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Abstract

Semantic Web data is currently being heavily used as a data rep-
resentation format in scientific communities, social networks, busi-
ness companies, news portals and other domains. The irruption
and availability of Semantic Web data is demanding new methods
and tools to efficiently analyze such data and take advantage of the
underlying semantics. Although there exist some applications that
make use of Semantic Web data, advanced analytical tools are still
lacking, preventing the user from exploiting the attached semantics.

The main objective of this dissertation is to provide a formal frame-
work that enables the multidimensional analysis of Semantic Web
data in an scalable and efficient manner. The success of multidi-
mensional analysis techniques applied to large volumes of structured
data in the context of business intelligence, especially for data ware-
housing and OLAP applications, has prompted us to investigate the
application of such techniques to Semantic Web data, whose nature
is semi-structured and contain implicit knowledge.

Multidimensionality is based on the fact/dimension dichotomy. Data
are modeled in terms of facts, which are the analytical metrics,
and dimensions, which are the different analysis perspectives, and
are usually hierarchically organized. We believe that the construc-
tion of a multidimensional view of Semantic Web data driven by
the semantics encoded in the data themselves and the user’s re-
quirements, empowers and enriches the analysis process in a unique
manner, as it brings about new analytical capabilities not possible
before. Aggregations and display operations typical of multidimen-
sional analysis tools, such as changing the granularity level of the
displayed data, or adding a new analysis perspective to the data,
will be performed based on the semantic relations encoded in the
data. This is possible thanks to the mapping of the data to a con-
ceptual multidimensional space.

We base our research on the hypothesis that Semantic Web data
is an emerging knowledge resource worth exploiting, and that the
knowledge encoded in Semantic Web data can be leveraged to per-
form an efficient, scalable and full-fledged multidimensional analy-
sis. Scalability is achieved by two means. On one hand, we provide
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an ontology indexing model over ontologies that allows to manage
implicit knowledge in a compact format. Therefore, operations that
require reasoning can be efficiently solved using the indexes. On the
other hand, we have developed several scalable modularization tech-
niques that build upon the previous indexes and allow to extract
and work only with the ontological subsets of interest.

The previous indexing and modularization methods assist in the an-
alytical tasks by enabling the extraction of multidimensional data
from semantic sources based on the user query. That is, the meth-
ods are used to make the extraction of facts and dimensions from Se-
mantic Web data efficient and scalable. However, identifying facts,
dimensions, measures and well-shaped dimension hierarchies from
the graph structure that underlies SW data is a big challenge due
to the mismatch between the graph model that underlies Semantic
Web data and the multidimensional model. Therefore, the notions
of fact and dimension are revisited in the Semantic Web context
and both facts and dimensions are defined from a logical viewpoint.

Facts are formally defined as multidimensional points quantified
by measure values, all of which are logically reachable from the
subject of analysis defined by the user. To this end, we use the
notion of aggregation path, which is less restrictive than the tradi-
tional multidimensional constraints usually imposed between facts
and dimensions, and define different interesting subgroups for anal-
ysis. We also detect the summarizability of the extracted facts and
produce correctly aggregated results.

Dimensions are defined as direct acyclic graphs composed by nodes
that are semantically related and adhere to the conceptual specifi-
cation of the user. That is, nodes are sub-concepts of the dimen-
sion type and the edges are subsumption relations. Two alternative
methods allow to re-shape the extracted dimension hierarchies to
favor aggregation while preserving the semantics of the dimension
values as much as possible.

The flexibility introduced in the discovery of facts and dimensions
allows us to analyze data that have complex relations, which es-
cape to the traditional multidimensional model and cannot be oth-
erwise analyzed. Moreover, instead of building a huge, one time
data warehouse, our method for fact and dimension extraction is
based on several indexes and precomputed data, which allows us
to efficiently materialize only the facts and dimensions required by
an analytical query. This provides up-to-date, dynamic and cus-
tomized results to the user.

The experimental evaluation performed on each of the components
of the framework demonstrates that the proposed analysis frame-
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work scales to large ontological resources. Likewise, the developed
use cases show the potential of the multidimensional analysis of
Semantic Web data.
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Resumen

Introducción

La Web se ha convertido en una de las mayores fuentes de conocimiento, tanto
a nivel cient́ıfico y empresarial, como a nivel cotidiano. Inicialmente, la Web
se planteó como un recurso de consulta de información con contenidos más o
menos estáticos, el cual se compońıa de una serie de documentos enlazados,
t́ıpicamente ricos en texto. La primera gran evolución de la Web desembocó
en la Web 2.0, cuyo objetivo es crear una Web más dinámica que facilite a los
usuarios interactuar y compartir información. A través de las tecnoloǵıas Web
2.0 se permite a los usuarios crear y gestionar contenidos en la Web. Parte
del éxito de la Web 2.0 se debe a la utilización de lenguajes semi-estructurados
como XML para el intercambio de información, los cuales permiten dar cierta
estructura al contenido. Sin embargo, se ha demostrado que las tecnologas
XML son insuficientes para gestionar de forma eficiente la avalancha de in-
formación publicada en la Web, puesto que XML es capaz de estructurar
sintácticamente un documento pero no su contenido. Ello ha propiciado la
evolución de la Web hacia una Web más inteligente, la Web Semántica, o Web
3.0. El objetivo que persigue la Web Semántica es describir los contenidos
y la información presente en la Web utilizando formalismos lógicos para que
ésta pueda ser “entendida” y procesada de forma automática por las máquinas.
Aunque este objetivo es muy ambicioso, ya se dispone de tecnoloǵıas adecuadas
para la descripción semántica de los contenidos, tales como RDF y OWL.
Además, existen iniciativas como Linked Open Data (LOD) que promueven
la publicación y enlace de datos en formato semántico en la Web. Tal ha
sido el éxito de este tipo de iniciativas que distintas organizaciones de ámbitos
muy diversos han decidido publicar sus datos en la Web en formato semántico.
Entre las organizaciones que se han adherido a esta iniciativa podemos men-
cionar: distintos gobiernos como el de Reino Unido o los Estados Unidos, los
cuales han publicado gran cantidad de datos acerca de temas tan diversos e
interesantes como los niveles de ozono de las distintas ciudades o la situación
financiera de las empresas; medios de comunicación como la BBC, que pone a
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disposición de los usuarios datos sobre sus programas de televisión y radio en-
lazados con otros recursos de conocimiento; varias comunidades cient́ıficas del
ámbito de la biomedicina como Bio2RDF, DailyMed, Diseasome o DrungBank
entre muchas otras, han publicado gran cantidad de datos sobre el genoma hu-
mano, medicamentos junto con su composición qúımica y su uso, enfermedades
y sus relaciones genéticas, etc. El dominio biomédico es especialmente com-
plejo, y es por ello que la conceptualización de estos datos puede acarrear
avances importantes.

La existencia de este tipo de datos anotados semánticamente abre nuevas
áreas de investigación para el desarrollo de aplicaciones que permitan explotar
el conocimiento impĺıcito de los datos. Sin embargo, la explotación de datos
anotados semánticamente es bastante compleja debido a su estructura subya-
cente en forma de grafo y a la semántica impĺıcita, la cual requiere de técnicas
de razonamiento que suelen ser costosas computacionalmente.

Objetivos

En esta tesis se proponen una serie de métodos para al análisis de datos anota-
dos semánticamente de forma escalable y eficiente. El éxito que han tenido las
técnicas de analisis multidimensional aplicadas a grandes cantidades de datos
estructurados, mayormente las técnicas de almacenes de datos y OLAP, nos
ha hecho plantearnos la aplicación de dichas técnicas sobre datos anotados
semánticamente. De esta forma, en un hospital en donde la información de
los pacientes esté anotada semánticamente y enlazada con datos biomédicos,
el médico podrá realizar un análisis multidimensional a nivel conceptual para
poder analizar el impacto de administrar ciertos fármacos a pacientes con un de-
terminado tipo de enfermedad. Es decir, el médico podrá escoger sus variables
de estudio o dimensiones, tales como el tipo de enfermedad, el sexo del paciente,
o el tipo de medicamento administrado, y estudiar el impacto que tienen en dis-
tintos indicadores o medidas de análisis registradas en los pacientes, tales como
los valores de los análisis cĺınicos o los niveles de recuperación de la enfermedad.

Gracias a las anotaciones semánticas, los datos de los pacientes se enriquecen
con información del dominio y se trasladan a un espacio conceptual multidimen-
sional, en donde es posible realizar un análisis guiado por la semántica de los
datos. De este modo, el médico puede hacer resúmenes de los datos a distintos
niveles de granularidad, por ejemplo, puede visualizar los niveles de colesterol
de los pacientes que tienen enfermedades cardiovasculares y, a continuación,
aumentar el nivel de detalle para visualizar solo los niveles de los pacientes
que tienen una angina de pecho. Este tipo de análisis es posible gracias a las
relaciones semánticas existentes entre los tipos de enfermedades, que indican
que una angina de pecho es un tipo de enfermedad cardiovascular. Este tipo de
conocimiento es el que se encuentra impĺıcito en las ontoloǵıas de dominio y es
necesario explotar. Sin embargo, la estructura en forma de grafo que subyace
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a los datos anotados semánticamente junto con la información semántica que
llevan asociada requiere de nuevas técnicas de procesamiento que permitan ac-
ceder a los datos objeto de análisis de forma eficiente y transformarlos en una
estructura multidimensional preservando la semántica de los mismos.

Por tanto, el objetivo de esta tesis es proporcionar un marco formal para el
análisis multidimensional de datos anotados semánticamente de forma eficiente
y escalable.

Metodoloǵıa

Para poder llevar a cabo un análisis multidimensional como el especificado an-
teriormente, en esta tesis se investigan distintos métodos de manipulación de
datos anotados semánticamente. En particular estos métodos se orientan a la
gestión eficiente de los datos, pues es bien sabido, que los datos en formato
lógico requieren de técnicas de razonamiento computacionalmente costosas. La
tesis propone la aplicación de un sistema de indexación basado en intervalos
sobre los axiomas inferidos de las ontoloǵıas que permita responder de forma
eficiente a consultas sobre relaciones de ascendencia/descendencia entre con-
ceptos. Asimismo, se han desarrollado varias técnicas de modularización que
permiten aislar las partes de las ontoloǵıas que son de interés para el análisis,
siempre preservando la estructura y la lógica subyacente. Estos métodos de
manipulación de datos anotados semánticamente son utilizados para hacer la
extracción de hechos y dimensiones escalable. Los hechos se definen de manera
formal como puntos multidimensionales cuantificados por medidas, los cuales
son lógicamente alcanzables desde el sujeto de análisis. Las dimensiones se
definen como grafos formados por conceptos semánticamente relacionados y
con una estructura que favorece la agregación de los datos. Una vez se han
obtenido los hechos y las dimensiones de análisis, la generación de cubos puede
ser llevada a cabo por herramientas OLAP convencionales.

Aportaciones

La tesis realiza una revisión de la evolución de las tecnoloǵıas de análisis mul-
tidimensional, desde el análisis de datos estáticos y estructurados en tablas
relacionales hasta la apertura a datos semi-estructurados en formato XML.
Asimismo, se analizan las aproximaciones que utilizan tecnoloǵıas de la Web
Semántica para mejorar los procesos de análisis. Sin embargo, no se han en-
contrado trabajos hasta la fecha cuyo objetivo sea realizar un análisis multi-
dimensional sobre datos anotados semánticamente abordando el problema en
toda su complejidad. Las aproximaciones de análisis existentes se orientan a
datos que, o bien ya poseen una estructura multidimensional porque han sido
directamente derivados de bases de datos existentes, o su estructura es muy
sencilla.
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La aportación principal de la tesis es la definición de un marco formal para el
análisis multidimensional de datos anotados semánticamente de forma eficiente
y escalable. Los principales componentes de este marco son: un módulo de
indexación de ontoloǵıas, un módulo de extracción de fragmentos de ontoloǵıas
y el módulo de análisis.

El módulo de indexación de ontoloǵıas está basado en un sistema de in-
dexación que, aplicado sobre los axiomas de subsunción inferidos de las on-
toloǵıas, permite tener acceso a las relaciones de ascendencia/descendencia
entre conceptos de una forma rápida y compacta. Además, estos ı́ndices nos
permiten realizar consultas sencillas propias de la Lógica de Descripciones so-
bre los ı́ndices de forma rápida. Asimismo, las instancias son indexadas con los
ı́ndices anteriores para poder realizar consultas conjuntivas de forma eficiente.

El módulo de extracción de fragmentos está compuesto por una serie de
técnicas de modularización que permiten seleccionar solo la parte de conoci-
miento que resulta de interés para el análisis. Estas técnicas se basan en el
sistema de indexación previo para construir los módulos y están orientadas
a la extracción de módulos de forma eficiente que preservan tanto la estruc-
tura como ciertas propiedades lógicas. La tesis realiza una revisión previa del
estado del arte en modularización y las nuevas técnicas desarrolladas surgen
como una alternativa que combina tanto aspectos lógicos como estructurales en
los módulos resultantes. Las técnicas de extracción de módulos desarrolladas
pueden utilizarse tanto dentro del marco de análisis definido en esta tesis, como
de manera autónoma.

El módulo de análisis es el que se encarga de extraer hechos y dimensiones
de análisis de acuerdo a su definición lógica y con la ayuda de las técnicas de
indexación y modularización anteriores. El análisis multidimensional se basa
en la dicotomı́a hecho/dimensión. La información se modela en términos de
hechos, que son eventos que contienen medidas de análisis interesantes (por
ejemplo, visita de un paciente), y las dimensiones, que son las distintas per-
spectivas de análisis de los hechos (por ejemplo, la enfermedad del paciente).
Los elementos de las dimensiones se suelen organizar jerárquicamente en niveles,
de forma que los análisis pueden realizarse a distintos niveles de granularidad.
T́ıpicamente, los almacenes de datos ya estructuran los datos de forma mul-
tidimensional y las herramientas de análisis OLAP proporcionan una serie de
operaciones que permiten la construcción de cubos a través de la selección de
dimensiones y medidas, y la manipulación de los mismos. Sin embargo, esta
tesis aborda el problema de la extracción de datos en forma multidimensional
a partir de datos anotados semánticamente. En particular, nuestro estudio se
centra en la definición y extracción de hechos que sean válidos a nivel lógico y
en la construcción de dimensiones a partir de las ontoloǵıas de la forma más
automática posible. Para facilitar el dinamismo, los hechos y dimensiones se
extraen a partir de los requerimentos del usuario, que se expresan en forma
de consulta a nivel conceptual. Esta extracción ad hoc de los hechos y dimen-
siones contrasta con el análisis tradicional, en donde los hechos y dimensiones
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los define a priori el ingeniero del almacén de datos y los análisis de los usuarios
se restringen a dichos hechos y dimensiones. El método diseñado para extraer
hechos se basa en la alcanzabilidad a nivel lógico de las dimensiones y medidas
definidas por el usuario. Es decir, un hecho está compuesto por un punto mul-
tidimensional (conjunto de valores de dimensión) y sus respectivas medidas,
los cuales son lógicamente alcanzables desde el sujeto de análisis. Para ello,
se utiliza la noción de camino de agregación, que es mucho menos restrictiva
que las dependencias funcionales tradicionalmente requeridas entre hechos y
dimensiones, y se distinguen distintos tipos de caminos de agregación intere-
santes para el análisis. Por otra parte, se han diseñado dos métodos para la
extracción de jerarqúıas de dimensión que se basan en las relaciones semánticas
codificadas en las ontoloǵıas y permiten la extracción de jerarqúıas con una es-
tructura lo más adecuada posible para el análisis multidimensional, siempre
preservando la semántica de los elementos que la componen.

La flexibilidad que se proporciona en la identificación de hechos y dimen-
siones permite realizar un análisis multidimensional sobre datos que son com-
plejos por naturaleza y cuyas relaciones escapan al modelo multidimensional
de análisis tradicional, el cual está basado en la sumarizabilidad de los datos.
En nuestro caso, aunque los hechos extráıdos no sean sumarizables, somos ca-
paces de proporcionar una respuesta correcta a la consulta del usuario. Para
asegurar la escalabilidad y la eficiencia del análisis multidimensional se hace
uso extensivo de los ı́ndices y las técnicas de modularización sobre los datos
anotados semánticamente.

Conclusiones y trabajo futuro

El marco formal de análisis de datos anotados semánticamente propuesto en
esta tesis constituye una potente herramienta de análisis susceptible de ser
utilizada en diversos dominios en los que, hasta la fecha, no existen aplicaciones
que sean capaces de gestionar de forma eficiente datos anotados semánticamente
y proporcionar herramientas de análisis sofisticadas similares a las utilizadas
en la inteligencia de negocio. El caso de uso desarrollado en la tesis muestra el
potencial del análisis sobre este nuevo tipo de datos y los diversos experimentos
validan la vialilidad de la propuesta, y demuestran la eficiencia de los métodos
desarrollados.

No obstante, los métodos desarrollados poseen ciertas limitaciones que es
conveniente estudiar y que pueden dar lugar a investigaciones futuras. Ac-
tualmente, el sistema de indexación diseñado no soporta de manera eficiente
las actualizaciones. Cuando se añade una nueva entidad o axioma a una on-
toloǵıa, ésta se vuelve a indexar. Por otra parte, las técnicas de modularización
desarrolladas están orientadas básicamente a la extracción de relaciones de
subsunción entre conceptos, quedando las propiedades relegadas a un segundo
plano. Esta decisión se tomó por cuestiones de aplicabilidad de los fragmen-
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tos, ya que, aunque existen otras técnicas de modularización en donde las
propiedades son consideradas ciudadanos de primer orden, los fragmentos que
se extraen son mucho más grandes, lo cual implica un sobrecoste de proce-
samiento a la vez que disminuye su reusabilidad.

La extracción de hechos se basa en la alcanzabilidad de las dimensiones y
medidas desde el sujeto de análisis. Esta alcanzabilidad se define de manera
formal utilizando la noción de caminos de agregación. Aunque la tesis clasifica
los caminos de agregación en varios tipos para limitar el espacio de búsqueda,
seŕıa conveniente estudiar la posibilidad definir nuevos tipos de caminos de agre-
gación que se ajusten a los requerimientos del usuario. Con respecto a los dos
algoritmos desarrollados para la extracción de jerarqúıas de dimensión, queda
pendiente la estratificación de las jerarqúıas en niveles de forma automática.

Por último, aunque durante la tesis se sugiere que los métodos desarrollados
podŕıan implementarse sobre un marco de procesamiento paralelo (por ejemplo,
MapReduce), seŕıa interesante realizar un estudio más a fondo sobre su viabil-
idad, ya que estas técnicas están siendo aplicadas recientemente a problemas
de escalabilidad tipo Web.

La tesis demuestra la hipótesis de que las anotaciones semánticas de los
datos proporcionan una información valiosa que es posible explotar de manera
escalable y eficiente para realizar tareas de análisis multidimensional aprove-
chando la semántica de los datos. Este primer resultado nos alenta a ampliar
las perspectivas de análisis a otras técnicas de soporte a la toma de decisiones,
como es la mineŕıa de datos, debido a las semejanzas que hemos observado entre
el proceso de extracción de hechos y el proceso de obtención de transacciones
de datos anotados semánticamente.

Otra linea de investigación futura que ha surgido del desarrollo de esta
tesis consiste en la utilización de la anotación semántica para la extracción de
conocimiento que se encuentra impĺıcito en texto. De esta forma colaboramos
en la creación de datos anotados semánticamente, los cuales serán susceptibles
de ser analizados mediante métodos como el que desarrolla esta tesis.

Palabras clave: Web Semántica, ontoloǵıas, lógica de descripciones, OWL,
modularización de ontologas, análisis multidimensional, escalabilidad.
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Chapter 1

Introduction

1.1 Research context

The World Wide Web (WWW) appeared as the result of the need to inte-
grate many disparate information systems. The former idea was to provide
an abstract space to exchange information among different systems. Its rapid
evolution and success since 1989, when it was first conceived, has drastically
changed the availability of electronically accessible information. The Web can
be considered the last most revolutionary invention in the human communica-
tion domain. The reasons for its rapid success and world-wide acceptance lay
in its simplicity but powerful way of representing networked information. At
the same time, this simplicity and lack of constraints on the Web has led to a
situation that requires new solutions.

The ever growing amount of data that is being placed on the Web has
made it increasingly difficult to find, access, present and analyze the infor-
mation required by the users. This is because content is primarily presented
in a human-readable form. The enormous proportions that the Web has ac-
quired conform an immense source of knowledge worth exploiting. However,
more elaborated mechanisms should be layered on top of the Web in order to
efficiently exploit it and extract its full potential.

Already in 2001, Tim Berners-Lee, Director of the WWW Consortium, re-
ferred to the future of the WWW as the Semantic Web (SW) - an extended
web of machine-readable information and automated services that extends far
beyond current capabilities [19]. The explicit representation of the seman-
tics underlying data, programs, pages, and other web resources, will enable a
knowledge-based web that provides a qualitatively new level of service. Auto-
mated services will improve in their capacity to assist users in achieving their
goals by “understanding” more of the content on the web and thus providing
more accurate filtering, categorization and searching of information sources.
This process will ultimately lead to an extremely knowledgeable system that

1
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features various specialized reasoning services. These services will support us
in nearly all aspects of our daily life - making access to information as pervasive
and necessary as access to electricity is today.

Although it has taken almost a decade for the SW to really take off, we are
at a point where SW technologies are mature enough to be deployed in real
applications such as web portals, information retrieval, information integra-
tion and business intelligence (BI) among others. Ontologies are the backbone
technology of the SW. They formalize the knowledge of an application domain
by first defining the relevant concepts of the domain (i.e., the terminological
knowledge or TBox), and then using these concepts to specify properties of ob-
jects occurring in the domain (i.e., the assertional knowledge or ABox). All this
is accomplished by using formal knowledge representation languages. The con-
cept of ontology is not new, as the first ontologies were developed in Artificial
Intelligence (AI) during the nineties to facilitate knowledge sharing and reuse.
However, it is during the last few years that ontologies have found interesting
application scenarios in the context of the SW.

Many efforts have been devoted to the construction of terminological on-
tologies, which conceptualize the general knowledge of specific domains. One
especially successful field where large ontologies have been developed is that
of Biomedicine. However, the formalization of the concepts of a domain (i.e.,
the terminological knowledge) is not enough for the realization of the SW. We
also need tools to populate the SW with assertional data, that is, to provide
semantic annotations of content using the terminological ontologies. These
annotations make data meaning explicit by situating it in a conceptual frame-
work. Throughout this dissertation we refer to both the terminological and
assertional data with the term SW data.

SW technologies enable to attach semantics to resources, ranging from
very simple to very complex annotations depending on the expressivity re-
quired. They provide standard formats for knowledge representation (e.g.,
RDF1, RDFS2 and OWL3) and automatic reasoning. Currently, the de facto
metadata representation language on the SW is RDF. Moreover, community
efforts such as Linked Open Data4 are promoting the publication and linkage
of data on the Web using RDF. As a result, hundreds of millions of documents
embedding RDF metadata in different formats (e.g., RDF/XML, RDFa, Mi-
croformats, N-Triples and Turtle) are being continuously published and the
tendency is to keep growing. The variety of institutions that have shown inter-
est in publishing RDF content on the Web range from public institutions such
as governments to e-commerce industries and research communities. Figure
1.1 shows the linked data cloud in 2010, where a relevant part is data from the
Life Sciences domain.

1RDF: http://www.w3.org/TR/rdf-concepts/
2RDFS: http://www.w3.org/TR/rdf-schema/
3OWL: http://www.w3.org/TR/owl-features/
4http://linkeddata.org/
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Figure 1.1: Linked Data Cloud in 2010.

1.2 Motivation and Objectives

SW data is already out there. The next natural step is to develop methods and
tools to efficiently analyze and take profit from the implicit knowledge encoded
in SW data.

Although there exist tools that ease the use of SW data such as ontology
editors (e.g., Protégé5, NeOn Toolkit6), reasoning systems (e.g., FaCT++7,
Pellet8, Hermit9) and storage and query systems (e.g., Sesame10, BigOWLIM11,
Jena12), most of these tools treat ontologies as monolithic entities and provide
little support for managing and accessing ontologies in a modular and efficient
manner. Moreover, these tools are lacking advanced analytical capabilities
further than pattern-based querying.

The main objective of this dissertation is to provide a formal framework
that enables the analysis of SW data in an scalable and efficient manner. The
success of multidimensional (MD) analysis techniques applied to large volumes
of structured data in the context of BI, especially for data warehousing (DW)
and OLAP applications, has prompted us to investigate the application of such

5Protégé: http://protege.stanford.edu/
6NeOn toolkit: http://www.neon-toolkit.org
7FaCT++ reasoner: http://owl.man.ac.uk/factplusplus/
8Pellet reasoner: http://clarkparsia.com/pellet/
9HermiT reasoner: http://hermit-reasoner.com/

10Sesame: http://www.openrdf.org/
11BigOWLIM: http://www.ontotext.com/owlim
12Apache Jena: http://jena.apache.org/
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techniques to SW data, whose nature is semi-structured and contain implicit
knowledge. Multidimensionality is based on the fact/dimension dichotomy.
Data are modeled in terms of facts, which are analytical metrics, and dimen-
sions, which are the different analysis perspectives, and are usually hierarchi-
cally organized. We believe that the construction of an MD view of SW data
driven by the semantics encoded in the data themselves empowers and enriches
the analysis process in a unique manner, as it brings about new analytical ca-
pabilities not possible before. Aggregations and display operations typical of
MD analysis tools, such as changing the granularity level of the displayed data,
or adding a new analysis perspective to the data, will be performed based on
the semantic relations encoded in the ontologies. This is possible thanks to the
mapping of the data to a conceptual MD space.

As the purpose of MD analysis is to give an accurate, intelligent snapshot
of the data, we require a minimum quality in the data to ensure that the
results are precise. Adding semantics to the data helps in this matter, as the
more semantics you add, the more unambiguous data become and reasoning
techniques can be executed to draw inferences and check the consistency of
the data. Therefore, we mainly aim at analyzing SW data that is expressed
in OWL. However, the benefits of adding semantics to the data comes at the
expense of complexity issues regarding aspects such as usability, scalability,
efficient reasoning, analysis and so on. In this thesis we develop methods that
aid the MD analysis of expressive SW data at large scale.

1.3 Hypothesis

This thesis addresses the problem of MD analysis over SW data. Hence, the
overall goal is to provide a formal framework that enables such MD analysis
from a logic-based viewpoint in an scalable and efficient manner. Towards this
end, we have analyzed why this involves a big research challenge and how to
solve it. This analysis has led to the main hypothesis, which captures the
main research question of this thesis. The hypothesis is used to derive concrete
methods that enable the problem of scalable MD analysis over SW data.

Hypothesis: The knowledge encoded in SW data can be leveraged to per-
form a full-fledged MD analysis of such data in a scalable an efficient manner.

As MD analysis is based on the arrangement of data into facts and di-
mensions, we need to investigate methods that are able to access and extract
specific subsets of SW data, always preserving the underlying semantics. How-
ever, the full exploitation of SW data using scalable methods is far from trivial
due to their special features and the requirements on the data imposed by
the developed applications. The biggest challenge is to deal with the implicit
semantics in a scalable manner. SW data are generally based on formal descrip-
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tions, which enable to derive new logical consequences through the process of
reasoning. However, reasoning techniques over large datasets are computation-
ally expensive. Therefore, new indexing structures are needed to allow efficient
querying and management of the data, thus minimizing the use of the reasoner.
Towards that end, we have developed an ontology indexing model that is ap-
plied to the inferred ontologies and allows fast responses about relationships
between concepts, as well as answers to a restricted subset of description logic
(DL) queries. Instance data is also indexed to efficiently perform conjunctive
query answering.

Another challenge specific of SW data is the extraction of only the required
subsets of the data in a scalable manner. For MD analysis purposes, the ideal
modules should be extracted from the user’s requirements and should show a
good compromise between not only the preservation of semantics, but also the
preservation of the structure and the size of the resulting module. Towards
that end, we have developed several ontology modularization techniques that
build on top of the previous ontology indexes. These modularization techniques
allow the user to efficiently extract and work with ontology subsets, thus fa-
voring reuse and scalability. The ontology modularization techniques show a
good trade-off between logical and structural properties, thus they are a good
alternative to the current modularization approaches.

The previous ontology manipulation methods assist in the extraction of
facts and dimensions from SW data, based on the MD conceptual query of
the user. The main challenge specific to the MD analysis of SW data is their
semi-structured nature. SW data in their simplest form are composed by triple
statements of the form subject, predicate, object, (s, p, o), where the predicate
p expresses a relation between the resource s and the object o, which can be
another resource or a literal. A collection of interconnected triples constitutes a
labeled directed graph, where nodes are the subjects and objects of assertions,
and the edges are properties. This graph topology clearly contrasts with the
MD model on which traditional analysis tools are based. The MD model views
the data in terms of facts and dimensions. Facts are the metrics that business
users use for making business decisions. Dimensions are the attributes that
qualify facts. They are the different analysis perspectives and give structure to
the facts by arranging themselves into hierarchies so that the user can navigate
the facts at different granularities. Identifying facts, dimensions, measures and
well-shaped dimension hierarchies from the graph structure that underlies SW
data is a big challenge. Also, as the web is continuously changing and growing,
the developed methods should take into account the user requirements while
being as automatic as possible so that the results can be reproduced to reflect
changes in the data. To meet the previous challenges, the notions of fact
and dimension are revisited in the SW context and both facts and dimensions
are defined from a logical viewpoint. Facts are formally defined as analytical
metrics supported by a set of dimensions that are all logically reachable from
the subject of analysis defined by the user by means of aggregation paths. The
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notion of aggregation path is less restrictive than the functional dependency
between facts and dimensions usually required by traditional MD analysis. This
flexibility allows us to capture data that have complex relations and cannot
be otherwise analyzed. However, the extracted facts can contain duplicate
information, which is an issue that we need to deal with. Dimensions are defined
as directed acyclic graphs where nodes are sub-concepts of the dimension type
defined by the user and edges are the semantic relations between the concepts.
The concepts (i.e., dimension values) are arranged in a hierarchical structure
that favors aggregation.

The developed methods to achieve scalable MD analysis of SW data assume
the existence of a reasoner that is able to compute inferences in a reasonable
amount of time. These inferences are then indexed by our methods so that the
analysis becomes efficient and scalable. However, we are aware that reasoning is
hard and it depends on the language expressivity. To cope with this scalability
issue, several approaches have emerged, which aim at performing scalable rea-
soning either by approximation [51], by reducing non-determinism [87], or by
reducing the expressivity [11]. Therefore, the availability of a scalable reasoner
is a fair assumption.

As we are interested in performing MD analysis over SW data which is
spread among decentralized information sources, we assume that the sources
provide way to identify and access the data through standard data exchange
protocols. Moreover, although data are described using the same data model
(RDF), each data source might provide its own schema (conceptualization),
ranging from loosely to strictly defined. The problem of finding mappings
and alignments between different terminological resources has been extensively
studied in the literature. Thus, we assume that these data sources are inter-
linked and the relationships (e.g., mappings or alignments) are explicitly defined
by the data sources themselves.

1.4 Contributions

This thesis includes a review on the evolution of MD analysis techniques over
different types of data, from the analysis of static, structured data residing in
relational tables, to the analysis of external and semi-structured data, mainly
coming from the Web. For completeness, we also review the main approaches
that make use of SW technologies to enhance the traditional analytical pro-
cesses. We have not found so far any approaches that tackle the problem of MD
analysis of SW data in all its complexity. The few approaches that tackle MD
analysis of SW data deal with data that either already possess an MD structure
because it has been directly derived from data bases, or their structure is very
simple, almost flat.

The main contribution of this work is a formal framework that enables
MD analysis of SW data in a scalable and efficient manner. Both scalability
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and efficiency are achieved by tailored ontology indexing and modularization
methods that support the analysis of SW data. These methods allow to effi-
ciently treat ontological data and minimize the use of a reasoner, which has
usually high computational cost. The experiments demonstrate that the pro-
posed framework scales to large ontological resources. The main components of
the framework are: the Ontology Indexing Model (OIM), the Ontology Module
Extraction Techniques (OMETs) and the MD Analysis Component (MDAC).

The OIM has been devised to allow efficient querying and management of
SW data, thus minimizing expensive calls to a reasoner. The indexing schema
proposed is applied to the inferred ontologies and is based on intervals that
compactly encode hierarchical relationships among concepts. We also provide
an intervals’ algebra to operate with the ontology indexes. Thanks to this
algebra, basic operations involving ancestor/descendant relationships, as well
as a restricted subset of DL queries and conjunctive queries can be efficiently
performed using the index.

The OMETs is composed by several modularization techniques that ease the
use and reusability of ontologies by allowing to extract only specific fragments.
We provide a review of the literature on the main existing modularization
approaches emphasizing the different criteria that they focus on (i.e., logical
vs. structural properties). The developed techniques are based on the previous
OIM and are developed to cover the need for modules that enable the MD
analysis. Therefore, these modules are extracted from the user’s requirements
and show a good trade-off between size, scalability, preservation of structure
and preservation of original semantics. The OMETs can be use both inside the
analysis framework defined in this thesis or as a standalone tool.

The MDAC is in charge of extracting facts and dimensions according to
their logical definition with the aid of the previous indexing and modularization
methods. Typically, DWs subject to analysis have already an MD structure,
and the analytical OLAP tools provide a series of operations that allow the
construction of cubes through the selection and manipulation of the facts and
dimensions. However, this thesis tackles the problem of extracting and shaping
SW data into a suitable MD structure. More precisely, our study is focused
on the challenges in defining and extracting logically valid facts and dimen-
sions directly from SW data as automatically as possible, remaining scalable
and taking into consideration the user’s requirements expressed conceptually.
To enable dynamism, facts and dimensions are extracted based on the user
requirements, which are expressed as a conceptual query. This ad hoc extrac-
tion of facts and dimensions clearly contrasts with the traditional MD analysis,
where facts and dimensions are defined a priori by the DW engineer.

The developed method to extract facts is based on the logical reachability
of the dimensions and measures defined by the user. That is, a fact is a nu-
meric measure together with its supporting dimensions. All of them have to
be reachable from the subject of analysis. To this end, we use the notion of
aggregation path, which is less restrictive than the traditional MD constraints



8 Chapter 1 Introduction

imposed between facts and dimensions, and classify the aggregation paths in
different subtypes interesting for analysis. By allowing facts to be composed by
dimensions and measures reachable by aggregation paths, we are enabling the
MD analysis of data that have complex relations and cannot be analyzed by
traditional MD analysis tools. However, this flexibility can lead to facts that
are not summarizable, as they contain duplicated information. We identify
when the extracted facts are not summarizable and are still able to provide
correct results to the user MD query by handling duplicated data.

On the other hand, we model dimensions as directed acyclic graphs, in an
attempt to capture as much semantics as possible from the ontologies. Nodes
are sub-concepts of the dimension type and edges are subsumption relations
between the concepts. We have developed two alternative methods to extract
dimension hierarchies based on the semantic relations encoded in the ontolo-
gies. These methods allow the extraction of rich dimension hierarchies, which
are later re-shaped to provide good aggregation power, at the same time that
preserve the semantics of the dimension values.

To ensure scalability and efficiency of the MD analysis of SW data, we make
extensive use of the indexing and modularization approaches proposed.

1.5 Outline of the thesis

This thesis has been organized in six chapters (including this one). Chapters
two to five contain the contributions of the thesis. Chapter six outlines the
conclusion and future research lines. A brief overview of each chapter is shown
below.

Second Chapter: Background

This chapter introduces the general concepts and related work investigated in
the thesis. The chapter is divided in three parts. The first part introduces the
foundations and main aspects related to the SW (e.g., the SW vision, ontologies,
ontology languages and description logics). The second part defines the concept
of ontology modularization and reviews the main modularization approaches,
focusing on ontology module extraction and its two different trends, logical
vs. structural approaches. The third part of the chapter introduces basic
analysis concepts and walks the reviewer through the evolution of traditional
MD analysis to analytics over the SW.

Third Chapter: Framework

This chapter groups the proposed methods for efficiently managing and an-
alyzing SW data into a common framework. The main components of the
framework are: the OIM module, the OMETs module and the MDAC. The
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chapter also presents an application scenario and use case that will be followed
along the rest of the thesis.

Fourth Chapter: Indexing and modularization approaches
for ontologies

The first part of this chapter proposes the OIM based on intervals that can
be applied to the TBox and ABox of large ontologies. By using this index, we
obtain fast response times to queries about relationships between concepts, as
well as to conjunctive queries. Moreover, the index is able to answer a restricted
subset of DL queries, which are otherwise expensive if we use a reasoner. In the
second part of the chapter, we define our notion and analytical requirements
for a module and, according to these, present four different modularization
approaches. These modularization approaches differ from the existing ones in
that they reach a good trade-off between the analytical requirements identified.

Fifth Chapter: Multidimensional analysis of Semantic Web
data

This chapter describes the process of identification and extraction of facts and
dimensions from SW data from a logical viewpoint. The chapter starts with
the definition of an MD query specified by the analyst according to the concep-
tual descriptions of the sources (i.e., concepts and roles). Then, we introduce
the notion of aggregation path and a classification of interesting aggregation
paths, as this is the main foundation to extract facts. Facts are extracted
by accessing the dimension and measure values reachable from the subject of
analysis by means of aggregation paths. The notion of summarizability is also
investigated in the resulting facts, as well as how to handle duplicated informa-
tion. Dimension hierarchies are automatically extracted from the relations of
concepts specified in the ontologies and are shaped to meet as much as possible
the requirements imposed by MD analysis.

Sixth Chapter: Conclusions

This chapter outlines the main conclusions and identifies some areas of future
work based on some open issues of the work presented in this thesis, as well as
others that have emerged during the development of the thesis.
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Chapter 2

Background

This chapter has been split in three main parts that cover relevant aspects
investigated in this dissertation. The first part, Section 2.1, covers the main
foundations of the SW and the enabling technologies. The second part of
the chapter, Section 2.2, is devoted to the concept of modularization (Section
2.2.2) and the study of the different approaches, namely Ontology Partition-
ing (Section 2.2.3) and Ontology Module Extraction (Section 2.2.4). The last
part of the Chapter, Section 2.3, provides the background on analysis concepts
(Section 2.3.1) and discusses the evolution of the main analytical approaches
devised for a semi-structured scenario such as the Web (Section 2.3.2), putting
special emphasis in those analytical processes where SW technologies are used
to enhance the analysis process (Section 2.3.3). Finally, we discuss the methods
where the main source of analysis is SW data (Section 2.3.4) and outline new
trends.

