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Abstract

The Atmospheric Boundary Layer Height (ABLH) is an important parameter in weather
forecasting, meteorology, avionics, and air-quality and dispersion models. Local devel-
opment of the Atmospheric Boundary Layer (ABL) over the full diurnal cycle is a
function of several parameters which, among others, include geographical location of
the place, its topography, time of the year, and day and night conditions. There are
several remote sensing instruments and methods to retrieve the ABLH, however, none
of these can fully measure ABL development under all atmospheric conditions.

This Ph.D. thesis deals with estimation of the ABLH over the full diurnal cycle, which
includes day-time mixing layer, nocturnal stable boundary layer, and morning/evening
transition boundary layer, by using ground-based microwave-radiometer (MWR) and
ceilometer (lidar principle) remote-sensing instruments as well as related signal pro-
cessing techniques. ABLH estimates from Doppler lidar and radiosondes are used as
references. An aim of this thesis is also to combine data from these two instruments,
thus, exploiting their individual strengths and overcoming their limitations. In this
context, this thesis has been structured around three main goals:

First, a synergetic method for estimation of the Mixing Layer Height (MLH) is pre-
sented. Towards this end, uncertainties in the MLH derived from backscattered ceilome-
ter signals and MWR-retrieved potential temperature profiles are analysed and com-
pared. While the Extended Kalman Filter (EKF) is used as adaptive filter to process
backscattered lidar signals from the ceilometer, the parcel method is used with the
MWR-retrieved potential temperature profile. Finally, the two methods are combined
into a new methodology for synergetic MLH retrieval.

Second, methods for the estimation of the nocturnal Stable-Boundary-Layer Height
(SBLH) from ceilometer and MWR data, in stand-alone and in synergetic fashion,
are investigated. The SBLH from backscattered ceilometer signals is retrieved by us-
ing Minimum Variance Regions (MVRs) as signatures of aerosol stratification in the
SBL. For the MWR, idealized physical models from the literature are used to estimate
the SBLH. Next, a synergetic SBLH retrieval method is developed, which combines
measurement data from both instruments.

Finally, a preliminary study on the feasibility of Large Eddy Simulation (LES) as a tool
for understanding the ABL is presented. To this end, LES-simulated lidar backscatter
and potential temperature profiles are compared against instrumental measurements.
In addition, a new method for direct retrieval of the MLH from LES-simulated bright-
ness temperature measurements is presented, hence, alleviating the need for physical
temperature retrieval first. The impact of retrieval errors on MLH estimates is also
investigated.

The techniques developed in this Ph.D. have been tested on the data from HOPE
measurement campaign (Jülich, Germany), where different test cases under different
atmospheric conditions have been considered.
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Chapter 1

Introduction

This chapter gives an overview of the ITARS project, which is the framework topic of this

Ph.D. thesis and its mobility context, and the main Ph.D. objectives. This chapter is complemented

with a summary of the remote sensing instrumentation used.

1.1 The ITARS network

Figure 1.1: The organizational structure of the ITARS research and training programme [ITARS
proposal, 2012].

This Ph.D. thesis is a part of the Initial Training for Atmospheric Remote Sensing
(ITARS)1, a Marie Curie - Initial Training Network (ITN), under the 7th Framework Pro-
gramme (FP7) for Research and Technological Development of the European Union (EU),

1http://itars.uni-koeln.de/

http://itars.uni-koeln.de/
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for the training of the Early Stage Researchers (ESRs). The network is comprised of 9 degree
awarding research institutes and 5 private-sector associated partners, which are Small and
Medium Enterprises (SMEs), in 8 European countries (Fig. 1.1). 11 ESRs for 36-months
and 4 experienced researchers (ER) for 24-months were hired to pursue the doctorate and
post-doctorate degrees, respectively Banks et al. [2016].

Figure 1.2: The scientific structure of the ITARS with individual research fields and tools [ITARS
proposal, 2012]. Topics of relevance to this Ph.D. thesis are encircled in red color.

As mentioned in the ITARS proposal, it is aimed to focus on the synergistic application
of high-end ground-based remote-sensing instruments, which have potential to substantially
contribute to the improved understanding of aerosols, clouds, aerosol-cloud interaction pro-
cesses, and their role for both climate and weather. The main areas of research in ITARS
are shown in Fig. 1.2, with aerosols, climate and weather, and clouds sharing common
grounds with instruments, algorithms, and physics. In order to exploit the full informa-
tion content of measurements, and convert the measured properties, e.g., multi-wavelength
radiances, backscattered signals, and polarimetric quantities to atmospheric parameters,
detailed knowledge on the algorithms and instruments is necessary.

Within ITARS, each ESR was supervised by a supervision team, which consisted of a
primary adviser from the host institute, a co-adviser preferably from another ITARS partner,
and a third member suggested by the fellow. The training plan of ITARS for each ESR
comprised of an individual Career Development Plan (CDP) with individual and network
training components. The individual training component of the CDP consisted of individual
research topic, courses at the host institution, secondments at private sector and other
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research institutes in ITARS, and other complimentary training elements such as the project
management, local languages etc. The network training component of the CDP, common
for all ITARS fellows, comprised of e-seminars and tutorials, and summer schools along with
complementary elements such as courses on communication skills, entrepreneurship, ethics
and IPR, and outreach.

1.2 Ph.D. topic

Continuous estimates of the Atmospheric Boundary Layer Height (ABLH) are needed for
several applications ranging from weather, avionics, and air-quality and dispersion models.
The Atmospheric Boundary Layer (ABL) is the lowest part of the troposphere which is
directly affected by the Earth surface on a scale of an hour or less Stull [1988]. It is
the part of the troposphere which is responsible for exchange of heat, momentum, and
aerosols between the Earth surface and the Free Troposphere (FT). The ABLH is a key
atmospheric parameter and is directly linked with its behaviour and development, and it can
be determined by the signature within the profiles of temperature, potential temperature,
virtual potential temperature, Water Vapor (WV), aerosols, wind, and other trace gases
Emeis [2010]. Different kinds of instruments have been used for the study of atmosphere in
the tropospheric region which include radar, sodar, MicroWave Radiometer (MWR), lidar,
in situ instruments such as weather balloon, Radiosonde (RS), and even aircrafts. The
ground-based remote-sensing instruments offer continuous availability, better spatial and
temporal resolution, and low cost solution.

This Ph.D. thesis is aimed at the development of signal processing methods
to retrieve the ABLH from stand-alone as well as synergetic observations from
ground-based lidar and MWR instruments.

The Ph.D. work includes several aspects of these instruments, their interaction with the
atmosphere, the retrieval of the atmospheric parameters of interest from measured signals,
and related error uncertainties. The thesis has been supervised by the Universitat Politécnica
de Catalunya (UPC)1 (Remote Sensing Lab., Dep. of Signal Theory and Communications)2

and the University of Cologne (UCOL)3 (Institute for Geophysics and Meteorology)4, UPC
focusing more on the signal processing/lidar side and UCOL on the physical/MWR one.

On the signal-processing side, much work has been done by the earlier Ph.D. students
Reba [2010]; Kumar [2012]; Lange [2014], advised by Dr. Rocadenbosch at UPC. The sim-
ulator for the retrieval of opto-atmospheric parameters using the backscattered signal from
the UPC multi-spectral lidar system, contains comprehensive set of scenarios for the aerosol

1http://www.tsc.upc.edu
2http://www.tsc.upc.edu/rslab/
3http://www.portal.uni-koeln.de/uoc_home.html?&L=1
4http://www.geomet.uni-koeln.de/en/general/home/

http://www.tsc.upc.edu
http://www.tsc.upc.edu/rslab/
http://www.portal.uni-koeln.de/uoc_home.html?&L=1
http://www.geomet.uni-koeln.de/en/general/home/
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profiles, and retrieval algorithms. An Extended Kalman Filter (EKF)-based algorithm for
the continuous tracking of the ABL using the lidar return signal, has also been successfully
implemented Lange et al. [2014]. These expertise and resources will be extremely helpful
for the goals of this Ph.D.

On the MWR side, measurement data and expertise from the group of Prof. Susanne
Crewell at the UCOL will be utilized. The Jülich super-site called Jülich ObservatorY for
Cloud Evolution (JOYCE)1 linked to the UCOL operates Radiometer Physics GmbH (RPG)
Humidity and Temperature Profilers (HATPRO) Rose et al. [2005] as well as ceilometers
and other instruments. The data is available on the UCOL servers and will be utilized for
the lidar and MWR related algorithms.

A note on terminology : The term “lidar” refers to general purpose laser-radar systems,
including advanced multi-spectral elastic/Raman systems for tropospheric profiling while
“ceilometer” refers to a low-power, low-cost, single-wavelength lidar. In this Ph.D., ceilome-
ters are used as far as lidar instruments are concerned (see Sect. 1.5 for a detailed description
of the remote sensing instruments involved). In spite of the fact that in this Ph.D. only
ceilometers are used for the lidar part, the term “lidar” will be used for the concepts and
theory related to optical remote sensing of atmosphere, while the term “ceilometer” will be
used in the context of the instrument itself and related backscatter signal processing.

1.3 Ph.D. objectives

1. Development of a synergetic method for Mixing Layer Height (MLH) estimation from
combined lidar and MWR measurements. This objective involves evaluation of the
associated uncertainties.

2. Development of algorithms for Stable Boundary Layer Height (SBLH) estimation from
lidar and MWR measurements, either non-synergetic or synergetic. This objective has
been divided into two sub-objectives:

(a) Non-synergetic SBLH estimation.

(b) Synergetic SBLH estimation.

3. Feasibility study on the usage of Large Eddy Simulation (LES) data for MLH estima-
tion.

1http://www.geomet.uni-koeln.de/en/general/research/joyce/

http://www.geomet.uni-koeln.de/en/general/research/joyce/
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1.3.1 Obj. 1: Development of a synergetic method for MLH esti-

mation from combined lidar and MWR measurements

MLH retrieval methods using backscattered lidar signals and MWR-retrieved potential-
temperature profiles are to be compared in terms of their capabilities and associated uncer-
tainties. The EKF will be used for MLH retrieval from backscattered lidar signals and the
parcel method for MLH retrieval from MWR-retrieved potential-temperature profiles. Mea-
surement and retrieval errors are to be revisited and incorporated into the MLH estimation
methods used. Uncertainties on MLH estimates from the two methods will be compared
along with a combined MLH-retrieval discussion case. Measurement data from a Jenoptik
CHM 15k Nimbus ceilometer and a RPG HATPRO MWR collected during the HD(CP)2

Observational Prototype Experiment (HOPE) campaign will be used.

1.3.2 Obj. 2: Development of algorithms for SBLH estimation

from lidar and MWR data

1.3.2.1 Obj. 2a: Non-synergetic SBLH estimation

Stable Boundary Layer (SBL) is one of the least understood topics and still a matter of
research in the field of meteorology and weather forecast. In this sub-objective, first a
review of the behaviour of aerosols and physical temperature in the atmosphere under stable
conditions will be presented. In this context, backscatter lidar returns are to be analysed
with a view to identify signatures for aerosol stratification. Minimum Variance Regions
(MVRs) in the backscatter lidar signal will be considered for SBLH estimation. SBLH
estimation from MWR-retrieved potential temperature profiles will also be considered under
different idealized physical models from the literature to estimate the SBLH.

1.3.2.2 Obj. 2b: Synergetic SBLH estimation

A synergetic approach for estimation of the nocturnal SBLH will be presented. Aerosol
backscatter from a lidar-ceilometer and potential temperature from a MWR are to be com-
bined by adaptive signal processing methods, such as the EKF. The method will be applied
to data from a Vaisala CT25K ceilometer and a HATPRO MWR collected during the HOPE
campaign.

1.3.3 Obj. 3: Feasibility study on the usage of LES data for MLH

estimation

In this objective, LES model will be introduced as a tool for understanding the ABL. Thus,
LES-simulated data is to be cross-compared with instrumental measurements. As a test
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case, a method for MLH retrieval directly from simulated brightness measurements will be
presented. Towards this end, the algorithm is to compare “truth” brightness temperatures
and LES-simulated data, to algorithm-generated ones, obtained via parametrized tempera-
ture profile and a Radiative Transfer Model (RTM), by using an Optimal Estimation Method
(OEM).

1.4 Ph.D. mobility context

The University of Cologne is one of the largest universities in Germany. The Institute for
Geophysics and Meteorology (IGMK) which is part of the Department of Geoscience, one
of the six departments under the Faculty of Mathematics and Natural Sciences, combines
research groups from applied geophysics, space physics, turbulence atmospheric modelling,
and integrated remote sensing, among others.

The RPG which was founded in 1991 as a private company, and is now a subsidery of
Rohde & Schwarz GmbH, is one of the leading suppliers of remote sensing, millimeter wave,
sub-mm and THz instrumentation and components.

During this 3-year Ph.D., six secondments were completed, five at IGMK (UCOL) and
one at RPG. Various aspects of microwave radiometry and ceilometer data processing, espe-
cially, ABL physics and meteorology, retrieval of ABLH, RTM, and instrument functioning
were learned during these secondments. In the following a summary of each visit is given:

• 17 April - 27 April 2013: During this secondment at UCOL, familiarization with the
format and structure of netcdf data files associated to lidar and MWR measurement
data at UCOL was made. Moreover, study and implementation of the ABLH esti-
mation methods such as the parcel method and Bulk Richardson number method by
using the MWR-retrieved temperature data was done.

• 29 July - 31 August 2013: In this one month-long secondment at UCOL, sensitivity
analysis of MWR brightness temperature to the ABLH, FT temperature gradient,
and surface temperature was carried out. Forward modelling was used to simulate
brightness temperatures of at different frequencies and elevation angles.

• 09 March - 15 March 2014: The goals defined for this short visit to UCOL included
learning the operational method for temperature retrieval using MWR data, calcula-
tion of temperature weighting functions, to get acquainted with Jenoptik and Vaisala
ceilometer data and its pre-processing, and to identify suitable case-study days from
HOPE campaign.

• 07 August - 02 September 2015: This one month-long secondment was split between
UCOL and RPG. At UCOL, work on the LES data was started and a comparative
analysis based on different approaches for the ABLH estimation was initiated.
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The two weeks training at RPG included introduction to the HATPRO MWR hard-
ware, retrieval software, and state-of-the-art practices in the MWR industry.

• 20 March - 25 March 2016: This secondment to UCOL was completed under the
framework of COST Action Short Term Scientific Mission (STSM) titled “A physical
retrieval of mixing-layer height using simulated brightness temperature measurements”.

1.5 Instruments and data-sets

The instruments used in this work include two different types of ceilometers, a Doppler
lidar, a MWR, and RSs. In the following, a summary of each instrument is given. In
order to successfully cross-examine data and/or to assimilate it synergetically, collocated
measurements taken in April/May 2013 at the JOYCE Löhnert et al. [2015] in Jülich,
Germany are used for case studies and statistical analysis.

1.5.1 Vaisala CT25K ceilometer

Figure 1.3: Vaisala CT25k ceilometer on the rooftop of the Jülich supersite.

Vaisala CT25K Schween et al. [2014]; Löhnert et al. [2015] ceilometer at JOYCE (Fig. 1.3)
uses a transmission wavelength of 905 [nm] with a pulse repetition frequency (PRF) of 5.6
[kHz]. Under clear-sky conditions the typical sounding range of the instrument is roughly



8 1. Introduction

Table 1.1: Specifications of the Vaisala CT25k ceilometer.

Parameter Specification

Wavelength • 905 [nm]

Transmission parame-
ters

• Pulse repetition frequency (PRF): 5.6 [kHz]

Range • 60. . .7500 [m]

Range Resolution • 30 [m]

Receiver field-of-view
(FOV)

• 0.66 [mrad]

Power Consumption • max 400 [W] (including heating)

Weight, Dimensions • 70 [kg] (complete system), 378× 447× 1335 [mm]

from 60 to 7,500 [m] with a range resolution of 30 [m] and time resolution of 15 [s]. The
receiver field-of-view (FOV) is 0.66 [mrad]. Since this ceilometer is a co-axial system (laser
and receiving-telescope optical axis coincide) its minimum sounding height of approximately
60 [m] is caused by the near-range saturation effect. The instrument software provides
profiles of the attenuated backscatter coefficient βatt as an output. Table 1.1 summarizes its
key specifications.

1.5.2 Jenoptik CHM15k Nimbus ceilometer

The Jenoptik CHM 15k Nimbus ceilometer Schween et al. [2014]; Löhnert et al. [2015]
operates at a wavelength of 1064 [nm] with a pulse duration of 5 [ns] and repetition rate
of 5 − 7 [kHz]. Its maximum range, under clear-sky conditions, is 15 [km] with a range
resolution of 15 [m]. The temporal resolution of the instrument is 15 [s]. Since it is a bi-
axial system with separate optics for transmitter and receiver, the full overlap is available
from above 350 [m]. However, this does not typically pose any limitation for mixing layer
studies since the MLH is normally in the range of a few kms. Table 1.2 summarizes key
specifications of the Jenoptik CHM 15k Nimbus ceilometer installed at JOYCE (Fig. 1.4).

1.5.3 HATPRO microwave radiometer (MWR)

A MWR measures the column-integrated values of atmospheric radiation in terms of bright-
ness temperature. Measurements at different frequency bands and elevation angles can be
used to derive several physical quantities such as temperature, water vapor, integrated water
vapor, and integrated liquid water. The HATPRO MWR (Fig. 1.5) manufactured by RPG
Rose et al. [2005]; Löhnert et al. [2015] measures the atmospheric brightness temperature at
seven frequencies and seven angles in two bands. Measurements in the K-band, 20-30 [GHz]
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Figure 1.4: Jenoptik CHM 15k NIMBUS ceilometer on the rooftop of the Jülich supersite.

Table 1.2: Specifications of the Jenoptik CHM 15k NIMBUS ceilometer Jenoptik [2013].

Parameter Specification

Wavelength • 1064 [nm]

Transmission parame-
ters

• Pulse duration: 1. . . 5 [ns], Pulse repetition frequency (PRF): 5-7 [kHz]

Range • 5. . .15,000 [m]

Range Resolution • 5 [m]

Laser Divergence • <0.3 [mrad]

Receiver field-of-view
(FOV)

• 0.45 [mrad]

Power Consumption • 250 [W]

Weight, Dimensions • 70 [kg] (complete system), 500× 500× 1550 [mm]

range, are used for WV retrieval, and in the V-band, 50-60 [GHz] range, for temperature re-
trieval. It works in two scanning modes, zenith-pointing mode for full tropospheric profiling
(range up to 10 [km], vertical discretization of 150-250 [m]), and boundary-layer scanning
mode (6 elevation angles, range up to 1000 [m], vertical discretization 50 [m]). Measurement
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Figure 1.5: RPG HATPRO on the rooftop of the Jülich supersite.

time resolution is about 2.70 minutes.

The limited vertical-resolution of the MWR-retrieved quantities (e.g., physical temper-
ature) is inherently due to having less Degrees of Freedom (DoF) than the available mea-
surement channels. Thus, for temperature retrieved profiles only about four pieces of inde-
pendent information are available Löhnert and Maier [2012]. Therefore, the true vertical
resolution on the inverted products (“clean-data” spatial resolution) is much lower than the
vertical discretization of the retrieved temperature profile. When compared with RS mea-
surements Löhnert and Maier (2012) have shown random differences between MWR and
RS down to 0.5 [K] in the lower boundary-layer increasing to 1.7 [K] at 4 [km] in height.
Table 1.3 summarizes key specifications of RPG HATPRO.

1.5.4 Graw DFM-09 radiosonde

A RS is an in situ instrument that is capable of measuring temperature, pressure, Relative
Humidity (RH), and wind speed and direction in the atmosphere up to about 30 [km]
by vertical sounding. It is launched through a large balloon inflated with hydrogen or
helium gas. During its flight up to 30 [km] in height, it can drift more than 200 [km] away
from above the point of its launch, though the horizontal displacement within the ABL
is not significant for practical purposes. Nevertheless, the vertical profiles of atmospheric
parameters measured by the RS are still considered a de facto reference or physical truth
for the remote sensing purposes. The radiosonde used in this work is the Graw DF-09
manufactured by Graw GmbH and it includes temperature, pressure, wind and humidity
sensors.
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Table 1.3: Specifications of the RPG HATRPRO RPG [2011].

Parameter Instrument specification

Temperature profile
performance

• Vertical discretization: BL-Mode: 30 m-50 m (range 0-1200 m)
Z-Mode: 200 m (range 1200-5000 m), 400 m (range 5000-10000 m)

• Accuracy: 0.25 K, RMS (range 0-500 m), 0.50 K RMS (range 500-1200 m)
0.75 K RMS (range 1200-4000 m), 1.00 K RMS (range 4000-10000 m)

Humidity profile per-
formance

• Vertical discretization: 200 m (range 0-2000 m), 400 m (range 2000-5000 m),
800 m (range 5000-10000 m)

• Accuracy: 0.4 g/m3 RMS (absolute humidity), 5% RMS (RH)

Channel center fre-
quencies

• K-Band: 22.24 GHz, 23.04 GHz, 23.84 GHz, 25.44 GHz, 26.24 GHz,
27.84 GHz, 31.4 GHz

• V-Band: 51.26 GHz, 52.28 GHz, 53.86 GHz, 54.94 GHz, 56.66 GHz,
57.3 GHz, 58.0 GHz

Radiometric range and
accuracy

• Range: 0-800 K, Absolute brightness temperature accuracy: 0.5 K

1.5.5 HALO Photonics Streamline wind lidar

Doppler wind lidar along with radiosondes (whenever available) are used as the reference or
truth. The Doppler lidar used in this work is the HALO Photonics Streamline Wind Lidar
Pearson and Collier [1999]; Pearson et al. [2010]; Schween et al. [2014]. The instrument is
a coherent pulsed Doppler lidar with an average pulse energy of 100 [µJ] at a frequency of
15 [kHz]. The maximum range of the instrument is 8 [km] but, in practice, it is limited by
the absence of aerosols in the upper atmosphere. The vertical resolution of the instrument
is 30 [m]. MLH from the Doppler lidar is determined by the standard deviation, σw, of the
vertical wind velocity every 5 [min] when using a sliding temporal window of 30 [min].

1.5.6 The Jülich ObservatorY for Cloud Evolution (JOYCE)

The JOYCE is located in Forschungszentrum Jülich in the western part of Germany. JOYCE
contains an array of state-of-the-art active and passive remote sensing and in-situ instru-
ments for the observation of clouds and related processes Löhnert et al. [2015]. The data
used in this work has been collected during the HOPE campaign at JOYCE. HOPE was
conducted during April 02-July 24, 2013. During the measurement period 226 soundings
of Graw DFM-09 have been performed and used, among others, for a water vapor inter-
comparison study Steinke et al. [2015].

1.6 Organization of the Ph.D. thesis

This Ph.D. thesis is organized as follows:
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Chapter 1 provides an overview of the ITARS project, the topic of this Ph.D. thesis
and related Ph.D. objectives, as well as the remote-sensing instruments used.

Chapter 2 reviews lidar and radiometric remote sensing. From the lidar side, concepts
such as atmospheric extinction and backscatter, the lidar equation, and an overview of the
lidar instrument will be covered. For the MWR part, RTM, inversion techniques, and MWR
instrument will be covered.

Chapter 3 focuses on the study of a synegrtic algorithm for MLH estimation. A review
of the uncertainties associated to existing MLH estimation methods from lidar backscatter
(EKF method) and MWR-retrieved potential temperature (parcel method) is first presented.
Second, a synergetic MLH estimation method will be formulated.

Chapter 4 covers the first part on the development of SBLH estimation methods. In this
chapter, first the SBLH estimation problem is formulated for both the lidar and the MWR.
Then, a MVRs-based SBLH estimation method is presented for the lidar case. Finally,
SBLH estimation from MWR-retrieved potential-temperature profiles is presented by using
idealized models from the literature.

Chapter 5 covers the second part of SBLH estimation methods. This chapter focuses on
synergetic SBLH estimation from combined backscatter lidar and MWR-retrieved potential
temperature measurements.

Chapter 6 introduces the LES model as a way to better understand the ABL and its
related concepts. Simulated brightness-temperature data will be used for direct retrieval of
the MLH. This chapter is inherently prospective in itself.

Chapter 7 gives concluding remarks and future lines of work.



Chapter 2

Lidar and microwave radiometric
atmospheric remote sensing

This chapter summarizes the basic concepts and principles of lidar and radiometric remote

sensing. Key concepts concerning atmospheric remote sensing using these sensors such as the lidar

equation, atmospheric extinction and backscatter, the microwave radiative transfer model and atmo-

spheric temperature-retrieval are presented. A brief overview of the diurnal cycle of the atmospheric

boundary-layer height, its development and state-of-art retrieval methods is also presented.

2.1 Introduction

ABLH is defined as the height of the atmosphere which is directly affected by the changes
on the surface of the Earth on a time scale of an hour or so Stull [1988]. It is a parameter of
interest for many applications which include weather forecasting, air quality and chemical
dispersion models and avionics. However, there is no instrument or method which can
directly measure the ABLH. Instead, a proxy or tracer for the ABL can be used. Such
proxies, among others, include aerosols in atmosphere, the temperature profile, wind profile
and energy flux Emeis [2010]; Seibert et al. [2000].

Ground-based remote-sensing instruments provide an economic and reliable way of con-
tinuously monitoring the atmospheric boundary-layer at a single location. There are several
such instruments which include active ones like lidar, radar, and sodar etc. and passive ones
such as MWR.

In this work, ground-based lidar and MWR instruments for the retrieval of ABLH will
be used. Lidar measures the backscattered light from the atmospheric constituents which
it transmits, as a nearly monochromatic pulse, in the first place. MWR measures the
column-integrated values of the atmospheric brightness temperature at several frequencies
and elevation angles.



14 2. Lidar and microwave radiometric atmospheric remote sensing

Lidar - Ground-based remote sensing of the lower atmosphere by backscatter lidars (e.g.,
ceilometers) is widely used because it enables spatial resolution of a few meters and time
resolution of a tens of seconds to a couple of minutes. The European Aerosol Research Lidar
Network (EARLINET) and the NASA’s Micro-Pulse Lidar Network (MPLNET) are two
examples of such lidar networks, spread over continental scale in the first case, and planetary
scale in the second, providing aerosol measurements comprehensively in the vertical and
temporal domains. Therefore, the search for an ABLH estimation method based on lidar
data-only is one of the active and most relevant research topics today.

A ground-based lidar uses the backscatter from airborne atmospheric constituents (aerosols
and molecules) to provide an indicator for the ABLH. Towards the near-infrared (NIR),
aerosol backscatter is the dominant scattering source. While it has been shown that aerosols
are good tracers of the Mixing Layer (ML) in case of fully developed convection Emeis et al.
[2008]; Haeffelin et al. [2012]; Lange et al. [2014], the situation gets complicated during
night-time when stable conditions frequently prevail. Some of the key challenges related to
the estimation of the SBLH from a lidar signal include the presence of multiple aerosol layers
Stull [1988]; Haeffelin et al. [2012], the lidar overlap factor, the effect of humidity on the
aerosol concentration, and the presence of low-level clouds Pandolfi et al. [2013]. Insufficient
overlap between transmitted and detected lidar signal strongly depends on the type of the
lidar and varies from a few meters to a couple of hundred meters.

MWR - Atmospheric remote sensing by MWRs is based on the reception and processing
of atmospheric radiation in the microwave region of frequencies. Atmospheric gases and
water content emit ElectroMagnetic (EM) radiations due to their thermodynamic state,
and at the same time absorb and scatter the EM energy coming from sun and other sources.
The major contributors of emissions in the microwave band are oxygen and WV. In the
100 [GHz] range WV has an absorption line at 22.235 [GHz] and oxygen has a band of
absorption lines spanning from 53-67 [GHz] with peak value at 60 [GHz]. Liquid water
absorption dominates the 30-50 [GHz] frequency range Hewison [2006]Planck and Masius
[1914]Chandrasekhar [1950]Rybicki and Lightman [2004].

In the RTM of a microwave radiometer, scattering is normally ignored in clear-sky con-
ditions due to the larger wavelength of the received microwave radiation in comparison to
size of the gas molecules and the WV. In case of clouds or rain in the atmosphere, which
can have a particle size comparable to the wavelength of the radiations, scattering effects
also become significant and need to be taken into account Ulaby et al. [1981]Janssen [1993].

