

Algorithmic and Technical Improvements
for Next Generation Drug Design Software Tools

Víctor A. Gil Sepúlveda

Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial –
CompartirIgual 4.0. Espanya de Creative Commons.

Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – CompartirIgual
4.0. España de Creative Commons.

This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0. Spain License.

Universitat de Barcelona

Facultat de Farmàcia

Algorithmic and Technical
Improvements for Next Generation

Drug Design Software Tools

VÍCTOR A. GIL SEPÚLVEDA, 2016

Universitat de Barcelona

Facultat de Farmàcia
Programa de Doctorat en Biomedicina

Algorithmic and Technical
Improvements for Next Generation

Drug Design Software Tools
Memòria presentada per Vı́ctor A. Gil Sepúlveda per
optar al tı́tol de doctor per la Universitat de Barcelona

A mi madre, mi padre y
mi hermano

A Marghe

Agradecimientos

El doctorado es un largo viaje. Un viaje de descubrimiento cientı́fico, y también

de descubrimiento personal. Y, en contra de lo que algunos puedan pensar, no

es un viaje nada fácil. Afortunadamente, a lo largo de su periplo, el viajero

encuentra personas que le guı́an, le abren caminos y le dan apoyo. Quisiera

dedicar estas lı́neas a esas personas.

Me gustarı́a empezar agradeciendo al Dr. Vı́ctor Guallar, mi supervisor, el

haberme dado la oportunidad sin la cual nada de esto hubiera sido posible. Mi

más sincera gratitud a las demás personas que me han permitido conocer un

poco más el mundo y como se trabaja fuera de España, especialmente: al Dr.

Juan Cortés, del LAAS-CNRS, por haberme acogido en mi primera estancia

en el extranjero; al Dr. Scott Callaghan, uno de los organizadores del programa

HPC summer school, al cual le debo el haber “cruzado el charco” por primera

vez; y al Dr. Anders Hogner por acogerme en su grupo de investigación en

AstraZeneca y haberme hecho sentir como si fuera uno más del equipo.

Todo viaje largo se disfruta más en buena compañı́a. Considero haber ten-

ido mucha suerte en ese aspecto, tanto en el terreno personal como en el laboral.

Durante todos estos años, he podido gozar de la compañia de mis colegas del

Barcelona Supercomputing Center. Con ellos he compartido reflexiones (a

veces cientı́ficas), alegrı́as y penas. Serı́a difı́cil escribir los nombres de to-

das las personas que he conocido y aprecio sin que la memoria me acabara

traicionando. Gracias a todos!

Agradezco también el apoyo incondicional de mi madre, mi padre, y mi

hermano. Ellos no han escrito una tesis doctoral, pero sin duda tienen madera

para hacerlo. Finalmente, doy las gracias a la Dra. Margherita Taffarel, que ha

recorrido conmigo este camino. Su excelente trabajo contrareloj ha ayudado a

que esta obra sea mucho mejor de lo que podrı́a haber sido.

A todos, muchı́simas gracias.

Coraggio!!

Sant Cugat, 11 de Abril 2016

Contents

List of Figures vi

List of Tables xi

Abbreviations xiii

1 Introduction 1
1.1 The innovation crisis in pharmaceutical industry 1

1.1.1 Possible causes of the crisis 2
1.1.2 Solutions from the pharmaceutical industry 4

1.2 The drug discovery pipeline 4
1.3 HTS and VHTS . 6

1.3.1 How does VHTS work? 8
1.3.2 Fast docking software 9

1.4 Flexibility . 10
1.4.1 Flexibility and binding 10
1.4.2 Flexibility models 11

1.4.2.1 Molecular Dynamics and flexibility 11
1.4.2.2 Normal Mode Analysis (NMA) as an altern-

ative . 14
1.4.2.3 ANM . 15

1.5 PELE: Achievements and limitations 16
1.5.1 The Metropolis Monte Carlo (MMC) Algorithm . . . 16
1.5.2 The PELE software 19

1.5.2.1 Treatment of flexibility in PELE 19
1.5.2.2 Backbone flexibility 21
1.5.2.3 Minimization 22
1.5.2.4 Major achievements to the date 22

1.5.3 Limitations . 22
1.5.3.1 Force field and solvation model 22
1.5.3.2 Metropolis MC 24

i

ii CONTENTS

1.5.3.3 ANM methodology 24

2 Objectives 29
2.1 Objective: Technical improvement of PELE 30
2.2 Objective: Algorithmic improvement of PELE 30
2.3 Objective: Efficient and reliable analysis of huge conforma-

tional ensembles . 30
2.4 Summary of the objectives 31

3 Articles 33
3.1 Technical improvement of PELE 33

3.1.1 Computer Engineering Degree Project 33
3.2 Algorithmic improvement of PELE 34

3.2.1 Role of the authors 34
3.2.2 Computer Engineering Degree Project 34

3.3 Efficient and reliable analysis 35
3.3.1 Computer Engineering Degree Project 36

3.4 Derived publications . 36
3.5 Supplementary materials: Enhancing sampling 73

3.5.1 Are CC and IC modes equivalent? 73
3.5.1.1 Collectivity of CC and IC modes 73
3.5.1.2 Comparison between the CC and IC mode

spaces . 76
3.6 Supplementary materials: pyRMSD 81

3.6.1 Algorithm performance comparison 81
3.6.2 QCP performance . 83
3.6.3 Input size response of QCP implementation 84
3.6.4 Accuracy check . 86
3.6.5 OpenMP scalability 87
3.6.6 Comparison with existing packages 87

3.7 Supplementary materials: pyProCT 99
3.7.1 Implemented clustering algorithms 99

3.7.1.1 DBSCAN 99
3.7.1.1.1 Parameters generation strategy . . 99
3.7.1.1.2 Parameters object structure 100

3.7.1.2 GROMOS 100
3.7.1.2.1 Parameters generation strategy . . 101
3.7.1.2.2 Parameters object structure 101

3.7.1.3 Hierarchical clustering 101
3.7.1.3.1 Parameters generation strategy . . 101
3.7.1.3.2 Parameters object structure 102

CONTENTS iii

3.7.1.4 K-Medoids 102
3.7.1.4.1 Parameters generation strategy . . 103
3.7.1.4.2 Parameters object structure 103

3.7.1.5 Spectral Clustering 104
3.7.1.5.1 Parameters generation strategy . . 104
3.7.1.5.2 Parameters object structure 105

3.7.1.6 Random Grouping 105
3.7.1.7 Parameters generation strategy 105
3.7.1.8 Parameters object structure 105

3.7.2 Clustering properties and quality functions 106
3.7.2.1 General definitions 106
3.7.2.2 Properties 107
3.7.2.3 Quality functions 108

3.7.2.3.1 Cohesion 108
3.7.2.3.2 Separation 109
3.7.2.3.3 Compactness 109
3.7.2.3.4 Gaussian Separation 110
3.7.2.3.5 Davies-Bouldin 110
3.7.2.3.6 Dunn 110
3.7.2.3.7 Calinski-Harabasz 111
3.7.2.3.8 Silhouette 111
3.7.2.3.9 PCAanalysis 112

3.7.2.4 Graph cut indices 112
3.7.2.4.1 Degree of a node 112
3.7.2.4.2 Internal volume 112
3.7.2.4.3 Cut 112
3.7.2.4.4 Normalized Cut 113
3.7.2.4.5 MinMaxCut 113
3.7.2.4.6 RatioCut 113

3.7.3 Input script . 113
3.7.4 Results file . 115

3.7.4.1 Best clustering 115
3.7.4.2 Files . 115
3.7.4.3 Trajectories 116
3.7.4.4 Workspace 116
3.7.4.5 Scores . 116
3.7.4.6 Timing . 117
3.7.4.7 Clustering information 117

3.7.5 Clustering of a long trajectory (proof of concept) . . . 119
3.7.5.1 The trajectory 120
3.7.5.2 Redundancy elimination 120

iv CONTENTS

3.7.5.3 Results . 120
3.7.5.3.1 Performance 120
3.7.5.3.2 Clustering 122

3.7.6 2D Validation . 122
3.7.6.1 Datasets 122
3.7.6.2 Protocol validation 124
3.7.6.3 Results . 127

4 Summary of the results 129
4.1 Technical improvement of PELE 129
4.2 Algorithmic improvement of PELE 129
4.3 Efficient and reliable analysis 130

4.3.1 Implementation of an efficient solution for the calcu-
lation of collective superimposition operations 130

4.3.2 Implementation of a reliable cluster analysis protocol . 131

5 Discussion 133
5.1 Technical improvement of PELE 133

5.1.1 From PELE to PELE++ 133
5.1.2 Performance vs. maintainability 135
5.1.3 Optimization and Parallelization 135

5.1.3.1 Initial profilings 137
5.1.3.2 Non-bonding energy parallelization 139
5.1.3.3 Solvent parallelization 142

5.1.3.3.1 Solvent parallelization: OpenMP . 144
5.1.3.3.2 Solvent parallelization: OpenCL . 144

5.1.3.4 Montblanc and other projects 145
5.2 Algorithmic improvement of PELE 147

5.2.1 Switching to a different coordinates space 147
5.2.2 Coarse grain model 148
5.2.3 icNMA theory . 148

5.2.3.1 Hessian calculation 148
5.2.3.2 Calculation of the metric tensor 151

5.2.4 From internal to Cartesian coordinates and back 152
5.2.5 Description of the Internal coordinate NMA-based al-

gorithm . 153
5.2.6 Alternative implementation 154

5.3 Obtention of the best set of parameters 154
5.3.1 Characterization of the NMA step 154
5.3.2 Obtention of the best simulations and comparison with

MD . 160

CONTENTS v

5.3.2.1 Best values for the parameters at 300 K . . . 160
5.4 Comparison with MD . 161

5.4.1 Advantages of the new method 163
5.5 Limitations and perspectives 164
5.6 Efficient and reliable analysis 167

5.6.1 Efficient calculation of collective superimposition op-
erations . 167

5.6.2 Superimposition algorithms 169
5.6.3 Parallelization and performance 169
5.6.4 Distribution . 170

5.7 A reliable cluster analysis protocol 171
5.7.1 Looking for the best clustering 171
5.7.2 pyProCT . 171
5.7.3 Hypothesis refinement 173
5.7.4 Software flow detail 173
5.7.5 Scoring criteria . 174
5.7.6 Use cases . 175
5.7.7 Graphical User Interface (GUI) 175
5.7.8 Distribution . 175

6 Conclusions 177
6.1 Technical improvement of PELE 177
6.2 Algorithmic improvement of PELE 178
6.3 Efficient and reliable analysis 178

vi CONTENTS

List of Figures

1.1 Cost and time needed to develop and market one NME (includ-
ing failures). Cost data were obtained from (in plot order) [11]
[4] [7] [12] [13] [12] [9] [14] [15] [16] [17]. Time data were
obtained from [18] [18] [13] [9]. 3

1.2 Drug discovery pipeline phases (pre-discovery and target iden-
tification phases have been omitted). The number of com-
pounds used at each step [3, 25], the number of people involved
in the clinical trials [25], the percentage of the total develop-
ment cost per phase [9], and the percentage of time invested in
each phase [10, 16, 26] are illustrated. 7

1.3 Example of the interactions described by a force field. From
them the potential energy of the system (U = Ebond + Eangle +
Etorsion + Enb) as well as the forces, accelerations and velocities
of each single particle (atom) can be calculated. 12

1.4 ANM study of an open conformation of adenylate kinase (PDB
id: 4AKE). From the starting structure (A) the elastic network
is calculated (B). Once the normal modes are obtained (C) the
structure can be modified so that the final conformation is sim-
ilar to the closed one (PDB id: 1AKE) (D). In this case, these
open and close states may be present without the need of ligand
interaction [105]. 17

1.5 Schematic representation of PELE flux. The initial conforma-
tion goes through four perturbation/relaxation steps, after which
the acceptance criterion is tested. If the final conformation is
accepted, it will be used as the initial conformation of a new
iteration. If it is rejected, a new iteration will be started with
the same initial conformation. 20

vii

viii LIST OF FIGURES

1.6 A) Two normal modes of a triatomic molecule. B) Application
of those normal modes following PELE algorithm. A linear
combination of the modes (here with weights 1,1) defines the
directions of the conformational change (1). These directions
are scaled in order to obtain the new positions for the particles
of the system (2). Harmonic constraints to target positions are
added and Cα atoms are moved through a minimization (3).
Finally, in the last global minimization step, weak harmonic
constraints are added to Cα the current position of the atoms
so that the movement is not undone (4). 23

1.7 A) 7 frames from an MD simulation of a porcine adenylate
kinase showing different inter-domain distances. Below each
frame, its elastic network has been reproduced. The EN changes
with the inter-domain distance, being especially perceptible
from the 17 Å. B) Cumulative overlap and maximum value of
the overlap (including the index of its related mode) between
the modes of the first conformation and all the others. C) Cu-
mulative overlap between the linear displacement from the open
to the closed conformations and the modes of each frame and
the maximum overlap (again, the index of the mode with max-
imum overlap is also shown). 27

3.1 Degree of collectivity for each structure and calculation method.
. 75

3.2 Detailed study of the degree of collectivity per mode, structure
and method. Cutoff has been set to 9 Å . The Hessian modific-
ation method (m.H.) produces only slight improvements, gen-
erally concentrated in higher frequency modes. 75

3.3 Average cumulative overlap for different cutoff distances, meth-
ods, and structures in our test set. Standard deviations are not
shown for the sake of clarity. 77

3.4 Detailed study of the cumulative overlap per mode, structure
and method. Cutoff has been set to 9 Å . In general, the right-
most modes (higher frequencies) are the ones with worst overlap. 78

3.5 RMSIP of CC and IC mode spaces. The x-axis shows the upper
limit of the mode space tested (e.g, 10 means that the first ten
modes are to be used to obtain the RMSIP). Both spaces look
to be very similar, at least for the 5 lowest frequency modes.
The similarities decrease as we move to modes of higher fre-
quencies, with the only exceptions already commented in the
cumulative overlap study. 78

LIST OF FIGURES ix

3.6 Comparison of the execution of three methods for the three
available algorithm implementations (serial). 82

3.7 Comparison of the execution of three methods for the three
available algorithm implementations (OpenMP). 82

3.8 Calculation time of a pairwise matrix from a 30k frames tra-
jectory. 83

3.9 Performance comparison of serial, OpenMP and CUDA (single-
precision) implementations of the QCP algorithm. 84

3.10 Performance comparison of CUDA implementations. ’Mem’
versions hold the entire matrix into memory, (s) versions use
single-precision arrays and (d) versions use double-precision
arrays. 85

3.11 Input size response of the OpenMP and CUDA versions of the
QCP algorithm. 86

3.12 Time needed to compute a pairwise matrix from a 30k frames
trajectory using a different number of threads. 88

3.13 Percentage of speedup per thread added to the calculation. Spee-
dup is almost linear with number of threads. 88

3.14 A) Global reduction of the size of the dataset vs. merging local
reductions. B) Different levels of compression including the
number of frames used in each level. 121

3.15 Representative conformations for the 4 most populated clusters,
holding a 34%, 13%, 8 % and 8% of the elements of the dataset. 123

3.16 Results of the application of pyProCT to nine 2D datasets. Clusters
are plotted using different colors and symbols. 125

3.17 An incorrect choice of the ICVs to express the desired res-
ulting clustering traits can drastically modify the results. In
this case the criteria was changed from “graph criteria” to “de-
fault criteria”, favoring one of the clusterings generated by the
K-Medoids algorithm. 126

5.1 Pseudo-UML diagram showing the most relevant classes in
PELE++ core: the AtomSet tree which allows the definition of
different types of molecules, the topology subsystem and the
energy/potential subsystem. The last uses geometry (atom co-
ordinates) and topological information to calculate the energy
of an AtomSet. 136

5.2 A set of profiles was performed for different protein sizes and
using OBC and SGB solvent. This bar plot shows the percent-
age of time spent in non-bonding and solvent-related calculations.138

x LIST OF FIGURES

5.3 Comparison of the energy and gradient functions speedup for
different protein sizes and the two programming models used.
One of the reasons why the speedup for the medium protein is
higher is because the relative weight of the non-bonding cal-
culations has increased with the number of atoms. 141

5.4 The global speedups have been calculated using a model. As
parameters N and M range from 1 to 65 and from 20 to 50
respectively, we decided to study the best case (faster serial ex-
ecution, where N = 1 and M = 20) and the worst case (slower
serial execution, where N = 65 and M = 50). Theoretical spee-
dup increases to decrease afterwards. This happens as a result
of the changes in the relative weight of the non-bonding calcu-
lations: the weight first increases due to the increment in the
number of atoms and then decreases since other functions, such
as the covalent energy calculations, start to require more time.
The difference between implementations is not significative. . 143

5.5 Kernel speedup for each of the methods and proteins tested.
Methods 2 and 3 seem to obtain an equivalent efficiency im-
provement. 145

5.6 CG model of a peptide (A) using the [Cα]3 distribution of atoms.
Each residue is composed of two units which are delimited by
the φ and ψ torsions. The case of proline residues (B) is spe-
cial, as they only form one unit. 148

5.7 Representation of the rotation of two rigid bodies (green and
purple) around axis qα. 149

5.8 Plot showing the relationship of the two studied parameters
(steeringForce and MinimumRMS) with the RMSD and energy
increments of the Cartesian coordinate ANM step. Each point
shows the average and standard deviation of the RMSD and
energy increments for a given combination of parameters. . . . 157

5.9 Pseudo-UML (Unified Modelling Language) diagram showing
some key classes of pyRMSD as well as the three-layer design
(Python classes, Python C interface and C++ classes). 168

5.10 Four cluster analysis have been performed over the same data
set. Results can change dramatically depending on the algorithm
(k-medoids or spectral clustering here) and parameters used (k
= 2 or k = 3). 172

List of Tables

3.1 Root Mean Square of the RMSD array differences for each of
the algorithms. 87

3.2 Comparison of the time, lines of code, speedup and integration
complexity (I.C.) needed to complete an RMSD collective op-
eration. 90

3.3 Around 40k clusterings were produced in almost 58h (1 clus-
tering each 5s). 122

3.4 Clustering hypothesis for each of the datasets. 127
3.5 Details of the results. Last column indicates the criteria that

obtained the best score. 128

5.1 Size-related details of the systems used in the initial profilings. 137
5.2 Choice of parameters affecting the mode application step in the

CC and IC methods, including the values that will be used in
characterization tests. 155

5.3 Association strength of the studied parameters and simulation
features. Each value has been colored depending on its cat-
egory: Green for high association, yellow for medium associ-
ation, orange for low association and red for no association. . . 157

5.4 Association strenght of the RSMD and energy increments, and
step time between themselves and the chosen parameters. . . 159

5.5 Values for the parameters that produced simulations with ac-
ceptance between 20 and 40%. 162

xi

xii LIST OF TABLES

Abbreviations

ADME/Tox Absorption, Distribution, Metabolism, Excretion
/ Toxicological.

AMBER Assisted Model Building with Energy Refinement.

ANM Anisotropic Network Model.

ARM Advanced RISC (Reduced Instruction Set Computing) Machine.

BNM Block Normal Mode.

CC Cartesian Coordinates.

ccNMA Cartesian Coordinate Normal Mode Analysis.

CG Coarse Grain.

CPU Central Processing Unit.

DNA Deoxyribonucleic Acid.

EN Elastic Network.

FDA Food and Drug Administration.

FEP Free Energy Perturbation (method).

GPGPU General-Purpose computing on Graphics Processing Units.

GPU Graphics Processing Unit.

HTS High-Throughput Screening.

IC Internal Coordinates.

xiii

xiv Abbreviations

icNMA Internal Coordinate Normal Mode Analysis.

IDP Intrinsically Disordered Protein.

LBVS Ligand-Based Virtual Screening.

MC Monte Carlo.

MD Molecular Dynamics.

MIC Many Integrated Core.

MM/PBSA Molecular Mechanics / Poisson-Boltzmann Surface Area.

MMC Metropolis Monte Carlo.

MSM Markov State Model.

NMA Normal Mode Analysis.

NME New molecular Entity.

NMR Nuclear Magnetic Resonance.

NVT (constant) Number (of particles), Volume and Temperature.

OBC Onufriev-Bashford-Case.

OOP Object-Oriented Programming.

OPLS Optimized Potential for Liquid Simulations.

PCA Principal Component Analysis.

PCR Polymerase Chain Reaction.

PDB Protein Data Bank.

PELE Protein Energy Landscape Exploration.

PMF Potential of Mean Force.

R&D Research and Development.

RMSD Root Mean Square Deviation.

RMSF Root Mean Square Fluctuation.

Abbreviations xv

RNA Ribonucleic Acid.

RTB Rotational-Translational Block.

SASA Solvent-Accessible Surface Area.

SBVS Structure-Based Virtual Screening.

SGB Surface Generalized Born.

VHTS Virtual High-Throughput Screening.

VS Virtual Screening.

xvi Abbreviations

1
Introduction

Human biology seats in a weak equilibrium. The breakdown of this homeo-
stasis, whether it is because of external agents or deficiencies in the internal
regulations, produces illness and death. Therefore, it is not surprising that,
throughout its history, humankind has always been looking for treatments and
medicines to fight disease. Today, more than ever before, we need to keep per-
fecting health methods. Industrial excesses and lax laws are creating a hostile
environment that affects us directly or through the food chain in unexpected
ways. Also, the same advances that have allowed the rise of the world’s popu-
lation life expectancy [1] are being put to the test to cure the increasing number
of aging-related illnesses that reduce our quality of life.

1.1 The innovation crisis in pharmaceutical industry

Nowadays, the role of discovering and manufacturing new and better drugs is
being played mainly by the pharmaceutical industry. With a 3.9% of the gross
value added in manufacturing worldwide in 2011 [2], more than 690,000 direct
employees in Europe (2013) [3] and more than 810,000 in the United States of
America (USA) (2013) [4], its economical importance is out of doubt. Most
big pharmaceutical companies have good financial results and are able to attract
investors. However,these good results are mainly because of their incremental
innovation model, that is, their ability to improve old products [5]. This is an
efficient strategy, since it can help milden the profit loss coming from expiring

1

2 CHAPTER 1. INTRODUCTION

patents at a time when consumers tend to buy generics over brand name drugs1.
However, if we focus on an innovation indicator like the number of NMEs

(New Molecular Entities) approved every year by the USA’s Food and Drug
Administration2, the pharmaceutical industry does not look so prosperous. The
number of approved NMEs has been very low during the last decade (with
an average of 24 per year [6]).This is a matter of concern, since , the cost of
marketing one of these drugs has increased three times in the same amount of
time. Also, the drug development time span has not shortened and it usually
lasts 15 years [7], but can exceed 30 years [8]. The discovery of a single NME is
becoming more difficult and costly, and the revenues returned from them rarely
exceed Research and Development (R&D) investments. That is why, currently,
the pharmaceutical industry is considered to be faced with a deep innovation
crisis.

1.1.1 Possible causes of the crisis

Numerous efforts have been made to understand the causes of this crisis in
order to improve R&D efficiency and effectiveness. From what is known, the
main problem is not the lack of investments, since the annual spending in R&D
has been around $40-$50 billion [4, 9] during the last ten years. Indeed phar-
maceutical companies reinvest a 12.4 per cent of gross domestic sales on R&D,
of which 9.3 to 12.4% (1.2 / 2.4% of total) go to fundamental research [10].

Possible causes of the innovation problem include [19]:

• The increasingly difficult requirements from regulatory agencies to ac-
cept new drugs. New standards of safety make clinical trials longer and
more costly.

• The “saturation of low hanging fruits” theory, which says that pharma-
ceutical industry has already discovered all that is possible with our cur-
rent knowledge.

• R&D teams give a sharp focus to revolutionary instead of evolutionary
technologies. For instance, the use of genomics-based candidates was
so promising that was prioritized over clinically validated drug targets.
Still, the repercussions of including revolutionary technologies in phar-
maceutical pipelines are not always negative. For example PCR3 (1983)

1The balance increased from 49% in 2000 to 88% in 2013 [4].
2All data refers to USA agencies unless otherwise stated.
3Polymerase Chain Reaction

1.1. THE INNOVATION CRISIS IN PHARMACEUTICAL INDUSTRY 3

Figure 1.1: Cost and time needed to develop and market one NME (including failures).
Cost data were obtained from (in plot order) [11] [4] [7] [12] [13] [12] [9] [14] [15]
[16] [17]. Time data were obtained from [18] [18] [13] [9].

4 CHAPTER 1. INTRODUCTION

for DNA4 replication or gene chips for RNA5 in the early 1990s allowed
researchers to perform more and faster experiments.

• Pharmaceutical companies are extremely big, and they spend great amounts
of resources on non-productive work.

1.1.2 Solutions from the pharmaceutical industry

Pharmaceutical companies have reacted to this situation immediately in order
to improve the outcome of their R&D investments. One of the consequences
has been the forge of strategic alliances (especially with biotechnology firms) or
even company mergers6. The industry has also changed its marketing strategies
in an attempt to overcome this delicate situation. For instance focusing on
rare diseases, or opting for chronic diseases instead of acute diseases make
clinical trials more challenging but give good economic results in the long term.
Finally, drug repurposing seems a good solution as it can reduce the costs of
bringing a drug to the market by almost 40% [20].

Special attention has been paid to boosting the efficiency of the drug dis-
covery pipeline steps, as this has direct repercussion on the final cost and on
the time invested on the drug . For instance, an outsourcing of early steps such
as screening, lead identification or lead optimization has shown to decrease the
total costs noticeably. Interestingly, if several companies share the same ser-
vice providers, they will act as knowledge and expertise exchange nodes, which
seems to be a very beneficial side effect in such a hermetic environment .

1.2 The drug discovery pipeline

The drug discovery pipeline can be divided into two consecutive main phases.
In the first one, the aim of researchers is to understand the illness and find
a molecule that can cure it (or, at least, improve its symptoms). During the
second main phase, which starts right after regulatory agency clearance, the
drug is tested in human patients.

Nowadays Bioinformatics and Computational Biology software play an im-

4Deoxyribonucleic acid
5Ribonucleic acid
6For instance, the two giants Pfizer and Allergan, have entered into a merger agreement (an-

nounced on the 23th of November of 2015), after several hostile takeover bids to AstraZeneca
in 2014.

1.2. THE DRUG DISCOVERY PIPELINE 5

portant role in the discovery process7. It is hard to quantify the impact of soft-
ware on efficiency because, unfortunately, there are few studies on this topic.
However, it is quite obvious that the improvements made on this software would
also lead to improvements in the overall effectiveness of the pipeline.

The phases of the pipeline are:

1. Discovery process

Pre-discovery The goal of this phase is to study a disease in order to un-
derstand its causes. This phase is usually neglected in pharmaceut-
ical industry reports because of two main factors. First, the time
and budget needed are often very variable and this phase generally
contributes to drug discovery in the long term. Second, this kind of
research is usually performed at non-corporate tax-funded institu-
tions, such as universities or government research centers, and do
not have a direct impact on companies budgets. Fostering basic re-
search and the technology transfer between these institutions and
the industry is of utmost importance in order to shorten the time of
this phase.

Target identification During this phase, a druggable molecule involved
in the disease, usually a protein, is searched . Improvements in this
stage come from the use of gene chips and bioinformatics tech-
niques, as well as proteomics [21]. The sequencing of the human
genome also seemed to be an abundant source of drug targets [22,
23], but, in general, it has not met the initial expectations yet [24].

Target validation During this process, the previous target is tested in
single cells and animal models. In-vitro validation can be per-
formed by disrupting target expression through the use of gene knock-
outs.

Lead identification At this point, researchers look for the chemical leads
(small drug-like molecules capable of altering the function of the
target proteins) and early pharmacokinetics tests (ADME/Tox8) are
performed. This includes the target-to-hit phase, a preliminary screen-
ing to filter non-active compounds, and the hit-to-lead phase, a sec-
ondary screening where the compounds with the higher potential to
become a drug are chosen. High-throughput screening (HTS) and

7The success of Shrödinger is a good example of the increasing importance of computa-
tional methods in drug discovery. In 2015 they signed a $120M deal with Sanofi (with tasks
including target analysis, validation, lead identification and lead optimization). More recently
(2016) they have entered a research collaboration agreement with Pfizer.

8Absorption, Distribution, Metabolism, Excretion and Toxicological

6 CHAPTER 1. INTRODUCTION

virtual high throughput screening (VHTS) supported by chemoin-
formatics seem to help speed up this phase.

Lead optimization Leads are further optimized to act as a non-toxic
therapeutic drug. Rational drug design and combinatorial chem-
istry work can be used to improve the properties of the drug can-
didate.

Preclinical testing Drug toxicity is determined using in-vitro and in in-
vivo (animal models) experiments.

2. Development process

Phase 1 clinical trial Initial tests in healthy volunteers (20-100).
Phase 2 clinical trial Test in a small group of patients (100-500).
Phase 3 clinical trial Safety and efficacy tests in a large group of pa-

tients (1000-5000).
Phase 4 monitoring After this steps the drug is commercialized, but it

is still monitored in search of possible undocumented side effects.

Several new technologies have been used to lower the cost and time re-
quired for clinical trials. Genomics, for instance, would allow subdividing pa-
tients according to their drug response, and pharmacogenetics and expression
pharmacogenomics can enhance the predictions of patient’s drug response by
analyzing their DNA variability or determining the levels of gene expression.
The use of collaborative management software in clinical trials has shown to
have positive effects on the efficiency as it makes researchers less prone to
commit errors.

1.3 HTS and VHTS

The early steps of the pipeline are crucial for the success. Target selection, for
instance, is one of the most important determinants of R&D productivity as an
error during this phase can potentially compromise the entire process.

The lead identification step is a very sensitive point too. This step is of-
ten performed using HTS. With this technique, lead molecules are identified
through automated individual chemical assays using libraries of millions of
compounds. Almost a 40-45% of the drugs currently being tested in human
clinical trials come from HTS systems. This is more than four times the per-
centage found ten years ago [13].

Instead of finding hits using experimental assays, screening experiments
can also be conducted in-silico through VHTS protocols. These high-speed

1.3. HTS AND VHTS 7

Fi
gu

re
1.

2:
D

ru
g

di
sc

ov
er

y
pi

pe
lin

ep
ha

se
s(

pr
e-

di
sc

ov
er

y
an

d
ta

rg
et

id
en

tifi
ca

tio
n

ph
as

es
ha

ve
be

en
om

itt
ed

).
Th

en
um

be
ro

fc
om

po
un

ds
us

ed
at

ea
ch

ste
p

[3
,2

5]
,t

he
nu

m
be

ro
fp

eo
pl

e
in

vo
lv

ed
in

th
e

cl
in

ic
al

tri
al

s[
25

],
th

e
pe

rc
en

ta
ge

of
th

e
to

ta
ld

ev
el

op
m

en
tc

os
tp

er
ph

as
e

[9
],

an
d

th
e

pe
rc

en
ta

ge
of

tim
e

in
ve

ste
d

in
ea

ch
ph

as
e

[1
0,

16
,2

6]
ar

e
ill

us
tra

te
d.

8 CHAPTER 1. INTRODUCTION

computer screenings consume only a small percentage of the R&D costs and
time and can potentially save up to one year and 15% of the total development
cost (according to the Boston Consulting Group [27]).

1.3.1 How does VHTS work?

In order to start the VHTS process, researchers first need to obtain libraries of
compounds. The following steps will vary depending on the approach adopted.
The first one is ligand-based virtual screening (LBVS). It rests on the idea that
molecules with similar structures have similar properties. It uses the informa-
tion of compounds known to bind the protein and does not need the structural
data of the target [28, 29]. It may use Quantitative Structure-Activity Rela-
tionship methods, pharmacophore modeling (“the largest common denomin-
ator”) and database mining. The second approach, that is structure-based vir-
tual screening (SBVS), needs the tridimensional structure of the target and uses
docking algorithms to select the drugs that bind best. The choice of one method
or the other depends on the availability of data and on the type of problem.
LBVS methods are still dominating the VS field because lead information is
usually more easily available than structural information [30]. However SBVS
is gaining reputation, probably because nowadays there is a huge amount of
structural data available for researchers (e.g. the Protein Data Bank (PDB)
[31] stores more than 100k structures, and in-house industry resources also
store extensive data), and it looks to be increasing at a good pace thanks to the
advances of structure determination techniques. Moreover, SBVS is able to
find allosteric binding sites, which is more difficult in LBVS approaches [32].
SBVS and LBVS are not mutually exclusive and can improve final results if
used together [33–35].

The phases of SBVS usually are:

Prefiltering Libraries are prefiltered using their ADME/Tox properties and
a physicochemical profile (if a lead profile is available). Binding site
discovery: When crystal structures with bound ligands are not avail-
able, cavities can be located computationally using either geometric ap-
proaches (e.g. fpocket [36]), grid-based approaches (e.g. LigSite [37])
or energy-based approaches.

Docking A high throughput docking over thousand to millions [38] of com-
pounds is performed. Each single compound is positioned into the tar-
get’s previously discovered binding pockets using docking software (e.g.
DOCK [39], AUTODOCK [40, 41], GOLD [42], GLIDE [43], FlexX
[44], ARTIST [45], ICM [46], and Surflex-Dock [47] among others).

1.3. HTS AND VHTS 9

Scoring Finally the poses are ranked using a scoring function, and the best res-
ults are kept. These scoring functions include: force field scoring, em-
pirical scoring, knowledge-based scoring and consensus scoring (which
uses more than one scoring function in order to balance their errors). The
calculation of binding free energies as a scoring function by using, for
example, endpoint (MM/PBSA9), pathway (PMF10, Metadynamics) or
free energy perturbation methods is more rigorous, but also more com-
putationally expensive [48, 49] and barely used.

VHTS works as a filtering mechanism that benefits the following stages by
reducing the number of compounds to be tested experimentally11 (e.g. inactive
compounds). However, its use can become a burden if too many false positives
are generated, thus “contaminating” the pipeline; errors will be paid in next
steps at a high cost [50]. That is why it is desirable and more productive to
“fail fast” and unambiguously. The sources of error in SBVS are numerous:
incorrect protonation [51], incorrect assignment of side chain rotamers, low
sequence identity in homology modelling (if the structure is not available),
absence of water in the binding site [52], incorrect/no handling of flexibility or,
simply, inaccuracies of the docking procedure or in the scoring functions. As
a consequence, it is still safer to use SBVS as a complement [53] to empirical
screening rather than as a complete replacement (e.g. to increase hit-rate of
HTS).

1.3.2 Fast docking software
The keystone of the SBVS process is the high throughput docking software.
Docking is one of the most significant challenges of computational biology
and represents an area of intense academic research [54]. Docking algorithms
can be classified in several categories, depending on the types of molecules
(protein-protein and protein-ligand docking), the treatment of flexibility (flex-
ible ligand, receptor or both), or the algorithmic details (matching or simula-
tion). Given receptor and ligand molecules, the goal of a docking program is
to predict if they interact and find their relative positions and conformations in
order to generate the resulting complex.

9Molecular Mechanics (combined with) Poisson-Boltzmann Surface Area
10Potential of Mean Force
11This need has been lately acknowledged with the approval of the 4-year project ADDoPT

(Advanced Digital Design of Pharmaceutical Therapeutics) in the UK. One of its goals is to
improve the productivity of drug discovery processes through the early detection of non-viable
drugs by using mainly computer tools and big data approaches. The academia and the industry
(including big pharmaceutical companies such as AstraZeneca, Bristol-Myers Squibb, Glaxo-
SmithKline and Pfizer) will cooperate in order to bring the process to a successful conclusion.

10 CHAPTER 1. INTRODUCTION

VHTS-compatible docking software must be fast. The time it works with
each compound cannot exceed a few seconds, as libraries may contain thou-
sand to millions of them [33]. The combinatorial explosion of possible con-
formations/poses due to the enormous number of internal and external degrees
of freedom involved makes it hard to perform a systematic exploration of the
solution space. As a consequence, many simplifications must be done in order
to attain reasonable execution times. To this end, the docking problem usu-
ally becomes an optimization problem over certain fitness function where a
rigorous simulation of the biophysical properties of the system, as well as the
handling of ligand and receptor flexibility, is often sacrificed.

1.4 Flexibility

1.4.1 Flexibility and binding

Flexibility is known to play a major role in molecular recognition processes
and is a long-studied topic. Nowadays, we know that it contributes to favor-
able changes in the binding free energy [55] by optimizing the noncovalent
interactions between the receptor and the ligand, or by increasing the entropy
upon binding by releasing interfacial water and increasing flexibility in parts
of the protein or ligand [56]. However, the importance of flexibility has not
always been present in binding theories. Models like Fisher’s “lock and key”
[57] (1984), described binding as an entirely rigid interaction in which ligands
and receptors must be complementary in shape in order to bind. This model
prevailed for more than 60 years until Koshland [58] formulated its induced fit
hypothesis in 1959. In this second model, the ligand is able to produce a de-
formation in the receptor’s active site: complete complementarity is not needed
for binding to happen. Another hypothesis, the conformational selection model
[59, 60], asserts that all possible conformers of the receptor coexist in solution,
including the binding one. The interaction with the ligand produces a popula-
tion shift towards the binding conformation. The consequences of this model
can affect drug design strategies as the knowledge of these relative populations
could be used to create drugs with different degrees of binding affinities.

Currently, both the induced fit and conformational selection models are
accepted. Both agree on the fact that binding is a dynamic event where ligand
and receptor may change their structures dynamically. Although these models
may not be complete, as both are defied by intrinsically disordered proteins
(IDPs12), experimental evidences support them (e.g. the findings on HIV-1

12A fourth model ”coupled folding and binding” [61]

1.4. FLEXIBILITY 11

protease [62], DHFR [63] or aldose reductase [64]); this may mean that they
are not exclusive.

1.4.2 Flexibility models

Neglecting the treatment of flexibility reduces the degrees of freedom of the
search space dramatically, thus lowering the time needed to find solutions.
However it can severely limit the accuracy of results. Some studies, for in-
stance, show that the consequences of incorrectly treating flexibility drive a
success rate drop of ∼25%-55% in binding simulations [65] being this drop
proportional to the number of rotatable bonds of the ligand and correlated with
the degree of the protein movement in the active site. In order to improve the
accuracy of docking software, a restricted treatment of flexibility must be ap-
plied, trying to reach a good compromise between a robust theoretical treatment
and computational performance.

1.4.2.1 Molecular Dynamics and flexibility

The best-known method to sample the flexibility of ligands and receptors is
molecular dynamics (MD). In MD, the positions of the particles of the system
are predicted by integrating Newton’s equations of movement. This method
offers a detailed vision of the dynamics of molecules, allowing to understand
how systems evolve at atomic level.

Despite its renown, MD is not completely flawless. For instance, the force
fields it uses (see Fig. 1.3) are known to be biased towards certain types of
secondary structures [66, 67], and it has been reported that simulations can
end trapped into sink free energy states [68, 69], reducing the sampling quality.
Also, the discretization error of integrators advises against running single long
simulations in favour of running multiple short ones [68, 69]. Despite this,
MD simulations have shown to have a good correlation with experiments (for
example in comparisons with Residual Dipolar Coupling data [70]) and has
been successfully used on many occasions to unveil molecular mechanisms that
could not be studied in other manners. The reviews of Karplus [71], Dodson
[72] and Dror [73] illustrate many of these success stories.

The integration step in MD must be small enough to guarantee the al-
gorithm’s stability and is frequently set on the femtosecond scale. Given that
functional changes, which may be related to binding mechanisms, often occur
at the µs/ms scale, obtaining an informative simulation requires computing a
considerable number of steps. Besides, the atomic detail of simulations, which
usually includes an explicitly modeled solvent, means that studied systems have

12 CHAPTER 1. INTRODUCTION

+ -

Figure 1.3: Example of the interactions described by a force field. From them the
potential energy of the system (U = Ebond + Eangle + Etorsion + Enb) as well as the
forces, accelerations and velocities of each single particle (atom) can be calculated.

1.4. FLEXIBILITY 13

a huge amount of particles, making the calculation of each step harder. These
are the main reasons why MD is such a computationally demanding method.

Even with the current algorithmic and hardware progress (that includes the
intensive use of accelerators), calculations cannot routinely exceed the µs total
time. The construction of single-purpose dedicated-hardware machines (e.g.
FASTRUN [74], MD Engine [75], MDGRAPE [76] and ANTON [77]) has
allowed researchers to perform longer simulations more easily. An example
of this is a recent work by Shan [78], who has calculated a 20 microsecond
simulation showing the free diffusion and binding process of dasatinib and the
kinase inhibitor PP1 with Src kinase. Unfortunately, these specialized com-
puters are usually not publicly accessible, and even if they were, the pace at
which these machines produce results is still impractical for high throughput
methodologies like VS13.

Derived methods aiming to speed MD simulations, like replica exchange,
are still too slow to be applied in VS protocols. The need to overcome these
computational limitations led to the creation of the first rigid ligand / rigid
receptor algorithms. However, the need for some forms of computationally
lightweight flexibility was acknowledged shortly afterwards, giving place to
other well-known techniques such as:

Incremental construction A rigid part of the ligand is docked first and then
the flexible elements are incrementally added so that the ligand adapts to
the binding site. Ex. GROWMOL [81].

Multiple conformations Can be applied to both ligand and receptor. In the
case of the ligand, new conformations can be obtained by sampling the
angles of rotatable bonds and keeping the lower energy solutions, using
them for the docking. The main problem is that the complexed ligand
is not always in a low energy state [82, 83]. In the case of a protein
receptor, different conformations can be obtained from Nuclear Magnetic
Resonance (NMR) or X-ray structure determination experiments.

Other types of methods perform a conformational search in order to sample
different receptor and ligand structures. Some of these methods are simulated
annealing (Yue’s algorithm [84]), Genetic Algorithms (ex. DARWIN [85]),
tabu search (Ex. PRO LEADS [86]) and path planning (MIAX [87]).

Due to their inherent flexibility, the representation of side chains is a chal-
lenge on its own. Several techniques have been proposed. For example, the
”soft receptors” method allows the interpenetration between atoms to a certain

13With the exception of generating ensembles for ”multiple receptor conformations” meth-
ods [79, 80]

14 CHAPTER 1. INTRODUCTION

extent [88]. It is more frequently used in fully rigid docking setups. Another
possibility is the use of rotamer libraries. This is a systematic method in which
a collection of possible rotamers for side chain torsional angles is randomly or
heuristically applied.

