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Abstract 

Respiratory sounds (RS) are produced by turbulent airflows through the airways and are 

inhomogeneously transmitted through different media to the chest surface, where they can be recorded 

in a non-invasive way. Due to their mechanical nature and airflow dependence, RS are affected by 

respiratory diseases that alter the mechanical properties of the respiratory system. Therefore, RS provide 

useful clinical information about the respiratory system structure and functioning. 

Recent advances in sensors and signal processing techniques have made RS analysis a more objective 

and sensitive tool for measuring pulmonary function. However, RS analysis is still rarely used in clinical 

practice. Lack of a standard methodology for recording and processing RS has led to several different 

approaches to RS analysis, with some methodological issues that could limit the potential of RS analysis 

in clinical practice (i.e., measurements with a low number of sensors, no controlled airflows, constant 

airflows, or forced expiratory manoeuvres, the lack of a co-analysis of different types of RS, or the use 

of inaccurate techniques for processing RS signals). 

In this thesis, we propose a novel integrated approach to RS analysis that includes a multichannel 

recording of RS using a maximum of five microphones placed over the trachea and the chest surface, 

which allows RS to be analysed at the most commonly reported lung regions, without requiring a large 

number of sensors. Our approach also includes a progressive respiratory manoeuvres with variable 

airflow, which allows RS to be analysed depending on airflow. Dual RS analyses of both normal RS 

and continuous adventitious sounds (CAS) are also proposed. Normal RS are analysed through the RS 

intensity–airflow curves, whereas CAS are analysed through a customised Hilbert spectrum (HS), 

adapted to RS signal characteristics. 

The proposed HS represents a step forward in the analysis of CAS. Using HS allows CAS to be fully 

characterised with regard to duration, mean frequency, and intensity. Further, the high temporal and 

frequency resolutions, and the high concentrations of energy of this improved version of HS, allow CAS 

to be more accurately characterised with our HS than by using spectrogram, which has been the most 

widely used technique for CAS analysis. 

Our approach to RS analysis was put into clinical practice by launching two studies in the Pulmonary 

Function Testing Laboratory of the Germans Trias i Pujol University Hospital for assessing pulmonary 

function in patients with unilateral phrenic paralysis (UPP), and bronchodilator response (BDR) in 

patients with asthma. RS and airflow signals were recorded in 10 patients with UPP, 50 patients with 

asthma, and 20 healthy participants. 

The analysis of RS intensity–airflow curves proved to be a successful method to detect UPP, since we 

found significant differences between these curves at the posterior base of the lungs in all patients, 
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whereas no differences were found in the healthy participants. To the best of our knowledge, this is the 

first study that uses a quantitative analysis of RS for assessing UPP. 

Regarding asthma, we found appreciable changes in the RS intensity–airflow curves and CAS features 

after bronchodilation in patients with negative BDR in spirometry. Therefore, we suggest that the 

combined analysis of RS intensity–airflow curves and CAS features—including number, duration, mean 

frequency, and intensity—seems to be a promising technique for assessing BDR and improving the 

stratification of BDR levels, particularly among patients with negative BDR in spirometry. 

The novel approach to RS analysis developed in this thesis provides a sensitive tool to obtain objective 

and complementary information about pulmonary function in a simple and non-invasive way. Together 

with spirometry, this approach to RS analysis could have a direct clinical application for improving the 

assessment of pulmonary function in patients with respiratory diseases. 

Keywords 

Asthma, continuous adventitious sounds, ensemble empirical mode decomposition, Hilbert-Huang 

transform, instantaneous frequency, multichannel respiratory sound recording, respiratory sounds, 

unilateral phrenic paralysis, wheezes 
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“Patience is to science what insanity is to art” 

However, one may think that “Insanity is to science what patience is to art” is also true. 

So, keep insanely on it and personal success will come to you. 
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However, the applicability of the proposed approach in clinical practice has been a major objective from 
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development of new techniques for RS signal processing and analysis at the IBEC. All the work done 
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Authors: M. Lozano, J. A. Fiz, R. Jané 

Journal: IEEE J. Biomed. Health Inform., vol. 20, no. 2, pp. 486–497, Mar. 2016. 
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Chapter 1: Introduction 

1.1. Ventilation 

Ventilation, one of the functional processes of the respiratory system, consists in moving air from 

outside the body into the lungs, and vice versa. The aims of ventilation are to transport oxygen to the 

alveoli within the lungs and to eliminate the carbon dioxide (CO2) produced by cell respiration [1]. 

1.1.1. Airways and airflow 

Ventilation comprises two phases: 

- Inspiration: air flows from the atmosphere into the lungs 

- Expiration: air flows from the lungs to the atmosphere 

Inspiration is an active process, even during quiet breathing, which requires the activation of the 

inspiratory muscles, mainly of the diaphragm and, to a lesser extent, the external intercostal muscles. 

Contraction of these muscles expands the rib cage, and this expansion is transmitted to the lungs through 

the pleural cavity. Lung expansion causes the intrapulmonary pressure to fall below the atmospheric 

pressure, thus making air enter the lungs through a series of tubular structures, called conducting airways 

(Figure 1) [2], [3]. 

 
Figure 1. Conducting airways and respiratory zone (see box) 

Inspired air enters the nasal cavities and the pharynx and moves downwards through the 

tracheobronchial tree, which progressively branch out, starting from the trachea down to the terminal 

bronchioles. Conducting airways do not participate in gas exchange but rather clear and improve the 

quality of inspired air as it is carried to the alveoli. The respiratory zone, where gas exchange occurs, 
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starts with the division of terminal bronchioles into respiratory bronchioles and includes alveolar ducts 

and alveoli as well. 

After each inspiration, a fraction of the inhaled air (about 150 mL) remains in the conducting airways, 

constituting the anatomical dead space. However, most of the inhaled air (about 2.5 to 3 L) goes into the 

respiratory zone and takes part in gas exchange [2]. 

Different from inspiration, normal expiration is a passive process. Relaxation of the diaphragm and the 

external intercostal muscles causes the lungs to compress due to the elasticity of their tissue. Lung 

compression causes the intrapulmonary pressure to rise above the atmospheric pressure, causing air to 

flow from the lungs to the atmosphere. 

1.1.2. Regulation of ventilation 

The three basic elements of the regulation of ventilation are the central controller (nervous system), 

effectors (respiratory muscles), and sensors (chemical and mechanical receptors) (Figure 2). 

 
Figure 2. Elements of ventilation regulation (adapted from [3]) 

1.1.2.1. Spontaneous periodic ventilation 

Central controller automatically regulates both the depth and rate of ventilation through the respiratory 

centres located in the medulla oblongata and pons. Medullary respiratory centres include the dorsal and 

ventral respiratory neurons, which are the inspiratory and expiratory centres, respectively. The rhythm 

of ventilation is mainly determined by spontaneous periodic impulses generated by the inspiratory 

centre. These impulses travel through the phrenic and intercostal nerves and cause the inspiratory 

muscles to contract. Besides its spontaneous activation, the inspiratory centre is stimulated from the 

apneustic centre, which is located in the lower pons and contributes to produce regular ventilation [3]. 
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Impulses from the inspiratory centre also stimulate the pneumotaxic centre within the upper pons, which 

in turn inhibits both apneustic and inspiratory centres, resulting in termination of inspiration and 

initiation of passive expiration. A new cycle of ventilation is then started by spontaneous activation of 

the inspiratory centre. Normal ventilation cycles last around 3 to 5 seconds, producing a normal 

ventilation rate of 12 to 20 cycles per minute [2]. 

The medullary expiratory centre is only activated during deep ventilation. In this case, the inspiratory 

centre activates the expiratory centre, thereby stimulating expiratory muscles, including the internal 

intercostal and abdominal muscles [2]. 

1.1.2.2. Chemical regulation of ventilation 

The main objective of ventilation is to maintain blood oxygen and CO2 and blood pH within their normal 

range of values. Specific groups of neurons, called chemoreceptors, are located in the medulla (central 

chemoreceptors) or the carotid and aortic bodies (peripheral chemoreceptors), where they detect changes 

in gas content and pH of blood and regulate ventilation according to these changes. 

Chemoreceptors are more sensitive to changes in blood CO2 than to changes in blood oxygen because 

CO2 directly affects blood pH, the values of which must be maintained within normal parameters for the 

correct functioning of cells. Therefore, changes in blood CO2 are responsible for most of the changes in 

ventilation. Blood CO2 is mostly regulated by central chemoreceptors. When blood CO2 levels increase, 

the CO2 crosses the blood-brain barrier and lowers the pH of the cerebrospinal fluid. The decreased pH 

activates the central chemoreceptors, which stimulate the respiratory centre. As ventilation increases, 

CO2 is eliminated, and blood pH reaches the normal levels. 

Blood oxygen usually does not affect ventilation regulation. Oxygen begins to affect ventilation when 

its blood concentration falls below half its normal value [1]. In this case, peripheral chemoreceptors are 

responsible to stimulate the respiratory centre in order to increase ventilation, and thus blood oxygen. 

1.1.2.3. Other regulations of ventilation 

Ventilation can also be affected by responses from higher brain centres and peripheral mechanical 

receptors [3]: 

- The limbic system of the brain can accelerate ventilation in response to emotions 

- The cerebral cortex allows the depth and rate of ventilation to be voluntarily controlled 

- Baroreceptors in lung tissue detect stretching during inflation of the lungs. The activation of these 

receptors inhibits the inspiratory centre, thus preventing overinflation of the lungs. During 

expiration, these receptors are no longer activated, allowing the inspiratory centre to activate again 

- Proprioceptors in muscles and joints detect muscle contractions and body movements, and their 

action potentials stimulate the respiratory centre 

- Other receptors of touch, pain, and temperature can also stimulate the respiratory centre through 

higher brain centres 
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1.1.3. Measurement of ventilation 

Lung function tests are a set of respiratory manoeuvres that are performed using standardised equipment 

to determine how well the lungs work. In particular, spirometry and body plethysmography are those 

most often used to assess ventilation [4]. 

Spirometry measures how much air can be inhaled and exhaled (lung volumes) and how quickly this 

can happen (airflow) (Figure 3). The spirometry manoeuvre consists of performing a maximal 

inspiration from tidal breathing followed by a maximal expiration. It can be performed in a relaxed or a 

forced manner. 

 
Figure 3. Typical volume-time and flow-volume curves obtained during forced spirometry. 

FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity. 

The most important spirometric parameters from a clinical point of view are: 

- Forced vital capacity (FVC), the volume of air that is exhaled from a maximal inspiration to a 

maximal expiration during a forced spirometry 

- Forced expiratory volume in 1 second (FEV1), the volume of air that is exhaled during the first 

second of a forced spirometry 

- FEV1/FVC ratio 

- Total lung capacity (TLC), the total volume of air that can be contained in the lungs 

These parameters, which are usually expressed as a percentage of the reference values according to sex, 

age, and height [5], provide relevant clinical information for distinguishing different types of abnormal 

ventilatory patterns, including obstructive and restrictive patterns [4]. An obstructive pattern is 

characterised by reduced expiratory airflows, due to airway obstruction (AO). Despite airflow limitation, 

FVC is usually normal or reduced to a lesser extent than FEV1, which leads to a reduction in the 

FEV1/FVC ratio. A decrease in the FEV1/FVC ratio below the normal range of values (0.7–0.8) is a 

clear indicator of AO [6]. 

On the other hand, a restrictive pattern is characterised by reduced lung volumes (<80% of predicted), 

including FEV1, FVC, and TLC, whereas expiratory airflows may be normal. In this case, the FEV1/FVC 

ratio is normal or even elevated, since FVC may be reduced to a larger extent than FEV1 [7]. 
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However, a reduced FVC is not always due to a restrictive pattern. In severe AO, as in emphysema, lung 

hyperinflation leads to an increased residual lung volume and a reduced FVC, which may be erroneously 

interpreted as a restrictive pattern. For this reason, TLC—the summation of FVC and the residual lung 

volume—should be measured to confirm or exclude the restrictive pattern. Since spirometry does not 

measure the residual volume, additional tests, such as gas dilution technique or body plethysmography, 

are required for this purpose [4]. 

Major spirometric parameters are used as a first simple tool for detecting an abnormal ventilatory 

pattern. Spirometry can help to detect obstructive lung diseases, such as asthma and chronic obstructive 

pulmonary disease (COPD), at an early stage and thus guide their management [8]. However, in order 

to make a more accurate diagnosis, additional studies are required. For example, a bronchodilator 

response (BDR) test is usually performed when airflow obstruction is suspected from spirometric 

parameters. This test consists in inhaling around four puffs of a bronchodilator medication, usually a 

short-acting β2-agonist such as salbutamol, and repeating the spirometry after 15 minutes [7]. An 

increase in FEV1 of >12% and >200 mL from the baseline value is considered as a positive BDR [6], 

[7]. Bronchodilator therapy can often reverse airflow limitation in patients with asthma but usually is 

not helpful for patients with COPD. 

Even though spirometry is the most widely used test to assess ventilation, and especially for AO 

assessment, it has also been a subject of controversy. The standard BDR criterion, based on the 

percentage increase in FEV1, is highly influenced by the baseline FEV1 [6], so that subjects with a low 

baseline FEV1 are more likely to have a greater BDR than subjects with a high baseline FEV1. In this 

regard, a study published in 2012 [9] concluded that BDR could be omitted in patients with normal 

baseline spirometry and an FEV1 above 90% of that predicted, since only 1% of these patients had a 

positive BDR. Subsequently, another study performed in children [10] showed that 10–12% of children 

with normal baseline spirometry had a positive BDR, and therefore baseline FEV1 should not affect the 

decision to perform a BDR test. 

The true significance of various levels of BDR and the usefulness of the standard BDR cutoff have also 

been a source of debate, especially for diagnosing asthma [11], [12] and differentiating between asthma 

and COPD [13]. In fact, using FEV1 to assess BDR, especially in patients with COPD, is quite 

paradoxical, since “It would be the equivalent of defining essential hypertension as an increase in BP 

that must not respond to antihypertensive therapy, and then testing antihypertensive agents using the 

unmodifiable BP as the only outcome” [8]. 

Spirometry is a simple and useful technique for supporting the diagnosis, but a specific diagnosis should 

not be made based only on spirometric parameters [7]. 
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1.2. Respiratory sounds 

Respiratory sounds (RS) are mechanical waveforms—that is, vibrations—that are produced during 

breathing, mainly by airflow patterns and pressure changes within the airways. Lung auscultation is a 

key step in physical examination, since RS provide useful clinical information about the respiratory 

system structure and functioning. Respiratory diseases may alter airflow patterns, airway dynamics, and 

regional lung volume distribution, which in turn affect the characteristics of RS [14], [15]. Over the past 

few years, advances in sensors and signal processing techniques have made RS recording and analysis 

an objective, sensitive, and powerful tool for assessing pulmonary function. 

1.2.1. RS classification 

Much effort has been made, both in the past and recently, to unify and standardise nomenclature in lung 

auscultation [15]–[17], especially by the American Thoracic Society and the European Respiratory 

Society [18], [19]. Nonetheless, no standard terminology exists at present to describe RS, and there is 

still some discrepancy in the literature [17]. 

According to two recent and relevant publications about RS [15], [17], the most widely accepted 

categorisation of RS is based on their characteristics and recording site (Figure 4). 

 
Figure 4. Classification of RS. 

Besides location, the following characteristics are mainly used to distinguish between different types of 

RS: 

- Frequency, measured in hertz (Hz), refers to the speed of vibration of RS. RS are formed by a range 

of frequencies that determine how RS are heard. The major or fundamental frequency of an RS 

signal is usually called pitch, with high-pitched RS mainly containing high frequencies and low-

pitched RS containing low frequencies 

- Intensity, usually measured in decibels (dB), refers to the loudness of RS, which is directly related 

to the amplitude of RS signals 

- Duration, usually measured in milliseconds (ms), is the time period during which RS are heard 



8  1.2 Respiratory sounds 

 

 

1.2.1.1. Normal RS 

Normal RS are those heard at the chest, neck, or mouth of healthy people during breathing. Although 

normal RS signals are random in nature, their characteristics highly depend on the recording site. 

When recorded at large airways, such as the trachea (tracheal sounds) (Figure 5A), normal RS can be 

heard during inspiration and expiration. These RS cover a wide frequency range, from around 70 Hz to 

around 1500 Hz. However, most of their power is concentrated in the frequency range up to 850–1000 

Hz, with a sharp drop in power above these frequencies [15], [20] (Figure 5B). 

Normal RS recorded at the chest wall (lung sounds) (Figure 5C) are much louder during inspiration than 

during expiration. In contrast to mouth and tracheal sounds, lung sounds are affected by the low-pass 

filtering effects of the chest. Accordingly, although lung sounds have a frequency band from around 70 

Hz to around 1000 Hz, most of their energy extends up to 200–250 Hz, with a sharp decrease in power 

above 250 Hz [15], [20], [21] (Figure 5D). 

 
Figure 5. Frequency band of tracheal and lung sounds. (A) Tracheal sounds and airflow. (B) Power 

spectral density (PSD) of tracheal sounds. (C) Lung sounds and airflow. (D) PSD of lung sounds. 

Positive airflow values correspond to inspiration and negative airflow values, to expiration. PSDs were 

calculated using Welch’s periodogram. 

A few studies have investigated the effects of age and gender on normal RS characteristics but have not 

revealed major differences. Specifically, only minor changes in the spectra of RS that correlate to age 

have been reported [22]. However, those changes had no clinical significance, so that there is no 

practical need to consider the patient’s age during RS analysis. Moreover, although women have been 

reported to have a higher power at high frequencies than men [21], [22], these differences at high 

frequencies are not relevant, since most of the energy of RS is concentrated at low frequencies, at which 

range no significant differences were found between men and women. 
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1.2.1.2. Adventitious RS 

Adventitious RS are additional abnormal sounds that appear superimposed on normal RS and usually 

indicate the presence of a respiratory disorder [20]. These sounds are subdivided as follows: 

- Continuous adventitious sounds (CAS) typically last more than 100 ms and have a sinusoidal-like 

or quasi-periodic waveform [15], [20]. They include: 

o Wheezes, musical sounds with a pitch between 100 Hz and 1000 Hz that can be inspiratory, 

expiratory, or biphasic. Wheezes can be monophonic or polyphonic, depending on whether they 

have only one frequency component or several simultaneous frequency components, 

respectively 

o Stridors, musical sounds with a pitch around 500 Hz, which are mainly inspiratory but can also 

be expiratory or both. Different from wheezes, stridors are better heard over the large airways, 

especially over the neck, and usually have shorter duration 

o Rhonchus, musical sounds with a pitch around 150 Hz. Their waveform can be either like pure 

low-pitched wheezes or similar to snores. Rhonchus are often reported as low-pitched wheezes 

- Discontinuous adventitious sounds mainly include crackles, which are short, explosive, non-musical 

sounds that can be heard during both respiratory phases. Crackles are further divided into fine 

(around 5 ms and 650 Hz) and coarse (around 15 ms and 350 Hz). Fine crackles are mainly generated 

during mid-to-late inspiration, whereas coarse crackles are heard during early inspiration and 

throughout expiration [15] 

- Squawks are mixed sounds that contain a short wheeze at around 200–300 Hz accompanied or 

preceded by crackles, mainly heard during inspiration [15] 

Even though this is the most widely-accepted classification for adventitious RS, it is still controversial 

to date [17]. The lack of studies in large samples and of a standardised methodological approach to RS 

recording (e.g., number of sensors and respiratory manoeuvres) and analysis (e.g., algorithms and 

variables) have made it difficult to reach strong conclusions about the characteristics of different types 

of adventitious RS, especially with respect to CAS [23]. 

1.2.1.3. Other abnormal RS 

In certain pathological conditions, RS characteristics may be altered, independent of whether 

adventitious RS are present or not. The most common abnormalities in RS are related to changes in 

intensity. A decrease in RS intensity can be associated to several disorders involving sound generation 

or transmission, as described in Section 1.3.1. Abnormal lung sounds with increased frequency and 

intensity and an unusual louder and longer expiratory phase are called bronchial sounds [14], [15], [24]. 

Although recorded at the chest, bronchial sounds are more similar to tracheal sounds than to normal 

lung sounds. 
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1.2.2. Production of normal RS 

Normal RS are a consequence of turbulent airflow through the airways and changes in airflow patterns 

[24], [25]. Turbulent airflow occurs in large airways, in which air flows quickly and air molecules move 

randomly. Flow turbulence produces pressure fluctuations within the air and airway walls, which in turn 

produce RS [14], [26]. The intensity of both turbulence and RS increases with flow velocity. However, 

turbulent flow only appears above a critical flow velocity. As air flows from large airways to smaller 

airways, its velocity progressively decreases until it is insufficient to produce turbulence, which occurs 

somewhere between the lobar bronchi and the terminal bronchioles [24]. Therefore, airflow in small 

airways is laminar and does not produce RS. 

Normal tracheal sounds are produced by turbulent inspiratory and expiratory airflows in upper airways. 

However, normal lung sounds are related to turbulent airflows and changes in airflow patterns in the 

central airways [14], [27]. The branching structure of the central airways and the different airway 

diameters cause abrupt changes in the direction of airflow and force the airstream to be separated into 

layers with different velocities. Therefore, as air flows towards peripheral airways, the airflow pattern 

becomes irregular, and circular airflows or vortices appear. This airflow pattern also contributes to 

produce normal lung sounds. 

In contrast to tracheal sounds, the inspiratory and expiratory components of normal lung sounds have 

different origins [15], [20], [26]–[31]. Inspiratory lung sounds are produced within the lobar and 

segmental airways, with the contribution of even more peripheral airways [24]. However, expiratory 

lung sounds are produced within more proximal airways, as airflows from small airways progressively 

converge within larger airways (Figure 6). Since inspiratory lung sounds are produced within more 

peripheral airways—that is, more locally and deep underneath the chest wall—they can be clearly heard 

over the entire chest wall surface. Nevertheless, the intensity of expiratory lung sounds gradually 

decreases from the upper airways to the base of the lungs. 

 
Figure 6. Production site of tracheal and lung sounds. 
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1.2.3. Transmission and distribution of RS 

RS transmission depends on the mechanical properties and geometry of the solid structures within the 

thorax, including airways, lung parenchyma, and chest wall [32]. As RS are transmitted through different 

structures, they are attenuated and filtered. The amount of RS energy that reaches the surface of the 

chest wall mainly depends on the acoustic impedance of the different media, that is, their opposition to 

the flow of energy. If the acoustic impedance of two different media are very different, most of the RS 

energy is absorbed rather than transferred. In contrast, the more similar the impedances, the higher the 

amount of transferred energy [14]. 

The asymmetric transmission and distribution of RS was analysed in several early studies in the ‘80s 

and ‘90s [32]–[38]. RS cause large airway walls to oscillate at low frequencies, allowing most of the 

energy to be transferred to the lung parenchyma and towards the chest surface. However, airway walls 

become more rigid at high frequencies, allowing RS to remain within the airways and follow an airway 

pathway [33]. Accordingly, the high-frequency components of normal RS and wheezes are better 

transmitted through the airways than through the lung parenchyma and are more clearly heard over the 

trachea than at the chest wall surface. Thus, tracheal sounds could contain information relevant for 

assessing several respiratory diseases, such as asthma [20], [39]. 

The lung parenchyma, which mainly includes alveoli, small airways, and capillaries, was modelled as 

an uniform mixture of gas (alveoli) and water (lung tissue) [26], [33]–[35]. This model was used to 

analyse how RS are transmitted through the lung parenchyma, showing that the absorption of RS energy 

highly depends on frequency. The lung parenchyma acts as a low-pass filter, thus attenuating high-

frequency RS and allowing low-frequency RS to propagate towards the chest surface. Further, 

transmission of low-frequency RS through the lung parenchyma is minimally affected by changes in 

lung volume or gas density [35]. 

The chest wall, which contains bones, muscles, fat, and skin, is thinner but also denser than the lung 

parenchyma. Consequently, most of the RS energy is lost at the interface of these two media. In addition, 

the heterogeneity of the chest wall and the differences in its composition between people are responsible 

for the high variability of RS amplitude at the chest wall surface. For example, RS are poorly transmitted 

to chest surface areas overlying bones, and therefore these areas should be avoided when recording RS 

[26]. 

Despite the high variability of the spatial distribution of RS amplitude over the chest surface, some 

particular patterns have been reported in the literature. On average, inspiratory sounds are around 10 dB 

louder than expiratory sounds at the chest surface [36]. Accordingly, most studies have focused only on 

inspiratory sounds to analyse the distribution of RS amplitude. 

Significant differences in RS distribution have been reported both vertically and horizontally. 

Specifically, RS amplitude is greater in the upper lobe than over the base of the lungs anteriorly, but it 
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increases towards the base posteriorly [26], [37]. In the horizontal plane, RS recorded over the upper 

right hemithorax have been found to be significantly louder than those measured over the upper left 

hemithorax, both anteriorly [38] and posteriorly [35]. However, at the posterior lower chest, a 

lateralisation of RS to the left hemithorax has been reported [35], [36], [38], [40]. In healthy people, 

horizontal differences in RS distribution have been found to be slight (of a few dB) and less relevant 

than vertical differences [36], [40]–[42]. These differences have been mainly attributed to the 

asymmetric mediastinal anatomy, and especially to the asymmetric geometry of airways because of the 

position of the heart. Further, relevant postural effects on the distribution of RS amplitude have also 

been reported [40]. In particular, lung sound intensity was found to be greater over the dependent lung 

in lateral decubitus positions. 

During the past decade, advances in sensor and computer technologies have made the multichannel 

analysis of RS more feasible and practical [43]. RS multichannel recording consists on placing multiple 

sensors on the chest surface so that RS can be simultaneously recorded at several points and large 

amounts of data can be recorded and processed in a straightforward and efficient way. Several 

multichannel approaches to RS recording and analysis have been proposed to provide more accurate 

data about RS localization and distribution [44], [45]. 

A major advantage of RS multichannel recording is the possibility of mapping RS to create respiratory 

acoustic thoracic images [46]. RS imaging provides detailed information about the distribution of the 

RS intensity, which has allowed further analysis of the asymmetries and patterns in the distribution of 

normal RS [41], [47]. Furthermore, this new technique for RS analysis has led to the development of a 

vibration response imaging (VRI) device [42], [48], which uses 40 sensors assembled into two arrays to 

record RS over the posterior chest surface of a person. The system maps the RS intensity from each 

sensor to create static and dynamic grey-scale images. However, these images have been interpreted 

qualitatively, thus depending on the subjectivity of the physicians. The VRI system only provides 

quantitative data for two or three regions of each lung (i.e., upper, middle, lower), in which the relative 

RS intensities are aggregated and expressed as a percentage of the total for both lungs. 

Although some particular patterns in the spatial RS distribution have been proposed, the heterogeneous 

distribution of RS intensity remains still unclear, so that more studies still need to address this issue. 
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1.3. Relationship between RS and respiratory diseases 

The fact that RS characteristics vary over the chest surface, even in healthy people, indicates that RS 

contain regional information about their site of generation and transmission path [26], either one or both 

of which may be affected by respiratory diseases, thus altering the RS characteristics (Figure 7). 

 
Figure 7. Relationship between RS and respiratory diseases. CAS, continuous adventitious sounds; 

COPD, chronic obstructive pulmonary disease; RS, respiratory sounds. 

1.3.1. Decrease in RS intensity 

RS intensity can be decreased due to a reduction in sound generation or impaired transmission, or both. 

A reduced sound generation implies a decreased ventilation and airflow limitation, since RS production 

depends on turbulent airflows through the airways. Further, decreased ventilation can be due either to 

disruption of ventilation control or to airway conditions [14], [15]. 

Shallow breathing, and consequent decreased ventilation, often happens in persons with decreased levels 

of consciousness (e.g. due to injury to the central nervous system or drug overdose). Chest pain can also 

be a cause of decreased ventilation, since pain can limit the breathing depth. Additionally, damage to 

the peripheral nerves that activate respiratory muscles can also cause decreased ventilation. For example, 

injury to the phrenic nerves results in diaphragmatic paralysis, which in turn results in diminished air 

entering the lungs and thus decreased RS. 

Airway conditions include AO by a foreign body or tumour and obstructive pulmonary diseases (OPDs), 

such as asthma or COPD [27], [49]. AO limits airflow, thereby directly effecting generation of RS, 

which are reduced over the obstructed area and more distal areas. The reduction in RS intensity can be 

reversible or permanent, depending on whether the obstruction is reversible or not. 
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RS transmission can be impaired anywhere between the site of RS production and the chest surface. An 

impaired transmission implies either a change in the mechanical properties of a medium or an impedance 

mismatch between two media, which occurs when RS are transmitted through media with very different 

acoustic properties, such as density [14], [15]. Damaged lung tissue in emphysema or increased air 

trapped in hyperinflated lungs (e.g. in COPD) change the acoustical properties of the lung parenchyma 

and lead to a generalised reduction of lung sound intensity. Obesity, with an excess of adipose tissue 

and a resulting increase in chest wall thickness, also decreases lung sound intensity at the chest wall 

surface. Further, in pneumothorax or pleural effusion, the presence of air or fluid accumulation within 

the pleural space causes an impedance mismatch between the normal lung parenchyma and the pleural 

cavity, resulting in diminished lung sound intensity over the affected area [50]. 

In some cases, lung sound intensity can be abnormally increased over the chest wall surface. Patients 

with pneumonia and lung consolidation, atelectasis, or fibrosis may have abnormally loud RS (bronchial 

breathing) over the affected area. These conditions increase the lung tissue density, improving the 

impedance match between the lung tissue and the chest wall and enhancing the transmission of RS to 

the chest wall surface [15], [24], [36]. 

1.3.2. Production of adventitious RS 

Several airway and lung parenchyma disorders are involved in the production of adventitious RS. In 

general, CAS are more related to obstructive airway diseases than to lung parenchyma disorders, 

although the latter can also produce CAS. All types of CAS share the same mechanism of generation, 

which revolves around airway narrowing and airflow limitation. Forgacs [24] reported that the correct 

model of the production of wheezes “is a simple uncoupled reed, represented by a bronchus narrowed 

to the point of closure, whose opposite walls oscillate between the closed and barely open positions”. 

Subsequently, this theory was corroborated by Grotberg and Gavriely [51], who developed a theoretical 

model of wheeze generation using collapsible tubes, showing that wheezes are generated by oscillation 

of narrowed airways whose walls are in apposition. 

Wheezes only appear above a critical flow, which depends on the mechanical properties of airways, 

including the airway diameter and the airway wall thickness, stiffness, elastance, and longitudinal 

tension [27], [51]. These mechanical properties also affect the pitch of wheezes, which increases with 

narrower airways, thinner airway walls, or stiffer airway walls. However, wheeze pitch is not affected 

by the length or diameter of airways [15], [24], [27]. Further, although wheezes are always associated 

with airflow limitation, the opposite is not true—airflow limitation can occur without wheezes [15], 

[51]. For instance, patients can have severe AO without wheezes if airflow is below the critical flow to 

produce wheezes. In these cases, normal RS intensity is highly reduced or even absent, which is known 

as silent lung [15]. 