The received intensity of the radiations can be assumed to be the sum of infinitesimally
small stratified layers of atmosphere and is expressed in terms of the brightness temperature,
TB. The required profile of the atmospheric parameters, i.e., temperature, humidity, Inte-
grated Water Vapor (IWV) and Integrated Precipitable Water (IPW) can then be extracted
using a series of observations at different frequencies or elevation angles. The retrieval is
based on a set of coefficients called weighting functions for each level of vertical resolution.
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These coefficients are mostly calculated in advance using measurements from radiosondes or
other in-situ methods Ulaby et al. [1981]Janssen [1993]Askne and Westwater [1986]Crewell
et al. [2001].

2.2 Lidar remote sensing

For the studies related to low troposphere, and especially in the ABL, lidar-ceilometers are
the most popular instruments due to them being lightweight, robust and economical. A
ceilometer is a single-wavelength elastic backscatter lidar system, meaning it transmits and
receives at a single wavelength, and is generally used for the detection of cloud-base height. It
works on the principle of LIght Detection And Ranging (LIDAR), essentially measuring the
backscattered light, after the emission of a laser pulse. The time of flight of the backscattered
pulse is used to determine the distance to the target/height distribution of the atmospheric
scatterers. Under relatively clear atmospheric conditions (typically, optical thickness, τ < 1),
the range-corrected intensity of the backscattered lidar signal is essentially proportional to
the aerosol/molecular concentration of the atmospheric mixture. Though ceilometry refers
to “cloud height and extent” and the fact that former ceilometer instruments were initially
designed for cloud-base height detection only, today, modern ceilometers can usually detect
both the ABLH and the cloud-base height. In case of semi-transparent clouds multiple
layers can be observed. Most ceilometers are designed to transmit in the infra-red region of
the spectrum, e.g., Vaisala CT25k and Jenoptik CHM15k Nimbus ceilometers transmit at
the wavelengths of 906 [nm] and 1064 [nm], respectively.

Ceilometers are single wavelength, elastic lidar systems and, therefore, a low-cost sim-
plistic version of a multi-wavelength lidar system. A detailed treatment of the multi-spectral
Raman lidar system at UPC RSLAB has been presented in the previous doctoral thesis by
Kumar [2012] and the related processing for the retrieval of the optical atmospheric param-
eters and the ABLH in another doctoral thesis by Lange [2014]. Therefore, in the following
only the key concepts related to lidar instrument and its working principles are summarized,
for the sake of completeness.

Like the lidar, a ceilometer, as shown in Fig. 2.1, has three main hardware modules,
namely, the laser, the telescope, and the detection and processing system.

The transmission system of a ceilometer consists of a laser which transmits lights pulses
along the Line-Of-Sight (LOS) of the instrument at a single wavelength with given specifi-
cations of pulse energy (1.6 [µJ] for Vaisala CT25k and 8 [µJ] for Jenoptik CHM15k), pulse
repetition frequency (5.6 [kHz] for Vaisala CT25k and 5-7 [kHz] for Jenoptik CHM15k),
and pulse duration (100 [ns] for Vaisala CT25k and 1-5 [ns] for Jenoptik CHM15k) Schween
et al. [2014]; Muenkel et al. [2004]; Wiegner and Geiß [2012]. The transmitted power of the
ceilometer is generally kept low to make it an eye-safe system. Nd:YAG (Neodymium-doped:
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Figure 2.1: Functional ceilometer layout showing the main building blocks of a ceilometer instrument
Cimini et al. [2010a].

Yttrium Aluminum Garnet) lasers are generally used as a laser source. Nd:YAG lasers emit
in NIR spectral region at 1064 [nm]. The choice of transmission wavelength is generally
dictated by the frequency window in which atmosphere is relatively transparent.

Figure 2.2: Mono-axial Vaisala CT25k laser-telescope ceilometer system Münkel et al. [2007].

The receiver system consists of a telescope which collects the backscattered light from
the atmospheric constituents. The Field-Of-View (FOV) of the telescope, which is the angle
between the laser beam and the axis of the telescope, determines the effective amount of
received light and the lowest height of full-overlap. Based on the design of the system, there
can be two types of arrangements for the telescope axis and the laser’s line of transmission.
A mono-axial system, where the telescope FOV and the laser beam share the same axis,
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provides full-overlap virtually starting from the point of emission. Such a system, as used in
Vaisala ceilometers, is shown in Fig. 2.2 Münkel et al. [2007]. In contrast, a bi-axial system,
where the laser beam and the telescope FOV are separate, provided full-overlap between the
two starting from several hundred meters above the ground. Jenoptik ceilometers use such
a bi-axial system.

Figure 2.3: Generalized block diagram of a lidar receiving channel using a PMT-based detection
Lange [2014].

There are two main types of detectors depending on the incident optical wavelength: The
Avalanche Photo-Diode (APD) and the Photo-Multiplier Tube (PMT). APD detectors are
particularly suited for the detection of near-infrared (NIR) wavelengths while PMT detectors
for the visible (VIS) and ultra-violet (UV) range. Besides, PMT detectors enable quantum-
level detection, i.e., the possibility of detecting individual photons and hence, they are more
sensitive than APD detectors. Fig. 2.3 shows a generalised lidar channel detection front-end
using a PMT-based detection head and combined analog (analog-to-digital-converter, A/D)
and photon-counting acquisition units.

2.2.1 Atmospheric extinction

A laser transmitted pulse of light from a ceilometer experiences extinction while passing
through the atmosphere Collis and Russell [1976]; Emeis [2010]; Lenoble et al. [2013].
Extinction results from absorption as well as scattering from the constituents (gaseous
molecules and aerosols) of the atmosphere. The received intensity of a given pulse of light
with initial intensity, I0, and wavelength, λ, while passing through a section of atmosphere
between heights z = 0 to z = Z is given by Beer’s law Beer [1852] as

I(λ, Z) = I0exp

(
−
∫ Z

0

α(λ, z)dz

)
, (2.1)
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where α is total extinction coefficient in [m−1], and T (λ, Z) = exp
(
−
∫ Z

0
α(λ, z)dz

)
is the

atmospheric transmissivity.

The total extinction coefficient, α, can be represented as the sum of individual sources
as follows

α = αsca,aer + αsca,mol + αabs,mol, (2.2)

where αsca,aer is the Mie aerosol scattering, αsca,mol is the Rayleigh molecular scattering, and
αabs,mol is the molecular absorption.

Scattering is a function of the physical properties (e.g., refractive index, cross section,
radii distribution) of the atmospheric constituents. Scattering of photons by the aerosols and
the molecules can be defined in terms of their relative size with respect to the wavelength of
the incident light. On one hand, scattering by the aerosols is defined by Mie’s scattering, in
which the size of scatterers is comparable to that of the incident wavelength. On the other
hand, the molecular scattering, αsca,mol, is defined by the Rayleigh scattering mechanism
since the size of the molecules is generally much smaller than the wavelength of the incident
light.

The scattering by aerosols, αsca,aer, is described in terms of Mie scattering (Mie scattering
coefficient ≈ λ−K ; 0 ≤ K ≤ 2) and is given by

αsca,aer =

∫ ∞
0

πa2
aerQext(x,m)Naer(aaer)da, (2.3)

where aaer is the aerosol radius, Qext is the extinction efficiency, x is the particle size param-
eter (x = 2πaaer/λ [.], λ the wavelength, aaer the particle’s radius), m is complex refractive
index [.], and Naer is the aerosol density per unit radius interval [m−3]. Rayleigh scatter-
ing coefficient is proportional to λ−4 (Rayleigh’s spectral law) and is given in terms of the
number density of gas molecules [no. of molecules/m3], Ng, and the Rayleigh’s scattering
cross-section [m2/molecule], σRAY (λ), as follows

αsca,mol = NgσRAY (λ). (2.4)

Fig. 2.4 outlines the changes in the relative strengths of total extinction and the backscat-
ter in response to wavelength of incident light and different atmospheric species.

Molecular absorption, αabs,mol, becomes a significant component of the total extinction
only when the laser wavelength is tuned-in in an absorption band of the atmospheric molecule
(or gas species) of interest. This is not the case of backscatter lidars and ceilometers, which
only rely on elastic interaction, that is, aerosol (Mie’s) and molecular (Rayleigh’s) scattering.
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Figure 2.4: Optical extinction and backscatter coefficients with respect to wavelength and the atmo-
spheric constituents. Collis and Russell [1976].

2.2.2 Atmospheric backscatter

The component of the scattered light signal which is received by the telescope of the ceilome-
ter is the one which is scattered backwards at 180 degrees to the incident light pulse and
includes contributions from molecular as well as aerosol scattering. The total backscatter
coefficient, β, therefore, is the sum of molecular backscatter, βmol, and aerosol backscatter,
βaer, coefficients

β = βmol + βaer. (2.5)

The total backscatter coefficient is directly related to the amount of light intensity received at
the telescope of the lidar. The individual contributions from the molecular backscatter, βmol,
and the aerosol backscatter, βaer, can be formulated on the similar lines as the total molecular
scattering, βsca,mol (Eq. 2.4), and aerosol scattering, βsca,aer (Eq. 2.3). Consequently,

βmol = Ng
dσRAY (π, λ)

dΩ
, (2.6)
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where dσRAY (π,λ)
dΩ

[m−1sr−1] is the fractional Rayleigh scattering per solid angle unit in the
backward direction. And

βaer =

∫ ∞
0

πa2
aerQback(x,m)Naer(aaer)da, (2.7)

where Qback is the backscatter efficiency.
Whereas it is a challenge to precisely formulate the aerosol backscatter, βaer, due to its

dependence on shape, size and composition of aerosols, of special relevance is the depen-
dence of aerosol size on the amount of humidity in the atmosphere. A study to explore
the relationship between humidity and aerosol backscatter, and variations of the aerosol
concentration during day-time and night-time has been performed by Pandolfi et al. [2013].
Results indicate that the mean backscatter coefficient behaved in opposite fashion to the
diurnal cycle of humidity with higher values during the night-time and lower values during
the day-time. Since the size of the aerosols varies with the moister content in the air Eres-
maa et al. [2006] due to hygroscopic effects, the higher backscatter coefficient during the
night-time is linked to a higher amount of humidity in the atmosphere.

2.2.3 The elastic lidar equation

Finally, the relationship between the measured lidar backscattered signal and the total
backscatter coefficient is described by the, so called, lidar equation. The lidar power return
is given by the single-scattering elastic lidar equation Measures [1992],

P (z) =
C

z2
β(z)T 2(z), (2.8)

where β(z) is the range-dependent total volume backscatter coefficient of the atmosphere
[m−1sr−1] (Eq. 2.5), T2(z) = e−2

∫ z
0 α(z′)dz′ is the two-way path atmospheric transmittance,

and C is the system constant [Wm3]. The quantity β(z)T 2(z) is known as the attenuated
backscatter coefficient,

βatt(z) =
z2

C
P (z). (2.9)

Under moderate-to-clear atmospheres and lidar sounding paths roughly below 3 [km],
the transmittance term can be assumed close to unity and, therefore, βatt(z) ∼= β(z) Münkel
et al. [2007]; Lange et al. [2014]. In the following, the term β(z) will be used to refer to the
lidar attenuated backscatter or simply “the backscatter”.

In practice, the range-dependent background-subtracted received lidar signal is corrupted
by observation (measurement) noise and takes the form,

Q(z) = P (z) + n(z), (2.10)
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where P (z) is the ideal (i.e., noiseless) lidar power return, and n(z) is the observation noise.
The noisy attenuated backscatter coefficient, β′(z), in response to a measured (i.e., noisy)

lidar signal, Q(z), can be obtained from Eq. 2.9 by substituting Q(z) (Eq. 2.10) in place of
P (z). It follows that

β′(z) = β(z) + v(z), (2.11)

where β′(z) is the noisy attenuated backscatter coefficient, β(z) is the noiseless attenuated
backscatter coefficient, and v(z) = z2

C
n(z) is the range-corrected noise scaled by the lidar

system constant, C. Primes denote noise-corrupted variables. In the following, the term
β′(z) will be used to refer to the lidar-ceilometer attenuated backscatter or simply “the
backscatter”.

2.3 Microwave radiometer remote sensing

2.3.1 Radiative transfer modelling

A ground-based MWR (microwave frequency range: 0.3 GHz to 300 GHz) measures the
amount of atmospheric radiation in terms of spectral radiance, Iν [W · m−2 · sr−1 · Hz−1],
which is given by

Iν =

∫ ∞
0

Bν(r, T )αν(r)e
−τν(r,∞)dr + I0e

−τν(0,∞), (2.12)

where I0 is the cosmic background term, αν [Nep · m−1] is the absorption coefficient,
τν(0, R) =

∫ R
0
αν(r)dr [Nep] is the optical thickness of the sounding path over the range

interval (0, R), usually along the vertical direction, and Bν is the spectral radiance of a
blackbody. The subscript ν shows the frequency dependence of quantities Janssen [1993];
Mattioli et al. [2013]; Ulaby et al. [1981]. The spectral radiance, Bν [W ·m−2 · sr−1 · Hz−1],
of a blackbody at physical temperature, T [K], is given by Plank’s law

Bν(T ) =
2hν3

c2

1

e
hν
kT − 1

, (2.13)

where h is the Plank’s constant, kB is the Boltzmann constant, and c is the speed of light.
The emission and absorption of radiation from the atmosphere is a result of continuous

absorption, scattering, and re-emission of radiation and incident energy from other cosmic
sources. The frequency of emission is directly related to the energy levels of the constituents
of atmosphere, which include gases like oxygen, O2, nitrogen, N2, carbondioxide, CO2, WV,
and cloud liquid-water. In the microwave region of frequencies, especially in the 10-100
[GHz] range, oxygen and WV are the dominant absorbers of EM energy. Fig. 2.5 shows
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Figure 2.5: Atmospheric opacity for U.S. standard atmosphere with liquid and ice water clouds.
The ice water contribution is below 0.01 [Np] throughout the 10-100 [GHz] range. The spectral range
of commercially available water vapor (K-band 20-30 [GHz]) and temperature (V-band 50-60 [GHz])
microwave profilers is indicated Illingworth et al. [2013].

the atmospheric opacity in the 10-100 [GHz] frequency range, the oxygen absorption band
in the 50-60 GHz, and WV and Liquid Water (LW) continuum (proportional to ν2) in the
20-30 [GHz] range. The effects of scattering are negligible for frequencies below 100 [GHz]
in non-rainy conditions, and hence are not considered in this work.

The frequency and height dependent net absorption coefficient, for frequencies below 100
[GHz], is the sum of the individual contributions, and can be given by

αν(r) = αO2(r) + αWV (r) + αC(r), (2.14)

where αO2 is the oxygen absorption coefficient, αWV is the WV absorption coefficient, and
αC is the cloud liquid-water absorption coefficient Ulaby et al. [1981].

Since the absorption of oxygen is dependent upon the atmospheric temperature and
density (through pressure), the total absorption coefficient, αν , of atmosphere, in general, is
a function of temperature, dry density, ρ, WV density, ρWV , and cloud liquid density, ρC ,

αν(r) = α
(
T (r), ρ(r), ρWV (r), ρC(r)

)
. (2.15)

In clear-sky conditions, the contribution from cloud liquid-water can be neglected, there-
fore, the absorption coefficient is solely due to gaseous components, i.e., oxygen and WV
absorptions,

αν(r) = αg(r) =

= αO2(r) + αWV (r). (2.16)
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In order to simplify the units of measurement, Plank’s law from Eq. 2.13 can be solved
for the physical temperature of the blackbody (usually using the Rayleigh-Jeans approxima-
tion). Likewise, for a non-blackbody, the so-called greybody, with the same spectral radiance
as that of the ideal blackbody, an equivalent temperature called brightness temperature, TBν
[K], can be derived Mattioli et al. [2013]. From Eq. 2.12, and the considerations above,
the brightness temperature of the atmosphere, which is also a greybody, measured by a
ground-based MWR, can be expressed as

TBν =

∫ ∞
0

T (r)αν(r)e
−τν(0,r)dr + TBGe

−τ(0,∞), (2.17)

where TBG is the background brightness temperature and T is the physical temperature of
the greybody (which is always greater than TBν for the atmosphere).

Eq. 2.17 encompasses a relationship between the MWR measured quantity, i.e., TBν , and
the physical temperature profile of the atmosphere in the form of a Fredholm integral of the
first-kind Hanna et al. [2005]. The retrieval of temperature profile from Eq. 2.17 requires a
solution to this ill-posed problem (multiple number of temperature profiles which result in
the same measured TBν). The problem is further complicated due to the dependence of TBν
on αν(r) as well, which itself is a function of profiles of temperature, and density variables.

Figure 2.6: Layered structure of the atmosphere for the linearization of radiative-transfer-model
(RTM) (Adapted from Janssen [1993]).

Towards this end, the RTM (Eq. 2.17) is linearized Janssen [1993], by first expressing
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the integral as sums over homogeneous layers i (Fig. 2.6). In the next step, the effect of
small perturbations in the temperature, dTi, and the absorption coefficient, dαi, on the
received brightness temperature is considered. The subscript ν from TB and α is dropped
for convenience.

Fig. 2.6 shows the geometry involved in the linearization of Eq. 2.17 for a simplified
atmosphere consisting of 3 layers and under the assumption of a horizontally stratified
atmosphere. The contribution to TB from the layer i extending from r to r + ∆r can be
separated (second term), by first expressing Eq. 2.17 as

TB =

∫ r

0

T (u)α(u)κ(0, u)du+ κ(0, r)

∫ r+∆r

r

T (u)α(u)κ(r, u)du+

κ(0, r + ∆r)

∫ ∞
r+∆r

T (u)α(u)κ(r + ∆r, u)du+ TBGκ(0,∞),

= TB1 + TB2 + TB3 + TB0, (2.18)

where κ(a, b) = e−
∫ b
a α(u)du is the transmissivity in the range interval (a, b) and u is the

variable of integration.

The contribution of the ith layer, (r, r + ∆r), to the measured TB can be attributed
to three terms which are directly influenced by the changes in it, and can be identified in
Eq. 2.18 as

• direct contribution from the ith layer, TB2 = κ(0, r)
∫ r+∆r

r
T (u)α(u)κ(r, u)du,

• contribution through the transmissivity term, κ(0, r + ∆r), in TB3,

• contribution through the background term, TB0 = TBGκ(0,∞).

The response of TB to the perturbations in temperature within the ith layer, can be
calculated by taking the derivative of Eq. 2.18 with respect to temperature, in line with the
three terms identified above (see Appendix B for details),

d2TB(r) =

[(
∂TB,2
∂T

+
∂TB,2
∂α

∂α

∂T

)
+

(
∂TB,3
∂α

∂α

∂T

)
+

(
∂TB,0
∂α

∂α

∂T

)]
dT (r), (2.19)

where
(
∂TB2

∂T
+ ∂TB2

∂α
∂α
∂T

)
=
[
κ(0, r)α(r) + κ(0, r)T (r)∂α(r)

∂T

]
dr,
(
∂TB3

∂α
∂α
∂T

)
= −κ(0, r)

(
∂α
∂T

)
[∫∞
r
T (u)α(u)κ(r, u)du

]
dr, and

(
∂TB0

∂α
∂α
∂T

)
= −TBGκ(0,∞) ∂α

∂T
dr. Note that the variations

of temperature and absorption in the bottom layer, [0, r], ∂TB1

∂T
and ∂TB1

∂α
∂α
∂T

, respectively,
do not contribute to dTB(r), which results due to perturbations in the layer i, [r, r + ∆r].
Therefore, ∂TB1

∂T
|ith = 0, ∂TB1

∂α
∂α
∂T
|ith = 0.
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The quantity,

WT (r) =

[(
∂TB,2
∂T

+
∂TB,2
∂α

∂α

∂T

)
+

(
∂TB,3
∂α

∂α

∂T

)
+

(
∂TB,0
∂α

∂α

∂T

)]
/dr, (2.20)

is commonly referred as the temperature weighting functions, and it directly relates the small
perturbations in atmospheric temperature to the perturbations in the TB in an infinitesimally
small section, dr, of the atmosphere (i.e., WT (r) is a measure of the brightness temperature
increment, i.e., dTB, in response to an incremental change in temperature),

∆TB ← WT∆T. (2.21)

Although, a common practice in the remote sensing community is to call α(r) · κ(0, r) the
temperature weighting functions, this is true only when the Rayleigh-Jeans approximation
is valid for the frequencies of interest and ∂α

∂T
= 0 Janssen [1993].

The changes in the TB, however, are not always a function of temperature alone, instead
they depend upon ρ, ρWV , and ρC as well Janssen [1993]; Ulaby et al. [1986], through α

(Eq. 2.15). Hence, the total change in TB over dr can be represented by

d2TB(r) = WT (r)dT (r)dr +Wρ(r)dρ(r)dr +WρWV
(r)dρWV (r)dr +WρC (r)dρC(r)dr,

(2.22)

where Wρ(r), WρWV
(r), and WρC (r) are the weighting functions of dry density, WV, and

the clouds liquid-water. Following similar reasoning as in the derivation of Eq. 2.20,

Wρx(r) =

[(
∂TB,2
∂α

∂α

∂ρx

)
+

(
∂TB,3
∂α

∂α

∂ρx

)
+

(
∂TB,0
∂α

∂α

∂ρx

)]
/dr, (2.23)

where x can represent dry density, WV density, and the cloud liquid-water density.

The total change in TB over the full column of the atmosphere is then, the integral of
the differential changes at each height, r, that is,

dTB(r) =

∫ ∞
0

WT (r)dT (r)dr +

∫ ∞
0

Wρ(r)dρ(r)dr +

∫ ∞
0

WρWV
(r)dρWV (r)dr+∫ ∞

0

WρC (r)dρC(r)dr. (2.24)

Eq. 2.24 is known as linearized or perturbation form of the RTM. In the linearized RTM,
the changes in the measured brightness temperature, dTB(r), due to changes in the physical
temperature, dT , and the absorption coefficient, dα, that occur only at height r, are con-
sidered. The resulting sensitivity equations can be assimilated into the inversion algorithms
and adaptive filters, as “trajectory” information of TB in response to changes in temperature
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and/or absorption.

It is also important to remember that the weighting functions are calculated in reference
to some background or initial-guess profiles of all these variables (temperature, dry density,
WV density, and cloud-liquid density) Janssen [1993]; Ulaby et al. [1986].

Figure 2.7: Schematic diagram of the forward problem of estimating observations from an atmospheric
profile using the RTM Hewison [2006].

For retrieval purposes, generally, a Forward (FWD) model, which outputs a value of
brightness temperature for given profiles of temperature, pressure, and humidity etc., by
incorporating the physics behind the absorption and scattering properties of the atmospheric
constituents, at the observation frequency and viewing angle, is used. Several FWD models
Liebe [1989]; Liebe et al. [1993]; Rosenkranz [1998]; Clough et al. [2004]; Cadeddu et al. [2007];
Eriksson et al. [2011]; McGarragh [2012] have been developed over the years with varying
features and degrees of accuracy, ranging from inclusion/omission of scattering effects, WV
continuum, liquid water, pressure broadening effects, and the line parameters of oxygen
and WV. The FWD model, which will be utilized for the purposes of this PhD thesis,
was implemented at the UCOL, and is based on the additions of Rosenkranz [1998] to the
millimeter-wave propagation model (MPM) Liebe [1989]. It is a non-scattering microwave
RTM for the gas absorption, which outputs TB values for the input profiles of T, p and RH
at given frequencies and angles. Fig. 2.7 shows a schematic diagram of the use of RTM for
simulating brightness temperature measurements.

The process of inverting the measured brightness temperature, TB,meas, in order to re-
trieve the profiles of atmospheric parameters (temperature, WV density, and cloud liquid
density), generally requires an initial-guess for these profiles Rodger [2000]; Janssen [1993];
Ulaby et al. [1986]. The guess profiles are then corrected based on the difference of TB,meas
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and TB,guess (obtained via FWD-model and the guess profiles), i.e.,

δTB = TB,meas − TB,guess. (2.25)

The process can be repeated until δTB is minimized. When inverting for a particular quan-
tity, e.g., temperature profile, the measurement frequency, or the so-called spectral channel,
is chosen in such a way that the sensitivity of the measurements is maximized with respect
to the perturbations in that parameter. However, there is always some influence on the
measurements from other parameters, i.e., effect of WV and clouds on the temperature
sounding, etc. As a result, for accurate retrieval, it is best to make simultaneous use of
temperature, WV, and the cloud liquid channels, thereby, taking into account the influence
of all these profiles together, on the measured brightness temperature Janssen [1993]; Ulaby
et al. [1986].

Eq. 2.24 can be related to the standard form of Fredholm integral equation of the first-
kind,

gei = gi + εi,

=

∫ b

a

Wi(r)f(r)dr + εi, i = 1, 2, . . . , N (2.26)

where gi is the ith “perfect” measurement, εi is the observation error, Wi(r) is the known
weighting function and f(r) represents the unknown profile of temperature, and density
variables in the height interval a ≤ r ≤ b. The N measurements can come from different
measurement frequencies and/or scanning angles. The observation error, εi, can arise from
different sources, which include measurement noise, linearization errors, modelling errors,
and weighting function errors.

For computer implementation and numerical solution, a discrete number of points, j =

1, 2, . . . ,M over continuous height interval, a ≤ r ≤ b, can be defined, and the integral can
be approximated by the quadrature solutions (e.g., trapezium rule), resulting in a matrix
form,

ge = Af + ε, (2.27)

where Aij = wjWi(rj), i = 1, 2, . . . , N, j = 1, 2, . . . ,M , f =
[
f(r1), f(r2), . . . , f(rM)

]T ,
ge =

[
ge1 , ge2 , . . . , geN

]T , and wj is quadrature weight associated with the jth point.

In the simplest case of f(r) representing only the unknown temperature profile, Eq. 2.26
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can be expanded as
g1

g2

...
gN


N×1

=


w1W1(r1) w2W1(r2) . . . wMW1(rM)

w1W2(r1) w2W2(r2) . . . wMW2(rM)
...

... . . . ...
w1WN(r1) w2WN(r2) . . . wMWN(rM)


N×M


f1

f2

...
fM


M×1

. (2.28)

Figure 2.8: Weighting functions for measurements at four frequency channels (52.85 [GHz], 53.85
[GHz], 55.45 [GHz], 58.80 [GHz]) and in the zenith direction in 50-60 [GHz] Oxygen absorption band
for temperature retrieval Ulaby et al. [1986].

Fig. 2.8 shows an example of weighting functions for measurements at four different
frequencies (with zenith angle) illustrating the relevant contribution of these measurements
towards temperature retrieval at different heights Westwater and Grody [1980]; Ulaby et al.
[1986].

Another example in which f(r) represents the unknown atmospheric state given by the
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combination of two variables (the temperature and the WV profiles), can be given as
g1

g2

...
gN


N×1

=


w1W1(r1) w2W1(r2) . . . wMW1(rM)

w1W2(r1) w2W2(r2) . . . wMW2(rM)
...

... . . . ...
w1WN(r1) w2WN(r2) . . . wMWN(rM)

w1W
′
1(r1) w2W

′
1(r2) . . . wMW

′
1(rM)

w1W
′
2(r1) w2W

′
2(r2) . . . wMW

′
2(rM)

...
... . . . ...

w1W
′
N(r1) w2W

′
N(r2) . . . wMW

′
N(rM)


N×2M



fT1

fT2

...
fTM
fWV1

fWV2

...
fWVM


2M×1

, (2.29)

whereW is the temperature-weighting function andW ′ is the WV-weighting function (Noted
as WT and WWV in Eq. 2.24).

State-of-the-art inversion methods and techniques to solve Eq. 2.27 are summarized in
Sec. 2.3.2.

2.3.2 Inversion algorithms

The classical MWR inversion algorithms can be divided into the following categories Janssen
[1993]; Ulaby et al. [1986]; Solheim et al. [1998]; Chang [2001]

• Regularization Methods (RE)

• Iterative Methods (IT)

• A Priori Linear Statistical Methods (ST)

• Regression Methods (RG)

• Neural Network based Methods (NN)

• Kalman Filter based Methods (KF)

(RG) Regularization methods were developed in early 1960s and have been used for the
atmospheric retrieval problems by for example Velez-Reyes [1998]. The method works by
applying a controlled smoothing on the solution, and finding a compromise between the
weighted least-squares (WLSQ) solution to the RTM and a least-squares departure from the
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a priori guess Janssen [1993]. The general quadratic form of the regularization method is
given by

Q(f) = (Af − ge)T (Af − ge) + γ (f − f0)T (f − f0) , (2.30)

where ε = Af − ge is the error on the Fredholm integral solution, η0 = f − f0 is the error
on the a priroi guess, ge denotes the measurements, f0 is the a priori guess and γ is the
regularization parameter (always positive).