1.4.2.2 Normal Mode Analysis (NMA) as an alternative

At this point, it may be clear that a reasonable compromise between the cor-
rect modeling of flexibility and its computational requirements must be found:
accuracy and detail in the representation of flexibility have an expensive price
in CPU14 cycles, but if a less accurate treatment of flexibility is chosen, the
simulation can be so inexact to become useless. NMA-based methods might
offer a reasonable trade-off, since they add flexibility in the receptor at a low
computational cost.

The basis of NMA [89] is to simplify the potential energy surface by means
of a harmonic approximation. To this end, a potential well is built around a
stable conformation (here with general coordinates q). The molecule is repres-
ented by a set of coupled harmonic oscillators and motion is restricted to small
fluctuations around that single minimum. The Taylor expansion to the second
order of the potential and kinetic energy around the minimum is:

V = V0 +

N∑
α=1

(
∂V
∂qα

)
0

qα +
1
2

N∑
α=1

N∑
β=1

(
∂2V
∂qα∂qβ

)
0

qαqβ + · · · (1.1)

K = K0 +

N∑
α=1

(
∂K
∂q̇α

)
0

q̇α +
1
2

N∑
α=1

N∑
β=1

(
∂2K
∂q̇α∂q̇β

)
0

q̇αq̇β + · · · (1.2)

Under the assumption of equilibrium, the kinetic and potential energy de-
pend only on the second order terms.

From the resulting Hessian H (where Hαβ = ∂2V
∂qα∂qβ

) and metric tensor K

where Kαβ = ∂2K
∂q̇α∂q̇β

the equations of motion can be derived from Lagrange’s
equation, with the Lagrangian L = K − V, so that:

−

N∑
β

Hαβqβ =

N∑
β

Kαβq̇β (1.3)

The N harmonic solutions to the equations of motion (qα =
∑N

k Aαkαkcos(ωkt+
φk)) can be calculated by solving the eigenproblem:

14Central Processing Unit

1.4. FLEXIBILITY 15

KAΛ = HA (1.4)

where A and Λ are the eigenvector and eigenvalues matrices respectively.
The resulting modes are an orthonormal basis of all possible deformations of
the molecule around the equilibrium structure. For sufficiently small displace-
ments, the motion of the particles in the system is proportional in amplitude
to the magnitude of the eigenvectors and its frequency is proportional to the
square root of the eigenvalue. Also, each eigenvalue represents the energetic
cost of displacing the system by one length unit along its eigenvector. In gen-
eral, we are only interested in the subset of modes of lower frequencies i.e. the
ones that require less energy, as this slower but wider displacements are usually
the ones encoding functional information.

1.4.2.3 ANM

In 1996, Tirion [90] introduced an NMA model where the molecule is modeled
as an EN of Hookean springs of equal strength with potential:

V =
∑
α,β

k
2

(rαβ)2 (1.5)

One of the advantages of the simplification of the potential is that, unlike
regular NMA, it does not need to minimize the initial structure to fulfil the
assumption of equilibrium: the initial description of the network is already in
equilibrium.

Bahar and coworkers [91] extended the model by using only the Cα atoms
to represent each residue in an isotropic NMA version. Moreover, the number
of atomic interactions was reduced by using a cutoff distance. They showed
that, even with these dramatic simplifications, the beta factors derived from the
new model were in good agreement with experiments. The model was further
improved by Atilgan et al. [92], who used it to extract anisotropic information
from the fluctuations. This development, and more generally the NMA models
using elastic networks and coarse-grained representations, are also known as
Anisotropic Network Models (ANM, see Fig. 1.4).

Most of the efforts to enhance the model have focused on finding a defin-
ition of force constants that is able to improve the modeling of the atomic
interactions. First attempts come from Hinsen’s work [93], whose distance-
dependent force with exponential decay was fitted using the AMBER force
field. More recent studies include the analysis of different formulations for the
force constant [94] and MD-based parameterizations [95].

The most important computational improvements of ANM come from the

16 CHAPTER 1. INTRODUCTION

use of a cutoff and from the coarse-grained representation. The cutoff reduces
the number of iterations needed to calculate the Hessian and the reduction of
degrees of freedom from the reduced representation makes it smaller and easier
to diagonalize. Since the Hessian calculation represents the computational bot-
tleneck, finding efficient methods to diagonalize it has been the focus of several
research projects. These efforts have resulted in the creation of new algorithms
such as the RTB (Rotational-Translational Block) [96] or BNM (Block Nor-
mal Mode) [97], as well as more efficiently parallelizable techniques using the
Krylov subspace and Cholesky factorization [98]. Besides, the use of mass-
weighted coordinates further simplifies calculations by avoiding the need to
calculate the Kinetic tensor (the equation ĤÂ = ÂΛ̂ is to be solved instead).

These simplifications, however, do not compromise the predictive capabil-
ities of the ANM method. This is demonstrated by the good agreement with
atomistic simulations [99, 100] and essential dynamics from ensembles of ex-
perimental structures (e.g. HIV-1 protease [101]). ANM has shown to have
good correlation with experimental beta factors (e.g. of DNA-dependent poly-
merases [102]) and anisotropic temperature factors of X-Ray and NMR en-
sembles [103]. Also, it has been able to reproduce experimentally solved do-
main movements in several proteins, such as the Aspartate transcarbamylase
[104].

The success of ANM modeling the dynamics of proteins despite its sim-
plifications leads to two main conclusions. First, the irregular energy surface
of biomolecules, which contains several local minima, can be approximated by
a quadratic function. Second, protein collective movements are insensitive to
sequence details or underlying force field, and are, to a large degree, topology
dependent.

In any case, the drastic reduction of the degrees of freedom involved in the
ANM approximation introduces serious technical problems in its implementa-
tion: translating the motion to the rest of atoms not present in the coarse grain
(CG) model is not a trivial task.

1.5 PELE: Achievements and limitations

1.5.1 The Metropolis Monte Carlo (MMC) Algorithm
Monte Carlo algorithms are a class of stochastic algorithms frequently used in
physics, engineering, economy and several other disciplines. The MMC [106]
algorithm is a Markov Chain Monte Carlo technique that, as other techniques
of the same family, can be used to sample high-dimensional probability dis-
tributions and obtain statistical estimates that would not be feasible otherwise

1.5. PELE: ACHIEVEMENTS AND LIMITATIONS 17

A
)

B
)

C
)

D
)

Fi
gu

re
1.

4:
A

N
M

stu
dy

of
an

op
en

co
nf

or
m

at
io

n
of

ad
en

yl
at

ek
in

as
e(

PD
B

id
:4

A
K

E)
.F

ro
m

th
es

ta
rti

ng
str

uc
tu

re
(A

)t
he

el
as

tic
ne

tw
or

k
is

ca
lc

ul
at

ed
(B

).
O

nc
e

th
e

no
rm

al
m

od
es

ar
e

ob
ta

in
ed

(C
)t

he
str

uc
tu

re
ca

n
be

m
od

ifi
ed

so
th

at
th

e
fin

al
co

nf
or

m
at

io
n

is
sim

ila
rt

o
th

e
cl

os
ed

on
e

(P
D

B
id

:1
A

K
E)

(D
).

In
th

is
ca

se
,t

he
se

op
en

an
d

cl
os

e
sta

te
sm

ay
be

pr
es

en
tw

ith
ou

tt
he

ne
ed

of
lig

an
d

in
te

ra
ct

io
n

[1
05

].

18 CHAPTER 1. INTRODUCTION

[107]. MMC generates an ergodic15 Markov Chain whose stationary distribu-
tion is proportional to the probability distribution of interest.

The algorithm looks as follows:

• First, initialize x0 to a value in the domain.

• For i in 0..n do:

– Generate a proposal xp (choose from the proposal distribution q).
– Generate a random value u from the uniform distribution [0, 1].
– Calculate the acceptance probability:

α(xi, xp) = min
(
1,

p(xp)q(xi|xp)
p(xi)q(xp|xi)

)
, (1.6)

which, if q is chosen to be symmetric becomes:

α(xi, xp) = min
(
1,

p(xp)
p(xi)

)
. (1.7)

– Accept or reject the proposal so that if u < α(xi, xp) then xi+1 = xp

or xi+1 = xi instead.

If we want to get samples from systems following the canonical distribution
(constant number of particles, volume and temperature, NVT), we need to re-
member that, according to statistical mechanics, the probability that a system
is found in a given energy state with energy Ei is proportional to the Boltzmann
factor: exp(− Ei

kBT)
If this probability distribution is used, then the acceptance probability be-

comes:

α(xi, xp) = min
(
1, e−

∆E
kBT

)
, (1.8)

where ∆E = E(xp) − E(xi).
The algorithm guarantees that, eventually, all states accessible for a given

temperature are visited, no matter which state we started in.
The MMC method allows us to sample the Boltzmann distribution, being

able to calculate thermodynamic properties by ensemble averaging. It is often
used to simulate the behaviour of biomolecules and has become part of many
ligand-protein docking solutions like ICM [46], Prodock [108], AutoDock [41]
or MCDOCK [109]. Some of the drawbacks of MMC are:

15Ergodic implies aperiodicity, i.e. there is a path to move to any state from any other state,
and irreducibility, which means that all probabilities to move are positive.

1.5. PELE: ACHIEVEMENTS AND LIMITATIONS 19

• As there is no temporal relationship between samples, the dynamics of
the system cannot be studied.

• The simulation needs to converge as the ensemble of initial samples may
not follow the desired probability distribution16.

• The jump size needs to be adjusted in order to avoid excessive correlation
of the samples.

• The probability of rejection increases exponentially with the number of
dimensions, unless very small jump sizes are used.

Overall, the application of MC methods in large biological systems is scarce
(compared to other sampling techniques like MD). Development of new heur-
istic MC methods, such as PELE, aimed at addressing this point.

1.5.2 The PELE software
PELE (Protein Energy Landscape Exploration) [110, 111] was designed as an
alternative to protein conformation sampling and ligand-binding simulations.
It implements an MMC scheme where each iteration consists of a perturbation
and a relaxation step followed by a Metropolis test. In the perturbation step,
the ligand is translated and rotated to a new position, and its conformation is
changed, if needed. Afterwards, the protein backbone is modified according
to an NMA-based algorithm. During the relaxation step, the side chains with
higher potential energies are changed using a rotamer library. A modified Trun-
cated Newton algorithm [112] is then used in order to further lower the energy
of the system. Finally, the global potential energy is calculated, and a Metro-
polis test is performed. If the new system state is accepted, it will be used as
the initial configuration of the next iteration, otherwise it will be discarded .

PELE implements the OPLS (Optimized Potential for Liquid Simulations)
[113, 114] and the AMBER (Assisted Model Building with Energy Refine-
ment) force fields [115], as well as the Surface Generalized Born (SGB) [116,
117], Variable Dielectric Generalized Born [118] and the Onufriev-Bashford-
Case (OBC) [119] implicit solvent models.

1.5.2.1 Treatment of flexibility in PELE

We can classify the movements induced by molecular flexibility depending on
the scale at which they act. We can find, for instance, subtle local side chain

16This initial ensemble is also called ”the burn-in period” and is frequently discarded, even
if this practice is not justified by the MCMC theory.

20 CHAPTER 1. INTRODUCTION

Figure 1.5: Schematic representation of PELE flux. The initial conformation goes
through four perturbation/relaxation steps, after which the acceptance criterion is
tested. If the final conformation is accepted, it will be used as the initial conform-
ation of a new iteration. If it is rejected, a new iteration will be started with the same
initial conformation.

1.5. PELE: ACHIEVEMENTS AND LIMITATIONS 21

movements, medium scale motions performed by loops and, finally, large-scale
collective motions made by domains. Through its four substeps, PELE is able
to reproduce conformational changes mainly in the local and global levels of
detail.

In PELE, local molecular flexibility is handled during the side chain pre-
diction and ligand perturbation steps. In brief, the side chain prediction meth-
odology [120, 121] implemented in PELE uses precalculated rotamer libraries
[122] to modify the torsion angles of a given percentage of the most energetic
side chains so that the overall energy is lowered (and possible clashes are elim-
inated). Chosen side chains might be selected based on their distance to the
ligand or as a result of their increase in energy during the perturbation step. In
the case of the ligand, a core chemical group (typically the largest rigid group)
is determined so that the length of the flexible groups attached is minimum.
Finally, rotamer libraries for the ligand are built on the flight and applied, to
select a more energetically favorable conformation.

1.5.2.2 Backbone flexibility

An ANM-based technique [123] is used to reproduce the backbone flexibility
(see Fig. 1.6). The coarse-grained EN defines each node as a particle centered
in each residue alpha carbon position. The spring force constant used for the
Hookean potential follows the formulae and parameterizations described by
Atilgan [92] and Eyal [124]. As all nodes are required to have equal mass, the
lowest frequency modes can be obtained by using the mass-weighted version
of Eq. 1.4. Large amplitude motions can be described using only a set of the
lower frequency modes [125, 126], and that is why no more than six modes are
usually calculated.

The direction of the conformational change is computed as a linear combin-
ation of the eigenvectors. The magnitudes of these translations are eventually
scaled in order to allow a maximum displacement and a sense for the translation
is chosen; the application of this translation will produce the conformation pro-
posal. It is worth saying that several of the parameters used in this calculations
can be defined by the user.

As previously mentioned, the way modes are applied to the initial structure
in order to reproduce protein dynamics is not trivial, and several techniques
have been suggested [127]. The most popular technique is moving the atoms
following a direction that comes from a combination of modes (as illustrated
above). The drawback of these interpolation methods is that the details of the
movement are only known for the atoms included in the EN, making it un-
feasible for all-atom approaches unless the movement of the excluded atoms
is approximated. This last problem has been circumvented in PELE by adding

22 CHAPTER 1. INTRODUCTION

harmonic constraints between the initial alpha carbon positions and the target
positions to perform a global minimization. In this way, all atoms follow the
alpha carbons, which are pulled gently to their new positions without com-
promising the covalent structure.

1.5.2.3 Minimization

The global minimization step also plays an important role in the flexibility rep-
resentation; it emphasizes induced fit effects and adds an anharmonic factor
through the use of the overall force field and implicit solvent. Since minimiza-
tion could potentially revert changes in the backbone, a set of weak harmonic
constraints is added to restrain the movement of the Cα atoms.

1.5.2.4 Major achievements to the date

PELE has proven to be useful in all atom protein studies [123] thanks to its
efficient conformational sampling. It has also been successfully used to unveil
the mechanism of protein-ligand interactions [128–130], including the analysis
of mutational effects on ligand delivery [131]. Finally, it has been used to
describe ligand thermodynamics with a lower computational cost than other
more consolidated methods like MD [132, 133]. More recently PELE has been
used to rationalize enzymatic hydroxylation of steroids [134] and vitamin D
[135] as well as directed evolution experiments [136].

1.5.3 Limitations
Although the usefulness of PELE has been amply demonstrated, the weak
points of the methods used in each step cause some weaknesses in the soft-
ware. Therefore, before suggesting any improvements, we needed to find these
limitations and evaluate how they could affect its performance.

1.5.3.1 Force field and solvation model

Potential energy is usually calculated using the OPLS or AMBER force fields.
It is well known that empirical force fields are biased towards certain types of
secondary structure [66, 67, 69]. The impact of this bias on PELE has not been
studied yet. However, as the improvement of force field parameterizations is
under continuous research and revisions are made available to the public every
few years, using updated parameterizations would be recommended.

Moreover, the implicit solvation model used seems to bias the equilibrium
towards compact structures. In this scenario, the use of a minimization acts as a

1.5. PELE: ACHIEVEMENTS AND LIMITATIONS 23

Figure 1.6: A) Two normal modes of a triatomic molecule. B) Application of those
normal modes following PELE algorithm. A linear combination of the modes (here
with weights 1,1) defines the directions of the conformational change (1). These direc-
tions are scaled in order to obtain the new positions for the particles of the system (2).
Harmonic constraints to target positions are added and Cα atoms are moved through
a minimization (3). Finally, in the last global minimization step, weak harmonic con-
straints are added to Cα the current position of the atoms so that the movement is not
undone (4).

24 CHAPTER 1. INTRODUCTION

bias amplifier that can eventually confine sampling to certain metastable states.
It is unclear to which extent the minimization algorithm is contributing to this
behaviour and whether switching to algorithms that have shown to perform bet-
ter, like the quasi-Newton method BFGS (Broyden-Fletcher-Goldfarb-Shanno)
[137], would help to lessen the bias.

1.5.3.2 Metropolis MC

Under equilibrium conditions, the probability T of going to state j from state
i must be equal to the probability to return from j to the initial state (Ti j =
T ji).This is known as microscopic reversibility. The equilibrium is kept by
balancing the flux between these states (fiTi j = f jT ji). This is known as detailed
balance and it is sufficient to guarantee ergodicity.

As an illustrative example, a positive increment of about 1.3 kcal at 300 K
would have an acceptance probability of only 10%. As PELE is moving nu-
merous degrees of freedom at the same time (it does atomic-detail simulations),
the energy increments are bound to be bigger. Having good acceptance rates
could be tough without minimization. However, using minimizations breaks
microscopic reversibility, which is a necessary requirement for detailed bal-
ance. Attractive states can potentially appear so that fiTi j , f jT ji. Therefore,
the convergence towards Boltzmann distribution cannot be warranted and no
calculated thermodynamical average quantity should be trusted.

Despite that, PELE has had undoubtful success simulating protein flexibil-
ity mechanisms and ligand-protein interactions. This is due to the combination
of MC techniques with protein structure prediction algorithms, which allow to
move between distant important regions of the conformational space.

1.5.3.3 ANM methodology

The ability of NMA-related methodologies to predict collective conformational
changes has been already discused in Section 1.4.2.3, however, there is still
room for improvement:

• The theory restricts atomic translations to differential movements around
the potential minimum. In practice, this restriction is not honored, and
atomic translations tend to be very wide with results that are still in agree-
ment with experimental data. A more correct way of using NMA-based
atomic translations would be applying tiny displacements and recalculate
the modes before starting a new iteration.

• As the deformation of the protein progresses, the EN evolves, and the
updated normal modes may not contain the translational information of

1.5. PELE: ACHIEVEMENTS AND LIMITATIONS 25

interest. To illustrate this we have downloaded a 10ns MD simulation17

of porcine adenylate kinase (Protein Data Bank (PDB) id.: 3ADK) from
the MODEL [138] database. In this trajectory, the protein performs a
conformational change from the initial open form to the closed form (see
Fig. 1.7A). One can measure how close the domains are by measuring
the distance between the atoms LYS64:CA and THR136:CA. We have
extracted seven frames showing different stages of the “closing” process,
and then, we have calculated their normal modes using VMD [139] and
Prody [140]. We have also obtained the translational vectors that would
move the protein directly from its open conformation (33 Å) to the closed
one (4 Å). In Fig. 1.7B, we can see the cumulative overlap between the
modes of the open conformation (33 Å) and all the modes of all the other
conformations, as well as the maximum value of the overlap between the
modes of the first conformation and the modes of all the other conform-
ations. Again, as the distance between domains decreases, so does the
ability of the modes to explain the modes of the first conformation.

Oi j =
|PiM j|

‖Pi‖‖M j‖
(1.9)

CO(k) =

 k∑
j=1

O2
i j


1
2

(1.10)

Modes change noticeably as the EN evolves (see Fig. 1.7A) which en-
forces the idea (coming from the theoretical basis of NMA) that a given
set of modes is only valid while the structure has not undergone a big
change. If the modes of the first conformation are in better agreement
with the desired change, as in this example, the mode calculation will be
limited to the first step, and the initial conformation will be the ”open”
one (already discussed elsewhere [141]). If this is not the case, the
method loses its ability to predict well studied dynamic behaviours like
the open-close transition mentioned above, thus diminishing the useful-
ness of the approach. If we calculate the maximum value for the overlap
(Eq. 1.9 [141]) of the modes of each conformation with the open to close
translation vector, we can observe that the first mode is usually the one
that better explains this conformational change. However, this similar-
ity decreases as the protein closes and the EN changes. The cumulative
overlap (Eq. 1.10 [142]) of the translational vector with all the modes of
each conformation shows to which extent modes find it difficult to repro-

17Using the AMBER 8.0 force field and explicit solvent.

26 CHAPTER 1. INTRODUCTION

duce the conformational transition (see Fig. 1.7C). However, using the
same modes for too long is not in agreement with the theoretical basis of
NMA, as seen above.

• Protein dynamics is known to be highly anharmonic [143], but NMA is
completely harmonic by definition. This can lead to an underestimation
of the mean square fluctuation of residues [144]. The frequent recalcula-
tion of modes would help to add anharmonicity to simulations. In PELE,
the minimization of the energy function, which includes the force field
and solvation term, also adds anharmonicity.

• The first low-energy modes coming from ANM calculations are usually
enough to describe wide domain collective motions. However, it lacks
the information needed to model local flexibility, like folding/unfolding
events, which may be a major issue if such conformational changes are
part of a binding mechanism.

• NMA methodologies do not treat solvation effects explicitly.

• There is no time information in NMA-based simulations, and it is not
possible to know the time scale of the modeled conformational trans-
itions.

• Side chains are considered as rigid bodies, which may help to generate
conformations with steric clashes. Also, regular ANM is amino-acid
type agnostic and it is difficult to use to study mutations. This last issue
can be solved by using improved coarse grain models [145] that take this
information into account.

• Selecting the modes to be used is not trivial. The number of unweighted
choices is proportional to 2m, being m the number of modes. Also, not
all mode combinations match with the direction of a real conformational
transition. PELE allows users to define which modes to use, how to com-
bine them and when to change directions. However, with the exception
of random choices, the user must know the dynamics of the system be-
forehand in order to take profit of these options.

• The linear combination of ANM modes can produce many possible move-
ments, but not all combinations are necessarily correct. Also, the applic-
ation of the modes through linear interpolations can destroy the covalent
structure of the protein. In PELE, this is handled by applying the modes
through a minimization (however this can worsen the bias introduced by
the potential energy definition).

1.5. PELE: ACHIEVEMENTS AND LIMITATIONS 27

1

1

1

2

4

3
4

A
) B
)

C
)

Fi
gu

re
1.

7:
A

)7
fra

m
es

fro
m

an
M

D
sim

ul
at

io
n

of
a

po
rc

in
e

ad
en

yl
at

e
ki

na
se

sh
ow

in
g

di
ffe

re
nt

in
te

r-d
om

ai
n

di
sta

nc
es

.
Be

lo
w

ea
ch

fra
m

e,
its

el
as

tic
ne

tw
or

k
ha

s
be

en
re

pr
od

uc
ed

.
Th

e
EN

ch
an

ge
s

w
ith

th
e

in
te

r-d
om

ai
n

di
sta

nc
e,

be
in

g
es

pe
ci

al
ly

pe
rc

ep
tib

le
fro

m
th

e
17

Å
.B

)C
um

ul
at

iv
e

ov
er

la
p

an
d

m
ax

im
um

va
lu

e
of

th
e

ov
er

la
p

(in
cl

ud
in

g
th

e
in

de
x

of
its

re
la

te
d

m
od

e)
be

tw
ee

n
th

e
m

od
es

of
th

e
fir

st
co

nf
or

m
at

io
n

an
d

al
lt

he
ot

he
rs

.C
)C

um
ul

at
iv

e
ov

er
la

p
be

tw
ee

n
th

e
lin

ea
rd

isp
la

ce
m

en
tf

ro
m

th
e

op
en

to
th

e
cl

os
ed

co
nf

or
m

at
io

ns
an

d
th

e
m

od
es

of
ea

ch
fra

m
e

an
d

th
e

m
ax

im
um

ov
er

la
p

(a
ga

in
,t

he
in

de
x

of
th

e
m

od
e

w
ith

m
ax

im
um

ov
er

la
p

is
al

so
sh

ow
n)

.

28 CHAPTER 1. INTRODUCTION

• The so-called ‘tip effect’ is an artifact happening in proteins where there
are different packing density zones. Less dense regions, like loose loops
at the beginning or at the end of the protein, will be considered highly
flexible. As the magnitude of the movement is determined by this relative
flexibility, structured zones are very likely to lose mobility, reducing the
sampling of those parts. Recently, there have been some efforts to reduce
the ‘tip effect’ by taking advantage of the Hessian robustness [146].

2
Objectives

As we have seen in the introduction, the pharmaceutical industry is actively
looking for new ways of boosting the efficiency and effectiveness of their R&D
programmes. The use of computational modeling tools in the drug discovery
pipeline is having a positive impact on research performance, since in silico
experiments are usually faster and cheaper that their real counterparts.

We can envisage a scenario where almost all steps of the drug discovery
pipeline are performed by fast and specialized software1 running on custom
hardware architectures.

This vision can only be achieved through technical improvements, both in
hardware and software, and through the research of new and more robust al-
gorithms that can improve the accuracy and quality of results. In particular, we
believe that these developments will be important in improving conformational
sampling in VHTS, where current techniques do not allow screening thousands
of compounds accurately. This thesis aims to work in this line, turning PELE
into a faster and more efficient tool to add receptor flexibility. Besides, we have
addressed the difficulties of analyzing extensive data associated with massive
simulation production.

In this work, we will focus on the improvements achieved in PELE.

1The company Nimbus Therapeutics is currently one of the best examples of this vision.
Its drug discovery processes rely heavily in computational tools. It is currently in partnership
with Monsanto Growth Ventures and Shire HTG (Human Genetics Group) and has attracted
top players in the pharmaceutical (Pfizer) and technological industries (Bill Gates, Shrödinger).

29

30 CHAPTER 2. OBJECTIVES

2.1 Objective: Technical improvement of PELE

PELE software is currently well established in the academic environment and
is already penetrating the pre-discovery phase thanks to its atomic-detail con-
formational sampling and protein-ligand binding prediction capabilities. This
software is able to perform faster simulations than MD and is more accurate
but still slower than regular VHTS software. Unfortunately, performance is a
matter of concern to VHTS protocols, as the size of compound libraries can be
vast.

PELE could clearly earn a place in VS protocols if execution times werelowered.
Improving its performance would imply optimizing the code, and adapting it
to take full advantage of the newest parallel hardware architectures. One of the
goals of this work is to enhance the technical features of PELE by perform-
ing a complete rewriting of its code in order to optimize and parallelize its
most computationally demanding parts.

2.2 Objective: Algorithmic improvement of PELE

As highlighted in the introduction, in the context of protein-ligand interactions
the way algorithms model flexibility is one of the keys to success. Probably,
this is the reason why finding the balance between accurate flexibility model-
ling and computational performance has become a matter of concern for the
development of new software. This is especially important for the tools typ-
ically used in VHTS pipelines, where a detailed simulation of flexibility is
usually sacrificed for the sake of speed. However, improving the reliability of
solutions would help to produce less false positives and less false negatives,
thus favoring the successive stages of the drug discovery pipeline. Our goal is
to perfect and speed up PELE flexibility handling (with a minimum per-
formance impact) in order to improve the quality of its results and convert
it into an alternative to current VHTS software.

2.3 Objective: Efficient and reliable analysis of huge
conformational ensembles

Performance improvements are usually translated into a shortening of execu-
tion time. Scientists working with conformational sampling and ligand binding
simulation software often make the most of this extra time in three ways: i) us-

2.4. SUMMARY OF THE OBJECTIVES 31

ing more accurate and computationally intensive algorithms that increase the
theoretical correctness and quality of results, ii) increasing the size of the sys-
tems studied or, iii) choosing to run simulations over longer periods of time. In
this last scenario, it is very likely that the size of the output grows considerably.

Analyzing large sets of conformations is highly demanding due, mainly, to
the own nature of this data. Indeed, structural superimposition is the require-
ment of many popular conformational analysis methods, and this does require a
significative amount of computational power and time. Moreover, software im-
plementing superimposition algorithms are often limited to the pairwise case,
which makes them an underperforming solution when applied to ensembles.
In order to avoid this, we aim to implement an efficient solution for the
calculation of collective superimposition operations.

Also, as the size of results becomes larger, so does the difficulty of analyz-
ing them and the chances of making errors. Cluster analysis techniques, which
are unsupervised machine learning methods, have become a standard solution
to this issue. However, its results can be unpredictable if used as a black box
and no further validation checks are performed. We want to address this chal-
lenge through the implementation of a reliable cluster analysis protocol.

2.4 Summary of the objectives

1. Technical improvement of PELE

(a) Complete rewrite of the code
(b) Optimization and parallelization of the most computationally de-

manding parts

2. Algorithmic improvement of PELE

(a) Perfect PELE’s flexibility handling in order to improve results qual-
ity

3. Efficient and reliable analysis of large conformational ensembles

(a) Implementation of an efficient solution for the calculation of col-
lective superimposition operations

(b) Implementation of a reliable cluster analysis protocol

32 CHAPTER 2. OBJECTIVES

3
Articles

In this chapter, we present the scientific production relevant to the three object-
ives we proposed previously. The three articles presented here include support-
ing materials that complement the reading. We have decided to add them here
and to make some enhancements in order to improve their integration with the
rest of the document. Some of the changes we have introduced are: correction
of minor spelling and grammar errors, rework of figures (whenever possible),
and addition of their references to the main bibliography.

The author also proposed and directed three Computer Engineering Degree
Projects, all of them for the Facultat d’Informàtica de Barcelona, Universitat
Politècnica de Catalunya, which are also related to the objectives.

3.1 Technical improvement of PELE

Due to the complexity of the project, which is in continuous evolution, no pub-
lication has yet been issued related to Objective 1.a and Objective 1.b. Despite
this, as the software is nowadays reaching its maturity, we do not discard to
release a publication concerning its new features and technical improvements
in the near future. A benchmark using the new version of the code has been
recently published [147].

3.1.1 Computer Engineering Degree Project
Paral.lelització del software de simulació PELE++ utilitzant GPUs by Xavier
Orò Gay et al. [148] (2012)

33

34 CHAPTER 3. ARTICLES

3.2 Algorithmic improvement of PELE

We present the draft of an article regarding Objective 2.a, which will be sub-
mitted as soon as possible to a scientific journal. Again, we have included its
supplementary materials.

Enhancing backbone sampling in Monte Carlo simulations using Internal
Coordinates Normal Mode Analysis

Author : Vı́ctor A. Gil
Affiliation: Joint BSC-IRB Research Program in Computational Biology,
Barcelona Supercomputing Center, 08034 Barcelona, Spain
Author : Daniel Lecina-Casas

Affiliation: Joint BSC-IRB Research Program in Computational Biology,
Barcelona Supercomputing Center, 08034 Barcelona, Spain
Author : Christoph Grebner

Affiliation: Department of Medicinal Chemistry, CVMD iMed, As-
traZeneca, S-43183 Mölndal, Sweden
Author: Vı́ctor Guallar

Affiliation: Joint BSC-IRB Research Program in Computational Biology,
Barcelona Supercomputing Center, 08034 Barcelona, Spain and Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluı́s Companys
23, E-08010 Barcelona, Spain

3.2.1 Role of the authors

The author of this thesis was the main responsible for: developing the meth-
ods introduced in each publication, planning and running the analysis required
for the evaluation of the methods, as well as writing the articles themselves.
The collaborators were involved in the following processes: suggesting theor-
etical improvements, relating the analyses with the biological background of
the systems, and adding contents to and proofreading the articles.

3.2.2 Computer Engineering Degree Project

Análisis vibracional de proteı́nas en coordenadas internas mediante el modelo
ANM by Alba Rincón Muñoz et al. [149] (2014)

3.3. EFFICIENT AND RELIABLE ANALYSIS 35

3.3 Efficient and reliable analysis of large conform-
ational ensembles

Finally, we present two publications concerning objectives 3.a and 3.b. These
articles are reproduced in the next sections. Their details can be found below:

pyRMSD: a Python package for efficient pairwise RMSD matrix calculation
and handling.

Author : Vı́ctor A. Gil
Affiliation: Joint BSC-IRB Research Program in Computational Biology,
Barcelona Supercomputing Center, 08034 Barcelona, Spain
Author: Vı́ctor Guallar

Affiliation: Joint BSC-IRB Research Program in Computational Biology,
Barcelona Supercomputing Center, 08034 Barcelona, Spain and Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluı́s Companys
23, E-08010 Barcelona, Spain
Journal: Bioinformatics (15th September 2013)

Journal impact factor: 5.498 (02/03/2016)

pyProCT: Automated Cluster Analysis for Structural Bioinformatics

Author : Vı́ctor A. Gil
Affiliation: Joint BSC-IRB Research Program in Computational Biology,
Barcelona Supercomputing Center, 08034 Barcelona, Spain
Author: Vı́ctor Guallar

Affiliation: Joint BSC-IRB Research Program in Computational Biology,
Barcelona Supercomputing Center, 08034 Barcelona, Spain and Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluı́s Companys
23, E-08010 Barcelona, Spain
Journal: Journal of Chemical Theory and Computation (18th July 2014)

Journal impact factor: 4.981 (02/03/2016)
The permission to reproduce these articles is granted by Oxford Open li-

cense 1 in the first case, and the ACS permission 2 in the second.

1http://www.oxfordjournals.org/our_journals/bioinformatics/for_

authors/creativecommons.pdf
2http://pubs.acs.org/userimages/ContentEditor/1218205107465/

36 CHAPTER 3. ARTICLES

3.3.1 Computer Engineering Degree Project
Optimization of the cluster analysis tool pyProCT with pyCOMPSs by Pol Al-
varez Vecino et al. [150] (2015)

3.4 Derived publications

During the development of this thesis, the author also contributed in the elab-
oration of other scientific publications. In these works he programmed sup-
porting software, carried out the analysis of the results, and performed writing
tasks:

• Monte Carlo free ligand diffusion with Markov state model analysis and
absolute binding free energy calculations by Ryoji Takahashi et al. [132]
(2013)

• Nucleoside inhibitors of tick-borne encephalitis virus by Eyer et al. [151]
(2015)

• Computational Prediction of HIV-1 Resistance to Protease Inhibitors by
Ali Hosseini et al. [152] (2016)

The thesis director, Vı́ctor Guallar Tasies, certifies that all the information
above is accurate and that the articles presented are not part of other theses or
works of any kind.

At Barcelona, 2016:

dissertation.pdf

Enhancing backbone sampling in Monte Carlo

simulations using Internal Coordinates Normal

Mode Analysis

Victor A. Gil,† Daniel Lecina-Casas,† Christoph Grebner,‡ and Victor Guallar∗,†,¶

†Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona

Supercomputing Center, 08034 Barcelona, Spain

‡Department of Medicinal Chemistry, CVMD iMed, AstraZeneca, S-43183 Mölndal, Sweden

¶Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Llúıs Companys 23,

E-08010 Barcelona, Spain

E-mail: victor.guallar@bsc.es

Abstract

Normal mode methods are becoming a popular alternative to sample the confor-

mational landscape of proteins. In this study, we describe the implementation of an

internal coordinate normal mode analysis method and its application in exploring pro-

tein flexibility by using the Monte Carlo method PELE. This new method alternates

two different stages, a perturbation of the backbone through the application of tor-

sional normal modes, and a resampling of the side chains. We have evaluated the new

approach using two test systems, ubiquitin and c-Src kinase, and the differences to the

original ANM method are assessed by comparing both results to reference molecular

dynamics simulations. The results suggest that the sampled phase space in the inter-

nal coordinate approach is closer to the molecular dynamics phase space than the one

coming from a Cartesian coordinate anisotropic network model. In addition, the new

1

method shows a great speedup (∼5-7x), making it a good candidate for future normal

mode implementations in Monte Carlo methods.

1 Introduction

Computational experiments are, in general, easier to prepare, and faster and cheaper to

perform than their real-life counterparts. Furthermore, they allow scientist to have a priv-

ileged view of the systems under study, providing spatial and (often) timescale resolution

that cannot be achieved by any other mean.

Of all the features that can be simulated in biopolymers, flexibility is one of the most

difficult to reproduce and still remains a major challenge. The biological role of protein

flexibility is highly relevant, being tightly related to protein function and ligand binding

mechanisms, the understanding of which is a central aspect in computer-aided drug design.

The correct handling of ligand and receptor flexibility is increasingly seen as critical for

the success of virtual screening experiments.1 To this aim, several approaches have been

proposed to introduce flexibility: docking on multiple receptor conformations,2,3 rotamer

sampling on side chains and ligands,4 molecular dynamics,5 stochastic techniques,6,7 etc.

The most known and used technique to sample protein flexibility, with great success, is

molecular dynamics (MD). Long scale MD simulations can be used to describe protein fold-

ing or even to capture ligand binding events efficiently.8,9 However, these simulations require

large computational resources or specialized hardware, which limits their use. In order to be

applicable in computer-aided drug design, the used sampling techniques need to be fast and

efficient allowing for reasonable short timelines. This is also the main reason why a detailed

handling of flexibility is greatly simplified in methods where speed is desirable, such as the

ones typically used in virtual high-throughput screening (VHTS). Recent hardware improve-

ments, especially in accelerators such as GPUs, are spreading the use of MD simulations in

drug design projects,10 however, they cannot be applied routinely in VHTS pipelines, where

2

thousands of compounds have to be tested.

An alternative to MD are Monte Carlo (MC) techniques.11 These methods have the capa-

bility of generating uncorrelated samples in two subsequent steps, allowing to quickly traverse

the conformational space. This property permits, theoretically, to sample the conformational

space more effectively and in a computationally tractable way. However, depending on the

problem, the difficulty of generating new likely poses may largely drop its performance.12

In particular, when modeling large biomolecules, MC methods have difficulties in efficiently

sampling all degrees of freedom;13,14 most successful MC studies (and methods) focus on

small-medium polypeptides and/or local sampling, such as loops and side chains.15,16 The

Protein Energy Landscape Exploration (PELE) software7 aims to overcome these sampling

problems by adding protein structure prediction techniques in the MC sampling iteration.

PELE has shown to be successful in many tasks like sampling protein flexibility,17 protein-

ligand interactions,18–20 enzyme engineering21,22 and to describe ligand thermodynamics.23

1.1 The Anisotropic Network Model (ANM) in PELE

PELE is implemented as an iterative procedure where each MC iteration is composed of a

perturbation and a relaxation phase. In the perturbation phase, the protein backbone is

modified using an approach based on the ANM, a type of Normal Mode Analysis (NMA)

first introduced by Atilgan and coworkers.24 This model simplifies the protein potential as

a harmonic elastic network of coarse grain units (typically Cα atoms) oscillating around a

stable equilibrium conformation. These kinds of methods have shown to be successful in

the study of large amplitude transitions in proteins, which are often involved in biological

functions. Despite their simplicity, they have been shown to have good predictive capabilities

and correlate well with experimental data.25,26

Once the elastic network has been defined and the Hessian (Hij = ∂2V
∂qi∂qj

) is calculated,

eigenvectors and eigenvalues can be obtained by solving HA = AΛ.

Eigenvalues (Λ) are associated with the frequencies of the modes and the energetic cost of

3

moving the system along its related eigenvector (A). Usually, only the first lower frequency

modes are retrieved, as they are enough to describe wide conformational movements.27 Keep

in mind that higher frequency modes, associated with Cα -Cα stretching, do not have physical

meaning. These lower frequency modes have shown to have a high degree of correlation with

MD essential space.28

In order to apply the ANM modes in PELE, a subset of the lower energy eigenvectors

is chosen (either randomly or as defined by the user) and a linear combination of them

is calculated. The translation of the current coordinates by the resultant vector defines a

set of target coordinates: the ANM conformation proposal. The conformational change is

eventually calculated by adding harmonic constraints between the initial position of each Cα

atom and their position in the proposal to finally perform a minimization that will move the

atoms close to their target positions.

Because of the chosen strategy to apply the modes during the ANM step, the covalent

geometry of the protein can be slightly distorted, producing large energy increments. In order

to overcome this, PELE enters a relaxation stage where the energy is lowered. First, the

torsional angles of the most energetic side chains are changed using a side chain prediction

algorithm and a library of predefined rotamers. Second, a global minimization is performed

in order to further lower the energy. In this system-wide minimization, a weak constraint is

added to the Cα atoms to prevent the minimization from undoing the perturbation backbone

move.

Finally, a metropolis acceptance step is performed using the Boltzmann criterion, and the

current conformation is accepted or rejected. Thus, the overall approach is quite different

from most MC implementations: each MC step involves a significant number of protein

structure prediction techniques, requiring a remarkable amount of computational time (∼1

minute on average), but is capable of introducing a large collective displacement. Notice

that, by using these methods, we introduce importance sampling toward feasible structures

(also adding limitations, see below).

4

One of the consequences of the use of minimizations is the loss of detailed balance, which

implies that a complete exploration of all accessible states is not guaranteed. Also, we ob-

serve that, under certain circumstances, the combination of the profuse use of minimizations

(twice every MC iteration) and the implicit solvent model adds a bias towards compact

conformations.

1.2 Internal coordinates conformational sampling

Internal coordinates (IC) are a set of interdependent coordinates that include the distance,

angle and dihedral angle between atoms, and are supposed to be a more natural way of

representing and manipulating chemical entities.

Conformational sampling in torsional space is, in general, more efficient than in Cartesian

coordinate (CC) space. The main reason is that changes in the torsional degrees of free-

dom often show low energy barriers, while bending and angular changes have higher energy

barriers. This idea has often been used to enhance the sampling of MC algorithms.29–32

It is also possible to calculate normal modes in the internal coordinates space. Our

preliminary analysis of torsional modes showed that they are more collective (see Section S1

). This is an indicator of a less severe “tip effect”, produced by a concentration of the modes

in loose loops that can potentially nullify the movements in more structured regions, slowing

down sampling. Besides, their degree of collectivity is less dependent on the topology of the

elastic network (EN). When comparing them with CC modes, we have observed that both

mode spaces do not always contain the same information (their overlaps range from 65% to

95%) possibly due to their differences in collectivity.

Internal coordinates NMA (icNMA) has already been used as a feasible alternative to

handle protein flexibility. However, its presence in literature is incidental compared to its

CC counterpart, maybe because the implementation of the first is harder. We would like to

highlight the methods published by Noguti and Go,33 Kidera et al.32 and the more recent

iMC method proposed by López-Blanco et al.34

5

In this article, we will focus on describing the improvements carried out on the PELE

conformational sampling features; our long-term goal is to provide a fast and reliable back-

bone sampling technique to add into virtual screening refinement steps. To this end, we

implemented an icNMA algorithm in PELE and adapted it to perform the backbone pertur-

bation and thus handling protein flexibility. The resiliency to changes in the description of

the elastic network, and the higher collectivity of IC modes, make them a perfect alternative

for the current Cartesian coordinate NMA (ccNMA) step in PELE. Also, the way torsional

changes are applied supposes a fundamental advantage compared to ccNMA: as it does not

distort the covalent structure, the complex relaxation protocol is no longer needed. In or-

der to understand the protein motion provided by the new method, as well as to assess its

performance, we ran CC and IC NMA simulations for two different systems widely used in

benchmarking: ubiquitin and c-Src kinase, and we compared our results with reference MD

trajectories.

