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Abstract

Respiratory sounds (RS) are produced by turbulent airflows through the airways and are
inhomogeneously transmitted through different media to the chest surface, where they can be recorded
in a non-invasive way. Due to their mechanical nature and airflow dependence, RS are affected by
respiratory diseases that alter the mechanical properties of the respiratory system. Therefore, RS provide

useful clinical information about the respiratory system structure and functioning.

Recent advances in sensors and signal processing techniques have made RS analysis a more objective
and sensitive tool for measuring pulmonary function. However, RS analysis is still rarely used in clinical
practice. Lack of a standard methodology for recording and processing RS has led to several different
approaches to RS analysis, with some methodological issues that could limit the potential of RS analysis
in clinical practice (i.e., measurements with a low number of sensors, no controlled airflows, constant
airflows, or forced expiratory manoeuvres, the lack of a co-analysis of different types of RS, or the use

of inaccurate techniques for processing RS signals).

In this thesis, we propose a novel integrated approach to RS analysis that includes a multichannel
recording of RS using a maximum of five microphones placed over the trachea and the chest surface,
which allows RS to be analysed at the most commonly reported lung regions, without requiring a large
number of sensors. Our approach also includes a progressive respiratory manoeuvres with variable
airflow, which allows RS to be analysed depending on airflow. Dual RS analyses of both normal RS
and continuous adventitious sounds (CAS) are also proposed. Normal RS are analysed through the RS
intensity—airflow curves, whereas CAS are analysed through a customised Hilbert spectrum (HS),

adapted to RS signal characteristics.

The proposed HS represents a step forward in the analysis of CAS. Using HS allows CAS to be fully
characterised with regard to duration, mean frequency, and intensity. Further, the high temporal and
frequency resolutions, and the high concentrations of energy of this improved version of HS, allow CAS
to be more accurately characterised with our HS than by using spectrogram, which has been the most

widely used technique for CAS analysis.

Our approach to RS analysis was put into clinical practice by launching two studies in the Pulmonary
Function Testing Laboratory of the Germans Trias i Pujol University Hospital for assessing pulmonary
function in patients with unilateral phrenic paralysis (UPP), and bronchodilator response (BDR) in
patients with asthma. RS and airflow signals were recorded in 10 patients with UPP, 50 patients with

asthma, and 20 healthy participants.

The analysis of RS intensity—airflow curves proved to be a successful method to detect UPP, since we

found significant differences between these curves at the posterior base of the lungs in all patients,



whereas no differences were found in the healthy participants. To the best of our knowledge, this is the

first study that uses a quantitative analysis of RS for assessing UPP.

Regarding asthma, we found appreciable changes in the RS intensity—airflow curves and CAS features
after bronchodilation in patients with negative BDR in spirometry. Therefore, we suggest that the
combined analysis of RS intensity—airflow curves and CAS features—including number, duration, mean
frequency, and intensity—seems to be a promising technique for assessing BDR and improving the
stratification of BDR levels, particularly among patients with negative BDR in spirometry.

The novel approach to RS analysis developed in this thesis provides a sensitive tool to obtain objective
and complementary information about pulmonary function in a simple and non-invasive way. Together
with spirometry, this approach to RS analysis could have a direct clinical application for improving the

assessment of pulmonary function in patients with respiratory diseases.

Keywords

Asthma, continuous adventitious sounds, ensemble empirical mode decomposition, Hilbert-Huang
transform, instantaneous frequency, multichannel respiratory sound recording, respiratory sounds,

unilateral phrenic paralysis, wheezes
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“Patience is to science what insanity is to art”
However, one may think that “Insanity is to science what patience is to art” is also true.

S0, keep insanely on it and personal success will come to you.
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Preface

This doctoral thesis was begun five years ago in the framework of a joint research unit between the
Institute for Bioengineering of Catalonia (IBEC, Barcelona, Spain) and the Health Sciences Research
Institute of the Germans Trias i Pujol Foundation (IGTP, Badalona, Spain), and with the collaboration
of the Pulmonology service of the Germans Trias i Pujol University Hospital (HUGTIP, Badalona,
Spain). We aimed to develop an alternative and more sensitive tool for assessing pulmonary function in
respiratory diseases based on the analysis of respiratory sounds (RS). To do this, a number of advanced
signal processing techniques have been developed in this thesis, allowing us to propose a new approach
to RS analysis that combines the analysis of both normal RS and continuous adventitious sounds.
However, the applicability of the proposed approach in clinical practice has been a major objective from
the beginning of this thesis. For that reason, many practical aspects have also been taken into
consideration—such as the number of sensors and the respiratory manoeuvres—to define an RS

recording protocol that can be launched in pulmonary function testing laboratories.

Two different protocols were defined and launched in the Pulmonary Function Testing Laboratory of
the HUGTIP, at the beginning of this thesis, for assessing unilateral phrenic paralysis and asthma. During
the past five years, the RS recording sessions with patients at the HUGTIP have run in parallel with the
development of new techniques for RS signal processing and analysis at the IBEC. All the work done
during these years has resulted in the following published articles, which have been collected for the

submission of this thesis:

Avrticle 1 (Chapter 2)

Title: Detecting unilateral phrenic paralysis by acoustic respiratory analysis
Authors: J. A. Fiz, R. Jané, M. Lozano, R. Gomez, J. Ruiz
Journal: PLOS ONE, Apr. 2014.

Article 2 (Chapter 3)

Title: Automatic differentiation of normal and continuous adventitious respiratory sounds using
ensemble empirical mode decomposition and instantaneous frequency

Authors: M. Lozano, J. A. Fiz, R. Jané
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Article 3 (Chapter 4)

Title: Performance evaluation of the Hilbert—Huang transform for respiratory sound analysis and its
application to continuous adventitious sound characterization

Authors: M. Lozano, J. A. Fiz, R. Jané

Journal: Signal Process., vol. 120, pp. 99-116, Mar. 2016.
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CHAPTER 1 1

Chapter 1: Introduction

1.1. Ventilation

Ventilation, one of the functional processes of the respiratory system, consists in moving air from
outside the body into the lungs, and vice versa. The aims of ventilation are to transport oxygen to the

alveoli within the lungs and to eliminate the carbon dioxide (CO;) produced by cell respiration [1].
1.1.1. Airways and airflow
Ventilation comprises two phases:

- Inspiration: air flows from the atmosphere into the lungs

- Expiration: air flows from the lungs to the atmosphere

Inspiration is an active process, even during quiet breathing, which requires the activation of the
inspiratory muscles, mainly of the diaphragm and, to a lesser extent, the external intercostal muscles.
Contraction of these muscles expands the rib cage, and this expansion is transmitted to the lungs through
the pleural cavity. Lung expansion causes the intrapulmonary pressure to fall below the atmospheric
pressure, thus making air enter the lungs through a series of tubular structures, called conducting airways

(Figure 1) [2], [3].

- Terminal bronchiole
> Respiratory bronchiole

Nasal cavity _& 4 Oral cavity
L8 Pharynx

Capillaries

Larynx s Left main bronchus

Trachea

Bronchi

Right main
bronchus

Right Left lung

Diaphragm

Figure 1. Conducting airways and respiratory zone (see box)

Inspired air enters the nasal cavities and the pharynx and moves downwards through the
tracheobronchial tree, which progressively branch out, starting from the trachea down to the terminal
bronchioles. Conducting airways do not participate in gas exchange but rather clear and improve the

quality of inspired air as it is carried to the alveoli. The respiratory zone, where gas exchange occurs,



2 1.1 Ventilation

starts with the division of terminal bronchioles into respiratory bronchioles and includes alveolar ducts

and alveoli as well.

After each inspiration, a fraction of the inhaled air (about 150 mL) remains in the conducting airways,
constituting the anatomical dead space. However, most of the inhaled air (about 2.5 to 3 L) goes into the

respiratory zone and takes part in gas exchange [2].

Different from inspiration, normal expiration is a passive process. Relaxation of the diaphragm and the
external intercostal muscles causes the lungs to compress due to the elasticity of their tissue. Lung
compression causes the intrapulmonary pressure to rise above the atmospheric pressure, causing air to

flow from the lungs to the atmosphere.
1.1.2. Regulation of ventilation

The three basic elements of the regulation of ventilation are the central controller (nervous system),

effectors (respiratory muscles), and sensors (chemical and mechanical receptors) (Figure 2).
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Figure 2. Elements of ventilation regulation (adapted from [3])
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1.1.2.1. Spontaneous periodic ventilation

Central controller automatically regulates both the depth and rate of ventilation through the respiratory
centres located in the medulla oblongata and pons. Medullary respiratory centres include the dorsal and
ventral respiratory neurons, which are the inspiratory and expiratory centres, respectively. The rhythm
of ventilation is mainly determined by spontaneous periodic impulses generated by the inspiratory
centre. These impulses travel through the phrenic and intercostal nerves and cause the inspiratory
muscles to contract. Besides its spontaneous activation, the inspiratory centre is stimulated from the

apneustic centre, which is located in the lower pons and contributes to produce regular ventilation [3].
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Impulses from the inspiratory centre also stimulate the pneumotaxic centre within the upper pons, which
in turn inhibits both apneustic and inspiratory centres, resulting in termination of inspiration and
initiation of passive expiration. A new cycle of ventilation is then started by spontaneous activation of
the inspiratory centre. Normal ventilation cycles last around 3 to 5 seconds, producing a normal
ventilation rate of 12 to 20 cycles per minute [2].

The medullary expiratory centre is only activated during deep ventilation. In this case, the inspiratory
centre activates the expiratory centre, thereby stimulating expiratory muscles, including the internal
intercostal and abdominal muscles [2].

1.1.2.2. Chemical regulation of ventilation

The main objective of ventilation is to maintain blood oxygen and CO; and blood pH within their normal
range of values. Specific groups of neurons, called chemoreceptors, are located in the medulla (central
chemoreceptors) or the carotid and aortic bodies (peripheral chemoreceptors), where they detect changes

in gas content and pH of blood and regulate ventilation according to these changes.

Chemoreceptors are more sensitive to changes in blood CO; than to changes in blood oxygen because
CO- directly affects blood pH, the values of which must be maintained within normal parameters for the
correct functioning of cells. Therefore, changes in blood CO- are responsible for most of the changes in
ventilation. Blood CO; is mostly regulated by central chemoreceptors. When blood CO; levels increase,
the CO; crosses the blood-brain barrier and lowers the pH of the cerebrospinal fluid. The decreased pH
activates the central chemoreceptors, which stimulate the respiratory centre. As ventilation increases,

CO; is eliminated, and blood pH reaches the normal levels.

Blood oxygen usually does not affect ventilation regulation. Oxygen begins to affect ventilation when
its blood concentration falls below half its normal value [1]. In this case, peripheral chemoreceptors are

responsible to stimulate the respiratory centre in order to increase ventilation, and thus blood oxygen.
1.1.2.3. Other regulations of ventilation

Ventilation can also be affected by responses from higher brain centres and peripheral mechanical

receptors [3]:

- The limbic system of the brain can accelerate ventilation in response to emotions

- The cerebral cortex allows the depth and rate of ventilation to be voluntarily controlled

- Baroreceptors in lung tissue detect stretching during inflation of the lungs. The activation of these
receptors inhibits the inspiratory centre, thus preventing overinflation of the lungs. During
expiration, these receptors are no longer activated, allowing the inspiratory centre to activate again

- Proprioceptors in muscles and joints detect muscle contractions and body movements, and their
action potentials stimulate the respiratory centre

- Other receptors of touch, pain, and temperature can also stimulate the respiratory centre through

higher brain centres
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1.1.3. Measurement of ventilation

Lung function tests are a set of respiratory manoeuvres that are performed using standardised equipment
to determine how well the lungs work. In particular, spirometry and body plethysmography are those
most often used to assess ventilation [4].

Spirometry measures how much air can be inhaled and exhaled (lung volumes) and how quickly this
can happen (airflow) (Figure 3). The spirometry manoeuvre consists of performing a maximal
inspiration from tidal breathing followed by a maximal expiration. It can be performed in a relaxed or a

forced manner.
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Figure 3. Typical volume-time and flow-volume curves obtained during forced spirometry.
FEV4, forced expiratory volume in 1 second; FVVC, forced vital capacity.

The most important spirometric parameters from a clinical point of view are:

- Forced vital capacity (FVC), the volume of air that is exhaled from a maximal inspiration to a
maximal expiration during a forced spirometry

- Forced expiratory volume in 1 second (FEV:), the volume of air that is exhaled during the first
second of a forced spirometry

- FEVY/FVC ratio

- Total lung capacity (TLC), the total volume of air that can be contained in the lungs

These parameters, which are usually expressed as a percentage of the reference values according to sex,
age, and height [5], provide relevant clinical information for distinguishing different types of abnormal
ventilatory patterns, including obstructive and restrictive patterns [4]. An obstructive pattern is
characterised by reduced expiratory airflows, due to airway obstruction (AQO). Despite airflow limitation,
FVC is usually normal or reduced to a lesser extent than FEV1, which leads to a reduction in the
FEV1/FVC ratio. A decrease in the FEV1/FVC ratio below the normal range of values (0.7-0.8) is a
clear indicator of AO [6].

On the other hand, a restrictive pattern is characterised by reduced lung volumes (<80% of predicted),
including FEV1, FVC, and TLC, whereas expiratory airflows may be normal. In this case, the FEV1/FVC

ratio is normal or even elevated, since FVC may be reduced to a larger extent than FEV1 [7].
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However, a reduced FVC is not always due to a restrictive pattern. In severe AO, as in emphysema, lung
hyperinflation leads to an increased residual lung volume and a reduced FVVC, which may be erroneously
interpreted as a restrictive pattern. For this reason, TLC—the summation of FVC and the residual lung
volume—should be measured to confirm or exclude the restrictive pattern. Since spirometry does not
measure the residual volume, additional tests, such as gas dilution technique or body plethysmography,
are required for this purpose [4].

Major spirometric parameters are used as a first simple tool for detecting an abnormal ventilatory
pattern. Spirometry can help to detect obstructive lung diseases, such as asthma and chronic obstructive
pulmonary disease (COPD), at an early stage and thus guide their management [8]. However, in order
to make a more accurate diagnosis, additional studies are required. For example, a bronchodilator
response (BDR) test is usually performed when airflow obstruction is suspected from spirometric
parameters. This test consists in inhaling around four puffs of a bronchodilator medication, usually a
short-acting B2-agonist such as salbutamol, and repeating the spirometry after 15 minutes [7]. An
increase in FEV; of >12% and >200 mL from the baseline value is considered as a positive BDR [6],
[7]. Bronchodilator therapy can often reverse airflow limitation in patients with asthma but usually is
not helpful for patients with COPD.

Even though spirometry is the most widely used test to assess ventilation, and especially for AO
assessment, it has also been a subject of controversy. The standard BDR criterion, based on the
percentage increase in FEV1, is highly influenced by the baseline FEV [6], so that subjects with a low
baseline FEV: are more likely to have a greater BDR than subjects with a high baseline FEV1. In this
regard, a study published in 2012 [9] concluded that BDR could be omitted in patients with normal
baseline spirometry and an FEV: above 90% of that predicted, since only 1% of these patients had a
positive BDR. Subsequently, another study performed in children [10] showed that 10-12% of children
with normal baseline spirometry had a positive BDR, and therefore baseline FEV: should not affect the
decision to perform a BDR test.

The true significance of various levels of BDR and the usefulness of the standard BDR cutoff have also
been a source of debate, especially for diagnosing asthma [11], [12] and differentiating between asthma
and COPD [13]. In fact, using FEV: to assess BDR, especially in patients with COPD, is quite
paradoxical, since “It would be the equivalent of defining essential hypertension as an increase in BP
that must not respond to antihypertensive therapy, and then testing antihypertensive agents using the

unmodifiable BP as the only outcome” [8].

Spirometry is a simple and useful technique for supporting the diagnosis, but a specific diagnosis should

not be made based only on spirometric parameters [7].
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1.2. Respiratory sounds

Respiratory sounds (RS) are mechanical waveforms—that is, vibrations—that are produced during
breathing, mainly by airflow patterns and pressure changes within the airways. Lung auscultation is a
key step in physical examination, since RS provide useful clinical information about the respiratory
system structure and functioning. Respiratory diseases may alter airflow patterns, airway dynamics, and
regional lung volume distribution, which in turn affect the characteristics of RS [14], [15]. Over the past
few years, advances in sensors and signal processing techniques have made RS recording and analysis

an objective, sensitive, and powerful tool for assessing pulmonary function.
1.2.1. RS classification

Much effort has been made, both in the past and recently, to unify and standardise nomenclature in lung
auscultation [15]-[17], especially by the American Thoracic Society and the European Respiratory
Society [18], [19]. Nonetheless, no standard terminology exists at present to describe RS, and there is

still some discrepancy in the literature [17].

According to two recent and relevant publications about RS [15], [17], the most widely accepted

categorisation of RS is based on their characteristics and recording site (Figure 4).
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Figure 4. Classification of RS.

Besides location, the following characteristics are mainly used to distinguish between different types of
RS:

- Frequency, measured in hertz (Hz), refers to the speed of vibration of RS. RS are formed by a range
of frequencies that determine how RS are heard. The major or fundamental frequency of an RS
signal is usually called pitch, with high-pitched RS mainly containing high frequencies and low-
pitched RS containing low frequencies

- Intensity, usually measured in decibels (dB), refers to the loudness of RS, which is directly related
to the amplitude of RS signals

- Duration, usually measured in milliseconds (ms), is the time period during which RS are heard
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1.2.1.1. Normal RS

Normal RS are those heard at the chest, neck, or mouth of healthy people during breathing. Although
normal RS signals are random in nature, their characteristics highly depend on the recording site.

When recorded at large airways, such as the trachea (tracheal sounds) (Figure 5A), normal RS can be
heard during inspiration and expiration. These RS cover a wide frequency range, from around 70 Hz to
around 1500 Hz. However, most of their power is concentrated in the frequency range up to 850-1000
Hz, with a sharp drop in power above these frequencies [15], [20] (Eigure 5B).

Normal RS recorded at the chest wall (lung sounds) (Figure 5C) are much louder during inspiration than
during expiration. In contrast to mouth and tracheal sounds, lung sounds are affected by the low-pass
filtering effects of the chest. Accordingly, although lung sounds have a frequency band from around 70
Hz to around 1000 Hz, most of their energy extends up to 200-250 Hz, with a sharp decrease in power
above 250 Hz [15], [20], [21] (Figure 5D).
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Figure 5. Frequency band of tracheal and lung sounds. (A) Tracheal sounds and airflow. (B) Power
spectral density (PSD) of tracheal sounds. (C) Lung sounds and airflow. (D) PSD of lung sounds.
Positive airflow values correspond to inspiration and negative airflow values, to expiration. PSDs were
calculated using Welch’s periodogram.

A few studies have investigated the effects of age and gender on normal RS characteristics but have not
revealed major differences. Specifically, only minor changes in the spectra of RS that correlate to age
have been reported [22]. However, those changes had no clinical significance, so that there is no
practical need to consider the patient’s age during RS analysis. Moreover, although women have been
reported to have a higher power at high frequencies than men [21], [22], these differences at high
frequencies are not relevant, since most of the energy of RS is concentrated at low frequencies, at which

range no significant differences were found between men and women.
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1.2.1.2. Adventitious RS

Adventitious RS are additional abnormal sounds that appear superimposed on normal RS and usually

indicate the presence of a respiratory disorder [20]. These sounds are subdivided as follows:

- Continuous adventitious sounds (CAS) typically last more than 100 ms and have a sinusoidal-like
or quasi-periodic waveform [15], [20]. They include:

o Wheezes, musical sounds with a pitch between 100 Hz and 1000 Hz that can be inspiratory,
expiratory, or biphasic. Wheezes can be monophonic or polyphonic, depending on whether they
have only one frequency component or several simultaneous frequency components,
respectively

o Stridors, musical sounds with a pitch around 500 Hz, which are mainly inspiratory but can also
be expiratory or both. Different from wheezes, stridors are better heard over the large airways,
especially over the neck, and usually have shorter duration

o Rhonchus, musical sounds with a pitch around 150 Hz. Their waveform can be either like pure
low-pitched wheezes or similar to snores. Rhonchus are often reported as low-pitched wheezes

- Discontinuous adventitious sounds mainly include crackles, which are short, explosive, non-musical
sounds that can be heard during both respiratory phases. Crackles are further divided into fine

(around 5 ms and 650 Hz) and coarse (around 15 ms and 350 Hz). Fine crackles are mainly generated

during mid-to-late inspiration, whereas coarse crackles are heard during early inspiration and

throughout expiration [15]

- Squawks are mixed sounds that contain a short wheeze at around 200-300 Hz accompanied or

preceded by crackles, mainly heard during inspiration [15]

Even though this is the most widely-accepted classification for adventitious RS, it is still controversial
to date [17]. The lack of studies in large samples and of a standardised methodological approach to RS
recording (e.g., number of sensors and respiratory manoeuvres) and analysis (e.g., algorithms and
variables) have made it difficult to reach strong conclusions about the characteristics of different types

of adventitious RS, especially with respect to CAS [23].
1.2.1.3. Other abnormal RS

In certain pathological conditions, RS characteristics may be altered, independent of whether
adventitious RS are present or not. The most common abnormalities in RS are related to changes in
intensity. A decrease in RS intensity can be associated to several disorders involving sound generation
or transmission, as described in Section 1.3.1. Abnormal lung sounds with increased frequency and
intensity and an unusual louder and longer expiratory phase are called bronchial sounds [14], [15], [24].
Although recorded at the chest, bronchial sounds are more similar to tracheal sounds than to normal

lung sounds.
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1.2.2. Production of normal RS

Normal RS are a consequence of turbulent airflow through the airways and changes in airflow patterns
[24], [25]. Turbulent airflow occurs in large airways, in which air flows quickly and air molecules move
randomly. Flow turbulence produces pressure fluctuations within the air and airway walls, which in turn
produce RS [14], [26]. The intensity of both turbulence and RS increases with flow velocity. However,
turbulent flow only appears above a critical flow velocity. As air flows from large airways to smaller
airways, its velocity progressively decreases until it is insufficient to produce turbulence, which occurs
somewhere between the lobar bronchi and the terminal bronchioles [24]. Therefore, airflow in small
airways is laminar and does not produce RS.

Normal tracheal sounds are produced by turbulent inspiratory and expiratory airflows in upper airways.
However, normal lung sounds are related to turbulent airflows and changes in airflow patterns in the
central airways [14], [27]. The branching structure of the central airways and the different airway
diameters cause abrupt changes in the direction of airflow and force the airstream to be separated into
layers with different velocities. Therefore, as air flows towards peripheral airways, the airflow pattern
becomes irregular, and circular airflows or vortices appear. This airflow pattern also contributes to

produce normal lung sounds.

In contrast to tracheal sounds, the inspiratory and expiratory components of normal lung sounds have
different origins [15], [20], [26]-[31]. Inspiratory lung sounds are produced within the lobar and
segmental airways, with the contribution of even more peripheral airways [24]. However, expiratory
lung sounds are produced within more proximal airways, as airflows from small airways progressively
converge within larger airways (Figure 6). Since inspiratory lung sounds are produced within more
peripheral airways—that is, more locally and deep underneath the chest wall—they can be clearly heard
over the entire chest wall surface. Nevertheless, the intensity of expiratory lung sounds gradually
decreases from the upper airways to the base of the lungs.

Tracheal
sounds

Expiratory
lung sounds

Inspiratory

lung sounds

Figure 6. Production site of tracheal and lung sounds.
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1.2.3. Transmission and distribution of RS

RS transmission depends on the mechanical properties and geometry of the solid structures within the
thorax, including airways, lung parenchyma, and chest wall [32]. As RS are transmitted through different
structures, they are attenuated and filtered. The amount of RS energy that reaches the surface of the
chest wall mainly depends on the acoustic impedance of the different media, that is, their opposition to
the flow of energy. If the acoustic impedance of two different media are very different, most of the RS
energy is absorbed rather than transferred. In contrast, the more similar the impedances, the higher the
amount of transferred energy [14].

The asymmetric transmission and distribution of RS was analysed in several early studies in the ‘80s
and ‘90s [32]-[38]. RS cause large airway walls to oscillate at low frequencies, allowing most of the
energy to be transferred to the lung parenchyma and towards the chest surface. However, airway walls
become more rigid at high frequencies, allowing RS to remain within the airways and follow an airway
pathway [33]. Accordingly, the high-frequency components of normal RS and wheezes are better
transmitted through the airways than through the lung parenchyma and are more clearly heard over the
trachea than at the chest wall surface. Thus, tracheal sounds could contain information relevant for

assessing several respiratory diseases, such as asthma [20], [39].

The lung parenchyma, which mainly includes alveoli, small airways, and capillaries, was modelled as
an uniform mixture of gas (alveoli) and water (lung tissue) [26], [33]-[35]. This model was used to
analyse how RS are transmitted through the lung parenchyma, showing that the absorption of RS energy
highly depends on frequency. The lung parenchyma acts as a low-pass filter, thus attenuating high-
frequency RS and allowing low-frequency RS to propagate towards the chest surface. Further,
transmission of low-frequency RS through the lung parenchyma is minimally affected by changes in

lung volume or gas density [35].

The chest wall, which contains bones, muscles, fat, and skin, is thinner but also denser than the lung
parenchyma. Consequently, most of the RS energy is lost at the interface of these two media. In addition,
the heterogeneity of the chest wall and the differences in its composition between people are responsible
for the high variability of RS amplitude at the chest wall surface. For example, RS are poorly transmitted
to chest surface areas overlying bones, and therefore these areas should be avoided when recording RS
[26].

Despite the high variability of the spatial distribution of RS amplitude over the chest surface, some
particular patterns have been reported in the literature. On average, inspiratory sounds are around 10 dB
louder than expiratory sounds at the chest surface [36]. Accordingly, most studies have focused only on

inspiratory sounds to analyse the distribution of RS amplitude.

Significant differences in RS distribution have been reported both vertically and horizontally.

Specifically, RS amplitude is greater in the upper lobe than over the base of the lungs anteriorly, but it
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increases towards the base posteriorly [26], [37]. In the horizontal plane, RS recorded over the upper
right hemithorax have been found to be significantly louder than those measured over the upper left
hemithorax, both anteriorly [38] and posteriorly [35]. However, at the posterior lower chest, a
lateralisation of RS to the left hemithorax has been reported [35], [36], [38], [40]. In healthy people,
horizontal differences in RS distribution have been found to be slight (of a few dB) and less relevant
than vertical differences [36], [40]-[42]. These differences have been mainly attributed to the
asymmetric mediastinal anatomy, and especially to the asymmetric geometry of airways because of the
position of the heart. Further, relevant postural effects on the distribution of RS amplitude have also
been reported [40]. In particular, lung sound intensity was found to be greater over the dependent lung
in lateral decubitus positions.

During the past decade, advances in sensor and computer technologies have made the multichannel
analysis of RS more feasible and practical [43]. RS multichannel recording consists on placing multiple
sensors on the chest surface so that RS can be simultaneously recorded at several points and large
amounts of data can be recorded and processed in a straightforward and efficient way. Several
multichannel approaches to RS recording and analysis have been proposed to provide more accurate
data about RS localization and distribution [44], [45].

A major advantage of RS multichannel recording is the possibility of mapping RS to create respiratory
acoustic thoracic images [46]. RS imaging provides detailed information about the distribution of the
RS intensity, which has allowed further analysis of the asymmetries and patterns in the distribution of
normal RS [41], [47]. Furthermore, this new technique for RS analysis has led to the development of a
vibration response imaging (VVRI) device [42], [48], which uses 40 sensors assembled into two arrays to
record RS over the posterior chest surface of a person. The system maps the RS intensity from each
sensor to create static and dynamic grey-scale images. However, these images have been interpreted
gualitatively, thus depending on the subjectivity of the physicians. The VRI system only provides
guantitative data for two or three regions of each lung (i.e., upper, middle, lower), in which the relative

RS intensities are aggregated and expressed as a percentage of the total for both lungs.

Although some particular patterns in the spatial RS distribution have been proposed, the heterogeneous

distribution of RS intensity remains still unclear, so that more studies still need to address this issue.
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1.3. Relationship between RS and respiratory diseases

The fact that RS characteristics vary over the chest surface, even in healthy people, indicates that RS
contain regional information about their site of generation and transmission path [26], either one or both
of which may be affected by respiratory diseases, thus altering the RS characteristics (Figure 7).

Relationship between RS and respiratory diseases
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Figure 7. Relationship between RS and respiratory diseases. CAS, continuous adventitious sounds;
COPD, chronic obstructive pulmonary disease; RS, respiratory sounds.

1.3.1. Decrease in RS intensity

RS intensity can be decreased due to a reduction in sound generation or impaired transmission, or both.
A reduced sound generation implies a decreased ventilation and airflow limitation, since RS production
depends on turbulent airflows through the airways. Further, decreased ventilation can be due either to

disruption of ventilation control or to airway conditions [14], [15].

Shallow breathing, and consequent decreased ventilation, often happens in persons with decreased levels
of consciousness (e.g. due to injury to the central nervous system or drug overdose). Chest pain can also
be a cause of decreased ventilation, since pain can limit the breathing depth. Additionally, damage to
the peripheral nerves that activate respiratory muscles can also cause decreased ventilation. For example,
injury to the phrenic nerves results in diaphragmatic paralysis, which in turn results in diminished air

entering the lungs and thus decreased RS.

Airway conditions include AO by a foreign body or tumour and obstructive pulmonary diseases (OPDs),
such as asthma or COPD [27], [49]. AO limits airflow, thereby directly effecting generation of RS,
which are reduced over the obstructed area and more distal areas. The reduction in RS intensity can be

reversible or permanent, depending on whether the obstruction is reversible or not.
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RS transmission can be impaired anywhere between the site of RS production and the chest surface. An
impaired transmission implies either a change in the mechanical properties of a medium or an impedance
mismatch between two media, which occurs when RS are transmitted through media with very different
acoustic properties, such as density [14], [15]. Damaged lung tissue in emphysema or increased air
trapped in hyperinflated lungs (e.g. in COPD) change the acoustical properties of the lung parenchyma
and lead to a generalised reduction of lung sound intensity. Obesity, with an excess of adipose tissue
and a resulting increase in chest wall thickness, also decreases lung sound intensity at the chest wall
surface. Further, in pneumothorax or pleural effusion, the presence of air or fluid accumulation within
the pleural space causes an impedance mismatch between the normal lung parenchyma and the pleural
cavity, resulting in diminished lung sound intensity over the affected area [50].

In some cases, lung sound intensity can be abnormally increased over the chest wall surface. Patients
with pneumonia and lung consolidation, atelectasis, or fibrosis may have abnormally loud RS (bronchial
breathing) over the affected area. These conditions increase the lung tissue density, improving the
impedance match between the lung tissue and the chest wall and enhancing the transmission of RS to
the chest wall surface [15], [24], [36].

1.3.2. Production of adventitious RS

Several airway and lung parenchyma disorders are involved in the production of adventitious RS. In
general, CAS are more related to obstructive airway diseases than to lung parenchyma disorders,
although the latter can also produce CAS. All types of CAS share the same mechanism of generation,
which revolves around airway narrowing and airflow limitation. Forgacs [24] reported that the correct
model of the production of wheezes “is a simple uncoupled reed, represented by a bronchus narrowed
to the point of closure, whose opposite walls oscillate between the closed and barely open positions™.
Subsequently, this theory was corroborated by Grotberg and Gavriely [51], who developed a theoretical
model of wheeze generation using collapsible tubes, showing that wheezes are generated by oscillation

of narrowed airways whose walls are in apposition.