In Eq. 2.30 above, Q(f) is equivalent to the objective function

Q(f) = ‖ε(f)‖2 + γ‖η0(f)‖2, (2.31)

where the weighted Euclidean norm of the errors, ε and η0, is minimized to obtain the
solution using the regularization parameter γ.

The function Q(f) when minimized with respect to f , yields

f̂ = f0 +AT
[
AAT + γI

]−1

[ge −Af0] , (2.32)

where f̂ is the solution and I is an identity matrix. The accuracy of this solution is depen-
dent upon the accuracy of initial guess.

(IT) Iterative techniques were pioneered by Chahine (1970) and Landweber (1951). A
solution f is approached by successive approximations. The general form of linear iterative
algorithm is

f̂k = f̂k−1 +DAT
[
ge −Af̂k−1

]
k = 1, 2, . . . , (2.33)

where D is the matrix given by

D =
[
AAT + γI

]−1

. (2.34)

Kadygrov and Pick [1998] have used this technique for the retrieval of temperature profile
using measurements by an angular-scanning single-channel microwave radiometer, and have
compared the results with in situ observations.

(ST) A priori statistical methods Janssen [1993]; Ulaby et al. [1986]; Chang [2001] require
the time average profile of f and ε over their ensemble of observations, and their covariances
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as well, which are given as

< f > = E[f ]

< ε > = E[ε] ≡ 0

Sf = E
[
(f− < f >) (f− < f >)T

]
,

Sε = E
[
εεT
]

(2.35)

where Sf and Sε are the covariances of f and ε. The expectation is taken over the joint
Probability Density Function (pdf) of f and ε. The average values and the covariances can
be found by using data from RS measurements representative for a given site.

One of the first applications of statistical retrieval methods to retrieve the temperature
and humidity profiles from the MWR data was made in 1983 Hogg et al. [1983]. The method
also provided a framework for the synergy of MWR and radar instruments; the radar data
was used as the a priori information to calculate the coefficients of the retrieval algorithm.
Another attempt was made in 1986, where temperature and WV profiles were retrieved
from the MWR data Askne and Westwater [1986]. Later on, Güldner and Spänkuch [2001];
Liljegren et al. [2004] have also used statistical methods for the retrieval of the temperature
profile.

Statistical retrieval algorithms incorporating multi-frequency and multi-angle TB mea-
surements in linear or higher order terms, along with some auxiliary data, for the study of
ABL, have also been used by Crewell and Löhnert [2007].

The OEM Rodger [2000], which is a combination of the statistical and the iterative
methods, is well suited for combining a priori information and measurements from multiple
sources. A derivative of the OEM called Integrated Profiling Techniques (IPT), which com-
bines measurements from a ground-based multichannel MWR, a cloud radar, a lidar-lidar,
RS measurements from the closest station, and measurements of standard meteorological
properties with statistics derived from results of a microphysical cloud model, has been de-
veloped by Löhnert et al. [2004]. IPT has also been used for the retrieval of temperature,
WV, cloud Liquid Water Content (LWC) and particularly for the ABL studies Löhnert et al.
[2008, 2009]. Another variant of OEM, known as 1D-VAR method, was first presented by
Hewison (2006) Hewison [2006]; Hewison and Gaffard [2006]; Hewison [2007]. It utilizes
short term predictions from the numerical weather prediction model (NWP) instead of RS
data, as a priori information. 1D-VAR method has been further expanded and used for
temperature and WV retrievals by Cimini et al. [2010b, 2011]. Another use of OEM to
retrieve the temperature profile up to 50 [km] in the stratosphere, has been proposed by
Stähli et al. [2013].

(RG) Regression methods are based on the application of a set of coefficients on the
measurements, to derive a physical quantity of interest. The coefficients can be determined



32 2. Lidar and microwave radiometric atmospheric remote sensing

by the previous data records, or data from a collocated instrument. Regression methods
have been used by Güldner and Spänkuch [2001]; Solheim et al. [1998]; Tan et al. [2010],
along with other methods, for comparison and performance analysis of the retrieval methods.

Recently, another approach has been made towards the retrieval of the ML height, using
direct TB measurements Cimini et al. [2013]. This approach uses TB measurements from
the MWR and directly applies a regression coefficients, which have been calculated by the a
priori information from a collocated lidar data, to retrieve the ML height. The results are
then compared with independent lidar-retrieved MLH.

(NN) Similar to the regression methods are the neural networks, whereby the network
coefficients are trained by an existing data record. Neural-network-based methods were first
used by Measure et al. [1992], for the retrieval of atmospheric temperature profiles. Other
applications of neural networks can be found in Churnside et al. [1994]; Frate and Schiavon
[1998]; Crewell et al. [2001]; Ware et al. [2003]; Chan [2010].

(KF) Adaptive filtering methods such Kalman filter (KF) have been used in the past
for the retrieval of atmospheric temperature profile using MWR data Ledsham and Staelin
[1978]; Basili et al. [1981]. Lately, Han and Westwater [1997]; Basili et al. [2001] also
used KF-based algorithms to retrieve the atmospheric profiles of temperature and humidity.
Moreover, Rocadenbosch et al. [1998b, 1999]; Lange et al. [2014] have used the KF for the
retrieval of opto-atmospheric parameters -namely the optical extinction and the backscatter-
as well as ABLH from the lidar data.

Some other techniques for the atmospheric profiles (temperature, humidity, IWV) re-
trieval and comparative studies on retrieval techniques have been discussed in Troitsky et al.
[1993]; Trokhimovski et al. [1998]; Westwater et al. [1999]; Cimini et al. [2006].

For temperature profiling, the brightness temperature measurements at several frequen-
cies and elevations in the 50-60 [GHz] range (V-band) are correlated Crewell and Löhnert
[2007]. Consequently, the amount of information corresponding to independent pieces of
information, which can be retrieved, is rather low . Considering the RPG HATPRO, when
using information from the seven frequency channels as well as elevation scans in the V-
band, the DoF comes out to be about four Löhnert et al. [2009]; Löhnert and Maier [2012].
The low DoF translates to coarse resolution of the retrieved temperature profile which gets
poorer as we move up in height. In essence, the retrieved profile, although with high dis-
cretization, is rather smooth and thus prone to miss important atmospheric features, in
some cases.

2.3.3 Microwave radiometer instrument overview

The function of a radiometer instrument is to receive the brightness intensity in terms
of antenna temperature, transduce it in the receiver as detector voltage and then convert
the detector voltage to the source brightness temperature through appropriate calibration
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Figure 2.9: Schematic internal structure of RPG HATPRO radiometers RPG [2011].

mechanism. The measured source brightness temperature can then be used to retrieve the
atmospheric parameters of interest. As an example, Fig. 2.9 shows a schematic layout of
the internal structure of a RPG HATPRO MWR. A parabolic scanning antenna collects the
incident brightness power from atmosphere and it is split into two through a beam splitter
and fed to two receiver chains for further processing. The two receivers correspond to the K
(20-30 [GHz]) and V (50-60 [GHz]) bands for temperature and WV retrieval, respectively.
There are different types of receiver designs but here we will discuss only the direct detection
receiver and the SuperHetrodyne (superhet) receiver, which are the most common type of
receiver setups used (RPG HATPRO uses a direct detection receiver design).

2.3.3.1 Receiver systems

Fig. 2.10a shows the schematics of a direct-detection system. A directional coupler is used
to inject a precision noise signal. The noise signal is generated by an on/off switching
calibrated noise source. The low-noise amplifier (LNA) is used to amplify the input signal
before splitting it into 8 channels (currently only 7 are used). Waveguide bandpass filters
are used for splitting the input signal.

Fig. 2.10b shows a simple superhet receiver design. A superhet receiver uses the so called
heterodyne method in which an incoming radio signal, called RF signal is mixed with a local
oscillator signal called, LO signal to create a difference signal at an intermediate frequency,
called IF signal. The IF signal is then amplified and filtered to remove the unwanted
components. The filtered IF signal is finally fed to a square law detector which converts the
current signal into a voltage according to square law. The voltage signal is again amplified
and finally the brightness temperature measurement is achieved through the calibration.
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(a)

(b)

Figure 2.10: Commonly used MWR receiver systems RPG [2011]. (a) Direct-detection method used
in RPG HATPRO systems. (b) Superhet receiver showing all the stages of superhet method.
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Figure 2.11: Antenna matched resistor inside a blackbody cavity delivers the incident power at
antenna via changes in its physical temperature Ulaby et al. [1981].

2.3.3.2 Received power and antenna

In order to understand the relationship between the amount of radiation intensity incident
at the antenna and the power received, let us consider antenna as a matched resistor which
couples the incident energy into the circuit connected to it and vice versa Janssen [1993].
Fig. 2.11 shows one such setup whereby an antenna matched-resistor is placed inside a
blackbody cavity and acts as a coupler of incident radiation to the receiver circuitry. The
amount of incident radiometric power coupled through an ideally non-reflecting and loss-
less antenna to the circuit in terms of matched-resistor temperature, Tincident, is given by
Johnson-Nyquist’s law Nyquist [1928b]Nyquist [1928a]Turner [2007]

Pincident = kTincident∆f. (2.36)

k [JK−1] is the Boltzmann’s constant, ∆f [Hz] is the receiver bandwidth, and Pincident [W]
is the power incident at the surface of the antenna.

The power incident at the antenna terminal can be determined from the total bright-
ness intensity, I(θ, φ) [W ·m−2 · sr−1 · Hz−1], and apparent temperature, TAP [K], which is
the brightness-equivalent temperature as seen by the radiometer antenna and includes the
contribution from any other sources as well

Pincident =
1

2
Ar

∫∫
4π

I(θ, φ)∆fFn(θ, φ)dΩ

=
Ark∆f

λ2

∫∫
4π

TAP (θ, φ)Fn(θ, φ)dΩ (2.37)

where Ar [m2] is the aperture (effective area) of receiving antenna, Fn(θ, φ) [.] is the nor-
malized antenna radiation pattern, λ [m] is the wavelength of the incident energy, dΩ [sr] is
the differential solid angle, and I(θ, φ) = 2k

λ2TAP (θ, φ). From Eqs. 2.36 and 2.37 we get the
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antenna temperature in terms of the apparent temperature

Tincident =
Ar
λ2

∫∫
4π

TAP (θ, φ)Fn(θ, φ)dΩ. (2.38)

The antenna aperture and wavelength are related to its radiation pattern through the pattern
solid angle, Ωp, given by

Ωp =
λ2

Ar

=

∫∫
4π

Fn(θ, φ)dΩ. (2.39)

Combining Eqs. 2.38 and 2.39, we get

Tincident =

∫∫
4π
TAP (θ, φ)Fn(θ, φ)dΩ∫∫

4π
Fn(θ, φ)dΩ

. (2.40)

The radiation pattern of a real world antenna is not perfectly directional and hence along
with a main-lobe of half antenna bandwidth there are side-lobes as well, which collect the
radiation from other sources. The incident antenna temperature can, therefore, be divided
into two components i.e. a main-lobe component which is the contribution from the scene
of interest and a side-lobe component which comes from other sources.

Tincident =

∫∫
mainlobe TAP (θ, φ)Fn(θ, φ)dΩ∫∫

4π
Fn(θ, φ)dΩ

+

∫∫
4π−mainlobe TAP (θ, φ)Fn(θ, φ)dΩ∫∫

4π
Fn(θ, φ)dΩ

. (2.41)

In an ideal antenna with a narrow beam confined to the main-lobe only, the effective main-
lobe apparent temperature can be defined as

TML =

∫∫
mainlobe TAP (θ, φ)Fn(θ, φ)dΩ∫∫

mainlobe Fn(θ, φ)dΩ
. (2.42)

Using the definition of main-beam efficiency

ηM =

∫∫
mainlobe Fn(θ, φ)dΩ∫∫

4π
Fn(θ, φ)dΩ

, (2.43)

and antenna stray factor

ηm =

∫∫
4π−mainlobe Fn(θ, φ)dΩ∫∫

4π
Fn(θ, φ)dΩ

, (2.44)
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Eq. 2.41 can be rewritten as

Tincident = ηMTML + ηmTSL,

= ηMTML + (1− ηM)TSL, (2.45)

where

TSL =

∫∫
4π−mainlobe TAP (θ, φ)Fn(θ, φ)dΩ∫∫

4π−mainlobe Fn(θ, φ)dΩ
(2.46)

is effective apparent temperature of the side-lobe contribution.

Real world antennas are lossy and not all the power incident upon their surface is trans-
ferred to the underlying receiver stages. The power lost due to Ohmic losses within the
antenna is taken into account by defining the radiation efficiency of the antenna

ηL =
Pantenna

Pincident
. (2.47)

The antenna temperature, TA, in terms of radiation efficiency and equivalent temperature
becomes

TA = ηLTincident. (2.48)

Now we consider the antenna noise temperature, TN , which it produces according to Johnson-
Nyquist Law by the virtue of its physical temperature T0. The noise temperature of the
antenna in terms of its radiation efficiency and physical temperature is given by

TN = (1− ηL)T0. (2.49)

The total received antenna temperature, TR, which is delivered to the receiver circuitry is
then sum of TA and TN given by

TR = ηLTincident + (1− ηL)T0. (2.50)

From Eqs. 2.45 and 2.50 total received temperature can be presented by

TR = ηLηMTML + ηL(1− ηM)TSL + (1− ηL)T0. (2.51)

The quantity of interest in this formulation is TML, which is the received temperature
from the main-lobe of the antenna coming from the scene of interest or target is given by

TML = (
1

ηLηM
)TR − (

1− ηM
ηM

)TSL − (
1− ηL
ηLηM

)T0. (2.52)

TML is linearly related to the total received antenna brightness temperature with a slope of
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( 1
ηLηM

) and a bias of −(1−ηM
ηM

)TSL − ( 1−ηL
ηLηM

)T0.

The received radiation in the form of total received temperature is then converted to a
voltage signal by feeding it to a square-law detector. The resulting voltage signal is thus the
results of three components which include the source radiation in the form of TML, side-lobe
component in the form of TSL and self radiations of the antenna represented by T0. Since
the relationship between TML, TSL and T0 is linear as shown in Eq. 2.52, a simple calibration
mechanism can be developed to extract the source brightness temperature.

2.3.3.3 Calibration methods

Following Eq. 2.51, the output of the square law detector which is proportional to the total
power fed to it can be represented in the general form given by

Vout = GTML + a, (2.53)

where G is the total gain and a is the bias term. A simple technique for calibration of
the source temperature involves two target sources, one cold and other hot, with known
temperature values. Each source is then placed close to antenna in a blackbody container
and in the direction of its main beam, thereby resulting in two values of output voltage Vcold
and Vhot. The coefficient G comes out to be

G =
Vhot − Vcold
Thot − Tcold

. (2.54)

For cold target liquid Nitrogen is typically used, whereas the hot target is taken to be at room
temperature Janssen [1993]Hewison [2006]Crewell et al. [2001]. Recently more advanced
techniques for the calibration have been developed Han and Westwater [2000]Schneebeli and
Mätzler [2009]Maschwitz et al. [2013] which include tipping-curve method, Kalman filtering
method etc. Related to calibration is the subject of errors and bias. A thorough treatment
of these topics is covered in Meunier et al. [2013]Cadeddu et al. [2007]Hewison [2006].

2.4 The atmospheric boundary-layer

The development of the ABL over a diurnal cycle is a local phenomenon and shows a
typical cycle in clear-sky and low synoptic conditions. During day-time, the ground-surface
absorbs solar radiations, and, as a result, near-surface air warms up and starts rising, causing
turbulence and a mixing process in the boundary layer. The resulting Convective Boundary
Layer (CBL), also called ML, reaches its peak in the afternoon. At the top of CBL, the
Entrainment Zone (EZ) acts as a buffer between the CBL and the FT above. During
the night, the Earth surface cools radiatively, resulting in a SBL near the surface and
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Figure 2.12: A classical model for the development of the ABL over a full diurnal cycle, showing
various regimes of the ABL such as ML, SBL and RL. The ML starts developing after sunrise and
reaches its peak in the afternoon followed by a quick decrease around sunset (Adapted from Stull,1988
Stull [1988]).

an intermittently turbulent Residual Layer (RL) on top of it Stull [1988]. The classical
development of this phenomenon is shown in Fig. 2.12.

2.4.1 Determination of ABLH

Figure 2.13: Structure of ABL for convective (left) and stable (right) cases with mean profiles of
potential temperature, θ, wind speed, m, WV mixing ratio, r, and pollutant concentration, c Stull
[1988].

The determination of the ABLH is not a straightforward task. Firstly, it depends on the
definition of the ABL itself. The common definition of the ABL is based on the turbulence
but uncertainties and assumptions are still part of the problem Seibert et al. [2000] due
to difficulties in identifying the source and magnitude of the turbulence. Secondly, there
is no instrument or method which can measure the turbulence, directly and accurately.
Instead, as a surrogate, we can measure a proxy or driver of the turbulence. These proxies
include atmospheric temperature profile, wind profile, energy flux, and the profile of the
aerosols. Remote sensing of these parameters, provides a way for the estimation of ABLH.
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However, there are always some underlying assumptions. For example, the methods using
the temperature profile as the tracing parameter for ABL, in essence, give a measure of the
thermally-induced turbulence. These methods are not well suited for other cases, where the
turbulence can be mechanically-induced ; produced by the frictional drag of the Earth surface
as well as the friction between two layers in the atmospheric mass. All of these methods
also suffer from the complications of advection Seibert et al. [2000]; Angevine et al. [2001];
Angevine [2008]. Fig. 2.13 shows the structures of different indicators of the ABL, as well as,
the ABLH based on them. Tab. 2.1 provides an overview of the discussion above, whereby
for each indicator its key features, instruments, and their pros and cons are summarized.

2.4.2 ABLH using lidar backscatter

Several methods have been used in the literature to estimate the ABLH using the lidar
backscatter data. In general, classical ABLH estimation algorithms can be divided into two
categories:

• The geometrical approach is based on the existence of a sharp transition or edge
between the ML and the FT, in the individual profiles of the ML indicators, i.e.,
temperature, humidity, wind, and turbulence profiles from in situ or remote sensing
instruments. A meaningful transition can be detected from the time-averaged profiles
by using morphological functions, such as edge detection or gradients.

• The statistical approach uses the high variability in the return signal caused by the
mixing processes in the EZ; between cells in the EZ and cells in the FT above or in
the ML below. This approach requires the analysis of a set of profiles to produce a
statistically significant estimate of the MLH, taken as the mean MLH.

Geometrical methods include the threshold method, the gradient method, and the wavelet
method. Statistical methods include the variance/centroid method. A comparative study
of classical methods along with the newly proposed EKF method has been presented in
Lange et al. [2014]. Therefore, in the following, only a brief summary of these methods is
presented.

Threshold method - The threshold method (TM), which is also known as the critical
backscatter method, is a simple method in which a threshold value is used to detect the
transition between the “high” and the “low” level of the backscatter signal. The transition
from higher-to-lower values of the backscatter signal marks the ABL-FT transition, thus
identifying the ABLH Melfi et al. [1985]; Batchvarova et al. [1999]. This method is sensitive
to the value of the threshold, which is found by trial and error, as well noise in the backscatter
signal. Moreover, a priori knowledge of the nominal values of the “high” backscatter level
in the ABL and “low” backscatter level in the FT is also required.
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Table 2.1: Indicators and instruments used to estimate the ABLH.

Indicator (–) Instrument (∗) Pros (•) Cons (•)

Temperature

– Temperature as
indicator

∗ Radiosonde

∗ Tethered balloon

∗ Raman Lidar

∗ MWR

• Gives the thermodynamic status of the
atmosphere

• Routinely operated

• Provide in situ measurements

• High resolution

• Continuous measurements 24/7,
all weather

• Works well only under convective regimes.
Detection of ABLH not easy under stable
conditions. Multiple inversions often observed

• Sparse temporal resolution

• Safety issues, need supervision

• High cost

• Vertical resolution too coarse beyond 500 [m],
to capture temperature inversions

Vertical wind

– Vertical wind as
indicator

∗ Doppler lidar

∗ Radar wind profiler

∗ Sodar

• Direct measurement of vertical motions in the
convective and stable boundary layers

• Presence of aerosols needed

• Continuous operation

• Low cost, low minimum range,
provides 3D wind field

• Difficult to measure

• High cost, few measurements currently

• High cost, attribution problem

• Noise pollution,
affected by ambient noise

Aerosol

– Aerosol as indicator

∗ Ceilometer

∗ Research lidars

• Easy to measure with high spatial and
temporal resolution

• Relatively inexpensive

• Can also measure turbulence by computing
the variance of the backscattered signal

• Presence of aerosol is required
Advection or removal complicates the situation

• Overlap problems for stable layers.
Attribution problems

• Works well under convective regimes.
Need of attended use and analysis

WV

– WV as indicator

∗ Raman lidar

∗ Dial lidar

∗ MWR

• Provides almost same results as using
aerosols Hennemuth and Lammert [2006]

• High resolution (space and time)

• Absolute measurement

• Unattended continuous operation,
high temporal resolution

• Difficult to measure remotely
Attribution problems

• Expensive, not operational, needs calibration

• Expensive, not operational

• Low vertical resolution, calibration issues,
radio interference issues

Radon
∗ Radon meter • Direct measurement of the

status of mixing in the air
• Only in situ measurements. Uncertainties

related to the radon emission rate

Turbulence
∗ Sodar, wind lidar • Direct measurement of thermal

inhomogeneities at high temporal and spatial
resolution

• Low altitude range (≤ 1 km), works well only
under stable conditions or weak convection
Problems in populated areas

Gradient-based methods - The gradient method (GM) is used to detect the transition
from the ABL to the FT by using the gradient (or derivative) of the lidar backscatter pro-
file. ABLH is chosen as the height corresponding to maxima of the first derivative of the
backscatter profile. Similarly, another gradient-based method is the logarithmic gradient
method (LGM) which utilizes the logrithm of the first derivative to identify the contrast
between the ABL and the FT Martucci et al. [2004]. The inflection point method (IPM)
uses minima of the second derivative of backscatter profile to identify the point of inflection
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and hence the ABLH. These gradient-based methods still suffer from the random noise fluc-
tuations in the measured backscatter signal and, therefore, different techniques are used to
minimize the impact of noise on the estimated ABLH. These techniques include introducing
a threshold on the magnitude of the gradient for ABLH identification, smoothing of the
backscatter profile using Moving Average (MA) window, and time-averaging of the lidar
profiles to average out the random noise. The first two techniques, threshold on gradient
and the smoothing using MA window, still suffer from the residual noise due to their arbi-
trary nature Flamant et al. [1997]. The best results are achieved by time-averaging the lidar
profile albeit at the cost of reduced time resolution Menut et al. [1999].

Variance / centroid method - The variance/centroid method (VCM) relies on the fact
that the vertical backscatter profile exhibits a region of maximum variance (the EZ) at the
top of the ABL due to updrafts of aerosol-loaded air and downdrafts of clear-air from the
FT Hooper and Eloranta [1986]. ABLH is defined as the lowest point of maximum variance
of the backscatter profile.

Wavelet method - The wavelet method (WM) utilizes the analysis of local gradients using
a parametrization in terms of translation and dilation. An example is the Haar wavelet
transform which is an edged-shaped function and is well-suited for the detection of local
gradients and, consequently, for the identification of ABLH Cohn and Angevine [2000]. An
improvement over WM is presented in the form of STRAT algorithm Morille et al. [2007]
which combines a threshold on the Signal-to-Noise Ratio (SNR) with the wavelets of the
backscatter signal.

An inter-comparison of the four most commonly used classical methods, i.e., GM, LGM,
IPM, and VCM, has been carried out by Lange [2014] and it is shown in Fig. 2.14.

Another approach which is a trade-off between geometrical and statistical methods is
the use of an adaptive filtering solution based on the KF. The filter estimates the time-
dependent profile of an ABL parametric model by combining past estimates of the filter
with the actual measurement and basic statistical information on both the atmosphere and
lidar-instrument measurement noise.

Extended Kalman method - The EKF-based solution Lange et al. [2014] applied to the
MLH estimation problem is based on the assumption of a well-mixed convective atmosphere
so that the range-corrected backscattered lidar power, U(z) = z2P (z) (Eq. 2.8), with z the
range, is well approximated by the erf-like profile (Fig. 2.15) Steyn et al. [1999].

In the figure, βaer and βmol represent the optical atmospheric aerosol- and molecular-
backscatter coefficients, respectively (dependency on z is skipped in the figure for notation
simplification purposes). It can be shown that, particularly, towards the near-infrared (NIR)
wavelength -as is the case of most ceilometers- or in optically thick atmospheres, the range-
corrected lidar signal, U(z), is essentially proportional to βaer (equivalently, the aerosol-
mixture number concentration) in the ML, and to βmol (equivalently, the molecular number
concentration) in the FT.
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Figure 2.14: Inter-comparison of the four commonly-used classical methods. The figure contains
five traces: the range-corrected lidar backscatter, U(z), (green trace), first derivative of U(z), dU(z)

dz ,
(blue trace), second derivative of U(z), dU

2(z)
dz2 , (yellow trace), first derivative of the logarithm of U(z),

dlnU(z)
dz , (red trace), range-dependent variance of U(z) (magenta trace). Corresponding estimates of

ABLH are also shown on all the traces Lange [2014].

The erf-like profile is modelled by the four parameters of the ML state-vector, which is
estimated at each time, tk, and defined as

xk = [zML,k, ak, Ak, ck]
T , (2.55)

where zML,k is the range position corresponding to the MLH (in what follows, vertical lidar
sounding and a horizontally stratified atmosphere can be assumed, so that range is height), a
is a scaling factor related to the EZ thickness (2.77a−1), A is the total backscatter-coefficient
transition amplitude (ML load), c is FT molecular background level, and subindex k is a
reminder of discrete time tk. These four morphological parameters can directly be identified
in the erf model of Fig. 2.15.

To sum up, on one hand, all the classical ABLH retrieval methods described above,
i.e., the Threshold Method (THM), the Gradient Method (GM), and the Variance Centroid
Method (VCM) require reasonable temporal and spatial smoothing on the raw lidar data
to reduce noise to acceptable levels, thus, deteriorating the raw-resolution of the data. On
the other hand, the EKF adaptively fits the erf-like model-shape function (for the ABL)
to the lidar-measured data and minimizes the mean-squared error over time in a statistical
sense. The filter, thus, makes the most from the high temporal resolution of curve-fitting
geometrical models and the physically-significant estimates output by statistical methods
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Figure 2.15: Simplified/idealized description of the ML. (a) In the ML model, U(z) is the range-
corrected idealized (noiseless) lidar signal. (b) Idealized ML erf-curve transition model, h(z), for the
total backscatter coefficient with characteristic parameters, zMLH , a, A, and c. z1 and z2 are the start-
and end-range limits defining the length of the observation vector passed to the filter. z

′

1 and z
′

2 are
the start-range and end-range limits of the erf-like ML transition. (Adapted from Lange et al. [2014]).

without compromising the raw-resolution of the data.

2.4.3 ABLH using MWR-retrieved temperature

In contrast to lidar, the MWR is not only able to retrieve the vertical profile of atmospheric
temperature but also to capture low-height nocturnal temperature inversions. Therefore, it
is suitable for for both retrieval of the day-time MLH and the night-time SBLH. However,
the resolution of the retrieved-temperature profile is poor and decreases significantly with
height.

The most commonly available ABLH (MLH as well as SBLH) estimation methods based
on MWR-retrieved temperature data in the literature are summarized below.

2.4.3.1 MLH estimation using MWR-retrieved temperature

Parcel method - The parcel method (PM) Holzworth [1964] is based on the thermodynamic
stability of the atmosphere. For a given profile of physical temperature, T (z) [K], retrieved
from brightness temperature measurements, the MLH is the point for which θ(z) ≥ θ0,
where θ0 is the surface value of the potential temperature. Though parcel method is a
simple and commonly used method for MLH retrieval, it does not provide any information
on the uncertainties associated to the MLH estimates. Fig. 2.16a shows an example of
parcel method applied on MWR-retrieved potential temperature profile from 18.04.2013,
14:01 [UTC], Jülich, Germany.
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(a)

(b)

Figure 2.16: ABLH from MWR-retrieved temperature data. (a) Day-time MLH using parcel method
on a MWR-retrieved potential temperature profile. The estimated MLH is set as the first point on
height-grid when the atmospheric potential temperature is equal to or higher than the surface potential
temperature. (b) SBLH using five physical models applied on MWR-retrieved potential temperature
profile. The best fitting, in terms of Minimum Mean-Square Error (mMSE), is achieved by the expo-
nential model.
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Bulk Richardson method - The Bulk Richardson (bR) method uses the gradient of the
potential temperature and horizontal wind components to compute a turbulence indicator,
Rib Garratt [1992].

