it is behind a NAT box. To obtain this information the
MN sends a special signaling packet (Info-Request) to its Map-Server. In turn, the Map-Server
replies with a list of available RTRs and the actual source address and port of the MN (i.e. the
ones that the Map-Server sees in the packet it receives). With this, MNs are aware that they are
(or not) behind a NAT box. In the NAT case, the MN sends a Data-Map-Register message to
the RTR with source port 4341. This message is an encapsulated Map-Register which opens
the port 4341 in the NAT table and it is used by the RTR to infer the translated RLOC and port
of the MN. Then, the RTR forwards the Map-Register to the appropriate Map-Server. Please
note that this Map-Register contains the RLOC of the RTR, not the one of the MN, so all MN’s
incoming packets are received by the RTR which, in turns, forwards them to the translated
RLOC and port of the MN. This way the RTR acts as a signaling and data-proxy for the MN.
Further details on NAT-traversal for LISP and LISP-MN can be found in [25, 67].

Figure 5.2 covers the part of the NAT traversal mechanism relevant to this chapter, i.e. the
negotiation of the RTR and the traffic detour. The MN requests and gets a list of available
RTRs from the Mapping System (1), the MN selects one of them and configures the RTR as its

5.3 Privacy in LISP-MN 83

xTR

RLOC space

RTR
MN

EID_A
Peer

EID_B

LISP site

4 6

1 3

5

Data

Mapping System

2

Control

Figure 5.2 LISP-MN using an RTR proxy

network attachment point (2, 3). From that point on, the MN detours all its traffic towards the
RTR (4) and therefore remote nodes receive the traffic from the RTR (5,6) and not from the
MN. The traffic follows the same path on its way back to the MN.

Due to the presence of the RTR on the path, the location of the MN is guaranteed to be
private during the NAT traversal session. An MN willing to hide its location can trigger the NAT
traversal procedure, and thus force its traffic to go through an RTR, even when it knows there
is no NAT present. Moreover, for the specific purpose of location privacy, the NAT traversal
procedure can be improved as follows.

We propose to add a flag to the control messages exchanged on the bootstrap of the NAT
traversal mechanism to notify that the procedure is going to be used to achieve location privacy
(it might or might not be used also for NAT traversal). The extra flag allows the Mapping
System to know that it should send, alongside the list of available RTRs, extra privacy-related
information. This could include the geo-coordinates of the RTRs, their the current load, the
probability of an attack on each on them, etc. The exact information included is up to the
specific implementation, but it can be encoded in the LISP control messages using the format

84 Privacy for LISP Mobile Nodes

defined in [33]. The MN can use that extra information provided by the Mapping System to
choose the most suitable RTR for its needs, e.g either choose a close RTR to reduce the latency
or choose a far away one to better mislead possible attackers.

A company interested in offering location privacy to its costumers can deploy a set of RTRs
in the Internet. In order to access the RTR the MN requires a pre-shared key, in a similar way it
needs one to register to its Map Server [37]. This pre-shared key, that grants access to the RTR,
can be used to enforce that the client is paying for the service. The company has incentives to
deploy more RTRs, and more importantly, with a good global coverage. This will reduce the
routing inefficiencies of private communications and provide more deceptive locations to offer
a better service to the subscribers. With this in mind, the company that invests in more well
placed RTRs will be more competitive.

5.3.2 Identity Privacy

In this section we extend LISP-MN to offer identity privacy, the main purpose being to hide
the EID to untrusted peers. A classic approach on legacy IP networks to deal with identity
protection is to use temporary IP addresses [96], we take base on that concept and propose
to use temporary identifiers rather than the real one. This section proposes two different
approaches to provide such temporary identifiers on a LISP-MN deployment, a MN-driven
infrastructure-less solution and a solution dependent on the deployment of a new element. It
is important to note that in both cases the identity privacy can only be offered when the MN
initiates the connection.

Infrastructure-less Proposal

This section describes a solution to provide MN-generated temporary EIDs (tEIDs). This
solution takes advantage of the IPv6 address format and its least significant 64 bits which can
be auto-configured. This idea has been (similarly) applied to plain IPv6 before (see [96] for
further details). It is worth to note that this solution cannot be applied to IPv4 due to its limited
address space.

The main idea behind this proposal is that a set of MNs that are sharing the same IPv6 prefix
and hence, are being served by the same Map Server, can auto-generate different temporary
addresses to use as EIDs. Each of these tEIDs will be under the same prefix. This way, even
if an attacker can track this prefix, it cannot track individual nodes. The mechanism is more
efficient as the number of MNs sharing the same prefix increases.

In order to generate the above-mentioned tEIDs, we borrow the mechanisms described in
[96]. By means of a hash algorithm, the MN generates a random set of bits to fill the least

5.3 Privacy in LISP-MN 85

significant 64 bits of a given prefix. Then the MN queries its auto-generated temporary address
on its Map Server to detect duplicated addresses. If the address is already in use by another
MN the Map Server replies positively and then the MN has to generate another address and
query again. If the address is not in use, the Map Server replies with a negative Map-Reply and
the MN knows that it can register the tEID.

In the case that two different MNs generate the same tEID at the same time, both MNs
will receive negative Map-Reply at the time of checking the presence of that tEID on the Map
Server, and therefore both of them will think that the tEID is available to be used. Since the
probability that two different MNs generate the same tEID and query the Map Server at the
same time is extremely low [94] due to the 64 bits address space, an optimistic address collision
detection mechanism can be applied, i.e. the MN register its tEID as soon as it checks that it
is not already registered and starts establishing connections with it. After a time-out the MN
checks again the data in the Mapping System to see if its information was correctly recorded
or if something went wrong during the registration process (i.e. another MN registered the
same tEID). In the rare case that a collision occurred, it will roll back, drop the established
connections and reinitialize the tEID registration (with a new generated tEID).

MN1 MN2

MS

N1 N2 N3

4002::22

2002::22EID

RLOC

Trusted
connection

3001::11

5005::11EID

RLOC

EID RLOC

1001::11 3001::11
2002::22 4002::22
5005::11 3001::11
5005::22 4002::22

4002::22

5005::22EID

RLOC

3001::11

1001::11EID

RLOC 4002::22

2002::22EID

RLOC

MN data MN data

Untrusted
connection

Untrusted
connection

MS database

Figure 5.3 MN generated temporary EIDs

86 Privacy for LISP Mobile Nodes

Figure 5.3 shows an example of the proposal. The MNs are sharing the prefix 5005::/64
to generate temporary EIDs. The last 64 bits of the addresses belonging to that prefix are
generated by the MN. They register these generated addresses in the Map Server, and use them
to establish connection to not trusted nodes.

With this architecture, a misbehaving node, with access to the shared prefix, could attempt
to deplete the available pool of tEID addresses by registering as many as possible. Alternatively,
it could also take over a tEID (and hijack its traffic) that is in use by another node, by simply
registering that tEID. To avoid this, the Map Server stores a list of authorized users for each
tEID prefix, while still using the existing security association (a pre-shared key for their real
EID) to authenticate each individual node. Avoiding traffic hijacking can be achieved by
requiring explicit dropping of a tEID in use by the previous owner.

The infrastructure-less solution can be used without additional cost in a trusted network.
The nodes simply share an EID prefix for temporary address usage, and achieve identity privacy
this way. This can be used by companies which own a prefix and share it between MNs of their
property. If any of the MNs sharing a prefix does not belong to a domain under the company
control or trustiest, then presence of misbehaved nodes should be assumed. When that is the
case, there is an opportunity to sell an authentication service to the entities operating the mobile
nodes. Registration is only allowed to paying customers, and a tiered service can be offered
based on an anonymity quality metric defined by the provider (e.g., nodes allowed per prefix,
prefix size, etc.).

Infrastructure-dependent Proposal

This approach introduces a new element, the “Anonymity Server” (AnonS). Its function is
similar to that of a DHCP server [21], handing out tEIDs on demand to the MNs which request
them. This AnonS can register tEIDs (update the EID-to-RLOC binding) to one or several Map
Servers. The key point is that this AnonS does not register its own RLOC for the tEID, rather it
registers the MN’s RLOC, and hands out a lease on the use of the registered tEID to the MN.
The AnonS is responsible for updating the EID-RLOC association for the tEID when necessary.
The complete mechanism works as follows.

A MN wants a tEID, so it sends a request to the AnonS telling it its real EID and its current
location. The AnonS stores this information and assigns a tEID from the available pool to the
MN. Then the AnonS registers this tEID to the Map Server responsible for the covering prefix,
with the RLOC data of the MN. When this process is completed, the AnonS notifies the MN
that it can start using the tEID. When the MN wants a new address, it only has to ask the AnonS
for a new one. When the MN roams, it notifies both the Map Server responsible for its real
EID, and the AnonS, if a tEID is in use. Finally, the approach is secured similar to the usual

5.3 Privacy in LISP-MN 87

Map Server registration: authentication data is associated to each tEID request. This data is
based on pre-shared keys stored both at the MN and the AnonS, and is generated as in the Map
Server case (see [37]).

Figure 5.4 illustrates the solution. The AnonS keeps a database of its tEIDs (5005::55 and
7007::77) and to whom they have been assigned (5005::55 assigned to the MN1 with EID
1001:11). It also keeps record of the last known position of all the MNs using its EIDs (MN1
last RLOC is 3003::33). The AnonS tEIDs can belong to different prefixes and Map Servers
(5005::55 belongs to MS2 and 7007::77 to MS3).

MN1

MS1

N1

AnonS

MS2 MS3

tEID MN EID

5005::55 1001::11

AnonS:
temp. EIDs - MN

EID RLOC

1001::11 3003::33

AnonS:
MN RLOC cache

7007::77

3003::33

5005::55EID

RLOC

EID RLOC

1001::11 3003::33

3003::33

1001::11EID

RLOC

MN data

Untrusted
connection

MS1 database

EID RLOC

5005::55 3001::33

MS2 database

EID RLOC

7007::77

MS3 database

Figure 5.4 Anonymity Server

Deploying an AnonS generates revenue for its operator, which controls the access to the
identity privacy service. At sign-up the client MN is configured in the AnonS, and a pre-shared
key is stored in both entities. Pricing can be made dependent on several factors, such as the
number of distinct tEIDs requested over a period, their lease time, etc. Additionally, increasing
Map Server diversity by acquiring several (t)EID prefixes registered to different servers is
another price differentiator, or a means to rise above competition.

88 Privacy for LISP Mobile Nodes

5.4 Related Work

Location privacy in mobility is a well-known issue which Mobile IP has faced up in [70]. In
particular they use a similar approach as the one presented in Section 5.3.1 to solve it, in this
case the Home Agent acts as the proxy. The authors of [134] extend this idea by proposing to
deploy redundant Home Agents to enhance privacy. Finally, a different approach to location
privacy has been proposed in [118] where the authors propose to extend Mobile IP to use IPv6
”pseudo home addresses”. These addresses are generated in a similar way the ones proposed in
[96] are generated for identity privacy. Although these ”pseudo home addresses” are intended
to provide location privacy, they implicitly also serve as an identity-privacy mechanism.

In general, using temporal addresses is a well-known approach to provide identity privacy in
the IPv6 area, being the main proposal the one standardized in [96]. Another good example can
be found in [50]. Note that [96] forces keeping one temporary identifier per connection, which
can lead to runtime issues related with closing long-term connections and the maximum number
of temporary addresses supported by the system. This can be observed in the current Linux
kernel implementation. On the other hand, mechanisms to hand out addresses from a pool to
hosts are also well-known [21]. In this thesis we have taken these established approaches and
adapt them to the LISP-MN architecture.

Finally it is worth to note that in this thesis we have focused on solutions for privacy at the
network level, however other approaches exist at higher layers. In this context, onion routing is
one of the most well-known. Using onion routing, packets traveling through the network have
been repeatedly encrypted in their origin, and are layer by layer unencrypted by the routers they
go through. This way, routers in the path only know the previous and next hop of the packets.
The main idea was originally proposed in [43]. A patent free, improved, and already deployed
version is Tor network [18].

5.5 Analysis

This section discusses the level of security provided by the mechanisms proposed in this chapter,
the trade-offs they impose and the feasibility of their implementation.

5.5.1 Location Privacy

The proxy-based approach proposed guarantees that the location of the MN is never exposed to
remote nodes, however the use of a proxy introduces an inefficient routing path that degrades
the performance of the LISP-MN communications. To alleviate this, the extensions proposed
to improve vanilla proxy selection allow the MN to choose the most suitable RTR for its needs.

