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Abstract

Many of the problems in experimental sciences and other disciplines can be expressed in
the form of nonlinear equations. The solution of these equations is rarely obtained in
closed form. With the development of computers, these problems can be addressed by
numerical algorithms that approximate the solution. Specifically, fixed point iterative
methods are used, which generate a convergent sequence presumably to the solution of
the equation or system of equations. Since J.F. Traub, (Iterative methods for the
solution of equations, Prentice-Hall, N.J. 1964) initiated the qualitative as well the
quantitative analysis of iterative methods in the 1960s, iterative methods for nonlinear
systems has been a constant interesting field of study to numerical analysts.

Our contribution in this field is the analysis and the construction of new iterative
methods, by improving the order of convergence and computational efficiency either of
these or other known methods. To study new iterative methods that we have proposed,
we reviewed, analyzed and improved classic concepts of computational order of
convergence, the error equation and the computational cost of an iterative method for
both an equation for a system of nonlinear equations. Specifically, we have worked on
the following points:

• We computed the local order of convergence for known two-step and new
multi-step iterative methods by means of expansions in formal developments in
power series of the functions F , the Jacobian operator, the inverse Jacobian
operator, the divided difference operator and its inverse operator.

• We generated some measures that approximate the order of convergence. Four new
variants to compute computational order of convergence (COC) are given: one
requires the value of the root, whilst the other three do not.

• We constructed families of iterative schemes that are variants of Newton’s method



and Chebyshev’s method and improve the order and the efficiency.

• We studied several families of modified Secant method (Secant, Kurchatov and
Steffensen), evaluated variants of these methods and choose the most efficient.

• We generalized the concepts of efficiency index and computational efficiency for a
nonlinear equations to a systems of nonlinear equations. It has been termed
Computational Efficiency Index (CEI).

• We considered that in iterative process using variable precision, the accuracy will
increase as the computation proceeds. The final result will be obtained as precisely
as possible, depending on the computer and the software.

• We expressed the cost of evaluating elementary functions in terms of products.
This cost depends on the computer, the software and the arithmetic that we used.
The above numerical calculations were performed in the algebraic system called
MAPLE.

• We presented a new way to compare elapsed time for different iterative schemes.
This consists in estimating the time required to achieve a correct decimal of the
solution by the method selected. That is, we measured the relationship between
time to fulfill the stop criterion and the total number of correct decimals obtained
by method.

The five papers selected for this compendium were published in scientific journals in the
area of applied mathematics. The impact factor of these journals is, in all cases, in the
first third according to the classification of the Journal of Citation Reports (JCR).
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Notation

f nonlinear equation
F nonlinear system of equations
ρ order of convergence
α correct root o exact solution
xn the n-th iterate
en error in the n-th iterate (COC, CLOC)
dn approximation of the number of correct figures in the n-th iterate
O big-O notation
O little-o notation
ên error parameter in the n-th iterate related to ACOC and ACLOC
ẽn error parameter in the n-th iterate related to ECOC and ECLOC
ĕn error parameter in the n-th iterate related to PCOC and PCLOC
ρn Computational Order of Convergence (COC)
ρ̂n Approximated Computational Order of Convergence (ACOC)
ρ̃n Extrapolated Computational Order of Convergence (ECOC)
ρ̆n Petković Computational Order of Convergence (PCOC)
λn Computational Local Order of Convergence (CLOC)
λ̂n Approximated Computational Local Order of Convergence (ACLOC)
λ̃n Extrapolated Computational Local Order of Convergence (ECLOC)
λ̆n Petković Computational Local Order of Convergence (PCLOC)
θ number of evaluations of functions
ρ1/θ Efficiency Index (EI)
ω number of operations, expressed in product units
ρ1/ω Computational Efficiency (CE)
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2 NOTATION

a0 number of evaluations of the scalar functions F
a1 number of evaluations of the scalar functions F ′

µ0 ratio between products and evaluations in F
µ1 ratio between products and evaluations in F ′

` cost of one quotient in products
C computational Cost
ρ1/C Computational Efficiency Index (CEI)
Ln approximation of the mantissa length in the n-th iterate in terms of en
L̂n approximation of the mantissa length in the n-th iterate in terms of ên
L̃n approximation of the mantissa length in the n-th iterate in terms of ẽn
L̆n approximation of the mantissa length in the n-th iterate in terms of ĕn



Compendium of publications

The work presented in this thesis is a compendium of publications consisting of five
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On new computational local orders of convergence1

M. Grau-Sánchez, A. Grau, M. Noguera, José R. Herrero

Four new variants of the computational order of convergence (COC) of a
one-point iterative method with memory for solving nonlinear equations are
presented. Furthermore, the way to approximate the new variants of the local
order of convergence is analyzed. Three of the new definitions given here do not
involve the unknown root. Numerical experiments using adaptive arithmetic
with multiple precision and stopping criteria are implemented without using
any known root.

Analyzing the efficiency of some modifications
of the Secant method2

J. A. Ezquerro, A. Grau, M. Grau-Sánchez, M. A. Hernández, M. Noguera

Some modifications of the Secant method for solving nonlinear equations are
revisited and the local order of convergence is found in a direct symbolic
computation. To do this, a development of the inverse of the first-order divided
differences of a function of several variables in two points is presented. A
generalization of the efficiency index used in the scalar case to several variables
is also analyzed in order to use the most competitive algorithm.

1Applied Mathematics Letters 25 (2012) 2023–2030.
2Computers and Mathematics with Applications 64 (2012) 2066–2073.
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Construction of derivative-free iterative methods
from Chebyshev’s method3

J. A. Ezquerro, A. Grau, M. Grau-Sánchez, M. A. Hernández

From some modifications of Chebyshev’s method, we consider a uni-parametric
family of iterative methods that are more efficient than Newton’s method, and
we then construct two iterative methods in a similar way to the Secant method
from Newton’s method. These iterative methods do not use derivatives in their
algorithms and one of them is more efficient than the Secant method, which
is the classical method with this feature. A rigorous study of local and semi-
local convergence of these methods is presented. Furthermore, we provide a
technique for estimating the computational cost of any iterative method. This
measure allows us to choose the most efficient method.

On the efficiency of two variants of Kurchatov’s method
for solving nonlinear systems4

J.A. Ezquerro, A. Grau, M. Grau-Sánchez, M.A. Hernández

We consider Kurchatov’s method and construct two variants of this method
for solving systems of nonlinear equations and deducing their local R-
orders of convergence in a direct symbolic computation. We also propose
a generalization to several variables of the efficiency used in the scalar case,
and analyze the efficiencies of the three methods when they are used to solve
systems of nonlinear equations.

3Analysis and Applications 11 (2013) 1350009 (16 pp.)
4Numerical Algorithms 64 (2013) 685–698.
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A new class of Secant-like methods for solving
nonlinear systems of equations5

J.A. Ezquerro, A. Grau, M. Grau-Sánchez, M.A. Hernández-Verón

We twice apply an idea by Hernández and Rubio (2002) for constructing
a one-parameter family of Secant-like methods. As a result, we define a
two-parameter family of Secant-like methods for solving nonlinear systems of
equations. We analyze the efficiency of this new family and conclude that the
Kurchatov method, which is one member of the family, is the most efficient.
We illustrate this with Troesch’s problem.

5Communications in Applied Mathematics and Computational Science 9 (2014) 201–213.



Chapter 1

Introduction

The search for solutions to nonlinear equations is one of the mathematical problems that
appear most frequently in many scientific disciplines. It is well-known that the resolution
of this kind of problems involves knowledge of the roots of an equation or a system of
nonlinear equations. In general, it is not possible to find the exact solution, and numerical
techniques need to be used to approximate them. The most common tools are iterative
methods that, starting from one or several initial points, build up a sequence converging
to an approximate solution of the equation. The key idea of the work presented in this
report is try to obtain variants of the classical Secant and Newton’s methods to improve
their convergence.

1.1 Historical background

The two iterative methods that have been used most commonly to approximate roots of
nonlinear equations are the Secant method and Newton’s method. Below, a historical
overview of both methods is given. Then, the state of the art of iterative methods from
the nineteenth century to the present is reviewed.

1.1.1 Secant method

The Secant method –also known as Regula Falsi or the method of chords– is one of
the most commonly used iterative methods for solving nonlinear equations. Traces of this
scheme date back thirty centuries, to before Newton formulated the iterative method. The

7



8 CHAPTER 1. INTRODUCTION

first evidence of the Regula Falsi method is from Egypt in the eighteenth century BC,
but it was also used in other civilizations in later times. For example, this algorithm was
studied by Hindu mathematicians in third century BC, and by Chinese mathematicians
in the second century BC, as shown in the Vaishali Ganit and The Nine Chapters on
the Mathematical Art, texts, respectively [51]. Moreover, in the sixteenth century, the
student Parameśvara presented a Sanskrit document in which the Secant method was
used in techniques to correct planetary longitudes [54].

This method is based on a divided difference operator. The term divided difference was
coined by the English mathematician A. De Morgan in 1842. He gave this name to the
operator employed by A.M. Ampère (Lyon, 1775) in his work. Ampère was the first to
focus on, which he called the fonction interpolaire (1826) – term used in French literature
of the 1800s – At this time, divided differences appeared in the generation of interpolation
polynomials. In 1840, L.A. Cauchy estimated the error in polynomial interpolation, using
the results obtained by Ampère [32].

1.1.2 Newton’s method

Three hundred years ago, Sir Isaac Newton wrote a method to approximate the roots
of the equation f(x) = 0 in a manuscript entitled Analysis per aequationes numero
terminorum infinitos (1669), published at the end of 1711 by W. Jones, and in De
methodus fluxionum et serierum infinitorum (written in 1671, translated and published as
Method of Fluxions in 1736 by J. Colson). Newton’s description differs substantially from
the modern scheme, because he only applied the method to polynomials. He computed
a sequence of polynomials rather than successive approximations xn, and only arrived
at an approximation for the root α at the end. Newton may have derived his method
from a similar, but less precise, method by F. Vieta. The essence of the Vieta method
can be found in the work of the Persian mathematician, Sharaf al–Din al–Tusi, while his
successor Jamshid al–Kashi used a form of Newton’s method to solve xP −N = 0 to find
roots of N .

Later, in his manuscript Analysis æquationum universalis: seu ad æquationes algebraicas
resolvendas methodus generalis, & expedita, ex nova infinitarum serierum methodo,
deducta ac demonstrata (1690), J. Raphson presented a method for approximating roots
of polynomials in which an operational process similar to that suggested by Newton is
simplified.
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Finally, in 1740, T. Simpson described Newton’s method as an iterative method for solving
general nonlinear equations using fluxional calculus. In the same publication, Simpson
provided a generalization to systems of two equations, and noted that Newton’s method
could be used for solving optimization problems by setting the gradient to zero.

In 1879 in the Newton-Fourier imaginary problem, A. Calyley was the first to note the
difficulties in generalizing Newton’s method to complex roots of polynomials with degrees
greater than 2 and complex initial values. This led to studies of the theory of iterations
of rational functions (a set of references can be found in [32,41,63,64]).

1.1.3 Around the twentieth century

We begin this period of time with the work of E. Schröder (1870, [56]). He presented a
family of iterative methods to compute zeros of nonlinear functions of one variable. Two
kinds of algorithms can be distinguished: the first is a recurrent construction of iterative
schemes from Newton’s method; and the second is derived using a suitable development
to partial fractions restricted to a rational function whose roots would be approximated.
Bernoulli’s method can be regarded as a method of the second kind.

Later, a major development in automatic computations took place in the USA. In 1946,
A. S. Householder joined the Mathematics Division of the Oak Ridge National Laboratory,
where he was appointed chair in 1948. It is during this time that his interests shifted
toward numerical analysis and he published a paper on this topic [34]. He was a leader in
the field of numerical methods during the second half of the twentieth century, when an
excellent survey of existing methods was carried out [35]. In 1952, L. V. Kantorovich [39]
generalized Newton’s method to Banach spaces and undertook a study of semilocal
convergence. A. M. Ostrowski (1960, [49]) addressed the problem of solving nonlinear
equations and systems of equations from different perspectives. Furthermore, he was
the first to define efficiency using local convergence order and computational cost. One
iterative method built up by him has been revisited frequently in the last decade, and it hs
been generalized to several variables. Currently, a key reference for all researchers of this
field is the work of J. F. Traub (1964, [57]). He used the concept of the iteration function
and a technique to obtain the order of convergence using Taylor developments. Moreover,
he redefined the efficiency index that has been presented by Ostrowski. Without a doubt,
the main reference in this memory is Traub’s book. A book by J. M. Ortega and W. C.
Rheinboldt (1970, [48]) is another interesting reference for analyzing and studying the
convergence of schemes for solving systems of nonlinear equations.
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From 1964 to 1984, multi-step methods were widely considered. These, consist of in-
creasing the number of steps per iteration to obtain higher efficiency, P. Jarratt [37],
R. F. King [40] and B. Neta [45–47] have worked to obtain more efficient multi-step
algorithms. F. A. Potra and V. Ptak (1984, [55]) presented a unified theory of convergence,
based on what is known as the method of nondiscrete mathematical induction, which they
applied to study in detail the rate of convergence of iterative processes.