Rib =
gz
(
θ(z)− θ(z0)

)
θ
(
U2(z) + V 2(z)

) , (2.56)

where θ is the mean value of z0 and z, and U and V are the two horizontal components of
the wind. The ABLH is determined as the first elevation level where Rib exceeds a critical
value (0.15-0.40) Jeričević and Grisogono [2006]. For the critical value set to 0, bR method
becomes identical to PM method.

2.4.3.2 SBLH estimation using MWR-retrieved temperature

Idealized physical models - Five idealized physical models for the stable boundary-layer
temperature profile are available in the literature Stull [1988]. These five models include
stable-mixed, mixed-linear, linear, polynomial and exponential models (details in Chap. 4,
Sect. 4.1.2). For SBLH estimation, on a given temperature profile these five models are
fitted by using a Least-SQuares (LSQ) approach. The best fitting model is chosen as the
one which fits with the minimum Root-Mean-Square Error (RMSE). Fig. 2.16b shows an
application of the five idealized physical models on a MWR-retrieved potential temperature
profile from 24.04.2013, 21:00 [UTC], Jülich, Germany.

Gradient method - Recently, a temperature gradient-based method for the retrieval of
SBLH has been presented by Collaud Coen et al. [2014]. SBLH is chosen as minimum height
where gradient of the MWR-retrieved potential temperature is minimum, thus, signifying
transition from the SBL to the RL.

All of these methods, while providing thermodynamically consistent estimates of the
ABLH, suffer from high uncertainties due to the poor resolution associated to the MWR-
retrieved temperature data. Key features of some of the ABLH estimation methods based
on lidar and MWR data are summarized in Table 2.2. An important point to notice is
that different methods can output different ABLH estimates with different errorbars (if,
at all, available) at a given location and time. The reason for this disagreement can be
attributed to inconsistency between the indicators (e.g., potential temperature profile vs.
aerosol concentration profile) Seibert et al. [2000]; Hoff et al. [2012]; Illingworth et al. [2013].
Moreover, the minimum altitude for reliable detection associated with the instrument and
sounding techniques, is also a limiting factor.
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Table 2.2: Overview of the ABLH estimation methods.

Method Indicators Instruments Characteristics

Parcel Method (PM) Holz-
worth [1964]; Fisher and
Thomson [1998]

• Temperature • RS, MWR

• PM works by following a dry adiabatic
line from the surface temperature until
it intersects the measured temperature
profile

• Computes the height to which an air
packet at the ground will adiabatically
rise (neglecting advection, subsidence
and air humidity)

Bulk Richardson Number
Method (bR) Praz [2013];
Fisher and Thomson [1998];
Jeričević and Grisogono
[2006]; Szintai [2010]

• Temperature,
horizontal wind
components

• RS, MWR

• Uses the gradient of the potential tem-
perature and horizontal wind compo-
nent to compute a turbulence indica-
tor, bR.

• The ABLH is determined as the first
elevation level where bR exceeds a
critical value (0.15-0.40)

• For the critical value set to 0, bR be-
comes identical to PM method.

Gradient method (GM),
Logarithmic gradient
method (LGM), Thresh-
old method (THM), Inflec-
tion point method (IPM),
Centroid/variance method
(VCM), Wavelet method
(WM), STRAT method Mar-
tucci et al. [2004]; Melfi et al.
[1985]; Hooper and Eloranta
[1986]; Cohn and Angevine
[2000]; Haeffelin et al. [2012];
Morille et al. [2007]

• Backscatter profile
• Backscatter lidar,

ceilometer

• Are based on the fact that a high
concentration of well mixed aerosols
exist in the ML, whereas a signifi-
cantly lower concentration of aerosols
is found in the FT

• Given this sudden change in concen-
tration, the ABLH is determined us-
ing different derivative and morpho-
logical variants: GM, LGM, THM,
IPM, VCM

EKF based Method Lange
et al. [2014]

• Backscatter profile,
Temperature

• Backscatter lidar

• ABLH is estimated by means of
an adaptive procedure combining
present and past estimates, given the
backscattered lidar signal profile, ABL
shaping model, and covariance infor-
mation

• Successful ABLH estimation using
backscatter lidar signals

2.4.4 Motivation for synergy

Considering the lidar and the MWR, both instruments have their own strengths and limita-
tions, as shown in Tab. 2.3. By comparison, it becomes clear that a synergetic method which
exploits the strengths of the two instruments is expected to provide physically consistent
and highly-resolved estimates of the ABLH with low uncertainty.
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Table 2.3: Strengths and limitations of lidar and MWR instruments for ABLH estimation.

Lidar MWR
(+) Provides highly-resolved (spatial:
25 [m] on average, temporal: from sec-
onds to a couple of minutes) estimates
of the ABLH.

(+) Provides physically consistent es-
timates of ABLH since temperature is
closely related to the actual thermody-
namic state of the atmosphere.

(+) ABLH estimates are consistent
with RS only under well-mixed atmo-
spheric conditions.

(+) Good temporal resolution (a couple
of minutes, typically).

(-) Lacks physical consistency, meaning
aerosols under certain atmospheric con-
ditions are not reliable indicators of the
ABLH, especially at night and during
morning/evening transitions times.

(+) Is able to follow the nocturnal
SBLH and morning/evening transitions
reasonably well.

(-) Limited in cloudy and rainy condi-
tions.

(+) Can work under cloudy and rainy
conditions, in principle.

(-) Incomplete overlap (several hundred
meters for bi-axial systems).

(-) Is limited by the high spatial uncer-
tainty (400 [m] on average) associated
to the ABLH estimates.

2.5 Conclusions

This chapter has summarized the basic principles of lidar and MWR remote sensing with
focus on ABLH retrieval. Sect. 2.2 has revisited the elastic lidar equation along with the
concepts of extinction and backscatter coefficients from the perspective of the ceilometer
instrument. Sect. 2.3 has reviewed the foundations of the RTM from MWR brightness
temperature measurements and its related instrument architecture. Finally, Sect. 2.4 has
presented the ABLH in the context of the diurnal cycle and it has briefly outlined different
ABLH estimation methods from the lidar and the MWR perspective.



Chapter 3

Daytime mixing-layer and
morning/evening transition
boundary-layer

This chapter reviews the estimation of daytime MLH and morning/evening transition boundary-
layer height. Special attention has been paid to the analysis of uncertainties associated to the es-
timation of MLH from lidar and MWR data, as well as highlighting the strengths and limitations
of the two instruments. In this context, a simple synergetic MLH estimation method is presented
along with a first test of its operation.

The contents of this Chapter are part of the papers Saeed and Rocadenbosch [2016a] submitted to IEEE Transac. Geosc.

Rem. Sensing, and Saeed et al. [2015b] published in Proc. of SPIE, 2015. Systematic or multiple reproduction or distribution

to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

3.1 Introduction

There are several ground-based instruments and methods for the estimation of MLH. Some
of the commonly used instruments include active ones such as the lidar, the radar, and
the sodar, and passive ones like the MWR. The EKF is a recent and robust method for
MLH estimation Lange et al. [2014] using backscattered lidar signals. The parcel method
Holzworth [1964] is commonly used with MWR-retrieved potential temperature data.

Most of the previous work done for MLH retrieval using backscattered lidar signals or
temperature data has been focused on retrieval methods only Haeffelin et al. [2012]; Lange
et al. [2014]; Cimini et al. [2013]. However, the uncertainty associated to the estimated MLH
has not been paid much attention. Hence, the impact of instrumental measurement errors
and retrieval errors on MLH estimates needs to be assessed for the purpose of comparison
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and reliability of the instruments and methods.
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Figure 3.1: Block diagrams illustrating the lidar- and MWR-processing chains used to estimate
the MLH and related errors. Top and bottom diagrams stand for the lidar and MWR instruments,
respectively. β(z) is the attenuated backscatter, ν(z) is the related corrupting noise, zLIDARMLH is the lidar-
EKF estimated MLH, σPMLH is the estimated MLH error. Tb(ν, φ) is the MWR brightness temperature
measured at frequency ν and elevation angle φ, θ(z) is the retrieved potential-temperature profile,
∆zTb

is the MLH error component due to brightness temperature errors, ∆Tb, ∆zres is the MLH
error component due to coarse vertical resolution in the brightness-temperature-to-absolute-temperature
retrieval process. z stands for the vertical range. ∆zLIDARMLH and ∆zMWR

MLH stand for the total estimated
error on the MLH for the lidar and MWR instruments.

In this chapter, we aim to study the impact of measurement and retrieval errors on
MLH estimates from ground-based lidar and MWR instruments by using EKF estimation
and parcel-method schemes, respectively, as well as the potentialities of both instruments
for MLH retrieval. The simplified processing chain of Fig. 3.1 is considered.

Concerning the lidar sensor, the noise-corrupted backscattered lidar signal (level-0 prod-
uct) is background-subtracted and range-corrected (level-1)Measures [1992] before the MLH
is estimated (level-2). In the lidar case, assessment of MLH estimation errors is, in principle,
simpler than for the MWR because MLH lidar-estimation algorithms always depart from
the clean range-corrected data (level-1) to estimate it. As a result, the error-propagation
law in response to noisy lidar raw data is dictated by the MLH estimation algorithm. In
the present application, an EKF estimator is used for this purpose and it will be seen in
Sect. 3.2.1 that this estimator provides a convenient way to assimilate measurement errors
via covariance matrix information Rocadenbosch et al. [1999]; Lange et al. [2014].

In the case of the MWR, brightness-temperature measurements (level-0 product) are
converted into a potential-temperature profile (level-1) by means of a statistical retrieval
algorithm Löhnert and Crewell [2003]; Crewell and Löhnert [2003] and auxiliary atmospheric
temperature and pressure data. Ultimately, the retrieved potential-temperature profile is
used to estimate the MLH (final level-2 product).
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For the purpose of MLH estimation from MWR measurements at least two different
types of error sources can be outlined by origin: (i) MLH errors originating as brightness-
temperature measurement errors (∆Tb in Fig. 3.1), which account for random errors as-
sociated to instrumental thermal (Johnson) noise and systematic errors (e.g., biases and
calibration offsets) Löhnert and Maier [2012]. Crewell et. al. (2007) Crewell and Löhnert
[2007] have successfully assessed the impact of brightness temperature measurements on the
retrieved absolute temperature atmospheric profile. Since, as mentioned, the MLH is directly
estimated from the temperature profile (in fact, converted into a potential temperature pro-
file, θ(z)), errors on the retrieved temperature profile need to be related to the uncertainty
on the estimated MLH. All considered, brightness-temperature errors incur an error ∆zTb
in the estimated MLH. And (ii) MLH errors originating as retrieval errors (i.e., errors as-
sociated to the brightness-temperature-to-absolute-temperature retrieval algorithm), which
roughly show up as a decreasing spatial resolution with height. Ultimately, this is a conse-
quence of the low DoF -or correlation- among the different frequencies and elevation-scanned
profiles. In what follows, and for the purpose of this work, this kind of errors will simply
be called resolution errors because they ultimately translate into a resolution uncertainty
in the estimated MLH

(
∆zres(z)

)
.

When comparing both instruments, on one hand, lidar sensors have better spatial res-
olutions (e.g., 15 [m] for Jenoptik CHM 15k Nimbus ceilometer). Yet, because they rely
on attenuated backscatter returns from the atmosphere (i.e., intensity echoes) they lack
physical consistency with the thermodynamic state of the atmosphere. On the other hand,
MWR sensors have a much poorer vertical resolution (evidenced by a typical discretization
of 50-to-250 [m] from ground level up to 4 [km] in height for a HATPRO MWR). In contrast,
because the MWR measures brightness temperatures, which are consequence of atmospheric
blackbody radiation, these measurements are physically consistent with the true thermody-
namic state of the atmosphere. In this context, a synergetic MLH estimation combining
data from the two instruments is motivated and a first test of a simple synergetic approach
is presented.

3.2 Overview of MLH estimation: Lidar- and MWR- ob-

servation cases

3.2.1 Lidar MLH-estimation method

There are different methods and approaches for MLH estimation using lidar backscatter
data. Classical methods such as the gradient method Endlich et al. [1967]; Flamant et al.
[1997], the inflection point method Menut et al. [1999], the variance method Hooper and
Eloranta [1986], and the threshold method Melfi et al. [1985]; Boers and Eloranta [1986] are
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either based on the geometry of the profile or the statistics of a set of profiles. All of these
methods require some form of averaging to improve the SNR which means that temporal
resolution of the MLH estimates is usually low (typically, 30-min). These classical methods,
therefore, try to average out the random noise. In contrast, the EKF-based MLH estima-
tion method Lange et al. [2014, 2015], which departs from previous works of Rocadenbosch
et al. [1998b, 1999], does not require averaging of the profiles to improve SNR. Instead, it
assimilates noise statistics into the noise covariance matrix to provide optimal estimation.
Therefore, the original resolution of the data is preserved.

In the following, a summary of the EKF method for MLH estimation from lidar backscat-
ter data is presented Lange et al. [2014]:

The ground of adaptive estimation is to model the phenomenon under study (in this
case the ML) with a set of appropriately chosen parameters, the so-called the state-vector,
and which are allowed to change with time. Its roots come from the military industry in
which the

[
x(tk), y(tk), z(tk)

]
coordinate position of a target plane at discrete time tk is to

be acquired and tracked with time from e.g., a missile, with minimum least-squared error
over time.

In the UPC KF solution applied to MLH estimation, a convective atmosphere is as-
sumed so that the range-corrected backscattered lidar power, U(z), with z the range, is well
approximated by the erf-like profile of Fig. 2.15 (Chap. 2, Sect. 2.4).

The EKF is based on two main models, namely, the state-vector model and the measure-
ment model along with related covariance matrices.

The state-vector model is representative of the transition of state-vector from time tk to
tk+1. It is approximated by a simple Gauss-Markov model of the form

xk+1 = xk +wk, (3.1)

where wk is the state-noise vector with diagonal covariance matrix modelled as Qk =

diag[σ2
zMLH

, σ2
a, σ

2
A, σ

2
c ] with σx, x=zMLH , a, A, c representing “guessed” standard deviations

associated to the state-vector components, zMLH , a, A, and c, which are approximately
input from the user’s side.

The measurement model relates the lidar measurement vector, zk, with the state-vector,

zk = h(xk) + vk, (3.2)

where h is the erf-like ML-to-FT transition model, given by

h(z; zMLH , a, A, c) =
A

2

{
1− erf

[
a√
2

(z − zMLH)

]}
+ c, (3.3)

and vk is the observation noise at time tk and z is the vertical range. The observation
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noise, vk, is modelled by its noise covariance matrix, Rk (See [Barlow, 1999, p. 215]). The
nonlinear model of Eq. 3.3 is linearized through its Jacobian and passed to the filter.

The input to the EKF (zk in Eq. 3.2) is the noisy range-corrected background-subtracted
backscattered lidar signal, U ′(z) = z2P ′(z) or, equivalently, the noisy attenuated backscatter
coefficient measured by the ceilometer, β′(z), if U ′(z) is scaled by the ceilometer system
constant (see details in Eq.(3) [Lange et al., 2014]). For conceptual reasons, we will use here
the term “attenuated backscatter” instead of “range-corrected power”.

The noise term, v(z), in Eq. 2.11 assimilates into a single body different types of noises,
namely, photo-induced-signal shot noise, dark shot noise, and thermal noise. However, if the
count numbers are high enough (> 50 counts/s) -as it is usually the case- and according to
the central-limit theorem Barlow [1989a], the statistics of v(z) can be modelled as equivalent
Gaussian process (App. A in Rocadenbosch et al. [1998a]).

3.2.2 MWR MLH estimation method

The parcel method is normally used for MLH estimation using potential temperature data
Holzworth [1964]. This method is based on the thermodynamic stability of the atmosphere.
For a given profile of physical temperature, T (z) [K], retrieved from the brightness measure-
ments, the first step is to convert it to a potential temperature profile, θ(z) [K], using

θ(z) = T (z)

(
p0

p(z)

) R
Cp

, (3.4)

where R = 287
[
J ·K−1 · kg−1

]
is the universal gas constant, and Cp = 1004

[
J ·K−1 · kg−1

]
is the specific heat capacity at a constant pressure, thereby, R

Cp
is 0.286 [·] Wallace and Hobbs

[2006].

The potential temperature profile, θ(z), is then followed from the surface along the
vertical direction and any changes in θ(z) with respect to height, dθ(z)

dz
, are indicative of the

stability of the atmosphere as follows: The atmosphere is stable when dθ(z)
dz

> 0, neutral
when dθ(z)

dz
= 0, and unstable when dθ(z)

dz
< 0.

Since the mixed layer during day-time is characterized by continuous surface driven
convective mixing, it is an unstable atmosphere and, hence, dθ(z)

dz
< 0. The height of the ML

is the point in a given potential temperature profile for which θ(z) ≥ θ(0) where θ(0) is the
surface value of the potential temperature. However, since the potential temperature profile
from MWR measurements is subject to errors, there is an range of uncertainty associated
with the MLH estimated by the parcel method. In order to determine this uncertainty,
measurement and retrieval uncertainties associated to the potential temperature profile must
be taken into account.
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3.3 The need of a synergetic MLH retrieval method

3.3.1 Uncertainties on MLH estimation from lidar and MWR data

3.3.1.1 Lidar-retrieved MLH error estimation

The recursive loop of the EKF provides by itself convenient error estimates for the esti-
mated state vector and, therefore, for the estimated MLH at each discrete time tk. These
approximate error estimates are obviously subordinated to filter convergence.

In detail, the uncertainty associated to the initial state-vector guess is supplied by the
user in the form of the a priori error-covariance, matrix, P−0 ,

P−0 = E
[
e−0 e−T0

]
, (3.5)

where e−0 = x0 − x̂−0 the a priori error (here, x0 represents the true atmospheric state
(unknown) and x̂−0 is the initial state-vector estimated by the user).

A priori and a posteriori error covariance matrices (i.e., “previous” to and “after” assim-
ilating the current measurement, zk) are updated at each successive time instant during the
EKF processing cycle as a function of the current information available to the filter (actual
Kalman gain or projection gain, linearised Jacobian, and state-vector- and noise-covariance
matrices).

Of importance is correct estimation of the measurement noise. Towards this end, the
observation or measurement noise, vk, is taken into account through the noise-covariance
matrix,

Rk = E
[
vkv

T
k

]
, (3.6)

where E(.) is the expectancy or ensemble operator. The N-component vector, vk, (v(z) in
Eq. 2.11 analog form) corresponds to heights 1, . . . , N . To estimate the noise-covariance
matrix at each successive tk we assume a main diagonal matrix, where each element along
the diagonal represents the noise variance along the vertical range dimension (i.e., height),
and we use the methodology exposed in [Lange et al., 2015, Sect. III. C]. Here, ergodicity is
used to estimate the time statistics of noise (which requires an ensemble of time observables)
by means of the spatial statistics along adjacent height intervals of the current measurement
(which requires just the current observable, instead).

Fig. 3.2 shows the a priori error, a posteriori error, and state-noise estimated vari-
ances computed as the standard deviation of these variables as a function of time (σP−MLH ,
σPMLH , σ

Q
MLH , respectively) from Jenoptik CHM 15k Nimbus ceilometer measurements on

18.04.2013 at Jülich, Germany. The a priori error always remains slightly higher (or very
close to as time goes on) than the a posteriori error meaning that the error reduces with each
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Figure 3.2: Lidar-EKF estimated MLH error as a function of time. σP
−

MLH , σPMLH , σQMLH stand
for the estimated a priori error, a posteriori error, and state-noise standard deviations on the MLH,
respectively. Case study: 18.04.2013, Jülich, Germany.

new measurement assimilated. These error indicators approach at specific time intervals the
lower bound σQMLH , representative of the estimated atmospheric MLH variability.

3.3.1.2 MWR-retrieved MLH error estimation

The uncertainty associated to the MLH estimates from MWR has two underlying error
sources that include: (i) the instrumental uncertainty due to the brightness-temperature
measurements and consequent propagated errors on the retrieved potential temperature,
∆zTb , and (ii) the uncertainty due to the coarse vertical resolution (a consequence of the
low DoF in the measurement data Löhnert et al. [2009]; Löhnert and Maier [2012]) of the
retrieved potential temperature profiles, ∆zres. Fig. 3.1 depicts a block-diagram represen-
tation of these two error sources and their propagation to the final MLH estimate, which is
discussed next:

Assessment of brightness-temperature errors on the estimated MLH, ∆zTb - A study on
the impact of measurement errors on the retrieved temperature profile has been done by
Crewell et al. (2007) by using a statistical retrieval algorithm trained on a long-term dataset
of representative atmospheric profiles Crewell and Löhnert [2007]. A synthetic brightness-
temperature dataset was used to test the performance of the retrieval algorithm that, in
response, output altitude-dependent temperature uncertainties, ∆T (z), which varied from
0.44 [K] on the ground to 1.60 [K] at 4 [km].

In order to study the uncertainty on MLH estimates due to temperature retrieval errors,
∆zTb , we adopt the following approach: At each time instant, retrieved height-dependent
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Figure 3.3: Estimation of the MLH error due to brightness-temperature measurement errors, ∆zTb
.

Upper (dashed)- and lower (dotted)-bound profiles are obtained by adding and subtracting the height-
dependent temperature error-perturbation profile, ∆θ(z), to the nominal potential-temperature profile,
θ(z). Black squares indicate the estimated MLH for each profile according to the parcel method.
Measurement data from 18.04.2013, 14:01 UTC, Jülich, Germany.

temperature errors, ∆T (z), or equivalently, potential-temperature errors -in our case-, ∆θ(z),
are added and subtracted to/from the given potential temperature profile resulting in “up-
per” and “lower” bounds. Parcel method is then applied to the three perturbed profiles of
such potential temperature profile (Fig. 3.3): (i) θMWR(z)+∆θ(z) or upper error-bound pro-
file for the potential temperature, (ii) θMWR(z) or nominal profile, and (iii) θMWR(z)−∆θ(z)

or lower error-bound profile. Three independent estimates for the MLH are derived from
the three profiles and hence an error-bar for the MLH is obtained. Fig. 3.3 shows error-
bar calculation for the temperature profiles retrieved from measurements on 14:01 UTC,
18.04.2013 using the HATPRO MWR at Jülich, Germany. It can be observed that retrieval
errors on the order of less than 2 [K] throughout the vertical profile introduce an uncertainty
of about 300 [m].

Assessment of vertical resolution errors on the estimated MLH, ∆zres - Along with mea-
surement errors, MWR-based temperature retrieval suffers from the limited information
content within the measurements. Measurements at several frequencies and angles are cor-
related meaning the DoF of the data is low and, therefore, the retrieved temperature profiles
have coarse vertical resolution.

The discretization grid of Tab. 3.1, which has been used for the retrieval of temperature
profiles in this work, increases with height in accordance with the true decreasing vertical
resolution of the temperature retrievals from the instrument. Therefore, for simplicity, ∆zres
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Table 3.1: Discretization of vertical temperature retrieval grid upto 4 [km].

Height [m] Discretization step [m]
0 ≤ z ≤ 250 50

250 < z ≤ 700 75

700 < z ≤ 1000 100

1000 < z ≤ 1600 150

1600 < z ≤ 2000 200

2000 < z ≤ 4000 250

is roughly approximated as a function of height by the value of the discretization steps of
Tab. 3.1. This assumption is just a very rough approximation of the true vertical resolution
of the temperature retrieval and it is still a matter of investigation (see Chap. 6, Fig. 6.7,
where preliminary results for temperature retrieval errors using LES data provide further
insight).

After determining the uncertainty on MLH due to measurement errors, ∆zTb , and re-
trieval errors, ∆zres, the total uncertainty associated to the MLH estimates, ∆zMWR

MLH can
simply be calculated by using standard error propagation laws Barlow [1989a]; Rocadenbosch

et al. [2012] as
∣∣∆zMWR

MLH

∣∣ =
√∣∣∆zTb∣∣2 + |∆zres|2 (alternatively, and considering the rough

degree of approximation involved,
∣∣∆zMWR

MLH

∣∣ =
∣∣∆zTb∣∣+ |∆zres|).

3.3.2 Results and discussion

Following the methods described in Sect. 3.2.1 and Sect. 3.2.2, MLH estimates from lidar
and MWR data along with errorbars are respectively discussed next for a day with typical
ML development. Lidar backscatter data from a Jenoptik CHM-15k Nimbus ceilometer and
potential temperature data retrieved from a RPG HATPRO MWR, on 18.04.2013 during
the HOPE campaign at Jülich, Germany, are used.

It is a day with classic mixing layer development and weak or negligible synoptic con-
ditions. In the morning, after sunrise at 04:30 UTC, the Earth surface starts to warm-up
due to the absorption of solar heat, which is followed by convection-driven turbulence. The
mixing layer starts developing at around 06:00 UTC and, after going through a morning tran-
sition between 06:00-11:00 UTC, reaches its maximum height in the afternoon at around
14:00 UTC. The process is reversed in the evening where the mixed layer starts its decay
sometime around the sunset which is at about 18:45 UTC. The evening transition between
15:00 UTC and 19:00 UTC is marked by a quick fall of the convection-driven turbulence at
the surface.

Fig. 3.4a and Fig. 3.4b, respectively, show the color-plot of the ceilometer backscattered
signal and MWR-retrieved potential temperature for the 24-h cycle of the day. MLH esti-
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Figure 3.4: Measured ceilometer backscatter and potential temperature data along with MLH esti-
mates (18.04.2013, Jülich, Germany). (a) Colorplot of the attenuated backscatter profile measured by
the Jenoptik CHM 15K Nimbus ceilometer (colorbar in [a.u.]). (b) Colorplot of the MWR-retrieved
potential temperature (colorbar in [K]). (Both panels) Vertical arrows mark sunrise and sunset times.
Doppler-lidar measured MLH (green dots). Radiosonde derived MLH (black squares).
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mates from the lidar-EKF method using ceilometer backscatter data (Sect. 3.2.1) and from
the MWR-parcel method using potential temperature data (Sect. 3.2.2) are also shown. By
comparing Fig. 3.4a and Fig. 3.4b it becomes clear that the lidar-EKF method (Fig. 3.4a)
follows well the ML to FT transition. However, it is unable to follow the morning and
evening ML transitions (06:00-11:00, 15:00-19:00 UTC) and, it tracks the RL, instead. A
lofted aerosol layer, possibly due to synoptic advection, is also visible between the time
interval 02:00-05:00 UTC at the height range 1500-2500 [m]. In contrast, the MWR-parcel
method (Fig. 3.4b) not only provides MLH estimates for the mixed layer during the day-time
but it also follows morning/evening ML transitions. The potential-temperature color-plot
of Fig. 3.4b also correlates well with the idealized development of the mixed layer. However,
and more importantly, the two MLH estimation methods also need to be compared in terms
of the uncertainty on the MLH estimates and associated spatial and temporal resolutions.
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Figure 3.5: Profiles of the potential temperature and MLH estimates (parcel method) in response to
radio-soundings at 07:00, 09:00, 11:00, 13:00, 15:00, and 17:00 UTC, 18.04.2013, Jülich, Germany.

Towards this end, the time intervals corresponding to morning/evening ML transitions
and the fully-developed ML need to be determined. Radiosonde MLH and Doppler lidar
MLH estimates are used for this purpose. Fig. 3.5 shows potential temperature profiles for
six radiosonde launches at 07:00, 09:00, 11:00, 13:00, 15:00, and 17:00 UTC, along with
indication of the MLH estimated by the parcel method. At 07:00 and 09:00 UTC the MLH
lies between 700 and 800 [m] in height and then quickly rises to 1640 [m] by 11:00 UTC.
The sudden rise in the MLH during the early morning is a characteristic of the morning
ML transition, which in this case is between 06:00 and 11:00 UTC. From 11:00 to 17:00, the
MLH varies between 1640 to 2140 [m], a moderate change over a 6-h time interval. However,
when comparing with MLH-Doppler lidar (Fig. 3.4), it appears that turbulence started to
cease by 15:00 UTC which makes the start of the evening ML transition.
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In order to discuss the uncertainty associated to the EKF MLH estimates in Fig. 3.4,
we focus on the time interval 06:00-19:00 UTC. To process this time interval, the lidar-EKF
method was re-initialized at 06:00 UTC with default values for the state-vector and the error
covariance matrices. This re-initialization was necessary for two reasons: The presence of
an early morning cloud at the height of 1 [km], and to avoid the assimilation of past-time
estimates and related error statistics corrupted by the cloud intrusion at around 05:00 UTC.