2.1 Semantic Web Foundations

The SW is grounded on theoretical principles borrowing to several fields of
computer science such as programming languages, data bases, structured doc-
umentation, logic and artificial intelligence. In information systems, ontologies
are conceptual yet computational models of a domain of interest that build on
knowledge representation techniques. They play a key role in the SW, where
they support the meaningful annotation of web content and resources. This
section gives a brief overview of the foundations of the SW. Section 2.1.1 de-
scribes the vision of the SW. Section 2.1.2 introduces the concept on ontology
and its applications in the SW scenario. In Section 2.1.3 we introduce the
main ontology languages for the SW. Finally, Section 2.1.4 is devoted to DL,
the main logic-based language in the SW.

11
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2.1.1 The Semantic Web Vision

We live in an information society and access to information lies at the heart
of most human activity. However, several factors impose new challenges in the
efficient management of information. Both the amount and the complexity of
information has increased enormously. The clear example is the Web, which is
without question the most popular information service over the Internet. The
usual way for users to find the information they are looking for in the Web
is by typing a set of keywords in a search engine. Although the popularity
of search engines is indisputable, the precision of the returned results has de-
creased, making access to the relevant information more difficult. The main
problem stems from the human-readable orientation of the Web. HTML is
mainly focused on presentation and visual aspects and does not provide any
semantics to the annotated elements. Therefore, search engines rely mainly on
syntactic means for content matching with user queries. Matching is based on
direct comparison of query keywords and the words that appear in web docu-
ments. Moreover, the ever growing rate of the Web, which has doubled its size
only during the last couple of years, complicates matters with the addition of
new contents that range from structured to semi-structured and unstructured.
Also, the underlying data may be of low quality (e.g., incomplete or incon-
sistent). Heterogeneous information is being increasingly distributed and it is
consumed not only by humans, but also by machines. In this new scenario,
the traditional vision of the Web is not sufficient anymore to fulfill today’s
information management requirements.

An extension of the traditional Web was conceived to provide web resources
with knowledge that is machine-processable. Tim Berners-Lee, the inventor of
the Web, defines the term Semantic Web as follows [19]:

The Semantic Web is an extension of the current web in which infor-
mation is given a well-defined meaning, better enabling computers
and people to work in cooperation.

To achieve the vision of the SW, resources are annotated by structured and
machine-processable metadata, which are assigned a well-defined meaning and
are interpreted by means of ontologies.

2.1.2 Ontologies

Since ancient times, philosophers have been concerned with fundamental ques-
tions about the existence and the general categories for all things that exist.
Ontology is the discipline that has traditionally studied such matters. In AI,
ontologies are computational artifacts that encode knowledge about a partic-
ular domain in a machine-processable form using knowledge representation
techniques. In the SW community the most accepted definition is based on
[47].
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Definition 2.1. An ontology is a formal explicit specification of a shared con-
ceptualization of a domain of interest.

This short definition encapsulates important characteristics of an ontology
that deserve an explanation.

• formal : refers to the knowledge representation language used to specify
the ontology, which should provide formal semantics to ensure machine-
readability.

• explicit : knowledge should be made explicit so that computers can inter-
pret it.

• shared : an ontology is a conceptualization reached by an agreement
among a community.

• conceptualization: the knowledge in an ontology is specified in terms of
symbols that represent concepts and their relations, which correspond to
the elements in a human mental model.

• domain of interest : the knowledge encoded in an ontology refers to the
specification of a particular domain.

Ontologies formalize the knowledge in a domain by means of a set of com-
ponents: concepts, relations, instances and axioms. Concepts represent the
general abstractions or categorizations used to describe objects. Relations se-
mantically connect concepts and instances. Instances represent the particular
objects of the world. The axioms are a set of statements expressed in terms of
the previous elements.

In the following, we show some applications in which ontologies provide an
alternative way for efficiently managing information:

• Information retrieval. The semantic information contained in both doc-
uments and queries can be leveraged by mapping these to ontological
concepts and relations, thus increasing the precision of the results.

• Information integration. Ontologies can be used to mediate and integrate
information sources with different schemas.

• Content management. Ontologies can be used as the common domain-
specific vocabulary to annotate data, allowing automatic processing and
machine readability.

• Knowledge management. Ontologies can serve as the conceptual back-
bone that connects individual knowledge management systems.

• Question answering and expert systems. Domain ontologies can be used
to formalize expert knowledge about a certain domain so that domain-
specific questions can be answered by reasoning over such knowledge.
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2.1.3 Ontology Languages for the Semantic Web

Ontologies play a key role in the context of the SW. The idea of the SW is to
add a layer of meaning to the Web so that the knowledge becomes machine
understandable [19]. This can be achieved by annotating web content with
machine-interpretable meta data such that computers are able to process this
content on a semantic level. Thus, ontologies provide the domain vocabulary
(i.e., concepts, relations and instances) in terms of which semantic annotation
is formulated. But having an ontology is not enough. We also need to adopt a
standard ontology language that provides both a shared syntax and a shared
semantics to interpret this syntax. This section introduces the ontology lan-
guages that are used for representing and querying knowledge within the SW.
These are RDF (Resource Description Framework), its extension RDFS (Re-
source Description Framework Schema) and OWL (Web Ontology Language).

2.1.3.1 RDF/RDFS

RDF [67] allows for the description of resources and how they relate to each
other. RDF specifies a data model for publishing metadata as well as data on
the Web and utilizes XML as serialization syntax for data transmission. It is
a model and syntax for annotating web resources designed for the exchange
of information over the Web and it is the base layer for building the SW.
The underlying structure of RDF is a collection of triples, each consisting of
a subject, a predicate and an object, which form an RDF graph. An RDF
triple states that there is some relationship, indicated by the predicate, holding
between the subject and the object of the triple.

The RDFS [25] defines a simple modeling language on top of RDF. It pro-
vides primitives that allow to express set membership of objects in property
and class extensions. That is, RDFS uses classes, subsumption relationships
on both classes and properties, and global domain and range restrictions for
properties as modeling primitives. However, RDFS is too weak to describe
resources in sufficient detail and it only serves to create lightweight ontologies.

2.1.3.2 OWL

OWL [114] is the widely accepted ontology language of the SW. Its syntax is
compatible with existing web standards such as XML, RDF, and RDFS and its
semantics are formally specified to support reasoning. OWL has a richer set of
operators than RDFS and richer semantics. Therefore, complex concepts can
be built up in definitions out of simpler concepts by using such logical operators.
Furthermore, its formal semantics allows the use of a reasoner which can check
whether the statements and definitions in the ontology are mutually consistent.

The formal underpinning of OWL is based on formal logic and comes in
three flavors, which have a direct correspondence with DL:
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• OWL Lite is the smallest subset. Reasoning with OWL Lite is efficient
but it has low expressive power. Hence, it is mainly devised to support
simple classification hierarchies and constraints.

• OWL DL imposes some limitations on the full use of OWL to allow
decidability in reasoning tasks.

• OWL Full has more expressive power than OWL DL and reasoning in
such language is undecidable.

OWL 2 [86] is a revision of the former OWL. It introduces some improve-
ments such as new DL constructs, a better specification of the language and
more flexibility in the use of annotations. The underlying logics of OWL2 is
SROIQ [52]. OWL 2 also defines three new profiles, which may better meet
certain performance requirements or may be easier to implement. In the follow-
ing, we describe the three profiles of OWL 2 [85]. The choice of which profile to
use in practice will depend on the structure of the ontologies and the reasoning
tasks1 at hand.

• OWL 2 EL is primarily designed for classification tasks (subsumption/
instance checking) with large ontologies. Basic reasoning problems can
be performed in time that is polynomial with respect to the size of the
ontology. Dedicated reasoning algorithms for this profile are available
and have been demonstrated to be implementable in a highly scalable
way.

• OWL 2 QL is targeted to applications that use very large volumes of
instance data, and where query answering is the most important rea-
soning task. Using a suitable reasoning technique, sound and complete
conjunctive query answering can be performed in LogSpace with respect
to the size of the data (assertions). As in OWL 2 EL, polynomial time
algorithms can be used to implement the ontology consistency and class
expression subsumption reasoning problems.

• OWL 2 RL is aimed at applications that require scalable reasoning with-
out sacrificing too much expressive power. It is designed to accommodate
OWL 2 applications that can trade the full expressivity of the language
for efficiency, as well as RDF(S) applications that need some added ex-
pressivity. OWL 2 RL reasoning systems can be implemented using rule-
based reasoning engines. All reasoning tasks can be solved in time that
is polynomial with respect to the size of the ontology.

1We refer to the reader to Section 2.1.4.1 for an overview of the main reasoning tasks in
DL
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2.1.4 Description Logics

The logical foundation of OWL is formed by a subset of first-order logic called
Description Logics (DL), which is a family of knowledge representation for-
malisms. Due to its nature of decidability, DLs have proved useful in a wide
range of applications in computer science regarding knowledge representation.

Baader [10] summarizes the main underlying characteristics of DL in the
following way:

Description Logics is the most recent name for a family of knowl-
edge representation formalisms that represent the knowledge of an
application domain (the world) by first defining the relevant con-
cepts of the domain (its terminology), and then using these con-
cepts to specify properties of objects and individuals occurring in
the domain (the world description). As the name indicates, one of
the characteristics of these languages is that, unlike some of their
predecessors, they are equipped with a formal, logic-based seman-
tics. Another distinguishing feature is the emphasis on reasoning
as a central service: reasoning allows one to infer implicitly repre-
sented knowledge from the knowledge that is explicitly contained
in the knowledge base. DLs support inference patterns that occur
in many applications of intelligent information processing systems,
and which are also used by humans to structure and understand
the world: classification of concepts and individuals.

The terminological knowledge in DLs is represented by concepts, which are
unary predicates such as human, and roles, which are binary predicates such as
hasChild. Concepts denote sets of individuals and roles denote binary relations
between individuals. Based of atomic concepts (denoted by A) and atomic
roles (denoted by R), complex concept descriptions (denoted by C) are built
inductively using concept constructors. The first and second columns of Table
2.1 show the name and syntax of the main DL constructors.

Different DLs can be constructed by taking a different subset of construc-
tors. The last column in Table 2.1 shows different DLs. The language AL was
introduced as the minimal language that is of practical interest. For example,
the following AL-concept description represents all women that have at least
one human child, i.e., who are mothers: woman u ∃ hasChild.human

The expressive power of a DL depends on the provided constructors from
which concepts and relations can be composed, and the kinds of axioms sup-
ported. The other languages of this family are extensions of AL. For example
ALC extends AL by general concept negation (¬C) and full existential quantifi-
cation (∃R.C), and is thus the most basic DL closed under Boolean operators.
The DL SHIQ is ALC plus extended cardinality restrictions, and transitive
and inverse roles. For historical reasons, the sublanguage of AL obtained by
disallowing atomic negation is called FL− and the sublanguage of FL− ob-
tained by disallowing limited existential quantification is called FL0.
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The formal semantics of the syntactic elements of a DL is considered in
terms of model-theoretic semantics. Thus, an interpretation I is a pair I =
(∆I , .I), with ∆I a non-empty set, called the domain of the interpretation,
and .I a function that assigns to each individual a an object aI ∈ ∆I and
that interprets (possibly) complex concepts and roles as indicated in the third
column of Table 2.1.

DL Knowledge Base

A DL knowledge base (KB) consists of two components, the TBox (T ), contain-
ing intensional knowledge, and the ABox (A), containing extensional knowl-
edge [10]. The TBox defines the terminology (vocabulary) of an application
domain. The ABox contains assertions about named individuals in terms of
the vocabulary.

The terminological axioms of the TBox can be of two types: definitions and
inclusion axioms. The inclusion axioms (v) state inclusion relations between
DL concepts. For example, one can state that a woman is a human being:
woman v human. Definitions allow to give a name to a concept description.
For example, we can define a mother as a woman that has at least one child that
is a human being: mother ≡ woman u ∃ hasChild.human. Here, woman
and human are primitive concepts and mother is a defined concept. If a TBox
contains an axiom of the form C v D where C is a complex concept, then this
axiom is referred to as a general concept inclusion axiom (GCI) and the TBox
is referred to as a general TBox.

The assertional axioms of the ABox can also be of two types: concept
assertions and role assertions. By a concept assertion, one states that a certain
individual a belongs to a concept C, written C(a). By a role assertion, one
states that an individual c is a filler of the role R for an individual b, written
R(b, c). For example, we can state that Mary is a mother, and John is a man
who is the son of Mary : mother(Mary), MAN(John), hasChild(Mary, John).

2.1.4.1 Reasoning with DL

For DLs various reasoning tasks are usually considered. These tasks allow to
draw new conclusions about the knowledge base or check its consistency. In
this section standard reasoning problems are introduced. The main reasoning
services supported by DLs can be reduced to satisfiability [10]. The first two
are related to the TBox and the rest to the ABox.

• Concept Satisfiability. A concept is satisfiable if it admits instances. That
is, C is satisfiable iff there is some model I of T such that CI 6= ∅.

• Concept Subsumption. A concept C is subsumed by another D, T |= C v
D, iff CI ⊆ DI for every model I of T . Concept equivalence and concept
disjointness can be reduced to concept subsumption as follows: T |= C ≡
D ←→ T |= C v D,D v C and CI ∩DI = ∅ ←→ T |= (C uD) v ⊥
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• Consistency. An ABox A is consistent w.r.t. a TBox T iff there exists
some model I of T and A.

• Instance checking. An individual a is an instance of C iff for every model
I of T and A, aI ∈ CI

• Realization. For all individual i of an ABox A compute their most specific
concept names w.r.t. a TBox T such that T |= C(a) and C is least w.r.t
the subsumption ordering.

Most of the previous reasoning tasks are of great importance in the context
of this dissertation, especially for analysis purposes. For instance, checking
satisfiability of concepts in a KB describing business data will show if the busi-
ness concepts make sense or whether there are contradictions. Also, knowing
if a concept is more general than another one (concept subsumption) can help
devising possible aggregations of data. Reasoning tasks over the ABox are also
of paramount importance as an inconsistent ABox could draw new and erro-
neous inferences that would result in an inaccurate analytical view of the data.
Reasoning tasks can help in this matter to detect quality issues in SW data
subject to analysis.

2.1.4.2 DL Reasoning Complexities

This section briefly introduces various complexity results on reasoning with
DLs. Although the topic of the thesis is not on (the scalability of) reasoning
methods, reasoning may be used to check inconsistencies and to draw new
inferences. However, as completeness of inferences and scalability are in conflict
for expressive ontologies, the user should be aware of the reasoning complexities
of the different DL languages and consider the trade-off between completeness
and scalability when performing the analysis of data.

For DLs without full negation, e.g., AL, all inferences can be reduced to
subsumption. If a DL offers both intersection and full complement, satisfiabil-
ity becomes the key inference of terminologies, since all other inferences can
be reduced to satisfiability. Now the question is how difficult it is to deal with
the reasoning problems introduced in the previous section for more expressive
languages. While studies about the complexity of reasoning problems initially
were focused on polynomial-time versus intractable, the focus nowadays has
shifted to very expressive logics such as SHIQ whose reasoning problems are
ExpTime-hard or worse. Exponential-time behavior is mainly due to disjunc-
tions, where we can alternatively assign an element of a model to several classes
and we have to check every alternative. However, if an AND source such as
the existential restriction is present, we may have to expand the model with
new elements. The complexity of the S family of languages that are relevant
for the SW is listed in Table 2.2.
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DL Complexity
S PSpace-complete (without TBox)
SI PSpace-complete
SH ExpTime-complete
SHIF ExpTime-complete
SHIQ ExpTime-complete
SHOIQ NExpTime-hard

Table 2.2: Complexity of Satisfiability for S languages.

The presence of a cyclic TBox can also increase the complexity of reasoning
problems. Even for AL, the presence of a general TBox leads to ExpTime-
hardness, which also effects description logics like SH, which allow the inter-
nalization of general inclusion axioms. An extension with datatypes also effects
the complexity. Given that we distinguish datatype properties, satisfiability is
decidable if the inference problems for the concrete domain are decidable. Fi-
nally, adding role composition to some DLs derived from the AL family already
leads to undecidability.

2.2 Modularization in SW data

This section is devoted to all the different aspects concerned with ontology
modularization. In Section 2.2.1 we motivate the research in ontology modu-
larization and identify several criteria used in different approaches. Then, in
Section 2.2.2, we formally introduce the concept of ontology modularization.
Section 2.2.3 reviews the main literature on ontology partitioning and Section
2.2.4 reviews ontology module extraction approaches. In particular, we ana-
lyze and discuss the differences between the traversal (Section 2.2.4.1) and the
logical (Section 2.2.4.2) approaches, which are summarized in the discussion
(Section 2.2.5).

2.2.1 Motivation

Ontologies are increasingly being incorporated in different disciplines such as
knowledge management, e-Commerce and e-Science. The tasks for which they
are used (e.g., question answering, reasoning, knowledge selection, integration,
etc.) impose different constraints on the ontologies. The distributed nature
of the SW, in which ontologies play a key role, imposes further constraints in
the way ontologies are dealt with. Moreover, the design, maintenance, reuse,
and integration of ontologies are complex tasks [36]. Therefore, there is a need
for new tools and methodologies that ease the use of ontologies in an efficient
manner.
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Ontology modularization has been extensively studied as a means to iden-
tify a relevant fragment of an existing ontology. Modularization approaches
differ significantly in terms of the concrete goal of the modularization and con-
sequently, in terms of the criteria used to extract modules. However, we identify
general situations where modularization has proved useful:

• Distributed Systems. In distributed environments like the SW, the ques-
tion of modularization arises naturally. Ontologies are distributed in dif-
ferent places but need to interact. Having references to remote ontologies
can lead to semantic inconsistencies. The introduction of modules with
local semantics alleviates this problem.

• Large ontologies. Modularization can also help to manage very large on-
tologies, which are quite common, specially in Biomedicine. Modules give
the user a better understanding and allow her to focus only on relevant
parts of the ontology. Also, many visualization tools can benefit from
modules by displaying only the necessary elements. Another argument
for modularization is reuse. When having a large ontology two choices
are available: either reuse the whole ontology, with the unnecessary over-
head that this implies, or create the definitions that we need from scratch,
which seems inappropriate if there already exists a standard ontology cov-
ering the domain. The alternative is to reuse only the relevant part of
the ontology, a module.

• Reasoning. DL reasoners do not scale well with the size of ontologies.
Thus, there is a motivation to reduce the size of the ontology, which can be
done by extracting a module. Reasoning in a distributed environment can
also cause problems. The introduction of modules with local semantics
will help to localize the reasoning process.

Research in ontology modularization is quite extensive and the developed
techniques are based on different formal and informal modularization crite-
ria, usually driven by the application scenario of the modules. As stated in
[40], there is no universal way to modularize an ontology and the choice of a
particular technique or approach should be guided by the requirements of the
application or scenario relying on modularization. While there is no agreement
on the criteria to follow to evaluate modules, [40] classifies the most relevant
criteria into types:

• Logical criteria. Some part of the ontology modularization community is
concerned with the preservation of the logical properties of the modules,
since modules are viewed as logical theories. In particular, correctness
and completeness are studied. Correctness states that every axiom en-
tailed by the module should also be entailed by the original ontology.
Completeness refers to the ability of a module to infer the same entail-
ments as the original ontology with respect to some signature.
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• Structural criteria. Criteria based on the structure of the resulting mod-
ule are also of great importance in some applications. As simple as it
may appear, the size of a module is an important indicator, as it di-
rectly affects the maintainability and robustness of the module. Other
structural criteria such as the intra-module distance have been explored,
as the closeness of the elements in a module can be relevant for certain
applications.

• Application criteria. Some criteria are selected based on the constraints
imposed by the particular application that will use the modules. Some
approaches rely on assumptions on the ontology. For example, there are
approaches that are restricted to a certain ontology language or require
a well-designed ontology, while others are agnostic to the language. The
level of user interaction also varies among different approaches. Some
are totally automatic while others need the user to tune some parameters
or consider the modularization an interactive process. The use of the
module made by the application also influences its construction. Modules
used for reasoning will have different requirements from modules used for
visualization purposes. In this respect, Palmisano et al. [111] perform a
task-oriented evaluation of several module extraction techniques. They
identify as common tasks for modules instance retrieval, subclass retrieval
and superclass retrieval. Finally, the performance of the modularization
process should be taken into account, as some applications will require
dynamic construction of modules while others will do it as a batch process.

In the context of this dissertation, large amounts of ontological data (e.g.,
SW data) constitute the input data subject to analysis. Therefore, the need for
modularization approaches that efficiently handle these data arises naturally.
Modularization is needed to select only the relevant part of knowledge that is
of interest for the analysis without losing semantic power. Moreover, as the
analytical tools impose a series of restrictions over the data, the extracted data
should be shaped to meet these requirements. As a result, we need efficient
modularization techniques that reach a good compromise between logical and
structural properties.

2.2.2 Ontology modularization

An ontology O can be defined as a pair O = (Ax(O), Sig(O)) where Ax(O) is
a set of axioms and Sig(O) is the signature of O. The signature of an ontology
O is the set of entity names occurring in the axioms of O, i.e., its vocabu-
lary. Different ontology modularization approaches have different assumptions
about the definition of an ontology module. The assumption adopted for the
following discussion is that a module is considered to be a significant and self-
contained sub-part of an ontology. Therefore, a module Mi(O) of an ontology
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O is also a set of axioms (i.e., an ontology), with the minimal constraint that
Sig(Mi(O)) ⊆ Sig(O)2.

There are two different approaches that have been considered for the modu-
larization of existing ontologies: ontology partitioning3, which divides an ontol-
ogy into a set of partitions or modules, and module extraction, which extracts
a subset of an ontology focusing on a given set of elements.

2.2.3 Ontology Partitioning

Ontology partitioning is the process of splitting up an ontology O into a set
of modules {M1,M2, ...,Mn} such that each Mi is an ontology and the union
of all modules is semantically equivalent to the original ontology O. Note that
some approaches being labeled as partitioning methods do not actually create
disjoint partitions. In the following we present several approaches for ontology
partitioning that have been developed for different purposes.

The work in [143] presents a method that produces sparsely connected mod-
ules based on a series of dependency measures between concepts. These mea-
sures are based on the structure of the class hierarchy among others. The idea
is that strongly interconnected concepts should be part of the same partition.
This approach can be used to support maintenance and reuse of very large on-
tologies by providing the possibility to individually inspect smaller parts of the
ontology. The weak points are the dependency measures, which are agnostic
with respect to the semantics of the ontology, and the termination point of
the partitioning algorithm, which is rather arbitrary. These parameters can be
tuned according to the requirements of a given application.

Contrary to [143], which do not consider the semantics of the ontology,
other ontology partitioning methods such as [37] are focused on the problem
of modular, distributed reasoning under DL, that is, they emphasize on the
correctness and completeness of the local reasoning. This has led to the devel-
opment of different logic frameworks for reasoning about distributed ontologies,
which can be used in ontology partitioning algorithms. In [37] the problem of
partitioning an OWL ontology using E-connections is studied. The approach
aims at preserving the completeness of local reasoning within all created par-
titions. E-connections [71] is a formalism that allows to connect disjoint do-
mains (partitions) by means of link properties. Reasoning can be performed on
each partition or over a combination of linked partitions. The Distributed De-
scription Logics (DDL) formalism [23, 134] provides mechanisms for referring
to ontology concepts and for defining bridge rules that encode subsumption
between concepts of different ontologies. Context OWL (C-OWL) [24] is an
extension of DDLs that suggests several improvements, such as a richer family
of bridge rules, allowing bridging between roles, etc. In contrast, C-OWL does

2Note that in some modularization approaches it is not always the case that Mi(O)) ⊆ O
3Although ontology partitioning is not the focus of this study, it is included for complete-

ness
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not allow to reuse foreign concepts in restrictions as in E-connections. An-
other approach called Package-based Description Logics (P-DL) [12] tries to
overcome the limitations introduced by E-connections and C-OWL by allowing
both subsumption between different ontologies, and foreign concepts in restric-
tions. The work in [144] defines modular ontologies in terms of a subset of
DDL and provides rationales for the restrictions applied. They compute sub-
sumption relations between external concepts off-line and store them as explicit
axioms in the local ontologies. However, this modular approach can be com-
putationally very expensive because it has exponential cost in the worst case.
Although the previous logic frameworks could be used in ontology partitioning
methods, they often extend OWL with non-standard syntax and therefore, se-
mantics and scalability are not ensured, which contradicts the interoperability
spirit of the SW.

For the purposes of this dissertation, ontology partitioning is not useful
because the partitions are usually created without considering the user re-
quirements. In an analytical process as the one that occupies this thesis, the
extracted modules should take into account the user’s requirements, as mod-
ules are used as an approach to extract only the knowledge of interest for the
analysis.

2.2.4 Ontology Module Extraction

Ontology module extraction consists in extracting a subset from an ontology O,
the module M , that covers a specified signature Sig such that Sig ⊆ Sig(M) ⊆
Sig(O). The module M is supposed to be the relevant part of O with respect
to Sig.

The techniques for module extraction can be divided in two groups: traver-
sal approaches and logical approaches. Traversal approaches consider the on-
tology as a graph and extract a module by traversing the graph. Logical ap-
proaches address the modularization from a logical perspective and are con-
cerned with preserving logical properties in the modules such as coverage and
minimality. Thus, these approaches explicitly consider the semantics of the
ontology.

2.2.4.1 Traversal Approaches

A common, simple approach to modularize an ontology is to traverse the ontol-
ogy structure (i.e., set of axioms), and apply heuristics to identify a sub-graph.
Even though useful, such approaches do not take into consideration the under-
lying semantics of the ontology, and hence, do not generate modules that are
complete (see Section 2.2.1). Nonetheless, these algorithms are tractable, intu-
itive to the user, and are useful for some specific applications. We discuss some
of the most representative graph traversal-based modularization approaches in
the remainder of this section.
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Noy and Musen [109] propose a traversal view extraction from an ontology.
The user selects a concept as starting point for the traversal and specifies which
relations to explore and to what extent. Other traversal parameters can also
be manually configured. The algorithm was integrated in PROMPT [108] and
is basically targeted to assist users in manually extracting and inspecting parts
of an ontology.

d’Aquin et al. [39] presented a modularization algorithm that is integrated
into the larger process of knowledge selection. Knowledge selection aims to
dynamically retrieve the relevant components from online ontologies to auto-
matically annotate a web page that is currently being viewed in a web browser.
The algorithm is based on exploiting the hierarchical relationships in an ontol-
ogy. This algorithm requires no user interaction and relies on inferences during
the modularization process. The objective is to extract the smallest part of the
ontology covering an input set of terms via a fixed-point algorithm. To mini-
mize the size of the modules, the class hierarchy is created only by including
the most specific common superclasses of the classes contained in the module.

Seidenberg and Rector [132] developed a technique for extracting modules
from the ontology GALEN [124] based on an input signature given by the user.
Starting from a target concept, the algorithm extracts all its super and sub-
classes. Then, links across the hierarchy from any of the previously traversed
classes are followed, and the targets of these links are also upwardly traversed.
This process continues until there are no more links left to follow. The focus on
GALEN makes it unclear how to generalize and apply the algorithm to other
ontologies.

The approach proposed by Doran et al. [43] extracts a module from a single
user-supplied concept that is self-contained, concept-centered and consistent.
The ontology is transformed into an abstract graph model, thus the approach
is agnostic with respect to the ontology language. The traversal is done re-
cursively down the is-a hierarchy with some conditions changing to suit the
language that the ontology is expressed in.

OntoPath [61] represents our first effort in extracting ontology fragments.
The system was focused on the storage and management of ontologies within a
graph-based database. According to the user requirements, which are expressed
by a XPath-like query, OntoPath retrieves a graph-based fragment.

2.2.4.2 Logical-based Approaches

These techniques for extracting modules are based on rigorous logical founda-
tions. In particular they emphasize on the following properties:

• Correctness. A module Mi(O) of an ontology O should contain only the
knowledge that is present in O. That is, every axiom entailed by Mi(O)
should be also entailed by O.

• Completeness. A module Mi(O) of an ontology O, extracted for a partic-
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ular signature Sig, should contain all the information relevant to the ele-
ments of Sig. That is, every entailment of O that concerns only elements
of Sig is preserved in Mi(O). This ensures that there is no difference in
the logical consequence from importing Mi(O) versus O based on Sig.

Correctness of a module is trivial to satisfy since a module computed by
extracting a subset of axioms from an ontology will only contain information
about that ontology. Defining completeness is not trivial and has been defined
based on the notion of conservative extension introduced by Lutz et al. [79]:

Definition 2.2 (Conservative Extension). Let T1 and T2 be L− TBoxes, and
let S ⊆ Sig(T1) be a signature. Then T1 ∪ T2 is a S − conservative extension
of T1 if for all C1, C2 ∈ L(S), we have T1 |= C1 v C2 iff T1 ∪ T2 |= C1 v C2.

The main intuition is that all the entailments regarding the signature of
the ontology module are the same as if you take the union of the ontology
module and the original ontology. That is, conservative extensions ensure local
completeness of the modules such that knowledge contained in each module
is not altered even after their integration. Conservative extensions depend on
the description logic L. In [79] a purely model-theoretic version of conservative
extension was also studied, which does not depend on the language. However,
they are problematic from an algorithmic viewpoint because they are highly
undecidable even in the basic description logic ALC.

In order to gain tractability one must sacrifice expressivity. The EL family
of DLs has recently gained research interest due to its polynomial behavior4.
Following this line, Konev et al. [69] developed a polynomial algorithm, MEX,
for extracting conservative extensions from acyclic terminologies formulated
in EL or ELI. Although these DLs restrict the expressivity, they are widely
being used in the biomedical domain to develop ontologies such as the Gene
Ontology5 and SNOMED6.

Other approaches are based on approximations to address the problem of
conservative extensions in more expressive DLs. This is the case of [36], where
locality-based modules are defined to guarantee the properties of coverage and
safety at the expense of minimality, which is guaranteed in conservative exten-
sions. Coverage and safety are defined in [34]. The intuition of coverage is that
the module should contain all the information about the terms of the signature
such that it makes no difference between reusing the module or reusing the
original ontology. The safety property guarantees that the meaning of the ex-
tracted terms is not changed when the module is imported by other ontologies.

In [35] two variants of locality are defined. Syntactic locality is based on the
syntactic structure of the axioms and it can be computed in polynomial time.

4The EL profile has been defined in OWL 2 to address scalability issues in basic reasoning
problems.

5http://www.geneontology.org
6http://snomed.org
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Semantic locality is based on the interpretation of the axioms and is PSpace-
complete. Jiménez-Ruiz et al. [60] propose two different locality conditions for
extracting ontology modules, depending on the interpretation of the entities
outside the signature: >-locality and ⊥-locality. An axiom is considered >-
local if it does not define new sub-concepts for a given concept C and ⊥-local if
it does not define new super-concepts. Therefore, for a given signature, modules
extracted using >-locality will contain subconcepts (lower modules (LM)) and
modules extracted using ⊥-locality will contain superconcepts (upper modules
(UM)). A third type of module named lower of upper module (LUM) is also
identified, which is the result of extracting an upper module M for a signature
S and then a lower module for S in M. This third type of module is the most
restrictive and it is introduced in order to make the module smaller.

2.2.5 Discussion

The different approaches for ontology modularization presented in this section
implement their own intuition about what a module should contain and what
should be its qualities. As a result, each modularization technique has been
driven by different criteria, usually imposed by the requirements of the appli-
cation or scenario relying on modularization.

Focusing on ontology module extraction, the different starting assumptions
made by both the traversal and logical approaches makes it difficult to draw a
fair comparison. While logical approaches are more concerned with guarantee-
ing certain properties useful for reasoning, traversal approaches make emphasis
in other criteria such as the size of the module or a compact distribution of the
concepts, which suits better other applications. Therefore, the selection of a
particular technique should be driven by the application requirements.

From the previous investigation it appears that there is a big gap between
logical and traversal techniques, as they regard different criteria. As the ob-
jective of this thesis is to perform MD analysis over SW data driven by the
underlying semantics, we require modularization approaches that are able to
efficiently extract suitably-shaped modules for analysis that also preserve the
semantics as much as possible. This fact has motivated us to investigate al-
ternative modularization techniques that bridge this gap between logical and
structural properties. In Chapter 4 we present a framework for ontology modu-
larization that reaches a good compromise between logical and structural mod-
ularization criteria.

2.3 Multidimensional analysis over Semantic Web
data

This section is devoted to all the different aspects concerned with the MD
analysis of data and its development from structured and controlled scenarios
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to semi-structured and knowledge-enriched SW data. In Section 2.3.1 we in-
troduce several basic concepts related to MD analysis and discuss traditional
approaches. Then, in Section 2.3.2, we discuss MD analysis techniques over
data expressed in XML format, distinguishing approaches that target at ho-
mogeneous XML from those that deal with the harder problem of heterogeneous
XML. Section 2.3.3 reviews the main literature that enhances traditional MD
analysis with SW technologies and, in Section 2.3.4, we review techniques that
aim at analyzing native SW data, which are the focus of this dissertation. In
particular, we analyze and discuss approaches that follow a traditional archi-
tecture for this new type of data and point out to new trends for scaling the
analysis. Finally, Section 2.3.5 summarizes the presented work and discusses
the main points and limitations.

2.3.1 Basic concepts

The term business intelligence (BI) refers to all the decision support technolo-
gies aimed at making better informed and faster decisions in the enterprise
environment. During the past two decades, businesses have been increasingly
leveraging their data with sophisticated analysis techniques to get comprehen-
sive knowledge and gain insight of their data. DW and OLAP are now mature
technologies and have been traditionally applied in the field of BI.

The classic definition of a DW introduced by Inmon states that a DW is
a subject-oriented, integrated, nonvolatile, and time variant collection of data
in support of management’s decisions [55]. Kimball introduced another widely
accepted definition of a DW as a copy of transaction data specifically structured
for query and analysis [66]. These definitions involve the construction of a huge
repository where an integrated view of data is given at a particular time period,
which is optimized for analysis purposes.

Traditional DW systems have three main components: the DW, the ETL
tools and the analysis tools (see Figure 2.1). By means of the ETL tools,
data coming from different sources are gathered, integrated (e.g., homogenized,
cleaned, etc.) and loaded into the DW. The DW is the core of a BI system. It
is a huge repository providing an integrated view of the data. Later, analysis
tools (i.e., OLAP tools, data mining tools, etc.) can access the DW and exploit
the information.

In this dissertation, we focus on the exploitation of information by OLAP
tools, which are intended to ease analysis and navigation of the information in
the DW. The term OLAP was first coined by Codd. In [33], Codd presented
12 rules to evaluate OLAP systems and emphasized the main characteristic of
OLAP: the MD analysis.

Multidimensionality is based on the fact/dimension dichotomy. Figure 2.2
shows an example of an MD view of data. OLAP tools conceptually model the
information in terms of facts, the central entities for the desired analysis (e.g.,
a sale), and dimensions, which provide contextual information for the facts
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Figure 2.1: Traditional DW architecture

(e.g., the products sold). The dimensions are also known to be the different
points of view (i.e., MD point) from where a fact can be analyzed. A cube
consists of fact instances (or simply facts), where each fact is identified by
a MD point (a point for each dimension) and quantified by measure values.
Usually, the dimensions are hierarchically organized into levels. For instance,
products can be grouped into product categories. Typically, the facts have
associated numerical measures (e.g., the quantity sold or the total price), and
queries aggregate fact measure values up to a certain level (e.g., total profit by
product category and month). This provides the user an easy-to-understand
and dynamic visualization of data by applying specific MD operators. For
instance, the “roll-up” increases the aggregation level (e.g., from month to
year), the “drill-down” decreases the aggregation level (e.g., from month to
day), the “slice” performs a selection of a dimension (e.g., select product=’car’),
etc.

MD modeling has been for quite some time an active area of research. It
was firstly introduced by Ralph Kimball at the logical level [66] and later by
Matteo Golfarelli at the conceptual level [45]. Since then, many approaches
have introduced or improved MD models either at the logical or the conceptual
level [118, 146, 3]. Early MD methods view the modeling of facts and dimen-
sions as a complex and manual process performed by the DW designer from
the initial user requirements and the data sources. Other approaches try to
assist the designer and sometimes even automate this complex process either
by automatically analyzing the data sources (i.e., supply-driven approaches)
or by formalizing the user requirements (i.e., requirement-driven approaches).
Hybrid approaches combine both strategies. In the end, the DW is designed
and loaded with the factual and dimensional data. Business end-users can
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Figure 2.2: Multidimensional view of data

then pose their MD queries based on the facts and dimensions of the DW. A
thorough review of MD modeling methods is presented in [127].

Traditionally, a fact has been conceived as an event of interest characterized
by different perspectives (i.e., dimensions). Therefore, each fact must be re-
lated to each analysis dimension by a many-to-one relationship. That is, every
instance of the fact is related to, at least and at most, one instance of an analy-
sis dimension, and every dimension instance may be related to many instances
of the fact. Therefore, many automated and semi-automated approaches for
MD modeling have focused on the discovery of functional and inclusion depen-
dencies from relational OLTP systems. They take as starting point a relational
schema (i.e., logical schema) and look for many-to-one relationships in the data
[121, 57, 82]. However, using the logical schema to derive an MD schema of a
DW has disadvantages. The logical schema is driven by design issues, which
will have an impact on the quality of the discovered MD schemas, as the usual
way to represent functional and inclusion dependencies is by means of foreign
and candidate key constraints. The previous limitation can be avoided by dis-
covering the MD model from a conceptual formalization of the domain. Adding
a conceptual layer on top of a relational system has been discussed in the lit-
erature and the benefits are obvious, as it provides more and better knowledge
about the domain. Some approaches for MD modeling use the UML or ER dia-
grams of the data sources to derive the MD schema [27, 45, 84]. Unfortunately,
these approaches are hard to automate because these conceptual formaliza-
tions are thought to graphically represent the domain and not for querying and
reasoning. A recent approach [126] uses ontologies as the conceptual layer to
automate the design of the DW from relational sources. We will analyze this
work in Section 2.3.3.

Regarding the implementation of the MD model, there are two main trends:
using the relational technology (ROLAP) and/or using a (usually proprietary)
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MD implementation (MOLAP). In ROLAP, the data is stored in relational ta-
bles. In order to map the MD data cubes into tables, different logical schemas
have been proposed. The star and the snowflake schemas are the most com-
monly used. The star schema consists of a fact table plus one dimension table
for each dimension. Each tuple in the fact table has a foreign key column to
each of the dimension tables and numeric columns that represent the measures.
The snowflake schema extends the star schema by normalizing and explicitly
representing the dimension hierarchies. In the MOLAP alternative, special data
structures (e.g., MD arrays) are used for the storage instead. The combination
of ROLAP and MOLAP is known as Hybrid OLAP (HOLAP). In the HOLAP
approach, detailed data is usually stored in relational tables, whereas the MO-
LAP strategy is applied to manage aggregated data. ROLAP implementations
as shown in Kimball’s book [66] have been the reference architecture for years,
as relational databases are a mature and well-established technology. However,
these implementations also have some drawbacks (mainly their performance
for query answering), which has made these architectures to lose popularity.
In any case, the simplicity of the star schema has remained and dominates the
MD modeling landscape both at the conceptual and logical level.