Distinguishing between wheeze types can be important for diagnosis. Localized monophonic wheezes 

are usually related to a local obstruction (for instance, by a foreign body or tumour), although single or 
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multiple monophonic wheezes are also heard in patients with asthma, which can lead to a misdiagnosis 

[15]. Moreover, squawks (a particular type of wheeze) can be heard in lung parenchyma disorders (e.g. 

asbestosis, pneumonia, or pulmonary fibrosis). These are either single or multiple short monophonic 

wheezes that appear during inspiration over the base of the lungs and are associated with late inspiratory 

crackles [24], [52], [53]. 

Polyphonic wheezes are a common symptom of COPD and usually appear during expiration [24]. In 

contrast to multiple monophonic wheezes, which start and end at different times, the different frequency 

components of a polyphonic wheeze start and end simultaneously. Polyphonic wheezes are produced by 

simultaneous compression of different airways, hence the presence of different frequency components. 

This type of wheeze can also be heard in healthy people during forced expiratory manoeuvres. However, 

when heard during normal breathing, polyphonic wheezes are a clear sign of AO. 

Stridors are produced by turbulent airflow passing through narrowed upper airways (caused for example 

by vocal cord dysfunctions, a foreign body, or a tumour). They are louder than wheezes and are more 

clearly heard on inspiration and over the neck. However, when recorded over the lungs, these high-

pitched tracheal wheezes can be confused with asthma wheezes, highlighting the importance of 

recording tracheal sounds [15], [54], [55]. 

While all types of CAS share the same mechanism of generation, fine and coarse crackles are produced 

by two well-differentiated mechanisms. Fine crackles are generated by the sudden reopening of 

peripheral airways that were abnormally closed due to deflation of dependent lung regions in several 

diseases affecting the lung parenchyma, such as pulmonary fibrosis, asbestosis, or pneumonitis [20], 

[56]. In deflated lung regions, the airways remain unusually closed until late inspiration, causing a large 

difference between the atmospheric pressure and the intra-alveolar pressure. When pressure overcomes 

the airway resistance, peripheral airways suddenly reopen and the subsequent explosive equalization of 

pressure produces crackles [24]. Fine crackles, heard during mid-to-late inspiration, are not transmitted 

to the mouth, or affected by cough but are altered by changes in body position [15]. Fine expiratory 

crackles can also be due to the sudden closing of peripheral airways during expiration [56]. 

Coarse crackles are usually heard at the beginning of inspiration and throughout expiration and are due 

to the airflow going through airways that open and close intermittently. They can be related to secretions, 

may coexist with fine crackles in pneumonia, and, together with wheezes, are a common sign of OPDs, 

such as COPD or asthma [20], [24]. Further, coarse crackles can be heard over any lung region and are 

transmitted to the mouth, affected by cough, and altered by changes in body position [15]. 

Crackles can also appear in healthy people during deep inspiration following a maximum expiration. 

However, these crackles disappear with coughing and have no clinical relevance [14]. 





CHAPTER 1  17 

 

 

1.4. RS analysis 

Since Rene Laënnec invented the stethoscope in 1816 [57], lung auscultation by physicians has been an 

essential part of cursory physical examinations, providing relevant clinical information about the 

respiratory system structure and functioning in a quick and easy way. However, traditional manual 

auscultation suffers from lack of objectivity, since it highly depends on the skills and experience of the 

physicians involved. 

During the past three decades, advances in computer and sensor technologies have made the objective 

analysis of RS more practical, with increasing interest in its clinical application for diagnostic purposes. 

In 2000, the European Respiratory Society published guidelines for Computerised Respiratory Sound 

Analysis (CORSA), with the purpose of standardising both the recording and signal processing of RS 

[58]–[60]. Although the CORSA project described the auscultation points, type of sensors, acquisition 

and pre-processing guidelines, and basic signal processing techniques, a variety of approaches to RS 

recording and analysis have been proposed since then [23]. 

The next subsections describe the most relevant findings reported in previous studies regarding the 

technical aspects of the analysis of normal RS and CAS. 

1.4.1. Relationship between normal RS intensity and airflow 

As described in Section 1.2.2, the intensity of airflow turbulence and normal RS increases with airflow. 

The relationship between normal RS intensity and airflow has been the subject of numerous studies. 

Early studies described a linear relationship between the amplitude of normal RS recorded at the chest 

surface and the airflow recorded at the mouth [61], [62]. Leblanc et al. [61] focused on inspiratory 

sounds, whose intensity linearly increased with airflows varying between 1 and 4 L/s. A linear 

relationship between the mean absolute amplitude of normal RS and airflow was reported by Kraman 

[62] in four healthy participants breathing at airflows between 1.4 and 4 L/s. However, he also found a 

non-zero slope between airflow and the amplitude of normal RS divided by airflow, which suggested a 

nonlinear relationship. 

Subsequent studies corroborated the nonlinear relationship between normal RS intensity and airflow 

[63]–[65]. The best model to describe this relationship is a power law (linear relationship in a 

logarithmic scale): 

 𝐼 ∝ 𝐹𝛼 (1) 

 log 𝐼 ∝ 𝛼 log 𝐹 (2) 

In (1) and (2), I is RS intensity, F is airflow, and α is a constant. Different α values, which determine 

the power relationship, have been reported. A quadratic function (α = 2) was found to be the best relation 

between the root mean square (RMS) envelope of RS and airflow for both inspiration and expiration 

[63]. However, α values below 2 were reported in other studies using the RS spectrum in order to 
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calculate RS intensity [64], [65]. There were small differences between the values of α found in these 

studies (1.66 ± 0.35 in [64] compared to 1.89 ± 0.57 in [65]) due to the use of different frequency bands 

(100–1000 Hz in [64] compared to 150–450 Hz in [65]) of the RS spectrum and the small sample size 

in both studies. 

A third-power relationship has been reported between the RS energy at peak inspiration and airflow 

using the VRI system [66], although this relationship did not affect the distribution of RS energy in 

normalized acoustic maps, especially at airflows above 1 L/s. 

The close relationship between RS and airflow led other studies to focus on flow estimation from RS, 

especially from tracheal sounds. Que et al. [67] estimated respiratory flow from the envelope of tracheal 

sounds, obtained using the Hilbert transform. The estimation of ventilation parameters from the 

estimated airflow was called phonospirometry. Yadollahi and Moussavi [68] used a linear model to 

estimate flow using the entropy of tracheal sounds in the frequency band of 75–600 Hz. Other studies 

have been based on the RS–airflow relationship for developing a respiratory phase detection method 

using only tracheal sounds [69] or by analysing variations in upper airway physiology from wakefulness 

to sleep in persons with obstructive sleep apnoea [70]. 

The aforementioned studies focused on analysing the relationship between RS and airflow, thus 

demonstrating that RS are highly dependent on airflow. However, in most previous studies that focused 

on analysing RS to assess respiratory diseases, RS were recorded without controlling for airflow, with 

maintained airflows, or with forced expiratory manoeuvres (Sections 1.6.2.1 and 1.6.2.2). Therefore, 

further studies addressing airflow-dependent analyses of RS are required. 

1.4.2. Detection and characterisation of CAS 

As described in Section 1.3.2, CAS are a common symptom of various respiratory diseases and are a 

clear sign of AO and airflow limitation. In order to objectify auscultation, several previous studies have 

been focused on the automatic detection and analysis of wheezes, although the reported techniques can 

also be used to detect other types of CAS. Early studies used the power spectrum to detect and analyse 

wheezes [71]–[79]. Since wheezes have a sinusoidal-like waveform, they are represented in the power 

spectrum as peaks centred at the fundamental frequencies of CAS and clearly higher than the baseline 

level (Figure 8). 

Besides the power spectrum, time-frequency distributions (TFDs) have been the most commonly used 

methods to detect and analyse wheezes, especially those based on Fourier analysis, such as spectrogram, 

and wavelet analysis. TFDs show that the energy of wheezes concentrates around their pitch for as long 

as they last (Figure 9). 



CHAPTER 1  19 

 

 

 
Figure 8. Power spectrum of an RS signal containing CAS. (A) RS signal containing two CAS. (B) 

Power spectral density (PSD). CAS appear in the PSD as peaks centred at around 85 Hz and 430 Hz. 

 
Figure 9. Spectrogram of an RS signal containing CAS. (A) RS signal containing two CAS. (B) 

Spectrogram. CAS appear in the spectrogram as ridges of energy around 85 Hz and 430 Hz. 

Spectrogram—the square module of the short-time Fourier transform—has been the most used TFD for 

wheeze analysis [80]–[87]. Different techniques have been applied to spectrogram to identify wheezes. 

Some studies used a set of thresholds to detect local maximums that were likely to be wheezing peaks 

[80], [81], [84], [85]. Thereafter, the detected peaks were grouped using several temporal and spectral 

continuity criteria until wheezes were defined. Other studies treated spectrogram as an image and used 

digital image processing techniques to detect wheezes [82], [83], [87]. Zhang et al. [86] calculated the 

Shannon entropy of the RS spectrogram to distinguish between the power distribution pattern of normal 

RS and that of wheezes. 

Analogous to spectrogram, scalogram—the square module of the continuous wavelet transform—was 

proposed by Taplidou et al. [88] to analyse wheezes. Additionally, more advanced TFDs have also been 

proposed for wheeze detection and analysis. Taplidou and Hadjileontiadis [89] combined the continuous 

wavelet transform with third-order statistics to calculate the evolutionary wavelet bicoherence, which 

was used to quantify the nonlinear characteristics of wheezes in the time-bi-frequency domain. Jin et al. 

[90] proposed a new TFD for RS analysis called temporal-spectral dominance spectrogram. Although 
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this TFD is calculated from the short-time Fourier transform, like spectrogram, it has higher resolution 

and enhances the identification of wheezes. 

Besides TFDs, other methodologies have been proposed for classifying RS as normal or abnormal RS 

[91]–[94] or as wheezing or non-wheezing [95]–[97]. These studies have used standard pattern 

recognition methodology, which comprises three basic steps: feature extraction, dimensionality 

reduction or feature selection, and pattern classification. Classifying RS does not necessarily imply using 

time-frequency analysis techniques, such as TFDs, but other techniques can be used to extract features 

that allow different types of RS to be distinguished. Indeed, in previous studies, feature extraction was 

performed using wavelet coefficients [91], multiscale principal component analysis in Fourier domain 

[93], morphological complexities of RS (i.e. entropy, kurtosis, or skewness) [94], [97], or Mel frequency 

cepstral coefficients [95], [96]. These techniques allow CAS to be distinguished from other RS but do 

not allow CAS to be characterised. Characterising CAS requires the duration, mean frequency, and 

intensity of CAS to be calculated. To do this, time-frequency analysis techniques are required. 

Although spectrogram has been widely used to characterise CAS, its poor resolution and its low energy 

concentration could prevent it from delimiting CAS accurately, especially weak CAS that overlap with 

normal RS in the time-frequency plane. In general, TFDs derived from Fourier or wavelet transforms 

have low energy concentration, which makes the detection of CAS highly dependent on amplitude 

criteria. Moreover, Fourier and wavelet-based techniques require a priori knowledge of the signal 

characteristics to correctly choose the analysis parameters. Further, analysing CAS using TFDs is more 

complex, since the entire time-frequency plane has to be processed to search for the ridges described by 

CAS (Figure 9). In this thesis, we propose a new approach to CAS analysis in order to overcome these 

issues in previous techniques (Section 1.5.4). 
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1.5. Proposed approach to RS analysis 

There are four key aspects to be considered in RS analysis, as briefly outlined in the previous sections: 

the heterogeneous distribution of RS (Section 1.2.3), the airflow dependence of RS (Sections 1.2.2 and 

1.4.1), the different characteristics of RS types (Section 1.2.1), and the effect of respiratory diseases on 

RS (Section 1.3). An approach to RS analysis that considers all these aspects is expected to highly 

contribute to improving both the study of RS and their applicability in clinical practice. 

In this thesis, we addressed several technical issues to propose a new approach to RS analysis, taking 

all the aforementioned aspects into consideration. We began this thesis by analysing normal RS intensity 

based on the multichannel RS recording (Section 1.5.1), the progressive respiratory manoeuvre (Section 

1.5.2), and the RS intensity–airflow curves (Section 1.5.3). We then developed a novel approach to CAS 

detection and characterisation based on the Hilbert-Huang transform (HHT) (Section 1.5.4). Finally, we 

proposed two clinical applications of our approach to RS analysis, as described in the next Sections 

1.6.1.2 and 1.6.2.3. 

1.5.1. Multichannel recording of RS 

When recorded at the chest surface, RS contain regional information about pulmonary ventilation and 

the structure of the respiratory system. Using a single channel to record RS could fail to detect local 

changes in RS distribution due to localised AO or lung disorders. Thus, multichannel recordings using 

several sensors should be implemented to allow RS to be analysed at several points over the chest 

surface. 

Our proposed approach to RS analysis includes a multichannel recording of RS using five contact 

microphones placed at the trachea, at the posterior base of the lungs, and near the posterior upper lobe 

of the lungs (Figure 10). High-frequency components of RS are better transmitted through the airways 

than through the lung parenchyma and are more clearly recorded over the trachea. Therefore, recording 

tracheal sounds provides distinct but complementary information to that provided by lung sounds [20], 

[39]. Moreover, the proposed four points for lung sound recording were the most used locations in 

previous studies and allow the distribution of RS to be analysed both horizontally and vertically, 

covering the commonly reported lung regions [35], [40], [41], [73], [98]. 

1.5.2. Airflow-dependent analysis of RS 

Most previous studies analysed RS recorded without controlling airflow, at maintained airflows, or 

during forced expiratory manoeuvres. However, it is widely accepted that both normal RS and CAS 

highly depend on airflow. Therefore, it is important to perform airflow-dependent analyses of RS using 

well-controlled respiratory manoeuvres. 
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Figure 10. Recording points for lung and tracheal sounds. 

This thesis proposes to perform a progressive respiratory manoeuvre with variable airflow for recording 

RS. For this, a person starts to breath normally, progressively breathes faster and deeper until the deepest 

breaths possible, and returns to normal breathing (Figure 11). In this way, both normal RS and CAS can 

be analysed depending on the total airflow range of each person. 

 
Figure 11. Progressive respiratory manoeuvre. Airflow signal (blue) and RS signal (grey) recorded 

during a progressive respiratory manoeuvre. RS were recorded at the posterior base of the right lung. 

1.5.3. Analysis of normal RS based on the RS intensity–airflow curves 

We propose calculating the RS intensity–airflow curves to analyse normal RS intensity. Thus, normal 

RS intensity is calculated as the area under the curve of the Welch’s power spectral density estimate 

[99], within a particular frequency band (3). 

 𝐼 =
𝑓𝑚

𝑁𝐹𝐹𝑇
∑ 𝑃𝑆𝐷(𝑓)

𝑓2

𝑓=𝑓1
 (3) 

In (3), I is RS intensity, fm is the sampling rate of the recorded RS signal, NFFT is the number of points 

used to calculate the fast Fourier transform (FFT), f1 and f2 are the frequency boundaries of the frequency 

band of interest, and PSD is the Welch’s power spectral density estimate of the RS signal. After 

calculating the intensity of the RS signals corresponding to the respiratory cycles of a progressive 
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manoeuvre, each respiratory cycle is characterised with the parameters of the RS intensity and the peak 

flow. In this way, the RS intensity–airflow curves are obtained for each person. 

1.5.4. Analysis of CAS based on HHT 

1.5.4.1. The need for time-frequency analysis 

We aimed to analyse not only normal RS but also CAS for this thesis. This dual approach to RS analysis 

required the development of a robust classifier that allowed CAS to be differentiated from normal RS. 

Further, CAS analysis requires going further than simple CAS identification—also the basic CAS 

characteristics, including duration, mean frequency, and intensity, must be calculated. Therefore, it is 

necessary to use a technique that allows CAS to be analysed simultaneously in both time and frequency 

domains. 

TFD analysis is the most straightforward methodology in time-frequency analysis (Figure 12). TFDs 

represent the distribution of the energy of a signal throughout the time-frequency plane [100]. Therefore, 

TFDs can be used to simultaneously obtain information about the temporal and spectral content of CAS. 

 
Figure 12. Proposed approach to CAS analysis based on HHT as compared to previous 

approaches based on TFDs. CAS, continuous adventitious sounds; EEMD, ensemble empirical mode 

decomposition; IF, instantaneous frequency; TFD, time-frequency distribution; WVD, Wigner-Ville 

distribution; RID, reduced interference distribution. 

As described in Section 1.4.2, spectrogram was used in most previous studies that were focused on CAS 

analysis. For a real signal, s(t), the spectrogram, S(t,f), is defined as the squared magnitude of the short-

time Fourier transform of the signal s(t): 

 𝑆(𝑡, 𝑓) = |∫ 𝑠(𝜏)𝑤(𝜏 − 𝑡)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
∞

−∞
|
2
 (4) 
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In (4), w(τ-t) is a real window centred at time τ = t. A major limitation of spectrogram is that its resolution 

depends on the length of the window w(τ). Short windows provide good time resolution, but poor 

frequency resolution. In contrast, long windows provide good frequency resolution, but poor time 

resolution. Therefore, spectrogram compromises the two resolutions, which cannot be maximised at the 

same time, in accordance to the uncertainty principle [100]. On the other hand, the signal energy in 

spectrogram is scattered over the entire time-frequency plane, and spectrogram therefore has low energy 

concentration. Both the poor resolution and the low energy concentration could prevent spectrogram 

from delimiting CAS accurately, especially weak CAS with low intensity that overlap with the scattered 

energy of normal RS in the time-frequency plane. 

Besides spectrogram, a few other techniques have been used for analysing CAS (Section 1.4.2), which 

are mainly based on the continuous wavelet transform [88], [89] and the temporal-spectral dominance 

spectrogram proposed by Jin et al. [90]. The continuous wavelet transform suffers from the same 

problems as spectrogram. The time and frequency resolutions of the continuous wavelet transform 

depend on frequency. At high frequencies, the time resolution is high but the frequency resolution is 

low, whereas at low frequencies, the frequency resolution is high but the time resolution is low. 

However, in each case, the two resolutions are affected by the uncertainty principle. In fact, any TFDs 

derived from integration-based transforms, such as Fourier or wavelet transforms, are affected by the 

uncertainty principle. Moreover, the conventional Fourier and wavelet-based techniques require a priori 

knowledge of the signal characteristics to correctly choose the analysis parameters. 

The ideal TFD would have perfect resolution in both time and frequency domains and a high energy 

concentration. Different techniques, such as the adaptive short-time Fourier transform that uses a 

variable window length adapted to signal characteristics, have been proposed with the aim of increasing 

the resolution and energy concentration of conventional TFDs [101], [102]. A common approach to 

enhancing TFDs includes reassignment techniques [103], [104], whose objective is to reduce the energy 

spread in TFDs. Reassignment techniques are based on the reallocation of the signal energy in the time-

frequency plane. A reassigned version of a TFD is obtained by moving its values from their original 

locations to the centre of gravity of their energy contributions, thus increasing energy concentration and 

producing a better localisation of signal components. A special type of reassignment technique is the 

synchrosqueezing transform, which allows energy concentration to be increased and modes of 

multicomponent signals to be retrieved [105]. 

1.5.4.2. The concept of instantaneous frequency and HHT 

One of the most important parameters of time-frequency analysis is instantaneous frequency (IF), 

which—as its name indicates—consists of having values of the frequency content of a signal at each 

time instant [106], [107]. This parameter is extremely useful for the analysis of non-stationary signals, 

whose spectral content varies over time. 
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In the field of communication theory [108], Gabor defined the IF, f(t), of a real signal, s(t), from its 

corresponding analytic signal, z(t), as follows: 

 𝑧(𝑡) = 𝑠(𝑡) + 𝑗𝐻[𝑠(𝑡)] = 𝑎(𝑡)𝑒𝑗𝜃(𝑡) (5) 

 𝑓(𝑡) =
1

2𝜋

𝑑𝜃(𝑡)

𝑑𝑡
 (6) 

In (5), H[·] is the Hilbert transform, a(t) is the absolute value of z(t) and the instantaneous envelope (IE) 

of s(t), and θ(t) is the phase of z(t). The equation (6) yields frequency values at each time instant, so that 

the obtained IF sequence has maximum time resolution and provides information about the temporal 

evolution of the frequency content of a signal, regardless of its energy. 

The concept of IF led to the development of a TFD that represents the true IF law of monocomponent 

signals in the time-frequency plane. In other words, the ideal TFD of a monocomponent signal would 

contain a single frequency value at each time instant. Under this premise, the Wigner-Ville distribution 

(WVD) [106], Wz(t,f), was defined as: 

 𝑊𝑧(𝑡, 𝑓) = ∫ 𝑧 (𝑡 +
𝜏

2
) 𝑧∗ (𝑡 −

𝜏

2
)

∞

−∞

𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏 (7) 

In (7), z(t) is the analytic signal of a real signal. One of the most important properties of the WVD is 

that it yields the true IF values of monocomponent linear FM signals through its first moment with 

respect to frequency: 

 𝑓(𝑡) =
1

2𝜋

𝑑𝜃(𝑡)

𝑑𝑡
=

∫ 𝑓𝑊𝑧(𝑡,𝑓)
∞
−∞ 𝑑𝑓

∫ 𝑊𝑧(𝑡,𝑓)𝑑𝑓
∞
−∞

 (8) 

However, a major drawback of WVD is that, when applied to multicomponent signals, it produces cross-

terms. Due to its quadratic form, WVD produces spurious components that appear between the true 

components of a signal in the time-frequency plane. To reduce cross-terms, a number of quadratic TFDs, 

including the reduced interference distributions [109], have been proposed as smoothed versions of 

WVD. In fact, any quadratic TFD, ρz(t,f), can be expressed as a filtered WVD using a specific time-lag 

kernel filter, G(t,τ), as follows: 

 𝜌𝑧(𝑡, 𝑓) = ∫ ∫ 𝐺(𝑡 − 𝑢, 𝜏)𝑧 (𝑢 +
𝜏

2
) 𝑧∗ (𝑢 −

𝜏

2
) 𝑒−𝑗2𝜋𝑓𝜏𝑑𝑢𝑑𝜏

∞

−∞

∞

−∞

 (9) 

The various existing quadratic TFDs propose different tradeoffs between energy concentration, 

resolution, and cross-term reduction [100]. In general, quadratic TFDs have higher resolution and energy 

concentration around the IF than spectrogram or scalogram, which allows the components of a signal to 

be identified more easily. However, cross-terms are a major drawback of quadratic TFDs, since they 

make it more difficult to identify the true components of a signal. When applied to RS signals, quadratic 

TFDs could lead to the detection of false CAS components. 
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Despite the advantages of reassignment techniques and quadratic TFDs, none of these techniques have 

been used in the field of RS analysis, especially for analysing CAS. Besides the extra computational 

cost of reassigned and quadratic TFDs, analysing CAS directly from TFDs implies working in a three-

dimensional space, in which differentiating CAS from other RS is more complex, since the entire time-

frequency plane has to be processed to search for the ridges described by CAS (Figure 9). Moreover, 

the commonly used method based on local peak detection and component linking over the spectrogram 

is highly dependent on amplitude criteria. 

In this thesis, we now propose a new approach to CAS analysis based on the IF of RS signals (Figure 

12). This approach includes detecting CAS with the assumption that the IF of an RS signal can reveal 

the difference between the deterministic nature (quasi-periodic) of CAS and the random nature of normal 

RS. In other words, the assumption is that IF values concentrated around the pitch of a CAS are obtained 

for as long as a CAS lasts within an RS signal, whereas more dispersed IF values are obtained when 

only normal RS are present. However, calculating IF only makes sense for monocomponent signals—

that is, signals with a unique frequency component at each time instant. Therefore, estimating IF in 

multicomponent signals, such as RS, requires an extra step to separate out the different signal 

components. 

Several IF estimation methods for multicomponent signals have been proposed using TFDs [110], [111]. 

Nevertheless, these methods require calculating TFD and then separating the different components of a 

signal in the time-frequency plane prior to estimating IF for each component (Figure 12). In the case of 

CAS analysis, using a TFD-based IF estimation method would imply detecting CAS prior to IF 

estimation and then using the IF estimates to detect CAS, which is paradoxical. Therefore, it makes 

sense to use the IF estimation method proposed in (6) rather than those based on TFDs. 

As (6) yields a single frequency value at each time instant, it can be only applied to monocomponent 

signals. However, the approach we propose to analyse CAS uses HHT, which allows IF in 

multicomponent signals to be estimated without involving TFDs [112] (Figure 12). Prior to IF 

calculation, HHT uses empirical mode decomposition (EMD) to decompose a multicomponent signal 

into a set of narrowband components, called intrinsic mode functions (IMFs), for which IF can be 

calculated as in (6) [113]. Given a multicomponent real signal, s(t), EMD allows the IMFs of s(t) to be 

obtained by a sifting process that involves the following steps: 

1) Identify of all the local extrema (both maxima and minima) of s(t) and connect them using cubic 

spline interpolation, to obtain the upper and lower envelopes 

2) Calculate the local mean of the two envelopes, m(t), and subtract it from s(t), to obtain h(t) 

3) Repeat the first two steps on h(t) until m(t) is close to zero under certain criterion, usually based on 

the standard deviation of m(t). Then, h(t) is considered to be the first IMF, c1(t) 

4) Calculate the residue r1(t) by subtracting c1(t) from s(t) 
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5) Repeat steps from 1 to 4 on r1(t) until the obtained residue, rn(t), is a monotonic function and no 

further IMF can be extracted. Then, the original signal s(t) can be expressed as: 

 𝑠(𝑡) = ∑ 𝑐𝑖(𝑡) + 𝑟𝑛(𝑡)
𝑛

𝑖=1
 (10) 

Having decomposed a signal by EMD (Figure 13), the IF and IE sequences can be calculated from the 

analytic signal of each IMF as in (5) and (6) (Figure 14). After that, s(t) can be expressed as: 

 𝑠(𝑡) = ∑ 𝑎𝑖(𝑡) cos(∫ 2𝜋𝑓𝑖(𝑡)𝑑𝑡)
𝑛

𝑖=1
+ 𝑟𝑛(𝑡) (11) 

 
Figure 13. RS decomposition by ensemble empirical mode decomposition (EEMD). IMFs (c1-c4) 

and residue (r4) of an RS signal that contains two CAS. The IMFs were calculated by EEMD, which 

improves on the performance of EMD. 

 
Figure 14. IF (f1-f4) and IE (a1-a4) sequences of the RS signal shown in Figure 13. 

In (11), ai(t) and fi(t) are the IE and IF of the i-th IMF, respectively. Alternatively, the ai(t) and fi(t) 

sequences can be rearranged into an array to obtain an IF-based TFD called the Hilbert spectrum (HS) 

[114] (Figure 15D). 
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Figure 15. TFDs for RS analysis. Spectrogram (A), scalogram (B), WVD (C), and HS (D) of the RS 

signal shown in Figure 13. 

Despite the many favourable properties of HHT [114], the original EMD method suffers from the mode 

mixing effect [112]. Ideally, each IMF calculated by EMD would contain a few different frequency 

components of a multicomponent signal. However, the mode mixing effect of EMD causes some 

components to appear within different IMFs, such that some IMFs contain widely different components. 

Although the mode mixing effect of EMD poses a problem for detecting CAS from the IF sequences of 

RS signals, the original EMD was used in an HHT-based approach to CAS analysis previously proposed 

by Reyes et al. [115], [116]. 

For the work in this thesis, we implemented an improved version of the original EMD, called ensemble 

EMD (EEMD), as the first step of HHT [117], [118]. EEMD consists of the iterative application of the 

original EMD to a signal plus different realizations of filtered white noise. The final IMFs are calculated 

as the mean of those resulting from each iteration. This method is based on the filter bank property of 

the original EMD when applied to white noise [119], [120]. By adding white noise to a multicomponent 

signal, EMD automatically separates its different components based on the reference scales set by white 

noise, thus avoiding the mode mixing effect. 

Here, we originally used the proposed EEMD-based HHT to estimate IF and IE in RS signals containing 

normal RS and CAS (presented in Chapter 3 [121]). Afterwards, we developed a new method to 

automatically differentiate between CAS and normal RS, based on the different IF dispersion patterns 

of the two types of RS, as described above. A set of features extracted from the IF and IE sequences of 

the RS signals was used to train and to test a classifier, using support vector machines [122], [123]. 

In parallel to developing the aforementioned RS classifier, we evaluated in-depth the performance of 

the EEMD-based HHT for RS analysis (Chapter 4 [124]). For this, several technical difficulties of HHT 

had to be addressed and then overcome. First, we analysed the mode mixing effect of the original EMD 
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in RS signals. We then determined the performance for RS of the two most well-established and 

frequently-used solutions for mode mixing, the EEMD and the noise-assisted multivariate EMD [125], 

[126], which allowed us to propose numerous quantitative parameters to evaluate the performance of 

the two methods. Further, we tested and compared different IF estimation methods, including those 

based on the phase derivative of the analytic signal [127] and one based on the Teager energy operator 

[107], [128]. Kay’s IF estimator [127] was chosen for proposing an EEMD–Kay-based HS. 

Additionally, we developed an automatic CAS segmentation and characterisation algorithm using the 

proposed HS. Finally, we compared the performance of spectrogram and the proposed HS for calculating 

the duration and pitch of CAS. 
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1.6. Applications of the proposed approach to RS analysis 

To put into practice the proposed approach to RS analysis (Section 1.5), we conducted two studies in 

the Pulmonary Function Testing Laboratory of the Germans Trias i Pujol University Hospital (HUGTiP) 

in Badalona, Spain, in the course of this thesis. Patients with either unilateral phrenic paralysis (UPP) 

or asthma were recruited for performing pulmonary function tests and participating in the RS recording 

and analysis study. These two respiratory diseases affect the regional distribution of ventilation, and 

therefore RS, in different ways. UPP reduces regional ventilation of the lung on the paralysed side, 

which is more evident at the base of the lung [129], [130]. However, asthma may reduce regional 

ventilation at any point throughout the lungs, since AO can be either localized or diffused throughout 

the tracheobronchial tree [131]–[134]. Further, ventilation heterogeneity in asthma varies with the 

administration of bronchodilators [135]–[137]. Moreover, AO in asthma may be accompanied by the 

presence of CAS. 

The two studies shared two points of the proposed approach to RS analysis: the multichannel recording 

of RS and the progressive respiratory manoeuvre that allows an airflow-dependent RS analysis. 

However, the RS recording protocol was customised for each study, as described in the next sections 

(1.6.1.2 and 1.6.2.3). 