Thus, Fig. 3.6a shows MLH and related error-bar estimates from the lidar-EKF method
(Sect. 3.3.1.1) along with MLH estimates from the six RS launches at the times mentioned
above and MLH estimates from the Doppler lidar. It emerges that the EKF follows the MLH
in excellent agreement with the Doppler lidar reference for the ML time interval between
11:00-15:00 UTC, where the ML is well developed but slightly apart in the transition times
(06:00-11:00 UTC and 15:00-19:00 UTC), where the ML experiences fast changes in height.
The computed RMSE is 105 [m] (excluding the transition times). During part of the early-
morning transition time (06:00-09:00 UTC), the EKF is still somehow ambiguated by the
presence of the cloud layer (around 1 [km] in height) and its reminiscence in the assimilated
statistics. In the 15:00-19:00 UTC transition time the EKF is ambiguited by the RL, instead.

The uncertainty on the MLH estimates from the lidar-EKF method is shown as 3-σ
error-bars. As mentioned, the EKF formulation provides the a posteriori error associated
to the state-vector estimates and, therefore, the calculation of the uncertainty on MLH is
inherent to the method. For this study case, the 3-σ uncertainty on the MLH is on average
±91 [m] in the time interval 11:00-15:00 UTC.

In Fig. 3.6b corresponding MLH estimates using the MWR-parcel method are shown.
Following the approach of Sect. 3.3.1.2 MLH error-bars are also shown. Here, it is pertinent
to notice that error-bars, in the time interval 11:00-15:00 UTC (fully developed mixed layer)
are ±483 [m] on average, a much higher figure than EKF error-bars for the lidar case.

Following the discussion above, it becomes clear that both instruments have their own
strengths and limitations. On one hand, the lidar-ceilometer provides highly resolved (±91

[m] 3σ average) estimates of the MLH but it lacks physical consistency, especially at morn-
ing/evening ML transitions times. On the other hand, the MWR is able to follow morn-
ing/evening ML transitions reasonably well but is limited by the high uncertainty (±483
[m] on average) associated to its MLH estimates.

Therefore, a synergetic method which exploits the strengths of the two instruments is
expected to provide highly resolved estimates of the MLH with low error-bars. In this
context, MWR estimates can be used to narrow and disambiguate the search interval of
the lidar-based MLH-estimation method to be used (e.g., any morphological method like
the threshold method Melfi et al. [1985] or more sophisticated ones like the EKF in this
paper, still a matter of research). Such an approach would provide physically consistent
estimates of MLH while also disambiguating multiple layers scenarios, in which sometimes
it is difficult to come up with a correct estimate of the MLH.
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Figure 3.6: Detail of Fig. 3.4 during day-time (06:00-19:00 UTC) along with estimated error-bars.
(a) Lidar-EKF MLH estimates and related errorbars (magenta trace). Doppler-lidar measured MLH
(green dots). Radiosonde derived MLH (black squares). (b) MWR-parcel-method MLH estimates and
related errorbars (grey trace). Radiosonde derived MLH (black squares). Colorbars same as in Fig. 3.4.
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Figure 3.7: MLH error-bars obtained from lidar-EKF and MWR-parcel methods are superimposed
on each other. Proposed scheme for lidar-MWR synergy is based on the fact that coarse MWR-parcel
error-bars define the search interval for lidar-based MLH estimators.

Fig. 3.7 tentatively shows the proposed scheme where MLH estimates from the two meth-
ods along with related error-bars are super-imposed on each other. As it can be observed,
MLH estimates from the lidar-EKF and MWR-parcel methods agree well with each other
and with MLH-radiosonde and MLH-Doppler lidar estimates (truth references in this study)
when the ML is fully developed (11:00-15:00 UTC). However, during morning and evening
ML transition times (06:00-09:00 UTC and 15:00-19:00 UTC) the lidar-EKF method follows
the RL, instead. In the ML transition times, only the MWR-parcel method yields correct
MLH estimates.

3.4 First test of the synergetic use of lidar and MWR

observations for MLH detection

3.4.1 Synergetic MLH estimation method

In order to come up with a synergetic method for the estimation of the MLH it is important
to identify the morphological features associated to the development of ML over the course
of a day. Fig. 3.8a shows a color-plot of the standard deviation of the vertical wind velocity,
σw, measured by the Doppler lidar for a 24-hr period on 24.04.2013. MLH estimates (green
circles) are also plotted on top of the color-plot. Sunrise time (vertical arrow at around
04:30 UTC) and sunset time (vertical arrow at around 18:45 UTC) as well as start time
of the development of the ML and the end of the fall (vertical red lines) are indicated.
The development of the ML starts at 8:00 UTC and reaches its peak at around 16:00
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(a)

(b)

Figure 3.8: Synergetic MLH estimation using ceilometer and MWR instruments. (a) Color-plot of
the standard deviation, σw, of the vertical wind velocity measured by the Doppler lidar along with
MLH estimates (green circles) for 24-hours of measurements on 24.04.2013. MLH estimates from
radiosondes (black squares) are also shown. Sunrise (04:30 UTC) and sunset (18:45 UTC) times as well
as the test data range (07:00-18:00 UTC) are marked by the vertical arrows and the red vertical lines,
respectively. (b) Synergetic MLH estimates in the daytime, 09:00-17:00 UTC, (cyan trace) obtained
by the Lidar-MWR synergy, and transition regions (cyan error-bars) using parcel method on MWR
potential temperature only. Reference MLH estimates from Doppler wind lidar (green circles) and
radiosondes (black squares).
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UTC. There is a sudden drop of the ML with almost no mixing at about 18:00 UTC. The
transition regions in the morning (8:00-9:00 UTC) and evening (16:00-18:00 UTC) are also
clearly identified.

Therefore, two distinct regions of ML are identified, the daytime ML from 9:00-16:00
UTC and the transition regions in the morning 8:00-9:00 UTC and evening 16-18 UTC. In
the transition region, the ML changes significantly from one value to other in a short period
of time. The aerosols are limited in following the quick changes in the atmosphere mainly
due to the fact that when a ML layer starts developing in the morning it is topped by a
SBL from the previous night as well as a RL from the previous day Wang et al. [2012];
Schween et al. [2014]. Similarly, in the evening transition ML when the mixing ceases and
a SBL starts developing the RL from the daytime is present on top of it. However, MWR
captures the changes in the thermodynamic structure of the atmosphere well and thus is
able to follow the transition of the ML in the morning and evening Wang et al. [2012].

Therefore, two different strategies are adopted for the estimation of the MLH for these
two regions.

3.4.1.1 MLH in transition-time regions

MLH estimates for the morning/evening transitions are available only from MWR data
due to the lack of aerosol signatures. Parcel-method estimates of the MLH are used for
this purpose. At low heights, during the rise of the ML transition in the morning and
the ML fall in the evening, the resolution of the MWR-retrieved temperature profile is good
enough to provide reasonably good estimates. However, towards the culmination of morning
transition and start of the evening transition, high uncertainty (about the same order as for
fully mixed-layer) is associated to the transition-MLH due to the coarse resolution of the
MWR which decreases with height.

3.4.1.2 Daytime MLH

As discussed in Sect. 3.1, for the daytime ML aerosols provide a clear signature in the
backscatter signal for most of the cases. However, aerosols are not always good indicators
of the underlying turbulence in the boundary layer since their response to the changes in
the extent of the boundary layer is delayed. MWR temperature measurements are directly
linked to the thermodynamic state of the atmosphere and they are a physically consistent
indicator of the ML. However, as mentioned, MWR retrievals suffer from coarse spatial
resolution than lidar ones. The foundations of the synergetic method presented next exploit
the strengths of the two instruments.

We propose to assimilate the coarse MWR estimates into the Lidar-EKF ML formulation
from ceilometer backscatter data described in Sect. 3.2.1. At each time instant, tk, the fitting
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ranges for the EKF, z1,k, z
′

1,k, z
′

2,k and z2,k are re-defined as

z1,k = ẑlθ,k

z
′

1,k = ẑML,k−1 −
zEZ,k−1

2

z
′

2,k = ẑML,k−1 +
zEZ,k−1

2

z2,k = ẑuθ,k, (3.7)

where ẑlθ,k and ẑuθ,k are the lower and upper bounds from the MWR at discrete time tk, and
ẑML,k−1 and zEZ,k−1

2
are the MLH and EZ width estimated by the EKF from ceilometer data

at time tk−1.
The formulation described in Eq. 3.7 presents a methodology whereby thermodynamic

information about the atmosphere, from the MWR, is assimilated into the EKF (attenuated
backscatter signals from the ceilometer).

3.4.2 Results and discussion

Fig. 3.8b shows MLH estimates from the EKF method (ceilometer backscatter data) and
parcel method (MWR-retrieved potential temperature profile). During the daytime ML,
MWR coarse estimates (grey errorbars) guide the EKF. Moreover, MLH estimates from the
Doppler lidar and the radiosonde are also plotted for comparison purposes.
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Figure 3.9: Scatter-plot relating the MLH, estimated by the EKF (ceilometer backscatter data),
horizontal axis, and the parcel method (MWR-retrieved potential temperature), vertical axis. Regres-
sion line (black dashed trace). Correlation and regression coefficients are also indicated. Data used:
09:00-16:00 UTC, 24.04.2013, Jülich, Germany.

Fig. 3.9 shows the scatter-plot relating the daytime convective MLH (09:00-16:00 UTC)
estimated from the EKF (ceilometer) and the parcel method (MWR). In order to achieve



66 3. Daytime mixing-layer and morning/evening transition boundary-layer

a one-to-one correspondence between the estimates from the two instruments, MLH esti-
mates from the MWR have been interpolated to match the time-stamps of ceilometer data.
The fitting is far from the ideal straight line (dashed black) and still there is considerable
mismatch between the MLH estimates from the two instruments. Quantitatively, with a
slope of 0.78 and an offset of 290.80 m and a correlation coefficient of 0.75, the two instru-
ments disagree with each other to some extent. One of the key reasons associated to this
disagreement lies on the physical nature of the parameters measured by each instrument.
Thus, while a ceilometer measures the aerosol backscatter, which does not instantaneously
follow the thermodynamic state of the ABL (delay with which the aerosols respond to the
turbulent forcings), the MWR measured Tb. The bias in the retrieved MLH (≈ 290) can,
in part, be explained by the fact that the potential temperature retrieved from the MWR
is always associated to a coarse estimate of the MLH and, therefore, representing it with a
single value in the scatter-plot (the center value of this coarse estimate) introduces a bias.

During the transition times in the morning and evening the MWR follows well the rise
and fall of the MLH. EKF estimates from the ceilometer backscatter data provide the RL
height in the transition regions.

3.5 Conclusions

Two commonly used indicators for MLH retrieval, namely, the attenuated backscatter co-
efficient from ceilometer measurements and atmospheric potential temperature from MWR
measurements have been compared. The EKF has been used to estimate the MLH from the
lidar backscatter data and the parcel method from the MWR-retrieved potential tempera-
ture profile.

Measurement and retrieval errors from both lidar and MWR instruments have also been
assessed in order to estimate the MLH uncertainty. The impact of the measurement noise
associated to the ceilometer backscatter signal has been assimilated into the noise-covariance
matrix of the EKF, which yields the MLH estimation error (σPMLH) via the a posteriori er-
ror covariance matrix. In the case of the MWR, first, brightness-temperature measurement
errors have been linked to the MLH uncertainty by using classic perturbation and error-
propagation theory. Second, vertical-resolution errors (a consequence of the low DoF during
the brightness-temperature-to-absolute-temperature retrieval) have been assimilated by us-
ing the discretization grid of the temperature profile as the proxy for the height-decreasing
vertical resolution of the profile.

The methods have been validated on a measurement day with typical mixing-layer de-
velopment. Ceilometer backscatter data was gathered by a Jenoptik CHM 15k Nimbus
ceilometer. Potential temperature data was retrieved from brightness measurements per-
formed by a RPG HATPRO MWR during HOPE campaign at Jülich, Germany.
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When comparing both methods, on one hand, the lidar-EKF method provides highly-
resolved estimates of the MLH but lacks physical thermodynamic consistency in the RL or
in instances with multiple layers (e.g., cloud-topped ML). On the other hand, the parcel-
MWR method provides physically consistent estimates of MLH albeit with coarse vertical
resolution.

In this context, a simple synergetic MLH retrieval scheme for the estimation of the day-
time mixed-layer as well as morning/evening transition times has been proposed. Data
from the two instruments, a ground-based ceilometer and a MWR, has been combined in
a physically consistent approach. For the morning/evening transitions ML estimates from
the MWR data alone are used. For the daytime ML, coarse estimates of the ML from the
MWR guide the EKF based algorithm for the aerosol backscatter data from the ceilometer.
The method thus exploits highly-resolved aerosol measurements by the ceilometer as well as
thermodynamic information of the atmosphere from the MWR-retrieved temperature data.
For comparison/validation purposes, ML estimates from a Doppler lidar as well as from ra-
diosonde (whenever available) are used. The method has been applied on real measurements
from 24.04.2013, 07:00-18:00 UTC collected during the HOPE campaign. Comparison with
the Doppler lidar and radiosondes has revealed a good degree of agreement. The RMSE of
the synergetic method with respect to Doppler-lidar MLH estimates is 197.46 [m] (computed
over 07:00-18:00 UTC, Fig. 3.8b, which encompasses daytime ML as well as morning/evening
transition boundary-layer). This represents an error reduction of about 178 [m] when com-
pared with the error associated to the Lidar-EKF method (RMSE = 375.66 [m]) and an
error reduction of about 45 [m] over MWR-parcel method (RMSE = 242.32 [m]).





Chapter 4

Stable boundary-layer height estimation

This chapter summarizes basic concepts and principles for nocturnal Stable Boundary-Layer
Height (SBLH) estimation using attenuated lidar backscatter and MicroWave-Radiometer (MWR)
temperature measurements. It is shown that temporal and spatial variance of the attenuated li-
dar backscatter signal are related with the stratification of aerosols in stable boundary-layer. Two
different minimum variance estimators (local minima detection and an Extended Kalman Filter)
are introduced for SBLH estimation. MWR-retrieved potential-temperature profile is also discussed
along with idealised SBL models from literature.

The contents of this Chapter are part of the papers Saeed and Rocadenbosch [2016b] to be submitted to IEEE Transac.

Geosc. Rem. Sensing, Saeed et al. [2015a] published in IGARSS, 2015, and Saeed and Rocadenbosch [2015] published in

Proc. of SPIE, 2015. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is

prohibited and is subject to penalties under law.

4.1 Introduction

The structure of the Nocturnal Boundary Layer (NBL) mainly depends upon three under-
laying physical processes namely, turbulent mixing, radiative cooling and heat exchange
with the soil Steeneveld et al. [2004]; Qiang and Sheng [2009]. The type of the NBL which
develops at a particular location and time depends upon the relative strength of these pro-
cesses and, therefore, there can be three types of the NBL: fully turbulent (also known as
the night-time ML), intermittently turbulent, and non-turbulent (also known as the SBL).
Fully turbulent NBL occurs when wind shear becomes the dominant force, whereas in the
case of the non-turbulent NBL or SBL Hyun et al. [2005]; Angevine et al. [2006], radiation
and heat exchange with the soil become dominant and turbulence is almost non-existent
resulting in horizontal stratification of the aerosols in the atmosphere through a process
known as fanning Stull [1988]. The intermittently turbulent NBL occurs when there are
alternating cycles of turbulence and non-turbulence.
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From the modelling perspective, it is a big challenge to capture these three types of
NBL. Whereas models do capture the turbulence and related mixing processes quite well,
the modelling of stable boundary conditions is still poor Seidel et al. [2012]. Nevertheless,
the accurate modelling of the SBL is highly important for correctly predicting night-time
temperatures and the dispersion of pollutants and, therefore, it is of much interest and
relevance in the ABL research community to study the SBL and its correct estimation
Cuxart et al. [2006].

4.1.1 Foundations of SBLH estimation from lidar data

During the night time, especially when there is minimum to nil convection and the turbulence
due to mechanical wind shear is negligible, a SBL develops near the ground surface. As a
result, in the absence of any external forces, aerosols in the atmosphere gets stratified in a
layered fashion. This layering of aerosols can result in a single or multiple layers depending
on the location and type of the atmospheric aerosols.

Fig. 4.1a shows an idealized sketch of the atmospheric aerosols as seen by a profiling
backscatter lidar. The layered structure of aerosol stratification during the night-time is in
clear contrast to the day-time mixed layer, where aerosols are more or less homogeneously
mixed due to convection-driven turbulence. Multiple layers of aerosol span over the hori-
zontal dimension and with varying widths in the vertical dimension. These layers align at
different heights depending upon the type and characteristics of the local aerosol species.
The nocturnal SBL is topped by a residual mixed layer from the preceding day-time. The
EZ and the CI act as buffers for the day-time mixed layer and night-time SBL, respectively.

Fig. 4.1b colorplot is a 24-h attenuated backscatter measurements (in what follows “the
backscatter”) showing the distribution of atmospheric aerosols on 24th April 2013. A sketch
of the idealized ABL structure is superimposed on the colorplot. Comparing day- and night-
time regions of the colorplot it is evident that the atmosphere is under stable conditions
during night-time and in a well-mixed state during the day-time. However, the stratification
of aerosols is not clearly visible and, therefore, it needs further investigation.

If a backscattered lidar signal is plotted versus time, each layer of aerosol is seen as a
strong, and more or less constant, backscatter signature within the aerosol layer bound-
aries (Fig. 4.2). As a result, regions with a relatively constant backscatter level in the
height-dependent backscatter profile correspond to MVRs in the backscatter variance pro-
file. MVRs mark a sharp decrease of the variance below and above an aerosol layer.

For estimation purposes, a MVR is modelled by an inverted Gaussian-like function as
shown in Fig. 4.2. The bulk of the inverted Gaussian bell lies in the height interval

[
z
′
1, z

′
2

]
whereas its ending tails lie in the range intervals

[
z1, z

′
1

]
, and

[
z
′
2, z2

]
, characterized by

an approximately constant high variance level. The inverted Gaussian-like profile shown
corresponds to an idealized aerosol layer which is represented as a uniform backscatter
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Figure 4.1: The ABL structure. (a) Idealized sketch of the daily evolution of the ABL in terms
of the distribution of atmospheric aerosols (as seen by a profiling backscatter lidar). During the day
time aerosols are well-mixed due to convection-driven turbulence. However, during the night aerosols
stratify by forming layers. (b) Color-plot of the attenuated backscatter signal from a Jenoptik CHM
15k ceilometer for 24-hr of data on 24.04.2013. Idealized sketch of the evolution of ABL, marking
different regimes of boundary-layer, namely, the day-time ML topped by the EZ, and the nocturnal
SBL topped by the RL and the Capping Inversion (CI) (superimposed). The well-mixed atmosphere
during the day-time is well reflected by the backscatter signal. However, the stratification of aerosols
during the night-time is not clearly visible. This is typically the case, since the stratification of aerosols
never happens in an idealized way as shown in Fig. 4.1a.
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Figure 4.2: Backscatter model variance profile. Conceptual sketch of a MVR modeled by an inverted
Gaussian function along with fitting boundaries, z1, z

′

1, z
′

2, and z2. The inverted Gaussian bell on
the right shows a MVR within the height interval,

[
z
′

1, z
′

2

]
. The center of the MVR corresponds to

the SBLH given by zSBL and its width is represented by parameter b. Parameter “d” stands for
the background variance and parameter “B” indicates the variance amplitude above the background.
Interval

[
z1, z

′

1

]
U
[
z2, z

′

2

]
corresponds to the tail of the Gaussian outside the MVR. On the right, the

fitting boundaries are labelled in terms of the parameters hu,lMWR, ∆hu,lk , and bu,lmax (see Sect. 5.2.3).

signal across its vertical extent. The center of the idealized bell represents the height of the
SBL and its spread or standard deviation roughly corresponds to the width of the aerosol
layer. The constant variance levels of the Gaussian model correspond to the background
variance outside of the aerosol layer. Mathematically, the backscatter variance model is
formulated as

h(x) = Be−
1
2 [b(z−zSBL)]

2

+ d, (4.1)

where x = [zSBL, b, B, d]T is the state vector, z is the height vector, zSBL is the SBLH, b = 1
σ

( being the standard deviation of the Gaussian distribution) is the width parameter, B is
the variance amplitude, and d is the background variance level. As customary, bold font
is used to represent vectors. These four parameters can be estimated either adaptively by
using an EKF or non-adaptively by using a Non-linear Least SQuares (NLSQ).

4.1.2 Foundations of SBLH estimation from MWR data

The development of the SBL is directly linked to the thermodynamic state of the atmosphere.
As the convection-driven turbulence starts to cease towards the early evening, a SBL starts
to develop from the surface Stull [1988]. This SBL keeps on developing during the night
until reaching its peaks towards late night/early-morning.

The SBL is marked by an increasing potential temperature up to an inversion Bradley
et al. [1993]; Liu and Liang [2010]; Angevine et al. [2006], where typically it smoothly
merges into the RL. It is important to mention here that the SBLH is well above the
temperature inversion since it extends up to the height where the temperature lapse-rate
becomes adiabatic Stull [1988]; Bradley et al. [1993]; Collaud Coen et al. [2014].



4.1 Introduction 73

𝑇

𝑧

Inversion

𝜃

𝑧

𝑆𝐵𝐿

(a) (b)

Figure 4.3: Idealized structures of the physical temperature and potential temperature profiles
(adapted from Stull, 1988 Stull [1988]). (a) Physical temperature increases until an inversion oc-
curs where it starts decreasing ultimately achieving the adiabatic lapse-rate. (b) Potential temperature
increases in the SBL and smoothly merges into the RL, where it stays constant. Potential temperature
profile based on measurements from a radiosonde (dotted trace) launched on 24.04.2013, 23:00 UTC at
Jülich during HOPE campaign is plotted on top of the idealized potential temperature profile. SBLH
estimate (black square) from the radiosonde-measured potential temperature is also shown.

Fig. 4.3a and Fig. 4.3b show the idealized physical temperature and potential temper-
ature profiles under stable atmospheric conditions Stull [1988]. The temperature of the
atmosphere in stable conditions first increases until an inversion occurs where it starts de-
creasing until the inversion smoothly merges into the RL where the dry adiabatic lapse-rate
of about 10 C/km is achieved. This behavior is reflected in terms of the potential tempera-
ture as increasing trend until the point where inversion occurs. A gradual decrease after that
merges the inversion smoothly into the RL where the change in the potential temperature
is almost negligible (∂θ̄

∂z
≈ 0). For comparison with real data, potential temperature profile

measured by a radiosonde as well as the SBLH estimate are also shown in Fig. 4.3b.

With a view to estimate SBLH in Sect. 4.3 five idealized potential-temperature model
profiles Stull [1988] are fitted measured ones from MWR. Model profiles are based on two key
parameters θ̄0 and θ̄s, which are the RL and near-surface potential temperature, respectively.
The idealized profiles incorporate the SBLH, noted here as h, and θ0 as the main parameters
along with auxiliary parameters.

1. Stable mixed

θ(z) =

θs, for z ≤ h

θ0, for z > h
(4.2)
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2. Mixed linear

θ(z) =


(
1− z

h

)
θs + z

h
θ∆h, for z ≤ h

θ0, for z > h
(4.3)

where θ∆h is the temperature step at the top of the SBL.

3. Linear

θ(z) =

θs + (θ0 − θs) z
h
, for z ≤ h

θ0, for z > h
(4.4)

4. Polynomial

θ(z) =

θ0 −
(
1− z

h

)α
(θ0 − θs) , for z ≤ h

θ0, for z > h
(4.5)

where α is the model order (typical value 2-3).

5. Exponential

θ(z) = θ0 − (θ0 − θs) e
− z
H∆θ (4.6)

where H∆θ =
∫ h
0 [θ0−θ(z)]dθ

θ0−θs is the accumulated cooling within the SBL.

4.2 SBLH estimation using variance processing and backscat-

ter lidar data

In Sect. 4.1, the relation between the stratification of aerosols and MVRs in the backscatter
lidar vertical profile has been introduced. A given lidar attenuated backscatter dataset
takes the form of a measurement matrix, where each row represents the backscatter at a
given height as a function of time, and each column represents a time observation of the
backscatter as a function of height (i.e., a time observation of the vertical backscatter profile).
For a given backscatter measurement matrix, the variance matrix can be calculated in two
ways: 1) As a temporal variance, where each discrete height is processed using MA time
window; 2) As a spatial variance, where each time instant is processed using a MA window
in the height domain. The window is chosen such that it provides a reasonable tradeoff
between the resulting resolution and the noise rejection. In the following, backscatter data
from Jenoptik CHM15k Nimbus ceilometer is used. The high SNR of this ceilometer is
well suited for detecting backscatter signal variantions in terms of its variance. However,
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the drawback of Jenoptik CHM15k Nimbus ceilometer is its high overlap range (≈350 [m]),
limiting the application to aerosols stratification above this height.

4.2.1 Height and time clustering

Prior to computing the MA variance, be it in temporal or spatial fashion, the lidar backscat-
ter dataset is clustered according to the prevailing characteristics of ABL. This clustering is
done in height and time domains for temporal and spatial variances, respectively.

Concerning temporal variance, the dataset is clustered into three height intervals, 360-
644 [m], 1259-1543 [m], and 1558-1993 [m]. The first height interval, 360-644 [m], covers
the usual heights associated to the SBL during the night-time and the lower part of the ML
during day-time. The second interval, 1259-1543 [m], covers the top of the ML during the
day-time and RL during night-time. Finally, the third interval, 1558-1993 [m], lies in the
FT. Fig. 4.4a shows height clustering of backscatter data on 24.04.2013. It is evident that
the first interval involves most morphological structures during night-time correlating with
the stratification of aerosols in the SBL. The second interval shows sharp changes in the
backscatter data during day-time, thus confirming the existence of updrafts and downdrafts
in the EZ. The third interval shows no changes in the backscatter meaning there are almost
nil aerosol changes in the FT. The three representative profiles corresponding to the center
of each height interval, i.e., at 509 [m], 1409 [m], and 1783 [m] are highlighted in thick black
trace.

Similarly, spatial processing requires clustering the dataset into five time intervals, 00:00-
05:00 [UTC] corresponding to early morning SBL, 05:00-10:00 [UTC] to morning-to-day
transition boundary-layer, 10:00-16:00 [UTC] to day-time mixed-layer, 16:00-21:00 [UTC]
to day-to-evening transition boundary-layer, and finally 21:00-24:00 [UTC] to night-time
SBL. Fig. 4.4b shows these five clusters and the corresponding five time intervals. The
homogeneity of lidar backscatter in the well-mixed atmosphere during day-time is evident
when compared to the layered structures in night-time. The five representative profiles at
the center of each time interval, i.e, at 2.5 [UTC], 7.5 [UTC], 13 [UTC], 18.5 [UTC], and
22.5 [UTC] are highlighted in thick black trace.

As a second step, the length of the MA window is computed. Towards this end, the
Power Spectral Density (PSD) of the representative profiles in each temporal and spatial
cluster above is calculated. The PSD reveals the distribution of the signal and noise power
over the frequency spectrum. The PSD enables to identify the cut-off frequency where signal
becomes buried into noise and which provides the MA window length.