Wheezes only appear above a critical flow, which depends on the mechanical properties of airways,
including the airway diameter and the airway wall thickness, stiffness, elastance, and longitudinal
tension [27], [51]. These mechanical properties also affect the pitch of wheezes, which increases with
narrower airways, thinner airway walls, or stiffer airway walls. However, wheeze pitch is not affected
by the length or diameter of airways [15], [24], [27]. Further, although wheezes are always associated
with airflow limitation, the opposite is not true—airflow limitation can occur without wheezes [15],
[51]. For instance, patients can have severe AO without wheezes if airflow is below the critical flow to
produce wheezes. In these cases, normal RS intensity is highly reduced or even absent, which is known

as silent lung [15].

Distinguishing between wheeze types can be important for diagnosis. Localized monophonic wheezes

are usually related to a local obstruction (for instance, by a foreign body or tumour), although single or
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multiple monophonic wheezes are also heard in patients with asthma, which can lead to a misdiagnosis
[15]. Moreover, squawks (a particular type of wheeze) can be heard in lung parenchyma disorders (e.g.
asbestosis, pneumonia, or pulmonary fibrosis). These are either single or multiple short monophonic
wheezes that appear during inspiration over the base of the lungs and are associated with late inspiratory
crackles [24], [52], [53].

Polyphonic wheezes are a common symptom of COPD and usually appear during expiration [24]. In
contrast to multiple monophonic wheezes, which start and end at different times, the different frequency
components of a polyphonic wheeze start and end simultaneously. Polyphonic wheezes are produced by
simultaneous compression of different airways, hence the presence of different frequency components.
This type of wheeze can also be heard in healthy people during forced expiratory manoeuvres. However,
when heard during normal breathing, polyphonic wheezes are a clear sign of AO.

Stridors are produced by turbulent airflow passing through narrowed upper airways (caused for example
by vocal cord dysfunctions, a foreign body, or a tumour). They are louder than wheezes and are more
clearly heard on inspiration and over the neck. However, when recorded over the lungs, these high-
pitched tracheal wheezes can be confused with asthma wheezes, highlighting the importance of
recording tracheal sounds [15], [54], [55].

While all types of CAS share the same mechanism of generation, fine and coarse crackles are produced
by two well-differentiated mechanisms. Fine crackles are generated by the sudden reopening of
peripheral airways that were abnormally closed due to deflation of dependent lung regions in several
diseases affecting the lung parenchyma, such as pulmonary fibrosis, asbestosis, or pneumonitis [20],
[56]. In deflated lung regions, the airways remain unusually closed until late inspiration, causing a large
difference between the atmospheric pressure and the intra-alveolar pressure. When pressure overcomes
the airway resistance, peripheral airways suddenly reopen and the subsequent explosive equalization of
pressure produces crackles [24]. Fine crackles, heard during mid-to-late inspiration, are not transmitted
to the mouth, or affected by cough but are altered by changes in body position [15]. Fine expiratory

crackles can also be due to the sudden closing of peripheral airways during expiration [56].

Coarse crackles are usually heard at the beginning of inspiration and throughout expiration and are due
to the airflow going through airways that open and close intermittently. They can be related to secretions,
may coexist with fine crackles in pneumonia, and, together with wheezes, are a common sign of OPDs,
such as COPD or asthma [20], [24]. Further, coarse crackles can be heard over any lung region and are

transmitted to the mouth, affected by cough, and altered by changes in body position [15].

Crackles can also appear in healthy people during deep inspiration following a maximum expiration.

However, these crackles disappear with coughing and have no clinical relevance [14].
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1.4. RS analysis

Since Rene Laénnec invented the stethoscope in 1816 [57], lung auscultation by physicians has been an
essential part of cursory physical examinations, providing relevant clinical information about the
respiratory system structure and functioning in a quick and easy way. However, traditional manual
auscultation suffers from lack of objectivity, since it highly depends on the skills and experience of the
physicians involved.

During the past three decades, advances in computer and sensor technologies have made the objective
analysis of RS more practical, with increasing interest in its clinical application for diagnostic purposes.
In 2000, the European Respiratory Society published guidelines for Computerised Respiratory Sound
Analysis (CORSA), with the purpose of standardising both the recording and signal processing of RS
[58]-[60]. Although the CORSA project described the auscultation points, type of sensors, acquisition
and pre-processing guidelines, and basic signal processing techniques, a variety of approaches to RS

recording and analysis have been proposed since then [23].

The next subsections describe the most relevant findings reported in previous studies regarding the

technical aspects of the analysis of normal RS and CAS.
1.4.1. Relationship between normal RS intensity and airflow

As described in Section 1.2.2, the intensity of airflow turbulence and normal RS increases with airflow.
The relationship between normal RS intensity and airflow has been the subject of numerous studies.
Early studies described a linear relationship between the amplitude of normal RS recorded at the chest
surface and the airflow recorded at the mouth [61], [62]. Leblanc et al. [61] focused on inspiratory
sounds, whose intensity linearly increased with airflows varying between 1 and 4 L/s. A linear
relationship between the mean absolute amplitude of normal RS and airflow was reported by Kraman
[62] in four healthy participants breathing at airflows between 1.4 and 4 L/s. However, he also found a
non-zero slope between airflow and the amplitude of normal RS divided by airflow, which suggested a

nonlinear relationship.

Subsequent studies corroborated the nonlinear relationship between normal RS intensity and airflow
[63]-[65]. The best model to describe this relationship is a power law (linear relationship in a

logarithmic scale):
I < F% (1)
logl «< alogF )

In (1) and (2), | is RS intensity, F is airflow, and « is a constant. Different a values, which determine
the power relationship, have been reported. A quadratic function (« = 2) was found to be the best relation
between the root mean square (RMS) envelope of RS and airflow for both inspiration and expiration

[63]. However, o values below 2 were reported in other studies using the RS spectrum in order to
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calculate RS intensity [64], [65]. There were small differences between the values of a found in these
studies (1.66 £ 0.35 in [64] compared to 1.89 + 0.57 in [65]) due to the use of different frequency bands
(100-1000 Hz in [64] compared to 150-450 Hz in [65]) of the RS spectrum and the small sample size
in both studies.

A third-power relationship has been reported between the RS energy at peak inspiration and airflow
using the VRI system [66], although this relationship did not affect the distribution of RS energy in
normalized acoustic maps, especially at airflows above 1 L/s.

The close relationship between RS and airflow led other studies to focus on flow estimation from RS,
especially from tracheal sounds. Que et al. [67] estimated respiratory flow from the envelope of tracheal
sounds, obtained using the Hilbert transform. The estimation of ventilation parameters from the
estimated airflow was called phonospirometry. Yadollahi and Moussavi [68] used a linear model to
estimate flow using the entropy of tracheal sounds in the frequency band of 75-600 Hz. Other studies
have been based on the RS—airflow relationship for developing a respiratory phase detection method
using only tracheal sounds [69] or by analysing variations in upper airway physiology from wakefulness

to sleep in persons with obstructive sleep apnoea [70].

The aforementioned studies focused on analysing the relationship between RS and airflow, thus
demonstrating that RS are highly dependent on airflow. However, in most previous studies that focused
on analysing RS to assess respiratory diseases, RS were recorded without controlling for airflow, with

maintained airflows, or with forced expiratory manoeuvres (Sections 1.6.2.1 and 1.6.2.2). Therefore,

further studies addressing airflow-dependent analyses of RS are required.
1.4.2. Detection and characterisation of CAS

As described in Section 1.3.2, CAS are a common symptom of various respiratory diseases and are a
clear sign of AQO and airflow limitation. In order to objectify auscultation, several previous studies have
been focused on the automatic detection and analysis of wheezes, although the reported techniques can
also be used to detect other types of CAS. Early studies used the power spectrum to detect and analyse
wheezes [71]-[79]. Since wheezes have a sinusoidal-like waveform, they are represented in the power

spectrum as peaks centred at the fundamental frequencies of CAS and clearly higher than the baseline

level (Figure 8).

Besides the power spectrum, time-frequency distributions (TFDs) have been the most commonly used
methods to detect and analyse wheezes, especially those based on Fourier analysis, such as spectrogram,

and wavelet analysis. TFDs show that the energy of wheezes concentrates around their pitch for as long

as they last (Figure 9).
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Figure 8. Power spectrum of an RS signal containing CAS. (A) RS signal containing two CAS. (B)
Power spectral density (PSD). CAS appear in the PSD as peaks centred at around 85 Hz and 430 Hz.
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Figure 9. Spectrogram of an RS signal containing CAS. (A) RS signal containing two CAS. (B)
Spectrogram. CAS appear in the spectrogram as ridges of energy around 85 Hz and 430 Hz.
Spectrogram—the square module of the short-time Fourier transform—nhas been the most used TFD for
wheeze analysis [80]-[87]. Different techniques have been applied to spectrogram to identify wheezes.
Some studies used a set of thresholds to detect local maximums that were likely to be wheezing peaks
[80], [81], [84], [85]. Thereafter, the detected peaks were grouped using several temporal and spectral
continuity criteria until wheezes were defined. Other studies treated spectrogram as an image and used
digital image processing techniques to detect wheezes [82], [83], [87]. Zhang et al. [86] calculated the
Shannon entropy of the RS spectrogram to distinguish between the power distribution pattern of normal

RS and that of wheezes.

Analogous to spectrogram, scalogram—the square module of the continuous wavelet transform—was
proposed by Taplidou et al. [88] to analyse wheezes. Additionally, more advanced TFDs have also been
proposed for wheeze detection and analysis. Taplidou and Hadjileontiadis [89] combined the continuous
wavelet transform with third-order statistics to calculate the evolutionary wavelet bicoherence, which
was used to quantify the nonlinear characteristics of wheezes in the time-bi-frequency domain. Jin et al.

[90] proposed a new TFD for RS analysis called temporal-spectral dominance spectrogram. Although
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this TFD is calculated from the short-time Fourier transform, like spectrogram, it has higher resolution

and enhances the identification of wheezes.

Besides TFDs, other methodologies have been proposed for classifying RS as normal or abnormal RS
[91]-[94] or as wheezing or non-wheezing [95]-[97]. These studies have used standard pattern
recognition methodology, which comprises three basic steps: feature extraction, dimensionality
reduction or feature selection, and pattern classification. Classifying RS does not necessarily imply using
time-frequency analysis techniques, such as TFDs, but other techniques can be used to extract features
that allow different types of RS to be distinguished. Indeed, in previous studies, feature extraction was
performed using wavelet coefficients [91], multiscale principal component analysis in Fourier domain
[93], morphological complexities of RS (i.e. entropy, kurtosis, or skewness) [94], [97], or Mel frequency
cepstral coefficients [95], [96]. These techniques allow CAS to be distinguished from other RS but do
not allow CAS to be characterised. Characterising CAS requires the duration, mean frequency, and

intensity of CAS to be calculated. To do this, time-frequency analysis techniques are required.

Although spectrogram has been widely used to characterise CAS, its poor resolution and its low energy
concentration could prevent it from delimiting CAS accurately, especially weak CAS that overlap with
normal RS in the time-frequency plane. In general, TFDs derived from Fourier or wavelet transforms
have low energy concentration, which makes the detection of CAS highly dependent on amplitude
criteria. Moreover, Fourier and wavelet-based techniques require a priori knowledge of the signal
characteristics to correctly choose the analysis parameters. Further, analysing CAS using TFDs is more
complex, since the entire time-frequency plane has to be processed to search for the ridges described by
CAS (Figure 9). In this thesis, we propose a new approach to CAS analysis in order to overcome these

issues in previous techniques (Section 1.5.4).
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1.5. Proposed approach to RS analysis

There are four key aspects to be considered in RS analysis, as briefly outlined in the previous sections:
the heterogeneous distribution of RS (Section 1.2.3), the airflow dependence of RS (Sections 1.2.2 and
1.4.1), the different characteristics of RS types (Section 1.2.1), and the effect of respiratory diseases on
RS (Section 1.3). An approach to RS analysis that considers all these aspects is expected to highly
contribute to improving both the study of RS and their applicability in clinical practice.

In this thesis, we addressed several technical issues to propose a new approach to RS analysis, taking
all the aforementioned aspects into consideration. We began this thesis by analysing normal RS intensity
based on the multichannel RS recording (Section 1.5.1), the progressive respiratory manoeuvre (Section
1.5.2), and the RS intensity—airflow curves (Section 1.5.3). We then developed a novel approach to CAS
detection and characterisation based on the Hilbert-Huang transform (HHT) (Section 1.5.4). Finally, we
proposed two clinical applications of our approach to RS analysis, as described in the next Sections
1.6.1.2and 1.6.2.3.

1.5.1. Multichannel recording of RS

When recorded at the chest surface, RS contain regional information about pulmonary ventilation and
the structure of the respiratory system. Using a single channel to record RS could fail to detect local
changes in RS distribution due to localised AO or lung disorders. Thus, multichannel recordings using
several sensors should be implemented to allow RS to be analysed at several points over the chest

surface.

Our proposed approach to RS analysis includes a multichannel recording of RS using five contact
microphones placed at the trachea, at the posterior base of the lungs, and near the posterior upper lobe
of the lungs (Figure 10). High-frequency components of RS are better transmitted through the airways
than through the lung parenchyma and are more clearly recorded over the trachea. Therefore, recording
tracheal sounds provides distinct but complementary information to that provided by lung sounds [20],
[39]. Moreover, the proposed four points for lung sound recording were the most used locations in
previous studies and allow the distribution of RS to be analysed both horizontally and vertically,
covering the commonly reported lung regions [35], [40], [41], [73], [98].

1.5.2. Airflow-dependent analysis of RS

Most previous studies analysed RS recorded without controlling airflow, at maintained airflows, or
during forced expiratory manoeuvres. However, it is widely accepted that both normal RS and CAS
highly depend on airflow. Therefore, it is important to perform airflow-dependent analyses of RS using

well-controlled respiratory manoeuvres.
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Figure 10. Recording points for lung and tracheal sounds.

This thesis proposes to perform a progressive respiratory manoeuvre with variable airflow for recording
RS. For this, a person starts to breath normally, progressively breathes faster and deeper until the deepest

breaths possible, and returns to normal breathing (Figure 11). In this way, both normal RS and CAS can
be analysed depending on the total airflow range of each person.
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Figure 11. Progressive respiratory manoeuvre. Airflow signal (blue) and RS signal (grey) recorded
during a progressive respiratory manoeuvre. RS were recorded at the posterior base of the right lung.

1.5.3. Analysis of normal RS based on the RS intensity—-airflow curves

We propose calculating the RS intensity—airflow curves to analyse normal RS intensity. Thus, normal

RS intensity is calculated as the area under the curve of the Welch’s power spectral density estimate
[99], within a particular frequency band (3).

_ _fm f2
I = NEFT 2 f=f, PSD(f) (3)
In (3), I is RS intensity, f, is the sampling rate of the recorded RS signal, NFFT is the number of points
used to calculate the fast Fourier transform (FFT), f; and f are the frequency boundaries of the frequency
band of interest, and PSD is the Welch’s power spectral density estimate of the RS signal. After

calculating the intensity of the RS signals corresponding to the respiratory cycles of a progressive



CHAPTER 1 23

manoeuvre, each respiratory cycle is characterised with the parameters of the RS intensity and the peak

flow. In this way, the RS intensity—airflow curves are obtained for each person.
1.5.4. Analysis of CAS based on HHT
1.5.4.1. The need for time-frequency analysis

We aimed to analyse not only normal RS but also CAS for this thesis. This dual approach to RS analysis
required the development of a robust classifier that allowed CAS to be differentiated from normal RS.
Further, CAS analysis requires going further than simple CAS identification—also the basic CAS
characteristics, including duration, mean frequency, and intensity, must be calculated. Therefore, it is
necessary to use a technique that allows CAS to be analysed simultaneously in both time and frequency

domains.

TFD analysis is the most straightforward methodology in time-frequency analysis (Figure 12). TFDs
represent the distribution of the energy of a signal throughout the time-frequency plane [100]. Therefore,

TFDs can be used to simultaneously obtain information about the temporal and spectral content of CAS.
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Figure 12. Proposed approach to CAS analysis based on HHT as compared to previous
approaches based on TFDs. CAS, continuous adventitious sounds; EEMD, ensemble empirical mode
decomposition; IF, instantaneous frequency; TFD, time-frequency distribution; WVD, Wigner-Ville
distribution; RID, reduced interference distribution.

As described in Section 1.4.2, spectrogram was used in most previous studies that were focused on CAS
analysis. For a real signal, s(t), the spectrogram, S(t,), is defined as the squared magnitude of the short-

time Fourier transform of the signal s(t):

St f) = |ffooos(r)w(r - t)e‘jZ”deT|2 (4)
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In (4), w(z-t) is a real window centred at time z =t. A major limitation of spectrogram is that its resolution
depends on the length of the window w(z). Short windows provide good time resolution, but poor
frequency resolution. In contrast, long windows provide good frequency resolution, but poor time
resolution. Therefore, spectrogram compromises the two resolutions, which cannot be maximised at the
same time, in accordance to the uncertainty principle [100]. On the other hand, the signal energy in
spectrogram is scattered over the entire time-frequency plane, and spectrogram therefore has low energy
concentration. Both the poor resolution and the low energy concentration could prevent spectrogram
from delimiting CAS accurately, especially weak CAS with low intensity that overlap with the scattered
energy of normal RS in the time-frequency plane.

Besides spectrogram, a few other techniques have been used for analysing CAS (Section 1.4.2), which
are mainly based on the continuous wavelet transform [88], [89] and the temporal-spectral dominance
spectrogram proposed by Jin et al. [90]. The continuous wavelet transform suffers from the same
problems as spectrogram. The time and frequency resolutions of the continuous wavelet transform
depend on frequency. At high frequencies, the time resolution is high but the frequency resolution is
low, whereas at low frequencies, the frequency resolution is high but the time resolution is low.
However, in each case, the two resolutions are affected by the uncertainty principle. In fact, any TFDs
derived from integration-based transforms, such as Fourier or wavelet transforms, are affected by the
uncertainty principle. Moreover, the conventional Fourier and wavelet-based techniques require a priori

knowledge of the signal characteristics to correctly choose the analysis parameters.

The ideal TFD would have perfect resolution in both time and frequency domains and a high energy
concentration. Different techniques, such as the adaptive short-time Fourier transform that uses a
variable window length adapted to signal characteristics, have been proposed with the aim of increasing
the resolution and energy concentration of conventional TFDs [101], [102]. A common approach to
enhancing TFDs includes reassignment techniques [103], [104], whose objective is to reduce the energy
spread in TFDs. Reassignment techniques are based on the reallocation of the signal energy in the time-
frequency plane. A reassigned version of a TFD is obtained by moving its values from their original
locations to the centre of gravity of their energy contributions, thus increasing energy concentration and
producing a better localisation of signal components. A special type of reassignment technique is the
synchrosqueezing transform, which allows energy concentration to be increased and modes of

multicomponent signals to be retrieved [105].
1.5.4.2. The concept of instantaneous frequency and HHT

One of the most important parameters of time-frequency analysis is instantaneous frequency (IF),
which—as its name indicates—consists of having values of the frequency content of a signal at each
time instant [106], [107]. This parameter is extremely useful for the analysis of non-stationary signals,

whose spectral content varies over time.
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In the field of communication theory [108], Gabor defined the IF, f(t), of a real signal, s(t), from its

corresponding analytic signal, z(t), as follows:

z(t) = s(t) + jH[s(t)] = a(t)e/® (5)
f =29 (6)

In (5), H[] is the Hilbert transform, a(t) is the absolute value of z(t) and the instantaneous envelope (IE)
of s(t), and 4(t) is the phase of z(t). The equation (6) yields frequency values at each time instant, so that
the obtained IF sequence has maximum time resolution and provides information about the temporal

evolution of the frequency content of a signal, regardless of its energy.

The concept of IF led to the development of a TFD that represents the true IF law of monocomponent
signals in the time-frequency plane. In other words, the ideal TFD of a monocomponent signal would
contain a single frequency value at each time instant. Under this premise, the Wigner-Ville distribution
(WVD) [106], W,(t,T), was defined as:

W,(t, f) = f_ooz (t + g) z* (t — %) e 12T qr (7

In (7), z(t) is the analytic signal of a real signal. One of the most important properties of the WVD is
that it yields the true IF values of monocomponent linear FM signals through its first moment with
respect to frequency:

1.d0() _ Lo fWatn)af
2m dt 15 wat.fdf

f@®) = (8)

However, a major drawback of WVD is that, when applied to multicomponent signals, it produces cross-
terms. Due to its quadratic form, WVD produces spurious components that appear between the true
components of a signal in the time-frequency plane. To reduce cross-terms, a number of quadratic TFDs,
including the reduced interference distributions [109], have been proposed as smoothed versions of
WVD. In fact, any quadratic TFD, p,(t,f), can be expressed as a filtered WVD using a specific time-lag
kernel filter, G(t,z), as follows:

p,(t,f) = j J_Oo G(t—u1)z (u + %) z* (u — %) e 12T dudt 9)

The various existing quadratic TFDs propose different tradeoffs between energy concentration,
resolution, and cross-term reduction [100]. In general, quadratic TFDs have higher resolution and energy
concentration around the IF than spectrogram or scalogram, which allows the components of a signal to
be identified more easily. However, cross-terms are a major drawback of quadratic TFDs, since they
make it more difficult to identify the true components of a signal. When applied to RS signals, quadratic

TFDs could lead to the detection of false CAS components.
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Despite the advantages of reassignment techniques and quadratic TFDs, none of these techniques have
been used in the field of RS analysis, especially for analysing CAS. Besides the extra computational
cost of reassigned and quadratic TFDs, analysing CAS directly from TFDs implies working in a three-
dimensional space, in which differentiating CAS from other RS is more complex, since the entire time-
frequency plane has to be processed to search for the ridges described by CAS (Figure 9). Moreover,
the commonly used method based on local peak detection and component linking over the spectrogram
is highly dependent on amplitude criteria.

In this thesis, we now propose a new approach to CAS analysis based on the IF of RS signals (Figure
12). This approach includes detecting CAS with the assumption that the IF of an RS signal can reveal
the difference between the deterministic nature (quasi-periodic) of CAS and the random nature of normal
RS. In other words, the assumption is that IF values concentrated around the pitch of a CAS are obtained
for as long as a CAS lasts within an RS signal, whereas more dispersed IF values are obtained when
only normal RS are present. However, calculating IF only makes sense for monocomponent signals—
that is, signals with a unique frequency component at each time instant. Therefore, estimating IF in
multicomponent signals, such as RS, requires an extra step to separate out the different signal

components.

Several IF estimation methods for multicomponent signals have been proposed using TFDs [110], [111].
Nevertheless, these methods require calculating TFD and then separating the different components of a
signal in the time-frequency plane prior to estimating IF for each component (Figure 12). In the case of
CAS analysis, using a TFD-based IF estimation method would imply detecting CAS prior to IF
estimation and then using the IF estimates to detect CAS, which is paradoxical. Therefore, it makes
sense to use the IF estimation method proposed in (6) rather than those based on TFDs.

As (6) yields a single frequency value at each time instant, it can be only applied to monocomponent
signals. However, the approach we propose to analyse CAS uses HHT, which allows IF in
multicomponent signals to be estimated without involving TFDs [112] (Figure 12). Prior to IF
calculation, HHT uses empirical mode decomposition (EMD) to decompose a multicomponent signal
into a set of narrowband components, called intrinsic mode functions (IMFs), for which IF can be
calculated as in (6) [113]. Given a multicomponent real signal, s(t), EMD allows the IMFs of s(t) to be

obtained by a sifting process that involves the following steps:

1) Identify of all the local extrema (both maxima and minima) of s(t) and connect them using cubic
spline interpolation, to obtain the upper and lower envelopes

2) Calculate the local mean of the two envelopes, m(t), and subtract it from s(t), to obtain h(t)

3) Repeat the first two steps on h(t) until m(t) is close to zero under certain criterion, usually based on
the standard deviation of m(t). Then, h(t) is considered to be the first IMF, ca(t)

4) Calculate the residue ri(t) by subtracting ci(t) from s(t)
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5) Repeat steps from 1 to 4 on ry(t) until the obtained residue, rq(t), is a monotonic function and no

further IMF can be extracted. Then, the original signal s(t) can be expressed as:

s@®) = Y c(®) + (D) (10)

Having decomposed a signal by EMD (Figure 13), the IF and IE sequences can be calculated from the
analytic signal of each IMF as in (5) and (6) (Figure 14). After that, s(t) can be expressed as:

n
s(t) = 3,,_, ai(t) cos(J 2mfi()dt) + 1 (t) (11)
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Figure 13. RS decomposition by ensemble empirical mode decomposition (EEMD). IMFs (C1-C4)
and residue (r4) of an RS signal that contains two CAS. The IMFs were calculated by EEMD, which
improves on the performance of EMD.

1000 0.1
- :

=} 500WW 0.05 MWW
0 : - 0

1000 0.1

(Hz)

a

N ~N

% 500WWWWW = 0.05

nl = MMMMMMJMM
0 0

1000 A

N N

T 500 = 0.05

T M Ak g ﬂMﬂtﬁﬂﬂJuM o ,
0 : : 0

__ 1000 ol

N N

T 500 | | | = 0.05

= OM——MW{M@V s 0 MWM\/V\N’\
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Timc (b) Timc (S)

Figure 14. IF (f;-fs) and IE (a:-as) sequences of the RS signal shown in Eigure 13.

In (11), ai(t) and fi(t) are the IE and IF of the i-th IMF, respectively. Alternatively, the ai(t) and fi(t)

sequences can be rearranged into an array to obtain an IF-based TFD called the Hilbert spectrum (HS)

[114] (Figure 15D).
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Figure 15. TFDs for RS analysis. Spectrogram (A), scalogram (B), WVD (C), and HS (D) of the RS
signal shown in Figure 13.

Despite the many favourable properties of HHT [114], the original EMD method suffers from the mode
mixing effect [112]. Ideally, each IMF calculated by EMD would contain a few different frequency
components of a multicomponent signal. However, the mode mixing effect of EMD causes some
components to appear within different IMFs, such that some IMFs contain widely different components.
Although the mode mixing effect of EMD poses a problem for detecting CAS from the IF sequences of
RS signals, the original EMD was used in an HHT-based approach to CAS analysis previously proposed
by Reyes et al. [115], [116].

For the work in this thesis, we implemented an improved version of the original EMD, called ensemble
EMD (EEMD), as the first step of HHT [117], [118]. EEMD consists of the iterative application of the
original EMD to a signal plus different realizations of filtered white noise. The final IMFs are calculated
as the mean of those resulting from each iteration. This method is based on the filter bank property of
the original EMD when applied to white noise [119], [120]. By adding white noise to a multicomponent
signal, EMD automatically separates its different components based on the reference scales set by white
noise, thus avoiding the mode mixing effect.

Here, we originally used the proposed EEMD-based HHT to estimate IF and IE in RS signals containing
normal RS and CAS (presented in Chapter 3 [121]). Afterwards, we developed a new method to
automatically differentiate between CAS and normal RS, based on the different IF dispersion patterns
of the two types of RS, as described above. A set of features extracted from the IF and IE sequences of

the RS signals was used to train and to test a classifier, using support vector machines [122], [123].

In parallel to developing the aforementioned RS classifier, we evaluated in-depth the performance of
the EEMD-based HHT for RS analysis (Chapter 4 [124]). For this, several technical difficulties of HHT

had to be addressed and then overcome. First, we analysed the mode mixing effect of the original EMD
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in RS signals. We then determined the performance for RS of the two most well-established and
frequently-used solutions for mode mixing, the EEMD and the noise-assisted multivariate EMD [125],
[126], which allowed us to propose numerous quantitative parameters to evaluate the performance of
the two methods. Further, we tested and compared different IF estimation methods, including those
based on the phase derivative of the analytic signal [127] and one based on the Teager energy operator
[107], [128]. Kay’s IF estimator [127] was chosen for proposing an EEMD-Kay-based HS.
Additionally, we developed an automatic CAS segmentation and characterisation algorithm using the
proposed HS. Finally, we compared the performance of spectrogram and the proposed HS for calculating
the duration and pitch of CAS.
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1.6. Applications of the proposed approach to RS analysis

To put into practice the proposed approach to RS analysis (Section 1.5), we conducted two studies in
the Pulmonary Function Testing Laboratory of the Germans Trias i Pujol University Hospital (HUGTIP)
in Badalona, Spain, in the course of this thesis. Patients with either unilateral phrenic paralysis (UPP)
or asthma were recruited for performing pulmonary function tests and participating in the RS recording
and analysis study. These two respiratory diseases affect the regional distribution of ventilation, and
therefore RS, in different ways. UPP reduces regional ventilation of the lung on the paralysed side,
which is more evident at the base of the lung [129], [130]. However, asthma may reduce regional
ventilation at any point throughout the lungs, since AO can be either localized or diffused throughout
the tracheobronchial tree [131]-[134]. Further, ventilation heterogeneity in asthma varies with the
administration of bronchodilators [135]-[137]. Moreover, AO in asthma may be accompanied by the

presence of CAS.

The two studies shared two points of the proposed approach to RS analysis: the multichannel recording
of RS and the progressive respiratory manoeuvre that allows an airflow-dependent RS analysis.
However, the RS recording protocol was customised for each study, as described in the next sections
(1.6.1.2and 1.6.2.3).

1.6.1. Assessment of UPP by RS analysis

Diaphragmatic paralysis consists of the loss of diaphragm motor activity due to either compression or
sectioning of the phrenic nerve that activates the diaphragm (Figure 16) [138], [139]. UPP occurs when
only one hemidiaphragm is affected, and it is caused mainly by nerve compression by tumours [138],
nerve injury due to thoracic surgery or trauma [140], infections, or neurological disease. The effects of

UPP are mild and variable and include shortness of breath and exercise limitation [139], [141].
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Figure 16. Motor innervation of the diaphragm by the phrenic nerves.
1.6.1.1. Previous work on the assessment of diaphragmatic paralysis

The techniques traditionally used to diagnose diaphragmatic paralysis are chest radiography,
fluoroscopy, ultrasonography, and phrenic nerve stimulation [138], [139], [142]. Chest radiography is

the simplest technique. In UPP, an elevated hemidiaphragm is usually seen on the affected side in chest
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radiographs. However, in addition to requiring ionising radiation, chest radiography has low specificity

and low positive predictive value for diagnosing UPP [143].

One of the most commonly used techniques for assessing diaphragm function is fluoroscopy [144],
which allows diaphragm mobility to be assessed. In this technique, a continuous source of X-rays is
used to produce real-time motion imaging of the diaphragm. Therefore, it is an invasive procedure,
whose potential risks must be balanced with patient benefits. Ultrasonography can be used as an
alternative to fluoroscopy [145]-[147]. Ultrasounds provide dynamic images of the diaphragm in a non-
invasive way. However, ultrasonography is operator dependent and requires significant expertise.