5.5 Analysis 89

Particularly the MN can get the geo-location of the proxy and select an RTR based on that
information. If that is the case, there is a trade-off on which RTR to select since closer RTRs
would provide better performance, but also disclose more data about the potential location of
the MN. We recommend select randomly from a set of mid-range located RTRs to balance
among location disclosure and performance degradation. Besides, the load on the RTRs can be
alleviated deploying more RTRs and providing their load information to MNs to help to select
a non-overloaded one.

In terms of implementation, an MN compatible with NAT traversal can use the NAT
traversal mechanism to get basic location privacy. The usage of the extensions proposed on this
chapter requires support for parsing and encoding/decoding the extra information on both sides,
i.e. on the MN and on the Mapping System. Additionally, the Mapping Systems needs to get
populated with the information regarding the RTRs, how to populate the Mapping System with
that information is out of the scope of this chapter.

An RTR-compatible MN requires minor implementation changes in order to use the pro-
posed location-privacy solution. A decision process, to decide which nodes are trustworthy or
not, is the only additional code to be implemented. The proposed implementation for this is the
use of a configuration file in the MN, which stores a list of EIDs that the MN will trust. When
receiving a query from one of those EIDs, the MN will reply with its real RLOC.

5.5.2 Identity Privacy

In this chapter we propose a simple, yet practical, design of an auto-managed identity privacy
by means of auto-generated temporary EIDs that does not require of any new infrastructure
deployment. The trade-offs of this approach are that it only serves for IPv6 addresses, that it
imposes extra computation on the MNs and that the MNs are still traceable at prefix level. We
extend it by proposing the Anonymity Severs, which enable the nodes to use identities from
different prefixes, at the cost of requiring new infrastructure elements. Moreover, the use of
different prefixes, gives to the users of an AnonS a higher level of anonymity than the use of
traditional IPv6 privacy mechanisms. In those, the MN still can be tracked at IP prefix level,
whereas with the AnonS solution the MN’s EID prefix can be regularly changed among prefixes
that can belong to different domains.

There is what makes the AnonS specially attractive as a mechanism to provide identity
privacy and distinguishes it from the previous presented solution. The MN can use as many
addresses, even from disjoint prefixes, as it wants. As a result, an attacker tracking tEIDs will
have difficulties to correlate them to a single MN. An anonymity server can work with IPv4,
IPv6 or both address families. In contrast to the infrastructure-less approach, using an AnonS

90 Privacy for LISP Mobile Nodes

is a viable solution for IPv4 temporary EIDs, because it optimizes address usage, in the face of
the IPv4 address shortage.

Before delving into the details of the identity-privacy implementation, its common use case
should be discussed. Typical users do not want (or even be aware of) privacy in their normal
communications. They want to be private just when connecting to untrusted sites. Those kinds
of connections are not frequent and are distributed in time. The “private mode” on modern
web browsers could serve as an example of this usage pattern. With this in mind, the solution
that seems more balanced between complexity and efficiency is using a single tEID rather than
one per connection. This tEID is shared by all the connections that require privacy and it is
refreshed after a pre-defined period. If there are active connections, then the tEID will not
change until the system does not have any active (private) connections. The amount of tEIDs
required to provide a unique one to each connection can be potentially huge. Having just one
tEID changing over time keeps the complexity of the implementation at a reasonable level and
is enough to fulfill the requirements of the common use case.

Another issue is how the system decides which connections require identity privacy. Leaving
this to the network-layer is not trivial, since it does not usually have enough information. The
proposed approach is to delegate this decision to the upper layers. Each application decides
which connections use the tEID (for instance as the private browsing mode). In order to
implement this, we propose using a new socket option [97]. This provides the programmers the
flexibility to choose when privacy extensions should be applied. For backwards compatibility
with existing applications not using this socket option, an alternative is proposed by means of
a connection-manager application. The connection-manager can be used to enable or disable
identity privacy globally, for all applications, by switching between the real and temporary
EIDs.

5.6 Evaluation

This section evaluates the proposed solutions to asses the extent of their impact in both the data
and control planes.

5.6.1 Data-Plane

In terms of evaluating the data-plane burden imposed by the proposed solutions, it is worth
to note that both approaches for identity privacy do not modify the data-plane operation and
therefore do not impose any burden. On the other hand, the solution for location privacy
does impose a penalty in the data-plane since, like in every proxy solution, the use of another

5.6 Evaluation 91

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.01 0.02 0.03 0.04 0.05

P
ro

b
a
b

ili
ty

Time (in miliseconds)

Figure 5.5 Constant delay introduced by the RTR

element in the path increases end-to-end latency due to the longer path and the extra processing
time. The latency increment caused by the path stretch varies depending on the location of
the RTR chosen, however the processing time at the RTR is constant. To evaluate how much
constant delay an RTR introduces, we have built a prototype of the proposal in 5.5.1 using
the OpenOverlayRouter open-source implementation [100] following the topology depicted in
figure 5.2.

Figure 5.5 shows the Cumulative Distribution Function of the processing time of packets
(1000000 packets at 1000 packets per second) at an RTR running OpenOverlayRouter on a
desktop Linux machine (2GHz dual-core with 1 GB of RAM). The figure shows that most
packets suffer a delay of less than 30 microseconds, which is negligible for most scenarios.
Furthermore, it is expected that hardware-based LISP solutions [81] can provide even lower
processing times.

5.6.2 Control-Plane

We evaluate the control-plane modifications in terms of the number of extra control messages
that are required to exchange between entities in order to support the proposed solutions. For
location privacy, there is no need for any extra messages, since the signaling is the same that

92 Privacy for LISP Mobile Nodes

is used to perform NAT traversal. The identity-privacy solutions require however additional
control messages.

The infrastructure-less approach requires no extra control messages if there is no duplicate
address detection or collision check. If the MN looks for duplicated addresses, then one request
to the Mapping System and its reply are needed. Twice this number if collision check is also
performed. The infrastructure-dependent solution doubles the number of signaling messages of
vanilla LISP registration due that first it is the MN who registers to the AnonS, and then is the
AnonS who registers to the Mapping System. Note that in this case the MN does not register
the tEID to the Mapping System since this is done by the AnonS. Table 5.1 summarizes the
extra signaling messages required between entities.

MN to MS MN to AnonS AnonS to MS

Location
(with NAT capable nodes) 0 0 0

Identity: Infrastructure-less
(no check for duplicates/collisions) 0 0 0

Identity: Infrastructure-less
(checking duplicates) 2 0 0

Identity: Infrastructure-less
(checking duplicates & collisions) 4 0 0

Identity Infrastructure-dependant 0 2 2

Table 5.1 Extra control messages required between entities

5.7 Conclusions

In this chapter we have presented a set of solutions to provide location and identity privacy
to LISP Mobile Nodes. Location privacy is a well-known problem usually solved by proxies.
Here we have presented a proxy based solution that takes advantage of the LISP NAT-traversal
mechanism and extend it to better serve the location privacy purpose.

We have also proposed two different approaches to solve the identity privacy issue. Based
on the idea of using temporary identifiers to hide the real identity of the MNs we have defined
different solutions adapted to different scenarios. The first approach does not require (or requires
just a few) modifications to the LISP infrastructure, it is based on temporary auto-generated
identifiers. The second one requires the deployment of a new element called Anonymity Server.

5.7 Conclusions 93

It serves as a kind of DHCP server to provide and manage heterogeneous and distributed
temporary identifiers.

We have addressed both privacy issues taking a realistic approach aiming for deployment.
In particular we have briefly discussed the trade-offs of the proposed solutions alongside with
the feasibility of their implementation. The evaluation shows that the burden that the solutions
impose in the data and control plane operations is reasonable.

Chapter 6

OpenOverlayRouter: Architecture and
Evaluation

OpenOverlayRouter (OOR) is an open-source implementation to deploy programmable overlay
networks. It leverages on LISP as the overlay control protocol to map identifiers in the
overlay to locators in the underlay. It implements both LISP and LISP-MN specifications for
operational state exchange and, besides, has support for NETCONF management and VXLAN-
GPE encapsulation. OOR is a multiplatform implementation with current support for Linux,
Android and OpenWrt. It targets flexibility, portability and extensibility by taking a user-space
approach for its implementation. In this context OOR represents a solid base for research,
innovation and prototyping of new overlay use-cases and applications. It is particularly useful
to deploy programmable overlays at end-nodes in order to provision them with SDN capabilities
as described in Chapter 3. This chapter describes the OOR software architecture as well as how
it overcomes the challenges associated with a full LISP user-space implementation. Finally,
this chapter presents an experimental evaluation of its performance in relevant scenarios.

6.1 Introduction

In this chapter we present the OpenOverlayRouter (OOR) open-source project, a community-
driven LISP-based overlay implementation for PCs running Linux [79], home routers with
OpenWrt [107] and Android devices [2]. Open-sourced under an Apache 2.0 license [3], OOR
supports both LISP [30] and LISP-MN [32], a lightweight version of LISP intended for mobile
devices. Furthermore, OOR can be remotely managed and configured via the NETCONF
protocol [24] and can leverage on the VXLAN-GPE [72] encapsulation format to encapsulate
overlay traffic trough the underlay. OOR is a renaming of the LISPmob project [82], the

96 OpenOverlayRouter: Architecture and Evaluation

original implementation of the LISP-MN specification. The LISPmob implementation grew in
features and capabilities over the years. From a minimal LISP-MN implementation it evolved
into a full LISP implementation, and from there to a complete overlay solution that incorporates
other protocols beyond LISP.

Despite there are other LISP implementations, both proprietary (Cisco LISP [81]) and
open-source (OpenLISP [113] for BSD systems), OOR has a completely different focus and
scope. OOR’s code runs entirely at the user-space and has a common code-base for all its
supported platforms. This software approach allows the OOR community to have a strong
focus on flexibility and customization. Indeed, OOR’s architecture represents a solid base for
research, innovation and prototyping of new LISP use-cases and applications. A good example
of OOR’s success is that it is being used by the LISP project in the OpenDayLight [99] SDN
controller. Additionally, the OOR community has developed liblisp, a standard library to parse
LISP messages that simplifies the development and interoperability between different LISP
entities/implementations.

OOR is particularly useful to enable an SDN deployment in the end-node scenario described
in Chapter 3. End-nodes to be provisioned with SDN capabilities are likely to require an overlay-
oriented data-plane (e.g. VXLAN-GPE) and a pull-based connectionless southbound protocol
(e.g. LISP). Such end-nodes can use OOR to fulfill their SDN requirements while leveraging
on its support for typical end-node platforms (i.e. Linux, Android, OpenWrt). Furthermore, the
homogenous implementation across platforms (thanks to OOR user-space approach) eases the
deployment of an SDN infrastructure over a wide range of heterogeneous end devices. In this
sense, OOR enables the deployment of overlays (like the one depicted in Fig. 6.1) that hide the
inherent heterogeneity of the underlay and offer an homogenous view of the overlay network
suitable to be programmed via SDN.

In what follows we describe the OOR software architecture and components, with focus on
the challenges that the community has overcome to implement a full multi-platform LISP user-
space implementation. We first give an overview of the main architectural core ideas behind
OOR implementation to latter delve into the internals of its software architecture. The analysis
of the software architecture is split into data-plane and control-plane. In the data-plane section
we describe how OOR encapsulates traffic into LISP data packets and how it decapsulates
traffic from LISP data packets. In the control-plane part, we show how LISP control is managed,
both in terms of control packets processing and control state handling. Both data-plane and
control-plane are implemented in a single modular user-space daemon. Finally, we present
an experimental evaluation of OOR in relevant scenarios and compare its performance with
other related implementations. As the results show, despite taking a user-space approach, OOR
implementation results in a remarkable performance suitable for home and edge devices.

6.2 Architecture Overview 97

Physical

Overlay

Figure 6.1 Overlay approach

6.2 Architecture Overview

OOR is an open-source implementation of both LISP [30] (see Section 2.2) and LISP-MN [32]
(see Section 5.2) developed in C [65] for Linux-flavored systems. The main goal of OOR is to
represent a solid code-base for overlay research, innovation and prototyping with an end-user
focus. To achieve this, OOR comprises a modular architecture with a user-space approach and
a multi-platform implementation.