Fig. 4.5a shows the block-diagram depicting the main steps involved for temporal variance
processing. After height clustering and PSDs, the temporal MA window is estimated and
used for temporal variance processing. Once the temporal variance matrix is computed,
MVRs can be identified and, finally, the SBLH estimated. The processing steps for spatial
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(a)

(b)

Figure 4.4: Clustering of backscatter data in height and time domain for further processing. (a) Height
clustering used in temporal processing: The raw backscatter data is clustered in the height domain based
on the prevailing atmospheric conditions at those height ranges. Three clusters have been defined: 360-
644 [m] for stable conditions; 1259-1543 [m], which cover the top of the ML (including the EZ) during
the day-time as well as the top of the RL (including the CI) during the night-time; 1558-1993 [m]
spanning exclusively over free troposphere heights. The backscatter time series at the middle height
of each interval is highlighted in thick black trace and will be used as the representative series of each
cluster for temporal processing. (b) Time clustering used in spatial processing: Five clusters for spatial
processing have been identified as follows: 0-5 [hr UTC] for early-morning SBL, 5-10 [hr UTC] for
morning SBL-ML transition, 10-16 [hr UTC] for day-time ML, 16-21 [hr UTC] for evening ML-SBL
transition, and 21-24 [hr UTC] for night-time SBL.
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Figure 4.5: (a) Block diagram outlining the signal processing steps in temporal variance processing
for SBLH estimation. Input backscatter data, β(z), is first divided in height clusters (Fig. 4.4a). Next,
the representative time series of each cluster is used to estimate its PSD and from this the MA window
length. Temporal variance of the raw backscatter signal at each point in the height grid is calculated
using a rectangular MA window. Finally, MVRs are identified and used as proxies for SBLH. (b) PSD
of the three representative profiles (center of each height cluster) of Fig. 4.4a. The PSDs at each height
(509, 1409, and 1783 [m]) are different at the lowest frequencies (fc=0.0011 [Hz]) because they contain
different atmospheric information related to the three distinct clusters. However, these three PSDs
start overlapping each other above fc, where the noise power is dominant. The cutoff frequency, thus
chosen, is marked by the dotted vertical line at fc=0.0011 [Hz]. (c) Following similar approach as for
temporal PSD, the spatial PSD for the five representative profiles at the center of the five time clusters
is calculated and the spatial MA window is determined to be at 0.011 [m−1].
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variance follows similar steps.

4.2.2 Power spectral density

The PSD, which is the distribution of the signal over frequency spectrum, can be determined
from the auto-correlation function, Rx(τ), of the signal. The auto-correlation function of a
signal provides information about the PSD of the signal via its change with respect to the
time difference variable, τ . This is due to the fact that the when auto-correlation function
of a signal changes slowly with respect to τ , the signal also experiences slow changes over
time. Similarly, when the auto-correlation function changes rapidly with respect to τ , it
signifies a signal with rapid changes over time Brown and Hwang [1997].

For a stationary signal, the PSD can be expressed as

Sx(jw) =

∫ ∞
−∞

Rx(τ)e−jωτdτ , (4.7)

where ω = 2πf/fs, with fs being the sampling frequency, is the normalized frequency, and

Rx(τ) = E
[
x(t)x(t+ τ)

]
, (4.8)

and τ is the time difference variable.

Fig. 4.5b shows the PSDs of the three representative profiles used for temporal processing
(Fig. 4.4a). As evidenced by the three PSDs, most of the signal power is concentrated in
frequencies below ftmp = 1.1 [mHz], which translates to a temporal window, wtmp = 1/ftmp

= 15 [min]. Similarly in Fig. 4.5c, the PSDs of the five representative profiles used for spatial
processing (Fig. 4.4b) result in a spatial window length, wspa=90 [m] (fspa = 0.0111 [m−1]).

4.2.3 Variance processing

Once the MA window length has been estimated the next step is to calculate the MA
variance. In the following, the formulation is presented for the temporal variance, only.
Since spatial processing follows similar approach, the formulation for spatial variance is
omitted for brevity.

For a given time series of backscatter data, β(t, zp) =
[
β(t1, zp), β(t2, zp), . . . , β(tN , zp)

]
where N is the total number of time samples and zp, p = 1, . . . , P is a p-th discrete height
in the height grid, the temporal variance is calculated as

V ar[βp(k)] =
1

M

k+M−1
2∑

k−M−1
2

[
βp(k)− µp(k)

]2
, k =

M − 1

2
, . . . , N − M − 1

2
, (4.9)
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Table 4.1: Comparison of temporal and spatial variances.

Feature TVAR SVAR
Raw time resolution (Jenoptik) 15 s 15 s
Raw spatial resolution (Jenoptik) 15 m 15 m

Effective time resolution 15 min 15 s
Effective spatial resolution 15 m 90 m

No. of samples for processing 60 6
Online processing No Yes

where M is the window length (in samples), µp(k) is the MA mean given by

µp(k) =
1

M

k+M−1
2∑

k−M−1
2

[
βp(z)

]
, k =

M − 1

2
, . . . , N − M − 1

2
. (4.10)

Repeating the same calculation for all points P time series are obtained.

Fig. 4.6a and Fig. 4.6b show the temporal and spatial variance for the time intervals
00:00-05:00 [UTC], 10:00-16:00 [UTC], and 21:00-24:00 [UTC] corresponding to the early
morning SBL, the day-time ML, and the night-time SBL, respectively. To compose Fig. 4.6a
we plot the temporal variances V ar[βp(k)] as a function of the discrete heights, p = 1, . . . , P

and for the time clusters indicated. It is pertinent to point out that both temporal/spatial
variance methods capture fairly well the morphological features of atmospheric aerosols al-
most matching each other (compare variance behaviour in Fig. 4.6a, 4.6b). On one hand, the
day-time variance (10-16 UTC panel) remains almost constant near the surface (≤ 600[m])
due to the strong mixing process and becomes higher towards the EZ. On the other hand,
the night-time variance (0-5, 21-24 UTC panels) shows MVRs right from near the surface
(≥ 400 [m]). There are also some differences between the temporal and spatial variance
profiles mainly due to the different temporal and spatial resolutions involved (Tab. 4.1).

In order to cross-examine temporal and spatial variances in more detail, Fig. 4.7c analysis
these two variances in terms of time-series at specific heights and at time-instants.

Fig. 4.7a and Fig. 4.7b show temporal and spatial variances time-series, respectively,
along with associated error-bars at three representative heights (509 [m], 1409 [m], 1783 [m]
as defined in Fig. 4.4a). It emerges that the two variance methods follow the backscatter
changes in good agreement with each other when looked over time.

Fig. 4.7c shows the five vertical profiles (2.5, 7.5, 13, 18.5, 22.5 UTC) of temporal and
spatial variances corresponding to the five representative profiles defined in Fig. 4.4b. It can
be noticed that the vertical profiles of two variance methods agree well within each of the
five time panels.

Following the discussion above, the ergodicity of the lidar backscatter signal can be
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Figure 4.6: Comparison of temporal and spatial variance profiles at three different time clusters
corresponding to the early morning SBL (0-5 [UTC]), day-time ML (10-16 [UTC]), and night-time
SBL (21-24 [UTC]). (a) Temporal variance profiles at each time-instant corresponding to the raw
backscatter data. Focusing on the lowest 800 [m] of the variance profiles it is clear that variance
changes during the nocturnal SBL are well pronounced marking MVRs. However, during the day-time
and due to mixing of aerosols, these variance profiles do not exhibit such behavior and remain more
or less constant. Moreover, considering the heights corresponding the ML top, it reveals that there
is a maximum variance before it drops to low values in the free troposphere. Note that the profiles
within the span of window-length correlate and, therefore, for SBLH calculations one profile from the
center of intervals corresponding to the temporal window length is used. (b) Following the similar line
of reasoning, the behaviour of spatial variance is observed to be consistent with the temporal variance
albeit the magnitudes are different sometimes.
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(a) (b)

(c)

Figure 4.7: An in-depth look at the temporal and the spatial variance in terms of their behaviour in
time and height domain. (a) 24-h time series for the temporal variance of Eq. 4.9 along with error-bars
at three representative heights corresponding to the center of the three clusters shown in Fig. 4.4a. (b)
24-h time series for the spatial variance (spatial counterpart of Eq. 4.9, βk(p)) along with error-bars at
the same three height levels as in Fig. 4.7a. (c) Temporal variance (blue trace) and spatial variance
(green trace) profiles at time instants corresponding to the center of the time clusters presented in
Fig. 4.4b. It is observed that MVRs (as proxies for SBLH stratification) exist only during night-time
whereas maximum variance is attained at the top of the ML during the day-time (10-16 UTC) and RL
layer during the night-time (0-5, 21-24 UTC).
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established by comparing temporal and spatial variance time-series and vertical profiles
shown in Fig. 4.7a, Fig. 4.7b, and Fig. 4.7c. By observing the changes of variance in these
three figures at specific heights and times, it is clear that the two variance methods identify
similar physical behaviour in time and height domains.

4.2.4 SBLH retrieval from MVRs

The first step towards SBLH estimation is to identify MVRs in the backscatter variance
profiles of Fig. 4.7c. In the following, only the temporal variance will be discussed, since the
method to estimate the SBLH is completely analogous for the spatial case.

The simplest way to identify MVRs within a given temporal variance profile is -what
we call in this PhD thesis- threshold minima. A user-defined threshold is introduced
to avoid false minima due to noise. The search for MVRs can be limited to the first one
km of the variance profile since the SBLH is almost always lower than 1 km Stull [1988].
Mathematically, the determination of a height interval associated to a MVR, IMVR, can be
expressed as

IMVR = z∣∣
[V artmp(z)−V artmp

min]≥γ
, zε[z1, z2] (4.11)

where V ar[βp(k)] is the temporal variance of Eq. 4.9 re-written as a function of height z
(continuous rather than discrete notation has been used to simplify notation), V artmpmin is the
minimum of the variance in the search region, and z1 and z2 are the lower and the upper
boundaries, and γ is a threshold usually chosen about 5-10 times the V artmpmin.

Following Eq. 4.11, a MVR is encircled in the Fig. 4.7c at 23:00 UTC at the height range
of 500-1000 [m]. Similarly, maximum variance regions, indicative of the top of ML and RL,
have also been highlighted by rectangular boxes.

Once MVRs, usually several ones are identified in a given variance profile, the next step
is to estimate the SBLH. In case of a single MVR, the SBLH is estimated as the height
corresponding to the absolute minimum of the variance within the MVR.

In case of multiple MVRs the initial guess for the SBLH is helped by the RS estimate.
Subsequent time estimates of the SBLH take into account the difference between the actual
MVRs and past SBLH estimates.

In Chap. 5 we will see that a more advanced algorithm to do this is the Variance-EKF.

4.2.5 Results and discussion

Two study cases have been considered to test the approach described above. The first case,
22.04.2013, is a pre-dominantly clear-sky day with an early morning cloud at the top of
the RL. Fig. 4.8a shows the backscatter colorplot along with SBLH estimates using the
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(a)

(b)

Figure 4.8: Study cases for SBLH estimation using the threshold-minima method to identify MVRs.
(a) Case-1 (22.04.2013): A predominantly clear-sky day with only a short time (0-4 UTC) early morning
cloud at the top of the boundary-layer. Color-plot of attenuated backscatter for 24-h of data along with
SBLH estimates using temporal (magenta diamonds) and spatial (black circles) variance processing.
SBLH estimates lie within the range of 400-600 [m]. For temporal processing, an estimate of SBLH is
available every 15 min and for spatial processing every 15 s. (b) Case-2 (25.04.2013): Synoptic condition
in the evening with mixing prevailing during the night-time. Attenuated backscatter color-plot, along
with SBLH estimates using temporal and spatial processing. SBL only exists in the early morning time
extending from the night of the previous day. Due to synoptic mixing in the evening and night-time,
SBL doesn’t form and no MVRs exist.
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temporal and spatial variance processing. Since temporal variances are calculated with a
MA window of 15 [min], SBLH estimates are shown every 15 [min]. In contrast when spatial
variances are calculated, SBLH estimates are available with the raw time resolution of 15
[s]. Another important distinction is that temporal variance processing provides only a few
SBLH estimates in the evening as compared to spatial variance processing. This may be
due to the fact that since only one temporal variance profile is used for SBLH estimation
every 15 [min], it is possible that in those profiles it is difficult to discern the right variance
minima due to relative magnitude of noise or that no MVR exists at all.

The second study case (25.04.2013) is also a clear-sky day but with synoptic mixing
conditions prevailing in the evening and sustaining during night-time. Fig. 4.8b shows the
backscatter color-plot along with SBLH estimates for this day. Because of the synoptic
mixing in the evening, stable conditions do not develop and the SBLH estimates from both,
temporal and spatial variance processing do not detect any MVR.

The SBLH estimation method presented above works reasonably well, though with a
high RMSE (about 100 [m] in Fig. 4.8a, and Fig. 4.8b), only under simple atmospheric
conditions and when the atmosphere (MVRs) do not change quickly with time. In more
complex cases and for better tracking of SBLH (lower RMSE) a more involved processing
algorithm such as the EKF is necessary (Chap. 5, Sect. 5.2.1). For physical consistency
and reliability of SBLH estimates a cooperative instrument such as a MWR can also be
incorporated (Chap. 5, Sect. 5.2.3).

For the sake of completeness with the aim of this Chapter (non-synergetic SBLH es-
timation) next we present a more sophisticated method for SBLH estimation than the
THRESHOLD MINIMA METHOD discussed in Sect. 4.2.4. This alternative method is
the EKF-based estimation algorithm (to be discussed in Chap. 5).

The EKF-based SBLH estimation algorithm is applied to the lidar data collected
by a Vaisala CT25K ceilometer during the HOPE campaign at Jülich, Germany. Two
experimental cases are discussed next:

Case 1. - The first case comes from 20th of April, 2013, 22.9-24.0 UTC corresponding
to a day with typical stratification of the aerosols in the SBL and thus, it serves as a
good study case. A radio-sonde was launched at 23:00 UTC. The filter is initialized with
the SBLH estimate obtained by the potential temperature gradient method Collaud Coen
et al. [2014] from the temperature profile measured by the radio-sonde. The SBLH EKF
estimates over one-hour period (22.9-24.0 UTC) are shown in Fig. 4.9a. SBLH estimates
from the MWR Stull [1988] along with their uncertainty are also plotted in the form of
error-bars. Visual inspection of the figures reveals a good agreement between the lidar and
MWR-based estimates of the SBLH. The sudden jumps between 22.9-23.3 UTC in the SBLH
estimates from the MWR (right-hand side of the black vertical line), where the agreement
with the ceilometer-EKF estimates is not so good, can be attributed to the limitations of
the SBLH estimation method from the MWR (Sect. 4.3) and its poor vertical resolution.
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(a)

(b)

Figure 4.9: (a) Color-plot of the backscattered signal from Vaisala CT25k ceilometer during the HOPE
campaign, on 20th of April, 2013. ABLH estimate from radiosonde (black square) and MWR (black
error-bars) are also shown. (b) A limiting-case example for the presented method involving shallow
mixing and a lack of aerosol stratification in the SBL (29th of April, 2013). Color traces as in Fig. 4.9a.
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Case 2. - The EKF method presented in this work becomes limited under weakly stable
conditions or in cases where aerosol stratification is not so uniform. In such conditions the
variance profile of the backscatter signal does not provide a clear signature of the MVRs
owing to the lack of clearly resolved aerosol layers. Fig. 4.9b shows the color-plot of the
backscatter data for 29th April, 2013, 22.9-24.0 UTC. As it can be observed from the
radiosonde and MWR SBLH estimates, the SBL mostly lies in the range between 250-500
m. This yields a nearly flat MVR (small “b” parameter in Eq. 4.1), equivalently, a wide
Gaussian bell) where the KF cannot decide. Because, in this height range the aerosol load
is very low the EKF fails after a few iterations. It is, therefore, concluded that under
low aerosol load conditions a cooperative instrument, such as the MWR, can be used in a
synergetic way by combining the physical temperature profile provided by the MWR with
the good spatial and temporal resolution of the lidar. This will be tackled in Chap. 5.

4.3 SBLH estimation using MWR observations

From the five idealised model profiles (Sect. 4.1.2), the problem of SBLH estimation from
MWR data can be stated as a Least SQuares (LSQ) problem as follows: Given (i) the
profile of the raw potential temperature [i.e., the retrieved potential temperature from MWR
measurements, in what follows, θMWR(z)] and, (ii) surface potential temperature, θs, from
the MWR, one wishes to estimate: (a) the model SBLH, h, and (b) the model RL potential
temperature, θ0, by using the objective function

min
{∥∥θMWR(z)− θ (z, θs, ~xk)

∥∥2
} ∣∣∣

~x=[h,θ0,aux]
. (4.12)

In Eq. 4.12, ~x is the objective vector to be solved, and “aux” denotes auxiliary solving
parameters such as temperature jump at the top of the SBL, θ∆h, for the mixed-linear
model, model order, α (typical value of 2− 3), for the polynomial profile, and integral depth

scale within the SBL, H∆θ =
∫ h
0 [θ0−θ(z)]dθ

θ0−θs , for the exponential model.
MWR data processing - MWR-retrieved potential-temperature profiles, θrawMWR(z), are

non-uniformly sampled along the height dimension due to the coarse vertical resolution of the
instrument, which decreases with height. As a first processing step, θrawMWR(z), is interpolated
to obtain a uniformly sampled profile, θMWR(z). Here, it is pertinent to mention that this
interpolation step does not alter the inherent height-varying resolution of the potential
temperature data retrieved from MWR measurements. For interpolation purposes a cubic
spline interpolation is used. The second processing step is fitting the five SBL model profiles
(Eqs. 4.2-4.6) to the uniformly-sampled potential-temperature profile, θMWR(z), by using a
LSQ approach. The best model is selected based on a mMSE criterion.

Fig. 4.10 shows an example of MWR-retrieved potential temperature profile (blue crosses),
θMWR(z), from the HOPE campaign data, 24.04.2013 at 21:00 UTC. The five idealized mod-
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Figure 4.10: MWR-retrieved potential temperature profile at 21:02 UTC (24.04.2013, HOPE cam-
paign, Jülich, Germany), fitted with the five idealized physical models. Exponential model fits best
with the mMSE.

els of Eqs. 4.2-4.6 are also plotted. It is observed that the polynomial and the exponential
models provide best fits with a mMSE of 0.29 [K] and 0.15 [K], respectively. The poly-
nomial model is chosen in-spite of a slightly higher RMSE since the parameter α can be
user-defined and made consistent across a set of all profiles/data-sets. Note, that all the
five idealized model profiles significantly deviate from the retrieved potential-temperature
profile at the RL heights as the real atmosphere hardly ever behaves in an idealized way.
Furthermore, MWR coarse vertical resolution and limited accuracy of the retrieved temper-
ature profile contribute to add-on uncertainty, ∆zMWR, especially at higher altitudes where
the information content degrades.

4.4 Conclusions

Aerosol stratification in the SBL has been related and formulated in terms of MVRs in the
lidar backscatter signal. For this purpose, two variants of the variance estimation method,
temporal and spatial variance processing, have been introduced. A detailed study and com-
parison of the two methods has been presented. A simplistic method for SBLH estimation
using MVRs has also been presented. Two study cases were considered: A typical clear-
sky day with an early-morning boundary-layer cloud at the top of the RL, and a another
clear-sky day with synoptic mixing condition prevailing in the evening and night time. It
has been concluded that the SBLH estimation could benefit from noise filtering and more
involved signal processing methods such as an EKF.

Next, application of a novel method for the estimating the SBLH, EKF-based SBLH es-
timation, from ceilometer-lidar data has been presented. Height-resolved temporal variance
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of the backscatter lidar data has been used as the proxy to account for the variations on the
atmospheric aerosols content. The minimum variance regions in the vertical profiles of this
variance are representative of the aerosol layers in the SBL and are modelled by an inverted
Gaussian-like function with the SBLH as the key parameter to estimate. An EKF filter
has been used to retrieve and track the SBLH and MVR model parameters over time. Two
cases highlighting the strengths and limitations of the method have been discussed. The
estimates of the SBLH have been validated by comparison with MWR SBLH estimates. A
good agreement between the two instruments has been shown.

Finally, five idealized models from the literature (Sect. 4.1.2), which model the tempera-
ture profile in SBL conditions, have been applied to MWR-retrieved temperature profiles for
the SBLH estimation. These five idealized models are fitted to the measured one by using
the LSQ approach.The best fitting model is chosen based on mMSE criteria. It has been
observed that the exponential model provides the best fitting for majority of the cases.



Chapter 5

Synergetic estimation of the
stable-boundary-layer height

A synergetic approach for the estimation of Stable Boundary-Layer Height (SBLH) using
lidar and Microwave Radiometer (MWR) data is presented. Vertical variance of the backscatter
signal from a ceilometer is used as an indicator of the aerosol stratification in the nocturnal stable
boundary-layer. This hypothesis is supported by a statistical analysis over one month of observa-
tions. Thermodynamic information from the MWR-derived potential temperature is incorporated
as coarse estimate of the SBLH. Data from the two instruments is adaptively assimilated by using
an Extended Kalman Filter (EKF). A first test of the algorithm is performed by applying it to col-
located Vaisala CT25K ceilometer and Humidity-and-Temperature Profiler (HATPRO) MWR data
collected during the HOPE campaign at Jülich, Germany. The application of the algorithm to dif-
ferent atmospheric scenarios reveals the superior performance of the EKF compared to a non-linear
least-squares estimator especially in non-idealized conditions.

The contents of this Chapter are part of the paper Saeed et al. [2016b] submitted to IEEE Transac. Geosc. Rem. Sensing.

Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is

subject to penalties under law.

5.1 Introduction

Measurements of ABLH make use of the typical vertical structures of temperature, humidity,
wind and aerosol. While aerosol distribution as probed by ground-based lidars is well suited
for the estimation of the Convective Boundary Layer Height (CBLH), the estimation of
the SBLH is more complex. Many of the techniques presented for the lidar data are a
variant of the gradient detection method Eresmaa et al. [2006]; Haeffelin et al. [2012] and,
therefore, suffer from multiple-aerosol-layer attribution problems. This means that under
the conditions of multiple aerosol-layers in the boundary-layer these methods are limited
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in terms of providing a consistent solution due to their non-adaptive nature and lack of
physical basis for layer attribution. Some more advanced techniques such as the “Peaks”
and “Wavelets” Haij et al. [2007], which utilize advanced signal processing, and the Bayesian
Selective Method (BSM) Giuseppe et al. [2012], which combines data from lidar, a physical
boundary-layer model and a climatological data-set in a statistically optimal way, do improve
the estimation performance. However, they are still limited by the starting height of full
overlap of lidar and the unavailability of lidar data under cloudy and rainy conditions.
Furthermore, cooling leads to a higher relative humidity and since the size of the aerosols
varies with the moister content Eresmaa et al. [2006] due to hygroscopic effects, the higher
backscatter coefficient is linked to a higher amount of humidity in the atmosphere.

Most of the previous work for SBLH estimation from temperature data are based on the
measurements from RS Hyun et al. [2005]; Angevine et al. [2006] mainly exploiting tem-
perature profiles. Though MWR can provide continuous time series of temperature profiles
Crewell and Löhnert [2007], few studies have exploited these data for SBLH estimation.
Recently, an approach based on the gradient of the retrieved-potential temperature from a
MWR been presented by Collaud Coen et al. [2014]. One of the main limitation of MWRs
is their low vertical-resolution, thereby the large uncertainty associated with the estimates.
Moreover, the temperature profile is over-smoothed especially at higher altitudes, hence
missing important features within the retrieved profiles. As a result, MWRs are unable to
give accurate indication of the SBLH and the residual boundary-layer height.

Departing from these previous efforts to estimate the SBLH, in this paper we present a
combined lidar-MWR approach using an EKF. The approach is based on the hypothesis,
whereby stable aerosol layer corresponds to a MVR in the variance profile of the lidar
backscatter signal. The hypothesis is based on the fact that during the stable conditions
prevailing in the night-time, with minimal to nil convection, and in the absence of mechanical
turbulence, which usually results in horizontal stratification of the aerosol layers Stull [1988];
Giuseppe et al. [2012]; Haeffelin et al. [2012]; Münkel et al. [2007], the backscatter signal
remains almost constant across the layer’s vertical span. This minimum variance-behavior
is opposite to the maximum variance behavior defining the EZ and CBL Hennemuth and
Lammert [2006]; Hooper and Eloranta [1986].

As discussed earlier, MVRs are not unique due to the presence of multiple layers of
aerosols. Moreover, MVRs also get corrupted by the instrument noise (added to the
backscatter signal) essentially distorting its shape. In order to overcome the limitations
associated with the use of MVRs from the lidar backscatter data alone, the proposed ap-
proach is based on the synergy between the lidar and the MWR, whereby the MWR plays
a role of layer attributor. Nevertheless, the boundary containing the temperature inversion
information should be sufficient to correctly segregate the most relevant MVR within the
lidar backscatter variance profile. An estimation algorithm based on an EKF is then applied
on the selected MVR to calculate the SBLH with low uncertainty. Unlike the Bayesian Se-
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lective Method mentioned earlier, the use of EKF provides statistically optimal estimates by
minimizing the mean-square-error over time without the need of averaging the observation
data.

Fig. 5.1 illustrates the development of the ABL on 24.04.2013 via the observed potential
temperature and backscatter time-height structure over the full diurnal course. Because this
day was characterized by weak synoptic forcing and nearly no clouds, ABL development is
close to the idealized cases described in the introduction. Since the SBL prevailed until
about one hour past sunrise, the aerosol mixing process did not start until about 06:00 UTC
when the convection became significant and the convective ML developed. This can well
be seen by the neutral conditions, i.e. vertically constant potential temperature. Around
sunset (18:30 UTC) mixing recedes and thus aerosol stratification occurs. The extent of
aerosol stratification in the SBL is directly linked to the amount of thermal stability in the
boundary-layer. Case studies from this day are shown in Sect. 5.2.4. Since CT25k is an old
first-generation ceilometer by Vaisala, it has low pulse energy (1.6 µJ/pulse) and low pulse
repetition rate (4369 [Hz]) as compared to modern second-generation systems such as CL31
with slightly lower pulse energy (1.2 µJ/pulse) but with almost double pulse repetition rate
(8192 [Hz]) Münkel et al. [2007]. This explains a poorer SNR from the CT25k side, which
causes that the structure of the boundary layer at higher altitudes especially the top of
the mixing layer during the day-time is not clearly identifiable (e.g., blurred noisy pattern
between 5-18 UTC and 0.5-1.5 km in height).

5.2 Adaptive SBLH detection method

This section tackles the problem of SBLH estimation from lidar and MWR data by following
a progressive signal-processing approach: Sect. 5.2.1 and 5.2.2 formulate the problem from
the non-synergetic perspective, i.e., estimation of the SBLH from stand-alone lidar data
(Sect. 5.2.1) and estimation of the SBLH from stand-alone MWR data (Sect. 5.2.2). These
two formulations are not exclusive but complementary as they pave the way to the topic of
synergetic SBLH estimation by using lidar and MWR data (Sect. 5.2.3). Thus, Sect. 5.2.3
merges into a single body the formulations presented in Sects. 5.2.1-5.2.2 to come up with
a unified estimation framework that combines both remote sensing instruments.

5.2.1 SBLH estimation from backscatter lidar data and an EKF

In Sect. 4.1.1, the formulation of an inverted Gaussian-like model profile representative of
an idealized MVR for stable aerosol layer in the night-time has been presented. In contrast
to estimation of the MLH (convective boundary layer, Chap. 3), where the “inputs” or
“observables” to the estimator were attenuated backscatter profiles, estimation of the SBLH
requires the variance of the backscatter profiles as observables. This is to say that the
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Figure 5.1: Measured aerosol backscatter and potential temperature data from 24.04.2013, Jülich,
Germany. Vertical arrows mark the sunrise and sunset times. (a) Colorplot of the backscatter profiles
measured by the Vaisala CT25k ceilometer. (b) Colorplot from the MWR-retrieved potential temper-
ature data.
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model profile of Fig. 4.2 is used to adaptively fit the height-variance profile of the measured
lidar data. Towards this end, in the following, we revisit signal pre-processing practicalities
associated to computation of the height-dependent variance profiles to be presented to the
SBLH estimator. Later, the grounds of SBLH using an EKF are formulated. The EKF
is chosen as the adaptive estimator because it minimizes the mean-square-error over time
and thus it assimilates the temporal information of the signal optimally. For comparison, a
simplified NLSQ formulation is also presented.

Variance of the attenuated backscatter lidar profile as observable: Pre-processing practi-
calities. - The practicalities presented here are a simplified alternative to the block diagram
of Chap. 4, Fig. 4.5a with the exception that a simple rectangular filter is used for vertical
(spatial) processing, instead.