Electrical or magnetic stimulation of the phrenic nerve has also been widely used to assess diaphragm
function [148]-[158]. Several measurements of diaphragm strength following phrenic nerve stimulation
have been proposed, such as transdiaphragmatic pressure, maximal static inspiratory mouth pressure,
and sniff nasal inspiratory pressure [149]-[151], [154], [156]. Electromyography using either
oesophageal electrodes [152], [153] or surface electrodes [155], [157], [158] has also been used to assess
diaphragm function. In this case, the most relevant parameters are the mean amplitude of the compound
muscle action potential and the phrenic nerve conduction time. However, phrenic nerve stimulation is
an invasive technique. Further, most of these techniques require transnasal placement of either pressure
catheters for measuring transdiaphragmatic pressure or oesophageal electrodes for measuring diaphragm

electromyogram.

Recently, more advanced techniques for evaluating diaphragm function have been proposed, such as
high-resolution computed tomography [142], [159] or an optoelectronic plethysmography system [160].
The former uses ionising radiation, and the latter is not easy to perform and is cost-prohibitive with

reduced availability.

Lung function tests are usually performed to corroborate the diagnosis of diaphragm dysfunction, since
they are easily available and non-invasive. Spirometric parameters, especially the total lung capacity,
are usually decreased in patients with UPP, depending on the degree of weakness [139], [149], [161],
[162].

An alternative way of measuring ventilation is to analyse RS. Tejman-Yarden et al. [163] used RS
analysis to detect selective lung ventilation in intubated patients. In healthy people, slight differences of
a few dB in the lung sound intensity between the lungs have been reported in many previous studies
[36], [40]-[42].

RS analysis has not been previously used to assess UPP, as we propose in this thesis. A few previous
studies have reported decreased lung sounds on auscultation over the affected side in patients with UPP

[138], [164], [165]. However, these studies did not present quantitative lung sound measurements.



CHAPTER 1 33

1.6.1.2. Proposed approach to assessing UPP by RS analysis

In this thesis, we propose to analyse RS intensity—airflow curves as an indirect measurement of
pulmonary function in patients with UPP. At the beginning of this thesis, we launched a new RS
recording protocol to assess UPP in the Pulmonary Function Testing Laboratory of the HUGTIP, based
on a clinical protocol previously described by Fiz et al. [40].

Two piezoelectric contact microphones were placed on the surface of the patients’ back, at the base of
the lungs (Figure 17). All patients were asked to perform a progressive respiratory manoeuvre with
variable airflow in a sitting position. In this study, we propose that analysing and comparing the RS
intensity—airflow curves of the lungs provides powerful information for diagnosing UPP. Full details of
the study are provided in Chapter 2 [166].
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Figure 17. RS recording‘points to assess UPP.
1.6.2. Assessment of OPDs by RS analysis

As described in Section 1.3, airway conditions, such as OPDs, directly affect the generation of RS, as
these depend on the airflow patterns within the airways. Airflow limitation in OPDs has two major
effects on RS: the intensity of normal lung sounds is decreased over the obstructed areas, while CAS
are generated. The analysis of both normal RS and CAS to assess OPDs has been the topic of extensive
research, as described in Sections 1.6.2.1 and 1.6.2.2. However, as explained in the next section

(1.6.2.3), some methodological issues in previous studies could have limited the potential of RS for
assessing OPDs. In the work carried out for this thesis, we have addressed and overcome these issues,

allowing us to propose a novel approach to RS analysis.
1.6.2.1. Previous work on normal RS and OPDs

Many previous studies have been focused on quantifying the effect of OPDs on normal RS. Pardee et
al. [167] and Bohadana et al. [49] performed manual auscultation over six points of the chest surface in
patients with different degrees of AO and scored the perceived RS intensity. The former found a strong
correlation between RS intensity and FEV1, whereas the latter reported close relationships between RS

intensity and several indices of airflow obstruction, such as maximal expiratory flow at 50% of vital
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capacity (VC), FEV4, or the FEV1/VC ratio. Both studies concluded not only that reduced RS intensity
was a clear sign of airflow obstruction, but also that RS intensity is insensitive to mild degrees of airflow
obstruction. The decreased RS intensity reported in these studies was closely related to the decreased
inspiratory flows of the patients.

During the ‘90s, many studies used bronchoprovocation tests to analyse the effects of airway narrowing
on RS [98], [168]-[172]. In the absence of wheezes, Bohadana et al. [168] reported that RS intensity,
measured as the RMS of the inspiratory sound signals, decreased with bronchoconstriction, and that this
change was almost completely reverted in most patients after inhaling a bronchodilator. Since airflow
was neither recorded nor controlled, reductions in RS intensity were supposed to be due to decreased
inspiratory airflows during bronchoconstriction. However, subsequent studies reported that, when
compared at similar airflows, RS intensity increased during induced airway narrowing in both healthy
participants and patients with asthma [169], [170]. Moreover, at similar levels of induced
bronchoconstriction, the increase in RS intensity was higher in patients with asthma than in healthy
participants. The explanation for these findings was that, at similar mouth airflows, the velocity of
airflow within the airways is higher during bronchoconstriction than at baseline. The increased velocity

of airflow enhances turbulence, thus generating louder RS.

Other bronchoprovocation studies reported that induced airway narrowing caused significant changes
in the RS power spectrum. Malmberg et al. [169] and Anderson et al. [171] found a strong correlation
between the median frequency of the RS power spectrum and changes in FEV: induced by histamine.
They found that airway narrowing caused the RS median frequency to increase, making it a clear
indicator of AO and airflow limitation. Pasterkamp et al. [98] revealed that airway narrowing was
accompanied by a decrease in power at low frequencies during inspiration and an increase in power at
high frequencies during expiration. Habukawa et al. [172] showed that the highest frequency of
inspiratory and expiratory RS increased during methacholine inhalation challenge, and that this

corresponded with a decrease in the forced expiratory parameters.

At baseline, the median frequency of RS was found to be significantly different between patients with
asthma and both healthy participants and patients with COPD [173]. After bronchodilation, the centroid
frequency of the spectrum of tracheal sounds was found to clearly decrease in patients with asthma but
to show no significant changes in healthy participants [77]. These differences between both groups were
found at different airflow ranges, of between 0.4 and 1.2 L/s during forced spirometry manoeuvres.
More recently, Habukawa et al. [174] developed a new method to assess the control level of asthma
based on the analysis of lung and tracheal sounds. They calculated the acoustic transfer characteristics
of the pulmonary system using the cross-spectrum between tracheal and chest wall sounds. They then
calculated two indices—the chest wall sound index from the transfer characteristics, and the tracheal

sound index. Based on the two-dimensional diagram of these indices, they developed the breath sound
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index, which differs significantly between children with asthma and healthy children and between well-

controlled and not well-controlled asthmatic children.

During the past decade, the VRI system has led to a number of studies focusing on the effect of OPDs
on the regional distribution of RS intensity. Inhomogeneity in ventilation and asynchronous airflow during
asthma exacerbations were found to cause significant asynchrony between the expiratory vibration
energy peaks of the lungs, and correspondingly, the asynchrony reverted towards the normal
synchronous pattern after clinical improvement of the patients [175]. Inhomogeneity of VRI images was
also observed in patients with asthma and COPD, who had abnormally loud and prolonged RS during
expiration due to airflow obstruction [176].

Patients with asthma could also be distinguished from patients with COPD by qualitatively evaluating
the dynamic VRI images and analysing the quantitative data of synchronization between the lungs
during bronchodilation tests [177].

Using the VRI system to calculate the ratio of lung sound intensity between the lower and upper lungs
revealed a significantly decreased ratio in patients with COPD as compared to healthy participants, most
likely due to hyperinflation and redistribution of lung sounds to the upper lung areas [178]. The same
technique was also used to evaluate the bronchodilator effect in patients with COPD, for which the ratios

significantly increased after treatment [179].
In summary, normal RS analysis has been mainly based on the calculation of the following parameters:

- Intensity, calculated as either the RMS of RS signals in time domain or as the area under the power
spectrum in a particular frequency band. Different frequency bands were used in previous studies
- Frequency parameters, including median frequency, centroid frequency, and highest frequency

- Synchrony between the intensity peaks of the lungs using dynamic VRI images
1.6.2.2. Previous work on CAS and OPDs

As described in Section 1.3.2, CAS are related to obstructive airway diseases and are an unequivocal
sign of airflow limitation. Accordingly, many previous studies have focused on analysing CAS features
and their relation to pulmonary function in OPDs. Table 1 contains detailed information about some of

the most relevant studies on CAS analysis in OPDs. The main findings can be summarised as follows:

- Number of wheezes: a higher number of wheezes is associated with positive BDR and positive
bronchoconstriction tests. The number of wheezes usually decreases after bronchodilation, with a
greater change in patients with OPDs than in healthy people. A higher number of wheezes is
associated with lower FEV1 and lower peak expiratory flow. The absence of pulmonary obstruction
usually correlates with no detected wheezes

- Features of wheezes: biphasic wheezes are associated with lower peak expiratory flows than
monophasic wheezes. Longer, higher-pitched, and louder wheezes are associated with lower peak

expiratory flows. Both duration and pitch of wheezes vary with bronchodilation



Table 1. Analysis of CAS in OPDs

Authors Sensors / R ecording Subjects Manoeuvres / Type of Methodology / Extracted Features Significant Findings
Points Tests RS
- . . - Deep unforced . . - Unforced wheezes, 48 patients; forced wheezes, 80 patients
Mariniet  Manual auscultatl_on /83 patients with breathing and . Regl_on.al scoring / frequen_cy and - Positive BDR more prevalent in patients with unforced wheezing
al. several areas anteriorly chronic airflow forced exiration / Wheezes  intensity: from 0 (no wheezing) to 3 d - lations b he unforced wheezi
(1979)[180] and posteriorly obstruction orced expiration (loud wheezing in every expiration) Moderate positive correlations etween the unforced wheezing
BDR score and both the degree of obstruction and BDR
- PEFR patients with wheezing < PEFR patients without wheezing
Shimand  Manual auscultation / . . . . . . - Expiratory wheezing often accompanied by inspiratory wheezing
Williams  several areas anteriorly, 9 pgtslt?]rx]zwnh Quiet breathing  Wheezes irl:\ztee?wlsﬁ?al(%rii?mgl/ig?élr(;?é p(;:c:éva;r;g) - PEFR in biphasic wheezing < PEFR expiratory wheezing alone
(1983)[181] laterally, and posteriorly y ' ' - Wheezing of high pitch, moderate to severe intensity, and
spanning the entire phase of the breath associated with lower PEFR
Baughman Electronic stethoscope / 20 patients with  Tidal breathing / Successive FFT, window: 250 ms, 60% - Moderate negative correlation between Tw/Ttot and FEV1
and Loudon 4 areas posteriorly pasthma BDR 97 Wheezes overlap / Tw/Ttot, frequency, and - Tw/Ttot (from 86% to 31%) and pitch (from 440 Hz to 298 Hz)
(1984)[71]  right/left apex/bases intensity reduced with medication
Fenton et 2 contact accelerometers 5 asthmatic Normal breathin Successive FFT / identification of peaks - Wheezing strongly depended on airflow
al. / right upper chest children and / BDR 9 Wheezes  above 200 Hz with a power 15-times - Wheezing followed the changes in FEV1
(1985)[39] anteriorly and neck 2 controls greater than average - The trachea was the best location for wheeze analysis
5 patients with Successive FFT, window: 100 ms, 50% - Stridor was associated with extrathoracic obstruction and was
Baughman Electronic stethoscope/  extrathoracic overlap / identification of peaks above similar to wheezing
and Loudon anterior trachea and right obstruction, 25 Normal breathing  Stridors 200 Hz, greater than 3-times the - Timing and location of stridors (mainly inspiratory, over the
(1989)[54] upper chest anteriorly — asthma patients, baseline signal, and lasting more than neck) was significantly different from wheezes (mainly expiratory,
and 7 controls 200 ms over the chest)
_ _ Successive EFT at different airflows / At low alrflovx_/s, expiratory LSl in patients with asthma <
. . - ... Quiet breathing up - e expiratory LSl in controls
Schreur et 3 piezoelectric 9 patients with Normal identification of peaks above 150 Hz, - - A . Lo .
. - to 1.5 L/s and - LT - During quiet expiration, quartile frequencies in asthmatics >
al. microphones / right chest  asthma and 8 and greater than 3-times the baseline signal. . HI
- : forced . quartile frequencies in controls
(1994)[72] anteriorly and posteriorly healthy controls wheezes LSI from power spectra, quartile . - . . .
manoeuvres . - - Change of quartile frequencies with flow in asthmatics > change
frequencies, and extent of wheezing . . - .
of quartile frequencies with flow in controls
. 4 piezoelectric sensors / -
Gavriely et trachea, right chest 493 active . Maintained Normal Ayeraged power spectra _by F'.:T and Combination of spirometry and RS analysis increased the
al. - . airflows around 1 and linear regression / identification of P - .
anteriorly, and right/left workers . sensitivity from 71% to 87% detection of pulmonary diseases
(1994)[73] . L/s abnormal  abnormal spectra with peaks of power
bases posteriorly
Rietveld et Quiet breathing / Audition of the RS signals and
1 electret microphone / 28 asthmatic - tning visualization of the power spectra/5 - The presence of one of the RS patterns during unforced breathing
al. . histamine CAS - . . ; - - -
trachea children different RS patterns, including predicted a fall in FEV1 of > 20% in 21 subjects
(1994)[74] challenge .
different CAS
Fast and deep . - Wheezes detected after bronchoconstriction more often in
Bohadana Electronic stethoscope / . inspirations / Normal TEWA and Fogrler spectrum for positive patients (10/21) than in negative patients (1/17)
etal. . - 38 patients . and wheeze detection and RMS for - - . . o .
right base posteriorly carbachol airway - - - - RS intensity decreased in the 11 non-wheezing positive patients
(1995)[75] wheezes calculating RS intensity ) - h
challenge but not in the negative patients
Shreur et 3 piezoelectric . . . . Normal  Successive FFT at different airflows / . - . .
al. microphones / right chest 8 pa;sirr::rs]g/vlth Qu;ﬁat;;iiih(;ng and identification of peaks above 150 Hz, dllj_r?r: cmzrgrl(e):;ﬁ%%g?;ﬁc’t?gg eﬁ;ig; of wheezing were higher
(1996)[76] anteriorly and posteriorly wheezes greater than 3-times the baseline signal. 9 P
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manoeuvres /
allergen challenge

LSI from power spectra, quartile
frequencies, and extent of wheezing

16 asthma - More wheezes recorded in patients than in control participants
Fiz et al 1 contact microphone / patients, 6 Forced expiration Spectrogram / mean frequency, number - Mean frequency of wheezes in control participants > mean
(2002)[182] trachea P COPD patients, / BDpR Wheezes  of wheezes, % of wheezing time, and  frequency of wheezes in patients
and 15 healthy change in the number of wheezes - Change in the number of wheezes in patients > change in the
participants number of wheezes in control participants
Kraman et . 1 patient with . .
al. 1 electrettr éz;ggphone/ tracheal Normal breathing ~ Stridors Spectrogram ;rgﬁzgleoggztsructlon could be detected through the analysis of
(2002)[55] obstruction
1 electret microphone Normal breathin - Wheezing was detected in 70% of patients during asthmatic
Mazicetal. and accelerometers / 7 asthmatic and forced 9 Wheezes Successive spectra / duration and pitch seizures
(2003)[183] trachea and right base children breathin of wheezes - No wheezing was detected in the absence of pulmonary
posteriorly g obstruction
5 piezoelectric contact .
. . FFT-based algorithm for wheeze
Bentur et _SENsors / t_rachea, 12 asthmatic and Normal breathing detection / % of wheezing timeto - The extent of wheezing decreased after 6 weeks of treatment, and
al. right/left axillae, and 7 healthy / 6 weeks Wheezes breathing time and extent of wheezina FEV: improved
(2003)[78] right/left bases children treatment 9 ) g 11mp
. for the total night
posteriorly
H-Corbera 1 piezoelectric sensor / 16 patients with Forced expiration Spectrogram / mean frequency, number - Differences in all parameters between both groups
etal. P trachea asthma and 15 ) BDpR Wheezes  of wheezes, % of wheezing time, and - Change in the number of wheezes in patients > change in the
(2004)[81] healthy people change in the number of wheezes  number of wheezes in control participants
Successive EET at flows around 0.1 L/s Wheezes, 11 patients; wheezes and crackles, 11 patients
Sanchez et . 22 infants with . Normal - . . ...~ - Positive relationship between positive BDR and an increase in
2 sensors / right/left Normal breathing / quartile frequencies and identification - o
al. . acute and - power at low frequencies after medication
bases posteriorly S / BDR of wheezes from peaks in the power . . . . .
(2005)[79] bronchiolitis wheezes - e - Positive correlation between wheezing and the increase in the
spectra and auditory verification . .
power spectra measured by the quartile frequencies
Fiz et al 20 patients with Forced expiration Spectrogram / mean frequency, number - Number of wheezes and change in the number of wheezes higher
"+ 1 microphone/trachea asthmaand 14 P Wheezes  of wheezes, % of wheezing time, and in obstructed patients than in stable patients and controls
(2006)[184] / BDR . - : L
healthy people change in the number of wheezes - Mean frequency of wheezes higher in control participants
Tavlidou 5 electret microphones / 10 COPD and
p trachea, right/left axillae, Normal breathing Instantaneous wavelet bicoherence / 23 - 22 out of 23 features showed significant difference between the
and L.J.H. . 11 asthma Wheezes . :
and right/left bases - at flows <1.5 L/s nonlinear features of wheezes COPD and asthma patients
(2010)[185] posteriorly patients
Oliveiraet  Digital stethoscope / 6 subiects with Normal breathing Spectroaram / number. duration. and Strong negative correlations (post-treatment) between FEV1 and
al. several areas anteriorly, IiRTI / 3 weeks Wheezes P megn frequenc 0% Wheezes’ duration of wheezes at the lateral right region, and between FVC
(2013)[186] laterally, and posteriorly treatment q y and duration of wheezes at the posterior right region
. . . . - Wheezing detected in 65% of infants (39% with inspiratory
Fischer et 2 piezoelectric contact Normal breathing FFT-based algorithm for wheeze wheezing and 48% with expiratory wheezing)
al. sensors / manubrium and 110 infants / Lung function  Wheezes 9 g P y g

(2016)[187] left axillary line tests

detection / duration of wheezes

- Airway resistance increased in all infants with wheezes and
correlated with the duration of expiratory wheezes

BDR, bronchodilator response; CAS, continuous adventitious sounds; COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 1 second; FFT, fast Fourier transform; FVC,
forced vital capacity; LRTI, lower respiratory tract infection; LSI, lung sound intensity; PEFR, peak expiratory flow rate; RMS, root mean square; RS, respiratory sounds; TEWA, time expanded
waveform analysis; Tw/Ttt, proportion of the respiratory cycle occupied by a wheeze.
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1.6.2.3. Proposed approach to assessing OPDs by RS analysis: application to BDR assessment

in asthma
After reviewing previous studies on RS analysis for assessing OPDs, the following issues were found:

- A number of different recording locations have been used in previous studies. Using a large number
of channels increases the complexity of recording and analysing RS, due to the large amount of data,
and it does not necessarily yield better outcomes. On the other hand, using only one microphone can
lead to failure to detect changes in regional ventilation

- Typically, RS signals are recorded either at maintained airflows or during forced expiratory
manoeuvres. However, both normal RS and CAS are highly dependent on airflow

- Previous studies focused either on normal RS or on CAS. Co-analysis of the two types of RS was
addressed only in a few studies, most of which were early studies that used inaccurate techniques
for detecting and characterising CAS

- Unlike CAS duration and frequency, their intensity has rarely been analysed. In fact, some studies

only analysed the number of CAS

For this thesis, we propose a new integrated approach to RS analysis in OPDs. This proposed approach
includes a multichannel recording of RS using five contact microphones (Section 1.5.1) and performing
progressive respiratory manoeuvres with variable airflow (Section 1.5.2). We propose a dual approach
to RS analysis, by analysing both normal RS intensity and CAS through the RS intensity—airflow curves
(Section 1.5.3) and HHT (Section 1.5.4), respectively. This dual approach allows the two effects of
OPDs on RS to be assessed. Moreover, the proposed HHT-based methodology allows CAS to be fully

characterised with respect to duration, mean frequency, and intensity.

Based on the aforementioned approach, a study was launched in the Pulmonary Function Testing
Laboratory of the HUGTIP for assessing BDR in patients with asthma (Figure 18).

Bronchodilator
[ Spirometry + 3 progressive Spirometry + 3 progressive ]
manoeuvres manoeuvres
(10-15 min.)

Multichannel RS recording: Progressive respiratory manoeuvre:

S microphones Variable airflow
(1 tracheal + 4 thoracic)

Assessment of

BDR in OPDs
Analysis of normal RS: Analysis of CAS:

RS intensity—airflow curves Hilbert spectrum
(duration, pitch, and intensity)

Figure 18. Proposed approach to assessing BDR in OPDs by RS analysis. BDR, bronchodilator
response; OPDs, obstructive pulmonary diseases; RS, respiratory sounds.

According to the definition from the Global Initiative for Asthma: “Asthma is a heterogeneous disease,

usually characterized by chronic airway inflammation. It is defined by the history of respiratory
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symptoms such as wheeze, shortness of breath, chest tightness and cough that vary over time and in

intensity, together with variable expiratory airflow limitation” [6].
Several factors must be considered for an asthma diagnosis:

- Adetailed clinical history
- A complete physical examination to identify characteristic respiratory symptoms

- Pulmonary function tests to assess airflow limitation

Lung auscultation is usually performed to identify wheezes in asthma. However, traditional manual
auscultation highly depends on the subjectivity of the physicians involved. In this sense, using RS
analysis allows wheezes, and other types of CAS, to be identified in more objective and practical
manner. On the other hand, spirometry is a simple and useful technique for assessing airflow limitation.
When airflow obstruction is suspected based on spirometric parameters, a BDR test is usually performed
to support or reject an asthma diagnosis. However, as described in Section 1.1.3, spirometry and the
BDR test are still controversial even today, and any diagnosis of asthma should not be made based only

on spirometric parameters.

A combination of spirometry and RS analysis can increase the sensitivity of pulmonary disease detection
[73]. Therefore, for this thesis, we used both spirometry and RS analysis to measure BDR in patients
with asthma (Figure 18). In the study conducted at HUGTIP, RS were recorded in patients with asthma
as they performed six progressive manoeuvres with variable airflow, three of which were pre-
bronchodilation and three, post-bronchodilation. Moreover, BDR was measured in all participants by
spirometry. To date, RS signals and spirometric data have been obtained from a total of 50 patients with

asthma and 10 control participants.

A preliminary study showing the potential of the proposed approach to assessing BDR in patients with
asthma based on the analysis of normal RS and CAS was presented at the XIII Mediterranean
Conference on Medical and Biological Engineering and Computing 2013 (MEDICON 2013) and
published as a book chapter in 2014 [188]. Specifically, we presented a case study of three adult patients

with asthma who had different baseline spirometric values and BDR. Further details are provided in

Chapter 5.

Before applying the proposed approach to assessing BDR (Figure 18) to the whole database of patients
with asthma, we carried out a prior study with 10 patients with asthma and 5 control participants from
the database to evaluate the CAS analysis part of the approach. Specifically, we evaluated how well our
CAS characterisation algorithm (proposed in Chapters 3 [121] and 4 [124]) works in RS signals recorded
in the clinical environment, and the potential of CAS analysis for assessing BDR. Besides CAS, RS
signals contain normal RS and background noises from the clinical environment, which may appear in
the HS as ridges similar to those described by CAS (Figure 15) and could lead to an overestimation of

CAS. To avoid analysing false CAS, we trained and validated a classifier to distinguish signal
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components corresponding to CAS from those corresponding to other sounds. We also studied how the
analysis of CAS features, including number, duration, pitch, and intensity, could improve the
stratification of BDR levels. We have now completed this study and (at the time of this writing) have
submitted it to PLOS ONE (see publications derived from this thesis).
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1.7. Hypotheses

We based this current work on a number of hypotheses that we posed regarding different technical and
clinical aspects of RS analysis. We posed several technical hypotheses regarding the analysis of normal
RS using the RS intensity—airflow curves and the analysis of CAS based on HHT and HS.

We also posed several clinical hypothesis regarding the analysis of RS for assessing pulmonary function
in UPP and BDR in asthma.

Analysis of normal RS

- Normal RS intensity is affected by airflow limitation, and this effect may be more noticeable at high
airflows
- The RS intensity-airflow curves may contribute to improving the assessment of changes and

asymmetries in normal RS intensity due to respiratory diseases
Analysis of CAS

- Using EEMD may allow RS signals to be decomposed into narrowband components, thereby
avoiding the mode mixing effect of EMD and allowing physically meaningful IF to be calculated

- IF dispersion might be markedly decreased within RS signals for the duration of CAS, such that
CAS could be detected from changes in IF dispersion

- HS may provide high energy concentrations around the ridges described by CAS components, which
would make HS less dependent on amplitude criteria for CAS characterisation

- CAS may be more accurately determined with HS than with spectrogram

Assessment of pulmonary function in patients with UPP

- There might be significant differences between the RS intensity—airflow curves at the posterior base
of the lungs in patients with UPP, and the intensity in the affected side might be significantly lower
than the intensity in the healthy side

Assessment of BDR in patients with asthma

- The RS intensity—airflow curves may change significantly at one or several locations over the chest
surface after bronchodilator administration in patients with asthma

- The distribution, number, and features of CAS may vary significantly following bronchodilator
administration in patients with asthma

- The number of CAS and their loudness may be higher over obstructed areas. However, normal RS
intensity may be lower over obstructed areas

- Both the number of CAS at baseline, and the change in the number of CAS after bronchodilator

administration, may vary with airflow in patients with asthma
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1.8. Objectives
1.8.1. Main objective

Here, we aimed to develop a new approach to analysing normal RS and CAS, to create a more sensitive
and alternative tool for assessing the pulmonary function in terms of acoustic parameters. The proposed
approach includes multichannel RS recording, a novel and useful progressive respiratory manoeuvre
with variable airflow, and the use of advanced digital signal processing techniques to better characterise
and interpret RS. This approach to RS analysis is more objective than traditional auscultation and
provides distinct, but complementary, information to that provided by spirometry.

This thesis therefore was divided into two major approaches: normal RS analysis and CAS analysis.
Moreover, the dual proposed approach to RS analysis was carried out by the assessment of both
pulmonary function in patients with UPP and BDR in patients with asthma. Some common specific
objectives are proposed regarding the RS recording protocol. Further, specific objectives are proposed
separately for the analysis of normal RS and CAS, as well as for the two clinical applications of the

proposed approach to RS analysis.
1.8.2. Specific objectives
RS recording protocol

- Design a protocol for the multichannel recording of RS and respiratory airflow based on the
progressive respiratory manoeuvre and considering the number and location of sensors as a key
aspect

- Create a database of RS and airflow signals recorded in patients with asthma and patients with UPP.
To do this, we aimed to launch two RS recording protocols in the Pulmonary Function Testing
Laboratory of the HUGTIP

Analysis of normal RS

- Analyse the relationship between normal RS intensity—calculated as the mean power within a
particular frequency band of the PSD—and airflow through the RS intensity—airflow curves, and

apply linear regression models
Analysis of CAS

- Propose an HHT adapted to the characteristics of RS signals, using EEMD and several IF estimation
methods

- Evaluate the performance of HHT for the time-frequency analysis of RS and analyse its advantages
with respect to other time-frequency analysis techniques

- Develop an algorithm for the automatic detection of CAS based on the IF and IE sequences of RS

- Characterise CAS from HS using number, duration, mean frequency, and intensity
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- Compare the performance of HS for characterising CAS with that of traditional techniques, such as

spectrogram
Assessment of pulmonary function in patients with UPP

- Analyse the differences between the RS intensity—airflow curves of the lungs as an alternative
method for detecting UPP

Assessment of BDR in patients with asthma

- Analyse the changes in the RS intensity—airflow curves at several points over the chest surface
following bronchodilator administration

- Analyse the changes in the number of CAS and their features following bronchodilator
administration

- Analyse the relationship between acoustic parameters and spirometric parameters



CHAPTER 2

45

Chapter 2: Detecting unilateral phrenic paralysis by

acoustic respiratory analysis

Title: Detecting unilateral phrenic paralysis by acoustic respiratory analysis
Authors: J. A. Fiz, R. Jané, M. Lozano, R. Gomez, J. Ruiz

Journal: PLOS ONE, 2014






@'PLOS ‘ ONE

OPEN 8 ACCESS Freely available online

Detecting Unilateral Phrenic Paralysis by Acoustic
Respiratory Analysis

CrossMark

click for updates

José Antonio Fiz""?>3, Raimon Jané*3%*, Manuel Lozano?**, Rosa Gémez', Juan Ruiz'

1Pneumology Service, Germans Trias i Pujol University Hospital, Badalona, Spain, 2 Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain, 3 Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Barcelona, Spain, 4 Dept. ESAIl, Universitat Politécnica de Catalunya (UPC),
Barcelona, Spain, 5 Innovation Group, Health Sciences Research Institute of the Germans Trias | Pujol Foundation (IGTP), Badalona, Spain

Abstract

The consequences of phrenic nerve paralysis vary from a considerable reduction in respiratory function to an apparently
normal state. Acoustic analysis of lung sound intensity (LSI) could be an indirect non-invasive measurement of respiratory
muscle function, comparing activity on the two sides of the thoracic cage. Lung sounds and airflow were recorded in ten
males with unilateral phrenic paralysis and ten healthy subjects (5 men/5 women), during progressive increasing airflow
maneuvers. Subjects were in sitting position and two acoustic sensors were placed on their back, on the left and right sides.
LSI was determined from 1.2 to 2.4 L/s between 70 and 2000 Hz. LS| was significantly greater on the normal (19.3%4.0 dB)
than the affected (5.7=3.5 dB) side in all patients (p=0.0002), differences ranging from 9.9 to 21.3 dB (13.5%3.5 dB). In the
healthy subjects, the LSI was similar on both left (15.1£6.3 dB) and right (17.4%5.7 dB) sides (p=0.2730), differences
ranging from 0.4 to 4.6 dB (2.3+1.6 dB). There was a positive linear relationship between the LSI and the airflow, with clear
differences between the slope of patients (about 5 dB/L/s) and healthy subjects (about 10 dB/L/s). Furthermore, the LSI
from the affected side of patients was close to the background noise level, at low airflows. As the airflow increases, the LSI
from the affected side did also increase, but never reached the levels seen in healthy subjects. Moreover, the difference in
LSI between healthy and paralyzed sides was higher in patients with lower FEV, (%). The acoustic analysis of LSl is a relevant
non-invasive technique to assess respiratory function. This method could reinforce the reliability of the diagnosis of
unilateral phrenic paralysis, as well as the monitoring of these patients.

Citation: Fiz JA, Jané R, Lozano M, Gémez R, Ruiz J (2014) Detecting Unilateral Phrenic Paralysis by Acoustic Respiratory Analysis. PLoS ONE 9(4): €93595.
doi:10.1371/journal.pone.0093595

Editor: Thomas Penzel, Charité - Universitaitsmedizin Berlin, Germany
Received August 8, 2013; Accepted March 7, 2014; Published April 9, 2014

Copyright: © 2014 Fiz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was made possible thanks to a collaboration agreement, between IBEC and IGTP, to create a joint research Unit, and it was supported in part
by the Spanish Ministry of Economy and Competitiveness under grant TEC2010-21703-C03-01. No additional external funding received for this study. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rjane@ibecbarcelona.eu

Introduction An alternative useful method to monitor breathing function is
the measurement of pulmonary sounds [12-16]. In fact, it is
known that airflow is correlated with lung sound intensity (LSI)
[17], including in pulmonary conditions with restrictive ventilatory
function [16].