6.2.1 Modular Design

OOR is composed of different software modules. The modules have been abstracted and
its interactions well-defined, this allows different components of OOR to be inspected and
modified without disrupting the rest of the system. An overview of the different modules
is depicted in figure 6.2. There are two main modules, control and data which support the
control and data planes respectively. The data module handles data packets processing while
the control module keeps the control state, handles control signaling and manages the mapping
information that is used by the data module. OOR implements several LISP devices, each of
these devices is represented with a module that adapts the control and data modules behavior
to match the specific LISP device. Beyond those main modules, there are certain parts of OOR
that have been abstracted into auxiliary modules that connect to the main ones, such as the

98 OpenOverlayRouter: Architecture and Evaluation

interface management, the multihoming procedures or the database storage. Finally, OOR
implements and makes publicly available the liblisp library to parse LISP packets.

6.2.2 User-Space

All OOR code runs in user-space, this prevents having to delve into hardware specific opti-
mizations while avoiding the complexity and high maintenance costs typically associated with
kernel code. To support a LISP data-plane on user-space, OOR uses TUN/TAP [138] drivers.
Specifically it creates a TUN interface to capture and forward traffic. TUN virtual devices
allow user-space applications to receive and transmit network layer packets. Figure 6.2 depicts
OOR components in user-space and how they interact with the kernel space. The data module
hooks to the TUN interface for data processing while the control module opens a socket on
the WAN interface for control signaling. Finally, OOR uses netlink to monitor and modify the
routing tables. With this approach, OOR does not need specific support at the kernel and can
be easily ported to different Linux-flavored systems.

6.2.3 Multi-Platform

Since its inception OOR has been oriented towards end-users. In order to do so, it tries to
provide an easy usage and configuration, while at the same time offer LISP features that
represent immediate advantage, such seamless mobility or bandwidth aggregation. However, to
deliver such benefits to a broader set of end-users, it is mandatory to offer support for different
platforms. Thanks to its modular architecture and its user-space approach, at the time of this
writing OOR supports three different platforms using the same code base. Taking base on
an implementation for Linux, OOR has been ported to OpenWrt (home routers) and Android
(mobile devices). Although with some platform-specific caveats (see Section 6.4.4), most of
the benefits that OOR offers are available for all the three platforms.

6.3 Control-Plane

The LISP control-plane registers, stores, and resolves EID to RLOC mapping information.
This section describes the relevant implementation details of the OOR control-plane, mainly
implemented by the control module.

LISP control signaling is send and received by means of opening a socket in the LISP
control port in the WAN interface. The way it implements control-plane, which control packets
it sends and how it reacts to received control packets is governed by the LISP device that is
configured. See details on this on 6.3.1. To keep track of periodic events, the control module

6.3 Control-Plane 99

control data

wan

Interface-mgmt

liblisp

tun

Routing Tables

User

Kernel

lan

databases

xTR RTR

MN MS

LISP device

netlink

multihomming

PxTR

MR

Figure 6.2 OOR architecture

relies on a set of timers, see Section 6.3.3. The local and remote mapping information are
stored in two different databases that are described in Section 6.3.6. The remote configuration
support via NETCONF is described in 6.3.5. Finally, the multihoming features are presented in
6.3.7 while the interface management is described in Section 6.3.8.

6.3.1 Devices

OOR supports different LISP devices: Ingress/Egress Tunnel Router (xTR) [30], LISP Mobile
Node (LISP-MN) [32], Map-Server (MS) and Map-Resolver (MR) [37], Proxy Ingress/Egress
Tunnel Router (PxTR) [77] and Re-encapsulation Tunnel Router (RTR) [31]. This is achieved
through a unified control-plane module that supports pluggable device-specific modules that
govern the way the LISP control-plane is executed, that is, how the control-plane reacts to an
incoming LISP control message or to an expired timer.

The LISP data-plane is similar regardless the LISP device, however the control-plane is
device specific. OOR control module is governed by the specifics of the LISP device that

100 OpenOverlayRouter: Architecture and Evaluation

has been configured, which means that the control module will react in a different way to an
incoming control message or to an expired timer depending on the LISP device OOR is running
as.

6.3.2 Control Signaling

LISP control messages are (generally) not LISP encapsulated. OOR sends these packets through
a physical output interface. In order to receive LISP control packets from other LISP entities,
OOR opens sockets on the LISP control port. When a packet reaches one of these sockets, OOR
triggers the control message processing mechanism. How OOR reacts to incoming control
packets, and which outgoing control packets it sends, depends of the specific LISP device
OOR is behaving as. OOR will perform different actions, depending on the type of the packet
received and on which LISP device OOR is acting as. For example, when OOR behaves as
a xTR in the case of a Map-Reply, it will store the new arrived mapping on the map-cache
database.

6.3.3 Timers

LISP protocol requires performing some actions periodically, for instance when operating as an
xTR it has to send control messages to the Mapping System periodically. Besides, some of the
information stored is only valid for a certain period, after that it is considered outdated and it is
discarded. OOR keeps track of periodic events using a timer wheel algorithm, similar to the
one the Linux kernel uses for its internal timers. Event timers are placed in a wheel structure
that rotates over time. Its position on the wheel indicates when the timer is going to expire.
Timers are created with an assigned callback function and related data. Whenever the timer
expires, the callback function is called with the associated data as a parameter.

6.3.4 liblisp

OOR implementation provides the liblisp library to help parse LISP control messages. The
library allows reading raw LISP messages to store them into internal buffers as well as to write
internal buffers into raw messages. The buffers are accessible through a set of well-defined
structures and functions. This is specially useful to handle packets containing addresses in the
LISP Canonical Address Format (LCAF) [33], since liblisp abstracts all the complexity. The
liblisp library is independent from OOR and thus can be used by any LISP implementation or
entity to simplify its development or interoperability.

6.3 Control-Plane 101

6.3.5 NETCONF

The main way to configure OOR is via a static configuration file that is read during the boot-up
process. This file contains information required for the correct operation of the LISP protocol
as well as user-configurable aspects of OOR, e.g. which encapsulation format to use. During
run-time it is possible to modify parts of this configuration remotely thanks to the NETCONF
[24] support that OOR implements. NETCONF support at OOR is based in the libnetconf
library [78, 73] which offers an open-source C implementation of the NETCONF protocol.
OOR implements support for a simplified version of the YANG [6] datamodel for LISP [26]
that allows, for instance, to change the Map-Resolver in use or to modify the EID prefixes
currently configured in the local mapping database (see Section 6.3.6).

6.3.6 Databases

OOR stores mappings in two different data structures, depending on whether these mappings
are local or not. The mappings related to EIDs prefixes belonging to the OOR node itself are
stored in the mapping database. Mappings related to EIDs belonging to remote nodes are
stored in the map-cache. The mapping database is loaded from a configuration file during
boot-up and remains mostly static during OOR execution (unless modified via NETCONF
as described in Section 6.3.5). As an example, when running as an xTR this database stores
the EIDs that must be encapsulated and when operating as a Map-Server it stores the EIDs
that OOR is serving. On the other hand the map-cache is dynamically populated during OOR
operation, i.e. on a map-cache miss triggered by the data-plane, the control module retrieves
the missing mapping from the Mapping System and stores it on the map-cache.

Despite serving different purposes and being populated in different ways, the two databases
share a similar internal structure. Both are implemented over a Patricia Trie structure (also
known as Radix Tree) that is kept in memory. A Patricia Trie is an optimized version of a
digital tree where single-child nodes are merged with their parents. This produces an optimal
data storage for strings that share long prefixes, such the bit-strings of IP addresses. Since LISP
mappings are (generally) indexed based on IP prefixes, Patricia Trie databases allow OOR to
optimally store such indexes and to retrieve the most specific prefix for a given IP address.
OOR’s modularity supports as well using other databases for non-IP based mappings.

6.3.7 Multihoming

LISP inherently supports multihoming, a LISP mapping can bind a single EID prefix to several
RLOCs and hence, physical interfaces. In the EID-to-RLOC bindings each RLOC may have its

102 OpenOverlayRouter: Architecture and Evaluation

own priority and weight, the priority indicates the preference to use a given locator while the
weight describes how the traffic should be balanced in case that several locators have the same
priority. Since LISP sites register their mappings in the publicly accessible Mapping System,
the priority and weight values express the inbound traffic engineering policies.

In multihoming scenarios -where several locators are available at the same time- the user
has to define the inbound and outbound traffic policies, this is done by configuring priorities
and weights for the available locators. OOR does not load-balance traffic per packet but rather
per flow -defined as a sequence of packets identified by the same 5-tuple-. This is done to avoid
splitting flows over different paths that may have different delay/jitter and hence, may severely
impact the performance.

To balance load among several locators with the same priority, OOR uses weighted vectors
containing locators. Each mapping (i.e. each EID prefix with a set of locators) has its own
weighted locators vectors. The locators sharing the maximum priority a mapping are distributed
along the mapping vectors according to their weight. For instance, if two locators have weights
10 and 15 the multihoming module will assign the 40% of the vector positions to the first
one and the 60% to the second. When OOR needs to select a locator to encapsulate to the
EID it chooses one from these vectors. To select the proper locator, it uses a hash function to
haphazardly select a position of the vector. The locator pointed by that vector position will be
the one used. OOR keeps three vectors per locator set, one containing the IPv4 locators with
maximum priority, another the maximum priority IPv6 locators and a third one with both IPv4
and IPv6 locators if they share the maximum priority. One or more of these vectors may be
empty or be equal to another vector. This is the case when there are no locators for one type, or
when the maximum priority of one type of locators is not equal to the other type.

OOR uses this selection process to select locators to use both for destination address
(belonging to remote site) and source address (belonging to OOR). Since OOR can use both
IPv4 and IPv6 locators, it checks first the IP version of locators available on both sides. If
they only have locators from different version, no communication is possible (except by means
of a proxy). If they have locators from at least one common version, the selection process is
performed taking into account just that IP version. If both remote site and OOR have IPv4 and
IPv6 locators, all locators are taking into account during the selection process. However, source
locators are selected first. That means that if in source locator selection, an IPv6 locator was
selected, during destination locator selection only IPv6 locators will be taken into account. The
locator balancing vectors are calculated in advance for both OOR local locators and remote
sites locators, and kept in memory to be checked when needed.

However, it should be noted that in OOR there is a limitation of just one IPv4 locator and
one IPv6 locator per interface (not taking into account IPv6 link-local addresses). For instance,

6.3 Control-Plane 103

if there are two IPv6 global addresses configured in one interface, OOR will use just one of
them. OOR handles its inbound traffic policies by registering these priorities and weights on
the Mapping System.

Users can take advantage of OOR multihoming capabilities. First, they can deploy active-
backup multihoming solutions for disaster recovery scenarios. Second they can make the most
of active-active multihoming deployments thanks to the traffic balancing across the links that
entitles them to perform bandwidth aggregation.

6.3.8 Interface Management

The interface management is critical specially in two scenarios, mobility and multihoming.
To support mobility, OOR has to detect handover from one network attachment point to
another. On multihoming scenarios it needs to detect any change on the interfaces to adjust
the announced locators and the load balance vectors. These two scenarios apply to both xTR
and MN modes, as a result OOR transparently supports multihomed MNs or mobile routers.
Interface management is of key importance in OOR given that it has to seamlessly support
multihoming and handovers in different platforms and Linux flavors.

In order to manage the system interfaces OOR opens a netlink socket to the kernel, this is
used both to modify the routing tables as described in Section 6.4 as well as to monitor changes
in these tables or in the network interfaces. The events currently filtered and processed are:
interface status up, interface status down, new IP address assigned to an interface and new
entries in the routing tables. Such events are processed as follows:

When OOR detects a new IP address assigned to an interface it reacts by updating its
internal structures and, if needed, the Mapping System information as well as the remote LISP
peers through control signaling. This control message tells them that there has been a change
in the mapping information regarding OOR node and that they should update their map-caches.
In case of an interface going up or down it follows the same procedure, but it checks if its
multihoming state is still valid. This is due to the fact that in some cases new locators are
available or previously available locators are no longer usable. Finally, if OOR detects a new
entry on the routing tables it checks if there is a new gateway for any of the interfaces it is
monitoring and, if needed, it updates the routing tables to handle outgoing RLOC packets (see
Section 6.4).

104 OpenOverlayRouter: Architecture and Evaluation

6.4 Data-Plane

This section presents how OOR implements the data-plane of the different LISP devices as
well as the challenges of implementing a user-space LISP data-plane on different platforms.
The OOR data-plane is implemented by the data module, which is responsible of encapsulating
and decapsulating data packets. Although some LISP devices do not require data-plane (Map-
Server/Map-Resolver), for the remaining devices (xTR, RTR and PxTR) its operation is quite
similar, only Mobile Nodes (MN) require a slightly different approach. As in the case of the
control-plane, the LISP device modules modify according to their particular needs the data
module operation. Mostly due to its condition of user-space implementation, OOR data-plane
has faced some implementation challenges. The specific encapsulation format to be used can be
chosen prior to boot-up OOR via a variable in the configuration file. At the time of this writing,
OOR implements support for both LISP [30] and VxLAN-GPE [72] encapsulation formats.