2.3.2 DW and OLAP on the Web

DW and OLAP have been successfully applied within the database community
for analysis purposes, but always under a well-controlled and structured sce-
nario. MD modeling has been traditionally restricted to structured, relational
data within the company. However, the eruption of XML and other richer
semi-structured formats like RDF has shifted the attention of the DW commu-
nity to a much more heterogeneous and open scenario than that of traditional
BI applications. The work in [56] outlines the opportunity and importance
of using unstructured and semi-structured data (either textual or not) in the
decision making process. These data could still come from the sources in the
company, but also from the Web. It is clear the benefit of enriching our MD
model with information coming from the Web, since it can provide new points
of view, new aggregation levels, or even new measures to analyze. Currently
no one questions the need of adding all this external information to the tra-
ditional corporate analysis processes. In the following, we distinguish between
approaches aimed at analyzing homogeneous and well-structured XML and
approaches that address heterogeneous XML sources.

Analytics for homogeneous XML sources.

Earlier work about XML DW [44, 22, 135] focused on translating XML Schema
into relational structures in order to apply existing algorithms for creating a
DW conceptual schema from relational sources. However, relational databases
are not the best choice for complex data that is deeply hierarchical, irregular
and recursive. Although it is possible to build a relational implementation
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of this type of data the translation may not be trivial, leading to some loss
of information. In order to avoid this, a lot of research has considered the
design of the DW directly from XML sources. Among the first attempts we
find [58], [122] and [46, 147]. These approaches address the physical integra-
tion of XML sources into an MD schema starting from the document type
definitions (DTDs) or XML Schemas that describe the structure of the XML
documents. Once the XML data is loaded into the database, the traditional
OLAP techniques can be used for querying. Although these approaches provide
good query performance, they are not suitable for dynamic environments such
as the Web, as physically integrating data is typically a long, time-consuming
process. To overcome this issue, Pedersen et al. [117] aim at the logical inte-
gration of OLAP and XML data sources. Their approach allows the execution
of OLAP operations that involve data contained in external XML data, which
is accessed by using XPath[50]. In this way, XML Web data can be used as
dimensions and/or measures of the OLAP cubes. This implies extending the
existing OLAP techniques to allow the execution of queries that involve online
XML data. In [113] it is assumed that each XML document describes a single
dimension or a single fact record and XQuery[50] is used for query processing.
In general, most of the previous approaches assume XML documents are given
along with either a DTD or XML Schema and they usually work well with very
homogeneous and controlled XML data (e.g., XML documents generated from
relational data sources). Unfortunately, data in real world scenarios are usu-
ally incomplete and much more heterogeneous. A review and deep discussion
of these and other DW approaches for XML and Web data can be found in
[120].

Analytics for heterogeneous XML sources.

As the XML document landscape covers from highly structured and homoge-
neous data to heterogeneous documents, some literature has focused on more
complex XML scenarios where documents have a high structural heterogeneity.
In [74, 150] it is shown that XQuery is not the most suitable query language
for data extraction from heterogeneous XML data sources, since the user must
be aware of the structure in the underlying documents. The lowest common
ancestor (LCA) semantics can be applied to extract meaningful related data
in a more flexible way. The work in [74, 150] applies some restrictions over the
LCA semantics. In particular they propose smallest lowest common ancestor
(SLCA) [150] and meaningful lowest common ancestor MLCA [74] whose gen-
eral intuition is that the LCA must be minimal. However, in [88, 106] they
showed that these approaches still produced undesired combinations between
data items in some cases (e.g., when a data item needs to be combined with
a data item at a lower level of the document hierarchy). In order to alleviate
the previous limitations they propose the smallest possible context (SPC) data
strategy where they redefine the notion of closeness of data item occurrences
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in an XML document.
Although XML has been adopted as the de-facto standard for publishing

Web data, it only formalizes the structure of a document and not its content.
The tags do not have formally defined semantics and thus their meaning is
not well-defined. This fact has prompted the appearance of other semantic
tagging languages (i.e., RDF/S, OWL) to add machine understandable and
semantic annotations to Web documents in order to access knowledge. This
is a great opportunity for the DW community, as there is a strong agreement
about bringing more semantics to the analytical processes. As DW mainly
involves the integration of disparate information sources, semantic issues are
highly required for effectively discovering and merging data.

The remainder of this chapter discusses the first approaches that combine
DW and OLAP technologies with SW data. In particular, we distinguish be-
tween approaches that incorporate semantics in some parts of the traditional
analysis architecture (Section 2.3.3) and approaches aimed at directly analyzing
SW data (Section 2.3.4).

2.3.3 Extending DW and OLAP with Semantic Web tech-
nologies

Although the prime objective of the literature discussed in this section is not
to analyze SW data, we consider it relevant in the context of this dissertation
because they are pioneers in using SW technologies to enhance the traditional
DW and OLAP analysis processes. First, we discuss approaches that use on-
tologies as middleware to represent and query business data. Then, we review
literature that focuses on enhancing specific parts of the DW process by tak-
ing advantage of SW technologies. In particular, we review approaches that
address the conceptual design of the ETL process, and approaches that focus
on the MD design of the DW. The work in [18] emphasizes the benefits of
combining SW technologies with BI and surveys the main approaches.

Using ontologies to represent and query business data

State-of-the-art research in the BI area proposes the use of ontologies as a
semantic middleware for integrating data from heterogeneous information sys-
tems. In [141] a layered architecture is proposed where each data source schema
is independently mapped to a technical ontology (TO) and the various TOs are
connected to a business ontology (BO) to relate technical concepts to business-
level concepts. At the application layer, the user can specify queries based on
a graph representation of the BO, which contains business relevant vocabulary
that is familiar to business users and therefore, intuitive and easy to under-
stand. In [133] the authors differentiate between the domain ontology, which
provides the terminology of the business domain, and the BI ontology, which
models the concepts used to describe how the data is organized in data sources
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(i.e., OLAP concepts) and to map such data to the concepts described in the
domain ontology. Neumayr et al. [104] present a BI front-end extended with
SW technologies that assists and guides the business analyst. The system is en-
abled with reasoning and several kinds of knowledge are explicitly represented
by ontologies, including both internal and external organization knowledge,
the semantics of measures and scores, knowledge about insights gained from
previous analysis and so on.

In most of the previous approaches, SW technologies are thought to provide
a conceptual view that integrates the data and makes querying easier. However,
specific wrappers that map each of the data sources to the ontologies must be
manually built and maintained.

Extending the ETL process with ontologies

During the initial steps of a DW project, the main goal is to construct a concep-
tual ETL design that describes the corresponding data transformations needed
to map the data sources to the target DW concepts. For achieving that, it is
imperative to identify and understand the semantics of both the data sources
and the target data stores. Several approaches have been proposed for using
SW technology to the design and construction of the ETL part [138, 139]. Nat-
urally, most of them deal with the conceptual part of the ETL design, since
the SW paradigm seems as a promising means to overcome the lack of handy
ways for capturing the semantics of an ETL process. The prevailing so far
idea in using SW technology for ETL suggests using a global ontology for map-
ping all the involved data stores to it. However, the use of an OWL ontology,
instead of a global schema provides a formal model on which automated rea-
soning mechanisms may be applied. Furthermore, [138, 139] point out that in
ETL it is not sufficient to consider the integration problem as a query rewrit-
ing problem, since the transformations taking place in real-case ETL scenarios
usually include operations, such as the application of functions, that cannot
be captured by a query rewriting process. In [140, 136] the authors propose
ontologies to formally and explicitly specify the semantics of the data source
and the DW schema and thus, through reasoning, automate in a large extent
the ETL generation. However, the ontology does not exist a priori, and re-
quires designers to explicitly indicate mappings between the data sources to be
integrated and the DW schema, which must be known. In this case, ontologies
act as a meta-model that guides the transformation process.

DW MD design driven by ontologies

The design of a DW is a complex and prone-to-fail task that requires some
level of expertise and domain knowledge. Although several methods that use
ontologies to assist the design of DWs have been proposed, we focus on the
most prominent and close approaches to our research.
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Given that ontologies provide a semantically rich formalism, approaches
such as [126] try to incorporate semantics in the design of a DW MD schema
by taking as starting point a domain ontology that describes the data sources.
Instead of looking for functional dependencies (which constitute typical fact-
dimension relations) in the sources, they are derived from the ontology in a
semi-automatic way by using an ad hoc algorithm. The application of this work
is valid in scenarios where a single ontology of reduced size, with multiplicity
restrictions, is used for annotating the source data. Note that multiplicity
information is rarely found in the source ontologies. A refined approach to fully
exploit DL reasoning services and compute functional dependencies is discussed
in [129]. This work restricts the language of the input domain ontology to
DL−LiteA [8] to compute functional dependencies based on role compositions
by exploiting its query answering services for conjunctive queries. This work
addresses only the design phase, overlooking the process of data extraction and
integration to populate the MD schema. The framework in [128] proposes to
extract an MD schema from each domain ontology and later conciliate those
results in a single, detailed MD schema. Thus, the semantic integration of the
resulting schemas must be performed a posteriori. Notice that this approach
is mainly supply-driven. Recently, the authors have incorporated the user
requirements into this framework [130].

The approach in [65] introduces a methodology for designing DWs from
ontology-based operational databases. The authors propose a pre-defined global
ontology into which data source ontologies are loosely integrated. User require-
ments are expressed as queries over the global ontology, which are executed to
build up the DW conceptual model (local ontology). In this approach, rea-
soning is applied to classify and validate the classes of the local ontology and
they use modularity to build the local ontology. As a limitation, the method-
ology supposes the existence of the global ontology and mappings between the
global and local ontologies must be performed. Moreover, the generation of
the MD schema is built based on a set of simple heuristics applied to the user
requirements, which are expressed using an ontological query language.

2.3.4 DW and OLAP over Semantic Web Data

The previous section has discussed approaches that make use of semantics to
enhance some phase of the analysis of traditional data sources. The focus
here is different, as we discuss how existing approaches address the analysis
of data sources that are natively semantic. These semantic data sources have
become available on the Web thanks to initiatives such as the Web of Linked
Data, which promotes a mechanism for making data available on the Web
using languages such as RDF and the HTTP protocol. We discuss the state-
of-the-art literature ranging from approaches that follow the traditional DW
architecture to analyze these new sources to lighter approaches that break with
the traditional DW architecture and perform more ad hoc analysis to meet the
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scalability and freshness requirements imposed by both the needs of analysts
and dynamic environments typical for SW data.

Traditional SW data analysis

Niemi et al. [105] are among the first to completely implement the traditional
DW workflow (i.e., the ETL process, the population of the DW and the cube
construction) using SW technologies. Although this research could be cate-
gorized under Section 2.3.3 because it uses SW technologies to enhance the
DW and OLAP process, we discuss it in this section because they address
the complete analysis process, from the data sources to the analyst, and they
transform the target data sources into RDF, which later populates the DW.
In order to integrate data from different sources, the authors consider RDF
as the common data format. They suggest starting with mapping the sources
to an RDF/OWL ontology. Then, the user needs to design the structure of
the OLAP cube. Next, the OLAP cube is constructed based on RDF queries
issued on the data sources. At the instance level, the combined result of such
queries represents an instance of the OLAP cube. As a constraint, the method
requires the mappings to translate the data to RDF format. An extension
to this work discusses with more detail the method for automating the con-
struction of OLAP schemas [107]. Again, the source and target schemas are
considered as known. They are aligned by converting the data in RDF us-
ing ontology mappings. Then, the relevant source data are extracted using
RDF queries generated with the ontology describing the OLAP schema. At
the end, the extracted data are stored in a database and analyzed using typical
OLAP techniques. Both approaches aim at an end-to-end design approach,
but they have two main limitations. First, they both require prior knowledge
of the source and target schemas and second, they consider only simple data
transformations.

The work in [101] proposes an MD framework for analyzing semantic an-
notations from a logical viewpoint using ontologies. In this approach semantic
annotations are based on application and domain ontologies. They are kept in
a semantic DW (SDW) expressed in RDF/OWL format. The user can build
an MD integrated ontology (MIO) containing the required analysis measures
and dimensions by selecting concepts and properties from the available ontolo-
gies in the SDW. Then, the necessary logical modules are extracted to set up
a global ontology from which facts and dimensions will be validated and gen-
erated from the annotations in the SDW. Although this approach follows the
traditional DW architecture, it has several distinguishing features. Firstly, if
data sources are already expressed in RDF/OWL, then their inclusion in the
SDW is straightforward. In such scenario where multiple ontologies co-exist
together, ontology mappings and merging strategies can be semi-automatically
calculated as in current semantic integration models. Second, as the MD design
is performed according to the user requirements, which are expressed in terms



2.3 Multidimensional analysis over Semantic Web data 37

of the current ontologies in the SDW, the resulting models fit their specific
needs at any time. However, the manual identification of the MD concepts
(facts, dimensions, measures, roll-up relationships) by the user is not straight-
forward, as it requires knowledge about the ontology. Also, the alternatives
for the instantiation of the MIO to build OLAP cubes are sketched but not
implemented.

The work in [63] proposes a preliminary approach to analyze through OLAP
queries a specific type of SW data, statistical Linked Data (sLD). These data
are expressed in RDF and annotated using the RDF Data Cube vocabulary
(QB)7, which is a vocabulary for annotating and publishing data in an MD
format. The paper proposes a traditional DW architecture to store and ana-
lyze sLD, where the sources are selected by the user using SPARQL8 and the
system creates and instantiates an MD model based on the QB annotations. In
this approach there is no MD design because sLD is already expressed as MD
data, therefore, the user requirements are not taken into account. Moreover,
reasoning is not addressed. The same authors present in [64] an approach that
directly defines OLAP operations over the source data (i.e., sLD). They define
an MD model based on QB and map OLAP operations in this MD model to
SPARQL queries over the sources. As data is queried on demand and no ma-
terialization is done, freshness of results is always guaranteed. However, the
approach suffers from efficiency issues as the computational cost falls upon the
SPARQL processor, which shows inefficient for complex MD queries.

An alternative analysis approach is presented in [38], which combines infor-
mation extraction (IE) techniques with logical reasoning. The work proposes
an MD model specially devised to select, group and aggregate the instances of
an ontology. The result of these operations is a set of tuples, whose members are
instances of the ontology concepts. They also present the adaptation of a fea-
ture selection algorithm to discover interesting potential analysis dimensions.
This algorithm builds the dimension hierarchies by selecting the relationships
in the ontology that maximize the information gain. The main limitation of
this work is that the MD operations (i.e., aggregations) are performed inside
the ontological formalism, which can lead to undecidability.

Scaling Semantic Web data analysis

Traditional DW and OLAP has focused on creating MD models and DWs that
imply high modeling efforts and are devoted to process structurally similar
queries about day-to-day business data. These approaches fail to incorporate
external data that is not considered in the pre-defined data model. Some of the
approaches presented previously try to overcome this issue by taking advantage
of the conceptual layer that SW data provides and letting the analyst create
the MD schema according to her requirements.

7http://www.w3.org/TR/vocab-data-cube/
8http://www.w3.org/TR/rdf-sparql-query/
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Recently, some efforts such as Live BI [31], have dealt with the changing
business environment by continuously processing data streams, whose results
can be piped directly to the analysis layer without loading it first into a DW.
Although these approaches are able to provide if not fresh, current answers, the
dynamic extensibility of the system may not be trivial, as it usually involves the
development of a wrapper for each new added stream. Similar to this idea is
the new BI scenario proposed in [77], Situational BI, where the analytical tools
should be able to integrate information from several data sources to satisfy the
users’ analytical queries, which are specific and momentary. However, these
approaches have not yet tackled the problem from a semantic viewpoint. We
believe that these approaches would enormously benefit from adding semantics
into the analytical processes.

The MD analysis of SW data, which is the issue that this thesis deals with,
shares some of the previous requirements (e.g., freshness) and new ones that
require new solutions. One of them is given by the semi-structured nature
of the data model, which consists of RDF labeled graphs (i.e., graphs where
edges express binary relations between nodes). Much effort has been devoted
to the design and implementation of scalable RDF stores. Earlier work on RDF
storage engines includes main memory stores [30] and also stores laying on top
of relational databases [26, 149]. Recently, native stores have been developed
with sophisticated storage and indexing schemas for achieving Web scale per-
formance. Among the most prominent, we cite vertically partitioned column
stores [2] and stores using multi-indexing techniques [148, 103, 49]. At the
same time, other research efforts have focused on the development of systems
oriented to massive OWL storage, most of them using relational technology
as back-end [53, 78, 112, 125, 76]. However, as massive-scale data sources are
becoming common, the previous techniques may pose limitations for ad hoc
processing and analysis on the Web.

Analysis of SW data implies powerful processing mechanisms able to han-
dle large joins derived from constructs such as pattern matching, grouping and
aggregation. The join operations are needed to transform data into n-ary rela-
tions suitable for OLAP operations. Thus, massive parallel processing systems
seem a good candidate. The MapReduce programming model [41] is gaining
momentum for processing large analytical workloads. However, this model is
not appropriate to compute costly joins, as it was designed to work with a sin-
gle dataset. Several optimizations have been proposed to make the problem of
join computing more efficient [4, 5, 42]. To achieve scalable ad-hoc analytics of
RDF data, the authors in [142, 123] have developed a system, RAPID, based on
the MapReduce framework, whose operators support efficient expression and
parallelization of complex analytical queries. They have extended Yahoo’s Pig
Latin language [110] with query primitives for dealing with the graph structured
nature of RDF, that is, the MD-join operator. This approach allows Web scale
processing and freshness of results, as the MD operations are performed ad hoc
over the MapReduce framework based on the user query. However, the perfor-
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mance and suitability of such techniques for complex processing compared to
databases is still being questioned [115].

Another inherent issue in the analysis of SW data is reasoning. Reasoning
allows making explicit all the implicit knowledge derived from the semantic
annotations. Scalable reasoning is a crucial task that should be integrated in
the analysis of SW data. Reasoning can be performed either at query time
(backward reasoning) or beforehand (forward reasoning or materialization).
Materialization strategies seem appropriate only for small or medium-sized data
sets, where the storage costs are admissible. The advantage of materialization
is mainly efficiency at query time, which is desirable in analytical tools. On
the other hand, backward reasoning does not incur on storage costs but offers
poor performance at query time. The complexity of reasoning also depends on
the expressivity of the logic used (see Section 2.1.4.2). The more expressive the
logic, the more computationally expensive reasoning becomes.

Up until now, reasoning has been incorporated to analytical processes by
means of traditional reasoners, which have been designed with a centralized
architecture where the execution is carried out by a single machine. How-
ever, with the advent of large-scale SW data, distributed reasoning is being
approached. Distributed reasoning is significantly more challenging because it
requires new algorithms to efficiently share both data and computation. Some
preliminary approaches have been devised for distributed reasoning that seek
a good trade-off between logic complexity and performance. This is the case of
[145], where the MapReduce framework is used to perform materialization of a
quite restricted logic. However, materializing inferences of large scale SW data
can lead to an inadmissible increase of the storage requirements. A promising
research direction that has not yet been fully explored is the use of indexing
mechanisms to manage inferred data without the need of materialization. In
this dissertation, we shed some light in this direction. Similarly, the study
and application of RDF compression techniques could also be beneficial in this
matter [80, 72].

2.3.5 Discussion

This section has presented the main state-of-the-art approaches that combine
the fields of MD analysis (i.e., DW and OLAP) with the SW from different
viewpoints. Either to extend and enhance the traditional analytical processes
or as a knowledge-enriched data source, the truth is that SW technologies can
only improve and bring more insight into the analytical tools.

Focusing on the MD analysis of SW data, only a few approaches have ad-
dressed this issue, mainly in a conservative manner. However, the analysis
scenario has changed, and so the analytical requirements. The analysis is no
longer restricted to well-defined, structured and static data sets. The availabil-
ity of large-scale SW data is demanding new analytical tools that are able to
dynamically access these data and provide fresh results according to the ana-
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lyst requirements at any time. Therefore, the traditional analytical processes
where a huge DW is created by integrating a set of pre-defined data sources by
means of complex and expensive ETL processes is not suitable anymore. Some
state-of-the-art literature have addressed Web-scale analytics by using paral-
lel processing over a MapReduce framework. Although the first results are
promising, it is not clear if these approaches are the most suitable to the kind
of operations required by OLAP tools. Moreover, this framework introduces
new challenges such as distributed reasoning that need to be dealt with.

In this dissertation the problem of MD analysis of SW data is approached
by reaching a compromise between scalability, freshness of results and user re-
quirements. Scalability is achieved by two means. On one hand, we provide
indexing mechanisms over ontologies that allow to manage implicit data in a
compact way, thus, operations requiring reasoning can be efficiently solved us-
ing the indexes. On the other hand, we have developed several modularization
techniques that build upon the previous indexes and allow to extract and work
only with the ontological subsets of interest. Moreover, instead of building a
huge, one time DW, we only materialize the facts and dimensions required by
the user during an analytical session. This provides up-to-date and customized
results to the user.
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Framework

This chapter presents the developed methods for scalable analysis of SW data
under an integrated framework. We explain each of the components of the
framework in Section 3.1. Then, we introduce the application scenario and use
case for the developed framework in Section 3.2.

3.1 Component-based framework

The methods that this thesis investigates for efficient and scalable manage-
ment and analysis of SW data are provided as modules in a component-based
framework. Fig. 3.1 shows such framework.

The OIM is composed by the indexing and querying modules. This compo-
nent is formalized and explained in Chapter 4. The indexing module is shown
at the bottom of the figure and is composed by a series of methods applied to
the ontology axioms. This phase is usually performed off-line only once per
ontology. A DL reasoner is used to compute the inferred ontology hierarchy.
Then, the interval labeling scheme allows to index this inferred hierarchy in
a compact and compressed format. The ABox assertions are also indexed ac-
cording to the TBox indexes. As a result, we obtain the TBox indexes and the
indexed instance store.

The querying module is divided into the TBox and ABox querying. Part
of the TBox querying module is an interval’s algebra that allows to perform
efficient queries about ancestors and descendants of concepts. The DL querying
module has been designed to answer a restricted subset of DL queries by using
only the indexes. The ABox querying module allows to perform conjunctive
query answering over named concepts and properties of the ontology.

The OMETs are a series of modularization techniques that build upon the
OIM. In particular, we have developed four different modularization approaches
(i.e., S, SCA, ASA and ASA-ST) to account for different structural and logical
requirements. Moreover, the DAG component allows to extract modules with
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Figure 3.1: Component-based framework for the management and analysis of
SW data.

a graph-based structure instead of a tree. This component is also described in
Chapter 4.

Finally, the MDAC allows to perform MD analysis of instance data driven
by the semantics encoded in the ontology axioms. The module is composed
by the fact extractor and the dimension extractor. The fact extractor is in
charge of mapping the elements of the MD query specified by the user to the
elements in the ontologies and finding semantic paths (i.e., aggregation paths)
that logically connect them. As a result, the fact extractor composes facts with
the instance data that adheres to these semantic paths, which in turn accounts
for the MD query of the user. This task is performed by using the TBox
indexes to extract the semantic paths that connect the MD elements and the
indexed instance store to retrieve the facts. The dimension extractor module
is in charge of extracting truly semantic hierarchical dimensions based on the
subsumption relations of the ontology. The hierarchies are re-shaped to favor
aggregation while preserving as much as possible the semantics of the concepts.
This task is performed by using the modularization techniques, which in turn
make use of the TBox indexes.

The next section describes an application scenario where this analysis frame-
work has been successfully deployed.
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3.2 Application scenario

The application scenario selected to develop our analysis framework is Biome-
dicine, in which vast and complex domain ontologies are being developed. In
particular, we focus on the Health-e-Child integrated project (HeC) [137]. HeC
was an European funded project that aimed at improving personalized health-
care in selected areas of paediatrics, particularly focusing on integrating and
providing decision support tools for medical data across disciplines, modalities,
and vertical levels such as molecular, organ, individual and population. Such
decision support tools are mainly focused on traditional diagnosis/prognosis
tasks and patient follow-up. The project focused on some carefully selected
diseases in three different categories; pediatric heart diseases, inflammatory
diseases and brain tumours. This scenario regards three main types of data
sources: well standardized records coming from hospital information systems
(e.g., HL7-conformant records), highly heterogeneous semi-structured clinical
reports, and a variety of unstructured data such as DICOM files, ECG data,
X-ray and ultrasonography images. All data are delivered to the HeC in-
frastructure in XML format, usually lacking of any schema for the semi- and
unstructured data sources. Unfortunately, most of the interesting analysis di-
mensions are located in the schema-less data sources.
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Figure 3.2: HeC data integration architecture (left hand) versus the SW inte-
gration architecture (right hand)

The integration solution proposed in the HeC project formerly consisted in
defining a flexible integrated data model [15], which is built on top of a grid-
aware relational database management system (see left hand side of Figure 3.2).
As clinical reports present very irregular structures (see the example presented
in Figure 3.3), they are decomposed and classified into a few organizational
units (i.e., patient, visit, medical event and clinical variables), thus disregarding
much information that could be useful for analysis. Additionally, this data
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model also includes tables that map clinical variables to concept identifiers
from the UMLS Metathesaurus [20]. These tables are intended to link patient
data to bibliographic resources such as MEDLINE [1]. It is worth mentioning
that a similar scenario and solution were proposed in the OpenEHR initiative1.

Ultrasonography

WristExamination

date ’10/10/2006’

hasUndergoneWrist True

rightWrist False

leftWrist True

WristScore

wristExamined ’Left’

PannusAndJointEffusion

distalRadioUlnarJoint

result ’No Synovial thikening and no joint effusion’

radioCarpalJoint

result ’Only synovial pannus without joint efussion

midCarpalCMCJ

result ’None’

Synovitis

distalRadioUlnarJoint ’Mild’

radioCarpalJoint ’None’

midCarpalCMCJ ’Severe’

BoneErosion

distalUlna

erosionDegree 0

carpalBones

erosionDegree 1

...

Figure 3.3: Fragment of a clinical report of the Rheumatology domain.

In this dissertation we adopt a different integration architecture (see right
hand side of Figure 3.2), which follows the current trends in biomedical [21] and
bioinformatics data integration [62], and relies entirely on SW technology. In
this architecture, the integrated data model is defined as an application ontology
that models the health care scenario (e.g., patients, visits, reports, etc.) This
ontology can import concepts defined in external knowledge resources (reference
ontologies in Figure 3.2). For example, we can import a disease taxonomy from
UMLS, or a classification of the body parts from GALEN [124]. Finally, the
biomedical data is semantically annotated according to the application ontology
and stored as RDF triples (i.e., triple store).

For practical purposes, the TBox and the ABox are treated separately.
Notice that while the ABox is usually very dynamic for it is constantly updated,
the TBox hardly changes over time. We assume that the instance store is always
consistent w.r.t. the associated ontology. Figure 3.4 shows a fragment of the
application ontology designed for patients with rheumatic diseases, whereas
Table 3.1 shows a fragment of an instance store associated to this ontology. In
this case, the instance store is expressed as triples (subject, predicate, object),
where a triple of the form (a, type, C) corresponds to a DL assertion C(a), and
otherwise the triple (a,R, b) represents the relational assertion R(a, b).

The UMLS Metathesaurus is used as domain ontology as it is probably the
most comprehensive biomedical knowledge resource. For the sake of clarity,

1http://www.openehr.org/home.html
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Patient v = 1 hasAge.string (3.1)

Patient v = 1 sex.Gender (3.2)

Patient v ∀ hasGeneReport.GeneProfile (3.3)

GeneProfile v ∀ over.Gene u ∀ under.Gene (3.4)

Patient v ∀ hasHistory.PatientHistory (3.5)

PatientHistory v ∃familyMember.Family Group u

∃ hasDiagnosis.Disease or Syndrome (3.6)

Patient v ∃ hasV isit.V isit (3.7)

V isit v = 1 date.string (3.8)

V isit v ∀ hasReport.(Rheumatology t Diagnosis t

Treatment t Laboratory) (3.9)

Rheumatology v ∃ results.(Articular t ExtraArticular t

Ultrasonography) (3.10)

Rheumatology v = 1 damageIndex.string (3.11)

Ultrasonography v ∀ hasAbnormality.Disease or Syndrome (3.12)

Ultrasonography v ∀ location.Body Space or Junction (3.13)

ArticularFinding v ∃ affectedJoint.Body Space or Junction (3.14)

ArticularFinding v ∀ examObservation.string (3.15)

Diagnosis v ∃ hasDiagnosis.Disease or Syndrome (3.16)

Treatment v = 1 duration.string (3.17)

Treatment v ∃ hasTherapy.DrugTherapy (3.18)

DrugTherapy v = 1 administration.AD (3.19)

DrugTherapy v = 1 hasDrug.Pharmacologic Substance (3.20)

AD v ∃ dosage.string u ∃ route.string u ∃ timing.string (3.21)

Laboratory v ∃ bloodIndicants.( ∃ cell.Cell u

∃ result.string u ∃ test.Lab Procedure) (3.22)

Rheumatoid Arthritis v Autoimmune Disease (3.23)

Autoimmune Disease v Disease or Syndrome (3.24)

... (3.25)

Figure 3.4: Ontology axioms (Tbox).

Table 3.2 shows only a small excerpt of axioms of UMLS with the “is-a” re-
lationships among diseases and drugs related to the application scenario. The
abbreviations used in the ontology are shown in Table 3.3.

3.2.1 Use Case

In the previous application scenario, we propose a use case that will serve as
running example to illustrate all the developed methods.

The use case is focused on the MD analysis of the efficacy of different drugs
in patients diagnosed with inflammatory diseases. The analyst of this use case
expresses her analysis requirements at the conceptual level in terms of dimen-
sions and measures, similarly as in traditional MD analysis. Figure 3.5 depicts
the conceptual model of the analyst requirements where the central subject of
analysis is Patient. The analyst is interested in exploring the patient’s follow-
up visits according to different perspectives (i.e., dimensions) such as gender,
the drugs prescribed and the diseases diagnosed. She is particularly interested
in obtaining figures about the registered articular damage and the number of
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subject predicate object

PTNXZ1 hasAge “10”
PTNXZ1 sex Male
VISIT1 date “06182008”
VISIT1 hasReport RHEX1
RHEX1 damageIndex “10”
RHEX1 results ULTRA1
ULTRA1 hasAbnormality “Malformation”
ULTRA1 hasAbnormality Knee
VISIT1 hasReport DIAG1
DIAG1 hasDiagnosis Arthritis
VISIT1 hasReport TREAT1
TREAT1 hasDrugTherapy DT1
DT1 hasDrug Methotrexate
PTNXZ1 hasVisit VISIT2
VISIT2 date “08202008”
VISIT2 hasReport RHEX2
RHEX2 damageIndex “15”
RHEX2 results ULTRA2
ULTRA2 hasAbnormality “Malformation”
ULTRA2 hasAbnormality Knee
RHEX2 results ULTRA3
ULTRA3 hasAbnormality “Rotation 15degrees”
ULTRA3 hasAbnormality Right Wrist
VISIT2 hasReport DIAG2
DIAG2 hasDiagnosis Systemic Arthritis
VISIT2 hasReport TREAT2
TREAT2 hasDrugTherapy DT2
DT2 hasDrug Methotrexate
TREAT2 hasDrugTherapy DT3
DT3 hasDrug Corticosteroids
... ... ...

Table 3.1: Semantic annotations (Abox).

# axioms # axioms

1 Uv v D&D 17 etanercept v Bio-M

2 JI v D&D 18 anakirna v Bio-M

3 Rh v D&D 19 infliximab v Bio-M

4 AD v D&D 20 DMARDs v methotrexate

5 P-JCA v JI 21 NSAIDs v aspirin

6 CRA v JI 22 NSAIDs v ibuprofen

7 CRA v Rh 23 corticosteroids v Drugs

8 CRA v AD 24 DMARDs v Drugs

9 JRA v CRA 25 NSAIDs v Drugs

10 A-SD v CRA 26 Bio-M v Drugs

11 P-JRA v P-JCA 27 CRA v ∃ may treat.anakirna

12 P-JRA v JRA 28 CRA v ∃ may treat.etanercept

13 O-JRA v JRA 29 CRA v ∃ may treat.infliximab

14 JI v ∃ may treat.NSAIDs 30 CRA v ∃ may treat.methotrexate

15 JI v ∃ may treat.corticosteroids 31 Uv v ∃ contraindicated drug.fluorometholone

16 fluorometholone v corticosteroids

Table 3.2: Ontology axioms for the use case.

Abbrev. Name

D&D Diseases and Disorders
Uv Uveitis
JI Joint Inflammation
Rh Rheumatism
AD Autoimmune Disease
P-JCA Polyarticular Juvenile Chronic Arthritis
CRA Chronic Rheumatic Arthritis
JRA Juvenile Rheumatoid Arthritis
A-SD Adult-onset Still’s Disease
P-JRA Polyarticular Juvenile Rheumatoid Arthritis
O-JRA Olygoarticular Juvenile Rheumatoid Arthritis
Bio-M Biological Medication
DMARDs Disease Modifying Anti-Rheumatic Drugs
NSAIDs Non-Steroidal Anti-Inflammatory Drugs

Table 3.3: Abbreviations of concepts from ontology in Table 3.2.
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patients (i.e., measures).
The method described in Chapter 5 provides the means to effectively extract

facts and dimensions according to the user’s requirements so that SW data can
be explored and analyzed using OLAP-style capabilities. Facts and dimensions
are extracted from the data with the help of the indexing and modularization
approaches developed in Chapter 4. Once the facts and the dimensions are
extracted, the user will be able to feed this information to an OLAP server and
create cubes and queries over the cubes to analyze patient data and discover
useful patterns and trends. However, the extracted facts and dimensions may
not be summarizable, meaning that the use of pre-aggregation techniques can
lead to wrong results. We warn the user about the summarizability property
and, in the case where facts are not summarizable, we still provide a correct
answer to the initial MD query.

PATIENT

Avg. Articular Damage

Gender Num. Patients

DrugsDiseases

Figure 3.5: Use case analysis requirements.

Supposing that the extracted facts and dimensions are summarizable and
are fed to an OLAP server that supports MDX, we show an example of the
creation of a MD cube using an MDX-like syntax2.

CREATE CUBE [cubeArticularDamage1]
FROM [patient_dw]
(

MEASURE [patient_dw].[avgArtDamIndex],
MEASURE [patient_dw].[numPatients],
DIMENSION [patient_dw].[Drug],
DIMENSION [patient_dw].[Disease]
DIMENSION [patient_dw].[Gender]

)

By exploring this cube the analyst can find out interesting patterns such
as which drugs mitigate the articular damage depending on the disease type.

2The specification in MDX of the dimension hierarchies and the measures are out of the
scope of this example.
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For example, we show a potential query that the analyst may pose over the
previous cube.

SELECT
[Drug].[Hierarchy1].[‘‘NSAIDS’’].Members On Axis(0),
[Disease].[Hierarchy2].[‘‘Auto-immune’’].Members On Axis(1),

FROM [patient_dw]

Through this query, the analyst is rolling-up the drugs to the NSAIDS level
and also rolling-up the diseases to auto-immune ones. Therefore, she wants to
obtain measures (i.e., the average articular damage index and the number of
patients) for patients that have been prescribed with NSAIDS drugs and have
auto-immune diseases.

Next, we give an overview of the process that has to be followed in order to
obtain facts and dimensions that are able to solve queries such as the previous
one. We differentiate between the fact and the dimension extraction. Both
processes are detailed in Chapter 5. Previously to obtain facts, we must ex-
tract the raw data that will be aggregated to compose facts. These data are
arranged into tuples (i.e., data tuples) and are derived according to the user
MD query. The user query (i.e., the subject of analysis, dimensions and mea-
sures) are translated into a series of conceptual descriptions over the TBox.
Then, semantic connections must be looked for between the MD elements. In
particular, we look for aggregation paths between the subject of analysis and
each dimension and measure. This ensures that the extracted data are logi-
cally connected through semantic paths. As a result, we obtain a reachability
graph, which is a graph rooted in the subject of analysis and which contains
aggregation paths to each of the dimensions and measures. This process is
efficiently performed by using the TBox indexes described in Chapter 4. The
reachability graph is used as a guide to extract from the ABox instance tuples
and the posterior data tuples. This process is performed by using an efficient
query answering mechanism also proposed in Chapter 4. Data tuples are the
raw data used to compose the aggregated information (i.e., facts). A fact is
defined as a MD point quantified by a set of aggregated measures. Therefore,
all data tuples that share the same dimension values are collapsed into a fact,
and the respective measure values are aggregated using the aggregation func-
tion defined by the user for each measure. As previously mentioned, we warn
the user about the summarizability of the resulting facts. In case these are
not summarizable, we still provide correctly aggregated facts to the user, with
the only condition that these aggregations cannot be further used to aggregate
data.

Dimension extraction concerns the extraction of dimension hierarchies for
the different dimensions defined by the user. A dimension is defined as an di-
rected acyclic graph of nodes, where nodes are sub-concepts of the dimension
type specified by the user, and the edges correspond to the semantic rela-
tions (e.g., “is-a” relationships) between the nodes. Dimension hierarchies are
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extracted by using the modularization techniques proposed in Chapter 4. Tra-
ditional dimension hierarchies usually satisfy a series of restrictions to ensure
summarizability. However, as we believe that the summarizability constraints
are too restrictive and hinder the aggregation possibilities provided by a truly
semantic dimension, we do not transform the dimension hierarchies into sum-
marizable ones but only re-shape the dimensions to favor both dense regions
and good aggregation nodes, while preserving as much as possible the seman-
tics.

As a result, we are able to extract a facts and several dimension hierarchies
from semantically enriched data that can be fed to a traditional OLAP tool
to respond to interesting MD queries (taking into account the summarizability
property).
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Chapter 4

Indexing and
modularization approaches
for ontologies

This chapter describes the indexing and modularization approaches developed
for large ontologies. In Section 4.1, we motivate the need for modules and
identify the main analytical requirements that have driven the development
of the modularization approaches. Section 4.2 describes the OIM proposed to
index and query ontologies, and Section 4.3 contains the four OMETs devised
to extract modules that meet the analytical requirements identified. In Section
4.4 we summarize the preservation of semantics of the developed methods.
Finally, Section 4.5 presents the experimental evaluation and Section 4.6 the
discussion.

4.1 Introduction

Ontologies play a key role in the SW by providing a common domain vocabulary
and standard semantics that facilitate interoperability and automatic machine
processing. The increasing use of ontologies in different domains is demanding
new tools that ease the access, management, use and reuse of ontologies so that
real benefits can be achieved. Ontology modularization has attracted a lot at-
tention among the research community as a means to efficiently manage and
reuse ontologies. There is a wide range of ontology modularization approaches,
which are usually driven by the application requirements of the modularization
process. Specifically, two differentiated trends are observed: logical and traver-
sal approaches. While logical approaches are concerned with the preservation
of logical properties, traversal approaches consider more important structural
criteria such as the size or the compactness of the modules.

