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Resum

L'optimització amb restriccions ha estat utilitzada amb èxit per a resoldre
problemes en molts dominis reals (industrials). Aquesta tesi es centra en les
aproximacions lògiques, concretament en Màxima Satisfactibilitat (MaxSAT)
que és la versió d'optimització del problema de Satisfactibilitat booleana (SAT).
A través de MaxSAT, s'han resolt molts problemes de forma eficient. Famı́lies
d'instàncies de la majoria d'aquests problemes han estat sotmeses a la MaxSAT
Evaluation (MSE), creant aix́ı una col·lecció pública i accessible d'instàncies de
referència.

En les edicions recents de la MSE, els algorismes SAT-based han estat les
aproximacions que han tingut un millor comportament per a les instàncies in-
dustrials. Aquests algorismes reformulen el problema d'optimització MaxSAT
en una seqüència de problemes de decisió SAT amb un valor donat per al cost
que s'ha d'optimitzar. Les instàncies SAT amb un valor per sota de l'òptim són
insatisfactibles y les altres satisfactibles. Depenent de quines instàncies SAT es
resolen per a guiar la cerca, hi ha dos tipus principals d'algorismes SAT-based :
els algorismes core-guided refinen la cota inferior amb l'ajuda de subproblemes
insatisfactibles (cores) obtinguts de las instàncies SAT insatisfactibles; i els al-
gorismes model-guided refinen la cota superior amb les assignacions (models)
obtingudes de las instàncies SAT satisfactibles.

Hem centrat la nostra investigació inicial en trobar un balanç eficient entre
les aproximacions core-guided i model-guided. Concretament, després de millorar
alguns algorismes core-guided inicials, hem incorporat alguna de las fortaleses
dels algorismes model-guided a l'esquema general d'un algorisme core-guided.
Fent això, la cota inferior va convergir més ràpidament cap a l'òptim i vam ser
capaços d'obtenir assignacions y cotes superiores, permetent aix́ı a un algorisme
complet treballar de forma natural com una aproximació incompleta donat un
temps limitat. La nostra contribució final al desenvolupament de les aproxima-
cions SAT-based és el disseny d'un nou algorisme, per al qual hem desenvolupat
tècniques addicionals per a explotar l'estructura global dels cores insatisfactibles.

Tot aquest treball ha contribüıt a tancar varies instàncies obertes i a reduir
dramàticament el temps de resolució en moltes altres. A més, hem trobat sor-
prenentment que reformular y resoldre el problema MaxSAT a través de progra-
mació lineal sencera era especialment adequat per algunes famı́lies. Finalment,
hem desenvolupat el primer portfoli altament eficient per a MaxSAT que ha
dominat en totes las categories de la MSE des de 2013.





Resumen

La optimización con restricciones ha sido utilizada con éxito para resolver
problemas en muchos dominios reales (industriales). Esta tesis se centra en las
aproximaciones lógicas, concretamente en Máxima Satisfacibilidad (MaxSAT)
que es la versión de optimización del problema de Satisfacibilidad booleana
(SAT). A través de MaxSAT, se han resuelto muchos problemas de forma efi-
ciente. Familias de instancias de la mayoŕıa de ellos han sido sometidas a la
MaxSAT Evaluation (MSE), creando aśı una colección pública y accesible de
instancias de referencia.

En las ediciones recientes de la MSE, los algoritmos SAT-based han sido las
aproximaciones que han tenido un mejor comportamiento para las instancias
industriales. Estos algoritmos reformulan el problema de optimización MaxSAT
en una secuencia de problemas de decisión SAT con un valor dado para el coste
que hay que optimizar. Las instancias SAT con un valor por debajo del óptimo
son insatisfacibles y las otras satisfacibles. Dependiendo de qué instancias SAT
se resuelven para guiar la búsqueda, hay dos tipos principales de algoritmos
SAT-based : los algoritmos core-guided refinan la cota inferior con la ayuda de
subproblemas insatisfacibles (cores) obtenidos de las instancias SAT insatisfaci-
bles; y los algoritmos model-guided refinan la cota superior con las asignaciones
(models) obtenidas de las instancias SAT satisfacibles.

Hemos centrado nuestra investigación inicial en encontrar un balance efi-
ciente entre las aproximaciones core-guided y model-guided. Concretamente, tras
mejorar algunos algoritmos core-guided iniciales, hemos incorporado algunas de
las fortalezas de los algoritmos model-guided al esquema general de un algoritmo
core-guided. Haciendo esto, la cota inferior converǵıa más rápidamente hacia el
óptimo y éramos capaces de obtener asignaciones y cotas superiores, permitiendo
aśı a un algoritmo completo trabajar de forma natural como una aproximación
incompleta dado un tiempo limitado. Nuestra contribución final al desarrollo de
las aproximaciones SAT-based es el diseño de un nuevo algoritmo, para el cual
hemos desarrollado técnicas adicionales para explotar la estructura global de los
cores insatisfacibles.

Todo este trabajo ha contribuido a cerrar varias instancias abiertas y a re-
ducir dramáticamente el tiempo de resolución en muchas otras. Además, hemos
encontrado sorprendentemente que reformular y resolver el problema MaxSAT
a través de programación lineal entera era especialmente adecuado para algunas
familias. Finalmente, hemos desarrollado el primer portfolio altamente eficiente
para MaxSAT que ha dominado en todas las categoŕıas de la MSE desde 2013.





Abstract

Constraint optimization has been successfully used to solve problems in many
real world (industrial) domains. This PhD thesis is focused on logic-based ap-
proaches, in particular, on Maximum Satisfiability (MaxSAT) which is the op-
timization version of Satisfiability (SAT). There have been many problems e�-
ciency solved through MaxSAT. Instance families on the majority of them have
been submitted to the international MaxSAT Evaluation (MSE), creating a col-
lection of publicly available benchmark instances.

At recent editions of MSE, SAT-based algorithms were the best performing
single algorithm approaches for industrial problems. These algorithms reformu-
late the MaxSAT optimization problem into a sequence of SAT decision problems
with a given value of the cost to be optimized. The SAT instances with a value
below the optimum are unsatisfiable and the others satisfiable. Depending on
which SAT instances are tested to guide the search, there are two main types
of SAT-based algorithms: core-guided algorithms refine the lower bound with
the help of unsatisfiable subproblems (cores) obtained from unsatisfiable SAT
instances; and model-guided algorithms refine the upper bound with the help of
satisfying assignments (models) obtained from satisfiable SAT instances.

We have focused our initial work on finding an e�cient balance between core-
guided and model-guided approaches. In particular, after improving some initial
core-guided algorithms, we have incorporated to the general schema of a core-
guided algorithm some of the strengths of model-guided algorithms. The main
idea of our approach was optimizing the subproblems related to the unsatisfiable
cores. By doing so, the lower bound converged more quickly to the optimum and
we were also able to get assignments and upper bounds, allowing in this way a
complete algorithm to work naturally as an incomplete approach given limited
time. Our final contribution to the development of SAT-based approaches is the
design of a new algorithm, for which we have developed additional techniques
to exploit the global structure of unsatisfiable cores.

All this work has contributed to close up some open instances and to reduce
dramatically the solving time in many others. In addition, we have surprisingly
found that reformulating and solving the MaxSAT problem through Integer Lin-
ear Programming (ILP) was extremely well suited for some families. Finally, we
have developed the first highly e�cient MaxSAT portfolio that dominated all
categories of MSE since 2013.
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1 Introduction

Constraint optimization is the process of optimizing an objective function of
variables whose values are subject to some constraints. This process has been
successfully used to solve problems in many real world (industrial) domains. The
literature shows us that some problems are more e�ciently solved with mixed
integer programming and others with logic-based approaches. The work done
during this PhD thesis is focused on the second group, in particular, on Maxi-
mum Satisfiability (MaxSAT), the optimization version of Satisfiability (SAT).
The list of problems e�ciency solved through MaxSAT includes: software pack-
age upgrade [1], debugging of hardware designs [2, 3], bioinformatics [4, 5], fault
localization in C code [6], course timetabling [7], planing [8, 9], scheduling [10],
routing [11], electronic markets [12], combinatorial auctions [13] and many oth-
ers [14,15]. In order to assess the state-of-the art in the field of MaxSAT solvers,
it is interesting to have a collection of publicly available MaxSAT instances in-
cluding a wide number of families on the aforementioned problems. With this
aim, the international MaxSAT Evaluation (MSE) [16,17] was created in 2006.

MaxSAT expresses the optimization problem as a formula of Boolean vari-
ables grouped in clauses. The idea is that sometimes not all these clauses can
be satisfied, and we try to satisfy the maximum number of them. The basic
MaxSAT problem can be further generalized to the Weighted Partial MaxSAT
(WPMS) problem. In this case, we can divide the constraints into two groups:
the clauses that must be satisfied (hard), and the ones that may or may not be
satisfied (soft). Since not all constraints are equally important, each soft clause
may have a di↵erent weight indicating the cost of falsifying it. The presence of
soft clauses with di↵erent weights makes a MaxSAT instance Weighted and the
presence of hard clauses makes it Partial. Then, to solve the MaxSAT problem
we have to find an assignment to the variables that satisfies all hard clauses and
minimizes the objective function corresponding to the aggregated cost of falsified
soft clauses.

Solving exactly the MaxSAT problem, i.e. finding and certifying an opti-
mal assignment, can be hard from a computational point of view. There are
however many industrial problems slightly beyond the reach of state-of-the-art
techniques and many times the goal is not finding an optimal assignment but
a good assignment in a reasonable time. For some domains, even a small gain
in the quality of the assignment can lead to important practical consequences.
Although many incomplete algorithms have been developed in this sense, the
experience achieved from the MSE shows us that a reasonable strategy is to
improve complete algorithms to solve exactly the problem and modify them so
that they return assignments when improved. This way, given a limit of time,
they can also work as incomplete algorithms.

There are two main types of MaxSAT complete algorithms: branch and
bound [18–22] and SAT-based [14, 15, 23, 24]. At recent editions of MSE, we
have seen that the best performing solvers on industrial instances are those im-
plementing SAT-based algorithms. These algorithms proceed by reformulating
the MaxSAT optimization problem into a sequence of SAT decision problems.
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Intuitively, each SAT instance of the sequence encodes whether it exists an as-
signment to the MaxSAT instance with a cost less than or equal to a certain
k. The SAT instances with a k less than the optimal cost are unsatisfiable,
while the others are satisfiable. Therefore, when SAT-based algorithms find the
phase transition point, they find the optimum. Depending on which SAT in-
stances of the sequence are tested to guide the search, the two main types of
SAT-based algorithms are: core-guided [25–30] and model-guided [31–34]. Core-
guided algorithms refine the lower bound and guide the search with unsatisfiable
subproblems (cores) obtained from unsatisfiable SAT instances. Model-guided
algorithms refine the upper bound and guide the search with satisfying assign-
ments (models) obtained from satisfiable SAT instances. Both have strengths
and weaknesses and there have been already some hybrid approaches [35,36]. In
particular, the work done during this PhD thesis aims to find an e�cient balance
between both approaches.

Initially, we focused our research on developing techniques that could be
incorporated to the general schema of the core-guided WPM1/WBO algo-
rithm [25,26], which is the weighted version of the Fu and Malik algorithm [23,24]
(see Subsection 2.2). We presented this work in [37] where we basically showed
how to apply stratification and hardening techniques to a core-guided algorithm.
The idea was to improve the quality of the unsatisfiable cores retrieved from the
unsatisfiable SAT instances, i.e., to get cores as small as possible with weights
as similar as possible. Both techniques are still in use in many state-of-the-art
core-guided solvers. In addition, we also developed a specific technique for the
WPM1 algorithm to break the symmetries introduced during its execution.

Then, we continued our research incorporating some of the strengths of
model-guided algorithms to the core-guide WPM2 [27] algorithm (see Subsec-
tion 2.3). In particular, we extended it with the possibility of obtaining assign-
ments (models for the hard clauses) that can be used to refine the upper bound.
In this way, we transformed a complete algorithm so that it can also work as
an incomplete approach given limited time. We achieved this by performing the
optimization of subproblems related to the unsatisfiable cores. In this sense, our
approach integrated the best of core-guided algorithms (i.e. focusing on reduced
parts of the formula) and model-guided algorithms (i.e. returning upper bounds
and assignments for the whole formula). Moreover, by applying the subproblem
optimization technique, the lower bound converged more quickly to the optimal
cost. Furthermore, we developed an extra technique to exploit the assignments
obtained during the optimization of subproblems, using them as a heuristics to
guide the search. We presented this work partially in [38] and extended it in [39],
where we have also provided a detailed analysis on how all these techniques im-
proved the performance of our WPM2 solver.

Both WPM1 and WPM2, like the majority of SAT-based MaxSAT algo-
rithms, use Pseudo-Boolean (PB) constraints to create the SAT instances of the
sequence into which the input MaxSAT instance is reformulated. The PB con-
straints are used to express the arithmetic and comparison needed to only allow
assignments with a cost less than or equal to a certain k. Currently, in most
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state-of-the-art SAT-based MaxSAT solvers, PB constraints are translated into
SAT, since they use internally a SAT solver. However, there is no known SAT
encoding which can guarantee the original propagation power of the constraint,
i.e, what we call arc-consistency, while keeping a linear complexity in terms of
size. The best approach so far, has a quadratic complexity [40]. Instead of trans-
lating the PB constraint into SAT, we can explore other options. In particular,
to treat PB constraints with specialized inference mechanisms and a moderate
cost in size, while preserving the strength of SAT techniques for the rest of the
problem, we can use the Satisfiability Modulo Theories (SMT) technology [41].
We used this technology in [38, 39], showing that it is an alternative for imple-
menting e�ciently MaxSAT algorithms. However, SAT technology is the default
option and SAT encodings for PB constraints are still being improved. In this
sense, we are currently developing a a SAT encoding for PB constraints that al-
lows to adjust the balance between size and arc-consistency. We provide in [42] a
technical report explaining this encoding that is potentially useful to solve many
MaxSAT instances e�ciently.

Our final contribution to SAT-based MaxSAT algorithms is the design of
the WPM3 algorithm, combining e�ciently and e↵ectively some techniques (see
Subsection 2.5). In particular, this algorithm is able to optimize subproblems
e�ciently, while only using a simpler version of PB constraints, called Cardinality
constraints. These constraints have all the coe�cients of the variables equal to 1
and their best SAT encoding has a quasilinear complexity [43]. We have presented
this work in [44], where we have also developed some techniques to exploit the
global structure of unsatisfiable cores. We have used this structure both to build
Cardinallity constraints that boost the performance of the solvers and to select
the subproblems to be optimized. Additionally, we have further developed the
technique to exploit the assignments obtained from the subproblems that was
presented in [39]. In this sense, we have adapted to MaxSAT a very e↵ective
technique used in SAT solvers called phase saving [45]. We have extended [44]
in [46], where we explain how our algorithm is related to other well performing
core-guided algorithms, Eva [47] and OLL [48, 49], and which advantages has
compared with them.

Although all the problem families included in the collection of the MSE are
supposed to be more suitable for logic-based approaches, our study would not
have been exhaustively conducted without showing the performance of integer
programming techniques on them. Actually, we can easily translate a whole
MaxSAT instance into an Integer Linear Programming (ILP) instance and apply
a Mixed Integer Programming (MIP) solver. In [50] and [39], we confirmed that
the ILP approach was overall not competitive on the industrial instances of the
MSE. However, we surprisingly found that it was extremely well suited for many
non-random instance families, among them some few industrial.

All the aforementioned approaches have di↵erent performances depending
on the problem, being none of them dominant across all families of industrial
instances we have experimented with, i.e. the ones of MSE. Hence, it is reasonable
to use meta-algorithmic techniques to devise a portfolio. In this direction, we

13



have adapted and improved some techniques of solver automatic configuration
and selection algorithms, to make the first highly e�cient MaxSAT portfolio
ISAC+ [51] that dominates the MSE (see Subsection 2.6). The basic idea is that
we have to predict which one of a set of solvers is the best option for an input
instance and we have available a set of instances to make this prediction. Our
approach consists basically of a configuration phase and a selection phase. During
the configuration phase, we extend the set of solvers of our portfolio with di↵erent
parametrizations of some solvers. To find this parametrizations, we cluster the
set of instances and we apply an automatic configurator for each cluster. Then,
we run all the solvers/parametrizations for the whole set of instances. During the
selection phase, at runtime, we determine the solver/parametrization to use for
the input instance. To determine this, we have the solving times and the features
of the set of instances and we apply a selector that does not take into account
the clusters of the configuration phase. Our portfolio has not only outperform all
single solvers at each category of MSE since 2013, but has also been competitive
on each subcategory.

Finally, to evaluate independently our research, we have submitted to the
MSE, not only our portfolio, but also all the single solvers developed during
this PhD thesis since 2012. With respect to the industrial instances, which are
our main goal, we have competed in 18 subcategories, including complete and
incomplete track. Our solvers placed 9 times in the first position, 8 times in the
second position and 3 times in the third position, being the team with the best
results in this period. Our work has contributed to close up some open instances
and to reduce dramatically the solving time in many others. Moreover if we take
into account that, some of the techniques we developed are incorporated to many
other state-of-the-art solvers. In the next section we present the contributions
of this PhD thesis with the references to the more relevant papers which are
included at the end of this dissertation. Section 3 reports the results achieved at
MSE and Section 4 concludes.

2 Research

In this section, we summarize the research done during this PhD thesis. The
main goal was to boost the state-of-the-art performance in MaxSAT solving.
To this end, we have: (i) identified new solving techniques to incorporate to
SAT-based MaxSAT algorithms, (ii) designed and implemented a new complete
SAT-based MaxSAT algorithm that can also work as incomplete, (iii) compared
MaxSAT solvers with new approaches making use of ILP technology and (iv)
designed and implemented a portfolio approach. The methodology was to: (a)
study the state-of-the-art, (b) propose new techniques, evaluating theoretically
their soundness, (c) implement them and (d) conduct an intensive experimen-
tation. To evaluate independently our work, we have submitted the resulting
solvers to the international MaxSAT Evaluation (MSE), as we explain in Section
3. We have also reported the results in form of papers, some of them published
in leading conferences and journals (the most relevant ones are A, E, F and G):
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A C. Ansótegui, M. L. Bonet, J. Gabàs, J. Levy, Improving SAT-based
Weighted MaxSAT Solvers, in: Proceedings of the 18th International
Conference on Principles and Practice of Constraint Programming (CP’12),
2012, pp. 86 - 101.

B C. Ansótegui, J. Gabàs, Solving (Weighted) Partial MaxSAT with
ILP, in: Proceedings of the 10th International Conference on Integration
of Artificial Intelligence (AI) and Operations Research (OR) techniques in
Constraint Programming (CPAIOR’13), 2013, pp. 403 - 409.

C C. Ansótegui, M. L. Bonet, J. Gabàs, J. Levy, Improving WPM2 for
(Weighted) Partial MaxSAT, in: Proceedings of the 19th International
Conference on Principles and Practice of Constraint Programming (CP’13),
2013, pp. 117 - 132.

D C. Ansótegui, F. Didier, J. Gabàs, Exploiting the Structure of Unsatis-
fiable Cores in MaxSAT, in: Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI’15), 2015, pp. 283 - 289.

E C. Ansótegui, J. Gabàs, J. Levy, Exploiting subproblem optimization
in SAT-based MaxSAT algorithms, Journal of Heuristics 22(1), 2016,
pp. 1 - 53.

F C. Ansótegui, J. Gabàs, Y. Malitsky, M. Sellmann, MaxSAT by improved
instance-specific algorithm configuration, Artificial Intelligence 235,
2016, pp. 26 - 39.

G C. Ansótegui, J. Gabàs, WPM3: an (in)complete algorithm for
Weighted Partial MaxSAT, submitted to Artificial Intelligence

H C. Ansótegui, J. Gabàs, A new SAT encoding for PB constraints al-
lowing to adjust the balance between size and arc-consistency, In-
ternal Technical Report 05-06-2016.

These papers are also referred in the bibliography of this dissertation as:
A [37], B [50], C [38], D [44], E [39], F [51], G [46] and H [42]. We explain in the
following subsection the work done during the elaboration of the papers. First of
all, Subsection 2.1 gives a concise overview of SAT-based MaxSAT algorithms. In
Subsection 2.2, we explain the work done in [37] where we improved the WPM1
algorithm. Subsection 2.3 corresponds to [39], the extended version of [38], where
we have introduced the optimization of subproblems to the WPM2 algorithm,
improving its performance and allowing it to work as an incomplete approach
given limited time. This subsection also mentions the comparison with a full
translation into ILP, initially published in [50] and incorporated to [39]. In Sub-
section 2.4, we explain how to manage PB constraints in SAT-based MaxSAT
algorithms and we present a technical report [42] describing a new SAT encoding.
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Subsection 2.5 corresponds to [46], the extended version of [44], where we have
designed the new (in)complete algorithm WPM3 that incorporates some new
techniques to exploit the global structure of the unsatisfiable cores. Finally, in
Subsection 2.6 we explain the work done in [51] that corresponds to the portfolio
approach.

2.1 SAT-based MaxSAT Algorithms

The latest editions of MSE show us that the best option to solve e�ciently in-
dustrial MaxSAT instances are SAT-based MaxSAT algorithms. Since we are
mainly interested in real world problems, we have focused our research on these
algorithms. The main idea is that they reformulate the MaxSAT optimization
problem into a sequence of SAT decision problems. Each SAT instance of the
sequence answers the question if it exists an assignment for the MaxSAT opti-
mization problem with a cost less than or equal to a certain k. Thus, the SAT
instances with a k less than the optimal cost are unsatisfiable, while the others
are satisfiable. By finding the phase transition point, SAT-based algorithms find
the optimum.

One of the key points of SAT-based algorithms is how to construct the SAT
instances in the sequence. To construct one of these SAT instances, we need to
detect which soft clauses are falsified under a certain assignment, sum up their
cost and compare with k. To detect if a clause is falsified, we can extend it
with an auxiliary variable, that becomes true if the clause is falsified. To add
the weights of the falsified soft clauses and compare the cost with k, we use PB
constraints, that can be managed by their translation into SAT (we discuss other
options in Subsection 2.4).

A naive SAT-based algorithm would cover all the soft clauses with a unique
PB constraint. Then, it would look for the phase transition point between the
unsatisfiable instance with the maximum k (the optimum minus one) and the
satisfiable instance with minimum k (the optimum). This could be achieved,
for example, by testing di↵erent values of k beginning with 0 and increasing
the lower bound by one until the first satisfiable instance. The same could be
made beginning with the aggregated cost of all soft clauses and decreasing the
upper bound by one until the first unsatisfiable instance. In order to skip some of
these steps, model-guided algorithms, like minisat+ [31] and SAT4J [32], refined
the upper bound with the assignments obtained from satisfiable SAT instances.
Since SAT instances accept all assignments with a cost less than or equal to
a certain k, the cost of an assignment retrieved from a SAT instance can be
much lower than its k. By refining the upper bound with this assignments, the
test of many intermediate values of k can be avoided. Also, the assignments and
corresponding upper bound allow model-guided algorithms to work naturally as
incomplete approaches given limited time.

One inflection point in the development of SAT-based algorithms was the
emergence of the Fu and Malik algorithm [23, 24]. By focusing on unsatisfiable
cores from unsatisfiable SAT instances while refining the lower bound, it was able
to use smaller PB constraints. Many similar algorithms have been proposed since
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then, being called core-guided. For example, the WPM1/WBO algorithm [25,26]
is the weighted version of the Fu and Malik algorithm. The WPM1 algorithm
only uses 1-Cardinality constraints (Cardinality constraints that compare with
a k equal to 1), but it may require multiple auxiliary variables per soft clause.
Our initial work [37] improved WPM1 algorithm both with specific techniques
and more general ones that can be used in other algorithms (see Subsection 2.2).
More recent core-guided algorithms using general PB constraints only require at
most one auxiliary variable per soft clause. The first algorithm to do so appears
in [52]. The first algorithm to use a set of PB constraints, each one covering
a disjoint unsatisfiable core (cover), was the PM2 algorithm [25]. The WPM2
algorithm [27], the weighted version of PM2, introduced for the first time an
optimization module to refine the lower bound taking profit of the at-least con-
straints obtained from unsatisfiable cores.

Another interesting core-guided alternative is the MaxHS algorithm that ap-
peared in [53]. It also splits the search into a satisfiability and an optimization
module like the WPM2 algorithm. In the case of MaxHS, the optimization mod-
ule returns an interpretation of minimal cost for the at-least constraints obtained
from unsatisfiable cores. Then, the satisfiability module tests whether this in-
terpretation satisfies the whole formula. Notice that, several iterations of the
optimization and satisfiability modules may be needed to refine a lower bound.
Roughly speaking, in [53] part of the work of the optimization module in [27]
is transferred to the satisfiability module. The optimization module can use any
desired approach to solve the problem. A SAT-based approach was used in [27]
and a MIP solver in [53]. In our work [50], we pointed out that translating the
MaxSAT problem into ILP and applying a MIP solver, was extremely well suited
for some instance families. In [54], MaxHS transferred some hard clauses of the
satisfiability module to the optimization module (MIP solver).

All the aforementioned core-guided algorithms refine the lower bound. There
have been however several hybrid approaches of core-guided algorithms that also
refine the upper bound, like model-guided algorithms. For example, the BINCD
algorithm [35,36] that used a disjoint set of PB constraints like WPM2, but also
tested satisfiable SAT instances allowing assignments with a cost greater that the
optimum. The phase transition point was searched with a binary search scheme.
We have also modified the core-guided WPM2 algorithm [38, 39], incorporating
the hard clauses to the optimization module and using a model-guided SAT-
based algorithm to solve these subproblems. By optimizing these subproblems,
we obtain assignments that can be used to refine the upper bound and allow the
algorithm to work as an incomplete approach (Subsection 2.3).

Core-guided algorithms have dominated on industrial subcategories at the
latest editions of MSE. It seems that this good performance is due to the fact
that they focus on restricted parts of the problem and they do not need to cover
all the soft clauses with PB constraints. Let us see this in Table 1, appeared
in [39] extending the work done in [55]. In the table, we show a fair comparison of
three solvers implemented using the same technology, wpm2 (core-guided), sat4j
(model-guided) and certify-opt. This last solver only has to certify the optimum
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wpm2 certify-opt sat4j
Subcategory # #H #S #⇤ %b #AM #⇤ %b #AM #⇤ %b #AM
MS 55 0.0 1.8·106 20 0.8 41.2 0 100 1 0 100 1
PMS 627 3.3·105 1.3·104 528 63.6 87.8 267 100 1 247 100 1
WPMS 396 4.9·105 8.6·103 333 33.9 426 59 100 1 55 100 1
Total industrial 1078 3.7·105 9.4·104 881 49.6 212 326 100 1 302 100 1

Table 1. wpm2, certify-opt and sat4j on the industrial set of MSE 2013.

given by an oracle, i.e. it just tests the two SAT instances that define the phase
transition point between satisfiable and unsatisfiable. To create the instances,
sat4j and certif -opt use a unique PB constraint covering all soft clauses. The
comparison was performed on the industrial set of MSE 2013. Rows correspond
to the three subcategories (MS, PMS and WPMS) and the total. With respect to
columns, # stands for the total number of instances, #H and #S stand for the
mean number of hard and soft clauses, respectively. For each solver, #⇤ stands
for the number of solved instances, within a timeout of 7200 seconds, %b shows
the percentage of covered soft clauses and #AM stands for the number of PB
constraints. We can see that the performance of sat4j and certify-opt is very
similar. However, wpm2 performs much better than certify-opt (a di↵erence of
555 solved instances). We can see that, in e↵ect, wpm2 only covers a part of the
soft clauses and with a disjoint set of PB constraints. In particular, it only covers
an average of 49.6% of the soft clauses with an average of 212 PB constraints.
This experimtne shows us that it is worth doing all the work to extract the cores,
since wpm2 outperforms the solvers that use a unique PB constraint for all soft
clauses, even if they only have to certify the known optimumm (certify-opt).

Finally, some new algorithms have recently appeared that only require at
most one auxiliary variable per soft clause while using Cardinality constraints.
To our best knowledge, the first one is the OLL algorithm [48,49]. Although with
apparently di↵erent foundations, the Eva algorithm has been presented in [47]. It
works by applying the MaxSAT resolution rule to create the SAT instances in the
sequence into which it reformulates the input MaxSAT instance. In [46], we show
that the Eva algorithm is also implicitly working with Cardinality constraints
and both OLL and Eva algorithms are in fact very similar. Also in [46], we have
made a step forward and designed the WPM3 algorithm. It also works with at
most one auxiliary variable per soft clause and Cardinality constraints and, in
addition, it is able to perform the optimization of subproblems e�ciently like
WPM2 [38,39] (see Subsection 2.5).

2.2 Improving Initial Core-guided Algorithms: Stratification

Our first contributions were improvements to initial core-guided algorithms.
They were published in [37], that is included as attached paper A at the end of
this dissertation. In this work, we studied the the Fu and Malik algorithm [23,24]
and its weighted version, the WPM1/WBO algorithm [25,26]. We identified some
weaknesses and we tried to correct them incorporating some new techniques to
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the algorithms. These techniques consisted basically in breaking symmetries of
the auxiliary variables and using stratification and hardening techniques to im-
prove the quality of the unsatisfiable cores retrieved from unsatisfiable SAT
instances. The symmetry breaking technique is specific for these algorithms, but
the stratification and hardening techniques are more general and can be used in
other more recent core-guided algorithms. In fact, they are still in use in many
state-of-the-art core-guided solvers.

With respect to the symmetry breaking, the symmetries are generated dur-
ing the execution of the Fu and Malik and WPM1 algorithms due to the fact
that both require multiple auxiliary variables per soft clause. Therefore, there
can be di↵erent assignments on auxiliary variables that falsify the same soft
clauses. These symmetries caused extra steps during the process of testing the
SAT instances. The technique we applied to mitigate this problem consisted in
introducing some new clauses on the auxiliary variables that did not allow some
of the assignments falsifying the same soft clauses.

With respect to the stratification, it consists in solving initially a subformula
containing the hard clauses and only some soft clauses. Once solved, it is ex-
tended with more soft clauses and the process is repeated until all soft clauses
are incorporated. The criteria to apply the stratification was the weight of the
soft clauses, i.e. we incorporated them following an order of decreasing weight.
By doing so, we forced that the unsatisfiable cores, retrieved from unsatisfiable
SAT instances, contained soft clauses with similar weights, which prevented a
problem that we had detected in the WPM1 algorithm. The strategy that WPM1
used to handle the weighted soft clauses consisted in replacing each one with two
copies whose aggregated weight was equal to the weight of the original. In this
way, it was able to have groups of soft clauses with the same weight and treat
them like the Fu and Malik algorithm. By having cores with similar weights for
the soft clauses, we prevented the generation of instances with a huge number
of copies of the same soft clauses. Later, the stratification technique has been
successfully applied to many other core-guided algorithms. Applying the strati-
fication to all weights is however not good for all instances. On instances with
a high diversity of weights, it can result in as many SAT tests as soft clauses,
increasing dramatically the solving time in some cases. This is why, we applied a
heuristics that incorporated to the subformula several soft clauses with di↵erent
weights at the same time, if their diversity of weights was high.

With respect to the hardening, it is intimately related to the stratification.
The idea is that, we can consider some clauses as hard if we know that their
falsification leads to assignments with a cost greater than a known upper bound.
Although WPM1 is a core-guided algorithm and refines only the lower bound, we
can obtain also upper bounds thanks to the stratification. The optimum obtained
for a solved subformula can be added to the cost of all non-incorporated clauses to
obtain an upper bound for the whole formula. By considering as hard those soft
clauses with a weight greater than the aggregated cost of all non-incorporated
clauses, we obtained cores with less soft clauses.
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2.3 Exploiting Subproblem Optimization

In our initial work [37] explained in the previous subsection, we solved restricted
parts of the problem thanks to the stratification technique. Each subproblem
included the hard clauses and some soft clauses, being its optimal cost a lower
bound for the cost of its soft clauses in the whole problem. We noticed that it was
desirable to focus on solving those parts of the problem with high optimal costs,
so our next contribution was to further exploit the optimization of subproblems.
In particular, we improved the core-guided algorithm WPM2 [27] by applying the
optimization of the subproblems related to unsatisfiable cores. Roughly speaking,
we incorporated the hard clauses to the set of at-least constraints that was used
in [27] to compute the new lower bound for a set of soft clauses. By doing so, we
made the global lower bound converge more quickly to the optimal cost. This
work was partially published in [38] and has been extended in [39], both included
at the end of this dissertation as attached papers C and E, respectively.

The optimization of subproblems can be performed through any optimization
approach. This allows us to combine the strength of exploiting the information
extracted from unsatisfiable cores and other approaches. In particular, we exper-
imented with an ILP approach and three SAT-based approaches. With respect
to the ILP approach, we applied the one described in [50], where we had used
it to solve the whole problem. Although in [50] the full translation into ILP was
overall not competitive on the industrial set of the MSE, we surprisingly found
that it was extremely well suited for many non-random families, among them
some few industrial. With respect to the three SAT-based approaches, we: (i)
refined the lower bound with the subsetsum function [27, 56], (ii) refined the
upper bound with a model-guided algorithm [32–34], and (iii) used a binary
search scheme [35, 57] where the lower bound and upper bound are refined as
in the previous approaches. The results confirmed that optimizing the subprob-
lems with the ILP approach was not competitive compared with the SAT-based
approaches. The SAT-based approach with the best performance in our experi-
mental analysis was (ii), corresponding to a model-guided algorithm. By applying
the subproblem optimization technique, the performance of the WPM2 solver
experimented an important boost.

The WPM2 algorithm is a complete core-guide algorithm that initially re-
fined only the lower bound. By applying the subproblem optimization technique,
we have extended it with the possibility of obtaining assignments for the sub-
problems that can be used to refine the global upper bound. In this way, it is now
able to work as an incomplete approach given limited time, like model-guided
algorithms. The incomplete solvers using this technique that we have submitted
to the MSE in 2014 and 2015 have dominated the incomplete track for indus-
trial instances. In order to further exploit the optimization of subproblem, we
have studied how to use the assignments as a heuristic to guide and boost the
search. We have also incorporated to the WPM2 algorithm other improvements
like the stratification technique as described in [37] and a hardening technique
establishing a new criteria di↵erent from those in [36,37].
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From the perspective of coming up with an e�cient implementation, SAT-
based algorithms need to be implemented on top of an e�cient solver based on
SAT technology. In this work, we used the Satisfiability Modulo Theories (SMT)
technology [41], showing that it is an alternative for implementing e�ciently
SAT-based algorithms. (see Subsection 2.4). One of the important features that
SAT/SMT solvers should have to result into an e�cient MaxSAT solver is that
they should allow to assert and retract PB constraints and soft clauses incremen-
tally. In this way, we can preserve some learned lemmas from previous iterations
that may help to reduce the search space. We have seen that this incrementality
is crucial for the e�ciency of the improved WPM2 solver, since it allows us to
optimize the subproblems with the same SAT/SMT solver that is used to extract
the cores.

Finally, our aim is not only to present a method that performed well, but also
to understand why this was the case. This understanding will allow us to identify
the interaction with other future improvements in the field and whether they are
complementary or not to this work. In [39] we have extended the study originally
presented in [58] on the structure of the unsatisfiable cores obtained during the
search process of core-guided algorithms (see Table 1). Also, we have showed
that our improved WPM2 can obtain high quality assignments in a reasonably
short time.

2.4 The Management of PB Constraints in SAT-based Algorithms

SAT-based MaxSAT algorithms use Pseudo-Boolean (PB) constraints to cre-
ate the SAT instances of the sequence into which the input MaxSAT instance
is reformulated. These PB constraints are used to express the arithmetic and
comparison needed to only allow satisfying assignments with a cost less than or
equal to a certain k. The size, the management and the complexity of these PB
constraints are crucial for SAT-based algorithms. With respect to the size, the
naive approach uses a unique PB constraint that involves all soft clauses. For-
tunately, core-guided algorithms use a set of smaller PB constraints that do not
necessarily cover all soft clauses. With respect to the management, the default
option is to translate PB constraints into SAT and use internally a SAT solver.
However, there are other options, like modeling PB constraints with the Linear
Integer Arithmetic theory and using internally an SMT solver [39]. With respect
to the complexity, in case PB constraints are managed through their translation
into SAT, the best encoding that preserve arc-consistency has a quadratic size
with respect to the size of the constraint [40]. Depending on the particular SAT-
based algorithm, we may only need to use a simpler form of PB constraints with
all the coe�cients of the variables equal to 1, i.e. Cardinality constraints. For
Cardinality constraints, the size of the best SAT encoding is quasilinear with
respect to the size of the constraint [43].

There are many algorithms that only work with Cardinality constraints. For
weighted instances in particular, the WPM1 algorithm only needs 1-Cardinality
constraints but it requires multiple auxiliary variables per soft clause, what in-
troduces additional complexity. There have been recently other approaches that
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only require at most one auxiliary variable per soft clause while using Cardinality
constraints. For example, the OLL [48,49], the Eva [47] and later our WPM3 [46]
algorithms (see Subsection 2.5). All this algorithms manage the PB constraints
by its translation into SAT and use an underlying SAT solver.

There are however also many algorithms that work with general PB con-
straints. These algorithms can find a bottleneck in the quadratic size of the SAT
encodings with respect to size of the constraint. For them, the SMT technology
is a reasonable alternative. This technology allows to treat PB constraints with
specialized inference mechanisms and a moderate cost in size, while preserving
the strength of SAT techniques for the rest of the problem. We used this tech-
nology in [38, 39], showing that it is an alternative for implementing e�ciently
MaxSAT algorithms. However, SAT technology is the default option and SAT
encodings for PB constraints are still being improved. In this sense, we are cur-
rently developing a a SAT encoding for PB constraints that allows to adjust the
balance between size and arc-consistency. We provide in [42] a technical report
(attached paper H) explaining this encoding that is potentially useful to solve
many MaxSAT instances e�ciently.

2.5 Exploiting the Global Structure of the Unsatisfiable Cores

Our final contribution to the development of SAT-based MaxSAT algorithms is
the design of the WPM3 algorithm, that allows to exploit the global structure of
the unsatisfiable cores of a MaxSAT instance. This work has been partially pub-
lished in [44] and extended in [46], both included at the end of this dissertation
as attached papers D and G, respectively. In [46], we begin with a study about
the complete core-guided algorithms Eva and OLL, that inspired the best per-
forming solvers on industrial instances at MSE 2014. We bring some light about
how they proceed, showing that both are working with Cardinality constraints
and in the end they are very similar. Then, we present the complete core-guided
algorithm WPM3 that also uses Cardinality constraints and, in addition, is able
to perform the optimization of subproblems e�ciently and work as an incom-
plete approach given limited time. Our algorithm is designed to be aware of the
global structure of the unsatisfiable cores. We have exploited this structure both
to build Cardinality constraints that boost the performance of the solvers and
to select the subproblems to be optimized.

As we have mentioned in Subsection 2.4, the quadratic size of SAT encod-
ings for general PB constraints can be a bottleneck for SAT-based algorithms.
There have been so far several core-guided approaches using only Cardinality
constraints. The WPM1 algorithm only needed 1-Cardinality constraints, but
clauses required multiple auxiliary variables, introducing additional complexity.
To our best knowledge, the OLL algorithm, presented in [48] originally for ASP
(Answer Set Programming), was the first one that only required at most one
auxiliary variable per soft clause while using Cardinality constraints. Later, this
algorithm was applied to MaxSAT and shown to be competitive in [49]. Previous
to this work, the Eva algorithm was presented and also shown to be competitive
in [47]. It applies the MaxSAT resolution rule to create the SAT instances in the

22



sequence into which it reformulates the input MaxSAT instance. Although both
algorithms are core-guided, they had apparently di↵erent foundations. In [46],
we demonstrate that the transformation made by Eva at each iteration using
the MaxSAT resolution rule corresponds to the introduction of a Cardinality
constraint. In particular, it introduces the regular encoding for 1-Cardinality
constraints described in [59]. In this work, we have also studied the connections
between Eva and OLL and found that both are in fact building Cardinality
constraints incrementally in a similar way.

The WPM3 algorithm only needs Cardinality constraints like Eva and OLL
and has the advantage that it is designed to be aware of the global structure of
the unsatisfiable cores of the MaxSAT instance. We use this structure to build
e�cient Cardinality constraints and to select the subproblems to be optimized.
With respect to the Cardinality constraints, we show in [46] that constructing
them according to the core structure boost the performance of the solvers, which
is mostly due to this structure and not only to constructing them incrementally.
With respect to the optimization of subproblems, we show in [46] that being
aware of the global structure of the cores allows us to select subproblems that
are worth optimizing, since this will lead to a higher lower bound. Finally, we also
show how to exploit the assignments obtained from subproblems to extend to
MaxSAT a very e↵ective technique used in SAT solvers called phase saving [45].

2.6 A Portfolio Approach

All the work explained in the previous subsections has boosted the state-of-
the-art performance on many industrial instances. Nevertheless, none of the
aforementioned approaches dominated across all the instance set of the MSE.
This is why, we have used meta-algorithmic techniques to combine all of them
into a portfolio. This work has been published in [51] that is included at the
end of this dissertation as attached paper F. We have basically employed the
instance-specific algorithm configurator ISAC, and improved it with the latest in
portfolio technology, resulting in ISAC+. We have applied the new methodology
to solve the instance set of the MSE that is divided in categories (MS, PMS
and WPMS), subdivided in subcategories (random, crafted and industrial) and
finally grouped by families depending on the problem domain. Our portfolio
consistently outperformed the best existing solvers on the respective categories
and was competitive across all subcategories, being also the best performing
approach for many families.

In the practice of combinatorial search algorithms, there is oftentimes no sin-
gle solver that performs best on every single instance family. Rather, di↵erent
algorithms and even di↵erent parametrizations of the same solver excel on di↵er-
ent instance families. This is the underlying reason why portfolios have been so
successful in SAT [60,61], CP [62], and QBF [63]. Namely, all these approaches
select and schedule solvers instance-specifically. In the literature, we find two
meta-algorithmic approaches for making solvers instance-specific using a set of
training instances. The first ones are algorithm portfolio builders for given sets
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of solvers and the second ones instance-specific configurators for parametrized
solvers. Our work e�ciently combines both approaches.

In our approach, we first compute features for each training instance and
normalize them. We cluster the training instances as represented by their nor-
malized features. For each cluster, we use an automatic configurator to find a
good parametrization. At runtime, we compute the features of the input in-
stance to be solved and normalize them. Up to this point, the original ISAC
and the new ISAC+ work exactly the same. Now, ISAC computes the cluster
nearest to the input instance, as measured by the distance between the normal-
ized feature vectors. But, once the parametrizations for each cluster have been
computed, there is no reason why we would need to stick to these clusters for
selecting the best parametrization for the input instance. In this sense, ISAC+
uses a selector that does not take into account these clusters to determine which
solver/parametrization should be used for the input instance.

From the research perspective, MaxSAT is of particular interest as it requires
the ability to reason about both optimality and feasibility. Depending on the
particular problem being solved, it is more important to emphasize one or the
other of these inherent aspects. In [51], we give a detailed insight on the inner
workings of our portfolio approach. In particular, we have analyzed ISAC+2014
that was submitted to the MSE 2014, showing which solver/parametrization was
selected for how many instances within each industrial family. For this portfolio,
we had parametrized the SMT-based solver WPM2-2013 which had solved at
MSE 2013 the most industrial instances and had the highest mean family ratio
of solved instances on industrial families. Overall, parametrizations of WPM2-
2013 were selected for almost one out of four solved instances.

3 Impact: Results at the MaxSAT Evaluation

The work done during this PhD thesis resulted in several solvers that have been
regularly submitted to the yearly edition of the international MaxSAT Evalu-
ation (MSE). The MSE is organized as an a�liated event of the International
Conference on Theory and Applications of Satisfiability Testing (SAT). The goal
of the MSE is assessing the state-of-the-art in the field of MaxSAT solvers, as well
as creating a collection of publicly available MaxSAT benchmark instances [64].
The first edition of MSE was in 2006, initially only for complete solvers. Since
2011, the MSE allows also the submission of incomplete solvers in a special
track. We have submitted our solvers to the MSE since 2012. That year, a total
of 18 solvers were submitted. Since then, the concurrence has increased and 38
solvers were submitted at MSE 2015. These solvers have been implemented by
more than ten teams composed by members of international leading universities.
The research resulting from the process of making the solvers has been regularly
published in international leading conferences and journals.

The instance families of the MSE are grouped by the variant of the Weighted
Partial MaxSAT problem (MS, PMS, WMS and WPMS). Categories were sub-
divided by the nature of the problem (random, crafted and industrial). There
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MS PMS WPMS
1. wbo1.6-cnf 1. QMaxSat-g2 1. pwbo2.1

2012 2. WPM1 2. pwbo2.0 2. WPM1

3. PM2 3. QMaxSat 3. wbo1.6
1. pmifumax 1. ISAC+-pms 1. WPM1-2013

2013 2. WPM1-2011 2. QMaxSAT2-mt 2. ISAC+-wpms

3. ISAC+-ms 3. MSUnCore 3. WPM2-2013

1. Open-WBO-In 1. ISAC+2014-pms 1. Eva500a
2014 2. clasp 2. Open-WBO-In 2. ISAC+2014-wpms

3. Eva500a 3. Eva500a 3. MSCG
1. ISAC+-2015-ms 1. ISAC+-2015-pms 1. LMHS-I

2015 2. mscg2015a 2. WPM3-2015-co 2. MaxHS
3. mscg2015b 3. Open-WBO-R 3. mscg2015b

Table 2. MSE 2012-2015 three best complete solvers on industrial subcategories.

MS PMS WPMS
1. optimax2-r-i 1. WPM-2014-in 1. WPM-2014-in

2014 2. WPM-2014-in 2. optimax2-rn-i 2. optimax2-g-i
3. optimax2-rn-i 3. optimax2-r-i 3. optimax2w-r-i
1. optiriss-def-i 1. WPM3-2015-in 1. WPM3-2015-in

2015 2. WPM3-2015-in 2. optiriss-def-i 2. optiriss-def-i
3. optiriss-sel-i 3. optiriss-sel-i 3. ILP-2015-in

Table 3. MSE 2014-2015 three best incomplete solvers on industrial subcategories.

are no WMS industrial instances, resulting only three industrial subcategories.
In Tables 2 and 3 we can find the results of our solvers on industrial instances,
which are our main goal. At the complete track, we have submitted since 2012
several complete solvers (in bold) that placed in the three first positions 13 times
in the 12 subcategories where they competed. In detail, they placed 5 times in
the first position, 6 times in the second position and 2 times in the third posi-
tion. At the incomplete track, we have submitted since 2014 several incomplete
solvers (in bold) that placed in the three first positions 7 times in the 6 subcat-
egories where they competed. In detail, they placed 4 times in the first position,
2 times in the second position and 1 time in the third position. Any other team
has reached these results in this period.

The work done during this PhD thesis has contributed to boost the state-of-
the-art in the field of MaxSAT solvers. Not only our solvers have been among
the best performing ones at the latest editions of the MSE, but also some of
the techniques we developed are incorporated to many other state-of-the-art
solvers. The work done has contributed to close up some open instances and to
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reduce dramatically the solving time in many others. This has a special impact
in the case of industrial families, that come from real world applications. Among
the industrial families where the performance has improved these last years, we
can find for example the upgradeability problem [1] or the haplotyping-pedigree
problem [5].

With respect to the upgradeability problem, it consists in finding a new
configuration of packages that minimizes the impact of installing software in a
system. The variables of the objective function represent the state (installed/non-
installed) of the packages, which are subject to package incompatibilities and
dependencies. The goal is to maximize the installation of required packages while
minimizing the packages that are uninstalled and the ones that are installed
according to dependencies. The instances were submitted to the MSE for the
first time in 2010. The best solver at MSE 2010 solved the whole set of 100
instances in a mean time of 158,56 seconds. At MSE 2015 the mean time of the
best solver has been 0.57 seconds, which supposes an improvement of two orders
of magnitude in five years.

With respect to the haplotyping-pedigree problem, it arises from the fact
that current technology is not able to obtain the haplotype of a chromosome,
but of the conflated data of the two chromosomes of a pair. The problem consists
in estimating the real haplotypes of a pedigree, i.e. a family tree. The solution
should first minimize the number of recombination events (very rare in haplo-
types) and then minimize the number of distinct haplotypes. The instances were
first submitted to MSE in 2011. The best solver at MSE 2011 was only able to
solve 81 out of 100 instances within the timeout of 1800 seconds. At MSE 2015
the best solver has solved the 100 instances in a mean time of 8.28 seconds.

4 Conclusions and Future Work

The work done during this PhD thesis has contributed to boost the state-of-
the-art in MaxSAT solving. We have developed new techniques and algorithms
that have allowed us to close up some open instances and to reduce dramat-
ically the solving time in many others. In addition, we have also developed a
new meta-algorithmic approach that is competitive on almost all the problem
instance families at the international MaxSAT Evaluation (MSE) and dominates
all categories since 2013.

Initially, we focused our research on improving SAT-based MaxSAT algo-
rithms that, according to the latest editions of MSE, are the best option to solve
industrial MaxSAT instances from real world problems. In our work [38] (see
Subsection 2.2), we have developed techniques that could be incorporated to
the general schema of some core-guided algorithms. These techniques consisted
basically in improving the quality of the unsatisfiable cores retrieved from the
unsatisfiable SAT instances, by using stratification and hardening. By doing so,
we reduced the size of the cores and make their weights as similar as possible.
Both techniques are still in use in many state-of-the-art core-guided solvers. In
addition, we also developed a specific technique for the Fu and Malik algorithm
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and its weighted version WPM1 to break the symmetries introduced during its
execution.

After our work improving some initial core guided-algorithms, we incorpo-
rated to the most recent core-guided algorithm WPM2 some of the strengths of
model-guided algorithms. In our work [39] (see Subsection 2.3), we chose to im-
prove the WPM2 algorithm because, in contrast to WPM1, it has no symmetries
on auxiliary variables since it only needs one per soft clause. We introduced to it
some features of model-guided algorithms by optimizing the subproblems related
to the unsatisfiable cores. By doing so, not only the lower bound converged more
quickly to the optimal cost, but also we got assignments that can be used to re-
fine the upper bound. In this way, we transformed a complete algorithm so that
it can also work as an e�cient incomplete approach given limited time. This is
of special interest in many industrial domains focused on obtaining better upper
bounds and assignments in a reasonable time. We have further exploited the
subproblem optimization, developing extra techniques to guide the search using
the assignments. We also applied the stratification technique developed in our
previous work, and established a new criteria, applicable to WPM2 and other
similar algorithms, to decide when soft clauses can be hardened. Also in [39], we
have shown that the SMT technology is an underlying e�cient technology for
solving the MaxSAT problem. Moreover, we have compared our solvers with a
full translation into ILP and surprisingly found that, although overall not com-
petitive on industrial instances, it was extremely well suited for some families.

Our final contribution to the development of SAT-based algorithms has been
the design of a new algorithm. In our third work [46] (see Subsection 2.5), we
describe the complete core-guided algorithm WPM3, that can also work as in-
complete given limited time. The design of the algorithm has allowed us to
combine several techniques to use only Cardinality constraints and perform the
optimization of subproblems e�ciently. We have shown how these Cardinality
constraints can be e�ciently constructed by exploiting the global structure of
unsatisfiable cores of the MaxSAT instances. We have also used this structure to
select the subproblems to be optimized. Also for this algorithm, the optimization
of subproblems makes the lower bound converge more quickly to the optimum
and provides assignments that can be used to refine the upper bounds. We have
further exploited the assignments to extend e↵ectively the notion of phase saving
to MaxSAT.

Besides developing new techniques and algorithms that have boosted the
state-of-the-art performance on many instances, we have also developed a new
meta-algorithmic approach, competitive across almost all the families of the
MSE. In our work [51], (see Subsection 2.6) we have introduced an improved
instance-specific algorithm configurator ISAC+ by adding a portfolio stage to the
existing ISAC approach. Extensive tests show that the new method consistently
outperforms the best instance-specific configurators to date. We have applied
this method to MaxSAT, a domain where portfolios had never been used in a
competitive setting before we conducted this work. Based on all this work, we
have submitted our portfolio ISAC+ to the MSE, where it has dominated in all
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categories since 2013. These results independently confirm that our work mark
a significant step forward in solving MaxSAT instances e�ciently.

Finally, we have seen that one of the key points to implement SAT-based
MaxSAT algorithms is how to manage the PB constraints. Although the SMT
technology is a good alternative, it does not preserve arc-consistency. The de-
fault option is still to use a SAT solver and translate the PB constraints into
SAT. The problem is that the best SAT encoding that preserve arc-consistency
has a quadratic complexity in terms of size [40], which can be a bottleneck for
some algorithms. One of the options we have studied is the design of SAT-based
algorithms that only use Cardinality constraints, a simpler type of PB constraint
with a quasilinear complexity in terms of size [43]. We have seen that this kind
of approaches are the most suitable for a wide range of problems. However, for
some special cases, the number of Cardinality constraints that they introduce
might result in a larger encoding than introducing directly a PB constraint.
We think that, in order to have more e�cient SAT-based MaxSAT solvers, the
most promising avenue is to improve SAT encodings for PB constraints, which
is at the same time a great challenge. In this sense, we are currently developing
a SAT encoding for PB constraints that allows to adjust the balance between
size and arc-consistency. We provide in [42] a technical report explaining this
encoding that is potentially useful to solve many MaxSAT instances e�ciently.
As future work, it would be interesting to further improve SAT encodings for
PB constraints and study how can they be constructed taking into account the
global structure of unsatisfiable cores of the MaxSAT instances.
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59. C. Ansótegui, F. Manyà, Mapping problems with finite-domain variables to prob-

lems with boolean variables, in: Proc. of SAT’04, 2004, pp. 1–15.
60. L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown, Satzilla: portfolio-based algorithm

selection for sat, JAIR 32 (1) (2008) 565–606.
61. S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann, Algorithm

selection and scheduling, CP (2011) 454–469.
62. E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, B. O’Sullivan, Using case-based

reasoning in an algorithm portfolio for constraint solving, AICS.
63. L. Pulina, A. Tacchella, A multi-engine solver for quantified boolean formulas, CP

(2007) 574–589.
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Abstract. In the last few years, there has been a significant e↵ort
in designing and developing e�cient Weighted MaxSAT solvers. We
study in detail the WPM1 algorithm identifying some weaknesses
and proposing solutions to mitigate them. Basically, WPM1 is based
on iteratively calling a SAT solver and adding blocking variables
and cardinality constraints to relax the unsatisfiable cores returned
by the SAT solver. We firstly identify and study how to break
the symmetries introduced by the blocking variables and cardinality
constraints. Secondly, we study how to prioritize the discovery of
higher quality cores. We present an extensive experimental investigation
comparing the new algorithm with state-of-the-art solvers showing that
our approach makes WPM1 much more competitive.