6.4.1 Tunnel Routers (xTR, RTR, PxTR)

OOR implements the data-plane for all LISP tunnel router devices (xTR, RTR, PxTR) with a
similar approach. This section describes the data-plane as for an xTR, pointing out the specific
details of RTR and PxTR data-planes when needed.

For outgoing traffic (i.e. from EID space to RLOC space) OOR needs to capture EID space
traffic, encapsulate and forward it. In order to intercept the outgoing EID traffic (both on xTR
and PxTR modes) OOR redirects it to the TUN interface and retrieves it. The redirection is
achieved by means of modifying the Linux routing tables and routing rules. In xTR mode,
since local traffic does not have to be encapsulated, the new routes and rules forward to TUN all
EID space outgoing traffic that is not addressed to the local EID space itself. RTRs operate on
RLOC space and hence they receive EID traffic encapsulated directly from an RLOC interface.

With the EID traffic, OOR builds the outer headers using RLOC addresses (governed by
the control module). To speed-up the processing time, the data module keeps a hash table with
information from already processed packets to avoid querying the control module per-packet
basis. OOR writes the encapsulated traffic in a raw socket, this injects the traffic again on the
Linux routing system.

In multihomed scenarios with several default routes OOR must ensure that Linux chooses
the appropriate outbound interface. In order to achieve this OOR creates, for each RLOC
interface, a table that only includes a route to the gateway of the interface and in turn, for each
table, a rule that matches packets using that particular source RLOC.

To manage incoming traffic (i.e. from the RLOC space to the EID space) OOR opens a
standard UDP socket listening for LISP data traffic. Received RLOC traffic is decapsulated

6.4 Data-Plane 105

and written in the TUN interface, then the kernel forwards the EID packet to the EID space. In
RTR mode the traffic is re-encapsulated with new RLOC headers and forwarded back to the
RLOC space.

6.4.2 Mobile Node (MN)

Although a LISP-MN operates fundamentally as an xTR, additional considerations must be
taken into account. The major difference between an xTR and a MN is that a LISP tunnel
router (xTR) receives the packets from an external source, while in a LISP mobile node (MN)
such packets are generated -by the applications running- in the device itself. In mobile node
operation the TUN interface must be provisioned with the mobile node EID address. The
applications running on the MN bind sockets to that interface and hence they use as a source
address the EID. In order to enforce that all the applications bind to the TUN interface, OOR
configures it as the most preferable route for non-local traffic. Additionally, it configures also
specific tables and rules per each RLOC interface and therefore, once encapsulated, traffic will
be forwarded to the correct outgoing interface preventing loops.

On reception in Linux, OOR deactivates reverse path forwarding (RPF) verifying mecha-
nisms to prevent discarded packets. In Linux RPF works as follows, for every received packet
the kernel checks -according to its routing tables- the output interface for that particular source
address. If the input interface is different from the output interface, the RPF mechanism
discards the packet as an anti-spoofing mechanism. While OOR is running, Linux detects that
any non-local destination address is reached through the TUN interface, thus packets arriving
via a physical interface would not pass the RPF check.

6.4.3 IPv6 Encapsulation

OOR is agnostic to the address family of the underlay. It supports both IPv4 and IPv6, which
serves to overcome any transition scenario. Users can deploy OOR to get IPv6 access over a
IPv4 only connection, or to get IPv4 over IPv6. However, receiving encapsulated data packets
on user-space using IPv6 sockets requires a different approach than for IPv4. Both LISP
and VxLAN-GPE are UDP encapsulated protocols and their specifications state that the UDP
checksum of the encapsulation header should be zero, however the IPv6 standard specifies that
the UDP checksum must be computed.

As a result, the Linux kernel automatically drops incoming IPv6+UDP packets with zero
checksum. To overcome this issue OOR uses raw UDP input sockets instead of common
UDP binded-to-port sockets therefore OOR captures all UDP packets and processes only the

106 OpenOverlayRouter: Architecture and Evaluation

ones addressed to the LISP or VxLAN-GPE port. This approach allows OOR to receive IPv6
zero-checksum UDP packets.

Additionally, the encapsulation and decapsulation operations require access to low level
details of the IP headers such as the TTL or ToS value. Outgoing packets are received with
full IP headers at the TUN interface, however incoming packets require a different approach.
For IPv4, input raw sockets provide all the required IPv4 header fields at the user-space
however IPv6 raw sockets only provide the IP payload. In order to obtain the IPv6 header
information OOR uses IPv6 specific socket options: IPV6_HOPLIMIT to get IPv6 TTL value
and IPV6_TCLASS to get the ToS value.

6.4.4 Non-rooted Android

The key challenge when implementing LISP in Android is that, as shown in previous sections,
OOR requires root access because -for instance- it makes use of raw sockets. Since this
requirement strongly limits the deployability of LISP on smartphones, to overcome this issue
the OOR community has developed a non-rooted Android application. On that scenario some
root-only features are not available, and thus some workarounds are needed.

The lack of root access is partially alleviated by the use of the Android VPN API[141]
(present from Android 4.0 onwards). The VPN API must be used from a Java application. On
the Android version of OOR, there is a wrapper application written on Java that calls the native
OOR C application through JNI (Java Native Interface) [62]. VPN API allows applications
running without root privileges to create a TUN interface, this interface is managed by the
Android VPN service itself rather than by the application. The interface creation requires of
explicit user permission (i.e. a pop-up is shown in the device display). Android VPN API does
not allow the fine grain forwarding achieved with root access, however it does allow setting a
socket as protected. The traffic sent through a protected socket will ignore the TUN interface.
OOR takes advantage of this to send traffic once it has been LISP encapsulated, the system will
automatically select the outgoing interface among the available physical interfaces and will use
the address assigned to that interface as the source RLOC address for the encapsulated traffic.

Since on non-rooted devices there is no access to the routing tables and rules, neither
to the source address of the encapsulated packets, multihoming is not available on those
devices. There are not raw sockets available either, which means that incoming IPv6 traffic
can not be directly retrieved. As discussed in Section 6.4.3, if an IPv6 packet arrives with
zero checksum, the system will drop it. At the time of this writing, most of the current LISP
implementations, such as those deployed at the beta-network [80], do not compute the outer
header UDP checksum when encapsulating packets into LISP. In practice this implies that IPv6
RLOCs functionality on non-rooted Android devices is very limited.

6.5 Evaluation 107

6.5 Evaluation

This section presents an experimental evaluation of the performance of OOR. At the best of our
knowledge OOR is the only mature LISP implementation that takes a full user-space approach
and thus, there are no reference implementations to compare. Instead, and when relevant, we
compare the OOR performance with OpenLISP [113], a BSD kernel LISP implementation and
OpenVPN [102], a well-known VPN software that also encapsulates packets at the user-space.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

T
ra
ffi

c
o
u
t

(m
b

p
s)

Traffic in (mbps)

OOR
OpenLISP

Vanilla

Figure 6.3 Throughput (Linux)

6.5.1 Throughput

Here we focus on the throughput of the OOR data-plane, OOR is compiled for Linux and
installed in two Intel Core 2 PCs (3GHz, 4GB RAM) running Ubuntu 14.04, both machines are
connected over a dedicated Gigabit Ethernet link. OpenLISP 2.0.2 runs on the same machines
with FreeBSD 9.2. The traffic is generated using the nuttcp tool (UDP packets of 1388 bytes)
and we monitor both input and ouput rate.

As the figure 6.3 shows, OOR scales close to the link capacity with a maximum throughput
of 800Mbps, at this rate the user-space OOR process is using all the available CPU. OpenLISP
with its kernel implementation is very close to the link capacity.

We also compare the throughput of the Android and OpenWrt OOR versions and compare
it to OpenVPN (1.1.14 for Android, 2.2.2 for OpenWrt) on which, for the fairness of the

108 OpenOverlayRouter: Architecture and Evaluation

comparison, we deactivate encryption and configure UDP traffic. For Android we generate
traffic using iperf running on Nexus 7 (Android 4.3) over a WiFi link (802.11g), for OpenWrt
we run OOR on a Netgear home router (WNDR3800, OpenWrt 12.09) and we generate traffic
with nuttcp. As shown in figure 6.4 OOR outperforms OpenVPN in both cases. Both OOR and
OpenVPN show a decrement of their performance under high-loads, this is because the CPU is
also used when receiving packets.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

T
ra
ffi

c
o
u
t

(m
b

p
s)

Traffic in (mbps)

OOR (Android)
OpenVPN (Android)

Vanilla (Android)
OOR (OpenWRT)

OpenVPN (OpenWRT)
Vanilla (OpenWRT)

Figure 6.4 Throughput (Android and OpenWrt)

6.5.2 Multihoming

As described in Section 6.3.7 OOR supports multiple data interfaces at the same time. In order
to test the performance of OOR in this scenario we run OOR in a virtual machine connected
to 4 different interfaces (10Mbps of link capacity per interface). We generate 100 flows using
iperf and we measure the average throughput as a function of the number of active interfaces.
As figure 6.5 shows OOR dynamically takes advantage of the available interfaces resulting
in an efficient multihoming solution, where the overall throughput is limited by the overhead
introduced by the different headers, including the LISP encapsulation.

6.5 Evaluation 109

 0

 10

 20

 30

 40

 50

1 2 3 4

T
o
ta

l
th

ro
u
g

h
p

u
t

(m
b

p
s)

Number of interfaces

Ideal
OOR

Figure 6.5 Multihoming performance

6.5.3 Horizontal Handover Latency

In this section we focus on the handover latency of the OOR Android version. We run it on a
Nexus 7 tablet and we manually force horizontal handovers (WiFi and 3G). At the same time
the tablet is generating a high ratio of ICMP packets (50 pkts/s) towards a remote host. The
handover latency is measured as the time where the host is not receiving packets.

Figure 6.6 shows the number of packets received per second over a series of handover
events with and without OOR. As shown in the plot there are not noticeable differences between
the two scenarios, indeed the average WiFi to 3G handover latency measured over 31 tests is
4.16ms and 3.98ms for OOR and without OOR respectively. From 3G to WiFi the handover
latency does not impact the data-path since the Android OS does not turn off the 3G interface
until there is connectivity via WiFi.

6.5.4 Data-plane Processing Latency

Finally in this section we measure the processing latency of the OOR data-plane as a function
of the size of the map-cache, specifically the time since OOR reads a packet from the TUN
interface until that packet has been encapsulated and forwarded. In order to populate the
map cache we use a 450k entries BGP table from the Route Views project [128] and consider
them as EID prefixes, with this we simulate an xTR operating as border router with a realistic
RIB. Furthermore, we split this table in smaller chunks and use them to gradually increase

110 OpenOverlayRouter: Architecture and Evaluation

 0

 10

 20

 30

 40

 50

0 5 10 15 20 25 30 35 40 45 50

R
e
ce

iv
e
d

 p
a
ck

e
ts

Time (seconds)

 OOR

 0

 10

 20

 30

 40

 50

0 5 10 15 20 25 30 35 40 45 50

R
e
ce

iv
e
d

 p
a
ck

e
ts

Time (seconds)

Vanilla

Figure 6.6 Handover time

the map-cache size and assess the processing latency for different map-cache sizes. Our
experiments show that OOR has an average processing latency of 40µs 6.7 and that this latency
is independent of the size of the map-cache, validating the performance in terms of latency of
the implementation.

 0

 10

 20

 30

 40

 50

50k 100k 150k 200k 250k 300k 350k 400k 450k

P
ro

ce
ss

in
g

 t
im

e
 (
μ

s)

Map-Cache entries

Figure 6.7 Data-plane processing latency

6.6 Conclusions 111

6.6 Conclusions

The OOR project provides a mature user-space LISP implementation for research, innovation
and prototyping. The code has been architected with this in mind, providing an extensible
and flexible LISP implementation while keeping low complexity and easy deployment. The
feedback received from the community as well as the diverse projects where OOR’s code is
being used strongly supports these claims.

Additionally, the experimental evaluation shows a remarkable performance of the OOR
control-plane in terms of processing and handover latency, resulting in unnoticeable overhead
on the system. The OOR data-plane presents a comparable performance with similar software
solutions (e.g., OpenVPN). Such results shows that OOR, despite taking a full user-space
approach, is suitable for production in edge and home environments, such as smartphones and
home routers.