2 Materials and Methods

2.1 Internal coordinates normal mode analysis

The implemented IC NMA method starts by describing an elastic network of rigid units that

encompass all the heavy atoms among rotatable backbone torsions. This means that two

rigid units per residue are defined instead of only one as described by ANM (see Fig. 1A).

The potential of this spring network is the sum of all Hookean interactions between the

units. If expressed using generalized internal coordinates (backbone dihedrals in this case)

the potential can be written as:

V =
1

2
(q − q0)H(q − q0)T , (1)

where H is the Hessian, that in terms of q 35 can be written as:

6

A)

B)

R3

R2

R1

Figure 1: A) The coarse grain model defines units encompassed by the torsion angles phi
and psi. B) Schematic representation of the rotation of units 4-6 (green) around torsion qα,
including the notation used in the formulae.

7

Hα,β =
∂2V

∂qα∂qβ
=
∑

i<j

fij

|rij|2
〈
rij,

∂ri − ∂rj
∂qα

〉
.

〈
rij,

∂ri − ∂rj
∂qα

〉
. (2)

By imposing Eckart conditions36 and that the origin of the molecule is the center of mass,

Noguti and Go proposed an analytical solution for the partial derivatives37 so that

∂r1
∂qα

= eα ×
(
M2

M
rα +

M1

M
r01

)
− r1 ×

M1r
0
1 × (eα × rα) + I2eα)

I
(3)

∂r2
∂qα

= −eα ×
(
M1

M
rα +

M2

M
r02

)
+ r2 ×

M2r
0
2 × (eα × rα) + I1eα)

I
, (4)

where symbols without subscript refer to global quantities and symbols with superscript

refer to the set of units to the left (1) or to the right (2) of the rotation axis, M is the mass,

I the inertia, r0 the center of mass and r are the atom positions. These derivatives describe

how Cartesian coordinates change upon rotation around the eα axis (torsion qα), in such a

way that the momentum is conserved (see Fig. 1B).

The recursive method proposed by Noguti and Go33 and by Abe and coworkers38 lowers

memory consumption as well as computational complexity, which decreases from θ(n4) to

θ(n2). The kinetic energy can than be expressed in terms of the generalized coordinates q:

K =
1

2
q̇TKq̇ (5)

and the metric tensor K:

Kα,β =
∂2K

∂q̇α∂q̇β
=

n∑

i

mi

〈
∂ri
∂qα

,
∂ri
∂qβ

〉
, (6)

which can be calculated as:37

Kαβ =
M1M3

M

[
eα × (rα − r01)

] [
eβ × (rβ − r03)

]
+

[
M1r

0
1 × (eα × rα)− I1eα

]
I−1

[
M3r

0
3 × (eβ × rβ)− I3eβ

] (7)

8

The eigenvectors and eigenvalues are obtained solving the eigenproblemHA = KAΛ. On this

occasion the meaning of a eigenvector is no longer a displacement in Cartesian coordinates,

but a set of differential rotations around the φ and ψ torsions of the protein backbone. It is

worth noting that, as torsional NMA uses less degrees of freedom than ANM (∼2 vs. 3 per

residue), the Hessian matrix is smaller and therefore its diagonalization is faster. However,

this is not going to affect the overall performance of the proposed method, as frequently

modes are calculated only few times along the simulation.

2.2 IC-based sampling method

The new implemented method can be divided in two independent stages: backbone pertur-

bation and side chain perturbation, both implemented as MC algorithms. Each iteration

of the backbone perturbation stage (icNMA step) is analogue to an ANM step in regular

PELE (ccNMA step). First, the increments for φ and ψ torsions of the backbone are cal-

culated using the eigenvectors. Then, the resulting differential rotations are rescaled using

the maximum amplitude chosen from a user-defined range [amin, amax]. The value is drawn

from a normal distribution with mean amin+amax/2 and standard deviation amin−amax/4. The

distribution is truncated so that, when the chosen amplitude is outside the range, the draw

is repeated. The angular increments are applied using Choi’s method.39

In general, small torsional displacements can give place to large linear displacements,

favouring the appearance of steric clashes. The energy increment caused by the clashes will

most likely ensure rejection of the backbone move, decreasing acceptance dramatically. As

this issue is especially evident in side chains, we have chosen to minimize the energy of those

side chains whose atoms collide with other atoms of the system, using PELE implementation

of a Truncated Newton minimizer.40 While this minimization breaks detailed balance, the

following stage (see below) aims at recovering proper side chain sampling.

The side chain perturbation stage, also implemented as an MC algorithm, is performed

right after the backbone perturbation stage. At each iteration, a residue with a side chain

9

S
id

e
 c

h
a
in

 p
e
rt

u
rb

a
ti

o
n

N
M

A
 s

te
p
 (

ic
N

M
A

)

N
M

A
 s

te
p
 (

A
N

M
)

R
e
la

x
a
ti

o
n

Pe
rt

u
rb

a
ti

o
n

ccNMA-based Method icNMA-based Method

B
a
ck

b
o
n
e
 p

e
rt

u
rb

a
ti

o
n

Figure 2: Diagram of the two methods currently implemented in PELE. In the ccNMA-based
method, each iteration is composed of two parts: the ANM perturbation and the relaxation.
The new icNMA-based method consists of two independent perturbation stages, both im-
plemented as MC algorithms. In the first stage (backbone perturbation), the backbone is
modified, in the second (side chain perturbation), a proper sampling of the side chains is
recovered.

10

with rotatable bonds is randomly chosen. Then a random increment for each of its rotatable

bonds is sampled from a truncated normal distribution (defined as before), a sense for the

rotation is randomly selected, and the new side chain conformation is built. After this,

the energy increment of the system is calculated and the proposal is accepted or rejected

depending on the outcome of the Metropolis test.

2.2.1 Test systems and reference simulations

We have decided to use MD as a reference in order to compare the two backbone sampling

methods. MD simulations are a standard approach for investigating protein dynamics, even

though assessing full convergence is hard to achieve.41 We assume that a long enough MD

simulation (i.e. beyond the µs) should be capable of sampling the relevant conformational

space.42,43

We have selected Ubiquitin (PDB id: 1UBQ) and c-Src-kinase (PDB id: 1Y57, residues

258:534) as test systems because they show very different structural and dynamic properties.

Ubiquitin is a small globular protein with only 76 amino acids which can be found in nearly

all eukaryotic cells. It plays a crucial role in post-translational modifications and modifies the

function of substrate proteins.44–46 It is very well investigated, both experimentally47–52 and

theoretically.53–55 The structure is well characterized by X-ray (PDB-id: 1UBQ47) and NMR

(e.g. PDB-id: 2MSG52). This makes it an ideal test system for new methods and it is often

used as part of benchmark sets.56–58 The reference MD simulation for ubiquitin is taken from

a previous benchmark of PELE.59 The trajectory was calculated with GROMACS 4.0.560

using the OPLSAA force field61 and explicit solvent (a cubic box of water molecules). It

was run at 300 K and 1 atm, using periodic boundary conditions. The production run was

performed for 1 µs. We analysed one snapshot every 100 ps. In the PELE simulations, we

omitted the last three residues of the n-terminal loop, as its high flexibility is a source of

“tip effect” and masks the flexibility of the rest of the protein.

c-Src is a cytoplasmic tyrosine kinase that catalyzes the transfer of a phosphate group

11

from ATP to the hydroxyl group of the tyrosine residue. Src plays an important role in

cellular proliferation, survival, migration, and angiogenesis.62 It shows wide inter-domain

displacements between its three well-defined domains, the N-lobe, C-lobe and hinge. Our

reference MD simulation for c-Src is a 20 µs MD simulation describing the binding of PP1

(pyrimidine-type) inhibitor, a Src-selective tyrosine kinase inhibitor binding to the ATP-

binding site of the kinase,63 presented by Shan et al.8 It was parameterized using a cor-

rected64,65 Amber99SB force field and the simulation was run using Desmond 2.2.2.1 soft-

ware66 in the Anton specialized hardware67 with explicit water solvent. Although the simula-

tion was performed in the presence of a ligand, we assume that only the populations of visited

states68,69 change, but the accessible conformational space does not change considerably.

2.3 Comparison analyses

In order to assess the performance of the different approaches, we carried out different

analyses and compared them against our reference classical MD simulations. The chosen

analyses are:

2.3.1 Root mean square fluctuation (RMSF)

The RMSF is an isotropic measure of the displacement over time of an atom from a reference

position (typically the average structure after superposition of all frames). It is a common

measure of conformational sampling efficiency, however it cannot be used as the only source

to compare different methods, as the exploration of very different zones could lead to the

same RMSF. It can be calculated as

RMSF ≡
√
〈(x− 〈x〉)2〉 =

√√√√ 1

F

F∑

n=1

(x(n)− 〈x〉)2 (8)

where F is the number of structures of the conformational ensemble, and 〈x〉 is the average

position.

12

2.3.2 Solvent-accessible surface area (SASA)

The SASA describes the accessible surface for a spherical probe which is rolling over the

molecule of interest. The probe, with a typical radius set to 1.4 Å , mimics a water molecule,

giving a measure of the exposition of the molecule to the solvent and, therefore, its compact-

ness.70

2.3.3 Radius of gyration

The radius of gyration is a measure of the dispersion of a set of atoms to its center of mass.

Rg ≡
√
〈(r − rCOM)2〉 =

√√√√ 1

N

N∑

i=1

(ri − rCOM)2 (9)

Thus, it is a measure of its compactness.71 By measuring the radius of gyration at different

times, one can assess protein conformational changes. Both SASA and the radius of gyration

have been calculated using the VMD software.72

2.3.4 Conformational Space Overlap

In order to perform a purely geometrical comparison of the ensembles produced by each

method, it is convenient to calculate the overlap between the conformational space of the

reference MD and the normal mode driven trajectories. We used a similar approach to the

ones shown in Lymann’s and Lindorff-Larsen’s articles:73,74

• First, we want to obtain a partition in k regions of our reference conformational space

(R1, R2, . . . , Rk). To this end, we use the cluster analysis software pyProCT75 and

apply a k-medoids algorithm using the RMSD between conformations as the distance.

The medoids of each of these clusters (r1, r2, . . . , rk) are the representative conforma-

tions of each region Ri of the conformational space.

• Then, for each conformation cj belonging to the CC or IC NMA ensembles, we look for

13

its most similar MD representative ri and we add it to the cluster Ri. In other words,

this means that conformation ci is assigned to the region Ri of the conformational

space.

• For all the methods, we calculate the population of all the clusters. Afterwards, values

are normalized in order to get a probability density distribution.

• Finally, the square root of the Jensen-Shannon divergence (JSD) of the distributions

is calculated as

O = JSD(P ||Q)
1
2 =

(
1

2
KLD(P ||M) +

1

2
KLD(Q||M)

) 1
2

, (10)

where KLD is the Kullback-Liebler divergence and Q is the average distribution. The

square root of JSD can be used as a metric76 to assess the degree of overlap of the

probability distributions, and, therefore, of each one of the methods with MD. Val-

ues are confined into the range [0,1], where a value of 1 means that the population

distributions diverge completely and a value of 0 that the distributions are analogous.

2.3.5 Computational efficiency of deformation

Another goal of this work is to assess the temporal performance of the new method. We are

mainly interested in two aspects, the time needed to complete an iteration, and the amount of

deformation produced in each iteration (calculated as the RMSD of the structures before and

after the iteration). We will combine both measures to calculate the computational efficiency

of the deformation process as RMSDstep/tstep, the time needed to deform the backbone 1 Å .

14

3 Results and discussion

3.1 Simulation setup

Both normal mode methods are customizable, letting the user control most aspects of the

simulation. Since we are introducing a new methodology, we tuned the values of some

simulation parameters in order to obtain the best performance and to compare both methods.

First, we set the values of the common parameters like the temperature (300 K), or the cutoff

distance of the elastic network (set to a 9 Å , a value that is in agreement with the literature77

and produces those highly collective modes; see Section S1). We decided to calculate up to

10 modes and to not combine them linearly. The mode and the sense of the movement are

randomly changed at each MC iteration, which is a general and system-agnostic solution.

Also, we chose to calculated the modes once at the beginning of the simulation, assuming

that the potential surface does not change too abruptly.

Second, we determined the most sensitive parameters for each method. The first one, the

displacement magnitude, controls the maximum translation (Å) or the maximum torsional

rotation (rad) performed in the NMA step. The second one, the minimum root mean square

gradient (RMSG), is the threshold of convergence of the minimizations and can be under-

stood as the “strength” of the minimization. In the ANM method, it modules the closeness

of the final conformation to the proposal, whereas in the IC NMA method, it regulates

the intensity of the side chain minimization, and it is related to the success releasing steric

clashes.

Third, we performed a first round of simulations setting these parameters with all the

combinations of the values found in Table 1. In order to find the best settings, we discarded

the results with acceptances out of our working range (20-40%78) and we ranked them

according to the similarity of their RMSF profiles with the reference MD simulation and

favouring large backbone deformations. Then, we performed a second round of simulations,

fine tuning the best displacements found in the previous round.

15

For the ubiquitin system, we found that the optimal values for our working parameters

were a displacement magnitude of 1.08 Å and an RMSG of 0.1 kcal/molÅfor the CC simulations,

and a displacement magnitude in the range of 0.07 to 0.16 rad and an RMSG of 0.1 kcal/molÅfor

the IC simulations. Likewise, for c-Src kinase, the best values for the CC simulations were

0.66 Å for the displacement magnitude and and 0.1 kcal/molÅfor the RMSG. A displacement

range of 0.07 to 0.14 rad and RMSG of 0.05 kcal/molÅwas found to be the best fitted parameters

for the icNMA simulation.

As for the side chain perturbation stage in the icNMA method, we chose to perform 2000

side chain changes every ten steps of icNMA. In this case, we performed dihedral rotations

in the range of 0.02 to 0.024 rad. These values are again optimized so that they yield

acceptances between 20 and 40%.

Finally, we performed 12 independent 24 h production runs for each method and system.

Table 1: Choice of parameters affecting the mode application step in both studied methods
and the values that will be used in the characterization tests.

Method Displacement magnitude (Å rad) Relaxation strength (kcal/molÅ)

ccNMA 0.25, 0.66, 1.08, 1.5, 1.92 0.01, 0.02, 0.04, 0.05, 0.1
icNMA 0.02, 0.05, 0.075 ,0.10, 0.12, 0.15 0.01, 0.02, 0.04, 0.05, 0.1

3.2 Energetic cost of the NMA perturbation

We calculated the energy increments of the NMA step in the IC simulations as well as

the energy increments of the ANM step and full iteration (perturbation+relaxation) of the

CC simulations. The results show that icNMA is able to make MC proposals that are

energetically favorable in both systems (see Table 2 and 3), while the ccNMA-based method

cannot (the energy increments of this step are almost always positive). Without a way to

make these energies decrease, it would be almost impossible to accept any step. It is only

thanks to the relaxation phase of the CC algorithm, that the energy of the MC proposals

16

can be lowered. It is worth noting that the IC method can result in large increments in

energy (considerably larger than in CC) due to unresolved backbone clashes from dihedral

rotation. It happens more often in ubiquitin than in the c-Src kinase, since the first is more

globular than the latter, and steric clashes can be introduced more easily.

Figure 3: Distribution of the energy increments produced on each iteration for each method
and protein system. In red, we show the energy increments in the icNMA step. In light and
dark green we show the distributions of energy increments related to the ccNMA step and
the complete PELE step, respectively. Note the changes in axis scales.

Table 2: Acceptance and percentage of energetically favorable proposals (EFP) generated
by each algorithm in our simulations. In the CC, we can find two values: the first value
belongs to the EFP of the ANM step, the second, between parentheses is the EFP of the
whole PELE step (i.e. including the relaxation phase).

Ubiquitin c-Src kinase
CC IC CC IC

Acceptance (%) 45.3 19.4 37.5 28.2
EFP (%) <0.1 (26.6) 18.7 <0.1 (21) 27.2

3.3 Compactness of the protein (SASA and radius of gyration)

As it can be seen in Fig. 4, both ensembles generated by NMA-based methods are more

compact than the ones obtained using MD. Comparing both normal mode methods, we see

17

Figure 4: SASA and radius of gyration distributions for all the studied ensembles and sys-
tems. In general the measures obtained from the ensembles produced by the IC method look
similar to our reference MD simulations.

18

that protein structures obtained by applying icNMA modes have larger SASA values and,

therefore, seem to be less compact and collapsed than those obtained using the ccNMA

method. We can draw similar conclusions by looking at the radius of gyration distribution.

We could expect differences, since the NMA-based methods are using an implicit solvation

model (the Onufriev, Bashford, and Case, OBC79 model), whereas the MD simulations were

run using explicit solvent. The bias of some implicit solvent models, including OBC, to

compact structures is well studied.79–83 This bias is mainly caused by the over-stabilization

of nonpolar interactions84 and the increase in number and stability of hydrogen bonds.85

This effect is further emphasized in the CC model by the two minimization procedures

(see below). In current PELE simulations this is typically avoided by adding a weak (∼0.1

kcal/molÅ2) harmonic constraint every 10 alpha carbons, for example, to the initial model.

3.4 Protein fluctuations (RMSF)

RMSF plots of the ubiquitin simulations show small overall fluctuations for all methods (see

Fig. 5A), between 1 and 2 Å . This is expected, as ubiquitin is a relatively stiff protein. The

movement is concentrated on the less structured parts: the loops between beta-sheets and

alpha-helices (see Fig. 5D). In general, icNMA fluctuations are in closer agreement with MD

than ccNMA fluctuations and also show a higher baseline. The scaled RMSF (see Fig. 5B)

allows us to have a clearer view of the relative magnitudes of fluctuations. The β2-α-helix

loop is more stable in the MD and IC simulations, while it shows a prominent peak in the

RMSF for the CC simulation. This peak belongs to a temporary backbone rearrangement

that is not present in the IC and MD simulations. CC clearly populates a further state with

larger RMSD than IC and MD (See Fig. 5C). However, ccNMA clearly underestimates the

movement of the β-4-β5 loop, which is nicely captured by icNMA.

Our c-Src kinase simulations are again producing smaller overall fluctuations than MD

(with the exception of the P-loop). The rescaling of the RMSF plots shows that the ANM

method is able to capture the flexibility of the A-loop with slightly more success (see 6 B).

19

Figure 5: A) RMSF profile of the ubiquitin NMA simulations compared with MD. The
last three residues have been excluded in order to milden the “tip effect”. B) We have
superimposed the RMSF plots so that relative fluctuations can be checked. In order to do
this, we have scaled them so that the root mean square error was minimum. This yielded
scaling factors of 2.10 (CC) and 1.7 (IC). The most flexible parts of the protein (mainly the
loops connecting the secondary structure) have been highlighted in this scaled representation
of the RMSF. C) RMSD plot of the β2-α-helix loop referred to the first CC simulation frame.
D) Representation of ubiquitin identifying its secondary structure elements.

20

Figure 6: A) RMSF plot of the c-Src kinase NMA simulations compared with MD. N and
C-terminal loops are omitted B) Scaled RMSF plot with highlighted functionally relevant
elements. The scale factors are 3.10 (CC) and 2.3 (IC). C) Distributions of the distances
between CYS:277:CA and LEU:387:CA for each simulation. D) Representation of the protein
identifying its more relevant secondary structure elements.

21

Major differences can be found in the fluctuations of the residues belonging to the αD-

helix, A-loop and αG-helix (see 6A, B and D). These structures show wide local rearrange-

ments, in essence folding-unfolding events, that are hard to capture using NMA-based tech-

niques.

The correct sampling of the P-loop dynamics is of utmost importance, as it is directly

involved in the binding process.86 We decided to investigate the opening and closing of

this loop in more detail by measuring the distance between a central residue in the P-loop

(CYS:277:CA) and a second residue on the other side of the binding site (LEU:387:CA) (see

Fig. 6C). This distance shows a similar fluctuation range in the MD and icNMA simulations

(∼15-25 Å and ∼13-23 Å respectively), whereas the range of distances sampled by the ANM-

based simulation is significantly smaller (∼9.5-10.5 Å). This is related to the increase of

compactness observed in the SASA and rgyr analyses: the protein collapses quickly and the

inter-domain distance does not oscillate much (see Fig. 4).

The lower overall fluctuations of both normal mode methods, as well as the low base-

lines, suggest that the proteins are moving less. This is partly due to the lack of local motion

which can only be mapped with higher frequency modes, not present in our simplified NMA

procedure. In addition, in the icNMA method there are no anharmonic backbone move-

ments, further limiting its comparison with MD; anharmonicity has been studied to play an

important role in the modulation of the amplitude of fluctuations.77,87

3.4.1 Effect of the minimization in the compaction process

In order to gain more insight on the compaction process and the effect of minimizations on it,

we study how the distance between CYS:277:CA and LEU:387:CA changes in the different

stages of the algorithms in the closing regime. It is convenient to define rd ≡
∑

i∈D− di∑
i∈D+

di
, where

D+ and D− are the domains defined by positive and negative increments respectively, and

di are the distance increments.

We will focus on the three parts of the ccNMA-based algorithm related to the change of

22

the backbone (see Figure 2): the target coordinates calculation, where we make a proposal,

the ANM minimization, where we apply the minimization with spring constraints toward the

proposals; and the system-wide constrained minimization. In the icNMA-based algorithm,

we will focus on the target rotation calculation (i.e. proposal rotations) and the torsional

rotation, where we apply the rotation.

In the proposal stage (see Table 3), rd ' 1, since proposals are symmetric by construction

(random choice of modes and senses). In the application of the ANM modes, there is

symmetry again, which means that the ccNMA step is successfully generating conformations

close to the proposal. However, the constrained minimization shows a recurrent bias toward

negative increments (rd ' 1.23), leading to more compact structures. In the icNMA-based

algorithm, proposals are again symmetric by construction, and torsional rotations are set to

those values, giving no overall bias (rd ' 1).

This agrees with the results previously seen in Figure 4, where ccNMA generated struc-

tures tend to be more compact, since backbone movement is minimization-driven. That

would explain the tendency to over-close the protein, whereas in the icNMA step this does

not happen, since minimizations do not apply to the backbone. These results demonstrate

that the use of minimizations plays an important role in the compaction process.

Table 3: rd values in the different stages of the ccNMA and icNMA-based methods.

CC IC

Target coordinates 0.98 0.95
ANM application 1.02 0.95

Constrained minimization 1.23

3.5 Conformational space overlap

We have applied the algorithm described in Section 2.3.4 for partitions of 1 to 1k clusters. In

panel A of Figure 7, we can see that, for all the studied numbers of clusters, the JSD is always

lower for icNMA than for ccNMA. This means that the exploration of the configurational

23

space performed by icNMA is in closer agreement with MD. The JSD can tell us whether

NMA methods are populating the same regions as MD trajectories, however it does not give

us information about the structural similarity of the conformations. In order to analyze it,

we have calculated the average Cα RMSD of each structure in the NMA ensembles with the

most similar MD conformation inside its cluster (see lower subplots of Fig. 7A). The RMSD

results for ubiquitin are similar for both methods, showing an average RMSD value of ∼0.8

Å . In the c-Src kinase case, however, results are significantly different between methods: the

RMSD difference of 0.8 Å is indicating that icNMA is not only populating similar regions of

the space, but also generating similar conformations to MD. Taking k = 10 as a case study

(see Fig. 7B), we can observe that:

Ubiquitin Both NMA methods are visiting only a fraction of the possible regions of the

conformational space sampled by MD (3 out of 10). The exploration performed by

the ccNMA method is clearly even less than the one performed using the icNMA

method: more than 90% of the population is concentrated in one cluster. This can be

explained with a quick look to the RMSD matrix of the combined ensembles (Fig. 7C)

: the submatrices of the NMA methods are more similar between themselves than to

the MD submatrix. This is a consequence of the NMA methods failing to model the

flexible loops connecting the secondary structure.

c-Src kinase The populations of the icNMA ensemble is distributed more evenly than the

ccNMA ensemble populations. However, the icNMA method is still overpopulating

one state (∼60% of its population). The ccNMA algorithm is visiting only 2 regions, a

poor result compared with the 7 out of 10 regions that the icNMA is able to populate.

In the subplot, we depicted the average interdomain distance for the structures of each

cluster. icNMA has better agreement with MD, capturing the different stages of the

P-loop opening/closing process. The RMSD matrix shows, again, notable differences

between the ccNMA and the MD ensembles. However, the differences between icNMA

and MD are less noticeable, and this can be related to the successful modelling of the

24

P-loop behaviour .

3.6 Computational performance of the methods

We have measured the time required to complete different tasks: an icNMA step, a ccNMA

step, and a full PELE iteration (ccNMA step + relaxation phase). We have also calculated

the extent of the perturbations performed in each task by calculating the RMSD of the

structure before and after the task. We observe that the average time required to perform

a ccNMA step is lower than the average time needed to perform an icNMA step (see Table

4), however, their efficiency distributions are pretty similar (see Fig. 8). This indicates

that, although the icNMA step is slightly slower, the perturbations performed are wider

than the ones applied by the ccNMA step. Nevertheless, the perturbations performed in

the ccNMA step are, in general, not energetically favorable (already seen in Section 3.2),

which forces PELE to add a relaxation phase. If we take into account the time needed to

run the relaxation phase, the IC methodology clearly outperforms the CC methodology (the

speedups per step are ∼5x and ∼7x, depending on the system). This explains the dramatic

differences in their efficiencies illustrated in Fig. 8.

As the relaxation phase is an essential part to the ccNMA-based algorithm, so is the

side chain perturbation stage to the icNMA method. In order to study the impact of this

stage on the overall time, we have added the time needed to run 200 iterations of side chain

perturbation to the icNMA time (remember that the ratio of iterations between the first and

second stages is 10:2000). As expected, the resultant distributions show a shift to the left

(less efficiency). This effect is more significant in the ubiquitin case than in the c-Src kinase

case, mainly because the amortized side chain perturbation time (∼2 to 3s) is of the order of

the time spent in an icNMA iteration. However, in both cases, it still shows a better overall

efficiency than the CC-based method.

25

% of ensemble population

A
)

B
)

C
)

F
ig

u
re

7:
A

)
J
S

D
of

th
e

N
M

A
m

et
h

o
d

s
an

d
M

D
fo

r
a

d
iff

er
en

t
n
u

m
b

er
of

cl
u

st
er

s
(1
≤
k
≤

10
00

).
B

)
D

et
ai

l
of

th
e

d
is

tr
ib

u
ti

on
s

p
er

cl
u

st
er

fo
r
k

=
10

.
C

)
C
α

R
M

S
D

m
at

ri
ce

s
fo

r
th

e
w

h
ol

e
en

se
m

b
le

of
si

m
u

la
ti

on
s.

T
h

e
su

b
m

at
ri

ce
s

of
M

D
an

d
N

M
A

si
m

u
la

ti
on

s
h

av
e

b
ee

n
h

ig
h

li
gh

te
d

.

26

Figure 8: Distribution of the computational efficiency for both methods and systems. Both
NMA steps (red and blue) look to be able to perform similarly. However, when comparing
with PELE full iteration (purple), it can be clearly seen that the IC-based method has a
larger efficiency, even when the amortized side chain perturbation time is considered (green).

Table 4: Average time values of an icNMA iteration, the side chain perturbation step, the
ANM step, and a full MC iteration of PELE. The need of the relaxation phase in the CC-
based PELE algorithm makes the overall time of an iteration clearly slower than an icNMA
iteration. The simulations were run in AMD Opteron 6238 @ 2.60GHz nodes with 4Gb of
RAM per node. Standard deviations are included between parentheses.

System
icNMA
step (s)

Side. Perturb.
All steps (s)

ccNMA step (s)
PELE

iteration (s)

Ubiquitin 2.945 (1.456) 21.327 (2.503) 1.376 (0.704) 20.065 (5.624)
c-Src kinase 11.648 (3.273) 27.917 (2.958) 6.106 (0.679) 57.9 (9.233)

27

4 Conclusions

There is a high interest in developing faster sampling techniques for modeling backbone

flexibility in proteins, with normal mode approximations such as ANM becoming a popular

alternative. The modes obtained using ANM, however, describe the movement of only

one atom per residue (the Cα atom) and applying this movement to the remaining atoms

is not trivial. In PELE, this is achieved by applying a minimization. However, in this

step the covalent topology of the protein is often unphysically distorted, which requires the

introduction of a relaxation phase where a system-wide minimization is performed.

In this article we have presented a new MC method that handles the protein backbone

changes using IC NMA. The application of the internal modes through a geometrical ma-

nipulation of torsions does not distort the covalent topology, allowing us to to generate more

energetically favorable conformation proposals than our previous method. Another funda-

mental advantage of the use of torsional modes is their increased collectivity and robustness,

which alleviates the “tip effect” problem, facilitating the fast traversal of the conformational

space.

The elimination of the ANM minimization and the unneeded relaxation phase has two

major consequences. First, as both the side chain prediction step and the system-wide

constrained minimization are computationally costly processes, the new method shows a

great speedup (∼5-7x) without decreasing the RMSD of the perturbations. Second, as

these minimizations amplify the solvent model bias towards compact structures, the new

method shows SASA and radius of gyration distributions which are closer to those observed

in MD. Moreover, our analyses have also shown improvements in the exploration of the

conformational space: the icNMA algorithm is able to explore similar regions to MD and

generate structures with closer RMSD than the CC-based method.

The main drawback we have found is that, although the icNMA method seems to produce

relative fluctuations that are in better accordance with MD than the ANM-based method,

these fluctuations are smaller and show a lower baseline than MD. This is the consequence

28

of one of the main limitations of applying NMA-based techniques, where local flexibility is

not well represented by higher frequency modes.

Overall, implementing icNMA results in better agreement with MD explicit solvent sim-

ulations. Using internal coordinates seems to be a promising technique for speeding up the

induced fit studies in PELE and supposes a step forward in terms of the quality of the

flexibility handling.

Acknowledgement

The authors thank D. E. Shaw Research lab. for providing the kinase MD coordinates and

Dr. López Blanco for sharing the code developed in his thesis. This work was supported

by the CTQ-48287-R projects of the Spanish Ministry of Economy and Competitiveness

(MINECO) and the grant SEV-2011-00067 of Severo Ochoa Program, awarded by the Span-

ish Government.

29

References

(1) Erickson, J. A.; Jalaie, M.; Robertson, D. H.; Lewis, R. A.; Vieth, M. J. Med. Chem.

47, 45–55.

(2) Huang, S.-Y.; Zou, X. Proteins 66, 399–421.

(3) Totrov, M.; Abagyan, R. 18, 178–184.

(4) Sherman, W.; Day, T.; Jacobson, M. P.; Friesner, R. A.; Farid, R. J. Med. Chem. 49,

534–553.

(5) Legge, F. S.; Budi, A.; Treutlein, H.; Yarovsky, I. Biophys. Chem. 119, 146–157.

(6) Jorgensen, W. L.; Tirado-Rives, J. J. Comput. Chem. 26, 1689–1700.

(7) Borrelli, K. W.; Vitalis, A.; Alcantara, R.; Guallar, V. J. Chem. Theory Comput. 1,

1304–1311.

(8) Shan, Y.; Kim, E. T.; Eastwood, M. P.; Dror, R. O.; Seeliger, M. A.; Shaw, D. E. J.

Am. Chem. Soc. 133, 9181–9183.

(9) Kresten Lindorff-Larsen1, R. O. D., Stefano Piana; Shaw, D. E. 334, 517–520.

(10) De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. J. Med. Chem.

(11) Cole, D. J.; Tirado-Rives, J.; Jorgensen, W. L. Biochim. Biophys. Acta, Gen. Subj

1850, 966–971.

(12) Frenkel, D.; Smit, B. Understanding molecular simulation: from algorithms to applica-

tions, 2nd ed.; Computational science series 1; Academic Press.

(13) Rapaport, D. C.; Scheraga, H. A. Macromolecules 14, 1238–1246.

(14) Paine, G. H.; Scheraga, H. A. Biopolymers 24, 1391–1436.

30

(15) Lotan, I.; Schwarzer, F.; Latombe, J.-C. In Algorithms in Bioinformatics ; Benson, G.,

Page, R. D. M., Eds.; Lecture Notes in Computer Science 2812; Springer Berlin Hei-

delberg, pp 354–373.

(16) Tang, K.; Zhang, J.; Liang, J. PLoS Comput. Biol. 10 .

(17) Esteban-Mart́ın, S.; Fenwick, R. B.; Ådén, J.; Cossins, B.; Bertoncini, C. W.; Gual-

lar, V.; Wolf-Watz, M.; Salvatella, X. PLoS Comput. Biol. 10, e1003721.

(18) Hosseini, A.; Espona-Fiedler, M.; Soto-Cerrato, V.; Quesada, R.; Pérez-Tomás, R.;

Guallar, V. PLoS ONE 8, e57562.

(19) Eyer, L.; Valdés, J. J.; Gil, V. A.; Nencka, R.; Hřebabecký, H.; Šála, M.; Salát, J.;

Černý, J.; Palus, M.; Clercq, E. D.; Růžek, D. Antimicrob. Agents Chemother. 59,

5483–5493.

(20) Grebner, C.; Iegre, J.; Ulander, J.; Edman, K.; Hogner, A.; Tyrchan, C. J. Chem. Inf.

Model.

(21) Monza, E.; Lucas, M. F.; Camarero, S.; Alejaldre, L. C.; Mart́ınez, A. T.; Guallar, V.

J. Phys. Chem. Lett. 6, 1447–1453.

(22) Acebes, S.; Fernandez-Fueyo, E.; Monza, E.; Lucas, M. F.; Almendral, D.; Ruiz-

Dueñas, F. J.; Lund, H.; Martinez, A. T.; Guallar, V. ACS Catal. 6, 1624–1629.

(23) Takahashi, R.; Gil, V. A.; Guallar, V. J. Chem. Theory Comput. 10, 282–288.

(24) Atilgan, A. R.; Durell, S. R.; Jernigan, R. L.; Demirel, M. C.; Keskin, O.; Bahar, I.

Biophys. J. 80, 505–515.

(25) Rueda, M.; Chacón, P.; Orozco, M. Structure 15, 565–575.

(26) Ahmed, A.; Villinger, S.; Gohlke, H. Proteins 78, 3341–3352.

(27) Kitao, A.; Hirata, F.; Gō, N. 158, 447–472.

31

(28) Skjaerven, L.; Martinez, A.; Reuter, N. Proteins 79, 232–243.

(29) Northrup, S. H.; McCammon, J. A. Biopolymers 19, 1001–1016.

(30) Li, Z.; Scheraga, H. A. Proc. Natl. Acad. Sci. U.S.A. 84, 6611–6615.

(31) Jorgensen, W. L.; Tirado-Rives, J. J. Phys. Chem. 100, 14508–14513.

(32) Kidera, A. Int. J. Quantum Chem 75, 207–214.

(33) Noguti, T.; Gō, N. Biopolymers 24, 527–546.

(34) Lopez-Blanco, J. R.; Garzón, J. I.; Chacón, P. Bioinformatics 27, 2843–2850.

(35) Kovacs, J. A.; Cavasotto, C. N.; Abagyan, R. J. Comput. Theor. Nanosci. 2, 354–361.

(36) Eckart, C. Phys. Rev. A 47, 552–558.

(37) Noguti, T.; Gō, N. J. Phys. Soc. Jpn. 52, 3283–3288.

(38) Abe, H.; Braun, W.; Noguti, T.; Gō, N. Comput. Chem. 8, 239–247.

(39) Choi, V. J. Chem. Inf. Model. 46, 438–444.

(40) Tamar Schlick, A. L. F. 18, 71–111.

(41) Genheden, S.; Ryde, U. Phys. Chem. Chem. Phys. 14, 8662–8677.

(42) Henzler-Wildman, K.; Kern, D. Nature 450, 964–972.

(43) Plattner, N.; Noé, F. Nat. Commun. 6, 7653.

(44) Glickman, M. H.; Ciechanover, A. 82, 373–428.

(45) Schnell, J. D.; Hicke, L. J. Biol. Chem. 278, 35857–35860.

(46) Mukhopadhyay, D.; Riezman, H. 315, 201–205.

(47) Vijay-Kumar, S.; Bugg, C. E.; Cook, W. J. J. Mol. Biol. 194, 531–544.

32

(48) Bang, D.; Makhatadze, G. I.; Tereshko, V.; Kossiakoff, A. A.; Kent, S. B. Angew. Chem.

Int. Ed. 44, 3852–3856.

(49) Liu, G.; Forouhar, F.; Eletsky, A.; Atreya, H. S.; Aramini, J. M.; Xiao, R.; Huang, Y. J.;

Abashidze, M.; Seetharaman, J.; Liu, J.; Rost, B.; Acton, T.; Montelione, G. T.;

Hunt, J. F.; Szyperski, T. J. Struct. Funct. Genomics 10, 127–136.

(50) Alexeev, D.; Barlow, P. N.; Bury, S. M.; Charrier, J.-D.; Cooper, A.; Hadfield, D.;

Jamieson, C.; Kelly, S. M.; Layfield, R.; Mayer, R. J.; McSparron, H.; Price, N. C.;

Ramage, R.; Sawyer, L.; Starkmann, B. A.; Uhrin, D.; Wilken, J.; Young, D. W.

ChemBioChem 4, 894–896.

(51) Levin-Kravets, O.; Shohat, N.; Prag, G. Biochemistry 54, 4704–4710.

(52) Fasshuber, H. K.; Lakomek, N.-A.; Habenstein, B.; Loquet, A.; Shi, C.; Giller, K.;

Wolff, S.; Becker, S.; Lange, A. Prot. Sci. 24, 592–598.

(53) Kony, D. B.; Hünenberger, P. H.; van Gunsteren, W. F. Prot. Sci. 16, 1101–1118.

(54) Piana, S.; Lindorff-Larsen, K.; Shaw, D. E. Proc. Natl. Acad. Sci. U.S.A. 110, 5915–

5920.

(55) Ganoth, A.; Tsfadia, Y.; Wiener, R. J. Mol. Graphics Modell. 46, 29–40.

(56) Beauchamp, K. A.; Lin, Y.-S.; Das, R.; Pande, V. S. J. Chem. Theory Comput. 8,

1409–1414.

(57) Leherte, L.; Vercauteren, D. P. Sci. China Chem. 57, 1340–1354.

(58) Raval, A.; Piana, S.; Eastwood, M. P.; Shaw, D. E. Prot. Sci. 25, 19–29.

(59) Cossins, B. P.; Hosseini, A.; Guallar, V. J. Chem. Theory Comput. 8, 959–965.

(60) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H.

J. C. J. Comput. Chem. 26, 1701–1718.

33

(61) Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 110, 1657–1666.

(62) Aleshin, A.; Finn, R. S. Neoplasia 12, 599–607.

(63) Schindler, T.; Sicheri, F.; Pico, A.; Gazit, A.; Levitzki, A.; Kuriyan, J. Mol. Cell 3,

639–648.

(64) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Proteins

65, 712–725.

(65) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.;

Shaw, D. E. Proteins 78, 1950–1958.

(66) Bowers, K. J.; Chow, D. E.; Xu, H.; Dror, R. O.; Eastwood, M. P.; Gregersen, B. A.;

Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.; Sacerdoti, F. D.; Salmon, J. K.; Shan, Y.;

Shaw, D. E. Scalable Algorithms for Molecular Dynamics Simulations on Commodity

Clusters. Proceedings of the ACM/IEEE SC 2006 Conference. pp 43–43.

(67) Shaw, D. E.; Chao, J. C.; Eastwood, M. P.; Gagliardo, J.; Grossman, J. P.; Ho, C. R.;

Lerardi, D. J.; Kolossváry, I.; Klepeis, J. L.; Layman, T.; McLeavey, C.; Den-

eroff, M. M.; Moraes, M. A.; Mueller, R.; Priest, E. C.; Shan, Y.; Spengler, J.;

Theobald, M.; Towles, B.; Wang, S. C.; Dror, R. O.; Kuskin, J. S.; Larson, R. H.;

Salmon, J. K.; Young, C.; Batson, B.; Bowers, K. J. 51, 91.

(68) Boehr, D. D.; Nussinov, R.; Wright, P. E. Nat. Chem. Biol. 5, 789–796.

(69) Csermely, P.; Palotai, R.; Nussinov, R. Trends Biochem. Sci 35, 539–546.

(70) Moret, M. A.; Santana, M. C.; Zebende, G. F.; Pascutti, P. G. Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys. 80, 041908.

(71) Lobanov, M. Y.; Bogatyreva, N. S.; Galzitskaya, O. V. Mol. Biol. 42, 623–628.

(72) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. Model. 14, 33–38.

34

(73) Lyman, E.; Zuckerman, D. M. Biophys. J. 91, 164–172.

(74) Lindorff-Larsen, K.; Ferkinghoff-Borg, J. PLoS ONE 4, e4203.

(75) Gil, V. A.; Guallar, V. J. Chem. Theory Comput. 10, 3236–3243.

(76) Endres, D. M.; Schindelin, J. E. 49, 1858–1860.

(77) Zheng, W. Biophys. J. 98, 3025–3034.

(78) Gelman, A.; Roberts, G.; Gilks, W. Bayesian statistics, 5 (Alicante, 1994); Oxford

Univ. Press, pp 599–607.

(79) Onufriev, A.; Bashford, D.; Case, D. A. Proteins 55, 383–394.

(80) Zhang, W.; Ganguly, D.; Chen, J. PLoS Comput. Biol. 8, e1002353.

(81) Foloppe, N.; Chen, I.-J. Bioorg. Med. Chem.

(82) Jaramillo, A.; Wodak, S. J. Biophys. J. 88, 156–171.

(83) Formaneck, M.; Cui, Q. J. Comput. Chem. 27, 1923.

(84) Chen, J.; Iii, C. L. B. Phys. Chem. Chem. Phys. 10, 471–481.

(85) Stultz, C. M. J. Phys. Chem. B 108, 16525–16532.

(86) Boggon, T. J.; Eck, M. J. Oncogene 23, 7918–7927.

(87) Hayward, S.; Kitao, A.; Gō, N. Prot. Sci. 3, 936–943.