In a very well-known paper from the twenty-first century, the authors S. Weerakoon and
T. G. I. Fernando (2000, [62]) proposed a third order improvement to the iteration of
Newton’s method. Two important aspects of this study are: (1) the new method does not
require computation of the second derivative of the function to carry out iterations; (2) the
computational order of convergence (COC) is defined. Since its publication, many authors
have obtained other multi-point methods using (1) techniques. However, the –Weerakoon
and Fernando– paper has been cited frequently due to (2). Some papers offer a new
construction of their algorithms, using the technique given in [62], but previously known
and written by Traub [57], as claimed by L. D. Petkovic and M. S. Petkovic (2007, [53]).
Other authors like M. Grau-Sánchez and J. L. Diaz-Barrero [20] and J. Kou [42] have
improved the order of the Ostrowski method [49] from 4th to 6th and 7th respectively.
A thesis by D. K. R. Babajee (2010 , [5]) reviews the historical development of multi-
point methods for finding simple roots of equations from Traub’s period to 2010. Our
contributions in this field, such as those described above, can be found in [16,22,25,26].

Recently, research on improving the convergence order of numerical methods has become
very active. In general, a increase in order implies an increase in the number of evaluations
of functions in each iteration. To address the problem of solving nonlinear equations in
which the function has no derivative, one part of this report analyzes methods without
derivatives, using a divided difference operator as a substitute. A key reference to work on
divided differences is [11]. We have contributed to this analysis with the papers [15,24,30].

1.1.4 High-precision

In the last twenty years, computations have generally been performed using high-precision
software packages. For a small but growing sector of the scientific computing world,
the 64-bit and 80-bit IEEE floating-point arithmetic formats currently provided in most
computer systems are not sufficient. A survey of some interesting applications of high-
precision arithmetic can be found in [6, 7].
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Efficient packages are available for performing to any desired precision basic arithmetic op-
erations, square and n-th roots, and for evaluating the most transcendental functions [8,9].
Such computations are provided by high-precision software packages that include high-
level language translation modules to minimize the conversion effort [7,19,58,59]. Mathe-
matical software packages such as MAPLE include facilities for arbitrarily high precision,
but for some applications researchers rely on internet-available software, such as the GNU
multi-precision package, ARPREC [4], MPFR [43] and MPFR++ [44].

1.2 Summary of the work in this report

Nonlinear equations must be solved to model problems in the real world. Due to the
development of computers, problems can be addressed using numerical algorithms that
approximate solutions. Our contribution in this field is the analysis and construction
of iterative methods that improve known methods either in convergence order or
computational efficiency.

More precisely, we highlight among others the following points:

• Construction of families of iterative schemes that are variants of the Newton and
Chebyshev methods [12,16,25,26].

• Study of several families of modified Secant methods (Secant, Kurchatov and
Steffensen) [12–15,24].

• Definition of new parameters of order: CLOC, ACLOC, ECLOC and PCLOC based
on the known computational order of convergence (COC, [62]). A generalization to
systems of equations of parameters: COC, ACOC, ECOC [24,27,31].

• A generalization of the computational efficiency to higher dimensions, named
computational efficiency index (CEI) [15,16,24–26] and its application [12–14]

• Resolution using discretization of differential and integro-differential equations and
other nonlinear models that appear in a lot of problems in the real world [13–16,26].

From a theoretical perspective, in the aforementioned papers we began building up families
of iterative methods that are variants of well-known ones. We have selected the methods
with the highest order of convergence. We then compared with classical methods using
CEI. Numerical examples and applications that support the theoretical results are given.
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We found that the elapsed times agrees with the theoretical CEIs, and the values of
the computational order that we obtained were sufficiently close to the local order of
convergence claimed in the first part. We used a multiple precision arithmetic to carry
out the computations.



Chapter 2

Iterative methods and
local order of convergence

The aim of this chapter is to provide a survey of theoretical results and numerical tools
for some iterative schemes, to approximate solutions of nonlinear equations. Namely, we
examine the concept of iterative methods and their local order of convergence. Finally,
we provide a detailed presentation of the error difference equation for the one-dimensional
case and the multi-dimensional case, and its relations with the orders using the indicial
polynomial.

2.1 Iteration functions

Many problems that arise in computational sciences and other disciplines can be formu-
lated by means of an equation like the following:

F(x) = 0 , (2.1)

where F ∶ D ⊂ X Ð→ Y is a continuous operator, defined on a nonempty convex subset
D of a Banach space X with values in a Banach space Y. In this study, we address
the problem of approximating a local unique solution α ∈ X of equation (2.1). Since the
exact solution of this equation can rarely be found, we need to use iterative techniques to
approximate it to the desired precision from one or several initial approximations. This
procedure generates a sequence of approximations of the solution searched.

13
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A classification of iteration functions, according to the previous information required carry
them out, can be found in Traub [57]. We build up a sequence {xn}n≥1 in a Banach space
X using the initial conditions x−k, . . . , x−1, x0, 0 ≤ k ≤ j − 1. Traub’s classification of the
iteration functions is the following.

Type I Term xn+1 is obtained using only the information at xn and no other information.
That is,

xn+1 = Φ(xn) , n ≥ 0 . (2.2)

The function Φ is called a one-point iteration function and equation (2.2) is called
the one-point iterative method.

Type II Term xn+1 is obtained using the information at xn and the previous information
at xn−1 , . . . , xn−j . Namely,

xn+1 = Φ(xn ;xn−1 , . . . , xn−j) , n ≥ 0 , j ≥ 1 . (2.3)

Function Φ is called a one-point iteration function with memory and equation (2.3)
is called the one-point iterative method with memory (j points). The semicolon in
(2.3) is written to distinguish the information from new data from the previously
used information.

Type III Term xn+1 is determined by new information at xn and previous information
at ϕ1 = ϕ1(xn) , ϕ2 = ϕ2(ϕ1, xn) , . . . , ϕr = ϕr(ϕr−1, . . . , ϕ1, xn) , r ≥1. That is,

xn+1 = Φ (xn , ϕ1 , . . . , ϕr) , n ≥ 0 , r ≥ 1 . (2.4)

Here, function Φ is called a multi-point iteration function without memory and
equation (2.4) is called the multi-point iterative method without memory (r steps).

Type IV Term xn+1 is obtained from the new information at xn and the previous
information at
ϕ1 = ϕ1(xn ;xn−1, . . . , xn−j) , . . . , ϕr = ϕr(xn, ϕ1, . . . , ϕr−1 ;xn−1, . . . , xn−j). Namely,

xn+1 = Φ (xn , ϕ1 , . . . , ϕr;xn−1 , . . . , xn−j) , n ≥ 0 , r ≥ 1 , j ≥ 1. (2.5)

Function Φ is called a multi-point iteration function with memory and (2.5) is called
a multi-point iteration method with memory (r steps and j points).

2.2 One-dimensional case

In particular, when the Banach spaces in (2.1) are X = Y = R, we have to solve the simplest
and most classical nonlinear problem. Namely, let f ∶ I ⊆ R → R be a nonlinear function.
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We have to approximate a simple root α of the equation

f(x) = 0, (2.6)

where I is a neighborhood of α. An approximation of α is usually obtained by means of
an iterative function, of type I , II , III or IV defined in (2.2),(2.3),(2.4) or (2.5) whereby
a sequence {xn}n≥1 is considered converging to α.

Definition 1. The sequence {xn} is said to converge to α with order of convergence ρ ∈ R,
ρ ≥ 1, if a positive real constant C ≠ 0 and C ≠ ∞ exists such that

lim
n→∞

∣en+1∣
∣en∣ρ

= C, (2.7)

where en = xn − α is the error in the n-th iterate, and the constant C is called the
asymptotic error constant (see [57]).

The local order of convergence of an iterative method in a neighborhood of a root is
the order of its corresponding sequence generated by the iterative function and the
corresponding initials approximations. For iterative methods without memory, the local
order is a positive integer. The convergence is said to be linear if ρ = 1, quadratic if ρ = 2,
cubic if ρ = 3, and, in general, superlinear if ρ > 1, superquadratic if ρ > 2, and so on.

To avoid higher order terms in some relations, which do not influence the convergence
order, we employ the O−notation and the O−notation. If the sequences {ξn}n≥1 and
{ζn}n≥1 are null sequences and the sequence ξn/ζn → K when n → ∞, where K is a
nonzero constant, we shall write ξn = O(ζn) or ξn ∼ ζn . If the sequence ξn/ζn → 0 when
n→∞, we shall write ξn = O(ζn) ; in other words, ξn is dominated by ζn asymptotically.
This approach significantly simplifies both the convergence analysis and presentation.

According to the previous notation the one-point iterative method without memory (2.7)
can be written as

en+1 = C eρn + O( eρ+1
n ) , n ≥ n0. (2.8)

The expression (2.8) is called the error difference equation for the one-point iterative
method. Note that the higher order terms in (2.8) are powers of ρ + 1.

For the one-point iterative method without memory, an approximation of the number of
correct decimal places in the n-th iterate, dn, is given by

dn ≈ − log10 ∣xn − α∣. (2.9)
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From (2.8), for n large enough we have en+1 ≈ C eρn , which using logarithms, yields

dn+1 ≈ − log10C + ρ ⋅ dn, (2.10)

from which follows
dn+1 ≈ ρ ⋅ dn. (2.11)

This means that, in each iteration, the number of correct decimals is approximately the
number of correct decimals of the previous iteration, multiplied by the local error.

This is in agreement with Wall’s definition (1954, [61]). That is, the local order of
convergence of a one-point iteration function indicates the rate of convergence of the
iteration method. Then, Wall defines the order ρ of the iteration formula by

ρ = lim
n→∞

log ∣en+1∣

log ∣en∣
= lim
n→∞

dn+1
dn

. (2.12)

This expression will be used later on when we define some parameters employed in the
computation of the local order of convergence of an iterative method.

For the one-point iterative method with memory (2.3), the error difference equation is

en+1 = Cea1
n e

a2
n−1 . . . e

aj
n−j+1 + O(e

a1
n e

a2
n−1 . . . e

aj
n−j+1) , (2.13)

where ak are nonnegative integers for 1 ≤ k ≤ j and O(ea1
n e

a2
n−1 . . . e

aj
n−j+1) represents terms

with a higher order than the term ea1
n e

a2
n−1 . . . e

aj
n−j+1. In this case, the order of convergence

ρ, is the unique real positive root of the indicial polynomial (see [48,49,57,60]) of the error
difference equation (2.13) given by

pj(t) = tj − a1t
j−1 − ⋅ ⋅ ⋅ − aj−1t − aj . (2.14)

Notice that pj(t) in (2.14) has a unique real positive root on account of Descartes’ rule of
signs. Moreover, we can write en+1 = C eρn + O( eρn) , n ≥ n0.

2.3 Muti-dimensional case

When the Banach spaces in (2.1) are X = Y = Rm we have to solve a system of
nonlinear equations. Namely, let F ∶ D ⊂ Rm Ð→ Rm be a nonlinear function and
F ≡ (F1, F2, . . . , Fm) with Fi ∶ D ⊆ Rm → R, i = 1,2, . . . ,m, where D is an open convex
domain in Rm, so that we have to approximate a solution α ∈D of the equation F (x) = 0.
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Starting with a given set of initial approximations of the root α, the iteration function
Φ ∶ D Ð→ D of type I , II , III or IV defined by (2.2),(2.3),(2.4) or (2.5), whereby a
sequence {xn}n≥1 is considered converging to α.

Definition 2. The sequence {xn} converges to α with an order of convergence of at least
ρ ∈ R, ρ ≥ 1, if a positive real constant 0 < C < ∞ exists such that

∥en+1∥ ≤ C∥en∥ρ , (2.15)

where en = xn − α is the error in the n-th iterate, and the constant C is called the
asymptotic error constant (see [57]). Here the norm used is the maximum norm.

The local order of convergence of an iterative method in a neighborhood of a root is the
order of the corresponding sequence generated (in Rm) by the iterative function Φ and
the corresponding initials approximations.

If we do not use norms, a definition of the local order of convergence for the one-
point iterative method without memory can be considered as follows. The local order
of convergence is ρ ∈ N if a ρ–linear function C ∈ L (Rm×

ρ

⋯̆ ×Rm,Rm) ≡ Lρ (Rm,Rm)
exists such that

en+1 = C eρn + O( eρ+1
n ) , n ≥ n0 (2.16)

where eρn is (en,
ρ

⋯̆, en) ∈ Rm×
ρ

⋯̆ ×Rm.