Our hypothesis in the present study was that in patients with
unilateral phrenic paralysis, the LSI on inspiration would be lower
on the affected side than the healthy side. If this hypothesis were to
be confirmed, measurements of LSI comparing the two sides could
be useful to diagnose conditions associated with restricted thoracic
mobility [6], as well as to monitor the response to specific
physiotherapy treatments targeting the respiratory muscle.

There are several causes of diaphragmatic dysfunction that can
affect one or both muscles. The decrease in or cessation of motor
activity can be caused by compression or section of the phrenic
nerve in certain segments of the spinal cord [1]. The consequences
of diaphragm dysfunction vary from the most serious cases of
bilateral lesions that can require mechanical ventilation, to the
mildest unilateral lesions that may to some extent impair breathing
and In consequence exercise capacity [2,3].

Diaphragm dysfunction due to phrenic paralysis has been
studied with various techniques including x-ray, fluoroscopy,
ultrasonography, and external or internal stimuli of the dia-

phragm. These techniques provide information regarding the
position and mobility of the diaphragm muscle [4-7], but do not
predict the degree of respiratory dysfunction [8].

On the contrary, breathing function can be measured by
routine spirometry [9,10]. Recently, Sokolowska et al. measured
variations in breathing patterns in animals with bilateral phrenic
paralysis, confirming that the measurement of breathing param-
eters could be an appropriate method to monitor this diaphragm
dysfunction [11]. However, in cases of unilateral paralysis,
spirometric function may be normal.

PLOS ONE | www.plosone.org

Materials and Methods

Ethics Statement

The study was conducted in the Respiratory Function
Laboratory at HUGTIP, since February 2011 to December
2013, and approved by the Human Research and Ethics
Committee of the hospital. All participants gave written informed
consent, following the World Medical Association’s Declaration of
Helsinki on Ethical Principles for Medical Research Involving
Human Subjects.

April 2014 | Volume 9 | Issue 4 | 93595


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0093595&domain=pdf

Study subjects

Patients with unilateral phrenic paralysis [18], who were
previously diagnosed in the Department of Internal Medicine at
Germans Trias i Pujol University Hospital (HUGTIP), were
considered eligible for this study. All patients underwent chest
radiography and computed tomography scanning of the chest,
which reveal elevated hemidiaphragm on the affected side.
Moreover, according to their medical history, most of the patients
had previous thoracic or surgical trauma as the major cause of
diaphragmatic paralysis. Only patient ID 2 had an unknown
etiology. However, all patients related some level of functional
dyspnea.

On the other hand, controls were selected from healthy subjects
who had never been diagnosed of phrenic paralysis and had
normal baseline spirometric values. According to these inclusion
criteria, ten men with unilateral phrenic paralysis in a stable
condition and ten controls (five men/five women) were included in
the study for pulmonary function test and the acoustic respiratory
analysis.

Pulmonary function and lung sound testing

At baseline, lung function was measured by spirometry (Hyp’Air
Compact, Medisoft). Table 1 shows baseline spirometric results
from each subject. Measurements were obtained in accordance
with established guidelines [19], and results compared to reference
values [20].

After this previous test, each subject was coached to progres-
sively increase the airflow from shallow breathing to the deepest
breaths they were able to, reaching 1.2 to 2.4 L/s [14]. Lastly, at
the end of the respiratory test, subjects were asked to hold their
breath for a few seconds in order to estimate background noise
intensity (BNI). One recording of a total 120 seconds was obtained
from each subject in a sitting position. Respiratory flow and
sounds were acquired simultaneously during the test.

Lung sounds and respiratory airflow measurements

Respiratory sounds were recorded using two contact micro-
phones (TSD108, Biopac Systems, Inc.) with a frequency response
of 35-3500 Hz. Microphones were positioned on the surface of
the back, at each side of the spinal cord and 3 cm below the
bottom tip of the shoulder blades. They were attached to the skin
with double-sided adhesive discs, in a noninvasive way. In
addition, respiratory airflow was recorded with a pneumotacho-
graph (I'SD107B, Biopac Systems, Inc.). Subjects wore a nose clip
and breathed through the mouthpiece of the instrument.

Airflow and sound signals were amplified and filtered by
hardware, before analog-to-digital conversion and acquisition. On
the one hand, high- and low-pass filters with cut-off frequencies of
10 and 5000 Hz, respectively, were applied to respiratory sound
signals, and they were amplified by a factor of 200. On the other
hand, low-pass filter with a cut-off frequency of 10 Hz was applied
to the airflow signal, and this was amplified by a factor of 1000.
Then, both sound and flow signals were recorded at a sample rate
of 12500 Hz using a 16-bit analog-to-digital converter (MP150,
Biopac Systems, Inc.). Since this study is only focused on normal
pulmonary sounds, whose bandwidth of interest is below 2000 Hz,
respiratory sound signals were digitally filtered using a combina-
tion of 8th order Butterworth high- and low-pass filters with cut-off
frequencies of 70 and 2000 Hz, respectively.

Lung sound analysis

Respiratory sound signals were automatically segmented by
extracting respiratory phases from the airflow signal. Respiratory

PLOS ONE | www.plosone.org
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cycles in which the flow reached at least 0.35 L/s were considered
valid cycles. In order to avoid false detections caused by
background noise, two thresholds of 0.2 and 4 seconds were
established for minimum and maximum durations of breathing
phases, respectively, according to time duration of normal
respiratory cycles. In addition, a threshold of 0.5 seconds was
fixed for the maximum time interval between the end of
inspiration and the beginning of the corresponding expiration.
All cycles not meeting these criteria were rejected. The final
dataset for each subject was formed by audio-visual selection of
pairs of sound signals, one from each side, from the same
inspiratory cycles, avoiding artifacts such as those from swallowing
or rubbing.

Each inspiratory sound cycle was firstly classified according to
the maximum airflow reached. For that purpose, the airflow scale
was divided into intervals of 0.2 L/s, from 1.2 L/s upwards.
Furthermore, only inspiratory sound segments corresponding to
the top airflow interval, whose duration is at least 20% of cycle
length, of each inspiratory cycle were used for assessing the LSI.

The LSI was calculated as the mean power, in the frequency
band from 70 to 2000 Hz, obtained from the power spectral
density (PSD) of each inspiratory sound segment, according to the
following expression:

f 2000
_Jm
LSI= NFFTf;() PSD(f)

where f,, is the sample rate, and NFFT is the number of points for
the fast Fourier transform (FI'T). Just as in some previous studies,
which were focused on the intensity of respiratory sounds
[14,21,22] the PSD was calculated using Welch’s periodogram,
with a Hanning window of 1000 data samples (80 ms), a 50%
overlap between adjacent segments, and 1024 points for the FFT.
The same method was applied to apnea segments from both left
and right sides, in order to calculate the mean background noise

intensity (BNI). The resultant LSI values from all inspiratory
sound segments were expressed in dB with respect to this BNI.
Having calculated the LSI, each subject was characterized by the
relationship between the LSI and the airflow on both left and right
sides. In addition, the LSI was averaged over the airflow range
1.2-2.4 L/s, in order to obtain a mean LSI for each side.
Normality in the mean LSIs of both sides, from patients and
healthy subjects, as well as in their differences was tested with a
Lilliefors test. Since we did not know the parameters of the
hypothesized distributions, and those parameters must be
estimated from the data sample, the Lilliefors test was preferable.
On the other hand, the statistical differences were tested between:
1) the mean LSIs of both sides, and 2) the differences in the mean
LSIs of both sides from patients and healthy subjects. Since
normality could not be assumed in all cases, and the sample size
(n=20) was small, a non-parametric test, such as the Wilcoxon
rank sum test, was used to check for statistical differences.

Results

Lung sound intensity in unilateral phrenic paralysis

Acoustic and spirometric parameters were analyzed in patients
and healthy subjects. As shown in Table 1, eight patients had left
side paralysis (ID 2-7, 9, and 10) and two patients had right side
paralysis (ID 1 and 8). Regardless of the side affected, all patients
had lower FVC (57%9%) and FEV; (57%£10%) values than
healthy subjects, in whom the percentages were 94*11% and
93+7%, respectively.
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Figure 1. Airflow and lung sound signals. Airflow signal (black)
and the corresponding lung sound signals, in arbitrary units, for both
right (blue) and left (red) sides, in a patient with left side phrenic
paralysis (ID 4). Sound amplitudes from the left side were lower than
those from the healthy right side.
doi:10.1371/journal.pone.0093595.g001

With regard to lung sounds, the signal amplitude was much
lower on the paralyzed side than the healthy side, in patients with
unilateral phrenic nerve paralysis, as shown in the example from
Figure 1. It contains the lung sound and the airflow signals from a
patient with left phrenic paralysis (ID 4). Accordingly, the
magnitude of the PSDs from both sides, and the consequent
signal powers, are quite different, as shown in Figure 2. It exhibits

Unilateral Phrenic Paralysis Detection

the PSDs from two inspiratory sound segments, one from each
side, of an inspiratory cycle from patient ID 4. As shown, the PSD
of the right sound segment (healthy side) is a long way from the
PSD of the right background noise segment, in all the frequency
range. On the other hand, the PSD of the left sound segment
(affected side) 1s slightly above the left background noise. As a
result, the LSI calculated from the PSD of the healthy side is much
larger than the affected side.

The aforementioned pattern was confirmed by comparison of
the acoustic parameters in all patients with unilateral phrenic
paralysis (Table 2). Calculation of the BNI from the BNI for left
and right sides allowed us to express the mean LSI from each side
in dB with respect to the same reference value. In addition, the
mean LSI was calculated for both sides from the same set of cycles.

In healthy subjects, the mean LSI was much higher than the
BNI on both left (15.1+6.2 dB) and right (17.4%5.7 dB) sides.
However, patients had mean LSIs only a few dBs above the BNI
on the affected side (5.7%3.5 dB) while their mean LSIs on the
healthy side (19.3+4.0 dB) were not significantly different from
the values measured in the healthy participants. To show this
trend clearly, we calculated the difference between the mean LSI
of each side.

Figure 3 shows the mean LSI, for each side, as a function of
airflow level in all patients, and all healthy subjects. On the one
hand, considerable differences, of more than 13 dB, can be seen
between the LSI from the affected and healthy sides. On the other
hand, differences in LSI between the sides are less than 3 dBs in
healthy subjects. It should be noted that the LSI from the affected
sides are close to the BNI (0 dB) at low airflows. As the airflow
increases, the LSI from the affected sides does also increase, but
never reaches the levels seen in healthy subjects.

Furthermore, Figure 3 shows a clear linear relationship between
the LSI and the airflow level. This sound-flow relationship has
been reported in some previous studies [23-25], and it usually
follows a power law. In a logarithmic scale (dB), this relationship
can be formulated by a linear equation:

Healthy right side
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Figure 2. Power spectral density of lung sounds from a patient.
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Frequency (Hz)
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Airflow (L/s), lung sound signals (arbitrary units), and the corresponding

power spectral densities (dBW), for both sides of an inspiratory cycle from a patient with left side phrenic paralysis (ID 4). Solid and dotted lines in the
PSDs correspond to the central sound segments and the background noise segments from both sides, respectively.

doi:10.1371/journal.pone.0093595.g002
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Figure 3. Comparison of inspiratory LSI-Airflow relationship
between both hemithoraxes in patients and healthy subjects.
Mean inspiratory LSI (dB) as a function of airflow (L/s), from the ten
patients and the ten healthy subjects. All values are the mean = SD.
doi:10.1371/journal.pone.0093595.9g003

LSI(dB)=m x Airflow+b

where m is the slope of the line, and b is the y-intercept. As shown
in Table 3, all LSI-airflow relationships from Figure 3 can be
properly expressed by a linear equation. Moreover, there is a clear
difference between the slope of healthy subjects (around 5 dB/L/s)
and patients (around 10 dB/L/s), independently of the analyzed
side.

The mean inspiratory LSI from both sides of patients and
healthy subjects has been statistically analyzed, as shown in
Figure 4. The null hypothesis that the mean LSIs were normally
distributed was accepted as much for both healthy and paralyzed
sides in patients (p=0.4135 and 0.9436, respectively), as for the
right side in healthy subjects (p=0.5790). However, the null
hypothesis was rejected for the left side in healthy subjects
(p=0.0104).

The Wilcoxon rank sum test showed that the mean LSIs of
healthy and paralyzed sides in all patients were statistically
different (p = 0.0002). On the contrary, the difference between the

Table 3. Linear regression parameters*.

Healthy subjects Patients

Right side Left side Paralyzed side Healthy side

R? 0.91 0.93 0.98 0.79
Slope (dB/L/s)  9.78 10.61 5.58 5.48

* Corresponding to graphs from Figure 3.
doi:10.1371/journal.pone.0093595.t003
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Figure 4. Comparison of mean inspiratory LS| between both
hemithoraxes in patients and healthy subjects. Mean inspiratory
LSI (dB) in healthy and paralyzed sides (ten patients), and in right and
left sides (ten healthy subjects). The mean LSI from patients is
significantly higher in healthy side than paralyzed side (p=0.0002).
On the contrary, there are not significant differences between mean LS|
from both hemithoraxes in healthy subjects (p=0.2730).
doi:10.1371/journal.pone.0093595.9g004

mean LSIs of right and left sides in all healthy subjects was not
statistically significant (p =0.2730).

Lung sound intensity differences and FEV, relationship

Figure 5-A shows the absolute value of the differences between
the mean LSIs of both sides (| LSIpcq-LSLign|). In this case, the
null hypothesis that the differences were normally distributed was
accepted as much in patients (p=0.6078), as in healthy subjects
(p=10.4693).

The Wilcoxon rank sum test showed that the differences
between the mean LSIs of both sides were statistically significant in
both groups (p = 0.0002). Moreover, it was found that there was a
clear cut off around 6-8 dB which distinguished patients from
healthy subjects.

Figure 5-B illustrates the relationship between the mean LSI
difference and FEV, showing high differences in the LSI and low
FEV, in patients with phrenic nerve paralysis. Moreover, in
patients there is an inverse relationship between the two
parameters, namely the lower the FEV,, the higher the mean
LSI difference. In contrast, healthy subjects have low mean LSI
differences, and there is no any clear relationship between these
LSI differences and the corresponding FEV.

Discussion and Conclusions

Our study shows that patients with unilateral phrenic nerve
paralysis have a lower inspiratory sound intensity on the affected
side than the healthy one. We did not analyze expiratory sounds
due to the lower values of expiratory intensity with respect to
inspiratory values at isoflows [14]. This study illustrates the
potential of lung acoustic analysis for the diagnosis and manage-
ment of these patients.
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Figure 5. LSI differences and FEV, relationship in patients and
healthy subjects. A: Mean inspiratory LS| difference (dB) between
both hemithoraxes, in ten patients with phrenic nerve paralysis and ten
healthy subjects. The LSI difference was higher in patients than healthy
subjects (p=0.0002). Solid lines indicate the mean and SD for each
group. B: Mean inspiratory LS| difference as a function of FEV; in
patients and healthy subjects.

doi:10.1371/journal.pone.0093595.9g005

Respiratory sounds are an alternative method to measure both
pulmonary [16] and diaphragmatic function. Some previous
studies reported decreased breath sound on the affected side in
patients with unilateral phrenic paralysis [18,26,27], but they were
assessed by traditional auscultation. However, there are no
references about quantitative analysis of respiratory sounds for
the diagnosis of these patients. In what is related to laterality of
respiratory sounds, they have been used to distinguish between
bilateral and unilateral lung ventilation in intubated patients [28].
Nevertheless, many studies have analyzed the differences between
the LSI of both sides in healthy subjects [14,29,30,31], thus
reporting slight differences of a few dB. In any case, sound analysis
can detect differences in airflow entering the two sides of the
thoracic cage in diseases that affect respiratory ventilation, and our
study demonstrates this for the case of unilateral phrenic nerve
paralysis. Consistently, we found a clear cut-off in the mean
differences of LSI between the two sides in healthy subjects and
patients.

In addition to unilateral phrenic paralysis, it has been
recognized by other authors that lung sound analysis is also a
very useful technique to study many others pulmonary diseases
[21,22,32,33].

When the diaphragm is paralyzed, it does not have an influence
on expansion of the homolateral lung and breathing is maintained
by accessory muscles such as those of the chest wall. The
movement of the paralyzed hemidiaphragm is determined by the
balance between the change in pleural pressure and the shortening
of the healthy hemidiaphragm. This is manifested by a cranial
displacement of the ipsilateral hemidiaphragm and a small caudal

PLOS ONE | www.plosone.org
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displacement of the contralateral hemidiaphragm [6]. Such a
retraction is ineffective for respiration and has been related to
patient dyspnea [34].

It has been suggested that the airflow to dependent areas of the
lung is directed by the diaphragm and non-dependent areas by the
intercostal muscles [35]. The gas flow to the dependent areas of
the paralytic side would therefore be lower than that to the healthy
side.

In this study, there was considerably less airflow entering the
dependent areas of the pathological side, measured in an indirect
way by the quantification of the LSI. Specifically, the LSI of the
affected side was close to the level of the background noise for a
low airflow rate, as seen in Figure 3, while the signal from the
healthy side remained a long way from the background noise at all
measured flow rates. Although the BNIs from both sides are
slightly different, it is not relevant for the results of this study, since
the BNI is used as the unique reference value in order to express
the LSI in dB.

In addition, pulmonary perfusion is redistributed from the base
toward the apex in these patients [36]. The result of this
pathological situation is that the work of breathing (measured in
terms of oxygen uptake) is increased, which suggests that
intercostal muscle breathing is less efficient than diaphragm
breathing [37]. Spirometric changes have been widely commented
on in the literature. In our study, spirometry values of patients with
phrenic paralysis were low with respect to normal reference values,
as has been found previously in other studies [9,38].

With respect to traditional techniques to diagnose the unilateral
phrenic paralysis, they include: x-ray imaging, fluoroscopy,
ultrasonography, and phrenic nerve stimulation [18,39]. Usually,
unilateral phrenic paralysis is diagnosed by a combination of these
techniques, since none of them is totally concluding by itself. Of
these techniques, x-ray imaging is the simplest and it has some
obvious limitations: it uses ionizing radiation, and it does not allow
us to assess the diaphragm or the pulmonary function of patients.
Moreover, in unilateral diaphragmatic paralysis, the sensitivity of
plain chest radiograph is as high as 90%, whereas its specificity s,
however, low (44%) [39].

Fluoroscopy and the external or internal stimuli of the
diaphragm allow evaluating the diaphragm mobility [4]. However,
fluoroscopy also makes use of x-rays to obtain dynamic images of
the diaphragm, and both fluoroscopy and stimuli of the diaphragm
are invasive techniques. Moreover, none of these methods
provides information about the pulmonary function.

Ultrasonography is an alternative non-invasive technique to
assess the diaphragmatic function [5,40], since it works on
ultrasounds. Nevertheless, just as the aforementioned techniques,
ultrasounds do not provide any data about the pulmonary function
of patients. Moreover, ultrasonography is operator dependent and
requires significant expertise [39].

Recently, a new non-invasive method has been proposed to
measure the movements of the thoracic wall [41]. This new
method makes use of a motion analysis system, which is called
optoelectronic plethysmography. It was used to estimate the total
rib cage volume, as well as its changes in both healthy and
paralyzed sides.

In this study, the potential of acoustic respiratory analysis for
detecting unilateral phrenic paralysis has been clearly shown.
Despite a relatively small population has been analyzed, the results
from 20 subjects (10 patients and 10 healthy subjects) reinforce the
reliability of the proposed method. On the other hand, in the
database, there is a slight difference in the male-female ratio
between patients and healthy subjects, but gender is not a relevant
factor in the analysis of normal lung sound intensity [42].

April 2014 | Volume 9 | Issue 4 | 93595



However, further studies will be needed to clinically validate this
technique as a new complementary tool for phrenic paralysis
diagnosis.

In conclusion, measurement of LSI can provide quantitative
information about the extent of impairment of respiratory function
in patients with unilateral phrenic nerve paralysis. In these
patients, LSI is an indirect measure of the airflow that enters the
lungs, this being lower on the affected side due to inefficient
diaphragmatic muscle function. This technique represent a step
forward in the diagnostic procedure of unilateral phrenic nerve
paralysis, since it has some advantages with respect to current
techniques: non-invasiveness, objectivity, simplicity, easiness and
cost. The acoustic respiratory analysis, in conjunction with
spirometry, could reinforce the reliability of the diagnosis of
unilateral phrenic paralysis.

Regarding the future use of the method, its major application is
the non-invasive assessment of respiratory function, providing
objective information of the affected side. Therefore, the method
offers the capability for long-term monitoring of recovery in
respiratory function in patients who undergo physical therapy

References
1. DeVita MA, Robinson LR, Rehder J, Hattler B, Cohen C (1993) Incidence and

natural history of phrenic neuropathy occurring during open heart surgery.
Chest 103(3): 850-856.

2. Brochard L, Harf A, Lorino H, Lemaire F (1989) Inspiratory pressure support
prevents diaphragmatic fatigue during weaning from mechanical ventilation.
Am Rev Respir Dis 139(2): 513-521.

3. TFreilich S, Janssen JC, Polkey MI (2011) An unusual case of diaphragm paralysis.
Thorax 66(2): 133.

4. Yi LC, Nascimento OA, Jardim JR (2011) Reliability of an analysis method for
measuring diaphragm excursion by means of direct visualization with
videofluoroscopy. Arch Bronconeumol 47(6): 310-314.

5. Kim SH, Na S, Choi JS, Na SH, Shin S, et al. (2010) An evaluation of
diaphragmatic movement by M-code sonography as a predictor of pulmonary
dysfunction after upper abdominal surgery. Anesth Analq 110(5): 1349-1354.

6. Scillia P, Cappello M, De Troyer A (2004) Determinants of diaphragm motion
in unilateral diaphragmatic paralysis. J Appl Physiol 96(1): 96-100.

7. Watson AC, Hughes PD, Louise Harris M, Hart N, Ware R]J, et al. (2001)
Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube
pressure with bilateral anterolateral magnetic phrenic nerve stimulation in
patients in the intensive care unit. Crit Care Med 29(7): 1325-1331.

8. Chetta A, Rehman AK, Moxham J, Carr DH, Polkey MI (2005) Chest
radiography cannot predict diaphragm function. Respir Med 99(1): 39-44.

9. Lishoa C, Paré PD, Pertuzé J, Contreras G, Moreno R, et al. (1986) Inspiratory
muscle function in unilateral diaphragmatic paralysis. Am Rev Respir Dis
134(3): 488-492.

10. Epstein SW, Vanderlinden RG, Man SF, Hyland RH, Lenkei SC, et al. (1979)
Lung function in diaphragm pacing. Can Med Assoc J 120(11): 1360-1368.

11. Sokolowska B, Jozwik A, Pokorski M (2003) A fuzzy-classifier system to
distinguish respiratory patterns evolving after diaphragm paralysis in the cat.
Jpn J Physiol 53(4): 301-307.

12. Pasterkamp H, Patel S, Wodicka GR (1997) Asymmetry of respiratory sounds
and thoracic transmission. Med Biol Eng Comput 35(2): 103-106.

13. Hult P, Wranne B, Ask P (2000) A bioacoustic method for timing of the different
phases of the breathing cycle and monitoring of breathing frequency. Med Eng
Phys 22(6): 425-433.

14. Tiz JA, Gnitecki J, Kraman SS, Wodicka GR, Pasterkamp H (2008) Effect of
body position on lung sounds in healthy young men. Chest 133(3): 729-736.

15. Alshaer H, Fernie GR, Bradley TD (2011) Monitoring of breathing phases using
a bioacoustic method in healthy awake subjects. J Clin Monit Comput 25(5):
285-294.

16. Morice RC, Jimenez CA, Eapen GA, Mehran R], Keus L, et al. (2010) Using
quantitative breath sound measurements to predict lung function following
resection. J Cardiothorac Surg 5: 81.

17. Shykoff’ BE, Ploysongsang Y, Chang HK (1988) Airflow and normal lung
sounds. Am Rev Respir Dis 137(4): 872-876.

18. Gibson GJ (1989) Diaphragmatic paresis: pathophysiology, clinical features, and
investigation. Thorax 44(11): 960-970.

19. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, et al. (2005)
Standardisation of spirometry. Eur Respir J 26(2): 319-338.

20. Roca J, Burgos F, Sunyer J, Saez M, Chinn S, et al. (1998) References values for
forced spirometry. Group of the European Community Respiratory Health
Survey. Eur Respir J 11(6): 1354-1362.

PLOS ONE | www.plosone.org

Unilateral Phrenic Paralysis Detection

[43]. These patients are regularly monitored in order to check
whether the physical therapy is improving their pulmonary
function in the affected side or not. In this context, the advantages
of the proposed technique gain relevance since several and
repeated tests are required for the long-term monitoring of these
patients.

Acknowledgments

All authors would like to thank all the team in the Pulmonary Function
Testing Laboratory at Germans Trias i Pujol University Hospital, for their
collaboration in the patient recruitment as well as the performing of the
spirometry tests.

Author Contributions

Conceived and designed the experiments: JAF R] ML JR. Performed the
experiments: JAF ML RG. Analyzed the data: JAF R] ML. Contributed
reagents/materials/analysis tools: JAF R] ML. Wrote the paper: JAF RJ
ML. Interpreted results of experiments: JAF RJ ML.

21. Oud M, Dooijes EH, Van Der Zee JS (2000) Asthmatic airways obstruction
assessment based on detailed analysis of respiratory sound spectra. IEEE Trans
Biomed Eng 47(11): 1450-5.

22. Montazeri A, Giannouli E, Moussavi Z (2012) Assessment of obstructive sleep
apnea and its severity during wakefulness. Ann Biomed Eng 40(4): 916-24.

23. Hossain I, Moussavi Z (2004) Finding the lung sound-flow relationship in normal
and asthmatic subjects. Conf Proc IEEE Eng Med Biol Soc 5: 3852-5.

24. Golabbakhsh M, Moussavi Z (2004) Relationship between airflow and
frequency-based features of tracheal respiratory sound. Can Conf Electr
Comput Eng 2: 751-754.

25. Yadollahi A, Montazeri A, Azarbarzin A, Moussavi Z (2013) Respiratory flow-
sound relationship during both wakefulness and sleep and its variation in relation
to sleep apnea. Ann Biomed Eng 41(3): 537-46.

26. Dernaika TA, Younis WG, Carlile PV (2008) Spontaneous recovery in
idiopathic unilateral diaphragmatic paralysis. Respir Care 53(3): 351-4.

27. Habib GS (2012) Unilateral diaphragm paralysis following vaccination. J Med
Cases 3(3): 164-166.

28. Tejman-Yarden S, Lederman D, Eilig I, Zlotnik A, Weksler N, et al. (2006)
Acoustic monitoring of double-lumen ventilated lungs for the detection of
selective unilateral lung ventilation. Anesth Analg 103(6): 1489-1493.

29. Kompis M, Pasterkamp H, Oh Y, Wodicka GR (1997) Distribution of
inspiratory and expiratory respiratory sound intensity on the surface of the
human thorax. Conf Proc IEEE Eng Med Biol Soc 5: 2047-2050.

30. Torres-Jiménez A, Charleston-Villalobos S, Gonzélez-Camarena R, Chi-Lem
G, Aljama-Corrales T (2008) Asymmetry in lung sound intensities detected by
respiratory acoustic thoracic imaging (RATHI) and clinical pulmonary
auscultation. Conf Proc IEEE Eng Med Biol Soc 2008: 4797-4800.

31. Dellinger RP, Parrillo JE, Kushnir A, Rossi M, Kushnir I (2008) Dynamic
visualization of lung sounds with a vibration response device: a case series.
Respiration 75(1): 60-72.

32. Pasterkamp H, Kraman SS, Wodicka GR (1997) Respiratory sounds. Advances
beyond the stethoscope. Am J Respir Crit Care Med 156(3 Pt 1): 974-987.

33. Gavriely N, Nissan M, Cugell DW, Rubin AH (1994) Respiratory health
screening using pulmonary function tests and lung sounds analysis. Eur Respir J
7(1): 35-42.

34. Gharagozloo F, McReynolds SD, Snyder L (1995) Thoracoscopic plication of
the diaphragm. Surg Endosc 9(11): 1204-1206.

35. Roussos CS, Fixley M, Genest J, Cosio M, Kelly S, et al. (1977) Voluntary
factors influencing the distribution of inspired gas. Am Rev Respir Dis 116(3):
457-467.

36. Amis TC, Ciofetta G, Hughes JM, Loh L (1980) Regional lung function in
bilateral diaphragmatic paralysis. Clin Sci (Lond) 59(6): 485-492.

37. DiMarco AF, Connors AF Jr, Kowalski KE (2004) Gas exchange during
separate diaphragm and intercostal muscle breathing. J Appl Physiol 96(6):
2120-2124.

38. Xu WD, Gu YD, Lu JB, Yu C, Zhang CG, et al. (2005) Pulmonary function
after complete unilateral phrenic nerve transection. J Neurosurg 103(3): 464—
467.

39. McCool FD, Tzelepis GE (2012) Dysfunction of the diaphragm. N Engl ] Med
366(10): 932-42.

40. Balaji S, Kunovsky P, Sullivan I (1990) Ultrasound in the diagnosis of
diaphragmatic paralysis after operation for congenital heart disease. Br Heart J
64(1): 20-2.

April 2014 | Volume 9 | Issue 4 | 93595



Unilateral Phrenic Paralysis Detection

41. Boudarham J, Pradon D, Prigent H, Falaize L, Durand MC, et al. (2013) 43. Gayan-Ramirez G, Gosselin N, Troosters T, Bruyninckx F, Gosselink R, et al.
Optoelectronic plethysmography as an alternative method for the diagnosis of (2008) Functional recovery of diaphragm paralysis: a long-term follow-up study.
unilateral diaphragmatic weakness. Chest 144(3): 887-95. Respir Med 102(5): 690-698.

42. Gross V, Dittmar A, Penzel T, Schiittder F, von Wichert P (2000) The
relationship between normal lung sounds, age, and gender. Am J Respir Crit

“are Med 162(3): 905-909.