1.6.1. Assessment of UPP by RS analysis 

Diaphragmatic paralysis consists of the loss of diaphragm motor activity due to either compression or 

sectioning of the phrenic nerve that activates the diaphragm (Figure 16) [138], [139]. UPP occurs when 

only one hemidiaphragm is affected, and it is caused mainly by nerve compression by tumours [138], 

nerve injury due to thoracic surgery or trauma [140], infections, or neurological disease. The effects of 

UPP are mild and variable and include shortness of breath and exercise limitation [139], [141]. 

 
Figure 16. Motor innervation of the diaphragm by the phrenic nerves. 

1.6.1.1. Previous work on the assessment of diaphragmatic paralysis 

The techniques traditionally used to diagnose diaphragmatic paralysis are chest radiography, 

fluoroscopy, ultrasonography, and phrenic nerve stimulation [138], [139], [142]. Chest radiography is 

the simplest technique. In UPP, an elevated hemidiaphragm is usually seen on the affected side in chest 
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radiographs. However, in addition to requiring ionising radiation, chest radiography has low specificity 

and low positive predictive value for diagnosing UPP [143]. 

One of the most commonly used techniques for assessing diaphragm function is fluoroscopy [144], 

which allows diaphragm mobility to be assessed. In this technique, a continuous source of X-rays is 

used to produce real-time motion imaging of the diaphragm. Therefore, it is an invasive procedure, 

whose potential risks must be balanced with patient benefits. Ultrasonography can be used as an 

alternative to fluoroscopy [145]–[147]. Ultrasounds provide dynamic images of the diaphragm in a non-

invasive way. However, ultrasonography is operator dependent and requires significant expertise. 

Electrical or magnetic stimulation of the phrenic nerve has also been widely used to assess diaphragm 

function [148]–[158]. Several measurements of diaphragm strength following phrenic nerve stimulation 

have been proposed, such as transdiaphragmatic pressure, maximal static inspiratory mouth pressure, 

and sniff nasal inspiratory pressure [149]–[151], [154], [156]. Electromyography using either 

oesophageal electrodes [152], [153] or surface electrodes [155], [157], [158] has also been used to assess 

diaphragm function. In this case, the most relevant parameters are the mean amplitude of the compound 

muscle action potential and the phrenic nerve conduction time. However, phrenic nerve stimulation is 

an invasive technique. Further, most of these techniques require transnasal placement of either pressure 

catheters for measuring transdiaphragmatic pressure or oesophageal electrodes for measuring diaphragm 

electromyogram. 

Recently, more advanced techniques for evaluating diaphragm function have been proposed, such as 

high-resolution computed tomography [142], [159] or an optoelectronic plethysmography system [160]. 

The former uses ionising radiation, and the latter is not easy to perform and is cost-prohibitive with 

reduced availability. 

Lung function tests are usually performed to corroborate the diagnosis of diaphragm dysfunction, since 

they are easily available and non-invasive. Spirometric parameters, especially the total lung capacity, 

are usually decreased in patients with UPP, depending on the degree of weakness [139], [149], [161], 

[162]. 

An alternative way of measuring ventilation is to analyse RS. Tejman-Yarden et al. [163] used RS 

analysis to detect selective lung ventilation in intubated patients. In healthy people, slight differences of 

a few dB in the lung sound intensity between the lungs have been reported in many previous studies 

[36], [40]–[42]. 

RS analysis has not been previously used to assess UPP, as we propose in this thesis. A few previous 

studies have reported decreased lung sounds on auscultation over the affected side in patients with UPP 

[138], [164], [165]. However, these studies did not present quantitative lung sound measurements. 
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1.6.1.2. Proposed approach to assessing UPP by RS analysis 

In this thesis, we propose to analyse RS intensity–airflow curves as an indirect measurement of 

pulmonary function in patients with UPP. At the beginning of this thesis, we launched a new RS 

recording protocol to assess UPP in the Pulmonary Function Testing Laboratory of the HUGTiP, based 

on a clinical protocol previously described by Fiz et al. [40]. 

Two piezoelectric contact microphones were placed on the surface of the patients’ back, at the base of 

the lungs (Figure 17). All patients were asked to perform a progressive respiratory manoeuvre with 

variable airflow in a sitting position. In this study, we propose that analysing and comparing the RS 

intensity–airflow curves of the lungs provides powerful information for diagnosing UPP. Full details of 

the study are provided in Chapter 2 [166]. 

 
Figure 17. RS recording points to assess UPP. 

1.6.2. Assessment of OPDs by RS analysis 

As described in Section 1.3, airway conditions, such as OPDs, directly affect the generation of RS, as 

these depend on the airflow patterns within the airways. Airflow limitation in OPDs has two major 

effects on RS: the intensity of normal lung sounds is decreased over the obstructed areas, while CAS 

are generated. The analysis of both normal RS and CAS to assess OPDs has been the topic of extensive 

research, as described in Sections 1.6.2.1 and 1.6.2.2. However, as explained in the next section 

(1.6.2.3), some methodological issues in previous studies could have limited the potential of RS for 

assessing OPDs. In the work carried out for this thesis, we have addressed and overcome these issues, 

allowing us to propose a novel approach to RS analysis. 

1.6.2.1. Previous work on normal RS and OPDs 

Many previous studies have been focused on quantifying the effect of OPDs on normal RS. Pardee et 

al. [167] and Bohadana et al. [49] performed manual auscultation over six points of the chest surface in 

patients with different degrees of AO and scored the perceived RS intensity. The former found a strong 

correlation between RS intensity and FEV1, whereas the latter reported close relationships between RS 

intensity and several indices of airflow obstruction, such as maximal expiratory flow at 50% of vital 
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capacity (VC), FEV1, or the FEV1/VC ratio. Both studies concluded not only that reduced RS intensity 

was a clear sign of airflow obstruction, but also that RS intensity is insensitive to mild degrees of airflow 

obstruction. The decreased RS intensity reported in these studies was closely related to the decreased 

inspiratory flows of the patients. 

During the ‘90s, many studies used bronchoprovocation tests to analyse the effects of airway narrowing 

on RS [98], [168]–[172]. In the absence of wheezes, Bohadana et al. [168] reported that RS intensity, 

measured as the RMS of the inspiratory sound signals, decreased with bronchoconstriction, and that this 

change was almost completely reverted in most patients after inhaling a bronchodilator. Since airflow 

was neither recorded nor controlled, reductions in RS intensity were supposed to be due to decreased 

inspiratory airflows during bronchoconstriction. However, subsequent studies reported that, when 

compared at similar airflows, RS intensity increased during induced airway narrowing in both healthy 

participants and patients with asthma [169], [170]. Moreover, at similar levels of induced 

bronchoconstriction, the increase in RS intensity was higher in patients with asthma than in healthy 

participants. The explanation for these findings was that, at similar mouth airflows, the velocity of 

airflow within the airways is higher during bronchoconstriction than at baseline. The increased velocity 

of airflow enhances turbulence, thus generating louder RS. 

Other bronchoprovocation studies reported that induced airway narrowing caused significant changes 

in the RS power spectrum. Malmberg et al. [169] and Anderson et al. [171] found a strong correlation 

between the median frequency of the RS power spectrum and changes in FEV1 induced by histamine. 

They found that airway narrowing caused the RS median frequency to increase, making it a clear 

indicator of AO and airflow limitation. Pasterkamp et al. [98] revealed that airway narrowing was 

accompanied by a decrease in power at low frequencies during inspiration and an increase in power at 

high frequencies during expiration. Habukawa et al. [172] showed that the highest frequency of 

inspiratory and expiratory RS increased during methacholine inhalation challenge, and that this 

corresponded with a decrease in the forced expiratory parameters. 

At baseline, the median frequency of RS was found to be significantly different between patients with 

asthma and both healthy participants and patients with COPD [173]. After bronchodilation, the centroid 

frequency of the spectrum of tracheal sounds was found to clearly decrease in patients with asthma but 

to show no significant changes in healthy participants [77]. These differences between both groups were 

found at different airflow ranges, of between 0.4 and 1.2 L/s during forced spirometry manoeuvres. 

More recently, Habukawa et al. [174] developed a new method to assess the control level of asthma 

based on the analysis of lung and tracheal sounds. They calculated the acoustic transfer characteristics 

of the pulmonary system using the cross-spectrum between tracheal and chest wall sounds. They then 

calculated two indices—the chest wall sound index from the transfer characteristics, and the tracheal 

sound index. Based on the two-dimensional diagram of these indices, they developed the breath sound 
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index, which differs significantly between children with asthma and healthy children and between well-

controlled and not well-controlled asthmatic children. 

During the past decade, the VRI system has led to a number of studies focusing on the effect of OPDs 

on the regional distribution of RS intensity. Inhomogeneity in ventilation and asynchronous airflow during 

asthma exacerbations were found to cause significant asynchrony between the expiratory vibration 

energy peaks of the lungs, and correspondingly, the asynchrony reverted towards the normal 

synchronous pattern after clinical improvement of the patients [175]. Inhomogeneity of VRI images was 

also observed in patients with asthma and COPD, who had abnormally loud and prolonged RS during 

expiration due to airflow obstruction [176]. 

Patients with asthma could also be distinguished from patients with COPD by qualitatively evaluating 

the dynamic VRI images and analysing the quantitative data of synchronization between the lungs 

during bronchodilation tests [177]. 

Using the VRI system to calculate the ratio of lung sound intensity between the lower and upper lungs 

revealed a significantly decreased ratio in patients with COPD as compared to healthy participants, most 

likely due to hyperinflation and redistribution of lung sounds to the upper lung areas [178]. The same 

technique was also used to evaluate the bronchodilator effect in patients with COPD, for which the ratios 

significantly increased after treatment [179]. 

In summary, normal RS analysis has been mainly based on the calculation of the following parameters: 

- Intensity, calculated as either the RMS of RS signals in time domain or as the area under the power 

spectrum in a particular frequency band. Different frequency bands were used in previous studies 

- Frequency parameters, including median frequency, centroid frequency, and highest frequency 

- Synchrony between the intensity peaks of the lungs using dynamic VRI images 

1.6.2.2. Previous work on CAS and OPDs 

As described in Section 1.3.2, CAS are related to obstructive airway diseases and are an unequivocal 

sign of airflow limitation. Accordingly, many previous studies have focused on analysing CAS features 

and their relation to pulmonary function in OPDs. Table 1 contains detailed information about some of 

the most relevant studies on CAS analysis in OPDs. The main findings can be summarised as follows: 

- Number of wheezes: a higher number of wheezes is associated with positive BDR and positive 

bronchoconstriction tests. The number of wheezes usually decreases after bronchodilation, with a 

greater change in patients with OPDs than in healthy people. A higher number of wheezes is 

associated with lower FEV1 and lower peak expiratory flow. The absence of pulmonary obstruction 

usually correlates with no detected wheezes 

- Features of wheezes: biphasic wheezes are associated with lower peak expiratory flows than 

monophasic wheezes. Longer, higher-pitched, and louder wheezes are associated with lower peak 

expiratory flows. Both duration and pitch of wheezes vary with bronchodilation 



 

 

Table 1. Analysis of CAS in OPDs 

Authors 
Sensors / Recording 

Points 
Subjects 

Manoeuvres / 

Tests 

Type of 

RS 
Methodology / Extracted Features Significant Findings 

Marini et 

al. 

(1979)[180] 

Manual auscultation / 

several areas anteriorly 

and posteriorly 

83 patients with 

chronic airflow 

obstruction 

Deep unforced 

breathing and 

forced expiration / 

BDR 

Wheezes 

Regional scoring / frequency and 

intensity: from 0 (no wheezing) to 3 

(loud wheezing in every expiration) 

- Unforced wheezes, 48 patients; forced wheezes, 80 patients 

- Positive BDR more prevalent in patients with unforced wheezing 

- Moderate positive correlations between the unforced wheezing 

score and both the degree of obstruction and BDR 

Shim and 

Williams 

(1983)[181] 

Manual auscultation / 

several areas anteriorly, 

laterally, and posteriorly 

93 patients with 

asthma 
Quiet breathing Wheezes 

Regional grading / duration, pitch, and 

intensity (minimal, moderate, or severe) 

- PEFR patients with wheezing < PEFR patients without wheezing 

- Expiratory wheezing often accompanied by inspiratory wheezing 

- PEFR in biphasic wheezing < PEFR expiratory wheezing alone 

- Wheezing of high pitch, moderate to severe intensity, and 

spanning the entire phase of the breath associated with lower PEFR 

Baughman 

and Loudon 

(1984)[71] 

Electronic stethoscope / 

4 areas posteriorly 

right/left apex/bases 

20 patients with 

asthma 

Tidal breathing / 

BDR 
Wheezes 

Successive FFT, window: 250 ms, 60% 

overlap / Tw/Ttot, frequency, and 

intensity 

- Moderate negative correlation between Tw/Ttot and FEV1 

- Tw/Ttot (from 86% to 31%) and pitch (from 440 Hz to 298 Hz) 

reduced with medication 

Fenton et 

al. 

(1985)[39] 

2 contact accelerometers 

/ right upper chest 

anteriorly and neck 

5 asthmatic 

children and 

2 controls 

Normal breathing 

/ BDR 
Wheezes 

Successive FFT / identification of peaks 

above 200 Hz with a power 15-times 

greater than average 

- Wheezing strongly depended on airflow 

- Wheezing followed the changes in FEV1 

- The trachea was the best location for wheeze analysis 

Baughman 

and Loudon 

(1989)[54] 

Electronic stethoscope / 

anterior trachea and right 

upper chest anteriorly 

5 patients with 

extrathoracic 

obstruction, 25 

asthma patients, 

and 7 controls 

Normal breathing Stridors 

Successive FFT, window: 100 ms, 50% 

overlap / identification of peaks above 

200 Hz, greater than 3-times the 

baseline signal, and lasting more than 

200 ms 

- Stridor was associated with extrathoracic obstruction and was 

similar to wheezing 

- Timing and location of stridors (mainly inspiratory, over the 

neck) was significantly different from wheezes (mainly expiratory, 

over the chest) 

Schreur et 

al. 

(1994)[72] 

3 piezoelectric 

microphones / right chest 

anteriorly and posteriorly 

9 patients with 

asthma and 8 

healthy controls 

Quiet breathing up 

to 1.5 L/s and 

forced 

manoeuvres 

Normal 

and 

wheezes 

Successive FFT at different airflows / 

identification of peaks above 150 Hz, 

greater than 3-times the baseline signal. 

LSI from power spectra, quartile 

frequencies, and extent of wheezing 

- At low airflows, expiratory LSI in patients with asthma < 

expiratory LSI in controls 

- During quiet expiration, quartile frequencies in asthmatics > 

quartile frequencies in controls 

- Change of quartile frequencies with flow in asthmatics > change 

of quartile frequencies with flow in controls 

Gavriely et 

al. 

(1994)[73] 

4 piezoelectric sensors / 

trachea, right chest 

anteriorly, and right/left 

bases posteriorly 

493 active 

workers 

Maintained 

airflows around 1 

L/s 

Normal 

and 

abnormal 

Averaged power spectra by FFT and 

linear regression / identification of 

abnormal spectra with peaks of power 

- Combination of spirometry and RS analysis increased the 

sensitivity from 71% to 87% detection of pulmonary diseases 

Rietveld et 

al. 

(1994)[74] 

1 electret microphone / 

trachea 

28 asthmatic 

children 

Quiet breathing / 

histamine 

challenge 

CAS 

Audition of the RS signals and 

visualization of the power spectra / 5 

different RS patterns, including 

different CAS 

- The presence of one of the RS patterns during unforced breathing 

predicted a fall in FEV1 of > 20% in 21 subjects 

Bohadana 

et al. 

(1995)[75] 

Electronic stethoscope / 

right base posteriorly 
38 patients 

Fast and deep 

inspirations / 

carbachol airway 

challenge 

Normal 

and 

wheezes 

TEWA and Fourier spectrum for 

wheeze detection and RMS for 

calculating RS intensity 

- Wheezes detected after bronchoconstriction more often in 

positive patients (10/21) than in negative patients (1/17) 

- RS intensity decreased in the 11 non-wheezing positive patients 

but not in the negative patients 

Shreur et 

al. 

(1996)[76] 

3 piezoelectric 

microphones / right chest 

anteriorly and posteriorly 

8 patients with 

asthma 

Quiet breathing 

and forced 

Normal 

and 

wheezes 

Successive FFT at different airflows / 

identification of peaks above 150 Hz, 

greater than 3-times the baseline signal. 

- LSI, quartile frequencies, and extent of wheezing were higher 

during the bronchoconstriction phases 
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manoeuvres / 

allergen challenge 

LSI from power spectra, quartile 

frequencies, and extent of wheezing 

Fiz et al. 

(2002)[182] 

1 contact microphone / 

trachea 

16 asthma 

patients, 6 

COPD patients, 

and 15 healthy 

participants 

Forced expiration 

/ BDR 
Wheezes 

Spectrogram / mean frequency, number 

of wheezes, % of wheezing time, and 

change in the number of wheezes 

- More wheezes recorded in patients than in control participants 

- Mean frequency of wheezes in control participants > mean 

frequency of wheezes in patients 

- Change in the number of wheezes in patients > change in the 

number of wheezes in control participants 

Kraman et 

al. 

(2002)[55] 

1 electret microphone / 

trachea 

1 patient with 

tracheal 

obstruction 

Normal breathing Stridors Spectrogram 
- Tracheal obstruction could be detected through the analysis of 

tracheal sounds 

Mazic et al. 

(2003)[183] 

1 electret microphone 

and accelerometers / 

trachea and right base 

posteriorly 

7 asthmatic 

children 

Normal breathing 

and forced 

breathing 

Wheezes 
Successive spectra / duration and pitch 

of wheezes 

- Wheezing was detected in 70% of patients during asthmatic 

seizures 

- No wheezing was detected in the absence of pulmonary 

obstruction 

Bentur et 

al. 

(2003)[78] 

5 piezoelectric contact 

sensors / trachea, 

right/left axillae, and 

right/left bases 

posteriorly 

12 asthmatic and 

7 healthy 

children 

Normal breathing 

/ 6 weeks 

treatment 

Wheezes 

FFT-based algorithm for wheeze 

detection / % of wheezing time to 

breathing time and extent of wheezing 

for the total night 

- The extent of wheezing decreased after 6 weeks of treatment, and 

FEV1 improved 

H-Corbera 

et al. 

(2004)[81] 

1 piezoelectric sensor / 

trachea 

16 patients with 

asthma and 15 

healthy people 

Forced expiration 

/ BDR 
Wheezes 

Spectrogram / mean frequency, number 

of wheezes, % of wheezing time, and 

change in the number of wheezes 

- Differences in all parameters between both groups 

- Change in the number of wheezes in patients > change in the 

number of wheezes in control participants 

Sánchez et 

al. 

(2005)[79] 

2 sensors / right/left 

bases posteriorly 

22 infants with 

acute 

bronchiolitis 

Normal breathing 

/ BDR 

Normal 

and 

wheezes 

Successive FFT at flows around 0.1 L/s 

/ quartile frequencies and identification 

of wheezes from peaks in the power 

spectra and auditory verification 

- Wheezes, 11 patients; wheezes and crackles, 11 patients 

- Positive relationship between positive BDR and an increase in 

power at low frequencies after medication 

- Positive correlation between wheezing and the increase in the 

power spectra measured by the quartile frequencies 

Fiz et al. 

(2006)[184] 
1 microphone / trachea 

20 patients with 

asthma and 14 

healthy people 

Forced expiration 

/ BDR 
Wheezes 

Spectrogram / mean frequency, number 

of wheezes, % of wheezing time, and 

change in the number of wheezes 

- Number of wheezes and change in the number of wheezes higher 

in obstructed patients than in stable patients and controls 

- Mean frequency of wheezes higher in control participants 

Taplidou 

and L.J.H. 

(2010)[185] 

5 electret microphones / 

trachea, right/left axillae, 

and right/left bases 

posteriorly 

10 COPD and 

11 asthma 

patients 

Normal breathing 

at flows ≤ 1.5 L/s 
Wheezes 

Instantaneous wavelet bicoherence / 23 

nonlinear features of wheezes 

- 22 out of 23 features showed significant difference between the 

COPD and asthma patients 

Oliveira et 

al. 

(2013)[186] 

Digital stethoscope / 

several areas anteriorly, 

laterally, and posteriorly 

6 subjects with 

LRTI 

Normal breathing 

/ 3 weeks 

treatment 

Wheezes 
Spectrogram / number, duration, and 

mean frequency of wheezes 

- Strong negative correlations (post-treatment) between FEV1 and 

duration of wheezes at the lateral right region, and between FVC 

and duration of wheezes at the posterior right region 

Fischer et 

al. 

(2016)[187] 

2 piezoelectric contact 

sensors / manubrium and 

left axillary line 

110 infants 

Normal breathing 

/ Lung function 

tests 
Wheezes 

FFT-based algorithm for wheeze 

detection / duration of wheezes 

- Wheezing detected in 65% of infants (39% with inspiratory 

wheezing and 48% with expiratory wheezing) 

- Airway resistance increased in all infants with wheezes and 

correlated with the duration of expiratory wheezes 
BDR, bronchodilator response; CAS, continuous adventitious sounds; COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 1 second; FFT, fast Fourier transform; FVC, 

forced vital capacity; LRTI, lower respiratory tract infection; LSI, lung sound intensity; PEFR, peak expiratory flow rate; RMS, root mean square; RS, respiratory sounds; TEWA, time expanded 

waveform analysis; Tw/Ttot, proportion of the respiratory cycle occupied by a wheeze.  
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1.6.2.3. Proposed approach to assessing OPDs by RS analysis: application to BDR assessment 

in asthma 

After reviewing previous studies on RS analysis for assessing OPDs, the following issues were found: 

- A number of different recording locations have been used in previous studies. Using a large number 

of channels increases the complexity of recording and analysing RS, due to the large amount of data, 

and it does not necessarily yield better outcomes. On the other hand, using only one microphone can 

lead to failure to detect changes in regional ventilation 

- Typically, RS signals are recorded either at maintained airflows or during forced expiratory 

manoeuvres. However, both normal RS and CAS are highly dependent on airflow 

- Previous studies focused either on normal RS or on CAS. Co-analysis of the two types of RS was 

addressed only in a few studies, most of which were early studies that used inaccurate techniques 

for detecting and characterising CAS 

- Unlike CAS duration and frequency, their intensity has rarely been analysed. In fact, some studies 

only analysed the number of CAS 

For this thesis, we propose a new integrated approach to RS analysis in OPDs. This proposed approach 

includes a multichannel recording of RS using five contact microphones (Section 1.5.1) and performing 

progressive respiratory manoeuvres with variable airflow (Section 1.5.2). We propose a dual approach 

to RS analysis, by analysing both normal RS intensity and CAS through the RS intensity–airflow curves 

(Section 1.5.3) and HHT (Section 1.5.4), respectively. This dual approach allows the two effects of 

OPDs on RS to be assessed. Moreover, the proposed HHT-based methodology allows CAS to be fully 

characterised with respect to duration, mean frequency, and intensity. 

Based on the aforementioned approach, a study was launched in the Pulmonary Function Testing 

Laboratory of the HUGTiP for assessing BDR in patients with asthma (Figure 18). 

 
Figure 18. Proposed approach to assessing BDR in OPDs by RS analysis. BDR, bronchodilator 

response; OPDs, obstructive pulmonary diseases; RS, respiratory sounds. 

According to the definition from the Global Initiative for Asthma: “Asthma is a heterogeneous disease, 

usually characterized by chronic airway inflammation. It is defined by the history of respiratory 
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symptoms such as wheeze, shortness of breath, chest tightness and cough that vary over time and in 

intensity, together with variable expiratory airflow limitation” [6]. 

Several factors must be considered for an asthma diagnosis: 

- A detailed clinical history 

- A complete physical examination to identify characteristic respiratory symptoms 

- Pulmonary function tests to assess airflow limitation 

Lung auscultation is usually performed to identify wheezes in asthma. However, traditional manual 

auscultation highly depends on the subjectivity of the physicians involved. In this sense, using RS 

analysis allows wheezes, and other types of CAS, to be identified in more objective and practical 

manner. On the other hand, spirometry is a simple and useful technique for assessing airflow limitation. 

When airflow obstruction is suspected based on spirometric parameters, a BDR test is usually performed 

to support or reject an asthma diagnosis. However, as described in Section 1.1.3, spirometry and the 

BDR test are still controversial even today, and any diagnosis of asthma should not be made based only 

on spirometric parameters. 

A combination of spirometry and RS analysis can increase the sensitivity of pulmonary disease detection 

[73]. Therefore, for this thesis, we used both spirometry and RS analysis to measure BDR in patients 

with asthma (Figure 18). In the study conducted at HUGTiP, RS were recorded in patients with asthma 

as they performed six progressive manoeuvres with variable airflow, three of which were pre-

bronchodilation and three, post-bronchodilation. Moreover, BDR was measured in all participants by 

spirometry. To date, RS signals and spirometric data have been obtained from a total of 50 patients with 

asthma and 10 control participants. 

A preliminary study showing the potential of the proposed approach to assessing BDR in patients with 

asthma based on the analysis of normal RS and CAS was presented at the XIII Mediterranean 

Conference on Medical and Biological Engineering and Computing 2013 (MEDICON 2013) and 

published as a book chapter in 2014 [188]. Specifically, we presented a case study of three adult patients 

with asthma who had different baseline spirometric values and BDR. Further details are provided in 

Chapter 5. 

Before applying the proposed approach to assessing BDR (Figure 18) to the whole database of patients 

with asthma, we carried out a prior study with 10 patients with asthma and 5 control participants from 

the database to evaluate the CAS analysis part of the approach. Specifically, we evaluated how well our 

CAS characterisation algorithm (proposed in Chapters 3 [121] and 4 [124]) works in RS signals recorded 

in the clinical environment, and the potential of CAS analysis for assessing BDR. Besides CAS, RS 

signals contain normal RS and background noises from the clinical environment, which may appear in 

the HS as ridges similar to those described by CAS (Figure 15) and could lead to an overestimation of 

CAS. To avoid analysing false CAS, we trained and validated a classifier to distinguish signal 
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components corresponding to CAS from those corresponding to other sounds. We also studied how the 

analysis of CAS features, including number, duration, pitch, and intensity, could improve the 

stratification of BDR levels. We have now completed this study and (at the time of this writing) have 

submitted it to PLOS ONE (see publications derived from this thesis). 
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1.7. Hypotheses 

We based this current work on a number of hypotheses that we posed regarding different technical and 

clinical aspects of RS analysis. We posed several technical hypotheses regarding the analysis of normal 

RS using the RS intensity–airflow curves and the analysis of CAS based on HHT and HS. 

We also posed several clinical hypothesis regarding the analysis of RS for assessing pulmonary function 

in UPP and BDR in asthma. 

Analysis of normal RS 

- Normal RS intensity is affected by airflow limitation, and this effect may be more noticeable at high 

airflows 

- The RS intensity–airflow curves may contribute to improving the assessment of changes and 

asymmetries in normal RS intensity due to respiratory diseases 

Analysis of CAS 

- Using EEMD may allow RS signals to be decomposed into narrowband components, thereby 

avoiding the mode mixing effect of EMD and allowing physically meaningful IF to be calculated 

- IF dispersion might be markedly decreased within RS signals for the duration of CAS, such that 

CAS could be detected from changes in IF dispersion 

- HS may provide high energy concentrations around the ridges described by CAS components, which 

would make HS less dependent on amplitude criteria for CAS characterisation 

- CAS may be more accurately determined with HS than with spectrogram 

Assessment of pulmonary function in patients with UPP 

- There might be significant differences between the RS intensity–airflow curves at the posterior base 

of the lungs in patients with UPP, and the intensity in the affected side might be significantly lower 

than the intensity in the healthy side 

Assessment of BDR in patients with asthma 

- The RS intensity–airflow curves may change significantly at one or several locations over the chest 

surface after bronchodilator administration in patients with asthma 

- The distribution, number, and features of CAS may vary significantly following bronchodilator 

administration in patients with asthma 

- The number of CAS and their loudness may be higher over obstructed areas. However, normal RS 

intensity may be lower over obstructed areas 

- Both the number of CAS at baseline, and the change in the number of CAS after bronchodilator 

administration, may vary with airflow in patients with asthma 
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1.8. Objectives 

1.8.1. Main objective 

Here, we aimed to develop a new approach to analysing normal RS and CAS, to create a more sensitive 

and alternative tool for assessing the pulmonary function in terms of acoustic parameters. The proposed 

approach includes multichannel RS recording, a novel and useful progressive respiratory manoeuvre 

with variable airflow, and the use of advanced digital signal processing techniques to better characterise 

and interpret RS. This approach to RS analysis is more objective than traditional auscultation and 

provides distinct, but complementary, information to that provided by spirometry. 

This thesis therefore was divided into two major approaches: normal RS analysis and CAS analysis. 

Moreover, the dual proposed approach to RS analysis was carried out by the assessment of both 

pulmonary function in patients with UPP and BDR in patients with asthma. Some common specific 

objectives are proposed regarding the RS recording protocol. Further, specific objectives are proposed 

separately for the analysis of normal RS and CAS, as well as for the two clinical applications of the 

proposed approach to RS analysis. 

1.8.2. Specific objectives 

RS recording protocol 

- Design a protocol for the multichannel recording of RS and respiratory airflow based on the 

progressive respiratory manoeuvre and considering the number and location of sensors as a key 

aspect 

- Create a database of RS and airflow signals recorded in patients with asthma and patients with UPP. 