Some measures of the asymptotic rate of convergence of sequences and iterative processes
are considered by Ortega and Rheinboldt [48]; we will consider the R-order for two reasons.
Firstly, the R-order of Φ at α is independent of the norm. Secondly, it follows that when
0 < C < ∞ exists for some ρ ∈ [1,∞) from (2.15), then ρ is the R-order of convergence of
the iterative method defined by Ortega and Rheinboldt [48]. Moreover, the local order ρ
of (2.16) is also the R-order of convergence of the method.

For the one-point iterative method with memory, the error difference equation can be
expressed by

en+1 = Cea1
n e

a2
n−1 . . . e

aj
n−j+1 + O(e

a1
n e

a2
n−1 . . . e

aj
n−j+1) , (2.17)

where C ∈ La1+⋅⋅⋅+aj (Rm,Rm) and ak are nonnegative integers for 1 ≤ k ≤ j. The expres-
sion O(ea1

n e
a2
n−1 . . . e

aj
n−j+1) represents terms with a higher order than ea1

n e
a2
n−1 . . . e

aj
n−j+1.

As in the one-dimensional case, we can write the equation associated with (2.17),
pj(t) = tj − a1t

j−1 − ⋅ ⋅ ⋅ − aj−1t − aj . If we apply Descartes’ rule of signs to the previous
polynomial, there is a unique real positive root ρ that coincides with the local order of
convergence (see [48,60]).





Chapter 3

Computational estimation of
the local order of convergence

Here, we present numerical parameters that allow us to assess the previosly studied
theoretical order of convergence. These measures are used to check the theoretical local
order of convergence. The parameter computational order of convergence (COC) is used
in most studies published after Weerakoon and Fernando [62]. However, this parameter
can only be used when the root α is known. To overcome this problem, the following
parameters have been introduced:

ACOC Approximated computational order of convergence by Hueso et al. (2009, [36]) .

ECOC Extrapolated computational order of convergence by Grau et al. (2009, [29]) .

PCOC Pétkovic computational order of convergence by Petković (2011 [52]) .

The paper by Grau et al. (2010, [31]) examines the relations between the parameters COC,
ACOC and ECOC and the theoretical convergence order of iterative methods without
memory.

Subsequently, using Wall’s definition of the order (2.12), four new parameters (CLOC,
ACLOC, ECLOC and PCLOC) were given in [27] to check this order. Note that the last
three parameters do not need knowledge of the root.

Generalizations of COC, ACOC and ECOC from the one-dimensional case to the multi-
dimensional one can be found in [23]. They will be presented in detail in the sequel.
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3.1 Computational order of convergence and its variants

Let {xn}n≥1 be a sequence of real numbers converging to α. It is obtained by carrying out
one iteration function in R, starting with an initial approximation x0 or x−j+1, . . . , x−1, x0,
of the root α of (2.6). Let {en}n≥1 be the sequence of errors given by en = xn − α. If
functions (2.2)–(2.5) have local order of convergence ρ, then from (2.10) we have

log ∣en∣ ≈ ρ ⋅ log ∣en−1∣ + logC,

log ∣en−1∣ ≈ ρ ⋅ log ∣en−2∣ + logC.

If we substract the second expression from the first one we get

ρ ≈ log ∣en / en−1∣
log ∣en−1 / en−2∣

. (3.1)

This expression is the same as that described in papers by Weerakoon and Fernando [62].

Definition 3. The value ρn, computed by

ρn =
log ∣en / en−1∣

log ∣en−1 / en−2∣
, en = xn − α , n ≥ 3 , (3.2)

is called the computational order of convergence and is denoted by COC.

The first variant of COC involves the parameter ên = xn − xn−1.

Definition 4. The approximated computational order of convergence (ACOC) of a sequence
of iterates {xn}n≥1 and is defined by

ρ̂n =
log ∣ ên / ên−1∣

log ∣ ên−1 / ên−2∣
, ên = xn − xn−1 , n ≥ 4. (3.3)

The second variant of COC is obtained using Aitken’s extrapolation procedure [1]. That
is, from iterates xn−2, xn−1, xn , the approximation α̃n of the root α can be obtained.

Definition 5. The extrapolated computational order of convergence (ECOC) of a sequence
of iterates {xn}n≥1 that is defined by

ρ̃n =
log ∣ ẽn / ẽn−1∣

log ∣ ẽn−1 / ẽn−2∣
, n ≥ 5, (3.4)

where ẽn = xn − α̃n and α̃n is given by

α̃n = xn −
(δxn−1)2

δ2xn−2
, δxn = xn+1 − xn. (3.5)
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Sequences {ρ̃n}n≥5 and {ρ̂n}n≥4 converge to ρ. The details of the preceding claim can be
found in [31] where the relations between the error en and ẽn and ên are also described.

Finally, Petković [52] uses the following parameter

ρ̆n =
log ∣ĕn∣

log ∣ĕn−1∣
, ĕn =

f(xn)
f(xn−1)

, n ≥ 2, (3.6)

that we call the Petković computational order of convergence (PCOC).

From a computational viewpoint, ACOC has the lowest computational cost, followed by
PCOC. Inspired by (2.12) given in [61], in our study [27] we present four new parameters
that are described in the following section.

3.2 New parameters to compute the order of convergence

3.2.1 Definitions

Given the sequence {xn}n≥1 of iterates converging to α with order ρ, we consider the
sequences of errors en = xn − α and error parameters ên = xn − xn−1, ẽn = xn − α̃n and
ĕn = f(xn)

f(xn−1)
defined previously in (3.3),(3.4),(3.6).

Definition 6. From the preceding, we define the following sequences {λn}n≥2, {λ̂n}n≥3,
{λ̃n}n≥4 and {λ̆n}n≥2 :

● Computational local order of convergence or parameter CLOC is the general term of the
sequence {λn}n≥2 given by

λn =
log ∣en∣

log ∣en−1∣
. (3.7a)

● Approximated computational local order of convergence or parameter ACLOC is the
general term of the sequence {λ̂n}n≥3 defined by

λ̂n =
log ∣ên∣

log ∣ên−1∣
. (3.7b)

● Extrapolated computational local order of convergence or parameter ECLOC is the general
term of the sequence {λ̃n}n≥4 given by

λ̃n =
log ∣ẽn∣

log ∣ẽn−1∣
. (3.7c)
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● Petković computational local order of convergence or parameter PCLOC is the general
term of the sequence {λ̆n}n≥2 defined by

λ̆n =
log ∣f(xn)∣

log ∣f(xn−1)∣
. (3.7d)

Note the analogy between λn and the definitions given byWall in [61] and Tornheim in [60].
Knowledge of α is needed to obtain λn; but is not required to obtain λ̂n, λ̃n and λ̆n. The
new parameters CLOC, ACLOC, ECLOC and PCLOC have a lower computational cost
than their predecessors. A detailed description of their convergence can be found in our
studies [27,28].

3.2.2 Convergence of new sequences of parameters

In the case of iterative methods to obtain approximates of the root α of f(x) = 0, where
f ∶ I ⊂ R→ R, the error difference equation is given by

en+1 = C eρn (1 + O( eσn )) , 0 < σ < 1, (3.8)

where C is the asymptotic error constant. With the additional hypothesis on the order,
say ρ ≥ (1+

√
5 )/2, in [27] the relations between ρ and the parameters λn, λ̂n, λ̃n and λ̆n

are presented. Namely,

λn = ρ(1 + O( log ∣C ∣
ρ log ∣en−1∣

)) , n ≥ 1, (3.9a)

λ̂n = ρ(1 + O( log ∣C ∣
ρ log ∣en−2∣

)) , n ≥ 2, (3.9b)

λ̃n = ρ(1 + O( log ∣C ∣
(2ρ − 1) log ∣en−2∣ + log ∣C ∣ )) , n ≥ 2, (3.9c)

λ̆n = ρ(1 + O( log ∣ΓC ∣
ρ log ∣en−1∣

)) , n ≥ 1, Γ = f ′(α). (3.9d)

Notice that the convergence of the sequences λn, λ̂n, λ̃n, λ̆n towards ρ may be derived
from (3.9a), (3.9b), (3.9c) and (3.9d). Moreover, when built up the sequences λn and λ̂n
we realized that the error term in (3.9a) and (3.9b) is the same, but shifted one step as
tested in [27].
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3.2.3 Relations between error and error parameters

The following inverse error difference equation is presented in [27]. That is,

eρn = C −1 en+1 (1 + O( eσ/ρn+1)). (3.10)

Using (3.8) and (3.10), and the definitions of ên, ẽn and ĕn , we obtain the following
theoretical approximations of en. Namely,

en ≈ C
1

1−ρ ( ên
ên−1

)
ρ2/(ρ−1)

or en ∼ ( ên
ên−1

)
ρ2/(ρ−1)

n ≥ 3 , (3.11a)

en ≈ C
ρ−1
2ρ−1 (ẽn )

ρ2/ (2ρ−1)
or en ∼ (ẽn )

ρ2/ (2ρ−1)
n ≥ 3, (3.11b)

en ≈ C
1

1−ρ (ĕn )
ρ/ (ρ−1)

or en ∼ (ĕn )
ρ/ (ρ−1)

n ≥ 2. (3.11c)

From the preceding (3.11a), (3.11b) and (3.11c), we can obtain bounds of the error
to predict the number of correct figures and establish a stopping criterion, all without
knowledge of the root α.

f(x) α x0 {x−1 , x0}

f1(x) = x3 − 3x2 + x − 2 2.893289196304497788906356 2.5 {2.25,2.60}
f2(x) = x3 + cosx − 2 1.172577964753970012673333 1.5 {1.50,2.50}
f3(x) = 2 sinx + 1 − x 2.380061273139339017212548 2.5 {1.00,2.00}
f4(x) = (x + 1) ex−1 − 1 0.557145598997611416858672 1.0 {0.00,0.75}
f5(x) = ex

2+7x−30 − 1 3.0 2.94 {2.90,3.10}
f6(x) = e−x + cosx. 1.746139530408012417650703 1.5 {1.60,1.90}
f7(x) = x − 3 lnx 1.857183860207835336456981 2.0 {1.00,2.00}

Table 3.1: Test functions, their roots and the initial points considered

3.2.4 Numerical tests

The convergence of the new parameters has been tested in six iterative schemes with a
local convergence order equal to 2, 3, 4, (1 +

√
5 )/2, 1 +

√
2 and 1 +

√
3 respectively,

in a set of seven real functions that are shown in Table 3.1. The first three methods are
one-point iterative methods without memory, known as the Newton’s method, Chebyshev
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method [22] and the Schröder method [56]. The other three are iterative methods with
memory, namely the Secant method and two of its variants (see [30]).

They are defined by

φ1(xn) = xn − u(xn), (3.12)

φ2(xn) = φ1(xn) −
1
2
L(xn)u(xn), (3.13)

φ3(xn) = φ2(xn) − (1
2
L(xn)2 −M(xn)) u(xn), (3.14)

φ4(xn) = xn − [xn−1, xn]−1
f f(xn), (3.15)

φ5(xn) = φ4(xn) − [xn, φ4(xn)]−1
f f(φ4(xn)), (3.16)

φ6(xn) = φ4(xn) − [xn,2φ4(xn) − xn]−1
f f(φ4(xn)), (3.17)

where

u(x) = f(x)
f ′(x) , L(x) = f

′′(x)
f ′(x) u(x), M(x) = f ′′′(x)

3! f ′(x) u(x)
2 [x, y]−1

f = y − x
f(y) − f(x) .

