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uneix. A l’Isaac, per ajudar-me inconscientment a decidir el meu
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ileen, Nicola, Núria, Simone, Sophie, Stephen, Thomas and Vanda.
Thank you Sophie for teaching me all I know in the lab and to
spend part of your precious time purifying not one, not two but
three times our “beloved” kinesin. Gràcies Núria per ajudar-me
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This thesis is based on the following articles:

• D. Oriola and J. Casademunt.
Cooperative force generation of KIF1A Brownian motors.
Physical Review Letters, 111, 048103 (2013). (Chapter 3)

• D. Oriola and J. Casademunt.
Cooperative action of KIF1A Brownian motors
with finite dwell time.
Physical Review E, 89, 032722 (2014). (Chapter 3)

• D. Oriola, S. Roth, M. Dogterom and J. Casademunt.
Formation of helical membrane tubes around microtubules by
single-headed kinesin KIF1A.
Nature Communications, 6, 8025 (2015). (Chapter 4)
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• D. Oriola, H. Gadêlha and J. Casademunt.
Nonlinear dynamics of flagella driven by molecular motors.
In preparation. (Chapter 7)



Contents

1 General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Part I Cooperative force generation by molecular motors

2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Vesicular traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Intracellular transport . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Axonal transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Coordination of motor teams . . . . . . . . . . . . . . . . . . . 22
2.5 A model motor: the kinesin KIF1A . . . . . . . . . . . . . . 23
2.6 Modelling intracellular transport . . . . . . . . . . . . . . . . 24

2.6.1 The two-state model . . . . . . . . . . . . . . . . . . . . . . 26

3 Theoretical modeling of KIF1A . . . . . . . . . . . . . . . . . 31
3.1 Ratchet model for KIF1A dynamics . . . . . . . . . . . . . . 31

3.1.1 Hard-core repulsive interactions . . . . . . . . . . . . 35
3.1.1.1 The dwell time effect . . . . . . . . . . . . . . . 35
3.1.1.2 Staircase-shaped VF curves for large N 37
3.1.1.3 Convergence to mean-field . . . . . . . . . . 40
3.1.1.4 Cluster force distribution . . . . . . . . . . . 42
3.1.1.5 Coordinated motion of large clusters . 44
3.1.1.6 Efficiency and randomness . . . . . . . . . . 45

3.1.2 Confining interactions . . . . . . . . . . . . . . . . . . . . 47
3.1.2.1 Rigidly coupled motors . . . . . . . . . . . . . 47
3.1.2.2 Raft-induced interactions . . . . . . . . . . . 49
3.1.2.3 Transition between rigid coupling

and hard-core repulsion . . . . . . . . . . . . . 51

IX



X Contents

3.1.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Lattice model for KIF1A dynamics . . . . . . . . . . . . . . 54

3.2.1 Dynamics on a 1D lattice . . . . . . . . . . . . . . . . . 56
3.2.1.1 Cases N = 1 and N = 2 . . . . . . . . . . . . 57
3.2.1.2 Monte Carlo simulations . . . . . . . . . . . . 62
3.2.1.3 N interacting motors . . . . . . . . . . . . . . . 63

3.2.2 Dynamics on a 2D lattice . . . . . . . . . . . . . . . . . 64
3.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Membrane tube formation by KIF1A . . . . . . . . . . . . 69
4.1 Formation of membrane tubes . . . . . . . . . . . . . . . . . . 69
4.2 Minimal experimental in vitro system . . . . . . . . . . . . 71

4.2.1 Experimental methods . . . . . . . . . . . . . . . . . . . . 72
4.2.1.1 Microtubule preparation . . . . . . . . . . . . 72
4.2.1.2 KIF1A preparation . . . . . . . . . . . . . . . . 72
4.2.1.3 Gliding assays . . . . . . . . . . . . . . . . . . . . . 73
4.2.1.4 Electroformation of GUVs . . . . . . . . . . 74
4.2.1.5 Tube pulling assay . . . . . . . . . . . . . . . . . 76

4.2.2 Image acquisition and data analysis . . . . . . . . . 77
4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.3.1 Parallel tubulation . . . . . . . . . . . . . . . . . 78
4.2.3.2 Helical tubulation . . . . . . . . . . . . . . . . . . 81

4.3 In silico model for longitudinal tube pulling . . . . . . . 85
4.3.1 Description of the model . . . . . . . . . . . . . . . . . . 85

4.3.1.1 Tube region . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.1.2 Vesicle region . . . . . . . . . . . . . . . . . . . . . 89
4.3.1.3 Parameters for the in silico model . . . 90

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.3 Mean-field model for helical tube formation . . 93
4.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Part II Dynamical instabilities of motor assemblies

5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1 Muscle contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Flagellar and ciliary beating . . . . . . . . . . . . . . . . . . . . 105
5.3 Positive feedback and negative damping . . . . . . . . . . 108

5.3.1 Two-state rigid model . . . . . . . . . . . . . . . . . . . . 108
5.3.2 ‘Tug-of-war’ model . . . . . . . . . . . . . . . . . . . . . . . 111



Contents XI

6 Spontaneous oscillations of motor assemblies . . . . . 113
6.1 Two-state model with an elastic element . . . . . . . . . 114
6.2 Three-variable system . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3 Comparison with a minimal actomyosin system . . . . 118
6.4 Subharmonic oscillations . . . . . . . . . . . . . . . . . . . . . . . 120
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Flagellar beating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.1 Continuum flagella equations . . . . . . . . . . . . . . . . . . . 126
7.2 Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . . . 130
7.3 Parameter choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.4 Nonlinear motor dynamics . . . . . . . . . . . . . . . . . . . . . . 135
7.5 Principal component analysis . . . . . . . . . . . . . . . . . . . 137
7.6 Bending initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
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Chapter 1

General Introduction

Molecular motors are ubiquitous in biology and they are in charge
of a variety of mechanical functions inside cells, such as force
generation and motility in living systems. They move, divide and
spatially organize the crowded interior of a cell. These molecules
constitute the basis of the elementary processes in cells, such as
cell division or RNA transcription. Molecular motors may be clas-
sified in two major groups, namely cytoskeletal or nucleic acid
motors, depending on whether they act on protein or nucleic acid
based structures (Fig. 1.1)1. Cytoskeletal motors are in charge of
many different processes inside the cell such as intracellular traffic,
mitosis, meiosis, muscular contraction or flagellar beating. On the
other hand, nucleic acid motors are involved in DNA replication
and repair, RNA transcription, chromatin remodeling or genome
packaging [Alberts et al., 2002].

Molecular motors are proteins capable of transforming chemical
energy into mechanical work. The two main sources of chemi-
cal energy are the hydrolysis of nucleotide triphosphate (NTP)
molecules and ionic/proton gradients. The first energy source
is most commonly used by cytoskeletal and nucleic acid motors
whereas the second energy source is typically used by rotatory
motors such as ATP-synthase or the rotatory motor of bacterial
flagella. The hydrolysis of NTP results into a nucleotide diphos-
phate (NDP) molecule and an inorganic phosphate, providing an

1 Other molecular motor examples are the F1-ATP synthase or the bacterial flagellar motor

which are involved in ATP synthesis and bacterial propulsion, respectively.
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2 1 General Introduction

energy of ∼ 10kBT , where kBT is the thermal energy. The most
common forms of NTPs are adenosine triphosphate (ATP) being
the major source of cellular energy and guanosine triphosphate
(GTP), which is a frequent cofactor of enzymes and proteins. The
chemical energy released during ATP hydrolysis is converted into
mechanical work, producing nanometer ranged displacements (1
nm = 10−9 m). Hence, the order of magnitude of the forces gen-
erated by cytoskeletal motors is ∼ 10kBT/nm, in the range of
piconewtons (1 pN = 10−12 N).

a b

Fig. 1.1 Artistic 3D rendering of molecular motors based upon X-ray crystal structure.
a) Cytoskeletal motor: dynein walking along a microtubule. Image created by Graham

Johnson of The Scripps Research Institute (grahamj.com). b) Nucleic acid motor: RNA
polymerase transcribing a DNA template. (Art of the Cell, Medical & Scientific 3D anima-

tion, www.artofthecell.com).

From a physical perspective, molecular motors can be suit-
ably described using overdamped mechanics in a noisy environ-
ment. Therefore, a first fundamental question is: Which type
of forces act on a molecular motor? The relevant forces are of
four different types: elastic, viscous, thermal and electrostatic2

[Howard, 2001]. These forces are found in the range of 1 to 103 pN.
Elastic forces have their origin on the molecular bonds which form
a molecule. The elasticity of such proteins is usually described
by means of Hooke’s law, which yields a good approximation
in many situations. Viscous forces are of transcendental impor-
tance in the molecular scale, since the hydrodynamics of micro

2 Covalent forces are also important (∼ 104 pN) but they will not be our main focus of

attention.



1 General Introduction 3

and nanosized objects are described in the limit of low Reynolds
number [Howard, 2001, Lauga and Powers, 2009]. The Reynolds
number is a dimensionless quantity which is defined as the ratio
of inertial forces to viscous forces. This number can be expressed
as Re = ρvL/η, where ρ is the density of the fluid, v and L are
the velocity and the size of the object respectively, and η is the
viscosity of the medium. Let us consider a motor protein of size
L ' 10 nm in water (ρ ' 103 kg/m3 and η ' 10−3 Pa·s), moving
with speed v ' 1 µm/s. In this case, Re ' 10−8! Hence, for our
purposes Re � 1 and therefore inertial forces are negligible in
front of viscous forces. Additionally, friction forces can be typically
considered to be proportional to the velocity of the system v, via
a drag coefficient. Unlike macroscopic motors, molecular motors
work in a thermal bath where thermal fluctuations are significant.
Thermal forces have their origin on the random collisions of water
and other molecules on proteins. The resulting random forces
drive diffusion and play a crucial role in many processes in the cell.
Finally, electrostatic and Van der Waals forces determine protein
folding and the chemical kinetic rates involved in the motor cycle.

In this thesis, we will focus on cytoskeletal motors and refer to
them as simply ‘motors’. Next, we will study how motors are able
to transfer force and directed movement to the environment by
interacting with the cytoskeleton, a complex architecture inside
the cell composed of polar filaments which are able to actively
assemble and disassemble.

Cytoskeletal filaments

Two major classes of cytoskeletal filaments are found within the
cell to which molecular motors can interact, namely actin filaments
and microtubules (MTs)3 [Alberts et al., 2002, Howard, 2001].

3 A third class of cytoskeletal filaments are intermediate filaments, which confer further

mechanical consistency to the cell.



4 1 General Introduction

Actin filaments

Actin filaments are composed of actin monomers, which assemble
in a right-handed double helix with a full period of 72 nm and
a diameter of 7 nm. Actin monomers are structurally polar, and
monomers assemble in a head-to-tail arrangement which confer
an overall polarity to the filaments, being the two ends struc-
turally different. Actin polymerization is mediated by ATP. Actin
monomers can be in three different states depending on whether
they are bound to ATP, ADP-Pi or ADP (yellow, orange and
red monomers in Fig. 1.2). The thermodynamically limiting step
for actin assembly, nucleation, is the formation of dimers and
trimers. ATP-bound monomers assemble faster than ADP-bound
monomers and the resulting structure is more stable. Hence, actin
filaments with ADP-bound monomers depolymerize faster. The
ATP-containing end is referred to as plus-end (or barbed end) and
the ADP-containing end is referred to as minus-end (or pointed
end).

In eukaryotic cells, actin filaments usually assemble in net-
works. This process is highly regulated by actin associated pro-
teins which control the nucleation, growth and interaction of actin
filaments [Alberts et al., 2002]. Actin nucleation is a slow process.
The Arp 2/3 complex triggers actin nucleation whenever acti-
vated by nucleation promoting factors (NPFs) [Mullins et al., 1998,
Blanchoin et al., 2014]. In addition to this nucleating activity,
the Arp 2/3 complex can also attach to pre-existing actin fil-
aments and initiate the nucleation of another actin filament, with
a preferred angle of 70 degrees [Mullins et al., 1998], leading to
branched actin networks (Fig. 1.2b,1). On the other hand, poly-
merization activity can be enhanced by actin monomer binding
proteins such as profilin or formin, which promote polymerization
at the barbed end [Blanchoin et al., 2014, Schlüter et al., 1997].
The network is further modeled by capping proteins which regu-
late the length of actin filaments, and crosslinker proteins which
structure and confer further consistence to the network (Fig. 1.2b)
[Blanchoin et al., 2014].
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a

b
1)

2)

3)

Fig. 1.2 Actin filaments. a) Actin filaments (F-actin) are composed of globular actin

monomers (G-actin) which assemble in a right-handed double helix. b) Distinct actin fila-
ment organizations: 1) Branched actin network. The entanglement of filament subnetworks

leads to mechanical interactions represented by a spring (in red) connecting the barycenters
(spheres) of adjacent subnetworks. 2,3) Long and short crosslinkers organize actin filaments
into networks. On the right, gray diagrams represent mechanical analogs of the molecular

structures. (Adapted from [Blanchoin et al., 2014]).
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Microtubules

Microtubules are hollow cylindrical tubes of typically 24 nm in
diameter and several micrometers long (Fig. 1.3). They are com-
posed of α and β tubulin protein subunits, which assemble in αβ
dimers of 8 nm in length. At the same time, the dimers associate
head-to-tail forming linear protofilaments (pfs) with the dimer
periodicity. Protofilaments associate laterally to form a sheet that
closes forming the cylindrical tube, described as a B-type lattice
with a seam (Fig. 1.3a, long arrow) [Conde and Cáceres, 2009].
During lateral association, there exist a rise between adjacent
pfs [Chrétien and Wade, 1991], such that the tubulin subunits ar-
range in a left-handed helix with a pitch of 12 nm. On the other
hand, the head-to-tail association of the dimers provides a polarity
on the microtubules, which have different polymerization rates
at the two ends. β-tubulin monomers are oriented towards the
faster-growing end (plus end) while α-tubulin monomers are ex-
posed at the slower-growing end (minus end) (Fig. 1.3a,b). Each
subunit forming the tubulin dimer has a binding site for GTP,
but only that exposed to the exterior in the β-tubulin subunit
can be hydrolyzed into GDP. The GTP molecules are hydrolyzed
quickly after assembly; consequently, the microtubule is charac-
terized by a GTP cap at the plus end, and a GDP tubulin region
in the rest of the microtubule. When the GTP cap is stochas-
tically lost, the protofilaments splay apart and the microtubule
rapidly depolymerizes, in a process known as a catastrophe. If a
GTP-cap is newly formed, the microtubule can slowly grow again,
known as a rescue (Fig 1.3b). A dynamic instability is known
as the switching between growing (polymerizing) and shrinking
(depolymerizing) states. The case in which a microtubule grows at
the plus end and shrinks in the minus end is known as treadmilling.

Finally, most cellular microtubules typically contain 13 protofil-
aments, although microtubules with 8 pfs and as many as 19 pfs
have been observed in vitro and in vivo [Amos and Schlieper, 2005,
Chrétien and Wade, 1991]. 13 pf microtubules run straight with
respect to the microtubule axis. However, when the number of
protofilaments differs from 13, the structure rearranges in such a
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a b

c

Fig. 1.3 Microtubule filaments. Microtubules are hollow cylindrical tubes of typically 24
nm in diameter composed of α and β tubulin subunits which assemble in αβ dimers of

8 nm in length. b) Microtubules can rapidly grow (polymerize) or shrink (depolymer-

ize) in size, depending on how many tubulin molecules they contain. (Adapted from
[Conde and Cáceres, 2009]) c) A single microtubule typically contains 10 to 15 protofil-

aments (13 in mammalian cells) that wind together to form a 24 nm wide hollow cylinder.
(Adapted from [Amos and Schlieper, 2005]).



8 1 General Introduction

way that protofilaments wind around the microtubule axis (see
Fig. 1.3c), and form a shallow helix known as superhelix.

Cytoskeletal motor proteins

There exist three large superfamilies of cytoskeletal molecular
motors: kinesins, myosins and dyneins, which are involved in
many force generating processes in cells [Alberts et al., 2002,
Howard, 2001]. The representative protein structures of the three
superfamilies are shown in Fig. 1.4. Kinesins and dyneins move
along microtubules typically to the plus and minus ends respec-
tively, while myosin motors move along actin filaments to the plus
end (barbed end). Their protein structure is characterized by the
presence of binding regions to the filament (heads), a tail region
to bind specifically to a cargo and a coiled-coil domain connecting
both regions. On the other hand, the motor domain is the region
where ATP molecules bind to produce a conformational change on
the protein which triggers the power stroke. In the case of kinesin
and myosin, the binding domains and motor domains physically
coincide; however, this is not the case for dynein (see Fig. 1.4c).
From a physical prespective, directed motion is achieved by virtue
of ATP hydrolysis and the polarity of the filament tracks. ATP
supply drives the system out of equilibrium and breaks time rever-
sal symmetry, while the polarity of the filaments breaks reflection
symmetry [Jülicher et al., 1997].

Kinesin (from the Greek kinein) was first isolated from squid
nervous tissue [Vale et al., 1985], while a microtubule ATPase with
the same molecular weight and properties as kinesin was inde-
pendently discovered in the chicken brain [Brady, 1985]. Kinesin
motors are involved in a large variety of cell processes such as
intracellular transport, mitosis or meiosis. The kinesin superfamily
is constituted by 15 kinesin families according to phylogenetic
analyses [Hirokawa et al., 2009]. These families can be classified in
three main groups, depending on the position of the motor domain
in the molecule: N-kinesins, M-kinesins and C-kinesins, where
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in each case the motor is located at the amino-terminal region,
in the middle of the protein or in the carboxyl-terminal region.
N-kinesins and C-kinesins drive microtubule plus- and minus-end-
directed motilities, respectively, whereas M-kinesins depolymerize
microtubules. N-Kinesins (hereinafter referred as simply kinesins)
are composed of a relatively small globular motor domain (∼ 400
aa) which is connected to stalk and tail regions that are used for
kinesin dimerization and/or kinesin binding to cargos, adaptors
or scaffolding proteins. Cargos can bind to the tail region and be
transported when the motor attaches to a microtubule track.

Kinesins can act as monomers (single-headed), dimers (two-
headed) or tetramers (four-headed). The kinesin-3 KIF1A can
work in a monomeric form in vitro [Okada et al., 2003]. The sim-
plicity of the single-headed form serves as a motor paradigm to
understand the mechanochemistry of the kinesin motor domain.
However, kinesins are usually found to act as dimers, being the
kinesin-1 KIF5 (also known as conventional kinesin) the most
studied motor. This motor moves using a ‘hand-over-hand’ mech-
anism [Yildiz et al., 2004]. This model postulates that the two
heads alternate so that the kinesin is always attached to the micro-
tubule by at least one motor domain during the movement, and
the two heads alternate the leading/trailing position. Finally, the
tetrameric kinesin-5 motor KIF11 (also known as Eg5) is able to
crosslink anti-parallel microtubules and it is essential for mitosis
in most organisms [Kapitein et al., 2005].

Myosin (from the Greek muós) was discovered in the XIX century
[Kühne, 1859] and subsequently identified as an actin-activated
ATPase almost a century later [Engelhardt and Ljubimowa, 1939,
Straub, 1943]. The myosin superfamily contains at least 18 fami-
lies [Thompson and Langford, 2002], termed myosin I to myosin
XVIII. Their motor domain is slightly larger than kinesin (∼
800 aa) and shares a similar structure [Kull et al., 1996]. Myosin
motors are involved in muscle contraction, cytokinesis, intracel-
lular transport, Golgi organization and other cellular processes
[Sweeney and Houdusse, 2010, Hartman and Spudich, 2012]. They
are typically found in monomeric (e.g. Myosin I) or dimeric (e.g.
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Myosin II, V) forms.

Finally, dynein (from the Greek dynamis) was first identified in
protozoon cilia [Gibbons and Rowe, 1965]. Dynein can be grouped
in 9 classes of dynein heavy chains [Wickstead and Gull, 2007,
Roberts et al., 2013]. Dynein heavy chains are large polypeptides
(∼ 3000 aa), each containing a single motor domain. The first class
(here referred to as simply cytoplasmic dynein) is involed in differ-
ent cellular functions such as vesicular transport or positioning of
the nucleus during cell division, and acts as a two-headed motor,
containing two heavy chains (see Fig. 1.4c). The second class is re-
ferred to as ‘intraflagellar transport dynein’ or ‘cytoplasmic dynein
2’ for distinction. Finally, the remaining classes are classified as
axonemal dyneins, since they are found in a cytoskeleton struc-
ture named axoneme which is the major structure composing cilia
and flagella. Dyneins inside the axoneme are found in monomeric
and dimeric forms in a complex arrangement [Roberts et al., 2013].

Cytoskeletal motor proteins bind and unbind stochastically to
cytoskeletal filaments. An important property is their duty ratio,
which is defined as the fraction of the time a motor spends at-
tached to a filament [Howard, 2001]. For example, a high duty
ratio (∼ 1) is important for intracellular transport, since mo-
tors are able to translocate organelles over long distances be-
fore detaching from a filament. In this context, motors are re-
ferred to as being processive. In contrast, when the duty ratio
is low (� 1), motors are referred to as non-processive, spend-
ing only a small fraction of time attached to filaments. Motors
with low duty ratio are essential to drive dynamical instabilities
[Howard, 2009]. Some prominent examples are the flagellar beat,
mitotic spindle oscillations or bidirectional organelle transport
[Camalet et al., 1999, Grill et al., 2005, Müller et al., 2008].

Finally, serious human and animal diseases arise from cytoskele-
tal motor protein dysfunctions. Kinesins are known to be involved
in neural disorders, viral traffic, kidney diseases and can be used as
drug targets in cancer chemotherapy [Millecamps and Julien, 2013,
Mandelkow and Mandelkow, 2002]. Defects in muscular myosin
cause myopathies [Oldfors et al., 2004] and dynein deficiencies
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Fig. 1.4 a) Kinesin-1 (KIF5). Kinesin dimer with a coiled-coil region (grey) which con-
nects the two motor domains (dark blue) through a neck linker region (light blue). Cargo

binding is mediated by the kinesin light chains (green) and the tail region (purple). b)

Myosin V. The structure is similar to the case of kinesin; however, the neck linker regions
are larger c) Cytoplasmic dynein. We identify two microtubule-binding domains at the end

of a coiled-coil stalk (grey). The motor domains consist of a ring of AAA+ domains (dark

blue) with one and three active sites of ATP hydrolysis. The N-terminal tail of dynein
(grey) is involved in dimerization and binding to dimers of intermediate chains, light inter-

mediate chains and three light chains (different shades of green). Cargo binding is mediated
by these accessory chains. (Adapted from [Carter, 2013]).

can lead to chronic respiratory diseases and male infertility
[Chao et al., 1982, Khelifa et al., 2014]. Although many advances
have been done in the field of molecular and cell biology, we are
still rather unable to make predictive statements in these systems,
for example, on how motor proteins interact and coordinate inside
the cell. One of the main reasons is that we are still lacking a
complete understanding of the physical principles of subcellular
organization [Needleman and Brugués, 2014]. Next, we illustrate
some examples of collective motor organization.
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Collective dynamics of cytoskeleton motor proteins

In many cases, cytoskeletal motors operate in groups inside
the cell, rather than acting as isolated entities. In intracel-
lular transport, groups of ∼ 10 motors work collectively in
vesicle transport [Holzbaur and Goldman, 2010]. The beating of
cilia or flagella involves roughly ∼ 104 − 105 dynein motors
[Ma et al., 2014, Nicastro et al., 2006], while in the case of a
muscle, the number of myosins involved can reach 1019 − 1020

[Guérin et al., 2010, Cotterill, 2002].

An early approach to classify molecular motors regarding their
collective behaviour was the categorization of rowers and porters
[Leibler and Huse, 1993, Howard, 2001], which is related to the
concept of processivity. The latter classification is based on the
functionality of motors regarding their tasks in the cell, rather than
their molecular structure or family. Large ensembles of myosin in
muscles (or axonemal dynein in cilia and flagella), can be regarded
as rowers such that each motor cannot work individually and it
is a part of a larger assembly. Due to their low duty ratio, the
action of individual molecules is not correlated over large distances.
Hence, motors spend most of their time binding and unbinding
without producing any power stroke. In this way, motors do not
work against each other and “protein friction” is minimized. This
is suitable for large cytoskeletal structures which need to perform
work at high loads. On the other hand, porters are entities which
can work individually or in small groups, such as kinesin, cytoplas-
mic dynein or some myosin members (e.g. Myosin V) transporting
organelles. These types of motors are characterized by their high
duty ratio. In this case, loads are generally small and protein
friction is not an important issue.

Over the last two decades, in vitro and in vivo experiments
together with theoretical descriptions, have shown that the inter-
action of many motors can lead to complex phenomena such as
bidirectional motion, oscillations or the formation of dynamical
structures. In many cases, the study of minimal reconstituted
systems by using cytoskeletal filaments and motors, have provided
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deep physical insights on the collective behaviour of these systems.
Some prominent examples are sumarized in Figure 1.5.

As previously mentioned, kinesins and cytoplasmic dyneins usu-
ally act as porters in vesicle transport. The motion of these motors
in microtubule networks can be tracked using single-molecule tech-
niques. Recently, superresolution microscopy has revealed how
motors behave in the presence of obstacles, such as microtubule-
microtubule intersections [Bálint et al., 2013]. In parallel, lattice
models describing the dynamics of molecular motors in networks
have just begun to emerge [Neri et al., 2011, Neri et al., 2013]. As
more motors interact on the same cargo, there exist the pos-
sibility that those have opposite polarities. In this case, an in-
teresting phenomenon emerges which is known as ‘tug-of-war’
[Hendricks et al., 2010]. From a theoretical perspective, this phe-
nomenon can be understood as a symmetry breaking process
[Müller et al., 2008]; however, the underlying in vivo implica-
tions are still under debate [Hancock, 2014]. If tens of motors
cluster in lipid membranes, they may be strong enough to
be able to form membrane tube networks [Koster et al., 2003,
Leduc et al., 2004, Shaklee et al., 2008]. This process can be de-
scribed by using lattice models and studying how motors self-
organize at the tube tips [Campàs et al., 2008]. For larger mo-
tor assemblies (N > 102) motors are usually found to work
as rowers. When these assemblies are coupled to an elastic el-
ement, motors are able to produce self-organized oscillations
[Camalet et al., 1999, Guérin et al., 2010]. Spontaneous oscilla-
tions in actomyosin systems or the beating of cilia and flagella, are
some examples that have been reproduced in minimal in vitro sys-
tems [Plaçais et al., 2009, Sanchez et al., 2011]. Finally, an impor-
tant example of large-scale self-organization of microtubules and
motors is the mitotic spindle. In this dynamical cell structure, ki-
nesins and dyneins work collectively to segregate chromosomes dur-
ing mitosis [Brugués et al., 2012, Brugués and Needleman, 2014].

In this thesis, we will study some of the previous examples. In
the first part, we will mainly focus on the cooperative behaviour
of porters, while in the second part we will study the oscillatory
properties of rowers coupled to an elastic element.
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for the concentration of biotinylated lipids in the membrane
corresponding to a threshold for the motor density on the vesicle.
Equivalently, at fixed motor density, there is a maximal tension
above which no tubes can be extracted (data not shown). This
finding corroborates the data published in ref. 11.

We used fluorescence videomicroscopy to follow the growth of
single tubes (Fig. 1A). The fluorescence intensity and, therefore,
the distribution of motors along the tube are inhomogeneous,
especially at the tip, where an excess of fluorescence can be seen
(Fig. 1B and Movie 1, which is published as supporting information
on the PNAS web site).

The fluorescence distribution along the tube for each frame (Fig.
1B) was determined. An example of the resulting space–time plot
is given in Fig. 1C; it is a three-dimensional diagram, showing
fluorescence intensity (z axis, color coded) as a function of the
position along the tube path (y axis) and time (x axis). We observed
that, on every frame, the tip was more fluorescent than the rest of
the tube. The rest of the image, where no tube could be seen, was

not fluorescent. The position of the tip of the tube was determined
by detecting the position of the transition between the maximum
intensity and the background. The instantaneous velocity of tube
growth between two consecutive images was calculated by deriva-
tion of the position of the tip as a function of time.

The average velocity, calculated over 20 different experiments
where a single tube was pulled from the GUV, was 0.09 ! 0.06
!m!s for an average membrane tension of 2 " 10#4 N!m. The
growth velocity is the velocity of kinesins effectively pulling the
tube. It is smaller than the velocity obtained in a bead assay, which,
as discussed below, corresponds to the velocity of kinesins at
vanishing load, V0 $ 0.6 ! 0.1 !m!s. Bead assays have been
performed in the same experimental context as tube assays (mo-
lecular motors from the same batch, MT network obtained with the
same protocol, same buffers and ATP concentration), and the
measured velocity is in good agreement with data by other groups
(10, 14).

Theoretical Analysis
To describe theoretically the tube extraction, we consider the three
regions sketched in Fig. 2B, namely, the vesicle, the tube, and the

Fig. 1. Membrane tube growth. (A) Fluorescence image showing a vesicle,
a tube, and the accumulation of motors at its tip. The vesicle contains 0.1 mol%
DHPE-Biot-Rhod. (Bar, 2 !m.) (B) Time sequence images of a growing tube
(one image per 5 s). It corresponds to the membrane tube in A. The tube grows
along a MT with a velocity of "0.16 !m!s. (Bar, 2 !m.) (C) Fluorescence
intensity plot as a function of position along the tube path and time, for the
same tube as in B.