PLOS ONE | www.plosone.org 9 April 2014 | Volume 9 | Issue 4 | 93595






CHAPTER 3 57

Chapter 3: Automatic differentiation of normal and
continuous adventitious respiratory sounds using
ensemble empirical mode decomposition and

instantaneous frequency

Title: Automatic differentiation of normal and continuous adventitious respiratory sounds using

ensemble empirical mode decomposition and instantaneous frequency
Authors: M. Lozano, J. A. Fiz, R. Jané

Journal: IEEE Journal of Biomedical and Health Informatics, 2016






Automatic Differentiation of Normal and
Continuous Adventitious Respiratory Sounds
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Abstract—Differentiating normal from adventitious
respiratory sounds (RS) is a major challenge in theiagnosis of
pulmonary diseases. Particularly, continuous adveittous sounds
(CAS) are of clinical interest because they refledhe severity of
certain diseases. This study presents a new clagsif that
automatically distinguishes normal sounds from CASIt is based
on the multi-scale analysis of instantaneous frequey (IF) and
envelope (IE) calculated after ensemble empirical ode
decomposition (EEMD). These techniques have two n@j
advantages over previous techniques: high temporagsolution is
achieved by calculating IF-IE and a priori knowledge of signal
characteristics is not required for EEMD. The clasHier is based
on the fact that the IF dispersion of RS signals m&edly decreases
when CAS appear in respiratory cycles. Therefore, &S were
detected by using a moving window to calculate thdispersion of
IF sequences. The study dataset contained 1494 R&gments
extracted from 870 inspiratory cycles recorded from30 patients
with asthma. All cycles and their RS segments wengreviously
classified as containing normal sounds or CAS by &ighly
experienced physician to obtain a gold standard cé&sification. A
support vector machine classifier was trained andested using an
iterative procedure in which the dataset was randoty divided
into training (65%) and testing (35%) sets inside doop. The SVM
classifier was also tested on 4592 simulated CASctss. High total
accuracy was obtained with both recorded (94.6% +*.8%) and
simulated (92.8% + 3.6%) signals. We conclude thalhe proposed
method is promising for RS analysis and classificain.

Index Terms—Asthma, continuous adventitious sounds (CAS),
ensemble empirical mode decomposition (EEMD), instaaneous
frequency (IF), respiratory sounds (RS), wheezes.

I.  INTRODUCTION

understanding and interpreting RS are crucial. H®ne
physician subjectivity is a substantial problenthis field and
it may lead to an incorrect diagnosis.

RS are generally classified as normal or abnormjal[2].
Normal RS originate in healthy lungs, as a conseceef the
airflow through the airways during normal breathi@n the
other hand, abnormal RS appear in certain pulmatiaoyders
and they are further classified into discontinuadsentitious
sounds and continuous adventitious sounds (CAS).
Discontinuous adventitious sounds are explosivetearsient
sounds that are short in duration but contain aewiahge of
frequencies. In contrast, CAS typically last mdrart 100 ms
and are characterized by quasi-periodic wavefornth &
fundamental frequency of over 100 Hz [1], [2].

Identifying abnormal sounds is a key step in the
computerized analysis of RS [3]. From a clinicahpof view,
CAS are important because they are present in w&rio
respiratory diseases involving some degree of grwa
obstruction, such as asthma or COPD [1]. Theseasése
produce changes in the mechanical properties oéitlneays,
and these changes explain the presence of CAS-(4iher,
there is a relationship between the number of CA& the
severity of airway obstruction in asthmatic patirgevere
airway obstruction being related to more CAS [58).[
Moreover, the characteristics of CAS, such as nfieguency,
duration, intensity, and respiratory phase in whigty appear,
are also related to the severity of airway obsiouacf7], [8].
Therefore, detecting and analyzing CAS may hebssess the
severity of obstructive pulmonary diseases, sudstsma, in
which measuring the extent of obstruction anddteersibility

ULMONARY auscultation is an essential techniquereveis important for reaching a correct diagnosis [9pwever,

in cursory physical examinations. Respiratory seuiiR)
contain relevant information about the structurd &mction
of the respiratory system. Therefore,
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normal RS in a straightforward and reliable way.

Several previous studies have proposed a range Sof
classification schemes focused exclusively on migtishing
normal from abnormal RS [10]-[13]. Those studieofeed
the standard methodology of pattern recognition,iclvh
comprises feature extraction, dimensionality reiductand
pattern classification. Features were extractedgugither
wavelet coefficients [10], morphological compleagi
(lacunarity, sample entropy, kurtosis, and skewngss],
multi-scale principal component analysis in Foudemain
[12], or hidden Markov models [13]. The sounds gred
included many types of adventitious RS, not only SCA
Accordingly, the techniques used did not take iat@ount
certain features that are relevant to the accudat&ification
of CAS, such as temporal features. Further, somer atudies

followed similar methodologies even though they aver

adaptive and direct decomposition technique [28],[a priori
Rnowledge of the signal characteristics is not neglfor the
choice of analysis parameters. Moreover, EMD allawsgnal
to be decomposed into a set of components for wttieh
instantaneous frequency (IF) and envelope (IE)eadefined
at any point. Therefore, high temporal and spectistlutions
are achieved [31], [32].

In order to take advantage of the EMD-IF propertieshad
previously developed a new method for RS analyaset on
customized IF and IE estimation by EMD, adapted$csignal
characteristics [33]. In that previous study, wewéd that the
IF distribution changed when CAS appeared in airatspy
cycle [33]. Nevertheless, we found that the EMD haudode
mixing effect when applied to RS from some insmirat
cycles, which resulted in poor separation of fremyescales.

Building on the results of our previous work, irethresent

focused specifically on wheeze and non-wheeze epostudy, we propose a new method to automaticaliytifeCAS

classification within RS signals. For example, ssthdies
have been based on the combination of Mel frequeepsgtral
coefficients and Gaussian mixture models [14], [D5]linear

and distinguish them from normal RS. The proposgarithm
makes use of ensemble empirical mode decomposition
(EEMD) for IF estimation, which improves on the foemance

analysis using the Fisher discriminant method ahd tof EMD [34]. As we reported in [33], the IF dispens

Neyman-Pearson test after extraction of featurép [1

In contrast to the aforementioned techniques, tiadyais of
time-frequency distributions
straightforward method for CAS identification. Tbembined
analysis of time, frequency, and energy featuresiges extra
information about duration, pitch variation, and gniude,
strengthening the identification of CAS. In thismtext, many
studies have been focused on the identificatiowldezing-
episodes from spectrograms [17]-[23], by applyiamporal
and spectral continuity criteria to previously diéel peaks.
Alternatively, digital image processing techniques/e also
been applied to the spectrogram for wheeze dete¢fid],

markedly decreases when CAS appear in respiraiymies
This property concerns not only wheezes, but anys @k

is the most common anthusical sounds [1] that are characterized by a dami

fundamental frequency. Accordingly, the presentgtuses
this property to detect CAS at a wide range ofdeetries. For
that purpose, a set of thresholds was applied & IE
dispersion of RS from each inspiratory cycle, délimgy RS
segments with a lower IF dispersion. Then, a sjges#t of
features was extracted from the IF and IE sequences
characterize each delimited RS segment within each
inspiratory cycle. These features were used to &rad test our
RS segment classifier, which was a support vectachime

[25], and the scalogram, calculated using the wevel(SVM) classifier. Finally, the whole set of insgiway cycles

transform, has been used to classify RS [26]. Rcemore

advanced TFDs have been proposed for the deteation
analysis of CAS, involving either the combinatioh tbe

wavelet decomposition with third-order spectral tfieas

(instantaneous bispectrum/bicoherence) [27], od#resation

of a temporal-spectral dominance spectrogram figershort-
time Fourier transform [28].

Despite the widespread use of Fourier and wavelstd
techniques, they have some limitations. First, they non-
adaptive techniques, which are limited by the fhat a priori
knowledge of the signal characteristics is requifed the
correct choice of fixed analysis parameters. Secasds well
known, the Fourier transform, like any integratimsed
transform, is governed by the uncertainty pringiphich
limits the combined time-frequency resolution andurn, the
accuracy of TFDs.

Besides the technical aspects, many previous studied
RS signals recorded either at constant airflowduoing forced
expiratory maneuvers. However, CAS may appearffardnt
airflow levels which, in turn, affect the propedief CAS.

Empirical mode decomposition (EMD) was proposedras
alternative and suitable tool for the analysis ofilmear and
non-stationary signals, such as RS [29]. Since E&I@Rn

were classified as containing CAS or only normal, RS
depending on whether they contained at least oné& CA
segment or not. The proposed technique was testestorded
RS from asthmatic patients, who performed a vagialiflow
respiratory maneuver to provide CAS at a wide ranfe
airflow levels. This technique was also tested onukated
CAS to analyze the effect of SNR on the performaoicthe
proposed classifier.

Il.  MATERIALS AND METHODS

A. Data Acquisition

Recorded RS were obtained at the Pulmonary Function
Testing Laboratory, Germans Trias i Pujol Universit
Hospital, Badalona, Spain. All recordings were aeglfrom
patients who had previously been diagnosed witinaatin the
Pulmonology Service at this hospital. First, lungdtion was
measured by spirometry (Hyp’Air Compact, Medisofthen,
four piezoelectric contact microphones (TSD108, pRio
Systems, Inc.) were placed on the surface of tlienia back,
on each side of the spinal cord, at the base aadthe upper
lobe of the right/left lung. An additional microph® was
placed on the surface of the neck, over the riglg sf the



TABLE |
ANTHROPOMETRICAND SPIROMETRICCHARACTERISTICS

Feature/Set Total
Number of subjects 30
Age (yr) 45 H14
BMI (kg/m?) 25+4
FVC (% of predicted) 8215
FEV; (% of predicted) 80 + 17

BMI = body mass index; FVC = forced vital capaciyEV; = forcec
expiratory volume in 1 second.

trachea, at the level of the cricoid cartilage. #¢hsors were
attached to the skin using adhesive rings. Théoair§ignals

were recorded simultaneously with the sound signaimg a
pneumotachograph (with an integrated differentigdspure
transducer, TSD107B, Biopac Systems, Inc.). Alhalg were
sampled at 12 500 samples/s, using a 16-bit anedtmdigital

converter (MP150, Biopac Systems, Inc.). After @iligation,

the sound signals were band-pass filtered (70-2H80and

the respiratory phases were automatically detegsing the

airflow signal as the reference signal.

TABLE Il
DISTRIBUTION OF THERECORDEDRS

Inspiratory cycles

RS segments

Total Q1 Q2 Q3 Q4 Total

Total 870 163 213 254 240 1494
Normal 385 105 94 109 77 861
CAS 485 58 119 145 163 633

inspection, differentiated those with audible CA8ni those
with only normal sounds. In this way, we obtainkd target
classification labels for both the inspiratory @gland the RS
segments. Besides using his personal experience and
knowledge in RS analysis, the physician followeel thiteria
explained in a recent publication about RS [1], BnredCORSA
guidelines of the European Respiratory Society [2].
According to these guidelines, CAS are defined asical
sounds, heard on inspiration, expiration, or bo#lth a
duration of over 100 ms, and a fundamental frequehove
100 Hz. This definition of CAS includes both wheseznd
ronchi. The main difference between them is thahdhi have

Patients were asked to perform a respiratory mameuMower pitch than wheezes. Based on this definitififferent

consisting of progressively varying their airflovevels,
ranging from shallow breathing to the deepest bsedhey
were able to take. We used this maneuver becauSedoot
only appear at high airflows, but also at modewatid low
airflows. Further, at the beginning and at the addthe
respiratory maneuver, patients were asked to et breath
for a few seconds. Corresponding signal segments wsed
to evaluate background noise and heart sound énesr€e.
After cycle segmentation, the minimum and the maxim
peak flow values of the inspiratory phases delidiites airflow
range of each patient. In order to allow compassofirsignals
from these different airflow ranges, each one weaisléld into
four proportional intervals or quartiles, from Q& ©Q4,
grouping the peak flow values of the correspondiatient in
ascending order, from lowest to highest, respelgtive

B. Study Dataset
For this study, RS signals were recorded from 30naatic

types of CAS were included in the dataset, inclgdiome
polyphonic CAS. In any case, the goal of this stigdgiot to
distinguish between different types of CAS, but
automatically differentiate CAS from normal RS.

C. Ensemble Empirical Mode Decomposition of RS

The proposed algorithm for RS classification isdabgn the
fact that RS segments containing CAS have lower
dispersion than RS segments containing normal souné
respiratory cycle, as we reported in [33]. Consatjyethe
first step of our RS classification scheme is théngation of
the IF of the RS for each inspiratory cycle in tataset.
However, estimating the IF only makes sense for anon
component or, at least, narrowband signals. As iRSraulti-
component signals, we need to decompose them bieéimg
able to calculate a physically meaningful IF. listtontext, we
previously described in [33] that the EMD allows Ri§nals
to be decomposed into a set of components, catigohsic

subjects, whose main anthropometric and spirometriiode functions (IMFs), for which the IF can be defi at any

characteristics are summarized in Table |. Aftercley
segmentation, the study dataset was formed by &8 fhe
inspiratory phase measured with the four micropbamethe
back, where auscultation is typically performed. kvenually
selected the inspiratory cycles from the datasetuujovisual
inspection, rejecting those inspiratory cycles aorihg
artifacts (clicks, bursts, or scratches), surrongdnoises
(background talking or swallowing), or strong hesound
interference (this signal normally being much weakan RS
on the surface of the back). In the end, a tot87&finspiratory
cycles from different airflow quartiles formed thstudy
dataset, including 385 with normal sounds and 486 GAS
(Table 11).

A total of 1494 RS segments were extracted from th@oreover,

inspiratory cycles in this dataset. All inspiratarycles and
their corresponding RS segments were manuallyifiesdy
a highly experienced physician who,

point. While, ideally, each IMF would contain diféat
frequency components of the RS signal, we fount EhD
had a mode mixing effect when applied to some RBads
containing CAS. Due to this mode mixing effect, som
frequency components of CAS appeared in differdd,
leading to poor separation of frequency scales.

Recently, EEMD was proposed as an improvement tEM
to overcome this mode mixing effect [34]. EEMD cists of
the iterative application of the original EMD tosignal plus
white noise. The idea behind EEMD is that EMD aadsan
adaptive dyadic filter bank when applied to whiteise,
thereby separating the different frequency scafea signal
naturally without any a priori subjective criterif84].
another previous study showed that
computational cost of the EEMD was reduced by @pta
white noise by band-limited noise [35], just cowerithe

the

by audiovisugbandwidth of the signal to be decomposed.



In the present study, we developed a customized [EEN

algorithm adapted to RS signals, for use prior ® |

calculations. The basic steps involved in our custed

EEMD algorithm are described below:

1) Generate a low-pass filtered white noise signalc&ihe
fundamental frequency of CAS is typically below 004z
[1], the cut-off frequency of the low-pass filterasv
empirically set to 1150 Hz.

Add this band-limited noise signal to the RS sidinain

an inspiratory cycle at an SNR of 0 dB.

Decompose the resulting noisy signal into noisy $MF4
using the original EMD algorithm reported by Ritliand
Flandrin [36], [37].

Repeat steps one to three 100 times.

Calculate the final IMFs as the mean of those tegul
from the iteration process.

Fig. 1 illustrates the EEMD method applied to R&tfran

inspiratory cycle containing a wheeze. IMFs 1-4evabtained

in decreasing order of frequency, with IMF 1 inéhgl the
highest frequency components in the RS. In thig,dag main
components of the CAS were within IMF 2. We fouhdtt

EEMD provided an efficient way to separate the ediht

frequency scales for computerized RS analysis. Mae

since the frequency range of interest for CAS diteds from

100 Hz upwards, IMFs 1-4 proved sufficient to coveis

range.

2)

3)

4)
5)

D. Instantaneous Frequency of RS

As defined by Gabor [38], the IF can be calculdteth the
phase of a complex signal by taking the time dérea The
most practical way to obtain a unique complex digram a
real one is to construct the analytic signal.

In this study, we calculated an analytic sigrzl), from
each IMFs(t), as in (1).

z(t)=s;(t) +jH [s;(t)] = g (t)! %M (1)
whereH][-] is the Hilbert transformg;(t) is the absolute value
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Fig. 1. EEMD applied to RS from an inspiratory cycle coniag a wheez
IMFs 14 cover all the frequency range of interest for Caedection. Th
major components of the wheeze are within IMF Zigdme box).

The complete algorithm to calculate IF and |IE casgs the
following steps:
1) Calculate IMFs 1-4 by means of EEMD from RS of each
inspiratory cycle.
Calculate the analytic signak(t), using the Hilbert
transform for each IMF.
Obtain the phase signab;(t), for eachz(t).
Smooth the phase signal using the smoothing fumctio
which prevents IF from taking negative values.
CalculatelF; andIE; by differentiating the smoothesi(t)
and taking the absolute value nft), respectively. The
time derivative is calculated using a 5-point lesgiares
polynomial approximation [39].

2)

3)
4)

5)

of z(t), andai(t) is the phase d(t). Once we had obtained the  Fig. 2 shows an example of IF sequences obtaired fivo

analytic signal from each IMFF;(t) and IEi(t) could be
defined as in (2) and (3), by the phase derivaive envelope
of the analytic signal, respectively.

IFi(t):%% 2
IE(t) =|z(t) =a(t) 3)

A major challenge in calculating the IF for RSasobtain a
physically meaningful frequency, which means novimg
negative values. In relation to this issue, (2) Manly yield
true positive values for the IF #(t) were to be a mono-
component signal, the phase signal of which is rmmoally
increasing point-by-point. However, IMFs are nolyrmono-
component signals and, therefore, their phase Isigrauld
produce unusual negative IF values.

In order to ensure real positive IF values, we tped a
smoothing function, which consisted of applying leaze-
preserving piecewise cubic interpolation to segmenthere
the phase was not increasing.

inspiratory cycles, one containing a wheeze (a) amother

with normal RS (b). The IF dispersion was low ferlang as

the CAS lasted, as shown in IF 2 in Fig. 2 (a)cdntrast, IFs

from normal RS had uniform dispersions throughdug t
inspiratory cycle, as shown in Fig. 2 (b).

E. RS Classification

1) Extraction of Candidate CAS Segments

Our RS classifier works at two levels: the classifion of
RS segments within an inspiratory cycle, and thesification
of the entire inspiratory cycle. The algorithm exis RS
segments that are candidates for being CAS segméithiis
an inspiratory cycle. Then, feature extractionppleed to each
extracted RS segment. These features are useassifgleach
RS segment, as a normal or CAS segment, using ad SV
classifier. Finally, the whole inspiratory cycledmssified as

containing CAS or normal sounds, depending on the

classification of its RS segments (see Fig. 3).



0.1
0
-0.1

1500

] . TR’ D
gt k‘ﬁﬁ"&z’“*' t4 1t dekia el i
500 ’-“,‘.:5 _:,'J_; :f.é&g@% b o - Ao B
0 "’}x. !'I.:f;‘ : :&w : .J’.f

0.02
0
-0.02

ved? o ']

Yl

e 2
§ et T

1500

1000, y
b oo : (PRPREY

1500

1000

500 s i} '
0 Ptninemddewipadd phmicon it A ewrvrdoywhe

1500

IF 4 (Hz) IF3 (Hz) IF2(Hz) IF 1 (Hz) Sound (V)
IF4 (Hz) IF3 (Hz) IF2(Hz) IF 1 (Hz) Sound (V)

1000
500 . 500 : ' '
0 I N Y N | A A e, S 0 MMt A bt oy jn e
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.2 0.4 0.6 0.8 1
Time (s) Time (s)
(a) (b)

Fig. 2. Instantaneous frequencies (IF 1-IF 4)¥bfFs 1-4 from the CAS cycle in Fig. 1 (a), and frome inspiratory cycle with normal RS (B shown in (a
a segment with a markedly lower IF dispersion appesthin IF 2, and this corresponds to tbeation of the wheeze. In contrast, IFs from ndrRfa (b) ar
highly variable throughout the entire inspiratoygle.

Given that CAS segments have lower IF dispersi@m thslight variations in theo,s; sequences, making it more
segments containing normal RS, candidate CAS setgnoan
be detected using a moving window that slides tverentire

IF sequences to calculate the IF dispersion;(). In this

difficult to detect CAS segments. The 92% overlags whosen
to increase the number of data points in ¢hg sequences. If

the overlap was small, CAS segments would produnte @
few data points with low IF dispersion, whereasirzyeasing

arameters were determined empiricallv. The win th the overlap between adjacent windows, we obtainec ata
P P Y- 9 points improving the accuracy of the detection 0ASC

(40 ms) is less than half of the minimum CAS dunati seqments
(100 ms). Shorter window lengths would produce Righ 9 ' ) )

: , After calculation of theoyr; sequences, a thresholding
variable g,; sequences, due to unusual spurious IF values. On
method was used to detect candidate CAS segments.
Thresholds Thl, Th2, and Th3 represent differergleof IF
dispersion (Fig. 3) and these were also deternenguirically.

IFi Threshold Thl was the mean of an entirg; sequence, that

2

Moving Standard Deviation
Window > 125 samples (40 ms)

study, we used a window length of 40 ms (125 sasnplte
3 125 samples/second) with 92% overlap (115 samBesh

the other hand, longer window lengths would prodangy

is, the mean IF dispersion throughout an entirgiratory
cycle. It was chosen as the reference value tocd€AS

Overlap > 115 samples (92%) segments. The IF dispersion of normal RS segmems w
Nz expected to be above Thl, whereas the IF dispetdi@AS
Thresholds segments was expected to be below Thl. Howeverg asily
—— Thl= o Thl was a weak criterion, which might lead to fa8AS
= Th2= o - 0500, segment detections. To avoid false detections, efiaet] two
"""" Thi= om —1500m more restrictive thresholds (Th2 and Th3). Th2 asupper
v limit for the IF dispersion of a candidate CAS segin That

| Candidate CAS segments: o ;< Th2 |

V2

| Rules to merge segments

is, all segments with an IF dispersion below Th2rewve
| potentially CAS segments. Furthermore, threshol@ Was
used to distinguish those segments with high pritibalof
being CAS segments, due to their very low IF disioer.
Fig. 4 shows how IF can track not only constant opdmonic
CAS (a), but also variable monophonic (b) and platygc (c)

CAS. As shown, ther; sequences are below Th2 throughout

classifier

the presence of CAS.
Normal sound CAS 2) Feature Extraction

e SAS segment 1 cyce cycle Every candidate CAS segment was labeled as onkeof t
Fig. 3. Flowchart of the proposed RS classifigatitgorithm.
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Fig. 4. Instantaneous frequency (IF i), instantarseenvelope (IE i), and IF dispersion sequeagg from: (a) one CAS cycle containing a constant apstonic
wheeze, (b) one CAS cycle containing a variableapbionic wheeze with frequency sweeping, anaije) CAS cycle containing a polyphonic wheeze, w
main components are at mean frequencies of 32TRH®) (266 Hz (IF 2), and 134 Hz (IF 3).

following types according to its minimurar,; and duration, Set the label for the resulting compound segmexpraling to
the following sequence:

d, (Fig. 5-a): Priority order:Type 1> Type 2> Type 3> Type 4
Type Lmin( oz )< Th3, d; 2100ms Each compound segment was labeled as the samasyise
Type 2min( o )< Th3, d, <100ms highest priority sub-segment.
Type 3min( oz ) > Th3, d; > 100ms In the final classification stage, only type 1-3 Ryments

were taken into account (Fig. 5-b). Moreover, adioa to the

i i standard definition of CAS [1]-[3], only RS segmenthose
As different RS segments might belong to the sam8,@ 45| quration D) were greater than or equal to 100 ms were

grouping algorithm was used to merge RS segmeas&don qngjdered candidate CAS segments. The followimgufes

maximum IF dispersion and time elapsed between twpo o defined. as in (4), (5), and (6), to charamtetthe
adjacent RS segments. Moreover, since the merggdesds segments (Fig’. 5-p. and 5’-c). ' '

might have different labels, a priority order wasablished to

Type 4min( ox ) > Th3, d; <100ms

Es Es ER,
T:Yl‘lt’ 1 7?\}7(3 2 T)'pe 3 T\]?e 4 ER]. = 1OOD_ , ER2 = 100 , ETR: (4)
1 ] 1 1 1 ] 1 ] EIMF 0 ET —DT
- o - — T . i - = —
d

..... or- .

min(og) min(ogg) min(ayg) min(oyg) A

(@) 5
Type 1 Type 2 Type 3 Q= Ok (6)
I '  Droror - Dporo: O _0.7wa|F

____________ T d,f_“@__________‘___i_:, whereEvr is the sum of all terms of the squared IE of affJM
Es is the sub-interval oEme corresponding to the segment
location, Er is the sum oEwr1, Evr2, Eimrz, andEves, and

(b)

& Ep _— . . .
o MMW e — Thl O is the mean IF dispersion over the length of the
SRR " bwrlohesmsiatnasidn - = Th2 or )
<<= e s | Segment. These five features correspond to measutsrthat
S © - depend either on the enerdyRy, ER:,, andETR or on the IF

Fig. 5. Characteristic parameters of candidate €é&@nentsextracted fror

the IF dispersion (a), (b), and the instantaneouslepe (IE) (c). dispersion PR andQ) of RS segments.



3) RS Segment Classification using Support Vector Mash divided into training (65%) and testing (35%) sitside a
The proposed SVM classifier works at the segmersllef loop. The random partitions were done in such athayeach

our classification scheme (Fig. 3). That is, thmuirto the SVM  subset contained a proportionate share of the H@nthCAS

classifier was a numerical data vector containggjire€ER;, Q1-Q4 inspiratory cycles from the full dataset ([Edllh). After

ER:, ETR DR, andQ, and the IMF number (from 1 to 4) of aneach random partition, the RS segments from theltheg

RS segment. In order to train and test our SVMsifi@s, we training and testing inspiratory cycles were usedrain and

used an iterative procedure, as illustrated in Eig. test an SVM classifier with the optimum parame{@gs: and
First, the inspiratory cycles from the full dataseeére o.,). The total performance of the SVM classifier was

divided into two subsets, one for training (559 legt and calculated as the mean and the standard deviafiotheo

another for testing (311 cycles). Due to the higitween- classification results of each iteration.

subject variability of the RS, the subsets weremid 4) Inspiratory Cycle Classification

independently and hence included inspiratory cydtesn Considering the RS segment classification obtaineshch

different asthmatic patients. Then, 921 RS segnmexitacted iteration of the previous stage, each entire irépiy cycle

from the training inspiratory cycles were used iwdfthe was classified as containing CAS if any of its R§ments was

optimum parameters for our SVM classifier (the tagaation classified as a CAS segment. Otherwise, the eintsggratory

parameter, C, and the kernel parameigrfor that purpose, cycle was classified as containing normal sounds.

we used a 5x5 grid with increasing sequences dfdin(1 to The performance of the SVM classifier was also eat@d

3) ando (from 0.1 to 1). Each combination of parameters waat cycle level, by comparing the inspiratory cydkessification

the starting point for finding a local minimum dfet 10-fold obtained with the classifier to the manual inspiratcycle

cross-validation loss function. The parameters twpioduced classification.

the lowest cross-validation loss were chosen afitienum We selected the SVM with the best performance, anadin

parameters (= 2.72 andsopt = 1.61). iterations, for the classification of simulated Cé&®les in the
Having found the optimum SVM parameters, we empdoyenext Section II.F.

them to train an SVM classifier using the RS segmé&mom

the tra|r'1|ng |nsp|ratory cycles. The resulting S\d}&ssﬂer F. Simulation of CAS Cycles

was validated using the RS segments from bothitgiand i ) ]

testing inspiratory cycles and the target labaenfthe manual ~ 1NiS section describes a procedure to study thecefif

RS segment classification. The performance of tNMS duration and SNR of simulated CAS on the perforreasf¢che

classifier was evaluated in terms of accuracy, itieitg, c!assifier. For that purpose, the classifier W&Q@ on 4592
specificity, and positive predictive value. simulated CAS cycles. The procedure to obtain imailated
Since the results obtained might depend on theainit CAS cycles was as follows:
grouping of the inspiratory cycles, we repeatedithiingand 1) Eight CAS segments were manually extracted from
testing steps using different partitions of theaddfor that different inspiratory cycles with CAS from the sjud
purpose, the inspiratory cycles from the datase¢wandomly dataset.
2) Either time contraction or dilation was appliedttmse

870 inspiratory cycles

L eight CAS segments in order to obtain 41 new CAS
\/ V%
( Partition 1 \ ( Random partition i, 1= 2 .. 100 Segmentsni.(t) d thus covering time durations from 100 ms
Training Testing W ()500Tl'11illillg 35%Testing \1/ to 500 ms, In increments Of 10 ms.
50 e 31 e | RS scgment selection | 3) _Each one of those_ 41 CAS segments was added to 7
(20 patients) (10 patients) N S e — Cd\:17/ inspiratory cycles with normal soun@(t_), as in (7), at
SapmAY S Eim A 16 SNRs,SNR, from -5 dB to 10 dB, in increments of 1
Nrpan =921 Ny =573 : ! dB. As a result, a total of 656 simulated CAS cgcle
\RS segments RS segments J \WN i Nipeq Wi (t), were obtained for each original normal soundesycl
A s(t).
SV ara y Pl artition i artition i . - 9 - H—-— —
il | Bl Wi (1) =8O+ (1) =141) =116k =17 (7
Unconstrained | segments segments In (7),i is the CAS segment subscrijpis the SNR subscript,
nonlinear optimization with [ { }  i=2..100 i=2..100 andk is the subscript for the inspiratory cycle withrmal
10-fold cross-validation 4 4 sounds. In this study, the SNR was defined as)in (8
loss and grid of starting i
points (Ci. 0y, Lj=1.5 |1} ; :
v s YV
. s V Classification
\()ptunium %\ M Train SVM N
parameters: (Cypi, Gopr) Validation
Total performance Mian . Iteration 1
of the SVM classifier . L classification results
Standard deviation

Fig. 6. Flowchart of the proposed training and testing pdoce for the SVI
classifier.
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where Pg (t) is the power o(t), ny(t)is then,(t) CAS
segment added to tlsgt) inspiratory cycle aBNR, Pnjk (t)is
the power ofny, (t), and B, is the power ofn, (t) .

In this way, we obtained a set of simulated CASeasy/that
allowed us to explore the effectiveness of the psep
algorithm in terms of two basic parameters of CAGtation
and intensity. The influence of these parameterseach
simulated CAS cycle was calculated as the perceritegease
in mean power with respect to the original cycl¢hwiormal
soundss(t), given by expression (10).

P‘Nijk
Ps,
This new parameter allowed us to analyze the ¢leason

results of the simulated CAS cycles for differeahges of
power increase.

(10)

4Py =100

IIl.  RESULTS

A. Recorded RS Classification

The performance of the SVM classifier at segmenelle
obtained after the training and testing describedéction
II.LE.3, is summarized in Table Ill. As shown, higbcuracy
(94.0% + 0.8%) and sensitivity (92.8% + 1.7%) wachieved
with the test set for classifying recorded RS sagsie

The performance of the SVM classifier at cycle leige
reported in Table IV. As shown, our classifier asteid high
total accuracy (94.6% + 0.3%) and sensitivity (94 .2 0.4%)
for classifying recorded RS from inspiratory cyckssnormal
sounds or CAS. Among all iterations, the best S\bssifier
had an accuracy of 95.1%, a sensitivity of 94.2%pexificity
of 96.1%, and a positive predictive value of 96.&%cycle
level. That SVM classifier was used to obtain tlassification

TABLE Il
CLASSIFICATION OFRECORDEDRS SEGMENTS

Parameter/Set Total Training Test
Accuracy (%) 949+0.3 954+04 94.0+0.8
Sensitivity (%) 939+0.6 945+06 928+1.7
Specificity (%) 95.6+0.6 96.1+0.6 948=+1.4
Positive Predictive Value (%) 94.1+0.7 947+08 93.0+1.7
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Fig. 7. Distributionof CAS cycles from the dataset among airflow qles
(black). Mean FEY of patients who provided CAS cycles at each air
quartile (grey). Mean and standard deviation ofainfiow levels included i
each airflow quartile (white).
results for the simulated CAS cycles describedhia hext
Section IlI.B.