The numerical results can be found in [27]. For each method from (3.12) to (3.17) and
each function in Table 3.1, we applied the four techniques with adaptive multi-precision
arithmetic (see below) derived from relations (3.11a), (3.11b) and (3.11c) and the desired
precision, which for this study is 10−2200. The number of iterations required to obtain the
desired precision and the values of iterated points x1, . . . , xI are the same. Table 3.2 shows
the number of iterations needed to compute the root. In addition, the last four columns
show the interval with the minimum and maximum error obtained in the computation of
the corresponding CLOC, ECLOC, ACLOC or PCLOC for the seven tested functions.

f1 f2 f3 f4 f5 f6 f7 I (λ̄) I (λ̃) I (λ̂) I (λ̆)

φ1 12 11 10 11 12 10 11 [2.8e−5,1.1e−3] [3.7e−5,1.5e−3] [5.6e−5,2.2e−3] [6.0e−5,1.2e−3]
φ2 8 7 6 7 8 6 7 [8.9e−5,3.3e−3] [1.0e−4,6.0e−3] [1.4e−4,9.9e−3] [2.1e−4,4.5e−3]
φ3 6 6 5 6 6 5 5 [8.8e−6,1.3e−2] [2.0e−5,3.0e−2] [3.5e−5,5.1e−2] [1.6e−3,1.2e−2]
φ4 17 18 16 16 18 14 16 [8.1e−6,5.8e−4] [7.9e−6,6.8e−4] [1.2e−5,9.4e−4] [3.2e−5,5.5e−3]
φ5 9 9 9 8 10 7 8 [5.5e−5,3.0e−3] [1.0e−4,4.4e−3] [1.3e−4,7.2e−3] [1.9e−3,3.3e−3]
φ6 8 8 7 7 8 6 7 [3.6e−5,3.7e−3] [1.4e−4,1.6e−2] [1.6e−4,1.7e−2] [2.8e−4,4.5e−3]

Table 3.2: Min-max interval for error bounds

From these numerical tests, we can conclude that CLOC gives the best approximation of
the theoretical order of convergence of an iterative method. However, knowledge of the
root is required. Conversely, as we can see in the definitions of ACLOC (3.7b), ECLOC
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(3.7c) and PCLOC (3.7d), these parameters do not involve the expression of the root α.
Actually, in real problems we want to approximate a root that is not known in advance.
For practical purposes, (see Table 3.2) we recommend ECLOC, because it presents the
best approximation of the local order (see [27]). Nevertheless, PCLOC is a good practical
parameter in many cases, because it requires fewer additional computations.

3.3 Multi-dimensional case

A generalization to several variables of some parameters is carried out to approximate the
local order of the iterative method presented in the previous sections. To define the new
parameters, we substitute the absolute value by the maximum norm, and all computations
are done using the components of the vectors. Let {xn}n∈N be a convergence sequence of
Rm towards α ∈ Rm, where xn = (x(1)

n , x(2)
n , . . . , x(m)

n )t and α = (α(1), α(2), . . . , α(m))t. We
consider the vector sequence of the error en = xn − α and the following vector sequences
of parameters:

ên = xn − xn−1 , ẽn = max
1≤r≤m

RRRRRRRRRRRR

(δx(r)
n−1)

2

δ2x(r)
n−2

RRRRRRRRRRRR
(3.18)

where δxn = xn+1−xn. Notice that ẽn is the δ2-Aitken procedure applied to the components
of xn−1, xn and xn+1, and all parameters are independent of knowledge of the root.

Definition 7. Let {ρn}n≥3, {ρ̂n}≥4, {ρ̃n}≥5, {λn}n≥2, {λ̂n}≥3, {λ̃n}≥4 and {λ̆n}n≥2 be
the following real sequences:

● Parameters COC, {ρn}n≥3 , and CLOC, {λn}n≥2 :

ρn =
log (∥en∥/∥en−1∥)

log (∥en−1∥/∥en−2∥)
, n ≥ 3 , λn =

log ∥en∥
log ∥en−1∥

, n ≥ 2 . (3.19a)

● Parameters ACOC, {ρ̂n}n≥4 , and ACLOC, {λ̂n}n≥3 :

ρ̂n =
log (∥ên∥/∥ên−1∥)

log (∥ên−1∥/∥ên−2∥)
, n ≥ 4 , λ̂n =

log ∥ên∥
log ∥ên−1∥

, n ≥ 3 . (3.19b)

● Parameters ECOC, {ρ̃n}n≥5 , and ECLOC, {λ̃n}n≥4 :

ρ̃n =
log (∥ẽn∥/∥ẽn−1∥)

log (∥ẽn−1∥/∥ẽn−2∥)
, n ≥ 5 , λ̃n =

log ∥ẽn∥
log ∥ẽn−1∥

, n ≥ 4 . (3.19c)
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● Parameters PCOC, {ρ̆n}n≥1 , and PCLOC, {λ̆n}n≥1 :

ρ̆n =
∥F (xn)∥/∥F (xn−1)∥
∥F (xn−1)∥/∥F (xn−2)∥

, n ≥ 3 , λ̆n =
log ∥F (xn)∥

log ∥F (xn−1)∥
, n ≥ 2 . (3.19d)

Approximations COC, ACOC and ECOC have been used in Grau et al. (2011, [23]). A
complete study of these parameters has been carried out to compute the local convergence
for four iterative methods and seven systems of nonlinear equations. In our studies on
iterative methods for systems of linear equations, the computation will be the approach
the order for one of these five parameters (3.19b), (3.19c) or (3.19d). The (3.19b) and
(3.19d) parameters are the most efficient, and (3.19c) and (3.19a) parameters are the most
accurate.



Chapter 4

Development of
two inverse operators

In this chapter we consider, first of all, the Taylor development of a function in order to
express the theoretical error equation of iterative algorithms with and without memory.
By developing in a formal series expansion, we derive an expression of the inverse derivative
operator (inverse of Jacobian) and the inverse divided difference operator. These are the
most commonly used operators in the recent literature on iteration algorithms.

4.1 The vector error difference equation

Here we present a generalization to several variables of a technique used to compute
analytically the error equation of iterative methods without memory for one variable.

We consider iterative methods to find a simple root of a system of nonlinear equations

F (x) = 0 ,

where F ∶ D ⊆ Rm Ð→ Rm is sufficiently differentiable and D is an open convex domain
in Rm. We assume that the solution of F (x) = 0 is α ∈D, at which F ′(α) is non singular.

The key idea is to use formal power series. The vector expression of the error equation
obtained by carrying out this procedure, is

en+1 = G (F ′(α), F ′′(α), . . .) eρn + O (eρ+1
n ) ,

27
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where ρ is a nonnegative integer. If the iterative scheme is with memory (j points) we
obtain Grau et al. (2011, [25]):

en+1 =H (F ′(α), F ′′(α), . . .) ea1
n e

a2
n−1 . . . e

aj
n−j+1 + O(e

a1
n e

a2
n−1 . . . e

aj
n−j+1) ,

where ak are nonnegative integers for 1 ≤ k ≤ j.

4.2 Notation

To obtain the vector equation of the error, we need some known results that, for ease
of reference, are included in the following. Let F ∶ D ⊆ Rm Ð→ Rm be sufficiently
differentiable (Fréchet-differentiable) in D, and therefore with continuous derivatives. If
we consider the kth derivative of F at a ∈ Rm, we have the k-linear function

F (k)(a) ∶ Rm×
k

⋯̆ ×Rm Ð→ Rm

(h1, . . . , hk) z→ F (k)(a) (h1, . . . , hk).

That is, F (k)(a) ∈ L (Rm×
k
⋯̆ ×Rm,Rm) ≡ Lk (Rm,Rm).

It has the following properties:

P1. F (k)(a) (h1, . . . , hk−1, ⋅ ) ∈ L (Rm, Rm) ≡ L (Rm).

P2. F (k)(a) (hσ(1), . . . , hσ(k)) = F (k)(a) (h1, . . . , hk), where σ is any permutation of
the set {1, 2, . . . k}.

Notice that from P1 and P2 we can use the following notation:

N1. F (k)(a) (h1, . . . , hk) = F (k)(a)h1⋯hk . For hj = h, 1 ≤ j ≤ k, we write F (k)(a)hk.

N2. F (k)(a)hk−1 F (l)(a)hl = F (k)(a)F (l)(a) hk+l−1 .

Hence, we can also express F (k)(a) (h1, . . . , hk) as

F (k)(a) (h1, . . . , hk−1)hk = F (k)(a) (h1, . . . , hk−2) hk−1 hk = . . . = F (k)(a)h1⋯hk .

For any q = a+h ∈ Rm lying in a neighborhood of a ∈ Rm, assuming that [F ′ (a)]−1 exists,
and taking into account the previous notation, we write Taylor’s formulae in the following
way:
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F (a + h) = F (a) + F ′(a)h + 1
2!
F (2)(a)h2 + ⋅ ⋅ ⋅ + 1

(q − 1)!F
(q−1)(a)hq−1 + Oq , (4.1)

= F (a) + F ′(a)(h +
q−1
∑
k=2

Ak(a)hk + Oq ) , (4.2)

where Ak(a) = 1
k!

[F ′(a)]−1
F (k)(a) ∈ Lk (Rm, Rm) , 2 ≤ k ≤ q − 1, and Oq = O(hq) .

4.3 Symbolic computation of the inverse of the Jacobian
operator

We assume that F ∶D ⊆ Rm Ð→ Rm has at least q-order derivatives with continuity on D
for any x ∈ Rm lying in a neighborhood of a simple zero, α ∈ D, of the system F (x) = 0.
We can apply Taylor’s formulae to F (x). By setting e = x − α, as the local order and
assuming that [F ′ (α)]−1 exists, we have

F (x) = F (α + e) = Γ( e +
q−1
∑
k=2

Ak e
k) + Oq , (4.3)

where

Ak = Ak(α) , k ≥ 2 , with Γ = F ′ (α) , ek = (e,
k
⋯̆, e) ∈ Rm×

k
⋯̆ ×Rm .

Moreover, from (4.3) noting the identity by I, the derivatives of F (x) can be written as

F ′(x) = Γ( I +
q−1
∑
k=2

kAk e
k−1) + Oq , (4.4)

F ′′(x) = Γ(
q−2
∑
k=2

k (k − 1)Ak ek−2) + Oq−1 , (4.5)

F ′′′(x) = Γ(
q−3
∑
k=3

k!
(k − 3)! Ak e

k−3) + Oq−2 , (4.6)

and so forth up to order q.
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By developing in a formal series expansion of e the inverse of F ′(x) is

[F ′(x)]−1 =
⎛
⎝
I +

4
∑
j=1

Kje
j + O5

⎞
⎠

Γ−1 , (4.7)

with K1 = −2A2 ,

K2 = 4A2
2 − 3A3 ,

K3 = −8A3
2 + 6A2A3 + 6A3A2 − 4A4 ,

K4 = 16A4
2 − 12A2

2A3 − 12A2A3A2 − 12A3A
2
2 + 8A2A4 + 8A4A2 ,

where we use the following notation: Aqk e
q+1 = (Ak e)q−1 (Ak e2) .

4.3.1 Example: Newton’s method

We consider Newton’s method that we can write as

X = x − F ′(x)−1 F (x). (4.8)

The expression of the error E = x−α in terms of e is built up by subtracting α from both
sides of (6.9) and taking into account (4.4) and (4.7). Namely,

E = e −
⎛
⎝
I +

3
∑
j=1

Kje
j + O4

⎞
⎠

Γ−1 Γ [ e +
4
∑
k=2

Ak e
k + O5 ]

E = A2 e
2 + 2 (A3 − A2

2) e3 + (3A4 − 4A2A3 − 3A3A2 + 4A3
2) e4 + O5 . (4.9)

The result (4.9) agrees with the classical asymptotic constant in the one-dimensional case
and states that Newton’s method has at least local order 2. Note that the terms A2A3

and A3A2 are noncommutative.

4.4 Development of the inverse of the first-order divided
differences of a function of several variables

We assume that F ∶ D ⊆ Rm Ð→ Rm has, at least, qth-order derivatives with
continuity on D. We consider the first divided difference operator of F in Rm as a
mapping

[−,−;F ] ∶ D ×D Ð→ L(Rm,Rm)

(x + h,x) Ð→ [x + h,x ; F ] ,
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which, for all x,x + h ∈D, is defined by

[x + h ,x ; F ]h = F (x + h) − F (x) , (4.10)

where L(Rm,Rm) denotes the set of bounded linear functions (see [48,55] and references
therein). For F that are sufficiently differentiable in D, we can write:

F (x + h) − F (x) = ∫
x+h

x
F ′(z)dz = ∫

1

0
F ′(x + th)dt. (4.11)

By developing F ′(x+ th) in Taylor’s series at the point x ∈ Rm and integrating we obtain

[x + h ,x ; F ] = F ′(x) + 1
2
F ′′(x)h + ⋅ ⋅ ⋅ + 1

q!
F (q)(x)hq−1 + O(hq) (4.12)

By developing F (x) and its derivatives in Taylor’s series at the point x = α + e lying in a
neighborhood of a simple zero, α ∈ D, of the system F (x) = 0, assuming that Γ−1 exists,
we obtain the expressions (4.3)–(4.6). Next, by replacing these expressions in (4.12), we
obtain:

[y , x ; F ] = Γ (I +A2(2e + h) +A3(3 e2 + 3 eh + h2) + . . . ) , (4.13)

or more precisely

[x + h ,x ; F ] = Γ( I +
q−1
∑
k=1

Sk(h, e) + . . .) , (4.14)

where

Sk(h, e) = Ak+1
k+1
∑
j=1

(k + 1
j

)ek−j+1 hj−1 , k ≥ 1 .