51
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The focus of this chapter is on developing indexing and modularization
techniques that overcome both the logical and traversal approaches and extract
modules useful for analysis. In the following, we identify a series of criteria that
have driven the development of such techniques:

• User requirements: The proposed modularization techniques should be
driven by the user requirements while being as automatic as possible.
Any analytical task comes up from the user’s needs, which are usually
expressed in terms of analysis requirements. Therefore, the modular-
ization techniques should take into account such requirements when ex-
tracting the module. The usual way to express the user’s requirements is
by creating an input signature, composed by entities from the ontology.
This signature is the starting point from where the module should be
extracted.

• Performance: The proposed modularization techniques should be scal-
able. It is well known that logical formalisms that underly ontologies, such
as DL, suffer from scalability issues. However, the SW is the main applica-
tion scenario of ontologies, where scalability becomes crucial. Therefore,
modularization approaches are of no use if they cannot deal with at least
medium-size ontologies. We perceive scalability as crucial requirement
even if some logical aspects have to be sacrificed.

• Semantics preservation: The extracted modules should preserve seman-
tics as long as it does not affect the other regarded criteria. However,
we do not always require complete semantics preservation as there are
already existing approaches aimed at that, which usually lead to high
computational cost.

• Size: The size of the resulting module should be small enough with re-
spect to the original ontology in order to justify its construction. The
size of the module is crucial in many applications such as visualization
and summarization tasks.

• Preservation of structure: The extracted modules should provide a con-
text for the signature entities. In analytical applications, the structure of
the data is fundamental to perform aggregations.

The developed indexing and modularization framework has been designed
by taking into account the previous criteria. In particular, we present the OIM
that allows to efficiently index large ontologies. The index is based on an in-
terval labeling schema that is applied to the ontology inferred hierarchy. This
index encodes information about the descendants and ancestors of each con-
cept in a compact format. An interval algebra has been designed to efficiently
perform operations involving ancestor/descendant relations, to perform con-
junctive queries, and to perform a restricted subset of DL queries. Based on
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the OIM, we provide four different OMETs to cover the different requirements
of the user. These make use of the OIM to efficiently extract compact ontology
modules. The techniques have proved to be scalable and the modules adhere
to previously stated criteria. The main foundations of this chapter have been
published in [89, 91].

4.2 Ontology Indexing Model

One of the main requirements of the developed modularization techniques and,
in general, of the methods developed in this thesis, is that they offer a good
performance in on-line scenarios. Allowing inferences of SW data during the
extraction process would incur in a prohibitively cost and would hinder scala-
bility. Therefore, we resort to indexing mechanisms over ontologies (i.e., both
the TBox and the ABox) where all the inferences are made a priori to extrac-
tion. That is, we index the inferred TBox and also, the ABox assertions (not
the materialized inferred ABox) based on the TBox indexes. The remaining of
this section presents the TBox and ABox indexing mechanisms.

4.2.1 TBox indexing

In this section we present our approach for indexing large TBoxes. First, we
discuss how the inferred model of a TBox can be obtained and its underlying
graph structure. Then, we introduce the interval labeling schema designed
to index and query the inferred graph. Over this labeling schema, we define
an interval algebra, which consists of a set of interval operations that allow
to efficiently perform queries about ancestors/descendants and some basic DL
queries over the index. This indexing mechanism is the basis for the OMETs
that will be described later.

4.2.1.1 Ontology inferred model

We assume that the ontology has been normalized and all anonymous concepts
and roles have been named. As disjoint axioms of type disjoint(A,B) imply
AuB v ⊥, we transform them into X ≡ AuB and X v ⊥, being ⊥ a named
concept. After that, the TBox contains two kinds of axioms: class definitions
A ≡ C, where A is a concept name and C is a concept description or concept
name, and subsumption axiomsA v B, where bothA andB are concept names.
The same applies to roles. The ABox contains property instantiations of the
form R(x, y), and facts of the form A(x), with R and A being a property and
concept name. Notice that these structural changes do not affect the semantics
and the normalized ontology is semantically equivalent. From now on, we refer
with Nc′ to the set of all named concepts in the ontology, which is composed
by the initial atomic concepts, Na, the complex named concepts, Nc, and the
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set of new anonymous named concepts, Nanon. Similarly, we refer with Nr′ to
the set of all named roles.

As we assume an ontology encoded in a language with DL semantics, it
is possible to perform automated reasoning over the ontology using a DL rea-
soner. A DL reasoner performs various inferencing services, such as computing
the inferred ancestors of a concept, determining whether or not a concept is
consistent, deciding whether or not one concept is subsumed by another, etc.
We are interested in obtaining the inferred concept hierarchy. This reasoning
process can be considered as a pre-processing step performed only once per on-
tology. Also, the reasoner performs realization of the ABox, that is, it computes
the most specific types for all individuals. The inferred concept hierarchy can
be computed using alternative methods to standard DL reasoners, which are
usually based on tableaux algorithms. In particular, [9] use a set of completion
rules that applies to a normalized TBox to compute all the ancestors of each
concept under the restricted description language EL++.

In any case, the inferred concept hierarchy (containing anonymous named
concepts correctly classified) is modeled as a directed acyclic graph (DAG).
We consider a directed graph G = (V,E), where V is the set of vertices and
E ⊆ V × V is the set of edges. Without loss of generality, we assume that G
has no self loops (v, v). A directed acyclic graph is a directed graph containing
no cycles. Each node of the DAG represents a set of concept names (because
multiple concept names may be logically equivalent), and edges correspond
with subsumption relationships. Each node also keeps track of the definitions
of its concept names in a structure called annotations.

Figure 4.1 shows the underlying graph structure with the annotations of the
inferred concept hierarchy only for the diseases part of the ontology shown in
Table 3.21. We take this graph as reference to develop the subsequent examples.

4.2.1.2 Interval labeling schema

From a logical viewpoint the subsumption relationship is both transitive and
reflexive. That is, O |= A v B,B v C =⇒ O |= A v C and O |= A v A,
respectively. In the graph representation, a classified concept A subsumes a
classified concept B if either: i) both A and B are in the label of some node
v ∈ V or ii) A is in the label of some node v ∈ V , there is an edge (v, w) ∈ E
in the graph, and the concepts(s) in the label of node w subsume B.

Considering the previous statements, we apply a node labeling schema over
the graph representation of the inferred concept hierarchy to capture the sub-
sumption relationships between concepts in the ontology. This labeling schema
is based on Agrawal’s interval schema [6], which allows the efficient manage-
ment of transitive and reflexive relationships by materializing the transitive
closure in a compact and compressed way. This approach can be applied to
directed trees and DAGs, which is the underlying structure of the inferred class

1For the sake of simplicity, we obviate the inferred concept hierarchy for the drugs
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Figure 4.1: Excerpt of the inferred concept hierarchy generated from the on-
tology in Table 3.2.

hierarchy of ontologies [32]. The transitive closure of G = (V,E), where V is
the set of vertices and E ⊆ V × V is the set of edges is a graph G+ = (V,E+)
such that for all v, w ∈ V there is an edge (v, w) ∈ E+ if and only if there is a
path from v to w in G.

In our labeling schema, the interval that is associated with a node v is
[pre(v),maxpre(v)], where pre(v) is the preorder number of v and maxpre(v)
is the highest preorder number of v’s descendants. The preorder number is
taken as the node’s unique identifier. This labeling variation has been taken
from Schubert [131] and it is identical to the schema proposed by Agrawal.
Figure 4.2 shows the compressed transitive closure mapped into intervals of
the subsumption relationships.

For indexing DAGs, disjoint components can be hooked together by creating
a virtual root node. The compression schema first finds a spanning tree T for
the given graph (solid edges). Then it assigns an interval to each node based
on the preorder traversal of T . Next, all nodes of the graph are examined in
the reverse topological order so that for every edge from node v to w, all the
intervals associated with node w are added to the intervals associated with node
v, taking into account that if one interval is subsumed by another, the subsumed
interval is not added. In the figure, interval [6, 7] is associated to node JRA
when labeling the spanning tree. Then, during the reverse topological traversal,
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node JRA inherits interval [4, 4] from node P -JRA.
For trees, this schema requires O(n) storage, only twice the storage for the

tree itself since one interval is enough to encode the descendants of a node.
When dealing with DAGs, a node v will have associated a set of intervals, and
in the worst case, the storage required will be O(n2). However, this situation
is unlikely because Agrawal’s approach for DAGs finds the optimum spanning
tree, that is, the spanning tree that leads to minimum amount of intervals per
node and thus, minimum storage requirements.

Figure 4.2: Interval encoding of subsumption relationships of the ontology. The
subscript of the node’s name denotes its identifier (preorder number).

The previous labeling schema encodes the subsumption relationships of the
concepts of an ontology as intervals. By applying simple interval operations
over the nodes, information about descendants and common descendants of on-
tology concepts can be immediately obtained. Information about the descen-
dants of a given concept is very useful, specially for query answering, where
the instances that belong to a given concept C are the instances that belong
to C or any of its descendant concepts.

Equally interesting would be to dispose of such information about the an-
cestors of ontology concepts. By retrieving ancestors of a given set of concepts
we are able to put the concepts into context and locate them in the ontology.
This is specially interesting for modularity, where an upper module from a set
of concepts is defined as the fragment that holds ancestor information about
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the concepts. To that end, we have applied the same interval labeling schema
over the reversed graph representation of the subsumption relationships. That
is, the edges now point from a child to a parent node. Notice that a reversed
tree becomes a DAG, and a DAG is still a DAG. In addition, a virtual root
node is created to hook together what are leaf nodes in the original struc-
ture. Then, the same labeling schema described previously is applied to this
reversed structure. As now edges denote ancestor relationships, the labeling
schema will encode ancestor concepts. Figure 4.3 shows the corresponding re-
versed graph of Figure 4.2 with the ancestors information encoded as intervals.
Notice that the node identifier is its preorder number and both the original
and the reversed structure have their own preorder indexing system. The in-
tervals in the reversed structure lose their compactness, thus resulting in extra
storage requirements compared to the original structure. This occurs because
the amount of intervals needed to encode all the relationships depends on the
rate of multiple parents, and this rate tends to be larger when the structure is
reversed.

We proceed exactly the same way with the DAG representing the entailed
sub-property relation between all named roles. Information about sub-roles is
also needed to respond to conjunctive queries.

Figure 4.3: Interval encoding of ancestor nodes for the source ontology.
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4.2.1.3 Node descriptors

We encapsulate all the information regarding ancestors and descendants of each
concept in a descriptor function per node v ∈ V :

descriptor(v) = 〈descpre(v), descintervals(v),

ancpre(v), ancintervals(v), topo(v)〉

where descpre(v) is the preorder number of node v in the original structure,
descintervals(v) is the set of intervals encoding v’s descendants, ancpre(v) is
the preorder number of v in the reversed structure, ancintervals(v) is the set
of intervals encoding v’s ancestors and topo(v) is the topological order of v,
which has been calculated using a standard algorithm.

The descriptors of the role nodes only have information about descendants:

descriptor(v) = 〈descpre(v), descintervals(v)〉

4.2.1.4 Interval algebra

The previous interval labeling schema associates each named concept C ∈ Nc′

in the ontology with a node in both subsumption graphs and a descriptor
function descriptor(C). This function maps each concept C ∈ Nc′ into the
descendants labeling schema space, named LS−, and the ancestors labeling
schema space, named LS+. Therefore, we have two separate indexes. We
use the functions ·LS−(·LS+

) to represent a concept in each space, CLS
−

and

CLS
+

. In both spaces we have the functions id and int that map a concept to

an identifier (i.e., its preorder number), id(CLS
−(+)

), and to a set of intervals,

int(CLS
−(+)

), respectively. As both graphs represent all the subsumption re-
lations between any pair of concepts C,D ∈ Nc′ and the subsumption relation
is transitive (i.e., captured by the interval labeling schema), any subsumption
relation between a pair of concepts C,D ∈ Nc′ can be checked by using either
the LS− or the LS+ index. The same applies to the named roles, except that
they only have the LS− index. This is formalized as follows:

Definition 4.1. Given a normalized TBox T with Nc′ being the named con-
cepts, LS− and LS+ are two indexes with a pair of associated functions for
each index, id : Nc′ → N and int : Nc′ → 2N×N, such that, for each pair of
concepts C,D in Nc′ , we have that T |= C v D iff id(CLS

−
) is in int(DLS

−
)

and id(DLS
+

) is in int(CLS
+

).

Definition 4.2. Given a normalized TBox T with Nr′ being the named roles,
LS− is an index with a pair of associated functions, id : Nr′ → N and int :
Nr′ → 2N×N, such that, for each pair of roles R,S in Nr′ , we have that T |=
R v S iff id(RLS

−
) is in int(SLS

−
).



4.2 Ontology Indexing Model 59

As a result, we can check entailments between named concepts and roles by
using directly the indexes.

The next step consists in designing an interval algebra to efficiently operate
with the LS− and LS+ representations of the concepts2

First, we introduce some definitions and functions related to the normal-
ization of ontology axioms:

• An atomic expression is an expression of the form {(¬)A, (¬){∃,∀,≥ n,≤
n,= n}R.((¬)B)}, where A and R are atomic concepts and roles, and B
is an atomic expression, respectively.

• The function norm : T → T takes as input a TBox an replaces the
complex concepts with their definitions until concept descriptions contain
only atomic expressions.

• The disjunctive normal form (DNF) of a concept description is a disjunc-
tion of conjunctions of simple concept descriptions.

• The conjunctive normal form (CNF) of a concept description is a con-
junction of disjunctions of simple concept descriptions.

Now, we present some auxiliary functions to operate with the LS− and
LS+ representations of the concepts.

• The function flatten : 2N×N → 2N takes a set of natural intervals and
flattens the structure into a set of natural numbers. For example, given
the interval set {(2, 3), (9, 12)} it returns the set {2, 3, 9, 10, 11, 12}.

• The function [ ]LS
−(+)

: 2N → 2Nc′ takes as input a set of natural
numbers (i.e., identifiers) and returns the set of concepts represented by
each identifier either in LS− or LS+ space. For example, from the LS−
graph in Figure 4.2, we observe that [{4, 6, 7}]LS− returns the concepts

{P − JRA, JRA,O − JRA}, whereas [{4, 6, 7}]LS+

from the LS+ graph
in Figure 4.3 returns {P − JRA, JRA,CRA}.

• The function expand : Nc′ → 2Nc′ takes as input a concept repre-
sented in either LS− or LS+ and returns the set of concepts repre-
sented by its associated intervals, which in LS− are descendants and in
LS+ are ancestors. This function is equivalent to perform the operation

[flatten(int(CLS
−(+)

))]LS
−(+)

. For example, from Figure 4.2 we see that

expand(CRALS
−

) returns {CRA, JRA,A − SD,P − JRA,O − JRA},
whereas in Figure 4.3, expand(CRALS

+

) returns {CRA, JI,R,AD,D&D}.
2From now on, we refer to only the LS− and LS+ representations of the concepts for

simplicity. However, the following functions can be also used over the LS− index of the roles
when possible.
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• The function neg : Nc′ → ¬Nc′ takes as input a named concept and
simply returns the logical negated concept. For example, neg(A) returns
¬A.

We have designed an interval algebra over the elements of LS− and LS+

that allows to perform interesting computations over the named concepts Nc′

of the ontology.

Definition 4.3. Let CLS
−(+)

and DLS
−(+)

be the LS−(+) representation of
two named concepts C,D ∈ Nc′ .

1. The operator CLS
−(+) ⊗ DLS−(+)

denotes the classic intersection of set

theory and is equivalent to perform [flatten(int(CLS
−(+)

)∩
int(DLS

−(+)

))]LS
−(+)

, that is, it admits as a result only concepts ELS
−(+)

whose id(ELS
−(+)

) values are in the intersection of int(CLS
−(+)

) and

int(DLS
−(+)

).

2. The operator CLS
−(+) ⊕DLS−(+)

denotes the classic union of set theory

and is equivalent to perform [flatten(int(CLS
−(+)

)∪int(DLS−(+)

))]LS
−(+)

,

that is, it admits as a result only concepts ELS
−(+)

whose id(ELS
−(+)

)

values are in the union of int(CLS
−(+)

) and int(DLS
−(+)

).

3. The operator 	 behaves differently in LS− and LS+, therefore, we dis-
tinguish the two cases:

3.1. 	CLS− returns the set of concepts {expand(neg(D)LS
−

)/D ∈
expand(CLS

+

)}.
3.2. 	CLS+

returns the set of concepts {expand(neg(D)LS
+

)/D ∈
expand(CLS

−
)}.

The previous operators are very useful to efficiently perform set operations
over named concepts. For example, the operator ⊗ allows to extract the com-
mon ancestors (in the LS+ space) and common descendants (in the LS− space)
of a pair of concepts C,D ∈ Nc′ .

4.2.1.5 Querying the TBox

In this section, we approach the more difficult problem of answering DL queries
using the previous indexes and algebra. We restrict the problem to queries
about atomic concepts that use the intersection (u), union (t) and negation (¬)
DL operators. We refer to these queries with the name Qt,u,¬. We formalize
the problem as follows:

Definition 4.4. Given a TBox T that has been indexed and mapped to the
LS− and LS+ spaces, and a DL query Qt,u,¬ over atomic concepts of T , we
want to find named concepts C such that T |= C v QDL and T |= QDL v C
using the indexes LS− and LS+, respectively.
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The first intuition is to use the previously defined operators ⊗, ⊕ and 	
to solve the intersections, unions and negations of the DL query, respectively.
Let us analyze the suitability of such operations. First, we refer to queries
about descendants, which will use the LS− space. According to the model
theoretic semantics of DL, the descendants of C uD are concepts X such that
X v C u D. From this formula, we infer X v C and X v D, which means
that concepts X are descendants of both C and D. As these two subsumptions
are between named concepts, by Definition 4.1, they correspond to edges in
the graphs. That is, all the descendants of C u D are captured by the graph
structure. Therefore, to obtain the concepts X, we just need to intersect the
descendants of C and D in LS−, that is, CLS

− ⊗DLS− .
The descendants of C tD are concepts X such that X v C tD. From this

formula we cannot infer further subsumption relations among X, C and D,
therefore, the LS− graph does not contain edges expressing such information.
However, as we know that concepts X are descendants of C t D, we obtain
concepts X with the union of the descendant of C and D, that is, CLS

−⊕DLS− .
The results of such operation are sound but not complete. We illustrate this
issue in Figure 4.4. The left part shows an example of an ontology and all the
inferred axioms. The LS− graph is built by considering each named concept
a node and each inferred axiom an edge. The middle part of the figure shows
the indexed LS− graph. The right part shows an example query where the
LS− index fails to give a complete answer. We observe that the union of the
elements of the query gives a partially correct answer. However, we are missing
named concepts that are entailed by the concepts in this partial answer. In the
example, the partial answer is {B,A,D,C} but, as AtC entails E due to the
original axiom E ≡ A t C, the concept E and its descendants should also be
part of the answer. These kinds of entailments are not encoded in the graph
but should be taken into account in order to produce complete answers.

Figure 4.4: Example of query about descendants where the LS− index gives
an incomplete answer.
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Now, we analyze queries about ancestors, for which we use the LS+ space.
The ancestors of CtD are concepts X such that CtD v X. From this formula,
we infer C v X and D v X, which means that concepts X are ancestors of
both C and D. As these two subsumptions are between named concepts, by
Definition 4.1, they correspond to edges in the labeled graphs. That is, all the
ancestors of C tD are captured by the graph structure. Therefore, to obtain
the concepts X, we just need to intersect the ancestors of C and D, that is,
CLS

+ ⊗DLS+

.
The ancestors of C uD are concepts X such that C uD v X. From this

formula we cannot infer further subsumption relations between X, C and D,
therefore, the LS+ graph does not contain edges expressing such information.
However, as we know that conceptsX are ancestors of CuD, we obtain concepts
X with the union of the ancestors of C and D, that is, CLS

+⊕DLS+

. Similarly
as with the operation C tD in LS−, by using only the index LS+ to retrieve
ancestor of queries of type C uD, we obtain sound but not complete answers.
This is illustrated in Figure 4.5.

Figure 4.5: Example of query about ancestors where the LS+ index gives an
incomplete answer.

As in the previous figure, the ontology axioms and the inferred axioms are
on the left part and both the LS− and LS+ graphs are shown in the middle.
The right part contains an example query that produces incomplete results.
The reason is similar as in the previous example. Here, the LS+ index gives
{E,A, F,B} as the result for the ancestors of EuF . However, as AuB entails
C, the concept C and its ancestors should be in the query answer.

Finally, we analyze the implications of dealing with negations. We only
deal with negated atomic concepts. When querying for descendants, LS−, the
only implications that ¬A can generate are given by the existence of an axiom
A v B. As this axiom is equivalent to ¬B v ¬A, it implies that ¬B is a
descendant of ¬A that must be considered. Fortunately, the operator 	 is able
to find such descendants of ¬A. The querying about ancestors is analogous.
In LS+, the only implications that ¬A can generate are given by the existence
of an axiom B v A. As this axiom is equivalent to ¬A v ¬B, it implies that
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¬B is an ancestor of ¬A that must be considered. Fortunately, the operator
	 is able to find such descendants and ancestors of ¬A in both LS− and LS+

spaces.
To summarize, using the indexes to solve queries with unions in the LS− and

intersections in the LS+ can give incomplete results due to the limitations of
the graph representation. Also, negated atoms can imply new descendants and
ancestors that need to be considered. In order to solve the previous problem,
we have designed an algorithm that gives complete answers about descendants
and ancestors of queries of type Qt,u,¬. For both the retrieval of descendants
and ancestors, the problem is analogous and the algorithm is split in three

parts. First, a partial query answer, QLS
−(+)

, is given by using the operators
of the interval algebra. Then, the partial answer is extended with concepts
entailed by itself using structural notions about the ontology axioms. Finally,
either the descendants or the ancestors of the result are also extracted, as they
are also valid answers. First, we define a partial query answer to a query about
descendants:

Definition 4.5. Given an indexed TBox T with the LS− index and a query
Qt,u,¬ in disjunctive normal form, Q = α1 t ...tαn, where αi = ci1 u ...u cim
such that cik ∈ Na, 1 ≤ i ≤ n, 1 ≤ k ≤ m, a partial query answer to T |= C v
Q is given by the following expression:

QLS
−

= αLS
−

1 ⊕ ...⊕ αLS
−

n where αLS
−

i = ci1
LS− ⊗ ...⊗ cimLS

−

.

As the problematic operation in LS− is the union, we transform the user
query into disjunctive normal form so that the unions are pushed outside and
are dealt with at the end. The elements αi of the query are intersections of
atomic concepts, which can appear negated. The negated atomic concepts
are treated with the 	 operator and the intersections with the ⊗ operator.
Then, the unions are solved with the ⊕ operator but, as we have shown, these
results are incomplete. The negated atoms can give rise to other negated
atoms or negated named concepts. If they do not have a representation in the
LS− graph, they are assigned an artificial representation where id(C) = 0 and
int(C) = {(0, 0)}. The result of the partial query answer is a set of concepts
that must be normalized to atomic expressions with the function norm.

Now, we define a function that, given a set of atomic expressions Cset,
extends the input set with concepts from the ontology that are entailed by any
combination of atomic expressions in Cset

Definition 4.6. Given a normalized TBox in conjunctive normal form where
concept definitions have the shape C ≡ β1 u ...u βn, where βj = cj1 t ...t cjm,
such that cjm is an atomic expression, we define the function RNC−, which
takes as input a set of atomic expressions Cset and extends it with named
concepts C that have some βj such that for all cjk ∈ βj , cjk ∈ Cset.
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The function RNC− is able to extract ontology concepts that are entailed
by a combination of atomic expressions given as input. In this context, we
apply the function RNC− to the normalized partial query answer QLS

−
in

order to retrieve entailed concepts that cannot be extracted from the graph
structure.

Finally, we define the answer to a query as follows:

Definition 4.7. Given an indexed TBox T with the LS− index and a query
Qt,u,¬ in disjunctive normal form, the answer to the query is defined as:

Ans(Q) = {expand(CLS
−

)/CLS
−
∈ RNC−(norm(QLS

−
))}

The answer to a query Qt,u,¬ is defined as the result of applying the RNC−

function to the normalized partial query answer and extracting their descen-
dants with the expand function, as they are also valid answers to the query.
The expand function operates over concepts that have a representation in the
LS− (LS+), that is, over Nc′ . If a concept returned by RNC− does not belong
to Nc′ , the result of expanding that concept is empty. During the processing of
the query we may come across a concept C together with its negated form ¬C.
If that happens, it means the query is unsatisfiable and the result is empty.

Now, let us explain the implementation of the RNC− function with more
detail. Instead of using reasoning techniques to check if some combination
of concepts in QLS

−
entails another named concept, we base our algorithm

on structural equivalence and implement it through an inverted index. The
construction of the inverted index is as follows: first, the ontology is normalized
so that concept descriptions are expanded to their atomic expressions with the
function norm. Then, they are put into conjunctive normal form. Therefore, all
concept descriptions have the shape Xj ≡ βj

1u ...uβj
n, where βj

i = cji1t ...tc
j
im,

and cjik is an atomic expression. Then, we build an inverted index where each
entry has the shape c → [Xi.β

i
j .k], where c is an atomic expression, Xi is a

complex named concept, βi
j is a disjunction of atomic expressions of Xi and

k is the number of atomic expressions in βi. That is, each atomic expression
c points to a list of concept definitions (and the corresponding disjunctions
of atomic expressions) that contain it. Having this inverted index, we reduce
the checking of new entailments of the partial query answer to a check over
this index. Therefore, the RNC− function retrieves concept definitions X such
that any of their disjunctions of atomic expressions βi is covered by the atomic
expressions of the partial query answer. The construction of the inverted index
does not add any extra computational complexity, as the process is linear with
the size of the ontology.

The algorithm for answering queries about ancestors follows the same line
of thought.

Definition 4.8. Given an indexed TBox T with the LS+ index and a query
Qt,u,¬ in conjunctive normal form, Q = α1 u ...uαn, where αi = ci1 t ...t cim
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such that cik ∈ Na, 1 ≤ i ≤ n, 1 ≤ k ≤ m, a partial query answer to T |= Q v
C is given by the following expression:

QLS
+

= αLS
+

1 ⊕ ...⊕ αLS
+

n where αLS
+

i = ci1
LS+

⊗ ...⊗ cimLS
+

.

In LS+, the intersection is the operation that does not give complete results.
Therefore, the user query is transformed into a conjunctive query to push
outside the intersections, as opposed to the LS−. The negated atoms are
solved with the 	 operator. The elements αi are unions and are solved with
the ⊗ operator. Then, the intersections are solved with the ⊕ operator. The
normalization of the result gives rise to the partial query answer QLS

+

.
Then, the function RCN+ is similarly defined.

Definition 4.9. Given a normalized TBox in disjunctive normal form where
concept definitions have the shape C ≡ β1 t ... t βn, where βj = cj1 u ... u cjm
and cjm is an atomic expression, we define the function RCN+, which takes
as input a set of atomic expressions Cset and extends it with named concepts
C that have some βj such that for all cjk ∈ βj , cjk ∈ Cset.

The behavior of the RNC+ function is the same as that of RNC−. The
only difference stems from the construction of the inverted index. In this case,
the construction of the inverted index is done based on the disjunctive normal
form of the ontology concepts, Xj ≡ βj

1 t ...tβj
n, where βj

i = cji1u ...u c
j
im, and

cjik is an atomic expression. The shape of the index is identical, c→ [Xi.β
i
j .k],

where c is an atomic expression, Xi is a complex named concept but βi
j is a

conjunction of atomic expressions of Xi. Having this inverted index, the RNC+

function retrieves concept definitions X such that any of their conjunctions of
atomic expressions βj is covered by QLS

+

Finally, we define the answer to a query as follows:

Definition 4.10. Given an indexed TBox T with the LS+ index and a query
Qt,u,¬ in conjunctive normal form, the answer to the query is defined as:

Ans(Q) = {expand(CLS
+

)/CLS
+

∈ RNC+(norm(QLS
+

))}

The answer to a query Qt,u,¬ is defined as the result of applying the RNC+

function to the normalized partial query answer and extracting their ancestors,
as they are also valid answers to the query.

4.2.2 ABox querying

In this section we present our approach for efficiently querying large ABoxes
based on the previous TBox indexes. The method presented is an alternative



66 Chapter 4 Indexing and modularization approaches for ontologies

to materializing all the inferences, which can result in a prohibitive storage
cost. First, we discuss how we store ABox assertions and then, we explain how
conjunctive queries are solved.

We assume the ABox has been reasoned over and contains concept asser-
tions A(x) with A being the most specific named concept. However, all the
ABox inferences are not materialized as materialization may increase the stor-
age requirements to an unmanageable size. We keep two separate relational
tables, one for the concept assertions and one for the property assertions to
account for the inferences.

The table TC has two attributes (x, id) and contains tuples (x, id(CLS
−

))
for each ABox concept assertion C(x). That is, we keep for every individual the
identifiers in LS− of the concepts that it belongs to. The column x is indexed
by the relational back-end.

The table TP has three attributes (x, y, id) and contains tuples (x, y, id(rLS
−

))
for each ABox property assertion r(x, y). That is, we keep for every property
assertion the two individuals (or the individual and the literal) involved and
the identifiers in LS− of the roles that relate them. The columns (x, y) are
indexed by the relational back-end.

The previous tables allow us to answer conjunctive queries over named
concepts and properties efficiently. In the following algorithms we use relational
algebra terminology to solve the conjunctive queries. Algorithm 1 shows how to
retrieve individuals x such that O |= C(x). First, all the intervals identifying
the descendants of C are accessed with the LS− index. Then, with simple
range queries with the intervals over TC , all individuals that belong to C or to
any of its subconcepts are retrieved.

Algorithm 1 Instance retrieval
Procedure RetrieveConcept(C)
Input: C, named concept
Output: Res, set of individuals

1: Res = {}
2: S = int(CLS

−
)

3: for (l, h) ∈ S do
4: Res+ = Π(x)(σl≤id≤h(TC))

5: return Res

Algorithm 2 shows how to retrieve property assertions r(x, y) such that O |=
r(x, y). The right hand side of the algorithm shows the function retrieveAux,
which given a role r, retrieves property assertions about r or any of its sub-
roles in a similar way as Algorithm 1. That is, the intervals that identify the
subproperties of r are accessed with the LS− index and then, range queries are
performed over the table TP to retrieve the assertions. However, this function
does not return complete results, as we have to also take into account ABox
inferences produced by inverse roles and role chains, which are not material-
ized to keep the size of the ABox manageable. These inferences are efficiently
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Algorithm 2 Property retrieval
Procedure RetrieveRole(r)
Input: r, named role
Output: Res, tuples (x r y)

1: Res = {}
2: Res+ = retrieveAux(r)

3: s = int(rLS
−

)

4: subroles = [flatten(s)]LS
−

5: for s ∈ roles do
6: if isInverse(s) then
7: s1 = removeInverse(s)
8: Res+ = Π(y,x)( retrieveAux(s1))

9: if isChain(s) then
10: (s1, s2) = unchain(s)
11: tmp1 = retrieveAux(s1)
12: tmp2 = retrieveAux(s2)
13: Res+ = Π(x1,y2)(tmp1 ony1=x2 tmp2)

14: return Res

Procedure retrieveAux(r)
Input: r, named role
Output: Res, tuples (x r y)

1: Res = {}
2: s = int(rLS

−
)

3: for (l, h) ∈ s do
4: Res+ = Π(x,y)(σl≤id≤h(TP )

5: return Res

responded at query time by making use of the indexes. The left part of the
algorithm shows the algorithm that gives complete results for queries about
property assertions. First, there is a call to retrieveAux in order to retrieve
the assertions about r or any subrole. Then, each of the subroles s of r is in-
spected and the two problematic situations are handled. If s is an inverse role,
the property assertions of s without the inverse are retrieved with the function
retrieveAux. Notice that the resulting tuples are projected with the order of
the x and y attributes switched. If s is a role chain, the roles that imply s are
obtained and for each of them, a call to retrieveAux obtains the temporary
property assertions, which are then joined and projected over the first and last
attribute3. As a result, we obtain all the property assertions implied by the
role r.

4.2.3 Implementation

The algorithms for the OIM are implemented in Python 2.6. The OWL on-
tologies are parsed with a custom OWL parser. In order to compute inferences

3For brevity, we only show the procedure with role chains of size 2, but the algorithm
could be easily extended to role chains of size n
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over the ontology we use Pellet reasoner. The returned subsumption hierarchy
is represented as a graph using NetworkX 1.7 python package. The interval
indexes are calculated and stored in MySQL4 using a simple key-value schema,
where the key is the concept and the value is the data returned by the descrip-
tor function defined in 4.2.1.3. This way, data can be loaded in main memory
into a hash table, which allows fast access to the information about a concept.
If the data does not fit in main memory, the algorithms and the interval in-
dexes could be distributed and efficiently accessed using key-value stores[75].
The Abox assertions are also stored in MySQL using a simple schema.

4.3 Ontology Module Extraction Techniques

The OMETs presented in this section offer a good trade-off between logical
and structural aspects. They have been designed following the criteria shown
in Section 4.1. For the purposes of this dissertation, a module is a subset of
explicit or implicit axioms extracted from an ontology that provide a context
for the input signature specified by the user. The four different modulariza-
tion techniques are implemented as Python programs that rely on the OIM
presented in the previous section and are the result of applying different opera-
tions over an extended signature. They all have a common pre-processing step
where the user’s input signature is extended. Then, one of the four ontology
module extraction techniques is applied depending on the user requirements.
The subsumption relationships of the concepts in the extracted module are re-
stricted to a tree structure as it may be a requirement of a specific application.
Optionally, the remaining subsumption relationships can be added to obtain a
DAG.

We use the application scenario and use case described in Sections 3.2 and
3.2.1, respectively, to better illustrate each of the module extraction techniques.
The use case proposed is focused on the MD analysis of patients with inflam-
matory diseases. As one of the dimensions is the disease, we build the example
modules using a toy signature composed by inflammatory diseases. The mod-
ularization techniques can be used inside the analysis framework presented in
this thesis to extract dimension hierarchies or as standalone tool. In fact, an-
other interesting use case apart from extracting useful analysis hierarchies that
fit the application scenario would be the discovery of relations as well as pos-
sible treatments and contraindications among the inflammatory diseases (i.e.,
Polyarticular Juvenile Rheumatoid Arthritis (P−JRA), Adult-onset Still’s Dis-
ease (A−SD) and Uveitis (Uv)) by extracting a module. A module extracted
from a domain ontology starting from these concepts and relations provides
information about how these concepts are related to each other. In addition,
the small size of the module, where only relevant concepts and relationships are
added, enables the clinician to better visualize and understand the diseases’ in-

4MySQL: http://www.mysql.com
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teractions. The following sections explain in detail the steps followed to extract
modules.

4.3.1 Extension of the input signature

The pre-processing step common to the four different module extraction tech-
niques, is the extension of the user’s input signature. The following definitions
formalize this process.

Let NC and NR be countably infinite and disjoint sets of concept names
and role names, respectively [68]. In general, C and D denote concepts, and r
denotes a role name. Concepts in a description logic L are built up starting from
the concept names in NC , and applying the concept constructors (see concept
constructors of DL in Table 2.1) A signature is a finite subset of NC ∪NR.

Definition 4.11 (Signature of an ontology). The signature Sig(O) of an on-
tology O is the set of concept and role names which occur in O.

Definition 4.12 (Signature of a concept). The signature Sig(C) of a concept
C is the set of concept names which occur in the description of C. For example,
if C ≡ A uB, sig(C) = {A,B}.

Definition 4.13 (Input signature). The input signature SigINPUT for an on-
tology O is a tuple (SC0, SP0) where SC0 ⊆ sig(O) is the set of concepts
specified by the user and SP0 ⊆ sig(O) is the set of roles the user is interested
in w.r.t. SC0. SC0 is called the basic signature.

Although the input signature contains both concepts and roles, the inter-
pretation given to them is not the same as in other modularity approaches,
such as [34] and [68]. The intuitive idea of input signature in this work is the
following: the signature concepts define the core concepts of the module from
which we want to obtain their definition and taxonomic relationships. On the
other hand, the signature roles indicate the relevant roles the user is interested
in w.r.t. the signature concepts. In other words, if a signature concept is re-
lated to some of the signature roles (either contains the role restriction in its
definition or inherits it) the module should contain the concept along with the
role restriction.

Following the use case, the objective is to extract an analysis hierarchy
for the diseases P-JRA, A-SD and Uv enriched with the roles may treat and
contraindicated drug when possible. Clinicians have to specify the intended
content of the module in the form of an input signature as follows:

SigINPUT = ({P -JRA,A-SD,Uv}, {may treat, contraindicated drug})
C0 (Basic signature) = {P -JRA,A-SD,Uv}

Modules are intended to preserve semantic information (i.e., subsumption
and role restrictions) over the concepts of the input signature. To ensure this,
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we extend the input signature with additional concepts and roles before apply-
ing the module extraction techniques.

Definition 4.14 (Extended signature). The extended signature SigEXT =
(SC∗, SP ∗) for an ontology O is an extension of SigINPUT defined as follows:

SC∗ = SC0 ∪
{C | ∃ C ′ ∈ SC0, r ∈ SP ∗ : O |= C ′ v C ∧ C v ∃r.D is axiom of O}

SP ∗ = {r | ∃ r′ ∈ SP0 : O |= r v r′}

In SigEXT we extend the concepts of the basic signature by including
concepts connected to them through the subsumption relationship (ancestors)
which have an asserted axiom in their definition containing some role in SP ∗.
Finally, SP ∗ contains the set of initial roles specified by the user in the input
signature plus their subroles. Algorithm 3 shows how to calculate the extended
signature by using the interval algebra operations of Section 4.2.1.4. SigEXT

is the input to the OMETs described in Section 4.3.2.
We obtain SigEXT = (SC∗, SP ∗) for the use case as follows: SP ∗ is SP0

because there is no property taxonomy. SC∗ is the result of the union of
SC0 (basic signature) and ancestors of signature concepts which have an as-
serted restriction in their definition involving some property of SP ∗, which are
{JI, CRA}. Therefore, the extended signature is as follows: SigEXT = ({P -
JRA, A-SD,Uv,CRA, JI}, {may treat, contraindicated drug})

Algorithm 3 Compute extended signature

Procedure ExtendedSignature(SigINPUT ,SigEXT )
Input: SigINPUT ← (SC0, SP0), the input signature
Output: SigEXT ← (SC∗, SP ∗), the extended signature

1: SC∗ ← SC0

2: SP ∗ ← SP0

3: for r ∈ SP0 do

4: SP ∗ ← SP ∗ ∪ expand(rLS
−

)

5: for C ∈ SC0 do

6: CANC ← expand(CLS
+

)
7: for D ∈ CANC do
8: for r ∈ SP ∗ do
9: if r ∈ D.annotations then

10: SC∗ ← SC∗ ∪ {D}
11: return (SC∗, SP ∗)
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4.3.2 Ontology Module Extraction Techniques

In this section we describe four different OMETs that rely on the indexing
mechanism and the interval algebra operations defined in previous sections to
extract ontology modules. As the evaluation section shows, the use of one
technique or another will depend on the specific application requirements. The
four techniques differ in the number of concepts that are included in the module
to provide a context for the extended signature SigEXT , which varies from none
(in the Signature technique) to all the ancestors (in the All Signature Ancestors
technique). Afterwards, the subsumption relations among the module concepts
are established by using the interval algebra and the definitions of concepts
in the module that include some property of the extended signature are also
extracted. The subsumption relationships can be restricted to form a tree
or a DAG structure depending on the user’s needs. For each technique, we
show a figure with the corresponding use case module with both tree and DAG
structure (left and right side of the figure, respectively).