Fig. 2. Sketch of the main features of the system. (A) Confocal side-view
image of a membrane tube representing the typical geometry of the system
and suggesting the natural regions dividing it. The binding sites of motors
were not specifically labeled. (Bar, 2 !m.) (B) Schematic representation of the
different regions (vesicle, tube, and tip). (C) Sketch of the tube-tip boundary
and tip region representing the accumulation process at the tip (V % V0). V is
the velocity of the tube and of bound motors at the tip; V0 is the zero-load
velocity of bound kinesins. ku

0 and kb are the unbinding rate at zero load and
the binding rate of kinesins onto MTs, respectively. We schematically repre-
sent the accumulation of motors at the tip. (D) Binding a biotinylated kinesin
to a rhodamin-labeled biotinylated lipid (DHPE-Biot-Rhod) through a strepta-
vidin molecule.

17098 # www.pnas.org!cgi!doi!10.1073!pnas.0406598101 Leduc et al.

Theoretical models Experiments

nontreated cells in immunofluorescence images (Fig. S4). West-
ern blot analysis showed only a small increase (∼1.5-fold) in the
levels of acetylated tubulin in treated cells (Fig. S4).

Correlation of Lysosome Trajectories with the Underlying Microtubule
Cytoskeleton. We next aimed to correlate lysosome trajectories
with the 2D superresolution images of the microtubule cytoskel-
eton. Fig. 2 shows multiple frames from an example time-lapse
movie and the corresponding trajectory of a lysosome overlaid with
the conventional and the STORM image of microtubules (Movie
S3). Individual microtubules and their organization could not be
resolved in the conventional image because of the diffraction limit.
However, the microtubule network was clearly resolved in the
STORM image, and the lysosome trajectory could be precisely
mapped onto the individualmicrotubules.When the trajectory was
aligned with the STORM image of microtubules, it became evi-
dent that the lysosome crossed several microtubule–microtubule
intersections and switched microtubules multiple times. In the
overlay with the conventional microtubule image, only the sharp
changes in transport direction (e.g., at t = 12 s) could be inter-
preted as a potential change of microtubule track, whereas the
lysosome behavior at the rest of the intersections was missed. This

example clearly demonstrates the power of correlative single-
particle tracking and superresolution imaging in studying the in-
teraction of cargos with their microtubules during motor protein–
mediated long-range transport.
Because the trajectories were determined by tracking the

centroid of the lysosome image, they only showed perfect overlap
with the microtubules when the lysosome center was transported
directly above or below the microtubule. However, lysosomes
can bind to and translocate on the microtubule such that their
centers are laterally displaced from the microtubule image.
Given the size of an average lysosome (∼600 nm), we assumed
that the displacement between the lysosome and its associated
microtubule can be as large as 300 nm. Thus, we took the mi-
crotubule that was closest to the lysosome trajectory to be the
one with which the lysosome was associated. In a few cases, when
the lysosome was moving between two parallel microtubules in
very close proximity, we could not assign it to one specific mi-
crotubule and discarded these lysosomes from our analysis. In
addition, in certain regions the microtubule network was too
dense even for STORM to clearly resolve the individual micro-
tubules and it was not possible to map the trajectories to in-
dividual microtubules in these regions. In some cases, lysosomes

Table 1. Average values of lysosome motility parameters measured under different conditions

Parameters
(mean ± SD)

37°C 24°C 24°C + treatment

RG AG RG AG RG AG

Average speed, μm/s 0.45 ± 0.19 (50) 0.41 ± 0.18 (50) 0.45 ± 0.18 (50, 0.93) 0.43 ± 0.22 (50, 0.62) 0.39 ± 0.24 (50, 0.20) 0.33 ± 0.17 (50, 0.01*)
Run length, μm 2.6 ± 1.9 (50) 2.3 ± 1.9 (50) 2.6 ± 2.0 (50, 0.99) 2.1 ± 1.5 (50, 0.55) 2.3 ± 1.4 (50, 0.36) 2.1 ± 1.5 (50, 0.54)
Processivity, s 6.8 ± 4.4 (50) 6.8 ± 4.8 (50) 6.0 ± 3.5 (50, 0.29) 5.3 ± 3.3 (50, 0.08) 7.3 ± 3.7 (50, 0.59) 7.4 ± 3.7 (50, 0.44)
Pausing time, s 6.0 ± 5.0 (112) 7.5 ± 6.7 (106, 0.07) 7.2 ± 5.8 (184, 0.07)
Pausing frequency,

events/min
5.1 ± 2.0 (50) 4.5 ± 1.6 (50, 0.13) 4.5 ± 1.8 (50, 0.11)

Frequency of
reversal, events/min

1.9 ± 2.5 (50) 1.3 ± 1.6 (50, 0.18) 1.2 ± 1.2 (50, 0.12)

Mean-square
displacement
α-coefficient

1.7 ± 0.2 (30) 1.7 ± 0.2 (30, 0.43) 1.6 ± 0.2 (30, 0.15)

The first three parameters have been split into retrograde (RG) and anterograde (AG) directions. The two numbers in the parentheses are the event
number (n) and the P value for a two-tailed two-sample t test, respectively. P < .05 was taken to indicate statistical significance (*).

Fig. 2. Correlative live-cell and superresolution imaging allows interpreting cargo dynamics in the context of the cytoskeleton. (Upper) Multiple frames from
a conventional dual-color movie of lysosomes (red dotted circle shows the position of a single lysosome as determined from the lysosome image) and
microtubules (green). The trajectory (red line) of the lysosome is overlaid with the image of the microtubules at multiple times. (Lower) The same region as
Upper but with the conventional microtubule image replaced by the end-point STORM image of microtubules. The lysosome trajectory can be mapped to the
individual microtubules in the STORM image with high fidelity.
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lengths or velocities, as observed by mutating dynein on lipid-
droplets (13, 14) and kinesin on axonal protein carrying vesicles
(19). However, in melanophores, kinesin inactivation leads to
breakdown of plus motion and increased minus run lengths (11).

Interfering with the dynein–cofactor dynactin impairs trans-
port in both directions in melanophores (16), but impairs minus
and enhances plus transport of adenovirus particles (20). In the
only in vitro experiment concerning bidirectional transport (21),
a motility assay of kinesin and dynein, it was observed that
increasing the number of dyneins enhances minus and impairs
plus end transport.

As shown here, all of these experimental observations are
consistent with the tug-of-war mechanism. In fact, we present an
explicit tug-of-war model that takes into account the experi-
mentally known single motor properties and makes quantitative
predictions for bidirectional transport. In our model, the motors
act independently and interact only mechanically via their
common cargo. We find seven possible motility regimes for cargo
transport. Three of these regimes are dominated by the three
configurations (0), (!), and (") in Fig. 1 and represent no
motion, fast plus motion, and fast minus motion of the cargo,
respectively. The other motility states are combinations thereof;
in particular, there are the two regimes, ("!) and ("0!), where
the cargo displays fast bidirectional transport without and with
pauses, respectively. During fast plus or minus motion, only one
motor type is pulling most of the time and the tug-of-war appears
to be coordinated.

The different motility regimes are found for certain ranges of
single-motor parameters such as stall force and MT affinity.
Small changes in these parameters lead to drastic changes in
cargo transport, e.g., from fast plus motion to bidirectional
motion or no motion. We propose that cells could use the
sensitivity of the transport to the single-motor properties to
regulate its traffic in a very efficient manner. We illustrate this
general proposal by providing an explicit and quantitative tug-
of-war model for the lipid-droplet system.

Results
Model. To study the bidirectional transport of cargos, we devel-
oped a model for a cargo to which N! plus and N" minus motors
are attached. Typically these numbers will be in the range of 1
to 10 motors as observed for many cargos in vivo (12, 22, 23). For
N! # 0 or N" # 0, we recover the model for cooperative
transport by a single motor species as studied in ref. 24. We
characterize each motor species by six parameters as measured
in single molecule experiments [see Table 1 and supporting
information (SI) Text] as follows: it binds to a MT with the
binding rate !0 and unbinds with the unbinding rate "0, which
increases exponentially under external force, with the force scale
given by the detachment force Fd. When bound to the MT, the
motor walks forward with the velocity vF, which decreases with
external force and reaches zero at the stall force Fs. Under
superstall external forces, the motor walks backward slowly with
backward velocity vB.

The motors on the cargo bind to and unbind from a MT in a

stochastic fashion, so that the cargo is pulled by n! # N! plus
and n" # N" minus motors, where n! and n" f luctuate with time
(see Fig. 2). We have derived the rates for unbinding of one of
the bound motors and for binding of an additional motor on the
cargo from the single motor rates under the assumption that: (i)
the presence of opposing motors induces a load force, and (ii)
this load force is shared equally by the bound motors belonging
to the same species (see SI Text). We obtain a Master equation
for the motor number probability p(n!, n") that the cargo is
pulled by n! plus and n" minus motors. The observable cargo
motion is characterized by the motor states (n!, n") with high
probability. If there is high probability for a state (n!, 0) or (0,
n") with only one motor species bound, corresponding to Fig.
1(!) and ("), the cargo exhibits fast plus or minus motion,
respectively. If there is high probability for a state with both
motor species active, i.e., n! $ 0 and n" $ 0, the cargo displays
only negligible motion into the direction of the motors that ‘‘win’’
the tug-of-war, because the losing motors walk backward only
very slowly. This corresponds to the blockade situation depicted
in Fig. 1 (0).

Motility States for the Symmetric Case. We first studied the instruc-
tive symmetric case, for which the number of plus and minus motors
are the same and where plus and minus motors have identical
single-motor parameters except for their preferred direction of
motion. Apart from being theoretically appealing, this symmetric
situation can be realized in vitro if cargos are transported by a single
motor species along antiparallel MT bundles, and can also be used
in vivo provided plus and minus end transport exhibit sufficiently
similar transport characteristics.

We solved our model for fixed motor numbers N! # N" and
fixed single-motor parameters and determined the probability
distribution p(n!, n") (see SI Text). Depending on the values of

(0) (−)

− − − ++ +

(+)

Fig. 1. Cargo transport by 2 plus (blue) and 2 minus (yellow) motors: possible
configurations (0), (!), and (") of motors bound to the MT. For configuration
(0), the motors block each other so that the cargo does not move. For
configuration (!) and ("), the cargo exhibits fast plus and minus motion,
respectively.

Table 1. Values of the single-motor parameters for kinesin 1,
cytoplasmic dynein, and an unknown plus motor (kin?) that
transports Drosophila lipid droplets

Parameter Kinesin 1 Dynein kin?

Stall force Fs, pN 6 (29, 30) 1.1* (12, 27) 7 (31) 1.1* (12)
Detachment force Fd, pN 3 (30) 0.75* 0.82*
Unbinding rate "0, s"1 1 (30, 32) 0.27* (27, 33) 0.26*
Binding rate !0, s"1 5 (34) 1.6* (33, 35) 1.6*
Forward velocity vF, $m/s 1 (32, 36) 0.65* (33, 37) 0.55*
Back velocity vB, nm/s 6 (36) 72* 67*

The kinesin 1 values have been taken from the cited references. The starred
values are obtained by fitting experimental data of Drosophila lipid-droplet
transport and are consistent with the cited references.

Fig. 2. A cargo with N! # 3 plus (blue) motors and N" # 2 minus (yellow)
motors is pulled by a fluctuating number of motors bound to the MT. The
configuration in the middle corresponds to (n!, n") # (2, 1). Only five of 12
possible (n!, n") configurations are displayed.

4610 ! www.pnas.org"cgi"doi"10.1073"pnas.0706825105 Müller et al.
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Table 1. Different boundary conditions studied. (A) clamped head, free tail;
(B) fixed head, free tail; (C) swimming flagellum with viscous load ζ; and
(D) clamped head, external force applied at the tail.

Boundary condition Head s = 0 Tail s = L

A ∂tr = 0 ∂tt = 0 Fext = 0 Text = 0
B ∂tr = 0 Text = 0 Fext = 0 Text = 0
C Fext = −ζ∂tr Text = 0 Fext = 0 Text = 0
D ∂tr = 0 ∂tt = 0 Fext "= 0 Text = 0

 v
_

X,x

Yy

t

n

ψ

Figure 3. Resting frame (X,Y ) and frame (x, y) moving with the filament at
velocity v̄. The tangent t and the normal n are indicated, the angle between the
X, x-axis and t is denoted ψ.

The tension τ is determined by the constraint of incompressibility ∂tṙ
2 = 2t·∂tṙ = 0. This

condition and (15) leads to a differential equation for the tension profile:

τ̈ − ξ‖
ξ⊥

ψ̇2τ = a∂s(ψ̇f) − κ∂s(ψ̇ψ̈) +
ξ‖
ξ⊥

ψ̇(aḟ − κ
...
ψ). (17)

Equations (16) and (17) determine the filament dynamics [12]. The filament shape follows from

r(s, t) = r(0, t) +
∫ s

0
(cos ψ, sin ψ) ds′ (18)

where r(0, t) can be obtained from (15) evaluated at s = 0.

2.4. Boundary conditions

The filament motion depends on the imposed boundary conditions. The variation δG has
contributions at the boundaries which can be interpreted as externally applied forces Fext and
torques Text acting at the ends, see appendix A. At the head with s = 0,

Fext = (κĊ − af)n − τt

Text = −κC − a
∫ L

0
ds′ f. (19)

Similarly, at the tail for s = L,

Fext = (−κĊ + af)n + τt

Text = κC. (20)

New Journal of Physics 2 (2000) 24.1–24.23 (http://www.njp.org/)

Spontaneous Oscillations of a Minimal Actomyosin System under Elastic Loading
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Spontaneous mechanical oscillations occur in various types of biological systems where groups of

motor molecules are elastically coupled to their environment. By using an optical trap to oppose the

gliding motion of a single bead-tailed actin filament over a substrate densely coated with myosin motors,

we mimicked this condition in vitro. We show that this minimal actomyosin system can oscillate

spontaneously. Our finding accords quantitatively with a general theoretical framework where oscillatory

instabilities emerge generically from the collective dynamics of molecular motors under load.

DOI: 10.1103/PhysRevLett.103.158102 PACS numbers: 87.16.Nn, 87.16.ad, 87.19.ln, 87.80.Fe

Mechanical oscillations occur in a variety of biological
systems. Insect fibrillar flight muscles develop oscillatory
tension with a rhythm that is asynchronous to activating
nervous impulses [1]. Skinned skeletal and cardiac muscle
fibers also exhibit spontneous oscillations in vitro under
various conditions of partial activation [2,3], for the latter
even in the absence of proteins that normally regulate
contractility of the muscle [4]. Spontaneous oscillations
have also been observed in nonmuscular motor systems.
Oscillations of the mitotic spindle during asymmetric cell
division [5], of some insects’ antennal hearing organs [6],
and of mechanosensory hair bundles in hair cells from the
vertebrate ear [7] offer illustrative examples. In the last
case, mechanical oscillations have been shown to provide
amplification of weak stimuli and frequency tuning [8].

All these active mechanical systems rely on a force-
producing machinery that involves molecular motors
working in groups. To generate oscillations, these motors
must work against an elastic load. Muscle fibers, for in-
stance, oscillate in vitro only when attached at both ends
[3]. Here we have modified a conventional gliding assay to
test the ability of a minimal actomyosin system to produce
spontaneous oscillations under elastic loading. A single
actin filament was attached to a micron-sized silica bead,
either by mixing biotinylated actin filaments with
streptavidin-coated beads or by using beads functionalized
with inactivated myosins [9] or gelsolin [10]. All three
methods yielded similar results. The bead served both as
a handle to manipulate the filament with optical tweezers
and as a reporter of the position of the filament end to
which it was bound. Such a filament could be captured in
bulk and brought in close proximity to a substrate densely
coated with heavy meromyosin molecules from rabbit
skeletal muscle (Fig. 1).

In the presence of 2 mMATP, position fluctuations of the
bead within the optical trap displayed three qualitative
changes upon interaction of the actin filament with myosin
molecules [Fig. 2(a)]. First, the average position of the
bead moved away from the center of the optical trap,
indicating that the actin filament was set under tension.

The baseline of bead position shifted in the positive direc-
tion by 6–64 nm (n ¼ 11measurements). Accordingly, the
trap exerted a mean restoring force of 2–17 pN that op-
posed action of the motors. Second, the bead displayed a
protracted motion along a well-defined direction. The root-
mean-squared (rms) magnitude along this axis increased
by a factor 4:0" 1:6 (mean" SD, n ¼ 29 measurements)
with respect to that of the isotropic Brownian motion of the
free bead. For trap stiffnesses kT ¼ 0:05–0:39 pN # nm$1,
motor-driven movements displayed rms magnitudes of
3.3–29.7 nm, corresponding to peak-to-peak magnitudes
of 9–87 nm. Finally, a striking feature of our recordings
was the presence of noisy spontaneous oscillations.
Oscillations persisted for about 25–65 cycles. Rhythmic
activity was characterized by the presence of a clear
peak in the spectral density of bead position [Figs. 2(b)
and 2(c)]. The peak was centered at a frequency !0 ¼
1:5–14 Hz (n ¼ 29), which defined the characteristic fre-
quency of oscillation. Frequency fluctuations around !0

could be described by the quality factor Q ¼ !0=!! ¼
1:4" 1:1 (mean" SD), where !! corresponds to the
width of the spectral density at half its maximal value.

Myosin
motor

Glass substrate

Actin
filament

Fa

X

F

Laser
trap

Bead

FIG. 1 (color online). Gliding assay with elastic loading. The
motor molecules develop an active force Fa on the actin filament
in a direction defined here as positive. The optical trap imposes
an elastic restoring force F ¼ $kTX in the negative direction. kT
represents the trap stiffness and X the position of the bead with
respect to the center of the trap.
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Figure 1

Micrographs, part of a sequence captured at 330 frames per second, and associated fluid mechanical
calculations of human sperm migrating in low- and high-viscosity fluids: (a,b) low-viscosity saline medium,
with a viscosity of approximately 0.0007 Pa·s and (c,d ) high-viscosity saline-methylcellulose medium, with
viscosity raised to 0.14 Pa·s. Remarkably, the sperm swims at approximately the same velocity in either
medium, despite the large ratio of viscosities. The fluid mechanics calculations were performed using a
boundary element/slender-body theory method similar to that implemented by Smith et al. (2009b), which
assumes Newtonian fluid properties; the development of full fluid dynamics models taking into account
non-Newtonian rheology is discussed in Section 4.2. The computed flow velocity magnitude |u| is shown at
z = 12.5 µm above a plane no-slip surface. For both calculations, the simulated cells are located at
z = 15 µm above the surface. Note the different scalings used for the color axes; the flow-field disturbance is
an order of magnitude greater in low-viscosity medium.

(1977) scallop theorem. Consequently, a theoretical basis is required to fully exploit empirical
studies of cellular swimming, necessitating a multidisciplinary approach, as originally exempli-
fied by Gray & Hancock (1955) and by numerous later explorations (Rikmenspoel 1965, 1984;
Kinukawa et al. 2005; Riedel-Kruse et al. 2007; Friedrich et al. 2010).

In this review we highlight how fluid dynamics and continuum mechanics may be utilized in
conjunction with empirical observations to explore and test our understanding of mammalian
sperm motility. In particular, mammalian reproductive biology provides a wealth of unsolved
problems for which mechanistic understanding may be beneficial. We must, however, be selective
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Giant unilamellar vesicles were prepared by electroformation as inMathivet
et al. (20) with the following compositions: 98.9% Egg phosphatidylcho-

line (EggPC), 0.1% 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-n-(cap-
biotinyl) (DOPE-Cap-Biot), 1% n-6-tetramethylrhodamin-ethiocarbamoyl-1,

2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (TRITC-DHPE); or
98.99% EggPC, 0.01%DOPE-Cap-Biot, 1% TRITC-DHPE. The lipids EggPC

and DOPE-Cap-Biot were purchased from Avanti Polar Lipids (Alabaster, AL)

and TRITC-DHPE from Molecular Probes (Eugene, OR).

Kinesin KinBio401 motors were purified as in Surrey et al. (21). The

plasmid was a kind gift of F. Nedelec (EMBL, Heidelberg, Germany).
Microtubules were obtained by polymerization of tubulin purified from

pig brains and stabilized by taxol. See exact protocol in Leduc et al. (18).

Tubes were pulled from vesicles using the same protocol as in Leduc et al.

(18).

Imaging

The tubes were observed either by fluorescence confocal microscopy (Axiovert
200; Carl Zeiss, Oberkochen, Germany) or mainly by fluorescence video-

microscopy (Axiovert 135; Carl Zeiss) thanks to the incorporation of 1 mol %

fluorescent lipid TRITC-DHPE in the membrane. For the acquisition by video-

microscopy, we used a standard charge-coupled device camera (monochrome
PULNiX 1/2’’ with an acquisition rate of 25 images/s; PULNiX, Sunnyvale,

CA). Movies were recorded on video tapes and converted to .avi format with

the ScionImage software (Scion, Frederick, MD).
Movies were analyzed using a tracking software kindly given by

K. Zeldovitch (the same as in (18)) and average velocities of tube growth

were obtained by linear fitting of the curve extension versus time.

Experiments on tube extraction

The experimental setup is similar to the one described in details in Leduc

et al. (18). Giant unilamellar vesicles were partially biotinylated and coated
with biotinylated truncated kinesin-1 motors through a streptavidin link (see

Materials and Methods). The concentration rN of motors on the surface of

the vesicle was imposed by fixing the concentration of biotinylated lipids in
the membrane. The protocol used ensured that only one motor was associated

to each biotinylated lipid (18), allowing for a quantitative control of the

motor density on the vesicle surface.

The kinesin-coated vesicles were put into contact with a network of taxol-
stabilized microtubules fixed on a glass surface, in presence of 1 mM ATP

(Fig. 1 A). Kinesins attached to microtubules, walked toward their plus ends,

deformed the vesicle membrane and, if the motor density was large enough

(see below), formed membrane tubes (Fig. 1, A and B).
The motors pulling a membrane tube sustain a force F ¼ 2p

ffiffiffiffiffiffiffiffiffi
2ks

p
(22),

corresponding to the force required to extract a membrane tube from a vesicle

of tension s and bending modulus k. To control the extraction force, F, we
fixed the vesicle tension, s, by imposing the osmotic pressure difference
between the inside and the outside of the vesicle; in our experiments we

estimated s’ 2 10"4 mN/m, which leads to an extraction force of F’ 27.56
2.5 pN (18). Note that this force is much larger than the stall force of a single
kinesin-1 motor (6 pN), ensuring that motors must act collectively to pull the

membrane tube. The growth of membrane tubes was then monitored over time

(see Materials and Methods).

In Fig. 1 we sketch the experimental system and the mechanism of
membrane tube formation (18). The motors are permanently attached to the

membrane tube, but can be either attached to the microtubule (boundmotors)

or detached from it (unbound motors). We showed in Leduc et al. (18) that

bound motors dynamically accumulate at the tip of the membrane tube. In-
deed, bound motors far from the tip of the membrane tube move at their

maximal velocity, V0, because they do not sustain any substantial force,

whereas the motors pulling the tube at the tip movemore slowly because they
sustain the tube force. At the same time, the bound motors at the tip detach

faster than those along the tube, resulting in a larger density of unbound

motors close to the tip. These unbound motors diffuse away from the tip,

following the direction of decreasing unbound motor density, and eventually
reattach to the microtubule. This constitutes a treadmilling mechanism with a

closed circuit of motor flux in the vicinity of the tip (Fig. 1 C). Note that the
length scale of the motor accumulation (’ 1mm (18)) is much larger than the

length scale of the region where motors apply forces at the tip of the mem-
brane tube (of approximately a few tens of nanometers).

FIGURE 1 System geometry. (A) Sketch of the experimental setup. A

giant unilamellar vesicle (yellow), partially covered with kinesin-1 motors

(dots), is placed over a network of microtubules (green) in presence of ATP.
The motors bound to microtubules apply forces on the membrane and pull

membrane tubes (yellow). (B) Confocal image of membrane tubes pulled by

kinesin motors from a giant unilamellar vesicle. The image is a two-

dimensional projection of the three-dimensional confocal reconstruction.
The membrane was uniformly labeled with fluorescent lipids (TRITC-

DHPE). The image is shown in false color to enhance contrast. Bar, 5 mm.

(C) Sketch of the treadmilling mechanism for membrane tube extraction (in

the membrane tube reference frame), where the motor fluxes are represented
by arrows. The bound motors at the tip (red) move against the tube force F
with velocity V and detach from the microtubule (dark green) at a rate ku.
The bound motors along the tube (blue) do not support any substantial force,
move with velocity V0 (motor velocity under vanishing load), and detach
from the microtubule at a rate k0u : The motors not bound to the microtubule

(unbound motors; light green) attach to the microtubule at a rate kb. These
unbound motors diffuse along the membrane tube (yellow) and are dragged
by the membrane tube itself as it grows.
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Kymograph
A graphical presentation of 
spatial position over time that 
uses data from a stack of 
images or movie. The intensity 
profile along a line is recorded 
for every image in the stack, 
and the lines are assembled to 
create an image in which the 
distance is displayed on one 
axis and time on the other. 

detachment rate at zero load and Fdetach is the key scal-
ing parameter that defines the sensitivity of the motor–
microtubule bond to the load). A simple problem 
arises from the fact that the motor detachment rate 
from the microtubule is equal to the motor velocity 
divided by the distance a motor moves before detaching 
(koff = velocity/ run length). The first issue is that hinder-
ing loads (for example, exerted by oppositely directed 
motors attached to the same cargo) are known to reduce 
both the kinesin motor velocity and the run length62,68,96, 
thus the ratio of kinesin motor velocity to run length 
is expected to be a complex function of load. The sec-
ond issue is that directional switching involves motors 
transitioning from forwards walking (when the force is 
less than the stall force) to backwards walking (when 
the force exceeds the stall force) with a transition point 
at the stall force, at which the velocity is zero. Optical 

tweezer experiments using kinesin-1 family members 
confirm that motor behaviour differs substantially under 
substall and superstal l forces68,96, and experiments of 
dynein point to even more complex ‘catch-bond’ behav-
iour at high loads97. Thus, because detachment kinetics 
are such an important determinant of model behav-
iour, the load dependence of motor dissociation must 
be modelled as a more complex function than simply 
as an exponential dependence (as has been explored by 
other s90,96), and it is vital that the governing parameters 
are tightly constraine d by experiments.

A second critique of the Müller mean field model 
is the assumption that load is shared equally between 
all motors of a given type (kinesin or dynein), which is 
known as the mean field approximation. This approxi-
mation would be valid if every motor would ‘step’ in a 
synchronized manner and there was no motor–cargo 
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of the experimental biological and biophysical studies of
coordinated molecular motors is given by Holtzbauer and
Goldman in the same issue [7].

Rigidly linked molecular motors
We first consider the case where the motors are linked to a
common rigid backbone. This geometry is close to that of
muscles or of in vitro motility assays. Cooperativity arises
because any global motion of the filament modifies the
position of the motors, thereby changing both the force
they produce and their probability to bind to or unbind
from the filament.

In the first class of models, the center of mass of each
motor is considered as a particle rigidly linked to the
backbone [8]. Each motor interacts with the filament (e.g.
actin or microtubule) according to a state-dependent
potential. These potentials are not known in detail, but
they must be periodic and asymmetric, to reflect the
periodicity and the polarity of the filament, respectively.
The simplest case is that of a two-state model, in which
the motors have an unbound state with a flat potential (no
interaction with the filament) and a bound state with a

saw-tooth potential (Figure 1a). More complex cases can
be mapped on this simple case [8]. The motors switch
between the two states according to binding and unbind-
ing rates that depend on their positions along the fila-
ment, and on ATP hydrolysis. ATP consumption is
fundamental in maintaining the motors away from ther-
mal equilibrium. At thermal equilibrium, in the case of a
uniform binding rate, the motors would unbind more at
the top of the potential than at the bottom. A localized
unbinding rate near the minimum of the potential con-
stitutes a suitable choice that reflects energy consump-
tion. Equivalently, in agreement with the existence of
binding sites, binding can be localized near the potential
maximum and unbinding can be uniform. For a suffi-
ciently long filament with motors distributed either ran-
domly (such as in motility assays) or with a period
incommensurate with that of the filament (as in muscles),
the system is invariant by translation. If the filament
moves at constant velocity, the force produced by the
motor assembly reaches a steady-state value. One can
then define a ‘force–velocity relation’. Near stall con-
dition, the force produced by the motors varies linearly
with velocity and, remarkably, amounts to negative
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Figure 1

Mechanisms of motor coordination. (a) Stiff motors linked to a rigid backbone. Interaction potentials W1 and W2 and transition rates v1 and v2 depend
on position x along the filament. The backbone moves at velocity v relative to the filament. (b) Elastic motors of stiffness k linked to a rigid backbone
(crossbridge model). We show four motors taken at different instants of their cycle: the first and the fourth motors are unbound, the second one is
bound to a binding site and has just produced its power stroke. The third motor has released its strain y because of the relative sliding between
filament and backbone. (c) Processive motors elastically linked to a rigid backbone. Contrary to the crossbridge model, each motor moves by itself at a
finite velocity vm which depends on the load k ! y. (d) Processive motors pulling a membrane tube. Owing to the load F, the motors at the leading edge
move at a smaller velocity vðFÞ than the velocity v0 of the motors along the tube, which leads to cluster formation. (e) Tug-of-war: two groups of
molecular motors pull on a vesicle in two opposite directions. (f) Hydrodynamic coupling: ‘motor 2’, moves to the right at velocity v2 and creates a
velocity field (streamlines are sketched in red), that helps ‘motor 1’ moving to the right.
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distribution and polarity of microtubules throughout spindles, as
well as the density and locations of microtubule plus ends and
minus ends. We used this method to characterize microtubules
in metaphase spindles assembled in Xenopus laevis egg ex-
tracts. We discovered a complex organization in these spindles,
in which microtubules are shortest at poles and progressively
increase in length toward the center of the spindle. These struc-
tural data, in combination with biochemical perturbations, fluo-
rescence optical imaging, and mathematical modeling, support
a model in which the internal architecture of the spindle arises
from the spatial profile of nucleation in combination with local
sorting of microtubules by transport.