Setting y = x + h, ε = y − α and h = ε − e in (4.13) or in (4.14) we obtain

[y , x ; F ] = Γ (I +A2(ε + e) +A3(ε2 + ε e + e2) + . . . ) , (4.15)

or more precisely

[y , x ; F ] = Γ( I +
q−1
∑
k=1

Tk(ε, e) +Oq(ε, e)) , (4.16)

where Tk(ε, e) = Ak+1
k

∑
j=0

εk−j ej , k ≥ 1, and Oq(ε, e) according to the next definition.
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Definition 8. We say that:
a function depending on ε and e is an Oq(ε, e) if it is an O(εq0 eq1) where q0 + q1 = q ,
q0 ≥ 0 , q1 ≥ 0.

If we expand in formal power series of e and ε, the inverse of the divided difference given
in (4.15) or in (4.16) may be written as:

[y , x ; F ]−1 = (I −A2(ε + e) −A3(ε2 + ε e + e2) +A2(ε + e)A2(ε + e) +O3(ε, e))Γ−1 .

(4.17)

Notice that equation (4.17) is written explicitly until the 2nd-degree in ε and e, while in
each specific circumstance it will be adapted and reduced to the necessary terms, with an
effective contribution to the computation of the local order of convergence.

This development of the divided difference operator (4.17) was first used in our study
Grau et al. (2011, [24]).

4.4.1 Example: Secant method

The generic case, (4.15), (4.16) or (4.17) can be adapted to different cases. One example
is the well-known iterative method, the Secant method, which is defined by the algorithm:

xn+1 = xn − [xn−1 , xn ; F ]−1 F (xn) , x0 , x1 ∈D. (4.18)

If y = xn−1 and x = xn in (4.15), then we obtain an expression of the operator [xn−1 , xn ; F ]
in terms of en−1 = xn−1 − α and en = xn − α. If we expand in formal power series of en−1

and en the inverse of the divided difference operator in the Secant method we obtain:

[xn−1, xn;F ]−1 = (I −A2 (en−1 + en) + (A2
2 −A3)e2

n−1 + O(e2
n−1)) Γ−1 , (4.19)

where A2
2e

2
n−1 = (A2en−1)2 . The expression of the error en+1 = xn+1 −α in terms of en and

en−1 for the Secant method is built up by subtracting α from both sides of (6.1). Taking
into account (4.3) and (4.19), we have

en+1 = en − [I −A2 (en−1 + en) + (A2
2 −A3)e2

n−1 + O(e2
n−1)] ⋅ [ en + A2e

2
n + O(e3

n) ]

= A2 en−1 en + (A3 −A2
2)e2

n−1 en + o (e2
n−1 en) , (4.20)

where the indicial polynomial (see (2.17)) of the error difference equation (4.20) is
t2 − t − 1 = 0, with only one positive real root, which is the R-order of convergence of
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the Secant method, φ = (1 +
√

5 )/2. This result agrees with the classical asymptotic
constant in the one-dimensional case, and states that the Secant method has at least local
order φ.

Another complete expression of the error expression for the Secant method can be found
in our study Grau et al. (2011, [30]).





Chapter 5

Efficiency indices

We are interested in comparing iterative processes for approximating a solution α of
a system of nonlinear equations. In the scalar case, the parameters of the efficiency
index (EI) and computational efficiency (CE) are possible indicators of the efficiency
of the scheme. The concept of computational efficiency index (CEI) is introduced in
our work. We considerer the computational efficiency index as a generalization to the
multi-dimensional case. We then show the power of this parameter by applying it to some
numerical examples.

5.1 Efficiency index and computational efficiency

To compare iterative methods for solving scalar nonlinear equations, the efficiency index
suggested by Ostrowski ( [49], 1960, p. 20) is widely used.

Definition 9. (Ostrowski, 1960) The efficiency index of an iterative method is defined by

EI = ρ1/θ , (5.1)

where θ represents the number of the evaluations of functions required to carry out the
method per iteration, and ρ is the local order of convergence of the method (see [49]).

Another classical measure of efficiency for iterative methods applied to scalar nonlinear
equations is the computational efficiency proposed by Traub [57]. Note that the number of
arithmetic operations required to evaluate the iteration function can differ greatly between
two problems solved by the same scheme. If it is considered relevant to account for this
cost, the term computational efficiency should be used.

35
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Definition 10. (Traub, 1964) The computational efficiency of an iterative method is
defined by

CE = ρ1/ω , (5.2)

where ρ is the local order of convergence of the method and ω the number of operations,
expressed in product units, that are needed to compute each iteration without considering
the evaluations of the functions (see [57]).

The efficiency index for Newton’s method is 21/2 ≈ 1.414 because an iteration step of
Newton requires the computation of f(x) and f ′(x), then ω = 2 and the local order is
θ = 2. Note that the parameter (5.1) is independent of the expression of f(x) and its
derivative, while the parameter (5.2) aims to reflect the cost, in arithmetic operations, of
solving the problem f(x) = 0 by a method of order ρ. For the Newton’s method is 21/1,
because an iteration step of Newton requires one quotient (ω = 1).

More precisely, note that an iteration step requires two actions: first the calculation of
new function values; and then the combination of data to calculate the next iterate. The
evaluation of functions requires invocation of subroutines, whereas the calculation of the
next iterate requires only a few arithmetic operations. In general, these few arithmetic
operations are not considered in the scalar case. In the case of iterative methods for
systems of nonlinear equations, matrix operations include arithmetic operations, such as
solving linear systems or obtaining inverse matrices. From our point of view, an efficiency
indicator for systems of nonlinear equations must account for the cost of two steps.

5.2 Computational efficiency index

The traditional way to present the computational efficiency index of iterative methods
(see [49, 57]) is adapted for systems of nonlinear equations. When we deal with a system
of nonlinear equations, the total operational cost is the sum of the evaluations of functions
(the function and the derivatives involved) and the operational cost of a step of the
iterative method.

Definition 11. The computational efficiency index (CEI) and the computational cost
per iteration (C) are defined by

CEI(µ0, µ1,m, `) = ρ
1

C(µ0, µ1,m, `) , (5.3)
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where C(µ0, µ1,m, `) is the computational cost given by

C(µ0, µ1,m, `) = a0(m)µ0 + a1(m)µ1 + ω(m,`), (5.4)

a0(m) represents the number of evaluations of the scalar functions (F1, . . . , Fm) used in
one step of the iterative scheme.

a1(m) is the number of evaluations of scalar functions of F ′, say ∂Fi
∂xj

, 1 ≤ i, j ≤m.

ω(m,`) represents the number of products needed per iteration.

The constants µ0 and µ1 are the ratios between the products and evaluations required to
express the value of C(µ0, µ1,m, `) in terms of products, and ` is the cost of one
quotient in products. (see [24,25,30,55]).

From the definition, we can derive the following properties:

CEI(µ0, µ1,m, `) > 1, lim
m→+∞

CEI(µ0, µ1,m, `) = 1. (5.5)

Notice that for µ0 = µ1 = 1 and ω(m,`) = 0, (5.3) is reduced to (5.1), that is the classic
efficiency index of an iterative method, say EI = ρ1/θ, in the scalar case. Also observe
that, if a0(m) = a1(m) = 0, (5.3) is written in the scalar case as (5.2); namely, CE = ρ1/ω .

According to (5.4), the factors µ0 , µ1 can be estimated. To do this, we express the cost
of evaluating the elementary functions in terms of products. This cost, depends on the
machine, the software and the arithmetic used. In [19, 58, 59], comparisons are made
between a multi-precision library, MPFR, and other computing libraries. Tables 5.1–5.2
show our own estimation of the cost of the elementary functions in product units, where
the running time of one product is measured in milliseconds.

Software x ∗ y x/y
√
x exp(x) ln(x) sin(x) cos(x) arctan(x)

Matlab 2009b 4.5E−7 ms 10 55 80 145 35 50 65
Maple13 16 digits 1.2E−3 ms 1 10 25 45 25 20 95
Maple13 1024 digits 4.0E−2 ms 1 5 45 10 90 90 90
Maple13 4096 digits 3.5E−1 ms 1 5 50 10 105 105 100

Table 5.1: Computational cost of elementary functions computed with Matlab 2009b and Maple 13 in an Intel
ROCore(TM)2 Duo CPU P8800 (32-bit machine) Microsoft Windows 7 Professional processor, where
x =
√

3 − 1 and y =
√

5 .

The values presented in Table 5.1 were rounded to 5 units, because of the huge variability
obtained in the different repetitions. In contrast, Table 5.2 gives the averages, since the
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variability was very low in this case. In addition, the compilation of C++ ensured that
the function clock() gave exactly the CPU time invested by the program. Table 5.2
shows that some relative values for the product were lower in multiple precision than in
double precision, although the absolute time spent on a product is was much higher in
multiple precision.

Arithmetic x ∗ y x/y
√
x exp(x) ln(x) sin(x) cos(x) arctan(x)

C++ double 2.3E−7 ms 29 29 299 180 181 192 237
C++ MPFR 1024 digits 1.16E−2 ms 2.4 1.7 62 57 69 65 200
C++ MPFR 4096 digits 1.04E−1 ms 2.5 1.7 88 66 116 113 228

Table 5.2: Computational cost of elementary functions computed with a program write in C++,
compiled by gcc(4.3.3) for i486-linux-gnu with libgmp (v.4.2.4) and libmpfr (v.2.4.0)
libraries in a processor Intel ROXeon E5420, 2.5GHz, 6MB cache, where x =

√
3 −1 and y =

√
5 .

This measure of computing efficiency is clearly more satisfactory than considering only
the number of iterations or only the number of evaluated functions, both of which
are used widely by other authors. Any change in software or hardware requires us to
recompute the elapsed time of elemental functions, quotients and products. A complete
study of this parameter was carried out for all methods and examples presented in this
thesis: [15, 16,24–26].

5.2.1 On the computational cost of obtaining the inverse of a linear
operator

All iterative methods for non-linear systems F (x) = 0 have a common point: the
calculation of the inverse matrix of a linear operator. In Newton’s method, the inverse of
F ′(x)) must be computed; in the Secant method the inverse of the first divided difference
operator [x, y;F ] must be computed.

From a computational perspective, we do not need the inverse operator expression,
knowing how to act is sufficient. Therefore, in all cases to obtain the inverse operator we
will solve the "equivalent" linear system : v = Υ−1 ⋅ F (x) ⇐⇒ Υ ⋅ v = F (x) . At this point,
we have solved the linear system from the LU decomposition of the matrix associated
with the linear operator Υ, and solved the two linear systems associated with a lower
triangular matrix with ones in the main diagonal (L ⋅ w = F (x)) and the other upper
triangular matrix U ⋅ v = w.
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The cost in number of products of the LU factorization is m
6
(2m2−3m+1) and the number

of divisions is m
2
(m−1) where m is the number of equations. We solve a triangular linear

system of equations with a cost of m(m − 1) products and m divisions (see [10]).

If the calculations are performed in MAPLE (see Table 5.1) the products and quotients
have the same cost, that is ` = 1. Then, the computation of an inverse operator adds
m

3
(m2 + 3m − 1) to the total cost C. If we use a software where the cost ratio `

takes values ` > 1 (see Table 5.2), then the computation of an inverse operator adds
m

6
(2m2 − 3(1 + `)m + 3` − 5) to the total cost C.

5.2.2 An example: Ostrowski’s method

We analyze the computational efficiency index of two iterative methods. The first
one is a generalization to several variables of Ostrowski’s method; the second derived
from Ostrowski’s method, retrieved by freezing the inverse linear operator (which
generalizes [21]). Our study was published in 2011, in memory of the mathematician
Alexander M. Ostrowski on the 25th anniversary of this death (see [26]).

Ostrowski’s scheme The iterative method starts with Newton’s method as first step.
Namely, for n ≥ 0 and x0 ∈D,

x(1)n = xn − F ′(xn)−1 F (xn) ,

x(2)n = = x(1)n − κ−1 F (x(1)n ) , where κ = 2 [x(1)n , xn;F ] − F ′(xn) , (5.6)

where the operator [ ⋅ , ⋅ ; F ]−1 is defined in Section 4.4, and the last computed term is
the new iteration point; xn+1 = Θ1(xn;x(1)n ) = x(2)n .

Frozen Ostrowski’s scheme The iterative method is a three-step iterative method,
with Ostrowski’s method as the two first steps. By taking x0 ∈D, we obtain

x(1)n = xn − F ′(xn)−1 F (xn) , n ≥ 0 ,

x(2)n = x(1)n − κ−1 F (x(1)n ) , where κ = 2 [x(1)n , xn;F ] − F ′(xn) ,

x(3)n = x(2)n − κ−1 F (x(2)n ) . (5.7)

and the last computed term is the next iteration point, xn+1 = Θ2(xn;x(1)n , x
(2)
n ) = x(3)n .