4.3.2.1 Signature (S).

The first approach is the most basic one and extracts the most compact mod-
ules. Indeed, its output consists of the concepts from SigEXT along with
their subsumption relationships made explicit. In other words, this technique
retrieves the inferred transitive closure of the subsumption relationship of con-
cepts from SigEXT . This is calculated with Algorithm 4, which computes a
spanning tree based on the subsumption relationships among concepts mak-
ing use of Definition 4.1. The computational complexity of this algorithm is
quadratic in the worst case.

Algorithm 4 Compute spanning tree based on subsumption relationships
Procedure SpanningTree(L)
Input: L, list containing output nodes sorted by their preorder number
Output: G, containing a spanning tree of the output nodes

1: G← ∅
2: Stack parents← ∅
3: C ← nextNode(L)
4: D ← nextNode(L)
5: while L do
6: if id(DLS

−
) ∈ int(CLS− ) then . T |= D v C according to Definition 4.1

7: addEdge(G, edge(C,D))
8: push(parents,D)
9: C ← D

10: D ← nextNode(L)
11: else
12: pop(parents)
13: C ← top(parents)

14: return G

Figure 4.6 shows the skeleton of the module extracted for the running use
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case with this technique. In all the subsequent figures we use the following
convention: darker nodes represent the input signature concepts, lighter nodes
are the nodes added to form the extended signature (SigEXT ) and blank nodes
represent ancestors which, depending on the technique, are added to the mod-
ule. In this technique, the only blank node added is a root node to join together
the module nodes. None of the ancestors of SigEXT are considered. Moreover,
solid edges represent the spanning tree computed with Algorithm 4 and dashed
edges correspond to the remaining subsumption relationships to form a DAG.

Figure 4.6: Output module for the S technique (tree and DAG structure, re-
spectively).

4.3.2.2 Signature common ancestors (SCA).

This technique extracts all the concepts which are common ancestors of any pair
of concepts from SigEXT . That is, for each pair of concepts C, D, we perform
the operation CLS

+ ⊗DLS+

. The number of common ancestors computations
is quadratic in the worst case w.r.t. |SigEXT |. After the identification of the
common ancestors, Algorithm 4 computes a spanning tree of the subsumption
relationship with all the concepts from SigEXT plus common ancestors. Figure
4.7 shows the resulting module for the use case.

4.3.2.3 All signature ancestors (ASA).

In order to alleviate the computational cost of the previous technique, we pro-
pose to extract all ancestors from concepts of SigEXT , that is, for each concept
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Figure 4.7: Output module for SCA technique (tree and DAG structure, re-
spectively).

C, we get expand(CLS
+

). Then, the extracted concepts are similarly organized
according to their subsumption relationships as in the previous techniques us-
ing Algorithm 4. The output module contains all concepts from SigEXT plus
all their ancestors organized by the subsumption relationships (see Figure 4.8).
Notice that the resulting module can be much larger than the one of the previ-
ous technique, as we do not restrict the extracted ancestors to have at least two
descendants in SigEXT but just one. Figure 4.8 shows the result of applying
this technique to the use case.

4.3.2.4 All signature ancestors spanning tree (ASA-ST).

In the previous approach, extracting all ancestors from concepts of SigEXT can
result in an excessive amount of irrelevant nodes in the output module. Thus,
this last technique tries to improve this situation by just selecting ancestor
nodes that relate concepts of SigEXT through the subsumption spanning tree
calculated. This approach can be considered an extension of ASA; indeed
Algorithm 5 is applied to the ASA output module as a cleaning process. Figure
4.9 shows the ASA-ST module in which nodes R, AD and JRA have been
removed from the output of ASA. As removed nodes do not participate in the
transitive closure of the signature, the transitive closure is not altered.
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Figure 4.8: Output module for ASA technique (tree and DAG structure, re-
spectively).

Algorithm 5 Remove nodes not related to the SigINPUT through the sub-
sumption spanning tree
Procedure RemoveNon-SPTNodes(S, G)
Input: S, the input signature, G the spanning tree calculated with ASA technique
Output: G, with just nodes related to the signature through the subsumption spanning
tree

1: Stack fringe← ∅
2: for root r in G do
3: if subtree(r) does not contain nodes from S then
4: deleteNodes(G, subtree(r))

5: for root r in G do
6: fringe← subtree(r)
7: while fringe do
8: n← pop(fringe)
9: if subtree(n) does not contain nodes from S then

10: deleteNodes(G, subtree(n))
11: else
12: push(fringe, subtree(n))

13: return G

4.3.3 Obtaining a DAG.

The output module from the four previous techniques consists of a tree struc-
ture for simplicity (see left graph of each of the previous figures). Notice that
some applications (e.g., traditional DW dimensions) require a tree hierarchy
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Figure 4.9: Output module for ASA-ST technique (tree and DAG structure,
respectively).

rather than a DAG. However, in many cases it is necessary to get the complete
DAG structure. For this purpose, Algorithm 6 has been designed.

Algorithm 6 Search additional edges (subsumpt. rels.) to get a DAG

Procedure GetDAG(G)
Input: G, the tree obtained by some of the previous techniques
Output: G, with DAG-structure

1: sortedNodes← topologicalOrder(G)
2: for node C in sortedNodes do
3: ancestors← expand(CLS

+
)

4: while ancestors do
5: nearestAncestor ← getNearestAncestor(C, ancestors)
6: if C or nearestAncestor in Signature then
7: addEdge(G, edge(nearestAncestor, C)

8: nodesToRoot← getNodesToRoot(nearestAncestor)
9: deleteFrom(ancestors, nodesToRoot)

10: return G

In this algorithm, for each node in the graph G sorted by increasing topo-
logical order, we identify its nearest ancestor, which is the ancestor whose topo-
logical order is lower and closer to the topological order of the node. Then,
if some of the two nodes belong to the signature, we add this additional rela-
tionship to G as a new edge. In order not to include redundant edges to the
node being examined, we delete from its ancestors list all the ancestors of the
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nearest ancestor node identified, since these relationships are already implicit
in the subsumption hierarchy. This algorithm does not add an extra temporal
complexity because all operations have a linear cost w.r.t. the number of nodes
if they make use of the descriptor functions of each node. Modules with DAG
structure are shown in the right part of each of the Figures 4.6-4.9.

4.3.4 Implementation

The algorithms for the OMETs are implemented in Python 2.6. They are
based on the OIM presented in the previous section, that is, ontologies are first
indexed. Then, modules are extracted from user’s signatures and presented as
OWL files.

4.4 Semantics preservation

The OIM developed in Section 4.2 preserves all the entailments between named
concepts and named roles of a given ontology by Definition 4.1. Therefore,
both the indexes LS− and LS+ reach soundness and completeness over named
ontology concepts and roles.

The query module developed in Section 4.2.1.5 reaches soundness and com-
pleteness over queries of atomic concepts with the constructors t, u and ¬,
when applied to ontologies indexed with the OIM.

The modularization techniques presented in Section 4.3 are focused on pro-
viding a structure and context to the input signature that is suitable for anal-
ysis, thus, they are focused on the retrieval of ancestors. However, they also
preserve the subsumption entailments between the signature concepts. There-
fore, they reach soundness and completeness over the signature concepts.

A different issue that comes to mind is the utilization of the query module of
Section 4.2.1.5 to perform queries over the modules extracted in Section 4.3. In
order for the query module to return complete results to queries, it is necessary
that the module contains all ancestors directly entailed by the reasoner and also
the ancestors entailed by a combination of signature concepts. However, this
requirement contrasts with the philosophy of keeping a structured and reduced
module.

4.5 Evaluation

In this section we describe a series of experiments performed over three selected
target ontologies. The experiments prove that both the OIM and the OMETs
are scalable and able to extract modules according to the criteria in Section
4.1.

The experiments were performed on a Linux server with 8 1.86GHz Intel(R)
Xenon(R) processors, 33GB of RAM, Ubuntu 10.04.4, Kernel Linux 2.6.32-45.
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The selected ontologies are UMLS (version 2007AC), GALEN and NCI
Thesaurus (version v07.10d). These ontologies have been selected due to their
different sizes and levels of expressivity. Table 4.1 shows some statistics about
the number of classes and properties for each one. The fourth column refers to
the total number of property restrictions over classes found in the ontology and
the last column is an average on the range cardinality of a property (i.e., average
number of concepts that are related to each concept through each property).
Well-structured and expressive ontologies have a range cardinality around 1.
As it can be observed, UMLS has the largest size although it is the one with
loosely defined semantics. On the other hand, GALEN is the smallest but the
most expressive one.

Ontology # classes # properties # restrictions avg. range card.
UMLS 1.036.963 238* 306.622 9.8
GALEN 2748 413 25.707 1.09
NCI 63564 190 57.641 1.34

Table 4.1: Statistics about target ontologies. *Only inheritable properties are
included.

4.5.1 Statistics about the OIM

The OIM assigns a descriptor to each node of the inferred subsumption rela-
tionships of an ontology, which have a DAG structure. The descriptor holds
information about the descendants, ancestors and the topological order of the
node, encoded in a compact format using intervals. The amount of space (i.e.,
intervals) needed to encode this information depends on the structure of the
ontology (more specifically on the structure of the subsumption relationships).
Table 4.2 shows some statistics about the size of the generated indexes (descrip-
tors) for the selected ontologies. We observe the number of node descriptors is
a little bit lower than the number of concepts in the ontology due to equiva-
lent concepts, which are placed in the same node5. The maximum number of
intervals in a descriptor can be quite large, although the average for both the
descendants and ancestors space remains low. Therefore, the space require-
ments for the designed indexes are linear when dealing with large ontologies.

Onto. Num. of desc. Avg. desc. Max. desc. Avg. anc. Max. anc. Depth
UMLS 293,042 2.28 2,326 11.46 114 27
GALEN 2,945 1.02 12 3.74 6 12
NCI 60,565 1.30 320 4.97 20 16

Table 4.2: Statistics about the number of intervals per descriptor.

5This does not happen to GALEN because new descriptor nodes are created to hold
anonymous classes.
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The total performance time to index an ontology depends on two factors:
the reasoning system used to infer the subsumption relationships and the in-
dexing process itself. The reasoning time varies depending on the size and
expressivity of the ontology, whereas the indexing process takes a few minutes
for the three ontologies. In any case, the indexing of the ontologies can be per-
formed as a batch process, as it is done only once. A different issue is how to
update the index when the ontologies change, instead of re-building the indexes
from scratch. However, this type of incremental indexing algorithms is still an
open issue even for the most efficient state-of-the-art indexing approaches [151].

Specific experiments that make use of the LS−, LS+ are shown in the
following chapter, as the indexes are used to speed up the fact and dimension
extraction process.

4.5.2 UMLS modularizaton experiments

UMLS can be considered one of the largest reference ontologies in Biomedicine.
It comprises domain knowledge from many different vocabularies, which makes
it an ideal candidate to test the scalability of the OIM and the OMETs. To the
best of our knowledge, there are no ontology modularization techniques that
have performed their experiments using UMLS, therefore, no comparisons are
shown.

Experimental settings The use of UMLS in the experimental evaluation is
also motivated by the requirements of the application scenario (see Section 3.2),
where visualization and analysis tools require manageable modules that pro-
vide a context for the different perspectives of the biomedical research, called
vertical levels, namely: population, individual disease, clinical attributes, tis-
sue, cellular and molecular levels. The input signatures for each vertical level
should contain the most relevant concepts for each particular disease. For
this experiment we take two diseases: Juvenile Idiopathic Arthritis (JIA) and
Tetralogy of Fallot (TOF ). Due to the large scale of the experiment, the in-
put signatures to extract the modules are not manually specified by the user.
Instead, we resort to automatic and semi-automatic approaches to collect the
appropriate concepts for each target disease and vertical level. As a result, 100
different signatures have been defined.

Size performance The size of the modules is an important criteria because
it directly affects maintainability and re-usability. Besides, it enables a better
visualization and understandability in user-oriented applications. Some ontol-
ogy modularization techniques, specially the ones concerned with preserving
logical properties, such as the ⊥-locality based approach in [60], extract all the
axioms syntactically related to the signature, often resulting in too large mod-
ules to be useful for specific applications. The presented OMETs are designed
to offer a good trade-off between logical and structural aspects.
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The experiment showed in Figure 4.10 analyzes the size of the extracted
modules of each of the modularization techniques proposed w.r.t. the size of
their input signature. As expected, the basic technique S does not add any ex-
tra concept, which results in very compact modules. On the other hand, ASA
generates the largest modules, as it includes all the ancestors and subsumption
relationships involving concepts of the signature. By rejecting the subsump-
tion relationships that do not relate concepts of the signature (ASA−ST ), the
module’s size is reduced by half. This decrease is due to the fact that UMLS
mixes different classifications over the same concepts, thus, concepts have mul-
tiple parents. However, for keeping signature concepts related, just one of these
classifications will usually cover the signature and a large amount of concepts
can be discarded. Finally, SCA also obtains quite reduced modules because it
only includes in the module the subsumption relationships of common ancestors
of concepts of the signature. The overall tendency of the modules’ size is linear
with respect to the input signature for the four modularization techniques.
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Figure 4.10: Signatures’ size vs. modules’ size for each modularization tech-
nique.

Time performance The required time to extract a module from an ontology
is an important aspect specially in user-oriented applications, where the user
needs to dynamically interact and extract subsets of interest from an ontology.
Again, in these applications, logical properties of the resulting modules may
need to be sacrificed in exchange for good time performance. Figure 4.11 shows
the time required by each technique to generate modules for different signature
sizes. SCA has the largest temporal complexity, which is quadratic in the worst
case w.r.t. the number of signature concepts. This is due to the computation
of common ancestors for each pair of concepts. On the other hand, S, ASA
and ASA − ST show a very efficient performance, being S the most efficient.
Notice that for signatures smaller than a hundred concepts, SCA is even faster
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than ASA and ASA − ST . This property is very remarkable and should be
taken into account when generating modules from small input signatures.
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Figure 4.11: Signatures’ size vs. time for each technique.

Structural criteria performance Some applications require modules to
provide a simplified view of the original ontology structure relating the sig-
nature concepts. This is particularly relevant in applications where reducing
the distance between the input concepts facilitates their joint visualization and
helps in understanding their relationships in the original ontology. Therefore,
we have designed a quality measure for modules based on the structural preser-
vation. This measure calculates the distance of the signature concepts in the
subsumption hierarchy of the module. It rewards the classification of the sig-
nature concepts and punishes unrelated concepts. We define the conceptual
density (CD) of a signature as follows:

CD(Signature) =

N∑
xi,xj∈Signature,xi 6=xj

1

d(xi, xj)

1

N2
(4.1)

where d(xi, xj) is the taxonomic distance between concepts xi and xj . The
taxonomic distance has been calculated as follows:

d(xi, xj) =

{
(txi
− tnca(xi,xj)) + (txj

− tnca(xi,xj)) if nca(xi, xj) 6= {root}
∞ otherwise

(4.2)
where tx is the topological order of node x and nca(xi, xj) is one of the nearest
common ancestors between concepts xi and xj . Thus the taxonomic distance
is the length of the path between two concepts traversing through their nearest
common ancestor. If their nca happens to be the root node, it means both
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concepts are unconnected and therefore, their taxonomic distance is infinite. A
high CD means the signature concepts are strongly connected in the module
while a lower CD means signature concepts are loosely connected (through long
paths) or even unconnected in the module.

For this experiment, we have taken 25 signatures from the previous dataset
and have compared their CDs in the original ontology (i.e., UMLS) and in the
extracted modules. Figure 4.12 shows the results. The first column (Sig) is
taken as reference, as it measures the structural density of the signatures in
the original ontology. The CD of modules generated with ASA is expected
to be the same as in the original ontology, since this technique replicates the
subsumption relationships of signature concepts as in the ontology. ASA −
ST differs slightly from Sig, but on average, the CD of the signature in the
modules is similar to that of Sig. The last column shows the distribution of
the CDs with S. As expected, this technique is the one with most variance.
Modules extracted with this technique contain just signature concepts, thus, the
structure is only preserved if signature concepts have subsumption relationships
among themselves in the ontology (highest CD). Otherwise, concepts will be
unconnected in the module (lowest CD). Finally, SCA is the one that always
improves the CD in the module w.r.t. to the CD in the original ontology.
That is, signature concepts preserve their subsumption relationships as in the
original ontology but are closer to each other (more compact modules).

Figure 4.12: Comparison of CD of signatures for each technique.
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4.5.3 GALEN and NCI modularization experiments

Both GALEN and NCI are biomedical ontologies smaller than UMLS but more
expressive. These ontologies have been subjected to several modularization
experiments. In particular, we undertake some of the experiments proposed
in [60]. We show a comparison of the results of two of our modularization
techniques, S and SCA, with the logical approach in [60] (Locality Lower of
Upper Modules (LUM)), and the modules extracted with the traversal approach
of Seidenberg-Rector Segmenter6 [132].

The experiments are also carried out in the context of the Health-e-Child
project’s user scenario and they focus on the JIA7 diseases. Here, signa-
tures have been built from medical protocols only, by selecting 40 classes from
GALEN and 48 from NCI. These sets have been also split into several subsets
considering in each subset a different vertical level (e.g., genes, cells, drugs,
etc.). Table 4.3 shows the number of classes of each signature selected for NCI
and GALEN.

Number of Classes of Signatures

Id. Sig. GALEN NCI

#1 All classes: 40 All classes: 48
#2 Cells and Proteins: 7 Cells: 5
#3 Joints: 11 Genes and Proteins: 20
#4 Diseases and Signs: 13 Diseases and Signs: 7
#5 Procedures and Tests: 9 Drugs: 13

Table 4.3: Selected signatures for NCI and GALEN.

The comparison of the modularity techniques is carried out both w.r.t. the
size and the CD of the output modules, in order to ensure that the extracted
modules are small and provide a compact representation. Tables 4.4 and 4.5
compare the size of the modules obtained for each of the four techniques using
the signatures selected for GALEN and NCI, respectively. In particular, we
measure the number of class axioms of each module, which includes sub-class
axioms, equivalent classes axioms and GCI axioms. Tables 4.6 and 4.7 show
the CD of the signatures over the original ontology and over the modules for
GALEN and NCI, respectively.

In general, the smallest modules extracted from GALEN are the ones by
S, while SCA and the Segmenter lead to larger CDs. Comparing the three
mentioned approaches, SCA is the one that presents the best trade-off between
size and CD. For the case of fragments from NCI, LUM modules are the
smallest ones, although they also have the smallest CDs, which is not a desirable
property. This is due to the fact that LUM modules are so restrictive about the
size of modules that, in many cases, the signature concepts are left unconnected.

6GALEN Segmenter: http://www.co-ode.org/galen/
7In the reference article JIA is named as JRA
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Although modules preserve the signature entailments (e.g. signature concepts
do not participate in any common entailment), these modules may not be
useful for many applications. If module’s size is a strong requirement, S is
the next approach that extracts small modules while keeping the CDs above
LUM modules. On the other hand, as shown by GALEN modules, SCA also
extracts small and manageable modules, and it is the one that leads to higher
CDs from the four compared techniques.

Signature |sig| SCA S LUM Segmenter [132]

#1 40 208 177 372 416
#2 7 37 24 28 63
#3 11 67 58 279 299
#4 13 86 68 71 111
#5 9 52 42 41 103

Table 4.4: Comparison of the number of class axioms retrieved from GALEN.

Signature |sig| SCA S LUM Segmenter [132]

#1 48 245 174 252 539
#2 5 32 22 4 50
#3 20 123 107 0 305
#4 7 34 17 3 67
#5 13 59 31 19 192

Table 4.5: Comparison of the number of class axioms retrieved from NCI.

Signature CD sig SCA S LUM Segmenter [132]

#1 0.116 0.118 0.048 0.059 0.116
#2 0.182 0.182 0.136 0.136 0.182
#3 0.302 0.304 0.275 0.310 0.322
#4 0.144 0.146 0.109 0.091 0.144
#5 0.243 0.243 0.198 0.198 0.243

Table 4.6: Comparison of the CD of modules from GALEN.

Overall, SCA seems to work well on relatively large signatures, obtaining
small modules that highly preserve the structure among the signature concepts.
If the modules’s size is a major requirement, S can generate very small modules,
although the structural preservation in this technique depends greatly on the
selected signature.
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Signature CD sig SCA S LUM Segmenter
[132]

#1 0.037 0.046 0.018 0.015 0.037
#2 0.300 0.427 0.427 0.100 0.300
#3 0.095 0.104 0.050 0.048 0.095
#4 0.089 0.128 0.000 0.000 0.089
#5 0.115 0.161 0.030 0.022 0.115

Table 4.7: Comparison of the CD of modules from NCI.

4.6 Discussion

This chapter has presented a framework for efficiently indexing and modulariz-
ing large ontologies that meets a series of requirements imposed by analytical
applications.

The OIM proposed is based on a compact interval labeling schema that is
applied to the ontology inferred hierarchy. Therefore, queries about entailments
between named concepts can be efficiently answered directly using the indexes.
An interval algebra is also provided to perform interesting operations that
involve computations about ancestors and descendants of concepts over the
indexes. An interesting extension to the OIM is a query module to perform a
constrained subset of DL queries directly over the indexes. This query module
returns sound and complete answers for queries built from atomic concepts
with the intersection, union and negation constructors. The ABox is indexed
with the TBox indexes so that conjunctive queries can be efficiently solved.

The different OMETs have been developed to cover the need for modules
that reach a good trade-off between the requirements imposed by analytical
applications. These requirements can be summarized in the following sentence:
the user analysis requirements, expressed as a signature, should drive the ex-
traction of modules of reduced size that preserve the semantics of the signature
elements to some extent while providing a suitable context and structure for
such elements, all this remaining scalable. The lack of modularity approaches
aimed at covering the previous requirements has prompted the development of
the OMETS and the OIM that sustain them.

The usefulness of the developed framework is demonstrated by the different
applications that make use of it:

• The framework presented in [90] is a direct application of the indexing and
modularization approaches presented in this chapter to build compact and
customized logic-based ontologies from large knowledge resources from
the user requirements expressed as a free-text query.

• In [16], the modularization approaches are used to build tailored appli-
cation ontologies that bring semantics to a set of data acquisition forms.
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• The work in [13, 14] aims at building semantic conceptual spaces as a
means to explore and link unstructured biomedical resources. In this
work, the indexing and modularization approaches presented in this chap-
ter are used to build the skeleton of the conceptual space, which is com-
posed by a set of dimensions (i.e., different viewpoints) that have a hier-
archical structure to allow summarization operations.

• In [70], the modularization approaches are used to enhance the process
of semantic annotation of natural language text by previously extract-
ing a small fragment from the knowledge resource that embraces all the
candidate concepts for annotation related to the text beforehand.

• The work in [59] presents a scalable ontology matching system where the
the interval labeling schema is applied to the ontologies and provides an
interface to efficiently answer queries about taxonomic relationships.
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Chapter 5

Multidimensional analysis
of Semantic Web data

This chapter describes the developed method to analyze SW data from an MD
perspective. In Section 5.1, we motivate the need for having tools that provide
an analytic view of SW data and identify the challenges addressed. Section 5.2
is devoted to the specification of the MD query of the user. This query reflects
the user’s requirements in an MD form (i.e., based on dimensions and facts)
and it is specified at the conceptual level by selecting concepts and properties
from the available ontologies. In Section 5.3 we lay the foundations of the MD
arrangement of SW data based on the semantics of the ontology axioms. The
aggregation paths are the semantic paths expressed in the ontology schema
(i.e., TBox) that go from the subject of analysis to each dimension and mea-
sure and allow instances to hook together and form data tuples from which
facts will be derived. However, computing all the possible aggregation paths
between the subject of analysis and each dimension and measure is prohibitive
and usually unnecessary from a practical viewpoint. Therefore, we make a clas-
sification of interesting aggregation paths for the user and, in Section 5.4, we
propose an efficient implementation for the computation of aggregation paths
based on this classification. Section 5.5 deals with the extraction of facts at
the instance level (i.e., from the ABox) based on the previously calculated
aggregation paths. Section 5.6 describes the process of deriving dimension
hierarchies from the user conceptual specification of the dimensions. The di-
mension hierarchies are composed by sub-concepts of the dimension type with
truly semantic relations among themselves, that is, subsumption relationships.
Here, we elaborate on the method to build well-shaped dimension hierarchies
that favor aggregation. Finally, in Section 5.7, we present the experiments
that validate and demonstrate the applicability of the developed method and
Section 5.8 shows the discussion.

87
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5.1 Introduction

The irruption and availability of SW data is demanding new methods and
tools to efficiently analyze and provide richer insights into the current business
processes. Although there exist some applications that make use of SW data,
advanced analytic tools are still lacking, preventing the user from exploiting the
attached semantics. The success of the well-known discipline of MD analysis
over traditional and structured data sources has prompted us to investigate the
application of such techniques to more open and semi-structured scenarios such
as the SW. We address the problem of MD analysis over SW data and, more
precisely, our study is focused on the challenges in designing and extracting
facts and dimensions from SW data that are valid from a logical viewpoint.
The presented method meets the requirements imposed by modern analytic
applications: 1) it takes into consideration the user requirements, which are
expressed by means of a conceptual MD query, 2) it automates the process of
the fact and dimension extraction, relieving the user from this task and, 3) it
deals with the possible ambiguity of the user MD query by exploring possible
and logically valid MD configurations (by means of aggregation paths), ordered
by interestingness.

However, the full exploitation of SW data by tools based on MD analysis
(i.e., OLAP tools) is far from trivial due to the special features of SW data and
the requirements imposed by these tools. The MD model views dimensions as
the different analysis perspectives, usually composed by leveled and tree-shaped
hierarchies, and facts as metrics functionally dependent on the dimensions.
This is to ensure the summarizability property [73, 81], which refers to the
possibility of accurately computing aggregate values with a coarser level of
detail from values with a finer level of detail. The lack of summarizability can
lead to incorrect results, and therefore erroneous analysis decisions. To ensure
correctness, we have to pre-compute the total results for all the aggregations
that we need fast answers to, while other aggregates must be computed from the
base data. Traditionally, the MD model has relied upon relational sources with
a direct mapping of the facts and dimensions to relational tables. The search
of facts and dimensions has been restricted to the search of functional and
inclusion dependencies between the mapped tables to ensure summarizability.

The semi-structured and graph topology of SW data clearly contrasts with
the relational model upon which MD models rely. The basic structure in the
SW is a triple statement of the form (subject, predicate, object), where the
predicate expresses a relation between the subject, which is a resource, and the
object, which can be another resource or a literal. As opposed to the relational
model where data are tuple-based and organized in tables, here data entities are
scattered and have connections among themselves by means of relations, which
give place to graph structures. The flexibility offered by this semi-structured
model is specially suitable to model domains with complex relations. We believe
that adhering to the traditional MD model to extract facts and dimensions in
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scenarios where data have complex relations is too restrictive, as traditional MD
models impose several integrity constraints that may not apply in such scenarios
(e.g., the functional dependency between the facts and the dimensions, or the
tree and level-shaped structure of the dimensions).

In attempt to capture and analyze SW data that is complex by nature, we
propose new methods to extract facts and dimensions, which are not based on
the traditional summarizability constraints. Roughly, a fact is identified by a
MD point (a dimension value for each dimension) and quantified by measure
values. A valid fact satisfies the following conditions: 1) the dimension val-
ues belong to the conceptual types of the dimensions specified by the user, 2)
both the dimension values and the base measures are logically reachable from
the subject of analysis by means of an aggregation path and 3) the dimen-
sion values of each fact share the same contexts, which are the closest hooking
instances in the paths from the subject instances to each dimension value.
Notice that the notion of aggregation path is broader than the functional de-
pendency constraint imposed by traditional MD analysis, which can break the
summarizability property of the extracted facts, as they can contain duplicated
information that may give incorrect aggregation results. However, even though
the extracted facts are not summarizable, MD analysis over these facts is still
useful and can help drawing conclusions about data that cannot be otherwise
analyzed. In this situation we re-calculate the measures by taking into account
the fact duplicities so that the results given to the user are correct. We also
warn the user about the non-summarizability of the extracted facts.

Dimensions have also been subjected to a series of restrictions to ensure
summarizability. The dimension hierarchies must be covering, onto and all
the paths strict. Moreover, they are static and usually pre-defined. Again,
these constraints hinder the use of knowledge-rich structures to aggregate data.
In a dynamic environment as the SW, we allow dimension hierarchies to be
dynamically extracted from the knowledge sources based on the user MD query.
Later, these hierarchies are re-shaped to perform meaningful aggregations while
preserving as much as possible the semantics.

Apart from the previous structural mismatch between the traditional MD
model and the topology of SW data, we need to address other challenges that
arise when dealing with SW data. The most obvious is the management of
implicit data. Reasoning mechanisms must be applied so that implicit data
can be made explicit and enhance the analysis process. However, scalability is
known to be an issue when reasoning with large amounts of SW data. We try
to overcome this issue by applying the indexes developed in Chapter 4 to the
ontologies, in order to handle basic entailments and thus, minimizing the use
of the reasoner.

Other challenges that we address are related to usability aspects. In partic-
ular, when dealing with SW data, the user typically needs to specify a struc-
tured query in a formal language like SPARQL. However, the end user does
not often know the query language and the underlying data graph structure.
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Even if she did, languages such as SPARQL do not account for the complex-
ity and structural heterogeneity often common in the data. We overcome this
issue by providing the user with a simple mechanism to specify her analysis
requirements at the conceptual level. We ask the user to compose a conceptual
MD query by selecting concepts and properties of interest from the available
ontologies. However, this flexibility offered to the user in the specification of
the requirements can lead to an ambiguous specification (i.e., the concepts and
properties selected might be used in several contexts in the ontologies). On the
other hand, the user might have limited knowledge about the domain and her
specification might be too general or abstract. Our method overcomes both
types of imprecision by taking into account all possible interpretations of the
concepts and letting the user select the intended meaning.

In summary, the developed method provides the means for efficiently an-
alyzing and exploring large amounts of SW data by combining the inference
power from the annotation semantics with the analysis capabilities provided by
MD models (i.e., aggregations, navigation, and reporting). We formally present
how SW data should be arranged in a well-defined conceptual MD schema, so
that sophisticated queries can be expressed and evaluated. The work presented
in this chapter is an extension of [99].

When talking about semantic annotations, we mean annotations that refer
to an explicit conceptualization of entities in the respective domain. These
relate the syntactic tokens to background knowledge represented in a model
with formal semantics (i.e., an ontology) [17]. When we use the term semantic,
we thus have in mind a formal logical model to represent knowledge. The work
is not tied to a specific ontology language. For notation and terminology we use
the expressive description logic SROIQ [52], which corresponds to the OWL
2 DL, the most expressive member of the OWL family where inferencing is still
decidable. In fact, most of the popular DLs are sublanguages of SROIQ.

The following sections explain in detail the foundations that underlie the
on-line process of fact and dimension extraction proposed in this dissertation
from ontological sources. The use case proposed for MD analysis of SW data is
specified in Section 3.2.1 and is focused on the analysis of the efficacy of differ-
ent drugs in patients diagnosed with inflammatory diseases. To facilitate the
understanding of the proposed methods, Figure 5.1 shows a simplified graph-
based representation of part of the ontology axioms from the previous use case.
All the subsequent examples are based on this simplification.

5.2 Multidimensional query specification

In this section we present how the analyst information requirements are ex-
pressed in terms of a conceptual MD query. The analyst defines the MD ele-
ments of the query (i.e., the subject of analysis, the dimensions and measures)
by selecting concepts and properties from the ontology. This can be easily
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Figure 5.1: Graph-based representation of an excerpt of the use case ontology.

performed through a graphical front-end where the user selects the intended
elements. Alternatively, the user can also express the MD elements in natural
language text and, either through simple string matching mechanisms or more
advance semantic annotation tools [17], these requirements can be mapped to
ontological entities and compose a DL expression. We limit the expressivity of
the DL expression to which MD elements are mapped to star-shaped conjunc-
tive queries, where the central node is a named concept and role restrictions
over this concept are applied. This restriction allows us to use the indexing
mechanism defined in 4.2.2 to efficiently extract the instances that satisfy the
DL expression from the ABox.

Let O be an ontology O = (T ,A), where T is a TBox expressing ontology
axioms and A an ABox or instance store.

Definition 5.1. A multidimensional query is a triple Q = (CSUB , {Di}i=1,...,n,
{Mq}q=1,...,t), with CSUB as the subject of analysis, {Di} the set of correspond-
ing dimensions and {Mq} the set of measures.

We use the term MD element to refer to a dimension or a measure when
we need to refer to one of them indistinctly. That is, elem ∈ MD is an MD
element where MD is an ordered tuple MD = (D1, ..., Dn,M1, ...,Mt). Also,
MD(e) returns the MD element (i.e., dimension or measure) to which e is
associated, being e an ontology entity, and MDi refers to ith MD element.

Next, we define each of the elements of a multidimensional query.

Definition 5.2. The subject of analysis CSUB is the concept that describes the
entities around which the multidimensional analysis is performed.

The subject of analysis is the focus of the analytical process and serves as
starting point to derive multidimensional facts. For example, CSUB = Patient
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means the subject of analysis are instances of Patient. The concept expressing
the subject of analysis can be restricted with roles, such that the facts will be
extracted only from subject instances satisfying the restrictions. For example,
the analyst may express in natural language text the subject of analysis as:
“patients of female sex with age under 16 ”. This text will be mapped to the
DL expression: CSUB = Patient u ∃ sex.Female u ≤ hasAge.16. Therefore,
facts will describe only patients satisfying these restrictions.

Definition 5.3. A dimension D is a tuple (desc, proj), where desc is the
concept describing the semantics of the dimension and proj is the datatype role
over which the dimension values that compose the dimension desc are projected1

to obtain the corresponding dimension values.

Given a dimension Di, we use the functions desc(Di) and proj(Di) to access
the conceptual description and the projection of the dimension, respectively.
However, we use the term dimension in general to refer to its conceptual de-
scription.

Definition 5.4. A dimension hierarchy HD for a dimension D is a rooted
directed acyclic graph of sub-concepts of D 2.

Intuitively, a dimension is something that characterizes the subject of anal-
ysis, therefore, there must be a relation between both. This relation will be
investigated later on. The conceptual description of the dimension is expressed
with an ontological concept, and it means that the values that compose the di-
mension hierarchy must be sub-concepts of the dimensional concept. The read-
able dimension values are obtained by projecting the ontological sub-concepts
that compose the dimension hierarchy over the datatype role selected by the
user.

Regarding the modeling of the dimension hierarchies, in traditional DW and
OLAP scenarios it is known to be a laborious engineering process, where the
DW designer carefully defines the different dimension categories with their as-
sociated dimension values and their partial order relations (i.e., hierarchies) to
meet as much as possible the initial user requirements. Later on, OLAP users
can express their queries based on the pre-defined dimensions. In our dynamic
setting, we avoid any a priori calculation and let the system find appropriate
dimension hierarchies starting from the extracted base dimension values that
constitute the base facts. The relations among the dimension values that form
the hierarchies will be automatically derived from the semantics encoded in

1We understand projection of a concept or instance c over a direct datatype role p, Πp(c)
as in the relational algebra.

2We borrow the commonly used term “dimension hierarchy” from MD modeling to refer
to a graph. However, a hierarchy is modeled mathematically as a rooted tree: the root of
the tree forms the top level, and the children of a given vertex are at the same level, below
their common parent.
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the knowledge resources. This way, the analyst will be able to perform mean-
ingful, semantic aggregations. As a result, the user is only concerned with the
conceptual specification of the dimensions.

For example, through the dimension D1 = (Disease, name) the analyst
requires instances of type Disease that related to the subject of analysis to
be dimensional. The hierarchy for the Disease dimension is composed by
sub-concepts of Disease and is extracted a posteriori in a bottom-up fash-
ion starting from the Disease instances that compose the facts. The di-
mension values are obtained by projecting the sub-concepts composing the
hierarchy over the role name. As with the subject of analysis, the spec-
ification of a dimension can be restricted with roles. For example, D2 =
(Disease u ∃ hasDiagnosedDisease−.Diagnosis, name), where the analyst
restricts the dimension to only Disease instances that are related to instances
of Diagnosis through the inverse of the role hasDiagnosedDisease, in short,
disease instances that appear in a Diagnosis report (i.e., the patient’s diag-
nosis). As before, the role restrictions only act at the instance level when
extracting the facts.

Finally, we can also consider a numerical value as dimension, such as the
age of the patients. It would be expressed as D4 = (Patient, hasAge). Only
Patient instances having the role hasAge are considered. These instances are
projected over such role to obtain the dimension values. Discretization tech-
niques can later be applied to these numerical dimensions in order to organize
the values in a hierarchy. In any case, this is part of the modeling of the
hierarchies and is dealt with in Section 5.6.

Definition 5.5. A measure M is a triple (desc, proj, aggFunction), where
desc is the concept describing the semantics of the measure, proj is the datatype
role over which desc is projected to obtain the corresponding measure values and
aggFunction is the aggregation function to apply over the measure values.

The specification and semantics of a measure are similar to the specifi-
cation of a dimension except for the aggregation function. The user is re-
sponsible for assigning appropriate aggregation functions to the measures that
she defines. Aggregation functions wrongly applied to certain data can lead
to wrong results. We distinguish between three types of aggregate functions:
Σ = SUM,COUNT,AV G,MIN,MAX, which are applicable to data that can
be added together, Φ = COUNT,AV G,MIN,MAX, which are applicable to
data that can be used for average calculations, and c = COUNT , applicable
to data that is constant. As the summarizability property only holds for dis-
tributive functions, the AV G can be calculated by keeping both SUM and
COUNT .

For example, the measure M1 = (Thing,
damageIndex, AV G) specifies as potential instances satisfying the measure
any instance that has an existential restriction over the role damageIndex.
Then, these instances are projected over damageIndex to obtain the measure
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values. The aggregate function AV G indicates that the measure values should
be aggregated using the average function. A more specific measure is M2 =
(Rheumatology, damageIndex, AV G), which aggregates any value related
through the existential role damageIndex to instances of Rheumatology using
the average function.