RESULTS

Laser Ablation Induces Synchronous Depolymerization
of Microtubules in Spindles
We used a pulsed amplified femtosecond laser to cut microtu-
bules in metaphase-arrested spindles assembled in Xenopus
laevis egg extracts (Hannak and Heald, 2006; Murray, 1993).
As opposed to mechanical cutting techniques or long-pulsed
laser severing, femtosecond laser ablation can be used to per-
form very accurate and selective surgery in the sample bulk
with energies of only a few nanojoules (Heisterkamp et al.,
2005). We cut thin, rectangular regions, typically 20 3 2 3
0.1 mm3 (Figure 1A). These cuts induce a rapid, synchronous
depolymerization of microtubules that propagates toward the
poles (Figure 1B; Movie S1 available online). After approximately
1 min, the spindles completely recover to their previous state,
showing no signs of damage. When microtubules are cut
in vitro (Walker et al., 1989) or in interphase cells (Khodjakov
et al., 2004; Botvinick et al., 2004; Colombelli et al., 2005), the
newly generated plus ends rapidly depolymerize, whereas the
newly generated minus ends remain stable, and strong argu-
ments have been made that the same phenomenon occurs in
spindles (Inoué, 1964; Forer, 1965; Spurck et al., 1990; Leslie

and Pickett-Heaps, 1984; Maiato et al., 2005; Tirnauer et al.,
2004; Nicklas et al., 1989). Cutting individual polarity-marked
microtubules and polarized arrays of microtubules in extract
confirms that cut microtubules depolymerize from the newly
generated plus ends (see Extended Experimental Procedures
and Figure S1). We therefore interpret the waves of microtubule
depolymerization as coming from depolymerizing newly gener-
ated microtubule plus ends produced by the laser cut (Figures
1C and S1).
We quantified the rate of microtubule depolymerization after

a cut by numerically calculating the time derivative of the inten-
sity at each pixel of the images in the time-lapse movies (Figures
1B and S3; Movie S1). This procedure shows that depolymeriza-
tion occurs in two narrow fronts perpendicular to the long axis of
the spindle (Figure 2A; Movie S2), which can be conveniently
visualized by integrating the depolymerization in the perpendic-
ular direction to the spindle axis and plotting the fronts on a one-
dimensional graph (Figures 2B and S3). The fronts propagate
toward the poles at a constant velocity (Figure 2B, insert), with
an average speed of 34.7 ± 1.7 mm/min, corresponding to the
microtubule depolymerization velocity. The images of the prop-
agating fronts of depolymerization (Figure 2A) are reminiscent
of data from tubulin photoactivation experiments (Sawin and
Mitchison, 1991), but these two measurements are fundamen-
tally different as photoactivation is used to visualize marked
tubulin in the microtubule lattice, whereas the fronts are direct
measures of microtubule depolymerization.

The Asymmetry in the Depolymerization Fronts Reveals
the Polarity of Microtubules in Spindles
The total amount of microtubule depolymerization immediately
after the cut is typically different for the two depolymerization
fronts that are created (Figure 2B, blue curve—the area under
the two peaks is different). As depolymerization after a cut is
due to newly generated plus ends (see above), this asymmetry
in microtubule depolymerization is caused by a different number

5 s 10 s

A

2 µm

15 µm

B

C

Figure 1. Laser Ablation Induces Fronts of Synchronous Microtubule Depolymerization
(A) Geometry of a laser cut in the spindle.

(B) Series of fluorescent images of a spindle taken before the cut and at 5 s and 10 s after the cut. Scale bar, 10 mm. See also Movie S1.

(C) Graphical representation of the cut microtubules from (B). The laser-cut microtubules (gray) generate a pair of microtubules with new plus ends (red) and new

minus ends (green). The newly generated minus ends (green) remain stable, whereas the newly generated plus ends depolymerize (red), which creates two

depolymerization fronts of opposed polarity. see also Figure S1.
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10 μm

Fig. 1.5 Examples of in vitro and in vivo systems where interacting cytoskeletal molecular

motors work in groups and the corresponding theoretical and experimental approaches
used in the literature. N indicates the typical number of motors working collectively in

the system. From top to bottom: Intracellular traffic in the cytoskeleton, ‘tug-of-war’ in
liposome transport, membrane tube extraction from giant unilamellar vesicles, spontaneous
oscillations in a minimal actomyosin system, flagellar beating and mitotic spindle formation.

Figures adapted from the corresponding references.
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molecular motors





Chapter 2

Introduction

Thousands of different biochemical reactions occur every second
in the crowded interior of a living eukaryotic cell. These processes
are highly regulated in time and space and compose a remarkable
example of self-organization in biology. The proper transport of
biomolecules inside the cell is crucial for its maintainance and
functioning. However, simple passive diffusion cannot meet the
transport needs of a cell. In addition, transport is very specific
and selective according to the needs at different regions in the cell.
Hence, how is efficient transport achieved? The answer relies on
active transport by ATP-fueled motor proteins which move along
the cytoskeleton network, which spans the cytoplasm connecting
the cell nucleus and the cell membrane. In addition, compartmen-
talization in cells is essential to establish physical boundaries and
prevent the interference of cellular processes. Hence, proteins are
usually transported in membrane-bound compartments which con-
stitute the cargos motor proteins move along cytoskeletal filaments.
Intracellular transport is particularly demanding in highly polar-
ized cells such as neurons, where cargos need to be transported
over very long distances in a dense and particularly crowded en-
vironment. In such cases, motors usually cooperate in teams to
secure cargo delivery to their final destination. One of our main
goals will be to understand how motors self-organize in groups
and cooperate to pull on membrane-bound cargos.

17
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2.1 Vesicular traffic

Cells must eat and communicate with their environment. Eukary-
otic cells present a membrane system which enables them to take
up macromolecules by a process named endocytosis and deliver
synthesized molecules by exocytosis [Alberts et al., 2002]. In both
cases, the material to be transported needs to be enclosed inside
membrane-bound compartments or packages. We shall use the
term vesicles to apply to all forms of packages.

The creation of small vesicles requires different proteins such
as Clathrin or COP [McMahon and Mills, 2004] which locally as-
semble on the membrane surface and induce the formation of
a membrane bud, which pinches off due to the action of other
proteins (e.g. dynamin [Ferguson and Camilli, 2012]). The latter
process is known as membrane fission. These vesicles are trans-
ported by motor proteins along cytoskeletal filaments up to target
compartments, where they release their material through mem-
brane fusion. In this way, cells ingest macromolecules derived from
the plasma (or cell) membrane which are transported to membrane-
bound organelles named lysosomes, where different enzymes digest
the material [Alberts et al., 2002]. This process is known as the
endocytic pathway (Fig. 2.1, green arrows). On the other hand,
the biosynthetic-secretory pathway allows the cell to deliver syn-
thesized molecules to the exterior by a process called exocytosis
(Fig. 2.1, red arrows). Proteins synthesized in the cell nucleus are
transported from the endoplasmatic reticulum (ER) to the Golgi
apparatus (see Fig. 2.1), and subsequently sorted to the lysosome
or to the plasma membrane. Finally, sometimes molecules follow re-
trieval pathways between compartments (see Fig. 2.1, blue arrows).

The formation and mantainance of membrane organelles, like
the ER or the Golgi apparatus, is known to involve the pres-
ence of microtubules and motor proteins [Alberts et al., 2002,
Gurel et al., 2014]. The ER is an interconnected network of tubules
of ' 50 nm in diameter and sheets (also known as cisternae) form-
ing irregular polygons. The overall structure is held together by the
cytoskeleton through the interaction of proteins such as CLIMP-



2.2 Intracellular transport 19

63 [Gurel et al., 2014]. ER tubules can extend by attaching them-
selves to the polymerizing end of microtubules via a tip attachment
complex (TAC) or can be transported along microtubule filaments
by motor proteins [Tripathi, 2010]. The latter process involves the
cooperation of motor proteins to pull membrane tubes. We will
focus on this process in Chapter 4 using a biomimetic in vitro
system to study the cooperative action of motors.

Fig. 2.1 Intracellular compartments of eukaryotic cell. a) “Road map” of the biosynthetic-

secretory pathway (red), endocytic pathway (green) and retrieval pathways (blue) between

the different intracellular compartments b) In the biosynthetic-secretory pathway (red
arrows) protein molecules are transported from the ER to the plasma membrane or (via late

endosomes) to lysosomes. In the endocytic pathway (green arrows) molecules are ingested

in vesicles derived from the plasma membrane and delivered (via early and late endosomes)
to lysosomes. Endocytosed molecules sometimes are retrieved from early endosomes and

returned to the cell surface for reuse; similarly, some molecules are retrieved from the

late endosome and returned to the Golgi apparatus, and some are retrieved from the
Golgi apparatus and returned to the ER. Retrieval pathways are shown with blue arrows.

Modified from [Alberts et al., 2002].

2.2 Intracellular transport

Intracellular transport corresponds to the active transport of pro-
teins in membranous organelles, messenger RNA and protein com-
plexes along cytoskeletal filaments [Hirokawa and Takemura, 2005,
Hirokawa et al., 2009]. Transport is achieved by ATP-fueled motor
proteins namely kinesin, dynein and myosin motors which carry
organelles to their destinations. Kinesins and dyneins are in charge
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of the plus/minus-end-directed (anterograde/retrograde) transport
along microtubules, whereas myosin is in charge of short-range
transport in the cell, occurying beneath the plasma membrane.
Hence, microtubules play the role of two-way “highways” and
actin filaments are typically one-way “roads”. Microtubule polar-
ity arrangement varies depending on the cell type. We can classify
intracellular transport in three different scenarios: neural cells,
non-neural cells and cilia (see Fig. 2.2). Neurons are highly polar-
ized cells which present three main regions: the soma (cell body),
the axon, and the synaptic terminals (Fig. 2.2a). Proteins are syn-
thesized in the soma and they must be transported all along the
axon to supply synaptic terminals with proteins, lipids and mitho-
condria [Millecamps and Julien, 2013]. Microtubules are unipolar

Fig. 2.2 Intracellular transport by kinesins and cytoplasmic dynein in neural cells (a), non-
neural cells (b) and in cilia (c). ER, endoplasmatic reticulum, TGN, Trans-Golgi network.
a) In neural axons, microtubules are unipolar and point distally, i.e. with the plus-end

pointing to the synaptic terminals. In dendrites, microtubules can have mixed polarity. b)

In non-neuronal cells, microtubules usually point with their plus-ends to the periphery from
the microtubule organizing center. c) Bidirectional intraflagellar transport in cilia. Notice

that microtubules are oriented reflecting the polarity of the different regions. Modified from
[Hirokawa et al., 2009].
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in the axon, with their plus-end pointing to the synaptic terminals.
On the other hand, in non-neural cells microtubules are usually di-
rected from the cell nucleus to the cell periphery (Fig. 2.2b). Finally,
intraflagellar transport is required for the mantainance and assem-
bly of cilia. Transport is bidirectional and motor proteins move
along axonemal microtubules (Fig. 2.2c) [Hao and Scholey, 2009].
We will focus on axonal transport since neurons are a good model
system to study intracellular transport due to the very large dis-
tances motors must translocate organelles.

2.3 Axonal transport

In neurons, membrane organelles are transported by fast axonal
transport at a similar speed to kinesin motors in vitro (50-200 mm
per day), and cytoplasmic proteins, such as tubulin and neurofil-
ament proteins, are transported by slow axonal transport (0.1-3
mm per day) [Hirokawa et al., 2009]. Kinesin motors use adap-
tors/scaffolding protein complexes for cargo recognition and bind-
ing. Although most scaffolding complexes are still unknown, cargo
selectivity has been extensively studied. The kinesin-1 KIF5 is able
to transport a great variety of cargos such as vesicles, oligomeric
tubulin and mithocondria. On the other hand, the kinesin-3 motors
KIF1A and KIF1Bβ transport synaptic proteins such as synapto-
tagmin or synaptophysin [Hirokawa and Takemura, 2005].

Finally, impared axonal transport is commonly associated to
several neural disorders [Millecamps and Julien, 2013]. Neurotoxic
compounds such as MPTP or Rotenone, have been shown to
decrease anterograde transport and increase mithocondrial ret-
rograde transport respectively, leading to Parkinson’s disease
[Morfini et al., 2007, Arnold et al., 2011]. Pathological forms of
proteins such as the amyloid precursor protein (APP) or tau, affect
axonal transport by various mechanisms leading to Alzheimer’s
disease. On the other hand, loss-of-function mutations in mo-
tor proteins may result in motor neuron diseases, but are rare
and have not been linked with Alzheimer’s or Parkinson’s dis-
eases [Millecamps and Julien, 2013]. Therefore, probably axonal
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deficits commonly arise because motor proteins find obstacles or
roadblocks along their way. How motors navigate the cell in or-
der to overcome possible traffic jams is only now beginning to
be studied thanks to state-of-the-art single molecule biophysi-
cal tools [Bálint et al., 2013, Lakadamyali, 2014]. Different strate-
gies may be used in the axon such as bidirectional movement
[Hancock, 2014] or transversal motion [Can et al., 2014].

2.4 Coordination of motor teams

Intracellular transport in cells is carried out by small motor teams
pulling on cargos. The total number of kinesin and dynein mo-
tors involved in vesicle transport typically ranges from 1 to 10
motors [Gross et al., 2007, Holzbaur and Goldman, 2010] while
the number of myosin motors carrying vesicles is still unclear,
estimated in the range ∼ 10-100 motors in axonal transport
[Tabb et al., 1998]. Some observations have shown that the nec-
essary force to stop cargo motility increases with motor num-
ber, although not necessarily in proportion [Mallik et al., 2005,
Vershinin et al., 2007, Furuta et al., 2013]. The distance a cargo is
transported before dissociation is also shown to increase with motor
number [Gross et al., 2007, Beeg et al., 2008, Furuta et al., 2013].
How do multiple motors coordinate and interact on a cargo? First,
one should understand how single motors act individually. Al-
though the ATP cycle of single motor domains has been studied
extensively [Hackney, 1996], motor dimers which are typically the
relevant forms in vivo, use more sophisticated mechanisms, e.g.
the ‘hand-over-hand’ mechanism [Yildiz et al., 2004] for kinesin-1
or uncoordinated stepping [DeWitt et al., 2012] for cytoplasmic
dynein. In terms of mathematical modelling, the detailed descrip-
tion of a motor dimer is involved [Shao and Gao, 2006] and the
consequent study of groups of interacting motors becomes imprac-
tical. Therefore, in order to model interacting motors carrying a
cargo, a good strategy is to choose a motor which is amenable to
mathematical modeling. A good candidate is the monomeric form
of the kinesin-3 motor KIF1A, as discussed below.
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2.5 A model motor: the kinesin KIF1A

KIF1A is a kinesin motor specific of axonal transport of synaptic
vesicle precursors [Okada et al., 1995, Okada et al., 2003]. The
monomeric form of KIF1A was proposed as a model motor
[Okada et al., 2003] (see Fig. 2.3, bottom) being a prototype
of Brownian motor [Reimann, 2002]. The protein is composed
of a single globular motor domain, in contrast to conventional
dimeric kinesin (Fig. 1.4a and Fig. 2.3, top), which is a larger
motor with two motor domains. Monomeric kinesin alternates
between two different states: a strongly and a weakly-bound
state to the microtubule. In the latter case, the motor is able
to diffuse close to the microtubule by virtue of an electrostatic
interaction between the K-loop of the motor domain and the C-
terminus of tubulin [Okada and Hirokawa, 2000]. Single-molecule
experiments reported zero load velocities of 0.2 µm/s and very
small stall forces around 0.1 pN, fulfilling a linear velocity-force
relationship [Okada et al., 2003]. Although this motor was origi-
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ATPase and motor activities of KIF1Bβ32. Moreover, in
heterozygous KIF1Bβ mutant mice, which are used as a
model of this disease, the transport of synaptic vesicle
precursors is significantly decreased.

KIF1Bα (formerly KIF1B), an isoform that is
derived from the same gene as KIF1Bβ by alternative
splicing, transports mitochondria anterogradely27. The
N-terminal motor domains of KIF1Bα and KIF1Bβ are
identical, but their C-terminal tails share no significant
homology, whereas the C-terminal tails of KIF1A and
KIF1Bβ have 61% amino acid identity27,32.

KIF5 transports vesicles that contain the amyloid
precursor protein (APP) along axons46,47. It has been
reported that these vesicles also contain β-secretase and
presenilin 1 (REF. 48), which participate in the proteolytic
processing of APP to produce amyloid-β peptide, the
main constituent of extracellular amyloid plaques in
Alzheimer’s disease49,50. This indicates that the prote-
olytic processing of APP to amyloid-β peptide might
occur in transport vesicles.

KIF5 also transports other cargoes, including vesicles
that contain apolipoprotein E receptor 2 (APOER2)51.
APOER2 is the receptor for REELIN, an extracellular
protein that is defective in the reeler mouse, which has
ataxia, a typical reeling gait and abnormal neuronal
organization52–54. The cargo vesicles of KIF5 also contain
proteins such as GAP43 and VAMP2 (REF. 47). KIF5, like
KIF1Bα, also transports mitochondria45,55. The fact that
mitochondria are transported by both KIF5 and
KIF1Bα might not be surprising, as mitochondria could
have many potential binding sites for motor proteins.
KIF5 also transports oligomeric tubulin in a large
transport complex that is distinct from those of stable
polymers or other cytosolic proteins56. When fluores-
cently labelled tubulin is microinjected into axons it
moves at a speed that is compatible with slow axonal
transport. This movement is perturbed if an antibody is
used to block kinesin function, which indicates that
KIF5 also takes part in slow axonal transport56.

The KIF3A–KIF3B–KAP3 complex transports vesi-
cles with diameters of 90–160 nm that are distinct from
synaptic vesicle precursors or vesicles carried by other
motors, such as KIF5 and KIF2. The vesicles transported
by KIF3A–KIF3B–KAP3 are associated with FODRIN

through an interaction between KAP3 and fodrin, and
are important for neurite extension57. KIF3C has also
been implicated in anterograde axonal transport, but the
cargoes for the KIF3A–KIF3C–KAP3 complex have not
been studied in detail. However, because Kif3c-knockout
mice show no particular phenotype, indicating that the
gene is not essential58, this complex might carry cargoes
that are also carried by other motors.

The partitioning-defective protein 3 (PAR3) com-
ponent of the polarity complex PAR3–PAR6–atypical
protein kinase C, which is thought to be involved in
the process by which one juvenile neurite becomes
established as an axon while the others remain short,
accumulates selectively at the tip of the establishing
axon during this process. PAR3 was recently shown to
interact with KIF3A, which indicates that the polarity
complex might be transported by KIF3A59.

KIF1A and KIF1Bβ transport synaptic vesicle pre-
cursors along axons26,31,32. Although mature synaptic
vesicles are relatively uniform spheres of about 50 nm
in diameter, these structures are usually not found in
axons. Instead, the components of synaptic vesicles are
transported in tubulovesicular organelles as precursors,
and assembled into synaptic vesicles at synaptic termi-
nals34–36. The synaptic vesicle precursor that is trans-
ported by KIF1A contains synaptic vesicle proteins such
as synaptotagmin, synaptophysin and RAB3A, but not
presynaptic membrane proteins such as syntaxin 1A or
synaptosomal-associated protein 25 (SNAP25)26.

When the cargoes of KIF1A and KIF1Bβ are isolated
by immunoprecipitation they are found to contain
synaptic vesicle proteins26,32. Furthermore, mice that
lack either KIF1A or KIF1Bβ have reduced synaptic
vesicle density at synaptic terminals, and impaired
sensory and motor nerve function31,32. A mutation in
KIF1Bβ has been linked to a family with a form of
hereditary peripheral neuropathy, CHARCOT-MARIE-TOOTH

DISEASE (CMT) type 2A (REFS 21,32). A heterozygous A to
T point mutation, which transforms glutamine to
leucine at position 98 of the ATP-binding site in the
motor region of KIF1Bβ, was found in all affected
family members, but not in control subjects. In vitro,
the mutation causes a significant decrease in the

CHARCOT-MARIE-TOOTH

DISEASE

(CMT). The most common
inherited peripheral neuropathy,
characterized by weakness and
atrophy of distal muscles,
depressed or absent deep-
tendon reflexes and mild sensory
loss. Type II is an axonopathy
and type I is a myelopathy.

APOER2

(Apolipoprotein E receptor 2).
A member of the low density
lipoprotein receptor gene family,
which binds APOE-containing
lipoproteins. It is also a receptor
for the reelin ligand on
migrating neurons.

REELIN

The gene that is disrupted in the
spontaneous mutant mouse
reeler, which shows disrupted
cellular organization in the brain
due to aberrant migration of
neurons. Reelin encodes an
extracellular molecule that
controls neuronal cell
positioning.

KIF5

KIF1A

KIF1Bα

KIF2A

KIF3

KIF4

KIFC2
100 nm

Figure 1 | Principal members of kinesin superfamily proteins (KIFs) observed by low-
angle rotary shadowing. Diagrams, constructed on the basis of electron microscopy or
predicted from the analysis of their primary structures, are shown on the right (the larger
orange ovals in each diagram indicate motor domains). KIF5 (orange) forms a homodimer
and kinesin light chains (blue) associate at the carboxyl (C) terminus to form fanlike ends.
KIF1A and KIF1Bα are monomeric and globular. KIF2A forms a homodimer and its motor
domains are in the middle (amino (N)-terminal, non-motor domain, blue). KIF3A and KIF3B
(yellow and orange) form a heterodimer and kinesin superfamily-associated protein 3 (KAP3;
green) associates at the C-terminal end. KIF4 forms a homodimer. KIFC2 also forms a
homodimer, but its motor domain is on the opposite side (N-terminal tail and α-helical coiled-
coil domains, blue; C-terminal motor domains, orange). Reproduced, with permission, from
REF. 5 © (1998) American Association for the Advancement of Science.
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Fig. 2.3 Diagrams (right) and electron microscopy images (left) of the kinesin-1 dimer

KIF5 and kinesin-3 monomer KIF1A. (Top) KIF5 forms a homodimer and kinesin light

chains associate at the carboxyl terminus to form fanlike ends. (Bottom) KIF1A is
monomeric and globular. Modified from [Hirokawa and Takemura, 2005].



24 2 Introduction

nally reported to be a unique monomeric motor driving antero-
grade transport in neurons, many studies now support the idea
that KIF1A is mainly found as a dimer in vivo eliciting veloci-
ties of ∼ 1 µm/s [Tomishige et al., 2002, Hammond et al., 2009,
Soppina et al., 2014]. However, the motor dimer has also been
shown to present a diffusive state, which alternates with processive
motion [Hammond et al., 2009]. Intringuingly, the intrinsic ability
of KIF1A to diffuse is at odds with the demanding conditions of
axonal transport, since it makes the individual motor inefficient
and weak. In order to solve this apparent paradox, we may use
the monomeric form of KIF1A as a model system to understand
collective transport.

2.6 Modelling intracellular transport

We now aim to model intracellular transport from a physical per-
spective. Molecular motors can be regarded as isothermal thermo-
dynamic machines working far from equilibrium at the nanoscale
[Jülicher et al., 1997]. They can be described by overdamped me-
chanics in the presence of strong thermal noise, taking into account
the kinetics of the motor cycle and the different relevant forces
acting on the motor. First we pursue to describe the dynamics
of a single molecular motor transporting a cargo along a polar
filament track. We consider the motion of the motor to be one-
dimensional and we denote the position of the motor over time
by x(t). Some molecular motors might explore the surface of
cytoskeletal filaments and fail to exhibit a one-dimensional trajec-
tory [Yajima and Cross, 2005, Brunnbauer et al., 2012] (see also
Chapter 4); however, in many cases this is a good assumption.
We consider the motor to be subject to a drag with an effective
friction coefficient λ and to experience a force −∂xU , where U
is the effective potential landscape originated by the interaction
between the motor and the filament, and x is the spatial coor-
dinate. The potential landscape can change over time since the
molecule suffers different conformational changes during its ATP-
cycle which affect its interaction with the filament. Therefore, we
consider U(x, t). Additionally, cytoskeletal filaments are periodic
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and polar, therefore these properties must be reflected in the po-
tential landscape. The first property implies U(x, t) = U(x+ l, t),
where l is the periodicity of the filament, and the second prop-
erty implies U(x, t) 6= U(l − x, t). We also include a random,
Gaussian distributed thermal force ζ(t), which has correlation
〈ζ(t)ζ(t′)〉 = 2kBTλδ(t− t′) and zero mean 〈ζ(t)〉 = 0, where 〈·〉
denotes ensemble average and δ(t− t′) is the Dirac delta function
centered at t′. Finally, we consider a constant external force F
applied to the molecule. In the biological context, this force may
arise as a consequence of friction forces opposing the cargo motion
in constrained and constricted environments, as in the case of a
neural axon. The dynamics of x(t) simply reads:

λẋ = −∂xU − F + ζ(t) (2.1)

where the dot denotes time derivative. The last expression is known
as Langevin equation [Langevin, 1908] and can be simulated nu-
merically (see Appendix B.1) [Garćıa-Ojalvo and Sancho, 1999].
If we compute the ensemble average of Eq. 2.1 and define v ≡ 〈ẋ〉,
FATP = −〈∂xU〉 we obtain:

v(F ) =
1

λ
(FATP − F ) (2.2)

where FATP is the active force generated by the motor in its ATP-
cycle. The stall force Fs of a single motor is defined as the necessary
force to stop the motor. This occurs for F = FATP . Since U ∼ 10
kBT and l ∼ 10 nm, we get Fs on the order of a few pN, which is
a good stall force estimate for cytoskeletal motors. For the case of
constant FATP , Eq. 2.2 gives a linear relationship between velocity
and force. This approximation is quite accurate for a single-motor
[Svoboda and Block, 1994, Okada et al., 2003]. Next we consider
the case of N molecular motors pulling on a membranous cargo.
We may call it a soft cargo, since motors are not anchored at the
surface but they can move freely due to the liquid-like nature of
the lipid membrane. Considering N motors pulling on the same
cargo, only the foremost motor experiences the force F , while
the rest of the motors experience unequal loading due to the
transmission of the force through motor-motor interactions. Hence,
motors accumulate at the front where they share the force, while
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in the rear motors may barely experience any force at all. In order
to describe the collective dynamics of the motors, we associate a
Langevin equation to each motor i:

λẋi = −∂xUi −
∑

k 6=i
W ′(ξ)− Fδ1i + ζi(t) (2.3)

where ξ = xi − xk and δij is the Kronecker delta, which reads 1
if i = j and 0 otherwise. W (ξ) stands for the interaction poten-
tial between motor pairs. The sum indicates that the i-th motor
can interact with all motors except with itself. In this case, the
velocity-force relationship will be in general nonlinear, and its de-
pendence may be quite complex [Brugués and Casademunt, 2009,
Orlandi et al., 2010]. In our description, U(x, t) encodes the pe-
riodicity and polarity of the filament, but also the kinetics and
free energy excess released during the motor cycle. Next, we intro-
duce a two-state model providing a simple description of a motor
ATP-cycle.

2.6.1 The two-state model

The two-state model was first proposed to describe muscle con-
traction and flagellar beating [Huxley, 1957, Brokaw, 1975]. Years
later, increasing interest arise on Brownian motors [Magnasco, 1993,
Hänggi and Marchesoni, 2009] which where inspired by the cele-
brated Brownian ratchet [Smoluchowski, 1912, Feynman, 1963],
and two-state models where used to describe the motion of Brow-
nian particles in asymmetric environments which constituted a
minimal description of an ATP motor cycle. Here, we present a
common description of the ATP cycle used for molecular motors
[Jülicher et al., 1997].