35

72 CHAPTER 3. ARTICLES

3.5. SUPPLEMENTARY MATERIALS: ENHANCING SAMPLING 73

3.5 Supplementary materials for: Enhancing back-
bone sampling in Monte Carlo simulations us-
ing Internal Coordinates Normal Mode Ana-
lysis

3.5.1 Are Cartesian coordinate and internal coordinate nor-
mal modes equivalent?

We have calculated the (Cartesian coordinate) ANM modes and the internal
coordinates NMA modes of a set of structures and compared them. Our test set
comprises the proteins with PDB ID: 1ubq, 2lzm, 1ex6, 1ddt, 4ake, 1ggg, and
the src kinase domain of 1y57. Most of these proteins have been used in NMA
benchmarks, as they present wide inter domain movements. We have added
two alternative structures for 1ubq and 1y57: 1ubq cut, a copy of 1ubq that
does not contain the last 3 residues from the C-terminal loop and 1y57 MD, a
randomly picked frame from an MD simulation of 1y57.

The first thing needed in order to compare both sets of modes is to convert
the IC modes to CC modes. This can be achieved calculating the Jacobian (J,
inverse of Wilson’s B matrix) as

Ji,α =
∂ri

∂qα
, (3.1)

and applying the following equation:

∆~ri,α =

N∑
α

~Ji,αvαi . (3.2)

As all heavy atoms are involved in the calculation of the IC modes and in the
conversion, the resulting CC modes will have 3H elements (being H the number
of heavy atoms).

3.5.1.1 Collectivity of CC and IC modes

One of the most compelling features of NMA-based protein simulations is that
the modes of lower frequency are able to mobilize big groups of atoms that per-
form large displacements (i.e. large collective motions). It would be interesting

74 CHAPTER 3. ARTICLES

to know if this assumption is true for both models, and if the performance of
both is similar. In order to do this we have calculated the first ten ANM and IC
NMA modes for and all the structures in our test, modifying the cutoff distance
that modulates the density of springs in the elastic network. Then, we have
calculated the degree of collectivity of each mode. This gives us information
about how the modes change when the elastic network and the shape of the
protein change.

We have also performed a second batch of calculations of IC modes apply-
ing the method described by Lu et al. [146]. In his work, they add an extra
term to the NMA potential, ω/2

∑
α(φα − φ0

α)2, where ω = 3min(H0
αα). This

extra term modifies the Hessian diagonal, presumably lowering the so-called
“tip effect” problem.

To quantify the differences of collectivity, we will calculate the degree of
collectivity. This measure, first proposed by Bruschweiler [153], quantifies the
number of atoms that are affected by a mode and the relative magnitude of the
induced displacement. Its value can be calculated as

κi =
1
N

exp

− N∑
j

α∆R2
j log

(
α∆R2

j

) , (3.3)

where N is the number of atoms and ∆R j is the atomic displacement de-
scribed by mode i on atom j. The degree of collectivity is proportional to
the exponential of the “information entropy” embedded in vector ∆R [141].
Its lower and upper bound is known (N−1 and 1 respectively). This allows us
to normalize its value in the range [0, 1], meaning 1 that the conformational
change the mode produces is maximally collective.

As we can see in Fig. 3.1, the average collectivities of the CC modes are
always lower than their IC counterparts. Furthermore, the degree of collectivity
seems to decline as the cutoff varies and the elastic network becomes more
dense. Conversely, the IC modes remain almost unaffected by the changes of
the elastic network. It is worth noting that the ones calculated using the Hessian
modification method have slightly higher values of collectivity and are, again,
almost immune to the EN changes.

From the plot we can see that 9 Å is a good choice for the cutoff: it yields
good collectivity values and it is in agreement with the conclusions of other
studies [144].

The detailed view of mode collectivities for a cutoff of 9 Å is shown in Fig.
3.2. We can see how the collectivity of IC modes is higher, especially that of
the lower frequency modes. The differences between 1ubq cut and 1ubq are of
particular interest. In these two cases, the collectivity values of the lower fre-
quency modes of 1ubq are pretty small for all three methods, and they increase

3.5. SUPPLEMENTARY MATERIALS: ENHANCING SAMPLING 75

Figure 3.1: Degree of collectivity for each structure and calculation method. .

Figure 3.2: Detailed study of the degree of collectivity per mode, structure and
method. Cutoff has been set to 9 Å . The Hessian modification method (m.H.) pro-
duces only slight improvements, generally concentrated in higher frequency modes.

76 CHAPTER 3. ARTICLES

perceptibly in 1ubq cut. This must be caused by the only difference between
these two structures: the appearance of the C-terminal loop. The structure with
the loop (1ubq) is severely suffering from the “tip effect” due to the flexibility of
the final loop, perfectly illustrating how this effect can worsen the collectivity
of the modes.

From the analyses performed on this data set, we can conclude that IC
modes have higher collectivity, and that this collectivity is more robust to
changes in the elastic network.

3.5.1.2 Comparison between the CC and IC mode spaces

We also wonder to which extent the mode space spanned by the CC and IC
modes is similar. To this end we will use two measures: the cumulative overlap
and the root mean square inner product (RMSIP). Both of them are based on
the mode overlap operation, which measures the projection of one mode over
the other. It can be calculated as:

Oi j =

∣∣∣Pi.M j

∣∣∣
‖Pi‖‖M j‖

. (3.4)

Its value ranges from 0 to 1, meaning 1 a perfect overlap.
The Cumulative overlap [101] measures to which extent a range of modes

can capture the motion of a single mode. It is calculated as

COi(k) = (
k∑
j

O2
i j)

1
2 , (3.5)

where i is the mode we are checking and [j, k] is the range of modes we will
use to explain the first. Its value is, again, in the range from 0 to 1, meaning 1
a perfect match (assuming perfect orthogonality of the modes).

Finally, the RMSIP [142, 154] measures how the normal mode space spanned
by a range of modes overlaps with another range of modes. It is calculated as

RMSIP(l,m) =

1
l

l∑
i=1

m∑
j=1

(Pi.M j)
2


1
2

. (3.6)

Its value is independent of the mode order and ranges from 0 to 1, meaning 1
that both normal mode spaces are identical.

It is important to note that the modes coming from the IC conversion and

3.5. SUPPLEMENTARY MATERIALS: ENHANCING SAMPLING 77

Figure 3.3: Average cumulative overlap for different cutoff distances, methods, and
structures in our test set. Standard deviations are not shown for the sake of clarity.

PELE ANM model are defined for a different number of atoms (all heavy atoms
in the first case, Cαs in the second) and, therefore, they represent very different
mode spaces. In order to make the comparisons possible, we need to calculate
the ANM modes for all heavy atoms.

The cumulative overlaps shown in Figs. 3.3 and 3.4 indicate that both mode
spaces can explain each other successfully, being 1ubq, 1ubq cut and 1y57 MD
the only exceptions. In general, increasing the cutoff makes the differences
between mode spaces more noticeable. The calculations performed with cutoff
distance equal to 9 Å (Fig. 3.4), show that lower frequency modes are generally
the ones that find a best correspondence with the modes of the other space.

Regarding the RMSIP for the modes calculated using a cutoff distance of
9 Å , the mode space overlap is higher for the subspace of the low frequency
modes, and decreases when more high frequency modes are added to the cal-
culation (see Fig. 3.5), which correlates well with the observations made for
Fig. 3.4.

78 CHAPTER 3. ARTICLES

Figure 3.4: Detailed study of the cumulative overlap per mode, structure and method.
Cutoff has been set to 9 Å . In general, the rightmost modes (higher frequencies) are
the ones with worst overlap.

Figure 3.5: RMSIP of CC and IC mode spaces. The x-axis shows the upper limit of
the mode space tested (e.g, 10 means that the first ten modes are to be used to obtain
the RMSIP). Both spaces look to be very similar, at least for the 5 lowest frequency
modes. The similarities decrease as we move to modes of higher frequencies, with the
only exceptions already commented in the cumulative overlap study.

Vol. 29 no. 18 2013, pages 2363–2364
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btt402

Structural bioinformatics Advance Access publication July 10, 2013

pyRMSD: a Python package for efficient pairwise RMSD

matrix calculation and handling
Vı́ctor A. Gil1 and Vı́ctor Guallar1,2,*
1Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona,
Spain and 2Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluı́s Companys 23, E-08010 Barcelona,
Spain

Associate Editor: Anna Tramontano

ABSTRACT

Summary: We introduce pyRMSD, an open source standalone Python

package that aims at offering an integrative and efficient way of per-

forming Root Mean Square Deviation (RMSD)-related calculations of

large sets of structures. It is specially tuned to do fast collective RMSD

calculations, as pairwise RMSD matrices, implementing up to three

well-known superposition algorithms. pyRMSD provides its own sym-

metric distance matrix class that, besides the fact that it can be used

as a regular matrix, helps to save memory and increases memory

access speed. This last feature can dramatically improve the overall

performance of any Python algorithm using it. In addition, its extensi-

bility, testing suites and documentation make it a good choice to those

in need of a workbench for developing or testing new algorithms.

Availability: The source code (under MIT license), installer, test suites

and benchmarks can be found at https://pele.bsc.es/ under the tools

section.

Contact: victor.guallar@bsc.es

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on April 24, 2013; revised on June 11, 2013; accepted on

July 5, 2013

1 INTRODUCTION

As molecular modeling keeps expanding, obtaining the Root
Mean Square Deviation (RMSD) with optimum superposition

for a large set of structures in an efficient and fast manner is a

necessity. Clustering methods, for example, which are becoming
increasingly popular as trajectory analysis and compression tools

(Karpen et al., 1993; Phillips et al., 2011), can benefit from the
use of a pre-calculated pairwise distance matrix or even totally

depend on it, e.g. Spectral Clustering (Luxburg, 2007). However,
as hardware and algorithms improve, the output size of simula-

tions grows bigger, and the calculation of the distance matrix

becomes the bottleneck in any process depending on it. There
are several implementations of the different superposition algo-

rithms, which are written in wide spectra of programming lan-
guages. Almost all Molecular Dynamics packages and

biomolecule handling software include their own RMSD calcu-
lation tools. Every time programmers need to use an external

RMSD solution in a project, they have two options. The first

one is to use an external source or library, which requires

previous knowledge of the language in which it was written

and its dependencies. A second option is to use a precompiled
tool with a bigger scope, which means creating an interface with

their own application by writing wrappers and output converters
(with the consequent performance loss). In general, the main

problems to face are fragmentation, excess of or missing features,
bad documentation, lack of sources and the intrinsic difficulty of

the languages used. pyRMSD is a Python package that over-
comes all the above problems in the following way:

� It is totally focused on the calculation of RMSD. It provides
solutions for all the usual RMSD problems and is specially

tuned for RMSDcollective calculations, like pairwise RMSD
matrices, a feature that is usually missing in most utilities.

� Python (www.python.org) is an easy to learn and use pro-

gramming language, which has an extensive library pool
that includes wrappers for almost all libraries used in sci-

ence. This makes it one of the better languages for scientific
software prototyping and development.

� As pure Python implementations have a poor performance

(even when using fine tuned packages as numpy), pyRMSD
uses Python C extensions with OpenMP and CUDA code,

allowing the full use of multicore machines and Graphics
Processing Units (GPU).

� It implements the most important superposition algorithms

in the same place.

� It is documented, well tested and open source; therefore, it

can be the perfect workbench for any experienced user who
wants to develop and test their own superposition algorithms.

2 IMPLEMENTATION

2.1 Features

pyRMSD is built around two main classes: the RMSDCalculator

and the CondensedMatrix. The RMSDCalculator class provides
a straightforward interface to three superposition algorithm

implementations, as well as some convenience methods to set
up their options: Kabsch’s superposition algorithm (Kabsch,

1978), QTRFIT (Heisterberg, 1990) and the Quaternion
Characteristic Polinomial method (QCP) (Theobald, 2005). All

have been written as Python C extensions, with serial and parallel
(OpenMP) versions for the first two and an additional CUDA

version for the last.*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2363

 by guest on February 7, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

RMSDCalculator’s methods cover all the usual scenarios for
superposition and RMSD calculation:

(1) Pairwise RMSD calculation.

(2) Reference versus the rest of the set.

(3) Reference versus following conformations.

(4) Calculation of a pairwise RMSD matrix of the whole set.

(5) Iterative superposition of a set of conformations.

Moreover, it offers two additional options that further extend
the previous methods. The first one is allowing the modification
of input coordinates to obtain the superposed conformations.

The second one is to the use of different coordinate sets for
superposition and RMSD calculation.
The CondensedMatrix class models a symmetric squared

matrix. It allows the same row/column access of a regular

matrix, storing only the upper triangle and thus saving half of
the memory. The class has been completely written in C, allowing
access times which are up to 6� faster compared with its Python

counterpart. As a consequence, any algorithm that requires
intensive matrix read access improves its performance. For in-
stance, our cardinality function benchmark, available in the

benchmarks folder, shows a 100� free speedup just by using it.
pyRMSD also provides two small helper classes that make the

process of generating a pairwise RMSD matrix easier. The
Reader class obtains the coordinate sets by means of a simple

and fast C written PDB reader. Finally, the MatrixHandler class
is capable of creating a distance matrix from a set of coordinates
and managing its persistence, with functions to load and save

matrices from disk.

2.2 Usage

The following code snippet illustrates the creation and access of a
pairwise RMSD matrix of a 35 k frames trajectory, available in

the ‘benchmark/data’ folder, using the QCP superposition algo-
rithm, in its CUDA version:

from pyRMSD.matrixHandler import MatrixHandler
from pyRMSD.utils.proteinReading import Reader
cords = Reader().readThisFile(’amber_35k.pdb’)\

.gettingOnlyCAs().read()
matrix = MatrixHandler()\

.createMatrix(coords, ‘QCP_OMP_CALCULATOR’)

Here, we can find a minimum subset of all the features of
pyRMSD and of the MatrixHandler class itself. However, it is
a good example of how this class nicely encapsulates all the steps
of creating a matrix and of the succinct interface presented to

the user.

2.3 Performance

Using pyRMSD, we have coded a set of benchmark scripts to

understand the performance differences between the three imple-
mented algorithms. We have observed that, in all studied scen-
arios, QCP is the faster method.
We have also compared the performance of our four QCP

implementations. Compared with the serial code, our OpenMP

version is 5� faster; our CUDA-based implementation shows a

11� speedup (see Fig. 1). This leads us to conclude that GPU
implementations can really make the difference in this kind of
problems.
These and other benchmarks, as well as a comparison with

other packages, are discussed in depth in the Supplementary
Data.

3 CONCLUSIONS

We have created pyRMSD, a user-friendly RMSD focused
Python package, which allows, besides other functionalities, the
efficient creation of RMSD pairwise matrices. Its design provides

a natural way of accessing its functionalities making it a good
candidate to be used in bigger packages to replace slower
RMSD functions. This is specially true for those who need to

calculate and access large pairwise RMSD matrices, as cluster-
ing-related packages.

Funding: European project PELE (ERC-2009-Adg 25027).

Conflict of Interest: none declared.

REFERENCES

Heisterberg,D.J. (1990) QTRFIT algorithm for superimposing two similar rigid

molecules. The Ohio Supercomputer Center, Ohio State University,

Columbus, OH.

Kabsch,W. (1978) A discussion of the solution for the best rotation to relate two

sets of vectors. Acta. Crystallogr. A, 34, 827–828.

Karpen,M.E. et al. (1993) Statistical clustering techniques for the analysis of long

molecular dynamics trajectories: analysis of 2.2-ns trajectories of YPGDV.

Biochemistry, 32, 412–420.

Luxburg,U. (2007) A tutorial on spectral clustering. Stat. Comp., 17, 395–416.

Phillips,J.L. et al. (2011) Validating clustering of molecular dynamics simulations

using polymer models. BMC Bioinformatics, 12, 445.

Theobald,D.L. (2005) Rapid calculation of RMSDs using a quaternion-based char-

acteristic polynomial. Acta. Crystallogr. A, 61, 478–480.

Fig. 1. QCP calculator performance over a Ubiquitin trajectory (only

CAs) using a 6 cores Intel Xeon E5649 CPU with an NVIDIA M2090

GPU. OpenMP version reaches a 5� speedup. CUDA version gets a

maximum 11� speedup (almost 12 million RMSD calculations per

second)

2364

V.A.Gil and V.Guallar

 by guest on February 7, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

3.6. SUPPLEMENTARY MATERIALS: PYRMSD 81

3.6 Supplementary materials for: pyRMSD: a Py-
thon package for efficient pairwise RMSD mat-
rix calculation and handling

Comparing the performance of different algorithms is not straightforward. We
can deduce some theoretical bounds, but these might be too general to have
any practical value, especially when comparing similar algorithms. When this
happens, the only way to go is to compare implementations.

In our implementations, good code design (especially reusability) had a
bigger priority than optimality. All three algorithm implementations have been
coded sharing the same framework, reusing as many pieces of code as possible.
This enhances the comparability of our implementations, which may be sub-
optimal in the same degree, giving us a unique opportunity of making a more
fair performance comparison between them.

All benchmark tests were performed in BSC’s Minotauro [155], which has
been built with Intel Xeon E5649 CPUs and NVIDIA M2090 GPUs. Only 1
GPU was reserved for CUDA runs. OpenMP runs used six threads at most.

3.6.1 Algorithm performance comparison

In order to get a good overview of each algorithm’s performance, we have
checked the time that each of the three algorithms need to complete the execu-
tion of each one of pyRMSD’s basic methods (oneVsFollowing, pairwiseMat-
rix and iterativeSuperposition). A 30k trajectory of Ubiquitin (reading only
Cα atoms) was used. The oneVsFollowing method has been tested without and
with input coordinates rotation, as this last adds overhead to QCP implement-
ation due to the mandatory rotation matrix calculation (QCP does not need to
calculate it otherwise).

For basic linear operations (see Fig. 3.6), QCP has the best performance of
all three, even when the rotation matrix is calculated (oneVsFollowing(r) and
iterativeSuperposition). The use of OpenMP smooths differences so much that
choosing one algorithm over the other becomes a mere matter of preference
(see Fig. 3.7).

However, things change when comparing the performance of the pairwise
matrix generation (see Fig. 3.8). Small performance differences get amplified
because of the quadratic nature of the problem. In this case, we observe that
QCP excels by achieving a 2x/4x speedup with respect to the other two, in both
serial and OpenMP modes.

82 CHAPTER 3. ARTICLES

Figure 3.6: Comparison of the execution of three methods for the three available al-
gorithm implementations (serial).

Figure 3.7: Comparison of the execution of three methods for the three available al-
gorithm implementations (OpenMP).

3.6. SUPPLEMENTARY MATERIALS: PYRMSD 83

Figure 3.8: Calculation time of a pairwise matrix from a 30k frames trajectory.

3.6.2 QCP performance

We want to compare all four implementations of QCP algorithm: serial, OpenMP,
CUDA and CUDA with full matrix memory allocation into the device. To this
end, we will use the pairwiseMatrix method over Ubiquitin trajectories of 5,
10, 15, 20, 25, 30 and 35k frames.

We can see in the resulting plot (Fig. 3.9) that OpenMP version is about 5x
faster than the serial one, and CUDA version is about 8,5x faster.

After profiling the CUDA version, we saw that a considerable part of the
time was spent in memory transactions from the device to the host. The RMSD
matrix is calculated line by line and, after each one of this calculations, the
host matrix representation is updated. This method can be successfully used
in a broad range of GPUs, as it does not require cards with big amounts of
RAM. We implemented another method that holds the entire matrix in GPU’s
RAM. The speedup is greater (11x compared with serial code), as memory
transactions are performed only once (Fig. 3.10).

Finally, there are two things worth mentioning. The first one is that our
CUDA implementation can be further improved by enhancing work balance
and memory coalescence. The second is that the use of single point precision
in our QCP CUDA implementation, contrary to what is expected, does not per-

84 CHAPTER 3. ARTICLES

Figure 3.9: Performance comparison of serial, OpenMP and CUDA (single-precision)
implementations of the QCP algorithm.

form substantially better than the double precision implementation. The reason
for this behavior is again the big effort put into generalizing the code. pyRMSD
uses internally double-precision arrays to store coordinates and RMSD val-
ues. This implies that, when using GPUs without double-precision support, a
single-precision temporary buffer is to be filled at every host to device memory
move.

3.6.3 Input size response of QCP implementation

The last benchmark established a clear relationship between the size of a tra-
jectory (in frames) and the time needed to do calculations. In this benchmark
we want to fix the number of frames and test the impact of biomolecule sizes
in performance. The number of frames of the trajectory will be 10k, and the
number of atoms of each one of the conformers will be artificially increased at
every step in order to calculate the pairwise RMSD matrix.

Both CUDA and OpenMP implementations, show a linear increase of the
time needed to calculate the matrix (Fig. 3.11). Incrementing conformer size
does not increase or decrease performance.

3.6. SUPPLEMENTARY MATERIALS: PYRMSD 85

Figure 3.10: Performance comparison of CUDA implementations. ’Mem’ versions
hold the entire matrix into memory, (s) versions use single-precision arrays and (d)
versions use double-precision arrays.

86 CHAPTER 3. ARTICLES

Figure 3.11: Input size response of the OpenMP and CUDA versions of the QCP
algorithm.

3.6.4 Accuracy check

While KABSCH algorithm tries to find an optimal rotation matrix, QTRFIT
and QCP will use quaternions in order to get this rotation. Does the base
method affect accuracy? In this test, we have applied the oneVsFollowing
method over the first frame of a 10k frames Ubiquitin trajectory. Then we have
calculated the root mean square of the differences, which will be our index of
RMSD value variation.

In Table 3.1, we can see that all implementations have an RMS different
than 0, which means that all algorithms have calculated different RMSD val-
ues. Kabsch’s algorithm and QTRFIT have close results in spite of their differ-
ent approaches to calculating the superposition. QCP CUDA single-precision
floating point version differs the most, being the double-precision version the
most accurate of both.

It is important to note that, although QCP solves the problems of prior meth-
ods like Diamond’s [156] algorithm instability in rotations close to 180ž, it can
suffer from convergence problems derived from the use of Newton-Raphson
root-finding method.

However, differences are generally small, and RMSD is often used qual-

3.6. SUPPLEMENTARY MATERIALS: PYRMSD 87

Method KABSCH QTRFIT QCP QCP CUDA
(Single)

QCP CUDA
(Double)

KABSCH 2.308e-12 2.678e-12 1.028e-03 2.689e-12
QTRFIT 1.568e-12 1.028e-03 1.547e-12

QCP 1.028e-03 8.926e-13

Table 3.1: Root Mean Square of the RMSD array differences for each of the al-
gorithms.

itatively, which means that, unless we require high precisions, all algorithm
implementations are interchangeable.

3.6.5 OpenMP scalability

We want to study the scalability of the OpenMP version of each of the al-
gorithms. To achieve it we have calculated the pairwise RMSD matrix of a
30k frames trajectory of Ubiquitin, using a different number of threads for each
execution (from 1 to 6).

It is not difficult to see that we obtain a linear speedup, with a maximum of
5.6-5.8x for six threads (compared with the one thread run), which is close to
the theoretical maximum speedup (6x for six threads) (Fig. 3.12, 3.13).

3.6.6 Comparison with existing packages

As a final test, we will compare pyRMSD with other software packages that
include RMSD calculation features. We have chosen four publicly available
open source packages:

g rms Is a C-written command line program part of the Gromacs [157] suite.
Its main feature is the fast creation of distance matrices from trajectories.

Prody [140] A Python package which offers very interesting features to load
and analyze biomolecule trajectories, including a complete PDB parser
and a powerful selection language.

Biopython [158] A mature Python package which offers numerous bioinform-
atic computational tools.

PyVib2 [159] A pure Python package used to analyze vibrational motion and
spectra of molecules.

88 CHAPTER 3. ARTICLES

Figure 3.12: Time needed to compute a pairwise matrix from a 30k frames trajectory
using a different number of threads.

Figure 3.13: Percentage of speedup per thread added to the calculation. Speedup is
almost linear with number of threads.

3.6. SUPPLEMENTARY MATERIALS: PYRMSD 89

Our comparison will be based on two measures: calculation time and in-
tegration complexity. To this aim we have created 4 scripts 3. Every script
calculates the RMSD matrix of a trajectory twice, first using one of the afore-
mentioned packages, and then replicating the same calculation using pyRMSD
(serial). Integration complexity has been measured as the ratio between the
number of effective code lines necessary to program the task with the tested
package and pyRMSD. Performance has been calculated as the ratio of the
time needed to complete the task by the tested package over the time required
by pyRMSD. All tests were performed on a workstation with an Intel Xeon
W3530 CPU (four cores at 2.80GHz) with 12GB of RAM.

Table 3.2 shows that pyRMSD is always faster than the other packages. In
the last three cases, this is because that RMSD calculations are also written in
pure python (which includes the use of numpy), while in pyRMSD these have
been written as C extensions. These packages have not been specifically de-
signed to handle RMSD collective operations, which explains why more lines
of code are needed. Biopython and PyVib2 RMSD-related features are indeed
constrained to the pairwise RMSD case, while Prody can calculate rows of the
matrix using only one function. This makes the last faster and easier to use
in this scenario. g rms is considerably faster than the others, as it has been
written in C and because of its narrower scope. However, to use it within a
Python script, the user will need to create a wrapper to control the program
execution (here simplified by the utilization of the ‘expect’ command), and a
method to parse program results. This adds extra complexity to the code as
well as a performance penalty.

3The scripts can be found in https://github.com/victor-gil-sepulveda/
pyRMSD-Comparison.git

90 CHAPTER 3. ARTICLES

Table
3.2:

Com
parison

ofthe
tim

e,lines
ofcode,speedup

and
integration

com
plexity

(I.C.)needed
to

com
plete

an
RM

SD
collective

operation.

M
ethod

Fram
es

Tim
e

(s)
Tim

e
pyRM

SD
(s)

Linesofcode
Linesofcode

(pyRM
SD

)
Speedup

I.C.

g
rm

s
10

0.0564
0.0466

24
3

1.21
8

100
0.7421

0.488
1.52

1000
62.5245

14.6778
4.26

Prody
10

0.1698
0.0008

6
1

212.25
6

100
3.408

0.0587
58.06

1000
312.7806

6.0187
51.97

PyV
ib2

10
4.069

0.0001
7

1
40690.00

7
100

450.1247
0.0995

4523.87
1000

30332.6163
10.372

2924.47
Biopython

10
2.012

0.0008
8

1
2515.00

8
100

219.6425
0.0572

3839.90
1000

22003.5187
6.0966

3609.15

pyProCT: Automated Cluster Analysis for Structural Bioinformatics
Víctor A. Gil† and Víctor Guallar*,†,‡

†Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, 08034
Barcelona, Spain
‡Institucio ́ Catalana de Recerca i Estudis Avanca̧ts (ICREA), Passeig Lluís Companys 23, E-08010 Barcelona, Spain

*S Supporting Information

ABSTRACT: Cluster analysis is becoming a relevant tool in
structural bioinformatics. It allows analyzing large conforma-
tional ensembles in order to extract features or diminish
redundancy, or just as a first step for other methods.
Unfortunately, the successfulness of this analysis strongly
depends on the data set traits, the chosen algorithm, and its
parameters, which can lead to poor or even erroneous results
not easily detected. In order to overcome this problem, we
have developed pyProCT, a Python open source cluster
analysis toolkit specially designed to be used with ensembles of
biomolecule conformations. pyProCT implements an automated protocol to choose the clustering algorithm and parameters that
produce the best results for a particular data set. It offers different levels of customization according to users’ expertise. Moreover,
pyProCT has been designed as a collection of interchangeable libraries, making it easier to reuse it as part of other programs.

1. INTRODUCTION
In structural bioinformatics, data from computational experi-
ments is produced and consumed at great speed. Improvements
in software, together with the development of CPUs and
accelerators have contributed to increase this data production.
Conformational sampling software, such as molecular dynamics
or Monte Carlo techniques, have specially enjoyed the benefits
of this fast hardware evolution.1,2 Since raw data is rarely useful
per se, it must be processed to extract useful information. Thus,
as data sets increase, so does the importance of having
unsupervised and computationally cheap tools to analyze them.
Cluster analysis is one of the most successful and widespread

tools to postprocess and analyze ensembles of conformations. It
has been successfully used to discover near-native structures,3

to study peptide folding,4 or as a first step to extract kinetics
information5 (e.g., reaction pathways6 or relative free energies7)
among others. As a preprocessing step, it can be used to reduce
data sets by extracting the most representative conformations,
so that any subsequent computationally expensive postprocess-
ing becomes more affordable.
There are many general use clustering algorithms, all having

their own advantages and drawbacks. Some others, such as the
ART-2′ algorithm8 or the fuzzy clustering algorithm presented
by Gordon et al.,9 were specifically created to improve the
geometrical analysis of conformational ensembles; others even
account for the ensemble’s kinetic properties.5,10

Implementations of the most traditional algorithms are
included as tools into larger multipurpose suites, such as the
well-known “ptraj”,11 which can be found in AMBER’s suite or
GROMACS’ “g_cluster”.12 Others, such as “Wordom”,13 offer
some clustering options along with tools to analyze MD
trajectories. However, there are few software packages that are

specifically written to perform cluster analysis over conforma-
tion ensembles.
Such diversification gives users plenty of options to choose

the best suited algorithm for their problem types and data sets,
in order to obtain the best quality clustering. Nevertheless,
cluster analysis techniques are not bullet-proof and can be easily
misused. This can be dangerous, as unexpected results will go
unnoticed, contaminating any subsequent process. Indeed, the
successfulness of a cluster analysis process depends mainly on
two basic factors, which, if overlooked, can lead to poor or
erroneous results:

• Used algorithm: Every clustering algorithm makes its
own assumptions about the data set. It is well-known that
k-means will perform better when applied to data sets
composed of convex clusters and that hierarchical
algorithms will obtain better results if the underlying
structure is composed of elongated clusters. DBSCAN14

will have problems clustering data sets with big density
differences. The intrinsic characteristics of the data set in
terms of cluster size, shape, and density can be a
determinant factor to generate a good quality clustering.
This reasoning also works the other way round: the
clustering algorithm will, at the same time, impose some
characteristics to the clusters it produces.

• Parametrization: Many algorithms need to be para-
metrized before using them. Clustering results can
change if these parameters are not tuned carefully.
Good examples are the cutoff in hierarchical algorithms

Received: April 10, 2014
Published: July 18, 2014

Article

pubs.acs.org/JCTC

© 2014 American Chemical Society 3236 dx.doi.org/10.1021/ct500306s | J. Chem. Theory Comput. 2014, 10, 3236−3243

or the ‘Eps’ and ‘MinPts’ parameters in DBSCAN
(widely studied in the original article14 and in more
recent ones15). One parameter, the number of final
clusters, has always deserved special attention. Algo-
rithms that need this parameter will usually partition the
data set in exactly the number of clusters they are told to
use. This can result in a totally artificial partition that will
not capture the underlying structure (if any).

Unfortunately, this selection and tuning step requires
extensive knowledge of cluster analysis. Users, often experts
in other problem domains, have tight time constraints that
prevent them from acquiring this knowledge. Therefore,
algorithm choice is typically based upon its appearance in
other publications, the algorithm reputation, or simply the
availability of its implementations. Parameters are, in turn,
chosen either randomly or just using implementation default
values, which are not always the best suited for the data set
under study (an example of the consequences of a bad
algorithm/parameters choice can be seen in Figure 4 of
Supporting Information). Finally, once the target clustering has
been produced, users do not have enough tools to asses its
quality, thus reducing the chances of improving it by trial and
error.
Here, we want to propose a novel cluster analysis

methodology, the Hypothesis-driven Clustering Exploration
(HCE), that will help to overcome the aforementioned
problems. HCE’s approach first converts the user’s problem
domain knowledge into a clustering hypothesis. Then, an
exploration of the clustering space using up to five different
algorithms is performed in order to obtain the best clustering
fitting the hypothesis. By using HCE, users do not need to be
familiar with cluster analysis techniques and its caveats but only
to be able to define their problems in terms of a clustering
hypothesis. The fact of not having to deal with each algorithm’s
distinctive features and parameters can potentially improve the
quality of the cluster analysis results, which will also better fit
the user’s expectations and purpose.
HCE methodology has been implemented into pyProCT, an

open source (MIT licensed) Python (http://www.python.org)
toolkit. This software extends HCE by implementing two of the
most common use cases: discovering hidden features of the
data set (cluster analysis with prototype extraction) and
trajectory compression. pyProCT can also be a powerful tool
for more experienced clustering users. Thanks to its highly
configurable input script, most of the software behavior can be
customized, allowing expert users to better exploit their
knowledge. Moreover, the object oriented implementation
will allow any developer to easily add new modules or modify
the provided ones, allowing them to interface with already
written packages, which will be able to benefit from any of the
implemented cluster analysis tools.
Finally, pyProCT offers a built-in graphical user interface

(GUI) that greatly enhances its usability. Among other features,
it allows users to visually review the cluster analysis results so
that possible errors can be rapidly detected and the hypothesis
improved.

2. METHODS AND PROTOCOL

pyProCT implements the HCE methodology by performing a
four-step protocol: distance matrix calculation, clustering space
exploration, clustering evaluation, and data extraction (see
Figure 1).

2.1. Distance Matrix Calculation. Clustering algorithms
require to evaluate several times a similarity function that is to
be applied to all pairs of elements of the data set. Being one of
the computational bottlenecks, its performance can speed up
notably by precalculating a pairwise distance matrix. pyProCT
offers three matrix generation options:

• Root mean square distance (RMSD) matrix: The RMSD
matrix is generated by pairwise superposing all
conformations to then calculate their coordinates
RMSD. Different parts of the system can be selected to
do the superposition and RMSD calculation step. This
kind of matrix is the most used in conformational
clustering projects (e.g., to cluster protein conformations
based on their α carbon RMSD).

• Euclidean distance matrix: Its calculation also involves a
two-step process. First, all conformations will be
iteratively superimposed (all their coordinates or just a
selected subset). Second, the geometric centers of the
part of the system we want to analyze are calculated. The
pairwise euclidean distances of these centers form the
distance matrix. This method is preferred for scenarios
where users want to extract information about the
relative placement of one part of the system in motion

Figure 1. Implementation of HCE methodology in pyProCT.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500306s | J. Chem. Theory Comput. 2014, 10, 3236−32433237

with respect to a point of reference (e.g., ligand−receptor
systems).

• External matrix loading: As the distance metrics included
may not be the best for all systems16,17 and users may
want to implement their own similarity functions, the
third option allows them to load an external pregen-
erated matrix.

2.2. Clustering Space Exploration. The number of ways
of grouping the elements of a data set, the clustering space, is
huge (superexponential in n18). Within this space, it is accepted
that only few clusterings have enough quality to attain valuable
information; the existence of a unique clustering is a subject of
debate.19,20 Obtaining these representative clusterings might
involve an exhaustive search of the clustering space assessing
their quality. This approach is, in most cases, computationally
unaffordable due to the combinatorial explosion.
pyProCT’s approach uses a heterogeneous set of clustering

algorithms as exploration agents that perform a guided search
of the clustering space restricted to the area containing
meaningful (not random) clusterings. The more different the
used algorithms are, the wider the exploration is, thus
increasing the probability of visiting the best quality clustering.
Currently, pyProCT implements one representative of each of
the most important clustering algorithm families, namely,
hierarchical clustering,21 k-medoids (partitive algorithms),
DBSCAN,14 gromos4 (both density-based algorithms), and
spectral clustering19 representing connectivity/spectra-based
clustering family.
Since the choice of the algorithm’s parameters affects notably

the result, pyProCT exploits it as another source of variability
to yet widen the explored area of the clustering space. In our
implementation, the working hypothesis is also involved in the
strategies to obtain the parameters for each algorithm.
A brief description of the algorithms and the parametrization

methods implemented are further explained in Supporting
Information section 1.
2.3. Clustering Evaluation. Some authors warn that ‘good

quality’ clusterings are those that allow users to accomplish
their goals.22 Therefore, it is not possible to asses the quality of
a clustering without a previous definition of user’s expectations.
In pyProCT, this is achieved through the definition of a
working hypothesis that is composed of a mixture of subjective
and objective elements. Subjective elements (e.g., an estimation
of the final number of clusters or the noise the user thinks the
data set has) add contextual and domain-based information,
directly derived from the users’ purpose and expectations as
well as their expertise in the system under study.
In pyProCT, the best solution is the one that best fits the

clustering hypothesis. This hypothesis is used twice in the
evaluation step: to eliminate clusterings too different from
user’s expectations and to score the remaining ones.

• Filtering: All unsuitable clusterings generated during the
exploration are rejected. In this step, the expected
number of clusters, the amount of produced noise, and
the cluster size (number of conformations inside that
cluster) are checked. The purpose of this filtering is
twofold: it enforces the clustering hypothesis and
improves the overall efficiency of the process, as it
reduces the number of clusterings to be evaluated in the
next step.

• Clustering evaluation: The specification of metric-based
quality criteria adds an objective dimension to the

hypothesis by describing measurable traits of each
solution (e.g., cluster separation). Clustering quality is
usually measured using two approaches. External cluster
validation indices compare clusterings with an already
known correct answer.23−25 Instead, internal cluster
validation indices (ICVs) only use the internal
information on the clustering to evaluate it (e.g., distance
between elements) to evaluate it. Given that the correct
answer is not known a priori, pyProCT only uses ICVs.
Unfortunately, these indices tend to impose their
assumptions about the data set layout and characteristics,
penalizing those that do not fit them. It has been
observed, however, that combining some ICVs can help
to overcome this problem.26 One or more criteria (i.e., a
scoring function based on a linear combination of
normalized ICVs) must be defined. The clustering with
the highest score for any of them is chosen to be the best
clustering. Users are also ultimately responsible for
choosing the ICVs that compose the criteria. Similar
strategies have been used previously in other works,
using the silhouette coefficient,27 or Pal et al.28 approach,
which is closer to the method discussed here.

pyProCT’s default behavior defines a simple criteria that
fosters both cluster compactness and separation. More
information about the implemented ICVs and other query
types can be found in Supporting Information section 2.
The exploration and evaluation steps are the core of the

HCE strategy. It prevents users from having to learn about
clustering algorithms and the meaning and use of their
parameters, thus making the whole cluster analysis process
less prone to generate unexpected/undesired results. However,
the success of the process will still depend on the ability of
users to express their hypothesis using the currently
implemented tools. We do not recommend to start with too
specific hypotheses unless the user has good knowledge of the
data set.

2.4. Postprocessing. Finally, the best clustering will be
used to extract information from the data sets. Currently,
pyProCT implements two use cases.

• Cluster analysis: A set containing all the cluster
prototypes (the prototype is the central conformation
of a cluster, i.e., the conformation with the minimum
distance from all other conformations in the cluster) of
the best clustering will be generated. It will also record
which conformations were assigned to each of the
clusters, so that users can know which conformation
belongs to each cluster.

• Compression: In this case, the user will define a target
number of conformations (lower than the size of the
input ensemble). pyProCT will use the best clustering in
order to eliminate the per-cluster redundancy so that the
reduced input ensemble contains the chosen target
number of conformations. The compression protocol
first calculates the target number of elements of each
cluster so that it is proportional to the initial population.
Then, it applies a k-medoids algorithm to each cluster to
obtain a number of ‘local clusters’ equal to the target
number of elements. The prototypes of each of the new
‘local clusters’ are stored as elements of the compressed
set. This way the space is fairly partitioned and we ensure
that all new elements are good representatives of the
input data.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500306s | J. Chem. Theory Comput. 2014, 10, 3236−32433238

2.5. Code and Interface. pyProCT is a complete clustering
toolkit written mainly in Python. It can be used as a standalone
program or, thanks to its high modularity, as part of other
software packages.
pyProCT offers different degrees of control according to the

method chosen to run the clustering job. The easiest way to use
it is through the included browser-based GUI, organized as a
wizard. It includes visualization tools, allowing the user to
preview the selections needed to superimpose and calculate
distances. Finally, it can generate a complete graphical
representation of the clustering results. Among other features,
it allows visualizing the most representative structures of each
of the generated clusters and includes tools to visually validate
the results. It also allows plotting the ICV values of all accepted
clusterings, being this a tool of utmost importance for users
who want to better understand the behavior of applied ICVs
and criteria in order to improve the working hypothesis. When
used locally, the GUI will connect to an installed pyProCT
instance to run the analyses and show the results. It also allows
users to download the generated script, so that they can further
modify it or use it in remote machines. The GUI has been
written in Python (the Web server) and HTML with Javascript
(the front end). A detailed list of all the Javascript libraries used
can be found in the documentation.
pyProCT can also be used as a command line program that

receives a JSON (JavaScript Object Notation) string as its input
script. Inside the script the different actions and their
parameters are defined; algorithms can be manually selected
and their parameters specified at will. The use of this script
represents the finest type of control that a user can have over
pyProCT (without modifying the code).

Complete specifications of the control script are detailed in
the Supporting Information section 3.

2.6. Performance. PyProCT uses the pyRMSD29 package
in order to efficiently calculate pairwise RMSD matrices.
Furthermore, the use of the C-written condensed matrix
module included in the same package has also helped us to
considerably speed up the code thanks to its faster access times
and its implementation of some simple neighboring queries.
Cython (http://cython.org) generated code has been used to
enhance the calculation speed of some quality functions. A
Python+C implementation of the hierarchical algorithm has
been also used.30

Finally, both the clustering search and the clustering
evaluation steps have been parallelized by using a parallel task
scheduler. One of the two available scheduling types uses
Python’s ‘multiprocessing’ module to allow to fully use the
cores of a single machine. The second scheduling type is based
on MPI (through the mpi4py interface31) and is better suited
for distributed environments.

2.7. Testing and Validation. The whole framework has
been tested using the unit testing technique, with a good testing
coverage. The tests of some of the most consolidated parts have
been changed to regression tests. A simple validation script of
the HCE method over 2D data sets is also available into the
code repository. A short discussion about the validation can be
found in Supporting Information section 6.

3. APPLICATIONS AND RESULTS

3.1. RMSD-Based Cluster Analysis over Synthetic
Conformational Ensembles. 3.1.1. Ensemble Generation.
From an initial Ubiquitin conformation, we have performed an

Figure 2. (a and b): New conformations (black dots) are created by interpolating from a base conformation (light-brown colored) to a target
conformation (in gray), forming the interpolation sets (in red). All pairs of initial conformations without repetition are used. (a) If all target
conformations are equally separated, interpolation clusters are easily separable and can be organized in multiple ways to form interpolation
metaclusters. (b) The existence of distance asymmetries will difficult the partitioning into metaclusters. (c) RMSD matrices of the 900 conformations
ensemble and (d) the 720 one. Clusters in matrix c are well-defined due to the small magnitude of the added noise. The small visible structures in d
correspond to the interpolation clusters.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500306s | J. Chem. Theory Comput. 2014, 10, 3236−32433239

iterative process in which a torsion angle is randomly chosen
and modified at each step. We have produced a set of nine
conformations (including the initial nonmodified one) that
have great pairwise RMSD differences (17.75 Å mean, 8.85 Å
std. dev.).
Using these nine initial conformations, we have generated

two ensembles:

• A 900 conformations ensemble was produced by
generating 100 random noise structures, using a [−1,
1] Å range for each coordinate, applied to each initial
conformation. The resulting ensemble contains nine
well-defined clusters with sharp boundaries that are easily
identifiable in its RMSD matrix plot (Figure 2c).