Furthermore, we evaluated the performance of @ssdier
for different airflow levels. Figure 7 shows thestrlibution of
the CAS cycles from the dataset (485 cycles) antbadour
guartiles. Moreover, the mean FEMalue was calculated from
the asthmatic subjects who provided CAS in eachtidglaAs
shown, cycles containing CAS not only appear &b higflows
(Q3 and Q4), but also at low and moderate airfl¢@$ and
Q2). It is noteworthy that patients who provided £ At low
airflows had lower FEYvalues than those who only provided
CAS at high airflows. In fact, there is a directatmnship
between the two variables. Patients with severfenzst(with
low FEV: values) may produce CAS as much at low airflows
as at high airflows. However, those with mild asthonly
generate CAS at high airflow levels. Independemtythe
airflow quartile, our classifier performed very Wigl all cases
(see Table IV).

TABLE IV
CLASSIFICATION OFRECORDEDRSFROM INSPIRATORYCYCLES

TOTAL Total Q1 Q2 Q3 Q4
Accuracy (%) 94.6 +0.3 95.3+0.7 945+0.6 94.1+0.6 94.7 +0.6
Sensitivity (%) 94.2+0.4 923+1.2 94.7+0.5 945+0.8 944 +05
Specificity (%) 95.0+0.9 97.0+0.9 942 +1.2 93615 954+16
Positive predictive value (%) 96.0£0.7 944+16 954+09 951+1.1 97.7+0.8

TRAINING Total Q1 Q2 Q3 Q4
Accuracy (%) 95.0+0.6 955+1.3 948+1.3 94.7+1.2 952+1.1
Sensitivity (%) 94.6 +0.7 92527 949+14 948 +1.3 949+13
Specificity (%) 95.6+1.0 97.2+1.3 94.7+19 945+22 96.0+2.4
Positive predictive value (%) 96.4+£0.8 949+23 958+15 95.8+1.6 98.0+1.1

TESTING Total Q1 Q2 Q3 Q4
Accuracy (%) 93.7+1.2 94.9+23 938+22 929+21 938+23
Sensitivity (%) 93.6+1.9 91.9+51 942 +28 938+3.1 935+27
Specificity (%) 93.9+2.0 96.5+2.9 93.2+35 918+4.1 94.3+4.0
Positive predictive value (%) 95.1+1.5 93.8+49 94.7+26 940+28 97.2+19
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SNR and duration of CAS segments.

B. Effect of SNR on Detection of Simulated CAS Cycles
This section describes the results of the sensitanalysis
described in Section II.F.
Fig. 8 shows the results after obtaining 656 sitedadAS
cycles from one inspiratory cycle with normal sosiri(t).

The power increaselPjx) parameter was used to evaluate th

effect of adding CAS segments to an inspiratoryleeyrith
normal sounds, with different durations and differ&NRs.
Three thresholds were set for power increases @©2025%,
and 110%, defining the boundaries for four regiohmterest
(R1-R4), plotted in Fig. 8.

The same procedure (described in Section II.F)apased
to six more inspiratory cycles with normal soursi&). Then,
the classifier was applied to the total set of 4588ulated
CAS cycles. As shown in Fig. 9, the proposed clizsdion
algorithm achieved high accuracy for detecting egcl
containing CAS in regions R1 (98.7% + 1.4%) and(®29%
* 4.1%), while the accuracy was markedly lowerdgion R4
(76.4% + 13.4%). However, region R4 correspondety low
SNR values. This region included weak CAS, whict hery
low energy and only slightly increased the mean grow¥ the

RS signals AP < 110%). Although there is no standar

criterion for amplitude in the definition of CASpmsidering

the recorded CAS in the study dataset, regions R1-

represented more realistic SNR values. For thisomathe
number of simulated CAS cycles progressively desgddrom
region R1 to region R4. In any case, the overatiueacy,
including all regions, was 92.8% + 3.6%. This hiagturacy

demonstrates that the proposed method offers hi

performance under both low and high SNR condititm$act,
high accuracy (87.7% * 7.3%) was achieved in red®®
which still represents an unfavorable scenariowimich the
SNR may be below 0 dB.

IV. DiscussIONAND CONCLUSIONS

Asthma is characterized by a series of variablepggms,
including airflow limitation, shortness of breattgugh, and
the presence of CAS [9]. Although these symptong waer
time and CAS are not always present in asthma, whesent,
such sounds clearly indicate airway obstruction T4erefore,
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Fig. 9. Accuracy in simulated CAS cycle detectionregions R1R4, whict
represent different SNR conditions (see Fig. 8).

detecting and analyzing CAS can provide some anmfiti
information about the pulmonary function of thes¢ignts.

This study demonstrates that the analysis of RSrins of
EEMD-based IFs provides an efficient, simple, antust
method for CAS detection and RS classification.

First, we have shown the viability of estimating t+ by
EEMD. The definition of the IF of multi-componerigsals,
guch as RS, has been a subject of controversye simictly
speaking the concept of IF is only meaningful foono-
component signals. In this work, we found that EEMDwed
us to decompose RS into IMFs for which a physically
meaningful IF was defined point-by-point. EEMD repented
a key step in the multi-scale analysis of the IFRi, as it
determined the quality of the IF estimation andsthbe
performance of our RS classifier.

Indeed, we opted to use EEMD as it improves omtignal
EMD method, which had a mode mixing effect whenliapp
to RS from some inspiratory cycles [33]. After caripg
several methods addressing that mode mixing df3d¢t[40]-
[42], we identified some clear advantages of EENIBe IMFs
from EEMD had smaller frequency overlaps than IMiesn
other methods. Due to properties similar to a dyétier bank,
EEMD achieved a much better separation of different
dfrequency scales, which reduced the mode mixingcefind
improved the IF estimate. Moreover, thanks to tlettep
|feparation of frequency scales, EEMD allowed uasnalyze
only IMFs 1-4 to cover the frequency range of iesty which
goes from 100 Hz upwards for CAS detection. Howewtrer
methods required us to analyze at least 5 IMFghersame
purpose.

hTwo parameters determined the effectiveness dEED:
%oise amplitude and number of iterations. If thdeatinoise
amplitude was too small (high SNR), there were éanges
in the maxima of the original sound signal andrefae, the
benefits of EEMD were not evident. On the othercharsing
high amplitude noise (low SNR) produced slightlysydMF

components, but provided a reference scale disimibuo

enhance EMD and avoid the mode mixing effect. Faurttore,
the residual noise level was able to be reducenhdrgasing
the number of iterations. Indeed, a key issue rdirfg a
balance between the SNR and number of iteratioonsder to
minimize the mode mixing effect and obtain an ataielp
residual noise level.



As RS are random in nature, for this study, we ddund-
limited noise to RS signals from inspiratory cycisan SNR
of 0 dB, in order to perceive the benefits of EEMIEspite
this low SNR, applying 100 iterations to RS fromckea
inspiratory cycle proved sufficient to obtain slighnoisy
IMFs that allowed us to calculate a meaningful H &
moderate time. Using fewer iterations would result higher
residual noise level, whereas using more iteratiomasild
substantially increase the computation time. Funttoee, the
slight residual noise was not a problem for ourliapfion,
since we did not need a perfect decomposition ¢construct
the original signal from the IMFs, but rather wented to use
them for IF estimates.

Although there are several methods of IF calcuhaj&?],
we found that the Hilbert method produced more eateulF
values than other methods, such as the Teager-Huatigpd,
which produced more dispersed values.

We have presented a set of features, which weraatet
from the IF and IE sequences, to train and tesiS®iv
classifier for RS segments. For that purpose, amgovindow
was applied to the IF sequence from each IMF toutale the
dispersion, since we found that RS segments contpiDAS
were characterized by markedly lower IF disper$g8]. We
used the standard deviation just as a tool for mess
dispersion within each IF sequence. Then, we appaliset of
thresholds (Fig. 3) to the IF dispersion in orderdetect
candidate CAS segments.
proportional to the IF dispersion of each IMF, tlaelapted to
the characteristics of each signal. The extradtedispersion
and energy features (Fig. 5-b and 5-c) allowedouachieve

TABLE V
PERFORMANCECOMPARISON OFCAS DETECTIONALGORITHMS

Features Year Method Performance (%)
Real: 94.6 (Acc),
EEMD + IF 2014 quﬁgzed 942 (S), gé.o (%p)
Sim: 92.8 (Acc)
Spectrogram 2004Homs [18] 71<(S) <100
Spectrogram 2005Hsueh [24] 89 < (S) & (Sp)
Spectrogram 2006Lin [25] 96.7 (S), 90.9 (Sp)
Spectrogram 2007Taplidou [19] 95.5 (S), 93.7 (Sp)
Spectrogram 2008Jain [20] 84 (S), 86 (Sp)
Spectrogram 2009Riella [21] 84.8 (Acc)
MFCC + GMM 2007 Chien [14] 90 < (Acc)
MFCC + GMM 2009 Bahoura [15] 94.6 (S), 91.9 (Sp)
Linear analysis 2009Aydore [16] 93.5 (Acc)
Dominance spectrogram  201Jin [28] 92.4 (Acc)
FT + DWT + PCA 2012 Xie [12] 97.3 (Acc)

Acc: accuracy, S: sensitivity, Sp: specificity, MFQ@el frequency cepstr
coefficients, GMM: Gaussian mixture models, FT: feutransform, DWT
discrete wavelet transform, PCA: principal compdraralysis.

We have also performed a detailed sensitivity asiglgf the
influence of the SNR (amplitude of CAS) on the parfance
of the proposed classifier. We applied our classifto
simulated CAS cycles with different SNRs (see Ey. As
shown in Fig. 9, an overall accuracy of 92.8% wetsieved.
Although the performance of the RS classifier distied from
region R1 to R4, the accuracy was high (87.7% giore R3)
even at low SNRs. These results reinforce thebidityaof our

Since these thresholds wétethod, in that they demonstrate that this tecteiguorks

properly under both high and low SNR conditions.
In contrast to previous approaches for RS analgsich as
those based on spectrograms or wavelet transfansati

high sensitivity (94.2%) and accuracy (94.6%) in SCA EEMD-IF used in the first stage of our classifioatscheme is

detection and RS classification.

As shown in Table V, the performance of our meti®d
similar to or better than that reported for mangvisus CAS
detection methods. However, these different appesmc
cannot be directly compared because there are soptetant
differences between them, which affect the clasadifbn
results. The main differences are in the followithge position
and number of sensors (tracheal or lung soundspam@mnel

an adaptive technique, which does not require aripri
knowledge of the RS signal characteristics. ThaltHsnd IE
sequences are calculated without choosing fixedysisa
parameters and regardless of the type of RS aird¢eporal
or spectral characteristics. On the other handah@ IE
sequences allow us to work independently in eitngime-
frequency or a time-energy domain. For this reasawere
able to use dispersion-based criteria on IF se@senihis

or multichannel recordings), the respiratory mameuv epresenting a novel and straightforward technidoe

performed (constant airflow, forced expiratory maver, or
variable airflow), the respiratory disease of pate(asthma,
COPD, or others), the size of the dataset, thestygeCAS
included in the dataset, or the parameters foruatiag the
performance of the classifiers.

Despite the aforementioned differences, our apprdecs
some objective advantages over previous approadfebave
shown the ability of our method to detect CAS dedifrom a
wide range of airflow levels. Thanks to the progres
respiratory maneuver, which was performed by thienaatic
patients, the dataset of this study included CAfeapng at
low airflows as well as that appearing at highlews. This is
a strength compared to previous studies for whighviere
recorded at constant airflows or during forced eatpiry

detecting CAS segments. Moreover, IF and |IE seqgeace
defined point-by-point, thus providing very highmg
resolution. In fact, EEMD-IF provides precise |Fues, which
represent the frequency content of RS signals elh ¢éane
instant.

Thanks to the aforementioned properties of EEMDéli,
which the proposed method relies, this is a swatédthnique
for RS classification, and also represents anratare way of
accurately analyzing RS signals. Consequently kardiome
techniques previously used for CAS detection, EENAD-
could be used not only for detecting CAS, but afeo
characterizing these sounds. Although this prop&dD-IF
technique has not been widely applied to RS arglysirious
EMD-based approaches have already been used imopsev

maneuvers. We have shown that CAS may appear undéddies either for detection and analysis of ditinoous
different respiratory conditions, and that this haseffect on adventitious sounds [43], [44], or for detectiorl @@paration
the performance of our classifier. of heart sounds from lung sounds [45]-[47].



In this study, we have focused on inspiratory cytlecause
inspiratory sounds are much louder than expirasonnds on
the back, where we recorded the analyzed RS. Nwless,
this classifier could be effectively applied to Rfm
expiratory cycles and even from the full respirgtascle.
What is more, although this study is focused onfiR8 the
surface of the back, the proposed classifier cdwddalso
applied to tracheal sounds. These factors do nat imluence
on the hypothesis of our method. That is, it depeon the
variations of the IF dispersion inside a cycle,arejess of
whether it is an inspiratory, an expiratory, ol €ycle.

The use of our RS classifier is a prior step fatetailed
analysis of RS. Specifically, easier CAS detectioil
facilitate new research into the analysis and dtari&ation of
these sounds. On the other hand, the identificaifomormal
inspiratory sounds, without CAS, is the basis fatufe
analysis of normal inspiratory sound intensity. sTbiassifier
could be the first stage of a more complex systemttie
analysis of RS. Such a system could serve as mucthé
diagnosis of patients with obstructive respiratdiseases as
for their long-term monitoring. The idea is thaistllype of
system could be used in a routine way together it
spirometry. The combined information from thesentegues
could increase the reliability in the diagnostisessment of
these patients.
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ABSTRACT

The use of the Hilbert-Huang transform in the asiglyof biomedical signals has
increased during the past few years, but its useefpiratory sound (RS) analysis is still
limited. The technique includes two steps: empirit@de decomposition (EMD) and
instantaneous frequency (IF) estimation. Although mode mixing (MM) problem of
EMD has been widely discussed, this technique nages to be used in many RS analysis
algorithms.

In this study, we analyzed the MM effect in RS signeecorded from 30 asthmatic
patients, and studied the performance of ensemM® EEEMD) and noise-assisted
multivariate EMD (NA-MEMD) as means for preventingis effect. We propose
gquantitative parameters for measuring the sizejatémh of MM, and residual noise level
of each method. These parameters showed that EEMDgood solution for MM, thus
outperforming NA-MEMD. After testing different IFs@mators, we propose Kay's
method to calculate an EEMD-Kay-based Hilbert spectthat offers high energy
concentrations and high time and high frequencyluti®ns. We also propose an
algorithm for the automatic characterization of thmmous adventitious sounds (CAS).
The tests performed showed that the proposed EEMBHased Hilbert spectrum makes
it possible to determine CAS more precisely thaneottonventional time-frequency
techniques.

1. Introduction

discontinuous (DAS) adventitious sounds, as well as

Respiratory sounds (RS) are multicomponent, noatine different types of noise, such as clicks, backgdoun
and non-stationary signals. In general, RS sigmats talking, or heart sounds. Normal RS are randonsainne,

comprised of normal RS and may contain superimposed’Vhe“_eas CAS are quasi-periodic waveforms with a
abnormal RS, such as continuous (CAS) and duration of more than 80-100 ms and a fundamental

frequency of over 100 Hz, and DAS are transient and
short sounds (around 20 ms), with high frequency

*Corresponding author at: Institute for Bioengiriegrof Catalonia components (above 300 Hz) [1,2]. Therefore, RS are
(IBEC), Baldiri Reixac, 4, Tower |, 9th floor, 088Barcelona, Spain. complex signals made up of a set of componentd) eac

Tel.: p34 695119250.

E-mail addresses: mlozanogar@gmail.com (M.Lozano),
jafiz@msn.com (J.A.Fiz), rjane@ibecbarcelona.eu (Rané).

one having different time-frequency features.
Due to the different and variable characteristitRS,
time-frequency distributions (TFDs) have become the



the most commonly used and straightforward teclesqu image processing techniques, including local peak
for RS characterization. In CAS analysis, specaoghas  detection and component linking [31] and blind seur
been the most widely used TFD [3-7], despite itsr@nmd separation [32], among others.

window-dependent resolution. Nevertheless, more The Hilbert-Huang transform (the HHT) [33,34] has
advanced TFDs have recently been proposed for CASeen proposed as a new adaptive technique for the
analysis, either through combining wavelet decontipss ~ analysis of nonlinear and non-stationary signalee T
with third order spectra features [8], or by deriyia technique consists of combining empirical mode
temporal-spectral dominance spectrogram from tlegtsh decomposition (EMD) and Hilbert spectral analysis t
time Fourier transform [9]. obtain an alternative TFD of a signal, called thiébétt

As opposed to CAS analysis, DAS analysis requiresspectrum (the HS), as a function of its IF and
TFDs with higher time resolution than spectrogram. instantaneous amplitude (1A).

Wavelet-based techniques, such as scalogram, teare b The HHT has some advantages over TFD-based IF
widely used for DAS detection [10-12]. In additidDAS estimation methods, which is why it was chosenR&
have also been analyzed by means of nonlineamnalysis in this paper. Since EMD is an adaptivd an
techniques, such as kurtosis and fractal dimensisn direct decomposition technique, it makes it possitd
measures of gaussianity and complexity, respegtile- retrieve the modes of a multicomponent signal, echll
15]. intrinsic mode functions (IMFs), without any a piio

Besides Fourier and wavelet-based techniques, dne dknowledge of the signal characteristics. In additidHT-
the most relevant parameters of time-frequencyyaiml based IF estimation is performed by means of
for nonlinear and non-stationary signals, such &8s iR differentiation; therefore, the HHT does not suffeam
the instantaneous frequency (IF), which consistghef  the uncertainty principle and simultaneously pregid
frequency content of a signal at each time insfa6i. both high time and high frequency resolutions. Mg,
The concept of IF has led to the definition of THDat since IF and IA sequences are separately calcufated
highly concentrate the energy of a signal alonglits  each component, we can work independently in either
which makes it possible to identify signal compdsen time-frequency or a time-energy domain, withoutihgv
more precisely. Several IF estimators have beepgsexd, to process an entire TFD. Furthermore, although the
such as the phase derivative of the analytic signalproperties of the HHT have led to its applicatian &
associated with a real signal [17,18], zero-cras$if], number of biomedical signals [35-38], it has raregen
or adaptive IF estimators based on data modeli6g?P. used for RS analysis, as there are only a few esudi
However, the most common IF estimators are based omainly focusing on DAS detection [39-41]. However
TFDs [16,23], which give IF estimates with lower found in our previous studies that the HHT also
variance. performed well in CAS detection [42,43], which iirspl

Quadratic TFDs, such as the Wigner-Ville distribati  us to analyze its performance for CAS charactadmah
(WVD), were defined based on the IF concept with th depth and explore its advantages over spectrogsich
aim of improving the resolution and concentratioh o has traditionally been the most commonly used tieeken
energy of spectrogram [16]. However, a major draskba for this purpose.
of the WVD is the presence of cross-terms, which Another reason for which this study was carriedvoas
complicate IF estimation, especially in multicompoh  that most proposed HHT-based methods for RS asalysi
signals. In order to reduce cross-terms, other iqtigd  [39-42] used the original EMD, which has a modeimgx
TFDs have been proposed as filtered versions of thgMM) effect. The MM effect consists either of an FV
WVD, using different time-frequency smoothing kdepe containing components of widely different frequeascor
such as the smoothed pseudo-WVD [24] or the reducedf a signal component appearing in different IMB4][
interference distributions [25], which reduce crtmsns Due to this MM, we found that EMD, when applied to
while maintaining high resolution. some RS signals, resulted in poor separation ofigisal

In addition to these smoothing approaches for eross components [42]. Nevertheless, the original EMD has
term reduction, other techniques have been proptsed been used in other RS analysis approaches [45-48].
increase the signal energy concentration and regolof Among the proposed solutions for MM, the ensemble
different TFDs. For example, the adaptive shoretim EMD (EEMD) [44,49] and the noise-assisted multiasi
Fourier transform [26,27] uses a variable windonglé EMD (NA-MEMD) [50] are some of the most well-
adapted to signal characteristics in order to imerthe established and widely used methods, but they raredy
resolution of spectrogram. Moreover, reassignmentbeen applied to RS analysis [43,51]. Moreover, the
techniques [28,29] are alternative approaches far t implementation and performance of these methods
enhancement of TFDs, especially the synchrosqugezindepend on each application and a detailed anadygise
transform [30], which allows mode retrieval in MM effect and the performance of EEMD and NA-
multicomponent signals. MEMD in RS signals is lacking.

Beyond the calculation of the aforementioned TFxs f  The aim of this study is to provide an in-depth
IF estimation, strictly speaking, estimating the dRly evaluation of the performance of the HHT for RS
makes sense for monocomponent or narrowband signalanalysis, which led us to calculate the HS withhhig
[18]. For that reason, estimating IF from the peaks resolution as an alternative representation to @wvgron
TFDs in multicomponent signals requires an extep $o the performance of spectrogram, especially for CAS
extract and isolate different components before IFcharacterization. The study is divided into twotpaFirst,
estimation methods can be applied to each componenive analyze the MM effect of EMD in recorded RS siign
For this purpose, a conventional approach congifts and evaluate the performance of EEMD and NA-MEMD
segmenting the TFD of a multicomponent signal using



to reduce this effect using a number of quantieativ

a

parameters (section 4). Second, we evaluate the 1000 t=:
performance of three different IF estimators toagbta ~ 800} k=2
suitable EEMD-Kay-based HS for CAS characterization T I =1
(section 5), and we propose a new method for the & 600 —_—
automatic segmentation and characterization of CAS 2 40}
based on the HS processing (section 6). This akgori £ ——
was tested using a set of synthetic and recorde® CA 200}
signals, which allowed us to compare the perforraaofc 0 . . . . ‘ . .
the HS and Spectrogram_ b 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1000 [
2. Study dataset
< 800¢
2.1. Recorded RSsignals I:, 600 /
Recorded RS were obtained from the Pulmonary g
Function Testing Laboratory of Germans Trias i Pujo 5 %0 /
University Hospital in Badalona, Spain. All recorgs = 200t
were acquired from 30 patients with asthma. Four
piezoelectric contact microphones (TSD108, Biopac 00 o1 02 03 04 05 06 o7
Systems, Inc.) were placed on the surface of thierga’ Time (s)

backs, on either side of the spinal cord, at theeband
near the upper lobe of the right/left lung. All sers were
attached to the skin using adhesive rings. Airfiignals
were recorded simultaneously with sound signalegusi
pneumotachograph (TSD107B, Biopac Systems, Indl.). A
signals were sampled at 12,500 samples/s, usirG}kat 1
analogue-to-digital converter (MP150, Biopac Sysem
Inc.). After digitalization, the sound signals were
decimated by a factor of 4 to 3,125 samples/s &ed t
respiratory phases were automatically detectedgutsia
airflow signal as the reference signal. After cycle

segmentation, we selected RS from 636 inspiratory
phases, with 353 normal sounds signals and 283 CAS;;(t) =1 c1x(t) + czr41(t) t € (0.025,0.275]

signals, including both monophonic and polyphonkSC
2.2. Synthetic signals

In order to test the performance of different IF

Fig. 1. Theoretical IF of synthetic CAS.IF laws of monophonic CAS
signals with slightly variable 1€, «(t) (a), and monophonic CAS signals
with frequency sweeping(t) (b).

wheref,x are the IF sequences of signalgt) (Fig. 1-b).

Finally, polyphonic CAS signals were formed by
combiningcik(t) andck(t) as follows:

1 (t) t €[0,0.025]
5)
c(t) t € (0.275,0.3]
t=0..03s5k=1..3

We obtained 11 different synthetic CAS signalsoitalt
Each synthetic CAS signal was added to a recordgd R

estimators and the proposed CAS characterizatiorsignal containing normal RS at different signahtse

algorithm, we generated several synthetic CAS s$igna
Monophonic CAS signals with slightly variable IF&nms
modeled as sinusoid frequency modulated signals:

c1i(t) = sin[2nf.(k)t + 0.6 sin(2m15t)] (1)

109, 1 0(2nf.(k)t + 0.6 sin(2m15t))

2m ot  2m ot

fie(®) = = f.(k) + 9 cos(2m15t)

)

t=0..03s,k=1..4,f =[80,150,250,550]

wherefy i are the IF sequences of signalgt) (Fig. 1-a).
Monophonic CAS signals with frequency sweeping were
modeled as linear frequency modulated signals:

Con(t) = sin[2nf, ()t + 2mu(k)t?] 3)
10 1902 k k)t?

for®) = o (gj"‘ - (2nfe( );: TR _ e k) + 2uie

(4)

t=0..025s,k=1..4,f
u = [100,150,300,500]

[80,150,250,550],

ratios (SNRs), thus simulating real CAS that
superimposed on normal RS. Since normal RS usually
have a sharp energy drop at about 200-250 Hz [1,2],
synthetic CAS signals containing components bel6@ 2
Hz (cik(t), cok(t), and cs(t) for k=1,2), which overlap
with normal RS, were added at SNRs from -4 dB to 12
dB, in increments of 2 dB. However, synthetic CAS
signals containing components above 200 ldz(1),
C2x(t), andcsk(t) for k>2) were added at SNRs from -8 dB
to 12 dB, in increments of 2 dB. As a result, atof 109
synthetic CAS signals were obtained, including 80
monophonic and 29 polyphonic CAS signals.

3. Overview of the HHT

The HHT consists of two steps, EMD and the Hilbert
transform. The central step of the HHT is EMD, whic
decomposes a multicomponent sigsé) into a set of
zero mean narrowband components (IMFs), for which
meaningful IF and IA can be calculated at any pbint



means of the Hilbert transform. The main advantafje
EMD is that it is a direct and adaptive decompoaiti
technique, which extracts each IMF directly frone th
original signal by means of a sifting process [38} a
result of this process, the sigrsftl) can be expressed as a
linear combination of its components as follows:

s(®) = Y1 IMF,() +1,() (6)

wheren is the number of extracted IMFs angt) is the
residue ofs(t). Having decomposes(t) by EMD, IF and
IA can be calculated by the phase derivative angtlepe
of the analytic signal of each IMF and, therefc(€), can
be expressed as a function of its IF and |A a®¥ait

s(t) = Y1 a;(t) cos(f 2mfi(t)dt) + 7, (t) )

where fi(t) and ai(t) are the IF and IA of théth IMF,
respectively. Building on expression (7), we caarrange
IF and IA in a three-dimensional TFD of the ammiuy
the HS.

4. Evaluation of the EMD step of the HHT in RS
signals

4.1. The MM effect of EMD in RSsignals

Ideally, each IMF of a multicomponent signal would

We calculated the power spectral density (PSD)aahe
IMF using Welch’s periodogram with a Hanning window
of 80 ms, 40 ms overlap, and 1,024 points for th&t f
Fourier transform. In order to make different PSDs
comparable, we divided them by their respective
maximum value (Fig. 3).

As shown in Fig. 3, MM is evident because IMF 2
includes two widely separated frequency components,
which correspond to the CAS components. Moreover, t
CAS component at around 140 Hz is included wittothb
IMF 2 and IMF 3, whose PSDs overlap to a greatréxte
Due to this MM effect, the obtained IMFs do not umes
that the application of the Hilbert transform woulield
physically meaningful IF estimates.

4.2, EEMD and NA-MEMD as solutions for mode mixing

Over the past few years, many studies have focaeed
solving the MM effect of EMD. Although several
solutions have been proposed, EEMD and NA-MEMD
are the most well established and widely used nastho
These methods are examples of noise-assisted tge®)i
which use the benefits of noise in data analysis.

The MM effect occurs when some frequency scales are
missing in the original signal. In this case, eopels
calculated during the sifting process are influehiog the
extrema of widely different frequency components.

contain a few different frequency components of the However, when applied to white noise, which hadesca

signal. However, due to the MM effect of EMD, some

uniformly distributed across the entire time-frenoe

components may appear within different IMFs, thus plane, EMD acts as an adaptive dyadic filter b&ik3].

leading to some IMFs containing components of widel
different frequencies.

is added to a
components with

Accordingly, when white noise
multicomponent signal, all signal

Assessing the MM effect in multicomponent random different frequencies are automatically separatgdhe

signals, such as RS, is a complex task, since theve a
priori knowledge of the signal component charastis.
Nevertheless, this effect can be clearly obserme@AS

reference scales set by white noise.
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illustrating the MM effect in RS signals, we appliEMD 5
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to a recorded polyphonic CAS signal with two ovpgdad 205
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frequency, are shown in Fig. 2. .
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Fig. 2. The MM effect of EMD. IMFs obtained by meaof EMD on an RS signal with polyphonic CAS.



Based on the aforementioned principle, EEMD wast fir CAS.
proposed by Wu and Huang in 2009 [44]. The method The choice of the EEMD and NA-MEMD parameters
consists of the iterative application of the orgiEMD to highly depends on the type of signal to be analyzed
a signal plus multiple realizations of white noiSehe Therefore, we followed some basic instructions, as
final IMFs are calculated as the mean of thoseltiagu  described in [44] and [55], to choose the analysis
from each iteration. Although the resulting IMFsntain parameters of each method. Input parameters for EEM
a residual noise level, it can be almost totallpcedled include the number of iterations and the SNR fag th
using an appropriate number of iterations. added noise. As explained in section 4.2, the vesid

The MEMD method was later proposed by Rehman andnoise level ) of the obtained IMFs can be reduced by
Mandic [54], initially as an extension of EMD for increasing the number of iterations. Usually, a few
multivariate signals. Like EMD, MEMD has a dyadic hundred iterations are enough to significantly tedues.

filter bank property on white noise [50]. Baged this ~In fact, nies decreases following the rule,.; = n/vN,
property, NA-MEMD was proposed to avoid MM in wheren is the amplitude of the added noise &hé the
multivariate signals. The idea behind NA-MEMD catsi  number of iterations [44]. Based on this rule, veeided

of adding extra channels containing different mlons  to use square numbers for the number of iterationsa
of white noise to the original signal, and then wide range of SNRs.
decomposing the resulting multivariate signal byamee  With regard to NA-MEMD, input parameters include
of MEMD. This method can also be applied to unia&@i  the number of noisy extra channels, the amplitudthe
signals. In this case, only those IMFs obtainedHerfirst added noise, and the number of directions useden t
channel (original signal) are retrieved. MEMD process. At least two noisy extra channelsugdho
To provide an example of the performance of noise-pe used and, as a rule of thumb, the minimum nurober
assisted techniques in avoiding the MM effect, va@eh  directions should be twice the number of data chknn
applied the EEMD method to the polyphonic CAS signa [55]. Therefore, for EEMD and NA-MEMD, all possible

shown in the previous section, 4.1, using 100 ti@ma  combinations of the following parameters were t$te
and noise added at an SNR of 0 dB. The resultingsIM each RS signal:

are shown in Fig. 4. ) .

reduce MM, as different frequency components are 100,225, and 400; SNRs: -9, -6, -3, 0, 3, 6, 9,&lfl

separated in different IMFs. This separation ofjfiency

components is better observed in the PSDs of the NA-MEMD - number of extra channels: 2, 3, and 4;

resulting IMFs, shown in Fig. 5. number of directions: 8, 16, 32, and 64; SNRs-69 -
Comparing these PSDs with those shown in Fig. 8, it 3, 0,3,6,9, 15, and 21.

clear that noise has forced the frequency compsnient We programmed the EEMD algorithm using the

be uniformly distributed along the whole frequemnagge, original EMD algorithm reported by Rilling and Finin
thus separating widely different frequency compasen [56,57].

into different IMFs.