1 Introduction

Many combinatorial optimization problems can be modelled as Weighted Partial
MaxSAT formulas. Therefore, Weighted Partial MaxSAT solvers can be used
in several domains as: combinatorial auctions, scheduling and timetabling
problems, FPGA routing, software package installation, etc.

The Maximum Satisfiability (MaxSAT) problem is the optimization version
of the satisfiability (SAT) problem. The goal is to maximize the number of
satisfied clauses in a SAT formula, in other words, to minimize the number of
falsified clauses. The clauses can be divided into hard and soft clauses, depending
on whether they must be satisfied (hard) or they may or may not be satisfied
(soft). If our formula only contains soft clauses it is a MaxSAT formula, and
if it contains both, hard and soft clauses, it is a Partial MaxSAT formula. The
Partial MaxSAT problem can be further generalized to the Weighted Partial
MaxSAT problem. The idea is that not all soft clauses are equally important.
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The addition of weights to soft clauses makes the formula Weighted, and lets
us introduce preferences between them. The weights indicate the penalty for
falsifying a clause. Given a Weighted Partial MaxSAT problem, our goal is to
find an assignment that satisfies all the hard clauses, and the sum of the weights
of the falsified clauses is minimal. Such an assignment will be optimal in this
context.

SAT technology has evolved to a mature state in the last decade. SAT solvers
are really successful at solving industrial decision problems. The next challenge is
to use this technology to solve more e�ciently industrial optimization problems.
Although there has been important work in this direction, we have not reached
the success of SAT solvers yet. The present work is one more step in MaxSAT
technology to achieve full industrial applicability.

Originally, MaxSAT solvers such as WMaxSatz [12], MiniMaxSat [10],
IncWMaxSatz [13] and akmaxsat where depth-first branch and bound based.
Recently, there has been a development of SAT based approaches which
essentially iteratively call a SAT solver: SAT4J [5], WBO and MSUNCORE [14],
WPM1 [1], WPM2 [2], BINC and BINCD [11] and maxHS [8]. While branch
and bound based solvers are competitive for random and crafted instances, SAT
based solvers are better for industrial instances.

The WPM1, WBO and MSUNCORE solvers implement weighted versions
of the Fu and Malik’s algorithm [9]. Essentially, they perform a sequence of
calls to a SAT solver, and if the SAT solver returns an unsatisfiable core, they
reformulate the problem by introducing new auxiliary variables and cardinality
constraints which relax the clauses in the core. Further details are given in
section 3 and 5. In this work, we analyze in more detail the WPM1 algorithm
to identify and mitigate some weaknesses. The first weakness we have observed
is that the addition of the auxiliary variables naturally introduce symmetries
which should be broken to achieve better performance. The second weakness
has to do with the quality of the cores returned by the SAT solver. Since the
SAT solver is used as a black box, we need to come up with new strategies to
lead the solver to find better quality cores.

We have conducted an extensive experimental investigation with the best
solvers at the last MaxSAT evaluation and other solvers that did not take part
in the evaluation, but have been reported to show very good performance. We
can see that our current approach can boost radically the performance of the
WPM1 becoming the most robust approach.

This paper proceeds as follows: Section 2 introduces some preliminary
concepts; Section 3 presents the Fu and Malik’s algorithm; Section 4 describes
the problem of symmetries and shows how to break them; Section 5 presents
the WPM1 algorithm and describes the problem of the quality of the cores;
Section 6 introduces an stratified approach to come up with higher quality cores;
Section 7 presents some previous concepts needed to describe a general stratified
approach discussed in Section 8 and finally Section 9 presents the experimental
evaluation.
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2 Preliminaries

We consider an infinite countable set of boolean variables X . A literal l is either
a variable xi 2 X or its negation xi. A clause C is a finite set of literals, denoted
as C = l1 _ · · · _ lr, or as for the empty clause. A SAT formula ' is a finite
set of clauses, denoted as ' = C1 ^ · · · ^ Cm.

A weighted clause is a pair (C, w), where C is a clause and w is a natural
number or infinity, indicating the penalty for falsifying C. A clause is called
hard if the corresponding weight is infinity, otherwise the clause is called soft.

A (Weighted Partial) MaxSAT formula is a multiset of weighted clauses

' = {(C1, w1), . . . , (Cm, wm), (Cm+1,1), . . . , (Cm+m0 ,1)}

where the first m clauses are soft and the last m0 clauses are hard. The set of
variables occurring in a formula ' is noted as var(').

A total truth assignment for a formula ' is a function I : var(') ! {0, 1},
that can be extended to literals, clauses, SAT formulas and MaxSAT formulas,
the following way:

I(xi) = 1� I(xi)
I(l1 _ . . . _ lr) = max{I(l1), . . . , I(lr)}
I({C1, . . . , Cm}) = min{I(C1), . . . , I(Cm)}
I({(C1, w1), . . . , (Cm, wm)}) = w1 · (1� I(C1)) + . . . + wm · (1� I(Cm))

We define the optimal cost of a MaxSAT formula as

cost(') = min{I(') | I : var(') ! {0, 1}}

and an optimal assignment as an assignment I such that I(') = cost(').
We also define partial truth assignments for ' as a partial function I :

var(') ! {0, 1} where instantiated falsified literals are removed and the formula
is simplified accordingly.

Example 1. Given ' = {(y, 6), (x _ y, 2), (x _ z, 3), (y _ z, 2)} and I : {y, z} !
{0, 1} such that I(y) = 0 and I(z) = 0, we have I(') = {(x, 5), ( , 2)}. We also
have cost(I(')) = 2 and cost(') = 0.

Notice that, for any MaxSAT formula ' and partial truth assignment I, we
have cost(')  cost(I(')). Notice also that when w is finite, the pair (C, w) is
equivalent to having w copies of the clause (C, 1) in our multiset.

We say that a truth assignment I satisfies a literal, clause or a SAT formula
if it assigns 1 to it, and falsifies it if it assigns 0. A SAT formula is satisfiable

if there exists a truth assignment that satisfies it. Otherwise, it is unsatisfiable.
Given an unsatisfiable SAT formula ', an unsatisfiable core 'c is a subset of
clauses 'c ✓ ' that is also unsatisfiable. A minimal unsatisfiable core is an
unsatisfiable core such that any proper subset of it is satisfiable.

The Weighted Partial MaxSAT problem for a weighted partial MaxSAT
formula ' is the problem of finding an optimal assignment. If the optimal cost
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is infinity, then the subset of hard clauses of the formula is unsatisfiable, and
we say that the formula is unsatisfiable. The Weighted MaxSAT problem is the
Weighted Partial MaxSAT problem when there are no hard clauses. The Partial

MaxSAT problem is the Weighted Partial MaxSAT problem when the weights of
soft clauses are all equal. The MaxSAT problem is the Partial MaxSAT problem
when there are no hard clauses. Notice that the SAT problem is equivalent to
the Partial MaxSAT problem when there are no soft clauses.

3 The Fu and Malik’s Algorithm

The first SAT-based algorithm for Partial MaxSAT algorithm was the Fu and
Malik’s algorithm described in [9]. It was implemented in the MaxSAT solver
msu1.2 [17,18], and its correctness was proved in [1].

The algorithm consists in iteratively calling a SAT solver on a working formula
'. This corresponds to the line (st, 'c) := SAT ({C | (Ci, wi) 2 '}). The SAT
solver will say whether the formula is satisfiable or not (variable st), and in
case the formula is unsatisfiable, it will give an unsatisfiable core ('c). At this
point the algorithm will produce new variables, blocking variables (BV in the
code), one for each soft clause in the core. The new working formula ' will
consist in adding the new variables to the soft clauses of the core, adding a
cardinality constraint saying that exactly one of the new variables should be
true (CNF (

P
b2BV b = 1) in the code), and adding one to the counter of falsified

clauses. This procedure is applied until the SAT solver returns sat.
For completeness, we reproduce the code of the Fu and Malik’s algorithm in

Algorithm 1.
Next we present an example of execution that will be used in the next section.

Example 2. Consider the pigeon-hole formula PHP 5
1 with 5 pigeons and one

hole where the clauses saying that no two pigeons can go to the same hole are
hard, while the clauses saying that each pigeon goes to a hole are soft:

' = {(x1, 1), (x2, 1), (x3, 1), (x4, 1), (x5, 1), (x1 _ x2,1), . . . , (x4 _ x5,1)}

In what follows, the new b variables will have a super-index indicating the number
of the unsatisfiable core, and a subindex indicating the index of the original soft
clause.
Suppose that applying the FuMalik
algorithm, the SAT solver computes
the (minimal) unsatisfiable core C1 =
{1, 2}. Here we represent the core by
the set of indexes of the soft clauses
contained in the core. The new formula
will be as shown on the right. At this
point, the variable cost takes value 1.

'1 = { (x1_ b1
1 , 1),

(x2_ b1
2 , 1),

(x3 , 1),
(x4 , 1),
(x5 , 1) } [
{(xi _ xj ,1) | i 6= j} [
CNF (b1

1 + b1
2 = 1,1)
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Algorithm 1. The pseudo-code of the FuMalik algorithm (with a minor
correction).

Input: ' = {(C1, 1), . . . , (Cm

, 1), (C
m+1,1), . . . , (C

m+m

0 ,1)}
1: if SAT({C

i

| w
i

= 1}) = (unsat, ) then return (1, ;)
.Hard clauses are unsatisfiable

2: cost := 0 .Optimal
3: while true do

4: (st, '
c

) := SAT({C
i

| (C
i

, w
i

) 2 '}) .Call to the SAT solver without weights
5: if st = sat then return (cost, ')
6: BV := ; .Set of blocking variables
7: foreach C

i

2 '
c

do

8: if w
i

6= 1 then .If the clause is soft
9: b := new variable( )

10: ' := ' \ {(C
i

, 1)} [ {(C
i

_ b, 1)} .Add blocking variable
11: BV := BV [ {b}

12: ' := ' [ {(C,1) | C 2 CNF(
∑

b2BV

b = 1)}
.Add cardinality constraint as hard clauses

13: cost := cost + 1

If the next unsatisfiable cores found by the SAT solver are C2 = {3, 4} and
C3 = {1, 2, 3, 4}, then the new formula will be:

'2 = { (x1_ b1
1 , 1),

(x2_ b1
2 , 1),

(x3_ b2
3 , 1),

(x4_ b2
4 , 1),

(x5 , 1) } [
{(xi _ xj ,1) | i 6= j} [
CNF (b1

1 + b1
2 = 1,1) [

CNF (b2
3 + b2

4 = 1,1)

'3 = { (x1_ b1
1_ b3

1, 1),
(x2_ b1

2_ b3
2, 1),

(x3_ b2
3_ b3

3, 1),
(x4_ b2

4_ b3
4, 1),

(x5 , 1) } [
{(xi _ xj ,1) | i 6= j} [
CNF (b1

1 + b1
2 = 1,1) [

CNF (b2
3 + b2

4 = 1,1) [
CNF (b3

1 + b3
2 + b3

3 + b3
4 = 1,1)

After the third iteration, the variable cost has value 3. Finally, after finding the
core C4 = {1, 2, 3, 4, 5} we get the following satisfiable MaxSAT formula:

'4 = { (x1_ b1
1_ b3

1_ b4
1 , 1),

(x2_ b1
2_ b3

2_ b4
2 , 1),

(x3_ b2
3_ b3

3_ b4
3 , 1),

(x4_ b2
4_ b3

4_ b4
4 , 1),

(x5_ b4
5 , 1) } [

{(xi _ xj ,1) | i 6= j} [
CNF (b1

1 + b1
2 = 1,1) [

CNF (b2
3 + b2

4 = 1,1) [
CNF (b3

1 + b3
2 + b3

3 + b3
4 = 1,1) [

CNF (b4
1 + b4

2 + b4
3 + b4

4 + b4
5 = 1,1)
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At this point cost is 4. The algorithm will now call the SAT solver on '4, and
the solver will return the answer “satisfiable”. The algorithm returns cost = 4.

4 Breaking Symmetries

It is well known that formulas that contain a great deal of symmetries cause
SAT solvers to explore many redundant truth assignments. Adding symmetry
breaking clauses to a formula has the e↵ect of removing the symmetries, while
keeping satisfiability the same. Therefore it is a way to speed up solvers by
pruning the search space.

In the case of executions of the FuMalik algorithm, symmetries can appear
in two ways. On one hand, there are formulas that naturally contain many
symmetries. For instance, in the case of the pigeon-hole principle we can permute
the pigeons or the holes, leaving the formula intact. On the other hand, in each
iteration of the FuMalik algorithm, we modify the formula adding new variables
and hard constraints. In this process we can also introduce symmetries. In the
present paper, we are no concerned with eliminating natural symmetries of a
MaxSAT formula as in [16], since that might be costly, and it is not the aim of
the present work. Instead we will eliminate the symmetries that appear in the
process of performing the algorithm. In this case, it is very e�cient to extract
the symmetries given our implementation of the algorithm.

Before we formally describe the process of eliminating the symmetries, we will
see an example.

Example 3. Consider again the pigeon-hole formula PHP 5
1 of Example 2. The

working formula '3 from the previous section is still unsatisfiable, this is the
reason to find a fourth core C4. However, if we do not consider the clause x5 the
formula is satisfiable, and has 8 distinct models (two for each variable among
{x1, . . . , x4} set to true). Here, we show 2 of the models, marking the literals set
to true (we do not include the clauses xi _ xj , for i 6= j and put the true literals
in boxes):

x1_ b1
1 _ b3

1

x2_ b1
2_ b3

2

x3_ b2
3 _ b3

3

x4 _ b2
4_ b3

4

b1
1 + b1

2 = 1

b2
3 + b2

4 = 1

b3
1 + b3

2 + b3
3 + b3

4 = 1

x1_ b1
1_ b3

1

x2_ b1
2 _ b3

2

x3_ b2
3 _ b3

3

x4 _ b2
4_ b3

4

b1
1 + b1

2 = 1

b2
3 + b2

4 = 1

b3
1 + b3

2 + b3
3 + b3

4 = 1

The previous two models are related by the permutation b1
1 $ b1

2, b
3
1 $ b3

2. The
two ways of assigning values to the b variables are equivalent. The existence of
so many partial models makes the task of showing unsatisfiability of the formula
(including x5) much harder.
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The mechanism to eliminate the symmetries caused by the extra variables is
as follows: suppose we are in the s iteration of the FuMalik algorithm, and we
have obtained the set of cores {'1, . . . , 's}. We assume that the clauses in the
cores follow a total order. For clarity we will name the new variables of core 'l

for l such that 1  l  s as bl
i, where i is an index in 'l. Now, we add the clauses:

bs
i ! b

l

j for l = 1, . . . , s�1 and i, j 2 'l \ 's and j > i

This clauses implies that in Example 3 we choose the model on the left rather
than the one on the right.

Example 4. For the Example 3, after finding the third unsatisfiable core C3,
we would add the following clauses to break symmetries (written in form of
implications):

b3
1 ! b

1

2

b3
3 ! b

2

4

Adding these clauses, instead of the 8 partial models, we only have 4, one for
each possible assignment of xi to true.

After finding the fourth core C4, we also add (written in compact form):

b4
1 ! (b

1

2 ^ b
3

2 ^ b
3

3 ^ b
3

4)
b4
2 ! (b

3

3 ^ b
3

4)
b4
3 ! (b

2

4 ^ b
3

4)

5 The WPM1 Algorithm

Algorithm 2 is the weighted version of the FuMalik algorithm described in
section 3 [1,14] In this algorithm, we iteratively call a SAT solver with a weighted
working formula, but excluding the weights. When the SAT solver returns
an unsatisfiable core, we calculate the minimum weight of the clauses of the
core (wmin in the algorithm.). Then, we transform the working formula in the
following way: we duplicate the core having on one of the copies, the clauses with
weight the original minus the minimum weight, and on the other copy we put
the blocking variables and we give it the minimum weight. Finally we add the
cardinality constraint on the blocking variables, and we add wmin to the cost.

The process of doubling the clauses might imply to end up converting clauses
with weight say w into w copies of the clause of weight 1. When this happens,
the process becomes very ine�cient. In the following we show a (tiny) example
that reflects this situation.

Example 5. Consider the formula ' = {(x1, 1), (x2, m), (x2,1)}.
Assume that the SAT solver always includes the first soft clause in the

returned unsatisfiable core, even if this makes the core not minimal. After one
iteration, the new formula would be:

'1 = {(x1 _ b1
1, 1), (x2 _ b1

2, 1), (x2, m� 1), (x2,1), (b1
1 + b1

2 = 1,1)}
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Algorithm 2. The pseudo-code of the WPM1 algorithm.
Input: ' = {(C1, w1), . . . , (Cm

, w
m

), (C
m+1,1), . . . , (C

m+m

0 ,1)}
1: if SAT({C

i

| w
i

= 1}) = (unsat, ) then return (1, ;) .Hard clauses are
unsatisfiable

2: cost := 0 .Optimal
3: while true do

4: (st, '
c

) := SAT({C
i

| (C
i

, w
i

) 2 '}) .Call to the SAT solver without weights
5: if st = sat then return (cost, ')
6: BV := ; .Blocking variables of the core
7: w

min

:= min{w
i

| C
i

2 '
c

^ w
i

6= 1} .Minimum weight
8: foreach C

i

2 '
c

do

9: if w
i

6= 1 then

10: b := new variable()
11: ' := ' \ {(C

i

, w
i

)} [ {(C
i

, w
i

� w
min

), (C
i

_ b, w
min

)}
.Duplicate soft clauses of the core

12: BV := BV [ {b}

13: ' := ' [ {(C,1) | C 2 CNF (
∑

b2BV

b = 1)}
.Add cardinality constraint as hard clauses

14: cost := cost + w
min

If from now on, at each iteration i, the SAT solver includes the first clause along
with {(x2, m� i + 1), (x2,1)} in the unsatisfiable core, then at iteration i, the
formula would be:

'i = { (x1 _ b1
1 _ · · · _ bi

1, 1), (x2 _ b1
2, 1), . . . , (x2 _ bi

2, 1), (x2, m� i), (x2,1),
(b1

1 + b1
2 = 1,1), . . . , (bi

1 + bi
2 = 1,1)}

The WPM1 algorithm would need m iterations to solve the problem.

Obviously, a reasonable good SAT solver would return a better quality core
than in previous example. However, unless it can guarantee that it is minimal,
a similar example (but more complicated) could be constructed.

6 A Stratified Approach for WPM1

In Algorithm 3 we present a modification of the WPM1 algorithm that tries
to prevent the situation described in Example 5 by carrying out a stratified
approach. The main idea is to restrict the set of clauses sent to the SAT solver
to force it to concentrate on those with higher weights. As a result, the SAT
solver returns unsatisfiable cores with clauses with higher weights. These are
better quality cores and contribute to increase the cost faster. When the SAT
solver returns SAT, then we allow it to use clauses with lower weights.

In Algorithm 3 we use a variable wmax, and we only send to the SAT solver
the clauses with weight greater or equal than it. As in Algorithm 2, we start
by checking that hard clauses are satisfiable. Then, we initialize wmax to the
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Algorithm 3. The pseudo-code of the stratified approach for WPM1
algorithm.

Input: ' = {(C1, w1), . . . , (Cm

, w
m

), (C
m+1,1), . . . , (C

m+m

0 ,1)}
1: if SAT({C

i

| w
i

= 1}) = (unsat, ) then return (1, ;)
2: cost := 0 .Optimal
3: w

max

:= max{w
i

| (C
i

, w
i

) 2 ' ^ w
i

< w
max

}
4: while true do

5: (st, '
c

) := SAT({C
i

| (C
i

, w
i

) 2 ' ^ w
i

� w
max

}) .Call without weights
6: if st = sat and w

max

= 0 then return (cost, ')
7: else

8: if st = sat then w
max

:= max{w
i

| (C
i

, w
i

) 2 ' ^ w
i

< w
max

}
9: else

10: BV := ; .Blocking variables of the core
11: w

min

:= min{w
i

| C
i

2 '
c

^ w
i

6= 1} .Minimum weight
12: foreach C

i

2 '
c

do

13: if w
i

6= 1 then

14: b := new variable()
15: ' := ' \ {(C

i

, w
i

)} [ {(C
i

, w
i

� w
min

), (C
i

_ b, w
min

)}
.Duplicate soft clauses of the core

16: BV := BV [ {b}

17: ' := ' [ {(C,1) | C 2 CNF (
∑

b2BV

b = 1)}
.Add cardinality constraint as hard clauses

18: cost := cost + w
min

highest weight smaller than infinite. If the SAT solver returns SAT, there are
two possibilities. Either wmax is zero (it means that we have already sent all
clauses to the SAT solver) and we finish; or it is not yet zero, and we decrease
wmax to the highest weight smaller than wmax, allowing the SAT solver to use
clauses with smaller weights. If the SAT solver returns UNSAT, we proceed like
in Algorithm 2. This algorithm was submitted to the MaxSAT evaluation 2011
as WPM1 (version 2011). It was the best performing solver for the weighted
partial industrial category. The description of the solver was never published in
a paper before.

We can use better strategies to decrease the value of wmax. Notice that, in the
worst case, we could need more executions of the SAT solver than Algorithm 2,
because the calls that return SAT but wmax > 0 do not contribute to increase
the computed cost. Therefore, we need to find a balance between the number
of those unproductive SAT calls, and the minimum weight of the cores. For
example, one of the possible strategies is to decrease wmax until the following
condition is satisfied

|Ci | (Ci, wi) 2 ' ^ wi < wmax}|
|{wi | (Ci, wi) 2 ' ^ wi < wmax}|

> ↵
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or wmax = 0. This strategy tends to send more new clauses to the SAT solver
when they have bigger diversity of weights. In our implementation of WPM1
submitted to the MaxSAT evaluation 2012, we use this strategy, called diversity

heuristic, with ↵ = 1.25.
The proof of the correctness of this algorithm is like the proof for WPM1.

The only additional point is that the new algorithm is forcing the SAT solver to
find some cores before others. In the proof of correctness of WPM1 there is no
assumption on what cores the SAT solver finds first.

7 MaxSAT Reducibility

Our algorithms solve a MaxSAT formula by successively transforming it until
we get a satisfiable formula. To prove the soundness of the algorithms it su�ces
to prove that these transformations preserve the cost of the formula. However,
apart from this notion of cost-preserving transformation, we can define other
(stronger) notions of formula transformation, like MaxSAT equivalence and
MaxSAT reducibility.

Definition 1.
We say that '1 and '2 are cost-equivalent if cost('1) = cost('2).
We say that '1 and '2 are MaxSAT equivalent if, for any assignment

I : var('1) [ var('2)! {0, 1}, we have cost(I('1)) = cost(I('2)).
We say that '1 is MaxSAT reducible to '2 if, for any assignment I :
var('1) ! {0, 1}, we have cost(I('1)) = cost(I('2)).

Notice that the distinction between MaxSAT equivalence and MaxSAT reduction
is the domain on the partial assignment. In one case it is var('1)[ var('2), and
in the other var('1).

The notion of cost-preserving transformation is the weakest of all three
notions, and su�ces to prove the soundness of the algorithms. However, it does
not allow us to replace sub-formulas by cost-equivalent sub-formulas, in other
words cost('1) = cost('2) does not imply cost('1 [ '3) = cost('2 [ '3). On
the other hand, the notion of MaxSAT equivalence is the strongest of all three
notions, but too strong for our purposes, because the formula transformations
we use does not satisfy this notion. When '2 has variables not occurring in '1,
it is convenient to use the notion of MaxSAT reducibility, that, in these cases,
is weaker than the notion of MaxSAT equivalence.

In the following we show some examples of the notions of Definition 1.

Example 6. The following example shows a formula transformation that
preserves the cost, but not MaxSAT reducibility. Consider '1 = {(x, 2), (x, 1)}
and '2 = {( , 1)}. We have cost('1) = cost('2) = 1, hence the transformation
of '1 into '2 is cost-preserving. However, '1 is not MaxSAT reducible to '2,
because the assignment I : {x} ! {0, 1} with I(x) = 0, makes cost(I('1)) =
2 6= 1 = cost(I('2)).
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On the contrary, '2 is MaxSAT reducible to '1, because there is a unique
assignment I : ; ! {0, 1}, and it satisfies cost(I('1)) = cost(I('2)). Hence,
MaxSAT reducibility is not a symmetric relation.

The following example shows that MaxSAT reducibility does not imply
MaxSAT equivalence. Consider '1 = {(x, 2), (x, 1)} and '3 = {( , 1), (x, 1), (x_
y, 1), (x _ z, 1), (y _ z,1)}. We have that '1 is MaxSAT reducible to '3.
To prove this, we must consider two interpretations I1 and I2, defined by
I1(x) = 0 and I2(x) = 1. In the first case, we obtain I1('1) = {( , 2)} and
I1('3) = {( , 2), (y, 1), (y _ z,1)} that have the same cost 2. In the second
case, we obtain I2('1) = {( , 1)} and I2('3) = {( , 1), (z, 1), (y _ z,1)} that
have also the same cost 1. However, '1 and '3 are not MaxSAT equivalent
because for I : {x, y, z} ! {0, 1} defined by I(x) = I(y) = I(z) = 1 we have
cost(I('1)) = 1 6= 1 = cost(I('3)).

Finally, '1 is MaxSAT equivalent to '4 = {( , 1), (x, 1)}.

The notion of MaxSAT equivalence was implicitly defined in [7]. In this paper
a MaxSAT resolution rule that preserves MaxSAT equivalence is defined, and
proved complete for MaxSAT.

For lack of space we state without proof:

Lemma 1. (1) If '1 is MaxSAT-reducible to '2 and var('2) \ var('3) ✓
var('1), then '1 [ '3 is MaxSAT-reducible to '2 [ '3.

(2) MaxSAT-reducibility is transitive: if '1 is MaxSAT-reducible to '2, '2 is

MaxSAT-reducible to '3, and var('1) \ var('3) ✓ var('2), then '1 is

MaxSAT-reducible to '3.

Example 7. Notice that the side condition of Lemma 1 (1) is necessary. For
instance, if we take '1 = {( , 1)}, '2 = {(x, 1), (x,1)} and '3 = {(x, 1)},
where the side condition var('2) \ var('3) = {x} 6✓ ; = var('1) is violated, we
have that '1 is MaxSAT reducible to '2, but '1 [ '3 is not MaxSAT reducible
to '2 [ '3.

Similarly, the side condition in Lemma 1 (2) is also necessary. For instance, if
we take '1 = {(x, 1), (x, 1)}, '2 = {( , 1)} and '3 = {(x, 1), (x,1)}, where the
side condition var('1)) \ var('3) = {x} 6✓ ; = var('2) is also violated, we have
that '1 is MaxSAT reducible to '2 and this to '3. However, '1 is not MaxSAT
reducible to '3.

There are two side conditions in Lemma 1 (1) and (2) (see Example 7) that
restrict the set of variables that can occur in the MaxSAT problems. However,
if we ensure that problem transformations only introduce fresh variables, i.e.
when '1 is MaxSAT reduced to '2, all new variables introduced in '2 do not
occur elsewhere, then these conditions are trivially satisfied. In our algorithms,
all formula transformations satisfy this restriction.

8 Generic Stratified Approach

In Algorithm 4 we show how the stratified approach can be applied to any generic

weighted MaxSAT solver WPM. In the rest of the section we will describe what
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Algorithm 4. The pseudo-code of a generic MaxSAT algorithm that
follows a stratified approach heuristics.

Input: ' = {(C1, w1), . . . , (Cm

, w
m

)}
1: cost := 0
2: w

max

= 1
3: while true do

4: '
w

max

:= {(C
i

, w
i

) 2 ' | w
i

� w
max

}
5: (cost0, '

sat

, '
res

) = WPM('
w

max

)
6: cost = cost + cost0

7: if cost = 1 or w
max

= 0 then return (cost,'
sat

)
8: W =

∑
{w

i

| (C
i

, w
i

) 2 ' \ '
w

max

[ '
res

}
9: '

sat

= {(C
i

, harden(w
i

, W )) | (C
i

, w
i

) 2 '
sat

}
10: ' = (' \ '

w

max

) [ '
sat

[ '
res

11: w
max

= decrease(w
max

)

12: return (cost, ')

13: function harden(w,W)
14: begin

15: if w > W then return 1
16: else return w

properties the generic algorithm WPM has to satisfy in order to ensure the
correctness of this approach.

We assume that, given a weighted MaxSAT formula ', WPM(') returns a
triplet (cost, 'sat, 'res) such that ' is MaxSAT reducible to {( , cost)}['sat[
'res, 'sat is satisfiable (has cost zero), and clauses of 'res have cost strictly
smaller than wmax. Given ', WPM1 return a pair (cost, '0) where ' is MaxSAT
reducible to {( , cost)}['0 and ' is satisfiable, hence satisfies the requirements
taking 'res = ;. Moreover, we can also think of WPM as an algorithm that
partially solves the formula, and returns a lower bound cost, a satisfiable part
of the formula 'sat, and an unsolved residual 'res.

The algorithm uses a variable wmax to restrict the clauses sent to the MaxSAT
solver. The first time wmax = 1, and we run WPM only on the hard clauses.
Then, in each iteration we send clauses with weight wmax or bigger to WPM.
We add the return cost to the current cost, and decrease wmax, until wmax is
zero.

Algorithm 3 is an instance of this generic schema where WPM is a partial
execution of WPM1 where clauses generated during duplication with weight
smaller than wmax are put apart in 'res.

Lines 8 and 9 are optional and can be removed from the algorithm without
a↵ecting to its correctness. They are inspired in [15]. The idea is to harden all
soft clauses with weight bigger than the sum of the weights of the clauses not
sent to the WPM plus the clauses returned in 'res. The proof of the correctness
of these lines is based in the following lemma (not proved for lack of space).
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Lemma 2. Let '1 = {(C1, w1), . . . , (Cm, wm), (Cm+1,1), . . . , (Cm+m0 ,1)} be

a satisfiable MaxSAT formula, '2 = {(C0
1, w

0
1), . . . , (C0

r, w
0
r)} be a MaxSAT

formula without hard clauses and W =
Pr

j=1 w0j. Let

harden(w) =
⇢

w if w  W
1 if w > W

and '01 = {(Ci, harden(wi)) | (Ci, wi) 2 '1}. Then cost('1['2) = cost('01['2).

Notice that we check the applicability of this lemma dynamically, recomputing
the value W in every iteration in line 8 of Algorithm 4.

Theorem 1. Assuming that WPM, given a formula ', returns a triplet

(cost, 'sat, 'res) such that ' is MaxSAT reducible to {( , cost)} [ 'sat [ 'res,

'sat is satisfiable, and 'res only contain clauses with weight strictly smaller

than wmax, Algorithm 4 is a correct algorithm for Weighted Partial MaxSAT.

Moreover, when for a formula ', the algorithm returns (c, '0), then c = cost(')
and any assignment satisfying '0 is an optimal assignment of '.

9 Experimental Results

We conducted our experimentation on the same environment as the MaxSAT
evaluation [4] (processor 2 GHz). We increased the timeout from half hour to two
hours, and the memory limit from 0.5G to 1G. The solvers that implement our
Weighted Partial MaxSAT algorithms are built on top of the SAT solver picosat
(v.924) [6]. The solver wpm1 implements the original WPM1 algorithm [1]. The
cardinality constraints introduced by WPM1 are translated into SAT through
the regular encoding [3]. This encoding assures a linear complexity on the size
of the cardinality constraint. This is particularly important for the last queries
where the size of the cores can be potentially close to the number of soft clauses.
We use the subscript b to indicate that we break symmetries as described in
section 4, s to indicate we apply the stratified approach and d to indicate that
we apply the diversity heuristic to compute the next wmax, both described
in section 6. wpm1 was the solver submitted to the 2009 and 2010 MaxSAT
evaluations, and wmp1s the one submitted to the 2011 evaluation. The hardening
soft clauses (lines 8 and 9 in Algorithm 4) had not impact in our implementations’
performance.

In the following we present results for the benchmarks of the Weighted Partial
MaxSAT categories of the MaxSAT 2011 evaluation. We compare our solvers
with the best three solvers of the evaluation, and other solvers which did not
compete but have been reported to exhibit good performance, such as, binc and
bincd [11], maxhs [8] and the Weighted CSP solver toulbar2 [19].

We present the experimental results following the same classification criteria
as in the MaxSAT evaluation. For each solver and set of instances, we present
the number of solved instances in parenthesis and the mean time required to
solve them. Solvers are ordered from left to right according to the total number
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of instances they solved. We present in bold the results for the best performing
solver in each set. ’# ’ stands for number of instances of the given set.

Table 1(a) presents the results for the industrial instances of the Weighted
Partial MaxSAT category. As we can see, our original solver wpm1 would have
ranked as the second best solver after wbo1.6. By breaking symmetries (wpm1b)
we solve 12 more instances than wbo1.6, and 20 more if we apply the stratified
approach. Combining both, we solve 28 more instances. The addition of the
diversity heuristic to the stratified approach has no impact for the instances of
this category. We do not present any result on branch and bound based solvers
since they typically do not perform well on industrial instances.

Table 1(b) presents the results for the crafted instances of the Weighted Partial
MaxSAT category. The best ranked solvers in this category for the MaxSAT
2011 evaluation were: incwmaxsatz, akmaxsat and wmaxsatz09, in this order. All
are branch and bound based solvers, which typically dominate the crafted and
random categories. We can see that our solver wpm1 shows a poor performance
in this category. However, by applying the stratified approach (wpm1s) we jump
from 84 solved instances to 184. If we also break symmetries (wpm1bs) we solve
224 instances, ranking as the third best solver respect to the participants of the
MaxSAT 2011 evaluation, very close to akmaxsat. If we compare carefully the
results of wpm1 and wpm1bs, we notice that there are two sets where wpm1

behaves much better (warehouses and random-net). This suggests that we must
make our stratified approach more flexible, for example, by incorporating the
diversity heuristic (wpm1bsd). Using wpm1bsd we solve up to 270 instances,
outperforming all the branch and bound solvers.

In [8] it is pointed out that instances with a great diversity of weights can be
a bottleneck for some Weighted MaxSAT solvers. To test this hypothesis they
generate 13 instances from the Linux upgradibility set in the Weighted Partial
MaxSAT industrial category preserving the underlying CNF but modifying the
weights to force a greater diversity. We have reproduced that experiment in
Table 1(c). As we can see, wpm1 compares well to the best performing solvers,
and by breaking symmetries (wpm1b) we reach the performance of maxhs and
wbo1.6. On the other hand, the stratified approach impacts negatively (wpm1s

or wpm1bs), but the diversity heuristic fixes this problem.
Taking into consideration the experimental results obtained in the di↵erent

categories, we can see that our approach wpm1bsd is the most robust solver for
Weighted Partial MaxSAT instances. We also checked the e↵ectiveness of breaking
symmetries for Unweighted PartialMaxSAT instances. For industrial instances we
improve from 181 to 262 solved instances, and for crafted from 55 to 115.
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Abstract. Several combinatorial optimization problems can be
translated into the Weighted Partial Maximum Satisfiability (WPMS)
problem. This is an optimization variant of the Satisfiability (SAT)
problem. There are two main families of WPMS solvers based on
SAT technology: branch and bound and SAT-based. From the MaxSAT
evaluations, we have learned that SAT-based solvers dominate on
industrial instances while branch and bound dominate on random. For
crafted instances it depends on the category.
In this work, we study the performance of an Integer Linear
Programming approach. In particular, we translate the WPMS problem
into ILP and apply the Mixed Integer Programming (MIP) solver, IBM-
CPLEX. We present an extensive experimental evaluation showing that
this approach clearly dominates on crafted instances.

1 Introduction

The Maximum Satisfiability (MaxSAT) problem is the optimization version of
SAT and has several application domains [2, 4, 20–24]. The idea behind this
formalism is that sometimes not all constraints of a problem can be satisfied,
and we try to satisfy the maximum number of them. The MaxSAT problem can
be further generalized to the Weighted Partial MaxSAT (WPMS) problem. In
this case, we can divide the constraints in two groups: the constraints that must
be satisfied (hard), and the ones that may or may not be satisfied (soft). In the
last group, we may put di↵erent weights to the constraints, where the weight is
the penalty to falsify the constraint.

There are two main classes of WPMS algorithms: branch and bound [7, 11,
13–15] and SAT-based [1, 5, 8–10, 17–19]. SAT-based MaxSAT algorithms consist
in the reformulation of the problem as a sequence of SAT instances.

From the last international MaxSAT evaluation 2012 [3], we can conclude
that SAT-based solvers dominate on industrial instances while branch and bound
dominate on random instances. For crafted instances, it is not so clear. Branch
and bound solvers have dominated since 2006, but at the last 2012 evaluation,
two SAT-based solvers were reported to be the best for crafted instances at the
Weighted Partial MaxSAT category.
? This research has been partially founded by the CICYT research projects TASSAT

(TIN2010-20967-C04-01/03/04) and ARINF (TIN2009-14704-C03-01).



In this paper, we focus our attention on Mixed Integer Programming (MIP)
techniques from Operation Research (OR). They have been very successful on
solving optimization problems and it makes sense to study the performance of
these techniques on WPMS instances. In particular, we explore the approach
which consists in translating the WPMS instances into ILP and then apply
a MIP solver. It is easy to see that the soft clauses of a WPMS instance
represent the objective function of the corresponding ILP instance, while the hard

clauses represent the region of feasible solutions. Section 3 provides a detailed
description.

Our experimental evaluation shows that this approach clearly dominates on
(Weighted) Partial crafted instances. This is a surprising result not reported
before and worth to be known in the community. On the other hand, we also
show that this approach is not competitive on the industrial instances. Therefore,
further work is required to identify the strength of ILP for crafted instances and
how to take advantage of it.

To our best knowledge, the first work using MIP technology for MaxSAT
solving can be found in [6]. However, the experimental results did not show
such a good performance on crafted instances. A more recent work, using MIP
technology can be found in [5]. The authors present a hybrid approach where a
SAT solver and a MIP solver interact. This approach also solves a sequence of
SAT instances as SAT-based solvers. These instances are simpler than the ones
generated by SAT-based solvers since all the arithmetic constraints are extracted
and managed by the MIP solver. This is an interesting approach, but from the
experimental evaluation we can see it is not yet competitive enough.

This paper proceeds as follows. Section 2 presents some preliminary concepts.
Section 3 presents the translation from WPMS into ILP. Section 4 presents the
experimental evaluation. Finally, Section 5 shows the conclusions and the future
work.

2 Preliminaries

A literal is either a Boolean variable x or its negation x. A clause C is a
disjunction of literals. A weighted clause is a pair (C, w), where C is a clause
and w is a natural number or infinity, indicating the penalty for falsifying the
clause C. A Weighted Partial MaxSAT formula is a multiset of weighted clauses

' = {(C1, w1), . . . , (Cm, wm), (Cm+1,1), . . . , (Cm+m0 ,1)}

where the first m clauses are soft and the last m0 clauses are hard. The set of
variables occurring in a formula ' is noted as var(').

A (total) truth assignment for a formula ' is a function I : var(')! {0, 1},
that can be extended to literals, clauses, SAT formulas. For MaxSAT formulas
is defined as I({(C1, w1), . . . , (Cm, wm)}) =

Pm
i=1 wi (1 � I(Ci)). The optimal

cost of a formula is cost(') = min{I(') | I : var(') ! {0, 1}} and an optimal

assignment is an assignment I such that I(') = cost(').
The Weighted Partial MaxSAT problem for a Weighted Partial MaxSAT

formula ' is the problem of finding an optimal assignment.

2



3 Translation of Weighted Partial MaxSAT into ILP

Encodings translating WPMS into ILP can be found in the literature [12, 16].
Here, we describe the precise encoding we used in our evaluation. Given a
WPMS formula, {(C1, w1), . . . , (Cm, wm), (Cm+1,1), . . . , (Cm+m0 ,1)}, we can
translate it into a ILP instance, as follows:

Let s = ([m
i=1 CNF (bi $ Ci)) and h = ([m+m0

j=m+1Cj), where CNF (')
transforms ' into Conjuntive Normal Form and the bi’s are new fresh Boolean
variables. The ith element of s ensures that bi is true i↵ the soft clause Ci is
falsified and h is the set of hard clauses of the WPMS problem. The soft clauses of
a WPMS instance represent the objective function of the equivalent ILP instance
which can be described as follows:

Minimize:
Pm

1 wi · bi

Subject to:
ILP (s [ h)
0  xi  1, xi 2 var(s [ h)

where function ILP (') maps every clause Ci 2 ' into a linear inequality with
operator >. The left-hand side of the linear inequality corresponds to the sum
of the literals in Ci once mapped into integer terms, such that, literal x(x) is
mapped to integer term x(1 � x). The right-hand side corresponds to constant
0. After moving the constants to the rigth, the right-hand side corresponds to
constant �k, where k is the number of negative literals in clause Ci. Finally,
we add the bounding box constraints that ensure that every integer variable in
the ILP instance has domain {0, 1}. It can be easily seen that the implication
Ci ! bi from bi $ Ci is unnecessary (as we are optimizing).

Example 1. Given the WPMS formula, {(x1 _ x2, 2), . . . , (x1 _ x2, 3), (x1 _
x2,1), (x1 _ x2,1)}, the corresponding ILP formulation is 1:

Minimize: 2 · b1 + 3 · b2

Subject to:
x1 + x2 + b1 > 0; \ b1 ! (x1 _ x2)
�x1 � b1 > �2;
�x2 � b1 > �2; \ (x1 _ x2)! b1

x1 � x2 + b2 > �1; \ b2 ! (x1 _ x2)
�x1 � b2 > �2;
x2 � b2 > �1; \ (x1 _ x2)! b2

�x1 + x2 > �1; \ x1 _ x2

�x1 � x2 > �2; \ x1 _ x2

Bounds: 0  x1  1; 0  x2  1; 0  b1  1; 0  b2  1;
1 For example, for the first soft clause we get: ILP ({CNF (b1 $ (x1 _ x2)}) =

ILP ({CNF (b1 ! (x1 _ x2)), CNF ((x1 _ x2) ! b1) }) = ILP ({(x1 _ x2 _ b1),
(x1_b1), (x2_b1) }) = {(x1+x2+b1 > 0), ((1�x1)+(1�b1) > 0), ((1�x2)+(1�b2) >
0) } = {(x1 + x2 + b1 > 0), (�x1 � b1 > �2), (�x2 � b1 > �2) }.

3



4 Experimental Results

In this section we present our intensive experimental investigation on the PMS
and WPMS crafted and industrial instances from the 2012 MaxSAT Evaluation.
Results on random instances are not included since the translation of WPMS
into ILP did not win on any family. We provide results for the ILP translation,
the best two solvers for each category of the 2012 MaxSAT Evaluation, and
two solvers which did not participate but have been reported to exhibit good
performance. We run our experiments on a cluster featured with 2.27 GHz
processors, memory limit of 3.9 GB and a timeout of 7200 seconds per instance 2.

The results are presented in Table 1 following the same criteria as in the
2012 MaxSAT Evaluation. For each solver and family of instances, we present
the number of solved instances in parenthesis and the mean solving time. Solvers
are ordered from left to right according to the total number of solved instances.
The results for the best performing solver in each family are presented in bold.
The number of instances of each family is specified in the column under the
sign ’#’. Since di↵erent families may have di↵erent number of instances, we also
include for each solver the mean ratio of solved instances.

Table 1 shows the results of our experimentation where we compare the
following solvers. The solver ilp which corresponds to the translation of MaxSAT
into ILP (see Section 3) 3, and the application of the MIP solver IBM-
CPLEX studio124 (through C++ API and default parameters). The best two
solvers for each category of the 2012 MaxSAT Evaluation: WPMS crafted
(wpm1 [1], shinms [9]), WPMS industrial (pwbo2.1 [17, 18], wpm1), PMS crafted
(qms0.21 [10], akms ls [11] and PMS industrial (qms0.21g2, pwbo2.1). Two other
solvers that have been reported to exhibit good performance: bincd2 , which is
the new version of the BINCD algorithm [8, 19], with the best configuration
reported by authors, and maxhs from [5], which is a hybrid SAT-MIP approach.

Table 1(a) presents the results for the PMS crafted instances. The ilp
approach solves 332 of 372 instances, 35 more than akms ls. PMS solver qms0.21
is the third in solved instances but the first in mean ratio with 81.1%.

Table 1(b) presents the results for the WPMS crafted instances. Again, the ilp
approach is the best one, solving 332 of 372 instances, 14 more than the second
one, wpm1. It has a clear impact on the auc-paths, auc-scheduling and mini-

encoding-warehouses families, solving 100% of the instances in half a second.
Table 1(c) presents the results for the PMS industrial instances. We can

see that, although the ilp approach is in general not competitive for industrial
instances, it wins for aes, bcp-fir and bcp-syn families. In bcp-syn it performs
much better than the rest of the solvers.

Table 1(d) presents the results for the WPMS industrial instances. Although
we can confirm that the ilp approach is not competitive for industrial instances,
it performs quite well in upgradeability-problem family.

2 We thank the Artificial Intelligence Research Institute (IIIA) of the Spanish Research
Council (CSIC) for the access to their high-performance computing clusters.

3 Not considering implication C
i

! b
i

gave similar results.
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Family # ilp akms ls qms0.21 shinms bincd2 pwbo2.1 wpm1 maxhs

frb 25 1153(13) 160(5) 347(25) 44(23) 0.0(0) 151(15) 0.0(0) 2099(5)

job-shop 3 0.0(0) 0.0(0) 42(3) 36(3) 100(3) 93(1) 83(2) 0.0(0)

mxc ran 96 45(96) 1.1(96) 270(83) 339(76) 85(71) 80(64) 0.0(0) 2164(12)

mxc str 62 326.5(38) 282(41) 800(30) 402(23) 109(21) 37(19) 92(9) 1039(13)

mxo 3st 80 13.1(80) 0.5(80) 198(80) 695(78) 8.3(80) 37(63) 208(78) 234(46)

mxo str 60 337.6(59) 482(38) 6.4(60) 3.5(59) 57(60) 7.7(60) 618(41) 0.0(0)

min-enc kt 42 163(42) 3199(34) 248(6) 514(5) 275(6) 307(2) 689(3) 0.0(0)

ps ml 4 34(4) 259(3) 1.8(4) 3.4(4) 49(4) 93(4) 5.3(3) 92(4)

Total 372 332 297 291 271 245 228 136 80

Ratio 76.5% 63.2% 81.1% 77.0% 65.3% 59.3% 41.1% 26.4%

(a) Partial Crafted

Family # ilp wpm1 shinms akms ls pwbo2.1 maxhs bincd2

auc-pat 86 0.5(86) 484(59) 318(84) 2.6(86) 111(19) 35(86) 1415(12)

auc-sch 84 0.4(84) 5.7(84) 5.8(84) 68(84) 7.7(81) 965(78) 142(81)

min-enc-p 56 297(56) 36(53) 8.2(52) 141(40) 0.5(56) 459(31) 33(54)

min-enc-w 18 0.5(18) 20(14) 0.4(1) 20(2) 3.8(14) 0.2(1) 2.1(1)

ps-ml 12 82.82(3) 845.0(5) 128(5) 0.3(2) 4.0(3) 0.1(1) 1073(4)

ran-net 74 533(59) 160(41) 0.0(0) 4061(8) 42(35) 2771(10) 0.0(0)

wcsp-s5-d 21 43(18) 549(14) 744(21) 1556(6) 62(8) 101(6) 128(12)

wcsp-s5-l 21 323(8) 277(15) 201(17) 109(5) 1.7(6) 357(6) 299(13)

Total 372 332 285 264 233 222 219 177

Ratio 78.6% 72.0% 64.8% 45.3% 54.4% 41.6% 45.6%

(b) Weighted Partial Crafted

Family # bincd2 qms0.21g2 pwbo2.1 shinms wpm1 ilp maxhs

aes 7 453(1) 3155(1) 0.0(0) 0.0(0) 0.0(0) 1311(3) 453(2)

bcp-fir 59 44(58) 108(56) 68(56) 14(22) 9.6(55) 63(59) 481(25)

bcp-h-y si 17 171(16) 358(17) 175(15) 41(16) 137(16) 667(6) 277(11)

bcp-h-y su 38 245(32) 106(35) 98(25) 282(34) 310(24) 0.0(0) 307(21)

bcp-msp 64 214(38) 452(30) 96(26) 281(22) 320(9) 856(37) 120(1)

bcp-mtg 40 1.2(40) 0.2(40) 0.6(40) 0.6(40) 13(40) 769(29) 115(6)

bcp-syn 74 29(43) 284(35) 22(39) 87(33) 32(41) 19(71) 86(61)

cir-tra-com 4 109(4) 45(4) 200(2) 52(4) 544(4) 6922(1) 0.0(0)

hap-ass 6 728(5) 153(5) 9.1(5) 0.0(0) 289(4) 2125(5) 14(5)

pbo-mqc ne 84 279(84) 59(84) 222(68) 146(84) 486(35) 1101(6) 400(34)

pbo-mqc nl 84 79(84) 24(84) 72(82) 180(79) 423(49) 508(6) 364(37)

pbo-rou 15 1.1(15) 3.6(15) 28(15) 4.8(15) 1.2(15) 20(15) 28(14)

pro-ins 12 314(3) 129(12) 0.1(1) 207(4) 0.3(1) 2.7(1) 7.6(1)

Total 504 423 418 374 353 293 239 218

Ratio 78.2% 83.0% 66.3% 63.6% 61.2% 48.9% 43.0%

(c) Partial Industrial

Family # wpm1 pwbo2.1 bincd2 maxhs ilp shinms

hap-ped 100 203(95) 123(87) 545(73) 1089(39) 1892(18) 1204(47)

tim 26 1168(11) 672(7) 169(8) 1250(6) 0.0(0) 2261(5)

upg-pro 100 16(100) 33(100) 76(100) 13(100) 19(100) 0.0(0)

Total 226 206 194 181 145 118 52

Ratio 79.1% 71.3% 67.9% 54.0% 39.3% 22.1%

(d) Weighted Partial Industrial

Table 1. Experimental results of ILP translation compared with other solvers.

5 Conclusions and Future Work

From the experimentation, we conclude that the translation of WPMS into
ILP has the best performance on crafted instances. This is a quite remarkable
result since branch and bound solvers, like akms ls, have always dominated
this category since 2006. The ILP translation is however not competitive on
industrial and random instances. This is something to be studied in depth, and
may constitute the seed for new hybrid approaches of ILP and other WPMS
algorithms.

5
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Abstract. Weighted Partial MaxSAT (WPMS) is an optimization
variant of the Satisfiability (SAT) problem. Several combinatorial
optimization problems can be translated into WPMS. In this paper
we extend the state-of-the-art WPM2 algorithm by adding several
improvements, and implement it on top of an SMT solver. In particular,
we show that by focusing search on solving to optimality subformulas
of the original WPMS instance we increase the e�ciency of WPM2.
From the experimental evaluation we conducted on the PMS and WPMS
instances at the 2012 MaxSAT Evaluation, we can conclude that the new
approach is both the best performing for industrial instances, and for the
union of industrial and crafted instances.

1 Introduction

In the last decade Satisfiability (SAT) solvers have progressed dramatically in
performance due to new algorithms, such as, conflict directed clause learning [36],
and better implementation techniques. Thanks to these advances, nowadays the
best SAT solvers can tackle hard decision problems. Our aim is to push this
technology forward to deal with optimization problems.

The Maximum Satisfiability (MaxSAT) problem is the optimization version
of SAT. The idea behind this formalism is that sometimes not all constraints
of a problem can be satisfied, and we try to satisfy the maximum number of
them. The MaxSAT problem can be further generalized to the Weighted Partial
MaxSAT (WPMS) problem.

In the MaxSAT community, we find two main classes of algorithms: branch
and bound [17, 22, 24, 26, 27] and SAT-based [2, 14, 19–21, 31–33]. The latter
clearly dominate on industrial and some crafted instances, as we can see in the
results of the last 2012 MaxSAT Evaluation. SAT-based MaxSAT algorithms
basically reformulate a MaxSAT instance into a sequence of SAT instances. By
solving these SAT instances the MaxSAT problem can be solved [6].
? This research has been partially founded by the CICYT research projects TASSAT

(TIN2010-20967-C04-01/03/04) and ARINF (TIN2009-14704-C03-01).

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 117–132, 2013.
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In this paper we revisit the SAT-based MaxSAT algorithm WPM2 [5]
which belongs to a family of algorithms that exploit the information from
the unsatisfiable cores the underlying SAT solver provides. This algorithm is
the natural extension to the weighted case of the Partial MaxSAT algorithm
PM2 [3, 4]. In our experimental investigation the original WPM2 algorithm
solves 796 out of 1474 from the whole benchmark of PMS and WPMS industrial
and crafted instances at the 2012 MaxSAT Evaluation. We have extended
WPM2 with several complementary improvements. First of all, we apply the
stratification approach described in [2], what results in solving 74 additional
instances. Secondly, we introduce a new criteria to decide when soft clauses can
be hardened, that provides 66 additional solved instances. The hardening of soft
clauses in MaxSAT SAT-based solvers has been previously studied in [2, 33].
Finally, our most e↵ective contribution is to introduce a new strategy that
focuses search on solving to optimality subformulas of the original MaxSAT
instance. Actually, the new WPM2 algorithm is parametric on the approach
we use to optimize these subformulas. This allows to combine the strength
of exploiting the information extracted from unsatisfiable cores and other
optimization approaches. By solving these smaller optimization problems we
get the most significant boost in our new WPM2 algorithm. In particular,
we experiment with three approaches: (i) refine the lower bound on these
subformulas with the subsetsum function [5, 13], (ii) refine the upper bound
with the strategy applied in minisat+ [15], SAT4J [10], qmaxsat [21] or
ShinMaxSat [20], and (iii) a binary search scheme where the lower bound and
upper bound are refined as in the previous approaches. The best performing
approach in our experimental analysis is the second one and it allows to solve up
to 238 additional instances. As a summary, the overall speed-up we achieved on
the original WPM2 solver is about 378 additional solved instances, a 47% more.