• A 720 conformations ensemble was created by
interpolating 20 new structures for each of the possible
36 pairs (without repetition) of the initial set, without
including any of the original conformations. Each
intermediate conformation is calculated using the
formula bi = b + ((0.2 + (0.6/20)i)(t − b)), where b
and t are the base and target conformations, respectively.
The resulting ensemble contains up to 36 small clusters
of 20 conformations each: the interpolation sets (Figure
2a and b). The resulting RMSD matrix is shown in
Figure 2d.

3.1.2. First Ensemble Cluster Analysis. For the cluster
analysis on the first ensemble, we pretend to have superficial
knowledge of its generation process so that the exact data
layout is unknown, although we know that some well-defined
clusters may exist. The first step was to choose which

algorithms to use as well as their parameters. In this case, we
will use the default options, that is, pyProCT will try all the
algorithms and calculate different parameter sets for each of
them. The second step is to define the clustering hypothesis.
Given the limited information we have about the ensemble, it
has to be loose enough to allow pyProCT to effectively explore
the clustering space. The clustering hypothesis we have chosen
instructs pyProCT to limit its search to clusterings with at least
3 clusters and at most 50 with a minimum size of 20
conformations. The default evaluation criteria has been used,
which means that clustering score is calculated summing the
40% of its cohesion index value plus the 60% of its silhouette
index value (that gives separation and compactness information
at the same time), stressing in this way the contribution of
compactness to the score. In terms of the clustering hypothesis,
this means that we prefer clusterings where clusters are
compact over clusterings where clusters are very separated.
The definition of a clustering size range in the hypothesis

prevents the user from having to specify a concrete value for the
desired number of clusters, a mandatory parameter in some
algorithms, helping to avoid the creation of artificial partitions.
Indeed, after applying pyProCT, the resulting clustering
contains nine equally sized clusters, which is the expected
clustering size. To check whether every cluster contains the
expected elements, we can inspect the results file (The file
format is described in Supporting Information section 4),
where all generated clusterings have been saved in human-
readable form. Another option is to use the results viewer
included in the GUI: in some cases, especially when a
geometrical similarity metric is used and a good balance of

Figure 3. Global, maximum, and minimum RMSF plots. In all cases, the global RMSF plot high values (especially in the head and tail of the protein)
are a result of the big global residue movements induced by the torsional changes. For the first ensemble (a), the resulting clustering is able to
successfully separate the conformations, which is reflected by low values of RMSFmin and RMSFmax, that only capture the added noise. For the second
ensemble (b,c,d), RMSFmin and RMSFmax show a decrease in its values as the software is able to generate better clusterings in terms of the separation
of residue movement.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500306s | J. Chem. Theory Comput. 2014, 10, 3236−32433240

compactness/separation is needed, cluster contents can be
indirectly checked by inspecting the global and per-cluster root-
mean-square fluctuation (RMSF) plots. In order to calculate
the RMSF of a set of m conformations of nres residues, all
conformations are iteratively superimposed. Then RMSF for
each residue is calculated following eq 1, where rref is the mean
conformation, i ∈ [1,nres] is the number of residue and j is the
number of conformation. The residue position is represented
by its α carbon position.

∑= −
=m

r rRMSF
1

()i

j

m

j
i i

1
ref

2

(1)

When applied to the ensemble, the RMSF plot gives us an
intuition of the global per-residue mobility. If applied to the
conformations inside a cluster it shows how much of this global
movement was captured by it. In this work, we will also use
RMSFmax and RMSFmin, two derived measures that account for
the maximum and minimum RMSF values of all clusters (see
eqs 2 and 3). These two measures have been used to compare
the collective per-cluster RMSF with the global one. If a
clustering does not succeed to correctly capture structural
variance, the values of local RMSF will be closer to the global
RMSF and so will be the value of RMSFmax. Lower values of
local RMSF will be reflected as lower values of RMSFmin. Both
RMSFmax and RMSFmin give us a fast way of comparing per-
cluster and global RMSF, even in situations when the clustering
size (the number of clusters) is big. In Figure 3a, we can see
how the global RMSF plot captures wide displacements in α
carbon positions, induced by the torsional changes in the initial
conformation. However, in this easy case, RMSFmax and
RMSFmin plots show fluctuations between 0.9 and 1.1 Å,
meaning that clusters are just capturing the noise added to each
of the conformations of the initial ensemble, and indirectly
confirming that cluster contents are correct (elements were
separated correctly).

=RMSF min(RMSF , RMSF , ..., RMSF)i i i
n
i

min 1 2 clusters (2)

=RMSF max(RMSF , RMSF , ..., RMSF)i i i
n
i

max 1 2 clusters (3)

3.1.3. Second Ensemble Cluster Analysis. Again, we want to
recreate a scenario in which the user does not have full
information about how the data set was generated. For our first
cluster analysis attempt, we will use pyProCT’s default
hypothesis so that we can learn more about the data set.
The resulting clustering contains 11 clusters. The fact that

their sizes are all bigger than a single interpolation set, indicates
that we are obtaining interpolation metaclusters (clusters
containing elements from more than one interpolation set).
The percentage of each interpolation set in each cluster (Figure
4) shows that only 3 out of the 11 clusters contain a complete
interpolation set; the 8 remaining clusters contain partial
interpolation sets that, in most cases, share the same base
conformation. These can be explained by the distance
asymmetries present in the original 9 conformations ensemble
(see Figure 2b). The RMSF plot in Figure 3b shows large
RMSFmax and RMSFmin values, meaning that clusters are
capturing wide residue fluctuations. These values warn us about
the quality of the clustering, pointing us to reevaluate the
validity of the default hypothesis. In this second attempt, we
will loosen the hypothesis by allowing more and smaller
clusters. The number of clusters range has been maintained, but
the minimum cluster size has been lowered to 15. Furthermore,
we increase the noise to 5% (unclustered elements), giving
pyProCT more freedom to explore. Finally, we change the
default evaluation criteria so that the final score is calculated
using a 66% of silhouette index value and a 33% of cohesion
value. This gives a slightly higher weight to the separation/
compactness ratio than the default criteria. After performing the
exploration, we have found a clustering composed of 35 clusters
with 20 conformations each, and one with 15. If we look for
them in the results file, we can see that each of these clusters
corresponds to one of the interpolation sets (the missing five
elements being interpreted as noise). The RMSF plot in Figure
3c reflects a remarkable decrease of the RMSFmin value,
meaning that one or more clusters were able to capture the
local fluctuations. The RMSFmax value, however, only decreases

Figure 4. Each shadowed rectangle shows the contents of each of the 11 clusters for the first clustering. Each radial plot shows the percentages of all
interpolation sets generated from the base conformation (which id is written in its center) to each of the other target conformations. All clusters
contain elements from more than one interpolation set. In particular, clusters 1, 2, and 8 contain an almost complete interpolation set (from
conformation 1 to 6, from 5 to 8, and from 0 to 1, respectively).

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500306s | J. Chem. Theory Comput. 2014, 10, 3236−32433241

to some extent, suggesting that many clusters are still capturing
wide fluctuations: the clustering may still be improved.
The last attempt of improving our cluster is to further loosen

the working hypothesis. This time, we will let pyProCT
produce even more clusters (in the range 3 to 100). Larger
number of clusters involves lowering the minimum cluster size,
set here to only 10 elements. Moreover, generating a larger
number of clusters (of smaller size) makes the clustering more
prone to producing noise. To address this issue, we raised the
allowed clustering noise to 10% of the elements.
The resulting clustering contains up to 49 clusters with an

average size of 14 elements. With a layout beyond our intuition,
this last clustering is the one that best separates the ensemble
conformations. As a consequence, its RMSFmaxand
RMSFminvalues are the lowest of the three clusterings we
have generated (see Figure 3d).
This illustrates how pyProCT can find good quality

clusterings if enough freedom is given to it. What is more,
the iterative scheme shown here (Figure 4) helped us to gain
more insight about the data and its layout by creating three
hypotheses adapted to our increasing knowledge of the data set.
3.2. Clustering of an MD Trajectory. In our last

application example, we want to cluster analyze the cisplatin−
DNA interaction data set used by Lucas et al.32 This data set
holds a 3.7 s molecular dynamics MD simulation stored in 126
857 frames (Figure 5a). It shows the electrostatic preassociation
of cisplatin, a clinically relevant drug used to treat several types
of cancer, with a DNA strand.
When performing a cluster analysis on this data set the first

obstacle we find is its huge size. To handle its pairwise RMSD
matrix, at least 29 GB of RAM would be needed. This makes
the analysis computationally unfeasible in common work-
stations and nonspecialized hardware architectures. To over-
come this issue, we have first divided the trajectory into 12
chunks of 10 572 frames (the 12th part is 7 frames smaller).
Then, we have used the compression feature of pyRMSD to
reduce the size of each piece below 1500 frames. Finally, all
compressed partial trajectories have been merged. Since the
addition of local compressions could have added redundancy,
we have compressed the resulting trajectory again in order to
have about 15 000 frames (Figure 5b).
A quick visualization of the data set reveals a second

difficulty: relevant clusters are hidden by a large convex cluster

that corresponds to random posotions of the drug away in bulk
solvent space (Figure 5a). This bulk cluster has different
density, size, and shape than the clusters we are interested in,
thus complicating the analysis. This data set represents a good
example of how a clustering analysis that is trivial for the human
brain can be difficult to automatize.
The clustering hypothesis we have used reflects what we have

learned from this visual inspection. We have allowed a huge
noise generation (maximum noise of 80%) in order to permit
the classification of the bulk cluster as noise. In addition, we
have decided to let pyProCT choose clusterings containing
from 3 to 20 clusters, with at least 50 elements inside each
cluster. All other parameters were left with their default values.
The resulting clustering (Figure 5c) contains five clusters in

which positions and relative populations correlate well with the
ones shown in the kinetic analysis performed by Lucas et al.32

To obtain this final clustering, pyProCT generated 314
clusterings, from which 164 were directly rejected. The whole
exploration process took 90 min using five working threads plus
a nonproductive control thread in a 4-cores (8 threads) Intel
Xeon W3530 @ 2.80 GHz workstation with 12 GB of RAM.
Thanks to the use of pyRMSD,29 the matrix calculation step,
one of the bottlenecks of cluster analysis software, took only 19
s (0.35% of the total time).

4. CONCLUSIONS

pyProCT is an open source Python cluster analysis toolkit that
can work as a standalone program or as part of other projects.
Its implementation of the HCE method can help users with
little or no previous experience in cluster analysis to produce
more reliable results. In addition, the high level input
customization makes it a powerful tool when used by experts.
We have shown how it can be applied to common use cases

of cluster analysis: feature extraction and redundancy
elimination. In the first conformational clustering case
presented, pyProCT’s default hypothesis was enough to guess
the algorithm and parametrization (including the number of
clusters) that produced the best clustering. In the second
proposed example, we showed an intuitive iterative scheme that
allows us to refine the default hypothesis in order to improve
the results and to gain insight into our data set structure.
Finally, we have shown how to use it in a spatial cluster analysis

Figure 5. Atomic level representations of the MD trajectory data set. In part a, the whole data set is shown. It is worth noting that the cluster formed
by the bulk solvent covers the clusters of interest (around the binding sites). This data set’s redundancy was reduced, being part b, the resulting
compressed data set. Finally, in part c, the five retrieved clusters are shown along with the DNA strand.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500306s | J. Chem. Theory Comput. 2014, 10, 3236−32433242

scenario, where a large and noisy data set was compressed to an
easy to handle ensemble.
pyProCT is available at https://pele.bsc.es/pele.wt/tools.

■ ASSOCIATED CONTENT
*S Supporting Information
Implemented clustering algorithms; clustering properties and
quality functions; input and output file formats. This material is
available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*Email: victor.guallar@bsc.es.
Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) Shaw, D. E.; Chao, J. C.; Eastwood, M. P.; Gagliardo, J.;
Grossman, J. P.; Ho, C. R.; Lerardi, D. J.; Kolossvaŕy, I.; Klepeis, J. L.;
Layman, T.; McLeavey, C.; Deneroff, M. M.; Moraes, M. A.; Mueller,
R.; Priest, E. C.; Shan, Y.; Spengler, J.; Theobald, M.; Towles, B.;
Wang, S. C.; Dror, R. O.; Kuskin, J. S.; Larson, R. H.; Salmon, J. K.;
Young, C.; Batson, B.; Bowers, K. J. Commun. ACM 2008, 51, 91.
(2) Stone, J. E.; Hardy, D. J.; Ufimtsev, I. S.; Schulten, K. J. Mol.
Graphics Modell. 2010, 29, 116−125.
(3) Zhang, Y.; Skolnik, J. J. Comput. Chem. 2004, 25, 865−871.
(4) Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; van Gunsteren,
W. F.; Mark, A. E. Angew. Chem., Int. Ed. Engl. 1999, 38, 236−240.
(5) Prinz, J.-H.; Wu, H.; Sarich, M.; Keller, B.; Senne, M.; Held, M.;
Chodera, J. D.; SchÃOEtte, C.; NoÃ©, F. J. Chem. Phys. 2011, 134,
174105.
(6) Noe, F.; Schutte, C. Proc. Natl. Acad. Sci. U.S.A. 2009, 106,
19011−6.
(7) Takahashi, R.; Gil, V. A.; Guallar, V. J. Chem. Theory Comput.
2013, 10, 282−288.
(8) Karpen, M. E.; Tobias, D. J.; Brooks, C. L. Biochemistry 1993, 32,
412−420.
(9) Gordon, H. L.; Somorjai, R. L. Proteins 1992, 14, 249−264.
(10) Haack, F.; Fackeldey, K.; Röblitz, S.; Scharkoi, O.; Weber, M.;
Schmidt, B. J. Chem. Phys. 2013, 139, 194110.
(11) Shao, J.; Tanner, S. W.; Thompson, N.; Cheatham, T. E. J.
Chem. Theory Comput. 2007, 3, 2312−2334.
(12) Berendsen, H. J. C.; Spoel, D. V. D.; Drunen, R. V. Comput.
Phys. Commun. 1995, 91, 43−56.
(13) Seeber, M.; Cecchini, M.; Rao, F.; Settanni, G.; Caflisch, A.
Bioinformatics 2007, 23, 2625−2627.
(14) Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. Kdd 1996, 226−231.
(15) Zhou, H.; Wang, P.; Li, H. J. Inf. Comput. Sci. 2012, 9 (7),
1967−1973.
(16) Cossio, P.; Laio, A.; Pietrucci, F. Phys. Chem. Chem. Phys. 2011,
13, 10421−10425.
(17) McGibbon, R. T.; Pande, V. S. J. Chem. Theory Comput. 2013, 9,
2900−2906.
(18) Meila, M. Comparing Clusterings: An Axiomatic View.
Proceedings of the 22nd International Conference on Machine Learning
2005, 577−584.
(19) Luxburg, U. Stat. Comput. 2007, 17, 395−416.
(20) Kleinberg, J. Adv. Neural Inf. Process. Syst. 2002, 446−453.
(21) Ward, J. H. J. Am. Stat. Assoc. 1963, 58, 236.
(22) Guyon, I.; Luxburg, U. V.; Williamson, R. C. Adv. Neural Inf.
Process. Syst. 2009.
(23) Rand, W. M. J. Am. Stat. Assoc. 1971, 66, 846.
(24) Reichart, R.; Rappoport, A. The NVI Clustering Evaluation
Measure. Proceedings of the Thirteenth Conference on Computational
Natural Language Learning; Stroudsburg, PA, 2009; pp 165−173.
(25) Meila, M. Comparing Clusterings by the Variation of
Information. In Learning Theory and Kernel Machines; Scholkopf, B.,

Warmuth, M. K., Eds.; Lecture Notes in Computer Science 2777;
Springer: Berlin Heidelberg, 2003; pp 173−187.
(26) Kryszczuk, K.; Hurley, P. Estimation of the Number of Clusters
Using Multiple Clustering Validity Indices. In Multiple Classifier
Systems; Gayar, N. E., Kittler, J., Roli, F., Eds.; Lecture Notes in
Computer Science 5997; Springer: Berlin Heidelberg, 2010; pp 114−
123.
(27) Ng, R. T.; Han, J. Efficient and Effective Clustering Methods for
Spatial Data Mining. Proceedings of the 20th International Conference on
Very Large Data Bases, San Francisco, CA, 1994; pp 144−155.
(28) Pal, N.; Biswas, J. Pattern Recogn. 1997, 30, 847−857.
(29) Gil, V. A.; Guallar, V. Bioinformatics 2013, 29, 2363−2364.
(30) Mullner, D. J. Stat. Soft. 2013, 53, 1−18.
(31) Dalcin, L.; Paz, R.; Storti, M.; D’Elia, J. J. Parallel Distrib.
Comput. 2008, 68, 655−662.
(32) Lucas, M. F.; Cabeza de Vaca, I.; Takahashi, R.; Rubio-Martinez,
J.; Guallar, V. Biophys. J. 2014, 106, 421−429.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500306s | J. Chem. Theory Comput. 2014, 10, 3236−32433243

3.7. SUPPLEMENTARY MATERIALS: PYPROCT 99

3.7 Supplementary materials for: pyProCT: Auto-
mated Cluster Analysis for Structural Bioin-
formatics

3.7.1 Implemented clustering algorithms

In this section, we will review the algorithms currently implemented in pyProCT.
For each of these, we will briefly describe how it works, how its parameters are
generated (if automatic generation is triggered) and the structure of each para-
meter objects, so that users can define them inside the script.

3.7.1.1 DBSCAN [160]

DBSCAN4 is a density-based clustering algorithm. Density is given by the use
of 2 parameters: ‘eps’, that defines a distance radius centered on one element,
and ‘minpts’, that specifies the minimum number of neighboring points for that
element to be considered part of a cluster.

The algorithm classifies elements into three categories: not classified, noise
and core elements. All elements are initially set to ‘not classified’. The ‘core’
elements are those that have at least ‘minpts’ elements in an ‘eps’ radius and
also the elements inside the ‘eps’ radius of a ‘core’ element (which will be
border points). All not ‘core’ elements are classified as ’noise’ and will not be
part of the clustering.

One of the key issues of DBSCAN is the proper selection of its ’eps’ and
‘minpts’ parameters. High density combinations can produce very noisy clus-
terings (which, depending on the context can be an issue or a feature), and low
density combinations can easily lead to the singleton clustering (a clustering
with only one cluster encompassing all elements). Because of its dependency
on the element density, it can have problems detecting clusters if there are dif-
ferent density regions in the dataset.

3.7.1.1.1 Parameters generation strategy

The implemented parameters generator is based on the details given in the ori-
ginal articles [160, 161] as well as the method of Ankerst extitet al. [162].
Briefly:

4Density-Based Spatial Clustering of Applications with Noise

100 CHAPTER 3. ARTICLES

1. pyProCT will recreate k-distance lists for some k values (k < log (|D|)
as indicated in the literature).

2. For each of the k-distance lists, an ‘eps’ value will be chosen so that the
generated noise falls between 0% and the maximum allowed noise (plus
a 2.5% margin). The value of k in that k-distance list will be used as the
value of ‘minpts’ in that parameter pair.

In addition, we add the parameter choice suggested by Zhou extitet al.[163].

3.7.1.1.2 Parameters object structure

1 {

2 "eps": Real,

3 "minpts": Integer

4 }

3.7.1.2 GROMOS

First found in the work of Daura extitet al. [164, 165], it is also a density-based
algorithm. As it looks that the algorithm has no name, we named it after the
flag that the g cluster tool[157] receives to use it. With a simpler behaviour
than DBSCAN, it was thought to adapt to the ideal expected characteristics
of datasets coming from the conformational search of small peptides (well-
separated regions centered in metastable states).

The algorithm repeats a loop that ends when all elements have been clustered:

Algorithm 1 GROMOS algorithm
Input: D, the data set
Input: cuto f f , the cutoff radius
Output: C, a set of clusters

1: Dtmp ← D
2: while Dtmp , ∅ do
3: e← mostDense(Dtmp)
4: neig← neighbours(e,cuto f f)
5: c← {e,neig}
6: addCluster(c, C)
7: Dtmp ← Dtmp \ c
8: end while
9: return C

3.7. SUPPLEMENTARY MATERIALS: PYPROCT 101

mostDense() Find the element with more neighbors inside the given cutoff
radius (to find the densest zone).

3.7.1.2.1 Parameters generation strategy

The goal here is to find a finite range of cutoffs, exactly as it is done with the ‘k’
parameter in k-medoids or ‘num clusters’ in the random grouping algorithm.
The minimum value for the cutoff parameter is 0, generating a trivial clustering
in this case (a clustering where each element is a cluster). In order to get an
estimation of the maximum value, we choose the 3 most separated elements of
the dataset. We can ensure that the second longest side of the triangle with this 3
elements as vertices will be the minimum radius that encompasses all elements
of the dataset, producing a singleton clustering, and thus it is the upper limit of
the cutoff range. Once the maximum and minimum are known, we can obtain
equidistant values for the cutoff within this range.

3.7.1.2.2 Parameters object structure

1 {

2 "cutoff": Real

3 }

3.7.1.3 Hierarchical clustering

pyProCT uses an external package [166] that implements an agglomerative
hierarchical clustering algorithm. Agglomerative hierarchical algorithms start
with all elements of the dataset forming single clusters (a trivial clustering) and
every step it merges the closest clusters by means of a proximity function (only
‘single linkage’ and ‘complete linkage’ options can be used). The agglomerat-
ive step represents the dataset as a tree (dendrogram) that has to be cut in order
to retrieve the clustering. The distance at which the cut is performed is called
the cutoff distance.

3.7.1.3.1 Parameters generation strategy

Getting the dendogram cut is computationally cheap compared to the hierarch-
ical matrix calculation. In this case, pyProCT will generate clusterings until it
finds the range of cutoffs in which the resulting clustering falls within the range
of allowed number of clusters. This range will be refined in order to get more
clustering candidates.

102 CHAPTER 3. ARTICLES

3.7.1.3.2 Parameters object structure

1 {

2 "cutoff": Real,

3 "method": String in ["single",

4 "complete"]

5 }

method If its value is ‘single’, the single linkage method is used to calculate
the proximity of clusters. This proximity is then defined as the minimum
distance between any two points in that clusters. If ‘complete’ is used in-
stead, the proximity of two clusters is measured as the maximum distance
between any two elements of different clusters. Various combinations of
method-cutoff are possible in the parameters list, but due to performance
reasons, only the ‘method’ value of the first parameter object in the list
will be used.

3.7.1.4 K-Medoids

Is a partitional algorithm similar in concept to k-means. Because of its beautiful
simplicity, our implementation is based on Lloyd’s k-means algorithm [167]
instead that on other k-medoids specific algorithms (like PAM [168]).Roughly
the algorithm works as follows:

Algorithm 2 K-Medoids algorithm
Input: k, number of clusters
Output: C, a set of clusters

1: medoids← initialSeeding(k)
2: while ¬ convergence() ∧¬ maxStepsReached() do
3: C← labelElements()
4: medoids← calculateMedoids(k)
5: end while
6: return C

convergence() Checks if how the labeling of current iteration has changed
with respect to the last iteration.

labelElements() Labels each element of the dataset with the cluster of its
closer medoid.

K-Means-like algorithms will perform better detecting convex clusters.

3.7. SUPPLEMENTARY MATERIALS: PYPROCT 103

3.7.1.4.1 Parameters generation strategy

A globally-defined or used-defined maximum number of parameter sets (‘max’)
will be generated. Each of the parameter sets will have its ‘method’ field set to
‘EQUIDISTANT’ and its ‘k’ field will is calculated as (min clusters+ step×n
where 0 <= n <= max and step is (max clusters−min clusters)/max.

3.7.1.4.2 Parameters object structure

1 {

2 "k": Integer,

3 "seeding_type": String in ["RANDOM",

4 "EQUIDISTANT",

5 "GROMOS"],

6 "seeding_max_cutoff": Real

7 }

k Number of clusters to be created.

seeding type Method used for initial medoid seeding.

seeding max cutoff Only used when ‘seeding type’ = GROMOS. Maximum
cutoff radius for the GROMOS algorithm to generate the initial medoids.

The algorithm is very sensitive to the initial seeding configuration (the ini-
tial placement of the medoids). Three seeding methods are provided:

RANDOM Uses a random choice of elements from the dataset as initial medoids.
If used, the parameter will be replicated ‘tries’ times (default: 10) with
different random seeds.

EQUIDISTANT Divides the dataset in k consecutive parts and uses their
central element as medoid. Useful if we suspect that sequence order
and geometrical likeness are correlated (like in MD sequences).

GROMOS It will execute GROMOS algorithm with decreasing cutoffs until
‘k’ or more clusters are generated. Initial medoids will be the centers of
this clusters. It is specially useful if clusters were well separated.

104 CHAPTER 3. ARTICLES

3.7.1.5 Spectral Clustering

This algorithm uses the spectral properties of the dataset (viewed as a graph). It
is said that it can achieve better results than k-means or hierarchical clustering
algorithms.

The implemented version of the algorithm is described in the detailed re-
view written by Ulrike von Luxburg [169], based on the Normalized Spectral
Clustering[170]). It needs to perform six steps:

Algorithm 3 Spectral clustering algorithm
Input: M, a distance matrix
Input: D, initial data set
Input: k, number of clusters
Output: C, a set of clusters

1: A← adjacencyMatrix(M)
2: Deg← degree(A)
3: L← laplacian(A, Deg)
4: eigvec← caclEigenvectors(L,k)
5: Ce ← kMedoids(eigvec, k)
6: C← map(Ce, D)
7: return C

adjacencyMatrix() Constructs a similarity graph by applying a kernel to the
distance matrix.

degree() Computes the degree matrix and adjacency matrix.

laplacian() Computes the (unnormalized) Laplacian.

caclEigenvectors() Computes the first k generalized eigenvectors.

kMedoids() Clusters the eigenvector matrix as if each row was a point.

map() Maps each of the eigenvectors to the elements of the dataset (row i
corresponds to element i).

3.7.1.5.1 Parameters generation strategy

The sigma global parameter, used to calculate the adjacency matrix, can be set
by the user. If not, pyProCT will use a local sigma calculation strategy [171]
to build it. ‘k’ parameter is generated using the same approach than in the
k-medoids case.

3.7. SUPPLEMENTARY MATERIALS: PYPROCT 105

3.7.1.5.2 Parameters object structure

1 {

2 "k": Integer,

3 "use_k_medoids": Boolean

4 }

use k medoids
If set to true, the k-medoids algorithm will be used to cluster eigenvalues.
If set to false, k-means will be used instead.

3.7.1.6 Random Grouping

This algorithm assigns random cluster labels to the different elements in the
dataset. It cannot be considered a real clustering algorithm, but it is useful to
compare the behaviour of certain ICVs with more sphisticated algorithms. It
has been implemented in two ways:

FakeDistributionRandomClusteringAlgorithm
Generates clusters with certain per cluster population distribution (e.g.
First cluster 70% of the elements, second 20%, third 5% and so on)

RandomClusteringAlgorithm
Generates a totally random clustering (random number of clusters and
random cluster assignment) or a random clustering with a predefined
number of clusters.

3.7.1.7 Parameters generation strategy

The same strategy used in k-means to calculate the k value will be used here
for num clusters.

3.7.1.8 Parameters object structure

Only RandomClusteringAlgorithm is accessible through the script, and it only
needs one parameter:

1 {

2 "num_clusters": List(Integer)

3 }

106 CHAPTER 3. ARTICLES

num clusters
Number of clusters to be created (analogue to ‘k’ in other algorithms).

3.7.2 Clustering properties and quality functions
pyProCT implements functions which goal is to retrieve information from the
generated clusterings to evaluate them. Some of these functions retrieve prop-
erties from the clustering (“properties”), other functions evaluate the quality
and form the objective part of the clustering hypothesis. In this section we will
define and formalize both of them.

3.7.2.1 General definitions

1. D is a set containing all the elements of the dataset with |D| number of
elements (number of datum in the dataset e.g. conformations, distances,
etc).

2. C = {C1,C2, . . .Ck} is a clustering of k clusters, where |C| is its number
of clusters (|C| = k in this case) and |Ci| is the number of elements of
cluster i. Also:

∀Ci,C j ∈ C, i , j Ci ∩ C j ≡ ∅ (3.7)

3. DC ⊆ D is the set of clustered elements, which can differ from the initial
set if some elements were considered as noise and thus discarded.

DC ≡

k⋃
i=1

Ci, (3.8)

4. d(a, b) is a distance metric (dissimilarity function) applied to an element
a ∈ D and an element b ∈ D.

5. mi is the medoid of cluster Ci so that:

mi ∈ Ci (3.9)

∀a, b , mi a, b ∈ Ci d(a, b) ≥ d(a,m) ∧ d(a, b) ≥ d(b,m) (3.10)

6. As stated before singleton clustering is a clustering with one cluster that
holds all the elements of the dataset. In a trivial clustering, each element

3.7. SUPPLEMENTARY MATERIALS: PYPROCT 107

of the dataset forms its own clustering.

|C|singleton = 1 (3.11)

|C|trivial = |DC| (3.12)

3.7.2.2 Properties

The properties are functions that allow users to query about simple traits and
statistics of the clustering. The information returned by this functions is purely
descriptive and, in general, not usable for evaluation purposes. Eight properties
have been defined:

Details (String) Returns a string containing information about the type of clus-
tering algorithm and the parameters used to generate it.

NumClusters (Integer) Returns the number of clusters (|C|).

MeanClusterSize (Real) Mean number of elements per cluster:

mcs(C) =

∑k
i=1 |Ci|

|C|
(3.13)

NumClusteredElems (Integer) Returns the number of elements that were clustered.
It can be lower than the initial number of elements if noise was elimin-
ated. Is defined as:

nce(C) =

|C|∑
i=0

|Ci| ≡ |DC| (3.14)

NoiseLevel (Real) Calculates the ratio of clustered elements over the number
of initial elements:

nl(C,D) =

∑k
i=1 |Ci|

|D|
≡
|DC|

|D|
(3.15)

ClustersTo90 (Real) Returns the minimum number of clusters needed to ac-
cumulate 90% of the clustered elements.

PercentInTop (Real) Calculates the percentage of clustered elements owned
by the biggest cluster.

108 CHAPTER 3. ARTICLES

PercentInTop4 (Real) Calculates the percentage of clustered elements owned
by the four larger clusters.

3.7.2.3 Quality functions

Sometimes referred to as Clustering Validity Indices (CVI), are functions which
aim is to tell at which degree clusterings are an artificial partition or reflect the
real inner structure of the dataset (assuming that it exists). Quality functions
must use only internal information of the clustering, that is, not to be based on
a solution that is considered correct.

The following are some initial definitions that will help us to characterize
them:

Within cluster distance
The sum of all distances inside a cluster.

wd(Ci) =
∑

a,b∈Ci

d(a, b) (3.16)

Between cluster distance
Sum of the pairwise distances between elements belonging to two different
clusters.

bd(Ci,C j) =
∑
a∈Ci

∑
b∈C j

d(a, b) (3.17)

Average distance
Average of all pairwise distances between the elements inside a cluster.

avg(Ci) =
wd(Ci)
|Ci|

(3.18)

Standard deviation of distance
The standard deviation of all pairwise distances of the elements inside a cluster.

stdev(Ci) =

√
1
|Ci|

∑
a∈Ci

d2(a,mi) (3.19)

3.7.2.3.1 Cohesion [172]

Is a measure of cluster compactness. The cohesion factor measures the inner
similarity of a cluster. Its value for one cluster is calculated by summing up the

3.7. SUPPLEMENTARY MATERIALS: PYPROCT 109

distance of all elements belonging to that cluster. Its value for a clustering can
be defined as the sum of its clusters partial cohesions weighted by the inverse
of the cluster size. Due to the use of dissimilarity metrics, the interpretation
of cohesion can be misleading: the smaller its value, the more compact the
clusters are.

Ch(C) =
∑
Ci∈C

1
Ci

wd(Ci) (3.20)

A cohesion value of 0 can be obtained with the singleton clustering. It
reaches its maximum value in a trivial clustering (|DC|

−1wd(DC)).
Te actual implementation in pyProCT is a more intuitive redefinition of

Cohesion, as an increment of cluster compactness will also increase this index
value:

Ch(C) = 1 −
Ch(C)

|DC|
−1wd(DC)

(3.21)

Its value ranges between 0 and 1.

3.7.2.3.2 Separation [172]

Measures how distinct a cluster is from other clusters (how isolated a cluster is
from the others). In practice, it calculates the sum of distances weighted by its
cohesion:

Sep(C) =

k∑
i=1
j>i

bd(Ci,C j)
Ch(Ci)

(3.22)

When its value increases, cluster separation increases. Its value ranges from
0 (trivial clustering) to infinity (singleton clustering, which implies Ch(Ci) ≡ 0.

3.7.2.3.3 Compactness [173]

Compares the standard deviation (std. dev.) of the clustered dataset (std. dev.
of its clusters) with the std. dev. of the whole dataset. Note that the std. dev.
calculation function is defined using the medoid of the cluster instead of the
mean point.

Cmp(C) =
1
|C|

|C|∑
i=1

stdev(Ci)
stdev(DC)

(3.23)

110 CHAPTER 3. ARTICLES

Maximizing its value minimizes compactness.

3.7.2.3.4 Gaussian Separation [173]

Is a prototype-based separation index where distances are attenuated using an
exponential. This intends to produce the same behaviour that some exponential
kernels used to calculate the adjacency matrix in graph-like representations of
the dataset: diminish long range distances and sharpen subgraphs contours.

Gsep =
1

|C|(|C| − 1)

∑
i, j=1,...,|C|

j,i

e
−d2(mi ,mj)

2σ2 (3.24)

Maximizing its value maximizes separation.

3.7.2.3.5 Davies-Bouldin [174]

A prototype-based measure that compares compactness (represented by the
average of intra-cluster distances) and separation (distance between the proto-
types).

Db(C) =
1
|C|

|C|∑
i=1

max j∈1,...,|C|
j,i

(
avg(Ci) + avg(C j)

d(mi,m j)

)
(3.25)

Measures compactness and separation. The smaller the value is, the better
overall quality the clustering has.

3.7.2.3.6 Dunn [175, 176]

Ratio of the minimum inter-cluster distance and the maximum intra-cluster
distance.

mind(Ci) = minr,t∈Cid(r, t) (3.26)

maxd(Ci,C j) = maxr∈Ci
t∈C j

d(r, t) (3.27)

Dunn(C) =
minCi∈C(mind(Ci))

maxCi,C j∈C
i, j

(maxd(Ci,C j))
(3.28)

Dunn index evaluates compactness and separation simultaneously. Quality
clusterings should have high values for this function.

3.7. SUPPLEMENTARY MATERIALS: PYPROCT 111

3.7.2.3.7 Calinski-Harabasz [177]

Another variation of the intra and inter-cluster distances ratio calculation.

Ak(C) =
1

|DC| − |C|

|C|∑
i=1

(|Ci| − 1)(avg(DC) − avg(Ci)) (3.29)

CH(C) =
avg(DC) + |DC|−|C|

|C|−1 Ak

|DC| − Ak(C)
(3.30)

It also measures compactness and separation.The higher the value is, the
better quality the clustering has.

3.7.2.3.8 Silhouette [178]

Useful when distances are on a ratio scale (for instance euclidean distance),
allowing to measure compactness and separation altogether by calculating the
pairwise difference of inter and intracluster distances. The Silhouette index for
a single element of a cluster can be calculated as:

S(e) =

{ b(e)−a(e)
max(a(e),b(e)) if |Ci| > 1
0 if |Ci| ≤ 1

(3.31)

Where a(e) is the average inner dissimilarity of its cluster and b(e) is the
outer dissimilarity of this element with the other clusters, calculated as follows:

e ∈ Ce (3.32)

a(e) =
∑
t∈Ce
t,e

d(e, t) (3.33)

b(e) =
∑
∀t∈Ci

t,e
C f,Ce

d(e, t) (3.34)

Cluster and clustering values for this index can be calculated as the cluster
average and global average of their per-element values. Its value ranges from
-1 (worst quality) to 1 (best quality).

112 CHAPTER 3. ARTICLES

3.7.2.3.9 PCAanalysis [179]

Calculates the axes of variance and gives an estimation of the amount of vari-
ance in each axis for each cluster. The final value of this index will be the
average value of the variance of the major variance axis for each cluster. As
with other compactness measures, it depends on the size of the clusters. The
higher the value is, the less compact the clusters are. Measures compactness
(by means of variance).

3.7.2.4 Graph cut indices

The distance relationships between elements of the clustering can be viewed
as a similarity graph were each vertex is an element and edges are weighted by
their distances. In general, small values for this functions mean good quality
of the partition (almost all are a sum of adjacency weights). Clustering can
then be seen as a partitioning problem where one objective graph cut function
is optimized. First, we will need to define some helper functions. Note that,
in this case, the distances are the edge values, and are related to the adjacency
matrix:

3.7.2.4.1 Degree of a node

Sum of the weights of the edges that contain this node.

deg(a) =
∑
∀i,b∈Ci

d(a, b) (3.35)

3.7.2.4.2 Internal volume

Is defined as the sum of all the weights of the edges of one partition, including
those that connect with other partitions). As each edge must be counted only
once and internal edges are counted twice, final must be multiplied by 0.5. Can
be seen as the sum of degrees too.

vol(Ci) =
1
2

∑
n∈Ci

deg(n) (3.36)

3.7.2.4.3 Cut

Sum of the weights of the edges that have to be removed in order to separate two
components of the graph. Its value is 0 if both subgraphs are not connected.

3.7. SUPPLEMENTARY MATERIALS: PYPROCT 113

cut(Ci) =
1
2

∑
i∈Ci, j∈Ci

d(i, j) (3.37)

3.7.2.4.4 Ncut (Normalized Cut) [170]

It is mainly a separation measure. Some authors divide it by the number of
clusters.

NCut(C) =

∑k
i=1

cut(C)
vol(Ci)

k
(3.38)

3.7.2.4.5 MinMaxCut [180]

It is mainly a separation measure.

MinMaxCut(C) =
1
2

k∑
i=1

cut(Ci)
vol(Ci)

(3.39)

3.7.2.4.6 RatioCut [181]

It is mainly a separation measure.

RatioCut(C) =

k∑
i=1

cut(Ci)
|Ci|

(3.40)

3.7.3 Input script
pyProCT uses as input a human-readable JSON text file. Its file extension can
be arbitrarily chosen, however pyProCT will generally produce this kind of files
with a ‘.json’ extension.

The input file describes how the software interacts with the underlying hard-
ware where it is being executed, how the clustering exploration will be per-
formed, and finally, which kind of post process operations will be performed
after the clustering has been obtained. This section will be structured in 4 sub-
sections, one for each of the main subsections of the script (‘global’, ‘data’,
‘clustering’ and ‘postprocess’).

Unless otherwise specified, each property or object will be represented by
a descriptor. This descriptor contains the label of the property or JSON object
(subsections), information about its data type, and possible dependencies.

114 CHAPTER 3. ARTICLES

A label consists of a double colon separated list of the names of the objects
that encompass the property or subsection, followed by its name. For instance,
x::y::z corresponds to the JSON object:

JSON 3.1: Simple JSON object.

1 "x": {

2 "y": {

3 "z": { }

4 }

5 }

The nature of z will be specified after the label. Possible tags are:

Subsection The item is another JSON object that can contain another subsec-
tions (JSON objects) and properties.

Integer The item is an integer value property.

Real The item is a real value property.

String The item is a string property.

List The item is an array of elements.

If the value of the property has to be chosen from a limited list of pos-
sible choices, this values will be enumerated in a “value in [choices]” clause.
“Optional” will be added to the end of the descriptor if the property is optional.

Finally, if a property or subsection needs it, a dependency clause will be
added in front of the label. This dependency clause contains the label it depends
on and the value it needs to have, or, if it just depends on its previous definition,
an “is defined” clause.

Examples:
[x::y::z is defined] x::y::t
Means that x::y::t value will be ignored unless x::y::z has a value.
[x::y::z == “m”] x::y::t
Means that x::y::t will not be used unless x::y::z is defined and has value

“m”.

The rest of this section has been intentionally hidden as it no longer de-
scribes pyProCT input script. For updated information please visit the re-
pository at https://github.com/victor-gil-sepulveda/pyProCT.

3.7. SUPPLEMENTARY MATERIALS: PYPROCT 115

3.7.4 Results file
The results file summarizes the whole clustering process and its results. It con-
tains extra information that can be processed afterwards with the results viewer
in order to gain more insight about the used quality functions and criteria.

3.7.4.1 Best clustering

This section contains only one property that holds the identification string of
the best clustering.

JSON 3.2: Best clustering result ID

1 {

2 "best_clustering": String

3 }

best clustering Id of the best clustering.

3.7.4.2 Files

This section stores a list of file objects, containing the details of all generated
files (included the results file itself):

JSON 3.3: The file details section of the results file

1 {

2 "files": List(FileDetailsObject)

3 }

A FileDetails object has the following structure:

JSON 3.4: FileDetails object

1 {

2 "path": String,

3 "type": String in [’text’,’image’],

4 "description": String

5 }

path Complete path of the file

116 CHAPTER 3. ARTICLES

type ‘text’ if the file is a human-readable txt file, or ‘image’ if it is a viewable
image file.

description Contains a very brief description of the file contents.

3.7.4.3 Trajectories

A list containing objects with details of the trajectories used in this clustering:

JSON 3.5: The trajectory details section of results file

1 {

2 "trajectories": List(

↪→ TrajectoryDetailsObject)

3 }

Each TrajectoryDetails object has the following structure:

JSON 3.6: TrajectoryDetails object

1 {

2 "source": String,

3 "conformations": Integer,

4 "atoms": Integer

5 }

source Complete path of this trajectory.

conformations Number of conformations (‘model’ sections) of the pdb.

atoms Number of atoms of each conformation.

3.7.4.4 Workspace

Is a copy of the same section in the parameters file.

3.7.4.5 Scores

Contains the score value of each criterion for all non-filtered clusterings.