Although both EEMD and NA-MEMD manage to Ir —IMF1
reduce MM, there are some differences in the ~IMF 2
performance of the two methods, which are analyjged 2%75[ ||+ M o IMF 3
depth in the following section. 3 IMF 4

= 05 IMF 5
4.3. Performance assessment of EMD, EEMD, and NA- §025
MEMD in recorded RSsignals e

With the aim of comparing the performance of EMD, 050 100 200 300 500 1000
EEMD, and NA-MEMD in RS signal decomposition, we Frequency (Hz)
applied these methods to the 636 RS signals redaade Fig. 5.Separation of frequency components by EEMDPSDs of
described in section 2.1, which included normal &@  MFs showninFig. 4.
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Fig. 4.Avoiding MM by EEMD. IMFs obtained by EEMD of the recorded polyphonic&gignal shown in Fig. 2.
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For the NA-MEMD method, we used the Matlab code As shown, NA-MEMD usually produces 4 IMFs above

provided by Mandic [55], which applies the MEMD 250 Hz, whereas EEMD only produces 2 IMFs in the

algorithm reported by Rehman and Mandic [54]. same frequency range. Therefore, NA-MEMD also
The results were evaluated by means of six quéimtta produces more redundant IMFs at high frequenciea th

parameters that allowed us to choose the mostbémita EEMD.

method for RS signal decomposition. The proposed In addition toNiwr and Nime-rr, We also calculated the

parameters were divided into three groups depending mean decomposition computing tim@cf) along all RS

the measured feature. signals for each method. In other words, we lookéd
how long it takes for each method to decompose &n R
4.3.1. Sze and processing time signal into IMFs. All simulations were run in a ser

The first parameter used to compare the performafce with Windows Server 2008 R2 Enterprise installed, a
EMD, EEMD and NA-MEMD was the total number of Intel® Xeon® processor E7340 at 2.40 GHz with 4
IMFs (Nimr) resulting from the decomposition of each RS kernels, and 88 GB of usable RAM. Results showRidn
signal. Moreover, since the frequency range ofrestefor 8 indicate that EEMD is much faster than NA-MEMD.

RS analysis goes from 70 Hz onwards, we also ctied Despite the fact thaDcr increases exponentially with
the number of IMFs whose central frequendy), ( the number of iterations in EEMD, a few second®igy
measured from the PSD, was greater than 70Niz-£r). enough to decompose RS signals using a few hundred

The results shown in Fig. 6 indicate that the EEMD iterations, which are sufficient to reduce MM, as
method (solid lines in Fig. 6-a) provides lower IMF explained in the next section, 4.3.2. However, NA-
(about 8-10 IMFs) than the NA-MEMD method, which MEMD is a time-consuming method. While the amount
produces between 14 and 16 IMFs (solid lines in Big  of MM decreases with an increase in number of tivas
b). Similar to EEMD, the meaNvr of the original EMD  (see section 4.3.2)Dcr increases in the same way.
for all RS signals was 9.1 IMFs. Therefore,Dcr required to substantially reduce the MM

Figure 6 also shows that the meldime.rr for EEMD effect is too high in comparison with EEMD.
was around 5 IMFs at most (dotted lines in Fig.),6-a
which means that EEMD produces between 3 and 5 IMFs 4.3.2. Reduction of MM
(difference betweenNme and Niwerr) outside the In section 4.1 we showed that MM causes frequency
frequency range of interest for RS analysis. Ndwdess, overlap between PSDs of different IMFs. Based ds th
the meanNiverr for NA-MEMD was around 7 IMFs fact, we propose the following parameter to measiee
(dotted lines in Fig. 6-b), which indicates thastmethod  amount of MM, based on frequency overlapOJ
produces more redundant IMFs (around 7-9 IMFspat |  between pairs of IMFs:
frequencies, which are irrelevant for RS analysis. FO,(%)

As for the high frequencies, although CAS may appea _onmax(Uezi fesil Nlfezjo fes)]) — min([fean fesil Nfezjo fesj))
at up to 1,000 Hz, the frequency range of normal RS= 100 -
barely exceeds 250 Hz [2], so having many IMFs min{IDR60;, IDR60;}

covering high frequencies generates redundancyhitn 8)
sense, we analyzdg of the first four IMFs generated by 4
EEMD and NA-MEMD along all RS signals (Fig. 7). 1000k 1
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Fig. 6. Size of EEMD and NA-MEMD. Nye (solid lines) andNiverr  Fig. 7. Tracking of high frequencies by EEMD and NAMEMD.

(dotted lines) for EEMD (a) and NMEMD (b). All values are the me  Central frequencyf{) of IMFs 1-4 for EEMD (a) and NA-MEMD (b).

and standard deviation along all RS signals. ForNA&MD (b), all valiles  All values are the mean and standard deviationgabdlhRS signal:

are also averaged along the number of extra channel For EEMD (a), all values are also averaged alorg riamber c
iterations. For NAMEMD (b), all values are also averaged alon¢
number of extra channels and the number of dinestio



where fwi, fei, and IDR60; are frequency parameters of MM, mainly depends on the SNR when the number of

measured from the PSD of tieh IMF. Specifically, fc iterations is greater than or equal to 16.

andfe are the frequencies at which 20% and 80% of the Since FO;; decreases as the SNR decreases, it would

energy of an IMF are reached, respectively. TBR60 seem that using the lowest SNR is the best soldtion

parameter is calculated as the difference betvigeand reducing MM. However, as explained in the nextisect

feo. 4.3.3, using very low SNRs increases the residoaen
We calculated the medrfO;; along all RS signals, for level.

EMD, EEMD, and NA-MEMD, and for different pairs of  Figure 10 shows the results for NA-MEMD. Since this

IMFs. The mearFO;; for the original EMD was 22.5% method produces more IMFs than the EEMD method, we

between IMFs 1-2, 22.0% between IMFs 2-3, and 21.3%calculatedFO;; between pairs of IMFs from IMF 1 to

between IMFs 3-4. The results for EEMD are shown inIMF 5.

Fig. 9, which illustrates th&O;;, and hence the amount As the figure shows0;; depends on both the SNR and

the number of directions. In general, the amouniitf

a 1ot decreases with a decrease in SNR and an incredhe in
5t number of directions (Figs. 10-b,c,d). Howeve&Q:,
2l increases with a decrease in SNR, especially ftowa
= I number of directions (Fig. 10-a). As explained é@ttson
VB 4.3.1, NA-MEMD tends to generate too many IMFs at
S otk high frequencies. If the SNR is too low, noise comgnts
cause IMFs to be uniformly distributed along all
frequencies, which forces IMFs covering high fremgies
0.01 : : : : : to be cramped, arfdO; ;> increases. On the contrary, if the
b b2 4 Numberlifiterzgons 100 400 SNR is high, the effect of noise is negligible, @i
4 allows IMFs 1 and 2 to be more widely separatedarin
1607 case, NA-MEMD needs a high number of directions to
1407 achieve results similar to those of EEMD, and thiesatly
120 » : .
2 100l E increases thBcr (see section 4.3.1).
S 80t 35
2 6ol o 4.3.3. Residual noise level
40+ A major challenge when working with EEMD and NA-
28' ) MEMD is minimizing the residual noise level in the

32

64

resulting IMFs. In order to quantify this residuadise

Number of directions level, we propose the following parameters:

Fig. 8.Processing time Dcr, for EEMD (a) and NA-MEMD (b). All
values are the mean and standard deviation aldngalsignals and

SNRs.
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- CC: cross-correlation at zero lag between the PSD ofThis error depends on both the amplitude of thetevhi

the original signal *SD,) and the PSD of the
reconstructed signaP@Dre).

. PSDo(R)PSDrec(n)

9
\/znPSDo(n)z znPSDrec(n)Z ( )

cC= R\PSDOPSD,-EC(O) =

- PSDR: ratio of the absolute error betweefD,. and
PSD, versusPD,.

% |PSDrec(n)—PSDy (1))
2 PSDo(1)

PSDR (%) = 100

(10)

wheren is the number of points used for the fast Fourier

transform. The reconstructed signals were calodlate
the direct sum of the corresponding IMFs and ressdu

Ideally, PSDR andCC would be 0 and 1, respectively, if
the reconstructed signal were exactly equal taotiginal
signal. This is the case of EMD and NA-MEMD, which
provide a perfect reconstruction of the originagnsil.
However, EEMD causes a slight error in the recaicstd
signal due to the use of white Gaussian noise & th
decomposition process.
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noise and the number of iterations, as shown in Hg

As shown,CC reaches its maximum using 16 iterations
or more, independently of the SNR. Howev&SDR
highly depends on the two parameters. Neverthelgss,
applying a few hundred iterations, we obtained an
acceptabld’SDR (below 3%) for a wide range of SNRs.
Therefore, we can assume that the residual nois ie
not a major drawback of EEMD in RS signals provided
that the SNR and number of iterations are correctly
chosen.

4.4, Selection of parametersin EEMD

Based on the previous results, we decided that EEMD
was better than NA-MEMD for RS signal decomposition
since EEMD produced fewer redundant IMFs, managed
to reduce the MM effect to a greater extent, and faater
than NA-MEMD. However, in order for EEMD to
perform at its fullest potential, we had to fix its
parameters (SNR and number of iterations) so thistt M
was reduced as much as possible and the residisd no
level was not significant. To this end, we analyzkd
FOi; and thePSDR parameters together for different pairs
of IMFs, as shown in Fig. 12.

Values of the intersection points between both
parameters for each number of iterations are shiown
Table 1.

Assuming 3% as an acceptable upper limitHex; and
PSDR, an SNR below 1 dB and more than 64 iterations
should be used for EEMD. We decided to fix the SMR
0 dB and use 100 iterations to decompose RS sidpyals
means of EEMD. Th&0;; did not decrease significantly,
neither by using more iterations nor by decreashey
SNR. However, increasing the number of iterations o
decreasing the SNR greatly increased g and the
PSDR, respectively.

5. IF-IA estimation and the HS in RS signals

Having decomposed an RS signal into IMFs, the next
step in calculating the HS is IF-IA estimation. Tuse of
HHT involves estimating IF as the phase derivatiéhe
analytic signal of each IMF. It is the most intuéiand
direct way to define IF of a real signal [17]. Rbe case

of a lengthM IMF, the analytic signalz(n), is defined as
follows:

0 0
9-6-3 0369 9-6-3 0369

SNR (dB)

15 21

SNR (dB)

0 =10 1
96303609 21
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15 21 15

Fig. 12. Performance parameters of EEMD.Combination of measures of the amount of MMDJ (solid lines) and residual noise levEISPR)
(dotted lines) for IMFs 1-2 (a), 2-3 (b), and 3¢} gbtained by EEMD. All values are the mean alalh@RS signals.



Table 1. Performance of EEMD for RS signal decompdtion as a function of the number of iterations andSNR.

Iterations 1 2 4 16 25 36 64 100 225 400
IMFs 1-2 SNR (dB) 8.7 7.7 6.3 3.6 2.8 2.1 1.0 0.1 -1.7 -2.7
FO../PSDR (%) 141 9.8 7.0 3.9 3.2 2.9 2.3 1.9 15 1.2

IMFs 2-3 SNR (dB) 8.0 6.7 5.4 2.2 13 0.6 -0.5 -1.6 -3.7 2-5.
FO,/PSDR (%) 17.1 11.7 8.4 51 4.2 3.6 2.8 25 2.0 17
IMFs 3-4 SNR (dB) 7.9 7.5 6.9 4.7 3.5 2.7 11 -0.3 -2.8 -5.0
FO;4/PSDR (%) 17.4 10.2 6.4 3.3 2.9 25 2.2 2.0 17 17

FO: frequency overlap paramet&3DR: residual noise level parameter.

zi(n) = IMF,(n) + jHUIMF;(n)] = a;(Wexp[jo;(Mln=1..M

1) £(n) ~ /;_-,;\/w[IMFi(n+2)—IMFi(n+1)] n=1.M-3

w[IMFi(n+2)]
. : : (16)
whereH[] is the Hilbert transformai(n) is the IA, and
@i(n) is the phase ofi(n). Having calculateddi(n) for WIMF;(n+2)]
eachi-th IMF, the next issue is how to address the phase %I~ Jommim eyt 1M =3
derivative in discrete time. The most common apginda (17)
to use finite impulse response derivative filtdansis is the
case of our first IF estimation method, which idive- wherey[] is the TEO.
point least squares polynomial derivative (LSPD) After calculating IF and IA for each IMF, the HSnche
approximation [58]: directly obtained by constructing a two-dimensioaahy
with the accumulation of all of the values of th& |
fi(n) =£ﬂ 4 _obe®;(n—k),b = [by, by, by, by, by = sequences at the positions determined by the
1 i _ corresponding IF values and time instants. Sinoee ti
20 -L=2ln=1.M (12) instants can be determined within the resolutiorthef

) , . sampling period, and IFs can be precise at any sumb
wherefn is the sample frequency. A major problem of this pajow the Nyquist frequency, the HS can have higfe t

estimator is that it has very high variance. Howel@v  5nq high frequency resolutions. Both resolutiongedel
variance estimators are preferable for calculaifgHS, o the bin size selected for each dimension. s shidy,
since it ought to be an accurate time-frequency\ye defined time and frequency bin sizes df, Beconds
representation in which the signal energy is as(g 32 ms forf, = 3125 Hz) and 0.5 Hz, respectively. The

concentrated as possible around the IF. _ resulting HS consisted of a matrix of 3125 rows &hd
In order to reduce variance, Kay proposed a wetghte ¢o|ymns, whereM was the number of samples of the

phase difference estimator [17]. This method cd®$  5n51yzed RS signal. For display reasons, a smapthin
calculating the IF estimate by a weighted averaging fjjter js usually applied to the HS. In this stuaye used a
sequence of phase difference measurements, aggollo  >0.sample Gaussian filter with a standard deviatién
five samples.
fi (n + EJ) = ’;—’;ZQ’;{? wk)[®;(n+k +2) — Figure 13 shows the spectrogram and three HSs,evhos
o,n+k+1D],n=1..M-N (13) IFs_ were calculated by means of the aforementidied
estimators, of a synthetic polyphonic CAS3(t), added
. N 2 to a normal RS signal at an SNR of 6 dB (sectid).2.
w(k) = L (@) (14) The spectrogram was calculated using a 250-sample
NZ-1 N/2 length Hanning window, with 240 overlapping samples
and 2,048 points for the fast Fourier transform.

It is clearly noticeable that the five-point LSPD
approximation (Fig. 13-c) and the TEO-based method
(Fig. 13-d) have very high variance. However, Kay’'s
method (Fig. 13-b) greatly reduces variance andiges
an accurate HS in which the energy of the signhighly
concentrated around its IF. Furthermore, this EEKHY-
based HS has higher energy concentration and t&solu
than spectrogram. The performance of these two
representations for CAS characterization is evatliah
the next section using a larger dataset.

wherew(k) is the lengthN averaging window. The larger
the window size, the smaller the variance will Béer
testing different window sizes, we propose an ayierp
window of 32 samples.

Together with the aforementioned methods, in thidy
we also tested an alternative approach for IF edtim
based on the Teager energy operator (TEO) [59]s Thi
method has very low computational complexity and is
very straightforward, as IF and IA are directlyatdated
from the IMF signal as follows:

Y[IMF(n)] = IMF?(n) — IMF(n — 1)IMF(n + 1) (15)



a b
800 800
=
T 600 600
&
=)
S 400 400
g
B~ 200 200

d

800
]
<) 600
&
g 400
g
= 200

0 T ——
0.1 02 03 04 05 06 07 0.1 02 03 04 05 06 07
Time (s) Time (s)
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criteria on IF sequences to delimit RS signal segme
with a lower IF dispersion. Each delimited RS signa
segment was characterized by means of a specifiofse
6.1. Processing of the HSfor CAS segmentation features extracted from the IF and IA, including thean

. . and standard deviation IF, among other featuregsd@h
In this section, we propose a new method for thefeatures were used to classify each delimited RBasi

gutorgaﬂc HsSegmentat_lon 'I?r?d charactdenlzatl(_)tr;] O.f dC;ASsegment as containing CAS or normal RS using astipp
ased on processing. The proposed algorithrase vector machine classifier.

on the region growing methodology and consistshofd In the present study, we used the outputs from the

partg: dgt?cfclonl of i’:\nalyss areas in thde HS.&)I:%IEN aforementioned algorithm (classification, mean #nd
seed points forloca’ region growing, and regioming. standard deviation IF) to mark out an analysis anethe

In light of the results from the previous sectidnand 5 L -
. ) o HS for each delimited segment of an RS signal. Each
we decided to calculate the HS using EEMD with 100 analysis area was centered on the mean IF, had a

iterations and 0 dB for the SNR, Kay's method vtB2- frequency width of twice the standard deviation &Rd

fsample Ieg_gth .Wmd?\’g) 3f(2)r IF ejtgné‘tﬁn’ time ?‘”d was delimited by the first and the last time instainthe
requency bin sizes ot 9.s2 ms and .- Z’.resww delimited RS signal segment. Figure 14 shows some
and a 20'5?‘”?p'e G_au55|an smoothing filter with aexamples of analysis areas detected from two eiffer
standard deviation of five samples. synthetic CAS signals. Analysis areas with greegesd
(CAS areas) correspond to segments classified as
containing CAS, whereas analysis areas with rece®dg
(normal areas) correspond to segments classified as
containing normal RS.
Although some areas of an RS signal may be
misclassified, CAS areas are more likely to congither
an entire or a part of a CAS component than noereds.
oreover, we considered CAS areas not overlappiitly w
normal RS to be more likely to actually contain CAS
components than CAS areas overlapping with nornsal R
According to these criteria, three types of analysieas
' were defined:

6. Performance assessment of the HS for CAS
characterization

6.1.1. Detection of analysisareasin the HS

The first part of the CAS segmentation algorithm
consisted of the CAS detection algorithm proposedur
previous study [43]. That algorithm detected thgnsents
within an RS signal that were more likely to cont@AS
based on the hypothesis that the IF dispersion edéyk
decreases when CAS appear in an RS signal. For th
purpose, IF and IA sequences were calculated fimam t
IMFs of an RS signal that had been previously
decomposed by EEMD. In that previous study, IF was
calculated using the five-point LSPD approximation
which had high variance and emphasized the difteren
in IF dispersion between those segments of an R&aki - High-pitched CAS areas: CAS areas whose mean IF
containing CAS and those containing normal RS. So,  was above 250 Hz.
since IF and IA sequences allowed us to work- Low-pitched CAS areas: CAS areas whose mean IF
independently in either a time-frequency or a tenergy was below 250 Hz.
domain, we were able to use simple dispersion-based Normal areas
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Fig. 14.Detection of analysis areas in the H®etected analysis areas for synthetic CAS signal$) (a) andc,(t) (b) added to a normal RS signal at

an SNR of -2 dB and -4 dB, respectively, as deedrib section 2.2.

This classification of analysis areas was usecaticn
6.1.3 for applying different thresholds when linkin
regions detected from each type of area. Previpasly
areas were considered for seed point searchingoaadl
region growing, as explained in the next section.

6.1.2. Seed point search and local region growing

Ideally, CAS components are represented in the $IS a

ridges describing the IF where signal energy conatss
(see Fig. 13-b and Fig. 14). These ridges are ceagpof
several linked regions, which, in turn, are fornhbgda set

max{feas — B20f.cas » fminarea) < fap < min{feas + B20f cas » fnax,area)

where grcas Was the standard deviation frequency along
all points already included in a regidinarea aNdfraxarea
were the minimum and the maximum frequencies of the
analysis area, respectively, afidwas a scale factor. This
factor was first set to 3 when searching for newdse
points between the temporal boundaries of the aiwmly
area. When no new seed points were found withieethe
temporal boundariegf, was set to 2 to search for new
seed points outside the temporal boundaries of the

of connected points. Therefore, having detected analysis area.

analysis area in the HS of an RS signal, the rtext was
to detect regions with a high concentration of gwyer
around this area.

Each new region was grown by adding neighboring
points that met either the following criterion:

A determining parameter in this CAS segmentation |fnp—fCAS| < P10fcas

algorithm was the point amplitude, which was assed
with the signal energy at a certain IF. Since déf¢é RS
signals had different signal energies, we firstrmalized
the HS by dividing it by its maximum. Then, we
determined an amplitude threshold to reject thasiatp
corresponding to background noise or having vewy lo
amplitude. After analyzing histograms from sevei&s,

when the analysis area corresponded to a segment
extracted from either IMF 1 or IMF 2, or the followg
criterion:

|fnp - fCASl < max{ﬁlaf,CAS 'ﬁlo—f,area}

when the analysis area corresponded to a segment

we decided to consider only those points with anextracted from either IMF 3 or IMF 4. The region

amplitude exceeding 0.05.
A region growing algorithm was applied to each
detected analysis area, in which regions were grioem

seed points by adding neighboring points that met a6.1.3.

particular inclusion criterion. The first seed poivas the
point with the highest amplitude inside the anal\eiea.
The first region was then grown by adding neightgri
points that met the following criterion:

|fnp - fCASl < ﬁlo—f,area

wheref,, was the frequency of the neighboring pojfs
was the mean frequency along all points alreadiudtex

in the first region,oraea Was the standard deviation
frequency along all points of the HS within the Isae
area, angb, was a scale factor, which was empirically set
to 3. When the growth of the first region stoppaagther
seed point was sought and a new region was groach E
new seed point was the point with the highest amnnmdi
not yet belonging to any region and sought betwéen
following frequency boundaries:

growing process was continued until no new seedtpoi
were found.

Region linking

The last step in the CAS segmentation algorithm teas
retain only those regions that guaranteed the teahjpnd
frequency continuity of the CAS component. We first
rejected any CAS component not containing at least
region longer than 20 ms for high-pitched CAS ar&és
ms for low-pitched CAS areas, or 80 ms for norntaha.

In this way, we prevented the detection of falseSCA
components that might result from linking many shor
regions corresponding to background noise. Then,
assuming that the longest region inside the arsalysa
truly belonged to the CAS component, adjacent regio
were progressively checked from the nearest to the
farthest in both directions along the time axis.rééh
parameters were calculated for eacith region to
measure its proximity to regions already retainscpart

of the CAS component:



t.cas and ficass temporal and frequency distances
between the two nearest points among those afitine
region and those of all regions already retained.
Afmean;.cs. difference between the mean frequency of
thei-th region and the mean frequency of the neares
20-millisecond length segment along the regions
already retained.

We considered the nearest regions to be more likely
belong to the CAS component than the farthest regio
Accordingly, we defined three ranges ftkss whose
boundaries were determined by threshdhds th2, and
th3 as follows:

i-cas <

Range j: tht;_; <t tht;,j =1..3,tht0 =0

Regions belonging to ranges 3 and 1 had the makt an
the least restrictive conditions, respectively, rfetention.
Thei-th region belonging to theth range was retained if
it met one of the following criteria:

d; = thdur; & Afmean;_cqs < thf & fi_cqs < thf (18)
(19)

where thresholdhdur; was the required minimum length
of the i-th region €) belonging to thg-th range, and
thresholdthf was the limit for the frequency parametrs
s and Afmean.ces and guaranteed the frequency
continuity of the CAS component. We made all the
thresholds dependent on the type of analysis asea (
section 6.1.1) and whether tiwh region was inside or
outside the analysis area. In this study, threshtiitl,
tht2, tht3, thdurl, thdur2, thdur3, andthf were empirically
set to the values shown in Table 2. These valuag we
fixed after analyzing many HSs from recorded R®alig}

All regions not belonging to some range and not
meeting any of the criteria defined in (18) and)(W@re
rejected. After checking all of the regions, thegioas
retained formed the segmented CAS component. Fjnal
according to the definition of CAS [1,2], we rejedtany
CAS component shorter than 100 ms.

<

100 ms & d; = 125ms

ti—cas

t

6.2. Characterization of simulated CASsignals

In this section, we applied the proposed CAS
segmentation algorithm to the HS and spectrograthef
109 synthetic CAS signals described in section Si@ce
our algorithm was designed to be applied to thepsed
EEMD-Kay-based HS, we had to adjust some parameters
for its use with spectrogram, which was calculatsithg a
250-sample length Hanning window, with 240
overlapping samples, and 2,048 points for the Fastrier
transform. Specifically, we increased the amplitude
threshold from 0.05 to 0.1 arfd (see section 6.1.2) from
3to 4.

Together withD andFrean, We calculated the following
two parameters for each segmented CAS componemt as
means of measuring the concentration of both TFDs:

or. average value of the point by point weighted

standard deviation frequency.

or-r. average value of the point by point weighted

standard deviation frequency in relation to real IF

values, which were defined in (2) and (4) (section

2.2).
These parameters allowed us to compare the
performance of the proposed HS and spectrograrR$r
analysis, at different SNRs. Figure 15 shows theplite
value of the differences betwedd (Errp) and Fmen
(Erfemean) calculated using the CAS segmentation
algorithm and their real values, and the concebptmat
measures o and or.r) for the HS and spectrogram.
Statistical differences between these parameterthef
two TFDs were evaluated using a one-sided Wilcoxon
signed rank test at the 5% significance level.

As shown in Fig. 15-a, there were two SNR ranges in
which Errp was similar for both TFDs. One of those SNR
ranges included synthetic CAS signals added torenalo
RS signal at SNRs greater than or equal to 0 dBghwh
represented situations where, due to their highliandp,
CAS components could be easily detected by the two

Each segmented CAS component was characterized bgpethods. Similarly, the performance of both TFDswa

means of the most relevant parameters from a alinic
point of view:

Duration (D): difference between the last and fhet f
point along the time axis.

Weighted mean frequency (Fmean) of all points,
whose amplitudes in the HS were the weights.

Table 2. Thresholds for region linking

also similar within the SNR range from -8 dB todB,
which included only synthetic CAS signals contagnin
components above 200 Hz (see section 2.2). Detpite
low SNR, those CAS components did not overlap with
normal RS and, therefore, could be segmented more
easily by both TFDs. The mednrp in all of those cases
was 18.2 + 31.6 ms for the HS and 19 + 21.6 mdgHer
spectrogram. Compared to the duration of syntfeAS
signals (either 250 ms or 300 ms), both mgarn, were
acceptable, as they represented between 6% andf8% o
synthetic CAS duration.

Type of analysis area thtl thdurl tht2 thdur2 tht3 thdur3 thf
(ms)  (ms) (ms)  (ms) (ms)  (ms) (Hz)

High-pitched CAS areas, inside 20 none 30 10 100 50 25
High-pitched CAS areas, outside 17.5 5 30 25 100 50 25
Low-pitched CAS areas, inside 17.5 5 30 25 50 100 5 2
Low-pitched CAS areas, outside 10 15 22.5 35 50 100 25
Normal areas, inside 10 15 225 35 225 none 20
Normal areas, outside 5 20 10 55 10 none 20
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Fig. 15.Characterization of synthetic CAS signalsAbsolute value of the differences between calcdlated reaD (Errp) (a) andFmean (Erfrmean) (b),
oem (), andok (d), for the HS and spectrogram, as a functioBMR. All values are the mean along RS signals cii &\R value.

However, the advantages of the HS became cledaein t has higher energy concentration than spectrogram.
SNR range from -4 dB to -2 dB, which represented an
unfavorable scenario for synthetic CAS signals aimihg 6.3. Characterization of recorded CASsignals
components below 200 Hz, due to their overlap with
normal RS. In those cases, thanks to the high temhpo In this section, we applied the proposed CAS
resolution and energy concentration of the HSIlawsed segmentation algorithm to the HS and spectrogratheof
the temporal boundaries of CAS components to beemor 283 CAS signals recorded as described in sectibnl2.
accurately determinedE(rp = 39.7 + 46.5 ms). However, this case, as quantitative measurementsEofh and
the poor resolution and the scattered energy of theErrrmean could not be obtained, we calculated the mean
spectrogram prevented it from delimiting CAS actelsa  and standard deviation dD, Frean, and of along all
(Errp = 68.9 + 84.6 ms). These differences betwEsmm segmented CAS components (Table 3).
of the two TFDs were statistically significant (p = There were no relevant differences betwBeaindFean
0.0018), which indicated thefErro was higher for the measured from the two TFDs. Even so, these parasnete
spectrogram than for the HS. Relative to synth€i&kS  were absolute measures and were not representétilie
duration, mearErrp was between 13% and 16% for the performance of the two TFDs in recorded CAS
HS and between 23% and 28% for the spectrogram. segmentation, unlik&rrp and Erremean described in the

As an example, Figs. 16 and 17 show the CASprevious section 6.2. Nevertheless, there werdfiignt
segmentation of two synthetic monophonic CAS signal differences between the of both TFDs (p << 0.0001),
added to a normal RS signal at an SNR of -2 dB-dnd which again demonstrates that the HS has higheggne
dB, respectively, as described in section 2.2. concentration than spectrogram.