Similarly, and as a first step, the noisy attenuated backscatter coefficient, β′(z), (Chap. 2,
Eq. 2.11) is low-pass filtered to remove the high-frequency noise. Fig. 5.2a shows the basic
signal-processing block diagram to estimate the backscatter variance profile, V̂β(z), from
the noisy attenuated backscatter coefficient profile, β′(z). The first step in the processing
of β′(z) is to denoise it by low-pass filtering (LPF). This gets rid of the high-frequency
content of β′(z), which is associated to instrumental noise, while retaining the low-frequency
content. The later is associated to the noiseless atmospheric backscatter, β(z), and related
low-frequency atmospheric fluctuations of interest for this study. Formally,

β̂(z) = β′LP (z), (5.1)

where a hat “ .̂” indicates “estimate of” and subscript “LP” indicates low-pass filtering.

The LPF is implemented by using a moving-average filter with a rectangular window
length, w. The appropriate window-length is obtained by monitoring kurtosis (K) of the
residual high-frequency noise,

v̂(z) = β′(z)− β′LP (z), (5.2)

as signal-processing indicator. Thus, the window-length yielding a kurtosis figure closest
to 3 (K=3 for a pure Gaussian random process) Barlow [1989b] is chosen as the filtering
window-length.

Fig. 5.2b1 shows plots of the measured noisy backscatter, β′(z), along with the estimated
backscatter profile, β̂(z), for different window lengths. The estimated backscatter profile us-
ing the largest window length (300 [m]) becomes over-smoothed and, as a result, misses
detailed atmospheric features. Likewise, the residual high-frequency noise, v̂(z) (Fig. 5.2b2)
is far from the typical shape of a Gaussian process as evidenced by an asymmetric distri-
bution of positive/negative noise spikes (K=2.2). On the contrary, the shortest window
length tested (60 [m]) significantly leaks noise into β̂(z) and also yields K=2.2. A window
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Figure 5.2: Ceilometer signal-processing. (a) Block diagram to estimate the variance profile associated
to the atmospheric backscatter, Vβ̂(z). (b) Selection of the vertical smoothing window length and
calculation of the backscatter variance, 24.04.2013, 21:00 UTC. (1) Vertical profiles of the de-noised
backscatter coefficient, β̂w(z), for different window lengths, w=60 [m] (black line with circular markers),
150 [m] (red dashed line), and 300 [m] (green trace with dot markers) (rectangular-window smoothing
as low-pass filter (LPF)). (2) High-pass residual noise, v̂w(z), for the different window lengths chosen.
(3) Estimated variance, V̂β(z), for window length chosen (150 [m]) with two MVRs between the height
ranges of approximately 300-500 [m] and 550-900 [m].
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length of 150 [m] gives the best results for β̂(z) as it filters most of the high frequency
instrumental noise along with preserving the atmospheric features of the signal and yielding
a fairly symmetric noise distribution for the residual noise with K=3.1 (i.e., approximately
Gaussian).

The next processing step to estimate the height-dependent variance profile in Fig. 5.2a
is associated to the atmospheric backscatter, V̂β(z), given the estimated backscatter profile,
β̂(z). At this point we use that

V̂β(z) ∼= Vβ̂(z), (5.3)

where Vβ̂(z) represents the vertical variance of β̂(z) (see block diagram in Fig. 5.2a). For
simplicity, the window length associated to this moving-variance calculation centered at
height z has been kept the same as that of the denoising LPF. Fig. 5.2b3 shows the variance
profile calculated using the selected window length of 150 [m]. Example variance profiles
(Fig. 5.3a) reveal the occurrence of up to two to three MVRs within one profile. During
the course of two hours in the evening of 24.04.2013 MVRs between 300-600 [m] can be
detected.

In order to further investigate and validate the existence the of MVRs and to prove their
relation with the nocturnal SBL, a data-set of 28 days from HOPE campaign starting from
15.04.2013 until 14.05.2013 is used. Cloudy and rainy conditions are filtered out with a
resolution of 30 min. Vertical variance of the filtered backscatter data in the first km in
height is calculated and averaged over bins of 30-min in time and 200-m in height. MVRs
within each time-height bin are determined by the local minima in the averaged vertical
variance profiles. Considering up to two MVRs in one profile, the diurnal cycle of frequency
of occurrence (Fig. 5.3b) reveals frequent MVR occurrence in the altitude range between
200 and 800 [m] during night-time which fades out towards daytime. The similarity of the
MVR diurnal cycle with the typical behaviour of the SBL supports our hypothesis to use
MVRs as proxy for SBL.

SBLH estimation using an EKF. - The formulation of EKF for SBLH estimation is
based on similar approach as for MLH (Chap. 3, Sect. 3.2.1). From this background, the
four characteristics parameters of model Eq. 4.1 are assembled into the state vector,

xk = [zSBL,k, bk, Bk, dk]
T , (5.4)

which is to be estimated at each successive discrete time, tk.

An EKF is essentially based on two models, the measurement model, and the state-vector
model :

Measurement Model - The measurement model relates the atmospheric state vector, xk,
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Figure 5.3: (a) Vertical variance profiles based on the ceilometer measured aerosol backscatter data
showing MVRs in the height range of 300− 600 m, 24.04.2013, 21:00-22:30 UTC. (b) Diurnal cycle of
MVR occurrence based on one month of observations in April/May 2013. Number of MVR occurrence
within 1 hr and 200 m is color coded. Vertical arrows mark the mean sunset and sunset times.
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to the measurement vector, zk,

zk = h(xk) + vk, (5.5)

where h is the SBL measurement function given by Eq. 4.1, and vk is the observation noise
which consists of measurement noise as well as modelling errors. In Eq. 5.5 above, zk refers
to the observables formed from the estimated backscatter variance (Eq. 5.3) at each time
tk, that is,

zk = V̂β(z)
∣∣∣
t=tk

=
[
V̂β(z1), V̂β(z2), . . . , V̂β(zN)

]
k
. (5.6)

At this point it is worth noticing that while z stands for the height variable, zk and ẑk are
the actual and the estimated observation vector (also called measurement vector).

In the extended Kalman filter (EKF), the non-linear model function h is linearized by
calculating its Jacobian (or observation matrix Hk) with respect to the state vector. The
filter output at time instant k can then be written as

ẑk = Hkx̂
−
k , (5.7)

where

Hk(z; x) =

[
δh(z)

δzSBL

δh(z)

δb

δh(z)

δB

δh(z)

δd

]∣∣∣∣∣
x=x̂−k

,

=

[
H1
k H2

k H3
k H4

k

]
N×4

, (5.8)

and

H1
k(zSBL, b) =

δh(z)

δzSBL
(5.9)

= Bb2 (z − zSBL) e−
1
2 [b(z−zSBL)]

2

, z ∈ [z′1, z
′
2], (5.10)

H2
k(zSBL, b) =

δh(z)

δb
(5.11)

= −Bb (z − zSBL)2 e−
1
2 [b(z−zSBL)]

2

, z ∈ [z′1, z
′
2], (5.12)

and

H3
k(B, d) =

δh(z)

δB
(5.13)

= e−
1
2 [b(z−zSBL)]

2

, z ∈ [z1, z
′
1) ∪ (z′2, z2], (5.14)
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H4
k(B, d) =

δh(z)

δd
= 1, z ∈ [z1, z

′
1) ∪ (z′2, z2]. (5.15)

In Eq. 5.7, above, x̂−k is the state-vector estimate prior to assimilation of the measurement
at time tk and ẑk is the “projected” measurement estimate from the filter.

Range intervals [z′1, z
′
2] and [z1, z

′
1) ∪ (z′2, z2] respectively define the measurement-model

“fitting” ranges inside and outside the MVR (Fig. 4.2). In order to assimilate the thermody-
namic information of the SBL, outer boundaries z1 and z2 are assessed synergetically from
MWR estimates of SBLH (see Sect. 5.2.2).

State-vector model - The state-vector model essentially describes the temporal projection
of the state-vector at each successive time tk through the recursive equation,

xk+1 = Φkxk + wk, (5.16)

where Φ is the transition state matrix (4×4) and wk is the state-noise vector with covariance
matrix Qk = E

[
wkw

T
k

]
. A simple Gauss-Markov model, with Φ = I (I is the identity

matrix), can be set as the transition matrix.
The Kalman filtering recursive loop requires three inputs related to the state-vector

model: (i) an initial guess of the state-vector, x̂−0 = [zSBL,0, b0, B0, d0]T , (ii) an estimate of
the initial a priori covariance matrix, P−0 = E

[
e−0 e−T0

]
where e− = x0 − x̂−0 is the a priori

error, and (iii) an estimate of the state-noise covariance matrix, Qk = [wkw
T
k ].

The initial a priori error covariance matrix, P−0 , and state-noise covariance matrix, Qk,
can be set as static diagonal covariance matrices of the form, P−0 = diag

[
σ2
e,zSBL

, σ2
e,b, σ

2
e,B, σ

2
e,d

]
and Qk = Q = diag

[
σ2
zSBL

, σ2
b , σ

2
B, σ

2
d

]
where σX and σe,X , X = (zSBL, b, B, d), are the stan-

dard deviations of the state-vector parameters and of the a priori error on the initial guess,
respectively. Subindex “e” stands for “error”. These formulations for matrices P−0 and Qk are
simple enough and conveniently model all the case examples (SBL or nocturnal) analyzed
in Sect. 5.2.4. Moreover, σX and σe,X are represented as proportional to the initial guess x̂−0

via factors µQ and µP , respectively. Therefore,(
σe,zSBL , σe,b, σe,B, σe,d

)
= µP

(
zSBL,0, b0, B0, d0

)
,(

σzSBL , σb, σB, σd
)

= µQ
(
zSBL,0, b0, B0, d0

)
(5.17)

or simply Q0 = diag
[(
µQx̂−0

)2
]
and P−0 =

[
diag

(
µP x̂−0

)2
]
. The scaling factors µQ and µP

are user-defined parameters. For example, setting µQ and µP as 0.1 means the margin of
uncertainty associated to x̂−0 is 10% and the change in x̂k from time instant k to k + 1 is
expected to be within 10% of the values of x̂k at time k.

Observation-noise modelling - The observation noise, vk, is modelled by the noise covari-
ance matrix, Rk = E

[
vkv

T
k

]
, where E[.] is the expectancy or ensemble operator and vk is

the N-component vector associated to heights, zi, i = 1, . . . , N . This matrix, Rk, informs
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the filter about the quality of the observables, zk, which is a crucial input to the filter in
order to assimilate the information conveyed by each new observable at each time step tk.

One difficulty in the estimation of noise covariance matrix is the need of an ensemble of
measurements. In off-line processing applications this difficulty can easily be circumvented
by accessing at each time tk a time window comprising past and future measurements, zk,
from the recorded data with stationary statistics. In an on-line processor this implies an es-
timation delay equal to the time length of the “future” measurements accessed. In this work
we resort to offline processing and stationary statistics. The hypothesis of stationary statis-
tics is a realistic one in stable boundary-layer estimation since in the absence of any mixing
process the aerosols tend to remain still aloft for longer periods and hence, the backscatter
signal remains approximately constant with time. Therefore, temporal variations on the
vertical profiles of Vβ̂(z) on shorter time-scales (e.g., 2 min) provide an estimate of the noise
covariance matrix. Formally,

R̂k = diag
[
σ2
n(z1), . . . , σ2

n(zN)
]
tk

(5.18)

with

σ2
n(zi)

∣∣
tk

= V
[
zi,k
] ∣∣
Ik
, Ik = [tk−M , . . . , tk, . . . , tk+M ] , (5.19)

where zi,k is the i-th component of the measurement vector, zk, at time tk, which according
to Eq. 5.3 represents the estimated backscatter variance at height zi, that is, zi,k = V̂β(zi).
In Eq. 5.19 above, Ik is the time interval defining the ensemble time window. For exam-
ple, assuming ceilometer data with 15-s temporal resolution, a time ensemble of 8 records
translates into a 2-min stationary time window (as is the case used here).

Nonlinear Least Squares Approach (NLSQ). - Alternative to the EKF, a non-adaptive
NLSQ solution is also considered Moré [1977]. In the non-adaptive approach, the atmo-
spheric state-vector, xk, is estimated at each time tk by using only the present-time measure-
ment, zk, therefore, disregarding past information. For each lidar measurement, zk, at time,
tk, the NLSQ solution for the model parameters is found by minimizing the quadratic norm of
the error function between the observation vector, zk, and the model output, ẑk = h

(
x̂LSQk

)
,

ε
(
xLSQ
k

)
= zk − h

(
x̂LSQk

)
, (5.20)

with respect to the state vector, xk. That is,

min

{∥∥∥∥ε(xLSQk

)∥∥∥∥2
}∣∣∣∣∣

xk=[zSBL,k,bk,Bk,dk]

. (5.21)
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5.2.2 Coarse SBLH estimation from MWR data

In order to assimilate the thermodynamic information about SBL into the EKF formulation
(Sect. 5.2.1), potential temperature retrieved from the brightness temperature measured
by the MWR is used for coarse SBLH estimates. Under stable conditions, the potential
temperature increases until at a height where neutral conditions are met with a constant
potential temperature. The transition from the SBL to the RL is typically rather smooth and
thus a clear boundary between the two regions is challenging to define. Here, it is pertinent
to mention that the top of the SBL is slightly higher than the surface-based temperature
inversion which becomes evident in a potential temperature profile as the region where its
slope is almost zero. The SBLH is therefore defined as the height where the temperature
lapse-rate is adiabatic signifying neutral condition (∂θ̄

∂z
= 0, see inset in Fig. 4.10) Stull

[1988]; Bradley et al. [1993]; Collaud Coen et al. [2014].
The uncertainty associated to the MWR-derived SBLH estimate results from (i) the

measurement uncertainty of the brightness-temperature and (ii) the ill-posed retrieval prob-
lem. Therefore typical instrument uncertainty is included in the development of the retrieval
algorithm that is used to convert brightness temperatures into temperature profiles. Here a
statistical retrieval algorithm trained on a long-term data set of representative atmospheric
profiles following the procedure outlined by Crewell and Löhnert [2007] and Löhnert and
Maier [2012] is employed. By testing the performance of the algorithm on a synthetic test
data set the altitude dependent uncertainty ε(z) can be derived which varies between 0.44

K on the ground and 1.20 K at 2 km. The increase in ε(z) with height is a consequence of
the low degrees of freedom in the measurement data Löhnert and Maier [2012]) and reflects
that the true vertical resolution of the retrieved potential temperature profiles is coarser
than the discretization grid selected -a subjective choice from the user’s side.

To estimate the SBLH uncertainty, ∆zMWR,meas, associated to the retrieved potential-
temperature profile, θMWR(z) (Fig. 4.10), we apply the SBLH-model-fitting procedure de-
scribed above, not only on θMWR(z) but also to the upper and lower error-bound profile for
the potential temperature θMWR(z)± ε(z), in order to estimate the impact on Fig. 5.4a).

The discretization grid of Tab. 5.1, which has been used to retrieve the temperature data
for this work, follows this resolution-decreasing behaviour with height and it is, therefore,
proportional to the real resolution of the data albeit the true exact values are not known.
Here, for simplicity, ∆zMWR,res, has roughly been approximated by the discretization step
of Tab. 5.1 at the estimated SBLH.

After the perturbational procedure and taking into account the uncertainty due to the
low vertical resolution, the upper and lower bounds of the estimated SBLH can be written
as

ĥu,lMWR = ĥfitMWR ±∆zMWR, (5.22)
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Figure 5.4: MWR signal-processing. (a) Potential-temperature perturbed-error profiles, θMWR(z) +
ε(z) (upper error bound, dashed red), θMWR(z) (nominal profile, solid blue here and blue crosses in
Fig. 4.10), and θMWR(z)−ε(z) (lower error bound, dotted red), used to estimate the errorbars associated
to the MWR-retrieved potential temperature profile, θMWR(z). (b) Time-snapshots of MWR-retrieved
potential temperature profiles with uncertainty due to measurements errors, (Eq. 5.22) at four time-
instants from 24.04.2013, 21:00-22:30:00 UTC.
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Table 5.1: Discretization of vertical temperature retrieval grid upto 1 [km].

height [m] discretization step [m]
0 ≤ z ≤ 250 50

250 < z ≤ 700 75
700 < z ≤ 1000 100

Table 5.2: Statistics relating the thermodynamic SBLH determined from MWR-retrieved potential
temperature and MVRs.

- total count percentage
Total 30-min bins 488 100

Only one MVR inside MWR error-bar 264 54.1
Two MVRs inside MWR error-bar 26 5.3
No MVR inside MWR error-bar 62 12.7

MVRs do not exist 136 27.9

where superscript “u” and “l” stand for “upper” and “lower” error bounds, respectively, and
|∆zMWR| = |∆zMWR,res| + |∆zMWR,meas| is the estimated error including the height dis-
cretization uncertainty.

Fig. 5.4b shows four potential temperature profiles with a time-spacing of 30-min for
the time interval 21:00-22:30 UTC from real measurements. For each profile the error-bar is
based on the ∆zMWR,meas meaning the actual error-bars will be even bigger when ∆zMWR,res

is taken into account for each profile. The error-bars thus define the EKF fitting ranges in
the form of coarse SBLH estimates.

5.2.3 SBLH estimation from synergetic lidar-MWR data

In order to study how the SBLH height range given by the MWR-retrieved potential temper-
ature is related to MVRs within the variance profile of the lidar backcatter data a statistical
assessment was performed (Tab. 5.2). Over the study period (15.04.2013-14.05.2013) 488

30-min averaged variance profiles with corresponding MWR observations exist during night-
time, i.e. between 20:00 and 06:00. By counting the number of MVRs within the uncertainty
range defined by the MWR error-bar, ∆zMWR(z), it is evidenced that in almost 54% of cases
a single MVR falls within the MWR error bar. For 26% of cases two MVRs lie within the
MWR error-bar. No MVR was present inside the MWR error-bar for about 12% and MVRs
did not exist for about 28% of cases.

When a single MVR falls within the MWR error-bar, which is the case for 54% of cases,
it becomes straightforward to determine a fine estimate of the SBLH without the need to
perform further processing. However, the situation gets complicated when more than one
MVRs lie within the MWR error-bar or no MVR lies in the MWR error-bar or MVRs do
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not exist at all. In such cases, previous time estimates of SBLH can be utilized to come-
up with an SBLH estimate for the present time. The Kalman filter provides a convenient
framework for such kind of estimation problems where already small fluctuations (the MVRs)
must adaptively be estimated and time track under random environments (i.e., the vertical
profile of the variance evolving with time as a random process) and where information from
previous time records must be assimilated. In the following a formulation, to determine the
EKF fitting ranges, for the synergy between the MWR coarse estimate of the SBLH and
the width of MVR from the previous time instant is presented.

At each time instant, tk, estimation range boundaries z1,k, z
′

1,k, z
′

2,k and z2,k (Sect. 5.2.1
and Fig. 4.2) are determined by using a combination of the MWR SBLH estimates as well as
the shape of the minimum-variance region from the previous time step, tk−1. The following
adaptive search boundaries are proposed


z1,k = ĥlMWR,k

z
′

1,k = ẑSBL,k−1 −∆hlk
z
′

2,k = ẑSBL,k−1 + ∆huk
z2,k = ĥuMWR,k.

(5.23)

In Eq. 5.23 the MWR coarse SBLH search interval (refer to Fig. 4.2) is defined as

IMWR,k =
[
ĥlMWR,k, ĥ

u
MWR,k

]
, (5.24)

and zSBL is the fine SBLH estimated from the EKF/NLSQ, and hence, the solution of the
estimation problem.

Besides, the time-resolution of the MWR is lower than that of the ceilometer (a factor
of 10 in this case), which means that IMWR,k changes every 10 ceilometer time records.
Therefore, to match the time-stamps and to obtain a one-to-one correspondance, IMWR,k

are interpolated according to the ceilometer time-stamps. In Eq. 5.23 the MVR-search range,[
z
′

1,k, z
′

2,k

]
, is estimated from the SBLH estimate at previous-step plus/minus an incremental

height ∆huk/∆h
l
k, respectively, which define the upper (“u”) and lower (“l”) MVR search

bounds. In order to comply with the constitutive relation, z′1 > z1 and z2 > z
′
2 depicted

in Fig. 4.2, the upper and lower search bounds
[
z
′

1,k, z
′

2,k

]
are computed at the 1σ width of

the MVR (parameter b in Eq. 4.1) and constrained by the maximum allowable upper/lower
heights bl/umax (consequence of the geometry of Fig. 4.2). Formally,

∆hlk = max
(
bk−1, b

l
max

)
,

∆huk = max (bk−1, b
u
max) , (5.25)
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where

blmax = ẑSBL,k−1 − hlMWR,

bumax = huMWR − ẑSBL,k−1. (5.26)

In Eq. 5.26 above bl/umax define the maximum distance (i.e., height in Fig. 4.2) from the
estimated SBLH, ẑSBL, to the lower search bound, hlMWR, and the maximum distance from
the upper search bound, huMWR, to the estimated SBLH, ẑSBL. A pictorial representation of
Eq. 5.25 and Eq. 5.26 variables is given in Fig. 4.2.

The recursive scheme of Eq. 5.23 thus allows to conveniently merge thermodynamic
information about the SBL from the MWR-derived potential temperature with information
about aerosol stratification provided by the lidar. Thus, whereas the MWR plays two
important roles: 1) providing the correct aerosol layer attribution, and 2) defining coarse
estimation search ranges (z1,k and z2,k), the lidar provides a highly-resolved estimate of the
SBLH corresponding to the center of the aerosol layer identified by the thermodynamic
stability information from the MWR.

5.2.4 Results and discussions

Measurements from CT25K ceilometer and HATPRO MWR are used to estimate the SBLH
under different atmospheric scenarios. First, the algorithm is applied to night-time data
from 24.04.2013 (Fig. 5.1), i.e. a clear-sky day with classical boundary layer. Second, the
performance is evaluated for a two hour case study from 29.04.2013 with a weakly stable
nocturnal boundary layer and low aerosol amount. SBLH estimates from the EKF and
NLSQ estimates are compared to assess their different performance.

24.04.2013 - At midnight the temperature profile (Fig. 5.1) reveals stable conditions.
Together with the high aerosol backscatter signal in the SBL that reaches heights up to 600
[m] (Fig. 5.5a) this indicates a well developed stable boundary layer between mid-night and
sunrise (around 4:30 UTC). Both EKF and NLSQ estimate SBLH between 400 and 600 [m]
with good agreement among each other though EKF SBLH estimates are much smoother
due the assimilation of the information from past estimates.

The benefit of EKF becomes more pronounced when the period past sunset (around
19:30) is considered from 21:00-24:00 UTC. As the surface of the Earth becomes gradually
cooler, convection ceases and atmospheric stability increases affecting successively higher
altitudes. Initially aerosol is not accumulated in the SBL and the backscatter return from
the RL is still significant when compared to SBL. This is in contrast to the previous period
between midnight and early morning when aerosol had accumulated in the SLBH during
the course of the night and the backscatter signal in the RL was lower. Thus, Fig. 5.5b
shows that although there is a higher aerosol backscatter signal from the lower heights, a
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(a) (b)

(c)

Figure 5.5: Test cases based on data from HOPE campaign at Jülich, Germany. (a) Colorplot of
the ceilometer backscattered signal for 24.04.2013, 00:00-04:30 UTC measurements along with SBLH
estimates from the EKF and the NLSQ approaches. (b) Colorplot of the ceilometer backscattered
signal for 24.04.2013, 21:00-24:00 UTC measurements along with SBLH estimates from the EKF and
the NLSQ. SBLH estimate from the radiosonde (black square) launched at 23:00 is also shown. (c)
Colorplot of the ceilometer backscattered signal for 29.04.2013, 22:00-24:00 UTC measurements along
with SBLH estimates from the EKF and the NLSQ. (All panels) MWR-EKF search ranges [z1,k, z2,k]
(Eq. 5.23 and Fig. 4.2) are plotted as gray vertical bars.
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considerable amount of aerosols are still trapped in the RL. Fig. 5.5b also compares the
SBLH estimates obtained from the synergetic lidar-MWR approach of Sect. 5.2.3 from EKF
and NLSQ estimators. Comparison between EKF and NLSQ SBLH estimates shows that
the NLSQ fails most of the time. This is due to the non-adaptive behaviour of the NLSQ
estimator which causes that when it is confronted with different MVRs within the “coarse
search” boundaries marked by the MWR, the NLSQ can not disambiguate which one to
choose. In these situations, the NLSQ just provides the least-squares-error (LSQ) solution
averaged over all the MVRs in the estimation range. In contrast, the EKF conveniently
provides a reasonable solution averaged under a criterion of minimum MSE over time due
to its assimilation of past temporal information (covariance). Furthermore, good agreement
with the radiosonde at 23:00 is evident.

29.04.2013 - The period between 22:00-24:00 UTC provides a more challenging case
from the signal-processing point of view in which the variance (an already small quantity
as mentioned in Sect. 4.1.1) must be estimated from the backscatter returns (the signal
component) in response to an atmospheric scene nearly depleted of aerosols (weakly stable
nocturnal boundary layer). Thus, Fig. 5.5c shows that aerosols in the lower height, where
usually a stable boundary layer is developed by this time of the day, provide much less
backscatter signal as compared to higher heights belonging to the residual layer (such kind
of situations usually prevail when thermal emission from the Earth surface is slow or there is
a cloud cover trapping the surface heat in the atmosphere or a cleaner airmass is advected due
to synoptic conditions at the location of measurements). In the case of Fig. 5.5c the spatial
variance of the backscatter signal (estimated via the approximation of (Eq. 5.3) becomes
a weak “tracking” indicator of the SBLH because the variance is in fact estimated from
signal samples approaching zero (i.e., the backscatter returns in a SBL virtually depleted
of aerosols) and the existence -and correct detection- of MVRs is inherently linked to the
stratification of aerosols. Therefore, this is a “complex” estimation problem characterized
with very low SNRs, where the role of the MWR becomes even more critical and where SBLH
estimates largely benefit from “a priori” information coming from potential temperature data.
Obviously, NLSQ estimator (non adaptive) fails almost at all the times. However, the EKF
still provides reasonably good SBLH estimates thanks to the assimilation of MWR and past
temporal information.

In total, 226 radiosondes were launched during the HOPE campaign. However, the
majority of radiosondes (≈75%) were launched during daytime mixed-layer conditions. In
reality, in most of the days, one radiosonde was launched at 23:00 UTC and during the
so-called intensive observations periods (IOPs 15.04, 18.04, 20.04, 24.04, 25.04, 29.04, 02.05,
04.05, 05.05, and 18.05) several radiosondes were launched during night and early morning
times, as well. Thus, along with the majority of radiosondes at 23:00 UTC, a few ones at
21:00, 03:00, 05:00, 07:00 and 09:00 UTC are also available for SBL studies. Due to synoptic
conditions, such as wind shear or residual convection from the daytime, on some days (e.g.,
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19.04, 01.05, 16.05, 21.05) the SBL did not form at these times and hence, these cases have
been excluded. As a result, only 56 radiosondes become available for such comparative study.
SBLH from all these radiosonde launches, available for SBL study, was calculated and it
has yielded a mean SBLH of 424 [m] with an error standard deviation of ±150 [m]. When
this SBLH radiosonde-estimate is compared with the study cases presented in Fig. 5.5, it is
clear that the estimated SBLH almost always falls within the radiosonde-estimated height
interval (274-574 [m]), as expected.

Main limitations of the technique presented in this work encompass both instrumental
and environmental limitations: (i) Concerning instrumental limitations, the partial overlap
of the lidar (also known as laser-telescope cross-over function), which is the case for bi-
axial lidar systems, distorts the attenuated backscatter profile at low heights. Therefore,
the technique only works for SBL heights which are above the range of full overlap of the
system. Since the CT25k is a mono-axial system with its first range gate starting at around
60 m, this instrumental limitation does not arise in this work. (ii) Concerning environmental
conditions, it must be said that typically, the SBL height is not more than one km Stull
[1988], which means that the technique presented here will, almost always, be of application
along the first km of the vertical lidar profile. Yet, the existence of stable atmospheric
conditions is always a pre-requisite since the stratification of aerosols occurs only under
SBL. In fact, aerosol load will ultimately condition the quality of filter convergence since
aerosols are needed as tracers of the atmospheric phenomenon under study. Though this is
still a matter of research, comparatively, the EKF has successfully estimated the SBLH in
the study case of Fig. 6c (low aerosol load) with a contrast backscatter level in the SBL as
low as 0.3-0.6 a.u. (heights interval 274-574 m) as compared to a free-troposphere level of
almost 0 a.u. at 2 km. In the study case of Fig. 6b (high aerosol load, nocturnal case) the
backscatter level lies between 0.7-1.0 a.u. In terms of thermodynamic stability detected by
the MWR, elevated inversions are a challenge for detection.