3.7. SUPPLEMENTARY MATERIALS: PYPROCT 117

JSON 3.7: Possible score section for a clustering process that used two criteria and
ended with two candidates

1 "scores": {

2 "criterion_0": {

3 "clustering_0001": 0.9822,

4 "clustering_0002": 0.9935

5 } ,

6 "criterion_1": {

7 "clustering_0001": 0.9150,

8 "clustering_0002": 0.9229

9 }

10 }

3.7.4.6 Timing

Compiles the values of all timer objects in a list. These can be used to rapidly
assess the performance of the execution.

A timer object has the following structure:

JSON 3.8: Timer object

1 {

2 "name": String,

3 "elapsed": Real

4 }

name Name of the step being checked.

elapsed The duration of the step in seconds.

3.7.4.7 Clustering information

The clustering information section is indeed composed of 2 similar sections:
‘selected’ stores all non-filtered clusterings, and ‘not selected’ holds the ones
that were filtered.

Both sections contain JSON objects with details of the generated clustering.
A clustering object is indexed by its id, and contains the following subsections:

118 CHAPTER 3. ARTICLES

clustering::clusters List(ClusterObject)
A list of the clusters forming the clustering. See the input file section clus-

tering::generation::clusters for a description of the format of a cluster object.
clustering::total number of elements Integer
The amount of clustered elements.
clustering::number of clusters Integer
The length of the clusters list.
evaluation Evaluation
An evaluation object containing the values of all calculated queries and

quality functions for this clustering.
type String in [‘dbscan’, ‘gromos’, ‘hierarchical’, ‘kmedoids’, ‘spectral’,

‘random’]
Indicates which algorithm generated this clustering.
parameters ParametersObject
Parameters used by the algorithm to generate this clustering (as detailed in

the Algorithms section).
Clusterings under the ‘ selected’ key have slightly different contents. They

share all fields but the ‘evaluation’ one, which changes to ‘reasons’.
reasons List(ReasonObject)
Holds a list of reasons why the clustering was not considered for evaluation.

each reason object looks like this:

JSON 3.9: Reason object

1 {

2 "reason": String in ["TOO_FEW_CLUSTERS",

3 "TOO_MUCH_CLUSTERS",

4 "TOO_MUCH_NOISE",

5 "EQUAL_TO_OTHER_CLUSTERING"],

6 "data": ReasonDataObject

7 }

‘reason’ The reason to exclude this clustering from the evaluation step. ‘TOO FEW CLUSTERS’
and ‘TOO MUCH CLUSTERS’ mean that the number of clusters is not
into the allowed range. ‘TOO MUCH NOISE’ means that the clustering
had too much noise. ‘EQUAL TO OTHER CLUSTERING’ means that
an exact clustering has been already generated (with other algorithm or
parameters).

3.7. SUPPLEMENTARY MATERIALS: PYPROCT 119

‘data’ Gives details about the reason to eliminate this clustering. For the first
3 cases, it will store the maximum/minimum value of the range and the
current value for that clustering.

JSON 3.10: This clustering was not used because it had fewer clusters 1 than the
minimum number of clusters allowed 6

1 {

2 "reason": "TOO_FEW_CLUSTERS",

3 "data": {

4 "current": 1,

5 "minimum": 6

6 }

7 }

Data objects for ‘EQUAL TO OTHER CLUSTERING’ reasons will only
store the id of the repeated clustering.

1 {

2 "reason": "EQUAL_TO_OTHER_CLUSTERING",

3 "data": {

4 "id": "clustering_0003"

5 }

6 }

3.7.5 Clustering of a long trajectory (proof of concept)
In a cluster analysis, the function distance must be applied many times to the
different elements of the dataset. As pyProCT needs to generate numerous
clusterings, it is unfeasible to use an ‘on line’ distance calculation approach.
Instead, the symmetric pairwise distance matrix is calculated once and used
throughout all the process, improving the overall performance. The size of
the distance matrix grows quadratically in the size of the input (the number
of conformations), and can rapidly consume all the RAM of a state-of-the-
art workstation. Because of this, using pyProCT with large conformational
ensembles supposes a technical challenge.

In Section 3.2 we have shown how this limitation can be overcome by per-
forming a redundancy reduction on the input trajectory before analyzing the

120 CHAPTER 3. ARTICLES

dataset. Here we want to apply this technique to reduce a longer trajectory
(more than 1million frames) to an easier to handle size.

3.7.5.1 The trajectory

We used the 206 µs trajectory of Trp-cage (PDB5 id 2JOF) presented in an
article from D. E. Shaw’s group [182]. The details of the simulation can be
found in the Supporting Online Materials for this article.

3.7.5.2 Redundancy elimination

The goal of this technique is to reduce the input trajectory by exchanging sets
of similar conformations (clusters) by a choice of its most representative struc-
tures so that the final number of elements is proportional to the original size of
the cluster.

The first step to apply the reduction is to produce a clustering. This makes
us face the memory problem mentioned before. A workaround for this issue is
to divide the trajectory into smaller parts so that each distance matrix can fit
in memory, process each part separately and then merge them again. Unfortu-
nately, arbitrarily partitioning the trajectory can separate elements that could
form part of the same cluster (which is more prone to happen in the boundaries
of each part). This can lead to an unevenness in the redundancy elimination
process (see the 2D example in Fig. 3.14A). We have performed the reduction
process iteratively to mitigate the problem. We start with 105 parts of almost
10k frames each. After reducing each part to 2k frames, we merged them into
groups of 7 (∼14k frames each). These groups were compressed to have around
1.3k frames each and merged again to form a ∼24k frames trajectory. This was
finally reduced to 20k frames and then analyzed.

3.7.5.3 Results

3.7.5.3.1 Performance

pyProCT was run in an Intel Xeon CPU W3530 @ 2.80GHz workstation. Each
run of pyProCT spawned a maximum of 6 processes. While it was being ex-
ecuted the workstation was normally used, occasionally triggering operating
system’s swap mechanisms, which slowed down the process. Therefore, the
calculated execution time has merely a qualitative meaning (see Table 3.3).

5Protein Data Bank (http://www.rcsb.org)

3.7. SUPPLEMENTARY MATERIALS: PYPROCT 121

Figure 3.14: A) Global reduction of the size of the dataset vs. merging local reduc-
tions. B) Different levels of compression including the number of frames used in each
level.

122 CHAPTER 3. ARTICLES

Level Runs Time per run (s) Clusterings per run

Third (10k→2k) 105 ∼1500 300-400
Second (20k→1.3k) 18 ∼2200 300-400

First (24k→20k) 1 12395 452

Table 3.3: Around 40k clusterings were produced in almost 58h (1 clustering each
5s).

Also, the lack of knowledge of the system forced us to use a very general hypo-
thesis, increasing the number of clusterings that had to be generated and thus
the total execution time.

3.7.5.3.2 Clustering

The clustering chosen by pyProCT was composed of a total of 19 clusters,
one of them holding the 34% of the conformations. The Cα-RMSD with the
experimental structure (PDB id 2JOF) is 1.8Å, which is similar to the 1.4Å
RMSD calculated in the original article (see Fig. 3.15).

3.7.6 2D Validation

In order to improve the reliability of pyProCT we have performed two different
quality assurance methods. The first was to ensure that the software itself was
working correctly using a unit testing methodology (trying to get the best pos-
sible test coverage). The second was centered in the validation of the clustering
algorithms and the protocol.

Clusterings are hard to validate, especially when using multidimensional
data. Validating a 2D clustering, however, can be an easier task as it can be
visually checked. To this end we coded the scripts that can be found in the
folder pyproct/validation/bidimensional/.

3.7.6.1 Datasets

To perform the validation, we downloaded some of Helmuth Spaeth’s[183]
datasets. These datasets have different characteristics that make them difficult
to cluster :

1. In this dataset 3 to 5 clusters can be seen. It looks like some of them can
be subdivided. In general, these clusters are compact.

3.7. SUPPLEMENTARY MATERIALS: PYPROCT 123

Figure 3.15: Representative conformations for the 4 most populated clusters, holding
a 34%, 13%, 8 % and 8% of the elements of the dataset.

124 CHAPTER 3. ARTICLES

2. It shows a set of points homogeneously covering the plane. There is not
noticeable density variations.

3. In this case there are two different density regions. In the bottom-right
corner there is a compact cluster. The remaining points are sparsely dis-
tributed in the remaining space .

4. Two compact clusters to the left, one big cluster (which seems to be com-
posed of other clusters) sits on the right.

5. Three parallel elongated clusters of different sizes and densities.

6. Three elongated clusters with similar densities sharing the same origin.

7. Two overlapped elongated clusters with different densities.

8. Three elongate clusters with similar densities. All three are overlapped.

We also used a code adapted from Jochen Wersdrfer’s blog [184] to gener-
ate a 9th dataset, which contains 450 points lying in three concentric circles.

3.7.6.2 Protocol validation

In the first version of the validation script we used the datasets to validate the
algorithms, that is, we coded some algorithm-parameter pairs and checked a
picture of the resulting clusterings. Since the algorithms were working as ex-
pected, we upgraded the script to fully test the HCE protocol.

For each dataset, two hypotheses about the noise, cluster size and number
of clusters were defined (see 3.4) based on our observations of the datasets.
Also, we used two different criteria to describe the expected clusterings:

“default criteria” Uses Silhouette and Cohesion ICVs. Is the default criteria
of pyProCT and fosters both separation and compactness.

“graph criteria” Uses the ’NCut’ ICV. It tries to separate a graph represent-
ation of the dataset into connected components so that the sum of inner
edge weights is optimized.

3.7. SUPPLEMENTARY MATERIALS: PYPROCT 125

Figure 3.16: Results of the application of pyProCT to nine 2D datasets. Clusters are
plotted using different colors and symbols.

126 CHAPTER 3. ARTICLES

Figure 3.17: An incorrect choice of the ICVs to express the desired resulting cluster-
ing traits can drastically modify the results. In this case the criteria was changed from
“graph criteria” to “default criteria”, favoring one of the clusterings generated by the
K-Medoids algorithm.

3.7. SUPPLEMENTARY MATERIALS: PYPROCT 127

Dataset Min.
Clusters

Max.
Clusters

Min.
Cluster Size

Max.
Noise Criteria

1 2 10 3 10% “default criteria”
2 2 10 2 10% “default criteria”
3 2 10 10 10% “default criteria”
4 2 10 8 10% “default criteria”

5 3 10 10 5% “default criteria”
and “graph criteria”

6 3 10 13 10% “graph criteria”

7 2 10 10 10% “default criteria”
and “graph criteria”

8 3 8 5 10% “default criteria”
and “graph criteria”

9 3 4 100 5% “graph criteria”

Table 3.4: Clustering hypothesis for each of the datasets.

3.7.6.3 Results

Clusterings 1, 3, 4, 6 and 9 are in full accordance with our expectations (see
table 3.5 and Fig. 3.16). We thought that the optimum solution for dataset
2 could be to use one single cluster encompassing all elements. However the
final partition in 5 clusters looks reasonable.

Clustering 5, 7 and 8 are different of what our intuition dictates. The main
problem that pyProCT has when dealing with a dataset like 7 or 8 is that their
“natural” clusters overlap i.e. there are elements that belong to more than one
cluster at the same time. This could be overcome by adding fuzzy algorithms
to the algorithms pool. Despite this, results would look counterintuitive in any
case, as its usefulness in most scenarios implies to discretize the membership
values.

Clustering 5 highlights a weakness of the HCE methodology: its success
depends on the ability of the user to convey their goals in the clustering hypo-
thesis. If the user is not able to express it using pyProCT built-in ICVs (see Fig.
3.17) or the needed ICVs to define the hypothesis are not yet implemented, it
would be impossible for users to get the best-fitted result for their problems. It
is clear that, in this case, none of the used criteria suffices to choose the type
of result we would like to obtain.

128 CHAPTER 3. ARTICLES

Dataset Algorithm Num. Clusters Noise Criteria

1 Gromos 4 8.10% “default criteria”
2 Spectral Clust. 5 0% “default criteria”
3 K-Medoids 2 0% “default criteria”
4 K-Medoids 6 9.59% “default criteria”
5 K-Medoids 3 0% “graph criteria”
6 DBSCAN 3 4% “graph criteria”
7 K-Medoids 2 0% “graph criteria”
8 K-Medoids 3 5.19% “graph criteria”
9 Spectral Clust. 3 0% “graph criteria”

Table 3.5: Details of the results. Last column indicates the criteria that obtained the
best score.

4
Summary of the

results

In the present chapter, we aim to give a brief summary of the results obtained
for each of the proposed objectives. A more detailed discussion of each of them
can be found in the next chapter.

4.1 Technical improvement of PELE

As stated before, the results related to the first objective consists, mainly, in the
production of new software, which is not open source. The code base includes
the rewriting of PELE in C++, the related Python scripts, and the parallelized
kernels.

As one of the main objectives of this thesis is the development of faster
sampling techniques for VHTS, a significant amount of work was focused on
speeding up the software. This was partly achieved by GPU acceleration of the
heavier routines, where we obtained up to 24x kernel speedups.

4.2 Algorithmic improvement of PELE

We have presented a new perturbation method for PELE using torsional normal
modes (icNMA). We have tested the new methodology in two different systems
(ubiquitin and an Src Kinase) and compared the results of the current method
(ccNMA) and the new method with molecular dynamics simulations in explicit

129

130 CHAPTER 4. SUMMARY OF THE RESULTS

solvent. The results show that this approach is able to produce more energetic-
ally favorable perturbations than the Cartesian coordinates-based method, thus
allowing to work at 300 K without the need of a system-wide minimization.
The root mean square fluctuation of the residues indicates that icNMA repro-
duces protein flexibility better than ccNMA; however both fluctuate less than
MD. The measurements of the solvent accessible surface and radius of gyra-
tion show that icNMA is able to better capture the variations of volume of the
protein. Furthermore, the way it simulates the inter-domain movements of the
Src kinase is more similar to MD. Finally, each icNMA iteration is faster than
a PELE iteration, as it does not include the side chain prediction and global
minimization steps.

Some parts of the icNMA code are open source and can be found in its
GitHub repository1.

4.3 Efficient and reliable analysis of large conform-
ational ensembles

4.3.1 Implementation of an efficient solution for the calcula-
tion of collective superimposition operations

We have introduced the Python package pyRMSD. It provides the Python pro-
grammer with three superimposition algorithms and up to 4 fully parallelized
collective operations. One of the examples shown, the calculation of an RMSD
matrix, reaches a speedup of 5x when using 6 cores and 11x using a GPU.

The code of pyRMSD is open source (under MIT license) and, to the best
of our knowledge, it is the first open source CUDA parallelization of this kind.
Readers interested in downloading or contributing to the code can find it in its
GitHub repository2. Moreover, some compiled packages are hosted in the PyPI
package repository3 and can be easily installed using the pip4 tool, which man-
ages the downloading, compilation, installation and the handling of dependen-
cies.

1https://github.com/victor-gil-sepulveda/PhD-ANMInternalCoordinates
2https://github.com/victor-gil-sepulveda/pyRMSD.git
3https://pypi.python.org/pypi
4https://pip.pypa.io/en/stable/

4.3. EFFICIENT AND RELIABLE ANALYSIS 131

4.3.2 Implementation of a reliable cluster analysis protocol
We have presented the Python software pyProCT which aims to be a reliable
cluster analysis alternative when used as a black box. We have described how
the meta-algorithm works and shown some of its features in two represent-
ative use cases. In the first one, we have been able to correctly separate the
conformations of two synthetic conformational ensembles without any know-
ledge of their generation process. Moreover, an iterative analysis method to
refine the working hypothesis has been introduced. In the second use case, we
have used pyProCT to eliminate the redundancy of a large DNA-ligand simu-
lation and obtain the best ligand clusters. Our results correlate well with the
clusters obtained in previous works using a kinetic analysis. Finally, we have
shown how pyProCT can be used to reduce the size of a huge conformational
ensemble (around 1 million structures) to find the most biologically relevant
conformations of a protein folding simulation.

On the technical side, pyProCT also takes advantage of parallel architec-
tures (multicore or distributed architectures) by using a parallel task scheduler.
The code is also open source (under MIT license) and can be found in its public
GitHub repositories5. Both pyProCT and its GUI are also available in the PyPI
repository and can be installed easily using the pip tool.

5https://github.com/victor-gil-sepulveda/pyProCT and https://github.
com/victor-gil-sepulveda/pyProCT-GUI

132 CHAPTER 4. SUMMARY OF THE RESULTS

5
Discussion

5.1 Technical improvement of PELE

5.1.1 From PELE to PELE++

On its previous incarnation, PELE was using the functions of the Protein Local
Optimization Program (PLOP) [185] software package as a library. Since
PLOP had been written in FORTRAN 77-95, the most natural choice for PELE
was to use the same programming language. The limitations of FORTRAN,
together with the pragmatic but chaotic nature of academic developing, drove
it to a maintainability dead-end. The refactoring needed to pay the accumu-
lated “technical debt” was so huge that we decided to go through a complete
rewriting of the code .

The author of these lines worked on this rewriting steadily for two years
and a half, making more sparse contributions since then, and was in charge of
the design of the software core and of its successive iterations. Given the mag-
nitude of the project, a small group of technicians soon joined the development
team which was leadered by Mr. Manuel Rivero González for more than three
years. This group has been renewed lately, and is now leadered by Dr. Jorge
Estrada. The rewriting has been named PELE++ and has been the base of all
the developments mentioned in this work.

The old version of PELE was an academic software, and so is PELE++.
This means that the software was not only planned to be used to perform in
silico experiments but also as a tool to test and develop new algorithms. As a
consequence, the new code needed to be well documented, easy to learn, easy

133

134 CHAPTER 5. DISCUSSION

to maintain and robust to experimental changes. The academical nature of the
software, indeed, explains some of the design decisions taken. As a result,
PELE++:

• Uses an Object-Oriented Programming (OOP) paradigm instead of the
previous single file per module approach, which also fosters reusability.
C++ has been chosen as the language for this new version as it imple-
ments the OOP paradigm and compiles to very efficient executables.

• Is better designed for maintainability: Design patterns and other Soft-
ware Engineering techniques have been wittingly applied (see Fig. 5.1).
SOLID1 principles have been honored. As a side effect, testability has
been improved.

• Is better documented: The constant turnover of new students has made
it necessary to pay special attention to a proper documentation of code
functions and classes. This shortens the time needed to train new de-
velopers so that they can start to contribute to the project earlier.

• Is more reliable: the code correctness can be tested at any phase of the
project. An in-house testing library was coded, and each class owns a
test suite. An automated testing protocol was implemented.

• Has better performance than the old version: several algorithms were
replaced with more readable and efficient alternatives.

• Is easier to extend and modify, a desirable feature as many people would
use the code to test their own algorithms.

To exemplify the design changes provided, we include here a simplified
UML (Unified Modelling Language) diagram (see Fig. 5.1). The diagram
shows two packages: the first describes the handling of structural data, while
the second models the energy calculation subsystem. We have chosen to neg-
lect several minor classes and methods for the sake of clarity. We can observe
how creation patterns have been profusely used in this new design: the Builder
pattern for Potential objects, the Simple Factory pattern for ForceField objects.
Consider that the Abstract Factory pattern, used to create the diverse AtomSet
descendants, is not shown here.

The AtomSet object, a group of atoms with defined geometry (coordin-
ates) and topology (interactions), is of particular interest as it is involved in
two different hierarchies. The first one is semantic and comes from the use

1Acronym for Single responsibility principle, Open/closed principle, Liskov substitution
principle, Interface segregation principle and Dependency inversion principle

5.1. TECHNICAL IMPROVEMENT OF PELE 135

of inheritance (e.g. a Residue is a type of Link which is a more general case
of an AtomSet). The second one reveals a tree-like organization that emerges
from a loose interpretation of the Composite pattern: the root is the Complex,
a singleton object made of Chains which, in turn, are made of Links.

The rewriting of the code has allowed us to add new features to PELE, such
as the possibility of using different force fields and various solvent models, sup-
porting the simulation of other biopolymers (e.g. DNA [186]), using arbitrary
sized structures and coarse-grained models and even performing an effective
parallelization of the code. In general, this has converted PELE in a tool that is
more useful for academical experimentation and efficient and reliable enough
for industrial use.

5.1.2 Performance vs. maintainability

Scientific software is the object of an open debate on performance versus read-
ability. The development of PELE++ has shown us that fostering readability
can save developers time and efforts at almost no performance cost, in con-
trast with the theories supported by other authors [187]. Readable code, for
instance, allows building a better structured code base. Thanks to this, de-
velopers can have a better global view of the software and apply optimizations
(e.g. avoid unnecessary actions). It also allows them to react faster in front of
specification changes and augments the resiliency of the developing team to
staff adjustments.

One of the most important issues we faced is the mutability of specifica-
tions, in spite of the thorough initial use case studies. This can be caused by
the communication gap between developers and users (or stakeholders), due to
their different domains of knowledge. As this situation can pose a great prob-
lem for long-term design, we consider that domain-driven design techniques,
using experts’ feedback to refine the model, might be of great help.

Finally, this development has taught us that, in order to succeed in such
big projects, it is important to perform short and abundant refactoring cycles
and, ideally, to assign development tasks to optimal-sized teams of specialized
software engineers.

5.1.3 Optimization and Parallelization

During the last decade, Moore’s law predictive power has reached its limits,
since semiconductor manufacturers have found the physical limits of miniatur-
ization; CPU frequency scaling beyond that point was not possible and, as a
consequence, cluster-based computers were the only solution left to increase

136 CHAPTER 5. DISCUSSION

Figure
5.1:

Pseudo-U
M

L
diagram

show
ing

the
m

ostrelevantclasses
in

PELE++
core:

the
A

tom
Settree

w
hich

allow
s

the
definition

of
differenttypesofm

olecules,the
topology

subsystem
and

the
energy/potentialsubsystem

.The
lastusesgeom

etry
(atom

coordinates)and
topologicalinform

ation
to

calculate
the

energy
ofan

A
tom

Set.

5.1. TECHNICAL IMPROVEMENT OF PELE 137

Protein Ligand
Size Residues Atoms Atoms

Small 120 1731 19
Medium 583 9300 16

Big 710 11222 45

Table 5.1: Size-related details of the systems used in the initial profilings.

the global computational power. This was undoubtedly the starting shot for the
development of multicore CPUs in commodity hardware. Some years later,
the graphic coprocessors of such CPUs evolved to standalone graphic cards
(GPUs2), which manycore chips were eventually adapted to perform highly par-
allel computations. Soon after, Intel presented their MIC3 architecture. Easier
to program than GPUs and also able to perform highly parallel computations,
it has rapidly become as prominent as GPUs were some years ago. Computa-
tional hardware evolves rapidly, and software must be able to take advantage
of this evolution.

One of the improvements of the PELE rewriting has been offering a code
base that can be parallelized more easily than the old FORTRAN version.

5.1.3.1 Initial profilings

We selected three real (under study) protein-ligand systems with different sizes
to use them in our test simulations. The number of atoms and residues of such
systems is summarized in Table 5.1.

The initial profilings used the two currently implemented implicit solvent
models in order to identify the most efficient one. Executions were performed
in a Mare Nostrum [188] node (Intel SandyBridge-EP E5–2670 @2.6 GHz
processor). Nodes were used exclusively so that no other processes could in-
terfere with the results. A control script was written for each of the systems
and solvent models, and PELE++ was run for 100+ steps in order to enter the
convergence regime. The profiling was performed using the same script for
ten steps, being the initial conformation the last frame of previous simulations.
Profiling data was then extracted using gprof [189] and then analyzed using the
visual analysis tool gprof2dot4.

The results showed that PELE++ spent most of the time in two kinds of
functions (see Fig. 5.2):

2Graphics Processing Unit
3Many Integrated Core
4https://github.com/jrfonseca/gprof2dot

138 CHAPTER 5. DISCUSSION

Figure 5.2: A set of profiles was performed for different protein sizes and using OBC
and SGB solvent. This bar plot shows the percentage of time spent in non-bonding
and solvent-related calculations.

5.1. TECHNICAL IMPROVEMENT OF PELE 139

• Functions related to the solvent model, more specifically the alpha and
surface elements. It is worth noting that simulations using the OBC
solvent model were typically faster.

• Functions related to the calculation and the evaluation of non-bonding
lists in order to calculate the electrostatic and van der Waals potential
energy terms and gradient. This is common in MD, among other meth-
ods, and has been the topic of several other studies [190–192].

From this profiling exercise, we also learned that the behaviour of PELE++ can
totally change depending on the place of the ligand. Two different scenarios
were identified: free ligand diffusion (the ligand explores the protein surface
freely) and binding refinement (the ligand is already in the binding site, and a
better pose is searched).

5.1.3.2 Non-bonding energy parallelization using GPUs

According to the profile results, the next logical step would have been improv-
ing the performance of the solvent-related functions, but the difficulty of par-
allelizing the SGB5 algorithm (due mainly to its data dependencies) lead us to
focus on the performance improvement of NB functions first [148].

The main contribution of NB energy/gradient calculations to the overall
time does not reside in the computational cost of evaluating a single interaction
calculation, which is indeed quite fast, but in the huge number of calculated
interactions (∝ N2 where N is the number of atoms).

The evaluation of these huge lists of interactions looked to be a computationally-
bound problem and fit well with the GPGPU (General-Purpose computing on
Graphics Processing Units) paradigm. Graphic Processing Units have many
core architectures with numerous parallel calculation units that allow them to
perform high-throughput calculations with ease. They usually have good band-
width but elevated latencies, which can be shaded thanks to the extensive use
of lightweight threads that allow alternating calculations with memory opera-
tions.

We wanted to adapt PELE++ code to work with this kind of accelerators
using the OpenCL (Open Computing Language) and CUDA (Compute Unified
Device Architecture) programming models. The first step was to design two
new structures to pack the data that would eventually be sent to the device. Af-
terwards, we coded the GPU kernels for the energy and gradient calculations.

5First attempts were made at an early stage of the code, when OBC solvent was not yet
available.

140 CHAPTER 5. DISCUSSION

The energy case is quite trivial, as each thread just calculates several NB inter-
actions to a per-thread accumulator variable. The final value of the energy is
calculated through a reduction of the partial energy values.

Conversely, parallelizing the NB gradient calculation using a GPU is not
that easy. The fundamental problem is that all threads can potentially end writ-
ing in the same positions of the gradient (race condition) and regular strategies
to protect concurrent access would only end penalizing performance notice-
ably. To illustrate this, the reader can think of three particles A,B and C so that
particle A interacts only with particle B, and B with C. If two different threads
are calculating AB and BC interactions, it is very likely that both try to access
B’s gradient positions at the same time.

The solution starts by storing the gradient partial contributions in one tem-
porary array. As the gradient contributions of each atom in the interaction pair
are equal but opposite, it is possible to use only half of the memory to store
intermediate results. Once all the interactions are evaluated and the array is
filled, it is ordered by atom using two mapping tables (one for each interacting
atom) so that each GPU thread is able to reduce all the iterations of one atom
at a time.

In order to test our code, we had two different GPUs available: an NVIDIA
Tesla M2090 card (for CUDA implementation only) and an AMD Radeon HD
6870 card. Both cards have different technical specifications6 and their results
are not comparable. Another set of three proteins with a larger number of atoms
was used with ∼1k atoms, ∼14k atoms and ∼30 atoms so that the calculation
times of a single non-bonding list were significant.

Our first estimates showed that the calculation of kernels was so fast that
transference and precalculation overheads were making the overall perform-
ance worse than the serial version. Both data transfer and kernel execution were
made asynchronous, thus alleviating the relative impact of that overheads.

The comparison of performance results was made at kernel and program
levels. The execution time of serial and GPU kernels (Fig. 5.3) showed spee-
dups of up to 24x for the energy function and 12x for the gradient.

At that time, the code was not mature enough to introduce the changes
that would allow serial and accelerated versions to coexist. In order to obtain
values for the execution of the whole program, we had to build a model of its
behaviour based on the profiling studies, typical executions and our knowledge
of the code.

The Truncated Newton minimization is the part of the code where energy
and gradient functions are called the most. The method consists in several it-
erations of a five stage protocol [193], called the “outer loop”, which includes

6E.g. Nvidia card has 512 threads per block and the AMD card has 256 and no double
precision support

5.1. TECHNICAL IMPROVEMENT OF PELE 141

CUDA
OpenCL

CUDA
OpenCL

S
p

e
e
d

u
p

Protein Size

Figure 5.3: Comparison of the energy and gradient functions speedup for different
protein sizes and the two programming models used. One of the reasons why the
speedup for the medium protein is higher is because the relative weight of the non-
bonding calculations has increased with the number of atoms.

142 CHAPTER 5. DISCUSSION

some preparatory steps and the evaluation of the Hessian. The “inner loop” is
the stage in which a preconditioned conjugated gradient is performed. Each
minimization is usually run three times with fixed alpha values7 for perform-
ance reasons. The time needed to perform a minimization in the serial case can
be modelled as:

T = 3(N(t5 + Mt5)) (5.1)

and for the parallel case:

T = 3(t2 + N(t1 + t3 + t4 + t5 + M(t1 + t5))) (5.2)

where N and M are the number of times the “outer” and “inner loops” are
executed, t1 and t2 are the time needed to create (if applicable) and transfer
atomic data structures to GPU, t3 is the time required to generate the vector of
interactions in the GPU, t4 is the time needed to order the atom interaction maps
and t5 is the time needed to calculate the gradient. It is worth mentioning that
non-bonding calculations are to be performed in both the “outer” and “inner
loops”, and that coordinates will be changed at each “inner loop” iteration,
which makes it mandatory to update their GPU memory representation.

The model allowed us to obtain a rough estimate of the execution of the
whole program (Fig. 5.4) in the serial and parallel case. The results showed
that adding the CUDA implementation to PELE++ would imply a 16.3 - 27.8%
faster execution than the serial version. The expected performance increase
for the OpenCL code was smaller, with a 13.5 - 26.7% speed increase. How-
ever, it is not possible to make a fair comparison of both methods, as hardware
platforms are not equivalent and, also, CUDA kernels are using an optimized
sorting algorithm from a library, while the OpenCL sorting algorithm had to
be coded from scratch.

5.1.3.3 Solvent parallelization

The performance improvement through the parallelization of solvent-related
functions is currently an open project lead by our research group’s technicians
Pedro Riera and Jorge Estrada, the company Pharmacelera8 and BSC’s Montb-
lanc9 project team. The most costly functions are the ones that calculate surface
elements and atom alpha attributes (which are used when calculating energy
in order to take solvation contributions into account).

7Atomic property regarding the solvation model.
8http://www.pharmacelera.com/
9https://www.montblanc-project.eu/

5.1. TECHNICAL IMPROVEMENT OF PELE 143

Figure 5.4: The global speedups have been calculated using a model. As parameters
N and M range from 1 to 65 and from 20 to 50 respectively, we decided to study
the best case (faster serial execution, where N = 1 and M = 20) and the worst case
(slower serial execution, where N = 65 and M = 50). Theoretical speedup increases
to decrease afterwards. This happens as a result of the changes in the relative weight
of the non-bonding calculations: the weight first increases due to the increment in the
number of atoms and then decreases since other functions, such as the covalent energy
calculations, start to require more time. The difference between implementations is
not significative.

144 CHAPTER 5. DISCUSSION

As mentioned before, there are currently two different solvent models in-
cluded in PELE++, namely, the SGB [116] and OBC models [119]. The al-
gorithm for the SGB alpha calculation function is detailed in the pseudocode
below:

updateAlphasSGB :
u p d a t e S u r f a c e E l e m e n t s O(Rn2)
updateAtomAlphas O(n)
updateSASA O(Rn2)

The calculation of the atom alpha property depends on the previous calcu-
lation of the surface elements. This is the most costly function, since it depends
on the number of atoms, their neighbours and a resolution parameter (a worst-
case complexity of O(Rn2)).

updateAlphasOBC :
f o r each atom :
Compu teOthe rAtomsCon t r ibu t ion O(n)

The OBC alpha updating method is implemented as a double loop over all
atoms (a complexity of O(n2)) which makes it simpler than SGB’s (and thus
easier to parallelize) and explains why its serial performance is better.

5.1.3.3.1 Solvent parallelization: OpenMP

Some initial attempts of parallelizing the SGB alpha calculation functions were
performed using the OpenMP programming model. Two functions were selec-
ted: computeSurfaceElementsOfAtom (O(Rn)) and updateAtomsSurface
(O(n2)) both called by the updateSurfaceElements function.

Tests were performed using a medium size system (4284 protein atoms
and 69 ligand atoms) and an Intel SandyBridge-EP E5–2670 (@2.6 GHz) pro-
cessor. The best results were obtained using eight threads and threw overall
speedups of ∼1.5x for the refinement and free ligand diffusion simulations.

5.1.3.3.2 Solvent parallelization: OpenCL

The parallelization of SGB solvent functions has been currently abandoned
in favour of OBC functions due to their greater simplicity and better serial
performance. Pharmacelera engineers have focused on parallelizing it using
the OpenCL programming model and have devised 3 parallelization strategies:

• Parallelization of the inner loop (ComputeOtherAtomsContributions
function) (method 1).

5.1. TECHNICAL IMPROVEMENT OF PELE 145

Figure 5.5: Kernel speedup for each of the methods and proteins tested. Methods 2
and 3 seem to obtain an equivalent efficiency improvement.

• Parallelization of the outer loop (updateAlphas function) (method 2).

• Precalculation of atom pairs and parallelization over these pairs (method
3).

The first and second strategies have a lower impact on the code, while the
third makes a better use of the GPU by improving the load balance.

The tests have been performed on a workstation equipped with an AMD
FirePro W5100 GPU card. The results, using the medium and big size proteins
employed in the initial profilings, are promising, especially in the case of the
third strategy which seems to have the best performance (see Fig. 5.5).

5.1.3.4 Montblanc and other projects

Nowadays, the main obstacle to projecting Exascale systems is energy con-
sumption. The Montblanc project aims at the creation of an energy-efficient
and scalable supercomputer using ARM10 technology. Some of the paralleliz-
ation techniques explained before are currently being tested in this novel archi-
tecture.

10Advanced RISC (Reduced Instruction Set Computing) Machine

146 CHAPTER 5. DISCUSSION

Finally, some parts of the code are currently being ported to the CUDA
programming model as part of the CUDA Center of Excellence program from
NVIDIA.

5.2. ALGORITHMIC IMPROVEMENT OF PELE 147

5.2 Algorithmic improvement of PELE

Most of the limitations of PELE enumerated in the introduction (Section 1.5.3.3)
are common to all methods using NMA or more specifically ANM, and there-
fore not exclusive to PELE. Some of the issues are related to the NMA model
itself, while the rest are related to the specific ways normal modes are applied.
This made us think that finding an alternative to the NMA algorithm would
produce a noticeable improvement in PELE sampling robustness and perform-
ance. To this end, we have chosen to implement an internal coordinate (IC)
based NMA.

5.2.1 Switching to a different coordinates space

Internal coordinate NMA (icNMA) is not a novelty. Indeed, the pioneering
NMA works of Wilson [194] were already performed in the internal coordin-
ates space. This is not surprising, given that internal coordinates (e.g. bond
distance, bond angle, and dihedral torsion angles) are the most natural way of
representing chemical molecules (e.g. with a z-matrix [195]). Actually, several
methods use internal coordinates instead of Cartesian coordinates. Some ex-
amples are the Multiple Minima Monte Carlo [196] method, the Monte Carlo
sampling software MCPRO (Monte Carlo for PROteins) [197] and ICM [46],
or the MD software X-PLOR [198] and DYANA [199].

The truth is that Cartesian coordinate NMA methods (ccNMA) are more
common than icNMA-based methods, possibly because the mathematical back-
ground of the former is more simple. However, this fact has not prevented
researchers from introducing icNMA in their simulation software. First ex-
amples can be found in the early works of Noguti et al. [200, 201] and Kidera
et al. [202, 203] where the scaled collective variables (SCV) MC and related
algorithms are presented. Trosset et al. used later a similar methodology [108]
in the implementation of PRODOCK. Levitt and Stern [204] suggested an MD
method using IC NMA modes. Finally, Lin and coworkers [70] developed a
different method using icNMA followed by an energy minimization.

There exist reports claiming that a significantly smaller number of modes
are needed to reproduce conformational changes using torsional NMA [205],
and that this method improves sampling quality [206] and the results of ligand
binding simulations [207] compared to ccNMA-based methods. Changing the
coordinate system implies not only changing the way normal modes are calcu-
lated, but also the way modes are applied, which could help to mitigate many
of the NMA-related issues.

148 CHAPTER 5. DISCUSSION

A) B)

Figure 5.6: CG model of a peptide (A) using the [Cα]3 distribution of atoms. Each
residue is composed of two units which are delimited by the φ and ψ torsions. The
case of proline residues (B) is special, as they only form one unit.

5.2.2 Coarse grain model
The CG model used in our icNMA implementation describes rigid units that
encompass all the heavy atoms among rotatable backbone torsions ([Cα]3 [208,
209] model). This means that we will define ∼2R units for each chain (where
R is the number of residues), which can be of 4 different types (see Fig. 5.6):

N-terminal unit Contains the N-terminus, Cα and first residue side chain.

Cα unit Contains the Cα atom and side chain.

C-terminal unit Contains the atoms that form the final carboxyl group.

Peptide bond unit Contains the carboxyl and amino groups involved in the
peptide bond.

To account for the rigidity of the φ torsion in prolines, its peptide bond and
Cα units will be fused together (see Fig. 5.6B).

5.2.3 icNMA theory

5.2.3.1 Hessian calculation

Again, we model our system as a spring network whose potential is the sum
of all Hookean interactions between atoms (or CG units) with the form Vij =
ki j
2 (ri j − r0

i j)
11. If we express these interactions using generalized internal co-

11As a convention, units and dihedrals will be numbered correlatively from N-terminal to
C-terminal. Regular letters will be used to index atoms and units, and Greek letters to index
dihedrals.

5.2. ALGORITHMIC IMPROVEMENT OF PELE 149

Figure 5.7: Representation of the rotation of two rigid bodies (green and purple)
around axis qα.

ordinates (which in our case will be limited to the torsion angles of backbone
dihedrals), we can write the potential energy as:

V =
1
2

(q − q0)H(q − q0)T (5.3)

and the Hessian in terms of q [207] as:

Hα,β =
∂2V
∂qα∂qβ

=
∑
i< j

fi j∣∣∣ri j

∣∣∣2
〈
ri j,

∂ri − ∂r j

∂qα

〉
.

〈
ri j,

∂ri − ∂r j

∂qα

〉
(5.4)

which depends on the values of the inverse of Wilson’s B matrix [194] (
with elements ∂ri

∂qα
). If we impose Eckart conditions [210] (

∑
i mi

∂r1
∂qα

= 0 and∑
i mir0

i ×
∂r1
∂qα

= 0) and that the origin of the molecule is the center of mass,
the partial derivatives can be calculated as [211]:

∂r1

∂qα
= eα ×

(M2

M
rα +

M1

M
r0

1

)
− r1 ×

M1r0
1 × (eα × rα) + I2eα)

I
(5.5)

150 CHAPTER 5. DISCUSSION

∂r2

∂qα
= −eα ×

(M1

M
rα +

M2

M
r0

2

)
+ r2 ×

M2r0
2 × (eα × rα) + I1eα)

I
(5.6)

which describes the change of Cartesian coordinates when one part of the
chain is kept fixed and the other part moves around torsion qα and vice versa.
Both rigid bodies must be taken into consideration for a single rotation, as
Eckart conditions imply the conservation of momentum. In these and in the
following equations, M is the summed mass and I is the inertia tensor for all
the units that compose the molecule. M1, M2, I1, I2, r0

1 and r0
2 are the summed

masses, inertia tensor and center of mass of the set of units to the left (subindex
1) or to the right (subindex 2) of dihedral qα ; eα is a unit vector with the direc-
tion of the bond; rα and rα+1 are the positions of the atoms at both ends of the
rotatable bond. Finally, r1 and r2 are arbitrary atoms in any of the left or right
units of qα torsion (see Fig. 5.7).

From these equations, a naive expression for the Hessian calculation can
be deduced with a Θ(n4) computational cost (assuming that the number of di-
hedrals is roughly proportional to the number of atoms). We are again in debt
to Noguti and Go [200] and Abe and coworkers [212] for the development of
a recurrent method to calculate the Hessian, which can be implemented as a
faster recursive algorithm (θ(n2)) that also turns out to be more memory effi-
cient. First, Cartesian and internal coordinate-dependent terms are separated
so that we can write each Hessian element as

Hα,β = (eα, eα × rα) Rα,β

(
eα

eα × rα

)
(5.7)

where the matrix R is calculated as

Rα,β =
∑

i

α

∑
j

βDi j (5.8)

D matrix models the interaction of atom i and j:

Di j =
fi j∣∣∣ri j

∣∣∣2
(

ri × r j

ri j

) (
ri × r j, ri j

)
(5.9)

where the distance-dependent force constant is calculated as:

fi j =
k0

1.0 +
(ri j

x0

)6 . (5.10)

5.2. ALGORITHMIC IMPROVEMENT OF PELE 151

In our implementation, k = 1 and x0 = 3.8, which are the same definitions
used by the iNMA software [98].

To calculate the elements of R we may need to store (or recalculate, which
would affect computational efficiency) all Di j values. The number of matrices
stored can be lowered by defining a matrix T, whose elements Tab summarize
the interactions of all the atoms of rigid units a and b:

Ta,b =
∑
j∈a

∑
j∈b

Di, j (5.11)

It is possible to calculate R from T by determining a new matrix U so that:

Uab =
∑
i≤a

∑
j>b

Tab (5.12)

which contains all atomic interactions from the first unit to the a unit, and
from the b unit to the last one (which can be interpreted as fixing units a to b
and allowing units 0 to a and b + 1 to M to rotate along dihedrals α = a and
β = b). This makes it possible to calculate R with only one index change:

Rα,β = Ua,b+1 (5.13)

Finally, a recursive solution can be written so that:

Ua,b = Ua,b+1 + Ua−1,b + Ua−1,b+1 + Ta,b (5.14)

being the value of U equal to 0 if any of its indexes is outside the range [0,
M-1].

5.2.3.2 Calculation of the metric tensor

We can also express the kinetic energy in terms of the generalized coordinates
q so that

K =
1
2

q̇TKq̇ (5.15)

and the metric tensor K becomes

Kα,β =
∂2K
∂q̇α∂q̇β

=

n∑
i

mi

〈
∂ri

∂qα
,
∂ri

∂qβ

〉
(5.16)

which can be calculated as [211]:

152 CHAPTER 5. DISCUSSION

Kαβ =
M1M3

M

[
eα × (rα − r0

1)
] [

eβ × (rβ − r0
3)
]
+[

M1r0
1 × (eα × rα) − I1eα

]
I−1

[
M3r0

3 × (eβ × rβ) − I3eβ
] (5.17)

We are currently using the definition of the inertia tensor provided by Noguti
and Go [211], also employed by Braun et al. [213] as defined by Lu and cowork-
ers [146] so that

I =
∑

i

miPTP (5.18)

and

Pi =

 0 −z y
z 0 −x
−y x 0

 (5.19)

Once we have obtained the metric tensor and the Hessian, we can calculate
the normal modes using Eq. 1.4. The resulting eigenvalues are still related to
mode frequencies. The meaning of the eigenvectors, however, changes com-
pared to their Cartesian coordinates counterparts; their size decreases from 3N
to ∼2R (where N is the number of atoms or CG units) and each single element
α represents a differential rotation around torsion qα.