The vector error equation can be summed up with the following theorem.
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Theorem 5.2.1. The iterative method Θ1, defined in (5.6), has a local order of
convergence of at least 4, with the following error equation

e
(1)
n+1 = (A2

2 −A3)A2e
4
n + O5 , (5.8)

and Θ2 , defined in (5.8), has a local R-order of convergence of at least 6 and its vector
error difference equation can be written as

e
(2)
n+1 = (2A2

2 −A3)(A2
2 −A3)A2e

6
n + O7 . (5.9)

Recall that for nonlinear systems with m equations and m unknowns, the computational
efficiency index (CEI) of an iterative method of order of convergence ρ is

CEI(µ0, µ1,m, `) = ρ1/C(µ0,µ1,m,`), (5.10)

where C(µ0, µ1,m) is the computational cost given by

C(µ0, µ1,m) = µ0 a0(m) + µ1 a1(m) + ω(m,`), (5.11)

where the parameters a0(m), a1(m), ω(m,`), µ0 and µ1 are defined in (5.4) . We proceed
as follows to obtain the value for a particular iterative method.

In this study a0(m) represents the number of evaluations of the scalar functions
(F1, . . . , Fm) used in the evaluation of F and [y, x;F ]. When we evaluate F in any iterative
function we calculate m component functions, and if we compute a divided difference then
we evaluate m(m − 1) scalar functions, where F (x) and F (y) are computed separately.
That is, we have a0(m) =m2+m for the scheme (5.6) and a0(m) =m2+2m for the scheme
(5.7).

The number of evaluations of scalar functions of F ′, say ∂Fi
∂xj

, 1 ≤ i, j ≤ m is m2 for any

new derivative F ′, that is a1(m) =m2.

To the function ω(m,`), we must add m2 quotients from any divided difference. In order
to compute an inverse linear operator, we have (m3 −m)/3 products or quotients in the
decomposition LU , and m2 products or quotients in the resolution of two triangular linear
systems will be added to ω(m,`).

Recall that ` depends on the software used. The study presented in [26] was performed
with the MAPLE software, that implies ` = 1 (see Table 5.1). The values µ0 and µ1

depend on the expression of the system of nonlinear equations and the software used, but
the domain is (µ0, µ1) ∈ M = (0,+∞) × (0,+∞) .
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Taking into account the previous considerations, we have a0(m) = m2 +m, a1(m) = m2,
ω(m) = 2(m3 −m)/3 + 4m2 for the Ostrowski iterative function (5.6), that is

C1 = (m2 +m)µ0 +m2µ1 + 4m2 + 2(m3 −m)
3

and CEI1 = 41/C1 . (5.12)

In an analogous way for (5.8), we get

C2 = (m2 + 2m)µ0 +m2µ1 + 5m2 + 2(m3 −m)
3

and CEI2 = 61/C2 . (5.13)

In order to compare the two iterative methods Θ1 and Θ2, we define the ratio

R2,1 =
logCEI2(µ0, µ1,m)
logCEI1(µ0, µ1,m) = log(ρ2) C1(µ0, µ1,m)

log(ρ1) C2(µ0, µ1,m) . (5.14)

If R2,1 > 1 then the iterative method Θ2 is more efficient than Θ1.

We have made this comparison for the Ostrowski’s method (Θ1) and the Frozen
Ostrowski’s method (Θ2), where m is a positive integer m ≥ 2. The particular boundary
R2,1 = 1 expressed by µ0 and written as a function of µ1 and m is

G2,1 =
1
3

2qm2 + (3qµ1 + 12q − 3r)m − 2q
r − qm − q , (5.15)

where q = ln(3/2) and r = 2 ln(2). This function has the vertical asymptote for
m = (r − q)/q = 2.419 . . .

Notice that the numerator of (5.15) is positive for m ≥ 1, since for m = 1 it yields
3qµ1 + 12q − 3r > 0. The denominator of G2,1 is negative for m > 2.419 . . .. Consequently,
we obtain that µ0 = G2,1(µ1,m) is always negative for m ≥ 3. That is, the boundary is
out of the admissible region for m ≥ 3 and we have ∀(µ0, µ1) ∈ M, CEI2 > CEI1.

Finally, for m = 2 the boundary (5.15) is the straight line with positive slope

µ0 =
2(qµ1 + 5q − r)

r − 3q
,

where CEI1 > CEI2 over it and CEI2 > CEI1 under it (see [26]).

The numerical examples given in the study presented in [26] illustrate the theoretical
results presented here. Furthermore, a sequence that approximates the order of
convergence is generated for the examples, and confirms in a numerical way that the
order of the methods is well-deduced.
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In all the computations we have substituted the computational order of convergence
(COC) by the approximation ACOC defined in (3.7b). All computed approximations
of ACOC have at least two correct decimals. That is, if ρ̂I = ρ ± ∆ρ̂I , where ρ is the
local order of convergence and ∆ρ̂I is the upper error bound of ACOC at I-step, the last
computed step, then we obtain ∆ρ̂I < 0.5⋅10−4 for Ostrowski’s method and ∆ρ̂I < 0.5⋅10−3

for the frozen Ostrowski’s method. This means that in all computations of ACOC, we
obtain at least four (three) significant digits, respectively.



Chapter 6

Two iteration families

In this chapter, we present some of the iterative methods developed in our work. For
each of them, we give their function of iteration and their error equation. Moreover, the
efficiency of the iterative schemes is discussed. Usually, we work with methods derived
from Newton’s method or the Secant method. Specifically, we summarize papers [24,25].
Other iterative methods have been developed in papers [15,16,26]

In this chapter, we have used the notation established in previous sections.

6.1 Family Φ1

This family is a k-step iterative method with memory [57]. It is a generalization of the
classical Secant method [2, 48,55]. The complete work can be found in [24].

6.1.1 Secant method

We call Φ1,1 to the well-known iterative Secant method. That is, by setting x0 , x1 ∈ D,
we have

xn+1 = Φ1,1(xn−1, xn) = xn − [xn−1 , xn ; F ]−1 F (xn) , x0 , x1 ∈D , (6.1)

where the operator [xn−1 , xn ; F ]−1 is defined in Section 4.4. This method has local order
of convergence at list convergence of the Secant method, φ = (1 +

√
5 )/2.
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6.1.2 k-step iterative method

For n ≥ 0 and for 0 ≤ j ≤ k − 1, given xn−1 , xn ∈ D, we consider the following iterative
method

x(j+1)
n = Φ1,j+1(xn−1, xn) = x(j)n − [xn−1, xn;F ]−1 F (x(j)n ) , (6.2)

where x
(0)
n = xn and in the last step, the last computed term is the new iteration point

xn+1 = x(k)n . Note that for j = 0, the algorithm (6.2) is the Secant method. We call these
methods the frozen Secant method since the operator [xn−1, xn;F ]−1 is the same in all
steps (frozen operator).

We are in a condition to state the following theorem.

Theorem 6.1.1. The k–step iterative method (6.2) has local order of convergence

ρk =
1 +

√
1 + 4k
2

(6.3)

at least, and the vectori error difference equation can be written as

en+1 = e(k)n = (A2 en−1)k en + o(ekn−1 en). (6.4)

6.1.3 Family efficiency

In view of the expressions obtained for ρk (6.3), the local order of the methods (6.2)
increases with k. What about efficiency, does it increase or decrease?

The computational cost (5.4) of the scheme x(k)n = Φ1,k(xn−1, xn) takes µ1 = 0 , a1(m) = 0 ,
` = 1 , µ0 = µ , a0(k,m) =m(m − 1) + km , ω(k,m) = m3−m

3 + (k + 1)m2 then

C(k,µ,m) = m(m − 1) + kmµ + m
3 −m
3

+ (k + 1)m2, (6.5)

= (mµ +m2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M

k + ((m(m − 1)µ) + 1
3
(m3 −m) +m2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N

. (6.6)

And the computational efficiency index (5.3) is

CEI(k,µ,m) = ρk
1

M k+N
. (6.7)
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In order to compare the performance of the various methods, we compute the optimal
point of (6.7) for the k-step iterative method. We consider d

dk
(lnCEI(k,µ,m)) = 0 , to

obtain
1
2

(
√

1 + 4k + 1 + 4k) ln ρk − k −
M

N
= 0 , (6.8)

where ρk is given in (6.3) as a function of k.

For a given couple (m,µ) we can solve (6.8) in terms of ρk using the Secant method.
Subsequently we obtain k that is the value at which the computational efficiency index
(6.7) attains its optimal point. The next table (6.1) shows the values of k as functions of
m and µ that are positive integer solutions of (6.8).

º µ / m 2 3 4 5 6 7 8 9 10 20 40
0.5 2 2 2 2 3 3 3 3 3 4 7
1 2 2 2 2 3 3 3 3 3 5 7
5 1 2 2 3 3 3 4 4 4 5 8
10 1 2 2 3 3 4 4 4 4 6 9
50 1 2 3 3 3 4 4 5 5 8 12
100 1 2 3 3 4 4 4 5 5 8 13
500 1 2 3 3 4 4 4 5 5 9 15

Table 6.1: Values of k for optimal efficiency where m is the dimension of the system and µ is the ratio
between products and evaluations.

6.1.4 Numerical results.

The numerical computations were performed on the MAPLE algebraic system (` = 1) with
two multiple precision arithmetic libraries (Digits:=1024 and Digits:=2048), depending
on the local order of the iterative methods used. The factor µ is estimated. In general
µ has several unit values for the polynomial function, while its value is increased for
transcendental functions and trigonometric functions, since it will easily reach several
tens of hundreds (see Table 5.1).

The examples were chosen to check the optimal k value effectively. In the study [24], we
present three situations. In the first case, for non-linear systems with 1 < µ < 100 for m = 2
equations the Secant method is optimal, and for m = 3 freeze once (k = 2) is optimal. In
the second case, with µ = 100 and two situations, m = 3 and m = 4, the optimal k are 2
and 3 respectively. Finally, when we increase the number of equations in the second case,
we confirm that for m = 8 the optimal k is 4, and with one more equation the optimal k
is 5.
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In the computations, we substituted the computational order of convergence (COC) by the
approximation ACOC defined in (3.7b). All computed approximations of ACOC have,
at least, two correct decimals. That is, if ρ̂I = ρ ± ∆ρ̂I , where ρ is the local order of
convergence and ∆ρ̂I is the upper error bound of ACOC at I-step, the last computed
step. Then, we obtain ∆ρ̂I < 0.5 ⋅ 10−2. This means that in all computations of ACOC
we obtain at least three significant digits.

The same line of work has been followed in another study on the application of the frozen
Newton’s method, in collaboration with some members of the Universidad Politécnica de
Cartagena (UPCT). As a result, an application for digital images was presented (see [3]).

6.2 Family Φ2

Three variants of Newton’s method with local order of convergence equal to three, four and
five are analyzed. We explicitly give their vector error equation and their computational
efficiency index. The detailed study can be found in [25].

6.2.1 Newton’s method

Let x0 ∈D ⊂ Rm, Newton’s method is given by

xn+1 = Φ2,1(xn) = xn − F ′(xn)−1 F (xn) , (6.9)

where the operator [F (xn)]−1 is defined in Section 4.3. The expression of the error
en+1 = xn+1 − α in terms of en = xn − α is

en+1 = A2 e
2
n + 2 (A3 − A2

2) e3
n + (3A4 − 4A2A3 − 3A3A2 + 4A3

2) e4
n + O5 . (6.10)

6.2.2 Harmonic mean Newton’s method

The first variant is a two-point iteration function without memory. We take Newton’s
method twice, but the second time F ′(xn) is replaced by the harmonic mean of the
derivatives of F at the points xn and x(1)n+1. That is, for n ≥ 0 and x0 ∈D ⊂ Rm,

x(1)n = Φ2,1(xn) = xn − [F ′(xn)]−1 F (xn) ,

x(2)n = xn −
1
2

[F ′(xn)−1 + F ′(x(1)n )−1] F (xn) , (6.11)
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and xn+1 = x(2)n = Φ2,2(xn;x(1)n ). The vector error equation is

en+1 =
1
2
A3 e

3
n + O4 , (6.12)

and the local R-order of convergence is, at least equal to three. This result agrees with
those obtained in [33], [50] and [57].

6.2.3 Traub’s method

We generalize the one-dimensional iterative method from [57]. By taking x0 ∈ D ⊂ Rm,
we obtain

x(1)n =Φ2,1(xn) ,

zn =x(1)n − 1
2
[F ′(xn)]

−1
F (x(1)n ) , n ≥ 0 ,

x(3)n = x(1)n − 2 [F ′(xn)]
−1
F (zn) , (6.13)

and xn+1 = x(3)n = Φ2,3(xn;x(1)n ). And finally, we consider a three-step iterative method
that is a modification of the harmonic mean method (6.11).