As we mentioned, SAT-based MaxSAT algorithms reformulate a MaxSAT
instances into a sequence of SAT instances. Obviously, it is important to use
an e�cient SAT solver. Also, most SAT-based MaxSAT algorithms require
the addition of Pseudo-Boolean (PB) linear constraints as a result of the
reformulation process. These PB constraints are used to bound the cost of
the optimal assignment. Currently, in most state-of-the-art SAT-based MaxSAT
solvers, PB constraints are translated into SAT. However, there is no known SAT
encoding which can guarantee the original propagation power of the constraint,
i.e, what we call arc-consistency, while keeping the translation low in size. The
best approach so far, has a cubic complexity [8]. This can be a bottleneck for
WPM2 [5] and also for other algorithms such as, BINCD [19] or SAT4J [10].

In order to treat PB constraints with specialized inference mechanisms and a
moderate cost in size, while preserving the strength of SAT techniques for the rest
of the formula, we use the Satisfiability Modulo Theories (SMT) technology [35].
Related work in this sense can be found in [34]. Also, in [1] a Weighted Constraint
Satisfaction Problems (WCSP) solver implementing the original WPM1 [4]
algorithm is presented.
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An SMT instance is a generalization of a Boolean formula in which
some propositional variables have been replaced by predicates with predefined
interpretations from background theories such as, e.g., linear integer arithmetic.
Most modern SMT solvers integrate a SAT solver with decision procedures
(theory solvers) for sets of literals belonging to each theory. This way, we can
hopefully get the best of both worlds: in particular, the e�ciency of the SAT
solver for the Boolean reasoning and the e�ciency of special-purpose algorithms
for the theory reasoning.

Another reasonable choice would be to use a PB solver, which can be
seen as a particular case of an SMT solver specialized on the theory of PB
constraints [28, 29]. However, if we also want to solve problems modeled with
richer formalisms like WCSP, the SMT approach seems a better choice since we
can take advantage of a wide range of theories [1].

In this work, we implemented both the last version of the WPM1 algorithm [2]
and the revisited version of the WPM2 algorithm on top the of the SMT solver
Yices. Then, we performed an extensive experimental evaluation comparing them
with the best two solvers for PMS and WPMS categories at the 2012 MaxSAT
Evaluation and with three additional solvers that did not take part but have
been reported to exhibit good performance: bincd2, which is the new version of
the BINCD algorithm [19] described in [33], with the best configuration reported
by authors, maxhs from [14], which consists in an hybrid SAT and Integer Linear
Programming (ILP) approach, and ilp which performs a translation of WPMS
into ILP solved with IBM-CPLEX studio124 [7].

We observe that the implementation on SMT of our new WPM2 algorithm
with the second approach for optimizing the subformulas is the best performing
solver for both PMS and WPMS industrial instances. We also observe that it
is the best performing for the union of PMS and WPMS industrial and crafted
instances, what shows this is a robust approach. These results make us conjecture
that by improving the interaction of our new WPM2 algorithm with diverse
optimization techniques applied on the subformulas we can get additional speed-
ups.

This paper proceeds as follows. Section 2 presents some preliminary concepts.
Section 3 describes WPM2 [5] and the new improvements. Section 4 describes
the SMT problem and discuss some implementation details of the SMT-based
MaxSAT algorithms. Section 5 presents the experimental evaluation. Finally,
Section 6 shows the conclusions and the future work.

2 Preliminaries

A literal is either a Boolean variable x or its negation x. A clause C is a
disjunction of literals. A weighted clause is a pair (C, w), where C is a clause
and w is a natural number or infinity, indicating the penalty for falsifying the
clause C. A Weighted Partial MaxSAT formula is a multiset of weighted clauses



120 C. Ansótegui et al.

' = {(C1, w1), . . . , (Cm, wm), (Cm+1,1), . . . , (Cm+m0 ,1)}

where the first m clauses are soft and the last m0 clauses are hard. The set of
variables occurring in a formula ' is noted as var(').

A (total) truth assignment for a formula ' is a function I : var(') ! {0, 1},
that can be extended to literals, clauses and SAT formulas. For MaxSAT
formulas is defined as I({(C1, w1), . . . , (Cm, wm)}) =

Pm
i=1 wi (1 � I(Ci)). The

optimal cost of a formula is cost(') = min{I(') | I : var(') ! {0, 1}} and an
optimal assignment is an assignment I such that I(') = cost(').

The Weighted Partial MaxSAT problem for a Weighted Partial MaxSAT
formula ' is the problem of finding an optimal assignment.

3 WPM2 Algorithm

The WPM2 algorithm [5] is described in Algorithm 1. The fragments in gray
(lines 4, 10, 11, 13- 18 and 20) correspond to the new improvements we have
incorporated.

In the WPM2 algorithm, we extend soft clauses Ci with a unique fresh
auxiliary blocking variable bi obtaining 'w = {Ci _ bi}i=1...m [ {Cm+i}i=1...m0 .
Notice that bi will be set to true by a SAT solver on 'w if Ci is false. We
also work with a set AL of at-least PB constraints of the form

P
i2A wi bi � k

on the variables bi, and a similar set AM of at-most constraints of the formP
i2A wi bi  k, that are modified at every iteration of the algorithm.
Intuitively, the WPM2 algorithm refines at every iteration the lower bound on

' till it reaches the optimum cost('). The AM constraints are used to bound the
cost of the falsified clauses. The AL constraints are used to impose that subsets
of soft clauses have a minimum cost and to compute the AM constraints, as
we will see later. The algorithm ends when 'w [ CNF (AL [ AM) becomes
satisfiable1, where CNF is the translation to SAT of the PB constraints.

Technically speaking, the AL constraints give lower bounds on cost('). The
AM constraints enforce that all solutions of the set of constraints AL [ AM
are the solutions of AL of minimal cost. This ensures that any solution of the
formula sent to the solver, 'w [ CNF (AL [ AM), if there is any, is an optimal
assignment of '. Therefore, given a set of at-least constraints AL we compute
a corresponding set of at-most constraints AM as follows. First, we need to
introduce the notion of core and cover. A core is a set of indexes A such thatP

i2A wi bi � k 2 AL. Function core(
P

i2A wi bi � k) returns the core A and
function cores(AL) returns {core(al) | al 2 AL}. Covers are defined from cores
as follows.

Definition 1. Given a set of cores L, we say that the set of indexes A is a cover
of L, if it is a minimal non-empty set such that, for every A0 2 L, if A0 \A 6= ;,
then A0 ✓ A. Given a set of cores L, we denote the set of covers of L as SC(L).
1 The AL constraints are redundant, i.e., not required to be sent to the SAT solver

for the soundness of the algorithm but help to speed up the search.
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Algorithm 1. Revisited WPM2 algorithm.
Input: ' = {(C1, w1), . . . , (Cm

, w
m

), (C
m+1,1), . . . , (C

m+m

0 ,1)}
1: if sat({C

i

2 ' | w
i

= 1}) = (UNSAT, , ) then return (1, ;)
2: '

w

:= {C1 _ b1, . . . , Cm

_ b
m

, C
m+1, . . . , C

m+m

0} .Extend all soft clauses
3: AL := {w1 b1 � 0, . . . , w

m

b
m

� 0} .Set of at-least constraints
4: w

max

:= 1
5: while true do

6: AM := ; .Set of at-most constraints
7: foreach (

∑
i2A

w
i

b
i

� k) 2 AL do

8: if A 2 SC(cores(AL)) then

9: AM := AM [ {
∑

i2A

w
i

b
i

 k}

10: (st, '
c

, I) := sat('
w

\{C
i

_ b
i

| (C
i

, w
i

) 2 ' ^ w
i

< w
max

}[CNF (AL[AM))
11: if st = sat and w

max

= 0 then return (I('), I)
12: else

13: if st = sat then

14: W :=
∑

{w
i

| (C
i

, w
i

) 2 ' ^ w
i

< w
max

}
15: '

h

:= harden(', AM, W )
16: w

max

:= decrease(w
max

, ')

17: else

18: A := {i | (C
i

_ b
i

) 2 ('
c

\'
h

)} .New core
19: A :=

⋃
A

02cores(AL)

A

0\A6=;
A0 .New cover

20: k := newbound(AL [ '
w

, A)
21: AL := {al 2 AL | core(al) 6= A} [ {

∑
i2A

w
i

b
i

� k}

Given a set AL, the set AM is the set of at-most constrains
P

i2A wi bi  k
such that A 2 SC(cores(AL)) and k is the solution of minimizing

P
i2A wi bi

subject to AL and bi 2 {0, 1}.
The algorithm starts with AL = {w1 b1 � 0, . . . , wm bm � 0} and the

corresponding AM := {w1 b1  0, . . . , wm bm  0} that ensures that the unique
solution of AL [ AM is b1 = · · · = bm = 0 with cost 02. At every iteration,
the algorithm calls a SAT solver with 'w [ CNF (AL [ AM). If it returns sat,
then the interpretation I is a MaxSAT solution of ' and we return the optimal
cost I('). If it returns unsat, then we use the information of the unsatisfiable
core 'c obtained by the SAT solver to enlarge the set AL, excluding more
interpretations on the bi’s that are not partial solutions of 'w. Before calling
again the SAT solver, we update AM conveniently, to ensure that solutions to
the new constraints AL[AM are still minimal solutions of the new AL constraint
set. Notice that in every iteration the set of solutions of {b1, . . . , bm} defined by
AL is decreased, whereas the set of solutions of AM is increased.

2 In the implementation, we do not add a blocking variable to a soft clause till it
appears into a core.
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One key point in WPM2 is to compute the newbound(AL, A) (line 20) which
corresponds to the following optimization problem:

minimize
X

i2A

wi · bi subject to {
X

i2A

wi · bi � k} [AL (1)

where k = 1 +
P

{k0 |
P

i2A0 wi bi  k0 2 AM ^A0 ✓ A}.
Notice that by removing the AL constraints in (1), we get the subsetsum

problem [13]. In the original WPM2 algorithm [5], the subsetsum problem is
progressively solved until we get a solution that also satisfies the AL constraints.
This satisfiability check in the original WPM2 is performed with a SAT solver.

In what follows, we present how we have modified the original WPM2
algorithm (fragments in gray in Algorithm 1) by incorporating several
improvements: the application of a stratified approach, the hardening of soft
clauses and the optimization of the subformulas defined by the covers.

3.1 Stratified Approach

As in [4] for WPM1, we apply a stratified approach. The stratified approach
(lines 4, 10, 11 and 16) consists in sending to the SAT solver only those
soft clauses with weight wi � wmax. Then, when the SAT solver returns sat,
if there are still unsent clauses, we decrease wmax to include additional clauses
to the formula. From [4], we also apply the diversity heuristic (line 16) which
supplies us with an e�cient method to calculate how we have to reduce the
value of wmax in the stratified approach, so that, when there is a big variety of
distinct weights, wmax decreases faster, and, when there is a low diversity, wmax

is decreased to the following value of wi. Similar approach with an alternative
heuristic for grouping clauses can be found in [32].

3.2 Clause Hardening

The hardening of soft clauses in MaxSAT SAT-based solvers has been previously
studied in [2, 11, 18, 23, 25, 30, 33]. Inspired by these works we study a hardening
scheme for WPM2. While clause hardening was reported to have no positive
e↵ect in WPM1 [2], we will see that it boosts e�ciency in WPM2.

The clause hardening (lines 14, 15 and 18) consists in considering hard
those soft clauses whose satisfiability we know does not need to be reconsidered.
We need some lemma ensuring that falsifying those soft clauses would lead us to
suboptimal solutions. In the case of WPM1, all soft clauses satisfying wi > W ,
where W =

P
{wi | (Ci, wi) 2 '^wi < wmax} is the sum of weights of clauses not

sent to the SAT solver, can be hardened. The correctness of this transformation
is ensured by the following lemma:

Lemma 1 (Lemma 24 in [6])
Let '1 = {(C1, w1), . . . , (Cm, wm), (Cm+1,1), . . . , (Cm+m0 ,1)} be a MaxSAT

formula with cost zero, let '2 = {(C0
1, w

0
1), . . . , (C0

r, w
0
r)} be a MaxSAT formula

without hard clauses and W =
Pr

j=1 w0j . Let
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harden(w) =
⇢

w if w  W
1 if w > W

and '01 = {(Ci, harden(wi)) | (Ci, wi) 2 '1}. Then, cost('1['2) = cost('01['2),
and any optimal assignment for '01 [ '2 is an optimal assignment of '1 [ '2.

However, this lemma is not useful in the case of WPM2 because we do not
proceed by transforming the formula, like in WPM1. Therefore, we generalize
this lemma. For this, we need to introduce the notion of optimal of a formula.

Definition 2. Given a MaxSAT formula ' = {(C1, w1), . . . , (Cm, wm),
(Cm+1,1), . . . , (Cm+m0 ,1)}, we say that k is a (possible) optimal of ' if there

exists a subset A ✓ {1, . . . , m} such that

P
i2A wi = k.

Notice that, for any interpretation I of the variables of ', we have that I(')
is an optimal of '. However, if k is an optimal, there does not exist necessarily
an interpretation I satisfying I(') = k. Notice also that, given ' and k, finding
the next optimal, i.e. finding the smallest k0 > k such that k0 is an optimal of '
is equivalent to the subset sum problem.

Lemma 2. Let '1 [ '2 be a MaxSAT formula and k1 and k2 values such that:

cost('1['2) = k1+k2 and any assignment I satisfies I('1) � k1 and I('2) � k2.

Let k0 be the smallest possible optimal of '2 such that k0 > k2. Let '3 be a set

of soft clauses with W =
P

{wi | (Ci, wi) 2 '3}.
Then, if W < k0� k2, then any optimal assignment I 0 of '1 ['2 ['3 assigns

I 0('2) = k2

Proof. Let I 0 be any optimal assignment of '1 [ '2 [ '3. On the one hand, as
for any other assignment, we have I 0('2) � k2.

On the other hand, any of the optimal assignments I of '1['2 can be extended
(does not matter how) to the variables of var('3) \ var('1 [ '2), such that

I('1 [ '2 [ '3) = I('1) + I('2) + I('3)  k1 + k2 + W < k1 + k0 (2)

Now, assume that I 0('2) 6= k2, then I 0('2) � k0. As any other assignment,
I 0('1) � k1. Hence, I 0('1 [ '2 [ '3) � k1 + k0 > I('1 [ '2 [ '3), but this
contradicts the optimality of I 0. Therefore, I 0('2) = k2.

ut

In order to apply this lemma we have to consider partitions of the formula
'1['2 ensuring cost('1['2) = k1 +k2 and I('1) � k1 and I('2) � k2, for any
assignment I. This can be easily ensured, in the case of WPM2, if both '1 and
'2 are unions of covers. Then, we only have to check if the next possible optimal
k0 of '2 exceeds the previous one k2 more than the sum W of the weights of
the clauses not sent to the SAT solver. In such a case, we can consider all soft
clauses of '2 and their corresponding AM constraint with k2 as hard clauses. In
other words, we do not need to recompute the partial optimal k2 of '2.



124 C. Ansótegui et al.

Finally, in line 15 of Algorithm 1, function harden(', AM, W ) returns the
set of soft clauses 'h that needs to be considered hard based on the previous
analysis according to: the current set of covers AM , the next optimals of these
covers and the sum of the weights W of soft clauses beyond the current wmax,
i.e., not yet sent to the SAT solver.

3.3 Cover Optimization

As we have mentioned earlier, one key point in WPM2 is how to compute the
newbound(AL, A) (line 20). Actually, we can solve to optimality the subformulas
defined by the union of the soft clauses related to the cover A and the hard
clauses.

Definition 3. Given a MaxSAT formula ' = {(C1, w1), . . . , (Cm, wm),
(Cm+1,1), . . . , (Cm+m0 ,1)} and a set of indexes A, we define the subformula,

'[A], as follows: '[A] = {(Ci, wi) 2 ' | i 2 A _ wi = 1)}

Solving to optimality '[A] give us the optimal value k = cost('[A]) for the
AM constraint related to cover A. In order to do this, while taking advantage
of the AL constraints generated so far, we only have to extend the minimization
problem corresponding to the newbound (1) function, by adding 'w to the
constraints, i.e, newbound(AL[ 'w, A)3. Notice that newbound(AL[ 'w, A) �
newbound(AL, A).

In order to optimize '[A], we can use any exact approach related to
MaxSAT, such as, MaxSAT branch and bound algorithms, MaxSAT SAT-based
algorithms, saturation under the MaxSAT resolution rule, or we can use other
solving techniques such as PB solvers or ILP techniques, etc. Our new WPM2
algorithm is parametric on any suitable optimization solving approach. In this
work, we present three approaches.

The first and natural approach consists in iteratively refining (increasing) the
lower bound on the optimal k for '[A] by applying the subsetsum function as
in the original WPM2. The procedure stops when we satisfy the constraints
AL [ 'w . Notice that since we have included 'w into the set of constraints, the
solution we will eventually get has to be optimal for '[A].

The second approach consists in iteratively refining (decreasing) the upper
bound following the strategy applied in minisat+ [15], SAT4J [10], qmaxsat [21]
or ShinMaxSat [20]. The upper bound ub is initially set to the sum of the weights
wi of the soft clauses in '[A]. Then, we iteratively test whether k = ub � 1 is
feasible or not. Whenever we get a satisfying assignment, we update ub to the
sum of the weights wi of those soft clauses where bi evaluates to true under the
satisfying assignment. If we get an unsatisfiable answer, the previous ub is the
optimal value for '[A].

The third approach applies a binary search scheme [12, 16, 19]. We
additionally refine the lower bound as in our first approach and the upper bound
as in the second approach.
3 We can actually exclude from '

w

all the soft clauses not in '[A].
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The worst case complexity, in terms of the number of calls to the SAT solver, of
the new WPM2 algorithm is the number of times that the newbound function is
called (bounded by the number of clauses) multiplied by the number of SAT calls
needed in each call to the newbound function. This latter number is logarithmic
on the sum of the weights of the clauses of the core if we use a binary search,
hence essentially the number of clauses. Therefore, the worst case complexity,
when using a binary search to solve to optimality the subformulas, is quadratic
on the number of soft clauses.

In order to see that the number of calls to the newbound function is bounded
by the number of clauses we just need to recall that WPM2 merges the covers.
Consider a binary tree where the soft clauses are the leaves, and the internal
nodes represent the merges (calls to the newbound function). A binary tree of n
leaves has n-1 internal nodes.

Solving to optimality all the covers can be very costly since these are NP-hard
problems. Depending on the unsatisfiable cores we get in the general loop of the
WPM2 algorithm some covers have to be merged. Therefore, we may argue that
part of the work we did in order to optimize these covers can be useless4. For
example, a reasonable strategy is to optimize the current cover only if it was
not the result of merging other covers, i.e., when the last unsatisfiable core is
contained into a cover. In the experimental evaluation, we will see that although
the number of solved instances does not vary too much, the mean time for solving
some families can be decreased.

4 Engineering E�cient SMT-Based MaxSAT Solvers

We have implemented both the last version of the WPM1 algorithm [2] and the
revisited version of the WPM2 algorithm on top the of the SMT solver Yices.

As we have said, an SMT instance is a generalization of SAT where some
propositional variables are replaced by predicates with predefined interpretations
from background theories. Among the theories considered in the SMT library [9]
we are interested in QF LIA (Quantifier-Free Linear Integer Arithmetic). With
the QF LIA theory we can model the PB constraints that SAT-based MaxSAT
algorithms generate during their execution. Therefore, for the SMT-based
MaxSAT algorithm, we just need to replace the conversion to CNF (line 10
in Algorithm 1) by the proper linear integer arithmetic predicates.

As suggested in [16, 31], we can preserve some learned lemmas from previous
iterations that may help to reduce the search space. In order to do that, we
execute the SMT solver in incremental mode. Within this mode, we can call
the solve routine and add new clauses (assertions) on demand, while preserving
learned lemmas. However, notice that our algorithms delete parts of the formula
between iterations. For example, in lines 7 to 9 of Algorithm 1 we recompute the
set AM, possibly erasing some of the at-most constraints. Therefore, we have to
take care also of any learned lemma depending on them.

4 The related AL constraints can still be kept.
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The SMT solver Yices gives the option of marking assertions as retractable. If
the SMT solver does not support the deletion of assertions but supports the usage
of assumptions, we can replace every retractable assertion C, with a ! C, where
a is an assumption. Before each call, we activate the assumptions of assertions
that have not been retracted by the algorithm. Notice that assertions that do
have been retracted will have a pure literal (a) such that a has not been activated.
Therefore, the solver can safely set to false a deactivating the clause. Moreover,
any learned lemma on those assertions will also include a. For example, Z3 and
Mathsat SMT solvers do not allow to delete clauses, but they allow the use of
assumptions.

5 Experimental Results

In this section we present an intensive experimental investigation on the PMS
and WPMS industrial and crafted instances from the 2012 MaxSAT Evaluation.
We provide results for our new WPM2 SMT-based MaxSAT solver, for a
WPM1 [2] SMT-based MaxSAT solver, the best two solvers for each category of
the 2012 MaxSAT Evaluation, and three solvers which did not participate but
the authors have reported to exhibit good performance. We run our experiments
on a cluster featured with 2.27 GHz processors, memory limit of 3.9 GB and a
timeout of 7200 seconds per instance.

The experimental results are presented in Tables 1 and 2 following the same
classification criteria as in the 2012 MaxSAT Evaluation. For each solver and
family of instances, we present the number of solved instances in parenthesis
and the mean solving time. Solvers are ordered from left to right according to
the total number of solved instances. The results for the best performing solver
in each family are presented in bold. The number of instances of every family
is specified in the column under the sign ’#’. Since di↵erent families may have
di↵erent number of instances, we also include for each solver the mean ratio of
solved instances.

Our new WPM2 algorithm is implemented on top of the Yices SMT
solver (version 1.0.29). The di↵erent versions of WPM2 and corresponding
implementations are named wpm2 where subindexes can be s that stands for
stratified approach with diversity heuristic and h for hardening. Regarding to
how we perform the cover optimization, l stands for lower bound refinement
based on subsetsum, u for upper bound refinement based on satisfying truth
assignment, and b for binary search. Finally, a stands for optimizing all the
covers and c for optimizing only covers that contain the last unsatisfiable core.

Table 1 shows our first experiment, where we evaluate the impact of each
variation on the original wpm2. By using a stratified approach with the diversity
heuristic (wpm2s) we solve some additional instances in all categories having
the best improvement in WPMS crafted. Overall, we solve 74 more instances.
By adding hardening (wpm2sh) we solve 66 more instances, mainly in WPMS
industrial family haplotyping-pedigrees.
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Table 3. Summary of solved instances and mean ratio % for best solvers

solvers pms wpms Ind. pms wpms Cra. Total

428 207 635 268 271 539 1174
wpm2

shua

83.6 % 77.5 % 82.5 % 68.5 % 62.0 % 65.3 % 73.9 %
330 204 534 207 318 525 1059

wpm1 68.3 % 78.4 % 70.2 % 58.3 % 77.4 % 67.9 % 69.0 %

423 181 604 245 177 422 1026

bincd2 78.2 % 67.9 % 76.3 % 65.3 % 45.6 % 55.5 % 65.9 %

239 118 357 332 332 664 1021

ilp 48.9 % 39.3 % 47.1 % 76.5 % 78.6 % 77.6 % 62.3 %

374 194 568 228 222 450 1018

pwbo2.1 66.3 % 71.3 % 67.2 % 59.3 % 54.5 % 56.9 % 62.1 %

353 52 405 271 264 535 940

shinms 63.6 % 22.1 % 55.8 % 77.0 % 64.8 % 70.9 % 63.4 %

418 291

qms 83.0 % 81.1 %

Regarding our three approaches for optimizing the covers, we can see that by
optimizing with subsetsum (wpm2shla) we solve some additional instances in all
categories having the best improvement in WPMS industrial with 18 more and in
WPMS crafted with 106 more. It is important to highlight that optimizing covers
with subsetsum, instead of applying the subsetsum as in the original WPM2
algorithm, leads to a total improvement of 134 additional solved instances, with
respect to wpm2sh.

Optimizing all covers by refining the upper bound (wpm2shua), we get an
additional boost with respect to wpm2shla. We can see that we solve some
additional instances in all categories. We get the best improvement for PMS
industrial, solving 34 additional instances, and for WPMS crafted, 50 more.
Notice that the overall increase with respect to wpm2sh is of 238 additional
solved instances.

Binary search (wpm2shba) improves 10 instances in WPMS crafted with
respect to wpm2shua. But the global performance with respect to wpm2sh, 223,
is not as good as only refining the upper bound (wpm2shua).

Optimizing only covers that contain the last unsatisfiable core solves almost
the same instances as optimizing all covers but improves the average running
time in the WPMS industrial family upgradeability-problem by a factor of 4.

Table 2 shows the results of our second experiment where we compare the best
variation and implementation of our new WPM2 algorithm (wpm2shua) with
several solvers. In particular, we compare with the best two solvers for the PMS
and WPMS industrial and crafted instances of the 2012 MaxSAT Evaluation:
PMS industrial (qms0.21g2, pwbo2.1), WPMS industrial (pwbo2.1 [31, 32],
wpm1 [2]5), PMS crafted (qms0.21 [21], akms ls [22] and WPMS crafted (wpm1,
shinms [20]). We also compare with three additional MaxSAT solvers: bincd2,
which is the new version of the BINCD algorithm [19] described in [33], with
the best configuration reported by authors, maxhs from [14], which consists in
an hybrid SAT-ILP approach, and ilp, which translates WPMS into ILP and
applies the MIP solver IBM-CPLEX studio124 [7].

5 We present in this paper a version implemented on top of the Yices SMT solver.
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Table 2(a) presents the results for the PMS industrial instances. Our
wpm2shua is the first one in solved instances with 428 and mean ratio with
93.6%, closely followed by bincd2 and qms0.21g2.

Table 2(b) presents the results for the WPMS industrial instances. As we can
see, our wpm2shua and wpm1 dominate this category with 207 and 204 solved
instances and 77.5% and 78.4% mean ratio, resp.

As a summary of industrial instances, we can conclude that our wpm2shua

is the best performing solver with a total of 635 solved instances, followed by
bincd2 with a total of 604. We do not have results for any version of qms since
it only works for PMS instances. The closest solver to the search scheme of qms
would be shinms but it does not perform well for WPMS industrial.

Table 2(c) presents the results for the PMS crafted instances. The ilp approach
solves 332 of 372 instances, 35 more than akms ls. This is remarkable since
branch and bound solvers, like akms ls, have always dominated this category
since 2006. PMS solver qms0.21 is the third in solved instances but the first in
mean ratio with 81.1%. Our wpm2shua is the fifth in solved instances with 268
and the fourth in mean ratio with 68.5%.

Table 2(d) presents the results for the WPMS crafted instances. Again, the
ilp approach is the best one, solving 332 of 372 instances, 14 more than the
second one, wpm1. Our wpm2shua is the third in solved instances with 271 and
the fourth in mean ratio with 62.0%.

As a summary of crafted instances, we can conclude that ilp is the best
performing approach, and our wpm2shua is the second in total solved instances.

In Table 3 we can see a summary of the solved instances and mean ratio per
category for best solvers. We recall that all solvers accept weights except qms
that is only for PMS. Our wpm2shua is the first in solved instances for both PMS
industrial and WPMS industrial. In crafted categories it is the second in total
solved instances. However, for both PMS crafted and WPMS crafted categories
ilp is the first in solved instances. We can conclude that our wpm2shau is the most
robust solver across all four PMS and WPMS industrial and crafted categories,
followed by wpm1 and bincd2.

6 Conclusions and Future Work

From the experimental evaluation, we conclude that the new WPM2 solver is
the best performing solver for PMS and WPMS industrial instances and the best
on the union of PMS and WPMS industrial and crafted instances. In particular,
we have shown that solving to optimality the subformulas defined by covers
really works in practice. As future work, we will study how to improve the
interaction with the optimization of the subformulas. A portfolio that selects
the most suitable optimization approach depending on the structure of the
subformula seems another way of achieving additional speed-ups. Finally, we
have also shown that SMT technology is an underlying e�cient technology for
solving the MaxSAT problem.
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Abstract

We propose a new approach that exploits the
good properties of core-guided and model-guided
MaxSAT solvers. In particular, we show how to ef-
fectively exploit the structure of unsatisfiable cores
in MaxSAT instances. Experimental results on in-
dustrial instances show that the proposed approach
outperforms both complete and incomplete state-
of-the-art MaxSAT solvers at the last international
MaxSAT Evaluation in terms of robustness and to-
tal number of solved instances.

1 Introduction

Maximum Satisfiability (MaxSAT) is an optimization version
of the well-known Satisfiability (SAT) problem. Recently, we
have seen the successful application of MaxSAT techniques
to solve several industrial or real combinatorial optimization
problems: software package upgrade, debugging of hardware
designs, fault localization in C code, bioinformatics, course
timetabling, planing, scheduling, routing, electronic markets,
combinatorial auctions, etc. See [Ansótegui et al., 2013b;
Morgado et al., 2013] for citations.

Solving exactly combinatorial optimization problems, i.e.,
finding and certifying the best possible assignment, can be
NP-hard from a computational point of view. However, many
industrial problems are slightly beyond the reach of state-of-
the-art techniques, and for many real domains we are often
interested on improving in a reasonable time the best current
assignment. Notice that even a small gain in the quality of the
assignment can lead to important practical consequences for
real domains.

This seems to suggest we should focus on developing in-
complete algorithms for industrial problems. The experi-
ence achieved from the international SAT and MaxSAT com-
petitions, shows us that the right research avenue is to fo-
cus first on improving complete or exact algorithms. Then,
with the proper modifications, we can get an incomplete al-
gorithm. Besides, we can always incorporate our complete
algorithm into incomplete approaches such as Large Neigh-
borhood Search [Shaw, 1998]. In LNS, we heuristically dive

⇤Research partially supported by the Ministerio de Economı́a y
Competividad research project TASSAT2: TIN2013-48031-C4-4-P
and Google Faculty Research Award program.

into promising regions of the search space (neighborhoods)
that are explored with complete solvers.

The aim of this paper is to improve and combine effec-
tively and efficiently techniques from complete state-of-the-
art solvers MaxSAT solvers. In particular, we pay special
attention to how to exploit the structure of the unsatisfiable
cores in a MaxSAT instance. Finally, develop a complete al-
gorithm that can be used in an incomplete approach.

In the MaxSAT community, we find two main classes of
complete algorithms: branch and bound [Heras et al., 2007;
Li et al., 2009; Kügel, 2010] and SAT-based [Ansótegui et
al., 2013b; Morgado et al., 2013]. SAT-based approaches
clearly dominate on industrial instances. SAT-based MaxSAT
algorithms reformulate a MaxSAT instance into a sequence of
SAT instances. By solving these SAT instances the MaxSAT
problem can be solved. Intuitively, the SAT instances encode
whether it is possible to find an assignment to the MaxSAT
instances with a cost less than or equal to a certain k. The se-
quence is built in increasing order of k and it can be split into
two parts. The instances in the first part are all unsatisfiable
while the instances in the second one are all satisfiable. The
value of k where the first satisfiable instance is located gives
us the optimum of the MaxSAT instance. This transition from
unsatisfiable to satisfiable SAT instances is usually associated
with an easy-hard-easy pattern in terms of the hardness of the
SAT instances [Shen and Zhang, 2003].

By solving the unsatisfiable SAT instances MaxSAT
solvers refine the lower bound, while by solving satisfiable
instances they refine the upper bound. Within SAT-based
MaxSAT algorithms we find two main classes: (i) those that
refine the lower bound, and guide the search with the un-
satisfiable cores obtained from unsatisfiable SAT instances
(core-guided algorithms) and, (ii) those that refine the upper
bound, and guide the search with the satisfiable assignments
obtained from satisfiable SAT instances (model-guided algo-
rithms). Both approaches have strengths and weaknesses and
there have been already some hybrid approaches [Morgado et
al., 2012; Ansótegui and Gabàs, 2013].

SAT-based MaxSAT solvers use Pseudo-Boolean (PB)
constraints to create the SAT instances in the sequence.
It is known that efficiency of SAT-based MaxSAT solvers
heavily depends on how complex are these PB constraints,
and how efficiently we manage them. Respect complex-
ity, our current approach, as in [Andres et al., 2012; Mor-
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gado et al., 2014], only adds cardinality (Card) constraints
(PB constraints with coefficients equal to 1) even if the
MaxSAT instance is weighted. Respect management, un-
like [Morgado et al., 2014; Narodytska and Bacchus, 2014;
Martins et al., 2014], where Card constraints are incremen-
tally constructed, our best approach does not use yet these
incremental strategies for Card constraints. It exploits the
structure of the unsatisfiable cores to produce a more efficient
encoding for the Card constraints.

As we have mentioned, the algorithm we present is able
to produce upper bounds during the search process. We also
use these upper bounds to extend a very effective technique
used in SAT solvers called phase saving [Pipatsrisawat and
Darwiche, 2007] to MaxSAT.

Finally, we show an extensive experimental investigation
on industrial instances. From the results, we can conclude
that our approach outperforms clearly both in terms of ro-
bustness and number of solved instances the winners of the
international MaxSAT Evaluation 2014 (MSE14) at the com-
plete and incomplete tracks.

This paper proceeds as follows. Section 2 introduces
some preliminary concepts. Section 3 presents the com-
plete MaxSAT algorithm. Section 4 discusses how to en-
code efficiently in SAT the Card constraints generated by the
MaxSAT algorithm. Section 5 explains how to exploit the
upper bounds generated by the MaxSAT algorithm. Section 6
shows the experimental evaluation. Finally, Section 7 con-
cludes.

2 Preliminaries

Definition 1 A literal l is either a Boolean variable x or its
negation x. A clause c is a disjunction of literals. A SAT
formula is a set of clauses that represents a Boolean formula
in Conjunctive Normal Form (CNF), i.e. a conjunction of
clauses.

Definition 2 A weighted clause is an ordered pair hc, wi,
where c is a clause and w is a natural number or infinity
(indicating the cost of falsifying c, see Definitions 4 and 5). If
w is infinite the clause is hard, otherwise it is soft.
Definition 3 A Weighted Partial MaxSAT (WPMS) formula
is an ordered multiset of weighted clauses:

' = hhc1, w1i, . . . , hcs, wsi, hcs+1,1i, . . . , hcs+h,1ii

where the first s clauses are soft and the last h clauses are
hard. The presence of soft clauses with different weights
makes the formula Weighted and the presence of hard clauses
makes it Partial. The ordered multiset of weights of the soft
clauses in the formula is noted as w('). The top weight
of the formula is noted as W ('), and defined as W (') =P

w(') + 1. By 'S we refer the set of soft clauses and by
'H to the set of hard clauses. Finally, the set of variables
occurring in the formula is noted as var(').
Example 1 Given the following WPMS formula: ' =
hhx1, 5i, hx2, 3i, hx3, 3i, hx1 _ x2,1i, hx1 _ x3,1i, hx2 _
x3,1ii, we have that w(') = h5, 3, 3i, W (') = 12,
'S = hhx1, 5i, hx2, 3i, hx3, 3ii, 'H = hhx1 _ x2,1i, hx1 _
x3,1i, hx2 _ x3,1ii and var(') = {x1, x2, x3}.

Definition 4 An assignment for a set of Boolean variables X
is a function I : X ! {0, 1}, that can be extended to liter-
als, (weighted) clauses, SAT formulas and WPMS formulas
as follows:

I(x) = 1� I(x)
I(l1 _ . . . _ lm) = max{I(l1), . . . , I(lm)}
I({c1, . . . , cn}) = min{I(c1), . . . , I(cn)}
I(hc, wi) = w (1� I(c))
I(hhc1, w1i, . . . , hcs+h, ws+hii) =

Ps+h
i=1 I(hci, wii)

We will refer to the value returned by an assignment I on
a weighted clause or a WPMS formula as the cost of I.
Definition 5 We say that an assignment I satisfies a clause
or a SAT formula if the value returned by I is equal to 1. In
the case of SAT formulas, we will refer also to this assignment
as a satisfying assignment or solution. Otherwise, if the value
returned by I is equal to 0, we say that I falsifies the clause
or the SAT formula.
Definition 6 The SAT problem for a SAT formula ' is the
problem of finding a solution for '. If a solution exists the
formula is satisfiable, otherwise it is unsatisfiable.
Definition 7 Given an unsatisfiable SAT formula ', an un-
satisfiable core 'C is a subset of clauses 'C ✓ ' that is also
unsatisfiable.
Definition 8 A SAT algorithm for the SAT problem, takes as
input a SAT formula ' and returns an assignment I such that
I(') = 1 if the formula is satisfiable. Otherwise, it returns
an unsatisfiable core 'C .

Given unlimited resources of time and memory, we say that
a SAT algorithm is complete if it terminates for any SAT for-
mula. Otherwise, it is incomplete.
Definition 9 The optimal cost (or optimum) of a WPMS for-
mula ' is cost(') = min{I(') | I : var(') ! {0, 1}}
and an optimal assignment is an assignment I such that
I(') = cost('). We will refer to this assignment as a so-
lution for ' if I(') 6= 1. Any cost above (below) cost(') is
called an upper (lower) bound for '.
Example 2 Given the WPMS formula ' of Example 1, we
have that cost(') = min{6, 8, 11,1} = 6 and the optimal
assignment I maps hx1, x2, x3i to h1, 0, 0i.
Definition 10 The Weighted Partial MaxSAT problem for a
WPMS formula ' is the problem of finding a solution for '.
If a solution does not exist the formula is unsatisfiable.
Definition 11 A WPMS algorithm for the WPMS problem,
takes as input a WPMS formula ' and returns an assignment
I, such that, I(') � cost(').

Given unlimited resources of time and memory, we say
that a WPMS algorithm is complete or exact if for any input
WPMS formula ' and returned I, I(') = cost('). Other-
wise, we say it is incomplete.
Definition 12 An integer linear Pseudo-Boolean (PB) con-
straint is an inequality of the form w1x1 + · · · + wnxn op k,
where op 2 {,�,=, >,<}, k and wi are integer coeffi-
cients, and xi are Boolean variables. A PB at-most constraint
is a PB constraint where op is . A cardinality (Card) con-
straint is a PB constraint where the coefficients wi are equal
to 1.
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3 WPM3 MaxSAT Algorithm

Algorithm 1: WPM3
Input: ' = hhc1, w1i, ..., hcs

, w
s

i, hc
s+1,1i, ..., hc

s+h

,1ii

1 hAM, w
strat

i := hhhh1i, 0, w1i, . . . , hhsi, 0, w
s

ii,1i
2 while true do

3 hst, C, Ii := sat(', AM, w
strat

)
4 if st = SAT then

5 if w
strat

= min({w
j

})
w

j

2w(AM),w
j

6=0

then return hI, I(')i

6 w
strat

= decrease(AM, w
strat

)

7 else

8 if w
strat

= 1 then return h;,1i
9 w

min

:= min(w(AM
C

))
10 AM := AM [hA

j

, k
j

, w
j

i
j2C

/hA
j

, k
j

, w
j

j2C

� w
min

i]

11 hA, k
A

i := optimize(', AM
C

)
12 AM := AM + hhA, k

A

, w
min

ii

Function sat(', AM, wstrat)
1 'k := 'H [ {ci _ bi}

hc
i

,w
i

i2'
S

[ { CNF (Aj , kj) _ aj , aj
hA

j

,k
j

,w
j

i2AM,w
j

�w
strat

}

2 hst, 'k
C , Ii := satsolver('k)

3 C := {j | {aj} \ 'k
C 6= ;}

4 return hst, C, Ii

Function optimize(', AM )
1 A := +Aj

hA
j

,K
j

,w
j

i2AM

2 ub :=
P

| Aj |
hA

j

,k
j

,w
j

i2AM

3 while true do

4 k := ub� 1
5 hst, , Ii := sat(', hhA, k, ii, )
6 if st = SAT then ub := I(hhci, 1i | hci, wii 2 'i

i2A

)

7 else return hA, ubi

In this section, we present the WPM3 complete algorithm
for the MaxSAT problem. Given an input WPMS formula
', WPM3 solves the formula by testing the satisfiability of a
sequence of SAT instances 'k where 0  k  W ('). Each
SAT instance 'k encodes whether there is an assignment to '
with a cost  k. Notice that SAT instances with k < cost(')
are unsatisfiable, otherwise they are satisfiable. The optimum
corresponds to the k of the first satisfiable SAT instance.

Roughly speaking, from every unsatisfiable SAT instance
the algorithm finds and keeps an unsatisfiable core. WPM3 is
designed to be aware of the global structure of theses cores.
This is used both for producing more efficient cardinality
(Card) constraint encodings (see Section 4) and focus the
search on subproblems of the input MaxSAT instance.

The algorithm maintains a set of soft at-most Card con-
straints AM . We note these constraints as hA, k, wi, where
A is an ordered multiset of indexes of the original soft
clauses, k indicates at most how many clauses from A can
be falsified, and w is the cost for falsifying this soft con-
straint. The at-most constraints are used to do not accept
those solutions whose cost exceeds the current k, where
k =

P
hA

j

,k
j

,w
j

i2AM kj · wj . Moreover, the algorithm guar-
antees that k  cost('). The idea of maintaining multiple at-
most Card constraints instead of a single one was originally
introduced in [Ansótegui et al., 2009a] for PM2 algorithm.
Notice that from the AM set the global core structure can be
obtained.

We start (line 1) by adding to AM a soft at-most constraint
for each original soft clause. Then, the algorithm will iterate
(line 2) till it is able to determine cost('). This will happen
if it detects that the set of hard clauses is unsatisfiable (line 8,
cost(') = 1) or when it is able to generate the first satisfi-
able instance (line 5, cost(') = k = I(')). We obviate for
the moment the role of wstat and we consider it is 1 for the
first iteration and min({wj})

w
j

2w(AM),w
j

6=0

for the rest.

Function sat (line 3) builds the SAT instance 'k at the
current iteration and sends it to the SAT solver. 'k is con-
structed through the union of the following sets expressed as
SAT clauses: (i) the set of hard clauses, (ii) the reification to
variables bi of soft clauses, (iii) the reification to variables aj

of the translation into CNF of the at-most constraints in AM ,
and finally (iv) the unit clauses aj . The new bi variables are
true if the respective original soft clause becomes false. They
are used to encode the at-most constraints which restrict the
number of falsified soft clauses. The new aj variables are
true if the respective at-most constraint becomes false. The
unit clauses aj encode that we would like to satisfy all the
at-most constraints. If this is not possible, some of them will
appear into the unsatisfiable core 'k

C .

Example 3 Given ' = hhx1, 1i, hx2, 1i, hx3, 1i, hx1 _
x2,1i, hx1 _x3,1i, hx2 _x3,1ii. At an intermediate step
we have the set AM = hhh1, 2i, 1, 1i, hh3i, 0, 1ii. Then,
'k = {x1 _ x2, x1 _ x3, x2 _ x3}[ {x1 _ b1, x2 _ b2, x3 _ b3}

[ {CNF (b1 + b2  1) _ a1, a1, CNF (b3  0) _ a2, a2}

To our best knowledge, the idea of introducing Card con-
straints as soft constraints in a core-guided algorithm was
initially proposed in [Andres et al., 2012] for Answer Set
Programming (ASP) optimization problems, and recently
adapted to MaxSAT problems in [Morgado et al., 2014]. The
approach in [Narodytska and Bacchus, 2014] (best solver
for industrial instances at MSE14) also uses soft Card con-
straints. These approaches work locally and are not aware of
the global core structure and therefore they can not exploit it.

Going back to WPM3 algorithm, if function sat returns
satisfiable (st = SAT ) (line 4), then we return the optimal
assignment I and its cost (line 5). Otherwise (line 7), C
is the set of indexes of at-most constraints involved into the
last unsatisfiable core. If the core only involves original hard
clauses, we can return unsatisfiable (line 8). If there are at-
most constraints involved in the core, then, we need to relax
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some of them since they only allow assignments or solutions
with a cost strictly less than cost(').

At this stage (lines 9-12), we need to relax the set of AM
constraints, but guaranteeing we do not exceed cost('). Ba-
sically, we need to replace the set of at-most constraints AMC

involved in the last core with a new set of at-most constraints
which allows assignments with a higher cost.

Since we will only use Card constraints we first apply the
idea described in the WPM1/WBO [Ansótegui et al., 2009b;
Manquinho et al., 2009] MaxSAT algorithms to deal with
Weighted instances (lines 9-10). It basically prevents the
algorithm to introduce PB constraints instead of Card con-
straints when the at-most constraints involved in the core have
different weights. In this case, we compute the minimum
weight wmin of the constraints in AMC (line 9), and replace
every soft constraint hAj , kj , wji by two copies with weights
wj � wmin and wmin. The first set of copies will remain in
AM (line 10) while the second will be replaced by the new
at-most constraint hA, kA, wmini (line 12). Notice we guar-
antee that

P
hA

j

,k
j

,w
j

i2AM | Aj | ·wj =
P

w(').
Function optimize (line 11) allows to determine which is

the new 'k we will test. This function, basically, solves
exactly the subproblem that involves the new at-most con-
straint we will generate on the original soft clauses, and the
hard clauses. The result is the set of indexes of original
soft clauses A of the new at-most constraint (notice that and
index can be repeated) and the number of clauses kA that
we will at most allow to be falsified. To our best knowl-
edge, the idea of solving a subproblem of the original opti-
mization instance ' was originally applied for MaxSAT in
WPM2 algorithm [Ansotegui et al., 2010]. In [Davies and
Bacchus, 2011] a similar approach is applied calling a MIP
solver to solve the subproblem. Recently, in [Ansótegui et
al., 2013a], this process is extended and named as cover
optimization. The best strategy reported consists on refin-
ing iteratively the upper bound on the subproblem using the
model-guided MaxSAT algorithm in [Berre, 2006]. We apply
it within function optimize, although depending on the par-
ticular family of instances other strategies or algorithms can
have better performance. At this point we have increased k
by (kA�

P
hA

j

,k
j

,w
j

i2AM
C

kj)·wmin towards cost('). Oth-
erwise, without the optimize step, we can only increase k by
wmin.

Treating explicitly the new at-most constraint (line 12)
and its relation to the constraints it substitutes is funda-
mental, not only for function optimize, but also to encode
more efficient Card constraints (see Section 4). In contrast,
this information, the global core structure, is not explic-
itly present in recent approaches as [Morgado et al., 2014;
Narodytska and Bacchus, 2014] and therefore harder to be
exploited efficiently.

During this description, we have obviated the role of wstrat

(lines 5 and 6). It corresponds to the application of the
stratified approach introduced in [Ansotegui et al., 2009c].
The stratified approach consists in sending to the SAT solver
only a subset of the soft clauses, i.e., those with a weight
� wstrat. Function decrease updates conveniently wstrat.
This can help to reduce the size of the unsatisfiable cores,

produce simpler at-most constraints and progress faster to the
optimum. We also apply hardening techniques like the ones
described in [Ansótegui et al., 2012; Morgado et al., 2012;
Ansótegui et al., 2013a].

4 Efficient Card Constraints for MaxSAT

In the last decade, we have seen many contributions on
how to encode efficiently PB and Card constraints into
SAT [Bailleux and Boufkhad, 2003; Sinz, 2005; Eén and
Sörensson, 2006; Bailleux et al., 2009; Ası́n et al., 2011].
The goal is to achieve an arc-consistent encoding (i.e., with
good propagation properties) as small as possible.

Since WPM3 only uses Card constraints, let us consider
the Card constraint: b1 + · · · + bn  k. From the sake of
clarity, the encoder is split into two black boxes: the sum and
the operator op (in our case representing). The sum takes as
input a list of n variables [b1, . . . , bn] and returns a set of SAT
clauses S and a list of m variables [o1, . . . , om]. The operator
takes as input the o variables and integer k and returns a set
of SAT clauses OP . The encoding of the Card constraint into
SAT corresponds to the union S [OP .

hS, [o1, . . . , om]i := sum([b1, . . . , bn])

OP := op(k, [o1, . . . , om])

In our case, we use the Cardinality Networks encoding in
[Ası́n et al., 2011]. There, m = k + 1 and the sum builds a
SAT formula such that if i of the input b variables are set to
true then the first i of the output o variables are set to true and
the rest to false. Therefore, op returns the unit clause ok+1.

Our first observation is that it is crucial for the efficiency
of the MaxSAT solver in which order the b variables are fed
into the sum. In previous MaxSAT solvers, the order of the
b variables was not taken into account. They were just added
in the same order of their respective soft clauses.

However, the b variables should be added taking into ac-
count the structure of the unsatisfiable cores. In particular,
variables belonging to the same core should be as close as
possible. In our algorithm the set A in an at-most constraint
hA, k, wi is ordered. In line 1 of function optimize (see Sec-
tion 3) when we generate the set A of the new at most con-
straint, we concatenate the sets of b variables of the at-most
constraints that it replaces. Respect to latest advances in
MaxSAT [Morgado et al., 2014; Narodytska and Bacchus,
2014] a deeper explanation of their efficiency could be that
these algorithms implicitly preserve the order.

Our second observation has to do again with the structure
of the unsatisfiable cores we have detected so far. As we have
just commented, the new at-most constraint hA, kA, wmini
(line 12 of WPM3) replaces/merges other at-most constraints.
In the end, we can consider that there is a tree structure that
represents how we have merged the unsatisfiable cores and
where the root node is the new at-most constraint. Instead
of creating a Cardinality Network for the new constraint we
can reproduce this tree structure. We basically reproduce
the totalizer encoding proposed originally in [Bailleux and
Boufkhad, 2003]. The leaf nodes join the at-most constraints
related with a single soft clause of the input formula (i.e.,
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with k = 0) that appeared in the same core. The leaf nodes
are encoded with Cardinality Networks.
Example 4 Imagine at-most constraint hA3, 5, 1i (root node)
replaces at-most constraints hA1, 3, 1i and hA2, 1, 1i (child 1
and child 2). Let us see how we start constructing the tree.
Children are processed recursively in the same way.

hS0,

|A
3

|=10
sum5

[o3
1, . . . , o

3
6]i := totalizer(

|A
1

|=6
sum5

[o1
1, ..., o

1
6],

|A
2

|=4
sum4

[o2
1, ..., o

2
5])

S3 := S0 [ S1 [ S2 OP 3 := {o3
6} [OP 1 [OP 2

The advantage of preserving this structure, in contrast to
having a single Card constraint, is that we can again exploit it
to derive smaller encodings. In particular, we can restrict the
sums of the nodes using the lower bounds of their siblings.
The upper bound for a non root node is set to the difference
between the upper bound of its parent and the sum of the
lower bounds of its siblings. We apply this in a top-down
update process.
Example 5 At example 4, the upper bound for the root node
is 5. Child 1 (child 2) already contributes with a lower bound
of 3 (1), therefore the new upper bound for child 1 (child 2) is
5� 1 = 4 (5� 3 = 2).

hS0,

|A
3

|=10
sum5

[o3
1, . . . , o

3
6]i := totalizer(

|A
1

|=6
sum4

[o1
1, ..., o

1
5]

lb=3

,

|A
2

|=4
sum2

[o2
1, ..., o

2
3]

lb=1

)

S3 := S0 [ S1 [ S2 OP 3 := {o3
6} [OP 1 [OP 2

Function optimize can provide assignments Iub which are
upper bounds (see Section 5) for the whole formula '. Using
this upper bound, we can set the upper bound for the root
node which corresponds to the cost of the assignment Iub on
the set of soft clauses related to it.

Finally, notice that for a given at-most constraint we build
from scratch its SAT encoding when we feed it into the SAT
solver. Recently, in [Martins et al., 2014] it has been proposed
to build Card constraints incrementally. We will explore ex-
tending our approach in this sense. As we will see in Sec-
tion 6, even without the incremental extension, our approach
outperforms the rest of the solvers.

5 Upper Bounds and Phase Saving

In Section 3, we have described a complete core-guided al-
gorithm that keeps increasing a lower bound towards the op-
timum. However, its design and, in particular, function opti-
mize, which implements a model-guided MaxSAT algorithm,
allows to produce upper bounds for ' during its execution.
Whenever function optimize finds a new solution to the sub-
problem, we can just extend this solution to the rest of the
formula and check its cost. We do this by considering that,
those clauses in a undefined state under the solution to the
subproblem, are falsified 1. Function optimize keeps track of

1This can be improved looking at the structure of the undefined
clauses.

the assignment to the subproblem whose extension to the rest
of the formula had the lowest cost. The cost of this assign-
ment is an upper bound for the whole problem. We will refer
to it as the best global assignment found by function optimize.

We can exploit further the best global assignment we get
from function optimize. State-of-the-art SAT solvers ap-
ply a technique called phase saving introduced in [Pipat-
srisawat and Darwiche, 2007]. In SAT solvers, when non-
chronological backtracking is applied due to a conflict, lots
of variable assignments get lost and have to be revealed again
during search. The idea is to avoid redoing this work by stor-
ing the phase of the variables when we find a conflict. Then,
we assign to the next decision variables the stored polarity till
we find a new conflict and update the polarities again. This
technique has been shown to be quite effective. We can ex-
tend this idea to MaxSAT in the following way. Within func-
tion optimize we let the SAT solver apply phase saving in
the regular way (line 5). Then, if the best global assignment
found so far has the same cost for the subproblem as the so-
lution found by function optimize, we store the polarity of the
variables in the best global assignment. We use these polari-
ties to guide the search of the SAT solver in line 3 of WPM3,
disabling the regular phase saving that would be applied. In
particular, we only store the polarities of the original variables
in '.

6 Experimental Results

We have evaluated our approach on the industrial instances
from the MaxSAT Evaluation 2014 (MSE14) [Argelich et al.,
2006 2014]. We run our experiments on a cluster featured
with 2.6GHz processors and a memory limit of 3.5 GB. The
instance set of MSE14 is divided into three categories de-
pending on the variant of the MaxSAT problem: MaxSAT
(MS), Partial MaxSAT (PMS) or Weighted Partial MaxSAT
(WPMS). In each category, instances are grouped by fami-
lies: 2 for MS, 22 for PMS and 8 for WPMS. Since families
have different number of instances, we considered more fair
to present the solvers ranked by mean family ratio of solved
instances.