Chapter 7

Conclusions

7.1 Thesis Summary

The main contribution of this thesis is the concept of decoupling state and control in SDN
networks. This architectural distinction reduces the complexity of controller design and allows
to face the scalability challenges of each element (i.e. control and state) individually. In the
first part of this thesis we have analyzed LISP as a southbound protocol suitable to be used for
state exchange in decoupled-state architectures. Then, partially leveraging on LISP, this thesis
has proposed two different decoupled-state SDN architectures for two specific use-cases.

On one hand, we have introduced an asynchronous decoupled-state architecture to enable
SDN for end-nodes. It leverages on a distributed state database that offers a connectionless pull-
based interface to southbound nodes. The state database is then connected to a decentralized
and symmetric controller that exposes an intent-based interface to northbound applications.
The abstract northbound polices are rendered by the controller into specific state and stored in
the state database. Southbound nodes retrieve on demand state directly from the state database.
On the other hand, this thesis has described a decentralized SDN architecture designed to
support NFV on operator networks. This proposal decentralizes the controller instances and
pushes them close to the data-plane devices they control. The state is kept in a centralized and
global database that is shared among all the controllers to enable state federation and global
coordination.

In the second part of this thesis we have gone in deep into the requirements and char-
acteristics of SDN for end-nodes. Particularly, we have described the LISP protocol when
applied to mobility scenarios and discussed location and identity privacy enhancements for
LISP mobile end-nodes. To conclude the thesis we have presented the OpenOverlayRouter
project, an open-source implementation to deploy LISP-based programmable overlays.

114 Conclusions

7.2 Open Research

This work has introduced decoupled-state architectures, a new sub-field within SDN research
that to the best of our knowledge has never been discussed before. This thesis shows the
motivation behind the idea of decoupling state and control and remarks the benefits of applying
decoupled-state architectures to certain use-cases and scenarios. However, this new area present
a set of new research challenges that can be extracted from the work discussed in this thesis. In
this section we highlight open research on the field of decoupled-state architectures and the
future work to be addressed in order to accomplish the full potential of such architectures. We
foresee two particular challenges that need to be addressed in the near future, the description of
the interfaces to interact with the state and the definition of the requirements of the databases
storing the decoupled-state.

7.2.1 State Interfaces

SDN defines clear interfaces (e.g. northbound, southbound) between the different SDN compo-
nents [48, 61, 132]. In common SDN architectures there is no well-defined interface between
state and control since there is no clear boundary between them. There is no need to explicitly
define a control⇔state interface since they are considered parts of a single entity. In this
context, each SDN approach defines the interaction of control and state within the controller
according to their own particular needs. However, logically dissociating the state from the
controller introduces the need to define a clear interface between them. This is comparable
to the decoupling of the control-plane from the data-plane in early days of SDN that defined
the southbound interface. Similarly, it is also closely related to the extraction of the control
applications from the controller that introduced the northbound interface in the SDN paradigm.

Furthermore, once the state is logically outside the controller it is possible to define
additional interfaces with other SDN components. It is specially interesting to consider the
direct interaction of the state with the data-plane devices. In this sense, this thesis investigated
the interaction of the controller with a disjoint state entity in Chapter 4 and the direct state
exchange between the state database and the data-plane devices in Chapter 3. Despite this
initial research, further investigation is required to define the requirements of the control⇔state
and state⇔data interfaces.

On one hand, in many use-cases the interface to exchange state between the controller
and the state database can leverage on the common database interfaces available today. This
is the case for instance in our proposal in Section 3.5.2 where the controller connects to a
Cassandra-based state database making use of a regular Cassandra client driver. However, the
requirements of this interface needs to be carefully analyzed per use-case and scenario. On the

7.2 Open Research 115

other hand, the interface to expose the state to the data-plane devices likely needs to be fast and
lightweight, as discussed in Chapter 3. This also applies to the controller⇔state interface when
the controller requires of fast and frequent queries to a remote decoupled-state. This is the case
of the decentralized controlled introduced in Chapter 4.

This thesis proposes to use LISP as the state exchange interface for the aforementioned
cases where a regular database driver is not the most suitable approach. We choose LISP
to fulfill this role due to its lightweight approach and the easiness to leverage on its already
defined architecture and signaling. However, we believe that further approaches should be
considered in the future since different cases may require different approximations. Some
examples of other candidates that, depending on the scenario, may be taken into account
are gRPC [46] + ProtoBuff [117] and NETCONF [24] + YANG [6]. The former presents
an interesting short-lived connection-oriented approach. It can help to mitigate the inherent
drawbacks of connectionless proposals (e.g. LISP) without adding the common overhead of
connection-based protocols. The latter offers a full connection-oriented proposal, with the
overhead that it implies. However, its wide adoption allows it to be used on scenarios where
no other approach is feasible. Furthermore, the flexible YANG datamodels could be directly
mapped to the state structure on the database which opens interesting possibilities. For instance,
to automatically generate model-based interfaces on demand in the manner of OpenDaylight
[89].

7.2.2 State Databases

This work presents network architectures that heavily depend on databases and we believe that
further research and analysis is needed to better understand the implications of this dependence.
It should be noted that a partial database dependency has been in place through the different
iterations of SDN controllers [47, 71, 59, 5]. As an example, the authors of ONOS [5] provide a
large discussion on the state tradeoffs addressed by their architecture and describe the different
database choices they considered in order fit the requirements of their scenario.

However, the logical decoupling of state from control and the resulting extraction of the
state database from the logical boundaries of the controller stresses the role of the state database.
Taking the state out alleviates the scalability requirements on the controller, but moves them to
the state database. Therefore, the scalability of the SDN architecture is no longer mostly tied
to the scalability of the controller, but rather to the scalability of the state database. Similarly,
some technical requirements and constrains previously associated to the SDN controller are
now moved to the state database.

In this sense, existing research on SDN controllers has to be revisited from a decoupled-state
point of view, to asses whether the results of that research remain valid for decoupled-state

116 Conclusions

architectures. Particularly interesting works are those that focus on aspects directly related to
the state, for instance the implications of a distributed state across different partitions [76], the
topological placement of these partitions [53], how to distribute the specific state across them
[112] or how to ensure safe state transactions on a shared environment [10]. As an example,
this thesis has already shown in section 3.7 how the topological location of the state has an
important impact on the performance of decoupled-state SDN architectures.

Furthermore, decoupled-state architectures require making an efficient usage of the under-
lying database technology (as briefly discussed in Section 3.6). First, per each use-case and
scenario the architecture has to find a database that suits its needs in terms of the CAP theorem
(Consistency, Availability and Partition tolerance) [8, 7]. In common SDN deployments this
is usually handled via solutions that offer high availability and partition tolerance by means
of only offering eventual consistency. This is the case for the state database (e.g. Cassandra)
that we use in Chapter 3 and Chapter 4. Second, the database needs to meet the architecture
requirements in terms of available features, for instance how it handles merging overlapping
information or if it allows to define callbacks functions to be triggered when certain state is
modified. As an example, in Section 3.5.3 we rely on Cassandra triggers [136] to notify state
updates to data-plane nodes.

Finally, the database deployment must fulfill the performance requirements of the archi-
tecture in both throughput (request per second) and delay (time per request). Decoupled-state
architectures potentially introduce an additional burden on the latter since in some scenarios
the state can be not only decoupled but also topologically far from the controller or data-plane
devices. This could add extra latency to the state retrieval or modification and should be
carefully considered during the design of decoupled-state architectures.

7.2.3 Long Term Research

The decoupling of state from control enables new research possibilities to be considered in the
long term. Particularly, at the time of this writing we are starting to explore the application of
Machine Learning (ML) techniques to extract knowledge from the decoupled-state. We believe
that the vision described by D. Clark et al. in the paper A Knowledge Plane for the Internet
[15] can be accomplished today by leveraging on the SDN architectures. Within this context,
decoupled-state SDN architectures may play a major role.

In general, the state centralization brought by SDN makes possible to use ML-based
solutions that were not feasible to apply over a distributed setup. Furthermore, the decoupling
and isolation of the state proposed by decoupled-state architectures eases its parsing by ML
applications. In a decoupled-state architecture the state is directly exposed to third parties,
thus a ML application can extract knowledge from the state database while minimizing the

7.2 Open Research 117

disruption of the system. This generated knowledge can be later used to optimize different
metrics across the system. Moreover, due to the open access to the database, it is easy for an
application leveraging on the extracted knowledge to modify the network state directly. The
field of applying ML for network control loops is still open research and the application of it to
decoupled-state SDN architectures remains to be explored in the future.

Bibliography

[1] Amazon AWS (2016). Amazon Web Services. https://aws.amazon.com/. Accessed:
2016-04-28.

[2] Android (2016). Google Android. http://android.com/. Accessed: 2016-04-20.

[3] Apache (2004). Apache Software License 2.0. http://www.apache.org/licenses/LICENSE-2.
0.

[4] Barkai, S., Farinacci, D., Meyer, D., Maino, F., Ermagan, V., Rodriguez-Natal, A., and
Cabellos-Aparicio, A. (2015). LISP Based FlowMapping for Scaling NFV. Internet-Draft
draft-barkai-lisp-nfv-07, Internet Engineering Task Force. Work in Progress.

[5] Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B., O’Connor,
B., Radoslavov, P., Snow, W., et al. (2014). ONOS: towards an open, distributed SDN OS.
In Proceedings of the third workshop on Hot topics in software defined networking, pages
1–6. ACM.

[6] Bjorklund, M. (2010). YANG - A Data Modeling Language for the Network Configuration
Protocol (NETCONF). RFC 6020, RFC Editor. http://www.rfc-editor.org/rfc/rfc6020.txt.

[7] Brewer, E. (2012). CAP twelve years later: How the" rules" have changed. Computer,
45(2):23–29.

[8] Brewer, E. A. (2000). Towards Robust Distributed Systems (Abstract). In Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing, PODC
’00, pages 7–, New York, NY, USA. ACM.

[9] Callon, R. (1990). Use of OSI IS-IS for routing in TCP/IP and dual environments. RFC
1195, RFC Editor. http://www.rfc-editor.org/rfc/rfc1195.txt.

[10] Canini, M., Kuznetsov, P., Levin, D., and Schmid, S. (2013). Software transactional
networking: Concurrent and consistent policy composition. In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined networking, pages 1–6. ACM.

[11] Casado, M., Foster, N., and Guha, A. (2014). Abstractions for software-defined networks.
Communications of the ACM, 57(10):86–95.

[12] Casado, M., Freedman, M. J., Pettit, J., Luo, J., McKeown, N., and Shenker, S. (2007).
Ethane: taking control of the enterprise. In ACM SIGCOMM Computer Communication
Review, volume 37, pages 1–12. ACM.

https://aws.amazon.com/
http://android.com/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.rfc-editor.org/rfc/rfc6020.txt
http://www.rfc-editor.org/rfc/rfc1195.txt

120 Bibliography

[13] Casado, M., Koponen, T., Shenker, S., and Tootoonchian, A. (2012). Fabric: a retrospec-
tive on evolving SDN. In Proceedings of the first workshop on Hot topics in software defined
networks, pages 85–90. ACM.

[14] Cerrato, I., Palesandro, A., Risso, F., Suñé, M., Vercellone, V., and Woesner, H. (2015).
Toward dynamic virtualized network services in telecom operator networks. Computer
Networks, 92:380–395.

[15] Clark, D. D., Partridge, C., Ramming, J. C., and Wroclawski, J. T. (2003). A knowledge
plane for the internet. In Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 3–10. ACM.

[16] Coras, F., Cabellos-Aparicio, A., and Domingo-Pascual, J. (2012). An analytical model
for the LISP cache size. In NETWORKING 2012, pages 409–420. Springer.

[17] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271.

[18] Dingledine, R., Mathewson, N., and Syverson, P. (2004). Tor: The second-generation
onion router. Technical report, DTIC Document.

[19] Dixit, A., Hao, F., Mukherjee, S., Lakshman, T., and Kompella, R. (2013). Towards an
elastic distributed SDN controller. In ACM SIGCOMM Computer Communication Review,
volume 43, pages 7–12. ACM.

[20] Doria, A., Salim, J. H., Haas, R., Khosravi, H., Wang, W., Dong, L., Gopal, R., and
Halpern, J. (2010). Forwarding and Control Element Separation (ForCES) Protocol Specifi-
cation. RFC 5810, RFC Editor. http://www.rfc-editor.org/rfc/rfc5810.txt.

[21] Droms, R. (1997). Dynamic Host Configuration Protocol. RFC 2131, RFC Editor.
http://www.rfc-editor.org/rfc/rfc2131.txt.