We consider a molecular motor which can be found in two
different states: a “ground” state, in which the motor is found
in a strongly bound conformation to the filament (k = 1) or an
“excited” state, where the motor can be detached or weakly bound
to the track (k = 2). k is a dichotomic discrete stochastic variable
whose value can be 1 or 2 depending on the state of the motor.
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In state k, the motor feels the periodic landscape potential Uk(x),
where now the subscript k refers to the state of the motor. U1(x)
will be an asymmetric periodic potential describing the polarity
and periodicity of the system, and we will consider U2 as a flat
potential, describing the energy landscape in the weakly bound
state. The motor can switch to the “excited” state by using the
chemical energy gain of ATP hydrolysis or by using thermal energy.
In the most general case we consider these two different processes
and write down the corresponding chemical reactions:

ATP +M1

α1



α2

M2 + ADP + Pi (2.4)

M1

β1


β2
M2 + ADP + Pi (2.5)

where αi, βi denote the chemical rates and M1, M2 are the two
possible states of the motor corresponding to k = 1, 2, respectively.
The first pathway (Eq. 2.4) requires the consumption of ATP
and therefore there is a chemical potential difference ∆µ which
measures the free energy change per ATP molecule consumed. On
the other hand, the second pathway (Eq. 2.5) uses the energy from
the thermal bath to excite the molecule. Chemical kinetics in the
steady state follow:

α1

α2

= exp

(−∆U +∆µ

kBT

)
;

β1

β2

= exp

(−∆U
kBT

)
(2.6)

Where ∆U = U1 − U2 is the difference between the periodic
potential profiles. Since the motor can jump to a given state using
two different processes, the total transition rates for the system
ω1(x) and ω2(x) will be the sum of the rates for each process:

ω1(x) = exp

(
−∆U
kBT

)[
α exp

(
∆µ

kBT

)
+ β

]
(2.7)

ω2(x) = α + β (2.8)

where α ≡ α2 and β ≡ β2. In principle, α(x) and β(x) are unknown
l-periodic functions which may depend on space. We notice that
when ∆µ = 0 we recover detailed balance. Let us construct a
quantity Ω measuring the local deviation from detailed balance,
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such that if ∆µ = 0, Ω = 0:

Ω(x) =
ω1(x)

ω2(x)
− exp

(
−∆U
kBT

)
(2.9)

Using Eqs. 2.7 and 2.8 we obtain:

Ω(x) = Ωθ(x) (2.10)

where Ω ≡ exp[∆µ/kBT ]− 1 is the amplitude of the perturbation
and θ(x) ≡ α/(α+ β) exp[−∆U/kBT ] its modulation. Therefore,
we have:

ω1(x)

ω2(x)
= exp

(
−∆U
kBT

)
+Ωθ(x) (2.11)

The first term in the right-hand side accounts for thermal activa-
tions from state 1 to state 2. The second term is due to the action
of ATP which drives the system out of equilibrium. In the case of
molecular motors ∆U � kBT , and thus we can typically neglect
thermal excitations from state 1 to state 2. In this limit, Eq. 2.11
reduces to:

ω1(x)

ω2(x)
= Ωθ(x) (2.12)

Normally, the total decay rate ω2 is taken to be delocalized, i.e.
ω2(x) = ω. On the other hand, ATP driven excitations are likely
to happen when the motor is waiting in the U1 minima rather than
when the motor diffuses in the “excited” state or it is perform-
ing the power stroke. Therefore ω1(x) should be maximum when
U(x) is minimum and viceversa. As we will see, possible practical
implementations are to choose a rectangular form of ω1(x) and
approximate ω2 to be constant, or to choose particular sinusoidal
forms of α(x) and β(x) such that ω2 is constant and use Eq. 2.12
to find θ(x).

In summary, we shall descibe the motor ATP-cycle as follows:

1. Initially, the motor is found in one of the U1(x) minima.
This state corresponds to a strongly bound conformation of the
motor protein to the filament. The motor waits a certain dwell
time until it captures an ATP molecule. Usually, the dwell time is
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aproximated to be exponentially distributed with mean 1/ω?, such
that ω? is the mean excitation rate. This rate will be dependent
on the ATP concentration present in the medium.

2. Once an ATP molecule is captured, the motor switches to an
“excited” state. In the case of myosin, this state corresponds to a
completely detached state from the filament. However, in the case
of KIF1A for example, the motor is weakly bound to the filament.
In this state, hydrolysis takes place and ATP is converted to ADP
and an inorganic phosphate Pi. Associated to this reaction, there is
a chemical potential difference ∆µ which measures the free energy
excess.

3. In the “excited” state the motor is able to diffuse and explore
the filament.

4. After a mean time 1/ω, the motor releases the inorganic
phosphate Pi and binds again to the filament, where ω is defined
as the mean decay rate. This transition is thermally driven and
consequently passive.

5. Finally the motor performs the power stroke releasing the
ADP molecule and moving in average to the next binding site.





Chapter 3

Theoretical modeling of KIF1A

In this chapter we study in detail the cooperative action of small
groups of KIF1A motors within an arrangement relevant to vesicle
traffic or membrane tube extraction. In particular, we analyze the
cooperative effects which arise in motor teams due to the presence
of a finite dwell time in their motor cycle. We first formulate the
problem as one-dimensional in terms of Langevin dynamics, and
we further complement our study using a lattice formulation for
the case of one and two interacting KIF1A motors. The latter
approach provides a deeper insight into the minimal ingredients for
cooperative force generation and it enables us to obtain analytical
expressions for the velocity-force relationships in certain limits.
We also consider a first extension of the problem to an arbitrary
number of motors. Finally, motivated by the experiments in Chap-
ter 4, we also study the case of a single KIF1A motor moving in
two dimensions on the MT surface lattice.

3.1 Ratchet model for KIF1A dynamics

We consider the general problem of N KIF1A motors moving along
a one-dimensional track. The dynamics of the system is defined
by a set of N Langevin equations as described in Eq. 2.3 with
positions xi(t), i = 1, . . . , N . On the other hand, ki(t) = {1, 2}
is a discrete stochastic variable that describes the state of the
i-th motor. The two possible states correspond to two different
conformations of the motor domain, with their respective potential

31
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landscapes U(xi, ki). When KIF1A captures an ATP molecule, the
motor switches to a weakly bound state (ki = 2). In this state,
KIF1A diffuses along the filament with diffusion coefficient D
feeling a constant potential U2 ≡ U(xi, 2). In contrast, in the
absence of ATP, the motor is strongly bound to the filament
(ki = 1) and it feels a periodic ratchet potential U1 ≡ U(xi, 1)
similar to the one depicted in Fig. 3.1a. Each motor switches its
state independently and it follows its particular kinetics. Since
KIF1A carries soft cargos, motors are not fixed in the cargo
reference frame and they interact via a given potential W (ξ).
Finally, F is the tangential load originated by the cargo. This
force is applied only to the foremost motor which conveys the load
to the rest. This non-equal loading has already been shown as the
main reason for the appearance of cooperativity in the system
[Brugués and Casademunt, 2009, Orlandi et al., 2010].

x

Ui

l a

U2

U

δ

U1

ω! ω
(a)

(b)
Lσ d
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Fig. 3.1 Description of the model. a) Two-state ratchet model for monomeric KIF1A.
Motors switch stochastically between the states k = 1, 2 with potentials U1 and U2 respec-
tively. Excitations are localized in regions of size δ around the minima of U1 whereas decays
are delocalized. The average excitation and decay rates read ω? and ω respectively. Gray

zones depict where transitions are allowed. b) Main motor-motor interactions: hard-core
repulsion (left), rigid coupling (center) and raft-induced interactions (right) (see Sections

3.1.1 and 3.1.2). Small circles indicate the motor position and the red drawings indicate
the type of interaction.
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Next we need to describe the state kinetics. We define the av-
erage excitation rate ω?, which depends essentially on the time
required to capture an ATP molecule. We assume that the molecule
is allowed to get excited only in a small neighborhood of size δ
around the potential minima, being δ � l. This condition follows
from the fact that the motor is not likely to capture an ATP
molecule during the power stroke (i.e. sliding down the sawtooth
potential). On the other hand, we assume that thermal decays
are delocalized, with an average decay rate ω (Fig. 3.1a). Motors
get excited and decay stochastically, with exponential distributed
times having average values 1/ω?, 1/ω respectively.

The presence of an external load F applied to the foremost
motor drives the spontaneous formation of a fluctuating cluster.
When the steady state is reached, the velocity of a N -motor cluster
coincides with that of the first motor VN (F ) = 〈ẋ1〉. On the other
hand, the collective stall force is usually defined as the necessary
force to stall the cluster. However, it is quite common that for
large numbers of motors the collective VF curves fall to very small
values at forces significantly smaller than the stall force, implying
the existence of an apparent stall force that scales differently with
N respect to the actual stall force [Campàs et al., 2006]. In such
cases it is useful and convenient to define an apparent stall force
Fs by a condition of the type VN(Fs) = Vc where Vc is a small
cut-off velocity. Hereinafter we will use the term ‘stall force’ and
the notation Fs(N) to denote the apparent stall force of a N -
motor cluster, unless otherwise indicated. Finally, the collective
efficiency ηN(F ) in the biological context is usually defined as
[Parmeggiani et al., 1999]:

ηN(F ) =
FVN(F )

rN(F )∆µ
(3.1)

where rN (F ) is the collective chemical reaction rate dependent on
the applied force. In our case the calculation of this rate equals
the number of excitations per unit time for all the motors and
∆µ corresponds to the chemical potential difference for ATP hy-
drolysis. Since we will work in far from equilibrium conditions (i.e.
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∆µ� kBT ) we neglect thermal activations.

Next we discuss the proper parameters to model a single-headed
KIF1A motor in vitro. Table 3.1 shows the main selected parame-
ters in our study. The most salient feature of single-headed KIF1A

Parameter Value

MT periodicity l = 8 nm
Ratchet asymmetry a = 1.6 nm

Diffusion coefficient D = 20 nm2/ms

Excitation rate ω? ≤ 250 s−1

Decay rate ω = 250 s−1

Ratchet potential maximum U = 20kBT

Table 3.1 Realistic values of the main parameters for the modeling of monomeric

KIF1A motors in vitro. The values are extracted mainly from [Okada and Hirokawa, 1999,
Nishinari et al., 2005, Okada et al., 2003].

is that the ability to advance along the MT relies on thermal
diffusion in the weakly bound state. In vitro experiments have re-
ported diffusion coefficients in the range of 20 to 40 nm2/ms which
involve motor excursions much larger than the ratchet periodicity
of 8 nm [Okada and Hirokawa, 1999, Okada et al., 2003] . We will
consider 20 nm2/ms as a reasonable value. The characteristic rates
ω and ω? are found in the literature within the range of hundreds
of Hz. Whereas ω is a parameter coming from the affinity between
the motor domain and the MT, ω? depends on ATP concentration
in the solvent. Experimental data suggest that ω? ≤ 250 s−1 and
ω ' 250 s−1 [Nishinari et al., 2005, Okada and Hirokawa, 1999,
Okada et al., 2003]. The asymmetry a of the ratchet is an ad-
justable parameter for the model which is difficult to grasp from
experiments. The asymmetry reduces the overall velocity of the
system and it can lead to non-trivial effects specially in the limit of
weak noise [Orlandi et al., 2010]. For our purposes, we adjust this
parameter to 20 % of the periodicity length. Finally, the motor size
σ is carefully chosen to avoid possible commensurability effects
[Brugués and Casademunt, 2009, Orlandi et al., 2010]. In Section



3.1 Ratchet model for KIF1A dynamics 35

3.1.2.3 we will study in detail the implications of this parameter
in the study of the collective stall force of the system.

3.1.1 Hard-core repulsive interactions

To study the dynamics of N interacting motors, we first consider
hard-core repulsion between them. For practical reasons we use a
truncated Lennard-Jones potential:

WHC(ξ) = 4ε

[(
σ

ξ

)12

−
(
σ

ξ

)6
]

(3.2)

for ξ < 21/6σ and zero otherwise, where ε is taken large enough to
ensure that the interaction is effectively hard-core for ξ < σ.

3.1.1.1 The dwell time effect

Excitations of motors are localized in regions of size δ � l
centered in the minima of the ratchet potential. Once a mo-
tor enters this region, it waits a certain amount of time given
by an exponential dwell time distribution with average dwell
time 1/ω?. We define β ≡ ω/ω? so that the previous studies in
Refs. [Brugués and Casademunt, 2009, Orlandi et al., 2010] with
negligible dwell time correspond to the case β = 0. In a first
approximation, we will consider that once the motor enters the
region δ it stays in the minimum of the ratchet without fluctuating
and hence, it cannot escape from the region by thermal fluctua-
tions. This condition will be loosen and further discussed. In Fig.
3.2a we show the velocity-force (VF) relationship for N = 1, 2.
KIF1A velocity at zero load is V1 = 0.15 µm/s for β = 2.5 and
the stall force is ' 0.1 pN, consistently with experimental values
[Okada and Hirokawa, 1999]. An analytical expression for the VF
curve of a single KIF1A motor is possible in the limit of large noise
strength (see Appendix A). Upon the addition of a second motor,
we find a remarkable enhancement of the VF curve with a conse-
quent increase on the stall force of the cluster. If the dwell time is
set to zero (β = 0), the naive extensive scaling Fs(N) = NFs(1) is
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approximately correct, consistently with the validity of the mean-
field (MF) description discussed in Ref. [Orlandi et al., 2010] for
sufficiently large diffusion (Fig. 3.2a, inset). However, for β 6= 0,
we find that Fs(2) may be up to three times larger than Fs(1) (Fig.
3.2a). The stall force of the cluster grows with β until saturation
while the velocity at zero load rapidly decreases (Fig. 3.2b). The
reason for the enhancement of the stall force can be explained in
simple terms by considering two interacting motors.
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Fig. 3.2 a) VF curves for N = 1 (light blue) and N = 2 (dark blue) for β = 2.5. Inset:
Same curves for β = 0 showing the mean-field behavior. b) Stall force and velocity at zero

load for N = 2 as a function of β. U = 20kBT , D = 20 nm2/ms, ω = 250 s−1, σ/l = 0.512,

δ/l = 0.02, a/l = 0.2.

Let us consider the configuration in Fig. 3.3a, which was first dis-
cussed in [Brugués and Casademunt, 2009]. Initially, the motor in
the back decays and slides over the potential pushing the foremost
motor to the next period of the MT. This mechanism is sensitive to
the external force since both motors can drift backwards when they
are found in the initial configuration and holds only for F ≤ 2Fs(1).
Therefore, it cannot be responsible for the stall force enhancement.
Moreover, the strength of this mechanism is proportional to the
ATP concentration in the solvent since the initial state requires
the two motors to be found in state k = 2. Consequently, when
β increases the mechanism loses strength, in contradiction to the
curve in Fig. 3.2b. We shall call this mechanism a “down-push”.
Now let us focus on the mechanism initiated from the configuration
in Fig. 3.3b. We notice that this configuration is only possible if
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β 6= 0 since the two motors are found together in state k = 1. The
leading one is waiting for ATP, while the second one is blocked on
the ratchet slope. Once the leading motor is excited, the second
motor pushes the foremost in the same way as before. We shall
call this mechanism an “up-push”. However, in this case the initial
configuration remains unaffected for small forces F ∼ kBT l/l

2
D,

where lD =
√

2D/ω and the ‘up-push’ mechanism is able to work
for F > 2Fs(1). Furthermore, this mechanism is ATP dependent
and its strength saturates for very low concentrations, as shown
in Fig. 3.2b. The same results will be derived more precisely using
a lattice model in Section 3.2.

a

b

Fig. 3.3 Schematic description of the two cooperative mechanisms for the case of hard-core

repulsion. (a) ‘Down-push’ mechanism: Initially, the motor in the back decays and slides

down the potential pushing the foremost motor to the next site. (b) ‘Up-push’ mechanism:
The leading motor is waiting for an ATP molecule while the second one is blocked in the

ratchet slope. Once the leading motor is excited, the second motor pushes the foremost

like in mechanism (a). The segment indicates that motors are found in contact.

3.1.1.2 Staircase-shaped VF curves for large N

Next we study the VF relationship for an arbitrary number of
motors. In Fig. 3.4 we find a dramatic enhancement of the force
at finite non-negligible velocities as we increase N . Although the
velocity at zero load is the same for different N , the stall force is
largely increased. We also note a remarkable complex shape of the
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curves, which resemble a staircase. This effect is a consequence of
the inhomogeneous motor density distribution in the cluster and
the particular high noise intensity in the system. For relatively
low forces, the external force is conveyed only to a reduced frac-
tion of “active” motors in the center of the cluster (see Section
3.1.1.4), while those in the rear behave much more diffusively
and remain loosely bound to the active group (Fig. 3.4b). The
successive plateaus correspond to the recruitment of new motors
by the active group. Indeed, as the force is increased, the new
motor interacts more often with the active group and thus becomes
progressively more cooperative. This partially compensates the
decrease of velocity for a certain range of forces. This phenomenon
becomes ineffective whenever the force reaches a multiple of ∼ U/l,
which is the typical ratchet force. At this point, both cooperative
mechanisms in Fig. 3.3 fail and motors can be dragged back over
the ratchet slope. Therefore, each plateau in Fig. 3.4a can be
identified as the recruitment of a new motor by the active part of
the cluster. For instance, for N = 5 the first plateau corresponds
to typically three active motors and the second plateau to four
active motors, as shown in Fig. 3.4b. This mechanism also persists
for backward movement until the recruitment of the totality of
motors (see Section 3.1.1.3, Fig. 3.6, inset).

In Fig. 3.5, we study in detail the scaling of Fs with N for
different possible values of β (circles) and also in the case of al-
lowing fluctuations of the motors in the ratchet minima (dashed
curve). We notice a steep enhancement for low N and saturation
of the stall force for large N . The presence of noise in the min-
ima changes effectively the average excitation rate to an effective
average rate ω′?. Once a motor is drifted out of the region δ by
thermal fluctuations, it soon falls back in the minimum again, thus
waiting again for ATP. Consequently, the addition of noise in the
ratchet minima corresponds to a smaller effective excitation rate
ω′? < ω? (or equivalently β′ > β). In Fig. 3.5 (inset) we observe
the saturation of the VF curves and the occurrence of long tails for
large N which makes convenient to define the apparent stall force
as discussed above. We also notice that for small forces (F < 10
pN), the velocity for N = 10, 15, 20 is slightly greater than V1(0).
This effect is a numerical artifact, due to the existence of very long
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Fig. 3.4 a) VF curves for different N . β = 2.5, σ/l = 0.521 and δ/l = 0.02. The collective

stall force grows rapidly with N in a nonlinear fashion. Moreover, the high diffusive envi-

ronment induces a staircase shape of the VF curves. Data correspond to the case where
motors cannot fluctuate in ratchet minima. b) Typical motor trajectories for cases 1 (F = 8

pN) and 2 (F = 20 pN) in panel a). Red squares show the active motors in the front, which

are generally three in case 1 and four in case 2.

transients for large clusters under the action of small forces which
bias the statistics to larger velocities. A simple argument shows
that this effect cannot be present for purely repulsive potentials.
In fact, let us consider a cluster of N motors under an external
force F which moves at VN(F ) > V1(0). The last motor will only
be slowed down by the motors in the front since the interaction
is repulsive, thus the last motor will have a velocity smaller than
V1(0) and it will fall behind the cluster. By repeating the same
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Fig. 3.5 Fs vs N for β = 1, 2.5 (circles) and for noise in the minima (β = 2.5 and
δ/l = 0.02, dashed line). We differentiate a steep enhancement for small clusters and a

saturation regime for large clusters assuming a cut-off velocity Vc ' 10−4 µm/s. Inset: VF

curves for N = 2 − 8 (grey) and N = 10, 15, 20 (black) for β = 2.5. We notice the long
tails near stall force conditions.

reasoning, the cluster will lose all motors except the leading one
which will move at V1(0), hence V1(0) ≥ VN(F ), ∀N,F > 0 for
the case of a repulsive interaction.

3.1.1.3 Convergence to mean-field

We have shown that the cooperative action of motor clusters out-
performs the simple addition of individual forces, i.e. the extensive
scaling VN(F ) = V1(F/N) or FN(V ) = NF1(V ). This scaling is
the one predicted by a mean-field ansatz, which assumes that
correlations between positional and internal degrees of freedom
of the motors are neglected. In Ref. [Orlandi et al., 2010] it was
established that the extensive scaling was obtained in the limits of
large noise intensity or long-ranged repulsive interaction between
motors. For the case of hard-core repulsion and typical noise in-
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tensity values for KIF1A, the latter arguments implied that the
mean-field ansatz was essentially correct in the case β = 0. We
have thus shown that β 6= 0 is responsible for a stronger violation
of the mean-field ansatz in the constructive direction, that is for
further enhancement of cooperativity. Here, we explicitly show
how the introduction of a soft, long-ranged repulsion interaction
restores the mean-field scaling. To this aim we add to the hard-core
part WHC , an exponential repulsive tail of the form:

WL(ξ) = κΛe−ξ/Λ (3.3)

where κ measures the strength of the interaction and Λ denotes
its range. In Fig. 3.6 we study the loss of cooperativity for the
N = 5 curve of Fig. 3.4 as Λ is increased. We notice that the stall
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Fig. 3.6 Convergence to mean-field in the presence of long-ranged repulsion with strength

κl/kBT = 5 and different Λ. The curve studied corresponds to the case N = 5 in Fig. 3.4.
Symbols are calculated for β = 2.5 and the dashed line corresponds to the case β = 0. Inset:
VF curves including negative velocities. The staircase behaviour persists during backward

motion until the recruiting of the totality of motors.
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Fig. 3.7 VF curves for different noise intensities. The curve studied corresponds to the

case N = 5 in Fig. 3.4. As diffusion strength is lowered, the staircase behaviour smoothes

out.

force decreases for increasing Λ and the cooperative mechanism
induced by the finite dwell time disappears for sufficiently large Λ,
converging to the case β = 0. Interestingly, the staircase behavior
persists for negative velocities and it is not much sensitive to
the long-range interaction for Λ/l < 0.5 (Fig. 3.6, inset). Now
we study the effect of noise strength in the VF curves. Fig. 3.7
shows the same N = 5 curve for four different noise intensities.
We notice that oscillations smooth out for low noise intensity. As
diffusion is lowered, the external force is able to cluster motors
more easily and the recruitment effect is not so pronounced. Hence,
sufficiently high diffusivity is required, together with β 6= 0, to
produce staircase shaped VF curves.

3.1.1.4 Cluster force distribution

Each motor in the cluster feels “active” and “passive” forces.
Active forces are those forces driven by ATP hydrolysis which
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allow motors to perform their power stroke. In our context, the
power stroke corresponds to the sliding over the ratchet potential
when motors decay. Therefore, the average active force for the i -th
motor reads F act

i = −〈U ′(xi, ki)〉. On the other hand, passive forces
correspond to the forces motors feel due to the transmission of the
external force F via the potential W , therefore the average passive
force the i -th motor feels reads F pas

i = −〈∑k 6=iW (xi−xk)〉−Fδ1i.
Hence, computing the ensemble average in Eq. 2.3 we have:

λ〈ẋi〉 = F act
i + F pas

i (3.4)

Since the average velocity of each motor in the cluster is the same,
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Fig. 3.8 Passive force distribution F pasi for N = 12, β = 1 with different forces (symbols)
and for β = 0, F = 10 pN (dashed line) . The force distribution in the cluster shows a
pronounced dip which reflects an enhanced activity of the central part of the cluster in the

presence of dwell time.

the last equation tells us that the sum of active and passive forces
for each motor is constant in average. In Fig. 3.8, we measure
passive forces F pas

i inside a N = 12 cluster for different external
forces. By virtue of Eq. 3.4, the complementary active forces
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can be obtained by subtraction of the passive ones from the
constant term. For β = 0, the force distribution among motors
is fairly homogeneous for our choice of noise intensity and force.
However, when β 6= 0, the force is much more unevenly distributed.
Interestingly, the first motor is not active, but is passively pushed
by a central group of motors which mostly originate the active
forces. This central group of active motors grows as F is increased.
The last motors rarely interact with the main cluster and thus they
have a minor contribution. The emergence of a nontrivial structure
in the internal distribution of forces is a signature of cooperativity
in this system and was already noted in Ref. [Orlandi et al., 2010]
for β = 0. However, in this case the effect is still present for large
noise intensities due to the addition of dwell time.

3.1.1.5 Coordinated motion of large clusters

In the case of large clusters under heavy loads, the cluster adopts
a characteristic stepwise coordinated mode, already reported in
Ref. [Orlandi et al., 2010] for β = 0. In this configuration, the
cluster waits for some collective dwell time before performing
a step as a whole, with an almost synchronous stepping of all
motors, superposed to the small fluctuations of the individual
motors. Steps are totally asymmetric i.e. no backward stepping
occurs. The synchronous displacement is clearer for the leading
motors than for the ones in the rear. Fig. 3.9 shows the logarithm
of the step size distribution P (∆x) measured at each ∆t ∼ 1 ms
for the leading motor of a N = 40 cluster with an external force
F = 30 pN. The large central peak reflects the small fluctuations
of the motor. The small peak around 4 nm corresponds to the
synchronous displacement, which for our choice of σ is roughly
half the period of the ratchet. We may identify a collective step
as a displacement ∆x ≥ 2 nm of the first motor, so that we can
obtain the time distribution P (τc) for the collective dwell time
τc. This is shown in Fig. 3.9 (inset). The distribution appears to
be very close to exponential and has a mean collective dwell time
〈τc〉 ' 60 ms, implying a rather small velocity of ' 70 nm/s. This
mode of transport could be relevant to overcome very large forces
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in the presence of obstacles or traffic jams, by the recruitment of
a sufficient number of motors.
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Fig. 3.9 Logarithm of the step size distribution P (∆x) measured at each time step for

the leading motor of a N = 40 cluster with a load of F = 30 pN. Inset: Logarithm of the

collective dwell time distribution P (τc). The green line shows a good fit to an exponential
distribution. Measures are taken at each time elapsed between steps ∆x ≥ 2 nm, which

from P (∆x) are assumed to contribute to a net movement of the cluster.

3.1.1.6 Efficiency and randomness

To further characterize the collective properties of motor clus-
ters, we briefly discuss their collective efficiency and random-
ness. In Fig. 3.10 we show the collective efficiency defined in Eq.
3.1 normalized to the maximum value for a single motor. A re-
markable increase on the efficiency was already reported for the
case of no dwell time in Refs. [Brugués and Casademunt, 2009,
Orlandi et al., 2010], where clusters of 10 motors increased the
single-motor efficiency by a factor 10. In the presence of dwell
time we find that the maximum efficiency for similar clusters may
increase up to a factor 100 that of a single motor. As shown in
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Fig. 3.10, the efficiency in our case also exhibits complex behavior,
as a consequence of the staircase shaped VF curves. If we take
∆µ ' 20 kBT as a reasonable value [Parmeggiani et al., 1999],
the maximum efficiency of a single motor is ηmax1 ∼ 10−4. The low
value is clearly associated to the diffusive part of the motor cycle,
which introduces an important number of backward events. In this
sense, the presence of other motors contributes to further rectify
possible diffusive backward excursions. Notice that the efficiency of
a noise-driven motor such as KIF1A is necessarily very small com-
pared to the case of dimeric KIF5, exploiting the ‘hand-over-hand’
mechanism. Accordingly, the low efficiency of the motor is also
associated to a high randomness. This parameter is defined as the
ratio of the diffusive versus ballistic displacements of the motor, at
the scale of the track periodicity l [Kolomeisky and Fisher, 2007].
We find that the collective randomness decreases very fast with the
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Fig. 3.10 Collective efficiency normalized to the maximum value for N = 1. The addition
of motors in the cluster greatly enhances the efficiency of the system. Inset: Efficiencies for
N = 2 and N = 3. The different parameter values and symbols are the same as in Fig. 3.4.
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addition of motors. For the stepwise coordinated mode discussed
above, the randomness parameter remains close to 1, that is, the
case of a totally biased random walker performing unit steps with
an exponentially distributed time.

3.1.2 Confining interactions

3.1.2.1 Rigidly coupled motors

Pure hard-core repulsion between motors appears to be a good
description to account for excluded volume interactions in the
transport of soft cargos, where motors move freely and motors
are unequally loaded. However, the case of rigidly coupled motors
separated by a fixed distance is also of important interest in
the transport of rigid cargos and to other situations relevant
for biotechnological applications, which can be designed using
rigid assemblies of motors [Korten et al., 2010]. Following Ref.
[Orlandi et al., 2010] to describe rigid interaction between motors
we will use a harmonic potential WS(ξ) = 1

2
k(ξ−d)2, where d is the

motor-motor distance. We define the dimensionless constant k̄ ≡
kBT/kl

2 as a measure of the stiffness of the assembly. Therefore,
the limit of rigid coupling will be k̄ � 1. As discussed in Ref.
[Orlandi et al., 2010], non-trivial dynamic effects can happen when
d and l are commensurable. Additionally, for the case β 6= 0, the
strength of the binding interaction can produce a nonmonotonic
behavior of the VF curves for a certain force range (Fig. 3.11,
inset). In order to be able to compare our results to the case
of non-bounded motors, we typically choose values of k̄ and d
that minimize such commensurability effects in the rigid limit. In
general we observe that velocities at a given force are typically
larger than in the hard-core case. This effect is expected since rigid
coupling not only enables pushing but also pulling of adjacent
motors. The force enhancement due to the presence of dwell time
is also found for rigid coupling. In Fig. 3.11 we show several VF
curves for different numbers of motors. Note that for β 6= 0 the
displacement of one motor is strongly conditioned to the motion
of the rest. This means that a significant number of motors must
be either in the weakly bound state, or sliding down the ratchet
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Fig. 3.11 VF curves for the case of rigid coupling. d/l = 1.341, β = 1.25 and k̄ = 4 ·10−3.
Inset: N = 3 VF curve for k̄ = 10−3, 3 · 10−3, 4 · 10−3 (ordered from more to less bumped).

potential. This fact implies an effectively larger dwell time which
in turn implies a faster growth of the stall force with the number
of motors. However, the stall force of the system saturates for
N > 15 at ' 35 − 40 pN (Figs. 3.11 and 3.12). On the other
hand, we notice that the velocity at null force VN(0) presents an
overshoot for N = 2, 3 motors and stabilizes for N ≥ 5 (Fig. 3.12,
inset). This effect is due to the fact that the minimum number of
consecutive motors over the lower ratchet slope needed to remove
a motor from the minima must be greater than bl/a− 1c 1 which
in our case are 5 (a/l = 0.2). For the case a = 0, a given motor in
the minima could not be removed by any number of motors and
VN(0) would decay with N until vanishing, since the motion of
the foremost motor is constrained to the dynamics of the rest.