We provide results for the new wpm3 MaxSAT solver
and the best solvers of the MSE14. We have excluded the
MaxSAT solver ISAC+ [Ansótegui et al., 2014], since it
is a portfolio and our intention here is to compare ground
solvers. The ground solvers with the best overall performance
at MSE14 for industrial instances were: eva500a [Narodyt-
ska and Bacchus, 2014], mscg [Morgado et al., 2014] and
open-wbo [Martins et al., 2014]. We also present results for
an initial version we implemented within the or-tools pack-
age [Google, 2009] which is only core-guided.

Table 1 shows our first experiment, where we evaluate the
impact of each improvement on WPM3 (with a timeout of
1800 seconds). All the variations on WPM3 are implemented
on top of the glucose SAT solver (version 3.0) [Audemard and
Simon, 2009] . The different variations and corresponding
implementations are named wpm3 with different subindexes.
Subindex o stands for cover optimization (see Section 3). Re-
garding how Card constraints are encoded, t stands for core
based tree, tk stands for core based tree with refinement of the
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MS Ind. PMS Ind. WPMS Ind. Total Ind.
100% 55 100% 568 100% 410 100% 1033

wpm3
tkop

88,5% 43 84,0% 499 74,0% 367 81,7% 909

wpm3
tko

87,5% 42 83,4% 494 73,9% 366 81,3% 902
wpm3

tk

87,5% 42 82,5% 483 73,0% 359 80,4% 884
wpm3

to

87,5% 42 83,4% 494 72,9% 358 81,0% 894
wpm3

t

87,5% 42 81,9% 480 72,9% 358 80,0% 880
wpm3

o

87,5% 42 82,9% 489 71,3% 349 80,3% 880
wpm3 87,5% 42 80,7% 470 70,4% 346 78,6% 858
pm2

o

84,0% 39 78,9% 458 - -
pm2 84,0% 39 77,5% 445 - -

wpm1/wbo 80,0% 36 61,8% 349 67,4% 348 64,4% 733

Table 1: WPM3 and improvements.

k upper bound in sub-sums (see Section 4). Finally, p stands
for phase saving extended to MaxSAT (see Section 5).

At the table, we present for each category and solver the
mean ratio of solved instances per family and the total number
of instances. We introduce results for wpm1/wbo [Ansótegui
et al., 2009b; Manquinho et al., 2009] and pm2 algorithms 2.
wpm3 can be considered as a hybridization of these two al-
gorithms (see Section 3). As we can see, wpm3 clearly out-
performs pm2. This is because, as described in Section 4,
we build Card constraints taking into account the order im-
posed by the unsatisfiable cores. If we add the cover opti-
mization technique, see wpm3o, then we get a version that
would have ranked the first at MSE14 for industrial instances
in terms of the total mean family ratio. The next two versions,
wpm3t and wpm3tk, that further exploit the structure of the
cores and improve the construction of the Card constraint,
provide a total of 13 additional solved instances for PMS and
13 for WPMS. As we can see, the cover optimization tech-
nique always improves, in particular for Weighted instances
at version wpm3tko. Finally, the extension of phase saving
for MaxSAT improves the average running time, and it helps
to solve 7 additional instances within the timeout.

MS Ind. PMS Ind. WPMS Ind. Total Ind.
100% 55 100% 568 100% 410 100% 1033

wpm3
tkop

88.5% 43 84.0% 499 74.0% 367 81.7% 909

or-tools 81.7% 36 81.9% 482 73.9% 369 79.8% 887
eva500a 86.5% 41 80.0% 476 72.8% 368 78.7% 885

mscg 86.5% 41 80.2% 468 68.5% 361 77.7% 870
open-wbo 87.5% 42 81.0% 472 64.9% 335 77.3% 849

Table 2: WPM3 and or-tools compared to best MSE14
solvers

Table 2 compares our best version wpm3tkop with the
best performing complete solvers at MSE14 for industrial in-
stances. Clearly, wpm3tkop dominates both on mean family
ratio and total number of solved instances. A deeper analysis
reveals that wpm3tkop has best ratio on 30 out of the 32 fam-
ilies that compose the categories, while eva500a (the second
one) has best ratio on 20.

Our last experiment is presented in Table 3. Since
wpm3tkop is able to produce upper bounds we also compared

2pm2 algorithm is only designed for Partial MaxSAT instances

wpm3
tkop

open-wbo qms wpm2014 optimax
50 50 49 53

wpm3
tkop

556 394 502 379 547 386 524 390

45 45 44 45

open-wbo 466 344 458 361 477 341 466 378

15 19 17 18
qms 511 281 522 286 534 279 530 302

48 48 48 51

wpm2014 427 369 477 387 402 379 420 367

39 43 47 39
optimax 368 259 387 270 337 284 423 260

Table 3: WPM3 compared to MSE14 best incomplete solvers.

it with the best performing solvers wpm2014 and optimax 3

for industrial instances at the incomplete track of the MSE14.
We also compared with other MaxSAT solvers that did not
take part in the incomplete track but they are able to pro-
duce upper bounds: open-wbo [Martins et al., 2014] and
qms [Koshimura et al., 2012]. We do not include eva500a,
mscg or or-tools since they can not produce upper bounds.

The timeout for the incomplete track at MSE is set to 300
seconds. For a given instance, the winners are the solvers
that produce the best upper bound. The best solver is the one
that won on more instances. Since these results give us a par-
tial order, it can be misleading to report an overall winner.
In table 3, we present the dominance relation between pairs
of solvers on the three categories. For example, wpm3tkop

(open-wbo) is able to obtain a better or equal upper bound
than open-wbo (wpm3tkop) on 50 (45) ms instances, 556
(466) PMS instances and 394 (344) WPMS instances. As
we can see, wpm3tkop practically dominates the rest of the
solvers. The exception is qms on PMS where qms outper-
forms by 9 instances wpm3tkop. For this case, we extended
the timeout to 1800 seconds. We found that wpm3tkop out-
performed qms by 5 instances. This is somehow expected
since wpm3tkop, within this timeout, solves to optimality 40
instances more than qms.

7 Conclusions

We have proposed a complete algorithm for MaxSAT that can
be also used in an incomplete approach. We show how to
combine several techniques. We have shown how that the
design of the algorithm allows to exploit the structure of un-
satisfiable cores in MaxSAT instances to build more efficient
Card constraints. This opens a window to understand bet-
ter the performance of the latest solvers and probably further
improve them. Finally, we have shown that an extended no-
tion of phase saving for MaxSAT is effective. Our resulting
MaxSAT solver outperforms the winners for the complete and
incomplete track at the last MaxSAT Evaluation.
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Bonet, and Jordi Levy. Sat-based maxsat algorithms. Artif.
Intell., 196:77–105, 2013.
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dramatically increase the efficiency of WPM2. This led WPM2 to achieve the best
overall results at the international MaxSAT Evaluation 2013 (MSE13) on industrial
instances. Then, we present additional techniques and heuristics to further exploit the
information retrieved from the resolution of the subproblems.We exhaustively analyze
the impact of each improvement what contributes to our understanding of why they
work. This architecture allows to convert exact algorithms into efficient incomplete
algorithms. The resulting solver had the best results on industrial instances at the
incomplete track of the latest international MSE.
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1 Introduction

Combinatorial optimization problems arise in many domains: scheduling and plan-
ning, software and hardware verification, knowledge compilation, probabilistic
modeling, bioinformatics, energy systems, smart cities, social networks, computa-
tional sustainability, etc. From a computational point of view, many optimization
problems are NP-hard meaning that is unlikely that they admit a polynomial-time
algorithm. The good news is that some real problems are already efficiently solved
by state-of-the-art Constraint Programming techniques (Rossi et al. 2006) and many
others are only slightly beyond the reach of these techniques.

In recent decades, Satisfiability (SAT) solvers (Biere et al. 2009) have progressed
spectacularly in performance thanks to better implementation techniques and con-
ceptual enhancements, such as Conflict Driven Clause Learning-based algorithms,
which are able to reduce the size of the search space significantly in many instances
of real NP-Complete problems. Every year, the community celebrates competitions
where the performance of all these solvers is compared, and every year we con-
template how the number of solvable problems increases, and how instances that
were considered very difficult, become easy. Thanks to these advances, nowadays
the best SAT solvers can tackle industrial problems with hundreds of thousands of
variables and millions of clauses. We use the term industrial in the sense of practi-
cal or real-world applications. Some extensions of SAT that have also attracted the
interest of the scientific community in recent years include: Pseudo-Boolean (PB) sat-
isfiability, Satisfiability Modulo Theories (SMT), satisfiability of Quantified Boolean
Formulas, Maximum Satisfiability (MaxSAT), Model Counting (#SAT), etc. There
exist also solvers for all these extensions of SAT, and competitions where they are
tested.

The MaxSAT problem is the optimization version of SAT. The idea behind this
formalism is that sometimes not all the constraints of a problem can be satisfied, and
we try to satisfy the maximum number of them. The MaxSAT problem can be further
generalized to the Weighted Partial MaxSAT (WPMS) problem. In this case, we can
divide the constraints into two groups: the clauses (constraints) that must be satisfied
(hard), and the ones that may or may not be satisfied (soft). In the last group, we may
associate different weights with the clauses, where the weight is the cost of falsifying
the clause. The idea is that not all constraints are equally important. The addition of
weights to clauses makes the instance Weighted, and the separation into hard and soft
clauses makes the instance Partial. The WPMS problem is a natural combinatorial
optimization problem, and it has been already applied in many domains (Ansótegui
et al. 2013b; Morgado et al. 2013a).

In the MaxSAT community, we find two main classes of complete algorithms:
branch and bound (Heras et al. 2007; Kügel 2010; Li et al. 2009; Lin and Su 2007; Lin
et al. 2008) and SAT-based (Ansótegui et al. 2012; Davies and Bacchus 2011; Heras
et al. 2011; Honjyo and Tanjo 2012; Koshimura et al. 2012; Martins et al. 2011, 2012;
Morgado et al. 2012).

SAT-based approaches clearly dominate on industrial and some crafted instances, as
we can see in the results of the internationalMaxSATEvaluation (Argelich et al. 2006-
2004). SAT-based MaxSAT algorithms basically reformulate a MaxSAT instance into
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a sequence of SAT instances. By solving these SAT instances theMaxSATproblem can
be solved (see (Ansótegui et al. 2013b; Morgado et al. 2013a) for further information).
Intuitively, this sequence is built such that it can be split into two parts where the
instances in the first part are all unsatisfiable while the instances in the second one
are all satisfiable. By locating the phase transition point, i.e., the last unsatisfiable
instance and the first satisfiable instance,we can locate the optimumof the optimization
problem. As wewill see, once we solve an unsatisfiable SAT instance we can refine the
lower bound, while when we solve a satisfiable SAT instance we can refine the upper
bound. Among SAT-based MaxSAT algorithms we also find two main classes: (i)
those that focus the search on refining the lower bound, and exploit the information of
unsatisfiable cores and, (ii) those that focus the search on refining the upper bound, and
exploit the information of the satisfiable assignments. Both approaches have strengths
and weaknesses. Our current work aims to find an efficient balance between both
approaches.

In this paper, we present the improved version of the SAT-based MaxSAT algo-
rithm WPM2 (Ansotegui et al. 2010) (see Sect. 4) presented originally in Ansótegui
et al. (2013a), a more detailed experimental analysis of the new algorithm, further
improvements and an incomplete version. The aim of this paper is not only to present
a method that performs well, but also to understand why this is the case. This way we
will be able to identify the interaction with other future improvements in the field and
whether they are complementary or not to this work.

In our experimental investigation, our reference point is the original WPM2 algo-
rithm which solves 959 out of 2078 instances from the whole benchmark of industrial
and crafted instances of the MSE13.

With respect to the improvements we have incorporated, first of all, we extend
the original WPM2 algorithm by applying the stratification approach described in
Ansótegui et al. (2012), what results in solving 100 additional instances. Second, we
introduce a new criteria to decide when soft clauses can be hardened (Ansótegui et al.
2012; Morgado et al. 2012), that provides 68 additional solved instances. Finally,
our most effective contribution is to introduce a new strategy that focuses search on
solving subproblems of the original MaxSAT instance. In order to define these sub-
problems we use the information provided by the unsatisfiable cores we obtain during
the solving process. The improved WPM2 algorithm is parametric on the approach
we use to solve these subproblems. This allows to combine the strength of exploiting
the information extracted from unsatisfiable cores and other optimization approaches.
By solving these smaller optimization problems we get the most significant boost in
our improved WPM2 algorithm. In particular, we experiment with an Integer Lin-
ear Programming (ILP) approach, corresponding to the strategy shown in Sect. 3,
and three MaxSAT approaches: (i) refine the lower bound for these subproblems
with the subsetsum function (Cormen et al. 2009; Ansotegui et al. 2010), (ii) refine
the upper bound with the strategy applied in minisat+ (Eén and Sörensson 2006),
SAT4J (Berre 2006), qmaxsat (Koshimura et al. 2012) or ShinMaxSat (Honjyo and
Tanjo 2012), and (iii) a binary search scheme (Heras et al. 2011; Cimatti et al. 2010;
Fu and Malik 2006) where the lower bound and upper bound are refined as in the
previous approaches. The best performing approach in our experimental analysis is
the second one and it allows to solve up to 296 additional instances. As a summary, the
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overall increase in performance we achieved so far compared to the original WPM2
is about 464 additional solved instances, or 48 % more. These improvements led
WPM2 to be the overall best performing approach on the industrial instances of the
MSE13.

To further explain the good results of our approach we include and extend the study
originally presented in Ansotegui (2013a) on the structure of the unsatisfiable cores
obtained during the search process of SAT-based algorithms (see Sect. 6). We explain
how the improved WPM2 algorithm takes advantage of this structure.

We have also explored how we can exploit information retrieved from the subprob-
lems that are solved. When the strategy used to optimize the subproblems is able to
produce satisfying assignments, i.e., it refines the upper bound (see approaches (ii)
and (iii) above), we can use these assignments as a heuristic to guide and boost the
search. This improvement allows to solve 50 additional instances. The overall increase
in performance compared to the original WPM2 is 514 additional solved instances.
Actually, if we take into account the timeout of 7200 s (2 h) used in our experi-
ments, we obtain an overall speed-up of about three orders of magnitude (see Sect. 6).
Moreover, we show that high quality satisfying assignments can be obtained in a rea-
sonably short time, giving us naturally an incomplete approach. Our experimental
results confirm that the incomplete version of our exact improved WPM2 algorithm
would have dominated the track for incomplete solvers at the MSE13. Furthermore,
at MSE14, even though it was not the best complete approach, it dominates the others
as incomplete.

From the perspective of coming up with an efficient implementation of our
approach, it is obvious that SAT-based MaxSAT algorithms have to be implemented
on top of an efficient solver based on SAT technology. This solver has to be capable of
returning an unsatisfiable core when the input instance is unsatisfiable and a satisfying
assignmentwhen the instance is satisfiable.Moreover, SAT-basedMaxSAT algorithms
require the addition of linear PB constraints as a result of the reformulation process
of the original problem into a sequence of SAT instances. These PB constraints are
used to bound the cost of the optimal assignment. Currently, in most state-of-the-art
SAT-based MaxSAT solvers, PB constraints are translated into SAT. However, there
is no known SAT encoding which can guarantee the original propagation power of the
constraint, i.e, what we call arc-consistency, while keeping the translation low in size.
The best approach so far, has a cubic complexity (Bailleux et al. 2009). This can be a
bottleneck for WPM2 (Ansotegui et al. 2010) and also for other algorithms such as,
BINCD (Heras et al. 2011) or SAT4J (Berre 2006).

In order to treat PB constraints with specialized inference mechanisms and a mod-
erate cost in size, while preserving the strength of SAT techniques for the rest of the
problem, we use the SMT technology (Sebastiani 2007) (see Sect. 5). Related work in
this sense can be found in Nieuwenhuis and Oliveras (2006). Also, in Ansótegui et al.
(2011) aWeighted Constraint Satisfaction Problems (WCSP) solver implementing the
original WPM1 (Ansotegui et al. 2009) algorithm is presented.

Finally, we have also seen the development of successful methods for solving com-
binatorial problems by applying techniques from Operations Research. Although the
literature shows us that some NP-hard problems are more suitable for logic-based
approaches while others are more efficiently solved with integer programming tech-
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niques, our current study would not be exhaustively conducted without showing the
performance of integer programming techniques on MaxSAT problems. Actually, we
can easily reformulate theWPMS problem into an ILP problem (see Sect. 3) and apply
an ILP approach. We show that the ILP approach is not competitive on the industrial
instances where a logic-based approach like the one proposed here is more efficient.

This paper proceeds as follows. Section 2 formally defines the main concepts that
are used in the paper. Section 3 presents the translation of WPMS into ILP. Section 4
describes the WPM2 algorithm and the new improvements. Section 5 describes the
SMT problem and discusses some implementation details of the SMT-based MaxSAT
algorithms. Section 6 presents the experimental evaluation. Finally, Sect. 7 shows the
conclusions and the future work.

2 Preliminaries

Definition 1 A literal l is either a Boolean variable x or its negation x . A clause c is
a disjunction of literals. A SAT formula is a set of clauses that represents a Boolean
formula in Conjunctive Normal Form (CNF), i.e., a conjunction of clauses.

Definition 2 A weighted clause is an ordered pair (c, w), where c is a clause and w

is a natural number or infinity (indicating the cost of falsifying c, see Definitions 5
and 6). If w is infinite the clause is hard, otherwise it is soft.

Definition 3 AWeighted Partial MaxSAT (WPMS) formula is an ordered multiset of
weighted clauses:

ϕ = 〈(c1, w1), . . . , (cs, ws), (cs+1,∞), . . . , (cs+h,∞)〉

where the first s clauses are soft and the last h clauses are hard. The presence of soft
clauses with different weights makes the formula Weighted and the presence of hard
clauses makes it Partial. The ordered multiset of weights of the soft clauses in the
formula is noted asw(ϕ). The top weight of the formula is noted asW (ϕ), and defined
asW (ϕ) = ∑

w(ϕ)+1. The set of indexes of soft clauses is noted as S(ϕ) and the set
of indexes of hard clauses is noted as H(ϕ). When it is clear to which formula ϕ these
soft (hard) clauses belong, we also refer to these sets of indexes as S (H ). Finally, the
set of variables occurring in the formula is noted as var(ϕ).

Example 1 Given the WPMS formula ϕ = 〈(x1, 5), (x2, 3), (x3, 3), (x1 ∨ x2,∞),

(x1 ∨ x3,∞), (x2 ∨ x3,∞)〉, we have that w(ϕ) = 〈5, 3, 3〉, W (ϕ) = 12, S(ϕ) =
{1, 2, 3}, H(ϕ) = {4, 5, 6} and var(ϕ) = {x1, x2, x3}.

Definition 4 Given a WPMS formula ϕ and a set of indexes A, ϕA is the WPMS
formula that contains the clauses (ci , wi ) such that i ∈ A. By ϕS we refer the set of
soft clauses and by ϕH to the set of hard clauses.

Example 2 Given the WPMS formula ϕ of Example 1, we have that ϕ{1,3.5} =
〈(x1, 5), (x3, 3), (x1 ∨ x3,∞)〉, ϕS = 〈(x1, 5), (x2, 3), (x3, 3)〉 and ϕH = 〈(x1 ∨
x2,∞), (x1 ∨ x3,∞), (x2 ∨ x3,∞)〉.
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6 C. Ansótegui et al.

Definition 5 An assignment for a set of Boolean variables X is a function I : X →
{0, 1}, that can be extended to literals, (weighted) clauses, SAT formulas and WPMS
formulas as follows:

I(x) = 1 − I(x)
I(l1 ∨ . . . ∨ lm) = max{I(l1), . . . , I(lm)}
I({c1, . . . , cn}) = min{I(c1), . . . , I(cn)}
I((c, w)) = w (1 − I(c))
I(〈(c1, w1), . . . , (cs+h, ws+h)〉) =

∑s+h
i=1 I((ci , wi ))

We will refer to the value returned by an assignment I on a weighted clause or a
WPMS formula as the cost of I.

Given a WPMS formula ϕ and a set of indexes A, we will refer to IA as an assign-
ment for ϕA.

Definition 6 We say that an assignment I satisfies a clause or a SAT formula if the
value returned by I is equal to 1. In the case of SAT formulas, we will refer also to this
assignment as a satisfying assignment or solution. Otherwise, if the value returned by
I is equal to 0, we say that I falsifies the clause or the SAT formula.

Definition 7 The SATproblem for a SAT formulaϕ is the problemof finding a solution
for ϕ. If a solution exists the formula is satisfiable, otherwise it is unsatisfiable.

Definition 8 Given an unsatisfiable SAT formula ϕ, an unsatisfiable core ϕC is a
subset of clauses ϕC ⊆ ϕ that is also unsatisfiable. A minimal unsatisfiable core is an
unsatisfiable core such that any proper subset of it is satisfiable.

Example 3 Given the SAT formula: ϕ = {(x1), (x2), (x3), (x1 ∨ x2), (x1 ∨ x3), (x2 ∨
x3)} we have that {(x1), (x2), (x3), (x1 ∨ x2)} ⊆ ϕ is an unsatisfiable core and
{(x1), (x2), (x1 ∨ x2)} ⊆ ϕ is a minimal unsatisfiable core.

Definition 9 A SAT algorithm for the SAT problem, takes as input a SAT formula ϕ

and returns an assignment I such that I(ϕ) = 1 if the formula is satisfiable. Otherwise,
it returns an unsatisfiable core ϕC .

Given unlimited resources of time and memory, we say that a SAT algorithm is
complete if it terminates for any SAT formula. Otherwise, we say that it is incomplete.

Definition 10 The optimal cost (or optimum) of a WPMS formula ϕ is cost(ϕ) =
min{I(ϕ) | I : var(ϕ) → {0, 1}} and an optimal assignment is an assignment I such
that I(ϕ) = cost(ϕ). We will refer to this assignment as a solution for ϕ if I(ϕ) )= ∞.
Any cost above (below) cost (ϕ) is called an upper (lower) bound for ϕ.

Example 4 Given the WPMS formula ϕ of Example 1, we have that cost(ϕ) =
min{6, 8, 11,∞} = 6 and the optimal assignment I maps 〈x1, x2, x3〉 to 〈1, 0, 0〉.

Definition 11 The Weighted Partial MaxSAT problem for a WPMS formula ϕ is the
problem of finding a solution for ϕ. If a solution does not exist the formula is unsat-
isfiable.
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Definition 12 A WPMS algorithm for the WPMS problem, takes as input a WPMS
formula ϕ and returns an assignment I, such that, I(ϕ) ≥ cost (ϕ).

Given unlimited resources of time and memory, we say that a WPMS algorithm is
complete or exact if for any input WPMS formula ϕ and returned I, I(ϕ) = cost (ϕ).
Otherwise, we say it is incomplete.

Definition 13 An integer linear Pseudo-Boolean (PB) constraint is an inequality of
the form w1x1 + · · · +wnxn op k, where op ∈ {≤,≥,=,>,<}, k and wi are integer
coefficients, and xi are Boolean variables. A cardinality constraint is a PB constraint
where the coefficients wi are equal to 1. A PB At-Most (At-Least) constraint is a PB
constraint where op is ≤ (≥).

Example 5 5x1+3x2+3x3 ≤ 6 is a PB At-Most constraint and 5x1+3x2+3x3 ≥ 6
is PB At-Least constraint.

3 Translation of weighted partial MaxSAT into ILP

In order to solve a WPMS problem, a first reasonable approach consists in reformu-
lating the WPMS problem as an ILP problem and applying an ILP solver. Several
encodings can be found in the literature (Li and Manyà 2009; Manquinho et al. 2009;
Ansótegui and Gabàs 2013; Davies and Bacchus 2013).

Here, we describe the precise encoding we used in Ansótegui and Gabàs (2013).
Given aWPMS formula, 〈(c1, w1), . . . , (cs, ws), (cs+1,∞), . . . , (cs+h,∞)〉, we can
translate it into an ILP instance, as follows:

Minimize:
∑s

1
wi · bi

Subject to:

I L P(ϕ′
H ∪ ϕ′

S)

0 ≤ vi ≤ 1, vi ∈ var(ϕ′
H ∪ ϕ′

S)

The Minimize section of the ILP formulation defines the objective function of
the problem. This corresponds to the aggregated cost of the falsified soft clauses in
the WPMS formula we want to minimize. In order to identify which soft clauses
are falsified by a given assignment to the original xi variables of the problem, we
introduce an indicator variable bi for each soft clause (ci , wi ). These bi are also
known as reification, relaxation or blocking variables.

The Subject to section includes the constraints that have to be satisfied under any
assignment. This corresponds to the original set of hard clauses of theWPMS formula
represented by ϕ′

H = ∪s+h
j=s+1c j , and the set of clauses connecting the soft clauses

of the WPMS formula with their respective indicator variable represented by ϕ′
S =

∪s
i=1 CNF(ci ↔ bi ). Notice that by enforcing consistency, we ensure that bi is true iff

the soft clause ci is falsified. FunctionCNF(ϕ) transforms ϕ into Conjunctive Normal
Form while function I L P(ϕ) maps every clause ci ∈ ϕ into a linear inequality with
operator >. The left-hand side of that linear inequality corresponds to the sum of
the literals in ci once mapped into integer terms, such that, literal x(x) is mapped to
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8 C. Ansótegui et al.

integer term x(1 − x). The right-hand side corresponds to constant 0. After moving
the constants to the right, the right-hand side corresponds to constant −k, where k is
the number of negative literals in clause ci . Finally, we add the bounding constraints
that ensure that every integer variable in the ILP formulation has domain {0, 1}. It can
be easily seen that, since we are minimizing, the implication bi → ci from ci ↔ bi is
unnecessary. Notice that, by the same nature of the minimization problem, variables
bi will be 0 (false) whenever it is possible and we do not need the part of the double
implication that ensures that ci → bi , i.e., bi → ci .

Example 6 Given the WPMS formula ϕ = 〈(x1 ∨ x2, 2), (x1 ∨ x2, 3), (x1 ∨
x2,∞), (x1 ∨ x2,∞)〉, the corresponding ILP formulation is:

Minimize: 2 · b1 + 3 · b2
Subject to:

x1 + x2 + b1 > 0; # x1 ∨ x2 ∨ b1 ≡ (x1 ∨ x2) → b1
−x1 − b1 > −2;
−x2 − b1 > −2;

# x1 ∨ b1
# x2 ∨ b1

≡ b1 → (x1 ∨ x2)

x1 − x2 + b2 > −1; # x1 ∨ x2 ∨ b2 ≡ (x1 ∨ x2) → b2
−x1 − b2 > −2;
x2 − b2 > −1;

# x1 ∨ b2
# x2 ∨ b2

≡ b2 → (x1 ∨ x2)

−x1 + x2 > −1; # x1 ∨ x2
−x1 − x2 > −2; # x1 ∨ x2

0 ≤ x1 ≤ 1; 0 ≤ x2 ≤ 1; 0 ≤ b1 ≤ 1; 0 ≤ b2 ≤ 1;

4 Original WPM2 algorithm and improvements

In this section, we present the complete SAT-based MaxSAT algorithm WPM2
(Ansotegui et al. 2010) for the WPMS problem and how it has been improved.

At a high description level, given an input WPMS formula ϕ, the original WPM2
algorithm (Ansotegui et al. 2010), described in Algorithm 1, iteratively calls a SAT
solver querying whether there is an assignment to ϕ with a cost less than or equal
to a certain k. The initial value of k is 0 and the last value is exactly the optimal
cost of ϕ, i.e., cost (ϕ). Notice that all SAT queries with a k < cost (ϕ) must have a
negative answer while all the queries with k ≥ cost (ϕ) must have a positive answer.
Therefore, our optimization problem can be reformulated as identifying where the
phase transition from negative answers to positive answers occurs.

More formally, the query sent to theSATsolver is a SAT formulaϕk that is satisfiable
iff there is an assignment, say I, such that I(ϕ) ≤ k. In order to construct such a
formula, we need to detect which soft clauses are falsified under a certain assignment
I, sum up their cost and compare with k.

To detect if a clause is falsified, we extend every soft clause (ci , wi ) with a unique
auxiliary Boolean indicator variable bi obtaining (ci ∨bi , wi ). Notice that, if ci is false,
then in order to maintain consistency bi must be true. Therefore, these bi variables
work as indicator variables that become true if a clause ci is falsified.

To add the weights of the falsified soft clauses and compare the cost with k we use
PB constraints that are translated into a SAT formula.
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Example 7 Before we go into detail on algorithmWPM2, let us describe how a naive
SAT-based MaxSAT algorithm would work. Let us consider a simple WPMS formula
representing theWeak Pigeon-Hole Problem (Razborov 2001; Raz 2002) of 5 pigeons
and 1 hole. Variable xi is true if the ith pigeon is in the hole.

ϕ = 〈(x1, 5), (x2, 5), (x3, 3), (x4, 3), (x5, 1) 〉 ∪ 〈CNF(
∑

xi ≤ 1,∞)〉

The weight of the soft clauses indicates the cost of not having the ith pigeon in the
hole and the hard clauses indicate that at most one pigeon can be in the hole. A naive
SAT-based MaxSAT solver would search for the optimal cost, solving a sequence of
ϕk SAT instances which are satisfiable iff there is an assignment to ϕ, i.e., to the xi
variables, with a cost less than or equal to k. In order to build such ϕk SAT instances,
all the soft clauses are extended and the PB At-Most constraint, 5 · b1 + 5 · b2 +
3 · b3 + 3 · b4 + 1 · b5 ≤ k, is used to bound the aggregated cost of the falsified
clauses.

ϕk = { (x1 ∨ b1), (x2 ∨ b2), (x3 ∨ b3), (x4 ∨ b4), (x5 ∨ b5) } ∪ CNF(
∑

xi ≤ 1) ∪
CNF(5 · b1 + 5 · b2 + 3 · b3 + 3 · b4 + 1 · b5 ≤ k)

Since cost (ϕ) = 12, we know that the SAT instances between ϕ0 to ϕ11 are
unsatisfiable, while the SAT instances between ϕ12 to ϕ18 (the top weightW (ϕ) = 18)
are satisfiable. A naive binary search between 0 and 18would check the satisfiability of
this sequence: ϕ9, ϕ13, ϕ11 and ϕ12. Since ϕ11 and ϕ12 are unsatisfiable and satisfiable,
respectively, we have found the phase transition point and we can conclude that the
optimal cost is 12.

The first characteristic of the original WPM2 algorithm is that it works with two
sets of PB constraints: AM and AL . The set AM of PB (At-Most) constraints are
used to bound the aggregated cost of the falsified soft clauses. In particular, AM is a
set of PB constraints that bound the cost of non-overlapping subsets of soft clauses.
More precisely, an am ∈ AM is a PB constraint of the form

∑
i∈A wi bi ≤ k where

A is a subset of the indexes of the soft clauses, bi and wi are the corresponding
indicator variables and weights of the ith soft clause and k the concrete bound for that
subset of soft clauses. When describing algorithms, we will use the object oriented
programming notation am.A and am.k to refer to the set A and integer k related to an
At-Most constraint am ∈ AM . The idea of having multiple and smaller PB At-Most
constraints instead of a single one was introduced in Ansótegui et al. (2009).

The set AL of PB (At-Least) constraints are used to impose that the aggregated cost
of the falsified clauses in a given subset of soft clauses must be at least some natural
number. These are redundant constraints and are not necessary for the soundness of
the algorithm but help to improve the performance of the SAT solver. More precisely,
an al ∈ AL is a PB constraint of the form

∑
i∈A wi bi ≥ k.

For the sake of space and readability, we will use the notation 〈A, w(ϕA),≤, k〉
and At-Most constraint instead of

∑
i∈A wi bi ≤ k and PB At-Most constraint in the

algorithms. Mutatis mutandis for the PB At-Least constraints.
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10 C. Ansótegui et al.

In the following, we go into detail on the original WPM2 algorithm (Algorithm 1).
First of all, we check whether the set of hard clauses (ϕH ) is satisfiable (Algorithm 1
line 1). If it is unsatisfiable, we can already stop since there is no solution to ϕ.
Otherwise, the main loop of the algorithm starts (Algorithm 1 line 3). Notice that we
exit this loop iff the sat function returns satisfiable. In that case, we have found a
solution.

Algorithm 1: Original WPM2.
Input: ϕ = 〈(c1, w1), . . . , (cs , ws ), (cs+1,∞), . . . , (cs+h ,∞)〉

1: if 〈unsat, _, _〉 = sat (ϕH , _, _) then return 〈∞, ∅〉
2: 〈AL , AM〉 := 〈∅, ∅〉
3: while true do
4: 〈st,C,I〉 := sat (ϕ, AL , AM)
5: if st = sat then
6: return 〈I(ϕ),I〉
7: else
8: 〈A, k〉 := optimize(ϕS , AL , AM,C)
9: AL := {〈A, w(ϕA),≥, k〉} ∪ AL
10: AM := {〈A, w(ϕA),≤, k〉} ∪ AM \ {am ∈ AM}

am.A⊆A

Function sat(ϕ, AL , AM)
1: 〈A, k〉 := 〈⋃ am.A,

∑
am.k〉

am∈AM
2: ϕk := {ϕ.ci }

i /∈A
∪ {ϕ.ci ∨ bi }

i∈A
∪ CNF(AL ∪ AM)

3: 〈st,ϕkC ,I〉 := satsolver(ϕk )

4: C := {i ∈ S(ϕ) | (ϕ.ci ∈ ϕkC ) ∨ (ϕ.ci ∨ bi ∈ ϕkC )}
5: return 〈st,C,I〉

Function optimize(ϕ, AL , AM,C)
1: A := ⋃

am.A
am∈AM,

am.A∩C )=∅

∪ C

2: k := lb := subsetsum(w(ϕA),
∑

am.k
am∈AM,
am.A⊆A

+ 1)

3: while true do
4: 〈st, _, _〉 := sat (_, AL , {〈A, w(ϕA),≤, k〉})
5: if st = sat then return 〈A, lb〉
6: else k := lb := subsetsum(w(ϕA), k + 1)

The sat function (Algorithm 1 line 4) builds the SAT formula at the current iteration
and sends it to the SAT solver. As we can see, a SAT formula ϕk is built by extending
soft clauses with indicator variables and aggregating to ϕk the conversion to CNF
of the PB constraints into the sets AL and AM (sat line 2). Actually, only a subset
of the soft clauses is relaxed, i.e., extended with indicator variables bi . In particular,
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those that have appeared previously in some unsatisfiable core. This is done because
of efficiency issues.

The SAT solver outputs a triplet 〈st,ϕk
C , I〉 (sat line 3). If the SAT solver returns

satisfiable ( st = sat), ϕk
C is empty and I is the satisfying assignment (solution) found

by the SAT solver. If the SAT solver returns unsatisfiable (st = unsat), ϕk
C is the

unsatisfiable core found by the solver and I is empty. Finally, the sat function returns
the status, st , the indexes of the soft clauses in the unsatisfiable core C (sat line 4) if
st = unsat, and the satisfying assignment I if st = sat.

When the sat function returns st = sat (Algorithm 1 line 5) we return the optimal
cost and the optimal assignment (Algorithm 1 line 6) and the algorithm ends.When the
sat function returns st = unsat (Algorithm 1 line 7) we analyze the unsatisfiable core
returned by the solver and we compute, within the optimize function (Algorithm 1 line
8), which is the set of indexes of soft clauses and bound 〈A, k〉 to construct the newAt-
Most constraint 〈A, w(ϕA),≤, k〉 and update the AL and AM sets (Algorithm 1 lines
9 and 10). Technically speaking, the AL constraints give lower bounds on cost (ϕ),
while the AM constraints enforce that all solutions of the set of constraints AL ∪ AM
are the solutions of AL of minimal cost. This ensures that any solution returned by
sat (ϕ, AL , AM), if there is any, has to be an optimal assignment of ϕ.

Within the optimize function, basically, we check which non-relaxed soft clauses
and At-Most constraints on relaxed clauses are involved in the unsatisfiable core. The
union of the indexes of all these clauses, set A (optimize line 1), gives us the indexes
of the new At-Most constraint. Notice that the non-relaxed soft clauses involved in A
will be relaxed in the next step within the sat function (sat line 2). In order to finish the
building process of the new At-Most constraint, we have to compute its independent
term k (optimize lines 2–6). Intuitively, the next k has to be the next lower bound
candidate for the subproblem defined by the soft clauses related to A, i.e., ϕA . Notice
that the previous candidate was the sum of the k’s (

∑am∈AM
am.A⊆A am.k) of the At-Most

constraints involved into the unsatisfiable core, which were proven by the SAT solver
to be too restrictive. In order to obtain the next candidate, we need to find theminimum
integer k that satisfies the next conditions: (i) k is a linear combination of the weights
involved in ϕA, (ii) k is greater than or equal to (

∑am∈AM
am.A⊆A am.k)+1 and (iii) the new

At-Most constraint 〈A, w(ϕA),≤, k〉 is consistent with the set of constraints in AL .
As we can see in the optimize function, (i) and (ii) are enforced by the subsetsum

function (optimize lines 2 and 6)while (iii) is checked by the sat function (optimize line
4). The main idea is that the subset sum problem (Cormen et al. 2009) is progressively
solved until we get a solution that also satisfies the AL constraints.

Actually, the optimize function represents the following optimization problem:

Minimize
∑

i∈A wi · bi (i)
Subject to:∑

i∈A wi · bi ≥ k′ (ii)
AL (iii)
0 ≤ bi ≤ 1, i ∈ A

where k′ = (
∑am∈AM

am.A⊆A am.k) + 1. Notice that, by removing the AL constraints, we
get the subset sum problem.
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12 C. Ansótegui et al.

Finally, once we obtain 〈A, k〉 (Algorithm 1 line 8) to construct the new At-Most
constraint 〈A, w(ϕA),≤, k〉, we update the AL and AM sets. Basically, we replace in
the AM set the At-Most constraints whose respective soft clauses are already consid-
ered in the newAt-Most constraint (Algorithm 1 line 10). Notice that the newAt-Most
constraint enforces that the cost of any assignment to the subproblem ϕA has at most
cost k. Optionally, we extend the AL set with an additional redundant constraint stating
that the cost of any assignment to the subproblem ϕA has to be at least k (Algorithm 1
line 9).

For further information and detailed proofs on the soundness and completeness of
the original WPM2 algorithm see Ansotegui et al. (2010).

Example 8 The original WPM2 algorithm performs the following iterations on the
pigeon-hole formula presented in Example 7.

ϕ = 〈(x1, 5), (x2, 5), (x3, 3), (x4, 3), (x5, 1)〉 ∪ 〈CNF(
∑

xi ≤ 1,∞)〉

In the first iteration, the SAT formula ϕ0 is sent to the SAT solver within the sat
function. The SAT solver certifies that it is unsatisfiable, and returns an unsatisfiable
core (notedwith dots •) that involves the soft clauses 1 and 3, and the set of hard clauses.
Semantically speaking, this core tells us that pigeons 1 and 3 can not be at the same time
in the hole. The optimize function computes the new At-Most constraint (5b1+3b3 ≤
3) that corresponds to the subproblem ϕ{1,3}. Notice that the corresponding At-Most
constraint for a subproblem restricts to k the aggregated cost of its falsified soft clauses.
Obviously, the first optimal candidate k for ϕ{1,3} is 3 since we will try first to leave
out the pigeon with the minimum weight. Then, the soft clauses are relaxed with an
additional variable and the corresponding constraints are added to AL and AM . These
changes (noted with triangles !) transform ϕ0 into ϕ3. The second iteration is similar
to the first one, but with the soft clauses 2 and 4. The newAt-Most constraint computed
by the optimize function is (5b2 + 3b4 ≤ 3).
Iteration 1

ϕ0 = { (x1), •
(x2),
(x3), •
(x4),
(x5) } ∪
CNF(

∑
xi ≤ 1) •

sat (ϕ, AL , AM) = 〈unsat, {1, 3}, ∅〉; I(ϕ) > 0;

ϕ3 = { (x1∨ b1 ), !
(x2 ),

(x3∨ b3 ), !
(x4 ),

(x5 ) } ∪
CNF(

∑
xi ≤ 1) ∪

CNF(5b1 + 3b3 ≥ 3) ! ∪
CNF(5b1 + 3b3 ≤ 3) !

optimize(ϕS , AL , AM, {1, 3}) = 〈{1, 3}, 3〉;

Iteration 2

ϕ3 = { (x1∨ b1 ),

(x2) , •
(x3∨ b3 ),

(x4) , •
(x5) } ∪
CNF(

∑
xi ≤ 1) •

CNF(5b1 + 3b3 ≥ 3) ∪
CNF(5b1 + 3b3 ≤ 3)

sat (ϕ, AL , AM) = 〈unsat, {2, 4}, ∅〉; I(ϕ) > 3;

ϕ6 = { (x1∨ b1 ),

(x2∨ b2 ), !
(x3∨ b3 ),

(x4∨ b4 ), !
(x5 ) } ∪
CNF(

∑
xi ≤ 1) ∪

CNF(5b1 + 3b3 ≥ 3) ∪
CNF(5b2 + 3b4 ≥ 3) ! ∪
CNF(5b1 + 3b3 ≤ 3) ∪
CNF(5b2 + 3b4 ≤ 3) !

optimize(ϕS , AL , AM, {2, 4}) = 〈{2, 4}, 3〉;
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In the third iteration, we get an unsatisfiable core for ϕ6 with the soft clauses 1 and
2, the two At-Most constraints from previous subproblems and the set of hard clauses.
The optimize function returns the subset of indexes that defines the new subproblem
ϕ{1,2,3,4}, with the soft clauses from the core and from the previous subproblems that
intersect with it. It also returns the next optimal candidate for ϕ{1,2,3,4}, k = 8, which
satisfies the three conditions: (i) it is a linear combination of the weights of ϕ{1,2,3,4},
(ii) it is greater than or equal to the addition of the subsumed previous subproblem
optimal candidates plus one (3+3+1) and (iii) its corresponding At-Most constraint
(5b1 + 5b2 + 3b3 + 3b4 ≤ 8) is consistent with the set of constraints in AL . We have
to replace the two At-Most constraints involved in the core with the new one, that is
less restrictive. Notice that the previous constraints only allowed the two pigeons with
weight 3 to be out of the hole. On the other hand, the current constraint allows both one
pigeon with weight 3 and one with weight 5 to be out of the hole. However, this is not
enough to solve the subproblem since at-least three pigeons should be out of the hole.

Iteration 3

ϕ6 = { (x1∨ b1 ), •
(x2∨ b2 ), •
(x3∨ b3 ),

(x4∨ b4 ),

(x5 ) } ∪
CNF(

∑
xi ≤ 1) • ∪

CNF(5b1 + 3b3 ≥ 3) ∪
CNF(5b2 + 3b4 ≥ 3) ∪
CNF(5b1 + 3b3 ≤ 3) •
CNF(5b2 + 3b4 ≤ 3) •

sat (ϕ, AL , AM) =
〈unsat, {1, 2}, ∅〉;
I(ϕ) > 6;

ϕ8 = { (x1∨ b1 ),

(x2∨ b2 ),

(x3∨ b3 ),

(x4∨ b4 ),

(x5 ) } ∪
CNF(

∑
xi ≤ 1) ∪

CNF(5b1 + 3b3 ≥ 3) ∪
CNF(5b2 + 3b4 ≥ 3) ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 ≥ 8) ! ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 ≤ 8) !

optimize(ϕS , AL , AM, {1, 2}) =
〈{1, 2, 3, 4}, 8〉;

In the fourth and the fifth iteration the sat function provides a core involving the soft
clauses in ϕ{1,2,3,4}. The optimize function provides new bounds 10 and 11, respec-
tively. This last bound does allow three pigeons to be out of the hole. However, this is
not yet enough to solve the whole problem.
Iteration 4

sat (ϕ, AL , AM) =
〈unsat, {1, 2, 3, 4}, ∅〉;
I(ϕ) > 8;

optimize(ϕS , AL , AM, {1, 2, 3, 4}) =
〈{1, 2, 3, 4}, 10〉;

Iteration 5

sat (ϕ, AL , AM) =
〈unsat, {1, 2, 3, 4}, ∅〉;
I(ϕ) > 10;

optimize(ϕS , AL , AM, {1, 2, 3, 4}) =
〈{1, 2, 3, 4}, 11〉;

In the sixth iteration, we get a core involving all the soft clauses, the At-Most
constraint and the set of hard clauses. The At-Most constraint corresponding to sub-
problem ϕ{1,2,3,4}, allows three pigeons out of the hole, but one is still in the hole.
Since pigeon 5 is also in the hole, there is a conflict. We get the new constraint involv-
ing all the soft clauses and the new bound 12. In the seventh iteration, we get that
ϕ12 is satisfiable and the original WPM2 algorithm ends. Notice that indeed 12 is the
minimum cost that allows four pigeons out of the hole.
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14 C. Ansótegui et al.

Iteration 6

ϕ11 = { (x1∨ b1 ), •
(x2∨ b2 ), •
(x3∨ b3 ), •
(x4∨ b4 ), •
(x5 ) • } ∪
CNF(

∑
xi ≤ 1) • ∪

CNF(5b1 + 3b3 ≥ 3) ∪
CNF(5b2 + 3b4 ≥ 3) ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 ≥ 8) ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 ≥ 10) ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 ≥ 11) ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 ≤ 11) •

sat (ϕ, AL , AM) =
〈unsat, {1, 2, 3, 4, 5}, ∅〉;
I(ϕ) > 11;

ϕ12 = { (x1∨ b1 ),

(x2∨ b2 ),

(x3∨ b3 ),

(x4∨ b4 ),

(x5∨ b5 ) !} ∪
CNF(

∑
xi ≤ 1) ∪

CNF(5b1 + 3b3 ≥ 3) ∪
CNF(5b2 + 3b4 ≥ 3) ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 ≥ 8) ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 ≥ 10) ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 ≥ 11) ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 + 1b5 ≥ 12) ! ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 + 1b5 ≤ 12) !

optimize(ϕS , AL , AM, {1, 2, 3, 4, 5}) =
〈{1, 2, 3, 4, 5}, 12〉;

Iteration 7

sat (ϕ, AL , AM) = 〈sat, ∅,I〉; cost (ϕ) = 12;

In what follows, we present how the original WPM2 algorithm can be improved by
the application of the stratified approach, the hardening of soft clauses, the optimization
of subproblems, and the exploitation of the assignments whose costs are upper bounds
on the subproblems. The first three improvements were already applied in Ansótegui
et al. (2013a).

Finally, we show that a collateral result of optimizing these subproblems by refining
the upper bound is to turn the original WPM2 complete algorithm into an incomplete
algorithm given a fixed amount of time or memory resources. We present the improve-
ments in Algorithm 2 by extending Algorithm 1. The improvements are underlined.

4.1 Stratified approach

The first improvement corresponds to the stratified approach introduced in Ansótegui
et al. (2012) for algorithm WPM1. The stratified approach (Algorithm 2 lines 2, 4,
7 and 9) consists in sending to the SAT solver only a subset of the soft clauses, i.e.,
ϕM (Algorithm 2 line 4). For the sake of clarity, we will refer to this subset as a
module. More precisely, a module M is the set of indexes of the clauses to be sent to
the SAT solver. Therefore, when the sat function returns st = sat, it means that we
have solved the subproblem ϕM . If ϕM is equal to ϕ, then we have solved the whole
problem and we can finish (Algorithm 2 line 7). A crucial point is how we extend our
current module. This action is performed by the newmodule function (Algorithm 2
line 9).

In our current approach, we follow the stratified strategy applied in Ansótegui et al.
(2012). There, a module M is formed by the indexes of the clauses whose weight
is greater than or equal to a certain weight wmax . Initially, wmax is ∞. In order to
extend the current module, we apply the diversity heuristic (Algorithm 2 line 9) which
supplies us with an efficient method to calculate how we have to reduce the value of
wmax . In particular, when there is a low diversity of weights in w(ϕ \ ϕM ), wmax is
decreased to max w(ϕ \ ϕM ), while when there is a high diversity of weights, wmax
decreases faster to keep the diversity of w(ϕ \ ϕM ) low. A similar approach with
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an alternative heuristic for grouping clauses can be found in Martins et al. (2012).
In Morgado et al. (2013b), it is proposed to only consider in the working formula or
the current module, those clauses that have been falsified by a satisfying assignment
corresponding to an upper bound.

4.2 Clause hardening

The hardening of soft clauses in MaxSAT SAT-based solvers has been previously
studied in Borchers and Furman (1998), Li et al. (2007), Larrosa et al. (2008), Heras
et al. (2008), Marques-Silva et al. (2011), Ansótegui et al. (2012), and Morgado et al.
(2012). Inspired by theseworkswe study a hardening scheme forWPM2.While clause
hardening was reported to have no positive effect in WPM1 (Ansótegui et al. 2012),
we will see that it boosts efficiency in WPM2.

The clause hardening (Algorithm 2 lines 2, 8 and 11) consists in considering hard
those soft clauses whose satisfiability we know does not need to be reconsidered. We
need some lemma ensuring that falsifying those soft clauses would lead us to non-
optimal assignments. In the case of WPM1, all soft clauses satisfyingwi > W , where
W = ∑{wi | (ci , wi ) ∈ ϕ ∧wi < wmax } is the sum of weights of clauses not sent to
the SAT solver, can be hardened.

The correctness of this transformation is ensured by the following lemma:

Algorithm 2: Improved WPM2.
Input: ϕ = 〈(c1, w1), . . . , (cs , ws ), (cs+1,∞), . . . , (cs+h ,∞)〉

1: if 〈unsat, _, _, _〉 = sat (ϕH , _, _, _) then return 〈∞, ∅〉
2: 〈AL , AM,β,IS , H ′,M〉 := 〈∅, ∅, ∅, ∅, ∅, newmodule(ϕ, H(ϕ))〉
3: while true do
4: 〈st,C,IM ,β〉 := sat (ϕM , AL , AM,β)

5: if st = sat then

6: IS :=
I∈{IM ,IS }
argmin I(ϕ)

7: if ϕM = ϕ then return 〈IM (ϕ),IM 〉
8: H ′ := harden(ϕ, AM,M)

9: M := newmodule(ϕ,M)

10: else
11: 〈A, k,IA,IS〉 := optimize(ϕS∪H , AL , AM,C, H ′,IS)

12: β :=
i∈A

{bi | IA(ϕ.ci ) = 0} ∪
i∈A

{bi | IA(ϕ.ci ) = 1} ∪ βS\A
13: AL := {〈A, w(ϕA),≥, k〉} ∪ AL
14: AM := {〈A, w(ϕA),≤, k〉} ∪ AM \ {am ∈ AM}

am.A⊆A

Lemma 1 (Lemma 24 in Ansótegui et al. (2013b))
Let ϕ1 = {(c1, w1), . . . , (cs, ws), (cs+1,∞), . . . , (cs+h,∞)} be a MaxSAT for-

mula with cost zero, let ϕ2 = {(c′
1, w

′
1), . . . , (c

′
r , w

′
r )} be a MaxSAT formula without

hard clauses and W = ∑r
j=1w

′
j . Let
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16 C. Ansótegui et al.

harden(w) =
{
w if w ≤ W
∞ if w > W

and ϕ′
1 = {(ci , harden(wi )) | (ci , wi ) ∈ ϕ1}. Then, cost(ϕ1 ∪ ϕ2) =cost(ϕ′

1 ∪ ϕ2),
and any optimal assignment for ϕ′

1 ∪ ϕ2 is an optimal assignment of ϕ1 ∪ ϕ2.

However, this lemma is not useful in the case of WPM2 because we do not proceed
by transforming the formula, like inWPM1. Therefore, we generalize this lemma. For
this, we need to introduce the notion of optimal candidate of a formula.

Function sat(ϕ, AL , AM,β)

1: 〈A, k〉 := 〈⋃ am.A,
∑

am.k〉
am∈AM

2: ϕk := {ϕ.ci }
i /∈A

∪ {ϕ.ci ∨ bi }
i∈A

∪ CNF(AL ∪ AM)∪β

3: repeat
4: 〈st,ϕkC ,I〉 := satsolver(ϕk )

5: 〈β,ϕk 〉 := 〈β \ ϕkC ,ϕ
k \ β〉

6: until (β ∩ ϕkC = ∅)
7: C := {i ∈ S(ϕ) | (ϕ.ci ∈ ϕkC ) ∨ (ϕ.ci ∨ bi ∈ ϕkC )}
8: return 〈st,C,I,β〉

Function optimize(ϕ, AL , AM,C, H ′, IS)
1: A := (

⋃
am.A

am∈AM,
am.A∩C )=∅

∪ C) \ H ′

2: k := lb := subsetsum(w(ϕA),
∑

am.k
am∈AM,
am.A⊆A

+ 1)

3: ub := W (ϕA)

4: while true do

5: k := strategy(

re f ine
lower bound

lb ,

binary search
lb+ub

2 ,

re f ine
upper bound
ub − 1 )

6: 〈st, _,IA, _〉 := sat (ϕA∪H∪H ′ ,AL , {〈A, w(ϕA),≤, k〉}∪
am.A⊆H ′

{am ∈ AM}, _)
7: if st = sat then

8: 〈IS , ub〉 := 〈
I∈{IA,IS }
argmin I(ϕ),IA(ϕA)〉

9: if lb = ub then return 〈A, lb,IA,IS〉
10: else
11: k := lb := subsetsum(w(ϕA), k + 1)
12: if lb = ub then return 〈A, lb,IA,IS〉
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Definition 14 Given a WPMS formula ϕ = 〈(c1, w1), . . . , (cs, ws), (cs+1,∞), . . . ,

(cs+h,∞)〉, we say that k is an optimal candidate of ϕ if there exists a subset A ⊆
{1, . . . , s} such that ∑i∈A wi = k.

Notice that, for any assignment I of the variables of ϕ, we have that I(ϕ) is an
optimal candidate of ϕ. However, if k is an optimal candidate, there does not exist
necessarily an assignment I satisfying I(ϕ) = k. Notice also that, given ϕ and k,
finding the next optimal candidate, i.e., finding the smallest k′ > k such that k′ is an
optimal candidate of ϕ is equivalent to the subset sum problem.