[22] Eddy, W. M. (2004). At what layer does mobility belong? Communications Magazine,
IEEE, 42(10):155–159.

[23] Emmerich, P., Raumer, D., Wohlfart, F., and Carle, G. (2014). Performance characteris-
tics of virtual switching. In Cloud Networking (CloudNet), 2014 IEEE 3rd International
Conference on, pages 120–125. IEEE.

[24] Enns, R., Bjorklund, M., Schoenwaelder, J., and Bierman, A. (2011). Network Configura-
tion Protocol (NETCONF). RFC 6241 (Proposed Standard).

[25] Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, F., and White, C. (2016). NAT
traversal for LISP. Internet-Draft draft-ermagan-lisp-nat-traversal-10, Internet Engineering
Task Force. Work in Progress.

[26] Ermagan, V., Rodriguez-Natal, A., Coras, F., Moberg, C., Cabellos-Aparicio, A., and
Maino, F. (2015). LISP Configuration YANG Model. Internet-Draft draft-ietf-lisp-yang-01,
Internet Engineering Task Force. Work in Progress.

http://www.rfc-editor.org/rfc/rfc5810.txt
http://www.rfc-editor.org/rfc/rfc2131.txt

Bibliography 121

[27] ETSI Group Specification (2014a). Network Functions Virtualisation (NFV); Archi-
tectural Framework. Specification V1.2.1, European Telecommunications Standards
Institute (ETSI). http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_
NFV002v010201p.pdf.

[28] ETSI Group Specification (2014b). Network Functions Virtualisation (NFV); Manage-
ment and Orchestration . Specification V1.1.1, European Telecommunications Standards
Institute (ETSI). http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/
gs_NFV-MAN001v010101p.pdf.

[29] Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., and Estrin, D.
(2010). Diversity in smartphone usage. In Proceedings of the 8th international conference
on Mobile systems, applications, and services, pages 179–194. ACM.

[30] Farinacci, D., Fuller, V., Meyer, D., and Lewis, D. (2013). The Locator/ID Separation
Protocol (LISP). RFC 6830, RFC Editor. http://www.rfc-editor.org/rfc/rfc6830.txt.

[31] Farinacci, D., Kowal, M., and Lahiri, P. (2016a). LISP Traffic Engineering Use-Cases.
Internet-Draft draft-farinacci-lisp-te-10, Internet Engineering Task Force. Work in Progress.

[32] Farinacci, D., Lewis, D., Meyer, D., and White, C. (2016b). LISP Mobile Node. Internet-
Draft draft-meyer-lisp-mn-14, Internet Engineering Task Force. Work in Progress.

[33] Farinacci, D., Meyer, D., and Snijders, J. (2016c). LISP Canonical Address Format
(LCAF). Internet-Draft draft-ietf-lisp-lcaf-13, Internet Engineering Task Force. Work in
Progress.

[34] Farrel, A., Vasseur, J.-P., and Ash, J. (2006). A Path Computation Element (PCE)-Based
Architecture. RFC 4655, RFC Editor. http://www.rfc-editor.org/rfc/rfc4655.txt.

[35] Feamster, N., Rexford, J., and Zegura, E. (2014). The road to SDN: an intellectual
history of programmable networks. ACM SIGCOMM Computer Communication Review,
44(2):87–98.

[36] Foster, N., Guha, A., Reitblatt, M., Story, A., Freedman, M. J., Katta, N. P., Monsanto,
C., Reich, J., Rexford, J., Schlesinger, C., et al. (2013). Languages for software-defined
networks. Communications Magazine, IEEE, 51(2):128–134.

[37] Fuller, V. and Farinacci, D. (2013). Locator/ID Separation Protocol (LISP) Map-Server
Interface. RFC 6833, RFC Editor.

[38] Fuller, V., Lewis, D., Ermagan, V., Jain, A., and Smirnov, A. (2016). LISP Delegated
Database Tree. Internet-Draft draft-ietf-lisp-ddt-06, Internet Engineering Task Force. Work
in Progress.

[39] Galvani, A., Rodriguez-Natal, A., Cabellos-Aparicio, A., and Risso, F. (2014). LISP-
ROAM: network-based host mobility with LISP. In Proceedings of the 9th ACM workshop
on Mobility in the evolving internet architecture, pages 19–24. ACM.

[40] Garg, P. and Wang, Y. (2015). NVGRE: Network Virtualization Using Generic Routing
Encapsulation. RFC 7637, RFC Editor.

http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.rfc-editor.org/rfc/rfc6830.txt
http://www.rfc-editor.org/rfc/rfc4655.txt

122 Bibliography

[41] GBP (2015). Group Based Policy abstractions for OpenStack. https://wiki.openstack.org/
GroupBasedPolicy. Accessed: 2015-03-13.

[42] Gember-Jacobson, A., Viswanathan, R., Prakash, C., Grandl, R., Khalid, J., Das, S.,
and Akella, A. (2015). OpenNF: Enabling innovation in network function control. ACM
SIGCOMM Computer Communication Review, 44(4):163–174.

[43] Goldschlag, D. M., Reed, M. G., and Syverson, P. F. (1996). Hiding routing information.
In Information Hiding, pages 137–150. Springer.

[44] Greenberg, A., Hjalmtysson, G., Maltz, D. A., Myers, A., Rexford, J., Xie, G., Yan,
H., Zhan, J., and Zhang, H. (2005). A clean slate 4D approach to network control and
management. ACM SIGCOMM Computer Communication Review, 35(5):41–54.

[45] Greene, K. (2009). TR10: Software-defined networking. Technology Review (MIT).
http://www2.technologyreview.com/news/412194/tr10-software-defined-networking/.

[46] gRPC (2016). Google gRPC. http://www.grpc.io/. Accessed: 2016-04-19.

[47] Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., and Shenker,
S. (2008). NOX: towards an operating system for networks. ACM SIGCOMM Computer
Communication Review, 38(3):105–110.

[48] Haleplidis, E., Pentikousis, K., Denazis, S., Salim, J. H., Meyer, D., and Koufopavlou, O.
(2015). Software-Defined Networking (SDN): Layers and Architecture Terminology. RFC
7426, RFC Editor. http://www.rfc-editor.org/rfc/rfc7426.txt.

[49] Han, B., Gopalakrishnan, V., Ji, L., and Lee, S. (2015). Network function virtualization:
Challenges and opportunities for innovations. Communications Magazine, IEEE, 53(2):90–
97.

[50] Han, S., Liu, V., Pu, Q., Peter, S., Anderson, T., Krishnamurthy, A., and Wetherall,
D. (2013). Expressive privacy control with pseudonyms. In ACM SIGCOMM Computer
Communication Review, volume 43, pages 291–302. ACM.

[51] Hawilo, H., Shami, A., Mirahmadi, M., and Asal, R. (2014). NFV: state of the art,
challenges, and implementation in next generation mobile networks (vEPC). Network, IEEE,
28(6):18–26.

[52] Heller, B. et al. (2009). OpenFlow Switch Specification. Version 1.0. 0 (Wire Protocol
0x01).

[53] Heller, B., Sherwood, R., and McKeown, N. (2012). The controller placement problem.
In Proceedings of the first workshop on Hot topics in software defined networks, pages 7–12.
ACM.

[54] Hinrichs, T. L., Gude, N. S., Casado, M., Mitchell, J. C., and Shenker, S. (2009). Practical
declarative network management. In Proceedings of the 1st ACM workshop on Research on
enterprise networking, pages 1–10. ACM.

[55] Hoefling, M., Menth, M., and Hartmann, M. (2013). A survey of mapping systems
for locator/identifier split internet routing. Communications Surveys & Tutorials, IEEE,
15(4):1842–1858.

https://wiki.openstack.org/GroupBasedPolicy
https://wiki.openstack.org/GroupBasedPolicy
http://www2.technologyreview.com/news/412194/tr10-software-defined-networking/
http://www.grpc.io/
http://www.rfc-editor.org/rfc/rfc7426.txt

Bibliography 123

[56] Hunt, P., Konar, M., Junqueira, F. P., and Reed, B. (2010). ZooKeeper: Wait-free
Coordination for Internet-scale Systems. In USENIX Annual Technical Conference, volume 8,
page 9.

[57] Iannone, L., Saucez, D., and Bonaventure, O. (2013). Locator/ID Separation Protocol
(LISP) Map-Versioning. RFC 6834, RFC Editor.

[58] Intel DPDK (2016). Intel Data Plane Development Kit. http://openvpn.net. Accessed:
2016-04-28.

[59] Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer,
J., Zhou, J., Zhu, M., et al. (2013). B4: Experience with a globally-deployed software
defined WAN. In ACM SIGCOMM Computer Communication Review, volume 43, pages
3–14. ACM.

[60] Jakab, L., Cabellos-Aparicio, A., Coras, F., Saucez, D., and Bonaventure, O. (2010).
LISP-TREE: a DNS hierarchy to support the lisp mapping system. Selected Areas in
Communications, IEEE Journal on, 28(8):1332–1343.

[61] Jarschel, M., Zinner, T., Hoßfeld, T., Tran-Gia, P., and Kellerer, W. (2014). Interfaces,
attributes, and use cases: A compass for SDN. Communications Magazine, IEEE, 52(6):210–
217.

[62] JNI (2016). Java Native Interface. http://docs.oracle.com/javase/7/docs/technotes/guides/
jni/. Accessed: 2016-04-20.

[63] Johnson, D., Perkins, C., and Arkko, J. (2004). Mobility Support in IPv6. RFC 3775,
RFC Editor. http://www.rfc-editor.org/rfc/rfc3775.txt.

[64] Kachris, C. and Tomkos, I. (2012). A survey on optical interconnects for data centers.
Communications Surveys & Tutorials, IEEE, 14(4):1021–1036.

[65] Kernighan, B. W., Ritchie, D. M., and Ejeklint, P. (1988). The C programming language,
volume 2. prentice-Hall Englewood Cliffs.

[66] Kim, H. and Feamster, N. (2013). Improving network management with software defined
networking. Communications Magazine, IEEE, 51(2):114–119.

[67] Klein, D., Hartmann, M., and Menth, M. (2010). NAT traversal for LISP mobile node. In
Proceedings of the Re-Architecting the Internet Workshop, page 8. ACM.

[68] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F. (2000). The Click
modular router. ACM Transactions on Computer Systems (TOCS), 18(3):263–297.

[69] Koodli, R. (2005). Fast Handovers for Mobile IPv6. RFC 4068, RFC Editor.

[70] Koodli, R. (2007). IP Address Location Privacy and Mobile IPv6: Problem Statement.
RFC 4882, RFC Editor.

[71] Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., Ramanathan,
R., Iwata, Y., Inoue, H., Hama, T., et al. (2010). Onix: A Distributed Control Platform for
Large-scale Production Networks. In OSDI, volume 10, pages 1–6.

http://openvpn.net
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
http://www.rfc-editor.org/rfc/rfc3775.txt

124 Bibliography

[72] Kreeger, L. and Elzur, U. (2016). Generic Protocol Extension for VXLAN. Internet-Draft
draft-ietf-nvo3-vxlan-gpe-02, Internet Engineering Task Force. Work in Progress.

[73] Krejci, R. (2013). Building NETCONF-enabled network management systems with
libnetconf. In Integrated Network Management (IM 2013), 2013 IFIP/IEEE International
Symposium on, pages 756–759. IEEE.

[74] Kreutz, D., Ramos, F. M., Esteves Verissimo, P., Esteve Rothenberg, C., Azodolmolky, S.,
and Uhlig, S. (2015). Software-defined networking: A comprehensive survey. Proceedings
of the IEEE, 103(1):14–76.

[75] Lakshman, A. and Malik, P. (2010). Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review, 44(2):35–40.

[76] Levin, D., Wundsam, A., Heller, B., Handigol, N., and Feldmann, A. (2012). Logically
centralized?: state distribution trade-offs in software defined networks. In Proceedings of
the first workshop on Hot topics in software defined networks, pages 1–6. ACM.

[77] Lewis, D., Meyer, D., Farinacci, D., and Fuller, V. (2013). Interworking between Loca-
tor/ID Separation Protocol (LISP) and Non-LISP Sites. RFC 6832, RFC Editor.

[78] libnetconf (2016). C NETCONF library. https://github.com/CESNET/libnetconf. Ac-
cessed: 2016-04-22.

[79] Linux (2016). The Linux kernel archives. http://kernel.org/. Accessed: 2016-04-20.