To do this, we aimed to launch two RS recording protocols in the Pulmonary Function Testing 

Laboratory of the HUGTiP 

Analysis of normal RS 

- Analyse the relationship between normal RS intensity—calculated as the mean power within a 

particular frequency band of the PSD—and airflow through the RS intensity–airflow curves, and 

apply linear regression models 

Analysis of CAS 

- Propose an HHT adapted to the characteristics of RS signals, using EEMD and several IF estimation 

methods 

- Evaluate the performance of HHT for the time-frequency analysis of RS and analyse its advantages 

with respect to other time-frequency analysis techniques 

- Develop an algorithm for the automatic detection of CAS based on the IF and IE sequences of RS 

- Characterise CAS from HS using number, duration, mean frequency, and intensity 
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- Compare the performance of HS for characterising CAS with that of traditional techniques, such as 

spectrogram 

Assessment of pulmonary function in patients with UPP 

- Analyse the differences between the RS intensity–airflow curves of the lungs as an alternative 

method for detecting UPP 

Assessment of BDR in patients with asthma 

- Analyse the changes in the RS intensity–airflow curves at several points over the chest surface 

following bronchodilator administration 

- Analyse the changes in the number of CAS and their features following bronchodilator 

administration 

- Analyse the relationship between acoustic parameters and spirometric parameters
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Abstract

The consequences of phrenic nerve paralysis vary from a considerable reduction in respiratory function to an apparently
normal state. Acoustic analysis of lung sound intensity (LSI) could be an indirect non-invasive measurement of respiratory
muscle function, comparing activity on the two sides of the thoracic cage. Lung sounds and airflow were recorded in ten
males with unilateral phrenic paralysis and ten healthy subjects (5 men/5 women), during progressive increasing airflow
maneuvers. Subjects were in sitting position and two acoustic sensors were placed on their back, on the left and right sides.
LSI was determined from 1.2 to 2.4 L/s between 70 and 2000 Hz. LSI was significantly greater on the normal (19.364.0 dB)
than the affected (5.763.5 dB) side in all patients (p = 0.0002), differences ranging from 9.9 to 21.3 dB (13.563.5 dB). In the
healthy subjects, the LSI was similar on both left (15.166.3 dB) and right (17.465.7 dB) sides (p = 0.2730), differences
ranging from 0.4 to 4.6 dB (2.361.6 dB). There was a positive linear relationship between the LSI and the airflow, with clear
differences between the slope of patients (about 5 dB/L/s) and healthy subjects (about 10 dB/L/s). Furthermore, the LSI
from the affected side of patients was close to the background noise level, at low airflows. As the airflow increases, the LSI
from the affected side did also increase, but never reached the levels seen in healthy subjects. Moreover, the difference in
LSI between healthy and paralyzed sides was higher in patients with lower FEV1 (%). The acoustic analysis of LSI is a relevant
non-invasive technique to assess respiratory function. This method could reinforce the reliability of the diagnosis of
unilateral phrenic paralysis, as well as the monitoring of these patients.
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Introduction

There are several causes of diaphragmatic dysfunction that can

affect one or both muscles. The decrease in or cessation of motor

activity can be caused by compression or section of the phrenic

nerve in certain segments of the spinal cord [1]. The consequences

of diaphragm dysfunction vary from the most serious cases of

bilateral lesions that can require mechanical ventilation, to the

mildest unilateral lesions that may to some extent impair breathing

and in consequence exercise capacity [2,3].

Diaphragm dysfunction due to phrenic paralysis has been

studied with various techniques including x-ray, fluoroscopy,

ultrasonography, and external or internal stimuli of the dia-

phragm. These techniques provide information regarding the

position and mobility of the diaphragm muscle [4–7], but do not

predict the degree of respiratory dysfunction [8].

On the contrary, breathing function can be measured by

routine spirometry [9,10]. Recently, Sokolowska et al. measured

variations in breathing patterns in animals with bilateral phrenic

paralysis, confirming that the measurement of breathing param-

eters could be an appropriate method to monitor this diaphragm

dysfunction [11]. However, in cases of unilateral paralysis,

spirometric function may be normal.

An alternative useful method to monitor breathing function is

the measurement of pulmonary sounds [12–16]. In fact, it is

known that airflow is correlated with lung sound intensity (LSI)

[17], including in pulmonary conditions with restrictive ventilatory

function [16].

Our hypothesis in the present study was that in patients with

unilateral phrenic paralysis, the LSI on inspiration would be lower

on the affected side than the healthy side. If this hypothesis were to

be confirmed, measurements of LSI comparing the two sides could

be useful to diagnose conditions associated with restricted thoracic

mobility [6], as well as to monitor the response to specific

physiotherapy treatments targeting the respiratory muscle.

Materials and Methods

Ethics Statement
The study was conducted in the Respiratory Function

Laboratory at HUGTIP, since February 2011 to December

2013, and approved by the Human Research and Ethics

Committee of the hospital. All participants gave written informed

consent, following the World Medical Association’s Declaration of

Helsinki on Ethical Principles for Medical Research Involving

Human Subjects.
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Study subjects
Patients with unilateral phrenic paralysis [18], who were

previously diagnosed in the Department of Internal Medicine at

Germans Trias i Pujol University Hospital (HUGTIP), were

considered eligible for this study. All patients underwent chest

radiography and computed tomography scanning of the chest,

which reveal elevated hemidiaphragm on the affected side.

Moreover, according to their medical history, most of the patients

had previous thoracic or surgical trauma as the major cause of

diaphragmatic paralysis. Only patient ID 2 had an unknown

etiology. However, all patients related some level of functional

dyspnea.

On the other hand, controls were selected from healthy subjects

who had never been diagnosed of phrenic paralysis and had

normal baseline spirometric values. According to these inclusion

criteria, ten men with unilateral phrenic paralysis in a stable

condition and ten controls (five men/five women) were included in

the study for pulmonary function test and the acoustic respiratory

analysis.

Pulmonary function and lung sound testing
At baseline, lung function was measured by spirometry (Hyp’Air

Compact, Medisoft). Table 1 shows baseline spirometric results

from each subject. Measurements were obtained in accordance

with established guidelines [19], and results compared to reference

values [20].

After this previous test, each subject was coached to progres-

sively increase the airflow from shallow breathing to the deepest

breaths they were able to, reaching 1.2 to 2.4 L/s [14]. Lastly, at

the end of the respiratory test, subjects were asked to hold their

breath for a few seconds in order to estimate background noise

intensity (BNI). One recording of a total 120 seconds was obtained

from each subject in a sitting position. Respiratory flow and

sounds were acquired simultaneously during the test.

Lung sounds and respiratory airflow measurements
Respiratory sounds were recorded using two contact micro-

phones (TSD108, Biopac Systems, Inc.) with a frequency response

of 35–3500 Hz. Microphones were positioned on the surface of

the back, at each side of the spinal cord and 3 cm below the

bottom tip of the shoulder blades. They were attached to the skin

with double-sided adhesive discs, in a noninvasive way. In

addition, respiratory airflow was recorded with a pneumotacho-

graph (TSD107B, Biopac Systems, Inc.). Subjects wore a nose clip

and breathed through the mouthpiece of the instrument.

Airflow and sound signals were amplified and filtered by

hardware, before analog-to-digital conversion and acquisition. On

the one hand, high- and low-pass filters with cut-off frequencies of

10 and 5000 Hz, respectively, were applied to respiratory sound

signals, and they were amplified by a factor of 200. On the other

hand, low-pass filter with a cut-off frequency of 10 Hz was applied

to the airflow signal, and this was amplified by a factor of 1000.

Then, both sound and flow signals were recorded at a sample rate

of 12500 Hz using a 16-bit analog-to-digital converter (MP150,

Biopac Systems, Inc.). Since this study is only focused on normal

pulmonary sounds, whose bandwidth of interest is below 2000 Hz,

respiratory sound signals were digitally filtered using a combina-

tion of 8th order Butterworth high- and low-pass filters with cut-off

frequencies of 70 and 2000 Hz, respectively.

Lung sound analysis
Respiratory sound signals were automatically segmented by

extracting respiratory phases from the airflow signal. Respiratory

cycles in which the flow reached at least 0.35 L/s were considered

valid cycles. In order to avoid false detections caused by

background noise, two thresholds of 0.2 and 4 seconds were

established for minimum and maximum durations of breathing

phases, respectively, according to time duration of normal

respiratory cycles. In addition, a threshold of 0.5 seconds was

fixed for the maximum time interval between the end of

inspiration and the beginning of the corresponding expiration.

All cycles not meeting these criteria were rejected. The final

dataset for each subject was formed by audio-visual selection of

pairs of sound signals, one from each side, from the same

inspiratory cycles, avoiding artifacts such as those from swallowing

or rubbing.

Each inspiratory sound cycle was firstly classified according to

the maximum airflow reached. For that purpose, the airflow scale

was divided into intervals of 0.2 L/s, from 1.2 L/s upwards.

Furthermore, only inspiratory sound segments corresponding to

the top airflow interval, whose duration is at least 20% of cycle

length, of each inspiratory cycle were used for assessing the LSI.

The LSI was calculated as the mean power, in the frequency

band from 70 to 2000 Hz, obtained from the power spectral

density (PSD) of each inspiratory sound segment, according to the

following expression:

LSI~
fm

NFFT

X2000

f ~70

PSD(f )

where fm is the sample rate, and NFFT is the number of points for

the fast Fourier transform (FFT). Just as in some previous studies,

which were focused on the intensity of respiratory sounds

[14,21,22] the PSD was calculated using Welch’s periodogram,

with a Hanning window of 1000 data samples (80 ms), a 50%

overlap between adjacent segments, and 1024 points for the FFT.

The same method was applied to apnea segments from both left

and right sides, in order to calculate the mean background noise

intensity (BNI). The resultant LSI values from all inspiratory

sound segments were expressed in dB with respect to this BNI.

Having calculated the LSI, each subject was characterized by the

relationship between the LSI and the airflow on both left and right

sides. In addition, the LSI was averaged over the airflow range

1.2–2.4 L/s, in order to obtain a mean LSI for each side.

Normality in the mean LSIs of both sides, from patients and

healthy subjects, as well as in their differences was tested with a

Lilliefors test. Since we did not know the parameters of the

hypothesized distributions, and those parameters must be

estimated from the data sample, the Lilliefors test was preferable.

On the other hand, the statistical differences were tested between:

1) the mean LSIs of both sides, and 2) the differences in the mean

LSIs of both sides from patients and healthy subjects. Since

normality could not be assumed in all cases, and the sample size

(n = 20) was small, a non-parametric test, such as the Wilcoxon

rank sum test, was used to check for statistical differences.

Results

Lung sound intensity in unilateral phrenic paralysis
Acoustic and spirometric parameters were analyzed in patients

and healthy subjects. As shown in Table 1, eight patients had left

side paralysis (ID 2–7, 9, and 10) and two patients had right side

paralysis (ID 1 and 8). Regardless of the side affected, all patients

had lower FVC (5769%) and FEV1 (57610%) values than

healthy subjects, in whom the percentages were 94611% and

9367%, respectively.

Unilateral Phrenic Paralysis Detection
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With regard to lung sounds, the signal amplitude was much

lower on the paralyzed side than the healthy side, in patients with

unilateral phrenic nerve paralysis, as shown in the example from

Figure 1. It contains the lung sound and the airflow signals from a

patient with left phrenic paralysis (ID 4). Accordingly, the

magnitude of the PSDs from both sides, and the consequent

signal powers, are quite different, as shown in Figure 2. It exhibits

the PSDs from two inspiratory sound segments, one from each

side, of an inspiratory cycle from patient ID 4. As shown, the PSD

of the right sound segment (healthy side) is a long way from the

PSD of the right background noise segment, in all the frequency

range. On the other hand, the PSD of the left sound segment

(affected side) is slightly above the left background noise. As a

result, the LSI calculated from the PSD of the healthy side is much

larger than the affected side.

The aforementioned pattern was confirmed by comparison of

the acoustic parameters in all patients with unilateral phrenic

paralysis (Table 2). Calculation of the BNI from the BNI for left

and right sides allowed us to express the mean LSI from each side

in dB with respect to the same reference value. In addition, the

mean LSI was calculated for both sides from the same set of cycles.

In healthy subjects, the mean LSI was much higher than the

BNI on both left (15.166.2 dB) and right (17.465.7 dB) sides.

However, patients had mean LSIs only a few dBs above the BNI
on the affected side (5.763.5 dB) while their mean LSIs on the

healthy side (19.364.0 dB) were not significantly different from

the values measured in the healthy participants. To show this

trend clearly, we calculated the difference between the mean LSI

of each side.

Figure 3 shows the mean LSI, for each side, as a function of

airflow level in all patients, and all healthy subjects. On the one

hand, considerable differences, of more than 13 dB, can be seen

between the LSI from the affected and healthy sides. On the other

hand, differences in LSI between the sides are less than 3 dBs in

healthy subjects. It should be noted that the LSI from the affected

sides are close to the BNI (0 dB) at low airflows. As the airflow

increases, the LSI from the affected sides does also increase, but

never reaches the levels seen in healthy subjects.

Furthermore, Figure 3 shows a clear linear relationship between

the LSI and the airflow level. This sound-flow relationship has

been reported in some previous studies [23–25], and it usually

follows a power law. In a logarithmic scale (dB), this relationship

can be formulated by a linear equation:

Figure 1. Airflow and lung sound signals. Airflow signal (black)
and the corresponding lung sound signals, in arbitrary units, for both
right (blue) and left (red) sides, in a patient with left side phrenic
paralysis (ID 4). Sound amplitudes from the left side were lower than
those from the healthy right side.
doi:10.1371/journal.pone.0093595.g001

Figure 2. Power spectral density of lung sounds from a patient. Airflow (L/s), lung sound signals (arbitrary units), and the corresponding
power spectral densities (dBW), for both sides of an inspiratory cycle from a patient with left side phrenic paralysis (ID 4). Solid and dotted lines in the
PSDs correspond to the central sound segments and the background noise segments from both sides, respectively.
doi:10.1371/journal.pone.0093595.g002
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LSI(dB)~m � Airflowzb

where m is the slope of the line, and b is the y-intercept. As shown

in Table 3, all LSI-airflow relationships from Figure 3 can be

properly expressed by a linear equation. Moreover, there is a clear

difference between the slope of healthy subjects (around 5 dB/L/s)

and patients (around 10 dB/L/s), independently of the analyzed

side.

The mean inspiratory LSI from both sides of patients and

healthy subjects has been statistically analyzed, as shown in

Figure 4. The null hypothesis that the mean LSIs were normally

distributed was accepted as much for both healthy and paralyzed

sides in patients (p = 0.4135 and 0.9436, respectively), as for the

right side in healthy subjects (p = 0.5790). However, the null

hypothesis was rejected for the left side in healthy subjects

(p = 0.0104).

The Wilcoxon rank sum test showed that the mean LSIs of

healthy and paralyzed sides in all patients were statistically

different (p = 0.0002). On the contrary, the difference between the

mean LSIs of right and left sides in all healthy subjects was not

statistically significant (p = 0.2730).

Lung sound intensity differences and FEV1 relationship
Figure 5-A shows the absolute value of the differences between

the mean LSIs of both sides (|LSILeft-LSIright|). In this case, the

null hypothesis that the differences were normally distributed was

accepted as much in patients (p = 0.6078), as in healthy subjects

(p = 0.4693).

The Wilcoxon rank sum test showed that the differences

between the mean LSIs of both sides were statistically significant in

both groups (p = 0.0002). Moreover, it was found that there was a

clear cut off around 6–8 dB which distinguished patients from

healthy subjects.

Figure 5-B illustrates the relationship between the mean LSI

difference and FEV1, showing high differences in the LSI and low

FEV1 in patients with phrenic nerve paralysis. Moreover, in

patients there is an inverse relationship between the two

parameters, namely the lower the FEV1, the higher the mean

LSI difference. In contrast, healthy subjects have low mean LSI

differences, and there is no any clear relationship between these

LSI differences and the corresponding FEV1.

Discussion and Conclusions

Our study shows that patients with unilateral phrenic nerve

paralysis have a lower inspiratory sound intensity on the affected

side than the healthy one. We did not analyze expiratory sounds

due to the lower values of expiratory intensity with respect to

inspiratory values at isoflows [14]. This study illustrates the

potential of lung acoustic analysis for the diagnosis and manage-

ment of these patients.

Figure 3. Comparison of inspiratory LSI-Airflow relationship
between both hemithoraxes in patients and healthy subjects.
Mean inspiratory LSI (dB) as a function of airflow (L/s), from the ten
patients and the ten healthy subjects. All values are the mean 6 SD.
doi:10.1371/journal.pone.0093595.g003

Table 3. Linear regression parameters*.

Healthy subjects Patients

Right side Left side Paralyzed side Healthy side

R2 0.91 0.93 0.98 0.79

Slope (dB/L/s) 9.78 10.61 5.58 5.48

* Corresponding to graphs from Figure 3.
doi:10.1371/journal.pone.0093595.t003

Figure 4. Comparison of mean inspiratory LSI between both
hemithoraxes in patients and healthy subjects. Mean inspiratory
LSI (dB) in healthy and paralyzed sides (ten patients), and in right and
left sides (ten healthy subjects). The mean LSI from patients is
significantly higher in healthy side than paralyzed side (p = 0.0002).
On the contrary, there are not significant differences between mean LSI
from both hemithoraxes in healthy subjects (p = 0.2730).
doi:10.1371/journal.pone.0093595.g004
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Respiratory sounds are an alternative method to measure both

pulmonary [16] and diaphragmatic function. Some previous

studies reported decreased breath sound on the affected side in

patients with unilateral phrenic paralysis [18,26,27], but they were

assessed by traditional auscultation. However, there are no

references about quantitative analysis of respiratory sounds for

the diagnosis of these patients. In what is related to laterality of

respiratory sounds, they have been used to distinguish between

bilateral and unilateral lung ventilation in intubated patients [28].

Nevertheless, many studies have analyzed the differences between

the LSI of both sides in healthy subjects [14,29,30,31], thus

reporting slight differences of a few dB. In any case, sound analysis

can detect differences in airflow entering the two sides of the

thoracic cage in diseases that affect respiratory ventilation, and our

study demonstrates this for the case of unilateral phrenic nerve

paralysis. Consistently, we found a clear cut-off in the mean

differences of LSI between the two sides in healthy subjects and

patients.

In addition to unilateral phrenic paralysis, it has been

recognized by other authors that lung sound analysis is also a

very useful technique to study many others pulmonary diseases

[21,22,32,33].

When the diaphragm is paralyzed, it does not have an influence

on expansion of the homolateral lung and breathing is maintained

by accessory muscles such as those of the chest wall. The

movement of the paralyzed hemidiaphragm is determined by the

balance between the change in pleural pressure and the shortening

of the healthy hemidiaphragm. This is manifested by a cranial

displacement of the ipsilateral hemidiaphragm and a small caudal

displacement of the contralateral hemidiaphragm [6]. Such a

retraction is ineffective for respiration and has been related to

patient dyspnea [34].

It has been suggested that the airflow to dependent areas of the

lung is directed by the diaphragm and non-dependent areas by the

intercostal muscles [35]. The gas flow to the dependent areas of

the paralytic side would therefore be lower than that to the healthy

side.

In this study, there was considerably less airflow entering the

dependent areas of the pathological side, measured in an indirect

way by the quantification of the LSI. Specifically, the LSI of the

affected side was close to the level of the background noise for a

low airflow rate, as seen in Figure 3, while the signal from the

healthy side remained a long way from the background noise at all

measured flow rates. Although the BNIs from both sides are

slightly different, it is not relevant for the results of this study, since

the BNI is used as the unique reference value in order to express

the LSI in dB.

In addition, pulmonary perfusion is redistributed from the base

toward the apex in these patients [36]. The result of this

pathological situation is that the work of breathing (measured in

terms of oxygen uptake) is increased, which suggests that

intercostal muscle breathing is less efficient than diaphragm

breathing [37]. Spirometric changes have been widely commented

on in the literature. In our study, spirometry values of patients with

phrenic paralysis were low with respect to normal reference values,

as has been found previously in other studies [9,38].

With respect to traditional techniques to diagnose the unilateral

phrenic paralysis, they include: x-ray imaging, fluoroscopy,

ultrasonography, and phrenic nerve stimulation [18,39]. Usually,

unilateral phrenic paralysis is diagnosed by a combination of these

techniques, since none of them is totally concluding by itself. Of

these techniques, x-ray imaging is the simplest and it has some

obvious limitations: it uses ionizing radiation, and it does not allow

us to assess the diaphragm or the pulmonary function of patients.

Moreover, in unilateral diaphragmatic paralysis, the sensitivity of

plain chest radiograph is as high as 90%, whereas its specificity is,

however, low (44%) [39].

Fluoroscopy and the external or internal stimuli of the

diaphragm allow evaluating the diaphragm mobility [4]. However,

fluoroscopy also makes use of x-rays to obtain dynamic images of

the diaphragm, and both fluoroscopy and stimuli of the diaphragm

are invasive techniques. Moreover, none of these methods

provides information about the pulmonary function.

Ultrasonography is an alternative non-invasive technique to

assess the diaphragmatic function [5,40], since it works on

ultrasounds. Nevertheless, just as the aforementioned techniques,

ultrasounds do not provide any data about the pulmonary function

of patients. Moreover, ultrasonography is operator dependent and

requires significant expertise [39].

Recently, a new non-invasive method has been proposed to

measure the movements of the thoracic wall [41]. This new

method makes use of a motion analysis system, which is called

optoelectronic plethysmography. It was used to estimate the total

rib cage volume, as well as its changes in both healthy and

paralyzed sides.

In this study, the potential of acoustic respiratory analysis for

detecting unilateral phrenic paralysis has been clearly shown.

Despite a relatively small population has been analyzed, the results

from 20 subjects (10 patients and 10 healthy subjects) reinforce the

reliability of the proposed method. On the other hand, in the

database, there is a slight difference in the male-female ratio

between patients and healthy subjects, but gender is not a relevant

factor in the analysis of normal lung sound intensity [42].

Figure 5. LSI differences and FEV1 relationship in patients and
healthy subjects. A: Mean inspiratory LSI difference (dB) between
both hemithoraxes, in ten patients with phrenic nerve paralysis and ten
healthy subjects. The LSI difference was higher in patients than healthy
subjects (p = 0.0002). Solid lines indicate the mean and SD for each
group. B: Mean inspiratory LSI difference as a function of FEV1 in
patients and healthy subjects.
doi:10.1371/journal.pone.0093595.g005
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However, further studies will be needed to clinically validate this

technique as a new complementary tool for phrenic paralysis

diagnosis.

In conclusion, measurement of LSI can provide quantitative

information about the extent of impairment of respiratory function

in patients with unilateral phrenic nerve paralysis. In these

patients, LSI is an indirect measure of the airflow that enters the

lungs, this being lower on the affected side due to inefficient

diaphragmatic muscle function. This technique represent a step

forward in the diagnostic procedure of unilateral phrenic nerve

paralysis, since it has some advantages with respect to current

techniques: non-invasiveness, objectivity, simplicity, easiness and

cost. The acoustic respiratory analysis, in conjunction with

spirometry, could reinforce the reliability of the diagnosis of

unilateral phrenic paralysis.

Regarding the future use of the method, its major application is

the non-invasive assessment of respiratory function, providing

objective information of the affected side. Therefore, the method

offers the capability for long-term monitoring of recovery in

respiratory function in patients who undergo physical therapy

[43]. These patients are regularly monitored in order to check

whether the physical therapy is improving their pulmonary

function in the affected side or not. In this context, the advantages

of the proposed technique gain relevance since several and

repeated tests are required for the long-term monitoring of these

patients.
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Abstract—Differentiating normal from adventitious 

respiratory sounds (RS) is a major challenge in the diagnosis of 
pulmonary diseases. Particularly, continuous adventitious sounds 
(CAS) are of clinical interest because they reflect the severity of 
certain diseases. This study presents a new classifier that 
automatically distinguishes normal sounds from CAS. It is based 
on the multi-scale analysis of instantaneous frequency (IF) and 
envelope (IE) calculated after ensemble empirical mode 
decomposition (EEMD). These techniques have two major 
advantages over previous techniques: high temporal resolution is 
achieved by calculating IF-IE and a priori knowledge of signal 
characteristics is not required for EEMD. The classifier is based 
on the fact that the IF dispersion of RS signals markedly decreases 
when CAS appear in respiratory cycles. Therefore, CAS were 
detected by using a moving window to calculate the dispersion of 
IF sequences. The study dataset contained 1494 RS segments 
extracted from 870 inspiratory cycles recorded from 30 patients 
with asthma. All cycles and their RS segments were previously 
classified as containing normal sounds or CAS by a highly 
experienced physician to obtain a gold standard classification. A 
support vector machine classifier was trained and tested using an 
iterative procedure in which the dataset was randomly divided 
into training (65%) and testing (35%) sets inside a loop. The SVM 
classifier was also tested on 4592 simulated CAS cycles. High total 
accuracy was obtained with both recorded (94.6% ± 0.3%) and 
simulated (92.8% ± 3.6%) signals. We conclude that the proposed 
method is promising for RS analysis and classification. 
 

Index Terms—Asthma, continuous adventitious sounds (CAS), 
ensemble empirical mode decomposition (EEMD), instantaneous 
frequency (IF), respiratory sounds (RS), wheezes. 

I. INTRODUCTION 

ULMONARY auscultation is an essential technique even 
in cursory physical examinations. Respiratory sounds (RS) 

contain relevant information about the structure and function 
of the respiratory system. Therefore, the skills of 
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understanding and interpreting RS are crucial. However, 
physician subjectivity is a substantial problem in this field and 
it may lead to an incorrect diagnosis. 

RS are generally classified as normal or abnormal [1], [2]. 
Normal RS originate in healthy lungs, as a consequence of the 
airflow through the airways during normal breathing. On the 
other hand, abnormal RS appear in certain pulmonary disorders 
and they are further classified into discontinuous adventitious 
sounds and continuous adventitious sounds (CAS). 
Discontinuous adventitious sounds are explosive and transient 
sounds that are short in duration but contain a wide range of 
frequencies. In contrast, CAS typically last more than 100 ms 
and are characterized by quasi-periodic waveforms with a 
fundamental frequency of over 100 Hz [1], [2]. 

Identifying abnormal sounds is a key step in the 
computerized analysis of RS [3]. From a clinical point of view, 
CAS are important because they are present in various 
respiratory diseases involving some degree of airway 
obstruction, such as asthma or COPD [1]. These diseases 
produce changes in the mechanical properties of the airways, 
and these changes explain the presence of CAS [4]. Further, 
there is a relationship between the number of CAS and the 
severity of airway obstruction in asthmatic patients, severe 
airway obstruction being related to more CAS [5], [6]. 
Moreover, the characteristics of CAS, such as mean frequency, 
duration, intensity, and respiratory phase in which they appear, 
are also related to the severity of airway obstruction [7], [8]. 
Therefore, detecting and analyzing CAS may help to assess the 
severity of obstructive pulmonary diseases, such as asthma, in 
which measuring the extent of obstruction and its reversibility 
is important for reaching a correct diagnosis [9]. However, 
estimating the number of CAS and their characteristics is quite 
difficult by audition alone. Consequently, there is need for an 
efficient algorithm to identify and distinguish CAS from 
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normal RS in a straightforward and reliable way. 
Several previous studies have proposed a range of RS 

classification schemes focused exclusively on distinguishing 
normal from abnormal RS [10]-[13]. Those studies followed 
the standard methodology of pattern recognition, which 
comprises feature extraction, dimensionality reduction, and 
pattern classification. Features were extracted using either 
wavelet coefficients [10], morphological complexities 
(lacunarity, sample entropy, kurtosis, and skewness) [11], 
multi-scale principal component analysis in Fourier domain 
[12], or hidden Markov models [13]. The sounds analyzed 
included many types of adventitious RS, not only CAS. 
Accordingly, the techniques used did not take into account 
certain features that are relevant to the accurate identification 
of CAS, such as temporal features. Further, some other studies 
followed similar methodologies even though they were 
focused specifically on wheeze and non-wheeze epoch 
classification within RS signals. For example, such studies 
have been based on the combination of Mel frequency cepstral 
coefficients and Gaussian mixture models [14], [15], or linear 
analysis using the Fisher discriminant method and the 
Neyman-Pearson test after extraction of features [16]. 

In contrast to the aforementioned techniques, the analysis of 
time-frequency distributions is the most common and 
straightforward method for CAS identification. The combined 
analysis of time, frequency, and energy features provides extra 
information about duration, pitch variation, and magnitude, 
strengthening the identification of CAS. In this context, many 
studies have been focused on the identification of wheezing-
episodes from spectrograms [17]-[23], by applying temporal 
and spectral continuity criteria to previously detected peaks. 
Alternatively, digital image processing techniques have also 
been applied to the spectrogram for wheeze detection [24], 
[25], and the scalogram, calculated using the wavelet 
transform, has been used to classify RS [26]. Recently, more 
advanced TFDs have been proposed for the detection and 
analysis of CAS, involving either the combination of the 
wavelet decomposition with third-order spectral features 
(instantaneous bispectrum/bicoherence) [27], or the derivation 
of a temporal-spectral dominance spectrogram from the short-
time Fourier transform [28]. 

Despite the widespread use of Fourier and wavelet-based 
techniques, they have some limitations. First, they are non-
adaptive techniques, which are limited by the fact that a priori 
knowledge of the signal characteristics is required for the 
correct choice of fixed analysis parameters. Second, as is well 
known, the Fourier transform, like any integration-based 
transform, is governed by the uncertainty principle, which 
limits the combined time-frequency resolution and, in turn, the 
accuracy of TFDs. 

Besides the technical aspects, many previous studies used 
RS signals recorded either at constant airflows or during forced 
expiratory maneuvers. However, CAS may appear at different 
airflow levels which, in turn, affect the properties of CAS. 

Empirical mode decomposition (EMD) was proposed as an 
alternative and suitable tool for the analysis of nonlinear and 
non-stationary signals, such as RS [29]. Since EMD is an 

adaptive and direct decomposition technique [29], [30], a priori 
knowledge of the signal characteristics is not required for the 
choice of analysis parameters. Moreover, EMD allows a signal 
to be decomposed into a set of components for which the 
instantaneous frequency (IF) and envelope (IE) can be defined 
at any point. Therefore, high temporal and spectral resolutions 
are achieved [31], [32]. 

In order to take advantage of the EMD-IF properties, we had 
previously developed a new method for RS analysis based on 
customized IF and IE estimation by EMD, adapted to RS signal 
characteristics [33]. In that previous study, we showed that the 
IF distribution changed when CAS appeared in a respiratory 
cycle [33]. Nevertheless, we found that the EMD had a mode 
mixing effect when applied to RS from some inspiratory 
cycles, which resulted in poor separation of frequency scales. 

Building on the results of our previous work, in the present 
study, we propose a new method to automatically identify CAS 
and distinguish them from normal RS. The proposed algorithm 
makes use of ensemble empirical mode decomposition 
(EEMD) for IF estimation, which improves on the performance 
of EMD [34]. As we reported in [33], the IF dispersion 
markedly decreases when CAS appear in respiratory cycles. 
This property concerns not only wheezes, but any CAS or 
musical sounds [1] that are characterized by a dominant 
fundamental frequency. Accordingly, the present study uses 
this property to detect CAS at a wide range of frequencies. For 
that purpose, a set of thresholds was applied to the IF 
dispersion of RS from each inspiratory cycle, delimiting RS 
segments with a lower IF dispersion. Then, a specific set of 
features was extracted from the IF and IE sequences to 
characterize each delimited RS segment within each 
inspiratory cycle. These features were used to train and test our 
RS segment classifier, which was a support vector machine 
(SVM) classifier. Finally, the whole set of inspiratory cycles 
were classified as containing CAS or only normal RS, 
depending on whether they contained at least one CAS 
segment or not. The proposed technique was tested on recorded 
RS from asthmatic patients, who performed a variable airflow 
respiratory maneuver to provide CAS at a wide range of 
airflow levels. This technique was also tested on simulated 
CAS to analyze the effect of SNR on the performance of the 
proposed classifier. 