Lemma 2 Let ϕ1 ∪ϕ2 be a WPMS formula and k1 and k2 values such that: cost(ϕ1 ∪
ϕ2) = k1 + k2 and any assignment I satisfies I(ϕ1) ≥ k1 and I(ϕ2) ≥ k2. Let k′ be
the smallest possible optimal candidate of ϕ2 such that k′ > k2. Let ϕ3 be a set of soft
clauses with W = ∑{wi | (ci , wi ) ∈ ϕ3}.

Then, if W < k′ − k2, then any optimal assignment I ′ of ϕ1 ∪ ϕ2 ∪ ϕ3 assigns
I ′(ϕ2) = k2

Proof Let I ′ be any optimal assignment of ϕ1 ∪ ϕ2 ∪ ϕ3. On the one hand, as for any
other assignment, we have I ′(ϕ2) ≥ k2.

On the other hand, any of the optimal assignments I of ϕ1 ∪ ϕ2 can be extended
(does not matter how) to the variables of var(ϕ3) \ var(ϕ1 ∪ ϕ2), such that

I(ϕ1 ∪ ϕ2 ∪ ϕ3) = I(ϕ1)+ I(ϕ2)+ I(ϕ3) ≤ k1 + k2 +W < k1 + k′ (1)

Now, assume that I ′(ϕ2) )= k2, then I ′(ϕ2) ≥ k′. As any other assignment,
I ′(ϕ1) ≥ k1. Hence, I ′(ϕ1 ∪ ϕ2 ∪ ϕ3) ≥ k1 + k′ > I(ϕ1 ∪ ϕ2 ∪ ϕ3), but this
contradicts the optimality of I ′. Therefore, I ′(ϕ2) = k2. 34

Example 9 It may seem that the condition of Lemma 2 is hard to satisfy unless ϕ1
and ϕ2 are over disjoint sets of variables. This is not the case, and here we present a
simple example where ϕ1 and ϕ2 share variables and Lemma 2 holds:

ϕH =CNF(((x1 + x2 ≤ 1),∞), ((x3 + x4 ≤ 1),∞), ((x1+x2+x3 + x4 ≤ 2),∞))

ϕ1 = 〈(x1, 1), (x2, 1)〉 ∪ ϕH

ϕ2 = 〈(x3, 1), (x4, 1)〉 ∪ ϕH

ϕ1 ∪ ϕ2 = 〈(x1, 1), (x2, 1), (x3, 1), (x4, 1)〉 ∪ ϕH

Notice that the condition of Lemma 2 is satisfied for ϕ1 and ϕ2, since k1 = cost (ϕ1) =
1, k2 = cost (ϕ2) = 1 and k1 + k2 = cost (ϕ1 ∪ ϕ2) = 2.

In order to apply this lemmawehave to consider formulasϕ1∪ϕ2 ensuring cost(ϕ1∪
ϕ2) = k1 + k2 and I(ϕ1) ≥ k1 and I(ϕ2) ≥ k2, for any assignment I. This can be
easily ensured, in the case ofWPM2, if both ϕ1 and ϕ2 are subproblems. Then, we only
have to check if the next optimal candidate k′ of ϕ2 exceeds the previous one k2 more
than the sumW of the weights of the clauses not sent to the SAT solver. In such a case,
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18 C. Ansótegui et al.

we can consider all soft clauses of ϕ2 and their corresponding AM constraint with k2
as hard clauses. In other words, we do not need to recompute the optimal k2 of ϕ2.

The harden(ϕ, AM,M) function (Algorithm 2 line 8) returns the set of indexes
of soft clauses H ′ that needs to be considered hard based on the previous analysis
according to: the current set of At-Most constraints AM , the next optimal candidates
of these constraints and the sum of the weights W of soft clauses beyond the current
wmax , i.e., not yet sent to the SAT solver.

Function harden(ϕ, AM,M)
1: H ′ = {i | 〈A, w(ϕA),≤, k〉 ∈ AM{i} ∧ ∑

w(ϕ \ ϕM ) < subsetsum(w(ϕA), k + 1) − k}
2: return H ′

Finally, in the optimize function (Algorithm 2 line 11) we introduce H ′ since as we
will see in the next subsection, we need to know which are all the hard clauses to this
point of the execution.

4.3 Subproblem optimization

Aswe havementioned earlier, one key point inWPM2 is how to compute 〈A, k〉within
the optimize function (Algorithm 2 line 11) to construct the new At-Most constraint
(〈A, w(ϕ),≥, k〉). In the original WPM2 algorithm, the idea was to compute the next
lower bound candidate, k, for the subproblem ϕA. We can go further and set k to the
optimal cost of the subproblem ϕA∪H , i.e., k = cost (ϕA∪H ).1

In order to do this, while taking advantage of the AL constraints generated so far,
we only have to extend the definition of the minimization problem corresponding to
the original optimize function, by adding ϕA∪H to the Subject to section.

To solve ϕA∪H , we can use any complete approach related to MaxSAT, such as,
MaxSAT branch and bound algorithms, MaxSAT SAT-based algorithms, saturation
under the MaxSAT resolution rule (Larrosa and Heras 2005; Bonet et al. 2006), or we
can use other solving techniques such as PB solvers or ILP techniques, etc. Therefore
the improved WPM2 algorithm is parametric on any suitable optimization solving
approach. In this work, we experimented with an ILP approach, corresponding to the
strategy shown in Sect. 3, and three MaxSAT approaches (new optimize line 5) that
we describe in the next lines.

The first and natural approach consists in iteratively refining (increasing) the lower
bound (k = lb) on cost (ϕA∪H ) by applying the subsetsum function as in the original
WPM2 (new optimize lines 5 and 11). The procedure stops when lb satisfies the
constraints AL ∪ ϕA∪H (new optimize line 9). Notice that, since we have included
ϕA∪H into the set of constraints, we will get an optimal assignment or solution for
ϕA∪H .

The second approach consists in iteratively refining (decreasing) the upper bound
following the strategy applied in minisat+ (Eén and Sörensson 2006), SAT4J (Berre

1 For the sake of clarity, we will obviate in the following mentioning the hardened soft clauses (H ′) due to
the clause hardening technique (see Sect. 4.2).
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2006), qmaxsat (Koshimura et al. 2012) or ShinMaxSat (Honjyo and Tanjo 2012).
The upper bound ub is initially set to the top weight of ϕA. Then, we iteratively check
whether there exists an assignment for ϕA∪H with cost k = ub− 1. Whenever we get
a satisfying assignment (IA) we update ub to IA(ϕA), i.e., the sum of the weights wi
of those soft clauses falsified under the satisfying assignment (new optimize line 5).
Notice that since IA is a satisfying assignment, it follows that IA(ϕA) = IA(ϕA∪H ).
If we get an unsatisfiable answer, the previous upper bound (IA(ϕA)) is the optimal
cost for ϕA∪H (new optimize lines 11 and 12 ).

The third approach applies a binary search scheme (Heras et al. 2011; Cimatti et al.
2010; Fu andMalik 2006) on k (new optimize line 5). We additionally refine the lower
bound (lb) as in our first approach and the upper bound (IA(ϕA)) as in the second
approach. The search endswhen lb andIA(ϕA) are equal (new optimize lines 9 and 11).

A final remark is that, if we combine this technique with the previous hardening
technique, then we simply have to take into account the set of indexes of soft clauses
H ′ that became hard. Aswe can see in the new optimize function (Algorithm 2 line 11),
we first compute the set A as in the original function, but excluding the soft clauses
that became hard H ′ (new optimize line 1). Then, we call the sat function but adding
ϕA∪H∪H ′ and the set of At-Most constraints involved in H ′, i.e., {am ∈ AM}am.A⊆H ′

(new optimize line 6).
The worst case complexity, in terms of the number of calls to the SAT solver, of the

improved WPM2 algorithm is the number of times that the optimize function is called
(bounded by the number of soft clauses) multiplied by the number of SAT calls needed
in each call to the optimize function. This latter number is logarithmic on the sum of
the weights of the clauses of the core if we use a binary search, hence essentially the
number of clauses. Therefore, the worst case complexity, when using a binary search
to solve the subproblems, is quadratic on the number of soft clauses.

In order to see that the number of calls to the optimize function is bounded by the
number of clauses we just need to recall that WPM2 merges the At-Most constraints.
Consider a binary tree where the soft clauses are the leaves, and the internal nodes
represent the merges (calls to the optimize function). A binary tree of n leaves has n−1
internal nodes.

Solving all the subproblems exactly can be very costly since these are NP-hard
problems. Notice that some of these subproblems can be integrated soon into another
subproblem which we will also solve. A reasonable strategy would be to solve a
subproblem when it appears for the second time, meaning that the associated k is not
the optimal cost. However, in practice, we found that the more efficient strategy was
to solve a subproblem only if it incorporates a previous subproblem.

Example 10 The improved WPM2 algorithm performs different iterations from the
ones of the original WPM2 in Example 8 on the pigeon-hole formula presented in
Example 7.

ϕ = 〈(x1, 5), (x2, 5), (x3, 3), (x4, 3), (x5, 1)〉 ∪ 〈CNF(
∑

xi ≤ 1,∞)〉

In contrast to the original, the improved WPM2 algorithm performs fewer calls to the
sat function with an unsatisfiable response. Therefore, it performs fewer calls to the
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optimize function and fewer updates to AL and AM . Besides, the sat function deals
with formulasϕM with fewer soft clauses and sets AL and AM with shorter constraints.
We find the first difference in the first iteration where, applying the stratified approach,
we consider only a subproblem ϕM with those clauses whose weightwi ≥ 5. The first
unsatisfiable core (noted with dots •), involves the soft clauses 1 and 2, and the set
of hard clauses. The optimize function computes the new At-Most constraint that
corresponds to the subproblem ϕ{1,2}∪H . The optimal cost k for this subproblem is 5,
since this is the weight of both pigeons. Notice that, applying the stratified approach,
we get a better first lower bound for the formula. The soft clauses are relaxed and the
corresponding constraints are added to AL and AM (noted with triangles !). In the
second iteration, we get that ϕ5

M is satisfiable. Since ϕM is not equal to ϕ, we compute
a new module M with those clauses whose weight wi ≥ 3.
Iteration 1

ϕ0M = { (x1), •
(x2), • } ∪
CNF(

∑
xi ≤ 1) •

ϕ5M = { (x1∨ b1 ), !
(x2∨ b2 ), ! } ∪
CNF(

∑
xi ≤ 1) ∪

CNF(5b1 + 5b2 ≥ 5) ! ∪
CNF(5b1 + 5b2 ≤ 5) !

sat (ϕM , AL , AM, _) =
〈unsat, {1, 2},∅, _〉;
I(ϕ) > 0;

optimize(ϕ, AL , AM, {1, 2}, {}, _) =
〈{1, 2}, 5, _, _〉;

Iteration 2

sat (ϕM , AL , AM, _) = 〈sat, ∅,I, _〉;ϕM )= ϕ → I(ϕ) ≥ 5;M = {1, 2, 3, 4};

The third iteration is similar to the first one, but with the soft clauses 3 and 4.
Iteration 3

ϕ5M = { (x1∨ b1 ),

(x2∨ b2 ),

(x3 ), •
(x4 ), • } ∪
CNF(

∑
xi ≤ 1) • ∪

CNF(5b1 + 5b2 ≥ 5) ∪
CNF(5b1 + 5b2 ≤ 5)

ϕ8M = { (x1∨ b1 ),

(x2∨ b2 ),

(x3∨ b3 ), !
(x4∨ b4 ), ! } ∪
CNF(

∑
xi ≤ 1) ∪

CNF(5b1 + 5b2 ≥ 5) ∪
CNF(3b3 + 3b4 ≥ 3) ! ∪
CNF(5b1 + 5b2 ≤ 5) ∪
CNF(3b3 + 3b4 ≤ 3) !

sat (ϕM , AL , AM, _) =
〈unsat, {3, 4},∅, _〉;
I(ϕ) > 5;

optimize(ϕ, AL , AM, {3, 4}, {}, _) =
〈{3, 4}, 3, _, _〉;

It is in the fourth iteration where we can appreciate the impact of subproblem opti-
mization. In Example 8, we needed three iterations to get the bound 11 for the At-Most
constraint corresponding to the subproblem ϕ{1,2,3,4}. Incorporating the hard clauses
to the optimize function and solving the subproblem ϕ{1,2,3,4}∪H , we get directly the
optimal cost 11 in just one iteration. In the fifth iteration, we get that ϕ5

M is satisfiable.
As ϕM is not equal to ϕ we have to compute a new module again. Before doing that,
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we apply the hardening technique. We get that the soft clauses 1, 2, 3 and 4, and their
corresponding At-Most constraint can be considered as hard (H ′). This is because the
current k of this At-Most constraint is 11 (5 + 3 + 3) and its next k′ candidate is 13
(5+ 5+ 3), while the addition of weights of those soft clauses not yet in M , i.e., {5},
is only 1. So, reconsidering this At-Most constraint would lead to an assignment with
a higher cost than falsifying all the soft clauses not yet in M . Semantically speaking,
the increase in cost of any non-allowed distribution of pigeons 1, 2, 3 and 4, is always
higher than the cost of allowing the pigeon 5 to be out of the hole. After applying the
hardening technique, we compute the new module M (clauses whose weight wi ≥ 1)
that corresponds to the whole problem (i.e., in the next iteration with a satisfiable
response from the sat function, we will have found the solution).
Iteration 4

ϕ8M = { (x1∨ b1 ), •
(x2∨ b2 ), •
(x3∨ b3 ), •
(x4∨ b4 ), • } ∪
CNF(

∑
xi ≤ 1) • ∪

CNF(5b1 + 5b2 ≥ 5) ∪
CNF(3b3 + 3b4 ≥ 3) ∪
CNF(5b1 + 5b2 ≤ 5) • ∪
CNF(3b3 + 3b4 ≤ 3) •

ϕ11M = { (x1∨ b1 ),

(x2∨ b2 ),

(x3∨ b3 ),

(x4∨ b4 ),∪
CNF(

∑
xi ≤ 1) ∪

CNF(5b1 + 5b2 ≥ 5) ∪
CNF(3b2 + 3b4 ≥ 3) ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 ≥ 11) ! ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 ≤ 11) !

sat (ϕM , AL , AM, _) =
〈unsat, {1, 2, 3, 4},∅, _〉;
I(ϕ) > 8;

optimize(ϕ, AL , AM, {1, 2, 3, 4}, {}, _) =
〈{1, 2, 3, 4}, 11, _, _〉;

Iteration 5

sat (ϕM , AL , AM, _) = 〈sat,∅,I, _〉; ϕM )= ϕ → I(ϕ) ≥ 11; H ′ = {1, 2, 3, 4}; M = {1, 2, 3, 4, 5};

In the sixth iteration, the sat function returns a core with all the soft clauses, the At-
Most constraint and the set of hard clauses. Applying the hardening technique, the soft
clauses with indexes in H ′ and the corresponding At-Most constraint are considered
as hard. Therefore, the new At-Most constraint computed by the optimize function
involves only the soft clause 5 and has the new bound k = 1. In the seventh iteration,
we get that ϕ12

M is satisfiable. Since ϕM is equal to ϕ, 12 is the solution to the problem.
Iteration 6

ϕ11M = { (x1∨ b1 ), •
(x2∨ b2 ), •
(x3∨ b3 ), •
(x4∨ b4 ), •
(x5 ) • } ∪
CNF(

∑
xi ≤ 1) • ∪

CNF(5b1 + 5b2 ≥ 5) ∪
CNF(3b2 + 3b4 ≥ 3) ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 ≥ 11) ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 ≤ 11) •

ϕ12M = { (x1∨ b1 ),

(x2∨ b2 ),

(x3∨ b3 ),

(x4∨ b4 ),

(x5∨ b5 ) !} ∪
CNF(

∑
xi ≤ 1) ∪

CNF(5b1 + 5b2 ≥ 5) ∪
CNF(3b2 + 3b4 ≥ 3) ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 ≥ 11) ∪
CNF(5b1 + 5b2 + 3b3 + 3b4 ≤ 11) ∪
CNF(1b5 ≥ 1) ! ∪
CNF(1b5 ≤ 1) !

sat (ϕM , AL , AM, _) =
〈unsat, {1, 2, 3, 4, 5},∅, _〉
I(ϕ) > 11;

optimize(ϕ, AL , AM, {1, 2, 3, 4, 5}, {1, 2, 3, 4}, _) =
〈{5}, 1〉;
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Iteration 7

sat (ϕM , AL , AM, _) = 〈sat, ∅,I, _〉; ϕM = ϕ → cost (ϕ) = 12;

4.4 Exploiting satisfying assignments from subproblems

Whenever we obtain an upper bound or solution for a subproblem, we can obtain an
upper bound for thewhole problem. Consider ϕA∪H , where A is a subset of the indexes
of the soft clauses in a WPMS formula ϕ and H the set of indexes of the hard clauses,
as the subproblem we want to solve. According to the search strategy we use in the
optimize function (see Sect. 4.3) we may obtain assignments IA (Algorithm 2 line 6)
that are upper bounds or directly a solution for ϕA∪H . If we extend this assignment
by assigning a random value in {0, 1} to every variable in var(ϕ) \ var(ϕA∪H ), then
it is not difficult to see that IA(ϕ) ≥ cost (ϕ), i.e., IA(ϕ) is an upper bound for ϕ.
Therefore, by comparing IA(ϕ)with the cost of the best assignment found so far IS(ϕ)
(Algorithm 2 line 8), the improvedWPM2 algorithm becomes naturally an incomplete
approach. It is incomplete in the sense that it reports the assignment with the best cost
found within restricted time and memory resources.

Also, due to the stratification approach, once we obtain a satisfying assignment IM
for a module M (Algorithm 2 line 4), we may have obtained a better upper bound for
ϕ. Therefore, following the same idea, we update conveniently IS (Algorithm 2 line
6) as in the optimize function.

Obviously, this incomplete approach makes sense if we are able to obtain quickly
good quality upper bounds. We will show that this is the case in the experimental
section (see Sect. 6). However, let us visualize the behavior of the improved WPM2
algorithm on a particular instance. In Fig. 1, we show the upper bounds IA(ϕ) and
lower bounds obtained during the execution of the improved WPM2 on an industrial
Partial MaxSAT formula ϕ. The upper bound refinement strategy was used for the
subproblem optimization phase.

For the sake of comparison, we also show the lower bounds obtained with the
originalWPM2algorithm.Theobjective is to show that the improvedWPM2algorithm
not only is able to provide good upper bounds, it also converges faster to the optimal
cost.

In the x-axis, we show the elapsed seconds of the search in a logarithmic scale.
The y-axis correspond to the range of the objective function (from 0 to top weight). In
the upper half (from optimum to top weight) we show the value of the obtained upper
bounds and in the lower half (from optimum to 0) we show the value of the lower
bounds.

As we can see, the original WPM2 does not provide any upper bound until the
optimum is found. In contrast, the improvedWPM2does provide several upper bounds
coming from the subproblem optimization phase.

Both algorithms provide lower bounds. Every lower bound update corresponds to
a new k for a subproblem obtained after a call to the optimize function and is followed
by a call to the sat function to check the satisfiability of the whole problem. Notice
that the subproblem optimization occurs always between lower bound updates. In the
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Fig. 1 Upper and lower bounds obtained with the original and the improved WPM2

improved WPM2 algorithm, during the subproblem optimization phase, the upper
bound for the particular subproblem is always improved, i.e., it decreases. However,
if we extend this assignment to the whole problem this monotonic behavior is not
guaranteed. This is why, in Fig. 1, during the subproblem optimization phase, the
upper bounds for the whole problem tend to decrease but can also increase.

With respect to the quality of these upper bounds, notice that, in less than 5 s, an
upper bound very close to the optimum (less than 6 % error) is obtained. Also, an
upper bound IA(ϕ) equal to the optimal cost cost (ϕ) (0 % error) is obtained in 132 s,
earlier than the solution itself (226 s). This is interesting because it means that we
can obtain very high quality assignments or even a solution before solving exactly the
problem, i.e., certifying that there is no any other assignment with a lower cost.

Finally, we can see that, thanks to subproblem optimization, the improved WPM2
only needs 6 calls (lower bounds updates) on the whole problem, while the original
WPM2 needs more than 40.

For more detailed information, we analyze the quality of upper bounds for all the
instances of our experimentation in Sect. 6 (Figs. 2 and 3).

We can further exploit the satisfying assignments obtained during the search. In
modern SAT solvers, the polarity of the decision variables is chosen according to
the most recent polarity they were assigned in a previous partial assignment. This
technique is called phase saving (Pipatsrisawat and Darwiche 2007) and its main goal
is to avoid redoing work. Notice that, during backtracking, many variable assignments
are undone and the suitable polarity needs to be revealed again during search.

In our SAT-based MaxSAT algorithms, we perform independent queries to a SAT
solver. Therefore, some suitable information can be lost. For example, in Sect. 5 we
discuss how to preserve learned clauses by using the SAT solvers in incremental
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mode. Here, the idea is to use the optimal assignment IA for a subproblem ϕA∪H
(Algorithm 2 line 11) to guide the search in the next call to the SAT solver. Basically,
the set β (Algorithm 2 line 12) is updated to contain the unit clauses that represent
whether the ith soft clausewas satisfied (bi ) or falsified (bi ) by theIA of themost recent
subproblem it took part in. We expect assignments IA to be more informed as search
proceeds and therefore be able to guess the satisfaction status of soft clauses in optimal
assignments for ϕ. In the sat function the set β is appended to the set of clauses sent to
the SAT solver (new sat line 2). Although this gives us extra propagation, it may be the
case that our guess is wrong, therefore we iteratively call the SAT solver until no unit
clause in β is involved in the unsatisfiable core (new sat lines 3, 5 and 6). Notice that
the unit clauses that do not appear in any core, do remain in the set β providing us extra
propagation power (Algorithm 2 line 4). Therefore, we use the optimal assignments
from subproblems to guess the phase of the variables in an optimal assignment to the
whole problem ϕ. In addition, we can also use the satisfying assignments IA, obtained
within the subproblem optimization, to guide the search during this phase.

5 Engineering efficient SMT-based MaxSAT solvers

We have implemented both the last version of the WPM1 algorithm (Ansótegui et al.
2012) and the improved WPM2 algorithm on top of the Yices SMT solver (Dutertre
and de Moura 2014).

An SMT formula is a generalization of a Boolean formula in which some propo-
sitional variables have been replaced by predicates with predefined assignments from
background theories such as, e.g., linear integer arithmetic. For example, an SMT
formula can contain clauses like x1 ∨ x2 ∨ (b1 + 2 ≤ b1) and (b1 ≥ 2 · b2 + 3 · b3),
where x1 and x2 are Boolean variables and b1, b2 and b3 are integer variables. Pred-
icates over non-Boolean variables, such as linear integer inequalities, are evaluated
according to the rules of a background theory. Leveraging the advances made in SAT
solvers in the last decade, SMT solvers have proved to be competitive with classical
decision methods in many areas. Most modern SMT solvers integrate a SAT solver
with decision procedures (theory solvers) for sets of literals belonging to each theory.
This way, we can hopefully get the best of both worlds: in particular, the efficiency
of the SAT solver for the Boolean reasoning and the efficiency of special-purpose
algorithms for the theory reasoning.

Another reasonable choice would be to use a PB solver, which can be seen as a
particular case of an SMT solver specialized on the theory of PB constraints (Man-
quinho et al. 2009, 2010). However, if we also want to solve problems modeled with
richer formalisms like WCSP, the SMT approach seems a better choice since we can
take advantage of a wide range of theories (Ansótegui et al. 2011).

Among the theories considered in the SMT-LIB (Barrett et al. 2010) (SMTLibrary)
we are interested in QF_LIA (Quantifier-Free Linear Integer Arithmetic). With the
QF_LIA theory we can model the PB constraints that SAT-based MaxSAT algorithms
generate during their execution. To this end, the PB variables can be declared as integer
variables whose domain is {0, 1}. Therefore, for the SMT-based MaxSAT algorithm,
we just need to replace the conversions to CNF by the proper linear integer arithmetic
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predicates. As we can see in Example 11, the SMT-LIB language v2.0 is a standard
language with a prefix notation where the operator is placed at the beginning of the
predicates.

Example 11 Given the SAT instance of Example 8 Iteration 3, ϕ6 = {(x1 ∨b1), (x2 ∨
b2), (x3 ∨ b3), (x4 ∨ b4), (x5) } ∪ CNF(

∑
xi ≤ 1) ∪ CNF(5 · b1 + 3 · b3 ≥ 3) ∪

CNF(5 · b2 + 3 · b4 ≥ 3)∪CNF(5 · b1 + 3 · b3 ≤ 3)∪CNF(5 · b2 + 3 · b4 ≤ 3) The
SMT instance ϕ6 in the SMT-LIB language v2.0 under QF_LIA (Barrett et al. 2010)
would be as follows:

; Set QF_LIA theory

(set-logic QF_LIA)

; Declaration of variables

(declare-fun x1 () Bool)
(declare-fun x2 () Bool)
(declare-fun x3 () Bool)
(declare-fun x4 () Bool)
(declare-fun x5 () Bool)
(declare-fun b1 () Int)
(declare-fun b2 () Int)
(declare-fun b3 () Int)
(declare-fun b4 () Int)
(declare-fun b5 () Int)

; Bounds for PB variables

(assert (>= b1 0))
(assert (<= b1 1))
(assert (>= b2 0))
(assert (<= b2 1))
(assert (>= b3 0))
(assert (<= b3 1))
(assert (>= b4 0))
(assert (<= b4 1))
(assert (>= b5 0))
(assert (<= b5 1))

; Soft clauses

(assert (or x1 (= b1 1)))
(assert (or x2 (= b2 1)))
(assert (or x3 (= b3 1)))
(assert (or x4 (= b4 1)))
(assert x5)

; Hard clauses

(assert (or (not x1) (not x2))
(assert (or (not x1) (not x3))
(assert (or (not x1) (not x4))
(assert (or (not x1) (not x5))
(assert (or (not x2) (not x3))
(assert (or (not x2) (not x4))
(assert (or (not x2) (not x5))
(assert (or (not x3) (not x4))
(assert (or (not x3) (not x5))
(assert (or (not x4) (not x5))

; PB constraints

(assert (>= (+ (* b1 5) (* b3 3)) 3))
(assert (>= (+ (* b2 5) (* b4 3)) 3))
(assert (<= (+ (* b1 5) (* b3 3)) 3))
(assert (<= (+ (* b2 5) (* b4 3)) 3))

; Check satisfiability

(check-sat)

As suggested in Fu and Malik (2006) and Martins et al. (2011), we can preserve
some learned lemmas from previous iterations that may help to reduce the search
space. In order to do that, we execute the SMT solver in incremental mode. Within
this mode, we can call the solve routine and add new clauses (assertions) on demand,
while preserving learned lemmas. However, notice that our algorithms delete parts of
the formula between iterations. For example, when we have to update the AM set in
the WPM2 algorithm (see Sect. 4) by deleting some At-Most constraints. Therefore,
we also have to take care of any learned lemma depending on them.

The Yices SMT solver gives the option of marking assertions as retractable. If
the SMT solver does not support the deletion of assertions but supports the usage of
assumptions, we can replace every retractable assertion c, with a → c, where a is an
assumption. Before each call, we activate the assumptions of assertions that have not
been retracted by the algorithm. Notice that assertions that do have been retracted will
have a pure literal (a) such that a has not been activated. Therefore, the solver can
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safely set to false a, deactivating the clause. Moreover, any learned lemma on those
assertions will also include a. For example, Z3 and Mathsat SMT solvers do not allow
to delete clauses, but they allow the use of assumptions.

From the point of view of incrementality it is also quite recommendable to reuse as
much as possible the PB constraints we modify during the search, since we will also
be able to reuse learned clauses depending on them. Pioneering works in this sense can
be found in Bofill et al. (2013) and Andres et al. (2012). Our current implementation
does not incorporate these complementary improvements, but itwould certainly benefit
from them.

6 Experimental results

In this section we present an intensive experimental investigation on the industrial
and crafted instances of the MaxSAT Evaluation 2013 (MSE13) (Argelich et al. 2006-
2004). We provide results for the improved WPM2 SMT-based MaxSAT solver and
the best solvers of the MSE13. We run our experiments on a cluster with Intel Xeon
CPUE7-8837@2.67GHz processors and amemory limit of 3.5GB. These are exactly
the same specs as in the MSE13.

The instance set of theMSE13 is divided in four categories depending on the variant
of the MaxSAT problem: MaxSAT (MS), Partial MaxSAT (PMS), Weighted MaxSAT
(WMS) or WPMS. In addition, instances are further divided according to their nature
into three subcategories: random, crafted or industrial (we are actually only interested
in industrial and crafted). In each subcategory, instances are grouped by families.

We use the same set of instances for experiments on complete and incomplete
solvers. The experimental results for complete and incomplete solvers are presented
in Sects. 6.1 and 6.2, respectively.

6.1 Complete solvers

In this subsection, we analyze the performance of the improved WPM2 complete
solver. First of all, we present the summarized results of the complete solvers at
MSE13 in Tables 1 and 2. Second, we analyze the impact of each improvement on the
original WPM2 algorithm in Table 3 (full detailed information in Tables 11 and 12).
Then, we compare the results of the improvedWPM2 solverwith the best solvers of the
MSE13 in Table 4 (full detailed information in Tables 13 and 14). Finally, in Tables 5
and 6, we further analyze the results of the improved WPM2 solver, discussing how
it is able to exploit more efficiently the structure of the instances.

Tables 1 and 2 show the results of the MSE13 (with a timeout of 1800 s). Since
families have different numbers of instances, we considered it was more fair to present
the solvers ordered bymean family ratio of solved instances. In Table 1 we see the four
best performing solvers on each industrial and crafted subcategory. In Table 2 we see
the best performing solvers on the whole set of industrial and crafted instances. We
have excluded I SAC+, since it is a portfolio based solver and our intention here is
to compare ground solvers. Notice that I SAC+ already includes some of the ground
solvers. The ground solvers with the best overall performance were:wpm2-13∗which
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actually corresponds to a WPM2 variation (wpm2shua∗ in Table 3), maxhs13 which
consists in an hybrid SAT-ILP approach described in Davies and Bacchus (2011),
qms2 which is based on an upper bound refinement described in Koshimura et al.
(2012), optim-ni and msunc which implement the core-guided binary search algo-
rithm described in Heras et al. (2011) andMorgado et al. (2012), pwbo2.3which takes
advantage of parallel processing as described in Martins et al. (2011), Martins et al.
(2012), wpm1-2013 which is the SMT-based version of the improved WPM1 algo-
rithm described in Ansótegui et al. (2012), ilp which translates WPMS into ILP and
applies the MIP solver IBM-CPLEX studio124 as described in Sect. 3, and wmsz09
which implements a branch and bound algorithm described in Li et al. (2006), Li et al.
(2007), Li et al. (2009). Further information about solvers and authors can be found
in Argelich et al. (2006-2004).

We have completed the evaluation of the MSE13 by providing results of some
solvers on those categories where originally they did not take part. For example, results

Table 1 MSE13 best solvers ordered by mean ratio of solved instances

MS PMS WMS WPMS

Random 1. msz13 f 1. I SAC+ 1. ckm-s 1. I SAC+
2. I SAC+ 2. wmsz09 2. I SAC+ 2. wmsz09

3. ckm-s 3. wmsz+ 3. msz13 f 3. wmsz+
4. wmsz+ 4. ckm-s 4. wmsz+ 4. ckm-s

Crafted 1. ahms 1. I SAC+ 1. I SAC+ 1. maxhs13

2. I SAC+ 2. qms2-m 2. wmsz+ 2. I SAC+
3. msz13 f 3. qms2-mt 3. wmsz09 3. ilp13

4. ckm-s 4. antom_s1 4. msz13 f 4. wpm1-13

Industrial 1. pmi f u 1. I SAC+ 1. – 1. I SAC+
2. wpm1-11 2. qms2-mt 2. – 2. wpm1-13

3. I SAC+ 3. wpm2-13∗ 3. – 3. wpm2-13∗
4. optim-ni 4. optim-ni 4. – 4. msunc

Table 2 MSE13 best solvers

Ind. (%) 1078 Cra. (%) 1000 Total (%) 2078

1. wpm2-13∗ 75.0 820 46.3 521 61.5 1341

2. maxhs13 59.7 719 59.9 670 59.8 1389

3. qms2 68.7 640 47.3 481 58.6 1121

4. optim-ni 70.1 671 39.7 435 55.8 1106

5. msunc 71.4 784 37.7 429 55.5 1215

6. pwbo2.3 63.0 686 45.5 521 54.7 1207

7. wpm1-13 65.0 743 40.1 452 53.3 1195

8. ilp13 46.3 575 61.1 723 53.3 1298

9. wmsz09 19.5 238 59.2 745 38.1 983

Mean ratio and number of solved instances; Best results are in bold
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Table 3 Impact of WPM2 improvements, compared on the industrial and crafted instances of MSE13
(number and mean ratio of solved instances)

Solvers MS PMS WMS WPMS Ind. MS PMS WMS WPMS Cra. Total

wpm2 20 429 – 202 651 12 247 10 39 308 959

50.6 % 67.9 % – 49.5 % 61.8 % 14.0 % 59.9 % 6.6 % 19.2 % 31.5 % 47.6 %

wpm2s 21 467 – 203 691 12 248 10 98 368 1059

51.6 % 74.2 % – 52.5 % 66.9 % 14.0 % 58.1 % 6.6 % 29.9 % 34.0 % 51.4 %

wpm2sh 21 464 – 269 754 12 248 15 98 373 1127

51.6 % 73.5 % – 62.4 % 69.0 % 14.0 % 58.1 % 10.3 % 29.9 % 34.6 % 52.8 %

wpm2shia 18 239 – 261 518 18 248 23 253 542 1060

48.7 % 37.8 % – 55.4 % 43.2 % 16.5 % 46.8 % 21.0 % 55.5 % 40.0 % 41.7 %

wpm2shic 19 259 – 267 545 17 257 22 258 554 1099

49.7 % 40.5 % – 57.2 % 45.5 % 16.0 % 48.7 % 20.6 % 56.5 % 40.8 % 43.5 %

wpm2shla 18 480 – 319 817 12 256 16 199 483 1300

48.7 % 76.3 % – 74.0 % 73.7 % 14.0 % 61.6 % 12.0 % 50.1 % 42.0 % 58.8 %

wpm2shlc 21 486 – 326 833 12 255 16 198 481 1314

51.6 % 75.6 % – 75.5 % 73.8 % 14.0 % 61.4 % 12.0 % 49.9 % 41.9 % 58.8 %

wpm2shba 17 503 – 326 846 15 261 19 264 559 1405

47.8 % 80.6 % – 74.6 % 76.6 % 15.2 % 62.1 % 20.3 % 68.4 % 49.2 % 63.7 %

wpm2shbc 20 497 – 339 856 14 265 19 263 561 1417

50.6 % 78.7 % – 77.4 % 76.3 % 14.8 % 62.8 % 20.3 % 67.3 % 49.0 % 63.4 %

wpm2shua∗ 16 502 – 326 844 13 270 18 255 556 1400

46.8 % 80.7 % – 75.5 % 76.8 % 14.4 % 63.2 % 18.6 % 67.1 % 48.8 % 63.6 %

wpm2shuc 18 513 – 334 865 14 271 18 255 558 1423

48.7 % 81.9 % – 76.7 % 78.1 % 14.8 % 63.5 % 18.6 % 66.1 % 48.7 % 64.3 %

wpm2shucg 20 524 – 336 880 14 267 18 272 571 1451

50.6 % 82.5 % – 77.0 % 78.6 % 14.8 % 63.0 % 18.6 % 68.8 % 49.2 % 64.8 %

wpm2shucgo 20 528 – 333 881 14 272 18 288 592 1473

50.6 % 82.9 % – 76.5 % 78.9 % 14.8 % 63.7 % 18.6 % 73.7 % 51.0 % 65.7 %

Best results are in bold

of solvers wpm1-13 and wpm2-13∗ have been added in the MS category. Results of
solver qms2 have been also added to MS and WMS categories. We had to change the
format of these instances so that qms2 could read them. These additional results do
not change the overall performance, but they give the full picture.

From Table 2, we emphasize that the solver implementing the variation of the
WPM2 algorithm (wpm2-13∗) was already the best in family ratio of solved instances
on thewhole set of industrial and crafted instances atMSE13. Although it solved fewer
instances than maxhs13 on the whole set, wpm2-13∗ dominated both in family ratio
and number of solved instances on the set of industrial instances.

Table 3 shows our first experiment, where we evaluate the impact of each improve-
ment on the original WPM2 algorithm (with a timeout of 7200 s). All the variations
on the WPM2 algorithm are implemented on top of the Yices SMT solver (version
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Table 4 wpm2shucgo compared to MSE13 best complete solvers on the industrial and crafted instances
of MSE13 (number and mean ratio of solved instances)

Solvers MS PMS WMS WPMS Ind. MS PMS WMS WPMS Cra. Total

wpm2shucgo 20 528 – 333 881 14 272 18 288 592 1473

50.6 % 82.9 % – 76.5 % 78.9 % 14.8 % 63.7 % 18.6 % 73.7 % 51.0 % 65.7 %

wpm2-13∗ 16 502 – 326 844 13 270 18 255 556 1400

46.8 % 80.7 % – 75.5 % 76.8 % 14.4 % 63.2 % 18.6 % 67.1 % 48.8 % 63.6 %

maxhs13 7 486 – 259 752 7 304 43 330 684 1436

22.4 % 70.6 % – 53.8 % 62.7 % 12.0 % 71.1 % 45.3 % 89.1 % 62.2 % 62.5 %

qms2-g2 19 543 – 119 681 10 284 30 207 531 1212

34.0 % 85.0 % – 46.5 % 71.2 % 13.2 % 73.2 % 22.2 % 58.2 % 50.3 % 61.4 %

optim-ni 38 503 – 165 706 7 261 32 165 465 1171

83.7 % 80.8 % – 50.7 % 73.2 % 7.4 % 64.6 % 25.0 % 44.8 % 42.7 % 58.8 %

ilp13 7 354 – 259 620 46 333 76 311 766 1386

22.4 % 54.1 % – 55.3 % 52.0 % 37.7 % 68.4 % 64.7 % 78.0 % 65.5 % 58.4 %

wpm1-13 21 422 – 351 794 12 207 11 301 531 1325

51.6 % 68.4 % – 79.6 % 70.1 % 14.0 % 48.3 % 7.4 % 74.9 % 43.5 % 57.6 %

pwbo2.33 7 445 – 269 721 8 254 12 204 478 1199

22.4 % 71.9 % – 58.5 % 64.8 % 12.4 % 65.2 % 14.6 % 66.7 % 48.4 % 57.1 %

msunc 26 512 – 270 808 8 249 17 164 438 1246

56.4 % 77.9 % – 67.0 % 73.5 % 7.8 % 58.5 % 13.6 % 43.6 % 38.2 % 56.9 %

wmsz09 0 200 – 85 285 156 318 82 234 790 1075

0.0 % 29.0 % – 18.9 % 24.2 % 86.4 % 60.4 % 61.2 % 56.1 % 63.6 % 42.7 %

msz13 f 0 152 – 132 284 156 317 83 232 788 1072

0.0 % 22.8 % – 26.0 % 22.0 % 86.4 % 60.2 % 66.2 % 52.7 % 63.4 % 41.5 %

w/pmi f u 42 287 – 261 590 5 61 37 125 228 818

87.5 % 46.2 % – 50.9 % 50.5 % 6.6 % 35.1 % 27.1 % 30.9 % 27.8 % 39.8 %

ckm-s 0 119 – 12 131 156 293 79 23 551 682

0.0 % 15.2 % – 7.2 % 12.0 % 91.0 % 55.0 % 46.2 % 7.4 % 45.6 % 27.8 %

ahms 0 34 – 10 44 146 224 73 179 622 666

0.0 % 6.0 % – 5.5 % 5.4 % 86.5 % 40.3 % 42.5 % 44.7 % 49.6 % 26.2 %

Best results are in bold

1.0.29). The different variations (see Sect. 4) and corresponding implementations are
namedwpm2 with different subindexes. Subindex s stands for stratified approach and
h for clause hardening. Regarding to how we perform the subproblem optimization, i
stands for ILP translation, l stands for lower bound refinement based on subset sum,
u for upper bound refinement based on satisfying truth assignment, and b for binary
search. Subindex a stands for optimizing all the subproblems and c for optimizing only
subproblems that contain already extended clauses. Finally, g stands for guiding the
search with the optimal assignments from subproblems and o for guiding the search
also with the satisfying assignments within the subproblem optimization.

The original wpm2 has a performance of 47.6 % (959) family ratio (number) of
solved instances. By using the stratified approach explained in Sect. 4.1 (wpm2s)
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we solve some additional instances in all categories having the highest increase on
WPMS crafted subcategory. Overall, we solve 100 more instances. By applying also
the clause hardening explained in Sect. 4.2 (wpm2sh) we solve 68 more instances,
mainly on WPMS industrial subcategory. This last one, with 52.8 % (1127) family
ratio (number) of solved instances, increases in performance by 5.2% (168) compared
to wpm2.

Regarding the different variations for optimizing the subproblems (see Sect. 4.3),
we can see that optimizing the subproblems through ILP (wpm2shia) is not competitive
on industrial instances. It solves 236 fewer industrial instances than wpm2sh . This is
expected since, aswewill see inTable 4, ilp-13, the approach based on a full translation
to ILP, is also not competitive on industrial instances. On crafted instances it performs
similar to the other subproblem optimization variations. It solves 169 more crafted
instances than wpm2sh , but it is not the best performing variation. Notice, however,
that on MS and WPMS industrial subcategories solves more instances than ilp-13.

Optimizing subproblems by refining the lower bound (wpm2shla), gives us some
additional solved instances in all categories, having the highest increases on WPMS
industrial subcategory (50) and on WPMS crafted subcategory (101). It is important
to highlight that optimizing subproblems with subset sum, instead of applying the
subset sum as in the original WPM2 algorithm, leads to a total increase of 173 solved
instances compared to wpm2sh .

Optimizing subproblems by refining the upper bound (wpm2shua∗), gives us an
additional boost with respect to wpm2shla . We get the highest increases in solved
instances, on PMS industrial subcategory (22), and on WPMS crafted subcategory
(56). Compared to wpm2sh , we have a total increase of 273 solved instances. Notice
that this variation is the one that competed in the MSE13 and is referred aswpm2-13∗
in Tables 1, 2 and 4. Optimizing with binary search (wpm2shba) has almost the same
global performance as wpm2shua∗.

By optimizing only subproblems that do contain clauses that were already extended
in previous iterations, we have an increase in family ratio and number of solved
instances on all subproblem optimization variations. The upper bound refinement
variation (wpm2shuc) is the onewith best performance,with 64.3% (1423) family ratio
(number) of solved instances. It increases in performance by 11.5 % (296) compared
to wpm2sh .

Finally,wpm2shucg is the result of extending the previous best variation (wpm2shuc)
by guiding the search with the optimal assignments from subproblems (see Sect. 4.4).
This way, the number of solved instances increases by 28. By guiding the search also
with the satisfying assignments within the subproblem optimization (wpm2shucgo),
the number of solved instances increases by 22 more, solving 50 more instances than
wpm2shuc. This last variation (wpm2shucgo),with 65.7% (1473) family ratio (number)
of solved instances, increases in performance by 18.1 % (514) compared to wpm2.
This is in percentage 138.0 % (153.6 %). Actually, if we take into account the timeout
of 7200 s used in our experiments, we obtain an overall speed-up of 1573 (three orders
of magnitude) with respect to wpm2. Basically, we compare the total run time of the
solvers on all the instances. Not solved instances are assumed to contribute only with
the timeout.
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Table 5 wpm2shucgo, certi f y-opt and sat4 j on industrial instances

wpm2shucgo certi f y-opt sat4 j

Subcategory # #H #S #∗ %b #AM #∗ %b #AM #∗ %b #AM

MS 55 0.0 1.8·106 20 0.8 41.2 0 100 1 0 100 1

PMS 627 3.3·105 1.3·104 528 63.6 87.8 267 100 1 247 100 1

WPMS 396 4.9·105 8.6·103 333 33.9 426 59 100 1 55 100 1

Total industrial 1078 3.7·105 9.4·104 881 49.6 212 326 100 1 302 100 1

Table 6 wpm2shucgo, certi f y-opt and sat4 j on crafted instances

wpm2shucgo certi f y-opt sat4 j

Subcategory # #H #S #∗ %b #AM #∗ %b #AM #∗ %b #AM

MS 167 0.0 1.2·103 14 96.5 98.8 6 100 1 6 100 1

PMS 377 2.9·104 3.8·102 272 92.0 24.3 222 100 1 224 100 1

WMS 116 0.0 5.3·103 18 57.2 5.5 15 100 1 14 100 1

WPMS 340 2.9·104 5.8·102 288 84.4 6.9 205 100 1 203 100 1

Total crafted 1000 2.1·104 1.2·103 592 86.2 28.7 448 100 1 447 100 1

Table 4 shows our second experiment, where we compare the best variation of
the improved WPM2 solver (wpm2shucgo) with the best solvers of the MSE13 (with
a timeout of 7200 s). In particular, we selected the best ground overall performing
solvers presented in Table 2 and the best solvers for each subcategory in Table 1.

We see that wpm2shucgo is the best solver on the industrial set, both in family ratio
and number of solved instances. On crafted instances, it is only the fifth in family
ratio of solved instances. Although, on crafted instances, ilp is the first in family
ratio of solved instances, as we have seen in Table 3, the variation which optimizes the
subproblems through an ILP translation (wpm2shia) does not improve the performance
of the upper bound refinement variation (wpm2shua∗). We can conclude, however,
that wpm2shucgo is the best in family ratio and number of solved instances across all
industrial and crafted instances, and so the most robust followed bymaxhs and qms2.

There can be several explanations for the good performance of wpm2shucgo. In the
followingweextend the studypresented inAnsotegui (2013b).Oneof this explanations
is that SAT-based MaxSAT solvers are supposed to take advantage by exploiting the
information (learned clauses, At-Least and At-Most constraints, etc) obtained from
each SAT instance (ϕk) into which the WPMS instance ϕ is reformulated.

The conjecture is that this information makes easier the resolution of the SAT
instances where k is closer to cost (ϕ). In particular, those ones that are unsatisfiable
which tend to be harder to solve. In order to test the plausibility of this conjecture, we
introduce a new complete algorithm which takes as input the WPMS formula ϕ and a
cost that we initially set to cost (ϕ). Therefore, this algorithm only needs to certify that
the initial cost indeed corresponds to the cost of an optimal assignment. In particular,
it just checks that ϕcost (ϕ)−1 is unsatisfiable and ϕcost (ϕ) is satisfiable. We will refer
to this algorithm as certi f y-opt .
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In Tables 5 and 6, we compare certi f y-opt with the two basic search schemes
of SAT-based MaxSAT solvers: (i) those that focus the search on refining the lower
bound, and exploit the information of unsatisfiable cores (solverwpm2shucgo) and, (ii)
those that focus the search on refining the upper bound, and exploit the information
of satisfying assignments (solver sat4 j (Berre 2006)). All these approaches were
implemented on top of the Yices SMT solver.

We experimented with the whole set of industrial and crafted instances from the
MS, PMS,WMS andWPMS categories at theMSE13. Tables 5 and 6 show the results
on industrial and crafted instances, respectively. In the tables, # stands for the total
number of instances, #H and #S stand for the mean number of hard and soft clauses,
respectively, and #∗ stands for the number of solved instances, within a timeout of
7200 s, for each solver.

The results of our experimentation show that sat4 j does not have a better perfor-
mance than certi f y-opt . Although certi f y-opt solves 25 more instances than sat4 j ,
both solvers have almost the same overall performance. This can be explained because
the upper bound refinement converges very quickly to the last satisfiable instance
ϕcost (ϕ), but it does not take advantage from any information of the previous satisfi-
able instances (ϕk with k ∈ [cost (ϕ) + 1,W (ϕ)]) in order to solve more efficiently
ϕcost (ϕ) and ϕcost (ϕ)−1. The structure of these instances can be seen in example 7.

Regarding wpm2shucgo, it performs much better than certi f y-opt . For crafted
instances, it solves 144 more instances than certi f y-opt . The difference is more
dramatic for industrial instances where it solves 555 more. One of the keys of its
success seems to be that it only needs to extend with auxiliary variables those soft
clauses that have appeared into an unsatisfiable core. In contrast, certi f y-opt or
sat4 j need to extend all the soft clauses. In the tables, %b shows the percentage of
extended soft clauses during the search. As we can see, both certi f y-opt and sat4 j
always extend 100 % of the soft clauses, while wpm2shucgo only extends a part of
them. In particular, on industrial instances, where the difference in performance is
higher, it only extend 49.6 % of the soft clauses.

Another key point in the good performance of wpm2shucgo is that, the extended
soft clauses in the last query are covered by various At-Most constraints instead of
a single and larger one as in certi f y-opt or sat4 j . This was proven to be more
efficient in Ansótegui et al. (2009). In the tables, #AM stands for the number of At-
Most constraints added during the search.When we go into detail in Table 5, in the last
query ofwpm2shucgo on industrial instances, the mean number of At-Most constraints
is 212. In contrast, in Table 6, in the last query on crafted instances, the mean number
of At-Most constraints is 28.7. This is also consistent with the better performance of
wpm2shucgo on industrial instances.

6.2 Incomplete solvers

In this subsection, we analyze the performance of the improved WPM2 incomplete
solver. We show the results that it would have obtained on the track for incomplete
solvers at the MSE13 in Table 7 (full detailed information in Tables 15 and 16). We
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Table 7 wpm2shucgo incomplete compared to MSE13 incomplete solvers on the industrial and crafted
instances of MSE13 (number and mean ratio of solved instances)

Solvers MS PMS WMS WPMS Ind. MS PMS WMS WPMS Cra. Total

wpm2shucgo 18 511 – 336 865 15 260 20 224 519 1384

32.0 % 80.0 % – 77.0 % 76.0 % 15.0 % 61.0 % 19.0 % 62.0 % 47.0 % 62.0 %

ccls 46 501 – 198 745 129 205 83 93 510 1255

91.0 % 79.0 % – 52.0 % 73.0 % 76.0 % 37.0 % 60.0 % 17.0 % 42.0 % 58.0 %

optim 2 60 – 13 75 167 303 115 257 842 917

1.0 % 10.0 % – 8.0 % 9.0 % 100.0 % 67.0 % 99.0 % 60.0 % 76.0 % 40.0 %

ira-nov 3 103 – 63 169 9 225 30 167 431 600

2.0 % 20.0 % – 28.0 % 21.0 % 8.0 % 61.0 % 20.0 % 45.0 % 40.0 % 29.0 %

Best results are in bold

also discuss the quality of the upper bounds obtained during its execution on industrial
and crafted instances in Figs. 2 and 3.

Table 7 shows our first experiment, where we compare the incomplete solver based
on the improved WPM2 algorithm (wpm2shucgo), with the best incomplete solvers
of the MSE13. Results are presented following the same classification criteria as in
the MSE13. For each instance, it is computed which are the solvers that obtain the
best upper bound within 300 s (5 min). For each solver and subcategory we present
the number of instances where the solver reported the best upper bound and the mean
family ratio according to this number.

We can see that wpm2shucgo dominates on industrial instances, being the one that
reaches the best upper bound 865 times. This is 120 more times than ccls, the second
one. On crafted instances, both are dominated by optim, that in contrast performs not
well on industrial instances. When we consider the whole set of industrial and crafted
instances, wpm2shucgo is the best one 1384 times, 129 more times than the second
one ccls.

In the following, we analyze the quality of upper bounds provided by wpm2shucgo
on the whole set of industrial and crafted instances. In Fig. 2, we show the mean upper
bound quality obtained during the resolution of the instances. Those instances not
solved in 7200 s or solved in less than 60 s are discarded. Therefore, only 358 industrial
and 129 crafted instances are taken into account. In x-axis we have the relative elapsed
running time (100 % corresponds to the total time to solve the instance), and in y-axis
we have the relative distance of the upper bounds to the optimum (an upper bound
equal to the top weight or to the optimum, has a relative distance of 100 or 0 %,
respectively). We refer to the relative distance to the optimum as the error in an upper
bound (a small error means a high quality).

In the graphic at the top of Fig. 2, we have the experiments on the whole set of
industrial instances (MS, PMS andWPMS categories), and on the two industrial fam-
ilies, with the best (WPMS upgradeability family) and the worst (PMS close solutions
family) mean upper bound quality. In one third of the resolution time, the mean error
in the upper bounds on the whole set of industrial instances is less than 10 % and in
two thirds it is less than 6 %. In particular, for the WPMS upgradeability family, in
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10 % of the resolution time the mean error is less than 1 %. Also, on some instances
(PMS pbo-mcq family) the optimum (0 % error) is reached in one second while more
than 1000 s are needed to certify it. On the other hand, for the PMS close solution
family, in 90 % of the resolution time, the mean error is about 37 %.

In the graphic at the bottom of Fig. 2, we have the experiments on the whole set
of crafted instances (MS, PMS, WMS and WPMS categories), and on the two crafted
families, with the best (WPMS random-net family) and the worst (WMS CSG fam-
ily) mean upper bound quality. In one third of the resolution time, the mean error in
the upper bounds on the whole set of crafted instances is less than 4 % and in two
thirds it is less than 2 %. In particular, for the WPMS random-net family, in 5 % of
the resolution time the mean error is less than 1 %. On the other hand, for the WMS
CSG family, in 10 % of the resolution time the mean error is 100 and in 90 % of the
resolution time it is about 14 %.

It may seem that we get better results on crafted instances, however we should
take into account that, the number of crafted instances solved by wpm2shucgo within
60 and 7200 run time seconds, is lower than the number of industrial instances. For
some instances unsolved by wpm2shucgo, we can consult the optimal cost found by
other MaxSAT solvers (none dominates completely at the MSE13). This allows us to
know which is the quality achieved bywpm2shucgo even if it was not able to solve the
instance exactly.

In Fig. 3,we experimentedwith the industrial and crafted instances ofMSE13where
any of the solvers in Table 4 was able to find the optimum.2 We show the number of
industrial and crafted instances, where wpm2shucgo reached an upper bound with a
relative distance to the optimum (error) of less than 20, 5 and 0 % in a given elapsed
run time. In x-axis we show the elapsed time from 0 to 7200 s, and in y-axis we show
the number of instances.