There is a special case when dealing with the aggregation function COUNT .
In such case, we allow both the conceptual description of the measure and the
projection to be empty. If both are left empty, it means that the analyst
wants to keep track of the number of facts that contribute to the current
aggregation. In such case, we attach to each generated fact a hidden field with
the number one. When aggregating the facts, the measure is interpreted as a
summation over this field. For example, the measure M3 = (−, −, COUNT )
over the running use case will display the number of facts that contribute to
each combination of dimension values. If only the projection is left empty,
the count function is applied over the instances satisfying the measure. For
example, the measure M3 = (Patient, −, COUNT ) considers the instances of
Patient in the resulting facts and shows the number of different patients for a
specific combination of dimension values.

Given a measure Mi, we use the functions desc(Mi), proj(Mi) and agg(Mi)
to access the conceptual description, the projection and the aggregation func-
tion of the measure, respectively. As with the dimensions, we use the term
measure in general to refer to its conceptual description.

The MD query specification proposed is thought to be simple and does not
require the user to have an exact knowledge of the ontology axioms describing
the data (i.e., the data schema). Simply by selecting concepts and roles from
the ontology through a graphical interface, the user can quickly build an MD
query that is automatically translated to DL expressions.

For the running use case, the MD query specified by the user is translated
into the following DL expressions:

SUBJECT (Patient) = Patient
D1(Disease) = (Disease or Syndrome, name)
D2(Drug) = (Pharmacological Substance, name)
D3(Gender) = (Gender u ∃sex−.Patient, name)
M1(AvgDIndex) = (Rheumatology, damageIndex, AV G)
M2(NumPatients) = (Patient, −, COUNT )

From now on, we refer to the dimensions and measures of the running use
case with the short names between parenthesis.
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5.3 Aggregation paths

The MD query specified by the user maps to a series of conceptual descriptions,
which are scattered in the ontology. The next step consists in finding the
connections between the MD elements so that we can produce facts. That
is, we must ensure that the subject of analysis is logically related to each
dimension and measure. Traditional MD modeling restricts these connections
to functional and inclusion dependencies in order to preserve summarizability.
However, as discussed previously, huge amounts of data are complex by nature
and their relationship escape the summarizability constraints [119]

In an attempt to capture and analyze complex data, we break the functional
dependency constraint usually required between facts and dimensions and use
the notion of aggregation path, which was initially introduced in [83].

Definition 5.6. Given an ontology O = (T ,A), the expression (C1, r1, ..., Cn) ∈
Paths(C,C ′) is an aggregation path from concept C to concept C ′ if C1 = C,
Cn = C ′, and there is an interpretation I = (∆I , I) of O and ∃xi ∈ ∆I , 1 ≤
i ≤ n, such that xi ∈ CIi , (xi, xi+1) ∈ rIi , for 1 ≤ i < n. In such case, we say
that concept C ′ is reachable from the concept C, written I |= C  C ′

Notice that for an aggregation path between two concepts of an ontology
to exist we only need an interpretation satisfying the ontology axioms and the
conditions imposed by the definition of aggregation path. The length of an
aggregation path is given by the number of roles. The aggregation paths of
length one, (C1, r1, C2), are called direct aggregation paths, I |= C  D C ′.
The subscript D means the aggregation path is direct. These paths are of
special relevance, as they constitute the basis over which aggregation paths of
any length are generated.

Therefore, a MD query can produce facts if there is at least one aggregation
path between the subject of analysis and each dimension and measure. The
following definition formalizes the necessary conditions that make an MD query
valid.

Definition 5.7. A MD query specification Q = (CSUB , {Di}i=1...n, {Mq}q=1...t)
over an ontology O is a valid query if

1. O |= CSUB 6v ⊥

2. ∀Ci ∈ {desc(elemi)/elemi ∈MD}, O |= Ci 6v ⊥

3. ∀Ci ∈ {desc(elemi)/elemi ∈MD}, ∃I of O such that I |= CSUB  Ci

According to the previous definition, an MD query is valid if 1) CSUB is
satisfiable in O, 2) all the dimensions and measures are satisfiable in O and
3) all the dimensions and measures selected by the user are reachable from
the subject of analysis, that is, there is an interpretation where at least an
aggregation path between the subject of analysis and each MD element exists.
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Although finding one aggregation path between the subject of analysis and each
MD element is enough to check the validity of an MD query, such aggregation
path may not be the one with the user intended semantics, as there can be many
distinct aggregation paths between a pair of concepts. Therefore, we consider
interesting to find all the possible aggregation paths between the subject of
analysis and each MD element, as they account for all the possible cases of
reachability between a pair of concepts logically allowed by the ontology. Later,
the user can select the intended ones.

Before shedding light on the algorithm that allows to capture all the differ-
ent aggregation paths between two concepts, we reflect more on the importance
of identifying the different aggregation paths. There exist several reasons why
an MD element can have more than one aggregation path associated. The first
is that the user’s specification of the MD element is somehow general or un-
constrained. In this case, there can be an interpretation where the concept can
be reached from several different aggregation paths. For example, if the user
specifies the dimension D1 = (Disease, name) with no further restrictions, any
aggregation path starting from the subject of analysis that reaches an instance
of Disease qualifies. These paths provide different semantics to the specified
MD element: the disease can be the patient’s main diagnosis, some family
member diagnosis, a collateral disease derived from the main disease detected
through laboratory tests or rheumatic exams, among others. The second reason
has to do with heterogeneity issues. It could be the case that the set of ontol-
ogy axioms we are dealing with is the result of integrating several ontologies.
Think, for example, of an analysis of patients coming from different hospitals,
where each hospital uses a different application ontology for recording the in-
formation about the patients. The information recorded is basically the same
except for some differences in naming conventions. An upper ontology covering
the application ontologies of each hospital would solve the problem. However,
the proposed method would still work without any integration layer because
it would identify each different aggregation path to the MD element. In this
case, the semantics provided by each aggregation path are the same and they
differ in the structure. A third reason for having different aggregation paths
associated to a concept is given by the model-theoretic semantics of the DLs.
That is, if we have an aggregation path from C to C ′ that goes through con-
cepts {Ci}, all the paths from C to C ′ that go through more specific or more
general concepts of {Ci} are also valid aggregation paths.

5.3.1 Basic algorithm for aggregation paths

All the possible aggregation paths from the subject of analysis to each MD
element can be represented as a graph rooted in the subject of analysis, where
vertices are concepts, edges are direct aggregation paths between concepts and
leaf vertices correspond to the conceptual description of MD elements. This
graph is called the reachability graph and we formalize it in the following way:
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Definition 5.8. Let Q = (CSUB , {Di}i=1,...,n, {Mq}q=1,...,t) be the MD query
of the user over the ontology O. We define the reachability graph associated to
Q as a directed graph G = (V,E), where V is a set of vertices that represent
ontology concepts and E is a set of ordered pairs (v, v′) of vertices of V , called
edges, that represent direct aggregation paths from v to v′. The graph satisfies
the following conditions:

1. The root vertex is CSUB.

2. ∀p = (C0, r0, ..., Cn) ∈ Paths(CSUB , Ci) such that Ci ∈ {desc(elemi)
/elemi ∈ MD}, there is one path v0, v1, ..., vn in the graph where v0 =
CSUB, vn = Ci and (vj , vj+1) = (Cj , Cj+1), 0 ≤ j < n

We are now interested in determining when a direct path (C, r1, C
′) can be

derived from the ontology, as they are the building block for general aggregation
paths.

Proposition 5.1. Given an ontology O = (T ,A), two concepts C and C ′ and
a role r1, there is a direct aggregation path (C, r1, C

′) from C to C ′ through the
role r1 iff C u {∃,≥ n, ∀,≤ n}r1.C

′ is satisfiable in O.

Proof. The “if” direction is a direct consequence of the definition of aggrega-
tion path. There cannot exist a direct aggregation path (C, r1, C

′) such that
(C u ∃r1.C

′) is not satisfiable in O because the path (C, r1, C
′) implies an in-

terpretation I = (∆I , I) of O where ∃x, x′ ∈ ∆I such that x ∈ CI , x′ ∈ C ′I
and (x, x′) ∈ rI1 . Therefore, (C u {∃,≥ n,∀,≤ n}r1.C

′)I is not empty, which
implies that (C u {∃,≥ n, ∀,≤ n}r1.C

′) is satisfiable in O.
We proof the “only if” direction with each different restriction (i.e., ∃, ≥ n, ∀

and ≤ n). From the definition of satisfiability, we have a model I of T such that
(Cu∃r1.C

′)I is non-empty. Now we have to prove that I implies an aggregation
path. By interpreting the concept expression, we have that ∃x1 ∈ ∆I such that
x1 ∈ CI ∧ x1 ∈ (∃r1.C

′)I . By interpreting the existential restriction we have
that x1 ∈ CI ∧ x1 ∈ {x ∈ ∆I/∃x2.(x, x2) ∈ rI1 ∧ x2 ∈ C ′I}. This means
that x1 ∈ CI ∧ (x1, x2) ∈ rI1 ∧ x2 ∈ C ′I , which implies a direct aggregation
path (C, r1, C

′). The proof with the greater or equal cardinality restriction is
analogous. By interpreting the ≥ n restriction we have that ∃x1 ∈ ∆I such that
x1 ∈ CI ∧ x1 ∈ {x ∈ ∆I/|{x2/(x, x2) ∈ rI1 ∧ x2 ∈ C ′I}| ≥ n}. This implies
that there are at least n x1 objects such that x1 ∈ CI ∧(x1, x2) ∈ rI1 ∧x2 ∈ C ′I ,
which satisfies the definition of direct aggregation path. The difference between
the previous restrictions and ∀ and ≤ n is that for ∃ and ≥ n, all the models I of
T imply an aggregation path, whereas for ∀ and ≤ n we can prove there exists
a model that implies an aggregation path but not all the models imply it. By
interpreting the ∀ restriction we have that ∃x1 ∈ ∆I such that x1 ∈ CI ∧x1 ∈
{x ∈ ∆I/∀x2.(x, x2) ∈ rI1 =⇒ x2 ∈ C ′I}. If we consider a model where
x2 exists, then we have x1 ∈ CI ∧ (x1, x2) ∈ rI1 ∧ x2 ∈ C ′I , which implies a
direct aggregation path (C, r1, C

′). Finally, by interpreting the ≤ n restriction
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we have that ∃x1 ∈ ∆I such that x1 ∈ CI ∧ x1 ∈ {x ∈ ∆I/|{x2/(x, x2) ∈
rI1 ∧x2 ∈ C ′I}| ≤ n}. If we consider a model where there is at least one x2, this
implies at least one x1 object such that x1 ∈ CI ∧ (x1, x2) ∈ rI1 ∧ x2 ∈ C ′I ,
which satisfies the definition of direct aggregation path (C, r1, C

′).

The basic algorithm for capturing all possible aggregation paths is shown in
Algorithm 7 and consists in constructing the reachability graph for the user’s
MD query. Here, we restrict ourselves to aggregation paths composed by named
concepts and named roles, as individual and role assertions in the ABox are
placed in these terms. The algorithm starts from the subject of analysis concept
C and derives all direct aggregation paths from C, (C, r1, C

′), by applying
Proposition 5.1 with each possible named role r1 and named concept C ′. The
direct aggregation paths are added to the graph and the reached concept is
marked only if it is an MD element. Then, the algorithm recursively finds
direct aggregation paths from the newly reached concepts. If a concept has
already been reached, it is not expanded again. The algorithm terminates
when all the reached concepts cannot be further expanded, which is when all
concepts have been visited in the worst case. After that, the graph needs to be
pruned by removing all paths that do not lead to MD elements (i.e., marked
nodes). By transitivity, we obtain the aggregation paths from the subject of
analysis to each MD element by navigating the edges of the graph. In summary,
the algorithm is based on the application of the following two rules:

If (C u {∃,≥ n, ∀,≤ n}r1.C
′)I 6= ∅, then I |= C  D C ′ (5.1)

If I |= C  D C ′ and I |= C ′  D C ′′, then I |= C  C ′′ (5.2)

The algorithm is sound, since it computes direct aggregation paths accord-
ing to the Rule 5.1 and propagates them according to the transitivity Rule
5.2. The algorithm is complete because of Proposition 5.1. Moreover, as the
number of named concepts and roles over the ontology is finite, the generation
of direct aggregation paths and propagation by transitivity clearly terminates.

Despite the theoretical importance underlying the previous algorithm, its
direct application results inefficient, as it implies generating all the combina-
tions of each possible named role and named concept to find direct aggregation
paths. Notice that the algorithm generates all possible aggregation paths al-
lowed by the ontology. This means that there is an interpretation satisfying the
ontology (i.e., a model of the ontology) that allows instances of some concept
C to reach instances of some other concept C ′ through binary relations. If the
ontology is underspecified and not properly constrained, many of the generated
aggregation paths, although valid, will be of no use to the analyst.

Moreover, the ultimate goal of the approach is to extract facts and dimen-
sions from the ABox guided by the aggregation paths generated from the TBox.
Therefore, aggregation paths that do not have a representation in the ABox
are of no interest.
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Algorithm 7 Aggregation paths (basic algorithm)

Procedure AggregationPaths(MDQ, G)
Input: MDQ, the multidimensional query
Output: G, reachability graph or empty graph

1: G← ∅ . Reachability graph
2: visited = ∅ . List of visited concepts
3: AggregationPathsRec(MDQ.subject(),visited, G)
4: pruneReachabilityGraph(G) . Prune paths that do not end in an MD element
5: return G

Procedure aggregation paths rec(C,visited, G)
Input: C, visited, G
Output: G,

1: if C /∈ visited then
2: add(visited, C)
3: P = findDirectAggPaths(C) . By Proposition 5.1
4: for (r, C′) ∈ P do
5: addEdge(G, (C, r, C′))
6: checkForMDElement(C′) . Mark C′ if it is an MD element
7: getGraphDirectAggPaths(C′)

8: return

The following section elaborates on these ideas and makes a classification
of the interesting aggregation paths to the user.

5.3.2 Interesting aggregation paths

According to the definition of Guarino [48] of an ontology, “an ontology is a
logical theory which gives an explicit, partial account of a conceptualization”.
This definition captures the idea that an ontology has a formal specification and
that an ontology cannot always be complete. This notion is illustrated in Fig-
ure 5.2. The conceptualization C allows the models of some language, M(L),
to be constrained to a subset of intended models IK(L) due to a commitment K
to a specific conceptualization. The ontology intends to constrain the possible
interpretations of a language’s vocabulary so that its logical models approxi-
mate as well as possible the set of intended models of a conceptualization of
that domain.

According to the previous definition, we can categorize the quality of the
ontologies in terms of how well they approximate the set of intended models
of a conceptualization. This is shown in Figure 5.3. Good ontologies are those
that cover the intended models with maximum precision. Maximum coverage
should be a requirement, otherwise the ontology is not covering some intended
models. The less precision they have, the more not intended models they allow.
The most usual case is the latter, that is, the ontology is underspecified as it
does not contain the necessary axioms to exclude unintended logical models.
This situation has a direct impact on the generation of aggregation paths.
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Figure 5.2: Relations between language (vocabulary), conceptualization, onto-
logical commitment and ontology.

As a result, many aggregation paths will be generated because there is an
interpretation that satisfies the definition (i.e., the ontology allows it), which
is caused by the lack of further axioms that constrain the ontology models to
the intended ones. These aggregation paths, although valid by definition, were
not probably meant by the ontology engineer. Therefore, they are also of no
use to an analyst whose aim is to perform an MD analysis over a repository of
instances (ABox) and who expresses her requirements in terms of conceptual
axioms of the TBox.

This situation also reflects on the ABox, as the usual process is to make
assertions in the ABox using named concepts and roles specified in the TBox.
A poor quality of the TBox can make the ABox to be consistent even if it
contains assertions that were not meant by the ontology engineer.

From the previous reflection, we conclude that the number of possible ag-
gregation paths in an ontology can be enormous and greatly depends on the
quality of the TBox, which also directly affects the assertions in the ABox.

On the other hand, there is no doubt that the axioms that the ontology
engineer explicitly creates when developing the ontology, are the ones intended
to capture the conceptualization, even though these axioms may lead to un-
intended models as explained before. Similarly, as the analyst expresses her
requirements in terms of the TBox, it is likely that the expected aggregation
paths are the ones generated from the intended models of the conceptualiza-
tion and not the ones generated by the unintended models that the ontology
captures due to its poor precision.

Based on this assumption, we have decided to characterize different groups
of aggregation paths based on the user’s expectations. We also establish an
order in their generation, giving priority to the most restrictive paths (Group
1), which are the ones that most exactly reflect the user’s conceptualization,
and opening the range to not so evident aggregation paths that may be also
interesting for analysis (Groups 2 and 3). By establishing this priority, we
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Figure 5.3: Ontology accuracy according to how well it approximates the in-
tended models.

are cutting down the potential number of generated aggregation paths, which
can be inadmissible if the ontology is underspecified. The different groups are
not auto-contained and the aggregation paths can have an instantiation in the
ABox regardless of the group, although the most common is to create ABox
assertions that follow directly from the TBox axioms.

We provide an efficient implementation for the three groups of aggrega-
tion paths, which avoids trying any possible combination of role and concept.
The different groups are generated by following the same exploratory-based
approach as in the basic algorithm, that is, direct aggregation paths from the
subject of analysis are firstly generated and then, this is recursively performed
for each new reached concept. However, instead of applying Rule 5.1 which tries
any possible combination of role and concept for generating direct aggregation
paths, each group applies a smarter set of rules to derive direct aggregation
paths that fit the group.

In the following sections we explain with more detail the characterization
of each group of aggregation paths in order, from the most interesting to the
analyst to the least.

5.3.2.1 Group 1: Strong aggregation paths

The most restrictive and interesting aggregation paths for the analyst are the
ones that ensure the reachability from a concept C to C ′ in all models of the
TBox. As opposed to the base definition of aggregation path in Definition 5.6,
which only requires a model I of O to satisfy the conditions, the aggregation
paths in this group are more restrictive as they are logically implied by the
assertion of the TBox. Thus, we need to re-define the notion of aggregation
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path in this group. We call these paths strong aggregation paths.

Definition 5.9. Given an ontology O = (T ,A), the expression (C1, r1, ..., Cn) ∈
Paths(C,C ′) is a strong aggregation path from concept C to concept C ′ if
C1 = C, Cn = C ′, and for all interpretations I = (∆I , I) of O and ∀xi ∈ CIi ,
(xi, xi+1) ∈ rIi , 1 ≤ i < n.

The previous definition requires that each individual of C is connected to
at least one individual of C ′ by means of a chain of roles in T . This definition
is very restrictive compared to the definition of aggregation path in Definition
5.6, which does not always ensure connectivity in practice, as it only requires
that there exists an interpretation I of O where at least an object of CI is
connected by a chain of roles to at least an object of C ′I .

Notice that the functional dependency usually required between facts and
dimensions in order to ensure summarizability is even more restrictive than the
previous definition. Actually, all functional paths are captured in the definition
of strong aggregation path.

By exploiting the model-theoretic semantics of DL, we show when a strong
aggregation path can be inferred from an ontology O.

Proposition 5.2. Given an ontology O = (T ,A), the expression (C1, r1, ..., Cn)
∈ Paths(C,C ′) is a strong aggregation path from concept C to concept C ′ iff
C1 = C, Cn = C ′, and there is a role chain R = r1 ◦ ... ◦ rn over T , n > 0,
such that T |= C v {∃,≥ n}R.C ′

Proof. The “if” direction follows from Definition 5.9.
The “only-if” direction is proved by the canonical model property of the

DL.

According to the previous proposition we would have to check the implica-
tion T |= C v {∃,≥}R.C ′ from the subject of analysis C to all concepts C ′

matching an MD element with all possible lengths n of the chain R, and all
possible ways of composing R with named roles. As this is clearly inefficient, we
follow the exploratory-based approach of the basic algorithm where the paths
are composed by recursively discovering direct aggregation paths starting from
the subject of analysis and the successive reached concepts, marking MD ele-
ments along the way. Thus, all the aggregation paths of the different groups
are composed from direct aggregation paths thanks to the transitivity Rule 5.2.

The generation of strong direct aggregation paths is a direct consequence
of Prop. 5.2.

Proposition 5.3. Given an ontology O = (T ,A), the expression (C, r1, C
′)

is a strong direct aggregation path from concept C to C ′ through the role r1 if
T |= C v {∃,≥ n}r1.C

′ or if T |= C ′ v {∃,≥ n}r1.C and r1 is an inverse
functional role.

Proof. The proof is the same as in Prop. 5.2
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Therefore, the rules applied to generate direct strong aggregation paths are:

If T |= C v {∃,≥ n}r1.C
′, then ∀I of O, I |= C  D C ′ (5.3)

If T |= C v {∃,≥ n}r1.C
′ and r1 is inverse funct, then ∀I of O, I |= C ′  D C

(5.4)

These rules are efficiently implemented by using the LS− index to propagate
all the restrictions attached to a concept to its descendants (see Section 5.4.1).

An example of such kind of aggregation path in the running use case is the
path
(Patient, hasV isit, V isit, hasReport,Report), where each instance of Patient
is necessarily connected to at least one instance of Report.

5.3.2.2 Group 2: Aggregation paths through universal, less than
cardinality restrictions, inverse roles, rdfs:domain and rdfs:
range axioms.

Although interesting for the analyst, the previous group of aggregation paths
is too restrictive and may not capture many aggregation paths interesting for
analysis. This group of aggregation paths extends the previous group with
three types of direct aggregation paths that, even though they are not satisfied
in every model, they can be useful for analysis purposes.

The first type of direct aggregation paths that we cover in this group are the
ones through ∀ and ≤ n restrictions. The use that the ontology engineers make
of the different types of restrictions (∃,≥ n, ∀,≤ n) has a great impact on the
logical aspects, although it is difficult to foresee it at first sight. The existential
and the greater or equal cardinality restrictions used in the previous group
(i.e., ∃,≥ n) ensure that the relation holds for all members of each concept
in the path, whereas the universal and less or equal cardinality restrictions
(i.e., ∀,≤ n) do not. Therefore, we extend the previous group of aggregation
paths by also considering direct aggregation paths with the restrictions ∀,≤ n
to account for possible mistakes in the conceptualization of the ontology, even
though at the logical level we know that an aggregation path found through a
combination of these restrictions is not necessarily satisfied in every model of T ,
thus, it is not a strong aggregation path anymore. Next, we show an example
that illustrates this issue. The ontology developer may have correctly selected
the ∀ restriction in the axiom DiagnosisReport v ∀hasDisease.Disease to
constraint diagnosis reports to only be related to diseases. However, if this
axiom is not accompanied by another one enforcing the relation (i.e., with ∃
restriction), the ontology is allowing models where diagnosis reports are not
related to diseases, therefore, the aggregation paths derived from this axiom
are not satisfied in every model.

The second type of direct aggregation paths that are included in this group
are the ones derived from axioms involving inverse roles, in order to account for
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different conceptualizations of the domain. We illustrate this with an exam-
ple. Suppose that the ontology has an axiom V isit v ∃hasV isit−.Patient to
express that each V isit is associated to a Patient. Even though we know that
we cannot infer the direct strong aggregation path (Patient, hasV isit, V isit),
expressing that all patients will have an associated V isit (unless hasV isit is
functional, and therefore, it would be an aggregation path of the Group 1),
there are some interpretations where it is possible, thus, we allow these types
of aggregation paths, (Patient, hasV isit, V isit), to be inferred in this group.

The third type of direct aggregation paths regarded in this group are the
ones derived from rdfs:domain and rdfs:range axioms. As many of the tested
ontologies make use of these axioms to constrain the usage of the roles instead
of using OWL restrictions, we are forced to consider these axioms so that our
method to analyze such data can be applied. By translating these axioms into
DL we obtain the following: R rdfs:domain C is equivalent to > v ∀R−.C,
from which we could derive the direct aggregation path (C,R,>), whereas
R rdfs:range C ′ is equivalent to > v ∀R.C ′, from with we could derive the
direct aggregation path (>, R, C ′). However, these aggregation paths are dan-
gerous in the sense that they leave one of the fillers for the role empty, meaning
that any concept could be placed in that position and the aggregation path
may grow in an uncontrolled way. To avoid this situation, we only allow to
derive direct aggregation paths (C,R,C ′), where both fillers are restricted to
a concept. This happens when there is both the domain and range axioms
defined for a role.

Consequently, we apply the following rules to generate direct aggregation
paths in this group:

If T |= C v {∃,≥ n, ∀,≤ n}r1.C
′, then ∃I of O, I |= C  D C ′ (5.5)

If T |= C v {∃,≥ n, ∀,≤ n}r−1 .C ′, then ∃I of O, I |= C ′  D C (5.6)

If T |= > v ∀r−1 .C and T |= > v ∀r1.C
′, then ∃I of O, I |= C  D C ′ (5.7)

5.3.2.3 Group 3: Aggregation paths through concept specializa-
tions

As mentioned, the previous aggregation paths may still be restrictive and may
not capture some of the aggregation paths interesting for analysis. Actually, an
interesting group of aggregation paths from the analyst’s viewpoint is the one
that extends the previous groups by including also aggregation paths that have
been generated by navigating through roles to the sub-concepts of a reached
concept. These aggregation paths do not satisfy either the definition of strong
aggregation path.

We have realized that the ontology developing pattern of creating succes-
sively role restrictions over concept specializations is very extended and prob-
ably inherited from the development in RDFS. The running example illus-
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trates this issue. Although there is the interesting aggregation path (Patient,
hasV isit, V isit, hasReport, DiagnosisReport,hasDiagnosis,Disease) that al-
lows patients to reach their diagnosed disease, this path is not captured in the
previous two groups of paths, as the axioms V isit v ∃hasReport.Report and
DiagnosisReportvReport do not logically imply that each V isit is connected
to some DiagnosisReport. In order to capture such aggregation paths, we ex-
tend the direct aggregation paths of the previous group by introducing a new
rule that infers the direct aggregation path (V isit,hasReport,DiagnosisReport).
The rule has the following shape:

If I |= C  D C ′ and C ′′I ⊆ C ′I , then I |= C  D C ′′ (5.8)

5.3.2.4 Composition of aggregation paths

The previous sections describe the types of direct aggregation paths that char-
acterize each group. Here, we describe the types of direct aggregation paths
that can compose aggregation paths of general length. Thus, aggregation paths
belonging to Group 1 can only be composed by direct aggregation paths of type
Group 1 (i.e., generated with Rules 5.3-5.4). Aggregation paths belonging to
Group 2 can be composed by direct aggregation paths of Group 1 and Group
2 (i.e., generated with Rules 5.3-5.4 and 5.5-5.7. Aggregation paths belonging
to G3 can be composed by direct aggregation paths of Group 1, Group 2 and
Group 3 (i.e., generated with Rules 5.3-5.4, 5.5-5.7 and 5.8 ).

5.4 Implemented algorithm for aggregation paths

As discussed in the previous sections, the potential number of aggregation paths
can be very large compared to the paths that are actually instantiated in the
ABox. Therefore, generating all the aggregation paths can be both excessive
and very expensive. On the other side, trying to reach MD elements from
the subject of analysis by using the ABox without any guidance can also be
very expensive with ABoxes of considerable size. Moreover, it could be the
case that access to the ABox is only partial or restricted (e.g., via an SPARQL
endpoint). In such case, the user has to exploit the TBox axioms to perform the
MD analysis. Similarly, if the ABox inferences have not been fully materialized
to keep the size of the ABox manageable, we need to resort to the TBox axioms
to make ABox inferences on demand.

The adopted solution consists in progressively discovering aggregation paths
from the previous groups in ascending order, from Group 1 to Group 3, com-
bined with evidence from the ABox. We combine both the logical knowledge
provided by the Tbox with evidence from the ABox to reach a compromise
between logical consistency and efficiency. The evidence of the ABox is mainly
used to prune potential aggregation paths that have not been instantiated.



106 Chapter 5 Multidimensional analysis of Semantic Web data

This check will be performed by the function hasABoxEvidence, which by
now, can be seen as a black box that returns the true value if the checked di-
rect aggregation path has been instantiated in the ABox. Later in Section 5.4.3
we discuss the implementation of this function and the pre-processing required.
As a result, the proposed algorithm obtains a restricted reachability graph that
instead of containing all the potential aggregation paths to each MD element,
contains only aggregation paths useful for the posterior MD analysis according
to the previously defined groups.

We assume that the ontology has been indexed by applying the indexing
mechanisms described in Chapter 4. Therefore, we have the indexes LS− and
LS+ for named concepts, the LS− for roles and the tables TC and TR for the
concept and role assertions available.

The algorithm is shown in Algorithm 8 and can be split in several blocks.
First, the satisfiability of the subject of analysis and the MD elements is checked
(lines 5-9). Then, the different groups of interesting aggregation paths to the
MD elements are explored in turn (procedure calls in line 10 for Group 1, line
12 for Group 2 and line 14 for Group 3). The main idea of these procedures is to
only generate the most interesting aggregation paths for the user in descending
order of priority according to the previous classification of aggregation paths in
groups. If an aggregation path to an MD element has been discovered by one of
these procedures, further aggregation paths for that MD element discovered by
the subsequent procedures are not considered. The procedure FindAggPaths
serves to generate the paths and is divided in two phases. The first one is
performed by the CreateDataStructure procedure, which is in charge of cre-
ating an intermediate data structure that has a graph shape, where each node
represents a concept and collects the necessary information to reconstruct the
aggregation paths of the corresponding group, depending of the mode flag.
Regardless of this, the second phase is analogous for the three groups of aggre-
gation paths and is performed by the GetPaths procedure, which reconstructs
the aggregation paths starting from the found MD elements and going back-
wards to the subject of analysis through the previous data structure. Finally,
if it is a valid graph (line 15), the user selects the intended aggregation paths
for each MD element. This procedure is further detailed later. The algorithm
terminates when: 1) all the MD elements have been reached or 2) when all the
reached concepts are leaves (meaning that they cannot generate any aggrega-
tion path from them). During the exploration, the algorithm keeps track of
the visited concepts in order to detect cycles. Already visited concepts are not
further expanded.

Before going into the details of the algorithm, let us firstly clarify the data
structures and the naming conventions adopted. We use the terms ancestors
and descendants of a concept to refer to all the super-concepts and sub-
concepts, respectively, logically inferred from the ontology. When dealing with
graph-oriented data structures, if there is an edge from node v to u, then v is
a predecessor of u and u is a successor of v. We also differentiate between the
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Algorithm 8 Generation of aggregation paths

Require: MDQ: the multidimensional query
Ensure: G: restricted reachability graph or empty graph

1: function GenerateAggPaths(MDQ)
2: S ← ∅ . Intermediate data structure
3: G← ∅ . Reachability graph
4: MD ← ∅ . List containing nodes that are MD elements
5: if not IsSatisfiable(MDQ.subject()) then
6: return G
7: for elem ∈MDQ do
8: if not IsSatisfiable(elem) then
9: return G

10: FindAggPaths(S, MD, G, MDQ.subject(), mode = 1)
11: if |MD|! = |MDQ.elements()| then
12: FindAggPaths(S, MD, G, MDQ.subject(), mode = 2)
13: if |MD|! = |MDQ.elements()| then
14: FindAggPaths(S, MD, G, MDQ.subject(), mode = 3)

15: if IsReachabilityGraph(G, MD) then
16: UserVerification(G)
17: else
18: G← ∅
19: return G

20: function FindAggPaths(S, MD,G, c, mode)
21: CreateDataStructure(S, MD, c, mode)
22: GetPaths(MD, G)

23: function CreateDataStructure(S, MD, c, mode)
24: n = S.createNode(c)
25: CreateDataStructureRec(S, MD,n, mode)

26: function CreateDataStructureRec(S,MD, n, mode)
27: if not n.isProcessed() then
28: n.setProcessed()
29: CheckMDElement(MD,n) . If n is an MD element, add it to the list MD
30: aggPaths =GetDirectAggregations(n.concept(), mode)
31: for aggPath ∈ aggPaths do
32: if hasABoxEvidence(aggPath) then
33: newNode = S.createNode(aggPath.range())
34: n.addAgg(newNode) . Extend aggregation path
35: newNode.addPredecessor(n)
36: CreateDataStructureRec(S,MD,newNode, mode)

37: if mode == 3 and n /∈ n.getPredecessors().descendants() then
38: descendants =GetDescendants(n.concept())
39: for desc ∈ descendants do
40: newNode = S.createNode(desc)
41: n.addDescendant(newNode) . each node keeps the descendants
42: newNode.addPredecessor(n)
43: CreateDataStructureRec(S,MD, newNode, mode)

44: for aggNode ∈ {n.aggregations()} do
45: CreateDataStructureRec(S,MD, aggNode, mode)
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46: function GetDirectAggregations(C, mode)
47: if mode == 1 then
48: aggPaths =GetRestrictions(C, G1)

49: if mode == 2 then
50: aggPaths =GetRestrictions(C, G2)

51: return aggPaths

52: function GetPaths(MD, G)
53: for node ∈MD do
54: if not node.expanded() then . MD elements whose agg. paths have been

expanded in previous steps are not expanded again, as the previous paths have priority
55: GetPathsRec(G,node)
56: node.expanded() = true

57: function GetPathsRec(G,node)
58: vertex = createV ertex(node) . Creates a vertex and adds it to G
59: G.add(vertex)
60: descV ertices = ∅ . Keep current processed vertex and its descendants in this list to

later add to them the corresponding agg. paths
61: descV ertices.add(vertex)
62: for descNode ∈ node.descendants() do
63: descV ertex = createV ertex(descNode)
64: G.add(descV ertex)
65: descV ertices.add(descV ertex)

66: for aggNode ∈ {node.aggregations()} do
67: if aggNode ∈ G then . Only add agg. path to already processed nodes
68: vertexAgg = G.get(aggNode)
69: for descV ertex ∈ descV ertices do
70: descV ertex.addSuccessor(vertexAgg) . Extend aggregation path
71: for descAggNode ∈ aggNode.descendants() do
72: descAggV ertex = createV ertex(descAggNode)
73: G.add(descAggV ertex)
74: descV ertex.addSuccessor(descAggV ertex) . Extend aggregation path

75: directRec=0
76: for predNode ∈ node.getPredecessors() do
77: if node 6∈ predNode.descendants() then . Recursion only of nodes that are not

ancestors
78: directRec=1
79: GetPathsRec(G, predNode)

80: if not directRec then
81: for predNode ∈ node.getPredecessors() do
82: for predPredNode ∈ predNode.getPredecessors() do . Skip ancestor nodes
83: GetPathsRec(G, predPredNode)
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nodes of the intermediate structure, which we simply call nodes, and the nodes
of the reachability graph, which we call vertices.

Now, we explain with more detail the execution flow to create aggregation
paths of each group. The CreateDataStructure procedure (line 23) creates an
intermediate data structure where nodes represent concepts and the arcs be-
tween nodes represent direct aggregation paths between concepts. This struc-
ture is kept in the S variable and is constructed by recursively processing each
concept starting from the subject of analysis and following a depth-first search
approach. During the exploration, the function CheckMDElement (line 29)
checks if the concept that represents the current node is an MD element. In
that case, the node is marked and added to the global list MD. Each node n
keeps the concept that represents, which can be accessed with the n.concept
method, along with references (i.e., arcs) to other nodes, which represent direct
aggregation paths. To find direct aggregation paths of Group 1, the function
GetDirectAggregations (line 30) with the mode flag set to 1 is called, which
retrieves strong direct aggregation paths according to Rules 5.3 and 5.4. To
find direct aggregation paths of Group 2, we set the flag to mode 2 and re-
trieve direct aggregation paths according to Rules 5.5 and 5.6. Both types of
direct aggregation paths have been precomputed with the help of LS− index
(see Section 5.4.1) and are accessible via a simple index look-up. Only if these
direct aggregation paths have ABox evidence, the algorithm builds an arc from
node n representing C to node m representing C ′ and the recursion continues.
To find direct aggregation paths of Group 3, the previously encountered paths
need to be propagated to the sub-concepts of the destination node. For that,
the S structure keeps also the descendants of a node and the recursion expands
each of them. As a result, we obtain the data structure S where, for each
concept (i.e., node), all its direct aggregation paths are made explicit through
arcs. Notice that we only explore nodes that have not been processed (line 27).

Then, the procedure GetPaths is in charge of reconstructing all the aggre-
gation paths from the previous data structure, starting from each node that
is an MD element and going backwards through the predecessor arcs by using
the method node.getPredecessors(). To build aggregation paths of Group 1,
the algorithm traverses backwards only direct aggregation paths of Group 1.
To build aggregation paths of Group 2, the algorithm can traverse backwards
direct aggregation paths of Group 1 and Group 2. For the case of Group 3, as
we are also considering aggregation paths through the sub-concepts, the direct
aggregation paths of Group 1 and Group 2 associated to a node have to be
created and propagated to all the descendants of such node (line 70). Each
of the newly created direct aggregation paths triggers Rule 5.8 and creates a
new direct aggregation path between the starting node of the aggregation path
and each descendant of the destination node (line 74). Notice that when pro-
cessing a node, we only create direct aggregation paths to other nodes that
are already in the reachability graph (condition in line 67). This ensures that
we are extending only the paths that have started from MD elements. Then,
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the function is recursively applied over predecessor nodes of the current node
but skipping nodes that are ancestors. The ancestors of a node should only be
processed if they are reached from an MD element. In such case, these nodes
will be reached when the reconstruction of the aggregation paths of such MD
element begins. Therefore, we do not need to process them. The function
finishes when we reach the subject of analysis node, which has no predecessors.

If the resulting graph contains at least one path from the subject of analysis
to each MD element specified by the user, then the graph is a reachability graph
(line 15). Otherwise, the empty graph is returned as the user’s MD query can-
not generate facts. The procedure UserV erification is a user-assisted process
where the user selects the aggregation paths of interest for each MD element.
This process is explained later.

Figure 5.4 shows the restricted reachability graph obtained for the running
use case before the user verification process. Shaded nodes represent the di-
mensions and measures. Notice that for all MD elements, there is only one ag-
gregation path from the subject of analysis except for the dimension Disease,
where two possible aggregation paths have been found.

Figure 5.4: Restricted reachability graph of the running use case.

The following sections explain in detail some of the phases of the proposed
algorithm. In particular, Section 5.4.1 shows an efficient method to precompute
the different types of direct aggregation paths. Section 5.4.2 explains in more
detail the user verification process by which (s)he selects the intended aggre-
gation paths for each MD element. Finally, Section 5.4.3 proposes an efficient
approach to query for ABox evidence during the construction of the graph.