[80] lisp4.net (2016). The LISP beta-network project. http://lisp4.net. Accessed: 2016-03-25.

[81] lisp.cisco.com (2016). Cisco LISP. http://lisp.cisco.com. Accessed: 2016-04-10.

[82] LISPmob (2016). LISPmob open-source project. http://www.openoverlayrouter.org/
lispmob/. Accessed: 2016-04-20.

[83] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, L., Sridhar, T., Bursell, M.,
and Wright, C. (2014). Virtual eXtensible Local Area Network (VXLAN): A Framework for
Overlaying Virtualized Layer 2 Networks over Layer 3 Networks. RFC 7348 (Informational).

[84] Maino, F., Ermagan, V., Cabellos-Aparicio, A., and Saucez, D. (2016). LISP-Security
(LISP-SEC). Internet-Draft draft-ietf-lisp-sec-10, Internet Engineering Task Force. Work in
Progress.

[85] Mathy, L. and Iannone, L. (2008). LISP-DHT: Towards a DHT to map identifiers onto
locators. In Proceedings of the 2008 ACM CoNEXT Conference, page 61. ACM.

[86] Matias, J., Garay, J., Toledo, N., Unzilla, J., and Jacob, E. (2015). Toward an SDN-enabled
NFV architecture. Communications Magazine, IEEE, 53(4):187–193.

[87] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., and Turner, J. (2008). OpenFlow: enabling innovation in campus networks.
ACM SIGCOMM Computer Communication Review, 38(2):69–74.

[88] McQuillan, J. M., Richer, I., and Rosen, E. C. (1980). The new routing algorithm for the
ARPANET. Communications, IEEE Transactions on, 28(5):711–719.

https://github.com/CESNET/libnetconf
http://kernel.org/
http://lisp4.net
http://lisp.cisco.com
http://www.openoverlayrouter.org/lispmob/
http://www.openoverlayrouter.org/lispmob/

Bibliography 125

[89] Medved, J., Varga, R., Tkacik, A., and Gray, K. (2014). Opendaylight: Towards a model-
driven sdn controller architecture. In 2014 IEEE 15th International Symposium on "A World
of Wireless, Mobile and Multimedia Networks" (WoWMoM), pages 1–6. IEEE.

[90] Meneses, F., Corujo, D., Guimaraes, C., and Aguiar, R. L. (2015). Extending SDN to End
Nodes Towards Heterogeneous Wireless Mobility. In 2015 IEEE Globecom Workshops (GC
Wkshps), pages 1–6. IEEE.

[91] Menth, M., Klein, D., and Hartmann, M. (2010). Improvements to LISP mobile node. In
Teletraffic Congress (ITC), 2010 22nd International, pages 1–8. IEEE.

[92] Metcalfe, R. M. and Boggs, D. R. (1976). Ethernet: distributed packet switching for local
computer networks. Communications of the ACM, 19(7):395–404.

[93] Monsanto, C., Reich, J., Foster, N., Rexford, J., and Walker, D. (2013). Composing
software defined networks. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages 1–13.

[94] Moore, N. (2006). Optimistic Duplicate Address Detection (DAD) for IPv6. RFC 4429,
RFC Editor.

[95] Moy, J. (1998). OSPF Version 2. STD 54, RFC Editor. http://www.rfc-editor.org/rfc/
rfc2328.txt.

[96] Narten, T., Draves, R., and Krishnan, S. (2007). Privacy Extensions for Stateless Address
Autoconfiguration in IPv6. RFC 4941, RFC Editor.

[97] Nordmark, E., Chakrabarti, S., and Laganier, J. (2007). IPv6 Socket API for Source
Address Selection. RFC 5014, RFC Editor.

[98] Nordström, E., Shue, D., Gopalan, P., Kiefer, R., Arye, M., Ko, S. Y., Rexford, J., and
Freedman, M. J. (2012). Serval: An end-host stack for service-centric networking. In Pro-
ceedings of the 9th USENIX conference on Networked Systems Design and Implementation,
pages 7–7. USENIX Association.

[99] ODL-LISP (2015). OpenDaylight LISP Flow Mapping Project. https://wiki.opendaylight.
org/view/OpenDaylight_Lisp_Flow_Mapping:Main. Accessed: 2015-03-13.

[100] Open Overlay Router (2016). Open Overlay Router open-source project. http:
//openoverlayrouter.org/. Accessed: 2016-03-25.

[101] Open Source MANO (OSM) (2016). Open Source NFV Management and Orchestration
(MANO). https://osm.etsi.org/. Accessed: 2016-04-26.

[102] Open VPN (2016). OpenVPN - Open Source VPN. http://openvpn.net. Accessed:
2016-04-28.

[103] OpenDaylight (2015). OpenDaylight Project. http://www.opendaylight.org/. Accessed:
2015-03-13.

[104] OpenLISP (2016). OpenLISP project. http://www.openlisp.org/. Accessed: 2016-03-25.

http://www.rfc-editor.org/rfc/rfc2328.txt
http://www.rfc-editor.org/rfc/rfc2328.txt
https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Main
https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Main
http://openoverlayrouter.org/
http://openoverlayrouter.org/
https://osm.etsi.org/
http://openvpn.net
http://www.opendaylight.org/
http://www.openlisp.org/

126 Bibliography

[105] OpenMANO (2016). Telefonica OpenMANO open-source project. https://github.com/
nfvlabs/openmano/. Accessed: 2016-03-25.

[106] OpenStack (2015). OpenStack Open Source Cloud Computing Software. https://www.
openstack.org/. Accessed: 2015-03-13.

[107] OpenWrt (2016). OpenWrt: a Linux distribution for embedded devices. http://openwrt.
org/. Accessed: 2016-04-20.

[108] Paul, S. and Jain, R. (2012). OpenADN: Mobile apps on global clouds using openflow
and software defined networking. In Globecom Workshops (GC Wkshps), 2012 IEEE, pages
719–723. IEEE.

[109] Perkins, C. (2002). IP Mobility Support for IPv4. RFC 3344, RFC Editor. http:
//www.rfc-editor.org/rfc/rfc3344.txt.

[110] Perlman, R. (1985). An algorithm for distributed computation of a spanningtree in an
extended lan. In ACM SIGCOMM Computer Communication Review, volume 15, pages
44–53. ACM.

[111] Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross, J., Wang,
A., Stringer, J., Shelar, P., et al. (2015). The design and implementation of open vswitch. In
12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15),
pages 117–130.

[112] Phemius, K., Bouet, M., and Leguay, J. (2014). Disco: Distributed multi-domain sdn
controllers. In Network Operations and Management Symposium (NOMS), 2014 IEEE,
pages 1–4. IEEE.

[113] Phung, D., Secci, S., Saucez, D., and Iannone, L. (2014). The OpenLISP control plane
architecture. Network, IEEE, 28(2):34–40.

[114] Pongrácz, G., Molnar, L., and Kis, Z. L. (2013). Removing roadblocks from SDN:
OpenFlow software switch performance on Intel DPDK. In Software Defined Networks
(EWSDN), 2013 Second European Workshop on, pages 62–67. IEEE.

[115] Postel, J. (1981a). Internet Protocol. STD 5, RFC Editor. http://www.rfc-editor.org/rfc/
rfc791.txt.

[116] Postel, J. (1981b). Transmission Control Protocol. STD 7, RFC Editor. http://www.
rfc-editor.org/rfc/rfc793.txt.

[117] ProtoBuff (2016). Google Protocol Buffers. https://developers.google.com/
protocol-buffers/. Accessed: 2016-04-19.

[118] Qiu, Y., Zhao, F., and Koodli, R. (2010). Mobile IPv6 Location Privacy Solutions. RFC
5726, RFC Editor.

[119] Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacobsen, H.-A., and
Mankovskii, S. (2012). Solving big data challenges for enterprise application performance
management. Proceedings of the VLDB Endowment, 5(12):1724–1735.

https://github.com/nfvlabs/openmano/
https://github.com/nfvlabs/openmano/
https://www.openstack.org/
https://www.openstack.org/
http://openwrt.org/
http://openwrt.org/
http://www.rfc-editor.org/rfc/rfc3344.txt
http://www.rfc-editor.org/rfc/rfc3344.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

Bibliography 127

[120] Rekhter, Y., Li, T., and Hares, S. (2006). A Border Gateway Protocol 4 (BGP-4). RFC
4271, RFC Editor. http://www.rfc-editor.org/rfc/rfc4271.txt.

[121] Risso, F. and Cerrato, I. (2012). Customizing data-plane processing in edge routers.
In Software Defined Networking (EWSDN), 2012 European Workshop on, pages 114–120.
IEEE.

[122] Rodriguez-Natal, A., Cabellos-Aparicio, A., Barkai, S., Ermagan, V., Lewis, D., Maino,
F., and Farinacci, D. (2016a). LISP support for Multi-Tuple EIDs. Internet-Draft draft-
rodrigueznatal-lisp-multi-tuple-eids-01, Internet Engineering Task Force. Work in Progress.

[123] Rodriguez-Natal, A., Cabellos-Aparicio, A., Ermagan, V., Maino, F., and Barkai, S.
(2016b). MS-originated SMRs. Internet-Draft draft-rodrigueznatal-lisp-ms-smr-01, Internet
Engineering Task Force. Work in Progress.

[124] Rodriguez-Natal, A., Jakab, L., Ermagan, V., Natarajan, P., Maino, F., and Cabellos-
Aparicio, A. (2015a). Location and identity privacy for LISP-MN. In Communications
(ICC), 2015 IEEE International Conference on, pages 5260–5265. IEEE.

[125] Rodriguez-Natal, A., Jakab, L., Portoles, M., Ermagan, V., Natarajan, P., Maino, F.,
Meyer, D., and Cabellos-Aparicio, A. (2013). LISP-MN: mobile networking through LISP.
Wireless personal communications, 70(1):253–266.

[126] Rodriguez-Natal, A., Portoles-Comeras, M., Ermagan, V., Lewis, D., Farinacci, D.,
Maino, F., and Cabellos-Aparicio, A. (2015b). LISP: a southbound SDN protocol? Commu-
nications Magazine, IEEE, 53(7):201–207.

[127] Rosen, E., Viswanathan, A., and Callon, R. (2001). Multiprotocol Label Switching
Architecture. RFC 3031, RFC Editor. http://www.rfc-editor.org/rfc/rfc3031.txt.

[128] Route Views (2016). University of Oregon Route Views Project. http://www.routeviews.
org/. Accessed: 2016-04-29.

[129] Saucez, D., Iannone, L., Bonaventure, O., and Farinacci, D. (2012). Designing a
deployable internet: The locator/identifier separation protocol. Internet Computing, IEEE,
16(6):14–21.

[130] Schmid, S. and Suomela, J. (2013). Exploiting locality in distributed SDN control. In
Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined
networking, pages 121–126. ACM.

[131] Sezer, S., Scott-Hayward, S., Chouhan, P.-K., Fraser, B., Lake, D., Finnegan, J., Viljoen,
N., Miller, M., and Rao, N. (2013). Are we ready for SDN? Implementation challenges for
software-defined networks. Communications Magazine, IEEE, 51(7):36–43.

[132] Shin, M.-K., Nam, K.-H., and Kim, H.-J. (2012). Software-defined networking (SDN):
A reference architecture and open APIs. In ICT Convergence (ICTC), 2012 International
Conference on, pages 360–361. IEEE.

[133] Shoch, J. (1978). Inter-network naming, addressing, and routing. In COMPCON, IEEE
Computer Society, Fall, volume 5.

http://www.rfc-editor.org/rfc/rfc4271.txt
http://www.rfc-editor.org/rfc/rfc3031.txt
http://www.routeviews.org/
http://www.routeviews.org/

128 Bibliography

[134] Takahashi, H. and Minohara, T. (2012). Enhancing location privacy in Mobile IPv6 by
using redundant home agents. In Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2012 IEEE International Conference on, pages 451–454. IEEE.

[135] Tennenhouse, D. L., Smith, J. M., Sincoskie, W. D., Wetherall, D. J., and Minden,
G. J. (1997). A survey of active network research. Communications Magazine, IEEE,
35(1):80–86.

[136] Triggers (2016). Cassandra triggers. http://www.datastax.com/dev/blog/
whats-new-in-cassandra-2-0-prototype-triggers-support. Accessed: 2016-04-20.

[137] Tsirtsis, G., Soliman, H., Montavont, N., Giaretta, G., and Kuladinithi, K. (2011). Flow
Bindings in Mobile IPv6 and Network Mobility (NEMO) Basic Support. RFC 6089, RFC
Editor.