1 The floor function of a certain quantity x, bxc is the largest integer not greater than x.
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Fig. 3.12 Fs vs N for β = 1.25, 2.5, k̄ = 5 · 10−3 and Vc ' 10−4 µm/s. The stall force

of the system saturates around 35 pN for N ' 15 motors. Inset: VN (0) vs N using the

data in Fig. 3.11. We appreciate an overshoot on the velocity around N = 3 and a rapid
stabilization as N increases.

3.1.2.2 Raft-induced interactions

Lipid rafts are membrane microdomains which float freely in the
membrane bilayer. When groups of motors bind specifically to lipid
raft domains in vesicles, their motion is constrained by the size
of the microdomain [Klopfenstein et al., 2002]. In this section we
incorporate such raft-induced confining interactions in our model
motivated by the experiments in Ref. [Klopfenstein et al., 2002],
where the liposome movement driven by the collective action
of Unc104 motors (the analogous kinesin of KIF1A for C. ele-
gans) showed a very steep dependence on phosphatidylinositol
4,5-biphosphate (PIP2) concentration due to the formation of lipid
rafts. Two different hypothesis were proposed to explain such phe-
nomenon: dimerization of Unc104 motors or cooperativity between
the monomeric form of the motors. The aim of this section is to re-
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produce raft-like conditions and to study the velocity dependence
on the parameters describing this effective interaction.

Let us consider a raft of length L which contains N motors of
size σ. In order to confine the movement of motors, we will use
a truncated Lennard-Jones potential which will depend on the
distance between the first and last motor φ ≡ xN − x1 > 0. Since
motors can only move in a region L− σ, the potential reads:

WR(ξr) = 4ε

[(
σ

ξr

)12

−
(
σ

ξr

)6
]

(3.5)

where ξr ≡ L−φ and the expression is only valid for φ > L−21/6σ
and is zero otherwise. This potential will be added to the hard-core
part only for i = 1, N . We define the dimensionless density of the
raft as ρ ≡ Nσ/L. In Fig. 3.13 we study how VF curves change as
a function of the raft motor density ρ for N = 2, varying L for a
fixed motor size σ. The presence of raft-induced interactions con-
fines the motion of the two motors and establishes a well defined
mean motor distance as ρ increases.

The stall force is greatly enhanced similarly as in the hard-core
and rigid coupling cases. Actually, in the limit ρ→ 1 the system
converges to the rigid coupling case as expected. However, this
convergence does not follow a simple monotonous growth but an
irregular dependence on ρ (Fig. 3.13, inset). This dependence is
difficult to interpret given the large number of length scales that
could lead to commensurability effects with L, namely a, l, σ
and 〈ξ〉. The velocity of the cluster already converges to the rigid
coupling case around ρ ' 0.6; however, this property is missed for
N = 3. For N > 2, the system shows an intermediate behaviour
between hard-core repulsion and strong-coupling. Consequently,
raft-like interactions can speed up the system eliciting velocities
of ∼ 0.3− 0.5 µm/s but these are still far from typical liposome
velocities (∼ 1 µm/s) of Unc104 [Klopfenstein et al., 2002]. This
suggests that the switching behavior of the liposome movement
found in Ref. [Klopfenstein et al., 2002] is probably due to dimer-
ization of Unc104 motors.
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Fig. 3.13 VF curves for the case of N = 2 and raft-induced interactions with σ/l = 0.341,
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parameter values and rigid coupling interaction with k̄ = 10−3. Inset: evolution of the

velocity of the cluster at null force as a function of ρ for β = 1.25.

3.1.2.3 Transition between rigid coupling and hard-core repulsion

We have previously seen that both rigid and hard-core interactions
produce a nonlinear enhancement on the stall force of the system.
In this section, we explore the transition between these two regimes
by changing the parameter k̄ in the limit of large N . In order for
the transition to be smooth, we use WHC−S(ξ) = WHC(ξ) +WS(ξ)
by setting a motor-motor distance d and a motor size σ. In Fig.
3.14 we study the dependence of Fs(15) on k̄ for three values of
the motor size σ. The strength of motor fluctuations 〈(ξ − d)2〉
determines the appearance of commensurability effects. Two main
factors change the strength of these fluctuations: the rigidity of
the interaction k̄ and the external load F . For very strong spring
constants motors barely fluctuate and commensurability effects
are predominant, thus the system is very sensitive to σ and we
find strong resonances on the stall force. On the other hand, as we
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Fig. 3.14 Stall force for N = 15 vs k̄ showing the transition between rigid coupling and

hard-core interaction for different motor sizes σ and β = 1.25. A pronounced dip appears
for a certain k̄ range in which the stall force is considerably reduced.

approach the hard-core limit, fluctuations are still small since we
are found near stall conditions. In this case, the system resembles
the rigid case except for some long excursions of the motors in
the rear of the cluster. Thus, motor size effects are present both
in the rigid and hard-core limits near stall conditions, however in
the hard-core limit resonances are less pronounced. We notice the
presence of a pronounced dip around k̄ ' 10−2. Hence, a weak
binding interaction between motors leads to a decrease of the
collective stall force in the large N limit. This can be explained
in simple terms. Let us consider a large cluster of weakly bound
motors in stall conditions, such that the cluster is compressed in the
front and only the last motors can fluctuate significantly. Suppose
that a fluctuation drives the last motor one step backwards and
the binding interaction is sufficiently strong that the cluster feels
a restoring force which adds to the external force. Consequently,
fluctuations in the rear of the cluster will tend to destabilize it.
For this situation to occur, the energy of the interaction must be
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comparable to the energy scale of the ratchet for ξ ∼ l, that is
k̄c ∼ kBT/U ∼ 10−2. However, if motors do not feel any binding
interaction, fluctuations do not affect the cluster.

3.1.3 Conclusions

We have provided a thorough numerical study of the collective
action of single-headed KIF1A motors based on Brownian dynam-
ics. We have predicted a dramatic improvement of the collective
performance of these motors for tasks associated to the transport
of membrane-bound cargos. The results rely on a two-state noise-
driven model that successfully explains the motion of a single
motor.

The presence of finite dwell time in the system (β 6= 0) reveals
a great enhancement of the collective force generation of motors.
This effect is able to produce a two-order of magnitude gain on
the collective efficiency up to values of ∼ 10−2. The collective stall
force at a given velocity grows faster than proportional to N up to
around 5 KIF1A motors. This behaviour is remarkably different for
KIF5, whose collective forces are weakly dependent on the number
of motors in this regime [Furuta et al., 2013, Rai et al., 2013]. For
N ∼ 5−10 the force scaling of KIF1A remains roughly proportional
to the number of motors, a property that is missed by conventional
kinesin according to lattice models [Campàs et al., 2006]. Finally,
for large N the total force produced by the motor ensemble even-
tually saturates.

A salient feature of our results for relatively small motor clus-
ters is that the collective VF curves have staircase shapes, that
effectively count the number of active motors in the cluster. This
could potentially be used to infer the number of motors in a clus-
ter by directly measuring forces. From a biological point of view,
our results reinforce the hypothesis that the specificity of KIF1A
to axonal vesicular trafficking is due to its unique adaptation to
cooperative force generation. From a fundamental physics point
of view, we have shown that Brownian motors based on two-state
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ratchets with independent switching and under unequal loading are
remarkably adapted to cooperative force generation. Within this
spirit, rectification mechanisms and spatial confinement in ratchet
systems may be deeply related to the emergence of cooperativity
in nanoscopic transport [Malgaretti et al., 2013]. Additionally, hy-
drodynamic coupling in thermal ratchet motion might also play
an important role [Malgaretti et al., 2012].

So far, we have conceptually introduced two cooperative mecha-
nisms, namely the ‘up-push’ and ‘down-push’ mechanisms. In order
to get a clear understanding of these mechanisms it is convenient
to switch to a lattice model approach, grounded on the Langevin
formulation, which allows analytical treatment in some limits.

3.2 Lattice model for KIF1A dynamics

Asymmetric simple exclusion process (ASEP) models have been
extensively used to study non-equilibrium phase transitions, where
particles jump in a lattice [Spitzer, 1970, Krug, 1991, Evans, 1996].
In the context of intracellular transport, molecular motors are
treated as particles which jump on a lattice, where each lattice site
corresponds to a binding site for the motor. These models are useful
to study large numbers of motors which interact via simple exclu-
sion interactions [Lipowsky et al., 2001, Parmeggiani et al., 2003].
We understand by simple exclusion interactions the fact that a
motor can not jump to a lattice site which is already occupied by
another motor. The latter assumption is reasonable provided that
motors are found always in a strongly bound conformation to the fil-
ament. The underlying reason is the lack of force transmission. This
type of interaction seems to apply to conventional kinesin, which
walks following a ‘hand-over-hand’ mechanism [Rai et al., 2013].
Dimeric kinesin moves the two heads in a highly coordinated
manner such that one head is always strongly bound to the fil-
ament. Consequently, this fact difficults any kind of force trans-
mission between neighbouring dimeric kinesins. However, other
types of molecular motors like KIF1A or cytoplasmatic dynein,
seem to be able to transfer force from one motor to the other
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[Okada et al., 2003, Rai et al., 2013]. One could think that the
power stroke of a motor can be transmitted to a neighbouring
motor, thus forcing the second one to move. This may be possible
if the second motor is diffusing near the filament e.g. in a weakly
bound state. In the latter case, motors may be able to cooperate
in teams and a simple excluded volume process is not appropiate
to describe their movement.

In this section, we will introduce an appropriate generalization
of the ASEP approach in order to gain further insights on the
cooperative effects shown in Section 3.1 for the collective dynamics
of KIF1A motors. From the Langevin formulation, it is clear that
the key elements that enhance cooperativity beyond mean-field
involve simultaneous motion of different motors, namely, when a
motor sliding down the ratchet slope in state 1 pushes a motor in
state 2 (assuming a < σ < l−a) (see Fig. 3.3). Furthermore, simu-
lations of many motors under large forces give rise to very packed
motor clusters which advance with a high degree of coordination
as shown in Section 3.1.1.5. These observations suggest that an
appropriate discrete model should incorporate transitions of blocks
of adjacent motors, with rules that should be grounded on the
Langevin formulation. Next, we introduce such a model for the sim-
plest and most illuminating case N = 2. An extension of the model
to an arbitrary number of motors can be done with qualitatively
similar results to the Langevin model; however, in the latter case
there exist some complications in the way multi-particle transi-
tion rates are chosen which we will briefly discuss in Section 3.2.1.3.

Finally, so far we have studied the motion of KIF1A along
a single protofilament on the microtubule lattice; however, the
weakly bound state of KIF1A may enable lane changing. Motivated
by the experiments in Chapter 4 we model the motion of a single
KIF1A motor in a two-dimensional lattice.
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3.2.1 Dynamics on a 1D lattice

We consider a 1D lattice with each site associated to a period
of the ratchet potential of length l and asymmetry a, with two
possible states. Single-motor transitions are shown in Fig. 3.15a,b:
in state 2, a motor labeled µ can undergo biased diffusion along
the lattice with rates uµ, vµ. Since the external load is applied
only to the leading motor, we will have:

uµ =
d

2
(1− δ1µf); vµ =

d

2
(1 + δ1µf) (3.6)

where f ≡ Fl/kBT and d ≡ kBT/λl
2 is the diffusion rate. On the

other hand, the motor can decay from state 2 to state 1 either at
the same site, or into the next one on the right (Fig. 3.15b, upper
panel), reflecting the distinct probability of falling into the red or
green regions of the ratchet potential (Fig. 3.15a), with respective
rates qµ and pµ. Consistently with the Langevin picture we take:

pµ ≡ p =
ω

2
(1− 2ā); qµ ≡ q =

ω

2
(1 + 2ā) (3.7)

where ā ≡ a/l. Finally, we assume for simplicity that the exci-
tation rate rµ is essentially independent of the external load,
with a dwell time in state 1 that is dominated by the time
the motor needs to capture an ATP molecule, thus neglect-
ing the sliding time along the slope (rµ ' ω?). These assump-
tions are realistic for KIF1A for small loads f � fr where
fr ≡ U/(1 − ā)kBT and d � p [Okada and Hirokawa, 1999]. For
isolated motors this model is a simple extension of those of Refs.
[Nishinari et al., 2005, Chowdhury, 2006] including unequal load-
ing. In our model, however, we relax the simple exclusion principle
and allow for coordinated steps when one motor attempts to move
into an occupied site. Two adjacent motors in the diffusive state
2, will thus be allowed to move together one step forward or back-
ward with hoping rates u′2 = u1/2 and v′1 = v1/2 respectively
(Fig. 3.15c,d). The crucial processes are those in which adjacent
motors undergo a change of state, in particular the p-transitions,
which are the ones that contribute to motion and power generation.
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Consider the case when the second motor attempts a p-decay
from state 2 while the next site is occupied by the first motor. If the
latter is also in state 2, then we must allow the simultaneous step
forward of both. This is what we call a ‘down-push’ (see Fig. 3.15e),
and corresponds to the cooperativity mechanism identified in
Refs. [Brugués and Casademunt, 2009, Orlandi et al., 2010]. Only
if β 6= 0, a new situation occurs when the p-decay is attempted
while the first motor is occupying the adjacent site in state 1 (Fig.
3.15b, lower panel). As suggested by the Langevin dynamics, the
proper way to model this case is that the second motor must wait
until the first one is excited, and then both will move forward
together one step. This is the new key feature that is introduced
by the finite dwell time. In order to keep a Markovian description,
without memory effects, this situation may be handled in practice
by defining a new state 3, as the waiting state of the second motor
after a p-decay when the adjacent site is occupied in state 1. This
state is depicted in green in Fig. 3.15b,f and has no counterpart
in the single-motor problem, or when hydrolysis dwell time is
neglected. We call such an event an ‘up-push’ (Fig. 3.15f) and
provides the new mechanism required to enhance cooperativity
beyond MF.

3.2.1.1 Cases N = 1 and N = 2

To pursue this model analytically, we first consider the case N = 1.
If we define the probability of finding the motor in state s = 1, 2
as σs(t) then we have:

σ̇1 = (q1 + p1)σ2 − r1σ1 ; σ̇2 = −σ̇1 (3.8)

In the steady state we find σss1 = β/(1 + β) and σss2 = 1/(1 + β).
Since the motor can only advance from state 2, we have V1(f) =
lσss2 (u1 + p− v1), that is,

V1(f) =
vd

1 + β
(f1 − f) (3.9)

where vd ≡ ld and f1 ≡ p/d is the stall force fs(1) = f1. The linear
VF curve coincides with the prediction of the Langevin model for
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Fig. 3.15 Lattice model in 1D. a) Elementary transitions in the lattice model and their
correspondence with the ratchet picture. b) p and q-decays reflecting the distinct proba-

bility of falling into the green or red regions shown in a). If the second motor attempts a

p-decay from state 2 while the next site is occupied in state 1, the first is trapped in the
“green” state (state 3 in the text). c,d) Coordinated diffusion of two motors in state 2. e)

‘Down-push’: The second motor makes a p-decay and pushes the first one. f) ‘Up-push’:

the first motor excites and it is pushed by the second one in state 3.

large noise strength (see Appendix A and Ref. [Orlandi et al., 2010]).

The case N = 2 can be easily solved numerically, but some
analytical approximations are illuminating. We define a generic
configuration state C = {s1, s2, n} by the conditions of the first
and second motors being respectively in states s1 and s2 having
n vacant sites in between. The space of possible configurations
can be enumerated as {1, 1, n}, {1, 2, n}, {2, 1, n}, {2, 2, n} with
n ≥ 0 plus the configuration {1, 3, 0}, the only one that involves
state 3. The Master equation for the probability P (C, t) of a
configuration C = {s1, s2, n} can be written as [van Kampen, 1981,
Gardiner, 1985]:
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Ṗ (C, t) =
∑

C′ 6=C
Γ (C|C ′)P (C ′, t)− Γ (C ′|C)P (C, t) (3.10)

where Γ (C ′|C) is the transition rate from C to C ′. We then de-
fine a decoupling approximation as P (C, t) ' σs(t)τs(t)ρn(t) for
s = 1, 2, n ≥ 0 while keeping P ({1, 3, 0}, t) ' τ3(t), where τs(t) is
the probability of finding the second motor at state s and ρn(t)
is the vacant probability distribution within our approximation.
This decoupling neglects correlations between spatial and internal
degrees of freedom but is not quite a MF ansatz due to specific
treatment of the configuration {1, 3, 0}. As in the MF ansatz,
though, it is expected to be reasonable for large noise-strength,
i.e. large diffusivity and relatively small forces. The dynamics of
σs(t) are the same as for a single motor. Moreover, this probability
fulfills σs(t) =

∑
s2,n

P (C, t) 2. The dynamics of τs(t) reads:

τ̇1(t) = (q + p(1− σ1ρ0))τ2 + r(τ3 − τ1)

τ̇2(t) = rτ1 − (p+ q)τ2

τ̇3(t) = pσ1ρ0τ2 − rτ3

(3.11)

where τs(t) '
∑

s1,n
P (C, t) for s = 1, 2. In the steady state we

find:

τ ss2 =
1

1 + β(1 + cσss1 ρ
ss
0 )

(3.12)

τ ss1 = βτ ss2 (3.13)

τ ss3 = βcσss1 ρ
ss
0 τ

ss
2 (3.14)

On the other hand, the dynamics of ρn(t) takes the form:

ρ̇0 = ρ1[σ2v1(τ1 + τ2) + (d/2 + p)τ2]

− ρ0[σ2(u1 + p)(τ1 + τ2) + τ2d/2]

(3.15)

2 This is an exact equality in which the state dynamics σs(t) of the first motor is indepen-

dent of the presence of the second motor.
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ρ̇n = ρn+1[σ2v1(τ1 + τ2) + (d/2 + p)τ2]

+ ρn−1[σ2(u1 + p)(τ1 + τ2) + τ2d/2]

− ρn[σ2(u1 + p+ v1)(τ1 + τ2) + (d+ p)τ2] n > 0

(3.16)

where ρn(t) '∑s1,s2
P (C, t). The steady state solution reads:

ρssn = ρss0 χ
n (3.17)

ρss0 =
f

1 + f1 + f/2
(3.18)

χ = 1− ρss0 (3.19)

In order to calculate the approximate velocity of the first motor

V
(1)

2 , we define the probability of finding the first motor at position
x at time t as η1(x, t) within our approximation. The dynamics
reads:

∂tη1(x, t) = σ2[η1(x− l, t)(u1 + p)− η1(x, t)(u1 + p)]

+ σ2(1− ρ0)[η1(x+ l, t)v1 − η1(x, t)v1]

+ σ2τ2ρ0[η1(x− l, t)(p+ u′2) + η1(x+ l, t)v′1]

− σ2τ2ρ0[η1(x, t)(p+ u′2 + v′1)]

+ τ3[η1(x− l, t)r − η1(x, t)r] (3.20)

As we are interested in the behavior at large length scales (larger
than l), we expand the probability up to first order η1(x+∆x, t) =
η1(x, t) + ∂xη1(x, t)∆x+O(∂2

xη1). In the long-time limit Eq. 3.20

takes the form ∂tη1 = −V (1)
2 ∂xη1 +O(∂2

xη1) where the drift term

V
(1)

2 reads:

V
(1)

2 = lσss2 [u1 +p−(1−ρss0 )v1 +τ ss2 ρ
ss
0 (p+u′2−v′1)]+ lτ ss3 r (3.21)

The velocity of the second motor can be similarly calculated and
we find:

V
(2)

2 = lτ ss2 [(d/2+p)(1−ρss0 )−d/2]+ lσss2 τ
ss
2 ρ

ss
0 (p+u′2−v′1)+ lτ ss3 r

(3.22)
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We choose V2 ' V
(1)

2 for the sake of clarity of the algebraic expres-
sions. This particular choice is not inconsistent since any choice
is equivalent in the exact problem. In our case, the results are
not equivalent because we work within an uncontrollable approx-
imation. However, the main dependences are captured in these
expressions. Inserting the above approximate values we get:

V2(f) ' vd
1 + β

(f1 − f + ρss0 g(f))

g(f) = τ ss2

(
f1 −

f

2

)
+ f1τ

ss
1 +

1

2
(1 + f) (3.23)

At zero load ρss0 (f = 0) = 0 and from Eq. (3.23) we re-
cover the single motor velocity. The first term in g(f) accounts
for the ‘down-push’ transitions (Fig. 3.15e) considered in Refs.
[Brugués and Casademunt, 2009, Orlandi et al., 2010]. Note that
this contribution is decreasing with β, and it is negative for f ≥ 2f1

so it cannot cause the stall force enhancement beyond the MF
value. Conversely, the second term, which vanishes if β = 0 (i.e.
τ ss3 = 0) comes from the ‘up-push’ transition (Fig. 3.15f), and it
grows with β up to a saturation value. This term, which originates
from the finite-time kinetics of ATP hydrolysis, is the only one that
allows for an increase of the stall force beyond MF. Interestingly, a
shortage of ATP results in a decrease of velocity but, up to a point,
to a significant increase of the strength of the motor pair. The last
term is due to purely excluded volume interactions between the
motors, that is, coming solely from the interaction potential W , as
opposed to the two first terms which are due to the filament force
(i.e. the potential U1). For β = 0 this last term yields the MF stall
force of two motors fs(2) = 2f1. In order to get more insight on
the stall force dependences, we use Eq. 3.22 to calculate the stall

force of the second motor which takes the form fs(2) ' f
(2)
s (2)

again for the sake of clarity of the algebraic expressions:

fs(2) =
γ

2

(√
1 + κ/γ2 − 1

)
(3.24)

where γ = (1 + β)(1− f1) and κ = 8f1(1 + β)(1 + f1). In the limit
of β � 1, this expression reads:
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fs(2)

2fs(1)
=

1 + f1

1− f1

> 1 (3.25)

Hence, in the limit of low ATP supply, we obtain a simple analytical
expression for the stall force of two motors which depends solely
on the single motor stall force f1. Specifically, the cooperative
factor in this limit reads (1 + f1)/(1− f1) which is always positive
and larger than one, indicating the presence of force cooperativity
beyond MF.

3.2.1.2 Monte Carlo simulations

Next, we test the validity of our analytical approximations by
solving Eq. 3.10 numerically. In Fig. 3.16, we compare our ana-
lytical results to Monte Carlo (MC) simulations of the complete
system by using an appropriate formulation of the Gillespie al-
gorithm for spatially extended systems and with time dependent
transition rates (see Appendix B.2). We find that the analytical

0 0.1 0.2 0.3
0

0.5

1

f /N

V
N

(f
)/

V
1
(0

)

 

 

0 2 4 6
2

2.5

3

3.5

4

β

f
s
(2

)/
f
1

 

 

ba ba

Fig. 3.16 a) VF curves for N = 1 (red) and N = 2 (black) with β = 2.5. b) Stall force

of the motor pair versus β. Open circles correspond to MC simulations, the solid red line

shows the exact result for N = 1 and the solid and dashed black lines are the analytical
approximations for µ = 1, 2 respectively. d = 300 s−1, ω = 250 s−1 and ā = 0.2.

approximation yields actually an underestimation of V2(f). Due
to our decoupling approximation, the VF curves for each of the
two motors become slightly different, specially as β is increased
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3 (Fig. 3.16b). Despite the discrepancy, both VF and stall force
curves remain below the exact solution for β > 0 and f > 0
until stall for f1 = 0.25. This underestimation is possibly due to
neglected correlations during the decoupling approximation which
may be relevant for the enhancement of the VF curves. Therefore,
we might expect this underestimation to hold for f1 � 1 as we
approach to MF conditions.

3.2.1.3 N interacting motors

In Sections 3.2.1.1 and 3.2.1.2, we have demonstrated both ana-
lytically and numerically that two interacting motors can enhance
the collective stall force of the system beyond MF by cooperation.
However, we still ignore to what extent the lattice description
successfully captures the nonlinear scaling of the stall force with
N , or the staircase-shaped VF curves observed in the Langevin
description. Hence, we should generalize the previous lattice model
to the case of an arbitrary number of interacting KIF1A motors
in a 1D lattice.

A first consideration is that the formulation used in Section
3.2.1.1 is only valid for small forces (i.e. f � fr). Under the
presence of large loads (f � fr), a single motor can be dragged
backwards in state 1. This effect also applies for a cluster of mo-
tors in state 1 sharing the external load. Hence, a force-dependent
backward rate for the motors must be included in the model to
ensure the linear growth of the stall force with N in the absence
of cooperative effects. This rate will only apply to the consecutive
motors forming the leading cluster and sharing the external load.
On the other hand, single motor transitions can trigger collective
transitions of motor clusters. In this way, motor transitions can be
regarded as cluster transitions with rates which depend both on
the size of the cluster and the external force. u and v transitions
will only produce rearrangements on motor clusters in state 2,
while p and r transitions can lead to “avalanches” of motor clusters.

3 In the exact calculation both VF curves must coincide with the center of mass VF curve

i.e. V2 = V
(1)
2 = V

(2)
2 = V

(CM)
2 .
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Fig. 3.17 VF curves for the different number of interacting motors N on a lattice. β = 2.5,
d = 300 s−1, p = 75 s−1, q = 175 s−1, U = 20 kBT , ā = 0.2.

In Fig. 3.17 we show VF curves for different number of motors N ,
using a particular set of rules in the Gillespie algorithm regarding
cluster transitions. The choice of the transition rules is not unique
and some ad hoc assumptions must be taken into account to
simplify the problem. Remarkably, the different trends in stall
force scaling and shape of the VF curves are similar to the ones
in the Langevin description (Fig. 3.4). Hence, we conclude that
a lattice description with multi-particle transitions captures the
stall force enhancement of KIF1A motor clusters.

3.2.2 Dynamics on a 2D lattice

Finally, some molecular motors fail to follow a single protofil-
ament and they can change pf tracks [Yajima and Cross, 2005,
Brunnbauer et al., 2012]. Motivated by the experiments in Chap-
ter 4, in which we find that single-headed KIF1A motors are able
to change pf tracks, we aim to describe the motion of a single
KIF1A motor on a 2D MT lattice. We extend the previous lat-
tice description by considering a 2D oblique Bravais lattice (Fig.
3.18a) with directions r1 and r2 forming an angle θ. The vector
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Fig. 3.18 Lattice model in 2D. a) Two-dimensional oblique Bravais lattice representing

the MT surface with directions r1, r2, forming an angle θ. The lattice unit is centered

in each node of the lattice. b) Lattice unit of lengths l1 and l2 and ratchet asymmetries
a1, a2. c) Schematic description of a two-state noise driven ratchet for the direction i and

its equivalence in a lattice. Motors can diffuse with rates ui, vi and advance with rates pi
along the i-th direction. d) Two-dimensional diffusion on the lattice in the weakly bound
state. e) Possible transitions between the strongly bound state (black circles) and the
weakly bound state (gray circles) and its corresponding transition rates.
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r1 describes the on-axis motion of kinesin reflecting the polarity
of the MT. On the other hand, the vector r2 describes the off-axis
motion determined by the bias due to the interaction of the motor
domain and the MT lattice when the motor is diffusing in the
weakly bound state. The mechanism of motion can be understood
by considering a two-state model.

We define the state of the motor as k = 1, 2 depending on
whether the motor is strongly bound (k = 1) or weakly bound
(k = 2) to the MT. In the strongly bound state, the motor feels
a superposition of two asymmetric ratchet potentials forming an
angle θ with asymmetries ai and periodicities li (Fig. 3.18b,c)
where i = 1, 2 indicates the direction in the lattice. Each node
of the Bravais lattice corresponds to the minima of the MT po-
tential landscape. A motor in the minima can only be excited
with rate r = ω? to the weakly bound state in which it under-
goes two-dimensional diffusion on the lattice with rates ui, vi,
i = 1, 2 (Fig. 3.18d). This rates depend linearly on an external
force F = (F1, F2) as ui = (di/2)(1 − fi), vi = (di/2)(1 + fi),
i = 1, 2, where fi = Fili/kBT , di = D/l2i is the diffusion rate
and D is the one-dimensional diffusion coefficient in the weakly
bound state. When the motor decays, it can fall in one of the four
possible regions depicted in Fig. 3.18b. If the motor falls in the
red region, it performs a q transition binding strongly to the MT
in the same node (Fig. 3.18c and 3.18e). However, if the motor
falls in one of the three green regions, it will move to a new node
in the lattice. The motor will make a p1 transition if it falls in the
upper green region, a p2 transition if it falls in the left green region,
and a p12-transition if it falls in the dark green region. The latter
probabilities are equal to the decay rate ω times the probability of
falling in a given region, which can be directly obtained calculating
the areas in Fig. 3.18b.

We define a given transition rate from state {k,R} to {k′,R′}
as Γ (k′,R′|k,R). The different transitions read:
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Γ (1,R+ r1 + r2|2,R) = p12 =
ω

4
(1− 2ā1)(1− 2ā2)

Γ (1,R+ r1|2,R) = p1 =
ω

4
(1− 2ā1)(1 + 2ā2)

Γ (1,R+ r2|2,R) = p2 =
ω

4
(1 + 2ā1)(1− 2ā2)

Γ (1,R|2,R) = q =
ω

4
(1 + 2ā1)(1 + 2ā2)

Γ (2,R|1,R) = r = ω?