5.4.1 Precomputation of direct aggregation paths

Direct aggregation paths are the building block to construct aggregation paths.
In this section we show an efficient precomputation of all the possible direct
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aggregation paths that makes use of the LS− index of concepts. Notice that the
precomputation has many benefits, as it is done only once per ontology. Then,
different reachability graphs can be built from different MD queries very fast by
accessing the precomputed direct aggregation paths. As a result, the function
GetDirectAggregations (line 30 of Algorithm 8) returns the corresponding
direct aggregation paths via a simple look-up. Algorithm 9 shows how the
precomputation is performed. The direct aggregation paths are looked for in
every named concept of the ontology. Thus, the function GetRestrictions looks
into the definition of the concept for the associated restriction, according to the
type of direct aggregation path that we are looking for (either Group 1 or Group
2), and returns aggregation paths of the required type. Then, these paths are
propagated to the descendants, as any restriction associated to a concept is
inherited by its descendants. Therefore, we create an index that holds, for
each concept and type of aggregation path, the associated direct aggregation
paths.

Algorithm 9 Precomputation of direct aggregation paths
Procedure PreDirectAggPaths(r)
Input: LS+, Nc′ : named concepts
Output: I, an index

1: for C ∈ Nc′ do
2: if IsSatisfiable(C) then
3: aggPaths1 =GetRestrictions(C, G1) . Set of (C, R, C’) from Rules 5.3 and

5.4
4: aggPaths2 =GetRestrictions(C, G2) . Set of (C, R, C’) from Rules 5.5, 5.6

and 5.7
5: descendants = expand(CLS

−
)

6: for desc ∈ descendants do
7: for (C,R,C′) ∈ aggPaths1 do
8: I[C][type1].add(C,R,C′)

9: for (C,R,C′) ∈ aggPaths2 do
10: I[C][type2].add(C,R,C′)

11: return I

Notice that we do not precompute aggregation paths of Group 3, as it
would be redundant. These direct aggregation paths correspond to any of the
precomputed direct aggregation paths of Group 1 or Group 2, where the range
is substituted by a sub-concept. These paths can immediately be obtained by
querying the LS− index for the sub-concepts.

Both the time and space complexity of the algorithm is O(r · n2), where
r is the number of roles and n the number of concepts. However, this upper
bound is hardly achievable as not all the concepts have restrictions to all the
roles and also, not all concepts are hierarchically related.
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5.4.2 User Verification

The UserV erification procedure shows the user the discovered aggregation
paths for each MD element. If one MD element has more than one aggregation
path associated, the user can choose between different options according to the
intended semantics of the MD element. That is, the disambiguation process
due to the poor specificity of the MD query is handled by the user. The
options that the user can choose from are translated into transformations over
the reachability graph. The options are:

1. To select only one intended meaning for the MD element by selecting only
one path and discarding the rest. This option is shown in Figure 5.5a. In
this case, two different aggregation paths have been found for the Disease
dimension. However, the initial intended meaning for this dimension was
the main diagnosed disease. Therefore, the user discards the path leading
to secondary diseases or abnormalities found in ultrasonography reports.

2. To select a subset of paths for the MD element and discard the remaining
ones. The user may be interested in selecting more than one path for one
MD element to account for heterogeneity in the knowledge base. This
option is shown in Figure 5.5b. Let us suppose that some patients have
the diagnosed disease recorded at the visit level (i.e., in each visit) while
some patients have it at the top level. In that case, the user will want to
consider both paths for the dimension and discard the rest.

3. To split the initial MD element into as many MD elements as required,
by associating to each new MD element the required paths. This option
is shown in Figure 5.5c. Let us suppose the user has initially specified the
Disease dimension to account for the patients’ diagnosis. However, when
the system shows the aggregation paths associated to disease, the user
finds interesting to also analyze the patients according to the diseases
found through the ultrasonographies. Therefore, she decides to add this
new dimension that had not occurred to her in the first place. In this
case, the dimension node is split in two to account for the two different
dimensions, and any nodes under it are also replicated.

From now on, when talking about the reachability graph, we are refer-
ring to the verified reachability graph by the user, which is the result of ap-
plying the above-mentioned transformations over the restricted reachability
graph. For the running use case, the verified reachability graph is shown in
Figure 5.6, where the user has decided to split the aggregation paths to the
Disease dimension and consider both as separate dimensions, Disease and
Secondary Disease.



5.4 Implemented algorithm for aggregation paths 113

Visit 
hasReport hasVisit 

Pa.ent  Disease 
hasDiagnosedDisease 

Diagnosis 

results 
Rheumatology 

hasAbnormality 

Ultrasonography 

hasReport 

Visit 
hasReport hasVisit 

Pa.ent  Disease 
hasDiagnosedDisease 

Diagnosis 

(a)

Visit 
hasReport hasVisit 

Pa.ent  Disease 
hasDiagnosedDisease 

Diagnosis 

results 
Rheumatology 

hasAbnormality 

Ultrasonography 

hasReport 

Pa.entDiagnosis 

hasReport 

Visit 
hasReport hasVisit 

Pa.ent  Disease 
hasDiagnosedDisease 

Diagnosis 

Pa.entDiagnosis 

hasReport 

hasDiagnosedDisease 

hasDiagnosedDisease 

(b)

Visit 
hasReport hasVisit 

Pa.ent  Disease 
hasDiagnosedDisease 

Diagnosis 

results 
Rheumatology 

hasAbnormality 

Ultrasonography 

hasReport 

Visit 
hasReport hasVisit 

Pa.ent  Disease 
hasDiagnosedDisease 

Diagnosis 

results 
Rheumatology 

hasAbnormality 
Ultrasonography 

hasReport 

Secondary 
Disease 

(c)

Figure 5.5: Transformations applied by the user to the reachability graph in
order to select the intended aggregation paths for each MD element. The
options are: a) to select only one path for the intended meaning, b) to select
a subset of paths for the intended meaning and c) to split the path to account
for two independent MD elements.

Figure 5.6: Verified reachability graph of the running use case. The disease
dimension has been split in two different dimensions, Disease and Secondary
Disease.

5.4.3 Finding ABox evidence efficiently

The implemented algorithm for finding aggregation paths between the subject
of analysis and the MD elements combines the domain knowledge of the TBox
with instance evidence from the ABox to build the aggregation paths, as the
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final goal is to analyze instances.
Given a direct aggregation path (C, r1, C

′), the algorithm checks if such
path has been instantiated in the ABox with the function hasABoxEvidence.
Otherwise, it makes no sense to consider the path. This is equivalent to ask if
the conjunctive query q(x, y) := C(x) ∧ r1(x, y) ∧ C ′(y) is not empty.

Conjunctive query answering over DL knowledge bases has been subjected
to research during the last years [28]. Actually, it is well-known that conjunc-
tive query answering over expressive DLs is a difficult problem. However, our
setting is much simpler as the distinguished variables are always individuals
and the concepts C and C ′ that may appear in the query are restricted to be
named concepts, and the role r1 is a named role. This is a consequence of the
construction of the aggregation paths in the previous algorithm.

In Section 4.2.2 we have developed a mechanism to store the ABox assertions
together with the LS− indexes so that we can respond to conjunctive queries
about named concepts and roles efficiently. However, when constructing the
reachability graph we do not require the answers but only knowing if there is
any answer. Therefore, we have designed an index that is able to efficiently
check if a conjunctive query has an answer. Each entry of the index is a pair
(C,C ′) of named concepts, and has associated a list of roles {ri}. An entry
of the index indicates that the ABox contains individuals of type C that are
related with individuals of type C ′ through the roles {ri}.

The construction of the index is done once at the beginning by processing
the ABox. The algorithm is shown in Algorithm 10. In the index, we only
materialize the most specific named concepts of an individual. The algorithm
processes each property assertion of the ABox and retrieves the concepts to
which the subject and object of the assertions belong to. Given two sets of
concepts and a role, the function indexAux fills the index. Then, possible
inverse roles and role chains in the assertions of the ABox are handled. If
a role r is defined as the inverse of another role r1, the index also holds the
entries with the order of the concepts switched and the role r1. The processing
for handling role chains is a bit more complicated as we need to temporarily
keep all triples (C, r, C ′) where C and C ′ are concepts and r is part of a role
chain. Then, these triples are joined with themselves and, if the result contains
a chain of roles that implies some other role rchain, then we must index the
concept entries with the complex role rchain

3.
Given a query C(x) ∧ r1(x, y) ∧ C ′(y), we must check if there is an entry

e = (D,D′) in the index such that O |= D v C ∧D′ v C ′. That is, we must
check if any combination of all the sub-concepts of C and C ′ has an entry.
In such case, we check if O |= ri v r1 with ri ∈ roles(D,D′). That is, we
check if any of the roles associated to the entry pair (D,D′) is a sub-role of
r1. As both the inferred concept and property hierarchy have the LS− index,
the previous operations can be efficiently performed. These are equivalent to

3For brevity, we only show the procedure with role chains of size two, but the algorithm
could be easily extended to role chains of size n
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Algorithm 10 ABox evidence index
Procedure RetrieveConcept(C)
Input: TC , TR: ABox assertions
Output: I, an index

1: I = ∅
2: for (a r b) ∈ TR do
3: Cset = Πid(σx=a(TC))
4: C′set = Πid(σx=b(TC))
5: indexAux(Cset, C′set, r, I)
6: if isInverseOf(r) then
7: r1 = removeInverse(r)
8: indexAux(C′set, Cset, r1, I)

9: if isPartOfRoleChain(r) then
10: for C ∈ Cset do
11: for C′ ∈ C′set do
12: tmp+ = (C, r, C′)

13: tmp = ΠC1,r1,r2,C
′
2
(tmp onC′1=C2

tmp)

14: for (C1, r1, r2, C′2) ∈ tmp do
15: if isRoleChain(r1, r2) then
16: rchain = getRoleChain(r1, r2)
17: indexAux({C1}, rchain, {C′2}, I)

Procedure IndexAux(Cset, C′set, r, I)
Input: Cset, C′set, r, I
Output: I

1: for C ∈ Cset do
2: for C′ ∈ C′set do
3: I[C,C′].add(r)

4: return I

check if there is an index entry e = (D,D′) such that id(DLS
−

) ∈ int(CLS−)

and id(D′LS
−

) ∈ int(C ′LS−). In such case, we check if id(rLS
−

i ) ∈ int(rLS−1 )
for each ri ∈ roles(D,D′)

5.5 Fact Extraction

In this section, we explain how SW data are extracted according to the obtained
reachability graph and the posterior aggregation into facts. First, we present
the foundations of the method and then, the implemented algorithms.

5.5.1 Foundations

The fact extraction process is concerned with two main tasks: 1) the identifi-
cation and their arrangement into tuples of instances from the ABox that are
logically consistent with the obtained reachability graph derived from the query
and 2) the posterior aggregation of these tuples into MD points characterized
by the aggregated measure values. Therefore, the notion of fact is the same as
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in traditional MD analysis. A fact is composed by a set of aggregated measures
values, described by a MD point.

The difference relies on the type of data from which facts are extracted.
Traditional approaches for MD modeling have focused on the search of func-
tional dependencies between the facts and the dimensions. However, these
approaches are not be able to find any facts in complex scenarios where the
traditional MD integrity constraints such as the to-one relationship between
the facts and the dimensions do not apply. In contrast, we are able to extract
meaningful facts from data that are not MD by nature.

First, we describe the process of extracting instance and data tuples from
SW data. Then, we show how to aggregate these tuples (i.e., the raw data)
to produce meaningful facts. Moreover, we identify when a set of facts is
summarizable, and can thus be pre-aggregated using conventional OLAP tools.
Non-summarizable facts contain duplicated information that can lead to wrong
results when aggregated. However, we show how to correctly calculate the
measures in such case by handling duplicities in the data and thus, providing
the user with meaningful results that cannot be otherwise obtained.

Figure 5.7 shows graphically an example of an instance of Patient from
the ontology of the running use case. We use this example to illustrate the
extraction of facts.

In the following, we introduce some definitions that contribute to the ex-
traction of facts.

Definition 5.10. The expression (i0, r0, i1, r1, ..., in) ∈ Paths(i, i′) with n ≥ 1,
ii ∈ I and ri ∈ R is an aggregation path from instance i to instance i′ if i0 = i,
in = i′ and O |= rj(ij , ij+1), 0 ≤ j < n.

Definition 5.11. An aggregation path pi = (i0, r
′
0, i1, r

′
1, ..., in) between in-

stances i0 and in is consistent with an aggregation path pc = (C0, r0, C1, r1, ..., Cn)
if O |= Ci(ii) ∧ r′i v ri, 0 ≤ i ≤ n.

For example, the instance path p = (PTN XY 21,hasV isit,V ISIT1,
hasReport, RHEX1)∈Paths(PTN XY 21, RHEX1) is an aggregation path
from instance PTN XY 21 to instance RHEX1 and is consistent with the
aggregation path pc =(Patient,hasV isit,V isit,hasReport,Rheumatology)∈
Paths(Patient,Rheumatology).

The previous definition of consistency between an instance path and an ag-
gregation path is important because facts will be composed only from instance
tuples whose values are reached by instance paths that are consistent with an
aggregation path of the reachability graph. In fact, the reachability graph is
used as a data guide to extract the instance tuples and the posterior facts.

Now we define the notion of context. Intuitively, given the subject of anal-
ysis CSUB and a pair of MD elements C1, C2, the context is a concept of the
reachability graph that lies in between CSUB and C1, C2, and acts as the near-
est common aggregator node for C1, C2.
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Figure 5.7: Example of Patient instance consistent with the ontology axioms
of the running example.

Definition 5.12. Let C1, C2 be concepts representing MD elements and CSUB

be the concept representing the subject of analysis.
Contexts(C1, C2, CSUB) =

⋃
∀C′∈LCRC(C1,C2,CSUB){C ′′/C ′′ v C ′}, where the

function LCRC(C1, C2, CSUB) is the set of least common reachable concepts
from C1 and C2 to CSUB defined as follows: C ′ ∈ LCRC(C1, C2, CSUB) if:

1. C ′ is common reachable concept (if one of the following condition applies):

1.1. C ′ = CSUB = C1 = C2

1.2. C ′ = CSUB = C1 ∧ |Paths(C ′, C2)| > 0

1.3. C ′ = CSUB = C2 ∧ |Paths(C ′, C1)| > 0
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1.4. C ′ = C1 = C2 ∧ |Paths(CSUB , C
′)| > 0

1.5. C ′ = CSUB ∧ |Paths(C ′, C1)| > 0 ∧ |Paths(C ′, C2)| > 0

1.6. C ′ = C1 ∧ |Paths(CSUB , C
′)| > 0 ∧ |Paths(C ′, C2)| > 0

1.7. C ′ = C2 ∧ |Paths(CSUB , C
′)| > 0 ∧ |Paths(C ′, C1)| > 0

1.8. Paths(CSUB , C
′)| > 0 ∧ |Paths(C ′, C1)| > 0 ∧ |Paths(C ′, C2)| > 0

2. @E that satisfying 1., E ∈ LCRC(C1, C2, CSUB) ∧ |Paths(C ′, E)| > 0
(C ′ is least)

The first condition states that there must be at least one aggregation path
connecting the subject of analysis CSUB with the context C ′, another aggre-
gation path connecting C ′ with C1 and another aggregation path connecting
C ′ with C2. The eight cases account for the different configurations where the
context coincides with some of the other concepts. The second condition states
that the context concept must be the closest one in the aggregation paths to
C1 and C2.

Identifying the different contexts of the MD elements at the conceptual level
(i.e., in the TBox) is important for extracting the instance tuples correctly
from the ABox and also to check the summarizability property of the derived
facts. Specially important is the context that acts as aggregator node of all
the MD elements. We name this context parent context. Figure 5.8 shows the
reachability graph with the contexts for each pair of MD elements enclosed
in boxes. The parent context is Patient, which coincides with the subject of
analysis. The calculation of the contexts is trivial, as they correspond to the
nearest common ancestors of the MD elements pairwise.

Drug 
hasDrug 

hasReport hasVisit 

Treatment 
hasTherapy 

Gender 

sex 

float 

DrugTherapy 

hasReport 

hasReport  damageIndex 
name 

string 

name 

string 

name 

string 

Disease 
hasDiagnosedDisease 

Diagnosis 

results  hasAbnormality 
Ultrasonography 

Secondary 
Disease 

Visit Pa@ent 

Rheumatology 

Figure 5.8: Verified reachability graph of the running use case with the context
enclosed in a box.

The following example illustrates the semantics behind the notion of con-
text. From the verified reachability graph in Figure 5.8, we see that the context
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of AvgDIndex and Secondary Disease is Rheumatology. This means that a
well-formed instance tuple should contain the measure value of the articular
damage index together with a disease abnormality detected in an ultrasonogra-
phy that has been taken in the same rheumatology report. It would not make
sense to combine in the same tuple the value of the articular damage index
taken in the first rheumatology report of the patient with a disease that has
been detected and recorded in a different rheumatology report (e.g., a year
later). From this reasoning, we conclude that the instances that compose an
instance tuple should be extracted from the same context instances.

Now we formalize the notion of instance tuple.

Definition 5.13. Let Q be a MD query having the associated reachability graph
G. An instance tuple is a tuple of the form it = (i0, i1, ..., in), 1 ≤ j ≤ n, with
ij ∈ I, n ≥ |MD| such that:

1. i0 is an instance of the parent context.

2. ∀ij ∈ it, O |= Cj(ij) ∧ Cj v Dj, Dj ∈ {desc(elemj)/elemj ∈ MD}. We
denote with MD(ij) to the MD element associated to the instance ij by
this condition.

3. ∀ij ∈ it, ∃p1 ∈ Paths(iSUB , ij), ∃p2 ∈ Paths(CSUB , Cj), p2 ∈ G and
Cj = desc(MD(ij)), such that p1 is consistent with p2 .

4. ∀ij , ik ∈ it, j 6= k, ∃p1 ∈ Paths(iSUB , ij), ∃p2 ∈ Paths(iSUB , ik) satisfy-
ing condition 2, such that if ∃i1 ∈ p1, ∃i2 ∈ p2 and O |= C(i1), C(i2) and
C ∈ Contexts(Cij , Cik , CSUB), Cij = desc(MD(ij)), Cik = desc(MD(ik)),
then i1 = i2.

According to the previous definition, instance tuples satisfy the following
conditions: 1) the parent context instance is the first element of the tuple, 2) the
remaining instances in the tuple belong to a concept that is an MD element, 3)
each instance of the tuple is reached by an instance path that is consistent with
an aggregation path derived from the MD element associated to the instance
and belongs to the reachability graph and 4) the instance paths associated to
the instances in the tuples share pairwise the same context instances.

The instance tuples are the raw dimension and measure values extracted
from SW data, were aggregations have not yet been performed, that is, measure
values have not yet been calculated.

Table 5.1 shows the instance tuples generated for the running use case shown
in Figure 5.7. The first column is the tuple id, only for reference purposes. The
second column is the parent context instance. The following four columns are
the dimensions and the last two columns are the extracted measure values
previous to aggregation. As an example, we illustrate how the first tuple of the
table satisfies all the requirements of the instance tuple definition. The first
and second conditions are trivial and are satisfied. The third condition is also
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t id Ctxt Gender Disease Sec Disease Drug ArtDamIndex Patient
1 PTN XY21 SEX1 DIS9 DIS12 DRUG23 RHEX1 PTN XY21
2 PTN XY21 SEX1 DIS10 DIS12 DRUG23 RHEX2 PTN XY21
3 PTN XY21 SEX1 DIS10 DIS12 DRUG40 RHEX2 PTN XY21
4 PTN XY21 SEX1 DIS10 DIS11 DRUG23 RHEX2 PTN XY21
5 PTN XY21 SEX1 DIS10 DIS11 DRUG40 RHEX2 PTN XY21
6 PTN XY30 SEX1 DIS10 DIS12 DRUG23 RHEX3 PTN XY30

Table 5.1: Instance tuples generated for the running example in Figure 5.7.

satisfied and we show in Table 5.2, for each instance in the tuple, the instance
path and the aggregation path belonging to the reachability graph to which the
instance path is consistent. Finally, we check in the previous table the context
instances pairwise and enclose them in boxes.

Instance Instance path
MD element Aggregation Path

SEX1 ( PTN XY21 , sex, SEX1)

Gender (Patient, sex, Gender)

DIS9 ( PTN XY21 , hasVisit, VISIT1 , hasReport, DIAG1, hasDiagnosedDisease, DIS9)

Disease (Patient, hasVisit, Visit, hasReport, Diagnosis, hasDiagnosedDisease, Disease)

DIS12 ( PTN XY21 , hasVisit, VISIT1 , hasReport, RHEX1 , results, ULTRA1, hasAb., DIS12)

Sec. Disease (Patient, hasVisit, Visit, hasReport, Rheumatology, results, Ultrasonography, hasAb., Disease)

DRUG23 ( PTN XY21 , hasVisit, VISIT1 , hasReport, TREAT1, hasTherapy, DT1, hasDrug, DRUG23)

Drug (Patient, hasVisit, Visit, hasReport, Treatment, hasTherapy, DrugTherapy, hasDrug, Drug)

RHEX1 ( PTN XY21 , hasVisit, VISIT1 , hasReport, RHEX1 )

ArtDamIndex (Patient, hasVisit, Visit, hasReport, Rheumatology)

PTN XY21 ( PTN XY21 )

Patient (Patient)

Table 5.2: Instances of the first instance tuple in Table 5.1 with the respective
instance paths and aggregation paths. The instances enclosed in boxes are the
context instances.

Now we define the data tuples as the readable projection of the instance
tuples.

Definition 5.14. A data tuple associated to an instance tuple it = (i0, i1, ..., in)
is a tuple of the form dt = (i0, s1, ..., sn), 1 ≤ j ≤ n, with i0 ∈ I and sj ∈
datatype such that:

1. i0 is the parent context instance.

2. sj = Πp(ij), ij ∈ it if p = proj(MD(ij)) is not empty.

3. sj = ij , ij ∈ it otherwise.

A data tuple is the result of projecting the instances of an instance tuple over
the datatype properties specified by the user for each MD element associated.
In case the MD element has no projection associated, we keep the instance URI
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in the data tuple. Following with the running use case, Table 5.3 shows the
data tuples derived from the instance tuples in Table 5.1.

Notice that we take into consideration that the projection can be multival-
ued (i.e., more than one value can be accessed with the same data property
in an instance). In this case multiple data tuples will result from one instance
tuple.

t id Ctxt Gender Disease Sec Disease Drug DI Patient
1 PTN XY21 Male arthritis synovitis methotrexate 10 PTN XY21
2 PTN XY21 Male systemic arthritis synovitis methotrexate 15 PTN XY21
3 PTN XY21 Male systemic arthritis synovitis corticosteroids 15 PTN XY21
4 PTN XY21 Male systemic arthritis bone erosion methotrexate 15 PTN XY21
5 PTN XY21 Male systemic arthritis bone erosion corticosteroids 15 PTN XY21
6 PTN XY30 Male systemic arthritis synovitis methotrexate 13 PTN XY30

Table 5.3: Data tuples generated from the instance tuples in Table 5.1 by
following the running example in Figure 5.7.

Finally, facts are extracted from data tuples by collapsing the data tuples
that share the same dimension values and applying the corresponding aggre-
gation function to the measure values.

Definition 5.15. A fact is a MD point f = (d1, ..., dk,mk+1, ...,mn) where di
are dimension values and mi are aggregated measure values extracted from a set
of data tuples sf = {(ij0, s

j
1, ..., s

j
n)}1≤j≤n that satisfies the following conditions:

1. di = sji , 1 ≤ j ≤ n, 1 ≤ i ≤ k

2. mi = AGG({sji}1≤j≤n, k+1≤i≤n) such that AGG = agg(MDk+i)

The first condition expresses the equality of the dimension values. The sec-
ond condition expresses the aggregation of the measure values that share the
same dimension values through the aggregation function defined for that mea-
sure, which corresponds to the aggregation function of the k + i MD element.
Notice that if the aggregation function of the previous definition is applied to
non-summarizable data tuples, the resulting facts may contain wrong aggrega-
tions. Next, we define the summarizable property for the data tuples.

Property 5.1. A set of data tuples gives rise to a set of summarizable facts iff
there is a one-to-one relation between the parent context and the dimensions.

The previous property means that each data tuple has to have associated
a different parent context. In the example of Table 5.3 we observe that tuples
1-5 have the same parent context associated. Therefore, these tuples contain
duplicated information and, when computing facts, correct aggregations cannot
be ensured.

In spite of not being able to use pre-aggregation techniques over non-
summarizable facts, we can still provide correctly aggregated facts to the user
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by handling the duplicated information in the data tuples when calculating
the aggregations. This depends, however, on the aggregation function applied.
Next, we define how to correctly calculate aggregated data that is not summa-
rizable by taking into account duplicated information.

Definition 5.16. Given a fact f with sf = {(ij0, s
j
1, ..., s

j
n)}1≤j≤n being the

data tuples associated, the different aggregation functions over the ith measure
are defined as follows:

1. SUMi =
n∑

j=1

sji
COUNT (ij0,sf )

2. COUNTi =
n∑

j=1

COUNT (sji )

COUNT (ij0,sf )

3. MINi = MIN(sji ), 1 ≤ j ≤ n

4. MAXi = MAX(sji ), 1 ≤ j ≤ n

Notice that for the aggregation functions SUM and COUNT we have to
apply a correction factor to each measure, which is given by the number of
duplicated parent contexts in the set of measure values associated to the fact.
This way, we can correctly deal with duplicated information and present cor-
rect results to the user. The AV G aggregation function can be easily derived
by maintaining the SUM and COUNT . The MIN and MAX aggregation
functions are not affected by duplicated information.

Next, we show how the data tuples in Table 5.4 are aggregated into facts.

t id Gender Disease Sec Disease Drug ArtDamIndex Patient
SUM C AVG MIN MAX COUNT

1 Male arthritis synovitis metho 10 1 10 10 10 1
2,6 Male sys arthritis synovitis metho 15+13 1+1 14 13 15 2
3 Male sys arthritis synovitis cortico 15 1 15 15 15 1
4 Male sys arthritis bone erosion metho 15 1 15 15 15 1
5 Male sys arthritis bone erosion cortico 15 1 15 15 15 1

Table 5.4: Facts generated from the data tuples in Table 5.3 characterized by
four dimensions.

From the resulting facts, we observe that the fact in the second row is the
result of collapsing data tuples 2 and 6. As these two tuples have different
parent contexts the aggregations are right. Next, we show another example
where the data tuples are aggregated by Gender, Disease and Sec Disease.
That is, we remove the dimension Drug. Notice that we cannot use the pre-
aggregated results of Table 5.4, as these facts are not summarizable. Therefore,
we build the new facts from the base data tuples. Table 5.5 shows the results.

In this case, the second fact shows the aggregated results for data tuples
2, 3 and 6. However, tuples 2 and 3 share the same parent context, therefore,
we must apply the correction factor to these measure values. The same occurs
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t id Gender Disease Sec Disease ArtDamIndex Patient
SUM COUNT AVG MIN MAX COUNT

1 Male arthritis synovitis 10 1 10 10 10 1
2,3,6 Male sys arthritis synovitis 15/2+15/2+13 1/2+1/2+1 14 13 15 2
4,5 Male sys arthritis bone erosion 15/2+15/2 1/2+1/2 15 15 15 1

Table 5.5: Facts generated from the data tuples in Table 5.3 characterized by
three dimensions.

with the third fact, which is the result of aggregating data tuples 4 and 5 and
these tuples have the same parent context.

The notion of duplicate facts has been previously investigated in other sce-
narios. For example, the work in [116] acknowledges the semantic problems that
may arise when integrating a new, external dimension into an OLAP cube. The
authors devise three solutions when the external dimension returns more than
one value to “decorate” the cube: 1) use an arbitrary value, 2) concatenate all
different values or 3) use all the values thereby creating duplicated facts. Our
approach resembles the third option but we do handle duplicated information
when aggregating data so that correct results are obtained.

5.5.2 Implemented algorithms

The process to extract facts is composed by two main steps: instance and data
tuples extraction, and aggregation of data tuples into facts. Here, we present
the developed algorithms for these tasks.

To obtain instance and data tuples we process the reachability graph. Recall
that each edge of the reachability graph represents a direct aggregation path
(C, r1, C

′). In order to retrieve triples that instantiate such path we need to
ask the conjunctive query q(x, y) := C(x) ∧ r1(x, y) ∧ C ′(y) over the ontology.
Therefore, the algorithm processes the reachability graph in depth-first order
and joins the instantiated triples of the successive direct aggregation paths. The
process is shown in Algorithm 11. We make use of the efficient ABox querying
mechanism presented in Section 4.2.2. The extracted triples, are recursively
joined until the graph is completely processed. The obtained tuples are then
projected over the attributes that represent MD elements, obtaining this way
the instance tuples. Finally, the obtained tuples can be also projected over the
projection attributes specified by the user for each MD element, proj(MDi),
obtaining this way the data tuples.

Recall that the expressivity of the DL expression to which the user MD ele-
ments are mapped is that of a star-shaped conjunctive query, where the central
node is a named concept and role restrictions over this concept are applied.
Therefore, we can efficiently extract only the tuples whose MD elements (i.e.,
subject of analysis, dimensions and measures) satisfy the restrictions stated by
the user. For simplicity of exposition we use retrieve(C) in the algorithm but
C can be a star-shaped conjunctive query, which would imply to expand C to
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its components and process each of them with the provided functions for query
answering.

Algorithm 11 Tuples extraction
Procedure TuplesExtraction(G)
Input: G, reachability graph
Output: T , table of data tuples

1: T = ∅
2: C = G.rootNode()
3: T = retrieve(C)
4: T =TuplesExtractionRec(T , C, G)
5: IT = Π(desc(MD1),...,desc(MDn))1≤i≤|MD|

(T )

6: return Π(proj(MD1),...,proj(MDn)1≤i≤|MD|)
(T ) . assuming proj(c) is in T

Procedure TuplesExtractionRec(T , C, G)
Input: T , C, G
Output: T

1: edges = G.outGoingEdges(C)
2: for (C,R,C′) ∈ edges do
3: T = T on retrieve(R)
4: T = T on retrieve(C′)
5: T =TuplesExtractionRec(T , C′, G)

return T

The second task consists in aggregating data tuples into facts. We show the
algorithm expressed in relational algebra in Algorithm 12. The extraction of
facts consists in grouping the data tuples by the dimensions and aggregating
the measure values. As we also deal with non-summarizable facts, the aggre-
gation functions applied to the measures are those specified by the user for
each measure but they are applied according to the Definition 5.16 to take into
account duplicities.

Algorithm 12 Fact extraction
Procedure FactExtraction(T )
Input: T , table of data tuples, MD = (D1, ..., Dn,M1, ...,Mt)
Output: F , facts

1: return D1, ..., Dn Gf1(M1),...,fn(Mt)(T ) where fi = agg(MDn+i)

All the relational algebra operations that appear in the algorithms for fact
extraction have been implemented using MySQL as relational back-end, as-
suming that the data does not fit in memory. Nevertheless, for small data
sets, these algorithms could be easily implemented using main memory data
structures.

5.6 Dimension Extraction

In traditional DW, the schema of dimension hierarchies is usually driven by
the schema of the data sources used to populate the DW. Typical dimension
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hierarchies are usually static, fixed and pre-defined, for example, the time, place
or product category. These dimensions usually have few and well-established
dimension levels, and the possibility of dynamically modifying the hierarchies
is limited or none.

The SW scenario offers new possibilities where richer dimension hierarchies
can be constructed ad hoc by taking into account the user requirements and
from truly semantic relations found among the ontology concepts. This richness
of knowledge introduces, however, new challenges regarding the construction
of the hierarchies, as extracting dimension hierarchies without any restrictions
could lead to too large and overwhelming hierarchies that are not suitable for
MD analysis.

Our approach aims at extracting dimension hierarchies from ontologies in
an automatic way, releasing the user from the task of having to specify each
dimension level and category. The dimension hierarchies are roughly specified
by the user in terms of an ontological concept. After that, the hierarchical
dimensions are gathered from the concept hierarchy inferred from the ontologies
at hand.

Traditionally, the dimension hierarchies have been restricted to a deter-
mined shape in order to perform properly OLAP operations. That is, extracted
hierarchies comply with a series of constraints to ensure summarizability [54].
However, we model a dimension hierarchy as a directed acyclic graph of nodes,
where nodes are sub-concepts of the user conceptual description for the dimen-
sion, and the edges correspond to the semantic relations (e.g., “is-a” relation-
ships) between the nodes. This decision has been taken in attempt to capture
the rich hierarchies underlying SW data that cannot be otherwise used. There-
fore, we do not transform the dimension hierarchies into summarizable ones but
only re-shape the dimensions to favor both dense regions and good aggregation
nodes, while preserving the semantics as much as possible. If summarizability is
a must, there are several other approaches focused on obtaining summarizable
hierarchies [119, 7]. We focus on the hierarchical relationships although other
kind of relationships could also be used (e.g., transitive properties, property
compositions, etc.) and have actually been treated in the literature [126].

The following sections explain the process of extracting hierarchical dimen-
sions from the knowledge encoded in the ontologies that fit the base dimension
values of the facts and favor aggregation. In Section 5.6.1, we take advantage
of the modularity techniques described in Chapter 4 to select the concepts
that are candidates to be part of the dimension hierarchies. Then, in Section
5.6.2, we present two alternative algorithms to select concepts for aggregation
based on measures that favor a good classification and distribution of the base
dimension values.
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5.6.1 Dimension Modules

The first step to extract each hierarchical dimension Di consists of selecting
the part of the ontology that can be involved in it. Let Sig(Di) be the set of
most specific concepts of the instances participating in the instance tuples for
dimension Di (see Definition 5.13).

We define the dimension module MDi
⊆ O as the upper module of the

ontology O for the signature Sig(Di). We define upper modules in the same
way as in [60],that is, by applying the notion of conservative extension. Thus,
an upper module M of O for the signature Sig is a sub-ontology of O such
that it preserves all the entailments over the symbols of Sig expressed in a
language L, that is, O |= α with Sig(α) ⊆ Sig and α ∈ L iff MDi

|= α.
For hierarchical dimensions we only need to preserve entailments of the form
C v D and C disjoint D, C and D being named concepts. This kind of upper
modules can be extracted very efficiently over very large ontologies by using
any of the modularity approaches proposed in Chapter 4.

Let TAX(MDi
) be the inferred taxonomy for the extracted module MDi

.
This taxonomy can be represented as the DAG (V,E), where V contains one
node for each concept in MDi

, and ci → cj ∈ E if ci is a direct ancestor
of cj . This taxonomy could be directly used as dimension hierarchy to ag-
gregate the dimension values. However, TAX(MDi) is usually an irregular,
unbalanced and non-onto hierarchy, which makes it not suitable for OLAP op-
erations. Therefore, we transform it into a more regular structure. However,
this transformation is also required to preserve as much as possible the original
semantics of the concepts as well as to minimize the loss of information (e.g.,
under-classified concepts).

Several approaches have been proposed in the literature to transform hi-
erarchies in order to satisfy the desirable properties for OLAP aggregations.
Former work about transforming OLAP hierarchies [119] proposed the inclusion
of fake nodes and roll-up relationships to avoid incomplete levels and double
counting issues. Normalization is also proposed as a way to solve non-onto hi-
erarchies [81]. These strategies however are not directly applicable to ontology
taxonomies for two reasons: the number of added elements (i.e., fake nodes or
intermediate normalized tables) can overwhelm the size of the original taxon-
omy and, the semantics of concepts can be altered by these new elements. The
work in [29] proposes a clustering-based approach to reduce taxonomies for im-
proving data tables summaries. This method transforms the original taxonomy
to a new one by grouping those nodes with similar structures and usage in the
tuples. However, this method also alters the semantics of the symbols as new
ones are created by grouping original ones. The recent approach in [7] extends
OLAP operations in order to be able to incorporate semantic dimensions while
preserving summarizability.

In the next section, we propose two algorithms to select concepts of the
hierarchy that better classify and distribute the base dimension values.
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5.6.2 Generation of hierarchies

Before going into the details of the proposed algorithms, we analyze why
TAX(MDi) presents such an irregular structure that makes it necessary to
devise new methods to either transform or select parts of the hierarchy that
are more suitable for OLAP analysis. The usage of symbols in Sig(Di) can be
very irregular due to the “popularity” of some symbols (i.e., Zipf law), which
implies that few symbols are used very frequently whereas most of them are
used few times. As a result, some parts of the taxonomy are more used than
others, affecting to both the density (few dense parts and many sparse parts)
and the depth of the taxonomy (few deep parts). A direct consequence is that
some concepts in Sig(Di) are covered by many spurious concepts which are
only used once, and therefore are useless for aggregation purposes. So, our
main goals should be to identify dense regions of the taxonomy and to select
nodes that best classify the concepts in Sig(Di). For this goal, we propose
a series of measures to decide which nodes deserve to participate in the final
hierarchy.

The first measure we propose to rank the concepts in TAX(MDi
) is the

share:

share(n) =
∏

ni∈ancs(n)

1

|children(ni)|
(5.9)

where ancs(n) is the set of ancestors of n in TAX(MDi), and children(n)
is the set of direct successors of n in the taxonomy.

The idea behind the share is to measure the number of partitions produced
from the root till the node n. The smaller the share the more dense is the
hierarchy above the node. In a regular balanced taxonomy the ideal share is
S(n)depth(n), where S is the mean number of children that the ancestor nodes
of n have. We can then estimate the ratio between the ideal share and the
actual one as follows:

ratio(n) =
S(n)depth(n)

share(n)
(5.10)

Thus, the greater the ratio, the better the hierarchy above the node is.
The second ranking measure we propose is the entropy, which is defined as

follows:

entropy(n) = Σni∈children(n)Psig(n, ni) · log(Psig(n, ni)) (5.11)

Psig(n, ni) =
coveredSig(ni)

coveredSig(n)
(5.12)

where coveredSig(n) is the subset of Sig(Di) whose members are descen-
dants of n.
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The idea behind the entropy is that good classification nodes are those
that better distribute the signature symbols among its children. Similarly to
decision trees and clustering quality measures, we use the entropy of the groups
derived from a node as the measure of their quality.

In order to combine both measures we just take the product of both mea-
sures:

score(n) = entropy(n) · ratio(n) (5.13)

Both algorithms proposed to generate dimension hierarchies consist of se-
lecting a set of “good” nodes from the taxonomy based on the previous mea-
sures, and then re-constructing the hierarchy by applying the transitivity prop-
erty of the subsumption relationship between concepts. Algorithm 13 presents
a global approach, which consists of selecting nodes from the nodes ranking
ordered by the score until either all signature concepts are covered or there are
no more concepts with a score greater than a given threshold (usually zero).
Alternatively, we propose a second approach in Algorithm 14, the local ap-
proach, which selects the best ancestors of each concept leaf of the taxonomy.
In both approaches, the final hierarchy is obtained by extracting the spanning
tree that maximizes the number of ancestors of each node from the resulting
reduced taxonomy.