6.2.4 Modification of the harmonic mean Newton’s method

Let x0 ∈D ⊂ Rm, this is defined by xn+1 = Φ2,4(xn, x(1)n+1, x
(2)
n+1) where

x(1)n =Φ2,1(xn) ,

x(2)n =Φ2,2(xn;x(1)n ) , n ≥ 0 ,

x(4)n = x(2)n − [F ′(x(1)n )]
−1
F (x(2)n ) . (6.14)

and the next iterate is xn+1 = x(4)n+1.

We can sum up with the following theorem.

Theorem 6.2.1. The iterative methods Φ2,3 and Φ2,4 defined in (6.13) and in (6.14) have
a local order of convergence, of at least 4 and 5, and their vector error difference equations
can be written as

εn+1 = 9
2
A3

2 ε
4
n + O5 , εn = x(3)n − α , (6.15)

εn+1 = 8A2(A2ε
2
n)(A3ε

3
n) + O6 , εn = x(4)n − α . (6.16)
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6.2.5 Family efficiency

For nonlinear systems with m equations and m unknowns, the computational efficiency
index (CEI) of an iterative method of order of convergence ρ is

CEI(µ0, µ1,m) = ρ1/C(µ0,µ1,m), (6.17)

where C(µ0, µ1,m) is the computational cost given by

C(µ0, µ1,m) = µ0 a0(m)m + µ1 a1m
2 + ω(m). (6.18)

In (6.18) a0 and a1 represent the number of evaluations of the scalar functions of F (x)
and F ′(x) respectively, ω(m,`) is the number of products per iteration and µ0 and µ1 are
the ratios between products and evaluations required to express the value of C(µ0, µ1,m)
in terms of products.

Table 6.2 shows, for each iterative method analyzed in this paper, Φ2,1–Φ2,4, the numbers
a0 and a1, the number of products by scalar of an iteration, p0, the number of resolutions
of linear systems per iteration, p1, and the number of resolutions of two triangular systems,
p2. Moreover, Table 6.2 presents the local order of convergence, ρ, and the computational
cost, C(µ0, µ1,m).

Method a0 a1 p0 p1 p2 ρ C(µ0, µ1,m)

Φ1 1 1 0 1 0 2 m(2m2 + 3(2µ1 + ` + 1)m + 6µ0 + 3` − 5)/6
Φ2 1 2 1 2 0 3 m(2m2 + 3(2µ1 + ` + 1)m + 3µ0 + 3` − 2)/3
Φ3 3 1 2 1 2 4 m(2m2 + 3(2µ1 + ` + 5)m + 18µ0 + 15` − 5)/6
Φ4 2 2 1 2 1 5 m(2m2 + 3(2µ1 + ` + 2)m + 6µ0 + 6` − 5)/3

Table 6.2: Coefficients used in (5.4), local order of convergence and computational cost of the
iterative methods Φ2,k, 1 ≤ k ≤ 4.

The question is, is the higher order iterative method always the most efficient?

We compare the methods presented above. If we denote the computational efficiency
indices of Φ2,i by CEIi(µ0, µ1,m) , then from (5.3) we define the ratio

Ri,j =
logCEIi(µ0, µ1,m)
logCEIj(µ0, µ1,m) = log(ρi) Cj(µ0, µ1,m)

log(ρj) Ci(µ0, µ1,m) , (6.19)

where Ci(µ0, µ1,m) are the values in Table 6.2. For Ri,j > 1 the iterative method Φi is
more efficient than Φj . The boundary between two computational efficiencies is made by
Ri,j = 1.
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We study the sets, R4,1 = 1, R4,2 = 1 and R4,3 = 1 to compare the computational efficiency
index of iterative method Φ2,4, say CEI4 with the CEI of the other three methods, in
the (µ1, µ0)-plain for m ≥ 2.

The following theorem (see [25]) summarizes the results for the computational efficiency
indexes of this family.

Theorem 6.2.2. 1. For all m > 7 we have always that CEI4 > CEI1 ,

2. For all m ≤ 7 we have that CEI4 > CEI1 for L1,4(µ1m) < µ0 ,

3. For all m ≥ 2 we have:

(a) CEI4 > CEI2 for L2,4(µ1m) > µ0 ,

(b) CEI4 > CEI3 for L3,4(µ1m) < µ0 ,

where

L1,4(µ1m) = −mµ1 +
2 ln 2/5m2 + 3 ln 8/5m + ln 2/5

3 ln 5/4 ,

L2,4(µ1m) = 2 ln 3/5m
ln 5/9 µ1 +

2 ln 3/5m2 + 3 ln 27/25m + ln 3/5
3 ln 5/9 ,

L3,4(µ1m) = ln 16/5m
ln 125/16

µ1 +
ln 16/5m2 + 9 ln 4/25m + ln 4/3125

3 ln 125/16
.

6.2.6 Numerical results

We analyze four numerical examples corresponding to different situations for the boundary
regions R4,j = 1 (j = 1,2,3), Theorem 6.2.2. The numerical computations were performed
on two multi-precision libraries: the MAPLE computer algebra system with Digits:=

1024 , and the MPFR library of C++ with 4096 digits of mantissa. As shown in
Tables 5.1 – 5.2, the computational cost of the quotient with respect to the product
is ` = 1,2.5 respectively (see Table 6.2). Furthermore, in all computations we substituted
the computational order of convergence (COC) by the approximation ACOC defined in
(3.7b). All computed approximations of ACOC have, at least, three correct decimals.
That is, if ρ̂I = ρ ±∆ρ̂I , where ρ is the local order of convergence and ∆ρ̂I is the upper
error bound of ACOC at I-step, which is the last step, then we obtain ∆ρ̂I < 0.5 ⋅ 10−3.
This means that in all computations of ACOC we obtain at least four significant digits.





Chapter 7

Numerical strategies

This chapter describes some techniques developed for computer implementation of the
algorithms. One goal is to obtain the solution of the nonlinear problem with the maximum
number of significant figures and the minimum CPU time, depending on the hardware
and software available. The algorithms employed to solve nonlinear equations are usually
supported by testing them with numerical experiments. From a theoretical view point,
when these experiments are carried out, concepts such as error, computational order of
convergence and efficiency must be taken into account. For their practical implementations
concepts as multi-precision, stopping criteria and fixed or adaptive arithmetic must be
analyzed.

7.1 On admissible points

When we carry out an iterative procedure, we need to decide the length of the mantissa
i.e. the arithmetic of the model.

Starting with a given set of initial approximations of the root α, the iteration function
Φ ∶D ∈ R Ð→ D of type I , II , III or IV defined by (2.2),(2.3),(2.4) or (2.5), generates the
set of admissible points of iteration, {x1, x2, . . . , xI}.

Definition 12. A point is admissible if the software arithmetic is sufficient to contain its
correct figures.

According to the above definition, the first non-admissible point xI+1 by the arithmetic,
check

∣xI − α∣ > 10−η and ∣xI+1 − α∣ < 10−η, (7.1)

51



52 CHAPTER 7. NUMERICAL STRATEGIES

where η is set according to the order ρ of the iterative method and the number of significant
figures. Usually we set η = 1024, 2048, 4096, that implies I > 3 for ρ > 4. For our studies,
we need to employ multi-precision arithmetic, otherwise the set of admissible points will
be nearly empty.

The condition (7.1) is called the stop criterion. The last admissible point in (7.1) is an
approximate value of α and the number of correct decimals of xI isDI = ⌈− log10 ∣xI−α∣⌉ ap-
proximately (2.9). These criteria are not feasible when we carry out an iterative procedure,
because the root α is unknown.

One computational option is to replace the values of ρ and ∣eI ∣ = ∣xI − α∣ with the
corresponding parameters introduced in Section (3). The relationships given in (3.11a),
(3.11b) and, (3.11c) allow us to substitute ∣eI ∣ = ∣xI−α∣ in (7.1) and the resulting expression
does not involve the exact root. Recall, the error parameters êI = xI − xI−1 , ẽI = xI − α̃I
and, ĕI = f(xI)

f(xI−1)
defined previously in (3.3), (3.4) and, (3.6). Moreover, we propose the

following stop criteria, instead of (7.1):

∣ êI
êI−1

∣ > 10−κ1 and ∣ êI+1
êI

∣ < 10−κ1 , κ1 = η (ρ − 1)/ρ2 , (7.2a)

∣ ẽI ∣ > 10−κ2 and ∣ ẽI+1∣ < 10−κ2 , κ2 = η (2ρ − 1)/ρ2 , (7.2b)

∣ĕI ∣ > 10−κ3 and ∣ĕI+1∣ < 10−κ3 , κ3 = η (ρ − 1)/ρ . (7.2c)

For practical implementations, we can approximate the value of the order ρ by one of
the previously defined parameters: ρ̂I or ACOC (3.3); ρ̃I or ECOC (3.4) instead of
ρI or COC (3.2); and λ̂I or ACLOC (3.7b); λ̃I or ECLOC (3.7c) and λ̆I or PCLOC (3.7d)
instead of λI or CLOC (3.7a). Finally, in the numerical results we write ρ∗I = ρ ± ∆ρ∗I
where ρ is the local order of convergence and ∆ρ∗I is a higher bound of the error in ACOC,
ECOC, ACLOC, ECLOC or PCLOC.

Depending on which stop criterion is fulfilled: (7.2a), (7.2b) or (7.2c), an approximate
value of the local order of convergence ρ is determined by only one of the computational
values ACOC, ECOC, ACLOC, ECLOC or PCLOC. In all the experimental cases that
we have worked on, we also obtained ∣ f(xI) ∣ < 10−η for the last admissible iterate.

For systems of nonlinear equations, F (x) = 0, we have generalized the preceding definitions
and techniques taking a norm ∥ ⋅ ∥ instead of the absolute value in all situations.
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With this hypothesis, the last admissible iteration point, noted xI , fulfills:

∥xI − α∥ > 10−η and ∥xI − α∥ < 10−η , η = 1024,2048, . . . , (7.3a)

∥ êI∥
∥ êI−1∥

> 10−κ1 and ∥ êI∥
∥ êI−1∥

< 10−κ1 , κ1 = η (ρ − 1)/ρ2 , (7.3b)

∥ ẽI∥ > 10−κ2 and ∥ ẽI+1∥ < 10−κ2 , κ2 = η (2ρ − 1)/ρ2 , (7.3c)

∥ ĕI∥ > 10−κ3 and ∥ ĕI+1∥ < 10−κ3 , κ3 = η (ρ − 1)/ρ , (7.3d)

where (ĕI)r =
Fr(xI)
Fr(xI−1)

for 1 ≤ r ≤m and F = (F1, F2, . . . , Fm) .

We also call the relations (7.3a), (7.3b), (7.3c) and (7.3d) stop criteria. In terms of
efficiency, the norm ∥ ⋅ ∥∞ is considered rather than the Euclidean norm ∥ ⋅ ∥2.

7.2 Adaptive arithmetic

The requirement of the efficiency of the calculations performed in multi-precision has
forced us to develop a new paradigm of computing. This consists of adapting the length
of the mantissa to the number of significant figures for each iteration; rather than taking
all possible arithmetic. The role of the local order of convergence ρ is the key concept to
predicting the accuracy of the next iterate.

Starting with a given set of initial approximations of the root α, the iteration function
Φ ∶D ∈ Rm Ð→D of type I , II , III or IV defined by (2.2),(2.3),(2.4) or (2.5) generates the
the sequence of iterates, {x0, x1, ..., xn, xn+1, ...} that converges to α when n→∞.
In each iteration, the number of correct decimals can be approximated by (2.9). We realize
from (2.11) that the precision of the next iterate is approximately increased ρ times. That
is, you need to increase the mantissa of the next iterate in ρ at least to carry out a next
step of the method. Accordingly, an expression of the expected length of the mantissa for
step n + 1, in terms of en = xn − α, is

Ln+1 ∶= [ρ( − log10 ∥ en∥ + j)] , (7.4)

where ρ is the order of convergence of the iterative method, [x ] denotes the integer part
of x and j is a security term. We have numerically checked the value of j, by varying it
between 1 and 50, in order to have enough accuracy in the computation of the iterates
{xn}n≥0, the errors {en}n≥0 and the COC {ρ̂n}n≥0 (see [23]).
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When we carry out an iterative procedure and the root is unknown, we need the values of ρ
and α to compute Ln+1. We replace them according to Section (3). From the relationships
given in (3.11a), (3.11b) and (3.11c), we derive the following expressions

− log10 ∥ en∥ ≈ − ρ2

ρ − 1
log10 (

∥ ên∥
∥ ên−1∥

) ,

− log10 ∥ en∥ ≈ − ρ2

2ρ − 1
log10 ∥ ẽn∥ ,

− log10 ∥ en∥ ≈ − ρ

ρ − 1
log10 ∥ ĕn∥ .