In a preliminary study [149] we were able to demonstrate that the internal
coordinate and Cartesian coordinate mode spaces are in good agreement.

5.2.4 From internal to Cartesian coordinates and back

In order to compare IC modes with CC modes, we convert one coordinate sys-
tem to the other using the Jacobian (J, inverse of Wilson’s B matrix) in the
equation

Ji,α =
∂ri

∂qα
(5.20)

We can calculate Cartesian coordinate displacements from torsional rota-
tions (and thus, from IC modes):

∆~ri,α =

N∑
α

~Ji,αvαi . (5.21)

5.2. ALGORITHMIC IMPROVEMENT OF PELE 153

We can also obtain torsional rotations from Cartesian displacements by us-
ing:

∆Θ = (JTMJ)−1JTM∆r. (5.22)

5.2.5 Description of the Internal coordinate NMA-based al-
gorithm

We have introduced a computationally affordable new IC NMA-based algorithm
that aims at providing a fast traversal of the conformational space. The al-
gorithm consists of two independent stages: the backbone perturbation and the
side chain perturbation.

The backbone perturbation is implemented as an MC algorithm where each
iteration comprises four steps:

1. Calculation of the target angular increments: a normal mode and
a sense for the rotations is randomly selected. The mode is scaled so
that the maximum rotation amplitude is inside a user-defined range. The
user can chose to specify a maximum (amax) and a minimum (amin) value
for the amplitude instead. In this case the maximum amplitude value is
sampled from a truncated normal distribution with mean (amin+amax)/2 and
standard deviation (amin−amax)/4. Normal modes are calculated only at the
beginning of the first iteration.

2. Application of the angular increments: the geometry of the protein is
updated using Choi’s [214] quaternion method.

3. Side chain relaxation: the rotations in the previous step treat side chains
as rigid bodies. This may introduce atom clashes that must be freed.
To this end, the side chains with any atom involved in a steric clash are
selected and minimized. Note that, as only side chains are minimized, the
conformations with clashes involving backbone atoms will be discarded
in the next step because of their high potential energy.

4. Acceptance criterion: the Boltzmann criterion is tested and the new
conformation is accepted or rejected.

The side chain perturbation is again implemented as an MC algorithm where,
at each iteration, a side chain is randomly selected and modified. To change
the side chain, its rotatable bonds are found and a random increment is applied
to each of them. The new side chain conformation will be accepted or rejected
depending on the result of the Boltzmann criterion.

154 CHAPTER 5. DISCUSSION

5.2.6 Alternative implementation

We also worked on a solution that allowed us to fuse the icNMA step with
PELE original scheme [149] (i.e. performing an icNMA step plus the relaxa-
tion phase). As in the regular PELE algorithm, the last minimization must be
constrained so that the backbone proposal is maintained. In this case, we have
applied harmonic dihedral constraints (Uc

α(qα) = k/2(qα − q0
α)) to a percentage

of the most flexible torsions. Restricting the number of constraints makes it is
easier for the minimizer to free backbone stress and it helps it to converge faster.
The gradient and Hessian derivations have been calculated and translated to C
using the symbolic algebra software Maxima [215]. This alternative was stud-
ied during the preliminary development stage providing analogous results to
those of ccNMA (the protein was collapsing into a compact form). This lead
us to conclude that minimizations had a role in the sampling bias.

5.3 Obtention of the best set of parameters

To compare IC and CC methods, we first need to obtain the set of parameters
that maximizes the performance of both method simulations. To this end, we
chose the most relevant parameters for each method and analyzed how their
changes were affecting performance.

5.3.1 Characterization of the NMA step

We started by isolating the mode application procedure in both methods. The
ccNMA step comprises two smaller substeps:

1. The calculation of the translation vectors, which depends on the Cα dis-
placement factor parameter (displacementFactor defines the maximum
displacement for the Cα atoms).

2. The application of these translations through a minimization. The “strength”
or “intensity” of this minimization depends mainly on two parameters,
the force constant of the spring pulling the Cα atoms (steeringForce) and
the root mean square of the gradient (MinimumRMS) that modulates the
convergence of the minimization.

In the icNMA case, the NMA step coincides with a whole iteration of the
backbone perturbation stage, and is performed in two consecutive substeps:

5.3. OBTENTION OF THE BEST SET OF PARAMETERS 155

Method Movement amplitude Minimization strength

CC
displacementFactor

(Å)
steeringForce

(kT/Å)
MinimumRMS

(kcal/mol Å)
0.25, 0.66, 1.08, 1.5, 1.92 20, 40, 60, 80, 100 0.01, 0.05, 0.1

IC displacementFactor
(radians)

relaxMinimRmsg
(kcal/mol Å)

0.02, 0.05, 0.075 ,0.1, 0.12, 0.15 0.01, 0.05, 0.1

Table 5.2: Choice of parameters affecting the mode application step in the CC and IC
methods, including the values that will be used in characterization tests.

1. The calculation of the torsional increments, which depends on the dis-
placement factor parameter (displacementFactor, which, in turn, defines
the maximum rotation of any backbone torsional angle).

2. The application of the rotations, which has no parameter dependencies.

3. The side chain relaxation step, which again depends on the root mean
square of the gradient (relaxMinimRmsg).

Table 5.2 summarizes the parameters that govern both methods.
To characterize the results of each step, we have focused on three features:

• The Cα RMSD between the initial conformation and the conformation
after the mode application step, which shows the extent of the backbone
deformation.

• The increment of internal energy between the starting conformation and
the conformation after the NMA step, which shows how likely this de-
formation would be.

• The time the step takes.

Ideally, a good set of parameters is the one that produces big RMSD dis-
placements at a low energy cost.

To study the effect and relevance of our parameter choice, we performed
several simulations at 3000 K with a cutoff distance for the EN of 9 Å , random
selection of pure modes (which means that modes will not be combined) and
different values of movement amplitude and minimization strength (see Table
5.2. We have used the c-Src kinase structure (PDB id: 1y57) as test system.
This protein performs wide inter-domain conformational transitions as well as
loop rearrangements involving the temporary creation of secondary structures.
As we have seen in Section 3.5.1 and Section 1.5.3.3, the choice of the initial

156 CHAPTER 5. DISCUSSION

conformation can give place to very different mode spaces, which has an effect
on the conformational search. This is the reason why we have used two different
starting conformations in this test: an open P-loop structure (with a 17.32 Å
distance between CYS:277:CA and LEU:387:CA) and a semi-closed P-loop
one (with 13.5 Å between the same atoms). Both of them come from previous
PELE simulations, which means that they have been previously minimized.
The temperature of the simulation ensures high acceptance rates and, therefore,
a wider exploration of the conformational space (we have not taken into account
the biophysical correctness of the exploration at this point).

We run a first set of short CC simulations (∼100 steps) in order to determ-
ine which minimization strength parameter we should modify and, therefore,
further delimit the number of parameters to analyze. As both steeringForce and
MinimumRMS influence minimization, we decided to fix steeringForce to 20
kT/Å when changing MinimumRMS, and MinimumRMS to 0.05 kcal/mol Å when
changing steeringForce. These are commonly used values for these paramet-
ers.

The plots in Fig. 5.8 show a strong positive relationship between the dis-
placementFactor parameter (colored clusters), the amount of deformation (RMSD)
and the energy increment (∆U). The RMSD averages are similar for both para-
meters and structures, while the average energy for the simulations where the
steeringForce is being modified is, in general, higher.

However, the relationship of the relaxMinimRmsg or steeringForce with the
studied features is not that clear. In order to gain more insight, we measured
the association strength of these variables using the Spearman rank correlation.
This coefficient can be calculated as

ρ = 1 −
6Σd2

i

n(n2 − 1)
, (5.23)

where d is the difference between ranks and n is the number of samples.
The Spearman rank correlation is a non-parametric test that works with

ranked ordinal data with monotonic relationships and does not make any as-
sumption about data distribution (e.g. Pearson product-moment correlation
assumes distributions to be normal). We consider that coefficients between
0.10 and 0.29 represent a small association; coefficients between 0.30 and 0.49
represent a medium association; and coefficients above 0.50 represent a tight
relationship. The results, summarized in Table 5.3, confirm that both minimiz-
ation strength parameters play an important role in the final energy increment.
Given this, and the fact that the changes in steeringForce produce larger energy
averages, we decided to keep this parameter fixed to its default value in the next
tests.

5.3. OBTENTION OF THE BEST SET OF PARAMETERS 157

Open Closed

steeringForce MinimumRMS steeringForce MinimumRMS
RMSD 0.044 (0.019) -0.015 (0.421) 0.042 (0.019) -0.052 (0.004)

∆U 0.223 (<0.001) 0.180 (<0.001) 0.175 (<0.001) 0.163 (<0.001)

Table 5.3: Association strength of the studied parameters and simulation features.
Each value has been colored depending on its category: Green for high association,
yellow for medium association, orange for low association and red for no association.

20

40

60
80

100

0.25

0.66

1.08
1.50

1.92

0.01

0.02

0.04
0.05

0.10

0.25

0.66

1.08
1.50

1.92

ClosedOpen

st
e
e
ri
n
g
Fo
rc
e

re
la
x
M
in
im

R
m
sg

RMSD

steer. disp.

rmsg disp.

Figure 5.8: Plot showing the relationship of the two studied parameters (steeringForce
and MinimumRMS) with the RMSD and energy increments of the Cartesian coordinate
ANM step. Each point shows the average and standard deviation of the RMSD and
energy increments for a given combination of parameters.

158 CHAPTER 5. DISCUSSION

Having discarded to modify the steeringForce parameter, we proceeded to
perform other longer simulations (∼1500 steps) by varying the remaining para-
meters. Since the simulations starting from the closed structure looked more
static, this time we started all simulations from the open structure. The reason
for this behavior could be the higher overlap of the open conformation modes
with the open to close transition. The simulations have been performed using
temperatures between 300 K and 2568 K and the Spearman rank correlation
for the (computational) step time, energy and RMSD increments (always of the
NMA step) has been calculated (see Table 5.4).

CC IC
T ρ p-value ρ p-value

300 RMSD \ ∆U 0.79 <0.001 0.69 <0.001
Step time \ Displacement 0.563 <0.001 0.615 <0.001

Step time \ Relax. strength -0.591 <0.001 0.002 0.783
RMSD \ Displacement 0.786 <0.001 0.78 <0.001

RMSD \ Relax. strength -0.057 <0.001 -0.003 0.594
∆U \ Displacement 0.656 <0.001 0.717 <0.001

∆U \ Relax. strength 0.214 <0.001 -0.005 0.405
583 RMSD \ ∆U 0.79 <0.001 0.63 <0.001

Step time \ Displacement 0.548 <0.001 0.591 <0.001
Step time \ Relax. strength -0.598 <0.001 -0.006 0.274

RMSD \ Displacement 0.803 <0.001 0.785 <0.001
RMSD \ Relax. strength -0.051 <0.001 0.001 0.895

∆U \ Displacement 0.66 <0.001 0.659 <0.001
∆U \ Relax. strength 0.213 <0.001 0.007 0.216

866 RMSD \ ∆U 0.79 <0.001 0.6 <0.001
Step time \ Displacement 0.562 <0.001 0.588 <0.001

Step time \ Relax. strength -0.605 <0.001 0.001 0.808
RMSD \ Displacement 0.794 <0.001 0.788 <0.001

RMSD \ Relax. strength -0.03 <0.001 -0.005 0.374
∆U \ Displacement 0.656 <0.001 0.629 <0.001

∆U \ Relax. strength 0.195 <0.001 0.011 0.059

1150 RMSD \ ∆U 0.79 <0.001 0.58 <0.001
Step time \ Displacement 0.569 <0.001 0.618 <0.001

Step time \ Relax. strength -0.579 <0.001 0.002 0.753
RMSD \ Displacement 0.799 <0.001 0.79 <0.001

RMSD \ Relax. strength -0.033 <0.001 0.005 0.372
∆U \ Displacement 0.65 <0.001 0.607 <0.001

5.3. OBTENTION OF THE BEST SET OF PARAMETERS 159

∆U \ Relax. strength 0.182 <0.001 0.003 0.603

1432 RMSD \ ∆U 0.79 <0.001 0.56 <0.001
Step time \ Displacement 0.543 <0.001 0.579 <0.001

Step time \ Relax. strength -0.609 <0.001 -0.016 0.006
RMSD \ Displacement 0.787 <0.001 0.79 <0.001

RMSD \ Relax. strength -0.046 <0.001 -0.005 0.38
∆U \ Displacement 0.656 <0.001 0.589 <0.001

∆U \ Relax. strength 0.187 <0.001 0.001 0.822

2000 RMSD \ ∆U 0.75 <0.001 0.53 <0.001
Step time \ Displacement 0.563 <0.001 0.559 <0.001

Step time \ Relax. strength -0.566 <0.001 0.003 0.608
RMSD \ Displacement 0.782 <0.001 0.791 <0.001

RMSD \ Relax. strength -0.044 <0.001 0.001 0.884
∆U \ Displacement 0.615 <0.001 0.561 <0.001

∆U \ Relax. strength 0.198 <0.001 0.008 0.169

2568 RMSD \ ∆U 0.75 <0.001 0.51 <0.001
Step time \ Displacement 0.57 <0.001 0.395 <0.001

Step time \ Relax. strength -0.556 <0.001 -0.046 <0.001
RMSD \ Displacement 0.784 <0.001 0.792 <0.001

RMSD \ Relax. strength -0.047 <0.001 0.002 0.707
∆U \ Displacement 0.598 <0.001 0.53 <0.001

∆U \ Relax. strength 0.199 <0.001 -0.003 0.547

Table 5.4: Association strenght of the RSMD and energy increments, and step time
between themselves and the chosen parameters.

The results show a strong association between the RMSD increment and the
energy increment. This is somewhat expected, as big deformations can, in the
CC case, distort the topology and, in the IC case, produce more steric clashes.
It is remarkable, however, that the association strength is always smaller for
the icNMA step, supporting our hypothesis that the icNMA method is able
to deform the protein producing smaller energy increments. In this last case
we see a slight anticorrelation with the temperature. This is surprising, since
all these measures have been taken inside the NMA step and, thus, may be
independent of the temperature.

RMSD increments have a strong association with the displacement mag-
nitude, as expected, and no association with relaxation strength in both cases.
The energy increment during the NMA step and the displacement magnitude

160 CHAPTER 5. DISCUSSION

are strongly associated, the explanation behind this is the same that relates
RMSD and energy increment. Energy increment and relaxation strength have a
loose association in the ccNMA method. This relationship does not exist in the
IC case, showing that early convergence should be enough to get rid of steric
clashes. All these measures seem to be independent of the temperature.

The computational time needed to fulfil the NMA step is, in both cases,
strongly related to the displacement magnitude. The reasons are different for
each method: In the ccNMA step, the more distant the target positions are, the
more difficult the convergence of the minimization becomes, as it has to fulfill
the force field constraints plus the ANM constraints. In the icNMA case, the
wider the rotation is, the easier it is to generate steric clashes, which are harder
to relieve using the minimization.

Finally, we can observe that the computational time the ccNMA needs to
perform a step is also strongly associated with the ANM minimization strength,
while this association is almost nonexistent in the IC case, giving us more free-
dom to change the value of this parameter without time penalties.

5.3.2 Obtention of the best simulations and comparison with
MD

One of the goals of this project is to evaluate to which extent the icNMA imple-
mentation improves PELE sampling capabilities. To this end, we have decided
to compare simulations using both methods with a third reference method:
MD. We have tested two different systems, ubiquitin (PDB id: 1UBQ) a small
and very static globular protein, and a c-Src kinase (PDB id: 1Y57) as an ex-
ample of a bigger and more flexible protein.

5.3.2.1 Best values for the parameters at 300 K

The value of the parameters used in a simulation can dramatically alter its out-
come. As the icNMA-based method is new, and the ccNMA-based method is
not commonly used at 300, we do not have a predefined set of default values for
the parameters to use in the simulations. As a consequence, we have worked
to obtain the best parameterizations in order to make the comparison fairer.
Here, we will illustrate the procedure we followed for the parameterization of
the c-Src kinase simulation.

First, we have fixed the parameters common to both methods e.g. the tem-
perature was set to 300 K and the distance cutoff for the construction of the EN
was set to 9 Å . Then, using the simulations we had already run with the para-
meters detailed in Table 5.2, we have calculated the values of the three indices

5.4. COMPARISON WITH MD 161

we were going to use to discriminate the best values for the parameters:

• The average RMSD increment of the ANM step, which gives us an idea
of the extent of the deformations.

• The root mean square of the root mean square fluctuations (RMSF) for
each simulation vs. the RMSF of the MD simulation. This can tell us if
the flexibility of our simulations resemble that of the MD simulations.

• The acceptance, which we wanted to keep in the 20-40% range.

After applying the acceptance restriction, the list of possible parameteriz-
ations went down to three possibilities for each of the simulations (see Table
5.5) and we were able to choose a good set of parameters for the regular PELE
simulations: 0.66 Å for the displacementFactor parameter and 0.1 for the Min-
imumRMS parameter. Note that, as results are so similar, we decided to select
the higher value of MinimumRMS, as we knew it would shorten the execution
time of each step.

For the icNMA method, we saw a high difference in acceptance between
the simulations with displacementFactor equal to 0.05 rad and displacement-
Factor equal to 0.08 rad, indicating that our angular step choice was too big.
To verify this, we refined the icNMA simulations using values of the displace-
mentFactor between 0.05 rad and 0.08 rad. The optimum value turned to be
around the 0.065 rad. As the method uses a maximum and minimum value for
the rotations, we performed further tests using values around 0.065 rad. as the
lower limit and an arbitrary maximum value of 0.02 rad. The best combination
we found was the range from 0.07 rad to 0.14 rad.

Once we got the best parameter choice for the icNMA step, we still needed
to parameterize the rotation amplitude range of the side chain perturbation step.
To this end, we performed several simulations using different values for the
maximum and minimum rotation and choosing those which yield acceptance
values between 20 and 40%. The optimum range happened to be 0.02 to 0.024
radians.

5.4 Comparison with MD

We performed 12 independent 24 h simulations for each method and compared
different measurements with MD. These measurements include:

Energy increments The increments of the potential energy due to the NMA
step perturbation.

162 CHAPTER 5. DISCUSSION

Acceptance RMS(RMSF) RMSD Disp. mag. (Å) Rel. str.

CC 0.316 2.467 0.094 0.66 0.05
0.308 2.492 0.098 0.66 0.01
0.281 2.447 0.09 0.66 0.1

IC 0.334 2.618 0.126 0.5 0.05
0.328 2.642 0.127 0.5 0.1
0.298 2.651 0.126 0.5 0.01

IC 0.296 2.637 0.139 0.55 0.1
(refinement) 0.295 2.639 0.137 0.55 0.05

0.29 2.635 0.138 0.55 0.01
0.284 2.629 0.148 0.6 0.1
0.264 2.63 0.149 0.6 0.01
0.26 2.588 0.165 0.65 0.05
0.249 2.608 0.168 0.65 0.01
0.248 2.614 0.153 0.6 0.05
0.245 2.612 0.164 0.65 0.1
0.229 2.592 0.179 0.7 0.01

Table 5.5: Values for the parameters that produced simulations with acceptance
between 20 and 40%.

5.4. COMPARISON WITH MD 163

SASA and radius of gyration The SASA measures the area of the protein ac-
cessible to the solvent, while the radius of gyration calculates the disper-
sion of the atoms to its center of mass. Both measurements are related
to the compactness of the protein.

RMSF The RMSF is a measure of the fluctuation per residue (Cα atom). We
expect that similar methods produce similar conformational ensembles
and, therefore, similar RMSF profiles. However, it is not guaranteed that
two different conformational ensembles have different RMSF profiles.
That is why we must combine this measure with others in order to have
a real picture of the ensembles/methods similarity.

Conformational space overlap We used a similar approach to the ones shown
by Lyman et al. [216] and Lindorff-Larsen [217] to calculate the ex-
tension of the exploration in the conformational space overlap. This
strategy consists in clustering the structures of all the methods together
using a geometrical distance measure (RMSD). Then the square root of
the Jensen-Shannon divergence of the cluster populations (converted to a
probability distribution) is calculated, yielding the desired overlap value.

5.4.1 Advantages of the new method

We have observed that the ccNMA step is not able to generate energetically fa-
vorable proposals, i.e. proposals that maintain or lower the potential energy and
thus will be accepted by means of a Boltzmann criterion. This is, indeed, the
reason that makes the relaxation phase a necessary part of the PELE approach.
The icNMA algorithm, however, is able to generate energetically favorable pro-
posals ∼18-27% of the times and therefore does not need the computationally
costly relaxation step. As a consequence, the icNMA-based algorithm is able to
generate MC proposals faster than the ccNMA approach (∼5-7x), while keep-
ing similar RMSD increments.

The measurements of the SASA and radius of gyration for both algorithms
reveal a tendency towards generating more compact structures than MD. This
is not unexpected, as our methods use implicit solvent, which is known to pro-
duce a bias in favor of compact structures [119, 218, 219], while our reference
MD simulations were run in explicit solvent. There is a remarkable difference
between the results for icNMA and ccNMA, being the former in better ac-
cordance with MD. The increased compaction of the ccNMA-based algorithm
seems to be caused by the repeatedly use of minimizations, which enforce the
solvent bias. The absence of backbone minimizations in the icNMA method
limits the severity of the bias.

164 CHAPTER 5. DISCUSSION

We also studied the relative fluctuations of the residues by scaling the RMSF
profiles and superimposing them. The RMSF profiles of the icNMA method
show, in general, good agreement with MD. The ccNMA method shows a
poorer performance in the ubiquitin case, specially in the β2-α-helix and the
β4-β5 loop regions.

The study of the conformational space overlap shows that, in general, the
icNMA-based method is populating regions of the conformational space closer
to MD than to the ccNMA-method. Besides, we performed additional ana-
lyses of the sampling of the c-Src kinase P-loop. Correctly sampling this loop
is of crucial importance as it is involved in the binding mechanisms of the
kinase [220]. We measured the distances between the atoms CYS:277:CA
and LEU:387:CA, which is related to the inter-domain distance and the P-loop
sampling. The icNMA algorithm is able to sample a similar range of distances
to MD, however, ccNMA rapid compaction prevents it from obtaining simil-
arly good results. This highlights the advantage of the icNMA method, which
is less prone to get trapped in energy minima corresponding to compact struc-
tures.

5.5 Limitations of the new method and future per-
spectives

In general, we observed that the RMSF baselines of the NMA-based method-
ologies is always lower MD baselines. This points to the main limitations of
the new method: the lack of anharmonic backbone movements and mapping
higher (local) frequency modes, which reduces the amplitude of fluctuations.
We wonder if this could be overcome by using IC Principal Component Ana-
lysis (PCA) modes, which are known to have a higher anharmonic component
[143]. Also, both methods show high RMSD differences with the structures
coming from the MD trajectories. This differences are more evident in the
ubiquitin case, where the flexibility of the protein is concentrated on the loops
connecting the secondary structure. The cause of these RMSD differences re-
flects, indeed, the inability of our set of low-frequency NMA modes to model
the high-frequency movements occurring in these loops.

We are currently working to yet lower the execution times and keep improv-
ing the simulation flexibility. Our aim is to make this method a good alternat-
ive to current VHTS software by finding a good trade off between simulation
detail and speed. Moreover, by coupling this procedure with a ligand perturba-
tion step, as done in the PELE algorithm, local fluctuations (not present in the
NMA) can be recovered through the response of the protein to the ligand move.

5.5. LIMITATIONS AND PERSPECTIVES 165

We believe that the improvements in simulation reliability shown here can sup-
pose a gain in the long term. Although it is true that it involves a considerable
increase in the calculation times, it can save time (and money) at a later stage
of the drug discovery process by the early elimination of false positives and
negatives.

166 CHAPTER 5. DISCUSSION

5.6. EFFICIENT AND RELIABLE ANALYSIS 167

5.6 Efficient and reliable analysis of huge conform-
ational ensembles

In the computational biology field, the evolution of hardware during the last
decade has allowed tools to run faster, thus making them able to produce larger
output in the same amount of time. Nowadays, the efficient storage and analysis
of these increasingly big results can become a problem.

This is indeed our case, since one of our objectives is the development of
faster conformational sampling tools, capable of being applied in VHTS. That
is why we have focused on the improvement of the efficiency and robustness
of the analysis of large ensembles of biomolecular structures.

5.6.1 Efficient calculation of collective superimposition op-
erations

Collective superimposition operations are fundamental routines in structural
biology related analysis methods and can become a bottleneck if data sets are
large. We have implemented an efficient alternative to performing these op-
erations and RMSD calculations: pyRMSD [221]. We have focused on three
common use cases:

• Superimposition of a given conformation vs. the others in the ensemble
(e.g. the first frame of a trajectory is usually compared to the others in
order to calculate an RMSD profile).

• Pairwise superimposition of all the conformations of the ensemble. A
pairwise superimposition of all conformations of the ensemble would be
necessary to build an RMSD matrix to be used by a clustering algorithm

• Iterative superimposition of all the conformations of the ensemble. All
conformations can be iteratively superimposed before calculating the co-
variance matrix for a PCA.

Python is an object-oriented interpreted language that seems to be currently
gaining momentum among researchers. This may be due to the great availab-
ility of scientific libraries or to the possibility of creating software prototypes
without effort.

168 CHAPTER 5. DISCUSSION

Figure5.9:Pseudo-U
M

L
(U

nified
M

odelling
Language)diagram

show
ing

som
ekey

classesofpyRM
SD

asw
ellasthethree-layerdesign

(Python
classes,Python

C
interface

and
C++

classes).

5.6. EFFICIENT AND RELIABLE ANALYSIS 169

5.6.2 Superimposition algorithms

pyRMSD has been designed as a Python library implementing a three-layer
structure (see Fig. 5.9). The first layer is written in pure Python and contains
high-level objects and functions. The second layer describes the C Python
API interface, which links the low-level functions of the third layer with the
high-level functionalities of the first one. The third layer is a full C++ library
implementing the superimposition and RMSD calculation functions. Thanks
to this structure, pyRMSD can be included effortlessly in other Python or C++
projects, ensuring the reuse of the code.

pyRMSD implements Kabsch’s algorithm [222], Heisterberg’s algorithm
(aka QTRFIT) [223] and Theobald’s algorithm (QCP) [224]. These three meth-
ods try to solve the superimposition problem by different means, but with the
common goal of finding a rotation matrix (or equivalent quaternion) that min-
imizes the error function:

e2 =
1
n

∑
n

∣∣∣xn −Uyn

∣∣∣2 . (5.24)

The inclusion of these three algorithms in one package obeys two reasons:
the need to compare algorithm performance, and the necessity to provide users
with an alternative in case they need to overcome any of the problems associ-
ated with these algorithms (e.g. Kabsch’s can potentially produce rotoreflec-
tion matrices [225] and QCP is known to have bad convergence).

5.6.3 Parallelization and performance

The core functions of the third layer have been parallelized in order to boost
performance. All three algorithms have a serial and OpenMP version to take
advantage of multicore CPUs. In addition, QCP also implements a CUDA
version that can run in Nvidia GPUs with both single and double floating point
precision. This is has been the first open source CUDA implementation of this
algorithm so far.

When testing the “one conformation versus the others” use case in a 30k
snapshots trajectory, the faster algorithm showed a∼2.6x speedup using OpenMP
with six threads. Improvements are more noticeable when testing the calcula-
tions of RMSD matrices, with speedups ranging from 5x (OpenMP) to 11x
faster (CUDA using the “in-memory matrix” alternative).

Furthermore, the comparison of pyRMSD with g rmsd [157], a RMSD
matrix calculation specialized piece of software, shows that the former is more
than four times faster. We have also implemented several RMSD matrix calcu-

170 CHAPTER 5. DISCUSSION

lation examples using non-specific software (see Supplementary materials S6
of the publication). The best-performing function uses Prody, a well consolid-
ated Python package, and is 50x slower than pyRMSD.

Our profilings have revealed that, when using distance matrices, the con-
tribution of the matrix access time starts to become prominent if the superim-
position bottleneck is eliminated. This behaviour can be explained based on
Python’s inherent overhead in array element access operations, e.g. Python
checks internally that these indices are integers or that they are pointing to a
legal position of the array. As these checks are an automatic part of the runtime,
we needed to create the “CondensedMatrix” object. This is a C Python object
that stores a square symmetric matrix in a memory efficient way and bypasses
indexing checks to decrease access overhead to almost zero, adding a 6x auto-
matic speed up to any function using it.

5.6.4 Distribution
pyRMSD is distributed as open source software and is maintained in a public
GitHub repository12. It can be easily installed using customary Python installa-
tion methods (setup.py and pip remote installation). We have also added a new
makefile-like setup script that allows defining different hardware parameters
and environments so that users can make the most of their machine architec-
tures. This installation script also overcomes some current Python limitations
related to CUDA code compilation.

12https://github.com/victor-gil-sepulveda/pyRMSD

5.7. A RELIABLE CLUSTER ANALYSIS PROTOCOL 171

5.7 A reliable cluster analysis protocol

Cluster analysis is a powerful non-supervised analysis technique which aims to
group the elements of a data set so that its underlying structure gets unveiled.
This allows discovering properties of data that would be impossible to obtain
through other means.

It has been extensively used in several fields, and computational biology is
not an exception. For instance, it is used in population analysis of ensembles
[226], to summarize simulation output [227, 228], finding native-like structures
in homology modeling refinement processes [69] or as a key part of Markov
State Model (MSM) analysis [229].

5.7.1 Looking for the best clustering
The results of a cluster analysis heavily depend on the choice of the algorithm
and its parameters (see Fig. 5.10). Cluster analysis is also very sensitive to
the distance metric used. It is known, for instance, that RMSD sensibility
can make clustering more difficult, especially when structural dissimilarity is
high. Also, the so-called “curse of dimensionality” can suppose a problem
here. Consequently, using cluster analysis as a black box can be dangerous: as
cluster analysis is usually part of other more complex analyses or algorithms,
erroneous partitions would directly compromise all derived results.

A cluster analysis algorithm is usually considered to be good if it is able
to classify the data set so that each of them is more similar to the elements
of their own group than to the elements in the other groups. However, this
definition does not always apply. In Fig. 5.10 we have used two algorithms
and two parameter sets, thus obtaining four different clusterings. The two upper
clusterings show perfect equipartitions of the space; the two lower clusters are
able to capture the circular shape to some extent. This leads to a question:
which is the correct result? For instance, the first solution would be a good
outcome if we embrace the definition above, while the second one would be
especially useful in a computer vision scenario where the shape of objects must
be identified. The best clustering is, indeed, the one that best fits the user’s
goals [169].

5.7.2 pyProCT
We have created pyProCT [230] in order to have a robust cluster analysis method
that can be used without understanding how cluster analysis algorithms work.
The pyProCT work flux starts with users defining a working hypothesis by

172 CHAPTER 5. DISCUSSION

K = 2 K = 3

K-
M

e
d

o
id

s
S

p
e
ct

ra
l

Figure 5.10: Four cluster analysis have been performed over the same data set. Results
can change dramatically depending on the algorithm (k-medoids or spectral clustering
here) and parameters used (k = 2 or k = 3).

5.7. A RELIABLE CLUSTER ANALYSIS PROTOCOL 173

using their domain expertise and their knowledge about the problem they are
facing. This hypothesis describes the results that they would consider useful
using just a few parameters, and obliges them to identify the specific goals of
their clustering efforts. For instance, a user trying to analyze an MD trajectory
of a system he or she is studying may know the following: the approximate
number of expected clusters, the expected size of populations, or whether the
method is prone to produce “noisy” ensembles.

The second part of the hypothesis is built around the definition of one or
more scoring criteria. These are based on simple concepts, such as the degree
of cluster separation or cohesion. The hypothesis will be used by pyProCT
to perform a clustering exploration with five different clustering algorithms
(K-means, Spectral clustering, DBSCAN, hierarchical complete linkage and
GROMOS), and different sets of automatically generated parameters. Thanks
to the previously defined hypothesis and scoring criteria, the software will
choose the result that better fulfills the user’s expectations.

5.7.3 Hypothesis refinement

It is very likely that the first hypothesis does not define the user’s goals com-
pletely. Users may gain knowledge from result inspection, and this knowledge
can be used to refine the hypothesis and the cluster again. Although this step is
not mandatory, the preferred and more reliable way of working with pyProCT
is performing these iterative hypothesis refinement cycles.

5.7.4 Software flow detail

We have implemented pyProCT as a flow of 5 stages:

1. Distance matrix calculation. All clustering algorithms need to calculate
the distances (or similarities) of the elements in the data set. In the case
of protein conformations, this calculation implies a costly superimposi-
tion. Therefore, precalculating the distances can be advantageous as the
superimposition step can be time-consuming. pyProCT allows the use
of RMSD and Euclidean distances. RMSD is calculated using pyRMSD
and extends it by adding a way to define groups with symmetries, as
well as automatic matching of symmetric chains in oligomers in order to
obtain the minimum RMSD value every time. The Euclidean distance
option calculates distances between the center of mass of the selected
groups.

174 CHAPTER 5. DISCUSSION

2. Algorithm parameterization. A set of parameters is calculated using a
different methodology for each algorithm based on the working hypo-
thesis.

3. Cluster analysis. All the algorithms (or a user-defined subset) are used
in combination with the parameterizations found in the previous stage.
This produces an ensemble of clustering solutions that will be filtered in
order to avoid repetitions and solutions that do not agree with the user’s
hypothesis.

4. Remaining clusterings are scored using both hypothesis and the defined
scoring criteria.

5. The best result is chosen and analyzed

pyProCT can take advantage of parallel architectures thanks to pyRMSD. As
the workflow is composed of well-defined independent tasks, it has been pos-
sible to parallelize it using a naive parallelization scheme. A scheduler has
been added so that tasks can be distributed to more than one processor (at node
level, using native Python parallel functions) or more than one node (at cluster
level, using MPI). A new scheduler type using pyCOMPSs [231] has recently
been developed [150]. pyCOMPSs is an annotation-based parallel program-
ming model for Python based on COMPSs [232]. The inclusion of this sched-
uler improves the load balance and opens the door to the execution of pyProCT
in cloud architectures.

5.7.5 Scoring criteria

A crucial step in the craft of the working hypothesis is the definition of the
scoring criteria. Each scoring criterion is a weighted sum of a set of cluster-
ing quality functions. Only internal clustering validation indices (ICVs) have
been used, such as the Silhouette index, Cohesion or Separation, as there is
not a correct clustering available to use as a reference. The implemented ICVs
have been defined and discussed in Section 3.7.2. By defining more than one
criterion, users can prepare the analysis for more than one scenario (e.g. the
example in Section 3.7.6 uses one criterion that defines the common descrip-
tion of cluster analysis and another criterion that defines it in terms of graph
components). In this case, the scores for each criterion will be normalized and
the best clustering will be the one with the higher score for any of the criteria.

5.7. A RELIABLE CLUSTER ANALYSIS PROTOCOL 175

5.7.6 Use cases
Two main use cases have been presented:

• Cluster analysis: We have used pyProCT to analyze two different syn-
thetic conformational ensembles. Populations, representatives, and global
and per-cluster RMSFs have been automatically extracted from these en-
sembles. We have also used pyProCT to analyze a DNA-ligand simula-
tion where ligands were in the bulk of the solvent most of the time. We
have allowed pyProCT to treat them as noise, which lead us to obtain the
clusters of the interaction sites. The clusters found were in good agree-
ment with the ones obtained using MSM analysis in a prior work [233].

• Redundancy elimination: Storing data, and especially conformational
ensembles, is becoming an issue of concern. We have introduced a
method that is able to eliminate redundant conformations while preserving
ensemble cluster populations. This makes it possible to process data sets
whose distance matrix can not be fitted in memory. We have tested it with
a ∼100,000 elements trajectory and a ∼1,000,000 elements ensembles
with good results (see Section 3.2 of the article, and Section 3.7.5 for
more information). The method works by iteratively partitioning the data
set, cluster analyzing the partitions order to eliminate redundancy, and
merging the results, until the desired number of frames is reached.

5.7.7 Graphical User Interface (GUI)
pyProCT includes a wizard-like html-based GUI that can assist users in order
to generate a correct execution script, launch pyProCT executions and visual-
ize results. The result viewer processes pyProCT’s result files and shows them
in a more understandable way making it a very useful tool for hypothesis re-
finement.

5.7.8 Distribution
pyProCT is a Python standalone program that can also be integrated into other
projects as a library. It is distributed as open source software and is maintained
in a public GitHub repository13. It supports the setup.py installation method
and can also be installed using the pip package manager (which is the most
convenient way of installing it as it handles package dependencies automatic-
ally). pyProCT is far from being finished; code refactorings and new features

13https://github.com/victor-gil-sepulveda/pyProCT

176 CHAPTER 5. DISCUSSION

are included regularly (e.g. it has recently been upgraded to use numeric data
sets).

6
Conclusions

6.1 Technical improvement of PELE

– We have succeeded in implementing all the core functionalities of PELE
using C++. The use of modern software engineering techniques has al-
lowed us to better organize the code base and to introduce a test subsys-
tem. Nowadays, PELE++ has become a piece of software which is easier
to modify, understand, and extend. It is also more robust and reliable.
The rewriting the code has helped us to overcome some of its previous
technical limitations, such as the restrictions on the size of the systems.
Also, it has allowed us to extend PELE with new solvent models, force
fields, and types of biomolecules.

– The rewriting has make it possible to adapt the code in order to take
advantage of new parallel architectures and accelerators. The parallel-
ization of the non-covalent interactions and solvent model related func-
tions, which represent hot spots in our performance analyses, has yielded
promising speedup results. These new pieces of code are currently being
integrated in PELE++.

– PELE++ is, nowadays, the first choice for our research group. The new
code has opened the doors to more ambitious developments involving
machine learning and virtual reality. Also, a GUI for PELE++ is cur-
rently being created.

– PELE++ has seriously been considered for pharmaceutical R&D, which
illustrates the success of the project. As a matter of fact, it is currently

177

178 CHAPTER 6. CONCLUSIONS

being tested in the Department of Medicinal Chemistry of the renowned
pharmaceutical company AstraZeneca.

6.2 Algorithmic improvement of PELE

– We have proposed a new method using torsional normal mode analysis
to improve the conformational sampling of PELE. We have found that
internal coordinates normal modes are more collective and robust to the
changes of the elastic network.

– The method is able to produce more energy favorable perturbations than
the current ANM-based strategy. This allows us to run simulations at 300
K without the need of complex relaxation protocols. As a consequence,
the overall computational performance of the sampling is significantly
improved (∼5-7x). We are currently working on the methodology to yet
lower the execution times and further improving the simulation of flexib-
ility. Thanks to the new methodology, we are attaining a good trade-off
between speed and detail that will turn PELE into a good alternative to
current VHTS software.

– The new internal coordinates-based methodology is able to capture the
flexibility of the backbone better than the old method. The relative mag-
nitudes of these fluctuations correlate well with those of our (explicit
solvent) MD reference simulations.

– The new method better preserves the volume of the protein during the
simulation, thus overcoming the tendency of PELE to produce compact
structures in certain situations.

– Finally, the inter-domain movements of c-Src kinase obtained with this
method are closer to those obtained with MD.

6.3 Efficient and reliable analysis of large conform-
ational ensembles

– We have developed a Python package which is able to perform collective
superposition (and RMSD) operations of conformational ensembles one
order of magnitude faster than the serial version.

6.3. EFFICIENT AND RELIABLE ANALYSIS 179

– We have developed pyProCT, a cluster analysis software which is able
to provide good results without any knowledge of cluster analysis tech-
niques.

– pyProCT can be successfully used in the most common use cases: to
retrieve clusters from ensembles of conformations (using RMSD) and
to retrieve ligand clusters (using the distance to the center of mass). As
requested by users, it isnow able to load and analyze other types of data,
such as numeric arrays, allowing it to perform tasks beyond its original
scope.

– We also present a novel application to reduce the size of huge conform-
ational ensembles by eliminating redundant structures.

– pyProCT has already been used in a good number of biomedical public-
ations for the analysis of results. It is currently being applied to improve
PELE ligand sampling performance. Besides, it has been used in a Part-
nership for Advanced Computing in Europe (PRACE) project aiming at
finding innovative ways to visually represent clusters of protein conform-
ations.

– The code and compiled versions of both packages are available to the
whole scientific community in free-access repositories.

180 CHAPTER 6. CONCLUSIONS

Bibliography

1. WHO. World Health Organization : Global Health Observatory (GHO)
data World Health Organization : Global Health Observatory (GHO)
data. <http://www.who.int/gho/mortality_burden_disease/
life_tables/situation_trends/en/> (2015).

2. Ostwald, D. A. & Knippel, J. Measuring the Economic Footprint of the
Pharmaceutical Industry 2013.

3. EFPIA. The Pharmaceutical Industry in Figures 2014.

4. PhRMA. 2015 biopharmaceutical research industry profile 2015.

5. Kristopher Hult & Tomas Philipson. Should Investors Pay Attention To
The Alleged Productivity Crises In Pharma? Forbes. <http://www.
forbes.com/sites/tomasphilipson/2015/04/03/should-

investors-pay-attention-to-the-alleged-productivity-

crises-in-pharma/> (2015).

6. CDER. 2013 Novel New Drugs 2014.

7. DiMasi, J., Hansen, R. W. & Grabowski, H. G. The price of innovation:
new estimates of drug development costs. J. Health. Econ. 22, 151–185
(2003).

8. Goozner, M. The $800 million pill: The truth behind the cost of new
drugs. J. Clin. Invest. 114, 1182 (2004).

9. Paul, S. M. et al. How to improve R&D productivity: the pharmaceut-
ical industry’s grand challenge. Nat. Rev. Drug Discovery 9, 203–214
(2010).

181

182 BIBLIOGRAPHY

10. Light, D. W. & Warburton, R. Demythologizing the high costs of phar-
maceutical research. Biosocieties 6, 34–50 (2011).