One advantage of the local approach is that we can further select the number
of levels up to each signature concept, defining so the hierarchical categories
for the dimensions. However, this process is not trivial and we decided to leave
it for future work. Each method favors different properties of the generated
hierarchy. If the user wants to obtain a richer view of the hierarchy, she must
select the global one. Instead, if the user wants a more compact hierarchy (e.g.,
few levels) then she must select the local one.

It is worth mentioning that the step for reconstructing the taxonomy is
efficiently performed by using the ontology index and the modularity strategies
proposed in Chapter 4.

Algorithm 13 Global approach for dimension hierarchy generation
Procedure DimExtractionGlobal(MDi

,Sig(Di))
Input: MDi

, the upper module, Sig(Di), the signature for dimension Di.
Output: Hi, a hierarchy for dimension Di

1: Let Lrank be the list of concepts in MDi
ordered by score(n) (highest to lowest);

2: Let Fragment = ∅ be the nodes set of the fragment to be built.
3: repeat
4: pop a node n from Lrank

5: add it to Fragment
6: until score(n) ≤ 0 or

⋃
n∈Fragment coveredSig(n) == Sig(Di)

7: Let NewTax be the reconstructed taxonomy for the signature Fragment
8: return spanningTree(NewTax)
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Algorithm 14 Local approach for dimension hierarchy generation
Procedure DimExtractionLocal(MDi

,Sig(Di))
Input: MDi

, the upper module, Sig(Di), the signature for dimension Di.
Output: Hi, a hierarchy for dimension Di

1: Let Lleaves be the list of leaf concepts in MDi
ordered by score(n) (highest to lowest);

2: Let Fragment = ∅ be the nodes set of the fragment to be built.
3: for c ∈ Lleaves do
4: Set up Lancs(c) with the ancestors of c ordered by score(n)
5: for na ∈ Lancs(c) do
6: if there is no node n2 ∈ Lancs(c) such that score(n2) ≤ score(na) and
order(n2) ≤ order(na) then

7: if na /∈ Fragment then
8: add na to Fragment

9: Let NewTax be the reconstructed taxonomy for the signature Fragment
10: return spanningTree(NewTax)
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Figure 5.9: Example of local and global methods: (a) node selection and (b)
hierarchy reconstruction. Dashed edges in (b) are removed in the final spanning
tree. Nodes inside squares in (b) are those that change its parent in the resulting
dimension.

5.7 Evaluation

The experimental evaluation performed in this section has three main objec-
tives. First, we are concerned with demonstrating the viability and scalability
of the algorithm for generating aggregation paths from the user MD query over
different ontologies. Then, we perform experiments to demonstrate the scal-
ability of the fact extraction process. Finally, we evaluate the two proposed
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methods for generating dimensions from the ontology knowledge by measuring
the quality of the resulting hierarchies.

The experiments were performed on a Linux server with 8 1.86GHz Intel(R)
Xenon(R) processors, 33GB of RAM, Ubuntu 10.04.4, Kernel Linux 2.6.32-45.

5.7.1 Datasets

The experiments have been performed over several SW data sets that have
different features regarding aspects such as size, structure and expressivity,
in order to subject our methods to this diversity. Table 5.6 shows the main
features of the selected ontologies.

HeCOnto: We have generated this OWL dataset synthetically from the
features identified from a set of real patients. The Tbox template has been
carefully designed following the structure of the medical protocols defined in
the HeC project for rheumatic patients. Moreover, domain concepts are taken
from UMLS. With the previous setup, we are able to generate synthetic instance
data of any size and with the intended structural variations to account for
heterogeneity and optional values of semantic annotations.

BioPax: BioPAX (Biological Pathway Exchange) is a RDF/OWL-based
ontology to represent biological pathways at the molecular and cellular level.
Its major use is to facilitate the exchange of pathway data. Through BioPAX,
millions of interactions organized into thousands of pathways across many or-
ganisms, from a growing number of sources, are available. Thus, large amounts
of pathway data are available in a computable form to support visualization,
analysis and biological discovery.

LUBM (10 univ): LUBM (Lehigh University Benchmark) is probably
the best known synthetic framework for evaluating SW systems. It provides an
OWL ontology about the university domain (i.e., universities, staff, students
and so forth) and code for populating variable-sized corpora of instance data
using this terminology.

SwetoDBLP: SwetoDblp is a large-size ontology focused on bibliography
data of Computer Science publications where the main data source is DBLP.
The ontology is composed mainly by RDFS axioms and huge bulks of instance
data are available for download.

Ontology # C # OP # DP # I Expressivity

HeCOnto 1779 124 12 605,420 ALCHI(D)
BioPax 41 33 37 62,021 ALCHN (D)
LUMB (10 univ) 43 25 7 ' 1.3M ALEHI(D)
SwetoDBLP 60 16 30 ' 1.5M ALH(D)

Table 5.6: Ontologies and their features.

For the experiments, it was hard to find SW data with both large TBox
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and ABox. Instance data subject to analysis usually have a small TBox that
models the domain. Ontologies with very large TBoxes do not usually have
ABox. This is the case, for example, of NCI Thesaurus4, which has an OWL
version over which we have applied our methods. However, these kinds of large
ontologies are not suitable for the MD analysis method that we propose because
they have the ABox internalized into the TBox. An interesting line of research,
which is out of the scope of this thesis, is to devise how to separate the instance
data from an ontology such as NCI so that our MD analysis methods can be
applied.

5.7.2 Aggregation Paths

The experiments performed in this section are concerned with demonstrating
the feasibility of extracting aggregation paths and, in particular, the impor-
tance of restricting the general aggregation paths into the the three types of
aggregation paths defined. Recall that an aggregation path exists between a
pair of concepts (C,C ′) if there exists at least one interpretation where at least
one object of C is connected to one object of C ′ by roles. According to this
definition, there can exist thousands of allowed aggregation paths between a
pair of concepts, specially, if the ontology is poorly defined. The three types
of aggregation paths defined in this thesis are meant to constrain the general
definition of aggregation path so that the user is presented with a selection of
interesting aggregation paths for analysis purposes.

The algorithm for extracting the reachability graph that suits an MD query
is based on the extraction of direct aggregation paths. In Section 5.4.1 we show
an algorithm to precompute the direct aggregation paths of Group 1 and Group
2. The cost of this algorithm is O(rn2), as the direct aggregation paths are
extracted from each concept definition and are propagated to the descendants.
Table 5.7 shows the number of direct aggregation paths precomputed for the
selected ontologies. Even though in the worst case this precomputation could
lead to a high amount of direct aggregation paths, the empirical evaluation
demonstrates that this amount is usually very low for different ontologies.

Ontology Group 1 Group 2
HeCOnto 5875 0
BioPax 42 228
LUBM (10 univ) 26 38
SwetoDLBLP 0 475

Table 5.7: Number of direct aggregation paths of Group 1 and Group 2

Now, we are concerned with the potential number of aggregation paths of

4NCI Thesaurus: http://ncit.nci.nih.gov/
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each group that can be generated from the previous direct aggregation paths.
Given the user MD query, which is expressed in terms of the ontology, the aim
is to discover aggregation paths from the subject of analysis to the dimensions
and measures. Therefore, the number and type of potential aggregation paths
depends greatly on the structure underlying the ontology axioms and the MD
query expressed by the user. In the following experiment, we simulate the user
MD queries by taking as potential subject of analysis each concept from the
ontologies and extract all possible aggregation paths from there, that is, we
consider that each reached concept is a potential dimension.

The results of this experiment are shown in Table 5.8, where the objective is
to count the number of aggregation paths of each group that can be discovered
from a concept. The first column shows the average. We calculate it by adding
the number of aggregation paths only from subject concepts that have connec-
tivity greater than zero and dividing by the number of such subject concepts.
This is done to avoid biased results in ontologies where there are a great num-
ber of leaf concepts (i.e., concepts with no connectivity). The second column
shows the maximum number of aggregation paths from a subject concept and
the third column shows the concept that holds this maximum. Only for aggre-
gation paths of Group 3 we use the ABox evidence to prune the expansion of
aggregation paths through sub-concepts, as the number of aggregation paths
of the other groups is already low without this pruning.

Group 1 Group 2 Group 3
Ontology Avg. Max. Max. C Avg. Max. Max. C Avg. Max. Max. C
HeCOnto 3.848 14 Patient 3.848 14 Patient 35.972 2971 Patient
BioPax 1.863 3 Pathway 8.531 46 Pathway 59.233 932 Pathway
LUBM10 1.176 2 Chair 1.45 6 Chair 7.15 16 Chair
Sweto DBLP 0 0 - 8.93 18 Inbook 8.93 18 Inbook

Table 5.8: Average and maximum number of aggregation paths from a subject
concept.

Regardless of the ontology, we observe that the average number of aggrega-
tion paths of Group 1 is very low, which proves that this type of aggregation
path is too restrictive and hardly found in the ontologies. The number of aggre-
gation paths on average of Group 2 is specially higher in ontologies with RDFS
constructs (i.e. BioPax and SwetoDBLP) but still low. Finally, the average
number of aggregation paths of Group 3 varies from one ontology to another.
While for LUBM and SwetoDBLP ontologies the number is manageable, for
BioPax and HeCOnto the number of aggregation paths on average is a bit high
to be shown to the user. This is mainly due to the big number of specialization
relationships, as in these type of paths the properties are propagated not only
to the range concept but also to every sub-concept, making each sub-concept
susceptible of expanding a new branch.

The concepts whose number of aggregation paths is maximum are good
candidates to be subject of analysis, as they present relations with many other
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concepts through aggregation paths, and that makes them good aggregators.
Table 5.9 shows the results from another experiment, where we measure

the average depth of the aggregation paths. As previously, for each type of
aggregation path, the first column shows the average depth, the second one
the maximum depth and the concept that hold this maximum is shown in the
third column.

Group 1 Group 2 Group 3
Ontology Avg. Max. Max. C Avg. Max. Max. C Avg. Max. Max. C
HeCOnto 1.174 12 Patient 1.174 12 Patient 1.194 14 Patient
BioPax 4.777 15 Modulation 6.133 21 Modulation 16.033 199 Pathway
LUBM10 1 1 Chair 1.15 3 ResearchAss. 2.15 3 Dean
SwetoDBLP 0 0 - 5.677 12 Inbook 5.677 12 Inbook

Table 5.9: Average and maximum depth of aggregation paths from a subject
concept.

The depth of the aggregation paths of each type shows a similar pattern
as previously. For Group 1 and Group 2, the average depth of the paths is
relatively low in all the ontologies, whereas the depth of paths of Group 3
becomes unmanageable for BioPax. The TBox of BioPax is specially complex
in term of semantics, with concepts related by many properties and with cycles,
which explains an average depth so high.

Both the number and the depth of the aggregation paths have been cal-
culated by obviating cycles in the ontologies, as a cycle implies that both the
number and depth of aggregation paths are infinite. Therefore, when there is
a cycle, both the number and depth of paths of that concept is updated but
the concept is not again explored.

5.7.3 Fact extraction

The evaluation of the fact extraction process is mainly concerned with time
complexity issues regarding the generation of the facts from the obtained reach-
ability graph. In particular, we are interested in measuring how both the num-
ber of elements of the user’s MD query and the size of the instance store affect
the fact table generation process. To perform these experiments, we have se-
lected the HeCOnto ontology. Figure 5.10 presents how the number of elements
in the user’s MD query (i.e., number of dimensions and measures) affects the
time performance to generate the fact table. For the experiment setup we have
preselected a set of eleven candidate dimensions and measures from the on-
tology and have computed all the reachability graphs and derived fact tables
that can be generated from all subsets of these eleven MD elements. The total
number of possible fact tables is 211 = 2048. Then, we have organized the fact
tables according to the number of MD elements (i.e., number of dimensions and
measures), from two MD elements to eleven in the x axis. Axis y shows the time
performance in seconds. Each boxplot in the figure shows the variance in time
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Figure 5.10: Fact table generation performance w.r.t. the number of dimensions
and measures involved in the user’s MD query.

between fact tables having the same number of MD elements. The explanation
for this variance is that different MD configurations of the same size may obtain
very different reachability graphs depending on their structural dependencies.
Therefore, the number of instances to be processed and the number of joins
are different, resulting in different processing times. However, we observe that
the time complexity increases linearly w.r.t. the number of dimensions and
measures of the user’s MD query, which proves the scalability and efficiency of
the approach.

On the other hand, we are also concerned with how the size of the instance
store affects the generation of the fact tables. To evaluate this, we have selected
from the previous experiment one of the smallest (i.e., two elements) and the
largest (i.e., eleven elements) user’s MD query. For these two MD queries we
measure the required time to create the respective fact tables with instance
stores of different sizes, ranging from 100 to 3,000 complex instances of type
Patient. Figure 5.11 illustrates the results. Notice that axis x measures the
number of subject instances, although the number of total instances in the store
ranges from a thousand to more than half million instances. Axis y shows the
time performance in seconds. For both MD queries, the time performance is
linear w.r.t. the size of the instance store, which means the proposed method
is scalable.
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Figure 5.11: Fact table generation performance w.r.t. the size of the instance
store.

5.7.4 Dimension extraction

The objective of this section is to evaluate the quality of the dimension hierar-
chies extracted by the methods proposed in Section 5.6 (i.e., global vs. local).
Each of the dimension hierarchies is generated from the conceptual description
of each dimension in the user’s MD query. Recall that the process is automatic
and the hierarchical relations between the dimension values that compose the
hierarchy are truly semantic relations encoded in the ontologies. Our goal is
to generate dimension hierarchies that have good aggregation power and also
preserve as much as possible the original semantics of the involved concepts.
In order to measure the quality of the dimension hierarchies, we have adapted
the measures proposed in [29] for evaluating table summarization, which also
aims at minimizing the information loss due to the reduction in details. These
quality measures are dilution and diversity.

dilution(Di, HierarchyDi , T ) =
1

|T |
∑
t∈T

∆O(parentO(t[Di]), parentHierarchyDi
(t[Di]))

(5.14)

diversity(Di, HierarchyDi , T ) =
2

(|T |2 − |T |)
∑

t1,t2∈T,t1 6=t2

∆HierarchyDi
(t1[Di], t2[Di])

(5.15)
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Measure Global Local
Reduction (%) 72.5 - 75.9 76.5 - 79.8
Sig. loss (%) 7.08-12.12 3.5-7.8
Dilution 0.367-0.473 0.342-0.429
Diversity 9.08-10.79 7.72-9.46

Table 5.10: Results for global an local dimension extraction methods. Value
ranges represent the 0.75 confidence intervals of the results for all the signatures.

where T is the fact table, parentO(n)5 is the parent of n in O, and ∆O is the
taxonomic distance between two nodes in O. t[Di] represents the concept assigned to
the fact t for the dimension Di.

Dilution measures the weighted average distance in the original taxonomy between
the new and original parents of the signature concepts from dimension Di. The
weight of each signature concept corresponds to its relative frequency in the fact
table. The smaller the dilution, less semantic changes have been produced in the
reduced taxonomy. Diversity measures the weighted average distance in the reduced
taxonomy of any pair of concepts from dimension Di used in the fact table. The
greater the diversity, the better taxonomies are obtained for aggregation purposes.
A very low diversity value usually indicates that most concepts are directly placed
under the top concept.

In order to test the quality of the dimension hierarchies generated by the meth-
ods in Section 5.6, we have set up 25 signatures for 14 dimensions of the HeCOnto
dataset. The size of these signatures ranges from 4 to 162 concepts (60 on average).
The corresponding upper-modules are extracted from UMLS following the method
proposed in [90]. The size of these modules ranges from 40 to 911 concepts (404 on
average). Then, both the global and local method for selecting concepts that will
participate in the dimension hierarchies are applied. The inferred taxonomy of the
dimension hierarchies obtained present between 8 and 23 levels (17 on average). Table
5.10 shows the results with both the global and local method. Apart from the dilution
and diversity of the generated dimension hierarchies, we also measure the reduction
in size of the dimension hierarchy w.r.t. the upper module and the signature loss,
that is, the signature concepts that do not appear in the dimension hierarchy. From
these results we observe that the local method generates smaller dimension hierar-
chies and also implies less signature loss. The dilution values of both methods are not
statistically different. However, diversity is usually greater in the global method (i.e.,
richer hierarchies are generated). To sum up, each method optimizes different quality
parameters, and therefore, their application will depend on the user requirements.

5Indeed, we assume that the parent of n in O is the parent in the extracted spanning tree
of O.
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5.7.5 Implemented use case

We use MySQL database as back-end to store the domain and application ontologies
(i.e., TBox), the TBox indexes of Section 4.2.1 (i.e., the LS− and LS+ for concepts
and the LS− for roles) and the ABox assertions (i.e. tables described in Section 4.2.2.
On the other hand, we use the Business Intelligence tool of Microsoft SQL Server
2008 6 to instantiate the MD query designed by the user and create cubes. Our
method is completely independent of any data management system. We simply need
to create an API to the back-end where the information is stored and the populated
MD query is delivered as a series of tables that can be fed into any off the shelf
analysis tool.

In Figure 5.12 we show the result of one of the MD queries proposed for the use
case in Section 3.2.1. In this use case, the user is interested in analyzing the effi-
cacy of different drugs w.r.t. a series of dimensions, such as the disease diagnosed,
the patient’s age, gender, etc. The method first generates the fact table according
to the conceptual MD query proposed by the analyst and then, for each dimension,
a dimension hierarchy is extracted using the global approach. The result (i.e., the
populated MD query) has been fed to SQL Server and the BI tool allows the an-
alyst to create cubes and navigate through them. In particular, Figure 5.12 shows
the cube generated by averaging the damageIndex measure by disease (rows) and
drug (columns). As shown, the user can navigate through the different levels of the
dimension hierarchies and the measures are automatically aggregated. It is worth
mentioning the added value that provides the semantics involved in the aggregations,
since the dimension hierarchies express conceptual relations extracted from a domain
ontology.

6SQL Server 2008: http://www.microsoft.com/sqlserver/2008
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5.8 Discussion

This chapter has presented a method to enable scalable MD analysis over SW data.
In particular, we are able to extract facts and dimensions from SW data overcoming
several challenges such as the reasoning scalability issues and the complex nature of
the relations that underlie the graph structure of the data. This is performed by
taking into account the user requirements, which are expressed at the conceptual
level.

Our notion of fact is more general than those proposed by other approaches that
rely on functional dependencies [128]. This enables us to analyze data that are intrin-
sically complex and do not meet the traditional MD constraints. Moreover, we are
able to still produce correct results when the extracted facts are not summarizable
by managing duplicated information.

A fact is characterized by dimension and measure values that are reachable from
the subject of analysis by means of an aggregation path. The notion of aggregation
path was firstly introduced in [83]. This work proposes to extract the aggregation
paths of a concept from the completion trees of the tableau algorithm. To that end,
some new rules are introduced and others modified in the tableau algorithm. Al-
though this work is also focused on MD analysis over SW data, the adopted approach
differs from the method presented in this thesis in several aspects: 1) the aggrega-
tion paths are calculated from the tableau algorithm, which ties the method to a
specific reasoner, 2) the complexity of the method corresponds to the complexity of
the tableau algorithm for SHOIQ, which is ExpTime-complete and 3) the method
provides a summary of the ontology, that is, aggregations are performed inside the
ontology by rolling-up instances.

In contrast, we propose a classification of the aggregation paths in three groups
and an incremental algorithm that generates aggregation paths by interestingness or-
der. Moreover, we meet the scalability challenge introduced by the reasoning systems
by performing the reasoning only once off-line and pre-computing direct aggrega-
tion paths with the aid of the indexes proposed in Chapter 4. Also, our method is
independent of any reasoning algorithm (e.g., tableau, hypertableau, rule-based, etc).

Facts are extracted from the ABox by processing the reachability graph, which
is composed by aggregation paths from the subject of analysis to the dimension and
measure user’s conceptual specification. The reachability graph is translated into a
series of conjunctive queries that are efficiently performed thanks to the indexes and
algorithms described in Chapter 4.

Dimension hierarchies are dynamically extracted from semantic sources to better
suit the base dimension values that compose the facts, in contrast to traditional
MD scenarios, where the dimensions are static and pre-defined. In an attempt to
capture as much semantics as possible for the later aggregation process, we model
dimension hierarchies as directed acyclic graphs where nodes are sub-concepts of the
conceptual description of the dimensions and the relations between nodes correspond
to concept subsumption relations. However, in order to ease to posterior use of OLAP
applications, which usually require well-shaped hierarchies, we propose a method to
re-shape the extracted dimension hierarchies by identifying dense regions and selecting
nodes with maximum aggregation power.

The performed experiments confirm the viability of the method and its usefulness
in scenarios where data have complex relations and traditional MD analysis tools fall



140 Chapter 5 Multidimensional analysis of Semantic Web data

short of the user’s analysis requirements.



Chapter 6

Conclusions

The last chapter presents the main results of the thesis and outlines the future research
lines. The chapter concludes by listing the publications resulted from this thesis work.
Section 6.1 summarizes the results of the thesis. Section 6.2 discusses future work.
Section 6.3 lists the main published contributions of the thesis.

6.1 Summary of the Thesis

SW data is currently being heavily used as a data representation format in scientific
communities, social networks, business companies, news portals and other domains.
The irruption and availability of SW data is demanding new methods and tools to
efficiently analyze them and provide richer insights into the current business processes.
Although there exist some applications that make use of SW data, advanced analytical
tools are still lacking, preventing the user from exploiting the attached semantics. The
success of the well-known discipline of MD analysis over traditional and structured
data sources has prompted us to investigate the application of such techniques to
more open and semi-structured scenarios such as the SW.

This thesis has reviewed the evolution of MD analysis techniques over different
types of data, from the analysis of static, structured data residing in relational tables,
to the analysis of external and semi-structured data coming from the Web (mainly
XML), and more recently, the few approaches aimed at performing light analytical
tasks over SW data. As far as we know, none of the approaches have tackled the
problem of MD analysis of SW data in all its complexity. The thesis also summarizes
the main advances on ontology modularization, as it is an intrinsic challenge that
must be overcome when dealing with large amounts of SW data.

The goal of this thesis is to provide a formal framework that enables MD analysis
of SW data in an efficient and scalable manner. We base our research on the hypoth-
esis that SW data is an emerging knowledge resource worth exploiting and that the
knowledge encoded in SW data can be leveraged to perform an efficient, scalable and
full-fledged MD analysis of such data. Therefore, we have tackled research problems
that are related to the manipulation and extraction of specific subsets of SW data,
in order to arrange them in terms of facts and dimensions, which is the typical MD
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structure. However, the full exploitation and manipulation of SW data efficiently
and at large-scale imposes several challenges that we try to overcome during this
dissertation.

SW data are generally based on formal descriptions, which enable to derive new
logical consequences through the process of reasoning. However, reasoning techniques
over large datasets are computationally expensive. In order to deal with the implicit
semantics in a scalable manner we have devised an ontology indexing model that is
applied to the inferred ontology hierarchy. The OIM is based on an interval labeling
scheme that encodes information about ancestors and descendants of concepts in
a compact format. Moreover, we have devised an interval algebra that allows to
operate directly over the indexes and provides fast responses to queries about semantic
relationships between concepts. Through this OIM, we minimize the expensive use
of a reasoner. Going a step further, we have developed a DL query module that gives
sound and complete answers to a restricted set of DL queries, which are responded
with the indexes. The index is applied to the ABox in order to efficiently handle
conjunctive queries over instance data.

A MD analysis task emerges from a specific user’s informational need, usually
expressed in terms of an MD query. Therefore, we are confronted by another challenge
that concerns the extraction of only the required subsets of SW data that are useful for
the MD analysis in a scalable manner. Several modularization approaches have been
proposed to extract specific subsets from ontologies. However, we have identified a
series of requirements on the extracted modules imposed by the analytical applications
that the existing modularization approaches fail to achieve. These are summarized
in the following sentence: the user analysis requirements, expressed as a signature,
should drive the extraction of modules of reduced size that preserve the semantics of
the signature elements to some extent while providing a suitable context and structure
for such elements, all this remaining scalable. The lack of modularity approaches
aimed at covering all the previous requirements has prompted the development of
the OMETs, which are based on the OIM. In particular, we have developed four
methods that offer a good trade-off among the previous requirements. Obviously,
more semantics preservation leads to larger module sizes, whereas more compact
modules leads to small sizes but less semantic preservation. The user is responsible
for selecting the appropriate modularization method.

The previous indexing and modularization methods assist in the analytical tasks
by enabling the construction of the MD schema based on the user query. That
is, they are used to make the extraction of facts and dimensions from SW data
efficient and scalable. However, there is still a mismatch between the graph model
that underlies SW data and the cube-oriented MD model, which is expressed in
terms of facts and dimensions. Identifying facts, dimensions, measures and well-
shaped dimension hierarchies from the graph structure that underlies SW data is a
big challenge. Also, as the web is continuously changing and growing, the developed
methods should take into account the user requirements while being as automatic
as possible so that the results can be reproduced to reflect changes in the data. To
meet the previous challenges, the notions of fact and dimension are revisited in the
SW context and both facts and dimensions are defined from a logical viewpoint.
Facts are formally defined as MD points (a dimension value for each dimension)
and quantified by measure values. However, we relax the functional dependency
restriction usually imposed by traditional MD approaches and search for dimension
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and measure values that are reachable from the subject of analysis by means of an
aggregation path. To that end, we identify different types of aggregation paths. As a
result, we obtain a reachability graph, which is a mapping of the user MD query to the
TBox. Facts are extracted by aggregating the data tuples obtained by processing the
reachability graph. Moreover, as we do not restrict the type of relations between
facts and dimensions, we are able to detect the summarizability property of the
extracted facts and still produce correctly aggregated facts when the facts are not
summarizable. By relaxing the functional dependency between facts and dimensions,
we are able to extract meaningful facts from data that are not MD by nature and
cannot be otherwise analyzed. Dimensions are defined as directed acyclic graphs of
nodes that are semantically related and adhere to the conceptual specification of the
user. That is, nodes are sub-concepts of the conceptual specification of the dimension
and edges correspond to subsumption relations. Two alternative methods allow the
extraction of dimension hierarchies suitably shaped to perform MD analysis and that
preserve the semantics of the dimension values.

The experimental evaluation performed on each of the components of the frame-
work demonstrates that the proposed analysis framework scales to large ontological
resources. Likewise, the developed use cases show the potential and usefulness of the
MD analysis of SW data.

6.2 Future Work

A number of directions for further research have been pointed out throughout the
thesis, which we summarize here. First, we point out to specific limitations of the
current developed methods and suggest further improvements. Then, we refer to
more general research lines that have emerged from this thesis.

Currently, the OIM does not give support for updates. When an ontology is
updated (a new entity or axiom is added to the TBox), the indexes must be re-built.
The OIM could be revised to include efficient change support. However, this is still an
emerging area of research, as even the most recent state-of-the-art indexing techniques
over large graph need to still face incremental updates [151].

The developed OMETs are mainly oriented to the extraction of subsumption
relationships between concepts, whereas the properties are relegated to a secondary
level. This decision was made to meet all the analysis requirements. Even though
some existing modularization techniques consider properties as first-class citizens,
the extracted modules are much larger, which implies a big processing overload at
the same time that re-usability decreases. In fact, properties are very important
for analytical queries, as they are a means to gather together the dimension values
that constitute a fact. However, this thesis approaches this issue from a different
perspective and considers properties by means of the aggregation paths. In any case,
it would be interesting to research to which extent properties can be included as first-
class citizens in the construction of the modules without sacrificing the size or the
compactness.

The fact extractor is based on the reachability of the dimensions and measures
from the subject of analysis. This reachability notion is formally defined by means
of the aggregation paths. Even though we restrict the possible aggregation paths
by making a classification that limits the search space, it would be interesting to
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further devise and characterize new groups of aggregation paths that suit the analytic
requirements of the user.

The methods for extracting hierarchical dimensions from ontologies have been
devised to keep a suitable shape for aggregations. However, automatic stratification
of the dimension hierarchies into levels would be interesting and has not yet been
addressed.

Currently, the fact and dimension extractor are not sensitive to the changes that
may occur in the data (both at the TBox and ABox level). If changes at the TBox
level that invalidate the current pre-computation of aggregation paths occur, these
paths need to be re-computed. Similarly, if changes occurs at the ABox level, the
reachability graph corresponding to the MD query is still valid but the facts need to
be extracted again. It would be interesting to extend the current methods so that
when changes happen, the minimum amount of information must be re-calculated.

Another issue that has not been tackled in this dissertation and needs further
research is the suitability of massive parallel processing to implement the developed
framework, as these approaches are gaining momentum for processing large analytical
workloads.

The thesis demonstrates the initial hypothesis that the semantic annotations at-
tached to the data can be leveraged to provide efficient and scalable MD analysis.
This positive result encourages us to widen the analysis perspectives on SW data to
other kinds of analysis that aid decision making, specially data mining techniques.
Just the same way that facts and dimensions are the building block for MD analysis,
are transactions for data mining. Thus, we conceive data mining on SW data as the
problem of extracting suitable transactions leveraged by the semantics attached to
the data. Research in this direction is very promising and the first results have been
published in [93, 100]. In particular, the aim of these papers is to extract association
rules from SW data. To that end, we let the user express a query to conceptually
identify the items and granularity of the transactions and then, we run a traditional
association rules algorithm over the extracted transactions. The results are very
encouraging, as the semantics attached to the transaction items, and thus, to the
generated rules is very valuable and can be used to enhance the mining process itself.
For example, a simple but smart extension is to filter and prune the large amount of
discovered rules using this knowledge. In the book chapter [96], we discuss the main
data mining approaches proposed so far to mine SW data as well as those that have
taken into account semantic resources and tools to define semantics-aware methods.

Another research line that has come up during the development of this thesis is
related to the field of IE. Although the amount of published SW data is continu-
ously increasing, there are still huge amounts of implicit knowledge hidden in nat-
ural language texts. IE tools are widely known to automatically extract structured
information from unstructured text. However, we go a step further and advocate
the use of semantic annotation inside the IE process as a means to extract struc-
tured information in a SW format (i.e., information already linked to ontologies). In
[95] we propose an unsupervised method to extract semantic relations from biomed-
ical texts based on semantic annotation. As a result, we are able to extract triples
(subject, predicate, object), where both the subject and object have a well-defined
meaning and the predicate expresses a semantic relation between the subject and
object. This way, we are making available SW data, which can be used as input data
set for the MD analysis framework developed in this thesis.
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6.3 List of Publications

This section enumerates the publications concerning this thesis. We have grouped
the publications by topics and point out the chapters that mainly influenced them.

Former research on ontology fragmentation was published in [61]. The work in
[89] and [91] contains the main foundations discussed in Chapter 4 about indexing
and modularization of ontologies.

[61] Ernesto Jiménez-Ruiz, Rafael Berlanga Llavori, Victoria Nebot, and Is-
mael Sanz. Ontopath: A language for retrieving ontology fragments. In
Robert Meersman and Zahir Tari, editors, OTM Conferences (1), volume 4803
of Lecture Notes in Computer Science, pages 897–914. Springer, 2007. ISBN
978-3-540-76846-3.

[89] Victoria Nebot and Rafael Berlanga Llavori. Efficient retrieval of ontology
fragments using an interval labeling schema. In Sistedes, editor, JISBD, 2008.
ISBN 978-84-612-5820-8.

[91] Victoria Nebot and Rafael Berlanga. Efficient retrieval of ontology frag-
ments using an interval labeling schema. Inf. Sci., 179(24):4151–4173, 2009.

The indexing and modularization approaches presented in this thesis have given
support to many applications. In [90, 16, 70] custom ontology fragments need to be
extracted from large ontologies. The work in [13, 14] utilizes the methods to build
conceptual spaces that semantically guide the exploration of unstructured sources.

[90] Victoria Nebot and Rafael Berlanga. Building Tailored Ontologies from
very large Knowledge Resources. In ICEIS Conference Proceedings, volume 2,
pages 144–151. ICEIS, May 2009.

[16] Rafael Berlanga, Ernesto Jiménez-Ruiz, Victoria Nebot, and Ismael Sanz.
FAETON: Form analysis and extraction tool for ontology construction. IJ-
CAT, 39(4):224–233, 2010.

[70] Shahad Kudama, Rafael Berlanga, Lisette Garćıa-Moya, Victoria Nebot,
and Maŕıa José Aramburu. Towards tailored semantic annotation systems
from wikipedia. In Franck Morvan, A Min Tjoa, and Roland Wagner, editors,
DEXA Workshops, pages 478–482. IEEE Computer Society, 2011. ISBN 978-
1-4577-0982-1.

[13] Rafael Berlanga, Ernesto Jiménez-Ruiz, and Victoria Nebot. Building
conceptual spaces for exploring and linking biomedical resources. In Albert
Burger, M. Scott Marshall, Paolo Romano, Adrian Paschke, and Andrea
Splendiani, editors, SWAT4LS, volume 698 of CEUR Workshop Proceedings.
CEUR-WS.org, 2010.

[14] Rafael Berlanga, Ernesto Jiménez-Ruiz, and Victoria Nebot. Exploring
and linking biomedical resources through multidimensional semantic spaces.
BMC bioinformatics, 13 Suppl 1 (Suppl 1): S6+, January 2012. ISSN 1471-
2105. DOI 10.1186/1471-2105-13-S1-S6. URL http://dx.doi.org/10.1186/

1471-2105-13-S1-S6.
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The work in [92, 94, 98] contains the first steps towards the MD analysis of SW
data and the work in [99] contains the foundations for MD analysis developed in
Chapter 5. In the paper [101], an alternative to analyze SW data is explored and the
book chapter in [18] contains an extensive review of the synergies between the fields
of BI and the SW.

[92] Victoria Nebot and Rafael Berlanga. Populating data warehouses with
semantic data. In Antonio Vallecillo and Goiuria Sagardui, editors, JISBD,
pages 303–314, 2009.

[94] Victoria Nebot and Rafael Berlanga. Populating data warehouses with
semantic data. Latin America Transactions, IEEE (Revista IEEE America
Latina), 8(2):150 –157, april 2010.

[98] Victoria Nebot and Rafael Berlanga Llavori. Building data warehouses
with semantic data. In Florian Daniel, Lois M. L. Delcambre, Farshad Fo-
touhi, Irene Garrigós, Giovanna Guerrini, Jose-Norberto Mazón, Marco Mesiti,
Sascha Müller-Feuerstein, Juan Trujillo, Traian Marius Truta, Bernhard Volz,
Emmanuel Waller, Li Xiong, and Esteban Zimányi, editors, EDBT/ICDT
Workshops, ACM International Conference Proceeding Series. ACM, 2010.

[99] Victoria Nebot and Rafael Berlanga. Building data warehouses with se-
mantic web data. Decision Support Systems, 52(4):853–868, 2012.

[101] Victoria Nebot, Rafael Berlanga, Juan Manuel Pérez-Mart́ınez, Maŕıa José
Aramburu, and Torben Bach Pedersen. Multidimensional integrated ontolo-
gies: A framework for designing semantic data warehouses. Journal on Data
Semantics XIII, 5530:1–36, 2009.

[18] Rafael Berlanga, Oscar Romero, Alkis Simitsis, Victoria Nebot, Tor-
ben Bach Pedersen, Alberto Abell, and Mara Jos Aramburu. Semantic Web
Technologies for Business Intelligence. In Business Intelligence Applications
and the Web: Models, Systems and Technologies, pages 310–339. IGI Global,
2012.

During the research concerning this thesis, alternative approaches to MD modeling
for analyzing SW data have been explored, with special emphasis on data mining
techniques. This has given rise to the publications [93, 100], which explore association
rule mining over SW data, and the book chapter [96], which reviews and discusses
the main data mining approaches proposed so far to mine SW data as well as those
that have taken into account semantic resources and tools to define semantics-aware
methods.

[93] Victoria Nebot and Rafael Berlanga. Mining association rules from se-
mantic web data. In Nicolás Garćıa-Pedrajas, Francisco Herrera, Colin Fyfe,
José Manuel Beńıtez, and Moonis Ali, editors, IEA/AIE (2), volume 6097 of
Lecture Notes in Computer Science, pages 504–513. Springer, 2010.

[100] Victoria Nebot and Rafael Berlanga Llavori. Finding association rules in
semantic web data. Knowl.-Based Syst., 25(1):51–62, 2012.

[96] Victoria Nebot and Rafael Berlanga. XML Mining for Semantic Web. In
XML Data Mining: Models, Methods, and Applications, pages 317–342. IGI
Global, 2012.
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Semantic annotation is paramount for the development of the SW. The early work
in [15] demonstrates the role of semantic annotation to integrate heterogeneous data.
The tool described in [17] is a dictionary-based semantic annotation tool that scales
to large ontologies and large texts.

[15] Rafael Berlanga, Ernesto Jiménez-Ruiz, Victoria Nebot, David Manset,
Andrew Branson, Tamas Hauer, Richard McClatchey, Dmitri Rogulin, Jetendr
Shamdasani, Sonja Zillner, and Joerg Freund. Medical data integration and
the semantic annotation of medical protocols. In CBMS, pages 644–649, 2008.

[17] Rafael Berlanga, Victoria Nebot, and Ernesto Jiménez-Ruiz. Semantic
annotation of biomedical texts through concept retrieval. Procesamiento del
lenguaje natural, 45:247–250, 2010.

The work in [97, 102, 95] has emerged from this thesis as a related and interesting
research line. The work has as common denominator to uncover implicit information
hidden in natural language texts in an attempt to enrich the SW with new, semi-
structured and semantically-enriched data.

[97] Victoria Nebot, Shahad Kudama, and Rafael Berlanga. Towards the dis-
covery of semantic relations in large biomedical annotated corpora. In Morvan
et al. 2011 Database and Expert Systems Applications, DEXA, International
Workshops, Toulouse, France, August 29 - Sept. 2, 2011. IEEE Computer
Society, 2011, pages 465–469.

[102] Victoria Nebot, Min Ye, Mario Albrecht, Jae-Hong Eom, and Ger-
hard Weikum. DIDO: a disease-determinants ontology from web sources. In
Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra,
Elisa Bertino, and Ravi Kumar, editors, WWW (Companion Volume), pages
237–240. ACM, 2011.

[95] Victoria Nebot and Rafael Berlanga. Semantics-aware open information
extraction in the biomedical domain. In Adrian Paschke, Albert Burger, Paolo
Romano, M. Scott Marshall, and Andrea Splendiani, editors, SWAT4LS, pages
84–91. ACM, 2011.

Victoria Nebot and Rafael Berlanga. Exploiting Semantic Annotations for
Open Information Extraction: an experience in the biomedical domain. Ac-
cepted for publication in Knowledge and Information Systems, 2012.
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[62] Antonio Jimeno-Yepes, Ernesto Jiménez-Ruiz, Rafael Berlanga, and Dietrich
Rebholz-Schuhmann. Reuse of terminological resources for efficient ontological
engineering in Life Sciences. BMC Bioinformatics, 10(Suppl 10):S4, 2009.
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