II. MATERIALS AND METHODS 

A. Data Acquisition 

Recorded RS were obtained at the Pulmonary Function 
Testing Laboratory, Germans Trias i Pujol University 
Hospital, Badalona, Spain. All recordings were acquired from 
patients who had previously been diagnosed with asthma in the 
Pulmonology Service at this hospital. First, lung function was 
measured by spirometry (Hyp’Air Compact, Medisoft). Then, 
four piezoelectric contact microphones (TSD108, Biopac 
Systems, Inc.) were placed on the surface of the patient’s back, 
on each side of the spinal cord, at the base and near the upper 
lobe of the right/left lung. An additional microphone was 
placed on the surface of the neck, over the right side of the 



 

trachea, at the level of the cricoid cartilage. All sensors were 
attached to the skin using adhesive rings. The airflow signals 
were recorded simultaneously with the sound signals, using a 
pneumotachograph (with an integrated differential pressure 
transducer, TSD107B, Biopac Systems, Inc.). All signals were 
sampled at 12 500 samples/s, using a 16-bit analogue-to-digital 
converter (MP150, Biopac Systems, Inc.). After digitalization, 
the sound signals were band-pass filtered (70-2 000 Hz) and 
the respiratory phases were automatically detected using the 
airflow signal as the reference signal. 

Patients were asked to perform a respiratory maneuver 
consisting of progressively varying their airflow levels, 
ranging from shallow breathing to the deepest breaths they 
were able to take. We used this maneuver because CAS do not 
only appear at high airflows, but also at moderate and low 
airflows. Further, at the beginning and at the end of the 
respiratory maneuver, patients were asked to hold their breath 
for a few seconds. Corresponding signal segments were used 
to evaluate background noise and heart sound interference. 

After cycle segmentation, the minimum and the maximum 
peak flow values of the inspiratory phases delimited the airflow 
range of each patient. In order to allow comparisons of signals 
from these different airflow ranges, each one was divided into 
four proportional intervals or quartiles, from Q1 to Q4, 
grouping the peak flow values of the corresponding patient in 
ascending order, from lowest to highest, respectively. 

 

B. Study Dataset 

For this study, RS signals were recorded from 30 asthmatic 
subjects, whose main anthropometric and spirometric 
characteristics are summarized in Table I. After cycle 
segmentation, the study dataset was formed by RS from the 
inspiratory phase measured with the four microphones on the 
back, where auscultation is typically performed. We manually 
selected the inspiratory cycles from the dataset by audiovisual 
inspection, rejecting those inspiratory cycles containing 
artifacts (clicks, bursts, or scratches), surrounding noises 
(background talking or swallowing), or strong heart sound 
interference (this signal normally being much weaker than RS 
on the surface of the back). In the end, a total of 870 inspiratory 
cycles from different airflow quartiles formed the study 
dataset, including 385 with normal sounds and 485 with CAS 
(Table II). 

A total of 1494 RS segments were extracted from the 
inspiratory cycles in this dataset. All inspiratory cycles and 
their corresponding RS segments were manually classified by 
a highly experienced physician who, by audiovisual 

inspection, differentiated those with audible CAS from those 
with only normal sounds. In this way, we obtained the target 
classification labels for both the inspiratory cycles and the RS 
segments. Besides using his personal experience and 
knowledge in RS analysis, the physician followed the criteria 
explained in a recent publication about RS [1], and the CORSA 
guidelines of the European Respiratory Society [2], [3]. 
According to these guidelines, CAS are defined as musical 
sounds, heard on inspiration, expiration, or both, with a 
duration of over 100 ms, and a fundamental frequency above 
100 Hz. This definition of CAS includes both wheezes and 
ronchi. The main difference between them is that rhonchi have 
lower pitch than wheezes. Based on this definition, different 
types of CAS were included in the dataset, including some 
polyphonic CAS. In any case, the goal of this study is not to 
distinguish between different types of CAS, but to 
automatically differentiate CAS from normal RS. 

 

C. Ensemble Empirical Mode Decomposition of RS 

The proposed algorithm for RS classification is based on the 
fact that RS segments containing CAS have lower IF 
dispersion than RS segments containing normal sounds in a 
respiratory cycle, as we reported in [33]. Consequently, the 
first step of our RS classification scheme is the estimation of 
the IF of the RS for each inspiratory cycle in the dataset. 
However, estimating the IF only makes sense for mono-
component or, at least, narrowband signals. As RS are multi-
component signals, we need to decompose them before being 
able to calculate a physically meaningful IF. In this context, we 
previously described in [33] that the EMD allows RS signals 
to be decomposed into a set of components, called intrinsic 
mode functions (IMFs), for which the IF can be defined at any 
point. While, ideally, each IMF would contain different 
frequency components of the RS signal, we found that EMD 
had a mode mixing effect when applied to some RS signals 
containing CAS. Due to this mode mixing effect, some 
frequency components of CAS appeared in different IMFs, 
leading to poor separation of frequency scales. 

Recently, EEMD was proposed as an improvement to EMD 
to overcome this mode mixing effect [34]. EEMD consists of 
the iterative application of the original EMD to a signal plus 
white noise. The idea behind EEMD is that EMD acts as an 
adaptive dyadic filter bank when applied to white noise, 
thereby separating the different frequency scales of a signal 
naturally without any a priori subjective criteria [34]. 
Moreover, another previous study showed that the 
computational cost of the EEMD was reduced by replacing 
white noise by band-limited noise [35], just covering the 
bandwidth of the signal to be decomposed. 

TABLE I 
ANTHROPOMETRIC AND SPIROMETRIC CHARACTERISTICS 

Feature/Set Total 

Number of subjects 30 

Age (yr) 45 ± 14 

BMI (kg/m2) 25 ± 4 

FVC (% of predicted) 87 ± 15 

FEV1 (% of predicted) 80 ± 17 

BMI = body mass index; FVC = forced vital capacity; FEV1 = forced 
expiratory volume in 1 second. 

TABLE II 
DISTRIBUTION OF THE RECORDED RS 

 Inspiratory cycles RS segments 

 Total Q1 Q2 Q3 Q4 Total 

Total 870 163 213 254 240 1494 

Normal 385 105 94 109 77 861 

CAS 485 58 119 145 163 633 

 



 

In the present study, we developed a customized EEMD 
algorithm adapted to RS signals, for use prior to IF 
calculations. The basic steps involved in our customized 
EEMD algorithm are described below: 
1) Generate a low-pass filtered white noise signal. Since the 

fundamental frequency of CAS is typically below 1000 Hz 
[1], the cut-off frequency of the low-pass filter was 
empirically set to 1150 Hz. 

2) Add this band-limited noise signal to the RS signal from 
an inspiratory cycle at an SNR of 0 dB. 

3) Decompose the resulting noisy signal into noisy IMFs 1-4 
using the original EMD algorithm reported by Rilling and 
Flandrin [36], [37]. 

4) Repeat steps one to three 100 times. 
5) Calculate the final IMFs as the mean of those resulting 

from the iteration process. 
Fig. 1 illustrates the EEMD method applied to RS from an 

inspiratory cycle containing a wheeze. IMFs 1-4 were obtained 
in decreasing order of frequency, with IMF 1 including the 
highest frequency components in the RS. In this case, the main 
components of the CAS were within IMF 2. We found that 
EEMD provided an efficient way to separate the different 
frequency scales for computerized RS analysis. Moreover, 
since the frequency range of interest for CAS detection is from 
100 Hz upwards, IMFs 1-4 proved sufficient to cover this 
range. 

 

D. Instantaneous Frequency of RS  

As defined by Gabor [38], the IF can be calculated from the 
phase of a complex signal by taking the time derivative. The 
most practical way to obtain a unique complex signal from a 
real one is to construct the analytic signal. 

In this study, we calculated an analytic signal, zi(t), from 
each IMF, si(t), as in (1). 

 )t(j
iiii

ie)t(a)]t(s[jH)t(s)t(z Φ=+=  (1) 

where H[·]  is the Hilbert transform, ai(t) is the absolute value 
of zi(t), and Фi(t) is the phase of zi(t). Once we had obtained the 
analytic signal from each IMF, IFi(t) and IEi(t) could be 
defined as in (2) and (3), by the phase derivative and envelope 
of the analytic signal, respectively. 
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A major challenge in calculating the IF for RS is to obtain a 
physically meaningful frequency, which means not having 
negative values. In relation to this issue, (2) would only yield 
true positive values for the IF if si(t) were to be a mono-
component signal, the phase signal of which is monotonically 
increasing point-by-point. However, IMFs are not truly mono-
component signals and, therefore, their phase signals could 
produce unusual negative IF values. 

In order to ensure real positive IF values, we developed a 
smoothing function, which consisted of applying a shape-
preserving piecewise cubic interpolation to segments where 
the phase was not increasing. 

The complete algorithm to calculate IF and IE comprises the 
following steps: 
1) Calculate IMFs 1-4 by means of EEMD from RS of each 

inspiratory cycle. 
2) Calculate the analytic signal, zi(t), using the Hilbert 

transform for each IMF. 
3) Obtain the phase signal, Φi(t), for each zi(t). 
4) Smooth the phase signal using the smoothing function, 

which prevents IF from taking negative values. 
5) Calculate IF i and IEi by differentiating the smoothed Φi(t) 

and taking the absolute value of zi(t), respectively. The 
time derivative is calculated using a 5-point least squares 
polynomial approximation [39]. 

Fig. 2 shows an example of IF sequences obtained from two 
inspiratory cycles, one containing a wheeze (a) and another 
with normal RS (b). The IF dispersion was low for as long as 
the CAS lasted, as shown in IF 2 in Fig. 2 (a). In contrast, IFs 
from normal RS had uniform dispersions throughout the 
inspiratory cycle, as shown in Fig. 2 (b). 

 

E. RS Classification 

1) Extraction of Candidate CAS Segments 
Our RS classifier works at two levels: the classification of 

RS segments within an inspiratory cycle, and the classification 
of the entire inspiratory cycle. The algorithm extracts RS 
segments that are candidates for being CAS segments within 
an inspiratory cycle. Then, feature extraction is applied to each 
extracted RS segment. These features are used to classify each 
RS segment, as a normal or CAS segment, using an SVM 
classifier. Finally, the whole inspiratory cycle is classified as 
containing CAS or normal sounds, depending on the 
classification of its RS segments (see Fig. 3). 

 
Fig. 1.  EEMD applied to RS from an inspiratory cycle containing a wheeze. 
IMFs 1-4 cover all the frequency range of interest for CAS detection. The 
major components of the wheeze are within IMF 2 (solid line box). 



 

Given that CAS segments have lower IF dispersion than 
segments containing normal RS, candidate CAS segments can 
be detected using a moving window that slides over the entire 
IF sequences to calculate the IF dispersion (iIFσ ). In this 

study, we used a window length of 40 ms (125 samples at 
3 125 samples/second) with 92% overlap (115 samples). Both 
parameters were determined empirically. The window length 
(40 ms) is less than half of the minimum CAS duration 
(100 ms). Shorter window lengths would produce highly 
variable iIFσ  sequences, due to unusual spurious IF values. On 

the other hand, longer window lengths would produce only 

slight variations in the iIFσ  sequences, making it more 

difficult to detect CAS segments. The 92% overlap was chosen 
to increase the number of data points in the iIFσ  sequences. If 

the overlap was small, CAS segments would produce only a 
few data points with low IF dispersion, whereas, by increasing 
the overlap between adjacent windows, we obtained more data 
points improving the accuracy of the detection of CAS 
segments. 

After calculation of the iIFσ  sequences, a thresholding 

method was used to detect candidate CAS segments. 
Thresholds Th1, Th2, and Th3 represent different levels of IF 
dispersion (Fig. 3) and these were also determined empirically. 
Threshold Th1 was the mean of an entire iIFσ  sequence, that 

is, the mean IF dispersion throughout an entire inspiratory 
cycle. It was chosen as the reference value to detect CAS 
segments. The IF dispersion of normal RS segments was 
expected to be above Th1, whereas the IF dispersion of CAS 
segments was expected to be below Th1. However, using only 
Th1 was a weak criterion, which might lead to false CAS 
segment detections. To avoid false detections, we defined two 
more restrictive thresholds (Th2 and Th3). Th2 was the upper 
limit for the IF dispersion of a candidate CAS segment. That 
is, all segments with an IF dispersion below Th2 were 
potentially CAS segments. Furthermore, threshold Th3 was 
used to distinguish those segments with high probability of 
being CAS segments, due to their very low IF dispersion. 

Fig. 4 shows how IF can track not only constant monophonic 
CAS (a), but also variable monophonic (b) and polyphonic (c) 
CAS. As shown, the iIFσ  sequences are below Th2 throughout 

the presence of CAS.  
2) Feature Extraction 

Every candidate CAS segment was labeled as one of the  
Fig. 3.  Flowchart of the proposed RS classification algorithm. 

Fig. 2.  Instantaneous frequencies (IF 1-IF 4) for IMFs 1-4 from the CAS cycle in Fig. 1 (a), and from one inspiratory cycle with normal RS (b). As shown in (a), 
a segment with a markedly lower IF dispersion appears within IF 2, and this corresponds to the location of the wheeze. In contrast, IFs from normal RS (b) are 
highly variable throughout the entire inspiratory cycle.  



 

following types according to its minimum iIFσ  and duration, 

1d  (Fig. 5-a): 

Type 1: 3Th)min( IF ≤σ , msd 1001 ≥  

Type 2: 3Th)min( IF ≤σ , msd 1001 <  

Type 3: 3Th)min( IF >σ , msd 1001 ≥  

Type 4: 3Th)min( IF >σ , msd 1001 <  

As different RS segments might belong to the same CAS, a 
grouping algorithm was used to merge RS segments, based on 
maximum IF dispersion and time elapsed between two 
adjacent RS segments. Moreover, since the merged segments 
might have different labels, a priority order was established to 

set the label for the resulting compound segment, according to 
the following sequence: 

Priority order: Type 1 > Type 2 > Type 3 > Type 4 
Each compound segment was labeled as the same type as its 

highest priority sub-segment. 
In the final classification stage, only type 1-3 RS segments 

were taken into account (Fig. 5-b). Moreover, according to the 
standard definition of CAS [1]-[3], only RS segments whose 
total duration (DT) were greater than or equal to 100 ms were 
considered candidate CAS segments. The following features 
were defined, as in (4), (5), and (6), to characterize the 
segments (Fig. 5-b, and 5-c). 
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where EIMF is the sum of all terms of the squared IE of an IMF, 
ES is the sub-interval of EIMF corresponding to the segment 
location, ET is the sum of EIMF1, EIMF2, EIMF3, and EIMF4, and 

TD,IFσ  is the mean IF dispersion over the length of the 

segment. These five features correspond to measurements that 
depend either on the energy (ER1, ER2, and ETR) or on the IF 
dispersion (DR and Q) of RS segments. 

Fig. 4.  Instantaneous frequency (IF i), instantaneous envelope (IE i), and IF dispersion sequence (σIF i) from: (a) one CAS cycle containing a constant monophonic 
wheeze, (b) one CAS cycle containing a variable monophonic wheeze with frequency sweeping, and (c) one CAS cycle containing a polyphonic wheeze, which 
main components are at mean frequencies of 327 Hz (IF 2), 266 Hz (IF 2), and 134 Hz (IF 3). 

Fig. 5.  Characteristic parameters of candidate CAS segments, extracted from 
the IF dispersion (a), (b), and the instantaneous envelope (IE) (c). 



 

3) RS Segment Classification using Support Vector Machines 
The proposed SVM classifier works at the segment level of 

our classification scheme (Fig. 3). That is, the input to the SVM 
classifier was a numerical data vector containing features ER1, 
ER2, ETR, DR, and Q, and the IMF number (from 1 to 4) of an 
RS segment. In order to train and test our SVM classifier, we 
used an iterative procedure, as illustrated in Fig. 6. 

First, the inspiratory cycles from the full dataset were 
divided into two subsets, one for training (559 cycles) and 
another for testing (311 cycles). Due to the high between-
subject variability of the RS, the subsets were formed 
independently and hence included inspiratory cycles from 
different asthmatic patients. Then, 921 RS segments extracted 
from the training inspiratory cycles were used to find the 
optimum parameters for our SVM classifier (the regularization 
parameter, C, and the kernel parameter, σ). For that purpose, 
we used a 5x5 grid with increasing sequences of C (from 1 to 
3) and σ (from 0.1 to 1). Each combination of parameters was 
the starting point for finding a local minimum of the 10-fold 
cross-validation loss function. The parameters which produced 
the lowest cross-validation loss were chosen as the optimum 
parameters (Copt = 2.72 and σopt = 1.61). 

Having found the optimum SVM parameters, we employed 
them to train an SVM classifier using the RS segments from 
the training inspiratory cycles. The resulting SVM classifier 
was validated using the RS segments from both training and 
testing inspiratory cycles and the target labels from the manual 
RS segment classification. The performance of the SVM 
classifier was evaluated in terms of accuracy, sensitivity, 
specificity, and positive predictive value. 

Since the results obtained might depend on the initial 
grouping of the inspiratory cycles, we repeated the training and 
testing steps using different partitions of the data. For that 
purpose, the inspiratory cycles from the dataset were randomly 

divided into training (65%) and testing (35%) sets inside a 
loop. The random partitions were done in such a way that each 
subset contained a proportionate share of the normal and CAS 
Q1-Q4 inspiratory cycles from the full dataset (Table II). After 
each random partition, the RS segments from the resulting 
training and testing inspiratory cycles were used to train and 
test an SVM classifier with the optimum parameters (Copt and 
σopt). The total performance of the SVM classifier was 
calculated as the mean and the standard deviation of the 
classification results of each iteration. 
4) Inspiratory Cycle Classification 

Considering the RS segment classification obtained in each 
iteration of the previous stage, each entire inspiratory cycle 
was classified as containing CAS if any of its RS segments was 
classified as a CAS segment. Otherwise, the entire inspiratory 
cycle was classified as containing normal sounds. 

The performance of the SVM classifier was also evaluated 
at cycle level, by comparing the inspiratory cycle classification 
obtained with the classifier to the manual inspiratory cycle 
classification. 

We selected the SVM with the best performance, among all 
iterations, for the classification of simulated CAS cycles in the 
next Section II.F. 

 

F. Simulation of CAS Cycles 

This section describes a procedure to study the effect of 
duration and SNR of simulated CAS on the performance of the 
classifier. For that purpose, the classifier was tested on 4592 
simulated CAS cycles. The procedure to obtain the simulated 
CAS cycles was as follows: 
1) Eight CAS segments were manually extracted from 

different inspiratory cycles with CAS from the study 
dataset. 

2) Either time contraction or dilation was applied to those 
eight CAS segments in order to obtain 41 new CAS 
segments, ni(t), thus covering time durations from 100 ms 
to 500 ms, in increments of 10 ms. 

3) Each one of those 41 CAS segments was added to 7 
inspiratory cycles with normal sounds, sk(t), as in (7), at 
16 SNRs, SNRj, from -5 dB to 10 dB, in increments of 1 
dB. As a result, a total of 656 simulated CAS cycles, 
wijk(t), were obtained for each original normal sound cycle, 
sk(t). 

 71161411 ..k,..j,..i),t(n)t(s)t(w ijkkijk ===+=  (7) 

In (7), i is the CAS segment subscript, j is the SNR subscript, 
and k is the subscript for the inspiratory cycle with normal 
sounds. In this study, the SNR was defined as in (8). 

 
Fig. 6.  Flowchart of the proposed training and testing procedure for the SVM 
classifier. 
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In this way, we obtained a set of simulated CAS cycles that 
allowed us to explore the effectiveness of the proposed 
algorithm in terms of two basic parameters of CAS: duration 
and intensity. The influence of these parameters on each 
simulated CAS cycle was calculated as the percentage increase 
in mean power with respect to the original cycle with normal 
sounds, sk(t), given by expression (10). 
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This new parameter allowed us to analyze the classification 
results of the simulated CAS cycles for different ranges of 
power increase. 

III.  RESULTS 

A. Recorded RS Classification 

The performance of the SVM classifier at segment level, 
obtained after the training and testing described in Section 
II.E.3, is summarized in Table III. As shown, high accuracy 
(94.0% ± 0.8%) and sensitivity (92.8% ± 1.7%) were achieved 
with the test set for classifying recorded RS segments. 

The performance of the SVM classifier at cycle level is 
reported in Table IV. As shown, our classifier achieved high 
total accuracy (94.6% ± 0.3%) and sensitivity (94.2% ± 0.4%) 
for classifying recorded RS from inspiratory cycles as normal 
sounds or CAS. Among all iterations, the best SVM classifier 
had an accuracy of 95.1%, a sensitivity of 94.2%, a specificity 
of 96.1%, and a positive predictive value of 96.8%, at cycle 
level. That SVM classifier was used to obtain the classification 

results for the simulated CAS cycles described in the next 
Section III.B. 

Furthermore, we evaluated the performance of our classifier 
for different airflow levels. Figure 7 shows the distribution of 
the CAS cycles from the dataset (485 cycles) among the four 
quartiles. Moreover, the mean FEV1 value was calculated from 
the asthmatic subjects who provided CAS in each quartile. As 
shown, cycles containing CAS not only appear at high airflows 
(Q3 and Q4), but also at low and moderate airflows (Q1 and 
Q2). It is noteworthy that patients who provided CAS at low 
airflows had lower FEV1 values than those who only provided 
CAS at high airflows. In fact, there is a direct relationship 
between the two variables. Patients with severe asthma (with 
low FEV1 values) may produce CAS as much at low airflows 
as at high airflows. However, those with mild asthma only 
generate CAS at high airflow levels. Independently of the 
airflow quartile, our classifier performed very well in all cases 
(see Table IV). 

TABLE III 
CLASSIFICATION OF RECORDED RS SEGMENTS 

Parameter/Set Total Training Test 

Accuracy (%) 94.9 ± 0.3 95.4 ± 0.4 94.0 ± 0.8 
Sensitivity (%) 93.9 ± 0.6 94.5 ± 0.6 92.8 ± 1.7 
Specificity (%) 95.6 ± 0.6 96.1 ± 0.6 94.8 ± 1.4 
Positive Predictive Value (%) 94.1 ± 0.7 94.7 ± 0.8 93.0 ± 1.7 

 

 
Fig. 7.  Distribution of CAS cycles from the dataset among airflow quartiles 
(black). Mean FEV1 of patients who provided CAS cycles at each airflow 
quartile (grey). Mean and standard deviation of the airflow levels included in 
each airflow quartile (white). 

TABLE IV 
CLASSIFICATION OF RECORDED RS FROM INSPIRATORY CYCLES 

TOTAL Total Q1 Q2 Q3 Q4 

Accuracy (%) 94.6 ± 0.3 95.3 ± 0.7 94.5 ± 0.6 94.1 ± 0.6 94.7 ± 0.6 

Sensitivity (%) 94.2 ± 0.4 92.3 ± 1.2 94.7 ± 0.5 94.5 ± 0.8 94.4 ± 0.5 

Specificity (%) 95.0 ± 0.9 97.0 ± 0.9 94.2 ± 1.2 93.6 ± 1.5 95.4 ± 1.6 

Positive predictive value (%) 96.0 ± 0.7 94.4 ± 1.6 95.4 ± 0.9 95.1 ± 1.1 97.7 ± 0.8 

TRAINING Total Q1 Q2 Q3 Q4 

Accuracy (%) 95.0 ± 0.6 95.5 ± 1.3 94.8 ± 1.3 94.7 ± 1.2 95.2 ± 1.1 

Sensitivity (%) 94.6 ± 0.7 92.5 ± 2.7 94.9 ± 1.4 94.8 ± 1.3 94.9 ± 1.3 

Specificity (%) 95.6 ± 1.0 97.2 ± 1.3 94.7 ± 1.9 94.5 ± 2.2 96.0 ± 2.4 

Positive predictive value (%) 96.4 ± 0.8 94.9 ± 2.3 95.8 ± 1.5 95.8 ± 1.6 98.0 ± 1.1 

TESTING Total Q1 Q2 Q3 Q4 

Accuracy (%) 93.7 ± 1.2 94.9 ± 2.3 93.8 ± 2.2 92.9 ± 2.1 93.8 ± 2.3 

Sensitivity (%) 93.6 ± 1.9 91.9 ± 5.1 94.2 ± 2.8 93.8 ± 3.1 93.5 ± 2.7 

Specificity (%) 93.9 ± 2.0 96.5 ± 2.9 93.2 ± 3.5 91.8 ± 4.1 94.3 ± 4.0 

Positive predictive value (%) 95.1 ± 1.5 93.8 ± 4.9 94.7 ± 2.6 94.0 ± 2.8 97.2 ± 1.9 

 



 

 

B. Effect of SNR on Detection of Simulated CAS Cycles 

This section describes the results of the sensitivity analysis 
described in Section II.F. 

Fig. 8 shows the results after obtaining 656 simulated CAS 
cycles from one inspiratory cycle with normal sounds, sk(t). 
The power increase (ΔPijk) parameter was used to evaluate the 
effect of adding CAS segments to an inspiratory cycle with 
normal sounds, with different durations and different SNRs. 
Three thresholds were set for power increases of 200%, 125%, 
and 110%, defining the boundaries for four regions of interest 
(R1-R4), plotted in Fig. 8. 

The same procedure (described in Section II.F) was applied 
to six more inspiratory cycles with normal sounds, sk(t). Then, 
the classifier was applied to the total set of 4592 simulated 
CAS cycles. As shown in Fig. 9, the proposed classification 
algorithm achieved high accuracy for detecting cycles 
containing CAS in regions R1 (98.7% ± 1.4%) and R2 (93.9% 
± 4.1%), while the accuracy was markedly lower in region R4 
(76.4% ± 13.4%). However, region R4 corresponds to very low 
SNR values. This region included weak CAS, which had very 
low energy and only slightly increased the mean power of the 
RS signals (ΔP ≤ 110%). Although there is no standard 
criterion for amplitude in the definition of CAS, considering 
the recorded CAS in the study dataset, regions R1-R2 
represented more realistic SNR values. For this reason, the 
number of simulated CAS cycles progressively decreased from 
region R1 to region R4. In any case, the overall accuracy, 
including all regions, was 92.8% ± 3.6%. This high accuracy 
demonstrates that the proposed method offers high 
performance under both low and high SNR conditions. In fact, 
high accuracy (87.7% ± 7.3%) was achieved in region R3, 
which still represents an unfavorable scenario, in which the 
SNR may be below 0 dB. 

IV. DISCUSSION AND CONCLUSIONS 

Asthma is characterized by a series of variable symptoms, 
including airflow limitation, shortness of breath, cough, and 
the presence of CAS [9]. Although these symptoms vary over 
time and CAS are not always present in asthma, when present, 
such sounds clearly indicate airway obstruction [4]. Therefore, 

detecting and analyzing CAS can provide some additional 
information about the pulmonary function of these patients. 

This study demonstrates that the analysis of RS in terms of 
EEMD-based IFs provides an efficient, simple, and robust 
method for CAS detection and RS classification. 

First, we have shown the viability of estimating the IF by 
EEMD. The definition of the IF of multi-component signals, 
such as RS, has been a subject of controversy, since strictly 
speaking the concept of IF is only meaningful for mono-
component signals. In this work, we found that EEMD allowed 
us to decompose RS into IMFs for which a physically 
meaningful IF was defined point-by-point. EEMD represented 
a key step in the multi-scale analysis of the IF in RS, as it 
determined the quality of the IF estimation and thus the 
performance of our RS classifier. 

Indeed, we opted to use EEMD as it improves on the original 
EMD method, which had a mode mixing effect when applied 
to RS from some inspiratory cycles [33]. After comparing 
several methods addressing that mode mixing effect [34], [40]-
[42], we identified some clear advantages of EEMD. The IMFs 
from EEMD had smaller frequency overlaps than IMFs from 
other methods. Due to properties similar to a dyadic filter bank, 
EEMD achieved a much better separation of different 
frequency scales, which reduced the mode mixing effect and 
improved the IF estimate. Moreover, thanks to the better 
separation of frequency scales, EEMD allowed us to analyze 
only IMFs 1-4 to cover the frequency range of interest, which 
goes from 100 Hz upwards for CAS detection. However, other 
methods required us to analyze at least 5 IMFs for the same 
purpose. 

Two parameters determined the effectiveness of the EEMD: 
noise amplitude and number of iterations. If the added noise 
amplitude was too small (high SNR), there were few changes 
in the maxima of the original sound signal and, therefore, the 
benefits of EEMD were not evident. On the other hand, using 
high amplitude noise (low SNR) produced slightly noisy IMF 
components, but provided a reference scale distribution to 
enhance EMD and avoid the mode mixing effect. Furthermore, 
the residual noise level was able to be reduced by increasing 
the number of iterations. Indeed, a key issue was finding a 
balance between the SNR and number of iterations in order to 
minimize the mode mixing effect and obtain an acceptable 
residual noise level. 

 
Fig. 8.  Percentage increase of mean power (ΔPijk) of simulated CAS cycles, 
wijk(t), with respect to their original normal sound cycles, sk(t), as a function of 
SNR and duration of CAS segments. 

 
Fig. 9.  Accuracy in simulated CAS cycle detection for regions R1-R4, which 
represent different SNR conditions (see Fig. 8). 



 

As RS are random in nature, for this study, we added band-
limited noise to RS signals from inspiratory cycles at an SNR 
of 0 dB, in order to perceive the benefits of EEMD. Despite 
this low SNR, applying 100 iterations to RS from each 
inspiratory cycle proved sufficient to obtain slightly noisy 
IMFs that allowed us to calculate a meaningful IF in a 
moderate time. Using fewer iterations would result in a higher 
residual noise level, whereas using more iterations would 
substantially increase the computation time. Furthermore, the 
slight residual noise was not a problem for our application, 
since we did not need a perfect decomposition to reconstruct 
the original signal from the IMFs, but rather we wanted to use 
them for IF estimates. 

Although there are several methods of IF calculation [32], 
we found that the Hilbert method produced more accurate IF 
values than other methods, such as the Teager-Huang method, 
which produced more dispersed values. 

We have presented a set of features, which were extracted 
from the IF and IE sequences, to train and test an SVM 
classifier for RS segments. For that purpose, a moving window 
was applied to the IF sequence from each IMF to calculate the 
dispersion, since we found that RS segments containing CAS 
were characterized by markedly lower IF dispersion [33]. We 
used the standard deviation just as a tool for measuring 
dispersion within each IF sequence. Then, we applied a set of 
thresholds (Fig. 3) to the IF dispersion in order to detect 
candidate CAS segments. Since these thresholds were 
proportional to the IF dispersion of each IMF, they adapted to 
the characteristics of each signal. The extracted IF dispersion 
and energy features (Fig. 5-b and 5-c) allowed us to achieve 
high sensitivity (94.2%) and accuracy (94.6%) in CAS 
detection and RS classification. 