White rectangles in the figures above (Figs. 16and The advantages of the HS over spectrogram in redord
17-c,d) show the boundaries of the theoretical k8. CAS segmentation, especially weak CAS with low
shown, it is more difficult to distinguish betwe@&@AS energy, are clearly illustrated in Figs. 18, 19] a0.
components and normal RS in the spectrogram thérein The figures above show that the spectrogram fdibed
HS, where the boundaries of the CAS component ean bentirely extract some CAS components with low
detected more accurately. However, some normal RSmplitude, especially in CAS signals that contained
components are detected as part of the CAS comf®nenseveral CAS components with quite different amplts.
in the spectrogram. The performance of spectrogranThis performance was contrary to that shown in the
could be improved by increasing the amplitude thoék examples with synthetic CAS (Fig. 16 and Fig. 1in),
However, it would be more difficult to detect we@S which the spectrogram detected some normal RS
components, as explained in the next section 6.3. components as CAS components. However, the same

With regard toErremean (Fig. 15-b), although it was algorithm and thresholds were used in both caskis T
higher in the HS (4.1 £ 9.7 Hz) than in the spegptam means that spectrogram is more dependent on the
(2.6 £ 6.1 Hz), botHErrrmean Were low in comparison with  amplitude threshold. However, since the HS achieves
Errp, which is more critical. However, there were clear more energy concentration along the CAS componénts,
and significant differences (p << 0.0001) betweba t is less dependent on this parameter of the CAS
frequency dispersionot and orr) of both TFDs, as segmentation algorithm.
shown in Figs. 15-c and 15-d, which means thatHBe
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7. Discussion and conclusions Although EEMD has already been used in previous
studies as part of the HHT [60-62], the proceduaretlie
In this study, we conducted a comprehensive evialuat correct choice of its parameters (amplitude of ddeled
of the performance of the HHT for RS analysis, wHid noise and number of iterations) is still uncleard ahey
us to propose an EEMD-Kay-based HS that performedmust be adjusted to the characteristics of diffesggnals.
very well for CAS characterization. In comparisoitrw  In this regard, our proposed parameters could kd us
spectrogram, which is the most widely used techmiigu assess MM and select EEMD parameters in other
CAS analysis, the HS detected CAS components morepplications.
precisely, especially those at low SNR that overiaih The IF is estimated in the HHT by means of the phas
normal RS. derivative of the analytic signal of IMFs. However,
The most critical stage of the HHT is EMD, due t® i major drawback of this IF estimation method is kiigh
MM effect, which causes poor separation of freqyenc variance of the IF estimates. Kay’'s IF estimataved to
scales. We have gone into detail about the MM efiéc  be a direct and straightforward method that sigaiitly
EMD in RS signals and the performance of EEMD andreduced that variance, which is a desirable prgpient
NA-MEMD to solve MM. We propose a number of the purpose of obtaining an accurate HS with high
parameters to quantify the size, reduction of MMda concentrations of signal energy. In fact, we preptdse
residual noise level of each method. The resultsraf use of an EEMD-Kay-based HS as an alternative and
applying EEMD and NA-MEMD to recorded RS signals precise time-frequency representation of RS signals
showed that EEMD is more concise than NA-MEMD, as The main advantage of the proposed HHT-based
EEMD produces fewer redundant IMFs and is fastanth approach over other TFD-based approaches for RS
NA-MEMD. Moreover, EEMD reduces the MM effect analysis is the high temporal and high frequency

more effectively than NA-MEMD. resolution of the HS. Since IF is calculated by
differentiation, time resolution can be as high that
Table 3. Characteristic parameters of recorded CASignals determined by the sampling rate. Moreover, theueagy
Spectrogram HS resolution in the HS does not depend on the dagtheas
D (ms) 5997 + 132.6 302.8 +122.9 Fourier-based or wavelet-based techniques, buerittis

determined by the bin size selected. Furthermdre, t
Finean (H2) 287.0+136.0 285.6+135.0 EEMD allows us to separate different signal composie
or (Hz) 7.2+26 42+1.2 prior to IF and IA calculation without having toqmess
D: duration;Fmean: mean frequencyjr: frequency dispersion an entire TFD.
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Accordingly, the HHT does not only allow working én Taking advantage of properties of the HS, we prefmos
time-frequency plane, like other TFDs, but alsolyziag new method for the automatic segmentation and
IF and IA sequences separately. characterization of CAS. A key point of our methsdhe



CAS detector (section 6.1.1) that we previouslyppsed
in [43]. Using this CAS detector as the first stepour
CAS segmentation algorithm, we can
components in the time-frequency plane, which itatds

the HS, whose performance has been thoroughlydteste
both synthetic and real CAS signals.

locate CAS Our proposed version of the HHT based on EEMD and
Kay’s IF estimator is a promising tool for the ars$ of

their subsequent segmentation using a region gmwin RS signals. Due to its high resolution, the propgdd§ is

methodology together with a set of region linkimgeia.
The main advantage of the CAS detector is thatlittised
solely on a number of IF criteria, which makes Q&S

methodology,

a suitable TFD to analyze not only CAS signals, ddsb
shorter RS signal components, such as DAS. This
characterization

including the CAS

segmentation algorithm less dependent on amplitudealgorithm could be included within a more comple8 R

criteria.

analysis system that facilitates long-term monitgrand

We applied the proposed CAS segmentation algorithmimproves reliability in the diagnosis of obstruetiv

to the HS and spectrogram of two sets of synthetid
recorded CAS signals to compare the performandbeof

pulmonary diseases.
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Abstract— Assessment of asthma is a difficult procedure
which is based on the correlation of multiple factors. A major
component in the diagnosis of asthma is the assessment of BD
response, which is performed by traditional spirometry. In
this context, the analysis of respiratory sounds (RS) provides
relevant and complementary information about the function
of the respiratory system. In particular, continuous adventi-
tious sounds (CAS), such as wheezes, contribute to assess the
severity of patients with obstructive diseases. On the other
hand, the intensity of normal RS is dependent on airflow
level and, therefore, it changes depending on the level of
obstruction. This study proposes a new approach to RS anal-
ysis for the assessment of asthmatic patients, by combining
the quantification of CAS and the analysis of the changes in
the normal sound intensity-airflow relationship. According to
results obtained from three patients with different character-
istics, the proposed technique seems more sensitive and
promising for the assessment of asthma.

Keywords— asthma, bronchodilator response, continuous
adventitious sound, respiratory sound intensity, wheezes.

I. INTRODUCTION

Asthma is a complex respiratory disorder that results in
a variable, recurring, and often reversible airflow obstruc-
tion [1]. Physicians have difficulties in diagnosing asthma,
since they have to correlate several aspects: the medical
history, a thorough physical examination, and pulmonary
function test results. In this context, the bronchodilator
(BD) response is a standard pulmonary function test used
to control and assess the severity of asthma. It is based on
spirometric measurements before and after the administra-
tion of a BD. Usually, an improvement in forced expirato-
ry volume in one second (FEV1) of greater than or equal to
12% is considered to be significant [2, 3]. However, some
recent studies have demonstrated that using spirometric
criteria alone is inadequate for the diagnosis of asthma [4].

Respiratory sounds (RS) are helpful in understanding
the function of the respiratory system. They are classified
as normal or adventitious sounds. Due to their clinical
interest, many technical studies have tried to detect and
characterize continuous adventitious sounds (CAS) [5-8],

such as wheezes. CAS are characterized by a pitch of over
100 Hz that lasts more than 100 ms [9], and they are key
indicators for assessing the severity of asthma [1]. On the
other hand, some other studies have tried to understand the
origin of normal RS and their intensity pattern distribution
[10-12]. Although results from all previous studies have
contributed to the characterization and understanding of
RS, there is lack of clinical use and application of these
techniques.

In this study, we propose a new approach to the analy-
sis of RS for the assessment of asthmatic patients, by
combining the quantification of CAS and the analysis of
the normal sound intensity-airflow relationship. A few
previous studies have focused on the evaluation of asthma
by RS analysis [13-15]. Nevertheless, some were per-
formed on infants and they were based on manual detec-
tion of wheezes and their characterization at a fix airflow
level or during forced breathing. On the other hand, in
[15] they focused on changes in the spatial distribution of
breath sound intensity by analyzing dynamic images. Our
technique has two major advantages: the automatic differ-
entiation and quantifying of respiratory cycles either with
normal sounds or CAS [16], and the analysis of normal RS
intensity as a function of airflow level.

. MetHoDs

A. Signal acquisition

RS signals were recorded from asthmatic patients in a
sitting position at the Pulmonary Function Testing Labora-
tory, Germans Trias i Pujol University Hospital, Badalona,
Spain. Three piezoelectric contact microphones (TSD108,
Biopac, Inc.) were attached to the skin using adhesive
rings: two of them on the back at 3 cm below the left/right
shoulder blade, and one over the right side of the trachea.
Moreover, respiratory airflow signal was recorded using a
pneumotachograph (TSD107B, Biopac, Inc.). Each patient
was coached to progressively increase the airflow, from
shallow breathing to the deepest breaths they could. All
signals were sampled at 12500 samples/second using a 16-



bit analogue-to-digital converter. After acquisition, RS
signals were band-pass filtered using a combination of 8th
order Butterworth low-pass and high-pass filters (70 —
2000 Hz). We show a case study with three adult asthmat-
ic patients with different baseline spirometric values and
BD response (Table 1). For each patient, we have quanti-
fied the percentage of respiratory cycles with CAS at base-
line and after BD, for both left and right sides. In addition,
we have analyzed the relationship between RS intensity
and airflow, before and after BD.

Table 1 Characteristics of asthmatic patients

Total cycles ~ Total cycles
ID Pre-BD Post-BD

Left Right Left Right

BMI FEV; AFEV;

AGe SEX (kgim?) (%) (%)

1 46 47 53 53 50 F
2 68 66 76 83 60 M
3 59 49 53 50 19 M

24.44 47 26
27.08 100 1
19.28 59 6

B. Segmentation of RS signals

After signal acquisition, respiratory phases were ob-
tained using the airflow signal as the reference for auto-
matic sound signal segmentation. Since airflow is positive
during inspiration and negative during expiration, respira-
tory phases were marked off by means of a robust zero
crossing detector. In order to avoid detection of false end-
points, only cycles in which the airflow reached at least
0.35 L/s were considered valid cycles. Moreover, two
thresholds of 0.2 and 4 seconds were established for min-
imum and maximum durations of respiratory phases, re-
spectively, according to time duration of normal respirato-
ry cycles. In addition, a threshold of 0.5 seconds was fixed
for the maximum time interval between the end of inspira-
tion and the beginning of the corresponding expiration.
Two final datasets, pre-BD and post-BD, were obtained
for each patient and each side. Each dataset was formed by
audio-visual selection of sound signals from the inspirato-
ry cycles, avoiding artifacts such as those from speaking,
swallowing, coughing or rubbing. We have focused on
inspiratory sounds, which are much louder than expiratory
sounds on the back, where we recorded the sound signals.

C. CAS detection and inspiratory cycle classification

The first step in the analysis of RS is to differentiate
respiratory cycles with normal sounds from those with
CAS. For that purpose, we made use of an automatic RS
classifier, which we had previously developed based on
the analysis and feature extraction from instantaneous
frequency (IF) of sound signal from each respiratory cycle
[16]. Prior to the IF calculation, sound signals were de-
composed into narrow-band components by ensemble

empirical mode decomposition (EEMD). The core of the
proposed classifier is the fact that IF remains almost con-
stant when a CAS signal is within a respiratory cycle. By
using this classifier, we quantified the number of CAS
cycles from both pre-BD and post-BD datasets, for each
patient and from both left and right sides. Then, we evalu-
ated whether the percentage of CAS cycles had signifi-
cantly increased or decreased with the administration of
the BD.

D. RS intensity — respiratory airflow graphs

In addition to evaluate the changes in the percentage of
CAS cycles pre/post-BD, we also analyzed the changes in
normal sound intensity. Sound intensity was calculated for
inspiratory sound segments corresponding to the top 20%
of airflow from each normal sound cycle, from both pre-
BD and post-BD datasets. It was defined as the mean
power obtained from the power spectral density (PSD) in
the frequency band 75-600 Hz. PSD was calculated using
Welch’s periodogram, with a Hanning window of 80 ms, a
50% overlap between adjacent segments, and 2048 points
for the Fast Fourier Transform. Then, each normal sound
cycle was determined by its intensity and the maximum
airflow reached. Since each patient was characterized by
the relationship between normal sound intensity and air-
flow on both left and right sides, we analyzed the changes
in these graphs in order to evaluate the BD effect.

im. ResuLTs

In this section we show results from applying the pre-
vious techniques to patients shown in Table 1. Firstly,
results from respiratory cycle classification and CAS cycle
quantification are shown in Fig. 1.

Secondly, we calculated RS intensity from normal
sound cycles as a function of the airflow, pre-BD and
post-BD, for both left and right sides (Fig. 2).

The patient with severe asthma (ID 1) had 35% (left)
and 30% (right) of CAS cycles before BD, as shown in
Fig. 1. It is in agreement with her low baseline FEV;
(47%), which shows that she had a severe bronchial ob-
struction. After BD, she had not CAS cycles, which is in
agreement with her increased FEV: (AFEV: = 26%).
Moreover, normal sound intensity significantly increased
after BD, in both sides, as can be appreciated from the
polynomial regression lines shown in Fig. 2-A.
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Fig. 1 Percentage of CAS cycles in both left and right sides, at baseline
(pre-BD) and after the BD (post-BD) (A, B). Change in FEV, after BD,
as a per cent from baseline, and threshold for a significant BD response
(12%) (C). Three degrees of severity were defined based on baseline
FEV:1: mild (x > 70%), moderate (50% < x < 70%), and severe (x <
50%).

Contrary to ID1, patient with mild asthma (ID 2) had a
normal baseline FEV: (100%), and a low number of CAS
cycles (<1.5%) before and after BD, as shown in Fig. 1.
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Moreover, he was a non-responder to BD (AFEV: = 1%),
which agree with a very low increase of normal sound
intensity, in both sides (Fig. 2-B). This is reflected in very
close polynomial regression lines, pre and post-BD.

In addition to the previous extreme cases, we analyzed
an intermediate case with moderate asthma (ID 3). He was
a slight responder to BD, since he had a AFEV: of 6%.
However, he had a baseline FEV; of 59%, which is in the
range of moderate-severe asthma. It agrees with his 15%
(left) and 41% (right) of CAS cycles at baseline. After
BD, the percentages of CAS cycles were 11% (left) and
54% (right), which were maintained high values. Although
his BD response was not significant, lines from the poly-
nomial regression in Fig. 2-C show that he had a relevant
increase in normal sound intensity, and it was clearer at
high airflows.

iv. Discussion

According to the aforementioned results, the baseline
FEV: is related to the number of CAS cycles. Those pa-
tients with a low baseline FEV:1 have high probability of
having wheezes, and vice versa.

On the other hand, the changes in the number of CAS
and normal sound intensity are more related to the BD
response. A positive BD response indicates that the bron-
chial obstruction has significantly decreased and, there-
fore, there are less CAS cycles and higher normal sound
intensity.
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Fig 2. Comparison between normal sound intensity and airflow before and after the administration of a BD. For each patient, results from both left and
right sides are shown. Lines black and grey show the 3 order polynomial regression models that fit pre-BD and post-BD intensities as functions of
airflow, respectively.



On the contrary, non-responders do not have many
changes in their bronchial tree, which implies having few
changes in the number of CAS cycles and low increase of
their normal sound intensity.

Moreover, we have shown that for a patient with a non-
significant BD response (below 12%), the analysis of
normal sound intensity is a more sensitive technique, since
significant increases can be detected after BD. Further-
more, these increases are more relevant at high airflow
levels.

With respect to the proposed technique, it has some ad-
vantages: the exploration and evaluation of the pulmonary
function at different airflow levels, which are reached
during the progressive respiratory maneuver, and the use
of two recording channels that allow us to obtain infor-
mation about the laterality of normal RS and CAS.

v. CONCLUSIONS

In this study we have shown that the combined analysis
of normal RS and CAS provides a promising approach to
characterize asthmatic patients. It is a simple and non-
invasive technique, which seems more sensitive to chang-
es in the pulmonary function. Therefore, it could be a
complementary tool in the diagnostic procedure for asth-
ma. However, this work is a case-study with three patients
and therefore a higher number of varied cases are required
in order to draw final conclusions.
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Chapter 6: Discussion

In this study, we propose a new integrated approach to RS analysis that includes a multichannel
recording of RS using a maximum of five microphones and a progressive respiratory manoeuvre, and

the analysis of both normal RS and CAS through the RS intensity—airflow curves and HHT, respectively.

We also propose the application of our approach to assess pulmonary function, based on acoustic
parameters, for patients with either UPP or asthma.

Although a detailed discussion and conclusions section was included in each of the published articles
(Chapters 2-5), we will briefly overview and discuss the main findings and contributions of these studies

in this section.
Multichannel RS recording protocol

We proposed a multichannel recording of RS with a maximum of five contact microphones—one on the
neck for recording tracheal sounds, and four on the back for recording lung sounds (Figure 10). The
CORSA guidelines highlighted that tracheal and lung sounds contain distinct, but complementary,
information that may be useful in assessing respiratory diseases [31]. These guidelines also
recommended using at least the trachea and the right and left posterior base of the lungs for recording
RS [58]. Although the basic configuration proposed in the CORSA guidelines may be suitable for some
applications, such as assessing UPP as in this thesis, this configuration does not allow the distribution
of lung sounds to be analysed in the vertical plane of the chest surface. Moreover, different
configurations regarding the number and location of RS recording points have been reported in the
literature, most of which do not meet these requirements. This underscores the lack of a common

methodology for recording RS.

The VRI system has also been used in several previous studies for analysing the distribution of RS
intensity over the chest surface. It has been reported that the measurements of regional ventilation
distribution provided by the VRI system are comparable to those obtained by electrical impedance
tomography [189]. However, although the dynamic grey-scale images provided by the VRI system are
useful for the qualitative assessment of regional ventilation distribution, this system only provides
quantitative data for two or three regions of each lung (i.e., upper, middle, lower). Indeed, in the
literature, most studies have focused on some or all of the following four lung regions: left upper lung,
left lower lung, right upper lung, and right lower lung [35], [40], [41], [73], [98].

Airflow-dependent analysis of both normal RS and CAS

The proposed approach to RS analysis also includes the performance of a progressive respiratory
manoeuvre with variable airflow that allows both normal RS and CAS to be analysed with respect to

airflow (Figure 11). This is a real advantage as compared to previous studies, in which RS were recorded
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at constant airflows or during forced expiratory manoeuvres. However, it has been widely reported that
normal RS intensity is highly airflow-dependent (Section 1.4.1). Accordingly, we propose to use the RS
intensity—airflow curves for the analysis of normal RS intensity.

Regarding CAS, it has been reported that forced expiratory wheezes have low specificity for the clinical
diagnosis of asthma, since many wheezes may also appear in healthy people during forced expiratory
manoeuvres [72], [180]. Further, in the case of CAS, an airflow-dependent analysis is important because
CAS only appear above a critical flow, and this depends on the mechanical properties of airways, which
in turn vary between people (Section 1.3.2). Therefore, recording RS at constant airflows may lead to
CAS underestimation. In this sense, the proposed progressive respiratory manoeuvre allows CAS to be
analysed over a wide range of airflows, from normal to forced breathing.

Analysis of CAS based on HHT

In this thesis, we propose a customised HHT adapted to RS signal characteristics as a practical and direct
way of calculating IF in RS signals (Section 1.5.4.2). We also propose a comprehensive evaluation of
the performance of HHT for RS analysis, and especially for CAS characterisation. The main reason for
analysing CAS based on IF is that characterising CAS implying calculating both the duration and the
pitch of CAS, such that RS signals containing CAS must be analysed in both time and frequency
domains. In this sense, the IF parameter provides information about the frequency content of a signal at

each time instant—that is, with maximum time resolution.

Since calculating IF is feasible only for monocomponent or narrowband signals, RS signals must be
decomposed into narrowband components before IF can be calculated for each component. To do this,
HHT makes use of EMD (Section 1.5.4.2). However, it has been shown that EMD has a mode mixing
effect that may cause poor separation of frequency scales in some RS signals (Chapter 4), thus leading

to inaccurate IF estimates.

We propose using EEMD as the first step of HHT, prior to IF estimation, to avoid the mode mixing
effect of EMD in RS signals. The effectiveness of EEMD in reducing mode mixing is determined by
two parameters: the amplitude of the added noise and the number of iterations (Chapter 4). Indeed,
EEMD compromises between the two parameters, so that the mode mixing effect is minimised and the
residual noise level is low. In this regard, we propose two parameters to allow the amount of mode
mixing (FOi;) and the residual noise level (PSDR) to be measured (Chapter 4); the FO;; parameter,
which measures the frequency overlap between the PSDs of two different IMFs; and the PSDR
parameter, which measures the residual noise level in the IMFs by comparing the PSD of the
reconstructed RS signal—the direct sum of the IMFs and the residue—to the PSD of the original RS
signal. Using these parameters, the amplitude of the added noise and the number of iterations of EEMD
could be adjusted, so that FO;; and PSDR were minimised at the same time. These parameters represent

a step forward in the use of EEMD, since the procedure for the correct choice of the amplitude of the
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added noise and the number of iterations is unclear in the literature, although an EEMD-based HHT has

already been used in other applications [190], [191].

After decomposing an RS signal into IMFs by EEMD, the IF and IE sequences can be easily estimated
by the phase derivative and absolute value of the analytic signal of each IMF. We propose different
methods for calculating the phase derivative in this thesis.

As described in Chapter 3, a five-point least-squares polynomial derivative approximation was initially
proposed for calculating the IF. This method yielded IF estimates with high variance, which contributed
to emphasizing the differences in IF dispersion between RS signal segments containing CAS and those
containing normal RS, as described in Section 1.5.4. By taking advantage of this property of IF, we were
able to detect those segments within RS signals that were more likely to contain CAS, by applying a set
of thresholds to the dispersion of IF sequences. Each detected RS signal segment was characterized
using a set of features extracted from the IF and IE sequences. Those features were then used to train
and test a support vector machine classifier, which succeeded in achieving high sensitivity (93.9%) and
accuracy (94.9%) in differentiating RS signal segments containing CAS from those containing normal
RS.

After differentiating CAS from normal RS within RS signals, our next step was to characterise CAS. In
this thesis, we propose a new method for the automatic segmentation and characterisation of CAS from
HS (Chapter 4). HS is obtained by rearranging the IF and IE sequences of a signal into an array.
However, the high variance of the IF estimates used to detect CAS within RS signals was a major
drawback for obtaining an accurate HS with high energy concentration, which is a desirable property of
TFDs. Therefore, the IF sequences of RS signals were recalculated using the Kay’s IF estimator, which
greatly reduces the variance of the IF estimates. Even so, the IF features used for distinguishing CAS
from normal RS (in Chapter 3) were used to locate CAS components in the time-frequency plane of the
HS (in Chapter 4), which facilitated the subsequent segmentation of CAS by using a region growing

algorithm together with a set of region linking criteria.

Using the proposed EEMD-Kay-based HS, we were able to fully characterise CAS with regard to
duration, mean frequency, and intensity. Moreover, since this improved version of HS has high temporal
resolution and high frequency resolution, and achieves high concentrations of energy, it allows CAS to
be more accurately detected and characterised mainly based on IF criteria. This provides a stark contrast
to traditional techniques, such as spectrogram, which are highly dependent on amplitude criteria and fail

to detect some CAS with low intensity (Chapter 4).
Assessment of pulmonary function in patients with UPP

In patients with UPP (Chapter 2), the RS intensity—airflow curves have been proposed as an indirect
way of detecting differences in airflow entering the lungs. As reported in the literature, reduction in

regional ventilation of the lung on the paralysed side is more evident at the base of the lung in UPP
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[129], [130]. Accordingly, we have shown that two microphones placed at the right and left posterior
base of the lungs proved sufficient to analyse the differences in regional ventilation of the lungs in
patients with UPP.

We analysed the RS signals of 10 patients with UPP and 10 healthy participants for airflows ranging
from 1.2 to 2.4 L/s. We found that lung sound intensity—calculated as the area under the PSD of
inspiratory lung sounds in the frequency band of 70-2000 Hz—uwas significantly reduced on the affected
side for all airflows due to inefficient diaphragmatic muscle function. We expressed the lung sound
intensity in dB using as a reference value the intensity of background noise, which was calculated for
each microphone from the apnoea segments. A clear cut-off around 7 dB was found in the mean
differences of lung sound intensity between the two sides in healthy participants and patients with UPP.
Moreover, we found that the RS intensity—airflow curves can be properly expressed by a linear equation
in both patients and healthy participants. Further, there was a clear difference between the slopes of
healthy participants (around 5 dB/L/s) and patients (around 10 dB/L/s), independent of the analysed

side.

Besides lung sound intensity, spirometric parameters were also measured in patients with UPP, as these
are low with respect to normal reference values, as described in previous studies [139], [149], [161],
[162].

Assessment of BDR in patients with asthma

Recording respiratory symptoms, such as wheezing, has been reported to contribute to improving the
interpretation of pulmonary function tests, such as spirometry, for asthma [7]. Accordingly, in this thesis,
we propose the analysis of both normal RS and CAS to assess BDR in patients with asthma. RS signals
were recorded, and BDR was assessed by spirometry, in 50 patients with asthma and 10 healthy

participants.

In a preliminary study (Chapter 5), we analysed the RS signals of 3 patients with asthma. Only two of
the five proposed locations for recording RS were used, and the number—but not the features—of CAS
was analysed. Despite these limitations, the study demonstrated the potential of RS analysis for assessing
BDR in asthma, since appreciable increases in the RS intensity—airflow curves following bronchodilator
administration could be detected in a patient with negative BDR in FEV 1. Furthermore, these increases

were more relevant at high airflow levels.

We have also carried out a study to evaluate the potential of CAS analysis for assessing BDR in 10
patients with asthma and 5 healthy participants. Note that as we have recently submitted this study to

PLOS ONE (see publications derived from this thesis), it is not been included in the list of published

articles. In this recent study, we determined that analysing CAS features, including number, duration,
pitch, and intensity, could improve the stratification of BDR levels, particularly for patients with asthma

with negative BDR in spirometric parameters. In fact, we were able to detect appreciable changes in the
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number of CAS in three of five patients with negative BDR in FEV,, revealing changes in AO.
Appreciable changes in the number of CAS were also found in all patients with positive BDR in FEV1,
whereas CAS were absent in the control participants. Further, duration, mean frequency, and intensity
of CAS significantly changed following bronchodilator administration for two of five patients with
negative BDR in FEV1. The number of CAS increased with airflow, indicating that the greater the
airflow, the higher the possibility of CAS appearing. Even so, CAS appeared over a wide range of
airflow levels. Moreover, most significant changes in CAS features after bronchodilation occurred at

medium-high airflows.

In our recent study, we have also proposed a classifier for distinguishing CAS from other sounds
segmented from HS. This classifier reached high accuracy (97.7%), sensibility (93.1%), and specificity
(98.5%), making our approach more robust with respect to background noises in the clinical

environment.
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Chapter 7: Conclusions

In this thesis, we have proposed a novel, comprehensive, and non-invasive approach to RS analysis,
taking into consideration the following four key aspects: the heterogeneous distribution of RS (using
multichannel RS recording), the airflow dependence of RS (using the progressive respiratory manoeuvre
and the RS intensity—airflow curves), the different characteristics of RS types (analysing CAS based on
HHT and IF criteria), and the effect of respiratory diseases on RS (analysing both normal RS and CAS).
To the best of our knowledge, an approach that considers all these aspects of RS analysis has not been

proposed to date. In this sense, our approach to RS analysis is a major novelty of this thesis.

Two clinical applications of our approach to RS analysis have been proposed: the assessment of
pulmonary function in patients with UPP, and the assessment of BDR in patients with asthma. The
guantitative analysis of RS has not been previously used in the assessment of UPP. Regarding BDR in

asthma, previous approaches did not consider all the aforementioned aspects together.
The following main conclusions have been drawn from the published articles included in this thesis:
RS recoding protocol

- The configuration for recording RS proposed in this thesis meets the CORSA guidelines [58]
and includes the minimum number of sensors required for analysing the distribution of lung
sounds both laterally and vertically, without requiring a large number of sensors and the
resulting larger amount of data

- Two RS recording protocols were launched in the Pulmonary Function Testing Laboratory of
the HUGTIP. Patients with either UPP or asthma were recruited during the course of this thesis,
so that two databases were created:

o 10 patients and 10 healthy participants, who took part in the UPP study
o 50 patients and 10 healthy participants, who took part in the asthma study

Analysis of normal RS

- The proposed progressive respiratory manoeuvre allows the characteristic RS intensity—airflow
curves of a subject to be calculated for its entire airflow range

- There is a linear relationship between airflow and normal RS intensity calculated in the
frequency band of 70-2000 Hz of the PSD, and expressed in dB with respect to the background
noise level

- The RS intensity—airflow curves contribute to improving the understanding of the mechanics

behind RS generation and how structural and functional respiratory defects affect RS
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7 Conclusions

Analysis of CAS

An EEMD-based HHT has been proposed to decompose RS signals into IMFs, for which a
physically meaningful IF sequences can be calculated point-by-point, thereby avoiding the
mode mixing effect of the original EMD. The IF sequences provide information about the
frequency content of RS signals at each time instant

A number of quantitative parameters have been proposed to quantify the size, reduction of mode
mixing, and residual noise level of EEMD in RS signals. These parameters can be used to select
the EEMD parameters, not only for RS analysis but also for other applications

In the proposed EEMD-based HHT, IF is calculated via phase differentiation of the analytic
signal of the IMFs obtained by EEMD. Therefore, HHT does not suffer from the uncertainty
principle and provides both high time resolution and high frequency resolution at the same time
Since the IE and IF sequences are calculated separately for each IMF, HHT allows working
independently either in a time-frequency or in a time-energy domain, without having to process
an entire TFD

IF dispersion markedly decreases within RS signals for the duration of CAS. Therefore, an
algorithm for the automatic differentiation between RS signal segments containing CAS and
those containing normal RS has been proposed mainly based on IF dispersion criteria

An EEMD-Kay-based HS has been proposed as an alternative and precise time-frequency
representation for CAS analysis

The proposed EEMD-Kay-based HS provides a high concentration of RS energy around IF in
the time-frequency plane, which makes HS less dependent on amplitude criteria and facilitates
CAS identification. This property, together with the high resolution in time and frequency
domains, allows CAS to be more accurately determined with HS than with spectrogram,

especially for weak CAS that overlap with normal RS in the time-frequency plane

Assessment of pulmonary function in patients with UPP

Lung sound intensity is significantly reduced on the affected side for all measured airflows in
patients with UPP. Therefore, in these patients, lung sound intensity provides quantitative
information about the extent of impairment of respiratory function

The analysis of lung sound intensity offers a method for long-term monitoring of respiratory
function recovery in patients undergoing physical therapy, in a non-obtrusive and cost-effective

manner

Assessment of BDR in patients with asthma

The proposed progressive respiratory manoeuvre, which is easier to perform than the forced
expiratory manoeuvre, allows the analysis of both CAS that appear naturally at low airflows and

CAS that appear in a more forced way at high airflows
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- The combined analysis of normal RS and CAS provides a promising approach to assessing BDR
in patients with asthma. It is a simple and non-invasive technique, which is more sensitive to
local changes in AO not detectable by spirometry, thus increasing the sensitivity of the BDR

assessment

7.1. Future work

Despite major advances in sensors and RS analysis, the field still is suffering from a lack of a standard
methodology for recording and processing RS signals. Accordingly, these techniques are still used only
limitedly in clinical practice.

The next steps for the proposed approach to RS analysis require information from further studies in large
populations, to clinically validate this technique as a new complementary tool for assessing pulmonary
function in respiratory diseases. In particular, relevant clinical conclusions could be drawn by applying
the proposed approach to assessing BDR to the whole database of 50 patients with asthma and 10 healthy

participants.

In CAS analysis, the differences between pure low-pitched wheezes and rhonchus (snoring character),
between monophonic harmonic wheezes and polyphonic wheezes, or between squawk and high-pitched
wheezes, are still unclear [17]. Therefore, further studies should address in detail the characterisation of
different types of CAS.

Besides the number and features of CAS and normal RS intensity, the spatial distribution of the two
types of RS should be further analysed, by taking advantage of the multichannel RS recording using five
microphones as developed here. The distribution of normal RS intensity and CAS over the chest surface
could provide information about location of AO and changes in regional ventilation following

bronchodilator administration in patients with asthma.

The effect of body position on RS in patients with UPP should be also analysed. Although RS have been
analysed in the sitting position in these patients, extending RS analysis to different positions may help

to better understand the effect of UPP on respiratory mechanics and pulmonary ventilation.

Thus, the proposed approach to RS analysis provides a sensitive tool for obtaining complementary,
objective, and quantitative information about pulmonary function in respiratory diseases. Together with
spirometry, RS analysis has some direct clinical applications, as discussed in this thesis. This proposed
approach could be included in a system of RS analysis that could serve not only for diagnosis of patients
with respiratory diseases but also for their long-term monitoring, without risk to the patient. This type
of system could be used in the daily clinical routine, complementing the spirometry. The combined
information from these techniques would be predicted to increase the reliability of diagnosis and

drastically improve management of patients with respiratory diseases.
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