In the graphic at the topofFig. 3,wehave the experiments on the industrial instances.
We can see that, a high quality of upper bound is reached on a great number of instances
in a relative short run time. From 20 to 5 % error, there is almost no difference. In 60 s,
an upper bound with an error of less than 5 % is reached on 874 out of 1012 instances.
In 300 s it is reached on 945 instances and in 7200 s on 973 instances. With respect
to a 0 % error in the upper bound (optimum is not necessarily certified), in 60 s it is
reached on 596 instances, in 300 s on 804 instances and in 7200 s on 881 instances.

In the graphic at the bottom of Fig. 3, we have the experiments on the crafted
instances. Compared to what happens on the industrial set, there is a greater difference
in number of instances, depending on the maximum error that we consider. We can
see that, an upper bound with an error of less than 20 % is reached on 912 out of 952
instances in 60 s. However, the number of instances with less than a 5 % error in the
upper bound is significantly lower, 704 instances in 60 s, 753 instances in 300 s and
822 instances in 7200 s. With respect to a 0 % error in the upper bound, the difference
is even more important. In 60 s it is reached only on 464 instances, in 300 s only on
502 instances and in 7200 s only on 592 instances.

2 There are only 66 industrial and 48 crafted instances for which was not found.
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As a concluding remark, in 300 s (the timeout of the track for incomplete solvers
at MSE13), wpm2shucgo has reached an upper bound with an error of less than
5 % on 945 out of 1012 industrial instances. This is consistent with the results in
Table 7 where we have shown thatwpm2shucgo has the best performance on industrial
instances.

6.3 Results at MaxSAT evaluation 2014

In the previous subsections, we have analyzed and described in detail the impact of
every improvement incorporated in wpm2. Here, we study the performance of the
wpm2014 solver that took part in MSE14. This solver behaves exactly as wpm2shuc
for (Partial) MaxSAT instances, and includes some efficiencies for Weighted (Partial)
MaxSAT instances. In particular,we show that although this solver is not as competitive
as the newest complete solvers, its incomplete version (as described in this article)
ranked the first for the incomplete track.

The sets of instances atMSE14 are almost the same as the ones atMSE13. Themain
difference is thatWMS families were integrated into theWPMS set. The classification
criteria remains the same.

Table 8 summarizes the results for the best complete solvers on the whole set of
industrial and crafted instances according to MSE14. We have excluded the portfolio

Table 8 Best complete solvers on the industrial and crafted instances at MSE14 (number and mean ratio
of solved instances)

Solvers MS PMS WPMS Ind. MS PMS WPMS Cra. Total

maxhs 27 417 280 724 7 328 219 554 1278

73.0 % 70.5 % 52.6 % 62.6 % 11.8 % 69.2 % 75.8 % 62.2 % 64.2 %

eva500a 41 472 368 881 9 302 149 460 1341

86.5 % 79.7 % 72.8 % 78.4 % 8.5 % 71.3 % 47.8 % 47.8 % 62.8 %

mscg 40 468 363 871 5 310 127 442 1313

85.5 % 80.0 % 70.4 % 77.9 % 4.3 % 67.6 % 42.8 % 43.3 % 60.4 %

qms-g3 14 454 303 771 11 318 181 510 1281

29.0 % 78.5 % 67.3 % 72.6 % 9.0 % 73.4 % 52.5 % 50.9 % 61.6 %

wpm2014 29 428 359 816 12 297 151 460 1276

75.0 % 75.5 % 73.9 % 75.1 % 9.3 % 69.7 % 43.4 % 45.2 % 59.9 %

open-wbo 42 473 315 830 11 317 130 458 1288

87.5 % 81.1 % 59.5 % 76.1 % 9.0 % 73.4 % 37.0 % 42.9 % 59.3 %

ilp 1 265 249 515 30 339 224 593 1018

0.5 % 40.0 % 45.9 % 39.0 % 20.5 % 62.6 % 75.2 % 61.4 % 50.3 %

scip-ms 0 211 242 453 24 342 200 566 1019

0.0 % 31.5 % 44.8 % 32.9 % 12.5 % 63.4 % 70.4 % 57.8 % 45.5 %

ahmaxsat-ls 0 32 25 57 156 294 128 578 635

0.0 % 5.5 % 7.5 % 5.7 % 60.5 % 48.0 % 32.1 % 42.1 % 24.1 %

Best results are in bold
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I SAC+, since our main aim here is to compare algorithms and ground solvers. We
have also included ilp, scip-ms and ahmaxsat-ls, which win in mean family ratio or
number of solved instances on some crafted categories. On crafted instances, the best
solver in mean family ratio (number) of solved instances is maxhs (ilp), and on the
whole set, it is maxhs (eva500a).

On industrial instances, we can see that wpm2014 is the fourth one. The best
three solvers on industrial instances were eva500a (Narodytska and Bacchus 2014),
mscg (Morgado et al. 2014) and open-wbo (Martins et al. 2014). For open-wbo,
we selected the best version for each category. To our best knowledge eva500a
automatically detects the category and applies a predefined user parametrization.
These three solvers are SAT-based MaxSAT solvers too. Without going into detail,
we could say that the approaches of eva500a and mscg allow them to generate
simpler PB constraints. Moreover, all three new solvers build incrementally these
PB constraints, instead of generating them from scratch. In the case of open-wbo,
PB constraints are explicitly built incrementally. In the case of eva500a and mscg
this incrementality comes naturally as a result of the nature of the algorithm. These
improvements are complementary to the approach of wpm2014 and therefore they
could be incorporated. We can yet see thatwpm2014 achieves the best ratio inWPMS
instances.

Table 9 summarizes the results for the best incomplete solvers on the whole set
of industrial and crafted instances according to MSE14. Clearly, wpm2014 domi-
nates on industrial instances, and it is the best overall solver on industrial and crafted
instances. For optimax (implementing the BCD algorithm (Morgado et al. 2012)), the
second best solver for industrial instances, we also selected the best version for each
category.

Since we are showing a partial order, we have also included the solvers that take
part in all categories dist , ccls2014, ccmpa and ahmaxsat-ls, from which dist and

Table 9 Best incomplete solvers on the industrial and crafted instances at MSE13 (number and mean ratio
of solved instances)

Solvers MS PMS WPMS Ind. MS PMS WPMS Cra. Total

wpm2014 30 407 365 802 15 301 180 496 1298

75.5 % 71.9 % 73.2 % 73.2 % 7.0 % 67.4 % 51.3 % 51.3 % 62.1 %

optimax2 33 354 247 634 15 295 149 459 1093

78.5 % 59.7 % 59.8 % 59.8 % 7.0 % 68.8 % 47.2 % 47.2 % 53.4 %

dist 0 177 38 215 171 354 186 711 926

0.0 % 31.7 % 10.8 % 24.5 % 82.7 % 66.3 % 50.8 % 61.3 % 43.2 %

ccls2014 0 61 39 100 176 299 167 642 742

0.0 % 10.5 % 15.1 % 11.0 % 97.2 % 58.4 % 48.7 % 60.5 % 36.1 %

ccmpa 5 91 52 148 173 281 154 608 756

4.5 % 17.5 % 22.4 % 17.9 % 87.5 % 54.5 % 38.8 % 52.4 % 35.4 %

sat4 j 5 117 66 188 2 200 82 284 472

20.5 % 23.6 % 19.3 % 22.3 % 0.5 % 40.3 % 28.6 % 27.1 % 24.7 %

Best results are in bold
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Table 10 Comparison as
incomplete solvers of wpm2014,
open-wbo and qms

Best results are in bold

wpm2014 open-wbo qms

wpm2014 939 850

(51 498 390) (52 423 375)

open-wbo 857 864

(43 473 341) (45 458 361)

qms 820 827

(13 528 279) (19 522 286)

ccls2014 win in mean family ratio or number of solved instances on some crafted
categories.

Finally,we have decided to extend the results of the incomplete track of theMaxSAT
Evaluation by comparing to wpm2014 the best complete solvers than can provide
upper bounds but did not take part at the incomplete track: qms2 and open-wbo.
We performed the comparison on industrial instances, where all these solvers were
competitive.

In Table 10, we present the dominance relation between pairs of solvers on the the
total (MS PMS WPMS) set of industrial instances. For example, wpm2014 (open-
wbo) is able to obtain a better or equal upper bound than open-wbo (wpm2014) on
939 (857) industrial instances of which 51 (43) are MS, 498 (473) are PMS and 390
(341) are WPMS.

On the whole set of industrial instanceswpm2014 outperforms both open-wbo and
qms2. Even thoughwpm2014was not the best complete solver atMSE14, it dominates
the other solvers as an incomplete approach. For PMS, we can see that qms2 is the best
performing approach, but for MS and WPMS, wpm2014 performs better. Notice that
qms2 is an efficient implementation of a SAT-based MaxSAT algorithm that mainly
follows and upper-bound refinement strategy but unlike wpm2014 needs to place PB
constraints on the whole set of soft clauses. So, if the subproblems represent most
of the original instance, qms2 should be better, but if the subproblems cover only
a small fraction, wpm2014 has advantages even with a less efficient approach for
subproblems. Precisely, thanks to the insights of Table 5 in Sect. 6.1, we know that for
PMS instances,wpm2shucgo (wpm2014) covers in average a 63.6%of the soft clauses,
while for WPMS, it covers in average only a 33.9 %. This suggests that incorporating
the efficiencies of qms2 into wpm2014 will certainly improve its performance on
PMS instances and perhaps on WPMS instances too.

These results confirm that by applying the subproblem optimization technique and
exploiting the satisfying assignments from subproblems, a complete MaxSAT solver
can be used as an effective incomplete MaxSAT solver.

7 Conclusions and future work

True innovation in heuristic-search research is not achieved from yet another method
that performs better than its competitors if there is no understanding as to why the
method performs well (Sörensen 2015). Following this principle, we have provided
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a detailed analysis on how the improved WPM2 solver has experienced a significant
boost on solving industrial instances, which is our ultimate goal.

In particular, the subproblem optimization approach and the exploitation of the
satisfying assignments from subproblems seem to have the most clear impact on
efficiency. Therefore, solving incrementally an optimization problem by solving some
of its subproblems is a promising avenue. This way we can focus on a reduced portion
of the instance, allowing us to use less complex PB constraints to solve the whole
problem.

We have seen that SAT-based MaxSAT solvers are able to exploit the information
derived from refining lower bounds and upper bounds. We have confirmed that this is
not only crucial to locate quickly better upper bounds, also to certify efficiently that a
given upper bound is the optimum.

Moreover, from a more practical point of view, we know that although many NP-
hard problems can not be solved exactly, in industry they are mostly focused on
obtaining better upper bounds. Therefore, completeness is not always a mandatory
requirement to guarantee practical success. In this sense, we have shown how we can
turn a complete solver into an efficient incomplete solver by extending the satisfying
assignments from the subproblem optimization phases to the whole problem.

As shown in the experimental evaluation, the incomplete version of the improved
WPM2 solver would have dominated on industrial instances the track for incomplete
solvers at theMSE13. Furthermore, the solverwpm2014, which is just amore efficient
implementation of the improved WPM2, was the best performing solver on industrial
instances on the track for incomplete solvers at the MSE14.

As future work, we will study how to improve the interaction with the optimization
of the subproblems. A portfolio that selects the most suitable optimization approach
depending on the structure of the subproblems seems another way of achieving addi-
tional speed-ups.

From the point of view managing even more efficiently PB constraints, following
recent works (Narodytska and Bacchus 2014; Morgado et al. 2014; Martins et al.
2014), it is also quite recommendable to use less complex PB constraints and reuse as
much as possible of them when they are modified.

Finally, we have also shown that the SMT technology is an underlying efficient tech-
nology for solving the MaxSAT problem. A positive side effect is that our algorithm
can be naturally extended to solve the MaxSMT problem.

Acknowledgments Research partially supported by theMinisterio de Economía yCompetividad research
project TASSAT2: TIN2013-48031-C4-4-P and Google Faculty Research Award program.

Appendix

See Tables 11, 12, 13, 14, 15 and 16.
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Table 15 wpm2shucgo incomplete compared to MSE13 incomplete solvers on the industrial instances of
MSE13 (number and mean ratio of solved instances)

Family # wpm2shucgo ccls ira-nov optim

MS

cir-dp 3 6.80(1) 4.26(3) 0.00(0) 0.00(0)

sean-s 52 11.77(17) 34.56(43) 9.62(3) 9.97(2)

Total 55 18 46 3 2

32.0 % 91.0 % 2.0 % 1.0 %

PMS

aes 7 15.26(1) 33.09(1) 35.81(6) 18.54(2)

bcp-fir 50 11.22(47) 17.51(47) 35.25(33) 10.06(11)

bcp-hysi 17 18.07(17) 3.09(16) 2.86(7) 5.60(9)

bcp-hysu 38 39.74(32) 10.34(32) 0.00(0) 4.88(1)

bcp-msp 50 26.50(39) 9.02(14) 16.48(7) 10.79(6)

bcp-mtg 40 2.92(40) 0.23(40) 0.00(0) 11.62(2)

bcp-syn 50 5.10(25) 12.48(28) 13.56(30) 24.07(28)

cir-tc 4 105.67(4) 79.21(4) 0.00(0) 0.00(0)

clo-s 50 43.21(19) 20.61(46) 7.14(9) 0.00(0)

des 50 59.75(32) 31.56(38) 0.00(0) 0.00(0)

hap-a 6 11.09(5) 0.41(6) 0.00(0) 0.00(0)

pac-pms 40 34.45(40) 1.43(40) 0.00(0) 0.00(0)

pbo-mne 50 57.27(47) 17.81(41) 0.00(0) 0.00(0)

pbo-mnl 50 20.04(49) 16.68(48) 0.00(0) 0.00(0)

pbo-rou 15 4.14(15) 0.33(15) 5.45(1) 0.00(0)

pro-ins 12 96.55(9) 60.30(7) 17.61(10) 0.24(1)

tpr-Mp 48 64.36(40) 38.53(36) 0.00(0) 0.00(0)

tpr-Op 50 6.90(50) 47.91(42) 0.00(0) 0.00(0)

Total 627 511 501 103 60

80.0 % 79.0 % 20.0 % 10.0 %

WPMS

hap-ped 100 38.26(89) 28.18(64) 13.65(23) 0.00(0)

pac-wpms 99 104.53(99) 23.52(23) 0.00(0) 0.00(0)

pre-pla 29 8.16(24) 5.83(23) 13.78(10) 1.92(2)

time 26 37.22(10) 45.85(18) 22.34(3) 0.00(0)

upg-pro 100 67.99(82) 51.55(54) 0.00(0) 0.00(0)

wcsp-s5d 21 21.20(18) 1.98(10) 14.10(11) 1.08(5)

wcsp-s5l 21 4.66(14) 0.02(6) 37.07(16) 0.86(6)

Total 396 336 198 63 13

77.0 % 52.0 % 28.0 % 8.0 %

Total Ind. 1078 865 745 169 75

76.0 % 73.0 % 21.0 % 9.0 %

Best results are in bold
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Table 16 wpm2shucgo incomplete compared to MSE13 incomplete solvers on the crafted instances of
MSE13 (number and mean ratio of solved instances)

Family # optim wpm2shucgo ccls ira-nov

MS

bip-mc-.7 50 1.92(50) 0.00(0) 40.25(31) 0.00(0)

bip-mc-.8 50 2.61(50) 0.00(0) 39.30(33) 0.00(0)

mc-dm 62 1.14(62) 2.98(13) 2.79(61) 0.61(8)

mc-sg 5 1.63(5) 1.00(2) 26.86(4) 0.01(1)

Total 167 167 15 129 9

100.0 % 15.0 % 76.0 % 8.0 %

PMS

frb 25 14.77(25) 0.00(0) 5.51(1) 7.14(2)

job-sh 3 0.00(0) 37.52(3) 0.00(0) 53.01(3)

mcq-ran 96 2.10(96) 27.26(82) 35.60(74) 22.59(71)

mcq-str 62 13.82(55) 7.36(28) 5.52(23) 5.79(20)

mo-3s 80 2.80(77) 4.98(80) 6.55(77) 31.66(62)

mo-str 60 0.87(3) 4.04(59) 17.74(18) 2.30(56)

mine-kbt 42 7.24(42) 9.27(3) 19.97(9) 6.88(4)

pse-ml 4 2.31(4) 6.03(4) 0.62(3) 1.09(4)

sch 5 14.51(1) 45.15(1) 0.00(0) 19.60(3)

Total 377 303 260 205 225

67.0 % 61.0 % 37.0 % 61.0 %

WMS

frb 34 8.11(33) 10.70(10) 14.46(10) 26.68(26)

ram 15 44.77(15) 13.33(3) 22.87(8) 0.00(0)

wmc-dm 62 1.09(62) 0.69(6) 2.20(62) 0.04(4)

wmc-sg 5 52.95(5) 5.16(1) 8.07(3) 0.00(0)

Total 116 115 20 83 30

99.0 % 19.0 % 60.0 % 20.0 %

WPMS s

CSG 10 0.00(0) 54.41(10) 0.00(0) 1.73(6)

auc-pat 86 2.17(86) 35.55(63) 30.08(46) 18.33(14)

auc-sch 84 2.72(84) 0.98(84) 0.71(35) 39.42(76)

mine-pl 56 1.12(7) 0.62(56) 0.79(10) 0.52(53)

mine-wa 18 155.70(18) 0.00(1) 0.04(1) 0.02(1)

pse-ml 12 32.71(4) 26.21(7) 1.18(1) 2.13(4)

ran-net 74 115.17(58) 8.02(3) 0.00(0) 27.33(13)

Total 340 257 224 93 167

60.0 % 62.0 % 17.0 % 45.0 %

Total Cra. 1000 842 519 510 431

76.0 % 47.0 % 42.0 % 40.0 %

Best results are in bold
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Our objective is to boost the state-of-the-art performance in MaxSAT solving. To this end, 
we employ the instance-specific algorithm configurator ISAC, and improve it with the latest 
in portfolio technology. Experimental results on SAT show that this combination marks a 
significant step forward in our ability to tune algorithms instance-specifically. We then 
apply the new methodology to a number of MaxSAT problem domains and show that 
the resulting solvers consistently outperform the best existing solvers on the respective 
problem families. In fact, the solvers presented here were independently evaluated at the 
2013 and 2014 MaxSAT Evaluations where they won several categories.

 2016 Elsevier B.V. All rights reserved.

1. Introduction

MaxSAT is the optimization version of the Satisfiability (SAT) problem. It can be used effectively to model problems in 
several domains, such as scheduling, timetabling, FPGA routing, design and circuit debugging, software package installation, 
bioinformatics, probabilistic reasoning, etc. From the research perspective, MaxSAT is also of particular interest as it requires 
the ability to reason about both optimality and feasibility. Depending on the particular problem instance being solved, it is 
more important to emphasize one or the other of these inherent aspects.

MaxSAT technology has significantly progressed in the last years, thanks to the development of several new core al-
gorithms and the recent revelation that traditional MIP solvers like Cplex can be extremely well suited for solving some 
families of partial MaxSAT instances [3]. Given that different solution approaches work well on different families of in-
stances, [40] used meta-algorithmic techniques developed in CP and SAT to devise a solver portfolio for MaxSAT. Surprisingly, 
and in contrast to SAT, until 2013 this idea had not led to the development of a highly efficient MaxSAT solver that would 
dominate, e.g., the yearly MaxSAT Evaluations [8].

We describe the methodology that led to a MaxSAT portfolio that won several categories at the 2013 and 2014 MaxSAT 
Evaluations. In particular, we develop an instance-specifically tuned solver for every version of MaxSAT that outperforms 
all existing solvers in their respective domains. We do this for regular MaxSAT (MS), Partial (PMS), Weighted (WMS), and 
Weighted Partial (WPMS) MaxSAT. The method we apply to obtain these solvers is a portfolio tuning approach ISAC++ which 
generalizes both tuning of individual solvers as well as combining multiple solvers into one solver portfolio. As a side-effect 
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of our work on MaxSAT, we found a way to improve instance-specific algorithm configuration (ISAC) [28] by combining the 
original methodology with one of the latest and most efficient algorithm portfolio builders to date.

The next section formally introduces our target problem, MaxSAT. Then, we review the current state-of-the-art in 
instance-specific algorithm configuration and algorithm portfolios. We show how both techniques can be combined and 
empirically demonstrate on SAT that our improved method works notably better than the original method and other 
instance-specific algorithm tuners. We then apply the new technique to MaxSAT. Finally, in extensive experiments we show 
that the developed solvers significantly outperform the current state-of-the-art in every MaxSAT domain.

2. MaxSAT

Problem definition

Definition 1. A literal l is either a Boolean variable x or its negation x. A clause c is a disjunction of literals. A SAT formula is 
a set of clauses that represents a Boolean formula in Conjunctive Normal Form (CNF), i.e. a conjunction of clauses.

Definition 2. A weighted clause is an ordered pair (c, w), where c is a clause and w is a natural number or infinity (indicating 
the cost of falsifying c, see Definitions 4 and 5). If w is infinite the clause is hard, otherwise it is soft. Infinite costs express 
that hard clauses must be satisfied while soft clauses may be falsified.

Definition 3. A Weighted Partial MaxSAT (WPMS) formula is an ordered multi-set of weighted clauses:

ϕ = 〈(c1, w1), . . . , (cs, ws), (cs+1,∞), . . . , (cs+h,∞)〉
where the first s clauses are soft and the last h clauses are hard. The presence of soft clauses with different weights makes 
the formula Weighted and the presence of hard clauses makes it Partial.

To make the definitions a bit less abstract, here are examples for MaxSAT (MS), Partial MaxSAT (PMS) and Weighted 
Partial MaxSAT (WPMS) formulas:

MS formula: 〈(x1, 1), (x2, 1), (x3, 1), (x1 ∨ x2, 1), (x1 ∨ x3, 1), (x2 ∨ x3, 1)〉.
PMS formula: 〈(x1, 1), (x2, 1), (x3, 1), (x1 ∨ x2, ∞), (x1 ∨ x3, ∞), (x2 ∨ x3, ∞)〉.
WPMS formula: 〈(x1, 5), (x2, 3), (x3, 3), (x1 ∨ x2, ∞), (x1 ∨ x3, ∞), (x2 ∨ x3, ∞)〉.

Definition 4. An assignment for a set of Boolean variables X is a function I : X → {0, 1}, that can be extended to literals, 
(weighted) clauses, SAT formulas and WPMS formulas as follows:

I(x) = 1 − I(x)
I(l1 ∨ . . . ∨ lm) = max{I(l1), . . . ,I(lm)}
I({c1, . . . , cn}) = min{I(c1), . . . ,I(cn)}
I((c, w)) = w (1 − I(c))
I(〈(c1, w1), . . . , (cs+h, ws+h)〉) = ∑s+h

i=1 I((ci, wi))

We will refer to the value returned by an assignment I on a weighted clause or a WPMS formula as the cost of I .

Definition 5. We say that an assignment I satisfies a clause or a SAT formula if the value returned by I is equal to 1. In the 
case of SAT formulas, we will refer also to this assignment as a satisfying assignment or solution. Otherwise, if the value 
returned by I is equal to 0, we say that I falsifies the clause or the SAT formula.

Definition 6. The SAT problem for a SAT formula ϕ is the problem of finding a solution for ϕ . If a solution exists the formula 
is satisfiable, otherwise it is unsatisfiable.

Definition 7. Given an unsatisfiable SAT formula ϕ , an unsatisfiable core ϕC is a subset of clauses ϕC ⊆ ϕ that is also 
unsatisfiable. A minimal unsatisfiable core is an unsatisfiable core such that any proper subset of it is satisfiable.

Given the SAT formula: ϕ = {(x1), (x2), (x3), (x1 ∨ x2), (x1 ∨ x3), (x2 ∨ x3)} we have that {(x1), (x2), (x3), (x1 ∨ x2)} ⊆ ϕ is 
an unsatisfiable core and {(x1), (x2), (x1 ∨ x2)} ⊆ ϕ is a minimal unsatisfiable core.

Definition 8. A SAT algorithm for the SAT problem, takes as input a SAT formula ϕ and returns an assignment I such that 
I(ϕ) = 1 if the formula is satisfiable. Otherwise, it returns an unsatisfiable core ϕC .

Given unlimited resources of time and memory, we say that a SAT algorithm is complete if it terminates for any SAT 
formula. We say that it is incomplete if it only terminates for some formulas.

Definition 9. The optimal cost (or optimum) of a WPMS formula ϕ is cost(ϕ) = min{I(ϕ) | I : var(ϕ) → {0, 1}} and an optimal 
assignment is an assignment I such that I(ϕ) = cost(ϕ). We will refer to this assignment as a solution for ϕ if I(ϕ) )= ∞. 
Any cost above (below) cost(ϕ) is called an upper (lower) bound for ϕ .



28 C. Ansótegui et al. / Artificial Intelligence 235 (2016) 26–39

Definition 10. The Weighted Partial MaxSAT problem for a WPMS formula ϕ is the problem of finding a solution for ϕ . If a 
solution does not exist the formula is unsatisfiable.

Definition 11. A WPMS algorithm for the WPMS problem, takes as input a WPMS formula ϕ and returns an assignment I , 
such that, I(ϕ) ≥ cost(ϕ).

Given unlimited resources of time and memory, we say that a WPMS algorithm is complete or exact if for any input 
WPMS formula ϕ and returned I , I(ϕ) = cost(ϕ). Otherwise, we say it is incomplete.

Solvers
Among the state-of-the-art MaxSAT solvers, we find two main approaches: branch-and-bound-based algorithms [21,9,

18,35,3] and SAT-based solvers [19,39,2,38]. Branch-and-bound-based solvers extend SAT search algorithms with a branch-
and-bound scheme. Each branch of the search tree is checked against the upper and lower bound estimates on the cost of 
an optimal solution, and it is discarded if the current lower bound exceeds the upper bound, i.e., the partial assignment 
represented by the current branch cannot be extended to a better solution. Efficient lower-bound refinement and estima-
tion techniques and incomplete MaxSAT inference rules have been developed to boost the search in this context (see, e.g., 
[10,33]).

On the other hand, SAT-based MaxSAT algorithms basically reformulate a MaxSAT instance into a sequence of SAT in-
stances (see [6,41] for further information). From the annual results of the international MaxSAT Evaluation [8], we can see 
that SAT-based solvers clearly dominate on industrial and some crafted instances, while branch-and-bound solvers dominate 
on random and some families of crafted instances.

In this setting, employing multiple solution techniques is well motivated. Consequently, in [40] a MaxSAT portfolio was 
devised and tested in a promising but limited experimental evaluation. In particular, [40] used SATzilla’s 2009 approach 
to build a portfolio of solvers for MaxSAT. The proposed portfolio was then applied on some pure MaxSAT instances, i.e., 
formulas where all clauses have weight 1 (which implies that there are no hard clauses). The format of these instances is 
exactly the DIMACS CNF format. Therefore, [40] could use existing SAT instance-features to characterize the given MaxSAT 
instances. The particular features used were problem size features, balance features, and local search probe features. The 
extension to partial and weighted MaxSAT instances, which would have required the definition of new features, was left 
for future work. To our knowledge this is the only existing prior study of MaxSAT portfolios. In particular, there had been 
no dominant algorithm portfolio in the annual MaxSAT Evaluations [8] before we conducted the work summarized in this 
paper.

We devise instance-specific solvers for each MaxSAT domain. They are based on algorithm tuning and algorithm portfo-
lios. In the next two sections we develop the technology that we will then later use to build a novel solver for MaxSAT.

3. Meta-algorithms

Just as we observed for MaxSAT, in the practice of combinatorial search algorithms there is oftentimes no single solver 
that performs best on every single instance family. Rather, different algorithms and even different parameterizations of 
the same solver excel on different instance families. This is the underlying reason why algorithm portfolios have been so 
successful in SAT [55,27], CP [43], and QBF [47]. Namely, all these portfolio builders select and schedule solvers instance-
specifically.

In the literature, we find two meta-algorithmic approaches for making solvers instance-specific. The first are algorithm 
portfolio builders for given sets of solvers, the second are instance-specific tuners for parametrized solvers. In the following, 
we will review the state-of-the-art in both related areas.

Algorithm portfolios
The first approach on algorithm selection that stood-out was SATzilla-2007 [55]. In this approach, a regression function 

is trained to predict the performance of every solver in the given set of solvers based on the features of an instance. When 
faced with a new instance, the solver with the best predicted runtime is run on the given instance. The resulting SAT 
portfolios excelled in the SAT Competitions in 2007 and in 2009 and pushed the state-of-the-art in SAT solving.

Meanwhile, better performing algorithm portfolio builders have been developed. For a while the trend was towards more 
highly biased regression and classification models [48]. Then, the simple k-nearest neighbor (k-NN)-based portfolio 3S [13]
won in the 2011 SAT Competition. 3S is notable because it was the first portfolio that excelled in different categories while 
using the same solver and training base for all categories: random, combinatorial, and industrial (SATzilla had won multiple 
categories earlier, but by entering a different portfolio tailored for each instance category). This was achieved by using a 
low-bias ([27] call it “non-model based”) machine learning approach for selecting the primary solver used to tackle the 
given instance. Namely, 3S uses a cost-sensitive k-NN approach for this purpose.

The latest SATzilla [56] now also uses a low-bias machine learning approach, that relies on cost-sensitive decision forests 
and voting. For every pair of solvers in its portfolio, a forest of binary decision trees is trained to choose what is the better 
choice for the instance at hand. The predictions are then aggregated and the solver with the most number of favorable 
pairwise predictions is used to solve the given instance. This portfolio clearly dominated the 2012 SAT Challenge [16] where 
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Algorithm 1 Instance-Specific Algorithm Configuration.

ISAC-Learn(A, T , F , κ )
( F̄ , s, t) ← Normalize(F )

(k, C, S) ← Cluster (T , ̄F , κ)

for all i = 1, . . . , k do
Pi ← GG A(A, Si)

end forReturn (k, P , C, s, t)
ISAC-Run(A, x, k, P , C, d, s, t)
f ← Features(x)
f̄ i ← 2( f i/si) − ti ∀ i
i ← mini(|| f̄ − Ci ||) Return A(x, Pi)

it performed best on both industrial and combinatorial instances. Moreover, the SATzilla-all portfolio, which is identical for 
all three categories, came in second in both categories.

In 2013, a new portfolio builder was introduced [37]. This tool, named CSHC, is based on cost-sensitive hierarchical 
clustering of training instances. CSHC combines the ability of SATzilla-2012 to handle large and partly uninformative feature 
sets (difficult for 3S as the distance metric is corrupted) with 3S’ ability to handle large sets of base solvers (difficult for 
SATzilla-2012 as it trains a random forest for each pair of solvers).

Specifically, this method introduced a novel splitting criterion for building tree classifiers. The split feature and value 
are chosen such that the cumulative performance when solving all training instances in each partition with the same 
solver is minimized. That is, sub-partitions are selected such that the instances in each partition can best agree on one 
compromise solver to handle them all (this solver is then associated with the corresponding node). In CSHC, a forest of such 
trees is trained, whereby for each tree only a subset of features is available for splitting and the training set is a random 
sub-selection with replacement of the original full training set.

At the time of classification, the features of the test instance are used to determine, for each tree, which leaf the instance 
falls into. The solver associated with that leaf then receives a vote in favor. Overall, the solver with the most votes is selected 
to solve the given instance. CSHC was shown to achieve state-of-the-art performance when it won two categories in the 
2013 SAT Competition.

Algorithm tuning
Portfolio approaches are very powerful in practice, but there are many domains that do not have a plethora of diverse 

high-performance solvers. Often, though, there exists at least one solver that is highly parametrized. In such cases, it may 
be possible to configure the parameters of the solver to gain the most benefit on a particular benchmark.

The fact that there are often subtle non-linear interactions between parameters of sophisticated state-of-the-art algo-
rithms makes manual tuning very difficult. Consequently, a number of automated algorithm configuration and parameter 
tuning approaches have been proposed over the last decade. These approaches range from gradient-free numerical opti-
mization [12], to gradient-based optimization [17], to iterative improvement techniques [1], and to iterated local search 
techniques like ParamILS [24]. As of this writing, arguably the two most successful techniques are the model-based predic-
tions of SMAC [25] and the population-based local search approach Gender-based Genetic Algorithm (GGA) [4].

In light of the success of these (one-configuration-fits-all) tuning methods, a number of studies explored how to use 
them to effectively create instance-specific tuners. Hydra [54], for example, uses the parameter tuner ParamILS [24] to 
iteratively tune the solver and add parameterizations to a SATzilla portfolio that optimizes the final performance.

4. The ISAC method

With the objective to boost performance in MaxSAT, we exploit an approach called Instance-Specific Algorithm Configu-
ration (ISAC) [28] that we recap in detail in this section. ISAC has been previously shown to outperform the regression-based 
SATzilla-2009 approach and, when coupled with the parameter configurator GGA, ISAC outperformed Hydra [54] on several 
standard benchmarks [36].

ISAC is an example of a low-bias approach. Unlike similar approaches, such as Hydra [54] and ArgoSmart [42], ISAC does 
not use regression-based analysis. Instead, it computes a representative feature vector that characterizes the given input 
instance in order to identify clusters of similar instances. The training instances are therefore partitioned and a single solver 
parametrization is searched for each partition to optimize the desired performance characteristic. Given a new instance, its 
features are computed and it is then solved by the parametrization that was found for the nearest cluster.

More specifically, ISAC works as follows (see Algorithm 1). In the learning phase, ISAC is provided with a parametrized 
solver A, a list of training instances T , their corresponding feature vectors F , and the minimum cluster size κ . First, the 
gathered features are normalized so that every feature ranges from [−1, 1], and the scaling and translation values for each 
feature (s, t) are memorized. This normalization helps keep all the features at the same order of magnitude, and thereby 
keeps the larger range values from being given more weight than the lower ranging values. Somewhat surprisingly, while 
there have been some works exploring the application of feature filtering to this process, no significant improvements were 
demonstrated [31,15].

Next, the instances are clustered based on the normalized feature vectors. Clustering is advantageous for several reasons. 
First, training parameters on a collection of instances generally provides more robust parameters than one could obtain 
when tuning on individual instances. That is, tuning on a collection of instances helps prevent over-tuning and allows 
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parameters to generalize to similar instances. Secondly, the parameters found are “pre-stabilized,” meaning they are shown 
to work well together.

While alternatives have been investigated in [15], ISAC uses g-means [20] for clustering. This clustering methodology 
assumes a good cluster to be Gaussian distributed, and iteratively splits clusters in two until they all pass the Anderson–
Darling statistic, a statistical test for “Gaussianness.” Robust parameter sets are obtained by not allowing clusters to contain 
fewer than a manually chosen threshold, a value which depends on the size of the dataset. In our case, we restrict clusters 
to have at least 50 instances. Beginning with the smallest cluster, the corresponding instances are re-distributed to the 
nearest clusters, where proximity is measured by the Euclidean distance of each instance to the cluster’s center. The final 
result of the clustering is a number of k clusters Si , and a list of cluster centers Ci . Then, for each cluster of instances Si , 
favorable parameters Pi are computed using the instance-oblivious tuning algorithm GGA.

When running algorithm A on an input instance x, ISAC first computes the features of the input and normalizes them 
using the previously stored scaling and translation values for each feature. Then, the instance is assigned to the nearest 
cluster. Finally, ISAC runs A on x using the parameters for this cluster.

5. Portfolio tuner

Note how ISAC solves a core problem of instance-specific algorithm tuning, namely the selection of a parametrization out 
of a very large and possibly even infinite pool of possible parameter settings. In algorithm portfolios we are dealing with 
a small set of solvers, and all methods devised for algorithm selection make heavy use of that fact. Clearly, these portfolio 
approaches will not work when the number of solvers explodes.

ISAC overcomes this problem by clustering the training instances. This is a key step in the ISAC methodology as described 
in [28]: Training instances are first clustered into groups and then a high-performance parametrization is computed for each 
of the clusters. That is, in ISAC clustering is used both for the generation of high-quality solver parameterizations, and then 
for the subsequent selection of the parametrization for a given test instance.

Beyond cluster-based algorithm selection
While [36] showed that cluster-based solver selection could outperform the original SATzilla-2009 approach in a setting 

where informative features were available, this alone does not fully explain why ISAC often competed well against other 
instance-specific algorithm configurators like Hydra. Clustering instances upfront appears to give us an advantage when 
tuning individual parameterizations. Not only do we save a lot of tuning time with this methodology, since the training set 
for the instance-oblivious tuner is much smaller than the whole set. We also bundle instances together, hoping that they 
are somewhat similar and thus amenable for being solved efficiently with just one parametrization.

Consequently, we want to keep clustering in ISAC. However, and this is the core observation in this paper, once the 
parameterizations for each cluster have been computed, there is no reason why we would need to stick to these clusters for selecting the 
best parametrization for a given test instance. Consequently, we propose to use an alternate state-of-the-art algorithm selector 
to choose the best parametrization for the instance we are to solve.

To this end, after ISAC finishes clustering and tuning the parameters of existing solvers on each cluster, we can then use 
any algorithm selector to choose one of the parameterizations, independent of the cluster an instance belongs to! For this final 
stage, we can use any efficient algorithm selector. In our experiments, we will use CSHC. We name the resulting approach 
Portfolio Tuner (ISAC++).

To summarize the new approach, here is the process as a whole. First, we compute features for each training instance 
and normalize these. We then cluster the training instances as represented by their normalized features. For each cluster, 
we then use an instance-oblivious tuner to compute a good parametrization that works well for all instances in the same 
cluster. At runtime, we compute the features of the instance to be solved. We normalize these features in the same way 
we normalized the training instances. Up to this point, the original ISAC and the new ISAC++ work exactly the same. 
ISAC now computes the cluster nearest to the given instance, as measured by the distance of the cluster center to the 
normalized feature vector of the given instance. ISAC++, on the other hand, uses an algorithm selector to determine which 
parametrization should be used for the given instance. Throughout this paper, we use GGA to tune instance-obliviously, and 
CSHC for algorithm selection.

Comparison of ISAC++ with ISAC and Hydra
Before we return to our goal of devising new cutting-edge solvers for MaxSAT, we want to test the ISAC++ methodology 

in practice and compare it with the best instance-specific algorithm configurators to date, ISAC and Hydra.
We use the benchmark set from [54] where Hydra was first introduced. In particular, there are two non-trivial sets of 

instances: Random (RAND) and Crafted (HAND).
Following the previously established methodology, we start our portfolio construction with 11 local search solvers: 

paws [49], rsaps [26], saps [50], agwsat0 [52], agwsat+ [53], agwsatp [51], gnovelty+ [45], g2wsat [34], ranov [44], vw [46], 
and anov09 [23]. We augment these solvers by adding six fixed parameterizations of SATenstein [29] to this set, giving us a 
total of 17 constituent solvers.

We clustered the training instances of each dataset and added GGA trained versions of SATenstein for each cluster, 
resulting in 11 new solvers for Random and 8 for Crafted. We used a timeout of 50 seconds when training these solvers, 
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Table 1
HAND.

Average PAR1 PAR10 Solved %Solved

BS 28.71 289.3 2753 93 54.39
Hydra 19.80 260.7 2503 100 58.48
ISAC-GGA 18.79 297.5 2887 89 52.05
ISAC-MSC 18.24 273.4 2642 96 56.14
ISAC++ 22.09 251.9 2395 103 60.23
VBS 16.40 228.0 2186 109 64.33

Table 2
RAND.

Average PAR1 PAR10 Solved %Solved

BS 27.37 121.0 1004 486 83.64
Hydra 20.88 75.7 586.9 526 90.53
ISAC-GGA 22.11 154.4 1390 448 77.11
ISAC-MSC 27.47 79.7 572.3 528 90.88
ISAC++ 24.77 71.1 506.3 534 91.91
VBS 15.96 61.2 479.5 536 92.25

but employed a 600 seconds timeout to evaluate the solvers on each respective dataset. The times were measured on dual 
Intel Xeon 5540 (2.53 GHz) quad-core Nehalem processors and 24 GB of DDR-3 memory (1333 GHz).

In Table 1 we show the test performance of various solvers on the HAND benchmark set (342 train and 171 test in-
stances). We conduct 5 runs on each instance for each solver. When referring to a value as ‘Average’, we give the mean time 
it takes to solve only those instances that do not timeout. The value ‘PAR1’ includes the timeout instances when computing 
the average. ‘PAR10’, then gives a penalized average, where every instance that times out is treated as having taken 10 times 
the timeout to complete. Finally, we present the number of instances solved and the corresponding percentage of solved 
instances in the test set.

The best single solver (BS) is one of the SATenstein parameterizations tuned by GGA and is able to solve about 54% of all 
instances. Hydra solves 58% while a portfolio consisting only of SATenstein parameterizations (ISAC-GGA) solves only 52%. 
Using the whole set of solvers for tuning (ISAC-MSC) solves about 56% of all instances, which is better than ISAC-GGA but 
still not overly convincing performance. By augmenting the approach using a final portfolio selection stage, we can boost 
performance. ISAC++ solves ∼60% of all test instances, outperforming all other approaches and closing almost 30% of the 
GAP between Hydra and the Virtual Best Solver (VBS), an imaginary perfect oracle that always correctly picks the best solver 
and parametrization (among all parameterizations generated by all approaches considered here) for each instance. The VBS 
marks a good estimate on the maximum performance we may realistically hope for.

The second benchmark we present here is RAND. There are 581 test and 1141 train instances in this benchmark. In 
Table 2 we see that the best single solver (BS – gnovelty+) solves ∼84% of the 581 instances in this test set. Hydra improves 
this to ∼91%, roughly equal in performance to ISAC-MSC. ISAC++ improves performance again and leads to almost 92% of 
all instances solved within the time-limit. The improved approach outperforms all other methods, and ISAC++ closes over 
37% of the gap between the original ISAC and the VBS.

Note that using portfolios of the untuned SAT solvers only is in general not competitive as shown in [54] and [28]. To 
verify this finding we also ran a comparison using untuned base solvers only. On the SAT RAND dataset, for example, we 
find that CSHC using only 17 base solvers can only solve 520 instances, which is not competitive.

Note also, that the new version of ISAC++ is able to achieve a much higher performance than ISAC, while still requiring 
significantly less wall-clock training time than Hydra. Recall that Hydra works by iteratively tuning a new configuration of 
SATenstein to improve the current portfolio. This means that, in order to tune its five or so new configurations, it must do 
so sequentially. Alternatively, the cluster-based methodology embraced by ISAC allows for all the configuration steps to be 
run in parallel.

6. ISAC++ for MaxSAT

In the preceding section we demonstrated the potential effectiveness of the new ISAC++ approach on SAT problems. 
We now apply this methodology to our main target, the MaxSAT problem. In order to apply the ISAC++ methodology, we 
obviously first need to address how MaxSAT instances can be characterized.

Feature computation
As we aim to tackle the variety of existing MaxSAT problems, we should not rely directly on the instance features used 

in [40] which considered instances where all clauses are soft with identical weights. We therefore compute the percentage of 
clauses that are soft, and the statistics of the distribution of weights: mean, minimum, maximum, and standard deviation. 
The remaining 32 features we use are a subset of the standard SAT features based on the entire formula, ignoring the 
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Table 3
PMS Crafted.

Average PAR1 PAR10 Solved %Solved

BS 187.9 473.1 3339 107 82.31
ISAC-GGA 115.2 478.1 3967 102 78.46
ISAC-MSC 56.2 190.3 1436 120 92.31
ISAC++ 60.7 87.5 332.9 128 98.46
VBS 40.7 40.7 40.7 130 100

weights. Specifically, these features cover statistics like the number of variables, number of clauses, proportion of positive 
to negative literals, the number of clauses a variable appears in on average, etc.

Solvers
To apply ISAC++ we also need a parametrized MaxSAT solver that we can tune. In the past three years, SAT-based MaxSAT 

solvers have become very efficient at solving industrial MaxSAT instances, and perform well on most crafted instances. Also, 
with annual MaxSAT Evaluations since 2006, there have been a number of diverse methodologies and solvers proposed. 
akmaxsat_ls [32], for example, is a branch-and-bound algorithm with lazy deletion and a local search for an initial up-
per bound. This solver dominated the randomly generated partial MaxSAT problems in the 2012 MaxSAT Evaluations [8]. 
The solver also scored second place for crafted partial MaxSAT instances. Alternatively, solvers like ShinMaxSAT [22] and 
sat4j [14] tackle weighted partial MaxSAT problems by encoding them to SAT and then resolving them using a dedicated 
SAT solver. Finally, there are solvers like WPM1 [2] or wbo1.6 [38] that are based on iterative identification of unsatisfiable 
cores and are well suited for unweighted Industrial MaxSAT.

One of the few parametrized highly efficient partial MaxSAT solvers is qMaxSAT [30] which is based on SAT. QMaxSat 
searches for the optimum cost(ϕ) from k = ∑m

i=1 wi to some value smaller than cost(ϕ). Each subproblem is solved by em-
ploying the underlying SAT solver glucose. QMaxSat inherits its parameters from glucose: rnd-init, -luby, -rnd-freq, -var-dec, 
-cla-decay, -rinc and -rfirst [11]. The particular version of QMaxSat, QMaxSatg2, that we use in our evaluation was the 
winner for the industrial partial MaxSAT subcategory at the MaxSAT 2012 Evaluation.

Numerical results
Now, we have everything in place to run the ISAC++ methodology and devise a new MaxSAT solver; the primary ob-

jective of this study. We conducted our experimentation on the same environment as the MaxSAT Evaluation 2012 [8]: 
operating system Rocks Cluster 4.0.0 Linux 2.6.9, processor AMD Opteron 248 Processor 2 GHz, memory 0.5 GB and compil-
ers GCC 3.4.3 and javac JDK 1.5.0.

We split our experiments into two parts. We first show the performance of ISAC++ on partial MaxSAT instances: a bench-
mark set of crafted instances, one consisting of industrial instances, and finally a set that contains both crafted and industrial 
instances. In the second set of experiments we train solvers for MaxSAT (MS), Weighted MaxSAT (WMS), Partial MaxSAT 
(PMS), and Weighted Partial MaxSAT (WPMS). In these datasets we will combine instances from the crafted, industrial and 
random subcategories.

Partial MaxSAT
We used three benchmarks in our numeric analysis obtained from the 2012 MaxSAT Evaluation: (i) the 8 families of 

partial MaxSAT crafted instances with a total of 372 instances, (ii) the 13 families of partial MaxSAT industrial instances 
with a total of 504 instances, and the mixture of both sets. This data was split into training and testing sets. Crafted had 
130 testing and 242 training, while Industrial instances were split so there were 170 testing and 334 training instances. Our 
third dataset merged Crafted and Industrial instances and had 300 testing and 576 training instances.

The solvers we run on the partial MaxSAT industrial and crafted instances are: QMaxSat-g2 (this is the solver we tune), 
pwbo2.0, QMaxSat, PM2, ShinMaxSat, Sat4j, WPM1, wbo1.6, WMaxSatz+, WMaxSatz09, akmaxsat, akmaxsat_ls, iut_rr_rv and 
iut_rr_ls. More details on solvers and competition results can be found in [8].

For each of these benchmark sets we built an instance-specifically tuned MaxSAT solver by applying the ISAC++ method-
ology. We use a training set (which is always distinct from the test set on which we report results) of instances which 
we cluster. For each cluster we tune a parametrization of QMaxSat-g2. Then we combine these parameterizations with the 
other MaxSAT solvers described above. For this set of algorithms, we train an algorithm selector using CSHC. Finally, we 
evaluate the performance of the resulting solver on the corresponding test set.

In Table 3 we show the test performance of various solvers. BS shows the performance of the single best untuned solver 
from our base set. It solves 82% of all 130 instances in this set. ISAC-GGA, which instance-specifically tunes only QMaxSat 
without using other solvers, solves 78%. In ISAC-MSC [36] we incorporate also other high-performance MaxSAT solvers. 
Performance jumps, ISAC-MSC solves over 92% of all instances within our time-limit of 1800 seconds.

ISAC++ does even better. It solves over 98% of all instances, closing the gap between ISAC-MSC and VBS by almost 80%! 
Compared to the previous state of the art (BS), we increase the number of solved instances from 107 to 128. Seeing that, in 
this subcategory, at the 2012 MaxSAT Evaluation the top five solvers were ranked just 20 instances apart, this improvement 
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Table 4
PMS Industrial.

Average PAR1 PAR10 Solved %Solved

BS 64.0 186.5 1327 158 92.94
ISAC-GGA 64.0 186.6 1330 158 92.94
ISAC-MSC 108.9 208.4 1161 160 94.12
ISAC++ 56.7 138.7 865.2 162 95.29
VBS 45.4 45.4 45.4 170 100

Table 5
PMS Crafted + Industrial.

Average PAR1 PAR10 Solved %Solved

BS 88.2 316.4 2476 260 86.7
ISAC-GGA 90.5 312.7 2418 261 87.0
ISAC-MSC 100.5 242.1 1592 275 91.7
ISAC++ 45.0 115.2 1453 288 96.0
VBS 43.3 43.3 43.3 300 100

Table 6
PMS Crafted + Industrial using only QMaxSat.

Average PAR1 PAR10 Solved %Solved

QMaxSat 134.3 378.6 2754 256 85.3
GGA 78.4 308.0 2468 260 86.7
ISAC-GGA 90.5 312.7 2418 261 87.0
ISAC++ 85.2 291.0 2585 264 88.0
VBS 82.2 254.0 1873 270 90.0

is significant. In Table 4 we see exactly the same trend, albeit a bit less pronounced: ISAC++ closes about 20% of the gap 
between ISAC and the VBS.

In the subsequent experiment, we built a MaxSAT solver that excels on both crafted and industrial MaxSAT instances. 
Table 5 shows the results. The single best solver for this mixed set of instances is the default QMaxSat-g2, and it solves 
about 87% of all instances within 1800 seconds. It is worth noting that this was the state-of-the-art in partial MaxSAT 
before we conducted this work. Tuning QMaxSat-g2 instance-specifically (ISAC-GGA), we improve performance only slightly. 
ISAC-MSC works clearly better and is able to solve almost 92% of all instances. The best performing approach is ISAC++ 
which solves 96% of all instances in time, closing the gap between perfect performance and the state-of-the-art in partial 
MaxSAT before we conducted this study by over 60%.

Given the performance of ISAC++ on the combined PMS dataset, a logical question is what impact using CSHC at the 
portfolio stage has when tuning one solver rather than an entire portfolio of solvers. Table 6 aims to answer this question by 
showing the performances if only the QMaxSat solver was available to the user. Immediately, we observe that it is beneficial 
to tune the solver even when doing so instance-obliviously. After tuning with GGA, we solve an additional four instances. If 
we tune QMaxSat instance-specifically using the original ISAC methodology, we only slightly improve performance.

However, the improved instance-specific tuner ISAC++ solves yet another four instances more than the instance-
obliviously tuned QMaxSat. This demonstrates that, through tuning, we are able to find parameterizations that solve 
instances that could not be solved before. In fact, when analyzing MaxSAT Evaluation results in greater detail, we find 
that our method generated parameterizations that no other solver could solve before, within the competition settings. For 
example, at the 2013 MaxSAT Evaluation MSE13, ISAC+2013 solved instances that no other solver submitted was able to 
solve, using one of the parameterizations that ISAC++ had generated automatically.

The new portfolio stage in ISAC++ helps invoke these automatically generated parameterizations when they are best 
suited for a given instance. As Table 6 shows, a more effective way of choosing the right parametrization is quite important 
and leads to a better realization of the potential that the parameterizations that were generated offline offer.

Partial/weighted MaxSAT
The previous experiments were conducted on particular train/test splits. To harden these results, we conduct a 10-fold 

cross validation on the four categories of the 2012 MaxSAT Evaluation [8]. These are plain MaxSAT instances, weighted 
MaxSAT, partial MaxSAT, and weighted partial MaxSAT. The results of the cross validation are presented in Tables 7–10. 
Specifically, each dataset is broken uniformly at random into non-overlapping subsets. Each of these subsets is then used 
as the test set (one at a time) while the instances from all other folds are used as training data. The tables present the 
average performance over 10-folds. All experiments were run in the same machines as in the previous section. We use the 
following solvers: akmaxsat_ls, akmaxsat, bincd2, WPM1-2012, pwbo2.1, wbo1.6-cnf, QMaxSat-g2, ShinMaxSat, WMaxSatz09, 
and WMaxSatz+. We also employ the highly parametrized solver QMaxSat-g2.
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Table 7
MS MIX has 60 test instances per fold.

Average PAR1 PAR10 Solved % Solved

BS 117.0 600.5 5199 45.4 75.7
ISAC-MSC 146.3 603.3 4887 47.2 78.7
ISAC++ 134.5 487.7 3952 49.0 81.7
VBS 115.9 473.8 3876 49.2 82.0

Table 8
PMS MIX has 108 test instances per fold.

Average PAR1 PAR10 Solved % Solved

BS 68.0 822.3 7834 68.0 63.0
ISAC-MSC 100.1 328.3 2398 96.1 89.0
ISAC++ 98.4 232.7 1713 99.6 92.2
VBS 69.9 206.2 1476 100.8 93.3

Table 9
WMS MIX has 27 test instances per fold.

Average PAR1 PAR10 Solved % Solved

BS 50.2 302.7 2633 23.7 87.9
ISAC-MSC 65.6 323.5 2653 23.7 87.9
ISAC++ 58.8 184.3 1349 25.3 93.8
VBS 58.6 184.3 1349 25.3 93.8

Table 10
WPMS MIX has 71 test instances per fold.

Average PAR1 PAR10 Solved % Solved

BS 56.3 632.1 5949 51.1 72.0
ISAC-MSC 47.1 229.0 1914 64.7 91.1
ISAC++ 54.6 168.6 1511 66.0 92.9
VBS 15.5 131.8 1185 67.1 94.5

The MS dataset has 600 instances, split among random, crafted and industrial. Each fold has 60 instances, which means 
that, ten times, we train on 540 instances and test on 60. Results in Table 7 confirm the findings observed in previous ex-
periments. The combination of tuning and using an algorithm portfolio realized by ISAC++ improves over all other methods 
and, in this case, nearly completely closes the gap between BS and VBS.

The partial MaxSAT dataset is similar to the one used in the previous section, but in this case we also augment it with 
randomly generated instances bringing the count up to 1086 instances. The Weighted MaxSAT problems consist of only 
crafted and random instances creating a dataset of size 277. Finally, the weighted partial MaxSAT instances number 718.