According to these expressions, when the root α is unknown, instead of (7.4), we must
use one of the following forecast formulae:

L̂n+1 ∶= [ ρ3

ρ − 1
(− log10 (

∥ ên∥
∥ ên−1∥

) + j)] , and ρ ≈ ρ̂n or ρ ≈ λ̂n , (7.6a)

L̃n+1 ∶= [ ρ3

2ρ − 1
( − log10 ∥ ẽn∥ + j)] , and ρ ≈ ρ̃n or ρ ≈ λ̃n , (7.6b)

L̆n+1 ∶= [ ρ2

ρ − 1
( − log10 ∥ ĕn∥ + j)] , and ρ ≈ ρ̆n or ρ ≈ λ̆n , (7.6c)

That is L̂n+1 , L̃n+1 and L̆n+1 are the forecast length of the mantissa for the iteration n+1.
If the forecast is higher than the maximum precision η, the procedure must stop. Then,
instead of (7.1), the stop criteria should be

Ln+1 > η , or L̂n+1 > η , or L̃n+1 > η or L̆n+1 > η. (7.7)

In all cases we choose n = I, and the sequence of admissible points is {x1, x2, . . . , xI}.

In cases where ⌈xn⌉ > 0, we improve the formula for predicting the length of the mantissa.
The expression: ⌈ρ (− log10 ∥ en∥ + 4) + log10 ∥xn∥⌉. works appropiately.

7.3 Remarks

Here we highlight some numerical aspects taht we have not considered previously in depth,
but which are important in this report.

7.3.1 Remark about j

The term j in (7.4) , (7.6a) , (7.6b) and (7.6c) is obtained empirically. In order to compare
the performance of the formulas under conditions that were as identical as possible, we
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used various methods to solve a set of test problems. We started, each problem under
the same initial conditions. We have completed a study on this subject (see [23]). Seven
systems of nonlinear equations were considered. We computed the solution of each system
for the same set of initial approximations and for four iterative methods using the MAPLE
computer algebra system. Each one was stopped when L̂n+1 > 2800 , or L̃n+1 < 2800 and
we also obtainED ∥F (xI)∥ < 0.5 ⋅ 10−2800. Finally, in (7.4), (7.6a), (7.6b) or (7.6c),
we choose j such that ∥ek∥, ∥êk∥ or ∥ẽk∥ respectively, and ∥F (xk)∥ had at least three
significant digits. We realized that the minimum value that guarantees all the significant
digits in xn required is, in almost all cases, j = 2. But we needed to take j ≥ 4 to guarantee
a significant number of digits in COC, ACOC or ECOC, which means ∆ρ∗n ≤ 0.5 ⋅ 10−2 at
least in the approximations ρ∗n = ρ ±∆ρ∗n.

7.3.2 Remark on tables of numerical results

Usually, to study and analyze an iterative method, we present a table that displays the
method, the number of iterations needed I to reach the maximum precision requested, the
computational elapsed time τ in seconds of MAPLE execution for these iterations, the
correct decimal reached in LI approximately, the computational efficiency index CEI,
the time factor TF = 1/log10CEI, and an error’s higher bound in the approximations
ρ∗n = ρ ± ∆ρ∗n. From a theoretical perspective, it is enough to consider CEI and, for
practical purposes, τ is sufficient.

7.3.3 Remark on the time factor

In order to compare easily the efficiency of the iterative methods we introduced a new
measure, called the time factor (TF), defined as TF = 1/log10CEI. Its asymptotic
behavior (5.5) does not allow a graphical visualization of the properties of CEI(µ,m)
as a function of m; properties that can be seen in the graphical representation of TF as
a function of m. In all my studies, we observed a direct relationship between the elapsed
time and the time factor TF. That is, the ordering of execution times τ coincides with
the ordering of the CEI ′s. After these studies, this relationship was studied in greater
depth by M. Grau-Sánchez and M. Noguera, see [30] for more details.
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7.3.4 Remark about the mantissa length

Note that, when we work with adaptive arithmetic the computational cost of each iteration
is different, and depends on the length of the mantissa used. This technique drastically
reduces the total elapsed time, even though we have to compute the number of correct
figures after each iteration. In other words, the cost in adaptive arithmetic is minimum in
comparison with keeping an unnecessarily huge long mantissa in the first iterations when
fixed arithmetic is applied. The final project, led by M. Grau-Sánchez and performed by
the student Marc Fernández, develops a technique to evaluate the computational efficiency
of an algorithm using adaptive arithmetic (see [17]).



Chapter 8

Peer-reviewed papers

The articles included in this compendium of publications are:

1 M. Grau-Sánchez, A. Grau, M. Noguera, J.R. Herrero,
On new computational local orders of convergence,
Appl. Math. Lett. 25 (2012) 2023–2030.

2 J.A. Ezquerro, A. Grau, M. Grau-Sánchez, M.A. Hernández, M. Noguera,
Analyzing the efficiency of some modifications of the Secant method,
Comput. Math. Appl. 64 (2012) 2066–2073.

3 J.A. Ezquerro, A. Grau, M. Grau-Sánchez, M.A. Hernández,
Construction of derivative-free iterative methods from Chebyshev’s method,
Anal. Appl. 11 (2013) 1350009 (16 pp.).

4 J.A. Ezquerro, A. Grau, M. Grau-Sánchez, M.A. Hernández,
On the efficiency of two variants of Kurchatov’s method for solving nonlinear systems,
Numer. Algor. 64 (2013) 685–698.

5 J.A. Ezquerro, M. Grau-Sánchez, A. Grau; M.A. Hernández-Verón,
A new class of secant-like methods for solving nonlinear systems of equations,
Commun. Appl. Math. Comput. Sci. 9 (2014) 201–213.
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Chapter 9

Other relevant works

The kernel of the work has been to design new iterative methods that are efficient to
numerically solve nonlinear equations, to analyze the convergence and the computational
efficiency.

The articles included in this chapter are six. The first four were submitted to the CENAI
(Centro Nacional de Asesoramiento e Investigación) for the "Convocatoria Sexenios" to
evaluate my research activity. They led to a "Favorable" qualification for 2011. The sixth
article is my first work on this subject.

6 M. Grau-Sánchez, A. Grau, M. Noguera,
Frozen divided differences scheme for solving systems of nonlinear equations,
J. Comput. Appl. Math. 235 (2011) 1739–1743,
JCR-Science Edition - 2011 - 1.112 - Q2.

7 J.A. Ezquerro, M. Grau-Sánchez, A. Grau, M.A. Hernández, M. Noguera, N. Romero,
On iterative methods with accelerated convergence for solving systems of
nonlinear equations, J. Optim. Theory Appl. 151 (2011) 163–174,
JCR-Science Edition - 2011 - 1.062 - Q2.

8 M. Grau-Sánchez, A. Grau, M. Noguera,
On the computational efficiency index and some iterative methods for solving
systems of nonlinear equations,
J. Comput. Appl. Math. 236 (2011) 1259–1266,
JCR-Science Edition - 2011 - 1.112 - Q2.
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9 M. Grau-Sánchez, A. Grau, M. Noguera,
Ostrowski type methods for solving systems of nonlinear equations,
Appl. Math. Comput. 218 (2011) 2377–2385,
JCR-Science Edition - 2011 - 1.317 - Q1.

10 S. Amat, S. Busquier, M. Grau-Sánchez, A. Grau,
Maximum efficiency for a family of Newton-like methods with frozen
derivatives and some applications,
Appl. Math. Comput. 219 (2013) 7954–7963,
JCR-Science Edition - 2013 - 1.600 - Q1.

11 M. Grau-Sánchez, A. Grau, J.L. Díaz-Barrero,
On Computational Order of Convergence of some Multi-Precision Solvers of
Nonlinear Systems of Equations,
Octogon Mathematical Magazine, 21 (2013) 569–592.
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Frozen divided differences scheme for solving 
systems of nonlinear equations6

M. Grau-Sánchez, A. Grau, M. Noguera

A development of an inverse first-order divided-difference operator for func-
tions of several variables is presented, as well as a direct computation of the
local order of convergence of an iterative method. A generalized algorithm of
the Secant method for solving a system of nonlinear equations is studied and
the maximum computational efficiency is computed. Furthermore, a sequence
that approximates the order of convergence is generated for the examples and
confirms in a numerical way that the order of the methods is well deduced.

On iterative methods with accelerated convergence for 
solving systems of nonlinear equations7

J. A. Ezquerro, M. Grau-Sánchez, A. Grau, M. A. Hernández,
M. Noguera, N. Romero

We present a modified method for solving nonlinear systems of equations
with a higher order of convergence than other competitive methods. We also
generalize the efficiency index that is commonly used in the one-dimensional
case to several variables. Finally, we show some numerical examples of appli-
cations of the theoretical results obtained in this paper.

6Journal of Computational and Applied Mathematics 235 (2011) 1739–1743. 
7Journal of Optimization Theory and Applications 151 (2011) 163–174.
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On the computational efficiency index and some iterative 
methods for solving systems of nonlinear equations8

M. Grau-Sánchez, A. Grau, M. Noguera

In this paper, two new iterative methods are built up and analyzed. We re-
visit a generalization of the efficiency index used in the scalar case to several
variables in iterative methods for solving systems of nonlinear equations.
We provide analytical proofs of the local order of convergence, based on
developments of multi-linear functions and numerical concepts that will be
used to illustrate the analytic results. An approximation of the computational
order of convergence is computed independently of knowledge of the root, and
the time needed to obtain one correct decimal is studied in our examples.

Ostrowski type methods for solving systems 
of nonlinear equations9

M. Grau-Sánchez, A. Grau, M. Noguera

Four generalized algorithms built up from Ostrowski’s method for solving
systems of nonlinear equations are written and analyzed. A development
of an inverse first-order divided difference operator for functions of several
variables is presented, as well as a direct computation of the local order of
convergence for these variants of Ostrowski’s method. Furthermore, a sequence
that approximates the order of convergence is generated for the examples and
confirms in a numerical way that the order of the methods is well deduced.

8Journal of Computational and Applied Mathematics 236 (2011) 1259–1266. 
9Applied Mathematics and Computation 218 (2011) 2377–2385.
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Maximum efficiency for a family of Newton-like methods 
with frozen derivatives and some applications10

S. Amat, S. Busquier, M. Grau-Sánchez, A. Grau

A generalized, k-step iterative application of Newton’s method with the frozen
derivative is studied and used to solve a system of nonlinear equations. The
maximum computational efficiency is computed. A sequence that approxi-
mates the order of convergence is generated for the examples, and numerically
confirms the calculation of the order of the method and computational effi-
ciency. This type of method appears in many applications where the authors
have heuristically chosen a given number of steps with frozen derivatives. An
example is shown in which the total variation (TV) minimization model is
approximated using the schemes described in this paper.

On Computational Order of Convergence of some
Multi-Precision Solvers of Nonlinear Systems of Equations11

M. Grau-Sánchez, A. Grau, J.L. Díaz-Barrero

In this paper the local order of convergence used in iterative methods to
solve nonlinear systems of equations is revisited, where shorter alternative
analytic proofs of the order based on developments of multilineal functions are
shown. Most important, an adaptive multi-precision arithmetics is used hereof,
where in each step the length of the mantissa is defined independently of the
knowledge of the root. Furthermore, generalizations of the one dimensional
case to m-dimensions of three approximations of computational order of
convergence are defined. Examples illustrating the previous results are given.

10Applied Mathematics and Computation 219 (2013) 7954–7963. 
11Octogon Mathematical Magazine, 21 (2013) 569–592.





Conclusions

In order to study some iterative methods built up for us, we revisited and analyzed their
convergence orders and their computational costs for the one-dimensional case, and worked
out the multi-dimensional case. The study introduced new concepts or methods in each
of the following steps:

• The computation of the local order of convergence for known two-step and new multi-
step iterative methods is performed by means of expansions in formal developments
in power series of the functions F , the Jacobian operator F ′ , the inverse Jacobian
operator [F ′]−1 and the divided difference operator [−,−;F ], its inverse operator
[−,−;F ]−1.

• Some measures that approximate the order of convergence are generated. Four new
variants with lower cost than the computational order of convergence (COC) are
given: CLOC, ACLOC, ECLOC and PCLOC.

• We worked out a generalization of the efficiency index used in the scalar case to
several variables in iterative methods for solving systems of nonlinear equations.

• We express the cost of evaluating the elementary functions in terms of products,
which depend on the computer, the software and the arithmetic. The numerical
computations listed were performed on an algebraic system called MAPLE.

• A new way to compare elapsed time for different iterative schemes is presented. It
consists of computing the time required to obtain one correct decimal of the solution,
that is, the ratio between the elapsed time needed to accomplish the stopping
criterion and the total number of correct decimals obtained for each method.

On a humble note, my contribution to the area of iterative procedures is a continuous set
of small steps that together gave rise to this thesis. I think that interesting results have
been achieved altogether. I recall the words of Neil Armstrong (July, 1969):

"That’s one small step for man, one giant leap for mankind".
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