Γ (2,R+ ri|2,R) = ui =
di
2

(1− fi)

Γ (2,R− ri|2,R) = vi =
di
2

(1 + fi) (3.26)

where āi ≡ ai/li. The mean velocities in the r1 and r2 directions
will be:

v1 = l1σ
ss
2 (p12 + p1 + u1 − v1)

v2 = l2σ
ss
2 (p12 + p2 + u2 − v2) (3.27)

where σss2 = 1/(1 + β) is the steady state probability of the motor
to be found in state k = 2 and β = ω/ω?. Substituting the form
of the different rates, we can write the last expression as:

vi =
vdi

1 + β
(f si − fi); i = 1, 2 (3.28)

where vdi = lidi and f si = ω
2di

(1 − 2āi) is the dimensionless stall
force in the direction ri. Note that we recover the results for the
one-dimensional case in each direction (see Section 3.2.1.1).

3.2.3 Conclusions

Inspired by the Langevin formulation, we have built up a one-
dimensional lattice model to study the dynamics of two interacting
KIF1A motors. Lattice models for KIF1A have been shown to
be suitable to study different phenomena such as shock forma-
tion [Sparacino et al., 2011] and nonequilibrium phase transitions
[Nishinari et al., 2005, Greulich et al., 2007]. In order to incorpo-
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rate cooperative effects in such models, transitions of blocks of
adjacent motors must be incorporated. This effect is specially rele-
vant in the case of large clusters under heavy loads as discussed in
Section 3.1.1.5. This formalism is convenient to analytical treat-
ment and in terms of computational time by using Monte Carlo
simulation; however, it has some conceptual disadvantatges since
the choice of the transition rules are sometimes not unique and
carefulness must be taken. We have shown analytically the pres-
ence of cooperativity in the system and we have considered a first
extension of the problem to an arbitrary number of motors.

We have also developed a two-dimensional lattice model to
describe a single KIF1A motor moving on the microtubule surface.
This is achieved by considering the microtubule lattice surface as
a 2D oblique Bravais lattice where the nodes correspond to the
minima of the microtubule-motor potential landscape. A single
KIF1A motor follows a two-dimensional biased random walk and
we recover the VF relationships for the one-dimensional case in
each direction of the Bravais lattice.



Chapter 4

Membrane tube formation by KIF1A

In this chapter we set up an experimental system to verify the
theoretical predictions found in Chapter 3 by challenging single-
headed KIF1A motors to extract membrane tubes from giant
unilamellar vesicles (GUVs) along microtubules in a minimal in
vitro system. We briefly present the problem of tube formation,
and the experimental methods used to build a minimal in vitro
setup where motors pull membrane tubes on an underlying mi-
crotubule network. We provide a complete quantitative picture of
the problem by means of the combination of experimental data,
in silico simulation and theoretical modeling.

4.1 Formation of membrane tubes

As previously discussed in Section 2.1, biological membranes can
form tubular networks. The formation of nanotubes can be pro-
vided by the cooperative action of molecular motors pulling on
membranes along cytoskeletal filaments. However, these nanotubes
can also be formed in vitro using many different experimental tech-
niques such as hydrodynamic flow, micropippetes or optical tweez-
ers [Waugh, 1982, Evans et al., 1996, Raucher and Sheetz, 1999].
Let us consider the formation of a tube from a planar or large
spherical piece of membrane bilayer [Derényi et al., 2002]. We will
study the case in which the relation between the area A and the
volume V is no longer fixed, as in a closed vesicle, and we will
consider an ensemble where the surface tension γ and the inside

69
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pressure p (relative to the outside) are fixed. The free energy of
the system can be written as [Helfrich, 1973]:

F =

∫
κ

2
(2H)2dA+ γA− pV − FL (4.1)

where κ is the bending rigidity and H is the mean curvature of
the membrane [Kamien, 2002]. First, let us study the energetics
of a formed tube of length L, which is pulled with a point-like
force F . Considering no difference in pressure between the inside
and the outside (i.e. p = 0), the free energy of a tube of radius r
and length L can be written as:

Ftube =
( κ

2r2
+ γ
)

2πrL− FL (4.2)

Minimizing the previous expression respect to r and L (∂rFtube = 0
and ∂LFtube = 0) we obtain:

r0 =

√
κ

2γ
, F0 = 2π

√
2γκ (4.3)

Hence, the competition of the bending rigidity and the surface ten-
sion determines the radius r0 and the necessary force F0 to extract
a tube from a flat membrane. Typical values of these quantities
are κ ' 40 pN nm and γ ' 0.05 pN/nm which correspond to a
radius r0 ' 20 nm and a force of F0 ' 13 pN. This simple study
provides us the energetics of a cylindrical tube but not how the
tube is formed.

The formation process can be understood by studying how the
surface of a membrane is deformed under the action of the point-
like force F . The surface can be considered to be axisymmetric
around the axis along the direction of the force F (Z coordinate,
see Fig. 4.1). A point along the surface contour can be determined
by two coordinates {R(s), Z(s)}, where s is the arclength parame-
ter. We define the tangent angle ψ(s) such that Rs = cosψ and
Zs = − sinψ, where the subscript s denotes partial differentiation
respect to the arclength parameter. Using variational methods
to minimize Eq. 4.1 [Jülicher and Seifert, 1994], we can obtain a
closed equation for ψ(s) [Derényi et al., 2002]. For small forces
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(F � F0), the membrane deformation depends linearly on F . On
the other hand, for forces over the threshold (F � F0), numerical
integration of the ψ-equation shows that the membrane deforms
into a cylindrical tube (Fig. 4.1). Interestingly, the force-length
dependence is not monotonic, and exhibits an overshoot at a cer-
tain tube length [Derényi et al., 2002]. This fact indicates that in
order to form a membrane tube, a certain force barrier must be
overcome. Next we will study the formation of membrane tubes
by KIF1A motors experimentally by means of a minimal in vitro
setup.

2

For nearly flat membranes (ψ ! 1), after the parameter
change [ψ(S), R(S)] → ψ(R), one can expand the shape
equation (6) in powers of ψ and keep only the terms up to
linear order:

R2ψ′′ + Rψ′ − (R2σ̄ + 1)ψ = −f̃R − p̄R3/2 . (7)

Because of the parameter change, the primes denote deriva-
tions with respect to R (which, in linear order of ψ, are iden-
tical to derivations with respect to S). The general solution of
this differential equation is

ψ(R) =
f̃

σ̄

1

R
+

1

2

p̄

σ̄
R + c1I1(R

√
σ̄ ) + c2K1(R

√
σ̄ ) , (8)

where Ii(x) and Ki(x) are modified Bessel functions, and c1

and c2 are integration constants. I1(R
√

σ̄ ) diverges expo-
nentially for R → ∞. Because for a big vesicle we expect
the shape to converge to that of a sphere, c1 must vanish. At
R = 0 the divergence of the 1/R term must be canceled by the
K1 term, leading to c2 = −f̃/

√
σ̄. Integrating −ψ(R) with

respect to R gives the shape of the membrane in this linear
approximation:

Zlin(R) = Z0−
2R0f

f0

[
ln

(
R√
2R0

)
+ K0

(
R√
2R0

)]
− R2

2Rves
,

(9)
where the integration constant Z0 serves as a reference coor-
dinate, and we have expressed σ, κ, and p in terms of R0, f0,
and vesicle radius Rves = 2σ/p. The last term is a trivial con-
tribution, describing a spherical vesicle under tension σ and
pressure p. The second term, which is proportional to f , is the
linear response, and describes the deformation of the vesicle.
The quantity between the brackets converges to [ln(2) − γ]
for R → 0, where γ = 0.577... is the Euler constant. For
p = 0 and large R the logarithmic term dominates, which cor-
responds to a catenoid, the well known shape of a soap film in
cylindrical geometry under zero pressure.

Because the pressure makes only a trivial contribution, and
has a negligible effect on tube formation from big vesicles
(plug pR ≈ pR0 = 2σR0/Rves ! σ into the shape equa-
tions), we neglect it from now on, and consider a piece of
(initially flat) membrane that spans a ring of radius Rring lo-
cated at Z = 0.

For large deformations (or pulling forces) the linear approx-
imation breaks down, and we have to solve Eq. (5) together
with Eq. (3) numerically. Note that Eq. (6) could also be
used, but it is numerically less stable. We start solving the
differential equations from the ring, where we impose a zero
curvature (or free hinge) boundary condition. Thus, the four
initial parameters at Z = 0 are as follows: (i) R = Rring; (ii)
ψ = arcsin[f/(2πσRring)] − ε, where the small deviation ε
from the catenoid shape is chosen (with a shooting and match-
ing technique) such that the contour line reaches the Z axis;
(iii) ψ̇ = −(sinψ)/R ensures zero mean curvature [see Eq.
(4)]; (iv) finally, ψ̈ is determined from Eq. (6).

The results of the numerical solution can be seen in Fig. 1.
The main part of Fig. 1a shows the shape (contour line) of the
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FIG. 1: (a) The shape of an emerging tube at various lengths. The
upper inset shows the parametrization of the surface, and the lower
one illustrates the definition of Ltube, which is the size of the de-
viation of the shape from the linear approximation (dashed line).
(b) Force vs. length curves for three different ring sizes. The inset
shows the f -Ltube curve (solid line) and its asymptotic fit by Eq.
(13) (dashed line).

membrane for Rring = 20R0 and different values of L. For
small deformations (left line) Eq. (9) gives a very good ap-
proximation of the shape. In this linear regime the size of the
deformation is approximately Llin = Zlin(0) − Zlin(Rring).

For larger deformations a tube emerges in the middle, and
the linear approximation fails. However, far from the tubular
part, where ψ is small, the approximation is still valid (Fig. 1a
lower inset). Thus, it is convenient to define the tube as the
piece between Llin and L, and the base as the rest of the mem-
brane between 0 and Llin. This way, the dependence of the
size of the total deformation L on the ring radius Rring is ab-
sorbed in the size of the base Llin, and the length of the tube
Ltube = L − Llin (i.e., the deviation from the linear approxi-
mation) becomes independent of Rring.

With this definition it is enough to determine the f -L curve
for one particular ring size (e.g., 20R0), from which the uni-
versal (ring size independent) f -Ltube curve can be calcu-
lated (Fig. 1b inset). Because only the f -L curves have real

Fig. 4.1 Formation of a membrane tube under the action of a point-like force F . Shape of

the emerging tube for various forces. Inset: Parametrization of the surface with arclength
s and tangent angle ψ. Adapted from [Derényi et al., 2002].

4.2 Minimal experimental in vitro system

In order to test the theoretical results found in Chapter 3 ex-
perimentally, we will challenge KIF1A motors to collectively ex-
tract membrane tubes from giant unilamellar vesicles. This min-
imal in vitro setup has been widely used to probe the collective
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action of membrane-bound molecular motors [Roux et al., 2001,
Koster et al., 2003, Leduc et al., 2004, Shaklee et al., 2008], and
it was originally conceived to mimic the formation of membrane
tube networks in vivo [Waterman-Storer and Salmon, 1998]. Next,
we present the experimental methods and protocols used to prepare
the minimal in vitro system.

4.2.1 Experimental methods

We start with the description of the protocols that were used to
obtain the microtubules, the motor protein KIF1A and the giant
unilamellar vesicles used in the experiments. Next, the tube pulling
assay is presented. Finally, the imaging acquisition and analysis
techniques are described.

4.2.1.1 Microtubule preparation

Microtubules (MTs) were prepared from tubulin purchased from
Cytoskeleton. Tubulin (10 mg/ml) in MRB40 (40 mM Pipes/4
mM MgCl2/1 mM EGTA, pH 6.8) with 1 mM GTP was incubated
for 45 min at 37◦C to polymerize. MTs were stabilized by mixing
them 1:10 (vol/vol) with MRB40 containing 10 µM paclitaxel
(taxol, Cytoskeleton Inc.,USA; MRB40tax). The tubulin mixture
contained 10 % of fluorescent tubulin (HiLyte Fluor 488). During
experiments, taxol was added in all buffers when MTs were present.

4.2.1.2 KIF1A preparation

A construct containing the first 382 residues of KIF1A with a
His-tag and a Cys residue in the N-terminal, was kindly provided
by Prof. N. Hirokawa (University of Tokyo, Japan). The plasmid
was expressed in E. Coli and was further purified using His-tag
purification [Loughran and Walls, 2011], labeling the protein dur-
ing the elution process. The labeling of the protein with biotin
(BMCC-biotin) was realized on a nickel-nitrilotriacetic acid (Ni-
NTA) matrix prior to elution. Three types of purification were
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performed: no labeling, fluorescent labeling (Sulfhydryl reactive
dye) (see Fig. 4.2) and labeling with biotin. The final concentra-
tions after elution were measured with NanoDrop 2000c (Thermo
scientific). The concentrations obtained were 28 µM for the un-
labeled KIF1A, 42 µM for the fluorescent KIF1A and 33 µM for
the biotinylated KIF1A. The detailed protocol is described in
Appendix C.

W1 W2L1 L2 E1 E2 M
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Fig. 4.2 SDS gel for fluorescently labeled (1) and unlabeled (2) KIF1A. From left to

right: protein lysate (L), first wash (W), elution (E) and Kaleidoscope marker (M). The

two arrows correspond to the ' 45 kDa band, corresponding to the KIF1A monomer
molecular weight.

4.2.1.3 Gliding assays

The motility of single-headed KIF1A was tested using in vitro
gliding assays with 1:10 dilutions of the purified motor solution in
MRB40tax (pH 6.8: 40 mM PIPES, 4 mM MgCl2, 1 mM EGTA,
10 µM taxol). Motors were unspecifically attached to the glass
surface in the case of unlabeled and fluorescently labeled KIF1A,
and specifically attached in the case of biotinylated KIF1A via a
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streptavidin-biotin link using Poly(L-lysine)-poly(ethyline glycol)-
biotin (PLL-PEG-biotin, SUSOS AG, Switzerland) on the surface.
Finally the motility solution (κ-casein 0.6 mg/mL, methylcellulose
0.1 %, glucose 50 mM, ATP 2 mM, taxol 10 µM, diluted taxol
stabilized microtubules in MRB40 and oxygen scavenger system)
was flushed before observation. Unlabeled and fluorescently labeled
KIF1A showed gliding velocities in the range of 100− 200 nm/s
whereas biotinylated KIF1A smoothly moved microtubules at
' 80 nm/s. In Fig. 4.3, gliding assay images are shown at three
different times instants for the case of biotinylated KIF1A using
total internal reflection fluorescent (TIRF) microscopy (see Section
4.2.2).

10 μm
00:00 05:00 10:00

*
*

*

Fig. 4.3 TIRF images of a gliding assay with biotinylated single-headed KIF1A. Motors

were specifically attached to the substrate via a streptavidin-biotin link using PLL-PEG-
biotin. Asterisks indicate successive potions of the tip of a microtubule over time. Arrows

show the presence of high curvature regions in some microtubules possibly due to the

presence of defects on the surface. Microtubules moved smoothly at ' 80 nm/s. Each
frame was acquired every 2 seconds and time is shown in minutes.

4.2.1.4 Electroformation of GUVs

Giant unilamellar vesicles were formed using the electroforma-
tion method [Angelova et al., 1992]. This method stimulates the
formation of giant liposomes (typically > 10 µm diameter) by
applying an external alternating field. DOPC, DOPE-Bio, and
DOPE-Rh were purchased from Avanti Polar Lipids 1. The lipid

1 DOPC: 1,2,-Dioleoyl-sn-glycero-3-phosphocoline, DOPE-Bio: 1,2-dioleoyl-sn-

glycero-3-phosphoethanolamine-N-(cap biotinyl), DOPE-Rh: 1,2-dioleoyl-sn-glycero-

3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)



4.2 Minimal experimental in vitro system 75

mixture was composed of 0.1 mol % DOPE-Rh, 0.01-1 mol %
DOPE-Bio (depending on the experiment) and DOPC for the
remaining fraction. 10 µl of lipids in 1:10 chloroform/methanol
were dropped onto one of two indium tin oxide (ITO) coated glass
slides. The lipids were locally spread on the glass slide and dried
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Fig. 4.4 Formation of giant unilamellar vesicles by using the electroformation method.

a) Bright-field illumination of a GUV. b) TIRF image of fluorescent GUVs. c) Schematic
description of the electroformation method. A chamber of ' 500 µl was made with sigillum

wax surrounding the dry lipid area in the center of one ITO glass. Prior to closing, the

chamber was filled with a 200 mM sucrouse solution. Finally, AC voltage was applied to
the glass plates with the consequent formation of GUVs.

for approximately 1 hr in vacuum. A 500 µl volume chamber was
made with sigillum wax (Vitrex) surrounding the dried lipid area
on the bottom glass (Fig. 4.4). Prior to closing, the chamber was
filled with a 200 mM sucrose solution with a 1 mL syringe. Finally,
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AC voltage was applied to the glass plates (1 V, 10 Hz) during 4h,
with the consequent formation of GUVs.

4.2.1.5 Tube pulling assay

The protocol used for the experiment was inspired by the ex-
perimental methods used in previous studies [Leduc et al., 2004,
Shaklee et al., 2008]. Glass coverslips were sonicated in Isopropanol
for 20 min, two times in deionized water for 5 min and in 1M KOH
for 20 min. 200 µL of poly(-L-lysine) 1:500 in ethanol were dropped
on top of the coverslip and the sample was kept in the hood un-
til complete evaporation of the drop. A circular plastic support
was placed on top of the coverslip defining a 50 µl volume chamber.
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 c  d

Fig. 4.5 Minimal in vitro experimental system. a) Top view of the system. GUVs sediment
on top of a microtubule network. Tubes grow along microtubules upon the addition of ATP.

b) Biotin (B) - streptavidin (STV) linkage of KIF1A with the GUV bilayer (yellow). The

lipid mixture contains a small fraction of rhodamine (Rh) labeled phospholipids. c) Side
view of the system. Poly-L-Lysine (PLL) is used to attach MT to the substrate and GUVs
are sedimented on top. d) Tip region where motors accumulate.
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MTs were dropped on the chamber and incubated for 10 min
to adhere. MTs that did not stick to the surface were removed by
rinsing two times with MRB40tax. Casein (Sigma) was dropped
on the surface (1 mg/ml) to minimize interaction of the GUVs
with the exposed glass, incubated for 10 min, and rinsed with
MRB40tax. At the same time, a 5 µl mixture of KIF1A and
streptavidin (1:1 mol) was incubated for 5 min in a rotating wheel
at room temperature. GUVs were mixed 1:1 in MRB40tax with
180 mM glucose to osmotically match the intravesicular osmolarity
(Halbmikro Osmometer, Type M, Knauer, Germany). The KIF1A-
streptavidin solution was mixed with the vesicle solution (around
50 µl total volume) and was incubated 5 min more in the rotating
wheel, in order to enable KIF1A motors to attach to the vesicles
as depicted in Fig. 4.5b. 40 µl of the vesicle solution was dropped
onto the chamber. 5 µl of MRB40tax with 180 mM glucose was
dropped on top of the sample to help the vesicles to settle to the
glass surface (Fig. 4.5a, left) . Finally, 0.5 µl of Oxygen Scavenger
(8 mM DTT/0.4 mg/ml catalase/0.8 mg/ml glucose oxidase) and
2 µl of 50 mM ATP were added before observation, resulting with
the extraction of membrane tubes from the GUVs (Fig. 4.5a, c,
d).

4.2.2 Image acquisition and data analysis

Images were acquired on a total internal reflection fluorescence
microscope (TIRF; Nikon Corporation, Japan) equipped with an
APO TIRF 100 × 1.49 numerical aperture oil objective, a motor-
ized stage, Perfect Focus System, a motorized TIRF illuminator
(Roper Scientific, Tucson, AZ, USA) and a QuantEM:512SC EM-
CCD camera (Photometrics, Roper Scientific). For excitation, we
used a 561 nm (50 mW) Jive (Cobolt, Solna, Sweden) and a 488
nm (40 mW) Calypso (Cobolt) diode-pumped solid-state laser.
Images of moving tubes were acquired every 2 s with a pixel size
of 158 nm. Kymographs were built using ImageJ. The data from
kymographs was exported to Matlab and a homemade program
was used to fit at every time step a sigmoidal function along the
nanotube to the logarithm of the intensity profile. The position
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of the tube tip was determined as the inflection point of the sig-
moidal function, with fitting error corresponding to 1.96 s.d. (95
% confidence interval).

4.2.3 Results

4.2.3.1 Parallel tubulation

Different fractions of biotinylated motors were studied, ranging
from 0.01-1 mol %. For the case of 1 mol %, networks of tubes
were formed in minutes whereas for 0.1-0.01 mol %, few tubes
were formed after more than an hour (Fig. 4.6a). The 0.01 mol
% case was found to be close to the threshold surface density for
tube formation. This threshold value is comparable to the one for
conventional kinesin [Leduc et al., 2004]. The sole fact that tubes
are being extracted despite the inherent weakness of individual
single-headed KIF1A motors is by itself a proof of the existence
of a strong cooperative effect such as that predicted in Chapter 3,
even though the precise mechanism cannot be inferred from the
experiment.

a
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1:200:00

2:40 4:00
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b

Fig. 4.6 Parallel tube growth a) TIRF fluorescent image of a membrane tube network
formed on the underlying MT network. b) Time-lapse of a growing tube in minutes.

Tube growth velocities ranged from 2 to 20 nm/s, around 10
times smaller than in gliding assays. These velocities are much
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Fig. 4.7 Trajectories of nanotube growth events. The grey region surrounding the trajec-
tory corresponds to the fitting error for each time t. For additional details on the data

analysis see Section 4.2.2.

smaller than typical tube growth velocities for conventional ki-
nesin, around 400 nm/s. This fact likely indicates that motors
work near stall conditions at the tip, sharing the external load and
teaming up in a cooperative manner. In some cases we observed
episodes of slow backward motion, with characteristic velocities
of ∼ 4 nm/s indicating the presence of bidirectional movement
(see Fig 4.7). Similar slow backward movements were reported in
the case of non-processive Ncd motors [Shaklee et al., 2008], due
to the presence of motors distributed all along the tube, typically
forming motor clusters capable to withstand tube retractions. In
that case, the clustering mechanism resulted from the diffusive mo-
tion of motors along the MT lattice due to their non-processivity
[Shaklee et al., 2010]. Our case seems to obey a similar scenario;
however, diffusion along the MT is now associated to the inherent
diffusive state of KIF1A. We measured instantaneous speeds for
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individual tip traces by substracting endpoint positions of a win-
dow moving along the trace. In Fig. 4.8 the instantaneous velocity
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Fig. 4.8 Instantaneous velocity distribution P (v) using 24 different events of longitudi-
nal pulling. The distribution is clearly asymmetric and can be interpreted by considering

retraction and growth as two differentiated processes. Lines show the best fit to the dis-

tribution for negative (�) and positive (•) velocities using exponential (dashed line) and
gaussian (solid line) profiles respectively. Inset: Same distribution in the logarithmic scale.

distribution of the tube tip is shown for 24 events using a time win-
dow of 16 s. The distribution is clearly asymmetric. This fact can
be understood by considering shrinkage and growth as two distinct
processes. Following Ref. [Shaklee et al., 2008], the distribution for
negative displacements may be explained by assuming a random
cluster distribution due to the diffusive nature of KIF1A, which
leads to an exponential distribution of retraction distances. For
positive displacements, instead, the observed statistics reflects the
interplay between a ballistic component and the diffusive spread,
which suggests a Gaussian distribution.
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4.2.3.2 Helical tubulation

Surprisingly, a large fraction of the extracted tubes wound around
the MTs forming left-handed helical structures with well-defined
pitch (Fig. 4.9a). In some cases, membrane tube networks exhib-
ited mixed longitudinal and helical tube formation. In the case of
growing helical tubes, MTs usually fluctuated close to the focal
plane, indicating that they were partially anchored to the sub-
strate and consequently tubes were able to grow underneath MTs
(Fig. 4.10a). When MTs were strongly attached to the substrate,
tube growth was longitudinal. Plausibly, the ability of KIF1A
motors to switch pfs is facilitated by the existence of the weakly
bound state (Fig. 4.10b), similarly to the case of single-headed
kinesin-1 [Yajima and Cross, 2005]. Hence, this state provides a
certain freedom for the motor to switch between on-axis or off-axis
movements, a relevant feature when the motor runs into obstacles.
The left-bias originates in the intrinsic left-right asymmetry of
the motor-MT interaction, which in turn reflects MT chirality.
However, it is not obvious that such an intrinsic bias is sufficient
to collectively generate significant off-axis forces up to the point
of twisting the membrane tubes in a counter-clockwise motion
around the MT (see Fig. 4.10a.).
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Fig. 4.9 Helical tube extraction a) Helical tube extracted from a GUV. P is a measure

of the tube pitch and is defined as the peak-to-peak distance between intensity maxima
along the tube. b) Kymograph of the growing helical tube in (a). Notice that around t = 3

min (arrow) a rapid relaxation of the pitch is observed.
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In Fig. 4.9a the pitch P is measured as the distance between two
consecutive fluorescence maxima. The helical pitch is observed to
be relatively regular along the helix although sometimes the helical
turns change dynamically via slow (minutes) or rapid (seconds)
rearrangements (Fig. 4.9b) converging to a homogeneous pitch.
The average value of the pitch evaluated by analyzing 57 standing
helical tubes was found to be 1.4 ± 0.1 µm. Next, we study the
geometry of the helical tubes. We define the pitch P as the length
of MT covered per turn of the helix, and the angular pitch as
p ≡ P/2π. We define ζ as the angle the tangent vector of the tube
axis t forms with respect to the MT axis z (Fig. 4.10a). From
the geometry of a helix (see Appendix D) we have tan ζ = R0/p,
where R0 ≡ r +R, r is the radius of the tube and R is the radius
of the MT plus the extra space occupied by the motors (see Fig.
4.10b).

 a

 b

P

ζ

t

z

r

R

z

GUV

MT

tube

MT

Fig. 4.10 Geometry of the helical tubes. a) Schematic description of the formation of a

helical tube from a GUV around a MT. Some defects in the MT network allow motors to
pull tubes through nanometer range gaps between the MT and the substrate. The angle ζ

and the pitch P characterize the geometry of the helix. b) Off-axis movement of the tube:
(left) Motors are found initially in a strongly bound conformation (black). (center) Some
of them switch to the weakly bound state (grey) and progressively switch pfs by diffusion.

(right) When motors return to the strongly bound state, the tube turns counter-clockwise.
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The tube radius r results from the balance of bending energy
and surface tension (see Section 4.1). For a helical tube, the twist
will introduce additional bending energy due to mechanical work
performed by the motors. Typically the values of both F and
r from the straight case are reasonably accurate for the actual
helical tubes, an exception being the point (a) in Fig. 4.11. The
selection of the pitch is thus a dynamic process that results from
the collective action of the motors. Once the tube is formed; how-
ever, the winding number is conserved as a topological constraint
imposed by the presence of the MT, and energy minimization will
only tend to leave a uniform pitch. Hence, the observed pitch inho-
mogeneities in Fig. 4.9b are a consequence of the motor activity.

In Fig. 4.11 (top, left) we show experimental data points of
57 tubes forming left-handed helices with pitch P and angle ζ
(grey circles). In vivo, MTs typically contain 13 pfs, which run
straight with respect to the MT axis. However, MTs grown in
vitro may contain a similar fraction of 14 pf MT [Ray et al., 1993,
Amos and Schlieper, 2005]. In the latter case, pfs wind around the
MT axis, and introduce an extra pitch (superhelical pitch) in the
helical tubes (see Section 1). In order to account for this effect,
the red circles in Fig. 4.11 correspond to exactly the same data
but subtracting the possible extra pitch introduced by 14 pf MTs.
This correction is small provided that the pitch of the helix is
much smaller than the superhelical pitch. The cloud of points falls
into a certain sector of the parameter space bounded by a black
line (R0 = 40 nm) and a red line (R0 = 195 nm). The scattering
of points in Fig. 4.11 (top, left) reflects the variability of surface
tension from vesicle to vesicle, which in turn yields a variety of
tube radii. Tubes (a) and (c) in Fig. 4.11 have completely different
pitches despite having similar R0, implying different tip velocities.
In Fig. 4.11 (top, right), we see that the z-component of the tip
velocity Vz grows as a function of p, suggesting that the shape of
the helix roughly follows the trace of the tube tip during growth.
Therefore, we conclude that the pitch grows for increasing tip
velocity.

Note that from the measurement of p and ζ, the helix geometry
provides a simple way to measure the tube radius r and conse-
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axis and ±0.1 in the vertical axis. (Top, right) On-axis tip velocity versus the angular pitch.
(Bottom) TIRF images of helical tubes for the points (a),(b) and (c) in Fig. 4.11 (top, left).

Scale bars 2 µm.

quently the membrane tension γ, which is usually subject to larger
uncertainty than the bending rigidity, provided that the distance
between the MT and the tube is known. A simple estimation based
on a size ∼ 5 nm for the biotin-streptavidin-biotin complex, a
motor domain of KIF1A of ∼ 6 nm [Okada and Hirokawa, 2000],
and a contour length of the construct neck linker of ≈ 8 nm yields
R ' 12− 30 nm and thus a tube radii variability of r ' 10− 180
nm. Assuming κ = 10kBT we estimate the membrane tension to
be in the range γ ' 3× 10−4 − 10−1 pN/nm and F ' 1− 20 pN.
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4.3 In silico model for longitudinal tube pulling

To understand at a quantitative level the on-axis cooperative
force generation of single-headed KIF1A, we extend our previ-
ous theoretical approach in Section 3.1 in order to include the
kinetics of attachment/detachment between the tube and the MT
and to mimic the conditions of the in vitro system. We assume
that the arrangement of motors at the tip is such as depicted
in Fig. 4.10b (left) where they occupy three different pf tracks,
similarly to the case of conventional kinesin, as discussed in Ref.
[Campàs et al., 2006].