All in all, these cross-validation experiments on all MaxSAT families show clearly that ISAC++ always outperforms the 
original ISAC methodology significantly, closing the gap between ISAC-MSC and the VBS by 90%, 74%, 100%, and 52%. More 
importantly for the objective of this study, we improve the prior state-of-the-art in MaxSAT. The tables give the average 
performance of the single best solver for each fold (which may differ from fold to fold!) in the row indexed BS. Note this 
value is never worse than what the previous best single MaxSAT solver had to offer. The BS values thus provide an upper 
bound on the state-of-the-art in MaxSAT before this study, in terms of best single solver performance. On plain MaxSAT, 
ISAC++ solves 8% more instances, 58% more on partial MaxSAT, 6% more on weighted MaxSAT, and 29% more instances on 
weighted partial MaxSAT instances within the timeout.

Results at the international MaxSAT Evaluations
Our results were independently confirmed at the 2013 and 2014 editions of the international MaxSAT Evaluation (MSE13 

and MSE14) where our portfolios, built based on the methodology described in this paper, placed in all but two subcate-
gories while winning a total of nine.

We present and discuss the results at these competitions of ISAC+2013 (submitted to MSE13) and ISAC+2014 (submitted 
to MSE14). The MSE13 was run on a cluster featured with Intel Xeon CPU E7-8837 @ 2.67 GHz processors, and the MSE14 
was run on a cluster features with Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00 GHz processors. A memory limit of 3.5 GB and a 
timeout of 1800 seconds was used for both evaluations.

The MSE13 evaluation had four categories depending on the variant of the MaxSAT problem: MaxSAT (MS), Partial 
MaxSAT (PMS), Weighted MaxSAT (WMS) and Weighted Partial MaxSAT (WPMS). In MSE14 there were three categories, MS, 
PMS, and WPMS (which also contained some WMS instances but these did not form their own category anymore). Within 
each category, instances were classified as either random, crafted, or industrial.
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Table 11
MSE-2013 three best solvers per subcategory (ordered by num. of solved instances).

MS PMS WMS WPMS

Random 1. MaxSatz2013f 1. ISAC+2013 1. ckmax-small 1. ISAC+2013
2. ISAC+2013 2. WMaxSatz09 2. ISAC+2013 2. WMaxSatz09
3. ckmax-small 3. WMaxSatz+ 3. Maxsatz2013f 3. WMaxSatz+

Crafted 1. ISAC+2013 1. ISAC+2013 1. ISAC+2013 1. MaxHS
2. Maxsatz2013f 2. ILP-2013 2. WMaxSatz+ 2. ISAC+2013
3. ckmax-small 3. scip-maxsat 3. WMaxSatz09 3. ILP-2013

Industrial 1. pmifumax 1. ISAC+2013 1. − 1. WPM1-2013
2. WPM1-2011 2. QMaxSAT2-mt 2. − 2. ISAC+2013
3. ISAC+2013 3. MSUnCore 3. − 3. WPM2-2013

Table 12
MSE-2013 three best solvers per subcategory (ordered by mean family ratio).

MS PMS WMS WPMS

Random 1. MaxSatz2013f 1. ISAC+2013 1. ckmax-small 1. ISAC+2013
2. ISAC+2013 2. WMaxSatz09 2. ISAC+2013 2. WMaxSatz09
3. ckmax-small 3. WMaxSatz+ 3. Maxsatz2013f 3. WMaxSatz+

Crafted 1. ahmaxsat 1. ISAC+2013 1. ISAC+2013 1. MaxHS
2. ISAC+2013 2. QMaxSAT-m 2. WMaxSatz+ 2. ISAC+2013
3. Maxsatz2013f 3. QMaxSAT2-mt 3. WMaxSatz09 3. ILP-2013

Industrial 1. pmifumax 1. ISAC+2013 1. − 1. ISAC+2013
2. WPM1-2011 2. QMaxSAT2-mt 2. − 2. WPM1-2013
3. optimax 3. WPM2-2013 3. − 3. WPM2-2013

Table 13
MSE-2014 three best solvers per subcategory (ordered by num. of solved instances).

MS PMS WPMS

Random 1. ahmaxsat_ls 1. ahmaxsat 1. CCLS2akms
2. ahmaxsat 2. ahmaxsat_ls 2. ahmaxsat_ls
3. CCLS2akms 3. ISAC+2014 3. ISAC+2014

Crafted 1. ahmaxsat_ls 1. ISAC+2014 1. ISAC+2014
2. ahmaxsat 2. scip-maxsat 2. ILP-2013
3. ISAC+2014 3. ILP-2013 3. MaxHS

Industrial 1. Open-WBO-In 1. ISAC+2014 1. Eva500aW
2. clasp 2. Open-WBO-In 2. ISAC+2014
3. Eva500a 3. Eva500a 3. MSCG

ISAC+2013 incorporated the following single solvers: akmaxsat, akmaxsat_ls, WMaxSatz09, WMaxSatz+, ILP-2013, 
QMaxSAT, QMaxSAT-g2, ShinMaxSat, MSUnCore, pwbo2.1, wbo1.6-cnf, WPM1-2013, WPM1-CP12 [5] and WPM2-2013.

Table 11 summarizes the results of MSE13. Here, we present the three best performing solvers in each subcategory. In 
the evaluation, solvers are ranked by the number of solved instances. However, within each category/type there are varying 
numbers of instances that stem from various instance “families” where instances cluster together. We therefore also present 
the ranking according to the “mean family ratio” in Table 12. We can see that ISAC+2013 did very well in this competition. 
Out of eleven subcategories, ISAC+2103 was the best performing solver in six subcategories, and it placed second on four.

In Tables 13 and 14, we show the results of ISAC+2014 at MSE14. ISAC+2014 includes the following single 
solvers: ahmaxsat, akmaxsat_ls, WMaxSatz09, WMaxSatz+, Maxsatz2013f, ckmax_small, ILP-2013, scip-maxsat, antom_seq1, 
antom_seq2, iraNovelty++, QMaxSAT-m, QMaxSAT2-m, QMaxSAT2-mt, ShinMaxSat, MSUnCore, pwbo2.33, pmifumax, 
WPM1-2011, and WPM1-2013. For this competition, in accordance to the ISAC++ methodology, we also included auto-
matically generated parameterizations of the new WPM2-2013 solver. As we can see, ISAC+2014 excelled particularly on the 
PMS and WPMS categories for crafted and industrial instances which is easily explained by the fact that the solver tuned 
within the portfolio, WPM2-2013, is particularly well suited for crafted and industrial PMS and WPMS instances.

Detailed results of MSE14 are presented in Table 15, grouped by the three categories (MS, PMS, and WPMS) and instance 
types (random, crafted, and industrial). We also add cumulative results for each category as well as type of instances. 
Absolute numbers show the number of instances solved, the percentages give mean family ratios.

The main strength of portfolio approaches is robust performance across categories. The total numbers across multiple 
categories (with the only exception of random instances) and also across types show clearly that ISAC+2014 outperformed 
all competitors in this general setting. When neither instance category nor instance type are known, out of 2809 instances, 
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Table 14
MSE-2014 three best solvers per subcategory (ordered by mean family ratio).

MS PMS WPMS

Random 1. ahmaxsat_ls 1. ahmaxsat_ls 1. CCLS2akms
2. ahmaxsat 2. ahmaxsat 2. ahmaxsat_ls
3. CCLS2akms 3. ISAC+2014 3. ISAC+2014

Crafted 1. ahmaxsat_ls 1. ISAC+2014 1. MaxHS
2. ahmaxsat 2. QMS-g3-auto 2. ILP-2013
3. ISAC+2014 3. Open-WBO-SU 3. scip-maxsat

Industrial 1. Open-WBO-In 1. ISAC+2014 1. WPM-2014-co
2. clasp 2. Open-WBO-In 2. ISAC+2014
3. Eva500a 3. MSCG 3. Eva500a

Table 15
ISAC+2014 at MSE-2014.

Solvers Random Crafted Industrial Total

MS 378 177 55 610
MSE14-VBS 304 78.0% 160 65.7% 47 92.3% 511 75.2%
ISAC+2014 301 76.9% 156 60.5% 39 84.5% 496 71.7%

ahmaxsat-ls 303 77.6% 156 60.5% 0 0.0% 459 61.5%
Open-WBO-In 0 0.0% 11 9.0% 42 87.5% 53 14.3%

PMS 210 421 568 1199
MSE14-VBS 209 99.4% 389 86.9% 522 88.0% 1120 89.8%
ISAC+2014 193 91.9% 387 86.4% 510 86.3% 1090 87.3%

Open-WBO-In 11 5.1% 290 68.3% 473 81.1% 774 64.2%
QMS-g3-auto 3 1.4% 318 73.4% 454 78.5% 775 63.4%
ahmaxsat-ls 208 99.0% 294 48.0% 32 5.5% 534 33.2%

WPMS 280 310 410 1000
MSE14-VBS 280 100.0% 280 88.1% 379 79.8% 939 89.0%
ISAC+2014 280 100.0% 241 66.7% 367 73.5% 888 76.4%

ILP-2013 57 22.6% 224 75.2% 249 45.9% 530 55.3%
MaxHS 5 2.0% 219 75.8% 280 52.6% 404 52.3%
CCLS2akms 280 100.0% 152 44.3% 25 8.9% 457 49.2%
WPM-2014-co 0 0.0% 151 43.4% 359 73.9% 510 40.3%

Total 868 908 1033 2809
MSE14-VBS 793 92.2% 829 83.7% 948 86.2% 2570 86.8%
ISAC+2014 774 89.5% 784 71.5% 916 83.0% 2474 80.4%

MaxHS 24 2.8% 554 62.2% 724 66.2% 1302 48.1%
Eva500a 1 0.1% 460 47.8% 881 78.4% 1342 46.4%
ahmaxsat-ls 791 91.9% 578 42.1% 57 5.7% 1426 40.9%

ISAC+2014 solves 2474 within the time limit, a mere 96 instances less than a perfect oracle of all solvers submitted to the 
2014 evaluation. (Note that ISAC+2014 did not have access to all these solvers. We will show results when ISAC++ is given 
access to all latest solvers next).

On top of this, the ISAC+2014 solver also improved performance within the PMS and WPMS categories on crafted and 
industrial instances. Out of the 421 crafted PMS instances, e.g., ISAC+2014 solves 387, just two less than a perfect oracle 
based on the latest 2014 solvers. The best competitor from that year solves 318 instances, over 17% less than ISAC+2014.

As stated previously, ISAC+2014 did not have access to all solvers submitted to that evaluation but had to rely, in part, on 
outdated solvers from earlier years. In preparation for the 2015 evaluation, we trained two additional solvers (i) ISAC+MSE14 
that incorporates the best solvers of MSE14 and (ii) ISAC+MSE14* that also incorporates configurations of the new solver 
WPM3 [7].

In Table 16 we compare the results of ISAC+2014 (the version submitted to MSE14) and the VBS of MSE14 with these 
new solvers. Overall, we now reach almost the same performance as the 2014 VBS and, by finding new configurations of 
WPM3, ISAC+MSE14* is able to solve more industrial instances than the 2014 VBS.

We close our numerical results section by giving a detailed insight in the inner workings of the ISAC+2014 solver that 
was submitted to the 2014 MaxSAT Evaluation. In Table 17 we show which solver/parametrization ISAC+2014 invoked 
for how many MaxSAT instances within each industrial problem family. Recall that, in ISAC+2014, we parameterized the 
SMT-based MaxSat solver WPM2-2013. At MSE13, this program had solved the most industrial instances (844) and had the 
highest mean family ratio of solved instances on industrial families of 76.8%.
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Table 16
Variations of ISAC+ on MSE-2014 instances.

Solvers Random Crafted Industrial Total

Total 868 908 1033 2809

MSE14-VBS 793 92.2% 829 83.7% 948 86.2% 2569 86.8%
ISAC+MSE14* 792 92.0% 820 81.6% 950 86.3% 2562 86.0%
ISAC+MSE14 792 92.0% 820 81.6% 935 83.4% 2547 85.0%
ISAC+2014 774 89.5% 784 71.5% 916 83.0% 2474 80.4%

Table 17
Solvers selected by ISAC+2014 on MSE14 industrial instances.

Family # WPM2

1 2 3 4 5 6 7 8 9 10 11 12 13 T

MS
cir-dp 3 – – – – – – – – 3 – – – – 3
sean-s 52 – – – – – – – – 34 – – 2 – 36

Total 55 – – – 37 – – 2 – 39

PMS
aes 7 – – – – – – 3 – – – – – – 3
at-mes 18 – – – – – – – 11 – – – – – 11
at-sug 19 – – – – – – – 11 – – – – – 11
bcp-fir 32 1 – – – – – 9 21 – – 1 – – 32
bcp-hysi 10 – – – – – – – 9 – – – – – 9
bcp-hysu 38 – – – – – – – 35 – – – – – 35
bcp-msp 40 2 – – – – – 12 7 – – 1 – – 22
bcp-mtg 30 – – – – – – – 22 – 8 – – – 30
bcp-syn 38 – – – – – – 36 – – – – – – 36
cir-tc 4 – – – – – – – 4 – – – – – 4
clo-sol 50 1 – – – – – – 36 12 – – – – 49
des 50 – – – – – – – 45 – – – – – 45
hap-a 6 – – – – – – – 5 – – – – – 5
hs-tim 2 – – – – – – – 1 – – – – – 1
mbd 46 – – – – – – 39 – – – – – 39
pac-pms 40 – – – – – – 35 5 – – – – – 40
pbo-mqcne 25 – 10 – – – – – 13 – 2 – – – 25
pbo-mqcnl 25 – 9 – – – – – 11 – 5 – – – 25
pbo-rou 15 – – – – – – 3 12 – – – – – 15
pro-ins 12 – – – – – – – 12 – – – – – 12
tpr-Mp 36 – 7 – – 10 6 – 6 – 7 – – – 36
tpr-Op 25 7 – – 3 – 15 – – – – – – – 25

Total 568 71 98 305 12 22 2 – – 510

WPMS
hap-ped 100 82 – – – 15 – – – – – – – – 97
hs-tim 14 – – – – – – – – – – – – – 0
pac-wpms 99 – – – – – – 99 – – – – – – 99
pre-pla 29 3 – – – 25 1 – – – – – – – 29
tim 26 1 – 4 – 3 – – – – – 1 – – 9
upg-pro 100 – – – – – – 100 – – – – – – 100
wcsp-s5d 21 – – – – – – 17 – – – – – – 17
wcsp-s5l 21 2 – – – 4 7 1 – – – – – 2 16

Total 410 147 217 – – – 1 – 2 367

Total Ind. 1033 218 315 305 49 22 3 2 2 916

In Table 17, columns (1)–(6) show the five WPM2 parameterizations that were generated by ISAC++. The remaining 
columns are for the following solvers: (7) ILP-2013, (8) QMaxSAT2-mt, (9) pmifumax, (10) QMaxSAT-m, (11) MSUnCore, 
(12) WPM1-2011 and (13) ShinMaxSat. Details about solvers and authors can be found in [8]. There are other solvers 
underlying ISAC+2014, but they are not selected for the industrial instances and consequently not listed here. The rows in 
the table are the families of industrial instances at the MSE14, with the column marked “#” specifying the total number of 
instances in the class.

Table 17 reveals the number of times a solver was used to solve instances of a particular type of industrial instance. 
As we can see, configurations of WPM2 are selected on 218 out of 916 solved instances, whereby some parameterizations 
are category specific (such as (3) which excels only on WPMS instances, or (4) which excels only on PMS instances), while 
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others cover a greater range of problem instances. Overall, none of the trained parameterizations is clearly dominant. We 
also observe that, even within single instance families, ISAC+2014 selects different solvers.

7. Conclusion

We introduced an improved instance-specific algorithm configurator by adding a non-cluster based portfolio stage to the 
existing ISAC approach. Extensive tests showed that the new method consistently outperforms the best instance-specific 
configurators to date.

We applied the new method to partial MaxSAT, a domain where portfolios had never been used in a competitive setting 
before we conducted this work. We devised a method to extend features originally designed for SAT to characterize weighted 
partial MaxSAT instances. Then, we built three instance-specific partial MaxSAT solvers for crafted and industrial instances, 
as well as a combination of those. Results clearly showed the improvements of the new instance-specific tuner over the 
prior state-of-the-art in tuning. A 10-fold cross validation in the four categories of the 2012 MaxSAT evaluation confirmed 
these findings.

Based on this work we entered our solvers in the 2013 MaxSAT Competition, where they won six out of eleven categories 
and came in second in another four. We subsequently updated the portfolio with new solvers and submitted it to the 2014 
MaxSAT Competition, where it placed in seven of the nine categories, winning three of them. These results independently 
confirm that our solvers mark a significant step forward in solving MaxSAT instances efficiently.
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Maximum Satisfiability (MaxSAT) has been used to solve e�ciently many
combinatorial optimization problems that appear in real world (industrial)
domains Among these domains, we can find software package upgrade [1],
debugging of hardware designs [2, 3], bioinformatics [4, 5], fault localization in
C code [6], course timetabling [7], planing [8, 9], scheduling [10], routing [11],
electronic markets [12], combinatorial auctions [13] and many others [14, 15].

MaxSAT is the natural optimization variant of Satisfiability (SAT). The
main idea is that sometimes not all restrictions of a problem can be satis-
fied, and we try to satisfy the maximum number of them. The basic MaxSAT
problem can be further generalized to the Weighted Partial MaxSAT (WPMS)
problem. In this case, we can divide the restrictions into two groups: the
clauses that must be satisfied (hard), and the ones that may or may not be
satisfied (soft). We may put di↵erent weights to the soft clauses, where the
weight is the cost of falsifying the clause. The presence of soft clauses with
di↵erent weights makes a MaxSAT instance Weighted and the presence of
hard clauses makes it Partial. To solve the MaxSAT problem we have to find
an assignment that satisfies all hard clauses and minimizes the aggregated
cost of falsified soft clauses.

Solving exactly (completely) the MaxSAT problem, i.e. finding and certi-
fying an optimal assignment, can be NP-hard from a computational point of
view. Anyway, there are many industrial problems slightly beyond the reach
of state-of-the-art techniques and often the goal is not finding an optimal as-
signment but an assignment of a good quality in a reasonable time. For some
domains, even a small gain in the quality can lead to important practical con-
sequences. To this end, many incomplete algorithms have been developed for
industrial problems. However, the experience achieved from the international
MaxSAT Evaluation (MSE) [16], shows us that a reasonable strategy is to
improve complete algorithms and modify them so that they become also in-
complete (i.e., return assignments when improved) [17, 18]. This is also the
case of the WPM3 algorithm that we present in this paper.

There are two main types of complete algorithms to solve the MaxSAT
problem: (i) branch and bound [19, 20, 21, 22, 23] and (ii) SAT-based [14, 15].
At recent editions of MSE, we have seen that solvers implementing SAT-based
algorithms clearly dominate on industrial instances. These algorithms pro-
ceed by reformulating the MaxSAT optimization problem into a sequence of
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SAT decision problems. Each SAT instance of the sequence encodes whether
it exists an assignment to the MaxSAT instance with a cost less than or
equal to a certain k. Those SAT instances with a k less than the optimal
cost are unsatisfiable, and the others satisfiable. Therefore, when SAT-based
algorithms find the phase transition point, they find the optimum.

Among SAT-based MaxSAT algorithms, there are also two main types: (i)
core-guided [24, 25, 26, 27, 28, 29, 30] and (ii) model-guided [31, 32, 33, 34].
The first ones refine (increase) the lower bound and guide the search with
unsatisfiable subproblems (cores) obtained from unsatisfiable SAT instances.
The second ones refine (decrease) the upper bound and guide the search
with satisfying assignments (models) obtained from satisfiable SAT instances.
Both have strengths and weaknesses and some hybrid approaches have been
proposed [35, 36, 17, 18].

SAT-based MaxSAT algorithms use Pseudo-Boolean (PB) constraints to
create the SAT instances in the sequence. The PB constraints are used to
express the arithmetic and comparison needed to only allow satisfying as-
signments with a cost less than or equal to the k of the instance. The size,
the management and the complexity of these PB constraints are crucial for
SAT-based algorithms. With respect to the size, the naive approach uses a
unique PB constraint that involves all soft clauses. Fortunately, SAT-based
algorithms can use a set of smaller PB constraints that do not necessarily
cover all soft clauses. With respect to the management, the default option is
that PB constraints are translated to SAT since SAT-based algorithms use
internally a SAT solver. However, there are other options, like modeling PB
constraints with the Linear Integer Arithmetic theory and using internally
an SMT solver [18]. With respect to the complexity, depending on the par-
ticular SAT-based algorithm, we may only need to use a simpler form of PB
constraints with all coe�cients equal to 1 i.e., Cardinality constraints. In
case PB constraints are managed through their translation to SAT, the best
encoding that preserve arc-consistency has a quadratic size with respect to
the size of the constraint [37]. For Cardinality constraints, the size of the best
SAT encoding is quasilinear with respect to the size of the constraint [38].

PB constraints are defined on auxiliary variables which express whether
a particular soft clause is falsified or not. However, some SAT-based algo-
rithms may require more than one auxiliary variable per clause introducing
additional complexity. For WPMS instances in particular, the WPM1/WBO
algorithm presented in [24, 25] only needed 1-Cardinality constraints (with
independent term equal to 1) but it needed multiple auxiliary variables per
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clause. The WPM2 algorithm presented in [26] needed only a unique auxil-
iary variable for each clause but it needed general PB constraints.

To our best knowledge, the OLL algorithm, presented in [39] originally
for ASP (Answer Set Programming), was the first one that only needed
a unique auxiliary variable per clause while using Cardinality constraints.
Later, this algorithm was applied to MaxSAT and shown to be competitive
in [40]. Previous to this last work, the Eva algorithm was presented and
also shown to be competitive in [41]. It applies the MaxSAT resolution rule
to create the next instance of the sequence. The solvers inspired by Eva
and OLL were the best on industrial instances at MSE-2014. Although both
algorithms were core-guided, they had apparently di↵erent foundations.

In this paper, we demonstrate that the transformation applied by Eva
at each iteration using the MaxSAT resolution rule corresponds to the in-
cremental construction of a Cardinality constraint. In particular, it finally
creates the regular encoding for 1-Cardinality constraints described in [42].
We have analyzed in detail the connections between Eva and OLL and we
present a first study showing that they are in fact very similar.

With the aim of improving the performance in MaxSAT, we have made
a step forward and developed a new algorithm that takes profit of our study.
The WPM3 algorithm only needs Cardinality constraints like Eva and OLL,
but additionally, it is aware of the global structure of the unsatisfiable cores
identified in the problem. Thus, it can exploit this structure to make encod-
ings for the Cardinality constraints that improve the e�ciency of the solvers.
Moreover, WPM3 is able to exploit subproblem optimization [18] e�ciently,
which as subproduct provides assignments that can be used to refine the up-
per bound for the whole problem. In this way, WPM3 can also work as an
incomplete algorithm, given limited time and memory. The assignments can
be further exploited to extend to MaxSAT a very e↵ective technique used in
SAT solvers called phase saving [43].

Finally, we have conducted an extensive experimental investigation on
industrial instances showing the impact of every technique. With respect to
Cardinality constraints, we show that the improvement on the performance
is mostly due to the exploitation of the core structure and not only to incre-
mentality as suggested in previous works [30]. We also analyze the results of
the MSE-2015. Of the six industrial subcategories, including complete and
incomplete track, WPM3 got a total of five medals. At the complete track,
it got a gold (PMS) and a bronze (MS) medals. At the incomplete track, it
dominated with two gold (PMS, WPMS) and a silver (MS) medals.
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This paper proceeds as follows. Section 1 introduces some preliminary
concepts. Section 2 analyzes how Eva and OLL algorithms are related. Sec-
tion 3 presents the WPM3 complete MaxSAT algorithm. Section 4 discusses
how to encode the Cardinality constraints generated by the algorithm. Sec-
tion 5 compares WPM3 with Eva and OLL. Section 6 explains how to exploit
the assignments and upper bounds generated by the algorithm. Section 7
shows the experimental evaluation. Finally, Section 8 concludes.

1. Preliminaries

Definition 1. A literal l is either a Boolean variable x or its negation x. A
clause c is a disjunction of literals. An empty clause ⇤ is a clause without
literals. A SAT formula is a set or conjunction of clauses, i.e. a Boolean
formula in Conjunctive Normal Form (CNF). We note the conversion of a
Boolean formula � that is not in CNF into a SAT formula � as � = CNF (�).
We note the union of two SAT formulas �1 and �2 as �1 [ �2, e.g.:

{x1 _ x2} [ {x1 _ x2} = {x1 _ x2, x1 _ x2}

Definition 2. A weighted clause is an ordered pair hc, wi, where c is a clause
and w is a natural number or infinity (indicating the cost of falsifying c, see
Definitions 4 and 8). If w is infinite the clause is hard, otherwise it is soft.

Definition 3. A Weighted Partial MaxSAT (WPMS) formula is an ordered
multiset of weighted clauses:

' = hhc1, w1i, . . . , hcs, wsi, hcs+1,1i, . . . , hcs+h,1ii

The presence of soft clauses with di↵erent weights makes the formula Weighted
and the presence of hard clauses makes it Partial. The ordered multiset of
weights of the soft clauses in the formula is noted as w('). The hard clauses
are occasionally noted as h�H ,1i, �H = {cs+1, . . . , cs+h}, when their order
can be ignored. The set of variables occurring in the formula is noted as
var('). We note the concatenation of two WPMS formulas '1 and '2 as
'1 + '2 e.g.:

hhc1, w1ii+ hhc2, w2ii = hhc1, w1i, hc1, w1ii
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Definition 4. An assignment for a set of Boolean variables X is a function
I : X ! {0, 1}, that can be extended to literals, (weighted) clauses, SAT
formulas and WPMS formulas as follows:

I(x) = 1� I(x)
I(l1 _ . . . _ lm) = max{I(l1), . . . , I(lm)}
I({c1, . . . , cn}) = min{I(c1), . . . , I(cn)}
I(hc, wi) = w (1� I(c))
I(h⇤, wi) = w
I(hhc1, w1i, . . . , hcs+h, ws+hii) =

Ps+h
i=1 I(hci, wii)

We will refer to the value returned by an assignment I on a weighted clause
or a WPMS formula as the cost of I.

Definition 5. Given the WPMS formulas ' and '0, we say that ' is MaxSAT
reducible to '0 if, for any assignment I : var(') ! {0, 1}, we have that
I(') = min{I 0('0) | I 0(x) = I(x) 8x 2 var(')}.

Definition 6. Given a weighted clause hc, wi and an integer w0  w, the
split rule replaces hc, wi by two weighted clauses as follows:

hc, wi
hc, w0i
hc, w � w0i

It is trivial to see MaxSat reducibility is guaranteed.

Definition 7. The MaxSAT resolution rule [44] replaces two premises, hx_
A, 1i and hx _B, 1i, by a set of three conclusions, as follows:

hx _ A, 1i
hx _B, 1i
hA _B, 1i
hx _ A _B, 1i
hx _ A _B, 1i

Where A and B are disjunctions of literals. The first conclusion, hA_B, 1i,
is the resolvant and the others the compensation clauses. The set of premises
is MaxSAT reducible to the set of conclusions.

It is easy to see that we can extend the MaxSAT resolution rule to the
weighted case as follows:
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hx _ A, w1i
hx _B, w2i
hA _B, wmini
hx _ A _B, wmini
hx _ A _B, wmini
hx _ A, w1 � wmini
hx _B, w2 � wmini

Where A and B are disjunctions of literals and wmin = min(w1, w2).
Notice that we can apply the split rule on each of the premises till we get

wmin copies of hx _ A, 1i and hx _ B, 1i as well as the last two conclusions
hx_A, w1�wmini and hx_B, w2�wmini. Then, we can apply the MaxSAT
resolution rule on the wmin pairs of premises hx _A, 1i and hx _B, 1i. This
will generate wmin copies of hA_B, 1i, hx_A_B, 1i and hx_A_B, 1i, which
can be collapsed into the first three conclusions by applying the inversion of
the split rule.

The second (third) conclusion is not in CNF if B (A) contains more that
one literal. In [45], the version in CNF is provided. If we allow hard clauses
in the conclusions, there is a simple trick by reifying B (A) into a new fresh
variable b. For example, hx_A_B, wmini can be replaced by hx_A_b, wmini
and hCNF (b$ B),1i.

These are special cases of the MaxSAT resolution rule:

hx _ A,1i
hx, 1i
hA, 1i

hx _ A,1i
hx _ A, 1ii

hx _ A, 1i
hx, 1i
hhA, 1i
hx _ A, 1i

hx, 1i
hx, 1i
hh⇤, 1i

Definition 8. We say that an assignment I satisfies a clause or a SAT
formula if the value returned by I is equal to 1. In the case of SAT formulas,
we will refer also to this assignment as a satisfying assignment or solution.
Otherwise, if the value returned by I is equal to 0, we say that I falsifies the
clause or the SAT formula.

Definition 9. The SAT problem for a SAT formula � is the problem of find-
ing a solution for �. If a solution exists the formula is satisfiable, otherwise
it is unsatisfiable.
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Definition 10. Given an unsatisfiable SAT formula �, an unsatisfiable core
�C is a subset of clauses �C ✓ � that is also unsatisfiable.

Definition 11. A SAT algorithm for the SAT problem, takes as input a SAT
formula � and returns an assignment I such that I(�) = 1 if the formula is
satisfiable. Otherwise, it returns an unsatisfiable core �C.

Given unlimited resources of time and memory, we say that a SAT al-
gorithm is complete if it terminates for any SAT formula. Otherwise, it is
incomplete.

Definition 12. The optimal cost (or optimum) of a WPMS formula ' is
cost(') = min{I(') | I : var(')! {0, 1}} and an optimal assignment is an
assignment I such that I(') = cost('). We will refer to this assignment as
a solution for ' if I(') 6= 1. Any cost above (below) cost(') is called an
upper (lower) bound for '.

Example 1. Given the WPMS formula ' = hhx1, 5i, hx2, 3i, hx3, 3i, hx1 _
x2,1i, hx1_x3,1i, hx2_x3,1ii, we have that cost(') = min{6, 8, 11,1} =
6 and the solution I maps hx1, x2, x3i to h1, 0, 0i.

Definition 13. The Weighted Partial MaxSAT problem for a WPMS for-
mula ' is the problem of finding a solution for '. If a solution does not exist
the formula is unsatisfiable.

Definition 14. A WPMS algorithm for the WPMS problem, takes as input
a WPMS formula ' and returns an assignment I, such that, I(') � cost(').

Given unlimited resources of time and memory, we say that a WPMS al-
gorithm is complete or exact if for any input WPMS formula ' and returned
I, I(') = cost('). Otherwise, we say it is incomplete.

Definition 15. Given a WPMS formula ' such that cost(') � 0, an unsat-
isfiable core 'C is a subset of clauses 'C ✓ ' such that cost('C) � 0.

Definition 16. An integer linear Pseudo-Boolean (PB) constraint is an in-
equality of the form w1x1 + · · · + wnxn op k, where op 2 {,�, =, >,<},
the independent term k and the coe�cients wi are integers, and the vari-
ables xi are Boolean. A Cardinality constraint is a PB constraint where the
coe�cients wi are equal to 1. A 1-Cardinality constraint is a Cardinality con-
straint where the independent term k is equal to 1. A PB at-most constraint
is a PB constraint where op is .
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2. Comparison of Eva and OLL algorithms

In this section, we compare Eva [41] and OLL [39] MaxSAT algorithms,
that inspired the best performing solvers on industrial instances at MSE-
2014, eva500a and mscg [40] respectively. To simplify the analysis, we will
only consider the non-weighted case. The analysis holds true for the weighted
case since both algorithms adapt it to the non-weighted one by applying the
idea described in the WPM1/WBO MaxSAT algorithms [24, 25] (i.e. by
using the split rule for weighted clauses described in Definition 6). Let us
recall that Eva and OLL are core-guided algorithms that iteratively solve a
sequence of SAT instances until the first satisfiable instance is found. Indeed
they work on a sequence of 'k MaxSAT instances such that cost('k) =
cost(') � k. If cost('k) = 0, they stop and k is the optimum. To test this,
they remove the weights from 'k and check if the corresponding SAT instance
�k is satisfiable.

The key point is how to transform 'k into 'k+1. After analyzing both
algorithms, we have observed that the underlying idea comes from the follow-
ing observation: a MaxSAT formula 'n with n soft clauses and cost('n) � e,
1  e  n is MaxSAT reducible (Definition 5) to a formula '0

n + h⇤, ei with
n� e soft clauses and e empty clauses:

'n = hhc1, 1i, . . . , hcn, 1i, h�H ,1ii

'0
n = hhc01, 1i, . . . , hc0n�e, 1i, h�0H ,1i, h�H ,1ii

Where cost('0
n) = cost('n) � cost(h⇤, ei). The SAT formula {c01, . . . ,

c0n�k} [ �0H [ �H only accepts solutions such that c1 + . . . + cn = e. The
at-least constraint c1 + . . . + cn � e is implicitly encoded in the formula
since cost('n) � e, and the at-most constraint c1 + . . . + cn  e is encoded
in {c01, . . . , c0n�k} [ �0H . This way, if the at-most-constraint is too restrictive
(i.e., the lower bound has to be further refined), the soft clauses involved will
appear in an unsatisfiable core, and can be relaxed again.

Back to how to transform 'k into 'k+1, Eva and OLL identify a 'n ✓ 'k

subformula and apply the previous reduction. Then, 'k+1 = ('k/'n) [ '0
n.

Both algorithms use as 'n an unsatisfiable core of 'k. This guarantees that
cost('n) � e � 1 and hopefully n is less than the number of soft clauses in
'k. We may want n to be as small as possible, this can be achieved by mini-
mizing the unsatisfiable core, and e as large as possible, this can be achieved
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by solving to optimality 'n. However, Eva and OLL only apply the trans-
formations with e = 1 at each iteration, i.e., at each iteration they introduce
a new 1-Cardinality constraint. It is interesting to see that the incremental
addition of 1-Cardinality constraints end up producing k-Cardinality con-
straints. Therefore, if we could identify a 'n whose optimal cost is greater
than 1, we could directly write the cost('n)-Cardinality constraint and skip
all the intermediate iterations performed by Eva and OLL.

In Section 3, we present the WPM3 algorithm, that identifies 'n with e
greater than 1 and solve them to optimality. In Section 5, we provide an
example of how the three algorithms build a 3-Cardinality constraint. In
this section, we focus our attention on the transformation applied by Eva
and OLL at each iteration. In the following, we will initially analyze the
transformation applied by Eva and then explain how to adapt it such that it
becomes very similar to OLL.

In the case of Eva, the generation of 'k+1 is performed by applying the
MaxSAT resolution rule (Definition 7) to 'k. The idea is to apply successively
this rule to an unsatisfiable core 'n obtained from 'k and MaxSAT reduce
it to '0

n + h⇤, 1i. Let us see in detail how '0
n is generated. Previous to

applying the MaxSAT resolution rule, each soft clause of 'n is reified with
a fresh auxiliary variable bi. Notice that hhci, 1ii is MaxSAT reducible to
hhbi, 1i, hbi $ ci,1ii. The n hard clauses hbi $ ci,1i are directly introduced
into '0

n as a part of h�0H ,1i. The n�1 soft clauses hhc01, 1i, . . . , hc0n�1, 1ii are
obtained by applying the MaxSAT resolution rule on the 'b formula which
is composed of the n soft clauses hbi, 1i and the hard clause hb1 _ . . ._ bn,1i
(the core implies that at least one of the soft clauses ci (variables bi) must
be false (true)).

'b = hhb1, 1i, . . . , hbn, 1i, hb1 _ . . . _ bn,1ii

In the first step, the MaxSAT resolution rule replaces the first soft clause
and the hard clause by the resolvant clause hb2 _ . . . _ bn, 1i and the com-
pensation clauses hb1 _ . . . _ bn,1i and hb1 _ b2 _ . . . _ bn, 1i. Then, it is
applied successively to each one of the remaining original soft clauses and
the resolvant clause obtained in the previous step, resulting:
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1 : b1 _b2 _ . . . _ bn
. . .

1 : bn�2_bn�1 _ bn

1 : bn�1_bn

1 : ⇤
1 : b1 _ . . . _ bn

The above forumla is not in CNF. The naive translation into CNF , by
reifying the negation of the disjunctions into new fresh variables (see Defini-
tion 7) , generates a quadratic number of clauses with respect to n. To make
it lineal, while preserving the MaxSAT reducibility, the new fresh variables
are reused recursively in the next reification as follows:

1 : b1 _ r2
. . .

1 : bn�2 _ rn�1

1 : bn�1 _ rn

1 : ⇤
1 : r2 $(b2 _ r3)

. . .
1 : rn�1$(bn�1 _ rn)
1 : rn $bn

1 : b1 _ . . . _ bn

At the end, the working MaxSAT formula 'k is transformed into:

'k+1 = ('k/'n) + hhb1 _ r2, 1i, . . . , hbn�1 _ rn, 1i, h�0H ,1i, h�H ,1ii

�0H = CNF ({b1 $ c1, . . . , bn $ cn}) [
CNF ({r2 $ (b2 _ r3), . . . , rn�1 $ (bn�1 _ rn), rn $ bn})

As a curiosity, we have observed that the transformation made to 'b using
the MaxSAT resolution rule corresponds to the regular encoding in [42]1-
Cardinality constraint as we can see in Example 2.
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Example 2. Applying successively the MaxSAT resolution rule like Eva to
' = hhb1, 1i, . . . , hb4, 1i, hb1 _ . . . _ b4,1ii, we get the MaxSAT formula 'e:

1 : b1 _ r2

1 : b2 _ r3

1 : b3 _ r4

1 : ⇤
1 : r2 $ b2 _ r3

1 : r3 $ b3 _ r4

1 : r4 $ b4

1 : b1 _ b2 _ b3 _ b4

CNF
1 : b1 _ r2

1 : b2 _ r3

1 : b3 _ r4

1 : ⇤
1 : r2 _ b2 _ r3

1 : b2 _ r2

1 : r3 _ r2

1 : r3 _ b3 _ r4

1 : b3 _ r3

1 : r4 _ r3

1 : r4 _ b4

1 : b4 _ r4

1 : b1 _ b2 _ b3 _ b4

(1)
(2)
(3)

(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12⇤)

The regular encoding of b1 + b2 + b3 + b4 = 1 is the SAT formula 'r where
ri is true i↵ (bi _ . . . _ bn) is true:

b1 $ r2

b2 $ r2 ^ r3

b3 $ r3 ^ r4

b4 $ r4

r4 ! r3

r3 ! r2

CNF
b1 _ r2

b1 _ r2

b2 _ r2

b2 _ r3

r2 _ b2 _ r3

b3 _ r3

b3 _ r4

r3 _ b3 _ r4

b4 _ r4

r4 _ b4

r4 _ r3

r3 _ r2

(1)
(12)
(5)
(2)
(4)
(8)
(3)
(7)
(11)
(10)
(9)
(6)

Clauses 1 � 11 are exactly the same for 'e and 'r, and correspond to
b1 + b2 + b3 + b4  1. Since r2 ⌘ (b2 _ b3 _ b4), from clause 12, we can get
clause 12⇤, that corresponds to b1 + b2 + b3 + b4 � 1.
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Another interesting observation comes from the fact that the regular en-
coding of a 1-Cardinality constraint is equivalent to the Sequential counter
encoding [46] for k-Cardinality constraints when k = 1. Then, if we get a
core 'n with cost('n) = e and apply recursively e times the Eva transfor-
mation we end up with the Sequential counter encoding for an e-Cardinality
constraint.

Back to the algorithms, we have seen the particular transformation that
Eva applies to 'n to get '0

n. Actually, we can use any other transformation
if we ensure that 'n is MaxSAT reducible to '0

n + h⇤, 1i. For example, when
we have already reified the soft clauses hbi $ ci,1i and we want to derive
the empty clause from 'b, we can transform it into '0

o + h⇤, 1i as follows.
We can replace the n soft clauses hbi, 1i with n � 1 new pairs of clauses
hok, 1i, hok ! (b1+, . . . , +bn  k),1i for k 2 {1, . . . , n � 1} and an empty
clause h⇤, 1i. We explain in detail this transformation in Example 3.

Example 3. Given 'b = hhb1, 1i, . . . , hb4, 1i, hb1 _ . . . _ b4,1ii, let us show
an alternative transformation to derive the empty clause h⇤, 1i and guarantee
MaxSAT reducibility.

Let us first notice that the formula on the left, 'b, is MaxSAT reducible
to the formula on the right 'o. If the assignment I : var('b) ! {0, 1} sets
m bi variables to true: (i) the cost I('b) will be m and (ii) the cost I('o)
will also be m since ok will be true for k 2 {0, . . . ,m� 1}.

1 : b1

1 : b2

1 : b3

1 : b4

1 : b1 _ b2 _ b3 _ b4

1 : o3

1 : o2

1 : o1

1 : o0

1 : CNF (b1 + b2 + b3 + b4 � 1)
1 : CNF (o3 ! (b1 +b2 +b3 +b4  3))
1 : CNF (o2 ! (b1 +b2 +b3 +b4  2))
1 : CNF (o1 ! (b1 +b2 +b3 +b4  1))
1 : CNF (o0 ! (b1 +b2 +b3 +b4  0))

In the case of 'o, it is trivial to see that ho0,1i is a logical consequence
of the hard clauses. Applying the MaxSAT resolution rule to ho0,1i, ho0, 1i,
we can replace ho0, 1i with h⇤, 1i, resulting '0

o + h⇤, 1i:
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1 : o3

1 : o2

1 : o1

1 : ⇤
1 : CNF (b1 + b2 + b3 + b4 � 1)
1 : CNF (o3 ! (b1 + b2 + b3 + b4  3))
1 : CNF (o2 ! (b1 + b2 + b3 + b4  2))
1 : CNF (o1 ! (b1 + b2 + b3 + b4  1))
1 : CNF (o0 ! (b1 + b2 + b3 + b4  0))

For (b1 + b2 + b3 + b4 � k), we could replace hoi, 1i | i < k with h⇤, ki.

Applying this alternative transformation to Eva is almost what OLL does.
The only di↵erence is that when OLL converts the working formula '0

o to SAT
(removes the weights) and sends it to the SAT solver to check if cost('0

o) = 0,
it does not to include the clauses (o2) and (o3). Notice that all assignments to
bi variables that satisfy (o1) also satisfy (o2) and (o3). OLL only sends to the
SAT solver the clause (oi+1) if (oi) appeared previously in a unsatisfiable core.
Therefore, we can conclude that both algorithms are in fact very similar.

Finally, for the non-weighted case, Eva and OLL increase at each iteration
the lower bound only by 1 (i.e. cost('k) = cost('k+1)+1). We know however
that there are algorithms like WPM2 that can increase at each iteration the
lower bound by more than 1 by optimizing subproblems [18]. In the next
section, we will present the WPM3 algorithm that is able to increase the
lower bound by more than 1 at each iteration like WPM2 while preserving
some of the strengths of Eva and OLL.

3. The WPM3 Complete Algorithm

In this section, we present the WPM3 complete algorithm for the MaxSAT
problem. Like Eva and OLL, it is a core-guided algorithm that only handles
Cardinality constraints. In addition, WPM3 is able to increase the lower
bound to higher values at each iteration and obtain also upper bounds and
assignments. The basic schema of WPM3 consists in, given an input WPMS
formula ', testing the satisfiability of a sequence of SAT instances �k where
0  k 

P
w('). Each SAT instance �k encodes whether there is an as-

signment to ' with a cost  k. Notice that SAT instances with k < cost(')
are unsatisfiable, while the others are satisfiable. WPM3 increases the lower
bound by testing unsatisfiable �k SAT instances.
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Algorithm 1: WPM3
Input: ' = hhc1, w1i, ..., hcs, wsi, hcs+1,1i, ..., hcs+h,1ii

1 hAM, wstrati := hhhh1i, 0, w1i, . . . , hhsi, 0, wsii,1i
2 while true do
3 hst, C, Ii := sat(', AM, wstrat)
4 if st = sat then
5 if wstrat = min({wj})

w
j

2w(AM),w
j

6=0

then return hI, I(')i

6 wstrat = decrease(AM,wstrat)

7 else
8 if wstrat =1 then return h;,1i
9 wmin := min(w(AMC))

10 AM := AM [hAj , kj , wji
j2C

/hAj , kj , wj
j2C

� wmini]

11 hA, kAi := optimize(', AMC)
12 AM := AM + hhA, kA, wminii

Function sat(', AM,wstrat)

1 �k := {ci}
hc

i

,w
i

i2',w
i

=1
[ {ci _ bi}

hc
i

,w
i

i2',w
i

6=1
[ {CNF (Aj, kj) _ aj, aj

hA
j

,k
j

,w
j

i2AM,w
j

�w
strat

}

2 hst, �k
C , Ii := satsolver(�k)

3 C := {j | {aj} \ �k
C 6= ;}

4 return hst, C, Ii

Function optimize(', AM)

1 A := +Aj
hA

j

,K
j

,w
j

i2AM

2 ub :=
P

| Aj |
hA

j

,k
j

,w
j

i2AM

3 while true do
4 k := ub� 1
5 hst, , Ii := sat(', hhA, k, ii, )
6 if st = sat then ub := I(hhci, 1i | hci, wii 2 'i

i2A
)

7 else return hA, ubi
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Roughly speaking, from every unsatisfiable SAT instance WPM3 finds
and keeps an unsatisfiable core. The algorithm is designed to be aware of
the global structure of theses cores. This is used both for producing more
e�cient Cardinality constraint encodings (see Section 4) and focus the search
on subproblems of the input WPMS instance.

The algorithm maintains a set of soft at-most Cardinality constraints
AM . We note these constraints as hA, k, wi, where A is an ordered multiset
of indexes of the original soft clauses, k indicates at most how many clauses
from A can be falsified, and w is the cost for falsifying this soft constraint.
The at-most constraints are used to do not accept those assignments whose
cost exceeds the current k, where k =

P
hA

j

,k
j

,w
j

i2AM kj · wj. Moreover, the
algorithm guarantees that k  cost('). The idea of maintaining multiple at-
most Cardinality constraints instead of a single one was originally introduced
in [47] for PM2 algorithm. Notice that from the AM set the global core
structure can be obtained.

We start (line 1) by adding to AM a soft at-most constraint for each
original soft clause. Then, the algorithm will iterate (line 2) till it is able
to determine cost('). This will happen if it detects that the set of hard
clauses is unsatisfiable (line 8, cost(') = 1) or when it is able to generate
the first satisfiable instance (line 5, cost(') = k = I(')). We obviate for the
moment the role of wstat and we consider it is 1 for the first iteration and
min({wj})

w
j

2w(AM),w
j

6=0

for the rest.

Function sat (line 3) builds the SAT instance �k at the current iteration
and sends it to the SAT solver. The SAT instance �k is constructed through
the union of the following sets expressed as SAT clauses: (i) the set of hard
clauses, (ii) the reification to variables bi of soft clauses, (iii) the reification
to variables aj of the translation into CNF of the at-most constraints in
AM , and finally (iv) the unit clauses aj. The new bi variables are true if
the respective original soft clause becomes false. They are used to encode
the at-most constraints which restrict the number of falsified soft clauses.
The new aj variables are true if the respective at-most constraint becomes
false. The unit clauses aj encode that we would like to satisfy all the at-
most constraints. If this is not possible, some of them will appear into the
unsatisfiable core �k

C .

Example 4. Given ' = hhx1, 1i, hx2, 1i, hx3, 1i, hx1_x2,1i, hx1_x3,1i, hx2_
x3,1ii and AM = hhh1, 2i, 1, 1i, hh3i, 0, 1ii, then:
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�k = {x1 _ x2, x1 _ x3, x2 _ x3} [ {x1 _ b1, x2 _ b2, x3 _ b3}

[ {CNF (b1 + b2  1) _ a1, a1, CNF (b3  0) _ a2, a2}

Following the same idea of the transformation in Example 3 of Sec-
tion 2, we can consider that WPM3 maintains in AM the information to
build a WPMS formula 'k such that cost(') = cost('k + h⇤, ki). For each
hAj, kj, wji in AM , the clause aj of Example 4 corresponds to hoj

k
j

, wji ac-

cording to the notation of Example 3. The formula �k, sent to the SAT solver
to check if ('k) = 0, does not include the clauses oj

i | i > kj and the corre-
sponding Cardinality constraints since they are satisfied for all assignments
to bi variables that satisfy the clauses oj

k
j

(i.e. aj).
Back to the WPM3 algorithm, if function sat returns satisfiable (st =

SAT ) (line 4), then we return the optimal assignment I and its cost (line
5). Otherwise (line 7), C is the set of indexes of at-most constraints in-
volved into the last unsatisfiable core. If the core only involves original hard
clauses, we can return unsatisfiable (line 8). If there are at-most constraints
involved in the core, then, we need to relax some of them since they only
allow assignments with a cost strictly less than cost(').

At this stage (lines 9-12), we need to relax the set of AM constraints,
but guaranteeing we do not exceed cost('). Basically, we need to replace the
set of at-most constraints AMC involved in the last core with a new set of
at-most constraints which allows assignments with a higher cost.

Since we will only use Cardinality constraints, we first apply the idea
described in the WPM1/WBO MaxSAT algorithms [24, 25] to deal with
weighted instances (lines 9-10). It basically prevents the algorithm to intro-
duce weighted PB constraints instead of Cardinality constraints when the
at-most constraints involved in the core have di↵erent weights. In this case,
we compute the minimum weight wmin of the constraints in AMC (line 9), and
replace every soft constraint hAj, kj, wji by two copies with weights wj�wmin

and wmin. The first set of copies will remain in AM (line 10) while the second
will be replaced by the new at-most constraint hA, kA, wmini (line 12). Notice
we guarantee that

P
hA

j

,k
j

,w
j

i2AM | Aj | ·wj =
P

w(').
Function optimize (line 11) allows to determine which is the new �k we

will test. This function, basically, solves exactly the subproblem that involves
the new at-most constraint we will generate on the original soft clauses, and
the hard clauses. The result is the set of indexes of original soft clauses A of
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the new at-most constraint (notice that any index can be repeated) and the
number of clauses kA that we will at most allow to be falsified. To our best
knowledge, the idea of solving a subproblem of the original optimization in-
stance ' was originally applied for MaxSAT in WPM2 algorithm [26]. In [48]
a similar approach is applied calling a MIP solver to solve the subproblem.
Recently, in [17], this process is extended and named as cover optimization.
The best strategy reported consists in refining iteratively the upper bound
on the subproblem using the model-guided MaxSAT algorithm in [32]. We
apply it within function optimize, although depending on the particular fam-
ily of instances other strategies or algorithms can have better performance.
At this point we have increased k by (kA�

P
hA

j

,k
j

,w
j

i2AM
C

kj) ·wmin towards
cost('). Without the optimize step, we can only increase k by 1 · wmin.

Treating explicitly the new at-most constraint on the original soft clauses
(line 12) and its relation to the constraints it replaces is fundamental, not
only for function optimize, but also to encode more e�cient Cardinality con-
straints (see Section 4). In contrast, this information (the global core struc-
ture) is not explicitly present in Eva and OLL algorithms (see Section 2) and
therefore harder to be exploited e�ciently (see Section 5).

During this description, we have obviated the role of wstrat (lines 5 and 6).
It corresponds to the application of the stratified approach introduced in [49].
The stratified approach consists in sending to the SAT solver only a subset of
the soft clauses, i.e., those with a weight � wstrat. Function decrease updates
conveniently wstrat. This can help to reduce the size of the unsatisfiable cores,
produce simpler at-most constraints and progress faster to the optimum. We
also apply hardening techniques like the ones described in [29, 36, 17].

4. E�cient Cardinality Constraints for MaxSAT

In the last decade, we have seen many contributions on how to encode
e�ciently PB and Cardinality constraints into SAT [50, 46, 31, 51, 38]. The
goal is to achieve an arc-consistent encoding (i.e., with good propagation
properties) as small as possible.

Since WPM3 only uses Cardinality constraints, let us consider the Car-
dinality constraint: b1 + · · · + bn  k. From the sake of clarity, the encoder
is split into two black boxes: the sum and the operator op (in our case rep-
resenting ). The sum takes as input a list of n variables [b1, . . . , bn] and
returns a set of SAT clauses S and a list of m + 1 variables [o0, . . . , om].
The operator takes as input the o variables and integer k and returns a set
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of SAT clauses OP . The encoding of the Cardinality constraint into SAT
corresponds to the union S [OP .

hS, [o0, . . . , om]i := sum([b1, . . . , bn])

OP := op(k, [o0, . . . , om])

In our case, we use the Cardinality Networks encoding in [38]. There,
m = k and the sum builds a SAT formula such that if i of the input b
variables are set to true then the first i of the output o variables are set to
true. Therefore, op returns the unit clause ok. 2

Our first observation is that it is crucial for the e�ciency of the MaxSAT
solver in which order the b variables are fed into the sum. In previous
MaxSAT solvers, the order of the b variables was not taken into account.
They were just added in the same order of their respective soft clauses.

However, the b variables should be added taking into account the structure
of the unsatisfiable cores. In particular, variables belonging to the same core
should be as close as possible. In our algorithm the set A in an at-most
constraint hA, k, wi is ordered. In line 1 of function optimize (see Section 3)
when we generate the set A of the new at most constraint, we concatenate
the sets of b variables of the at-most constraints that it replaces. Respect to
latest advances in MaxSAT [40, 41] a deeper explanation of their e�ciency
could be that these algorithms implicitly preserve the order.

Our second observation has to do again with the structure of the unsat-
isfiable cores we have detected so far. As we have just commented, the new
at-most constraint hA, kA, wmini (line 12 of WPM3) replaces/merges other
at-most constraints. In the end, we can consider that there is a tree struc-
ture that represents how we have merged the unsatisfiable cores and where
the root node is the new at-most constraint. We can store this tree structure
by replacing in the new at-most constraint, the multiset A by the set C of
indexes of the merged at-most constraints in AM . Going over the tree, we
find in the leaf nodes exactly the same indexes we would have in A. Instead
of creating a Cardinality Network for the new constraint we can reproduce
this tree structure. We basically reproduce the totalizer encoding proposed
originally in [50]. The leaf nodes join the at-most constraints related with a
single soft clause of the input formula (i.e., with k = 0) that appeared in the
same core. The leaf nodes are encoded with Cardinality Networks.