5.3 Conclusions

An adaptive solution based on synergetic use of data from a lidar-ceilometer and a MWR
has been presented. Vertical variance of the attenuated backscatter signal from a (Vaisala
CT25K) ceilometer has been used as an indicator of the aerosol stratification in the nocturnal
stable boundary layer. Minimum variance regions within the vertical variance profiles have
been modelled by an inverted Gaussian-like function and model parameters including the
sought-after SBLH have adaptively been estimated by using an EKF. Coarse SBLH estimates
from MWR-retrieved potential temperature observations have been assimilated for aerosol
layer disambiguation and to incorporate information about the thermodynamic stability of
atmosphere.
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Physical/signal-processing steps can be summarized as follows: First, the vertical vari-
ance of the ceilometer backscatter signal is estimated by using a moving-average filter (150

m rectangular window) as de-noising step. The correct filter window length is obtained by
monitoring statistical properties of residual instrumental noise. By this means, MVRs, which
are indicative of the stratification of aerosol layers in the nocturnal stable boundary-layer,
are evidenced in the vertical moving variance profiles of the denoised backscatter signal.
The existence of MVRs and their correlation with the SBL has been further investigated
by processing one month data from HOPE campaign. After screening for clouds and rain,
the vertical variance calculated and averaged for 30-min in time and 200 [m] in height bins.
Counting the MVRs falling inside the error-bar defined by MWR, it was observed that for
about 54% of cases a single MVR and for about 5% of cases two MVRs were present inside
the MWR error-bar. Whereas, no MVRs lied inside MWR error-bar for 13% of cases, the
MVRs did not exist at all for about 28% of cases.

MVRs are modelled by using an inverted Gaussian-like function with the SBLH as key
parameter of the state-vector model. The state vector is adaptively estimated by using an
EKF whose search boundaries are defined from the MWR “coarse” SBLH estimates and the
1σ width of the time-adaptive Gaussian model.

The synergetic approach has been applied to measurements from the HOPE campaign
at Jülich, Germany. Three atmospheric scenarios have been presented: 1) An early morning
scenario of SBL with deep stratification of aerosols and thermodynamic stability in the
atmosphere; 2) An evening case where the SBL just starts developing from the Earth surface;
3) And a complex case with shallow stratification of aerosols in the atmosphere. Results
from these three cases have shown that the proposed synergetic approach performs well for
the different time intervals of the day as well as under different “nocturnal” atmospheric
conditions.

Future work of this prototype algorithm is to involve long-term measurement data as
well as more complex atmospheric scenarios whereby the nocturnal boundary layer is inter-
mittently turbulent. More sensitive ceilometer instruments such as the CL31 and CL51 can
provide better information about the aerosols stratification and could reveal fine structures
in the SBL. Moreover, better processing of the MWR data for SBLH estimates with lower
uncertainty could provide better results for complex cases. The ultimate goal of this prelim-
inary study is to develop a synergetic retrieval algorithm for full diurnal cycle of the ABLH
over the course of the day.



Chapter 6

Large-eddy simulation: A perspective
for understanding the atmospheric
boundary layer

This short chapter presents a preliminary study on the use of Large Eddy Simulation (LES)
model for understanding the Atmospheric Boundary Layer (ABL). As an example case, direct re-
trieval of mixing-layer height from LES-simulated brightness temperature is presented.

The contents of this Chapter are part of the results presented at MicroRad, 2016 Saeed et al. [2016a]. Systematic or mul-

tiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties

under law.

6.1 Introduction

LES provides a convenient tool to study the capabilities and the performance of algorithms
without instrumental shortcomings as it provides all meteorological variables with high
spatial resolution in a physically consistent manner. In order to simulate a realistic atmo-
spheric scenario the LES model - in this case, the Dutch Atmospheric Large-Eddy Simulation
(DALES) Heus [2010]; Neggers et al. [2012] - is driven by meteorological analysis from a nu-
merical weather forecast model. DALES is based on the LES code of Nieuwstadt and Brost
(1986) and has been specifically adapted to study the physics of the ABL, that includes the
CBL and SBL as well as the cloudy ABL.

For this study case, DALES was initialized for 24.04.2013 at 00.00 UTC for Jülich,
Germany, and run for 24 [h] with a spatial resolution of 40 [m] and outputs every 30 [min].
Since it is a clear-sky day with an idealised development of ABL, thus a convenient choice for
testing ABLH estimation algorithms. Because DALES does not explicitly include aerosol,
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two passive tracers, Tracer-1 and Tracer-2 were introduced as proxies.

At the start of the simulation Tracer-1 is set to a concentration value of 1 [kg/kg], defined
as kg of “aerosols” per kg of air, in the RL, which in this simulation case was about 1 [km] of
height. Above one 1 [km], (free troposphere), Tracer-1 is initially set to zero. In the course
of the simulation, tracer concentration in the FT increases due to the detrainment at the
top of the boundary-layer. Tracer-2 describes the emission of aerosols at the surface that
are subsequently mixed into the atmosphere due to the surface flux. The two tracers are
combined (first scaling them to the same magnitude ranges and then adding) to simulate
the aerosols behavior within the boundary-layer over the course of a day. In this way the
aerosol mixing ratio, maer [kg/kg], in the atmosphere is given at each altitude and time step.

The LES-derived total-backscatter coefficient, β, is computed by using the approxima-
tion,

β = a ·maer · f(RH), (6.1)

where “a” is a scaling factor to match the magnitude of the LES-simulated total backscatter
corresponding to the lidar measurement and f(RH) is a factor depending upon the relative
humidity, RH, with the relation

f =

[
1− RH

100

]−0.2

. (6.2)

Fig. 6.1 compares the measured backscatter (Fig. 6.1a) and the measured potential tem-
perature (Fig. 6.1c) corresponding to the development of the ABL on 24.04.2013 with the
simulated backscatter (Fig. 6.1b) and the potential temperature (Fig. 6.1d) time-height
structure over the full diurnal course. Because this day was characterized by weak synoptic
forcing and nearly no clouds, ABL development is close to the idealized cases described
in Chap. 1, Sect. 1.2. Since the LES simulation was started at midnight and the stable
boundary layer prevailed until about an hour past sunrise, the aerosol mixing process did
not start until about 06:00 UTC when the convection became significant and the convective
ML developed. This can well be seen by the neutral conditions, i.e., vertically constant
potential temperature. Around sunset (18:30 UTC) mixing recedes and thus aerosol strat-
ification occurs. The extent of aerosol stratification in the SBL is directly linked to the
amount of thermal stability in the boundary-layer. The observed backscatter and potential
temperature agree well with the LES, nicely showing the same morphological development
of the ABLH.
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Figure 6.1: Comparison between measured and LES-simulated aerosol backscatter and potential
temperature data from 24.04.2013, Jülich, Germany. (a) Colorplot of the backscatter profiles measured
by the Vaisala CT25k ceilometer. (b) Colorplot of the LES-simulated atmospheric backscatter. (c)
Colorplot from the MWR-retrieved potential temperature data. (d) Colorplot showing LES-simulated
potential temperature.

6.2 Direct retrieval of the MLH from simulated bright-

ness temperature

In the following, a method for direct retrieval of the MLH from brightness temperature
measurements, and without the need to perform a temperature retrieval first, is presented.

As a proof of concept, the retrieved MLH is compared with the MLH obtained from
the inverted potential temperature by using the “truth” brightness temperatures, hence
allowing to study the impact of retrieval errors on the MLH estimates. Towards this end,
the algorithm compares “truth” brightness temperatures to algorithm-generated ones by
using an OEM.

The processing steps of Fig. 6.2 are considered:

“Truth” brightness temperatures, which emulate the real atmosphere, are generated by
using the DALES model as a test-bed. LES-generated vertical profiles of the atmospheric
temperature, pressure, and water-vapor are first input to a forward model, thus, simulating
brightness temperatures, TLESb (ν,Φ), where ν is the frequency of measurement and Φ is the
elevation angle.

Algorithm-generated brightness temperatures, T PARAMb , are obtained from a “state vec-
tor”, x (i.e., the unknown to be solved) parametrizing model temperature along with known
pressure and humidity profiles followed by a forward model. The state-vector x = [zMLH , T0,∆zEZ ]
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Figure 6.2: Block diagram of the proposed direct MLH-retrieval scheme. Starting from left-hand side,
T stands for temperature, P for pressure, q for absolute humidity. Subindex “LES” stands for Large
Eddy Simulated variable, “PARAM” stands for parametrized variable, and “std” stands for standard
atmosphere. Tb(ν,Φ) is the brightness temperature at frequency ν and elevation angle Φ. e(ν,Φ) is the
brightness-temperature error. In the block “A priori”, Se stands for measurement error covariance ma-
trix, Sa stands for state-vector covariance matrix, and xa stands for the initial guess on the state-vector.
Finally, x = [zMLH , T0,∆zEZ ] is the state-vector with zMLH the MLH, T0 the surface temperature,
and ∆zEZ the EZ width.

is parametrized by three components: zMLH is the MLH, T0 is the surface temperature, and
∆zEZ is EZ width. The key parameter of the “state vector” is the MLH. This parametriza-
tion of the input temperature profile effectively allows to reduce the DoF of the retrieval
problem. The algorithm converges under an OEM criterion that provides the maximum
likely-hood estimate of MLH using Bayesian approach.

Since the MLH is the key component of the state-vector being solved, the proposed al-
gorithm does not need to carry out the classic two-step procedure in which: (i) physical
temperature profiles are inverted from brightness temperatures and, (ii) the MLH is esti-
mated from the retrieved temperature profiles (parcel method). As a result, the proposed
algorithm is free from brightness-to-physical temperature retrieval errors associated to clas-
sic MLH-estimation methods relying on step (i). The proposed approach is expected to
provide MLH estimates with better accuracy and low uncertainty.

6.2.1 Problem formulation

In Chap. 3, Sect. 3.3.1, it was discussed that there are two main sources of uncertainty
on MLH estimates from MWR-retrieved potential temperature: (i) the instrumental uncer-
tainty due to the brightness-temperature measurements, ∆zTb , and (ii) the uncertainty due
to the coarse vertical resolution of the retrieved potential temperature profiles, ∆zres.
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(a) (b)

Figure 6.3: Comparison between LES-simulated and parametrized temperature profiles, 10:50 UTC,
24.04.2013, Jülich, Germany. (a) Temperature profiles. (b) Potential temperature profiles.

There is no way to avoid (i). Therefore, in order to test our method without the influence
of instrumental measurement errors, LES-simulated data is used. By generating simulated
profiles of the atmospheric variables of interest, namely, temperature, pressure, and humid-
ity. DALES provides a virtual laboratory to test algorithms without the shortcomings of
instruments. Moreover, the impact of retrieval errors on the estimated MLH can also be
studied, since the input reference is available.

In order to tackle (ii), a scheme for direct retrieval of MLH without the need to perform
temperature retrieval first is proposed.

Parametrization of the temperature profile. - In order to reduce the DoF of the MLH
retrieval problem, the atmospheric temperature profile is parametrized in terms of the MLH,
zMLH , the surface temperature at ground level, T0, and the width of the EZ at the top of
the ML, ∆zEZ , as follows

TPARAM(z) =


T0 − aML · z, z ≤ zMLH

TMLH , zMLH ≤ z ≤ (zMLH + ∆zEZ)

TMLH − aFT · z, (zMLH + ∆zEZ) ≤ z ≤ zmax,

(6.3)

where aML is the temperature lapse-rate in the ML, TMLH is the temperature at the top of
the ML, aFT is the FT temperature gradient, and zmax is the maximum height for TPARAM .

Fig. 6.3 shows a comparison between the LES-simulated and the parametrized physical
and potential temperature profiles. As it can be noticed in Fig. 6.3a the physical tempera-
ture profile has been parametrized by the three parameters which include the mixing-layer
height, zMLH , the surface temperature, T0, and the width of EZ, ∆zEZ . The parametrized
temperature profile fits well with the LES-simulated temperature profile. Fig. 6.3b shows
the LES-simulated and parametrized potential temperature profiles corresponding to the
physical temperature profile of Fig. 6.3a.
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Figure 6.4: Comparison between LES-simulated and parametrized brightness temperature measure-
ments at different frequencies and elevations, 10:50 UTC, 24.04.2013, Jülich, Germany. (a) Frequency:
51.26 [GHz], elevation: 90 [deg]. (b) Frequency: 58 [GHz], elevation: 90 [deg]. (c) Frequency: 54.94
[GHz], elevation: 10.2 [deg]. (d) Frequency: 58 [GHz], elevation: 5.4 [deg].

Optimal estimation method for state-vector estimation: - The OEM used is a Bayesian
solution to the parameter estimation problem given a set of noisy measurements, where the
noise is assumed to be Gaussian Rodger [2000]. The iterative solution for the OEM is given
by

xk+1 = xk +
(
KT
k S
−1
e Kk

)−1 [
KT
k S
−1
e (y − yk) + S−1

a (xa − xk)
]
, (6.4)

where xk = [zMLH , T0,∆zEZ ] is the state-vector, y denotes brightness measurements, xa is
the a priori state-vector, Se is the measurement covariance matrix, Sa is the state-vector
covariance matrix, Kk is the Jacobean of measurements with respect to the state-vector, yk
and xk are the past brightness measurements and state-vector, and k is the time index.

6.2.2 Results and discussion

Comparison of actual and estimated measurements. - The OEM provides optimal estimates
of the state-vector parameters at each time instant. As a first test of the performance of the
proposed approach, brightness temperatures obtained by the LES-simulated atmosphere,
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(a) (b)

Figure 6.5: MLH from the parcel method (magenta trace) and the direct-retrieval method (black
trace) by using: (a) MWR zenith measurements, and (b) MWR elevation measurements.

TLESb , and brightness temperatures obtained by the estimated state-vector, T PARAMb , are
compared at the different frequencies and elevation angles of the MWR channels (Fig. 6.4):

• ν = 51.26 [GHz], Φ = 90 [deg]: This is the most transparent channel and hence,
extends high up in the atmosphere. As a result, the effect of parametric approximation
becomes significant enough resulting in more than 4 [K] of difference, e (ν,Φ) ≥ 4[K]
(Fig. 6.4a).

• ν = 58 [GHz], Φ = 90 [deg]: As the measurement frequency becomes closer to
the center of the O2 band (60 [GHz]), the difference between LES-based brightness
temperature measurements and parametric brightness temperature measurements be-
comes lower (Fig. 6.4b).

• ν = 54.94 [GHz], Φ = 10.2 [deg]: The difference between LES-brightness tem-
peratures and the parametric model atmosphere decreases with lower elevation angles
as the extent of atmosphere contributing to the brightness measurements comes from
lower heights (Fig. 6.4c).

• ν = 54.94 [GHz], Φ = 5.4 [deg]: Finally, the most opaque channel with the highest
frequency and the lowest elevation angle results in the minimum difference between
LES and parametric-based brightness temperature measurements (Fig. 6.4d).

Comparison between reference (LES) and estimated MLH estimates. - MLH estimates
obtained from the parcel method and the direct-retrieval method are presented and com-
pared using zenith-only and elevation (including zenith) measurements (Fig. 6.5). Fig. 6.5a
shows qualitative comparison between the MLH estimates obtained from the LES-simulated
temperature via the parcel method and the direct-retrieval method using zenith-only MWR
measurements. Fig. 6.5b shows the same as Fig. 6.5a but with measurement from elevation
angles included. A good agreement is evident. In order to get more in-depth analysis and
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Figure 6.6: Scatter plots of MLH (zMLH), surface temperature (T0), and width of entrainment zone
(∆zEZ). (a) zMLH using zenith measurements only. (b) zMLH using 27 elevation measurements (7
zenith, and 20 elevation). (c) T0 using zenith measurements only. (d) T0 using elevation measurements.
(e) ∆zEZ using zenith measurements only. (f) ∆zEZ using elevation measurements.
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quantitative results, Fig. 6.6 shows scatter plots of MLH (Figs. 6.6a, 6.6b), surface tempera-
ture (Figs. 6.6c, 6.6d), and width of the EZ (Figs. 6.6e, 6.6f) estimated from LES-simulated
temperature data as well as from the direct-retrieval method.

Impact of retrieval temperature on MLH estimates. - Finally, in order to study the
impact of temperature-retrieval errors on MLH estimates, LES-simulated profiles of phys-
ical and potential temperature (TLES and θLES, respectively) are compared against the
retrieved-temperature and retrieved-potential temperature profiles obtained from the simu-
lated measurements.

Fig. 6.7a shows that the retrieved temperature profile (TRET,LES and θRET,LES, respec-
tively) is a smoothed version of the real atmosphere, consequently, missing the correct
inversion-related information on temperature inversion. This is due to instrumental limita-
tions as well as physical ones coming from the low DoF in the measurements. The impact
of this smoothing effect is clearly seen in terms of under-estimation of MLH in Fig. 6.7b.

6.3 Conclusions

A method for MLH retrieval directly from MWR brightness-temperature measurements
has been presented, thus alleviating the need for retrieval of temperature profiles as an
intermediate step. The physical temperature profile has been parametrized in terms of three
state-vector parameters including the MLH, and thus reducing the DoF of the problem. The
absence of temperature retrieval errors has resulted in low-uncertainties on the estimated
MLH. Information from elevation measurements has improved the MLH retrieval.

In future, validation on long-term simulated and measurements data under different at-
mospheric conditions from HOPE campaign will be carried out. Use of a priori information
from other instruments such as the backscatter and the Doppler lidar is expected to improve
the results. The method is well suited for operational retrieval of the MLH.
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Figure 6.7: Comparison between LES-simulated, LES-retrieved, and parametric-retrieved profiles of
physical temperature and potential temperature. (a) Physical-temperature profiles. TLES is the LES
“truth” temperature, TRET,LES is the LES-retrieved temperature. TRET,PARAm is the parametrized-
retrieved temperature. (b) θLES is the LES “truth” potential temperature. θRET,LES is the LES-
retrieved potential temperature. The solid black square indicates the “true” MLH from LES. The solid
black circle indicates the LES-retrieved MLH.



Chapter 7

Conclusions

This chapter summarizes concluding remarks and future lines of work.

7.1 Conclusions

On development of a synergetic method for MLH estimation from combined lidar and MWR
measurements (obj. 1). - Two commonly used methods for MLH estimation, the EKF from
backscatter lidar signals and the parcel method from MWR-retrieved potential-temperature
measurements, have been analysed in terms of their capabilities and uncertainties.

In the lidar case, since the EKF assimilates measurement errors via the measurement
covariance matrix, it already provides a posteriori errors on the estimated state-vector and
hence, the uncertainty on the MLH being estimated.

In the MWR case, the uncertainty on the MLH due to measurement and retrieval errors
has been analysed by using the error superposition principle. Uncertainty due to measure-
ment errors has been estimated by applying the error-propagation method and simulated
measurement values from the literature. Retrieval errors have been approximated by the
vertical resolution of the temperature profile along the height grid.

MLH from the two methods (lidar and MWR one) along with their uncertainties have
been compared against the reference MLH estimated from RSs and Doppler wind lidar. On
one hand, it has been shown that, though the EKF performes well in well-mixed atmospheric
conditions, it lacks physical consistency under certain atmospheric conditions especially
associated to the morning and evening transition of the boundary-layer. On the other hand,
the MWR provides physically consistent estimates of the MLH albeit with much higher
uncertainty. Therefore, it has been concluded that a synergy of the methods can provide
highly-resolved and physically consistent estimates of the MLH.

In this context, a synergetic MLH method has been presented. It works by fitting an
erf-like transition model function to the ML-to-FT section of the range-corrected backscat-
ter lidar signal. The start and end ranges of this “search” section where the EKF fits the
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erf-model function are defined by the MWR estimates of MLH along with associated un-
certainties. This new approach, which exploits the synergy between the two instruments,
has enabled to detect and track the MLH without loss of the original vertical and temporal
resolutions. Test cases combining data from a co-located ceilometer and a MWR have been
presented. Doppler wind lidar along with radiosonde data (whenever available) has been
used to assess the quality of the synergetic MLH estimates.

On non-synergetic SBLH estimation (obj. 2a). - Aerosol stratification under stable boundary-
layer conditions has been successsfully related to the variance of the backscatter lidar signal.
MVRs within temporal and spatial variance profiles have been shown to be key indicator
of the presence of aerosol layers (fanning) in the atmosphere. A simplistic SBLH method
consisting of the identification of the variance minima (in this Ph.D., it is called “threshold
minima method”) has been presented and applied to two test cases representative of different
atmospheric conditions. It has been found that MVRs only exist under stable conditions in
the boundary layer. The quality of SBLH estimates can largely be improved by an advanced
adaptive estimation method such as the EKF.

The potentialities of EKF for the estimation SBLH have been shown. Thus, the height-
resolved temporal variance profile of the lidar data has been used as the observables (or
inputs) to the EKF along with an inverted Gaussian-like model for MVRs. The filter has
been initialized by the SBLH estimate from a RS and it has been applied to Vaisala CT25K
ceilometer data. Results have been compared with SBLH estimates from a collocated MWR
and a good degree of agreement has been observed.

Finally, a method for the estimation of the SBLH from potential temperature profiles re-
trieved from MWR data has been presented. The method uses physically idealized models of
the SBL temperature profile available in the literature. There are five models which include
stable-mixed, mixed-linear, linear, polynomial and exponential. For a given temperature
profile these five models have been fitted using the NLSQ approach. The best fitting model
came up to be the exponential because it has given the mMSE.

Synergetic SBLH estimation (obj. 2b). - A synergetic approach for the estimation of SBLH
using lidar and MWR data has been developed. Vertical variance of the backscatter signal
from a ceilometer has been used as proxy of aerosols stratification in the nocturnal SBL. This
hypothesis has been supported by a statistical analysis over one month of observations from
HOPE campaign. Thermodynamic information from the MWR-derived potential tempera-
ture has been incorporated as coarse estimate of the SBLH. Data from the two instruments
has been adaptively assimilated by using an EKF.

A first test of the algorithm has been performed by applying it to collocated Vaisala
CT25K ceilometer and HATPRO MWR data. The method has successfully been applied to
two test cases, one with a typical boundary layer development and another with complex
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nocturnal weakly stable boundary layer. The application of the synergetic algorithm to both
atmospheric scenarios has revealed the superior performance of the EKF as compared to a
NLSQ estimation, especially in non-ideal conditions.

On feasibility study on the usage of LES data for MLH estimation (obj. 3). - In this
very prospective objective, LES has shown to be a promising tool for understanding the
ABL. Comparison between LES-simulated and measured data has revealed good qualitative
agreement in terms of both the magnitudes of the physical quantities (temperature, and
backscatter) involved as well as the development of ABLH. Finally, as study case, a new
method for direct retrieval of the MLH from simulated brightness measurements has been
presented. Preliminary results indicate the potentiality of the method for operational use
from MWR brightness temperature measurements.

7.2 Future lines

For in-depth understanding of the relative merits of the algorithms presented in this Ph.D.
thesis, instrument simulators are to be combined with LES in order to follow boundary-layer
development over the full diurnal cycle.

Using synthetic backscatter lidar profiles and brightness temperatures will allow further
optimization of the algorithms to continuously derive the ABLH.

Validation and comparison between long-term simulated and measured data should be
an essential step to ascertain the reliability and performance of the methods presented so
far under different atmospheric conditions.

Finally, extensions of the methods for data from other sources such the radar, satellite-
borne instruments, etc. is expected.
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Appendix B

Detailed derivative developments for
Eq. 2.19

B.1 Direct contribution from ith layer, TB2

First, consider the direct contribution with respect to changes in temperature only, in layer
i

∂TB2

∂T
=

∂

∂T

(
κ(0, r)

∫ r+∆r

r

T (u)α(u)κ(r, u)du

)
,

= κ(0, r)

∫ r+∆r

r

α(u)κ(r, u)du. (B.1)

Second, the contribution due to changes in absorption coefficient, which is directly in-
fluenced by the changes in temperature, ∂TB2

∂α
∂α
∂T

, is given by

∂TB2

∂α
= κ(0, r)

∫ r+∆r

r

T (u)

[
κ(r, u) + α(u)

∂κ(r, u)

∂α

]
du, (B.2)

where ∂κ(r,u)
∂α

= −κ(r, u)(u− r). Therefore,

∂TB2

∂α
= κ(0, r)

∫ r+∆r

r

T (u)
[
κ(r, u) + α(u)κ(r, u)(r − u)

]
du, (B.3)

For the limiting case, ∆r → 0, Φ = r − u→ 0, Eq. B.1 tends to

∂TB2

∂T
= κ(0, r)α(r)κ(r, r)dr = κ(0, r)α(r)dr, (B.4)
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and Eq. B.3 tends to

∂TB2

∂α
= κ(0, r)T (r)dr. (B.5)

By using Eq. B.4, and Eq. B.5, the total contribution directly from the ith layer then
becomes

∂TB2

∂T
=
∂TB2

∂T
+
∂TB2

∂α

∂α

∂T
,

=

[
κ(0, r)α(r) + κ(0, r)T (r)

∂α(r)

∂T

]
dr. (B.6)

B.2 Contribution through the transmissivity term, κ(0, r+

∆r), in TB3

The term for TB3 can be represented as

TB3 = κ(0, r + ∆r)

∫ ∞
r+∆r

T (u)α(u)κ(r + ∆r, u)du, (B.7)

and using the fact that ∂TB3

∂T
= ∂TB3

∂α
∂α
∂T

and that κ(0, r + ∆r) = κ(0, r)κ(r, r + ∆r) in what
follows:

Since only the term κ(r, r + ∆r) is affected by changes in ith layer

∂TB3

∂α
=

∂TB3

∂κ(r, r + ∆r)

∂κ(r, r + ∆r)

∂α
, (B.8)

where

∂TB3

∂κ(r, r + ∆r)
= κ(0, r)

∫ ∞
r+∆r

T (u)α(u)κ(r + ∆r, u)du, (B.9)

and

∂κ(r, r + ∆r)

∂α
= −κ(r, r + ∆r)∆r. (B.10)

Substituting Eq. B.9 and Eq. B.10 in Eq. B.8 and taking the limit ∆r → 0,

∂TB3

∂α
=

[
κ(0, r)

∫ ∞
r

T (u)α(u)κ(r, u)du

]
·
[
−(dr)

]
=

= −κ(0, r)

[∫ ∞
r

T (u)α(u)κ(r, u)du

]
dr. (B.11)
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Total contribution from TB3 then becomes

∂TB3

∂T
=
∂TB3

∂α

∂α

∂T
= −κ(0, r)

(
∂α

∂T

)[∫ ∞
r

T (u)α(u)κ(r, u)du

]
dr. (B.12)

B.3 Contribution through the background term , TB0

The background term can be rewritten as

TB0 = TBGκ(0,∞) =

= TBGκ(0, r)κ(r, r + ∆r)κ(r + ∆r,∞). (B.13)

By taking the derivative with respect to changes in temperature in the ith layer,

∂TB0

∂T
=
∂TB0

∂α

∂α

∂T
. (B.14)

The derivative ∂TB0

∂α
is calculated from the term which is directly affected from the tem-

perature changes in the ith layer at (r, r + ∆r),

∂TB0

∂α
=

∂

∂α

[
TBGκ(0, r)κ(r + ∆r,∞)κ(r, r + ∆r)

]
,

= TBGκ(0, r)κ(r + ∆r,∞)
∂κ(r, r + ∆r)

∂α
, (B.15)

where ∂κ(r,u)
∂α

= −κ(r, u)(r − u) with u = r + ∆r. Therefore, by substituting Eq. B.15 into
Eq. B.14,

∂TB0

∂α
= TBGκ(0, r)κ(r + ∆r,∞)κ(r, r + ∆r)∆r

∆r→0−→

−→ −TBGκ(0,∞)dr. (B.16)

B.4 Total contribution from the ith layer

The response of TB with respect to perturbations in temperature in ith layer can be calcu-
lated by summing up the contributions from the above three terms, i.e., Eq. B.6, Eq. B.12,
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and Eq. B.16,

d2TB(r) =

[(
∂TB,2
∂T

+
∂TB,2
∂α

∂α
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)
+
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