As shown in Table V, the performance of our method is 
similar to or better than that reported for many previous CAS 
detection methods. However, these different approaches 
cannot be directly compared because there are some important 
differences between them, which affect the classification 
results. The main differences are in the following: the position 
and number of sensors (tracheal or lung sounds, monochannel 
or multichannel recordings), the respiratory maneuver 
performed (constant airflow, forced expiratory maneuver, or 
variable airflow), the respiratory disease of patients (asthma, 
COPD, or others), the size of the dataset, the types of CAS 
included in the dataset, or the parameters for evaluating the 
performance of the classifiers. 

Despite the aforementioned differences, our approach has 
some objective advantages over previous approaches. We have 
shown the ability of our method to detect CAS derived from a 
wide range of airflow levels. Thanks to the progressive 
respiratory maneuver, which was performed by the asthmatic 
patients, the dataset of this study included CAS appearing at 
low airflows as well as that appearing at high airflows. This is 
a strength compared to previous studies for which RS were 
recorded at constant airflows or during forced expiratory 
maneuvers. We have shown that CAS may appear under 
different respiratory conditions, and that this has no effect on 
the performance of our classifier. 

We have also performed a detailed sensitivity analysis of the 
influence of the SNR (amplitude of CAS) on the performance 
of the proposed classifier. We applied our classifier to 
simulated CAS cycles with different SNRs (see Fig. 8). As 
shown in Fig. 9, an overall accuracy of 92.8% was achieved. 
Although the performance of the RS classifier diminished from 
region R1 to R4, the accuracy was high (87.7% in region R3) 
even at low SNRs. These results reinforce the reliability of our 
method, in that they demonstrate that this technique works 
properly under both high and low SNR conditions. 

In contrast to previous approaches for RS analysis, such as 
those based on spectrograms or wavelet transformations, 
EEMD-IF used in the first stage of our classification scheme is 
an adaptive technique, which does not require a priori 
knowledge of the RS signal characteristics. That is, IF and IE 
sequences are calculated without choosing fixed analysis 
parameters and regardless of the type of RS and their temporal 
or spectral characteristics. On the other hand, IF and IE 
sequences allow us to work independently in either a time-
frequency or a time-energy domain. For this reason, we were 
able to use dispersion-based criteria on IF sequences, this 
representing a novel and straightforward technique for 
detecting CAS segments. Moreover, IF and IE sequences are 
defined point-by-point, thus providing very high time 
resolution. In fact, EEMD-IF provides precise IF values, which 
represent the frequency content of RS signals at each time 
instant. 

Thanks to the aforementioned properties of EEMD-IF, on 
which the proposed method relies, this is a suitable technique 
for RS classification, and also represents an alternative way of 
accurately analyzing RS signals. Consequently, unlike some 
techniques previously used for CAS detection, EEMD-IF 
could be used not only for detecting CAS, but also for 
characterizing these sounds. Although this proposed EEMD-IF 
technique has not been widely applied to RS analysis, various 
EMD-based approaches have already been used in previous 
studies either for detection and analysis of discontinuous 
adventitious sounds [43], [44], or for detection and separation 
of heart sounds from lung sounds [45]-[47]. 

TABLE V 
PERFORMANCE COMPARISON OF CAS DETECTION ALGORITHMS 

Features Year Method Performance (%) 

EEMD + IF 2014 
Proposed 
method 

Real: 94.6 (Acc), 
94.2 (S), 95.0 (Sp) 
Sim: 92.8 (Acc) 

Spectrogram 2004 Homs [18] 71 < (S) < 100 
Spectrogram 2005 Hsueh [24] 89 < (S) & (Sp) 
Spectrogram 2006 Lin [25] 96.7 (S), 90.9 (Sp) 
Spectrogram 2007 Taplidou [19] 95.5 (S), 93.7 (Sp) 
Spectrogram 2008 Jain [20] 84 (S), 86 (Sp) 
Spectrogram 2009 Riella [21] 84.8 (Acc) 
MFCC + GMM 2007 Chien [14] 90 < (Acc) 
MFCC + GMM 2009 Bahoura [15] 94.6 (S), 91.9 (Sp) 
Linear analysis 2009 Aydore [16] 93.5 (Acc) 
Dominance spectrogram 2011 Jin [28] 92.4 (Acc) 
FT + DWT + PCA 2012 Xie [12] 97.3 (Acc) 

Acc: accuracy, S: sensitivity, Sp: specificity, MFCC: Mel frequency cepstral 
coefficients, GMM: Gaussian mixture models, FT: Fourier transform, DWT: 
discrete wavelet transform, PCA: principal component analysis. 



 

In this study, we have focused on inspiratory cycles because 
inspiratory sounds are much louder than expiratory sounds on 
the back, where we recorded the analyzed RS. Nevertheless, 
this classifier could be effectively applied to RS from 
expiratory cycles and even from the full respiratory cycle. 
What is more, although this study is focused on RS from the 
surface of the back, the proposed classifier could be also 
applied to tracheal sounds. These factors do not have influence 
on the hypothesis of our method. That is, it depends on the 
variations of the IF dispersion inside a cycle, regardless of 
whether it is an inspiratory, an expiratory, or a full cycle. 

The use of our RS classifier is a prior step for a detailed 
analysis of RS. Specifically, easier CAS detection will 
facilitate new research into the analysis and characterization of 
these sounds. On the other hand, the identification of normal 
inspiratory sounds, without CAS, is the basis for future 
analysis of normal inspiratory sound intensity. This classifier 
could be the first stage of a more complex system for the 
analysis of RS. Such a system could serve as much for the 
diagnosis of patients with obstructive respiratory diseases as 
for their long-term monitoring. The idea is that this type of 
system could be used in a routine way together with the 
spirometry. The combined information from these techniques 
could increase the reliability in the diagnostic assessment of 
these patients. 
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ABSTRACT 

The use of the Hilbert-Huang transform in the analysis of biomedical signals has 
increased during the past few years, but its use for respiratory sound (RS) analysis is still 
limited. The technique includes two steps: empirical mode decomposition (EMD) and 
instantaneous frequency (IF) estimation. Although the mode mixing (MM) problem of 
EMD has been widely discussed, this technique continues to be used in many RS analysis 
algorithms. 
In this study, we analyzed the MM effect in RS signals recorded from 30 asthmatic 
patients, and studied the performance of ensemble EMD (EEMD) and noise-assisted 
multivariate EMD (NA-MEMD) as means for preventing this effect. We propose 
quantitative parameters for measuring the size, reduction of MM, and residual noise level 
of each method. These parameters showed that EEMD is a good solution for MM, thus 
outperforming NA-MEMD. After testing different IF estimators, we propose Kay’s 
method to calculate an EEMD-Kay-based Hilbert spectrum that offers high energy 
concentrations and high time and high frequency resolutions. We also propose an 
algorithm for the automatic characterization of continuous adventitious sounds (CAS). 
The tests performed showed that the proposed EEMD-Kay-based Hilbert spectrum makes 
it possible to determine CAS more precisely than other conventional time-frequency 
techniques. 

 
 

1. Introduction 
Respiratory sounds (RS) are multicomponent, nonlinear, 
and non-stationary signals. In general, RS signals are 
comprised of normal RS and may contain superimposed 
abnormal RS, such as continuous (CAS) and 
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discontinuous (DAS) adventitious sounds, as well as 
different types of noise, such as clicks, background 
talking, or heart sounds. Normal RS are random in nature, 
whereas CAS are quasi-periodic waveforms with a 
duration of more than 80-100 ms and a fundamental 
frequency of over 100 Hz, and DAS are transient and 
short sounds (around 20 ms), with high frequency 
components (above 300 Hz) [1,2]. Therefore, RS are 
complex signals made up of a set of components, each 
one having different time-frequency features. 
Due to the different and variable characteristics of RS, 
time-frequency distributions (TFDs) have become the 



 

the most commonly used and straightforward techniques 
for RS characterization. In CAS analysis, spectrogram has 
been the most widely used TFD [3-7], despite its poor and 
window-dependent resolution. Nevertheless, more 
advanced TFDs have recently been proposed for CAS 
analysis, either through combining wavelet decomposition 
with third order spectra features [8], or by deriving a 
temporal-spectral dominance spectrogram from the short-
time Fourier transform [9]. 

As opposed to CAS analysis, DAS analysis requires 
TFDs with higher time resolution than spectrogram. 
Wavelet-based techniques, such as scalogram, have been 
widely used for DAS detection [10-12]. In addition, DAS 
have also been analyzed by means of nonlinear 
techniques, such as kurtosis and fractal dimension as 
measures of gaussianity and complexity, respectively [13-
15]. 

Besides Fourier and wavelet-based techniques, one of 
the most relevant parameters of time-frequency analysis 
for nonlinear and non-stationary signals, such as RS, is 
the instantaneous frequency (IF), which consists of the 
frequency content of a signal at each time instant [16]. 
The concept of IF has led to the definition of TFDs that 
highly concentrate the energy of a signal along its IF, 
which makes it possible to identify signal components 
more precisely. Several IF estimators have been proposed, 
such as the phase derivative of the analytic signal 
associated with a real signal [17,18], zero-crossing [19], 
or adaptive IF estimators based on data modeling [20-22]. 
However, the most common IF estimators are based on 
TFDs [16,23], which give IF estimates with lower 
variance. 

Quadratic TFDs, such as the Wigner-Ville distribution 
(WVD), were defined based on the IF concept with the 
aim of improving the resolution and concentration of 
energy of spectrogram [16]. However, a major drawback 
of the WVD is the presence of cross-terms, which 
complicate IF estimation, especially in multicomponent 
signals. In order to reduce cross-terms, other quadratic 
TFDs have been proposed as filtered versions of the 
WVD, using different time-frequency smoothing kernels, 
such as the smoothed pseudo-WVD [24] or the reduced 
interference distributions [25], which reduce cross-terms 
while maintaining high resolution. 

In addition to these smoothing approaches for cross-
term reduction, other techniques have been proposed to 
increase the signal energy concentration and resolution of 
different TFDs. For example, the adaptive short-time 
Fourier transform [26,27] uses a variable window length 
adapted to signal characteristics in order to improve the 
resolution of spectrogram. Moreover, reassignment 
techniques [28,29] are alternative approaches for the 
enhancement of TFDs, especially the synchrosqueezing 
transform [30], which allows mode retrieval in 
multicomponent signals. 

Beyond the calculation of the aforementioned TFDs for 
IF estimation, strictly speaking, estimating the IF only 
makes sense for monocomponent or narrowband signals 
[18]. For that reason, estimating IF from the peaks of 
TFDs in multicomponent signals requires an extra step to 
extract and isolate different components before IF 
estimation methods can be applied to each component. 
For this purpose, a conventional approach consists of 
segmenting the TFD of a multicomponent signal using 

image processing techniques, including local peak 
detection and component linking [31] and blind source 
separation [32], among others. 

The Hilbert-Huang transform (the HHT) [33,34] has 
been proposed as a new adaptive technique for the 
analysis of nonlinear and non-stationary signals. The 
technique consists of combining empirical mode 
decomposition (EMD) and Hilbert spectral analysis to 
obtain an alternative TFD of a signal, called the Hilbert 
spectrum (the HS), as a function of its IF and 
instantaneous amplitude (IA). 

The HHT has some advantages over TFD-based IF 
estimation methods, which is why it was chosen for RS 
analysis in this paper. Since EMD is an adaptive and 
direct decomposition technique, it makes it possible to 
retrieve the modes of a multicomponent signal, called 
intrinsic mode functions (IMFs), without any a priori 
knowledge of the signal characteristics. In addition, HHT-
based IF estimation is performed by means of 
differentiation; therefore, the HHT does not suffer from 
the uncertainty principle and simultaneously provides 
both high time and high frequency resolutions. Moreover, 
since IF and IA sequences are separately calculated for 
each component, we can work independently in either a 
time-frequency or a time-energy domain, without having 
to process an entire TFD. Furthermore, although the 
properties of the HHT have led to its application to a 
number of biomedical signals [35-38], it has rarely been 
used for RS analysis, as there are only a few studies, 
mainly focusing on DAS detection [39-41]. However, we 
found in our previous studies that the HHT also 
performed well in CAS detection [42,43], which inspired 
us to analyze its performance for CAS characterization in 
depth and explore its advantages over spectrogram, which 
has traditionally been the most commonly used technique 
for this purpose. 

Another reason for which this study was carried out was 
that most proposed HHT-based methods for RS analysis 
[39-42] used the original EMD, which has a mode mixing 
(MM) effect. The MM effect consists either of an IMF 
containing components of widely different frequencies or 
of a signal component appearing in different IMFs [44]. 
Due to this MM, we found that EMD, when applied to 
some RS signals, resulted in poor separation of RS signal 
components [42]. Nevertheless, the original EMD has 
been used in other RS analysis approaches [45-48]. 
Among the proposed solutions for MM, the ensemble 
EMD (EEMD) [44,49] and the noise-assisted multivariate 
EMD (NA-MEMD) [50] are some of the most well-
established and widely used methods, but they have rarely 
been applied to RS analysis [43,51]. Moreover, the 
implementation and performance of these methods 
depend on each application and a detailed analysis of the 
MM effect and the performance of EEMD and NA-
MEMD in RS signals is lacking. 

The aim of this study is to provide an in-depth 
evaluation of the performance of the HHT for RS 
analysis, which led us to calculate the HS with high 
resolution as an alternative representation to improve on 
the performance of spectrogram, especially for CAS 
characterization. The study is divided into two parts. First, 
we analyze the MM effect of EMD in recorded RS signals 
and evaluate the performance of EEMD and NA-MEMD 



 

to reduce this effect using a number of quantitative 
parameters (section 4). Second, we evaluate the 
performance of three different IF estimators to obtain a 
suitable EEMD-Kay-based HS for CAS characterization 
(section 5), and we propose a new method for the 
automatic segmentation and characterization of CAS 
based on the HS processing (section 6). This algorithm 
was tested using a set of synthetic and recorded CAS 
signals, which allowed us to compare the performance of 
the HS and spectrogram. 

2. Study dataset 

2.1. Recorded RS signals 
Recorded RS were obtained from the Pulmonary 

Function Testing Laboratory of Germans Trias i Pujol 
University Hospital in Badalona, Spain. All recordings 
were acquired from 30 patients with asthma. Four 
piezoelectric contact microphones (TSD108, Biopac 
Systems, Inc.) were placed on the surface of the patients’ 
backs, on either side of the spinal cord, at the base and 
near the upper lobe of the right/left lung. All sensors were 
attached to the skin using adhesive rings. Airflow signals 
were recorded simultaneously with sound signals using a 
pneumotachograph (TSD107B, Biopac Systems, Inc.). All 
signals were sampled at 12,500 samples/s, using a 16-bit 
analogue-to-digital converter (MP150, Biopac Systems, 
Inc.). After digitalization, the sound signals were 
decimated by a factor of 4 to 3,125 samples/s and the 
respiratory phases were automatically detected using the 
airflow signal as the reference signal. After cycle 
segmentation, we selected RS from 636 inspiratory 
phases, with 353 normal sounds signals and 283 CAS 
signals, including both monophonic and polyphonic CAS. 

2.2. Synthetic signals 

In order to test the performance of different IF 
estimators and the proposed CAS characterization 
algorithm, we generated several synthetic CAS signals. 
Monophonic CAS signals with slightly variable IFs were 
modeled as sinusoid frequency modulated signals: 
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where f1,k are the IF sequences of signals c1,k(t) (Fig. 1-a). 
Monophonic CAS signals with frequency sweeping were 
modeled as linear frequency modulated signals: 
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Fig. 1. Theoretical IF of synthetic CAS. IF laws of monophonic CAS 
signals with slightly variable IF, c1,k(t) (a), and monophonic CAS signals 
with frequency sweeping, c2,k(t) (b). 

 

where f2,k are the IF sequences of signals c2,k(t) (Fig. 1-b). 
 

Finally, polyphonic CAS signals were formed by 
combining c1,k(t) and c2,k(t) as follows: 

�&,���� = ' ��,������,���� + �!,�(������,����  � ∈ 
0,0.025�� ∈ �0.025,0.275�� ∈ �0.275,0.3�  (5) 

� = 0 . . 0.3 
, � = 1 . . 3 

We obtained 11 different synthetic CAS signals in total. 
Each synthetic CAS signal was added to a recorded RS 
signal containing normal RS at different signal-to-noise 
ratios (SNRs), thus simulating real CAS that 
superimposed on normal RS. Since normal RS usually 
have a sharp energy drop at about 200-250 Hz [1,2], 
synthetic CAS signals containing components below 200 
Hz (c1,k(t), c2,k(t), and c3,k(t) for k=1,2), which overlap 
with normal RS, were added at SNRs from -4 dB to 12 
dB, in increments of 2 dB. However, synthetic CAS 
signals containing components above 200 Hz (c1,k(t), 
c2,k(t), and c3,k(t) for k>2) were added at SNRs from -8 dB 
to 12 dB, in increments of 2 dB. As a result, a total of 109 
synthetic CAS signals were obtained, including 80 
monophonic and 29 polyphonic CAS signals. 

3. Overview of the HHT 

The HHT consists of two steps, EMD and the Hilbert 
transform. The central step of the HHT is EMD, which 
decomposes a multicomponent signal s(t) into a set of 
zero mean narrowband components (IMFs), for which 
meaningful IF and IA can be calculated at any point by



 

means of the Hilbert transform. The main advantage of 
EMD is that it is a direct and adaptive decomposition 
technique, which extracts each IMF directly from the 
original signal by means of a sifting process [33]. As a 
result of this process, the signal s(t) can be expressed as a 
linear combination of its components as follows: 


��� = + ,-./��� + 01���1/2�  (6) 

where n is the number of extracted IMFs and rn(t) is the 
residue of s(t). Having decomposed s(t) by EMD, IF and 
IA can be calculated by the phase derivative and envelope 
of the analytic signal of each IMF and, therefore, s(t) can 
be expressed as a function of its IF and IA as follows: 


��� = + 3/��� cos�6 2��/���7��1/2� + 01��� (7) 

where fi(t) and ai(t) are the IF and IA of the i-th IMF, 
respectively. Building on expression (7), we can rearrange 
IF and IA in a three-dimensional TFD of the amplitude, 
the HS. 

4. Evaluation of the EMD step of the HHT in RS 
signals 

4.1. The MM effect of EMD in RS signals 

Ideally, each IMF of a multicomponent signal would 
contain a few different frequency components of the 
signal. However, due to the MM effect of EMD, some 
components may appear within different IMFs, thus 
leading to some IMFs containing components of widely 
different frequencies. 

Assessing the MM effect in multicomponent random 
signals, such as RS, is a complex task, since there is no a 
priori knowledge of the signal component characteristics. 
Nevertheless, this effect can be clearly observed in CAS 
signals because they are sinusoidal-like waveforms with 
well-defined fundamental frequencies. With the aim of 
illustrating the MM effect in RS signals, we applied EMD 
to a recorded polyphonic CAS signal with two overlapped 
components at around 140 Hz and 275 Hz. The resulting 
IMFs, which were obtained in decreasing order of 
frequency, are shown in Fig. 2. 

The MM effect clearly occurs for both components. The 
highest frequency component appears in IMFs 1 and 2, 
whereas the lowest frequency component appears within 
IMFs 2 and 3.

We calculated the power spectral density (PSD) of each 
IMF using Welch’s periodogram with a Hanning window 
of 80 ms, 40 ms overlap, and 1,024 points for the fast 
Fourier transform. In order to make different PSDs 
comparable, we divided them by their respective 
maximum value (Fig. 3). 

As shown in Fig. 3, MM is evident because IMF 2 
includes two widely separated frequency components, 
which correspond to the CAS components. Moreover, the 
CAS component at around 140 Hz is included within both 
IMF 2 and IMF 3, whose PSDs overlap to a great extent. 
Due to this MM effect, the obtained IMFs do not ensure 
that the application of the Hilbert transform would yield 
physically meaningful IF estimates. 

4.2. EEMD and NA-MEMD as solutions for mode mixing 

Over the past few years, many studies have focused on 
solving the MM effect of EMD. Although several 
solutions have been proposed, EEMD and NA-MEMD 
are the most well established and widely used methods. 
These methods are examples of noise-assisted techniques, 
which use the benefits of noise in data analysis. 

The MM effect occurs when some frequency scales are 
missing in the original signal. In this case, envelopes 
calculated during the sifting process are influenced by the 
extrema of widely different frequency components. 
However, when applied to white noise, which has scales 
uniformly distributed across the entire time-frequency 
plane, EMD acts as an adaptive dyadic filter bank [52,53]. 
Accordingly, when white noise is added to a 
multicomponent signal, all signal components with 
different frequencies are automatically separated by the 
reference scales set by white noise. 

Fig. 3. The MM effect in the frequency domain. PSDs of IMFs shown in 
Fig. 2. 

 Fig. 2. The MM effect of EMD. IMFs obtained by means of EMD on an RS signal with polyphonic CAS. 



 

Based on the aforementioned principle, EEMD was first 
proposed by Wu and Huang in 2009 [44]. The method 
consists of the iterative application of the original EMD to 
a signal plus multiple realizations of white noise. The 
final IMFs are calculated as the mean of those resulting 
from each iteration. Although the resulting IMFs contain 
a residual noise level, it can be almost totally cancelled 
using an appropriate number of iterations. 

The MEMD method was later proposed by Rehman and 
Mandic [54], initially as an extension of EMD for 
multivariate signals. Like EMD, MEMD has a dyadic 
filter bank property on white noise [50]. Based on this 
property, NA-MEMD was proposed to avoid MM in 
multivariate signals. The idea behind NA-MEMD consists 
of adding extra channels containing different realizations 
of white noise to the original signal, and then 
decomposing the resulting multivariate signal by means 
of MEMD. This method can also be applied to univariate 
signals. In this case, only those IMFs obtained for the first 
channel (original signal) are retrieved. 

To provide an example of the performance of noise-
assisted techniques in avoiding the MM effect, we have 
applied the EEMD method to the polyphonic CAS signal 
shown in the previous section, 4.1, using 100 iterations 
and noise added at an SNR of 0 dB. The resulting IMFs 
are shown in Fig. 4. 

As shown in Fig. 4, the EEMD method manages to 
reduce MM, as different frequency components are 
separated in different IMFs. This separation of frequency 
components is better observed in the PSDs of the 
resulting IMFs, shown in Fig. 5. 

Comparing these PSDs with those shown in Fig. 3, it is 
clear that noise has forced the frequency components to 
be uniformly distributed along the whole frequency range, 
thus separating widely different frequency components 
into different IMFs. 

Although both EEMD and NA-MEMD manage to 
reduce MM, there are some differences in the 
performance of the two methods, which are analyzed in 
depth in the following section. 

4.3. Performance assessment of EMD, EEMD, and NA-
MEMD in recorded RS signals 

With the aim of comparing the performance of EMD, 
EEMD, and NA-MEMD in RS signal decomposition, we 
applied these methods to the 636 RS signals recorded as 
described in section 2.1, which included normal RS and 

CAS. 
The choice of the EEMD and NA-MEMD parameters 

highly depends on the type of signal to be analyzed. 
Therefore, we followed some basic instructions, as 
described in [44] and [55], to choose the analysis 
parameters of each method. Input parameters for EEMD 
include the number of iterations and the SNR for the 
added noise. As explained in section 4.2, the residual 
noise level (nres) of the obtained IMFs can be reduced by 
increasing the number of iterations. Usually, a few 
hundred iterations are enough to significantly reduce nres. 
In fact, nres decreases following the rule �89: = �/√=, 
where n is the amplitude of the added noise and N is the 
number of iterations [44]. Based on this rule, we decided 
to use square numbers for the number of iterations and a 
wide range of SNRs. 

With regard to NA-MEMD, input parameters include 
the number of noisy extra channels, the amplitude of the 
added noise, and the number of directions used in the 
MEMD process. At least two noisy extra channels should 
be used and, as a rule of thumb, the minimum number of 
directions should be twice the number of data channels 
[55]. Therefore, for EEMD and NA-MEMD, all possible 
combinations of the following parameters were tested for 
each RS signal: 

• EEMD � number of iterations: 1, 2, 4, 16, 25, 36, 64, 
100, 225, and 400; SNRs: -9, -6, -3, 0, 3, 6, 9, 15, and 
21. 

• NA-MEMD � number of extra channels: 2, 3, and 4; 
number of directions: 8, 16, 32, and 64; SNRs: -9, -6, -
3, 0, 3, 6, 9, 15, and 21. 

We programmed the EEMD algorithm using the 
original EMD algorithm reported by Rilling and Flandrin 
[56,57]. 

 
Fig. 5. Separation of frequency components by EEMD. PSDs of 
IMFs shown in Fig. 4. 

Fig. 4. Avoiding MM by EEMD. IMFs obtained by EEMD of the recorded polyphonic CAS signal shown in Fig. 2. 



 

For the NA-MEMD method, we used the Matlab code 
provided by Mandic [55], which applies the MEMD 
algorithm reported by Rehman and Mandic [54]. 

The results were evaluated by means of six quantitative 
parameters that allowed us to choose the most suitable 
method for RS signal decomposition. The proposed 
parameters were divided into three groups depending on 
the measured feature. 

4.3.1. Size and processing time 
The first parameter used to compare the performance of 

EMD, EEMD and NA-MEMD was the total number of 
IMFs (NIMF) resulting from the decomposition of each RS 
signal. Moreover, since the frequency range of interest for 
RS analysis goes from 70 Hz onwards, we also calculated 
the number of IMFs whose central frequency (fc), 
measured from the PSD, was greater than 70 Hz (NIMF-FR). 

The results shown in Fig. 6 indicate that the EEMD 
method (solid lines in Fig. 6-a) provides lower IMFs 
(about 8-10 IMFs) than the NA-MEMD method, which 
produces between 14 and 16 IMFs (solid lines in Fig. 6-
b). Similar to EEMD, the mean NIMF of the original EMD 
for all RS signals was 9.1 IMFs. 

Figure 6 also shows that the mean NIMF-FR for EEMD 
was around 5 IMFs at most (dotted lines in Fig. 6-a), 
which means that EEMD produces between 3 and 5 IMFs 
(difference between NIMF and NIMF-FR) outside the 
frequency range of interest for RS analysis. Nevertheless, 
the mean NIMF-FR for NA-MEMD was around 7 IMFs 
(dotted lines in Fig. 6-b), which indicates that this method 
produces more redundant IMFs (around 7-9 IMFs) at low 
frequencies, which are irrelevant for RS analysis. 

As for the high frequencies, although CAS may appear 
at up to 1,000 Hz, the frequency range of normal RS 
barely exceeds 250 Hz [2], so having many IMFs 
covering high frequencies generates redundancy. In this 
sense, we analyzed fc of the first four IMFs generated by 
EEMD and NA-MEMD along all RS signals (Fig. 7).

As shown, NA-MEMD usually produces 4 IMFs above 
250 Hz, whereas EEMD only produces 2 IMFs in the 
same frequency range. Therefore, NA-MEMD also 
produces more redundant IMFs at high frequencies than 
EEMD. 

In addition to NIMF and NIMF-FR, we also calculated the 
mean decomposition computing time (DCT) along all RS 
signals for each method. In other words, we looked at 
how long it takes for each method to decompose an RS 
signal into IMFs. All simulations were run in a server 
with Windows Server 2008 R2 Enterprise installed, an 
Intel® Xeon® processor E7340 at 2.40 GHz with 4 
kernels, and 88 GB of usable RAM. Results shown in Fig. 
8 indicate that EEMD is much faster than NA-MEMD. 

Despite the fact that DCT increases exponentially with 
the number of iterations in EEMD, a few seconds is long 
enough to decompose RS signals using a few hundred 
iterations, which are sufficient to reduce MM, as 
explained in the next section, 4.3.2. However, NA-
MEMD is a time-consuming method. While the amount 
of MM decreases with an increase in number of directions 
(see section 4.3.2), DCT increases in the same way. 
Therefore, DCT required to substantially reduce the MM 
effect is too high in comparison with EEMD. 

4.3.2. Reduction of MM 
In section 4.1 we showed that MM causes frequency 
overlap between PSDs of different IMFs. Based on this 
fact, we propose the following parameter to measure the 
amount of MM, based on frequency overlap (FO) 
between pairs of IMFs: 

.>/,?�%�
� 100

A3B�
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(8) 

Fig. 6. Size of EEMD and NA-MEMD. NIMF (solid lines) and NIMF-FR

(dotted lines) for EEMD (a) and NA-MEMD (b). All values are the mean 
and standard deviation along all RS signals. For NA-MEMD (b), all values 
are also averaged along the number of extra channels. 

Fig. 7. Tracking of high frequencies by EEMD and NA-MEMD. 
Central frequency (fc) of IMFs 1-4 for EEMD (a) and NA-MEMD (b).
All values are the mean and standard deviation along all RS signals. 
For EEMD (a), all values are also averaged along the number of 
iterations. For NA-MEMD (b), all values are also averaged along the 
number of extra channels and the number of directions. 



 

where fc2i, fc8i, and IDR60i are frequency parameters 
measured from the PSD of the i-th IMF. Specifically, fc2 

and fc8 are the frequencies at which 20% and 80% of the 
energy of an IMF are reached, respectively. The IDR60 
parameter is calculated as the difference between fc8 and 
fc2. 

We calculated the mean FOi,j along all RS signals, for 
EMD, EEMD, and NA-MEMD, and for different pairs of 
IMFs. The mean FOi,j for the original EMD was 22.5% 
between IMFs 1-2, 22.0% between IMFs 2-3, and 21.3% 
between IMFs 3-4. The results for EEMD are shown in 
Fig. 9, which illustrates that FOi,j, and hence the amount 
 

 
 
Fig. 8. Processing time, DCT, for EEMD (a) and NA-MEMD (b).  All 
values are the mean and standard deviation along all RS signals and 
SNRs.

of MM, mainly depends on the SNR when the number of 
iterations is greater than or equal to 16. 

Since FOi,j decreases as the SNR decreases, it would 
seem that using the lowest SNR is the best solution for 
reducing MM. However, as explained in the next section, 
4.3.3, using very low SNRs increases the residual noise 
level. 

Figure 10 shows the results for NA-MEMD. Since this 
method produces more IMFs than the EEMD method, we 
calculated FOi,j between pairs of IMFs from IMF 1 to 
IMF 5. 

As the figure shows, FOi,j depends on both the SNR and 
the number of directions. In general, the amount of MM 
decreases with a decrease in SNR and an increase in the 
number of directions (Figs. 10-b,c,d). However, FO1,2 
increases with a decrease in SNR, especially for a low 
number of directions (Fig. 10-a). As explained in section 
4.3.1, NA-MEMD tends to generate too many IMFs at 
high frequencies. If the SNR is too low, noise components 
cause IMFs to be uniformly distributed along all 
frequencies, which forces IMFs covering high frequencies 
to be cramped, and FO1,2 increases. On the contrary, if the 
SNR is high, the effect of noise is negligible, which 
allows IMFs 1 and 2 to be more widely separated. In any 
case, NA-MEMD needs a high number of directions to 
achieve results similar to those of EEMD, and this greatly 
increases the DCT (see section 4.3.1). 