4.3.1 Description of the model

We illustrate the problem of tube-pulling for a tube of radius r and
extraction force F , considering N motors in the vesicle reservoir
and extending the model presented in Section 3.1. We distinguish
two main regions in the system: the tube region and the vesicle
region (Fig. 4.12b). For simplicity we will neglect interactions
between motors in neighbouring pfs and assume that the on-axis
cooperativity can be reduced to a single-pf problem, scaling down
the total force F and the motor density ρ∞ by a factor 3.

4.3.1.1 Tube region

A subset of motors Nt ⊂ N are found in the tube region at time t.
A motor i from this subset is found in state ki(t) at time t, where
ki is a discrete stochastic variable. Motors can be detached from
the MT (ki = 0), strongly bound to the MT (ki = 1) or weakly
bound to the MT (ki = 2). In all cases, motors are also bound
to the tube considered as a soft cargo. The dynamics of each
motor is different depending on the region where it is found (A, B
or C, see Fig. 4.12a). Next we describe the dynamics in each region:

Region A corresponds to the region in between the tube and
the MT, were motors can be either weakly or strongly bound to
the MT (i.e. ki 6= 0). In this region the dynamics reads:
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Fig. 4.12 Schematic description of the in silico model. a) Tube tip: three different regions

can be identified in the tube region (A, B and C). In region A, motors are either strongly

bound (state 1, black circles) or weakly bound (state 2, grey circles) to the MT. They get
excited and decay with average rates ω?, ω respectively. In region B, motors are detached

from the MT (state 0, white circles) and diffuse freely outside the curved region of size

r in the tip. Overlapping is allowed to account for the two-dimensional diffusive motion
of motors on the membrane. Motors detach from state 2 and attach from state 0 with

mean rates ω2, ωa respectively. Finally, in region C, detached motors feel a soft repulsive

potential V which prevents them to enter the curved region. b) Tube extracted from a
GUV with surface density of motors ρ∞. An influx J+ of motors enters the tube region at

x(1) and an outflux J− enters back to the GUV at x(0).

λẋi = −U ′(xi, ki)−
∑

j∈S
W ′(xi − xj)− Fδxi,xmax + ζ

(D)
i (t) (4.4)

where λ is the friction coefficient, such that the diffusion coeffi-
cient follows the Einstein relation D = kBT/λ. U(xi, ki) is the
potential motors feel depending on the state ki. In the strongly
bound state (ki = 1), motors feel a periodic ratchet potential of
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asymmetry a and periodicity l. On the other hand, in the weakly
bound state (ki = 2) they feel a constant potential U(xi, 2) = U2.
W accounts for the motor-motor interaction potential and is taken
as a truncated Lennard-Jones potential as in Section 3.1.1. The
i-th motor interacts only with a subset of motors S(t) at time
t which are bound to the MT, i.e. S(t) = {j|j 6= i, kj(t) 6= 0}.
ζ(D)(t) is a Gaussian white noise with delta correlation in time

〈ζ(D)
i (t)ζ

(D)
j (t′)〉 = 2kBTλδijδ(t− t′). Finally xmax corresponds to

the position of the foremost motor in the system.

In region B, motors are detached from the MT (ki = 0) and
undergo free diffusion on the membrane tube outside the curved
region in the tip of size r. Defining ξi = xi − xtip as the relative
distance between the position of the i-th motor and the tip position
xtip, the condition for a detached motor to be in region B is |ξi| > r.
The dynamics reads:

λtξ̇i = ζ
(Dt)
i (t) (4.5)

where λt, Dt are the friction and diffusion coefficients on the
membrane tube respectively. We notice there is no interaction
potential for the motors in this region since we allow overlapping
to account for the two-dimensional diffusive motion of motors on
the tube. In this way, motors are no longer ordered respect to
their label i. Region C corresponds to the curved region of the tip
where |ξi| < r. In this case, we neglect noise and the dynamics
simply read:

λtξ̇i = −V ′(ξi) (4.6)

with a repulsive potential V in the form of a truncated Morse
potential:

V (ξi) = εm

(
e

2(r0−|ξi|)
b − 2e

r0−|ξi|
b

)
(4.7)

which is valid for |ξi| < r0 and is zero otherwise. The position
r0 ≡ r + σ + b ln 2 is such that the potential has minimum energy
−εm, with b being a characteristic length. This is an ad hoc choice
to simply prevent motors to enter in region C. We adjust the
Morse parameters to ensure a soft short-ranged repulsive poten-
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tial preventing the detached motors to enter the curved region
(b/l = 0.45, εm/kBT = 2 · 10−6). We associate the dynamics of the
tube tip with the dynamics of the foremost motor i.e. ẋtip = ẋmax.
If the foremost motor detaches, the tube retracts with a retraction
velocity ẋtip = −F/λm until a new bound motor is found. λm is an
effective friction parameter which is inferred from the retraction
velocity of motors vr ' 100 µm/s observed experimentally for
F ' 20 pN [Campàs et al., 2008]. Finally we estimate the number
of bound motors in the tip over time by counting the number
of consecutive bound motors pulling on the tube, where we de-
fine two motors as consecutive if they are at a distance less than
δD =

√
4D/ω. Also, we estimate the density of bound motors

from the set of positions of the bound motors at each time step of
the simulation using a smoothing technique. We define the density
of motors at each point as the number of bound motors in a char-
acteristic bandwidth divided by its length. The bandwidth size
is taken ' 100 nm, of the order of the pixel size in our experiments.

Next we describe the state kinetics. All state transitions in the
system are stochastic with dwell times which are exponentially
distributed. Motors are excited from state 1 to 2 from localized
regions of size δ near the minima of the ratchet potential with
average rate ω?. On the other hand, decays from state 2 to 1 are
delocalized with average rate ω. Attachment events occur with
average rate ωa. However, they are not always possible due to
excluded volume interactions in region A. Thus, we say that a
motor i will only attach if it can find a free site i.e.

∑
j∈SW

′(xi −
xj) = 0. We include exponentially dependent detachment kinetics
on the force. In vitro experiments using single-headed kinesin have
shown that the detachment rate at zero load is much larger in the
weakly bound state (∼ 1 s−1) than in the strongly bound state (∼
0.01 s−1) [Uemura et al., 2002]. We choose to neglect detachment
from state 1 for simplicity. The addition of detachment in state 1
leads to similar dynamics in the system. The average detachment
rate from state 2 of the i-th motor at time t, will depend on the
passive forces the i-th motor feels over time:
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ω2(i, t) = ω0
2 exp

(
|F̃i(t)|d
kBT

)
(4.8)

where ω0
2 is the detachment rate at zero load from state 2, F̃i(t)

is local time-averaging, over an appropriate time window, of the
noisy signal of the passive forces Fi(t) = −∑j∈SW

′(xi − xj) −
Fδxi,xmax and d is a characteristic distance which is typically 2
to 4 nm for kinesin [Uemura et al., 2002, Schnitzer et al., 2000,
Schroeder3rd et al., 2012]. We used a simple smoothing technique
by choosing F̃i(t) as the time average of Fi in the region [t− τ, t],
where τ is the window size. This is taken as τ = 100 ms, which
is big enough to average the passive forces a motor feels during
a hydrolysis cycle (∼ 10 ms), and smaller than the time scale of
the tube motion (∼ 1 s). Variations of τ around this value did not
affect significantly the resulting dynamics of the system.

4.3.1.2 Vesicle region

The vesicle region is described as a motor reservoir with surface
density of motors ρ∞. Motors diffuse on the vesicle and eventually
they enter the tube region through the boundary x = x(0) (Fig.
4.12b). Hence, in the boundary we have an influx of motors J+(t)
which are bound to the MT and to the tube. Experimental evi-
dences show that it is reasonable to neglect the influx of motors
only bound to the tube [Leduc et al., 2004]. On the other hand,
there is also a flux of motors leaving the tube J−(t) by diffusion.
Since KIF1A is able to make large backward excursions in the
weakly bound state, for practical reasons it is important to ensure
that motors will not fluctuate near the boundary x = x(0). Hence,
we let motors appear at x(1) = x(0) + δD, (Fig. 4.12b) and let
x = x(0) act as an absorbing boundary condition for the motors
that leave the tube region. The number of motors in this region
Nt(t) will depend on time through the flux balance:

dNt

dt
= J+ − J− (4.9)

Experimental evidences indicate that Eq. 4.9 reaches a quasi-steady
state [Leduc et al., 2004]. Far from the tip, in the quasi-steady



90 4 Membrane tube formation by KIF1A

state the density of motors bound to the tube in the mean-field
limit reads [Campàs et al., 2008]:

ρb = 2πrρ∞
ωa

ω0
d + ωa

(4.10)

where in our case ω0
d = ω0

2/(1 +β) is the motor detachment rate at
zero load and β = ω/ω?. Therefore, at the boundary x(1), the aver-
age influx of motors will be 〈J+〉 = ρbV0. In our simulations, a new
motor will be introduced in the system stochastically every certain
time taken from an exponential distribution with mean rate 〈J+〉.
Finally, motors crossing the boundary x(0) will be incorporated in
the vesicle reservoir.

4.3.1.3 Parameters for the in silico model

The choice of parameters describing KIF1A without including
attachment/detachment kinetics was already discussed in Section
3.1 and in Table 3.1. Here, we choose β such that the velocity of a
single KIF1A at zero load is similar to the experimental gliding
velocities ∼ 80 nm/s (see Section 4.2.1.3). The resulting value is
β ' 7.5. The detachment rate of KIF1A has been found to be
ωd ∼ 0.1 s−1. Using our value of β we get ω0

2 ' 1 s−1, which is in
agreement with the results in Ref. [Uemura et al., 2002]. On the
other hand, the allowed range of attachment rates reported in the
literature is 0.1 s−1 ≤ ωa ≤ 10 s−1 [Nishinari et al., 2005], and we
will take an intermediate value.

Next we discuss the parameters concerning the tube pulling
system. The radius of the tube r and the threshold force to extract
a tube F depend on the bending rigidity κ and the surface tension
of the membrane γ through the expressions r =

√
κ/(2γ) and

F = 2π
√

2κγ as discussed in Section 4.1. κ is assumed to be
roughly constant in experiments whereas γ can vary substantially.
Although in principle the value of surface tension can be adjusted
in vitro by changing the osmolarity of the solution inside the
vesicle, the statistical dispersion of γ from vesicle to vesicle is
large and this makes it difficult to control this parameter. The
typical range of γ implicitly obtained through our data analysis
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is 3× 10−4 − 10−1 pN/nm. The density of motors in the vesicle
can be obtained assuming that each lipid occupies a surface of
approximately 0.4 nm2. In the experiments, we used different
molar fractions of biotinylated lipids in the range 0.01-1 mol %.
This range corresponds to 250 − 25000 µm−2. The diffusion of
motors on the tube is much larger than the typical diffusion of
KIF1A motors in the weakly bound state Dt � D. Typically,
Dt ' 1µm2/s [Leduc et al., 2004]. Table 4.1 shows a summary of
the selected values for the different parameters.

Parameter Value

Periodicity length MT l = 8 nm

Motor size σ = 4.2 nm
Asymmetry ratchet potential a = 1.8 nm

Excitation window δ = 0.16 nm

Characteristic detachment distance d = 3 nm
Ratchet energy maximum U = 10kBT

Vesicle tension γ = 0.05 pN/nm
Bending rigidity κ = 10kBT

Vesicle motor density ρ∞ = 200− 1000 µm−2

Diffusion coefficient (MT) D = 20 nm2/ms
Diffusion coefficient (tube) Dt = 1 µm2/s

Excitation rate ω? = 33 s−1

Decay rate ω = 250 s−1

Detachment rate (zero load) ω0
2 = 1 s−1

Attachment rate ωa = 3 s−1

Table 4.1 Parameters used in the in silico model.

4.3.2 Results

In Fig. 4.13 (left), the simulated dynamics of the tube tip and
the motor density are shown. Motors work collectively at the
tube tip against the external load by means of the cooperative
mechanism previously reported in Chapter 3 for the case of no
attachment/detachment kinetics. Here, the exchange kinetics con-
trols the size of the tip cluster, together with other parameters
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such as the potential height U , ω? and γ.

Although many motors are involved in the process, the tube
can be extracted provided that an average number of motors
nc are packed at the tip sharing the load. For typical values
U = 10− 20kBT , γ ' 0.1 pN/nm and ω? on the order of hundreds
of Hz, we have nc ' 12, only slightly larger than the typical
values of 6−9 estimated for experiments with conventional kinesin
[Campàs et al., 2006]. We notice that motors not only accumulate
at the tube tip, but they are also present with significant density
all along the tube. In Fig 4.13 (top, left), we show the tube growth
for ρ∞ = 1000 µm−2 and γ = 0.05 pN/nm. The force per pf is
∼ 4 pN, the average number of bound motors at the tip cluster
is ∼ 15 and the tube grows with a rather constant velocity ∼ 15
nm/s. In this case, the number of motors at the tip fluctuates
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with an average value which is above the threshold value for tube
extraction. However, in Fig. 4.13 (bottom, left), the influx of
motors is reduced (ρ∞ = 200 µm−2), and the average number
of motors is close to the critical value. In this case, we observe
rapid and slow retractions which are rescued by motor density
waves advancing along the tube. In Fig. 4.14, the instantaneous
tip velocity distribution is shown for the data in Fig. 4.13 (left,
bottom). We observe that the distribution qualitatively resembles
the experimental results in Fig. 4.8, capturing the asymmetry of
the distribution. Our in silico model quantitatively reproduces
both the growth and the bistable motion of tubes as shown in Fig.
4.13.
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Fig. 4.14 Instantaneous tip velocity distribution using the data in Fig. 4.13 (bottom, left).

For illustrative purposes, the time window was chosen 1 s to improve the statistics at the

expense of increasing the dispersion.

4.3.3 Mean-field model for helical tube formation

Finally, we introduce a mean-field model to understand the role
of off-axis forces in the dynamical selection of the pitch. We study
the motion of a single KIF1A motor on a two-dimensional MT
lattice, as described in Section 3.2.2 using a two-dimensional
oblique Bravais lattice with directions r1 and r2 forming an angle
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θ. The vectors r1 and r2 describe the on-axis and off-axis mo-
tion respectively. For simplicity we will consider the off-axis and
on-axis movements to be independent processes, which has been
shown to be a reasonable assumption for single-headed kinesin-1
[Yajima and Cross, 2005]. Motors advance along their pf tracks
and share the external load. We will assume motors can change pfs
whenever they are in the diffusive, weakly bound state. The motion
can thus be understood as the superposition of two noise-driven
ratchets of periodicities l1 and l2, defined by two asymmetry pa-
rameters a1 and a2. For each component of the velocity, we obtain
a linear velocity-force relationship with velocity at zero load vi(0)
and stall force F s

i , i = 1, 2 (see Section 3.2.2). Defining the ratio
v̄ ≡ v1/v2, the average angle of a single motor helical trajectory
ζ1 can be found as a function of v̄ and θ through the expression
cot ζ1 = v̄ csc θ + cot θ. The average pitch of a helical trajectory
around the MT will be given by P1 = 2πRMT cot ζ1 where RMT

is the MT radius. Notice that approximating θ ' π/2, we have
P1 ' 2πRMT v̄ and the pitch is proportional to v̄. At zero load
we obtain a simple expression for the single-motor average pitch
P1(0) ' 2πRMT (l1−2a1)/(l2−2a2). Considering the typical values
for a MT lattice, we have l1 ' 8 nm, l2 ' 6 nm and θ = 81 ◦

[Chrétien and Wade, 1991]. Assuming zero load, RMT ' 12 nm
and a1 ∼ a2 we get P1 ∼ 100 nm, which coincides with the order
of magnitude of the reported pitch for single-headed kinesin-1
[Yajima and Cross, 2005], a motor relatively similar to KIF1A. In
order to estimate F s

2 , we adjust the asymmetries a1 and a2 to
match the experimental pitch of single-headed kinesin-1 (' 300
nm), thus obtaining F s

2 ' 0.04 pN for a1/l1 = 0.2 and a2/l2 = 0.4.

The pitch of the tube will result from the competition of the
total on-axis and off-axis forces, a nontrivial combination of two
collective effects that depend on the actual distribution of the mo-
tors at the tip cluster and the different mechanisms of cooperation
for serial and parallel arrangements of motors. In contrast to the
single motor case, if the applied force is exerted by the membrane,
the force components Fi are dependent on ζ and θ through Fi =
Fgi(θ, ζ), where g1(θ, ζ) = cos ζ − sin ζ cot θ, g2(θ, ζ) = sin ζ/ sin θ
and F is the extraction force. Since gi(θ, ζ) > 0 due to the action
of the external loads, we have ζ ∈ [0, θ]. For simplicity, we assume
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are shown in radians.

that each component of the total force is equally shared by a
certain group of motors. Therefore, Vi(Fi) = vi(Fi/Ni), where Ni

is the number of motors generating force along the i-th component.
Defining V̄ ≡ V1/V2 we have:

V̄ =
F s

1 − g1F̄

F s
2 − φg2F̄

(4.11)

where F̄ ≡ F/N1 is the effective force per motor and φ ≡ N1/N2.
On the other hand, we know that V̄ = − cos θ+sin θ cot ζ. By com-
bining the last expression and Eq. 4.11, we obtain a transcendental
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equation for ζ which can be solved numerically. The dynamics
of a helical tube and the angle selection are crucially affected by
the phenomenological parameter φ. In Fig. 4.15a, for φ = 1, the
on-axis velocity-force relationship is linear and ζ is independent
of the extraction force F . However, for φ < 1, long tails appear
on the on-axis velocity-force relationship and ζ becomes strongly
dependent on F (Figs. 4.15b and d). In the latter case, the on-axis
velocity may decrease by a factor four under moderately large
forces, consistently with our tube-pulling data in comparison with
gliding assays (see Section 4.2.1.3). In Fig. 4.15c the experimen-
tal angle distribution is shown by taking the average angle of 57
helical tubes. We compare the data with the ζ dependence on F̄
for different values of φ (Fig. 4.15d). We notice that considering
F̄ ' 1 in the experiments, the range φ ' 0.6− 1.2 approximately
bounds the experimental angle values. We can also infer the total
off-axis force exerted by the motors Foff and N2 using energetic
arguments (see Appendix D), which leads to the lower bound
Foff ' 0.04− 2 pN and N2 & 1− 50 motors. On the other hand,
surprisingly no helical tube retractions were observed. This fact
may be a signature of the long-tails in the velocity-force curves as
shown in Fig. 4.15a, and consequently an indirect evidence that
typically φ < 1.

4.3.4 Conclusions

In this chapter we have shown that, despite the extreme ineffi-
cieny of individual single-headed KIF1A, these motors are able
to cooperate collectively to extract membrane tubes, thus vali-
dating our initial theoretical predicitions. Additionally, we found
the surprising formation of helical tubes around microtubules.
This entails an impressive capability of single-headed KIF1A mo-
tors to exert significant off-axis by virtue of the diffusive state.
Accordingly, this state affords two complementary strategies to
overcome obstructions: brute force and manoeuvreing capability.
In a series configuration (in line) it enables the generation of
large forces by accumulation of motors, a possibility not available
for conventional kinesin [Rai et al., 2013, Furuta et al., 2013]; in a
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parallel configuration (side by side) it enables lateral displacement
of the cargo. We have restricted ourselves to the monomeric form
of KIF1A, as the simplest and most amenable case study, but
at the same time, the weakest and most inefficient form. Many
evidences now support the fact that KIF1A is largely regulated
by a monomer-to-dimer transition and acts as a dimer in vivo
[Tomishige et al., 2002, Soppina et al., 2014]. We expect dimeric
KIF1A to enable a trade-off between cooperative force generation
and high speed due to the combination of diffusion motion and
processive motility.

Altogether, our results suggest that the existence of a diffusive
state is a key distinctive feature that makes KIF1A motors gen-
uinely cooperative for membrane-bound cargo transport and could
explain their specificity to axonal vesicular traffic.
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Part II

Dynamical instabilities of motor
assemblies





Chapter 5

Introduction

Spontaneous symmetry breaking, oscillations or waves can be ob-
served in many cellular processes. These phenomena can emerge
as the result of the self-organized behaviour of interacting compo-
nents inside the cell [Kruse and Jülicher, 2005]. These constitute
open nonlinear dynamical systems, where there is a continuous
flow of energy through the system from its environment. We
will focus on self-organized mechanical oscillations in cytoskeletal
structures, which play a crucial role in many cellular processes.
Some prominent examples are mitotic and meiotic oscillations
[Grill et al., 2005, Vogel et al., 2009], spontaneous oscillations of
auditory hair cells [Camalet et al., 2000], oscillatory regimes in
muscle contraction [Ishiwata et al., 2010] or the beating of cilia
and flagella [Camalet et al., 1999]. In the language of dynamical
systems, positive feedback loops can destabilize the non-moving
state leading to oscillations or waves in spatially extended systems.
The shape, amplitude and period of oscillations are then given
by the particular nonlinearities in the system. In this part of the
thesis, we will study the nonlinear collective action of motor as-
semblies in the case of a minimal actomyosin system and in the
case of axonemal beating driven by dynein motors.
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5.1 Muscle contraction

Muscles function as mechanical engines to produce force and
motion in most animals. They are responsible for locomotion,
contraction and movement in general. Their structure is mainly
composed of actin and myosin, which organize in a highly or-
dered structure. Vertebrate and many invertebrate muscles can
be categorized in three classes: skeletal, smooth and cardiac mus-
cle [Lodish et al., 2000, Katz, 2010]. Skeletal muscles connect the
bones and are used to coordinate complex activities, being able to
generate rapid movements by contracting fast. By contrast, smooth
muscle cells contract and relax slowly, controling the diameter of
blood vessels and propelling food along the gastrointestinal tract.
Finally, cardiac muscle is in charge of the coordinated contraction
of the heart.

We will focus on the structure of skeletal muscle, which is
the most representative and characteristic type of muscle tis-
sue. Skeletal muscle is formed by a bundle of muscle cells (my-
ofibers) that are typically cylindrical (1-40 mm in length and
10-50 µm in width) [Lodish et al., 2000]. At the same time, my-
ofibers are packed with myofibrils, filament bundles that extend
along the cell. Myofibrils are further subdivided in primordial
contraction units named sarcomeres. Sarcomeres contain thick
filaments (composed of myosin) and thin (actin) filaments (see
Fig. 5.1a,b). They are 2.5 µm long and upon contraction they can
be shortened about 70 % of their uncontracted, resting length.
Microscopic studies showed that thick and thin filaments did not
change in length while the sarcomere shortened. This fact led
to the “sliding filament model” for skeletal muscle contraction
[Huxley and Niedergerke, 1954, Huxley and Hanson, 1954]. This
model states that ATP enables myosin motors in thick filaments
to walk along thin filaments, in such a way that the two sets of
filaments slide past each other and the sarcomere unit contracts
(Fig. 5.1c).

How is muscle contraction regulated? As in many other cellular
processes, this mechanism is regulated by the concentration of Ca2+
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ions in the cytosol. Typically, a nerve impulse reaches a skeletal
muscle cell, producing a change in the electric potential across the
plasma membrane. Ion channels are able to translate the electric
signal into a chemical signal, rising Ca2+ levels in the cytosol. Thin
filaments contain two main types of actin-binding proteins namely
tropomyosin and troponin [Gunning, 2008, Zot and Potter, 1987]
(see Fig. 5.1a, bottom). Tropomyosin is a ropelike molecule of ∼ 40
nm in length which binds to seven actin monomers on an actin
filament. On the other hand, troponin is a protein complex which is
able to bind to Ca2+ ions. In the absence of calcium, myosin motors
can bind to thin filaments but the tropomyosin-troponin complex
prevents them to slide along. Upon Ca2+ binding to troponin, the
last complex triggers the motion of tropomyosin on the surface of
an actin filament, enabling myosin motors to bind to the neighbour-
ing binding sites and move the thin filaments [Lehman et al., 2001,
Lehman et al., 1994, Spudich and Watt, 1971]. Hence, sufficiently
high Ca2+ concentrations (& 1 µM) diminish the inhibition of the
tropomyosin-troponin complex to myosin, thus enabling contrac-
tion.

Calcium oscillations in the cytosol can induce the periodic
contraction of sarcomeres. However, this is not a self-organized
phenomenon but a periodic mechanical oscillator driven by an
external stimulus. This strategy is used by butterflies or locust to
generate a wing thrust which is synchronous to nervous impulses
(see Fig. 5.2, bottom). In contrast, wasps, bees and some beetles
are known to exhibit a wing thrust which is asynchronous to
the activating nervous impulses (see Fig. 5.2, top) [Pringle, 1977,
Syme and Josephson, 2002]. This type of asynchronous oscillations
are also referred to as spontaneous, since their origin is intrinsic of
the muscle. Skinned skeletal and cardiac muscle fibers have also
been shown to exhibit spontaneous oscillations in vitro under var-
ious conditions [Fujita and Ishiwata, 1998, Ishiwata et al., 2007].
Hence, it has been proposed that molecular motors may act in some
cases as auto-oscillators [Ishiwata et al., 2010]. Next we present
a non-muscular example of spontaneous oscillations, the flagellar
and ciliary beating.
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ba

c

Fig. 5.1 Sarcomere contraction. a) Thick (top) and thin (bottom) filaments. Thick fil-

aments are composed of myosin motors and thin filaments are F-actin together with
tropomyosin-troponin complexes which regulate myosin binding. b) Myofiber composed

of sarcomere units. Z-discs separate adjacent sarcomeres, the M-line bisects the sarcomere

unit, the H-zone indicates the non-overlapped region and the I-band separates overlapped
regions. c) Sarcomere contraction. (left) Sketch of the sliding filament model. (right) Elec-
tron micrograph of a contracting myofiber. Modified from [Tortora and Derrickson, 2013].
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Fig. 5.2 Wing thrust during tethered flight (upper trace) and muscle action potential

(lower trace) for an asynchronous (beetle) and synchronous (locust) flight muscle. The

asynchronous muscle corresponds to the basalar muscle of the beetle Cotinis mutabilis
whereas the synchronous muscle corresponds to the metathoracic tergosternal muscle of

the locust Schistocerca americana. Modified from [Syme and Josephson, 2002].

5.2 Flagellar and ciliary beating

The origin of the eukaryotic flagellum and cilium is over 800 mil-
lion years ago. These appendages are found in many protozoa and
algae (see Fig. 5.3, a-f) and are crucial for cell motility, survival,
development, cell feeding and reproduction of microorganisms
[Ginger et al., 2008, Bray, 2000, Murase, 1992]. Flagellated organ-
isms may use one (e.g. spermatozoa) or more appendages for
propulsion (e.g. the green algae Chlamydomonas reinhardtii or
Paramecium tetraurelia, see Fig. 5.3a-c). Eukaryotic flagella have
a complex internal structure. The eukaryotic flagellum is mainly
composed of a cytoskeleton superstructure named axoneme. This
structure has a characteristic ‘9+2’ composition in many eukaryotic
organisms, corresponding to 9 peripherial microtubule doublets
in a cylindrical arrangement surrounding a central pair of micro-
tubules (see Fig. 5.3g). Additional proteins such as the radial
spokes (green) and nexin crosslinkers (pink) connect the center to
the peripherical microtubules and prevent free sliding between the
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microtubule doublets respectively. Each doublet consists of a 13 pf
microtubule (A-tubule) in which dyneins are anchored at regular
intervals along the length of the doublets, and a 10 pf microtubule
(B-tubule), where neighbouring dynein motors bind to. Axonemal
dyneins subdivide into inner (orange) and outer (red) arms, de-
pending on their position (see Fig. 5.3g). Their arrangement is best
characterized in C. reinhardtii. Outer arms consist of 3 different
dynein heavy chains adopting a stacked arrangement whereas inner
arms comprise 8 heavy chains: one heterodimer and six monomers
[Roberts et al., 2013]. The axonemal structure presents slight vari-
ations among different species. Common variations of the ‘9+2’
axoneme are the presence of a permanent link betwen doublets 1
and 2 for C. reinhardtii (Fig. 5.3h,i) or the additional structure of a
paraflagellar rod in trypanosomatids (Fig. 5.3j,k). In the last case,
this external structure enables the parasite Trypanosoma brucei
to propulse generating bihelical waves with alternating chirality
separated by kinks [Rodŕıguez et al., 2009].

Early electron-microscope studies demonstrated that the bend-
ing of a cilium is accompanied by longitudinal sliding of its periph-
erial microtubular filaments relative to one another [Satir, 1965,
Satir, 1968]. The sliding mechanism hypothesis was first directly
verified with the observation of the relative motion of nanometer
gold beads attached to outer and inner doublets in demembranated
sea urchin sperm flagella [Brokaw, 1989]. In the presence of ATP,
dyneins drive the sliding of microtubule doublets, generating a
sliding force that can slide doublets apart if crosslinkers are re-
moved [Summers and Gibbons, 1971]. Sliding is transformed into
bending due to the presence of crosslinker proteins in the structure.
Remarkably, this process is carried out in a highly coordinated
manner, in such a way that when one team of dyneins in the
axoneme is active, the other team remains inactive. In the case of
the sperm flagellum, the coordinated mechanism leads to bending
waves within a well-defined beat plane [Gaffney et al., 2011]. Coor-
dination between the two teams is currently understood to be a self-
organized process due to the coupling of dynein force generation
and the geometry of the axoneme [Mitchison and Mitchison, 2010].
However, the precise mechanism is still under debate. Different
mechanisms have been proposed to understand how the sliding
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forces produced by dynein motors inside the flagellum result in
the flagellar beat pattern. Coordinated beating has been hypoth-
esized considering different mechanisms such as dynein activ-
ity regulation through local axonemal curvature [Brokaw, 1971,
Hines and Blum, 1979], due to the presence of a transverse force
(t-force) acting on the axoneme [Lindemann, 1994] or by shear
displacements [Camalet et al., 1999, Camalet and Jülicher, 2000,
Riedel-Kruse et al., 2007].
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onto which crucial proteins are assembled43–45? The two 
possibilities may be inextricably linked.