11. Mestre-Ferrandiz, J., Sussex, J. & Towse, A. The R&D Cost of a New
Medicine Monograph. 2012.

12. TIBCO. Transforming the Drug Development Process (TIBCO).

13. Peter Gwynne & Gary Heebner. Pharmaceutical and biopharmaceut-
ical firms need to reduce the cost and lead time of drug development.
A range of recently developed technologies makes that goal possible.
<http://www.sciencemag.org/site/products/ddbt_0207_

Final.xhtml> (2015).

14. PhRMA. 2011 annual report 2011.

15. O’Connor, A. Football - By the Numbers<http://lillypad.lilly.
com/entry.php?e=1424> (2016).

16. DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. The Cost of Drug
Development. N. Engl. J. Med. 372, 1972–1972 (2015).

17. Mullin, R. Cost to Develop New Pharmaceutical Drug Now Exceeds
$2.5B Scientific American. <http://www.scientificamerican.
com/article/cost-to-develop-new-pharmaceutical-drug-

now-exceeds-2-5b/> (2016).

18. Dreyfus, N. Keeping the Lid on R&D Costs Drug Discovery & Develop-
ment. <http://www.dddmag.com/articles/2014/06/keeping-
lid-r-d-costs> (2016).

19. Hughes, E. F., Michael Hu, Karl Schultz, Jack Sheu & Daniel Tschopp.
The Innovation Gap in Pharmaceutical Drug Discovery & New Models
for R&D Success 2007.

20. Chong, C. R. & Sullivan, D. J. New uses for old drugs. Nature 448, 645–
646 (2007).

21. Cutler, P. & Voshol, H. Proteomics in pharmaceutical research and de-
velopment. Proteomics Clin. Appl. 9, 643–650 (2015).

BIBLIOGRAPHY 183

22. Grenet, O. Significance of the human genome sequence to drug discov-
ery. Pharmacogenomics J. 1, 11–12 (2001).

23. Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug
Discovery 1, 727–730 (2002).

24. Garnier, J.-P. Rebuilding the R&D Engine in Big Pharma Harvard Busi-
ness Review. <https://hbr.org/2008/05/rebuilding-the-rd-
engine-in-big-pharma> (2015).

25. PhRMA. 2013 biopharmaceutical research industry profile 2013.

26. Austin, D. H. Research and Development in the Pharmaceutical In-
dustry 1 vols. (Congressional Budget Office, 2006).

27. Tollman, P., Guy, P., Altshuler, J., Flanagan, A. & Steiner, M. A Re-
volution in R&D: How Genomics and Genetics Are Transforming The
Biopharmaceutical Industry 2001.

28. Dror, O., Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolf-
son, H. J. Novel Approach for Efficient Pharmacophore-Based Virtual
Screening: Method and Applications. J. Chem. Inf. Model. 49, 2333–
2343 (2009).

29. Clark, R. Prospective Ligand- and Target-Based 3D QSAR: State of the
Art 2008. Curr. Top. Med. Chem. 9, 791–810 (2009).

30. Bajorath, J. Integration of virtual and high-throughput screening. Nat.
Rev. Drug Discovery 1, 882–894 (2002).

31. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28,
235–242 (2000).

32. Tanrikulu, Y. & Schneider, G. Pseudoreceptor models in drug design:
bridging ligand- and receptor-based virtual screening. Nat. Rev. Drug
Discovery 7, 667–677 (2008).

33. Schaerfe, C. A Critical Assessment of the Impact of Computational Meth-
ods on the Productivity in Pharmaceutical Research and Development
Master Thesis (University of Warwick, 2011).

184 BIBLIOGRAPHY

34. Gil-Redondo, R. et al. VSDMIP: virtual screening data management on
an integrated platform. J. Comput. Aided Mol. Des. 23, 171–184 (2009).

35. Prathipati, P. & Mizuguchi, K. Integration of Ligand and Structure Based
Approaches for CSAR-2014. J. Chem. Inf. Model. (2015).

36. Le Guilloux, V., Schmidtke, P. & Tuffery, P. Fpocket: An open source
platform for ligand pocket detection. BMC Bioinformatics 10, 168 (2009).

37. Huang, B. & Schroeder, M. LIGSITEcsc: predicting ligand binding sites
using the Connolly surface and degree of conservation. BMC Struct.
Biol. 6, 19 (2006).

38. Tuffery, P. & Derreumaux, P. Flexibility and binding affinity in protein-
ligand, protein-protein and multi-component protein interactions: limit-
ations of current computational approaches. J. R. Soc. Interface 9, 20–
33 (2012).

39. Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R. & Ferrin, T. E. A
geometric approach to macromolecule-ligand interactions. J. Mol. Biol.
161, 269–288 (1982).

40. Morris, G. M., Goodsell, D. S., Huey, R. & Olson, A. J. Distributed
automated docking of flexible ligands to proteins: parallel applications
of AutoDock 2.4. J. Comput. Aided Mol. Des. 10, 293–304 (1996).

41. Morris, G. M. et al. AutoDock4 and AutoDockTools4: Automated Dock-
ing with Selective Receptor Flexibility. J. Comput. Chem. 30, 2785–
2791 (2009).

42. Jones, G., Willett, P. & Glen, R. C. Molecular recognition of receptor
sites using a genetic algorithm with a description of desolvation. J. Mol.
Biol. 245, 43–53 (1995).

43. Friesner, R. A. et al. Glide: A New Approach for Rapid, Accurate Dock-
ing and Scoring. 1. Method and Assessment of Docking Accuracy. J.
Med. Chem. 47, 1739–1749 (2004).

44. Rarey, M., Kramer, B., Lengauer, T. & Klebe, G. A fast flexible docking
method using an incremental construction algorithm. J. Mol. Biol. 261,
470–489 (1996).

BIBLIOGRAPHY 185

45. Yun, M.-R., Lavery, R., Mousseau, N., Zakrzewska, K. & Derreumaux,
P. ARTIST: An activated method in internal coordinate space for sampling
protein energy landscapes. Proteins: Struct., Funct., Bioinf. 63, 967–975
(2006).

46. Abagyan, R., Totrov, M. & Kuznetsov, D. ICM - A new method for pro-
tein modeling and design: Applications to docking and structure pre-
diction from the distorted native conformation. J. Comput. Chem. 15,
488–506 (1994).

47. Jain, A. N. Surflex: fully automatic flexible molecular docking using a
molecular similarity-based search engine. J. Med. Chem. 46, 499–511
(2003).

48. Mobley, D. L. & Dill, K. A. Binding of Small-Molecule Ligands to Pro-
teins: ”What You See” Is Not Always ”What You Get”. Structure 17,
489–498 (2009).

49. Weis, A., Katebzadeh, K., Soederhjelm, P., Nilsson, I. & Ryde, U. Lig-
and Affinities Predicted with the MM/PBSA Method: Dependence on
the Simulation Method and the Force Field. J. Med. Chem. 49, 6596–
6606 (2006).

50. Moustakas, D. T. Application of docking methods to structure-based
drug design. RSC Biomol. Sci. 155–180 (2007).

51. Totrov, M. & Abagyan, R. Flexible ligand docking to multiple receptor
conformations: a practical alternative. Curr. Opin. Struct. Biol. 18, 178–
184 (2008).

52. De Beer, S., Vermeulen, N. & Oostenbrink, C. The Role of Water Mo-
lecules in Computational Drug Design. Curr. Top. Med. Chem. 10, 55–
66 (2010).

53. Doman, T. N. et al. Molecular docking and high-throughput screening
for novel inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem.
45, 2213–2221 (2002).

54. Hartshorn, M. J. et al. Diverse, high-quality test set for the validation of
protein-ligand docking performance. J. Med. Chem. 50, 726–741 (2007).

186 BIBLIOGRAPHY

55. Verkhivker, G. M. et al. Complexity and simplicity of ligand-macromolecule
interactions: the energy landscape perspective. Curr. Opin. Struct. Biol.
12, 197–203 (2002).

56. Zavodszky, M. I. & Kuhn, L. A. Side-chain flexibility in protein-ligand
binding: The minimal rotation hypothesis. Protein Sci. 14, 1104–1114
(2005).

57. Fischer, E. Einfluss der Configuration auf die Wirkung der Enzyme.(1894)
Ber. Dtsch. Chem. Ges. 27, 2984.

58. Koshland, D. E. Application of a Theory of Enzyme Specificity to Pro-
tein Synthesis. Proc. Natl. Acad. Sci. U.S.A. 44, 98–104 (1958).

59. Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric
transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

60. Rubin, M. M. & Changeux, J. P. On the nature of allosteric transitions:
implications of non-exclusive ligand binding. J. Mol. Biol. 21, 265–274
(1966).

61. Wright, P. E. & Dyson, H. J. Linking folding and binding. Curr. Opin.
Struct. Biol. 19, 31–38 (2009).

62. Wlodawer, A. & Vondrasek, J. Inhibitors of HIV-1 protease: a major
success of structure-assisted drug design. Annu. Rev. Biophys. Biomol.
Struct. 27, 249–284 (1998).

63. Bystroff, C. & Kraut, J. Crystal structure of unliganded Escherichia coli
dihydrofolate reductase. Ligand-induced conformational changes and
cooperativity in binding. Biochemistry 30, 2227–2239 (1991).

64. Wilson, D. K., Tarle, I., Petrash, J. M. & Quiocho, F. A. Refined 1.8 A
structure of human aldose reductase complexed with the potent inhibitor
zopolrestat. Proc. Natl. Acad. Sci. U.S.A. 90, 9847–9851 (1993).

65. Erickson, J. A., Jalaie, M., Robertson, D. H., Lewis, R. A. & Vieth, M.
Lessons in molecular recognition: the effects of ligand and protein flex-
ibility on molecular docking accuracy. J. Med. Chem. 47, 45–55 (2004).

BIBLIOGRAPHY 187

66. Yildirim, I., Stern, H. A., Tubbs, J. D., Kennedy, S. D. & Turner, D. H.
Benchmarking AMBER Force Fields for RNA: Comparisons to NMR
Spectra for Single-Stranded r(GACC) Are Improved by Revised χ Tor-
sions. J. Phys. Chem. B 115, 9261–9270 (2011).

67. Cino, E. A., Choy, W.-Y. & Karttunen, M. Comparison of Secondary
Structure Formation Using 10 Different Force Fields in Microsecond
Molecular Dynamics Simulations. J. Chem. Theory Comput. 8, 2725–
2740 (2012).

68. Lange, O. F., van der Spoel, D. & de Groot, B. L. Scrutinizing Molecular
Mechanics Force Fields on the Submicrosecond Timescale with NMR
Data. Biophys. J. 99, 647–655 (2010).

69. Raval, A., Piana, S., Eastwood, M. P., Dror, R. O. & Shaw, D. E. Refine-
ment of protein structure homology models via long, all-atom molecular
dynamics simulations. Proteins 80, 2071–2079 (2012).

70. Lin, T.-L., Vammi, S. K. & Song, G. Evaluating the Quality of Conform-
ation Sampling Methods Using Experimental Residual Dipolar Coup-
ling Data in Proceedings of the 2Nd ACM Conference on Bioinform-
atics, Computational Biology and Biomedicine (ACM, New York, NY,
USA, 2011), 514–518.

71. Karplus, M. & McCammon, J. A. Molecular dynamics simulations of
biomolecules. Nat. Struct. Mol. Biol. 9, 646–652 (2002).

72. Dodson, G. G., Lane, D. P. & Verma, C. S. Molecular simulations of
protein dynamics: new windows on mechanisms in biology. EMBO Rep.
9, 144–150 (2008).

73. Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H. & Shaw, D. E. Bio-
molecular Simulation: A Computational Microscope for Molecular Bio-
logy. Annu. Rev. Biophys. 41, 429–452 (2012).

74. Fine, R., Dimmler, G. & Levinthal, C. FASTRUN: a special purpose,
hardwired computer for molecular simulation. Proteins 11, 242–253
(1991).

188 BIBLIOGRAPHY

75. Shinjiro Toyoda, H. M. Development of MD Engine: High-speed ac-
celerator with parallel processor design for molecular dynamics simu-
lations. J. Comput. Chem. 20, 185–199 (1999).

76. Taiji, M. et al. Protein Explorer: A Petaflops Special-Purpose Computer
System for Molecular Dynamics Simulations in Supercomputing, 2003
ACM/IEEE Conference Supercomputing, 2003 ACM/IEEE Conference
(2003), 15–15.

77. Shaw, D. E. et al. Anton, a special-purpose machine for molecular dy-
namics simulation. Commun. ACM 51, 91 (2008).

78. Shan, Y. et al. How Does a Drug Molecule Find Its Target Binding Site?
J. Am. Chem. Soc. 133, 9181–9183 (2011).

79. Gorfe, A. A. & Caflisch, A. Functional plasticity in the substrate binding
site of beta-secretase. Structure 13, 1487–1498 (2005).

80. Wong, C. F., Kua, J., Zhang, Y., Straatsma, T. P. & McCammon, J. A.
Molecular docking of balanol to dynamics snapshots of protein kinase
A. Proteins 61, 850–858 (2005).

81. Bohacek, R., Mcmartin, C., Glunz, P. & Rich, D. H. in Rational Drug
Design (eds Truhlar, D. G., Howe, W. J., Hopfinger, A. J., Blaney, J. &
Dammkoehler, R. A.) The IMA Volumes in Mathematics and its Applic-
ations 108, 103–114 (Springer New York, 1999).

82. Hurst, T. Flexible 3D searching: The directed tweak technique. J. Chem.
Inf. Comput. Sci. 34, 190–196 (1994).

83. Nicklaus, M. C., Wang, S., Driscoll, J. S. & Milne, G. W. Conform-
ational changes of small molecules binding to proteins. Bioorg. Med.
Chem. 3, 411–428 (1995).

84. Yue, S. Y. Distance-constrained molecular docking by simulated anneal-
ing. Protein Eng. 4, 177–184 (1990).

85. Taylor, J. S. & Burnett, R. M. DARWIN: a program for docking flexible
molecules. Proteins 41, 173–191 (2000).

BIBLIOGRAPHY 189

86. Baxter, C. A., Murray, C. W., Clark, D. E., Westhead, D. R. & Eldridge,
M. D. Flexible docking using Tabu search and an empirical estimate of
binding affinity. Proteins 33, 367–382 (1998).

87. Del Carpio-Muñoz, C. A., Ichiishi, E., Yoshimori, A. & Yoshikawa,
T. MIAX: A new paradigm for modeling biomacromolecular interac-
tions and complex formation in condensed phases. Proteins 48, 696–
732 (2002).

88. Jiang, F. & Kim, S. H. ”Soft docking”: matching of molecular surface
cubes. J. Mol. Biol. 219, 79–102 (1991).

89. Goldstein, H. Classical mechanics (Addison-Wesley Pub. Co., 1950).

90. Tirion, M. M. Large Amplitude Elastic Motions in Proteins from a Single-
Parameter, Atomic Analysis. Phys. Rev. Lett. 77, 1905–1908 (1996).

91. Bahar, I., Atilgan, A. R. & Erman, B. Direct evaluation of thermal fluc-
tuations in proteins using a single-parameter harmonic potential. Fold
Des. 2, 173–181 (1997).

92. Atilgan, A. R. et al. Anisotropy of fluctuation dynamics of proteins with
an elastic network model. Biophys. J. 80, 505–515 (2001).

93. Hinsen, K. Analysis of domain motions by approximate normal mode
calculations. Proteins 33, 417–429 (1998).

94. Sen, T. Z. & Jernigan, R. L. in Normal Mode Analysis 171–186 (Chap-
man and Hall/CRC, 2005).

95. Orellana, L. et al. Approaching Elastic Network Models to Molecular
Dynamics Flexibility. J. Chem. Theory Comput. 6, 2910–2923 (2010).

96. Tama, F., Gadea, F. X., Marques, O. & Sanejouand, Y. H. Building-
block approach for determining low-frequency normal modes of mac-
romolecules. Proteins 41, 1–7 (2000).

97. Li, G. & Cui, Q. A coarse-grained normal mode approach for macro-
molecules: an efficient implementation and application to Ca(2+)-ATPase.
Biophys. J. 83, 2457–2474 (2002).

190 BIBLIOGRAPHY

98. Lopez-Blanco, J. R., Garzón, J. I. & Chacón, P. iMod: multipurpose
normal mode analysis in internal coordinates. Bioinformatics 27, 2843–
2850 (2011).

99. Ahmed, A., Villinger, S. & Gohlke, H. Large-scale comparison of pro-
tein essential dynamics from molecular dynamics simulations and coarse-
grained normal mode analyses. Proteins 78, 3341–3352 (2010).

100. Rueda, M., Chacón, P. & Orozco, M. Thorough Validation of Protein
Normal Mode Analysis: A Comparative Study with Essential Dynamics.
Structure 15, 565–575 (2007).

101. Yang, L., Song, G., Carriquiry, A. & Jernigan, R. L. Close Correspond-
ence between the Essential Protein Motions from Principal Component
Analysis of Multiple HIV-1 Protease Structures and Elastic Network
Modes. Structure 16, 321–330 (2008).

102. Delarue, M. & Sanejouand, Y.-H. Simplified normal mode analysis of
conformational transitions in DNA-dependent polymerases: the elastic
network model. J. Mol. Biol. 320, 1011–1024 (2002).

103. Yang, L., Song, G. & Jernigan, R. L. Comparisons of Experimental and
Computed Protein Anisotropic Temperature Factors. Proteins 76, 164–
175 (2009).

104. Thomas, A., Hinsen, K., Field, M. J. & Perahia, D. Tertiary and qua-
ternary conformational changes in aspartate transcarbamylase: a normal
mode study. Proteins 34, 96–112 (1999).

105. Lee, J., Joo, K., Brooks, B. R. & Lee, J. The Atomistic Mechanism of
Conformational Transition of Adenylate Kinase Investigated by Lorent-
zian Structure-Based Potential. J. Chem. Theory Comput. 11, 3211–
3224 (2015).

106. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. &
Teller, E. Equation of State Calculations by Fast Computing Machines.
J. Chem. Phys. 21, 1087–1092 (1953).

BIBLIOGRAPHY 191

107. Jorgensen, W. L. & Tirado-Rives, J. Monte Carlo vs Molecular Dynam-
ics for Conformational Sampling. J. Phys. Chem. 100, 14508–14513
(1996).

108. Trosset, J.-Y. & Scheraga, H. A. Prodock: Software package for protein
modeling and docking. J. Comput. Chem. 20, 412–427 (1999).

109. Liu, M. & Wang, S. MCDOCK: A Monte Carlo simulation approach to
the molecular docking problem. J. Comput. Aided Mol. Des. 13, 435–
451 (1999).

110. Borrelli, K. W., Vitalis, A., Alcantara, R. & Guallar, V. PELE: Protein
Energy Landscape Exploration. A Novel Monte Carlo Based Technique.
J. Chem. Theory Comput. 1, 1304–1311 (2005).

111. Madadkar-Sobhani, A. & Guallar, V. PELE web server: atomistic study
of biomolecular systems at your fingertips. Nuc. Acids Res. 41, W322–
W328 (W1 2013).

112. Schlick, T. & Fogelson, A. TNPACK—a Truncated Newton Minimiz-
ation Package for Large-scale Problems: II. Implementation Examples.
ACM Trans. Math. Softw. 18, 71–111 (1992).

113. Jorgensen, W. L. & Tirado-Rives, J. The OPLS [optimized potentials
for liquid simulations] potential functions for proteins, energy minim-
izations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc.
110, 1657–1666 (1988).

114. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and
Testing of the OPLS All-Atom Force Field on Conformational Energet-
ics and Properties of Organic Liquids. J. Am. Chem. Soc. 118, 11225–
11236 (1996).

115. Ponder, J. W. & Case, D. A. Force fields for protein simulations. Adv.
Protein Chem. 66, 27–85 (2003).

116. Ghosh, A., Rapp, C. S. & Friesner, R. A. Generalized Born Model Based
on a Surface Integral Formulation. J. Phys. Chem. B 102, 10983–10990
(1998).

192 BIBLIOGRAPHY

117. Romanov, A. N. et al. Surface Generalized Born Method: A Simple,
Fast, and Precise Implicit Solvent Model beyond the Coulomb Approx-
imation. J. Phys. Chem. A 108, 9323–9327 (2004).

118. Zhu, K., Shirts, M. R. & Friesner, R. A. Improved Methods for Side
Chain and Loop Predictions via the Protein Local Optimization Pro-
gram: Variable Dielectric Model for Implicitly Improving the Treatment
of Polarization Effects. J. Chem. Theory Comput. 3, 2108–2119 (2007).

119. Onufriev, A., Bashford, D. & Case, D. A. Exploring protein native states
and large-scale conformational changes with a modified generalized born
model. Proteins 55, 383–394 (2004).

120. Andrec, M., Harano, Y., Jacobson, M. P., Friesner, R. A. & Levy, R. M.
Complete protein structure determination using backbone residual di-
polar couplings and sidechain rotamer prediction. J. Struct. Func. Genom.
2, 103–111 (2002).

121. Jacobson, M. P., Kaminski, G. A., Friesner, R. A. & Rapp, C. S. Force
Field Validation Using Protein Side Chain Prediction. J. Phys. Chem. B
106, 11673–11680 (2002).

122. Xiang, Z., Steinbach, P. J., Jacobson, M. P., Friesner, R. A. & Honig, B.
Prediction of Side-Chain Conformations on Protein Surfaces. Proteins
66, 814–823 (2007).

123. Cossins, B. P., Hosseini, A. & Guallar, V. Exploration of Protein Con-
formational Change with PELE and Meta-Dynamics. J. Chem. Theory
Comput. 8, 959–965 (2012).

124. Eyal, E., Yang, L.-W. & Bahar, I. Anisotropic network model: system-
atic evaluation and a new web interface. Bioinformatics 22, 2619–2627
(2006).

125. Kitao, A., Hirata, F. & Gō, N. The effects of solvent on the conform-
ation and the collective motions of protein: normal mode analysis and
molecular dynamics simulations of melittin in water and in vacuum.
Chem. Phys. 158, 447–472 (1991).

BIBLIOGRAPHY 193

126. Meireles, L., Gur, M., Bakan, A. & Bahar, I. Pre-existing soft modes
of motion uniquely defined by native contact topology facilitate ligand
binding to proteins. Protein Sci. 20, 1645–1658 (2011).

127. Florence Tama & Charles L. Brooks. in Normal Mode Analysis 111–135
(Chapman and Hall/CRC, 2005).

128. Hosseini, A. et al. Molecular Interactions of Prodiginines with the BH3
Domain of Anti-Apoptotic Bcl-2 Family Members. PLoS ONE 8, e57562
(2013).

129. Fernández-Fueyo, E. et al. Structural implications of the C-terminal tail
in the catalytic and stability properties of manganese peroxidases from
ligninolytic fungi. Acta Crystallogr., Sect D: Biol. Crystallogr. 70, 3253–
3265 (Pt 12 2014).

130. Linde, D. et al. Catalytic surface radical in dye-decolorizing peroxidase:
a computational, spectroscopic and site-directed mutagenesis study. Bio-
chem. J. 466, 253–262 (2015).

131. Hosseini, A. et al. Atomic picture of ligand migration in toluene 4-
monooxygenase. J. Phys. Chem. B 119, 671–678 (2014).

132. Takahashi, R., Gil, V. A. & Guallar, V. Monte Carlo Free Ligand Dif-
fusion with Markov State Model Analysis and Absolute Binding Free
Energy Calculations. J. Chem. Theory Comput. 10, 282–288 (2014).

133. Edman, K. et al. Ligand Binding Mechanism in Steroid Receptors: From
Conserved Plasticity to Differential Evolutionary Constraints. Structure
23, 2280–2290 (2015).

134. Babot, E. D. et al. Steroid hydroxylation by basidiomycete peroxygenases:
A combined experimental and computational study. Appl. Environ. Mi-
crobiol. AEM.00660–15 (2015).

135. Lucas, F. et al. Molecular determinants for selective C25-hydroxylation
of vitamins D2 and D3 by fungal peroxygenases. Catal. Sci. Technol. 6,
288–295 (2015).

194 BIBLIOGRAPHY

136. Jones, E. M. et al. Differential Control of Heme Reactivity in Alpha and
Beta Subunits of Hemoglobin: A Combined Raman Spectroscopic and
Computational Study. J. Am. Chem. Soc. 136, 10325–10339 (2014).

137. Bakken, V. & Helgaker, T. The efficient optimization of molecular geo-
metries using redundant internal coordinates. J. Chem. Phys. 117, 9160–
9174 (2002).

138. Meyer, T. et al. MoDEL (Molecular Dynamics Extended Library): a
database of atomistic molecular dynamics trajectories. Structure 18, 1399–
1409 (2010).

139. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dy-
namics. J. Mol. Graph. Model. 14, 33–38 (1996).

140. Bakan, A., Meireles, L. M. & Bahar, I. ProDy: protein dynamics inferred
from theory and experiments. Bioinformatics 27, 1575–1577 (2011).

141. Tama, F. & Sanejouand, Y. H. Conformational change of proteins arising
from normal mode calculations. Protein Eng. 14, 1–6 (2001).

142. Leo-Macias, A., Lopez-Romero, P., Lupyan, D., Zerbino, D. & Ortiz,
A. R. An Analysis of Core Deformations in Protein Superfamilies. Bio-
phys. J. 88, 1291–1299 (2005).

143. Hayward, S., Kitao, A. & Gō, N. Harmonic and anharmonic aspects in
the dynamics of BPTI: A normal mode analysis and principal compon-
ent analysis. Prot. Sci. 3, 936–943 (1994).

144. Zheng, W. Anharmonic Normal Mode Analysis of Elastic Network Model
Improves the Modeling of Atomic Fluctuations in Protein Crystal Struc-
tures. Biophys. J. 98, 3025–3034 (2010).

145. Frappier, V. & Najmanovich, R. J. A Coarse-Grained Elastic Network
Atom Contact Model and Its Use in the Simulation of Protein Dynamics
and the Prediction of the Effect of Mutations. PLoS Comput. Biol. 10,
e1003569 (2014).

146. Lu, M., Poon, B. & Ma, J. A New Method for Coarse-Grained Elastic
Normal-Mode Analysis. J. Chem. Theory Comput. 2, 464–471 (2006).

BIBLIOGRAPHY 195

147. Grebner, C. et al. Binding Mode and Induced Fit Predictions for Pro-
spective Computational Drug Design. J. Chem. Inf. Model. (2016).

148. Oró Gay, X., Rosa M Badia & Victor A Gil. Paral·lelització del software
de simulació PELE++ utilitzant GPUs 2012. <http://upcommons.
upc.edu/handle/2099.1/15498> (visited on 17/11/2015).

149. Rincón Muñoz, A., Rosa M Badia & Vı́ctor A. Gil. Análisis vibracional
de proteı́nas en coordenadas internas mediante el modelo ANM 2014.
<http://upcommons.upc.edu/handle/2099.1/24417> (visited
on 18/11/2015).

150. Alvarez Vecino, P., Rosa M Badia & Victor A Gil. Optimization of
the cluster analysis tool pyProCT with pyCOMPSs 2015. <https://
upcommons.upc.edu/handle/2117/79993> (visited on 17/11/2015).

151. Eyer, L. et al. Nucleoside Inhibitors of Tick-Borne Encephalitis Virus.
Antimicrob. Agents Chemother. 59, 5483–5493 (2015).

152. Hosseini, A. et al. Computational Prediction of HIV-1 Resistance to
Protease Inhibitors. J. Chem. Inf. Model. doi:10.1021/acs.jcim.
5b00667.

153. Brüschweiler, R. Collective protein dynamics and nuclear spin relaxa-
tion. J. Chem. Phys. 102, 3396–3403 (1995).

154. Amadei, A., Ceruso, M. A. & Di Nola, A. On the convergence of the
conformational coordinates basis set obtained by the essential dynamics
analysis of proteins’ molecular dynamics simulations. Proteins 36, 419–
424 (1999).

155. BSC-CNS. MinoTauro User’s guide 2015.

156. Diamond, R. A Note on the Rotational Superposition Problem. Acta
Crystallogr., Sect. A: Found. Crystallogr. A, 211–216 (1988).

157. Berendsen, H., van der Spoel, D. & van Drunen, R. GROMACS: A
message-passing parallel molecular dynamics implementation. Comp.
Phys. Comm. 91, 43–56 (1995).

196 BIBLIOGRAPHY

158. Cock, P. J. A. et al. Biopython: freely available Python tools for compu-
tational molecular biology and bioinformatics. Bioinformatics 25, 1422–
1423 (2009).

159. Fedorovsky, M. PyVib2, a program for analyzing vibrational motion and
vibrational spectra <http://pyvib2.sourceforge.net> (2007).

160. Ester, M., Kriegel, H.-p., S, J. & Xu, X. A density-based algorithm
for discovering clusters in large spatial databases with noise, 226–231
(1996).

161. Sander, J., Ester, M., Kriegel, H.-P. & Xu, X. Density-Based Clustering
in Spatial Databases: The Algorithm GDBSCAN and Its Applications.
Data Min. Knowl. Discov. 2, 169–194 (1998).

162. Ankerst, M., Breunig, M. M., Kriegel, H.-p. & Sander, J. OPTICS: Or-
dering Points To Identify the Clustering Structure in (ACM Press, 1999),
49–60.

163. Zhou, H., Wang, P. & Li, H. Research on Adaptive Parameters Determ-
ination in DBSCAN Algorithm. J. Info. Comput. Sci. 9 (7), 1967–1973
(2012).

164. Daura, X. et al. Peptide Folding: When Simulation Meets Experiment.
Angew. Chem., Int. Ed. Engl. 38, 236–240 (1999).

165. Daura, X., van Gunsteren, W. F. & Mark, A. E. Folding-unfolding ther-
modynamics of a beta-heptapeptide from equilibrium simulations. Pro-
teins 34, 269–280 (1999).

166. Mullner, D. fastcluster: Fast Hierarchical, Agglomerative Clustering Routines
for R and Python. J. Stat. Soft. 53, 1–18 (2013).

167. Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory
28, 129–137 (1982).

168. Kaufman, L. & Rousseeuw, P. J. Finding groups in data: an introduction
to cluster analysis (John Wiley and Sons, New York, 1990).

169. Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 17,
395–416 (2007).

BIBLIOGRAPHY 197

170. Shi, J. & Malik, J. Normalized Cuts and Image Segmentation. IEEE
Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000).

171. Zelnik-manor, L. & Perona, P. Self-tuning spectral clustering in Ad-
vances in Neural Information Processing Systems 17 (MIT Press, 2004),
1601–1608.

172. Michael, S., Kumar, V. & Tan, P.-N. in Introduction to Data Mining
487–568 (Addison-Wesley).

173. He, J., Tan, A.-H., Tan, C.-L. & Sung, S.-Y. in Clustering and Informa-
tion Retrieval Network Theory and Applications 11, 105–133 (Springer
US, 2004).

174. Davies, D. L. & Bouldin, D. W. A Cluster Separation Measure. IEEE
Trans. Pattern Anal. Mach. Intell. PAMI-1, 224–227 (1979).

175. Dunn, J. C. A Fuzzy Relative of the ISODATA Process and Its Use in
Detecting Compact Well-Separated Clusters. Cybernet. Syst. 3, 32–57
(1973).

176. Kryszczuk, K. & Hurley, P. in Multiple Classifier Systems (eds Gayar,
N. E., Kittler, J. & Roli, F.) Lecture Notes in Computer Science 5997,
114–123 (Springer Berlin Heidelberg, 2010).

177. Calinski, T. & Harabasz, J. A dendrite method for cluster analysis. Com-
mun. Stat. 3, 1–27 (1974).

178. Rousseeuw, P. Silhouettes: A graphical aid to the interpretation and val-
idation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (C 1987).

179. Amadei, A., Linssen, A. B. & Berendsen, H. J. Essential dynamics of
proteins. Proteins 17, 412–425 (1993).

180. Ding, C. H. Q., He, X., Zha, H., Gu, M. & Simon, H. D. A Min-max
Cut Algorithm for Graph Partitioning and Data Clustering in Proceed-
ings of the 2001 IEEE International Conference on Data Mining (IEEE
Computer Society, Washington, DC, USA, 2001), 107–114.

198 BIBLIOGRAPHY

181. Hagen, L. & Kahng, A. New spectral methods for ratio cut partitioning
and clustering. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst
11, 1074–1085 (1992).

182. Kresten Lindorff-Larsen1, R. O. D. Stefano Piana & Shaw, D. E. How
Fast-Folding Proteins Fold. Science 334, 517–520 (2011).

183. Spaeth, H. SPAETH Cluster Analysis Tools <http://people.sc.
fsu.edu/%0020jburkardt/f_src/spaeth/%0020spaeth.html>

().

184. Wersdorfer, J. spectral clustering with python<http://wersdoerfer.
com / %0020jochen / s9y / index . php ? /archives / %0020109 -

spectral-clustering-with-python.html> ().

185. Jacobson, M. P., Friesner, R. A., Xiang, Z. & Honig, B. On the role of the
crystal environment in determining protein side-chain conformations. J.
Mol. Biol. 320, 597–608 (2002).

186. Cabeza de Vaca, I., Lucas, M. F. & Guallar, V. New Monte Carlo Based
Technique To Study DNA-Ligand Interactions. J. Chem. Theory Com-
put. (2015).

187. Larsson, P., Hess, B. & Lindahl, E. Algorithm improvements for mo-
lecular dynamics simulations. WIREs Comput. Mol. Sci. 1, 93–108 (2011).

188. BSC-CNS. MareNostrum III User’s Guide 2015.

189. Graham, S. L., Kessler, P. B. & Mckusick, M. K. Gprof: A Call Graph
Execution Profiler in Proceedings of the 1982 SIGPLAN Symposium on
Compiler Construction (ACM, New York, NY, USA, 1982), 120–126.
<http://doi.acm.org/10.1145/800230.806987> (visited on
17/11/2015).

190. Myung, H.-J. et al. Accelerating Molecular Dynamics Simulation Us-
ing Graphics Processing Unit. Bull. Korean Chem. Soc. 31, 3639–3643
(2010).

191. Schmid, N., Bötschi, M. & van Gunsteren, W. F. A GPU solvent-solvent
interaction calculation accelerator for biomolecular simulations using
the GROMOS software. J. Comput. Chem. 31, 1636–1643 (2010).

BIBLIOGRAPHY 199

192. Jin, X., Zhao, L. & Yang, J. A CUDA based solute interaction calcu-
lation of biomolecular simulation for GROMOS in 2011 International
Conference on Computer Science and Network Technology (ICCSNT)
2011 International Conference on Computer Science and Network Tech-
nology (ICCSNT). 2 (2011), 820–824.

193. Xie, D. & Schlick, T. Remark on Algorithm 702—the Updated Trun-
cated Newton Minimization Package. ACM Trans. Math. Softw. 25, 108–
122 (1999).

194. Wilson, E. B., Decius, J. C. & Cross, P. C. Molecular Vibrations: The
Theory of Infrared and Raman Vibrational Spectra 414 pp. (Courier
Corporation, 2012).

195. Gordon, M. S. & Pople, J. A. Approximate Self-Consistent Molecular-
Orbital Theory. VI. INDO Calculated Equilibrium Geometries. J. Chem.
Phys. 49, 4643–4650 (1968).

196. Li, Z. & Scheraga, H. A. Monte Carlo-minimization approach to the
multiple-minima problem in protein folding. Proc. Natl. Acad. Sci. U.S.A.
84, 6611–6615 (1987).

197. Jorgensen, W. L. & Tirado-Rives, J. Molecular modeling of organic and
biomolecular systems using BOSS and MCPRO. J. Comput. Chem. 26,
1689–1700 (2005).

198. Stein, E. G., Rice, L. M. & Brünger, A. T. Torsion-Angle Molecular
Dynamics as a New Efficient Tool for NMR Structure Calculation. J.
Magn. Reson. 124, 154–164 (1997).

199. Güntert, P., Mumenthaler, C. & Wüthrich, K. Torsion angle dynamics
for NMR structure calculation with the new program DYANA. J. Mol.
Biol. 273, 283–298 (1997).

200. Noguti, T. & Gō, N. A Method of Rapid Calculation of a Second De-
rivative Matrix of Conformational Energy for Large Molecules. J. Phys.
Soc. Jpn. 52, 3685–3690 (1983).

200 BIBLIOGRAPHY

201. Noguti, T. & Gō, N. Efficient monte carlo method for simulation of
fluctuating conformations of native proteins. Biopolymers 24, 527–546
(1985).

202. Kidera, A. Enhanced conformational sampling in Monte Carlo simula-
tions of proteins: application to a constrained peptide. Proc. Natl. Acad.
Sci. U.S.A. 92, 9886–9889 (1995).

203. Kidera, A. Smart Monte Carlo simulation of a globular protein. Int. J.
Quantum Chem 75, 207–214 (1999).

204. Levitt, M., Sander, C. & Stern, P. S. Protein normal-mode dynamics:
Trypsin inhibitor, crambin, ribonuclease and lysozyme. J. Mol. Biol.
181, 423–447 (1985).

205. Bray, J., Weiss, D. & Levitt, M. Optimized Torsion-Angle Normal Modes
Reproduce Conformational Changes More Accurately Than Cartesian
Modes. Biophys. J. 101, 2966–2969 (2011).

206. Mendez, R. & Bastolla, U. Torsional Network Model: Normal Modes
in Torsion Angle Space Better Correlate with Conformation Changes in
Proteins. Phys. Rev. Lett. 104, 228103 (2010).

207. Kovacs, J. A., Cavasotto, C. N. & Abagyan, R. Conformational Sampling
of Protein Flexibility in Generalized Coordinates: Application to Ligand
Docking. J. Comput. Theor. Nanosci. 2, 354–361 (2005).

208. Ghysels, A. et al. Mobile Block Hessian Approach with Adjoined Blocks:
An Efficient Approach for the Calculation of Frequencies in Macro-
molecules. J. Chem. Theory Comput. 5, 1203–1215 (2009).

209. Ghysels, A. et al. Comparative Study of Various Normal Mode Analysis
Techniques Based on Partial Hessians. J. Comput. Chem. 31, 994–1007
(2010).

210. Eckart, C. Some Studies Concerning Rotating Axes and Polyatomic Mo-
lecules. Phys. Rev. A 47, 552–558 (1935).

211. Noguti, T. & Gō, N. Dynamics of Native Globular Proteins in Terms of
Dihedral Angles. J. Phys. Soc. Jpn. 52, 3283–3288 (1983).

BIBLIOGRAPHY 201

212. Abe, H., Braun, W., Noguti, T. & Gō, N. Rapid calculation of first and
second derivatives of conformational energy with respect to dihedral
angles for proteins general recurrent equations. Comput. Chem. 8, 239–
247 (1984).

213. Braun, W., Yoshioki, S. & Gō, N. Formulation of Static and Dynamic
Conformational Energy Analysis of Biopolymer Systems Consisting of
Two or More Molecules. J. Phys. Soc. Jpn. 53, 3269–3275 (1984).

214. Choi, V. On updating torsion angles of molecular conformations. J. Chem.
Inf. Model. 46, 438–444.

215. Maxima, a Computer Algebra System. Version 5.34.1<http://maxima.
sourceforge.net/> (2014).

216. Lyman, E. & Zuckerman, D. M. Ensemble-Based Convergence Analysis
of Biomolecular Trajectories. Biophys. J. 91, 164–172 (2006).

217. Lindorff-Larsen, K. & Ferkinghoff-Borg, J. Similarity Measures for Pro-
tein Ensembles. PLoS ONE 4, e4203.

218. Chen, J. & Brooks III, C. L. Implicit modeling of nonpolar solvation for
simulating protein folding and conformational transitions. Phys. Chem.
Chem. Phys. 10, 471–481 (2008).

219. Zhang, W., Ganguly, D. & Chen, J. Residual Structures, Conformational
Fluctuations, and Electrostatic Interactions in the Synergistic Folding of
Two Intrinsically Disordered Proteins. PLoS Comput. Biol. 8, e1002353.

220. Boggon, T. J. & Eck, M. J. Structure and regulation of Src family kinases.
Oncogene 23, 7918–7927 (2004).

221. Gil, V. A. & Guallar, V. pyRMSD: a Python package for efficient pair-
wise RMSD matrix calculation and handling. Bioinformatics 29, 2363–
2364 (2013).

222. Kabsch, W. A solution for the best rotation to relate two sets of vectors.
Acta Crystallogr., A, Found. Crystallogr. 32, 922–923 (1976).

202 BIBLIOGRAPHY

223. Heisterberg, D. QTRFIT algorithm for superimposing two similar ri-
gid molecules. The Ohio Supercomputer Center Ohio State University,
Columbus, OH (1990).

224. Theobald, D. L. Rapid calculation of RMSDs using a quaternion-based
characteristic polynomial. Acta Crystallogr., A, Found. Crystallogr. 61,
478–480 (Pt 4 2005).

225. Umeyama, S. Least-squares estimation of transformation parameters between
two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13, 376–380
(1991).

226. Shao, J., Tanner, S. W., Thompson, N. & Cheatham, T. E. Clustering
Molecular Dynamics Trajectories: 1. Characterizing the Performance
of Different Clustering Algorithms. J. Chem. Theory Comput. 3, 2312–
2334 (2007).

227. Fraccalvieri, D., Bonati, L. & Stella, F. Self Organizing Maps to ef-
ficiently cluster and functionally interpret protein conformational en-
sembles. Electron. Proc. Theor. Comput. Sci. 130, 83–86 (2013).

228. Phillips, J. L., Colvin, M. E. & Newsam, S. Validating clustering of mo-
lecular dynamics simulations using polymer models. BMC Bioinform-
atics 12, 445 (2011).

229. Pande, V. S., Beauchamp, K. & Bowman, G. R. Everything you wanted
to know about Markov State Models but were afraid to ask. Methods 52,
99–105 (2010).

230. Gil, V. A. & Guallar, V. pyProCT: Automated Cluster Analysis for Struc-
tural Bioinformatics. J. Chem. Theory Comput. 10, 3236–3243 (2014).

231. Tejedor, E. et al. PyCOMPSs: Parallel computational workflows in Py-
thon. Int. J. High Perform. Comput. Appl. 1094342015594678 (2015).

232. Tejedor, E. et al. A High-productivity Task-based Programming Model
for Clusters. Concurr. Comput. : Pract. Exper. 24, 2421–2448 (2012).

233. Lucas, M. F., Cabeza de Vaca, I., Takahashi, R., Rubio-Martı́nez, J. &
Guallar, V. Atomic level rendering of DNA-drug encounter. Biophys. J.
106, 421–429 (2014).