4.3.3. Residual noise level 
A major challenge when working with EEMD and NA-

MEMD is minimizing the residual noise level in the 
resulting IMFs. In order to quantify this residual noise 
level, we propose the following parameters: 
 

Fig. 9. MM reduction by EEMD. Frequency overlap (FO) between IMFs 1-2 (a), IMFs 2-3 (b), and IMFs 3-4 (c) for the EEMD method. All values are 
the mean along all RS signals. 

 

Fig. 10. MM reduction by NA -MEMD. Frequency overlap (FO) between IMFs 1-2 (a), IMFs 2-3 (b), IMFs 3-4 (c), and IMFs 4-5 (d) for the NA-MEMD 
method. All values are the mean along all RS signals and the number of extra channels. 

 



 

 
- CC: cross-correlation at zero lag between the PSD of 

the original signal (PSDo) and the PSD of the 
reconstructed signal (PSDrec). 

JJ = HKLMNOLMNPQR�0� = + LMNO�1�LMNPQR�1�ST+ LMNO�1�US + LMNPQR�1�US
 (9) 

- PSDR: ratio of the absolute error between PSDrec and 
PSDo versus PSDo. 

VWGH�%� = 100 + |LMNPQR�1�YLMNO�1�|S + LMNO�1�S  (10) 

where n is the number of points used for the fast Fourier 
transform. The reconstructed signals were calculated as 
the direct sum of the corresponding IMFs and residues. 

Ideally, PSDR and CC would be 0 and 1, respectively, if 
the reconstructed signal were exactly equal to the original 
signal. This is the case of EMD and NA-MEMD, which 
provide a perfect reconstruction of the original signal. 
However, EEMD causes a slight error in the reconstructed 
signal due to the use of white Gaussian noise in the 
decomposition process. 

 
Fig. 11. Measures of residual noise level. PSDR (a) and CC (b) for 
EEMD, as a function of SNR and number of iterations. All values are 
the mean along all RS signals.

This error depends on both the amplitude of the white 
noise and the number of iterations, as shown in Fig. 11. 

As shown, CC reaches its maximum using 16 iterations 
or more, independently of the SNR. However, PSDR 
highly depends on the two parameters. Nevertheless, by 
applying a few hundred iterations, we obtained an 
acceptable PSDR (below 3%) for a wide range of SNRs. 
Therefore, we can assume that the residual noise level is 
not a major drawback of EEMD in RS signals provided 
that the SNR and number of iterations are correctly 
chosen. 

4.4. Selection of parameters in EEMD 

Based on the previous results, we decided that EEMD 
was better than NA-MEMD for RS signal decomposition, 
since EEMD produced fewer redundant IMFs, managed 
to reduce the MM effect to a greater extent, and was faster 
than NA-MEMD. However, in order for EEMD to 
perform at its fullest potential, we had to fix its 
parameters (SNR and number of iterations) so that MM 
was reduced as much as possible and the residual noise 
level was not significant. To this end, we analyzed the 
FOi,j and the PSDR parameters together for different pairs 
of IMFs, as shown in Fig. 12. 

Values of the intersection points between both 
parameters for each number of iterations are shown in 
Table 1. 

Assuming 3% as an acceptable upper limit for FOi,j and 
PSDR, an SNR below 1 dB and more than 64 iterations 
should be used for EEMD. We decided to fix the SNR at 
0 dB and use 100 iterations to decompose RS signals by 
means of EEMD. The FOi,j did not decrease significantly, 
neither by using more iterations nor by decreasing the 
SNR. However, increasing the number of iterations or 
decreasing the SNR greatly increased the DCT and the 
PSDR, respectively. 

5. IF-IA estimation and the HS in RS signals 

Having decomposed an RS signal into IMFs, the next 
step in calculating the HS is IF-IA estimation. The use of 
HHT involves estimating IF as the phase derivative of the 
analytic signal of each IMF. It is the most intuitive and 
direct way to define IF of a real signal [17]. For the case 
of a length-M IMF, the analytic signal, zi(n), is defined as 
follows:

Fig. 12. Performance parameters of EEMD. Combination of measures of the amount of MM (FO) (solid lines) and residual noise level (PSDR) 
(dotted lines) for IMFs 1-2 (a), 2-3 (b), and 3-4 (c) obtained by EEMD. All values are the mean along all RS signals. 



 

Table 1. Performance of EEMD for RS signal decomposition as a function of the number of iterations and SNR. 
 Iterations 1 2 4 16 25 36 64 100 225 400 

IMFs 1-2 
SNR (dB) 8.7 7.7 6.3 3.6 2.8 2.1 1.0 0.1 -1.7 -2.7 

FO1,2/PSDR (%) 14.1 9.8 7.0 3.9 3.2 2.9 2.3 1.9 1.5 1.2 

IMFs 2-3 
SNR (dB) 8.0 6.7 5.4 2.2 1.3 0.6 -0.5 -1.6 -3.7 -5.2 

FO2,3/PSDR (%) 17.1 11.7 8.4 5.1 4.2 3.6 2.8 2.5 2.0 1.7 

IMFs 3-4 
SNR (dB) 7.9 7.5 6.9 4.7 3.5 2.7 1.1 -0.3 -2.8 -5.0 

FO3,4/PSDR (%) 17.4 10.2 6.4 3.3 2.9 2.5 2.2 2.0 1.7 1.7 
FO: frequency overlap parameter; PSDR: residual noise level parameter. 
 

Z/��� = ,-./��� + [\
,-./���� = 3/���]B^
[�/����, � = 1 . . - 
(11) 

where H[] is the Hilbert transform, ai(n) is the IA, and 
Φi(n) is the phase of zi(n). Having calculated Φi(n) for 
each i-th IMF, the next issue is how to address the phase 
derivative in discrete time. The most common approach is 
to use finite impulse response derivative filters. This is the 
case of our first IF estimation method, which is a five-
point least squares polynomial derivative (LSPD) 
approximation [58]: 

�/��� = _̀!a ∑ c��/�� − ��d�2e , c = 
ce, c�, c!, c&, cd� =��e 
2, 1, 0, −1, −2�, � = 1 . . - (12) 

where fm is the sample frequency. A major problem of this 
estimator is that it has very high variance. However, low 
variance estimators are preferable for calculating the HS, 
since it ought to be an accurate time-frequency 
representation in which the signal energy is as 
concentrated as possible around the IF. 

In order to reduce variance, Kay proposed a weighted 
phase difference estimator [17]. This method consists of 
calculating the IF estimate by a weighted averaging of a 
sequence of phase difference measurements, as follows: 

�/ f� + gh!ij = _̀!a ∑ k���
�/�� + � + 2� −hY!�2e�/�� + � + 1�� , � = 1 . . - − = (13) 

k��� = lUhhUY� m1 − n�YfoU Y�jh !⁄ q!r (14) 

where w(k) is the length-N averaging window. The larger 
the window size, the smaller the variance will be. After 
testing different window sizes, we propose an averaging 
window of 32 samples. 

Together with the aforementioned methods, in this study 
we also tested an alternative approach for IF estimation 
based on the Teager energy operator (TEO) [59]. This 
method has very low computational complexity and is 
very straightforward, as IF and IA are directly calculated 
from the IMF signal as follows: 

s
,-.���� = ,-.!��� − ,-.�� − 1�,-.�� + 1� (15)

�/��� ≈ _̀!a Tu
vwxy�1(!�Yvwxy�1(���u
vwxy�1(!�� , � = 1 . . - − 3  

(16) 

|3/���| ≈ u
vwxy�1(!��zu
vwxy�1(!�Yvwxy�1(��� , � = 1 . . - − 3  

(17) 

where ψ[] is the TEO. 
After calculating IF and IA for each IMF, the HS can be 

directly obtained by constructing a two-dimensional array 
with the accumulation of all of the values of the IA 
sequences at the positions determined by the 
corresponding IF values and time instants. Since time 
instants can be determined within the resolution of the 
sampling period, and IFs can be precise at any number 
below the Nyquist frequency, the HS can have high time 
and high frequency resolutions. Both resolutions depend 
on the bin size selected for each dimension. In this study, 
we defined time and frequency bin sizes of 1/fm seconds 
(0.32 ms for fm = 3125 Hz) and 0.5 Hz, respectively. The 
resulting HS consisted of a matrix of 3125 rows and M 
columns, where M was the number of samples of the 
analyzed RS signal. For display reasons, a smoothing 
filter is usually applied to the HS. In this study, we used a 
20-sample Gaussian filter with a standard deviation of 
five samples. 

Figure 13 shows the spectrogram and three HSs, whose 
IFs were calculated by means of the aforementioned IF 
estimators, of a synthetic polyphonic CAS, c3,3(t), added 
to a normal RS signal at an SNR of 6 dB (section 2.2). 
The spectrogram was calculated using a 250-sample 
length Hanning window, with 240 overlapping samples, 
and 2,048 points for the fast Fourier transform. 

It is clearly noticeable that the five-point LSPD 
approximation (Fig. 13-c) and the TEO-based method 
(Fig. 13-d) have very high variance. However, Kay’s 
method (Fig. 13-b) greatly reduces variance and provides 
an accurate HS in which the energy of the signal is highly 
concentrated around its IF. Furthermore, this EEMD-Kay-
based HS has higher energy concentration and resolution 
than spectrogram. The performance of these two 
representations for CAS characterization is evaluated in 
the next section using a larger dataset. 



 

 

Fig. 13. Energy concentration of different TFDs. Spectrogram (a) and the HSs with IFs calculated using Kay’s method (b), five-point LSPD 
approximation (c), and TEO-based method (d) of a polyphonic CAS.

6. Performance assessment of the HS for CAS 
characterization 

6.1. Processing of the HS for CAS segmentation 

In this section, we propose a new method for the 
automatic segmentation and characterization of CAS 
based on HS processing. The proposed algorithm is based 
on the region growing methodology and consists of three 
parts: detection of analysis areas in the HS, selection of 
seed points for local region growing, and region linking. 

In light of the results from the previous sections 4 and 5, 
we decided to calculate the HS using EEMD with 100 
iterations and 0 dB for the SNR, Kay’s method with a 32-
sample length window for IF estimation, time and 
frequency bin sizes of 0.32 ms and 0.5 Hz, respectively, 
and a 20-sample Gaussian smoothing filter with a 
standard deviation of five samples. 

6.1.1. Detection of analysis areas in the HS 
The first part of the CAS segmentation algorithm 

consisted of the CAS detection algorithm proposed in our 
previous study [43]. That algorithm detected the segments 
within an RS signal that were more likely to contain CAS 
based on the hypothesis that the IF dispersion markedly 
decreases when CAS appear in an RS signal. For that 
purpose, IF and IA sequences were calculated from the 
IMFs of an RS signal that had been previously 
decomposed by EEMD. In that previous study, IF was 
calculated using the five-point LSPD approximation, 
which had high variance and emphasized the differences 
in IF dispersion between those segments of an RS signal 
containing CAS and those containing normal RS. So, 
since IF and IA sequences allowed us to work 
independently in either a time-frequency or a time-energy 
domain, we were able to use simple dispersion-based 

criteria on IF sequences to delimit RS signal segments 
with a lower IF dispersion. Each delimited RS signal 
segment was characterized by means of a specific set of 
features extracted from the IF and IA, including the mean 
and standard deviation IF, among other features. Those 
features were used to classify each delimited RS signal 
segment as containing CAS or normal RS using a support 
vector machine classifier. 

In the present study, we used the outputs from the 
aforementioned algorithm (classification, mean IF, and 
standard deviation IF) to mark out an analysis area in the 
HS for each delimited segment of an RS signal. Each 
analysis area was centered on the mean IF, had a 
frequency width of twice the standard deviation IF, and 
was delimited by the first and the last time instant of the 
delimited RS signal segment. Figure 14 shows some 
examples of analysis areas detected from two different 
synthetic CAS signals. Analysis areas with green edges 
(CAS areas) correspond to segments classified as 
containing CAS, whereas analysis areas with red edges 
(normal areas) correspond to segments classified as 
containing normal RS. 

Although some areas of an RS signal may be 
misclassified, CAS areas are more likely to contain either 
an entire or a part of a CAS component than normal areas. 
Moreover, we considered CAS areas not overlapping with 
normal RS to be more likely to actually contain CAS 
components than CAS areas overlapping with normal RS. 
According to these criteria, three types of analysis areas 
were defined: 

- High-pitched CAS areas: CAS areas whose mean IF 
was above 250 Hz. 

- Low-pitched CAS areas: CAS areas whose mean IF 
was below 250 Hz. 

- Normal areas 



 

 

Fig. 14. Detection of analysis areas in the HS. Detected analysis areas for synthetic CAS signals c1,2(t) (a) and c2,2(t) (b) added to a normal RS signal at 
an SNR of -2 dB and -4 dB, respectively, as described in section 2.2. 
 

This classification of analysis areas was used in section 
6.1.3 for applying different thresholds when linking 
regions detected from each type of area. Previously, all 
areas were considered for seed point searching and local 
region growing, as explained in the next section. 

6.1.2. Seed point search and local region growing 
Ideally, CAS components are represented in the HS as 

ridges describing the IF where signal energy concentrates 
(see Fig. 13-b and Fig. 14). These ridges are composed of 
several linked regions, which, in turn, are formed by a set 
of connected points. Therefore, having detected an 
analysis area in the HS of an RS signal, the next step was 
to detect regions with a high concentration of energy 
around this area. 

A determining parameter in this CAS segmentation 
algorithm was the point amplitude, which was associated 
with the signal energy at a certain IF. Since different RS 
signals had different signal energies, we first normalized 
the HS by dividing it by its maximum. Then, we 
determined an amplitude threshold to reject those points 
corresponding to background noise or having very low 
amplitude. After analyzing histograms from several HSs, 
we decided to consider only those points with an 
amplitude exceeding 0.05. 

A region growing algorithm was applied to each 
detected analysis area, in which regions were grown from 
seed points by adding neighboring points that met a 
particular inclusion criterion. The first seed point was the 
point with the highest amplitude inside the analysis area. 
The first region was then grown by adding neighboring 
points that met the following criterion: 

{�1| − �~̅�M{ ≤ ���_,�89� 

where fnp was the frequency of the neighboring point, �~̅�M 
was the mean frequency along all points already included 
in the first region, σf,area was the standard deviation 
frequency along all points of the HS within the analysis 
area, and β1 was a scale factor, which was empirically set 
to 3. When the growth of the first region stopped, another 
seed point was sought and a new region was grown. Each 
new seed point was the point with the highest amplitude 
not yet belonging to any region and sought between the 
following frequency boundaries: 

maxF�~̅�M − �!�_,~�M , ��/1,�89�I ≤ �1| ≤ minF�~̅�M + �!�_,~�M , ����,�89�I 
where σf,CAS was the standard deviation frequency along 
all points already included in a region, fmin,area and fmax,area 
were the minimum and the maximum frequencies of the 
analysis area, respectively, and β2 was a scale factor. This 
factor was first set to 3 when searching for new seed 
points between the temporal boundaries of the analysis 
area. When no new seed points were found within these 
temporal boundaries, β2 was set to 2 to search for new 
seed points outside the temporal boundaries of the 
analysis area. 

Each new region was grown by adding neighboring 
points that met either the following criterion: 

{�1| − �~̅�M{ ≤ ���_,~�M 

when the analysis area corresponded to a segment 
extracted from either IMF 1 or IMF 2, or the following 
criterion: 

{�1| − �~̅�M{ ≤ maxF���_,~�M , ���_,�89�I 
when the analysis area corresponded to a segment 
extracted from either IMF 3 or IMF 4. The region 
growing process was continued until no new seed points 
were found. 

6.1.3. Region linking 
The last step in the CAS segmentation algorithm was to 
retain only those regions that guaranteed the temporal and 
frequency continuity of the CAS component. We first 
rejected any CAS component not containing at least one 
region longer than 20 ms for high-pitched CAS areas, 50 
ms for low-pitched CAS areas, or 80 ms for normal areas. 
In this way, we prevented the detection of false CAS 
components that might result from linking many short 
regions corresponding to background noise. Then, 
assuming that the longest region inside the analysis area 
truly belonged to the CAS component, adjacent regions 
were progressively checked from the nearest to the 
farthest in both directions along the time axis. Three 
parameters were calculated for each i-th region to 
measure its proximity to regions already retained as part 
of the CAS component: 



 

• ti-cas and fi-cas: temporal and frequency distances 
between the two nearest points among those of the i-th 
region and those of all regions already retained. 

• Δfmeani-cas: difference between the mean frequency of 
the i-th region and the mean frequency of the nearest 
20-millisecond length segment along the regions 
already retained. 

We considered the nearest regions to be more likely to 
belong to the CAS component than the farthest regions. 
Accordingly, we defined three ranges for ti-cas whose 
boundaries were determined by thresholds th1, th2, and 
th3 as follows: Range j: �ℎ�?Y� < �/Y��: ≤ �ℎ�? , [ = 1 . . 3, �ℎ�0 = 0 

Regions belonging to ranges 3 and 1 had the most and 
the least restrictive conditions, respectively, for retention. 
The i-th region belonging to the j-th range was retained if 
it met one of the following criteria: 7/ ≥ �ℎ7�0?  & ∆�A]3�/Y��: ≤ �ℎ� & �/Y��: ≤ �ℎ� (18) 

�/Y��: ≤ 100 A
 & 7/ ≥ 125 A
 (19) 

where threshold thdurj was the required minimum length 
of the i-th region (di) belonging to the j-th range, and 
threshold thf was the limit for the frequency parameters fi-

cas and Δfmeani-cas and guaranteed the frequency 
continuity of the CAS component. We made all the 
thresholds dependent on the type of analysis area (see 
section 6.1.1) and whether the i-th region was inside or 
outside the analysis area. In this study, thresholds tht1, 
tht2, tht3, thdur1, thdur2, thdur3, and thf were empirically 
set to the values shown in Table 2. These values were 
fixed after analyzing many HSs from recorded RS signals. 

All regions not belonging to some range and not 
meeting any of the criteria defined in (18) and (19) were 
rejected. After checking all of the regions, the regions 
retained formed the segmented CAS component. Finally, 
according to the definition of CAS [1,2], we rejected any 
CAS component shorter than 100 ms. 

Each segmented CAS component was characterized by 
means of the most relevant parameters from a clinical 
point of view: 

• Duration (D): difference between the last and the first 
point along the time axis. 

• Weighted mean frequency (Fmean) of all points, 
whose amplitudes in the HS were the weights.

 

6.2. Characterization of simulated CAS signals 

In this section, we applied the proposed CAS 
segmentation algorithm to the HS and spectrogram of the 
109 synthetic CAS signals described in section 2.2. Since 
our algorithm was designed to be applied to the proposed 
EEMD-Kay-based HS, we had to adjust some parameters 
for its use with spectrogram, which was calculated using a 
250-sample length Hanning window, with 240 
overlapping samples, and 2,048 points for the fast Fourier 
transform. Specifically, we increased the amplitude 
threshold from 0.05 to 0.1 and β1 (see section 6.1.2) from 
3 to 4. 

Together with D and Fmean, we calculated the following 
two parameters for each segmented CAS component as a 
means of measuring the concentration of both TFDs: 

- σF: average value of the point by point weighted 
standard deviation frequency. 

- σF-FI: average value of the point by point weighted 
standard deviation frequency in relation to real IF 
values, which were defined in (2) and (4) (section 
2.2). 

These parameters allowed us to compare the 
performance of the proposed HS and spectrogram for RS 
analysis, at different SNRs. Figure 15 shows the absolute 
value of the differences between D (ErrD) and Fmean 
(ErrFmean) calculated using the CAS segmentation 
algorithm and their real values, and the concentration 
measures (σF and σF-FI) for the HS and spectrogram. 
Statistical differences between these parameters of the 
two TFDs were evaluated using a one-sided Wilcoxon 
signed rank test at the 5% significance level. 

As shown in Fig. 15-a, there were two SNR ranges in 
which ErrD was similar for both TFDs. One of those SNR 
ranges included synthetic CAS signals added to a normal 
RS signal at SNRs greater than or equal to 0 dB, which 
represented situations where, due to their high amplitude, 
CAS components could be easily detected by the two 
methods. Similarly, the performance of both TFDs was 
also similar within the SNR range from -8 dB to -6 dB, 
which included only synthetic CAS signals containing 
components above 200 Hz (see section 2.2). Despite the 
low SNR, those CAS components did not overlap with 
normal RS and, therefore, could be segmented more 
easily by both TFDs. The mean ErrD in all of those cases 
was 18.2 ± 31.6 ms for the HS and 19 ± 21.6 ms for the 
spectrogram. Compared to the duration of synthetic CAS 
signals (either 250 ms or 300 ms), both mean ErrD were 
acceptable, as they represented between 6% and 8% of 
synthetic CAS duration. 

Table 2. Thresholds for region linking 

Type of analysis area 
tht1 
(ms) 

thdur1 
(ms) 

tht2 
(ms) 

thdur2 
(ms) 

tht3 
(ms) 

thdur3 
(ms) 

thf 
(Hz) 

High-pitched CAS areas, inside 20 none 30 10 100 50 25 
High-pitched CAS areas, outside 17.5 5 30 25 100 50 25 
Low-pitched CAS areas, inside 17.5 5 30 25 50 100 25 
Low-pitched CAS areas, outside 10 15 22.5 35 50 100 25 
Normal areas, inside 10 15 22.5 35 22.5 none 20 
Normal areas, outside 5 20 10 55 10 none 20 



 

 
Fig. 15. Characterization of synthetic CAS signals. Absolute value of the differences between calculated and real D (ErrD) (a) and Fmean (ErrFmean) (b), σF-FI (c), and σF (d), for the HS and spectrogram, as a function of SNR. All values are the mean along RS signals of each SNR value.

However, the advantages of the HS became clear in the 
SNR range from -4 dB to -2 dB, which represented an 
unfavorable scenario for synthetic CAS signals containing 
components below 200 Hz, due to their overlap with 
normal RS. In those cases, thanks to the high temporal 
resolution and energy concentration of the HS, it allowed 
the temporal boundaries of CAS components to be more 
accurately determined (ErrD = 39.7 ± 46.5 ms). However, 
the poor resolution and the scattered energy of the 
spectrogram prevented it from delimiting CAS accurately 
(ErrD = 68.9 ± 84.6 ms). These differences between ErrD 
of the two TFDs were statistically significant (p = 
0.0018), which indicated that ErrD was higher for the 
spectrogram than for the HS. Relative to synthetic CAS 
duration, mean ErrD was between 13% and 16% for the 
HS and between 23% and 28% for the spectrogram. 

As an example, Figs. 16 and 17 show the CAS 
segmentation of two synthetic monophonic CAS signals 
added to a normal RS signal at an SNR of -2 dB and -4 
dB, respectively, as described in section 2.2. 

White rectangles in the figures above (Figs. 16-c,d and 
17-c,d) show the boundaries of the theoretical IFs. As 
shown, it is more difficult to distinguish between CAS 
components and normal RS in the spectrogram than in the 
HS, where the boundaries of the CAS component can be 
detected more accurately. However, some normal RS 
components are detected as part of the CAS components 
in the spectrogram. The performance of spectrogram 
could be improved by increasing the amplitude threshold. 
However, it would be more difficult to detect weak CAS 
components, as explained in the next section 6.3. 

With regard to ErrFmean (Fig. 15-b), although it was 
higher in the HS (4.1 ± 9.7 Hz) than in the spectrogram 
(2.6 ± 6.1 Hz), both ErrFmean were low in comparison with 
ErrD, which is more critical. However, there were clear 
and significant differences (p << 0.0001) between the 
frequency dispersion (σF and σF-FI) of both TFDs, as 
shown in Figs. 15-c and 15-d, which means that the HS 

has higher energy concentration than spectrogram. 

6.3. Characterization of recorded CAS signals 

In this section, we applied the proposed CAS 
segmentation algorithm to the HS and spectrogram of the 
283 CAS signals recorded as described in section 2.1. In 
this case, as quantitative measurements of ErrD and 
ErrFmean could not be obtained, we calculated the mean 
and standard deviation of D, Fmean, and σF along all 
segmented CAS components (Table 3). 

There were no relevant differences between D and Fmean 
measured from the two TFDs. Even so, these parameters 
were absolute measures and were not representative of the 
performance of the two TFDs in recorded CAS 
segmentation, unlike ErrD and ErrFmean described in the 
previous section 6.2. Nevertheless, there were significant 
differences between the σF of both TFDs (p << 0.0001), 
which again demonstrates that the HS has higher energy 
concentration than spectrogram. 

The advantages of the HS over spectrogram in recorded 
CAS segmentation, especially weak CAS with low 
energy, are clearly illustrated in Figs. 18, 19, and 20. 

The figures above show that the spectrogram failed to 
entirely extract some CAS components with low 
amplitude, especially in CAS signals that contained 
several CAS components with quite different amplitudes. 
This performance was contrary to that shown in the 
examples with synthetic CAS (Fig. 16 and Fig. 17), in 
which the spectrogram detected some normal RS 
components as CAS components. However, the same 
algorithm and thresholds were used in both cases. This 
means that spectrogram is more dependent on the 
amplitude threshold. However, since the HS achieves 
more energy concentration along the CAS components, it 
is less dependent on this parameter of the CAS 
segmentation algorithm. 



 

 

Fig. 16. Segmentation of synthetic CAS signals (I). HS (a) and spectrogram (b) of a synthetic monophonic CAS signal. Segmented CAS component 
using the HS (c) and spectrogram (d). 

 

Fig. 17. Segmentation of synthetic CAS signals (II). HS (a) and spectrogram (b) of a synthetic monophonic CAS signal with frequency sweeping. 
Segmented CAS component using the HS (c) and spectrogram (d). 



 

7. Discussion and conclusions 

In this study, we conducted a comprehensive evaluation 
of the performance of the HHT for RS analysis, which led 
us to propose an EEMD-Kay-based HS that performed 
very well for CAS characterization. In comparison with 
spectrogram, which is the most widely used technique for 
CAS analysis, the HS detected CAS components more 
precisely, especially those at low SNR that overlap with 
normal RS. 

The most critical stage of the HHT is EMD, due to its 
MM effect, which causes poor separation of frequency 
scales. We have gone into detail about the MM effect of 
EMD in RS signals and the performance of EEMD and 
NA-MEMD to solve MM. We propose a number of 
parameters to quantify the size, reduction of MM, and 
residual noise level of each method. The results after 
applying EEMD and NA-MEMD to recorded RS signals 
showed that EEMD is more concise than NA-MEMD, as 
EEMD produces fewer redundant IMFs and is faster than 
NA-MEMD. Moreover, EEMD reduces the MM effect 
more effectively than NA-MEMD. 

Table 3. Characteristic parameters of recorded CAS signals 
 Spectrogram HS 

D (ms) 299.7 ± 132.6 302.8 ± 122.9 

Fmean (Hz) 287.0 ± 136.0 285.6 ± 135.0 

σF (Hz) 7.2 ± 2.6 4.2 ± 1.2 

D: duration; Fmean: mean frequency; σF: frequency dispersion 

Although EEMD has already been used in previous 
studies as part of the HHT [60-62], the procedure for the 
correct choice of its parameters (amplitude of the added 
noise and number of iterations) is still unclear, and they 
must be adjusted to the characteristics of different signals. 
In this regard, our proposed parameters could be used to 
assess MM and select EEMD parameters in other 
applications. 

The IF is estimated in the HHT by means of the phase 
derivative of the analytic signal of IMFs. However, a 
major drawback of this IF estimation method is the high 
variance of the IF estimates. Kay’s IF estimator proved to 
be a direct and straightforward method that significantly 
reduced that variance, which is a desirable property for 
the purpose of obtaining an accurate HS with high 
concentrations of signal energy. In fact, we propose the 
use of an EEMD-Kay-based HS as an alternative and 
precise time-frequency representation of RS signals. 

The main advantage of the proposed HHT-based 
approach over other TFD-based approaches for RS 
analysis is the high temporal and high frequency 
resolution of the HS. Since IF is calculated by 
differentiation, time resolution can be as high as that 
determined by the sampling rate. Moreover, the frequency 
resolution in the HS does not depend on the data length as 
Fourier-based or wavelet-based techniques, but rather it is 
determined by the bin size selected. Furthermore, the 
EEMD allows us to separate different signal components 
prior to IF and IA calculation without having to process 
an entire TFD. 

 

Fig. 18. Segmentation of recorded CAS signals (I). HS (a) and spectrogram (b) of a recorded CAS signal that contains two CAS components. 
Segmented CAS components using the HS (c) and spectrogram (d). 



 

 

Fig. 19. Segmentation of recorded CAS signals (II). HS (a) and spectrogram (b) of a recorded monophonic CAS signal. Segmented CAS component 
using the HS (c) and spectrogram (d).  

 

Fig. 20. Segmentation of recorded CAS signals (III). HS (a) and spectrogram (b) of a recorded CAS signal that contains two CAS components. 
Segmented CAS components using the HS (c) and spectrogram (d).

Accordingly, the HHT does not only allow working in a 
time-frequency plane, like other TFDs, but also analyzing 
IF and IA sequences separately. 
 

Taking advantage of properties of the HS, we propose a 
new method for the automatic segmentation and 
characterization of CAS. A key point of our method is the 

 



 

CAS detector (section 6.1.1) that we previously proposed 
in [43]. Using this CAS detector as the first step of our 
CAS segmentation algorithm, we can locate CAS 
components in the time-frequency plane, which facilitates 
their subsequent segmentation using a region growing 
methodology together with a set of region linking criteria. 
The main advantage of the CAS detector is that it is based 
solely on a number of IF criteria, which makes our CAS 
segmentation algorithm less dependent on amplitude 
criteria. 

We applied the proposed CAS segmentation algorithm 
to the HS and spectrogram of two sets of synthetic and 
recorded CAS signals to compare the performance of the 
two TFDs. The results showed that the HS has some clear 
advantages over spectrogram. The resolution of 
spectrogram is limited due to the use of a finite length 
analysis window. Furthermore, the signal energy in 
spectrogram is more scattered across the entire time-
frequency plane, which blurs the boundaries of some CAS 
components, especially in CAS components that overlap 
with normal RS at low SNRs. Therefore, the performance 
of spectrogram is more dependent on the amplitude 
thresholds. However, the HS achieves higher energy 
concentrations around the ridges described by CAS 
components, which makes the HS less dependent on 
amplitude criteria. This property, together with the high 
resolution in time and frequency domains, allows the 
duration (D) and mean frequency (Fmean) of CAS 
components to be more accurately determined using the 
HS than spectrogram. 