[138] TUN/TAP (2016). Linux Kernel documentation. TUN/TAP device driver. http://www.
kernel.org/doc/Documentation/networking/tuntap.txt. Accessed: 2016-04-29.

[139] Vasseur, J. and Roux, J. L. (2009). Path Computation Element (PCE) Communication
Protocol (PCEP). RFC 5440, RFC Editor. http://www.rfc-editor.org/rfc/rfc5440.txt.

[140] Vissicchio, S., Vanbever, L., and Bonaventure, O. (2014). Opportunities and research
challenges of hybrid software defined networks. ACM SIGCOMM Computer Communication
Review, 44(2):70–75.

[141] VPN-API (2016). Google Android VPN Service Development Reference. http://
developer.android.com/reference/android/net/VpnService.html. Accessed: 2016-04-28.

[142] Weber, I., Zagheni, E., et al. (2013). Studying inter-national mobility through IP
geolocation. In Proceedings of the sixth ACM international conference on Web search and
data mining, pages 265–274. ACM.

[143] Yap, K.-K., Huang, T.-Y., Kobayashi, M., Yiakoumis, Y., McKeown, N., Katti, S., and
Parulkar, G. (2012). Making use of all the networks around us: a case study in android.
In Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: operations,
challenges, and future design, pages 19–24. ACM.

[144] Yeganeh, S. H., Tootoonchian, A., and Ganjali, Y. (2013). On scalability of software-
defined networking. Communications magazine, IEEE, 51(2):136–141.

[145] Zhao, Y., Iannone, L., and Riguidel, M. (2014). Software switch performance factors
in network virtualization environment. In Network Protocols (ICNP), 2014 IEEE 22nd
International Conference on, pages 468–470. IEEE.

http://www.datastax.com/dev/blog/whats-new-in-cassandra-2-0-prototype-triggers-support
http://www.datastax.com/dev/blog/whats-new-in-cassandra-2-0-prototype-triggers-support
http://www.kernel.org/doc/Documentation/networking/tuntap.txt
http://www.kernel.org/doc/Documentation/networking/tuntap.txt
http://www.rfc-editor.org/rfc/rfc5440.txt
http://developer.android.com/reference/android/net/VpnService.html
http://developer.android.com/reference/android/net/VpnService.html

Appendix A

Complete List of Publications

A.1 Related Publications

A.1.1 Journals

• Rodriguez-Natal, Alberto, Lorand Jakab, Marc Portoles-Comeras, Vina Ermagan, Preethi
Natarajan, Fabio Maino, and Albert Cabellos-Aparicio. "LISP-MN: mobile networking
through LISP." Wireless personal communications 70.1 (2013): 253-266.

• Rodriguez-Natal, Alberto, Marc Portoles-Comeras, Vina Ermagan, Darrel Lewis, Dino
Farinacci, Fabio Maino, and Albert Cabellos-Aparicio. "LISP: a southbound SDN
protocol?" Communications Magazine, IEEE 53.7 (2015): 201-207.

Under Review

• Rodriguez-Natal, Alberto, Vina Ermagan, Kien Nguyen, Sharon Barkai, Yusheng Ji,
Fabio Maino, and Albert Cabellos-Aparicio. “SDN for End-Nodes.”

• Rodriguez-Natal, Alberto, Vina Ermagan, Ariel Noy, Ajay Sahai, Gidi Kaempfer, Sharon
Barkai, Fabio Maino, and Albert Cabellos-Aparicio. “Global state, local decisions:
Decentralized NFV for ISPs via enhanced SDN.”

• Rodriguez-Natal, Alberto, Florin Coras, Albert Lopez-Bresco, Lorand Jakab, Marc
Portoles-Comeras, Preethi Natarajan, Vina Ermagan, David Meyer, Dino Farinacci,
Fabio Maino, and Albert Cabellos-Aparicio. “OpenOverlayRouter: Architecture and
Performance.”

130 Complete List of Publications

A.1.2 Conferences

• Rodriguez-Natal, Alberto, Lorand Jakab, Vina Ermagan, Preethi Natarajan, Fabio Maino,
and Albert Cabellos-Aparicio. "Location and identity privacy for LISP-MN." Interna-
tional Conference on Communications (ICC), IEEE, 2015.

A.1.3 Internet Drafts

• Ermagan, Vina, Alberto Rodriguez-Natal, Florin Coras, Albert Cabellos-Aparicio, and
Fabio Maino. "LISP Configuration YANG Model", draft-ietf-lisp-yang-01, December
2015, (work in progress).
https://tools.ietf.org/html/draft-ietf-lisp-yang-01

• Rodriguez-Natal, Alberto, Albert Cabellos-Aparicio, Sharon Barkai, Vina Ermagan,
Darrel Lewis, Fabio Maino, and Dino Farinacci. "LISP support for Multi-Tuple EIDs",
draft-rodrigueznatal-lisp-multi-tuple-eids-01, January 2016, (work in progress).
https://tools.ietf.org/html/draft-rodrigueznatal-lisp-multi-tuple-eids-01

• Barkai, Sharon, Dino Farinacci, David Meyer, Fabio Maino, Vina Ermagan, Alberto
Rodriguez-Natal, and Albert Cabellos-Aparicio. "LISP Based FlowMapping for Scaling
NFV", draft-barkai-lisp-nfv-07, December 2015, (work in progress).
https://tools.ietf.org/html/draft-barkai-lisp-nfv-07

• Rodriguez-Natal, Alberto, Albert Cabellos-Aparicio, Vina Ermagan, Fabio Maino, and
Sharon Barkai. "MS-originated SMRs", draft-rodrigueznatal-lisp-ms-smr-01, April 2016,
(work in progress).
https://tools.ietf.org/html/draft-rodrigueznatal-lisp-ms-smr-01

A.1.4 Talks

• “LISPflow: an SDN enabler”, IETF 87 SDN RG, Berlin, Germany, July 2013.
https://datatracker.ietf.org/meeting/87/agenda/sdnrg

• “LISP & LISPmob: Overview and Use Cases” 12, RIPE 69 Routing WG,
London, UK, November 2014.
https://ripe69.ripe.net/programme/meeting-plan/routing-wg/

1invited by the RIPE Academic Initiative Collaboration (RACI) program.
2https://ripe69.ripe.net/programme/raci/

https://tools.ietf.org/html/draft-ietf-lisp-yang-01
https://tools.ietf.org/html/draft-rodrigueznatal-lisp-multi-tuple-eids-01
https://tools.ietf.org/html/draft-barkai-lisp-nfv-07
https://tools.ietf.org/html/draft-rodrigueznatal-lisp-ms-smr-01
https://datatracker.ietf.org/meeting/87/agenda/sdnrg
https://ripe69.ripe.net/programme/meeting-plan/routing-wg/
https://ripe69.ripe.net/programme/raci/

A.2 Other Publications 131

• “LISP YANG model”, IETF 92 LISP WG, Dallas, TX, USA, March 2015.
https://datatracker.ietf.org/meeting/92/agenda/lisp/

• “An Over-The-Top SDN Architecture for Mobile Nodes and Home Routers”,
IETF 92 SDN RG, Dallas, TX, USA, March 2015.
https://datatracker.ietf.org/meeting/92/agenda/sdnrg

• “LISP subscription”, IETF 94 LISP WG, Yokohama, Japan, November 2015.
https://datatracker.ietf.org/meeting/94/agenda/lisp/

• “Open Overlay Lab: SDN via programmable overlays”, European Commission Info Day
on 5G-PPP Phase 2, Bologna, Italy, March 2016.
https://5g-ppp.eu/5g-ppp-phase-2-information-day-and-stakeholders-event/

A.1.5 Code

• Core developer and maintainer at the OpenOverlayRouter project (formerly LISPmob),
an open-source implementation to deploy programmable overlays.
http://www.openoverlayrouter.org/
https://github.com/OpenOverlayRouter

• Contributor of the original LISP northbound interface for the OpenDaylight SDN con-
troller.
https://github.com/opendaylight/lispflowmapping

A.2 Other Publications

A.2.1 Workshops

• Galvani, Andrea, Alberto Rodriguez-Natal, Albert Cabellos-Aparicio, and Fulvio Risso,
"LISP-ROAM: network-based host mobility with LISP." Proc. of the 9th ACM workshop
on Mobility in the evolving internet architecture. ACM, 2014.

A.2.2 Book Chapters

• Papadimitriou, Dimitri, Florin Coras, Alberto Rodriguez, Valentin Carela, Davide
Careglio, Lluís Fàbrega, Pere Vilà, and Piet Demeester. "Iterative research method
applied to the design and evaluation of a dynamic multicast routing scheme." In Mea-
surement Methodology and Tools, pp. 107-126. Springer Berlin Heidelberg, 2013.

https://datatracker.ietf.org/meeting/92/agenda/lisp/
https://datatracker.ietf.org/meeting/92/agenda/sdnrg
https://datatracker.ietf.org/meeting/94/agenda/lisp/
https://5g-ppp.eu/5g-ppp-phase-2-information-day-and-stakeholders-event/
http://www.openoverlayrouter.org/
https://github.com/OpenOverlayRouter
https://github.com/opendaylight/lispflowmapping

132 Complete List of Publications

A.2.3 Patents

• Portoles-Comeras, Marc, Preethi Natarajan, Alberto Rodriguez-Natal, Fabio Maino, Al-
bert Cabellos-Aparicio, Vasileios Lakafosis, and Lorand Jakab. “Multipath Provisioning
of L4-L7 Traffic in a Network.” Patent Application. US 14/612,691 (03-Feb-2015). EP
14465524.8 (27-Oct-2014).

A.2.4 Internet Drafts

• Rodriguez-Natal, Alberto, Albert Cabellos-Aparicio, Marc Portoles-Comeras, Michael
Kowal, Darrel Lewis, and Fabio Maino. "LISP-OAM: Use cases and requirements",
draft-rodrigueznatal-lisp-oam-03, December 2015, (work in progress).
https://tools.ietf.org/html/draft-rodrigueznatal-lisp-oam-03

• Cabellos, Albert, Sharon Barkai, Barak Perlman, Vina Ermagan, Fabio Maino, and
Alberto Rodriguez-Natal. "Map-Assisted SFC Proxy using LISP", draft-cabellos-sfc-
map-assisted-proxy-00, October 2015, (work in progress).
https://tools.ietf.org/html/draft-cabellos-sfc-map-assisted-proxy-00

https://tools.ietf.org/html/draft-rodrigueznatal-lisp-oam-03
https://tools.ietf.org/html/draft-cabellos-sfc-map-assisted-proxy-00

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Background: Legacy networks
	1.2 State-of-the-art: Software-Defined Networking (SDN)
	1.3 Motivation: Decoupling State from Control
	1.4 Objectives: Decoupled-State Architectures
	1.5 Methodology: Research-Standardize-Implement
	1.6 Outline and Contributions of this Thesis

	I Decoupled State Architectures
	2 LISP as a Protocol for State Exchange in SDN
	2.1 Introduction
	2.2 Background: Locator/ID Separation Protocol (LISP)
	2.3 LISP: An SDN Architecture?
	2.4 Architectural Analysis
	2.5 Discussion
	2.6 Prototype
	2.7 Conclusions

	3 Asynchronous SDN Architecture for End-Nodes
	3.1 Introduction
	3.2 Use-Cases
	3.3 Challenges
	3.4 Design Guidelines
	3.5 An SDN Architecture for End-Nodes
	3.6 Discussion
	3.7 Proof of Concept
	3.8 Related Work
	3.9 Conclusions

	4 Decentralized SDN Architecture for Operators NFV
	4.1 Introduction
	4.2 Scenario Requirements
	4.3 Global State, Local Decisions
	4.4 Design Principles
	4.5 Architecture
	4.6 Qualitative Analysis
	4.7 Software Switch Implementation
	4.8 Related Work
	4.9 Conclusions

	II Deploying SDN for End-Nodes
	5 Privacy for LISP Mobile Nodes
	5.1 Introduction
	5.2 Background: LISP-MN
	5.3 Privacy in LISP-MN
	5.4 Related Work
	5.5 Analysis
	5.6 Evaluation
	5.7 Conclusions

	6 OpenOverlayRouter: Architecture and Evaluation
	6.1 Introduction
	6.2 Architecture Overview
	6.3 Control-Plane
	6.4 Data-Plane
	6.5 Evaluation
	6.6 Conclusions

	7 Conclusions
	7.1 Thesis Summary
	7.2 Open Research

	Bibliography
	Appendix A Complete List of Publications
	A.1 Related Publications
	A.2 Other Publications