2In this paper, we have adapted the indexes so that oi ! b1 + . . . + bn  i.
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Example 5. Imagine at-most constraint hA3, 5, 1i (root node) replaces at-
most constraints hA1, 2, 1i and hA2, 1, 1i (child 1 and child 2). Let us see
how we start constructing the tree. Children are processed recursively in the
same way: 3

hS 0,

|A3|=10
sum5

[o3
0, . . . , o

3
5]i := merge(

|A1|=6
sum5

[o1
0, ..., o

1
5],

|A2|=4
sum4

[o2
0, ..., o

2
3])

S3 := S 0 [ S1 [ S2 OP 3 := {o3
5} [OP 1 [OP 2

We can represent the tree structure of the constraint as follows (the big
boxes represent the merge function): 4

o3
0 o3

1 o3
2 o3

3 o3
4 o

3
5

 0  1  2  3  4  5

������������ HH HH HH HH
o1
0 o1

1 o1
2 o1

3 o1
4 o1

5

 0  1  2  3  4  5

b1 b2 b3 b4 b5 b6

o2
0 o2

1 o2
2 o2

3

 0  1  2  3

b7 b8 b9 b10

Using the totalizer encoding, the set S 0 would be as follows:

o3
0 ! ((o1

0) ^ (o2
0))

o3
1 ! ((o1

1) ^ (o1
0 _ o2

0) ^ (o2
1))

o3
2 ! ((o1

2) ^ (o1
1 _ o2

0) ^ (o1
0 _ o2

1) ^ (o2
2))

o3
3 ! ((o1

3) ^ (o1
2 _ o2

0) ^ (o1
1 _ o2

1) ^ (o1
0 _ o2

1) ^ (o2
3))

o3
4 ! ((o1

4) ^ (o1
3 _ o2

0) ^ (o1
2 _ o2

1) ^ (o1
1 _ o2

2) ^ (o1
0 _ o2

3))
o3
5 ! ((o1

5) ^ (o1
4 _ o2

0) ^ (o1
3 _ o2

1) ^ (o1
2 _ o2

2) ^ (o1
1 _ o2

3))

The advantage of preserving this structure, in contrast to having a sin-
gle Cardinality constraint, is that we can again exploit it to derive smaller
encodings. In particular, we can use the lower bounds of each node to skip
parts of the encoding. Moreover, we can restrict the upper bounds of the
nodes using the lower bounds of their siblings. The upper bound for a non
root node is set to the di↵erence between the upper bound of its parent and
the sum of the lower bounds of its siblings. We apply this in a top-down
update process.

3Since b1 + . . . + bn  n is always true, the variable on is not needed.
4In the case of bi  0, we can use directly bi instead of o0.
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Example 6. At Example 5, the upper bound for the root node is 5. Child 1
(child 2) already contributes with a lower bound of 2 (1), therefore the new
upper bound for child 1 (child 2) is 5� 1 = 4 (5� 2 = 3): 5

hS 0,

|A3|=10
sum5

[o3
0, . . . , o

3
5]

lb=4
i := merge(

|A1|=6
sum4

[o1
0, ..., o

1
4]

lb=2
,

|A2|=4
sum3

[o2
0, ..., o

2
3]

lb=1
)

S3 := S 0 [ S1 [ S2 OP 3 := {o3
5} [OP 1 [OP 2

The tree structure can be represented as follows (the lower bounds are
represented: by empty clauses ⇤ at the root node for the new constraint, and,
by the value false F at the intermediate nodes for the replaced constraints):

⇤ ⇤ ⇤ ⇤ o3
4 o

3
5

 0  1  2  3  4  5

������ HH HH HH
F F o1

2 o1
3 o1

4

 0  1  2  3  4  5

b1 b2 b3 b4 b5 b6

F o2
1 o2

2 o2
3

 0  1  2  3

b7 b8 b9 b10

Taking into account the lower and upper bounds of all constraints, the
following parts of the set S’ of Example 5 can be skipped:

o3
0 ! ((o1

0) ^ (o2
0))

o3
1 ! ((o1

1) ^ (o1
0 _ o2

0) ^ (o2
1))

o3
2 ! ((o1

2) ^ (o1
1 _ o2

0) ^ (o1
0 _ o2

1) ^ (o2
2))

o3
3 ! ((o1

3) ^ (o1
2 _ o2

0) ^ (o1
1 _ o2

1) ^ (o1
0 _ o2

1) ^ (o2
3))

o3
4 ! ((o1

4) ^ (o1
3_ o2

0 ) ^ (o1
2 _ o2

1) ^ ( o1
1 _o2

2)^ (o1
0 _ o2

3))
o3
5 ! ((o1

5) ^ (o1
4_ o2

0 ) ^ (o1
3 _ o2

1) ^ (o1
2 _ o2

2) ^ ( o1
1 _o2

3))

Finally, the upper bound of the root node can be initialized taking into
account the information retrieved in previous calls to optimize function. In
particular, the assignments that this function provides can be used to get
upper bounds for the whole formula (see Section 6). The upper bound of the
root node can be initialized to the cost of the best global assignment on the
set of soft clauses related to it.

5Notice that the lower bound of the new constraint is 4 since it must be higher than
the addition of the lower bounds of the replaced constraints (2 + 1). After applying the
optimize function we may learn that the lower bound is increased in more than 1.
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5. Comparison of WPM3 with EVA and OLL

According to Sections 2 and 3, WPM3, OLL and Eva maintain a working
WPMS formula 'k and transform it at each iteration. These transformations
guarantee that cost(') = . . . = cost('ki

+ h⇤, kii) = cost('ki+1
+ h⇤, ki +

n.wi
mini) = . . .. Each 'k without weights is sent to a SAT solver and if it

is satisfiable (cost('k) = 0), k is the optimum. One of the advantage of
WPM3 is that, unlike Eva and OLL, n can be more than 1 at each iteration.
It achieves this by applying cover optimization e�ciently thanks to being
aware of the global structure of the cores. One of the key points is how
WPM3 can explicitly build constraints on the original soft clauses like the
others do implicitly. We can see this in Example 7.

Example 7. To illustrate how WPM3 builds explicitly Cardinality constraints
on the original soft clauses like Eva and OLL do implicitly, let us compare
the three iterations they make to solve the following pigeon-hole formula: 6

' = hhb1, 1i, hb2, 1i, hb3, 1i, hb4, 1i, hb5, 1i, h�H ,1ii

�H = CNF ({xi $ bi}
i2{1,...,5}

) [ CNF (x1 + . . . + x5  2)

Each xi (bi) variable corresponds to a pigeon. If it is true (false), the
pigeon is in a hole. According to hard clauses, there are only two holes so
only two pigeons can be in a hole (at most 2 true xi variables) and the rest
must be out (at least 3 true bi variables). Therefore, the optimum is 3.

In the first iteration, the three algorithms send the input MaxSAT formula
without weights to a SAT solver to check if cost(') = 0, and get the unsat-
isfiable core {b1, b2, b3} [ �H . Then, they transform ' to derive the empty
clause and generate '1. WPM3 and OLL replace the soft clauses of the core
with two new soft clauses, ho1

1, 1i and ho1
2, 1i, and corresponding Cardinality

constraints allowing respectively 1 and 2 of the original soft clauses (bi vari-
ables) of the core to be false (true). The soft clause ho1

2, 1i and corresponding
Cardinality constraint are highlighted, meaning they are not needed to check
if cost('1) = 0 in the next iteration ((o1

2) is satisfied for all assignments to
bi variables that satisfy (o1

1)). Eva replaces the soft clauses of the core with
two new soft clauses obtained by applying successively the MaxSAT resolution
rule. The three resulting '1 allow one pigeons to be out (1 true bi variable):

6Soft clauses are already reified (xi $ bi) to simplify the analysis (only  is needed).
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WPM3
hh⇤, 1ii + hho1

1, 1i, ho1
2, 1i, hb4, 1i, hb5, 1i,

ho1
1 ! (b1 + b2 + b3  1),1i, ho1

2 ! (b1 + b2 + b3  2),1i,
h�H ,1ii

OLL
hh⇤, 1ii + hho1

1, 1i, ho1
2, 1i, hb4, 1i, hb5, 1i,

ho1
1 ! (b1 + b2 + b3  1),1i, ho1

2 ! (b1 + b2 + b3  2),1i,
h�H ,1ii

Eva
hh⇤, 1ii + hhb1 _ (b2 _ b3), 1i, hb2 _ b3, 1i, hb4, 1i, hb5, 1i,

h�H ,1ii

We can see a representation of the transformations below these lines. The
original soft clauses are at the bottom (bi) and the new soft clauses at the top
(in the case of Eva, c1

1 and c2
1 represent b1_ (b2 _ b3) and b2_ b3 respectively).

The big boxes represent the Cardinality constraints (see Section 4):

WPM3

⇤ o

1
1 o1

2

 0  1  2

b1 b2 b3 b4 b5

OLL

⇤ o

1
1 o1

2

 0  1  2

b1 b2 b3 b4 b5

Eva

⇤ c

1
1 c

1
2

 0  1

 0  1

b1 b2 b3 b4 b5

In the second iteration, the three algorithms retrieve an unsatisfiable core
from '1 and proceed to generate '2. WPM3 and OLL get a core contain-
ing the soft clauses {b4, b5, o1

1} and then, the di↵erences between them begin.
WPM3 replaces the soft clauses hb4, 1i hb5, 1i and ho1

1, 1i (Cardinality con-
straints h{4}, 0, 1i, h{5}, 0, 1i and h{1, 2, 3}, 1, 1i using the notation of Sec-
tion 3) with a new one ho2

2, 1i that merges them (h{1, 2, 3, 4, 5}, 2, 1i). OLL
just handles the soft clause ho1

1, 1i the same way as the original ones, hb5, 1i
and hb5, 1i, building the new Cardinality constraint on the current soft clauses
instead of on the original ones. This is why, when it checks if cost('2) = 0,
it needs to take into account ho1

2, 1i and the corresponding Cardinality con-
straint. Eva gets a core containing the soft clauses {b4, b5, c1

1} and replaces
them with two new ones. Notice that the three '2 allow two pigeons out (2
true bi variables). However, the only algorithm that has explicitly introduced
a Cardinality constraint on the original soft clauses (bi variables) is WPM3:
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WPM3
hh⇤, 2ii + hho2

2, 1i, ho2
3, 1i, ho2

4, 1i,
ho2

2 ! (b1 + . . . + b5  2),1i,
ho2

3 ! (b1 + . . . + b5  3),1i,
ho2

4 ! (b1 + . . . + b5  4),1i,
h�H ,1ii

OLL
hh⇤, 2ii + hho2

1, 1i, ho2
2, 1i, ho1

2, 1i,
ho2

1 ! (b4 + b5 + o1
1  1),1i, ho2

2 ! (b4 + b5 + o1
1  2),1i,

ho1
1 ! (b1 + b2 + b3  1),1i, ho1

2 ! (b1 + b2 + b3  2),1i,
h�H ,1ii

Eva
hh⇤, 2ii + hhb6 _ (b4 _ b5), 1i, hb4 _ b5, 1i, hb1 _ (b2 _ b3), 1i,

h(b2 _ b3)$ b6,1i,
h�H ,1ii

In the representation of the transformations, we can see how WPM3 builds
explicitly a Cardinality constraint on the original soft clauses (bi variables).
Thus, it is the only one able to apply cover optimization e�ciently, find out
that ho2

2, 1i can also be replaced with h⇤, 1i, increase the lower bound by 2
and get the optimum before the third iteration. The Cardinality constraints
introduced by OLL and Eva are not aware of the global structure:

WPM3

⇤ ⇤ o

2
2 o2

3 o2
4

 0  1  2  3  4

F o1
1 o1

2

 0  1  2

b1 b2 b3 b4 b5

OLL

⇤ o

2
1 o2

2

 0  1  2

⇤ o1
1 o

1
2

 0  1  2

b1 b2 b3 b4 b5

Eva

⇤ c

2
1 c

2
2

 0  1

 0  1

⇤ c

1
1 b6

 0  1

 0  1

b1 b2 b3 b4 b5

In the third and last iteration, the third empty clause is derived and '3

is generated. Without cover optimization, WPM3 would just get a core with
the soft clause {o2

2} and replace it with an empty set. OLL and Eva, both get
a core with two soft clauses and replaced them with one. After these trans-
formations, all three '3 allow three pigeons out (3 true bi variables). This is
the condition imposed by the hard clauses, so we will find that cost('3) = 0
and know that cost(') = cost('3 + h⇤, 3i) = 3:
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WPM3
hh⇤, 3ii + hho2

3, 1i, ho2
4, 1i,

ho2
3 ! (b1 + . . . + b5  3),1i,
ho2

4 ! (b1 + . . . + b5  4),1i,
h�H ,1ii

OLL
hh⇤, 3ii + h ho3

1, 1i, ho2
2, 1i,

ho3
1 ! (o1

2 + o2
1  1),1i,

ho2
1 ! (b4 + b5 + o1

1  1),1i, ho2
2 ! (b4 + b5 + o1

1  2),1i,
ho1

1 ! (b1 + b2 + b3  1),1i, ho1
2 ! (b1 + b2 + b3  2),1i,

h�H ,1ii
Eva

hh⇤, 3ii + hhb7 _ b8, 1i, hhb6 _ (b4 _ b5), 1i,
h(b4 _ b5)$ b8,1i, h(b1 _ (b2 _ b3))$ b7,1i,

h(b2 _ b3)$ b6,1i,
h�H ,1ii

In the representation of the transformations, we can see how the Cardi-
nality constraints b1 + . . . + b5  3 is built explicitly in the case of WPM3
and implicitly in the case of the other two algorithms:

WPM3

⇤ ⇤ ⇤ o

2
3 o

2
4

 0  1  2  3  4

F o1
1 o1

2

 0  1  2

b1 b2 b3 b4 b4

OLL

⇤ o

3
1

 0  1

⇤ o2
1 o

2
2

 0  1  2

⇤ o1
1 o1

2

 0  1  2

b1 b2 b3 b4 b5

Eva

⇤ c

3
1

 0  1

⇤ c

2
1 b8

 0  1

 0  1

⇤ b7 b6

 0  1

 0  1

b1 b2 b3 b4 b5

Example 7 shows how WPM3 builds explicitly Cardinality constraints
on the original soft clauses while OLL and Eva build them implicitly. The
advantage of doing this is that, by maintaining the global structure, WPM3
is able to perform cover optimization e�ciently. If we look at the repre-
sentations of the second iteration, we find a situation where WPM3 is able
to increase the lower bound by more than 1 using cover optimization, while
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others are not. In the case of OLL for example, it does not fully exploit that
o1
1 is a constraint on three original soft clauses and therefore the lower bound

of the new constraint can not be increased by more than 1. This example
also brings some light on why cover optimization was experimentally shown
to be specially e↵ective after merging constraints in [18].

Finally, we will show in our experimentation that building incrementally
Cardinality constraints helps but preserving the structure of the cores is the
key of the boost on the performance of the solvers. A version of WPM3
feeding from scratch the new Cardinality constraint at each iteration but
preserving the structure of the cores is already competitive compared with
OLL and EVA. By applying cover optimization, we further improve the per-
formance. Building incrementally Cardinality constraints is just a final step
to improve the performance a little bit more.

6. WPM3 Incomplete: Upper Bounds and Phase Saving

In Section 3, we have described the complete core-guided algorithm WPM3
that keeps increasing a lower bound towards the optimum. However, its
design, in particular function optimize which implements a model-guided
MaxSAT algorithm, allows to produce upper bounds during its execution.
Whenever function optimize finds an assignment to the subproblem, we can
just extend this assignment to the rest of the formula and check its cost,
obtaining this way naturally an incomplete approach. We do this by consid-
ering that, those clauses in an undefined state under the assignment to the
subproblem, are falsified 7. Function optimize keeps track of the assignment
to the subproblem whose extension to the rest of the formula had the lowest
cost. The cost of this assignment is an upper bound for the whole problem.
We will refer to it as the best global assignment found by function optimize.

We can further exploit the best global assignment we get from function
optimize. State-of-the-art SAT solvers apply a technique called phase saving
introduced in [43]. In SAT solvers, when non-chronological backtracking is
applied due to a conflict, lots of variable assignments get lost and have to
be revealed again during search. The idea is to avoid redoing this work by
storing the phase of the variables when we find a conflict. Then, we assign
to the next decision variables the stored polarity till we find a new conflict

7This can be improved looking at the structure of the undefined clauses.
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and update the polarities again. This technique has been shown to be quite
e↵ective. We can extend this idea to MaxSAT in the following way. Within
function optimize we let the SAT solver apply phase saving in the regular
way (line 5). Then, if the best global assignment found so far has the same
cost for the subproblem as the solution found by function optimize, we store
the polarity of the variables in the best global assignment. We use these
polarities to guide the search of the SAT solver in line 3 of WPM3, disabling
the regular phase saving that would be applied. In particular, we only store
the polarities of the original variables in '.

7. Experimental Results

We have evaluated our approach on the industrial instances from the
MSE-2014. We run our experiments on a cluster featured with 2.6GHz pro-
cessors and a memory limit of 3.5 GB. The instance set of MSE-2014 is
divided into three categories depending on the variant of the MaxSAT prob-
lem: MaxSAT (MS), Partial MaxSAT (PMS) or Weighted Partial MaxSAT
(WPMS). In each category, instances are grouped by families: 2 for MS, 22
for PMS and 8 for WPMS. Since families have di↵erent number of instances,
we considered more fair to present the solvers ranked by mean family ratio
of solved instances.

We provide results for the new wpm3 MaxSAT solver and the best solvers
of the MSE-2014. We have excluded the MaxSAT solver ISAC+ [52], since
it is a portfolio and our intention here is to compare ground solvers. The
ground solvers with the best overall performance at MSE-2014 for industrial
instances were: eva500a [41], mscg [40] and open-wbo [30].

Table 1 shows our first experiment, where we evaluate the impact of each
improvement on WPM3 (with a timeout of 1800 seconds). All the varia-
tions on WPM3 are implemented on top of the glucose SAT solver (version
3.0) [53]. The di↵erent variations and corresponding implementations are
named wpm3 with di↵erent subindexes. Subindex o stands for cover opti-
mization (see Section 3). Regarding how Cardinality constraints are encoded,

t stands for core based tree, tk stands for core based tree with refinement of
the k upper bound in sub-sums (see Section 4). Finally, p stands for phase
saving extended to MaxSAT (see Section 6).

At the table, we present for each category and solver the mean ratio of
solved instances per family and the total number of instances. We introduce
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MS Ind. PMS Ind. WPMS Ind. Total Ind.
100% 55 100% 568 100% 410 100% 1033

wpm3
tkop

88,5% 43 84,0% 499 74,0% 367 81,7% 909

wpm3
tko

87,5% 42 83,4% 494 73,9% 366 81,3% 902
wpm3

tk

87,5% 42 82,5% 483 73,0% 359 80,4% 884
wpm3

to

87,5% 42 83,4% 494 72,9% 358 81,0% 894
wpm3

t

87,5% 42 81,9% 480 72,9% 358 80,0% 880
wpm3

o

87,5% 42 82,9% 489 71,3% 349 80,3% 880
wpm3 87,5% 42 80,7% 470 70,4% 346 78,6% 858
pm2

o

84,0% 39 78,9% 458 - -
pm2 84,0% 39 77,5% 445 - -

wpm1/wbo 80,0% 36 61,8% 349 67,4% 348 64,4% 733

Table 1: WPM3 and improvements.

results for wpm1/wbo [24, 25] and pm2 algorithms 8. wpm3 can be considered
as a hybridization of these two algorithms (see Section 3). As we can see,
wpm3 clearly outperforms pm2. This is because, as described in Section 4, we
build Cardinality constraints taking into account the order imposed by the
unsatisfiable cores. If we add the cover optimization technique, see wpm3o,
then we get a version that would have ranked the first at MSE-2014 for
industrial instances in terms of the total mean family ratio. The next two
versions, wpm3t and wpm3tk, that further exploit the structure of the cores
and improve the construction of the Cardinality constraint, provide a total
of 13 additional solved instances for PMS and 13 for WPMS. As we can see,
the cover optimization technique always improves, in particular for weighted
instances at version wpm3tko. Finally, the extension of phase saving for
MaxSAT improves the average running time, and it helps to solve 7 additional
instances within the timeout.

MS Ind. PMS Ind. WPMS Ind. Total Ind.
100% 55 100% 568 100% 410 100% 1033

wpm3
tkop

88.5% 43 84.0% 499 74.0% 367 81.7% 909

eva500a 86.5% 41 80.0% 476 72.8% 368 78.7% 885
mscg 86.5% 41 80.2% 468 68.5% 361 77.7% 870

open-wbo 87.5% 42 81.0% 472 64.9% 335 77.3% 849

Table 2: WPM3 compared to best MSE-2014 solvers

8pm2 algorithm is only designed for Partial MaxSAT instances
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Table 2 compares our best version wpm3tkop with the best performing
complete solvers at MSE-2014 for industrial instances. Clearly, wpm3tkop

dominates both on mean family ratio and total number of solved instances.
A deeper analysis reveals that wpm3tkop has best ratio on 30 out of the 32
families that compose the categories, while eva500a (the second one) has
best ratio on 20.

wpm3
tkop

open-wbo qms wpm2014 optimax
50 50 49 53

wpm3
tkop

556 394 502 379 547 386 524 390

45 45 44 45

open-wbo 466 344 458 361 477 341 466 378

15 19 17 18
qms 511 281 522 286 534 279 530 302

48 48 48 51

wpm2014 427 369 477 387 402 379 420 367

39 43 47 39
optimax 368 259 387 270 337 284 423 260

Table 3: WPM3 compared to MSE-2014 best incomplete solvers.

Our last experiment is presented in Table 3. Since wpm3tkop is able to
produce upper bounds we also compared it with the best performing solvers
wpm2014 and optimax 9 for industrial instances at the incomplete track of
the MSE-2014. We also compared with other MaxSAT solvers that did not
take part in the incomplete track but they are able to produce upper bounds:
open-wbo [30] and qms [33]. We do not include eva500a and mscg since they
can not produce upper bounds.

The timeout for the incomplete track at MSE is set to 300 seconds. For
a given instance, the winners are the solvers that produce the best upper
bound. The best solver is the one that won on more instances. Since these
results give us a partial order, it can be misleading to report an overall winner.
In table 3, we present the dominance relation between pairs of solvers on the
three categories. For example, wpm3tkop (open-wbo) is able to obtain a better
or equal upper bound than open-wbo (wpm3tkop) on 50 (45) ms instances,
556 (466) PMS instances and 394 (344) WPMS instances. As we can see,
wpm3tkop practically dominates the rest of the solvers. The exception is qms
on PMS where qms outperforms by 9 instances wpm3tkop. For this case, we

9optimax builds on top on the bincd2 algorithm [36]
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extended the timeout to 1800 seconds. We found that wpm3tkop outperformed
qms by 5 instances. This is somehow expected since wpm3tkop, within this
timeout, solves to optimality 40 instances more than qms.

MS Ind. PMS Ind. WPMS Ind. Total Ind.
100% 55 100% 568 100% 410 100% 1033

wpm3
tkop

⇤ 89.5% 44 84.5% 505 75.0% 373 82.4% 922

wpm3
tkop

88.5% 43 84.0% 499 74.0% 367 81.7% 909

Table 4: WPM3 incremental version.

Finally, the WPM3 variants described so far build from scratch the new
Cardinality constraint at each iteration. To know the impact of building
them incrementally, like Eva and OLL, we implemented another WPM3 vari-
ant (wpm3tkop⇤). This variant reuses as much as possible the encodings of
the replaced constraints, already introduced to the SAT solver, to build the
encoding of the new constraint. We show the results of wpm3tkop⇤ in Table 4
following the same criteria of Table 1. With respect to wpm3tkop, it increases
the number (mean family ratio) of solved instances in 13 (0,7%). This in-
crease is not as much as the 51 (3,1%) of wpm3tkop with respect to wpm3 in
Table 1. We can conclude that what makes the di↵erence is taking into ac-
count the structure of unsatisfiable cores to build the Cardinality constraints
and apply cover optimization.

7.1. Results at the MaxSAT Evaluation 2015

We submitted the best variation of WPM3 (wpm3tkop⇤) to the last edition
of the international MaxSAT Evaluation (MSE-2015) both at the complete
and incomplete track, with the names WPM3-2015-co and WPM3-2015-
in respectively. The results for industrial instances of all ground solvers,
excluding the portfolio approach ISAC+-2015 [54] that also incorporated
WPM3-2015-co, are summarized in Tables 5 and 6. At the complete track,
WPM3-2015-co showed a good performance being first and third for PMS
and MS industrial subcategories, respectively. At the incomplete track,
WPM3-2015-in won two of the three industrial subcategories, being sec-
ond in the other and the best solver overall. The other best performing
solvers that took part at the complete track of the evaluation were: the new
versions of mscg and Open-WBO, already submitted to MSE-2014, maxino,
based on the core-guided algorithm described in [55], MaxHS and LMHS,
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both based on core-guided algorithm as described in [48, 56, 57, 58]. The two
last solvers are interesting alternatives that do not need PB constraints and
excelled in few families with a particular structure of weights. They placed
in number but not in mean family ratio of solved instances. However, they
do not produce upper bounds and can not work as incomplete approaches.
At the incomplete track, the other best performing solvers were: the new
version of optiriss, already submitted to MSE-2014, and ILP , that trans-
lated the instance into ILP and applied an ILP solver as described in [59].
Details about all the solvers and authors can be found in [60].

MS PMS WPMS
Ordered by 1. mscg2015a 1. WPM3-2015-co 1. LMHS-I
number 2. mscg2015b 2. Open-WBO-R 2. MaxHS
of solved instances 3. WPM3-2015-co 3. maxino-k16 3. mscg2015b
Ordered by 1. mscg2015a 1. WPM3-2015-co 1. mscg2015b
mean family ratio 2. mscg2015b 2. Open-WBO-R 2. maxino-kdyn
of solved instances 3. WPM3-2015-co 3. maxino-k16 3. mscg2015a

Table 5: MSE-2015 three best complete solvers on industrial subcategories.

MS PMS WPMS
Ordered by 1. optiriss-def-i 1. WPM3-2015-in 1. WPM3-2015-in
number 2. WPM3-2015-in 2. optiriss-def-i 2. optiriss-def-i
of solved instances 3. optiriss-sel-i 3. optiriss-sel-i 3. ILP-2015-in
Ordered by 1. optiriss-def-i 1. WPM3-2015-in 1. WPM3-2015-in
mean family ratio 2. WPM3-2015-in 2. optiriss-def-i 2. optiriss-def-i
of solved instances 3. optiriss-sel-i 3. optiriss-sel-i 3. optiriss-sel-i

Table 6: MSE-2015 three best incomplete solvers on industrial subcategories.

In Table 7, we analyze in detail the results of WPM3-2015-in on the
industrial instances at the incomplete track of MSE-2015. The rows cor-
respond to the subcategories, with the column marked “#” specifying the
total number of instances in the class. The columns correspond to solvers,
being the first one the virtual best solver at the complete track (V BS-co).
For V BS-co and each class, we present the number and mean family ratio
of solved instances in 1800 seconds. The rest of the columns correspond to
the virtual best solvers at the incomplete track (V BS-in) and the incomplete
solvers that took part in the evaluation. For each incomplete solver and class,
we present the number of instances where the solver reported the best upper
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Family # V BS � co V BS � in wpm3 opti ilp dist cc
MS 55 48 55 39 43 7 - 28

93.0% 100.0% 84.5% 88.0% 22.0% - 58.0%
PMS 601 555 587 515 475 238 218 183

89.0% 97.7% 83.3% 77.4% 34.6% 39.8% 29.3%
WPMS 610 532 606 432 356 253 72 82

76.1% 98.3% 67.8% 54.5% 33.2% 17.2% 20.0%

Total Ind. 1266 1135 1248 986 874 498 290 293
85.3% 98.0% 78.7% 71.0% 33.4% 30.7% 28.1%

Table 7: MSE-2015 virtual best complete and incomplete solvers compared to the best
incomplete solvers on the industrial instances (number and mean family ratio).

bound in 300 seconds and the mean family ratio according to this number.
For the solvers with di↵erent versions, dist and cc, the best upper bound on
each instance is considered.

The mean family ratio of solved instances in 1800 seconds for V BS-co is
85,3%. However, for some industrial domains the objective is not finding the
optimum (optimal assignment) but an upper bound (assignment) of a good
quality in a reasonable time. In this sense, the mean family ratio of instances
where V BS-in is able to obtain an upper bounds in 300 seconds is 98,0%.
To measure the quality of these upper bounds we can use the complementary
of their relative distance to the optimum, i.e. an upper bound equal to the
aggregated cost of all soft clauses or to the optimal cost, has a quality of 0%
or 100%, respectively. For those instances with know optimums, those solved
by V BS-co, the upper bound obtained by V BS-in in 300 seconds has always
a quality of more than 75%. Moreover for all except a couple of instances
the quality is more than 90%. For more information about the quality of
optimums obtained thanks to cover optimization see [18].

Finally, to place a solver in the first positions of the evaluation, it has to
be as robust as possible across all families of a category. However, the best
overall performing solvers on a category can be outperformed on some families
by others that are less competitive overall. It happens the same with di↵erent
parameter configurations of a given solver [54]. In Tables 8, 9 and 10 we show
the results (best upper bound in 300 seconds) of some variants of our solver
wpm3 that we have configured for the incomplete track. The parameters
include some options of the MaxSAT solver as well as some others of the
underlying SAT solver. We can see that several configurations are better
than the solver we submitted to MSE-2015 (it corresponds to Cm

7 , Cp
3 and

Cw
1 on MS, PMS and WPMS instances respectively). For example, on trail-tr
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WPMS family Cw
10 gets the best upper bound in 300 seconds for 6 instances

while Cw
1 only for 2. Developing this configuration process and implementing

new features we could improve even further the performance of wpm3.

Instance set # C

m
1 Cm

2 Cm

3 Cm

4 Cm

5 Cm

6 Cm

7 Cm

8 Cm

9 Cm

10
cir-dp 3 3 3 3 3 3 3 3 3 3 3

sean-s 52 49 48 48 47 47 45 44 44 41 39
Total 55 52 51 51 50 50 48 47 47 44 42

Table 8: Di↵erent configurations of wpm3 incomplete on MS industrial instances.

Instance set # C

p
1 Cp

2 Cp

3 Cp

4 Cp

5 Cp

6 Cp

7 Cp

8 Cp

9 Cp

10
aes 7 7 7 6 6 6 7 7 6 1 1
atc-mes 18 16 15 14 14 14 13 12 13 12 12
atc-sug 19 12 15 16 15 16 14 13 15 12 12
bcp-fir 32 32 32 32 32 32 32 32 32 31 31
bcp-hysi 10 10 10 9 9 9 10 9 9 9 9
bcp-hysu 38 34 36 32 31 31 34 34 31 33 33
bcp-msp 40 32 28 32 32 31 32 30 32 32 32

bcp-mtg 30 30 30 30 30 30 30 30 30 30 30

bcp-syn 38 24 24 27 27 27 23 25 27 28 28

cir-tc 4 4 4 4 4 4 4 4 4 4 4

clo-s 50 50 50 50 50 50 50 50 50 46 46
des 50 48 47 45 44 43 45 47 43 45 45
hap-a 6 6 5 5 5 5 5 5 5 5 5
hs-time 2 1 1 1 1 1 1 1 1 2 2

mbd 46 46 46 45 45 45 46 46 45 42 42
pac-pms 40 40 40 40 40 40 40 40 40 40 40

pbo-mne 25 25 24 25 25 25 25 25 25 25 25

pbo-mnl 25 25 25 25 25 25 25 25 25 25 25

pbo-rou 15 15 15 15 15 15 15 15 15 15 15

pro-ins 12 12 12 12 12 12 12 12 12 12 12

tpr-Mp 36 34 35 34 34 35 34 33 34 35 34
tpr-Op 25 25 25 25 25 25 25 25 25 25 25

tr-comp 33 26 27 28 28 28 26 27 28 25 24
Total 601 554 553 552 549 549 548 547 547 534 532

Table 9: Di↵erent configurations of wpm3 incomplete on PMS industrial instances.

Instance set # C

w
1 Cw

2 Cw

3 Cw

4 Cw

5 Cw

6 Cw

7 Cw

8 Cw

9 Cw

10
btbnsl 60 17 13 18 18 17 13 13 11 12 10
cor-clu 129 53 47 39 39 39 44 39 39 35 38
hap-ped 100 98 98 98 97 97 98 98 99 98 98
hs-time 14 6 6 4 5 5 6 6 3 5 2
pac-wpms 99 99 99 99 97 97 99 99 99 99 99

pre-pla 29 29 29 29 29 29 29 29 29 29 29

tail-tr 11 2 3 4 4 4 2 2 3 5 6

time 26 14 14 15 18 18 14 14 14 15 13
upg-pro 100 100 100 100 100 100 100 100 100 100 100

wcsp-s5d 21 17 17 18 16 16 17 17 18 17 18

wcsp-s5l 21 15 15 16 16 16 15 15 16 15 17

Total 610 450 441 440 439 438 437 432 431 430 430

Table 10: Di↵erent configurations of wpm3 incomplete on WPMS industrial instances.
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8. Conclusions

In this paper, we have first studied the core-guided algorithms Eva and
OLL, that inspired the best performing solvers on industrial instances at
MSE-2014. We have demonstrated that the transformation applied by Eva
at each iteration using the MaxSAT resolution rule corresponds to the in-
troduction of a Cardinality constraint. We have described an alternative
transformation applicable to Eva and, after analyzing the connections with
OLL, we have concluded that both algorithms are in fact very similar.

After analyzing Eva and OLL, we have also developed our new complete
algorithm WPM3. The design of the algorithm allows us to combine several
techniques to use only Cardinality constraints and perform the optimiza-
tion of subproblems e�ciently. We have also shown how these Cardinality
constraints can be e�ciently built by exploiting the structure of unsatisfi-
able cores in the MaxSAT instances. On the other hand, the optimization
of subproblems allows the algorithm, not only to converge more quickly to
the optimum, but also to get assignments and upper bounds, being able to
work as an incomplete approach given limited time. We have further ex-
ploited these assignments to extend e↵ectively the notion of phase saving to
MaxSAT.

Finally, we have conducted an extensive experimental investigation on
industrial instances, showing the impact of every technique. We have pointed
out the importance of exploiting the structure of unsatisfiable cores to build
the Cardinality constraints. In fact, we have shown that the improvement on
the performance is mostly due to this exploitation and not only to building
the Cardinality constraints incrementally. To evaluate independently WPM3,
we have submitted it both to the complete and incomplete track of the MSE-
2015, winning several categories and subcategories. At the complete track,
it got a gold and a bronze medals on PMS and MS industrial subcategories
respectively. At the incomplete track, it dominated on industrial instances
getting medals in all industrial subcategories, two golds on WPMS and PMS
and a silver on MS.
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(weighted) partial maxsat, in: Proc. of CP’13, 2013, pp. 117–132.
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[31] N. Eén, N. Sörensson, Translating pseudo-boolean constraints into SAT,
JSAT 2 (1-4) (2006) 1–26.

[32] D. L. Berre, Sat4j, a satisfiability library for java, www.sat4j.org (2006).

[33] M. Koshimura, T. Zhang, H. Fujita, R. Hasegawa, Qmaxsat: A partial
max-sat solver, JSAT 8 (1/2) (2012) 95–100.

[34] K. Honjyo, T. Tanjo, Shinmaxsat, a Weighted Partial Max-SAT solver
inspired by MiniSat+, Information Science and Technology Center,
Kobe University (2012).

[35] F. Heras, A. Morgado, J. Marques-Silva, Core-guided binary search al-
gorithms for maximum satisfiability, in: Proc. of AAAI’11, 2011, pp.
36–41.

[36] A. Morgado, F. Heras, J. Marques-Silva, Improvements to core-guided
binary search for maxsat, in: Proc. of SAT’12, 2012, pp. 284–297.

[37] N. Manthey, T. Philipp, P. Steinke, A more compact translation of
pseudo-boolean constraints into CNF such that generalized arc consis-
tency is maintained, in: KI 2014: Advances in Artificial Intelligence -
37th Annual German Conference on AI, Stuttgart, Germany, September
22-26, 2014. Proceedings, 2014, pp. 123–134.

37
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Abstract. Many decision and optimization problems can be modelled
and solved using Pseudo-Boolean (PB) constraints, i.e. linear inequalities
w1 · b1, . . . , wn

· b
n

 k with variables b
i

! {0, 1}. Although there
are special formalisms for PB constraints, some of the problems have
a predominant Boolean nature and the more reasonable choice is to
translate them into a Boolean formula (SAT), usually into Conjunctive
Normal Form (CNF). Many SAT encodings for PB constraints have
been presented in the last decades. All of them have di↵erent properties
of size and arc-consistency, i.e. propagation of variables. In terms of
size, the best encoding has a complexity of O(n · log(k)) (5), but does
not guarantee general arc-consistency. The best encoding guaranteeing
general arc-consistency has a complexity of O(n2 ·log(n)2 ·log(w

max

)) (3).
In this report, we present a new SAT encoding for PB constraints that
guarantees general arc-consistency but with an exponential size in some
particular cases. The conjecture is that, the encoding will maintain
a reasonable size for a wide range of PB constraints appearing in
real world problems. For the particular cases where the size explodes
exponentially, we also present a method to limit it, while preserving
partially its arc-consistency properties. This limit can even be set to
O(n · log(k)). Our new encoding is an extension of the regular encoding
for 1-cardinality constraints (1). Cardinality constraints are a special case
of PB constraints with all w

i

equal to 1 (the 1 before cardinality indicates
the value of k). We describe the regular encoding for 1-cardinality
constraints in Section 1 and how to extend it for k-cardinality constraints
in Section 2. Finally, we explain how to extend the regular encoding for
PB constraints in Section 3, where we also explain how to limit its size.



1 Regular SAT encoding for 1-cardinality At-Most
constraints

In this section, we give a concise explanation of the regular SAT encoding for
the 1-cardinality constraint that was originally presented in (1). We do this,
not only for the sake of clarity and selfcontainment, but also to introduce the
notation we will use in the rest of the paper. For the 1-cardinality constraint
(b1 + . . . + bn = 1), the regular encoding can be written this way:

b1 _ r2
. . .
bn�2 _ rn�1

bn�1 _ rn

CNF ( r2 $ b2 _ r3)
. . .
CNF ( rn�1 $ bn�1 _ rn)
CNF ( rn $ bn)

b1 _ . . . _ bn

The last clause corresponds to the At-Least constraint and all the other
clauses correspond to the At-Most constraint. If we analyze carefully the regular
variables ri, we can easily see that ri $ bi_ . . ._ bn (just replace the ri variables
from bottom to top in the clauses that begin with ri). Thus, if the variable ri is
false, all the variables bi, . . . , bn are false. In this way, the At-Most encoding can
also we written as follows:

b1 _ r2
. . .
bn�2 _ rn�1

bn�1 _ rn

CNF ( r2 $ (b2 + . . . + bn  0))
. . .
CNF ( rn�1 $ (bn�1 + bn  0))
CNF ( rn $ (bn  0))

(1.1)

Let us briefly check that this formula only allows solutions with at most 1
bi variable set to true. Just imagine that a variable bm is set to true, then: from
the clause that begins with bn, we have that the regular variable rm+1 must be
false, and, from the clauses that begin with ri | i  m, we have that the regular
variables ri | i  m must be false. Since the regular variables ri | i  m+1 must
be false: from the clause that begins with rm+1, we have that all bi | i � m + 1
must be false, and, from the clauses that begin with bi | i  m� 1, we have that
the variables bi | m� 1 must be false. Thus, if we set 1 bi variable to true the
encoding sets all the other bi variables to false. In the next section, we are going
to see that we can generalize this idea for k-cardinality constraints.
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2 Regular SAT encoding for k-cardinality At-Most
constraints

In this section we are going to see a new SAT encoding for k-cardinality At-Most
constraints that we have conceived developing the idea of the regular encoding
for the 1-cardinality constraint. First of all, let us extend the the formula 1.1 to
the k-cardinality constraint (b1 + . . . + bn = k):

b1 _ r2
. . .
bn�k _ rn�k+1

CNF ( r2 $
P

i2{2,...,n} bi  k � 1 )
. . .
CNF ( rn�k+1 $

P
i2{n�k+1,...,n} bi  k � 1 )

(2.1)

Let us demonstrate that this encoding only accepts solutions with at most
k bi variables set to true. Imagine we have a set Bk of k bi variables set to true
and let us prove that all the other bi variables must be set to false. First of all,
let us call m the lower index of the variables in Bk. For the clause that begins
with bm�1, the regular variable rm is true since

P
i2{m,...,n} bi  k � 1 is false.

Therefore the variable bm�1 must be false. The same holds true for all the clauses
above the one that begins with bm�1, i.e., all the variables {bi | i  m� 1} must
be false. On the other hand, for the clause that begins with bm, the regular
variable rm+1 must be false, so we have that

P
i2{m+1,...,n} bi  k � 1 must be

true. We know that k � 1 of these variables are set to true, so the others must
be false. Thus, if we set k bm variables to true the encoding sets all the other bi

variables to false.
The formula 1.1 encodes a k-cardinality constraint and consists partially of

n�k (k�1)-cardinality constraints each one with di↵erent number of bi variables.
We are going to see that we can use the formula 1.1 recursively to build a SAT
encoding. First of all, notice that if we have the encoding of

P
i2{1,...,n} bi  k

and we want to encode
P

i2{x,...,n} bi  k, we only have to select the clause that
begins with bx and the ones below:

b1 _ r2
. . .
bx�1 _ rx

bx _ rx+1
. . .
bn�k _ rn�k+1

CNF ( r2 $
P

i2{2,...,n} bi  k � 1 )
. . .
CNF ( rn�k+1 $

P
i2{n�k+1,...,n} bi  k � 1 )

3



Using this idea, we can replace in formula 2.1 the following part:

r2 $
P

i2{2,...,n} bi  k � 1
. . .
rn�k+1 $

P
i2{n�k+1,...,n} bi  k � 1

For this one:

r2 ! r3
. . .
rn�k ! rn�k+1

r2 $ (b2 _ r03)
. . .
rn�k+1 $ (bn�k+1 _ r0n�k+2)

r03 $
P

i2{3,...,n} bi  k � 2
. . .
r0n�k+2 $

P
i2{n�k+2,...,n} bi  k � 2

Repeating this process recursively until the independent term of the new
constraints is 1 and then applying the regular encoding for the 1-cardinality
constraints, we get the following formula:

b1 _ rk�1
2

. . .
bn�k _ rk�1

n�k+1

rk�1
2 ! rk�1

3
. . .
rk�1

n�k ! rk�1
n�k+1

rk�1
2 $ (b2 _ rk�2

3 )
. . .
rk�1

n�k+1 $ (bn�k+1 _ rk�2
n�k+2)

. . .

. . .

. . .

. . .

. . .

. . .

r1
k ! r1

k+1
. . .
r1

n�2 ! r1
n�1

r1
k $ (bk _ r0

k+1)
. . .
r1

n�1 $ (bn�1 _ r0
n)

r0
k+1 $ bk+1 _ r0

k+2
. . .
r0
n�1 $ bn�1 _ r0

n

r0
n $ bn

That we can rewrite compactly changing the occurrences of ri for ri:

V
i2{1,...,n�k} bi _ rk�1

i+1V
j2{k�1,...,1}

V
i2{k+1�j,...,n�j�1} rj

i ! rj
i+1V

j2{k�1,...,1}
V

i2{k+1�j,...,n�j} rj
i $ (bi _ rj�1

i+1 )V
i2{k+1,...,n�1} r0

i $ bi ^ r0
i+1

r0
n $ bn

4



Then replacing all occurrences of $ for ! 1 and rewriting the clauses
r0

i ! (bi ^ r0
i+1) as follows: (r0

i ! r0
i+1) ^ (r0

i ! bi), we get:
V

i2{1,...,n�k} bi _ rk�1
i+1V

j2{k�1,...,1}
V

i2{k+1�j,...,n�j�1} rj
i ! rj

i+1V
j2{k�1,...,1}

V
i2{k+1�j,...,n�j} rj

i ! (bi _ rj�1
i+1 )V

i2{k+1,...,n�1} r0
i ! r0

i+1V
i2{k+1,...,n�1} r0

i ! bi

r0
n ! bn

Which can be rewritten into CNF merging lines 4 with 2 and 6 with 5:
V

i2{1,...,n�k} bi _ rk�1
i+1V

j2{k�1,...,0}
V

i2{k+1�j,...,n�j�1} rj
i _ rj

i+1V
j2{k�1,...,1}

V
i2{k+1�j,...,n�j} rj

i _ bi _ rj�1
i+1V

i2{k+1,...,n} r0
i _ bi

(2.2)

In fact, this encoding for k-cardinality At-Most constraints is almost the
sequential counter described in (4) that we write here adapting the notation:

V
i2{1,...,n�1} bi _ rk�1

i+1V
j2{k�1,...,0}

V
i2{2,...,n�1} rj

i _ rj
i+1V

j2{k�1,...,1}
V

i2{2,...,n�1} rj
i _ bi _ rj�1

i+1V
i2{2,...,n} r0

i _ bi

(2.3)

Our encoding, that also preserves arc-consistency, is a little bit more e�cient
in terms of the size of the formula. The number of clauses of the sequential
counter encoding (2.3) is O(n·k), while the number of clauses of our new encoding
(2.2) is O(n · (n� k)).

3 Regular SAT encoding for PB At-Most constraints

We have seen in the previous section how can we generalize the regular encoding
for k-cardinality At-Most constraints. We are going to see in this section that
we can further generalize it for PB constraints. First of all, we are going to
generalize formula (2.1) for for PB constraints:

b1 _ r2
. . .
bn�1 _ rn

CNF ( r2 $
P

i2{2,...,n} wi · bi  k � w1 )
. . .
CNF ( rn $

P
i2{n} wi · bi  k � wn�1 )

(3.1)

1 By doing so formula 2.1 still encodes a k-cardinality constraint.
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To construct the formula 3.1, we have first made a naive transformation of
the PB constraint into a k-cardinality constraint adding the variable bi as many
times as its weight wi. Then, we have applied the formula 2.1, that for each
variable bi can be written as follows grouping again the variables with weights:

bi _ r1
i+1

. . .
bi _ rw

i

i+1
CNF ( r1

i+1 $ (wi � 1) · bi +
P

j2{i+1,...,n} wi · bj  k � 1 )
. . .
CNF ( rw

i

i+1 $ 0 · bi +
P

j2{i+1,...,n} wi · bj  k � 1 )

The new At-Most constraints only play a role when bi is true. Otherwise,
they can be false. The formula can be rewritten as follows:

bi _ r1
i+1

. . .
bi _ rw

i

i+1
CNF ( r1

i+1 $
P

j2{i+1,...,n} wi · bj  k � wi )
. . .
CNF ( rw

i

i+1 $
P

j2{i+1,...,n} wi · bj  k � 1 )

We also know that if the first At-Most constraint (regular variable r1
i+1) is

true (false) all the other At-Most constraints (regular variables rj
i+1) are also

true (false). In fact, the formula can be rewritten as follows:

bi _ ri+1
CNF ( ri+1 $

P
j2{i+1,...,n} wi · bj  k � wi )

For bn, in the non-trivial cases where k � wn the At-Most constraints (regular
variable rn+1) will be true (false) and the corresponding clauses can be skipped.

In order to construct the SAT encoding using formula 3.1, we need to
construct recursively all the new PB constraints like we have made in the
previous section for k-cardinality constraints. The encoding for k-cardinality
constraints (2.2) can be written as follows:

rk
1V

j2{k,...,0}
V

i2{k+1�j,...,n�j�1} rj
i _ rj

i+1V
j2{k,...,0}

V
i2{k+1�j,...,n�j} rj

i _ bi _ rj�1
i+1V

i2{k+2,...,n+1} r�1
i

(3.2)

Notice that rk0

i0 encodes the constraint
P

i2{i0,...,n} bi  k0. In the case of the
encoding for PB constraints, the new PB constraints are generated according to
the di↵erent values of k � wi of encoding (3.1). Therefore, we cannot describe
the encoding using a simple formula with indexes and we need an algorithm.
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Algorithm 1: Encoding.
Input: B = {b1, . . . , bn

}, W = {w1, . . . , wn

}, k
1: K = {hk, 1i}
2: ' = {rk

1}
3: PB(B, W, K, ')
4: return '

Function PB(B,W,K,')
1: k

max

:= max({k}hk,ii2K

)
2: i

min

:= min({i}hk
max

,ii2K

)
3: K := {hk, ii}hk,ii2K^k 6=k

max

4: for i 2 {i
min

, . . . , |B|} do

5: if

P
w

j

2W^j�i

w
j

> k
max

then

6: k := k
max

� w
i

| w
i

2 W

7: ' := ' [ {(rk

max

i

_ rk

max

i+1 )}
8: ' := ' [ {(rk

max

i

_ b
i

_ rk

i+1)}
9: if k � 0 then

10: K := K [ {hk, i + 1i}
11: else

12: ' := ' [ {rk

i+1}

13: if |K| > 0 then PB(B, W, K, ')

Algorithm 1 gets as input the variables B, weights W and independent term
k of the PB constraint and it returns a SAT formula ' (line 4) with the encoding.
The SAT formula ' (line 2) is generated by calling function PB (line 3) that
constructs the encoding (3.1) and calls itself recursively to include the encodings
of the new PB constraints. It is called as many times as the number of values
of k appearing in the new PB constraints. Each value of k has an associated
index i indicating the first variable bi of the larger PB constraint that needs
to be constructed. Both numbers are stored together in the set K. Initially K
contains a pair with the input independent term k and the index 1 (line 1).

Function PB has a main loop (PB lines 4-12) where the encoding (3.1) for
given values of k and i is introduced to ' and the values of k and i of the new PB
constraints are stored in K. Before the main loop, the values of k and i of the
current PB constraint are searched in the set K. They correspond to the highest
k (kmax in PB line 1) with a smallest i (imin in PB line 2). Then, all values
of kmax are removed from K (PB line 3). In the first call to the function, kmax

and imin are the input k and 1 respectively. After the main loop, the function is
applied recursively for the new values of k and i stored in K (PB line 13). This
values are lower than kmax and greater than or equal to 0. Thus, the function
will be called at most as many times as the value of the input k plus 1.

The main loop of function PB (lines 4-12) gets through the indexes i of
the variables bi and weights wi of the PB constraints with the current kmax.
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From each i on, the PB constraint
P

j2{i,...,n} wj · bj  kmax will be encoded,
corresponding to rk

max

i . First of all it is checked if the PB constraint is a
tautology (line 5), i.e. it will always be true if kmax is higher than or equal
to

P
j2{i,...,n} wj . If this is the case, nothing is done until the next call to the

function PB, Otherwise, the clauses corresponding to the values kmax and i are
introduced into '. These clauses (PB lines 7 and 8)2 correspond to the two
lines in the middle of encoding (3.2), but slightly modified. Namely, since we are
encoding a PB constraint, the new value k for the regular variable is not kmax�1
but kmax �wi (PB line 6). If k � 0 (PB lines 9 and 10), the values k and i + 1
are added into K to encode the corresponding PB constraint in subsequent calls
to the function PB. If k < 0 (PB lines 11 and 12), the new PB constraint is
always false and the clause rk

i+1 is introduced into '. Let us see some examples
of the resultant encoding.

Example 1. Given the PB constraint 8ḃ1 + 4 · b2 + 2 · b3 + 1 · b4  k:
(a) the regular SAT encoding for k = 14 is:

r14
1 ,

r14
1 _ b1 _ r6

2,
r6
2 _ b2 _ r2

3,
r2
3 _ b3 _ r0

4,
r0
4 _ b4 _ r�1

5 ,
r�1
5

(b) the regular SAT encoding for k = 9 is:

r9
1,

r1
2 _ r1

3,
r9
1 _ b1 _ r1

2,
r1
2 _ b2 _ r�3

3 ,
r1
3 _ b3 _ r�1

4 ,
r�3
3 , r�1

4

(c) the regular SAT encoding for k = 6 is:

r6
1,

r6
1 _ r6

2,
r6
1 _ b1 _ r�2

2 ,
r6
2 _ b2 _ r2

3,
r2
3 _ b3 _ r�1

4 ,
r0
4 _ b4 _ r�1

5 ,
r�2
2 , r�1

5

2 In order not to have an excessively complex pseudo-code, we did not express that
the clause of line 7 is only needed if the PB constraint corresponding to rk

max

i+1 is
going to be encoded in the following iteration, i.e. if

P
w

j

2W^j�i+1 w
j

> k
max

.
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The weighted version of the sequential counter described in (2) has a size in
clauses of O(n · k). The problem is that k can be exponential with respect to n.
In our encoding, not all the k need to be encoded being this size dramatically
reduced for many PB constraints, included those whose diversity of weights is
low, the number of clauses can be dramatically reduced even with the highest
k. In the worst case however, for some specific configurations of weights, the
number of clauses can also be exponential with respect to n.

3.1 How to limit the size

We can limit the size of the regular SAT encoding for PB constraints while
preserving partially its arc-consistency properties. Remember that the encoding
is built by constructing recursively the formula 3.1 for a PB constraint, where
each rk

i corresponds to a new PB constraint. This process is explained in
Algorithm 1, where all the new PB constraints that have to be build are stored
in the set K in form of pairs hk, ii. To limit the size of the encoding ', we can end
this process when a certain number of clauses in ' and new PB constraints in K
is exceeded. At this point, we can build all the new constraints with any other
encoding with a lower size. The point is that, if we build this complementary
encoding in a certain way, we can reuse it for all the constraints. For example,
we can use the encoding described in (5) but merging the nodes like this:
wn · bn  an, wn�1 · bn�1 + an  an�1, . . . , w1 · b1 + a2  a1. For the new PB
constraints in K, we only have to introduce to our encoding CNF (rk

i $ (ai = k)).
This complementary encoding has a size of O(n · log(k)) so, whenever we decide
to stop Algorithm 1, we will only need to add O((|K| + n) · log(k)) clauses. So,
we can always limit the size of our encoding to O(n · log(k)).
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