If we consider that the mean D and mean Fmean obtained 
from recorded CAS signals (Table 3 in section 6.3) are 
representative of real CAS in asthmatic patients, the mean 
ErrD and mean ErrFmean obtained from synthetic CAS 
signals (Fig. 15 in section 6.2) were quite acceptable. 
Both the HS and spectrogram had high performance in 
measuring Fmean, since their mean ErrFmean (below 15 Hz) 
represented less than 5% of the mean Fmean of real CAS 
(around 290 Hz). With respect to D, the HS performed 
significantly better than spectrogram, especially for low 
SNRs, where their mean ErrD reached around 13% (39.7 
ms) and 23% (68.9 ms), respectively, of the mean D of 
real CAS (around 300 ms). In addition to this difference 
in ErrD at low SNR, we showed some examples of weak 
CAS that were properly segmented by the HS but were 
either wrongly segmented or not detected by spectrogram. 
From a clinical point of view, spectrogram could lead to 
an underestimation of the presence of CAS and their 
features, which are directly related to the severity of 
airflow obstruction [1,2] in patients with obstructive 
pulmonary diseases. 

This study implies a step forward in the analysis of 
CAS, as most previous approaches for CAS analysis [3-
7,9] mainly focused on differentiating CAS from normal 
RS, but not on analyzing CAS features, such as duration 
and mean frequency, which are the most relevant clinical 
parameters. Moreover, some of those studies used 
spectrogram for CAS detection and extraction. However, 
our algorithm characterizes CAS more accurately in both 
time and frequency domains thanks to the properties of 

the HS, whose performance has been thoroughly tested on 
both synthetic and real CAS signals. 

Our proposed version of the HHT based on EEMD and 
Kay’s IF estimator is a promising tool for the analysis of 
RS signals. Due to its high resolution, the proposed HS is 
a suitable TFD to analyze not only CAS signals, but also 
shorter RS signal components, such as DAS. This 
methodology, including the CAS characterization 
algorithm could be included within a more complex RS 
analysis system that facilitates long-term monitoring and 
improves reliability in the diagnosis of obstructive 
pulmonary diseases. 
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Abstract— Assessment of asthma is a difficult procedure 

which is based on the correlation of multiple factors. A major 

component in the diagnosis of asthma is the assessment of BD 

response, which is performed by traditional spirometry. In 

this context, the analysis of respiratory sounds (RS) provides 

relevant and complementary information about the function 

of the respiratory system. In particular, continuous adventi-

tious sounds (CAS), such as wheezes, contribute to assess the 

severity of patients with obstructive diseases. On the other 

hand, the intensity of normal RS is dependent on airflow 

level and, therefore, it changes depending on the level of 

obstruction. This study proposes a new approach to RS anal-

ysis for the assessment of asthmatic patients, by combining 

the quantification of CAS and the analysis of the changes in 

the normal sound intensity-airflow relationship. According to 

results obtained from three patients with different character-

istics, the proposed technique seems more sensitive and 

promising for the assessment of asthma. 

Keywords— asthma, bronchodilator response, continuous 

adventitious sound, respiratory sound intensity, wheezes. 

I. INTRODUCTION 

Asthma is a complex respiratory disorder that results in 

a variable, recurring, and often reversible airflow obstruc-

tion [1]. Physicians have difficulties in diagnosing asthma, 

since they have to correlate several aspects: the medical 

history, a thorough physical examination, and pulmonary 

function test results. In this context, the bronchodilator 

(BD) response is a standard pulmonary function test used 

to control and assess the severity of asthma. It is based on 

spirometric measurements before and after the administra-

tion of a BD. Usually, an improvement in forced expirato-

ry volume in one second (FEV1) of greater than or equal to 

12% is considered to be significant [2, 3]. However, some 

recent studies have demonstrated that using spirometric 

criteria alone is inadequate for the diagnosis of asthma [4]. 

Respiratory sounds (RS) are helpful in understanding 

the function of the respiratory system. They are classified 

as normal or adventitious sounds. Due to their clinical 

interest, many technical studies have tried to detect and 

characterize continuous adventitious sounds (CAS) [5-8], 

such as wheezes. CAS are characterized by a pitch of over 

100 Hz that lasts more than 100 ms [9], and they are key 

indicators for assessing the severity of asthma [1]. On the 

other hand, some other studies have tried to understand the 

origin of normal RS and their intensity pattern distribution 

[10-12]. Although results from all previous studies have 

contributed to the characterization and understanding of 

RS, there is lack of clinical use and application of these 

techniques. 

In this study, we propose a new approach to the analy-

sis of RS for the assessment of asthmatic patients, by 

combining the quantification of CAS and the analysis of 

the normal sound intensity-airflow relationship. A few 

previous studies have focused on the evaluation of asthma 

by RS analysis [13-15]. Nevertheless, some were per-

formed on infants and they were based on manual detec-

tion of wheezes and their characterization at a fix airflow 

level or during forced breathing. On the other hand, in 

[15] they focused on changes in the spatial distribution of 

breath sound intensity by analyzing dynamic images. Our 

technique has two major advantages: the automatic differ-

entiation and quantifying of respiratory cycles either with 

normal sounds or CAS [16], and the analysis of normal RS 

intensity as a function of airflow level. 

II. METHODS 

A. Signal acquisition 

RS signals were recorded from asthmatic patients in a 

sitting position at the Pulmonary Function Testing Labora-

tory, Germans Trias i Pujol University Hospital, Badalona, 

Spain. Three piezoelectric contact microphones (TSD108, 

Biopac, Inc.) were attached to the skin using adhesive 

rings: two of them on the back at 3 cm below the left/right 

shoulder blade, and one over the right side of the trachea. 

Moreover, respiratory airflow signal was recorded using a 

pneumotachograph (TSD107B, Biopac, Inc.). Each patient 

was coached to progressively increase the airflow, from 

shallow breathing to the deepest breaths they could. All 

signals were sampled at 12500 samples/second using a 16-



 

bit analogue-to-digital converter. After acquisition, RS 

signals were band-pass filtered using a combination of 8th 

order Butterworth low-pass and high-pass filters (70 – 

2000 Hz). We show a case study with three adult asthmat-

ic patients with different baseline spirometric values and 

BD response (Table 1). For each patient, we have quanti-

fied the percentage of respiratory cycles with CAS at base-

line and after BD, for both left and right sides. In addition, 

we have analyzed the relationship between RS intensity 

and airflow, before and after BD. 

Table 1 Characteristics of asthmatic patients 

ID 

Total cycles 

Pre-BD 

Total cycles 

Post-BD Age Sex 
BMI 

(Kg/m2) 
FEV1 
(%) 

ΔFEV1 

(%) 
Left Right Left Right 

1 46 47 53 53 50 F 24.44 47 26 

2 68 66 76 83 60 M 27.08 100 1 

3 59 49 53 50 19 M 19.28 59 6 

B. Segmentation of RS signals 

After signal acquisition, respiratory phases were ob-

tained using the airflow signal as the reference for auto-

matic sound signal segmentation. Since airflow is positive 

during inspiration and negative during expiration, respira-

tory phases were marked off by means of a robust zero 

crossing detector. In order to avoid detection of false end-

points, only cycles in which the airflow reached at least 

0.35 L/s were considered valid cycles. Moreover, two 

thresholds of 0.2 and 4 seconds were established for min-

imum and maximum durations of respiratory phases, re-

spectively, according to time duration of normal respirato-

ry cycles. In addition, a threshold of 0.5 seconds was fixed 

for the maximum time interval between the end of inspira-

tion and the beginning of the corresponding expiration. 

Two final datasets, pre-BD and post-BD, were obtained 

for each patient and each side. Each dataset was formed by 

audio-visual selection of sound signals from the inspirato-

ry cycles, avoiding artifacts such as those from speaking, 

swallowing, coughing or rubbing. We have focused on 

inspiratory sounds, which are much louder than expiratory 

sounds on the back, where we recorded the sound signals. 

C. CAS detection and inspiratory cycle classification 

The first step in the analysis of RS is to differentiate 

respiratory cycles with normal sounds from those with 

CAS. For that purpose, we made use of an automatic RS 

classifier, which we had previously developed based on 

the analysis and feature extraction from instantaneous 

frequency (IF) of sound signal from each respiratory cycle 

[16]. Prior to the IF calculation, sound signals were de-

composed into narrow-band components by ensemble 

empirical mode decomposition (EEMD). The core of the 

proposed classifier is the fact that IF remains almost con-

stant when a CAS signal is within a respiratory cycle. By 

using this classifier, we quantified the number of CAS 

cycles from both pre-BD and post-BD datasets, for each 

patient and from both left and right sides. Then, we evalu-

ated whether the percentage of CAS cycles had signifi-

cantly increased or decreased with the administration of 

the BD. 

D. RS intensity – respiratory airflow graphs 

In addition to evaluate the changes in the percentage of 

CAS cycles pre/post-BD, we also analyzed the changes in 

normal sound intensity. Sound intensity was calculated for 

inspiratory sound segments corresponding to the top 20% 

of airflow from each normal sound cycle, from both pre-

BD and post-BD datasets. It was defined as the mean 

power obtained from the power spectral density (PSD) in 

the frequency band 75-600 Hz. PSD was calculated using 

Welch’s periodogram, with a Hanning window of 80 ms, a 

50% overlap between adjacent segments, and 2048 points 

for the Fast Fourier Transform. Then, each normal sound 

cycle was determined by its intensity and the maximum 

airflow reached. Since each patient was characterized by 

the relationship between normal sound intensity and air-

flow on both left and right sides, we analyzed the changes 

in these graphs in order to evaluate the BD effect. 

III. RESULTS 

In this section we show results from applying the pre-

vious techniques to patients shown in Table 1. Firstly, 

results from respiratory cycle classification and CAS cycle 

quantification are shown in Fig. 1. 

Secondly, we calculated RS intensity from normal 

sound cycles as a function of the airflow, pre-BD and 

post-BD, for both left and right sides (Fig. 2). 

The patient with severe asthma (ID 1) had 35% (left) 

and 30% (right) of CAS cycles before BD, as shown in 

Fig. 1. It is in agreement with her low baseline FEV1 

(47%), which shows that she had a severe bronchial ob-

struction. After BD, she had not CAS cycles, which is in 

agreement with her increased FEV1 (ΔFEV1 = 26%). 

Moreover, normal sound intensity significantly increased 

after BD, in both sides, as can be appreciated from the 

polynomial regression lines shown in Fig. 2-A. 



  

 

Fig. 1 Percentage of CAS cycles in both left and right sides, at baseline 

(pre-BD) and after the BD (post-BD) (A, B). Change in FEV1 after BD, 

as a per cent from baseline, and threshold for a significant BD response 
(12%) (C). Three degrees of severity were defined based on baseline 

FEV1: mild (x ≥ 70%), moderate (50% ≤ x < 70%), and severe (x < 

50%). 

Contrary to ID1, patient with mild asthma (ID 2) had a 

normal baseline FEV1 (100%), and a low number of CAS 

cycles (<1.5%) before and after BD, as shown in Fig. 1. 

Moreover, he was a non-responder to BD (ΔFEV1 = 1%), 

which agree with a very low increase of normal sound 

intensity, in both sides (Fig. 2-B). This is reflected in very 

close polynomial regression lines, pre and post-BD. 

In addition to the previous extreme cases, we analyzed 

an intermediate case with moderate asthma (ID 3). He was 

a slight responder to BD, since he had a ΔFEV1 of 6%. 

However, he had a baseline FEV1 of 59%, which is in the 

range of moderate-severe asthma. It agrees with his 15% 

(left) and 41% (right) of CAS cycles at baseline. After 

BD, the percentages of CAS cycles were 11% (left) and 

54% (right), which were maintained high values. Although 

his BD response was not significant, lines from the poly-

nomial regression in Fig. 2-C show that he had a relevant 

increase in normal sound intensity, and it was clearer at 

high airflows. 

IV. DISCUSSION 

According to the aforementioned results, the baseline 

FEV1 is related to the number of CAS cycles. Those pa-

tients with a low baseline FEV1 have high probability of 

having wheezes, and vice versa. 

On the other hand, the changes in the number of CAS 

and normal sound intensity are more related to the BD 

response. A positive BD response indicates that the bron-

chial obstruction has significantly decreased and, there-

fore, there are less CAS cycles and higher normal sound 

intensity.

 

Fig 2. Comparison between normal sound intensity and airflow before and after the administration of a BD. For each patient, results from both left and 

right sides are shown. Lines black and grey show the 3rd order polynomial regression models that fit pre-BD and post-BD intensities as functions of 

airflow, respectively. 



 

On the contrary, non-responders do not have many 

changes in their bronchial tree, which implies having few 

changes in the number of CAS cycles and low increase of 

their normal sound intensity. 

Moreover, we have shown that for a patient with a non-

significant BD response (below 12%), the analysis of 

normal sound intensity is a more sensitive technique, since 

significant increases can be detected after BD. Further-

more, these increases are more relevant at high airflow 

levels. 

With respect to the proposed technique, it has some ad-

vantages: the exploration and evaluation of the pulmonary 

function at different airflow levels, which are reached 

during the progressive respiratory maneuver, and the use 

of two recording channels that allow us to obtain infor-

mation about the laterality of normal RS and CAS. 

V. CONCLUSIONS  

In this study we have shown that the combined analysis 

of normal RS and CAS provides a promising approach to 

characterize asthmatic patients. It is a simple and non-

invasive technique, which seems more sensitive to chang-

es in the pulmonary function. Therefore, it could be a 

complementary tool in the diagnostic procedure for asth-

ma. However, this work is a case-study with three patients 

and therefore a higher number of varied cases are required 

in order to draw final conclusions. 
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Chapter 6: Discussion 

In this study, we propose a new integrated approach to RS analysis that includes a multichannel 

recording of RS using a maximum of five microphones and a progressive respiratory manoeuvre, and 

the analysis of both normal RS and CAS through the RS intensity–airflow curves and HHT, respectively. 

We also propose the application of our approach to assess pulmonary function, based on acoustic 

parameters, for patients with either UPP or asthma. 

Although a detailed discussion and conclusions section was included in each of the published articles 

(Chapters 2–5), we will briefly overview and discuss the main findings and contributions of these studies 

in this section. 

Multichannel RS recording protocol 

We proposed a multichannel recording of RS with a maximum of five contact microphones—one on the 

neck for recording tracheal sounds, and four on the back for recording lung sounds (Figure 10). The 

CORSA guidelines highlighted that tracheal and lung sounds contain distinct, but complementary, 

information that may be useful in assessing respiratory diseases [31]. These guidelines also 

recommended using at least the trachea and the right and left posterior base of the lungs for recording 

RS [58]. Although the basic configuration proposed in the CORSA guidelines may be suitable for some 

applications, such as assessing UPP as in this thesis, this configuration does not allow the distribution 

of lung sounds to be analysed in the vertical plane of the chest surface. Moreover, different 

configurations regarding the number and location of RS recording points have been reported in the 

literature, most of which do not meet these requirements. This underscores the lack of a common 

methodology for recording RS. 

The VRI system has also been used in several previous studies for analysing the distribution of RS 

intensity over the chest surface. It has been reported that the measurements of regional ventilation 

distribution provided by the VRI system are comparable to those obtained by electrical impedance 

tomography [189]. However, although the dynamic grey-scale images provided by the VRI system are 

useful for the qualitative assessment of regional ventilation distribution, this system only provides 

quantitative data for two or three regions of each lung (i.e., upper, middle, lower). Indeed, in the 

literature, most studies have focused on some or all of the following four lung regions: left upper lung, 

left lower lung, right upper lung, and right lower lung [35], [40], [41], [73], [98]. 

Airflow-dependent analysis of both normal RS and CAS 

The proposed approach to RS analysis also includes the performance of a progressive respiratory 

manoeuvre with variable airflow that allows both normal RS and CAS to be analysed with respect to 

airflow (Figure 11). This is a real advantage as compared to previous studies, in which RS were recorded 
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at constant airflows or during forced expiratory manoeuvres. However, it has been widely reported that 

normal RS intensity is highly airflow-dependent (Section 1.4.1). Accordingly, we propose to use the RS 

intensity–airflow curves for the analysis of normal RS intensity. 

Regarding CAS, it has been reported that forced expiratory wheezes have low specificity for the clinical 

diagnosis of asthma, since many wheezes may also appear in healthy people during forced expiratory 

manoeuvres [72], [180]. Further, in the case of CAS, an airflow-dependent analysis is important because 

CAS only appear above a critical flow, and this depends on the mechanical properties of airways, which 

in turn vary between people (Section 1.3.2). Therefore, recording RS at constant airflows may lead to 

CAS underestimation. In this sense, the proposed progressive respiratory manoeuvre allows CAS to be 

analysed over a wide range of airflows, from normal to forced breathing. 

Analysis of CAS based on HHT 

In this thesis, we propose a customised HHT adapted to RS signal characteristics as a practical and direct 

way of calculating IF in RS signals (Section 1.5.4.2). We also propose a comprehensive evaluation of 

the performance of HHT for RS analysis, and especially for CAS characterisation. The main reason for 

analysing CAS based on IF is that characterising CAS implying calculating both the duration and the 

pitch of CAS, such that RS signals containing CAS must be analysed in both time and frequency 

domains. In this sense, the IF parameter provides information about the frequency content of a signal at 

each time instant—that is, with maximum time resolution. 

Since calculating IF is feasible only for monocomponent or narrowband signals, RS signals must be 

decomposed into narrowband components before IF can be calculated for each component. To do this, 

HHT makes use of EMD (Section 1.5.4.2). However, it has been shown that EMD has a mode mixing 

effect that may cause poor separation of frequency scales in some RS signals (Chapter 4), thus leading 

to inaccurate IF estimates. 

We propose using EEMD as the first step of HHT, prior to IF estimation, to avoid the mode mixing 

effect of EMD in RS signals. The effectiveness of EEMD in reducing mode mixing is determined by 

two parameters: the amplitude of the added noise and the number of iterations (Chapter 4). Indeed, 

EEMD compromises between the two parameters, so that the mode mixing effect is minimised and the 

residual noise level is low. In this regard, we propose two parameters to allow the amount of mode 

mixing (FOi,j) and the residual noise level (PSDR) to be measured (Chapter 4); the FOi,j parameter, 

which measures the frequency overlap between the PSDs of two different IMFs; and the PSDR 

parameter, which measures the residual noise level in the IMFs by comparing the PSD of the 

reconstructed RS signal—the direct sum of the IMFs and the residue—to the PSD of the original RS 

signal. Using these parameters, the amplitude of the added noise and the number of iterations of EEMD 

could be adjusted, so that FOi,j and PSDR were minimised at the same time. These parameters represent 

a step forward in the use of EEMD, since the procedure for the correct choice of the amplitude of the 
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added noise and the number of iterations is unclear in the literature, although an EEMD-based HHT has 

already been used in other applications [190], [191]. 

After decomposing an RS signal into IMFs by EEMD, the IF and IE sequences can be easily estimated 

by the phase derivative and absolute value of the analytic signal of each IMF. We propose different 

methods for calculating the phase derivative in this thesis. 

As described in Chapter 3, a five-point least-squares polynomial derivative approximation was initially 

proposed for calculating the IF. This method yielded IF estimates with high variance, which contributed 

to emphasizing the differences in IF dispersion between RS signal segments containing CAS and those 

containing normal RS, as described in Section 1.5.4. By taking advantage of this property of IF, we were 

able to detect those segments within RS signals that were more likely to contain CAS, by applying a set 

of thresholds to the dispersion of IF sequences. Each detected RS signal segment was characterized 

using a set of features extracted from the IF and IE sequences. Those features were then used to train 

and test a support vector machine classifier, which succeeded in achieving high sensitivity (93.9%) and 

accuracy (94.9%) in differentiating RS signal segments containing CAS from those containing normal 

RS. 

After differentiating CAS from normal RS within RS signals, our next step was to characterise CAS. In 

this thesis, we propose a new method for the automatic segmentation and characterisation of CAS from 

HS (Chapter 4). HS is obtained by rearranging the IF and IE sequences of a signal into an array. 

However, the high variance of the IF estimates used to detect CAS within RS signals was a major 

drawback for obtaining an accurate HS with high energy concentration, which is a desirable property of 

TFDs. Therefore, the IF sequences of RS signals were recalculated using the Kay’s IF estimator, which 

greatly reduces the variance of the IF estimates. Even so, the IF features used for distinguishing CAS 

from normal RS (in Chapter 3) were used to locate CAS components in the time-frequency plane of the 

HS (in Chapter 4), which facilitated the subsequent segmentation of CAS by using a region growing 

algorithm together with a set of region linking criteria. 

Using the proposed EEMD–Kay-based HS, we were able to fully characterise CAS with regard to 

duration, mean frequency, and intensity. Moreover, since this improved version of HS has high temporal 

resolution and high frequency resolution, and achieves high concentrations of energy, it allows CAS to 

be more accurately detected and characterised mainly based on IF criteria. This provides a stark contrast 

to traditional techniques, such as spectrogram, which are highly dependent on amplitude criteria and fail 

to detect some CAS with low intensity (Chapter 4). 

Assessment of pulmonary function in patients with UPP 

In patients with UPP (Chapter 2), the RS intensity–airflow curves have been proposed as an indirect 

way of detecting differences in airflow entering the lungs. As reported in the literature, reduction in 

regional ventilation of the lung on the paralysed side is more evident at the base of the lung in UPP 
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[129], [130]. Accordingly, we have shown that two microphones placed at the right and left posterior 

base of the lungs proved sufficient to analyse the differences in regional ventilation of the lungs in 

patients with UPP. 

We analysed the RS signals of 10 patients with UPP and 10 healthy participants for airflows ranging 

from 1.2 to 2.4 L/s. We found that lung sound intensity—calculated as the area under the PSD of 

inspiratory lung sounds in the frequency band of 70–2000 Hz—was significantly reduced on the affected 

side for all airflows due to inefficient diaphragmatic muscle function. We expressed the lung sound 

intensity in dB using as a reference value the intensity of background noise, which was calculated for 

each microphone from the apnoea segments. A clear cut-off around 7 dB was found in the mean 

differences of lung sound intensity between the two sides in healthy participants and patients with UPP. 

Moreover, we found that the RS intensity–airflow curves can be properly expressed by a linear equation 

in both patients and healthy participants. Further, there was a clear difference between the slopes of 

healthy participants (around 5 dB/L/s) and patients (around 10 dB/L/s), independent of the analysed 

side. 

Besides lung sound intensity, spirometric parameters were also measured in patients with UPP, as these 

are low with respect to normal reference values, as described in previous studies [139], [149], [161], 

[162]. 

Assessment of BDR in patients with asthma 

Recording respiratory symptoms, such as wheezing, has been reported to contribute to improving the 

interpretation of pulmonary function tests, such as spirometry, for asthma [7]. Accordingly, in this thesis, 

we propose the analysis of both normal RS and CAS to assess BDR in patients with asthma. RS signals 

were recorded, and BDR was assessed by spirometry, in 50 patients with asthma and 10 healthy 

participants. 

In a preliminary study (Chapter 5), we analysed the RS signals of 3 patients with asthma. Only two of 

the five proposed locations for recording RS were used, and the number—but not the features—of CAS 

was analysed. Despite these limitations, the study demonstrated the potential of RS analysis for assessing 

BDR in asthma, since appreciable increases in the RS intensity–airflow curves following bronchodilator 

administration could be detected in a patient with negative BDR in FEV1. Furthermore, these increases 

were more relevant at high airflow levels. 

We have also carried out a study to evaluate the potential of CAS analysis for assessing BDR in 10 

patients with asthma and 5 healthy participants. Note that as we have recently submitted this study to 

PLOS ONE (see publications derived from this thesis), it is not been included in the list of published 

articles. In this recent study, we determined that analysing CAS features, including number, duration, 

pitch, and intensity, could improve the stratification of BDR levels, particularly for patients with asthma 

with negative BDR in spirometric parameters. In fact, we were able to detect appreciable changes in the 
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number of CAS in three of five patients with negative BDR in FEV1, revealing changes in AO. 

Appreciable changes in the number of CAS were also found in all patients with positive BDR in FEV1, 

whereas CAS were absent in the control participants. Further, duration, mean frequency, and intensity 

of CAS significantly changed following bronchodilator administration for two of five patients with 

negative BDR in FEV1. The number of CAS increased with airflow, indicating that the greater the 

airflow, the higher the possibility of CAS appearing. Even so, CAS appeared over a wide range of 

airflow levels. Moreover, most significant changes in CAS features after bronchodilation occurred at 

medium-high airflows. 

In our recent study, we have also proposed a classifier for distinguishing CAS from other sounds 

segmented from HS. This classifier reached high accuracy (97.7%), sensibility (93.1%), and specificity 

(98.5%), making our approach more robust with respect to background noises in the clinical 

environment. 
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Chapter 7: Conclusions 

In this thesis, we have proposed a novel, comprehensive, and non-invasive approach to RS analysis, 

taking into consideration the following four key aspects: the heterogeneous distribution of RS (using 

multichannel RS recording), the airflow dependence of RS (using the progressive respiratory manoeuvre 

and the RS intensity–airflow curves), the different characteristics of RS types (analysing CAS based on 

HHT and IF criteria), and the effect of respiratory diseases on RS (analysing both normal RS and CAS). 

To the best of our knowledge, an approach that considers all these aspects of RS analysis has not been 

proposed to date. In this sense, our approach to RS analysis is a major novelty of this thesis. 

Two clinical applications of our approach to RS analysis have been proposed: the assessment of 

pulmonary function in patients with UPP, and the assessment of BDR in patients with asthma. The 

quantitative analysis of RS has not been previously used in the assessment of UPP. Regarding BDR in 

asthma, previous approaches did not consider all the aforementioned aspects together. 

The following main conclusions have been drawn from the published articles included in this thesis: 

RS recoding protocol 

- The configuration for recording RS proposed in this thesis meets the CORSA guidelines [58] 

and includes the minimum number of sensors required for analysing the distribution of lung 

sounds both laterally and vertically, without requiring a large number of sensors and the 

resulting larger amount of data 

- Two RS recording protocols were launched in the Pulmonary Function Testing Laboratory of 

the HUGTiP. Patients with either UPP or asthma were recruited during the course of this thesis, 

so that two databases were created: 

o 10 patients and 10 healthy participants, who took part in the UPP study 

o 50 patients and 10 healthy participants, who took part in the asthma study 

Analysis of normal RS 

- The proposed progressive respiratory manoeuvre allows the characteristic RS intensity–airflow 

curves of a subject to be calculated for its entire airflow range 

- There is a linear relationship between airflow and normal RS intensity calculated in the 

frequency band of 70–2000 Hz of the PSD, and expressed in dB with respect to the background 

noise level 

- The RS intensity–airflow curves contribute to improving the understanding of the mechanics 

behind RS generation and how structural and functional respiratory defects affect RS 
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Analysis of CAS 

- An EEMD-based HHT has been proposed to decompose RS signals into IMFs, for which a 

physically meaningful IF sequences can be calculated point-by-point, thereby avoiding the 

mode mixing effect of the original EMD. The IF sequences provide information about the 

frequency content of RS signals at each time instant 

- A number of quantitative parameters have been proposed to quantify the size, reduction of mode 

mixing, and residual noise level of EEMD in RS signals. These parameters can be used to select 

the EEMD parameters, not only for RS analysis but also for other applications 

- In the proposed EEMD-based HHT, IF is calculated via phase differentiation of the analytic 

signal of the IMFs obtained by EEMD. Therefore, HHT does not suffer from the uncertainty 

principle and provides both high time resolution and high frequency resolution at the same time 

- Since the IE and IF sequences are calculated separately for each IMF, HHT allows working 

independently either in a time-frequency or in a time-energy domain, without having to process 

an entire TFD 

- IF dispersion markedly decreases within RS signals for the duration of CAS. Therefore, an 

algorithm for the automatic differentiation between RS signal segments containing CAS and 

those containing normal RS has been proposed mainly based on IF dispersion criteria 

- An EEMD–Kay-based HS has been proposed as an alternative and precise time-frequency 

representation for CAS analysis 

- The proposed EEMD–Kay-based HS provides a high concentration of RS energy around IF in 

the time-frequency plane, which makes HS less dependent on amplitude criteria and facilitates 

CAS identification. This property, together with the high resolution in time and frequency 

domains, allows CAS to be more accurately determined with HS than with spectrogram, 

especially for weak CAS that overlap with normal RS in the time-frequency plane 

Assessment of pulmonary function in patients with UPP 

- Lung sound intensity is significantly reduced on the affected side for all measured airflows in 

patients with UPP. Therefore, in these patients, lung sound intensity provides quantitative 

information about the extent of impairment of respiratory function 

- The analysis of lung sound intensity offers a method for long-term monitoring of respiratory 

function recovery in patients undergoing physical therapy, in a non-obtrusive and cost-effective 

manner 

Assessment of BDR in patients with asthma 

- The proposed progressive respiratory manoeuvre, which is easier to perform than the forced 

expiratory manoeuvre, allows the analysis of both CAS that appear naturally at low airflows and 

CAS that appear in a more forced way at high airflows 
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- The combined analysis of normal RS and CAS provides a promising approach to assessing BDR 

in patients with asthma. It is a simple and non-invasive technique, which is more sensitive to 

local changes in AO not detectable by spirometry, thus increasing the sensitivity of the BDR 

assessment 

7.1. Future work 

Despite major advances in sensors and RS analysis, the field still is suffering from a lack of a standard 

methodology for recording and processing RS signals. Accordingly, these techniques are still used only 

limitedly in clinical practice. 

The next steps for the proposed approach to RS analysis require information from further studies in large 

populations, to clinically validate this technique as a new complementary tool for assessing pulmonary 

function in respiratory diseases. In particular, relevant clinical conclusions could be drawn by applying 

the proposed approach to assessing BDR to the whole database of 50 patients with asthma and 10 healthy 

participants. 

In CAS analysis, the differences between pure low-pitched wheezes and rhonchus (snoring character), 

between monophonic harmonic wheezes and polyphonic wheezes, or between squawk and high-pitched 

wheezes, are still unclear [17]. Therefore, further studies should address in detail the characterisation of 

different types of CAS. 

Besides the number and features of CAS and normal RS intensity, the spatial distribution of the two 

types of RS should be further analysed, by taking advantage of the multichannel RS recording using five 

microphones as developed here. The distribution of normal RS intensity and CAS over the chest surface 

could provide information about location of AO and changes in regional ventilation following 

bronchodilator administration in patients with asthma. 

The effect of body position on RS in patients with UPP should be also analysed. Although RS have been 

analysed in the sitting position in these patients, extending RS analysis to different positions may help 

to better understand the effect of UPP on respiratory mechanics and pulmonary ventilation. 

Thus, the proposed approach to RS analysis provides a sensitive tool for obtaining complementary, 

objective, and quantitative information about pulmonary function in respiratory diseases. Together with 

spirometry, RS analysis has some direct clinical applications, as discussed in this thesis. This proposed 

approach could be included in a system of RS analysis that could serve not only for diagnosis of patients 

with respiratory diseases but also for their long-term monitoring, without risk to the patient. This type 

of system could be used in the daily clinical routine, complementing the spirometry. The combined 

information from these techniques would be predicted to increase the reliability of diagnosis and 

drastically improve management of patients with respiratory diseases. 
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