Before 2004, component complexity of the eukaryotic 
flagellum was only evident from classic two-dimensional 
gel electrophoreses of the type that were initially per-
formed by Piperno, Luck and co-workers over 30 years 
ago46. With the application of comparative genomics and 
more recently with mass-spectrometry and proteomics, 
over 500 different candidate proteins that are required 
for flagellum construction and function have been 
identified32,37,47–54. These analyses also identified flagel-
lar proteins that had previously been identified through 
classical biochemical studies with flagella, and although 

functional analyses support the flagellar candidature 
of some newly described proteins, the functions of the 
majority of the identified proteins remain unknown. 
Many candidate and bona fide flagellar proteins are 
flagellate specific (that is, homologues are not found in 
eukaryotes that cannot build flagella or prokaryotes), 
and there are numerous examples of proteins in these 
proteomes that probably function in regulatory signal-
transduction cascades. Surprisingly, however, compari-
sons between protists reveals that numerous flagellar 
proteins are probably ‘lineage specific’ or at least fast-
evolving, such that orthologues in other flagellates cannot  
be readily identified in sequence comparisons37,52,55. 

Trypanosomatids
A family of flagellate parasites 
that includes monogenetic 
parasites of insects and 
digenetic parasites that are 
transmitted between 
mammalian or plant hosts by 
an invertebrate vector. 
Digenetic family members 
include the African sleeping 
sickness parasite 
Trypanosoma brucei, Chagas’ 
disease parasite 
Trypanosoma cruzi and 
pathogenic Leishmania spp.

Procyclic trypomastigote 
A morphological form of 
Trypanosoma brucei that 
migrates from the mid-gut of 
the tsetse fly vector. Like 
bloodstream trypanosomes, 
procyclic cells can be grown 
and genetically manipulated in 
culture. In both bloodstream 
and procyclic trypomastigotes, 
the flagellum emerges from the 
posterior end of the cell, is 
elongated in the direction of 
the anterior cell end and is 
attached along the length of 
the cell body.

Figure 1 | Flagellate diversity. Morphology of: (a) Chlamydomonas reinhardtii; (b,c) Paramecium tetraurelia, (b) ventral 
and (c) dorsal views (the oral groove is evident in panel b); (d) Trypanosoma brucei bloodstream trypomastigote, illustrating 
elongation of the new flagellum (arrowhead) alongside the old during the cell-division cycle; (e,f) Giardia lamblia, which 
coordinates duplication and segregation of four flagella pairs during its cell-division cycle ((f) anti-tubulin staining 
indicates that flagella basal bodies (arrowheads) are positioned between the two nuclei (green) during interphase). Panel g 
shows a cartoon representation of a transverse section through a flagellum that contains the canonical ‘9+2’ axoneme 
(diameter ~150 nm), viewed as looking towards the distal end of the flagellum. Panels h–k show common variations of the 
‘9+2’ axoneme: (h,i) in C. reinhardtii, doublets 1 and 2 are linked by a permanent bridge (arrow); (j,k) in trypanosomatids 
(and some related protists) a paraflagellar rod is attached along the length of the axoneme. Subtle elaborations include 
the presence of structures in the lumen of (i) some or (k) all B-tubules. Panel a reproduced with permission from REF. 89 

 2002 Nature Publishing Group. Panels b and c courtesy of: P. Dupuis-Williams and C. Fisch, INSERM, France; T. Blisnick, 
Institut Pasteur, France; F. Grillon, ENSMP, France. Panel d courtesy of S. Griffiths, University of Oxford, UK. Panels e and f 
courtesy of: J.J. Mancuso, W.Z. Cande, University of California, Berkeley, USA; S.C. Dawson, University of California, Davis, 
USA. Panel i reproduced with permission from REF. 30  1983 Rockefeller University Press.
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Fig. 5.3 Flagellate diversity. a) Chlamydomonas reinhardtii. b) Ventral and c) Dorsal

views of Paramecium tetraurelia. d) Trypanosoma brucei bloodstream trypomastigote. e,f)
Giardia lamblia, which coordinates duplication and segregation of four flagella pairs during

its cell-division cycle. g) Schematic representation of an axonemal section which contains

the canonical ‘9+2’ structure, viewed as looking towards the distal end of the flagellum.
Panels h-k show common variations of the ‘9+2’ axoneme: h,i) In C. reinhardtii, doublets

1 and 2 are linked by a permanent bridge (arrow); j,k) In trypanosomatids a paraflagellar
rod is attached along the length of the axoneme. Modified from [Ginger et al., 2008].
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5.3 Positive feedback and negative damping

How can positive feedback lead to spontaneous symmetry breaking?
Positive feedback loops can also be understood using the concept
of negative damping [Jülicher et al., 1997, Howard, 2009]. When
moving a spoon in a jar of honey, if we want to move the spoon
faster it requires more force due to positive viscous damping. Neg-
ative damping would correspond to the inverse situation, namely
that when increasing the speed, the spoon would lurch forward,
something somehow counterintuitive. We present two different
models which account for this effect in symmetric environments
where motor assemblies drive positive feedback loops in the system:
the two-state rigid model and the ‘tug-of-war’ model.

5.3.1 Two-state rigid model

We first present the case of a rigid motor assembly following Ref.
[Jülicher et al., 1997]. We consider an assembly of N motors at-
tached to a common backbone with positions xn(t) = X(t) + nq,
n = 1, . . . , N , and constant spacing q. The positions xn(t) are
defined in the reference frame of an l-periodic polar filament, to
which motors bind and unbind. Here, X(t) denotes the position of
the backbone over time respect to some rest position. We choose
q/l to be irrational such that the periodicites of motor attachments
and the filament are incommensurable. Finally, we associate two
possible states k = 1, 2 to each motor as discussed in Section 2.6.1,
such that they can bind and unbind from the filament with rates
ω2(x) and ω1(x), respectively. The periodic potential landscape
corresponding to state k reads Uk(x).

The force that the n-th motor exerts on the backbone will be
fn = −∂xUk(xn) where k = 1, 2. Since the potentials are periodic,
the forces fn depend only on the motor position relative to the
potential period. Hence, we can define the cyclic position coordi-
nate ξ ≡ xmod l 1 where 0 ≤ ξ < l. We can define the probability

1 amod b = a−b int(a/b) i.e. the remainder of the Euclidean division of a by b. The function

int(x) takes the integer part of x
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density of finding a motor at ξ in state k as Pk(ξ, t). In the limit
of large N and disordered motor attachments, the sum of the two
distributions leads to a constant value i.e. P1(ξ, t) + P2(ξ, t) = 1/l.
This results from the fact that, in an incommensurate structure,
each motor can be found at a different position ξn ∈ [0, l) and for
large N , the interval becomes homogeneously filled. Since motors
are convected during the backbone movement, the time derivative
of Pk reads:

dPk
dt

= ∂tPk + v∂ξPk (5.1)

where v ≡ Ẋ is the backbone velocity. Without loss of generality,
we only study the dynamics of a single probability distribution
(e.g. P1):

∂tP1 + v∂ξP1 = −ω1P1 + ω2P2 (5.2)

where ω1(ξ) and ω2(ξ) fulfill Eq. 2.11. On the other hand, force
balance determines the velocity of the system:

λv = fext + f (5.3)

where λ is the drag coefficient, fext is the external force and f is
the average active force which reads:

f = −
∫ l

0

dξP1∂ξU1 (5.4)

where we have taken U2 = ct and the previous forces are normalized
by the total number of motors N . Eq. 5.2 can be solved in the
steady state using a power expansion of P1 as a function of the
velocity v:

P1(ξ) =
∞∑

m=0

P
(m)
1 vm; P

(m)
1 (ξ) = −∂ξP

(m−1)
1

ω1 + ω2

m ≥ 1 (5.5)

with P
(0)
1 = ω2/[(ω1 + ω2)l]. The force-velocity behaviour can thus

be written as:

fext = f
(0)
Ω + (λ+ f

(1)
Ω )v +

∞∑

m=2

f
(m)
Ω vm (5.6)
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where,

f
(m)
Ω ≡

∫ l

0

dξP
(m)
1 ∂ξU1 (5.7)

Here, the subscript Ω indicates that the coefficients depend on
the perturbation amplitude defined in Eq. 2.10. For Ω = 0, there

is no spontaneous force f
(0)
Ω = 0 and f

(1)
Ω > 0, which indicates

that thermal transitions lead to an increasing friction. Only when

Ω 6= 0 and U1 is asymmetric, f
(0)
Ω differs from zero and induces

spontaneous motion in the system. Let us consider for simplicity
the case of symmetric U1(ξ) and θ(ξ). In this case, all even coeffi-

cients of the force expansion vanish i.e. f
(2n)
Ω = 0. If no external

force is applied to the system we find:

0 = (λ+ f
(1)
Ω )v + f

(3)
Ω v3 +O(v5) (5.8)

If λ + f
(1)
Ω > 0, the only solution is v = 0. However, if we allow

detailed balance to be broken we have f
(1)
Ω < 0 and at some critical

value Ω = Ωc we will have λ+f
(1)
Ω=Ωc

= 0. If we expand f
(1)
Ω around

Ω = Ωc we find:

f
(1)
Ω ' −λ−

∂f
(1)
Ω

∂Ω
|Ω=Ωc(Ω −Ωc) (5.9)

For Ω > Ωc and λ+ f
(1)
Ω < 0, we obtain two solutions with finite

velocity:

v± = ±
(

1

f
(3)
Ω

∂f
(1)
Ω

∂Ω
|Ω=Ωc(Ω −Ωc)

)1/2

(5.10)

The case λ+f
(1)
Ω < 0, corresponds to an effective negative damping

coefficient. In this case, two possible stable moving solutions appear
and symmetry breaking occurs in the system since the non-moving
state v = 0 becomes unstable.
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5.3.2 ‘Tug-of-war’ model

Let us imagine a tug-of-war of people where both sides are evenly
matched (both teams are equally strong) and that the probability
of one person letting go (or slipping on the grass) increases with
the load that he or she can withstand. If someone accidentally
slips on the grass, the load per motor in the team will increase and
thus, the likelihood that a second person lets go will also increase.
Eventually, this will lead to a cascade of releases on one side and
the winning team will lurch backwards. This example illustrates
that load-dependent detachment can lead to positive feedback.

Next we present a simple example to illustrate this effect on
a system with molecular motors, following Ref. [Howard, 2009].
Let us consider a collection of N molecular motors that bind and
unbind from a polar filament at rates π, ε respectively, working
against a load Fext. We adopt the sign convention such that for a
plus-end-directed motor, a load is negative (Fext < 0). We assume
a linear velocity-force relationship, such that each motor produces
a force f(v) = f0 − λv, where λ > 0 is the drag coefficient and f0

is the stall force of a single motor (Fig. 5.4b). The force balance
will read Fext = −Nbf , where Nb is the number of bound motors.
We assume that the external force is equally shared by the total
number of bound motors such that the load each motor feels is
Fext/Nb. On the other hand, we consider the unbinding rate to
depend exponentially on the load per motor:

ε(Fext)

ε0
= exp

(
− Fext

Nbfd

)
= exp

(
f

fd

)
(5.11)

where ε0 is the unbinding rate at zero load and fd is the typical
dissociation load at which the unbinding rate grows a factor e.
The binding rate will be independent of the external force and
thus we consider a constant rate π = π0. For a given external
force Fext the number of bound motors will be Nb = η(Fext)N ,
where η(Fext) = π/(ε + π) is the duty ratio. From the previous
considerations, one can derive the following relationships:
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dNb

dε
= −Nb

ε

(
1− Nb

N

)
;

dε

dFext

= − ε

Nbfd
(5.12)

Next, let us study the slope of the velocity-force relationship near
stall conditions. The slope dFext/dv reads:

dFext

dv
= Nbλ+

dNb

dv
(−f0 + λv) (5.13)

By using the chain rule dNb/dv = (dNb/dε)(dε/dFext)(dFext/dv)
and considering that near stall conditions Nb ' N0, one can show
that Fext(v) ' −N0(f0 − λdv), where λd:

λd = λ

[
1− f0

fd

(
1− N0

N

)]
(5.14)

Therefore the system feels an apparent friction parameter λd which
can be negative depending on the parameters of the system (Fig.
5.4c). If fd � f0, λd ' λ > 0 and the system is damped. That is,
if motors are not prone to detach, no instability can occur in the
system. This means that, contrary to the high processivity found
in intracellular transport (η ∼ 1), motors need to have a low duty
ratio to be able to generate dynamic instabilities at a collective
level.

+-
v

a b
v

Fext

c
v

f−fext

−f0

fext

−N0f0

1/N0λd

1/λ

Fig. 5.4 a) A Plus-ended directed motor generates a force f > 0 and feels an external load
fext < 0. b) Linear velocity-force relationship for a single motor with a stall force f0 and

damping coefficient λ > 0 which determines the slope of the curve. c) Nonlinear velocity-
force relationship for a collection of motors. The stall force of the system is N0f0 and

the slope near stall conditions can change sign when damping becomes negative (λd < 0).
Figure adapted from [Howard, 2009].



Chapter 6

Spontaneous oscillations of motor
assemblies

Early models proposed to understand oscillatory instabilities
in motor assemblies were grounded on experimental evidences
of muscle contraction [Huxley, 1957, Hill, 1974, Hill, 1975] and
were subsequently generalized to the study of eukaryotic flagella
[Brokaw, 1975, Brokaw and Rintala, 1975]. Two main approaches
have been used: two-state ‘crossbridge’ and ‘stiff motor’ models,
which can be considered as two different limits of a more general
description that considers the motor-filament interaction and the
stiffness of the motors [Guérin et al., 2011, Guérin et al., 2010]. In
both cases, oscillations are obtained for non-monotonic velocity-
force relationships in the presence of an elastic element. In
this section, our purpose will be to study a minimal model to
describe such spontaneous oscillations. Following the work of
[Jülicher et al., 1997, Jülicher and Prost, 1997], we will use an ex-
tension of the two-state model in Section 5.3.1 with the addi-
tion of an elastic element. This model has successfully explained
many experimental results on biological oscillating systems driven
by molecular motors [Camalet et al., 1999, Camalet et al., 2000,
Riedel-Kruse et al., 2007, Plaçais et al., 2009]. We show that the
integro-differential equations in Ref. [Jülicher and Prost, 1997] can
be reduced to a set of three ordinary differential equations which
capture the main dynamics of the system and exhibit rich nonlin-
ear behaviour. In particular, we will apply the model to a minimal
in vitro actomyosin system studied in Ref. [Plaçais et al., 2009].
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6.1 Two-state model with an elastic element

We consider a collection of N molecular motors which are rigidly
attached to a common backbone filament and can be in two
possible states k = 1, 2 as sketched in Fig. 6.1. The dynamics of
the system is equivalent to the case described in Section 5.3.1,
except from the fact that the backbone is coupled to a spring of
elastic modulus KN where K is the elastic modulus per motor.
The dynamics of the system reads [Jülicher and Prost, 1997]:

X(t)

x
0

ω1 ω2

−l/2 l/2

θ

KN

U2

U1

Fig. 6.1 Schematic description of the two-state ratchet model of molecular motors coupled
to an elastic element. Motors are rigidly attached to a common backbone (blue) and equally

spaced with a distance q incommensurate to the filament periodicity l. Motors detach

and attach to the polar filament with rates ω1(x), ω2(x) respectively, feeling a periodic
potential Uk(x) which depends on the state of the motor k = 1, 2. Localized active sites

are described through the function Ω(x) which breaks detailed balance in the system.

Finally, the backbone is coupled to a spring of elastic modulus KN .

∂tP1 + v∂ξP1 = −αP1 + ω2/l (6.1)

λv = −KX + F (6.2)

where v ≡ Ẋ is the backbone velocity, λ is the friction coefficient,

α(ξ) ≡ ω1(ξ) + ω2(ξ) and F = −
∫ l

0
dξP1∂ξU1 is the active force

generated per motor 1. We focus on the dynamics of one probability

1 Notice that the force per motor is denoted in uppercase now, in contrast to Section 5.3.1
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distribution (e.g. P1) as in Section 5.3.1. Eq. (6.1) describes the
dynamics of the probability density P1 whereas Eq. (6.2) accounts
for force balance in the system.

6.2 Three-variable system

Following the work in Ref. [Guérin et al., 2011], we decompose
P1(ξ, t) as an infinite sum of modes an(t) and bn(t):

P1(ξ, t) =
∞∑

n=0

[an sin(2πnξ/l) + bn cos(2πnξ/l)] (6.3)

Since the functions U1(ξ), ω1(ξ), ω2(ξ) are periodic, they can be
generally described in terms of Fourier series. We will consider the
simplest approximation by keeping only the first Fourier mode and
defining g(ξ) = 1 + cos(2πξ/l). We choose a symmetric sinusoidal
potential U1(ξ) = (U/2)g(ξ+ l/2) where U is the amplitude of the
potential. We also take α to be constant, such that the sum of the
transition rates is independent of the spatial coordinate ξ. The
transition rates are given by:

ω1(ξ) = (β/2)g(ξ)

ω2(ξ) = α− ω1(ξ) (6.4)

where α, β are unknown rates. Since biological motors work far
from equilibrium, ω1/ω2 ' Ω(ξ), and thus:

ω1

ω2

' Ωg(ξ)

1−Ωg(ξ)
(6.5)

where Ω ≡ β/(2α) is a dimensionless ATP hydrolysis amplitude
and Ω ∈ [0, 1/2). Using the orthogonality of the Fourier modes, the
active force per motor is simply given by F = −Uπa1/2. Hence,
we obtain an infinite set of ordinary differential equations for the
modes an(t), bn(t), n ≥ 0 and X(t). Remarkably, for constant α,
the modes a1(t), b1(t) and X(t) are formally decoupled, that is,
they evolve independently from the rest (b0 and an, bn for n > 1).
The last choice of α(ξ) is known as the constant rate approximation
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[Guérin et al., 2011]. The evolution of b0 is also decoupled from
the rest and relaxes exponentially to its steady state value. Non-
dimensionalizing with respect to the length scale l, time scale 1/α
and force density λα, the dimensionless governing equations read:

˙̄a1 = −ā1 − 2πρX̄b̄1 − µā1b̄1

˙̄b1 = −Ω − b̄1 + 2πρX̄ā1 + µā2
1

˙̄X = −ρX̄ − µ

2π
ā1 (6.6)

and for n > 1:

˙̄an = −ān − 2πnρX̄b̄n − nµā1b̄n
˙̄bn = −b̄n + 2πnρX̄ā1 + nµā1ān (6.7)

where Ω plays the role of the control parameter, ρ ≡ K/λα
sets the damping rate of oscillations and µ ≡ π2U/λl2α is an
effective mobility. It is interesting to remark that a similar de-
coupling occurs for the Markus-Lorenz waterwheel equations
[Strogatz, 1994, Kolár̆ and Gumbs, 1992] which share some simi-
larities with Eqs. (6.1) and (6.2). It is noteworthy that all nonlinear
terms depend inversely on the friction λ, which plays a major role
on the nonlinear nature of the system. Defining the dimensionless
active force per motor as f ≡ F/λαl we notice that f is propor-
tional to the first asymmetric mode through f = −µā1/2π. The
system has the symmetry (X̄,−f) → (−X̄, f), given W1(ξ) is
symmetric. Furthermore, the backbone position X̄ far from the
initial value is uniquely given by the evolution of f , from Eq. (6.6):

X̄(τ) =

∫ ∞

0

dτ ′e−ρτ
′
f(τ − τ ′) (6.8)

where τ ′ is the time-lag. Hence, X̄ represents the memory of f ,
i.e. its exponentially weighted past evolution. Through a suitable
linear change of variables {2πρX̄ + µā1, ā1, b̄1 + Ω} → {x, y, z}
the set of equations (6.6) can be rewritten as :

ẋ = −ρx+ µẏ

ẏ = x(Ω − z)− y
ż = −z + xy, (6.9)
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where x describes the position of an overdamped particle in an
effective system under a forcing term µẏ. Now the previous sym-
metry condition is manifested as (x, y)→ (−x,−y). The dynamics
of y and z is the same as in the Lorenz model (for the particular
choice of β = 1 in Ref. [Lorenz, 1963]), however the first equa-
tion in (6.9) is different. The system has a single fixed point at
the origin. A linear stability analysis around this point gives one
negative eigenvalue −1 and two complex conjugated eigenvalues
γ ± iω, where γ = µ(Ω −Ωc)/2, ω =

√
ρ− γ2. Ωc = (1 + ρ)/µ is

defined as the critical value of Ω where a Hopf bifurcation takes
place, i.e. when γ = 0. In view of the similarities between Eqs.
(6.9) and the Lorenz equations, we investigated the possibility of
chaos in the system. We considered the attractor shown in Fig.
6.2, where nearby trajectories tend to locally diverge when found
in the two spirals and to locally converge when switching between
spirals. The computation of the Lyapunov characteristic exponents
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Fig. 6.2 Complex periodic orbit for ρ = 0.05, µ = 200 and Ω = 0.2 by solving Eqs. (6.9).

We notice that the attractor fulfills the symmetry (x, y)→ (−x,−y).
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for the attractor in Fig. 6.2 was studied numerically by using a
Mathematica package [Sandri, 1996] based on the algorithms pre-
sented in Refs. [Benettin et al., 1980, Eckmann and Ruelle, 1985].
The maximum Lyapunov exponent λ1 was found to be nearly zero
and the remainder exponents were λ2 & λ3 ' −0.02, indicating
that the limit set is a periodic orbit. In conclusion, no clear signs
of chaotic behaviour were found in the system. Despite the simi-
larities between Eqs. (6.9) and the Lorenz equations, the different
terms in the first equation of (6.9) crucially affect the dynamics
of the system. Interestingly, as we will discuss next, the system
can generally exhibit subharmonic oscillations. Hereinafter, we
will focus on the dynamics of X̄ rather than x to allow a physical
interpretation compatible with empirical observations.

6.3 Comparison with a minimal actomyosin system

We choose the model parameters consistent with the minimal
actomyosin system in Ref. [Plaçais et al., 2009] which was shown
to be successfully described by the two-state model in Ref.
[Jülicher and Prost, 1997]. Typical values of KN are found in the
range of 10−2− 10−1 pN/nm [Plaçais et al., 2009] and the number
of motors are N ∼ 10− 100, which gives K ' 10−4− 10−2 pN/nm,
while the friction coefficient was found to be λ ' 10−2−1µN·s·m−1

[Jülicher and Prost, 1997, Bormuth et al., 2009]. We take α = 10
s−1 and choose Ω much larger than the critical value. By consider-
ing l = 6 nm, U = 10kBT we find ρ ' 10−2−102 and µ ' 103−105.
Therefore, while the dimensionless damping rate ρ is found to be
around the characteristic rate of the system (i.e. ∼ 1), the mobility
µ is particularly high, thus the system works in a regime where
nonlinearities are important. In Fig. 6.3 we study two characteris-
tic types of nonlinear oscillations by solving the reduced system
(6.6) (top row) and the complete system (Eqs. (6.1) and (6.2))
(bottom row) for two different set of parameters corresponding to
small (Fig. 6.3a) and large (Fig. 6.3b) elastic modulus. Numerical
solutions for the complete system are carried out taking U1(ξ)
as a symmetric saw-tooth potential of amplitude U , a constant
value for U2, a sinusoidal form of the hydrolysis amplitude modu-
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Fig. 6.3 Backbone movement (top) and the corresponding phase-space trajectory (middle)

by solving the reduced system (6.6) and backbone movement solving the complete system

(Eqs. (6.1) and (6.2)) with a saw-tooth potential of amplitude U , a constant value of U2,
a sinusoidal form of θ(ξ) and a constant attachment rate ω2 = α (bottom). a) ρ = 0.7 and

µ = 1000. Ω = 0.4 (top, middle) and Ω = 4, U = 10kBT and U2 = 16kBT (bottom). b)

The same for ρ = 4.5 and µ = 1000. τ ≡ αt is the dimensionless time.

lation Ω(ξ) = (Ω/2)g(ξ) and a constant attachment rate ω2 = α.
The case (a) corresponds to ∼ 1 Hz cusp-like oscillations with
peak-to-peak amplitude of ∼ 100 nm. On the other hand, case (b)
corresponds to ∼ 10 Hz oscillations with peak-to-peak amplitude
of ∼ 10 nm. Notice that despite using a different set of functions
to solve the reduced and the complete system, the shape of the
oscillations is very similar. Both cases qualitatively agree with
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the observed amplitude and frequency measurements reported for
spontaneous oscillations in Ref. [Plaçais et al., 2009].

6.4 Subharmonic oscillations

In Fig. 6.4, subharmonic oscillations are shown by solving Eqs.
(6.6) (Fig. 6.4a, b, c and d (left)) and the complete system (Fig.
6.4d (right)). The periodic movement of the backbone is charac-
terized by the formation of one (Fig. 6.4c (left)) or two (Fig. 6.4c
(right)) subharmonics, where ω0 is the fundamental frequency of
the signal. Remarkably, similar results where found experimentally
in Ref. [Plaçais et al., 2009] for large optical trap stiffness where
the fundamental frequency was 2.2 Hz and a clear subharmonic
peak at approximately 2ω0/3 was observed. Although it was ar-
gued that molecular details of the actomyosin interaction could
be the reason for this effect, we find that for high mobility values
µ and in the limit of large elastic modulus (i.e. ρ ∼ 1− 10), the
system is generally expected to exhibit periodic motion with two
subharmonics and less frequently with only one, as shown in Figs.
6.5 and 6.6.

We identify eight types of staircase shaped oscillations, which
exemplify the complex bifurcation scenario. The final steady state
of the system is sensitive to the initial conditions as shown in
Fig. 6.6, where different basins of attraction are identified. Two
types of oscillations exhibit two subharmonics (dark blue and
grey diamonds) and one type exhibits a single subharmonic (light
blue diamond). It is worth noting that subharmonic oscillations
lose the symmetry property X̄(τ + T /2) = −X̄(τ), where T is
the fundamental period of the signal. This property is fulfilled
for oscillations in Fig. 6.3 since U1 is symmetric, however this
can be lost for asymmetric U1 [Jülicher and Prost, 1997]. In this
case, a novel symmetry breaking property emerges dynamically
due to subharmonic bifurcations of the system. Additionally, the
time average of the backbone position in the steady state 〈X̄〉 is
different from zero for subharmonic oscillations and introduces
an overall shift, as shown in Figs. 6.4a and d. The latter reflects
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Fig. 6.4 Subharmonic oscillations. a) Backbone time evolution by solving the reduced
system for Ω = 0.425, ρ = 6, µ = 63096 with 〈X̄〉 ' −0.0045 (left) and Ω = 0.4, ρ = 3,

µ = 6500 with 〈X̄〉 ' −0.0115 (right). b,c) Phase-space trajectories and power spectra
S(ω) in dB for the trajectories in (a) respectively. d) Backbone time evolution by solving
the reduced system for Ω = 0.4, ρ = 6 and µ = 19000 with 〈X̄〉 ' −0.0073 (left) and by

solving the complete system with the same set of functions as in Fig. 6.3, for ρ = 8.78,

µ = 19038, Ω = 4, U = 10kBT and U2 = 16kBT (right).
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asymmetries on the time the backbone spends for positive and
negative displacements.

Ω
0 1/4 1/2

3

4

5
lo

g 1
0
µ

Fig. 6.5 Different types of oscillations in the log10 µ-Ω parameter space for ρ = 6 and

the initial condition (0, 0, 0.074) by solving the reduced system. We identify eight types
of oscillations in this particular case. Each symbol in the parameter space corresponds to
a type of oscillation for a choice of Ω,µ. Subharmonic oscillations (diamonds) are found

with two subharmonics (dark blue and grey diamonds) and occasionally with a single
subharmonic (light blue diamond). Dots indicate no oscillations.
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Fig. 6.6 Different domains of attraction by varying the initial conditions ā1(0) and X̄(0)

and fixing b̄1(0) = 0.01, for ρ = 6, Ω = 0.4 and µ = 19002 by solving the reduced system.
The symbol and color code is the same as in Fig. 6.5, and empty symbols denote the same

type of oscillation with X̄ → −X̄.

6.5 Conclusions

In this chapter we have studied theoretically an actomyosin system
coupled to an elastic element, which is able to generate spontaneous
oscillations in the presence of ATP via a Hopf bifurcation. This
problem mimics the mechanism responsible of the asynchronous
wing thrust observed in some insect species. We show that a gen-
eral theoretical model describing spontaneous oscillations based
on an integro-differential system of equations, can be reduced to a
simple three-dimensional system. We find that both the complete
and reduced systems exhibit subharmonic oscillations in the low
friction regime. Remarkably, subharmonic peaks were reported
experimentally in the signal power spectrum of a minimal in vitro
actomyosin system. Hence, we provide an explanation for this
phenomenon. Although the reduced description is only exact for
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a specific set of functions, direct numerical simulations indicate
that the dynamics captured by the reduced system is generic and
thus shared by other sets of functions, in particular concerning the
occurrence of the referred subharmonic bifurcations. This suggests
that a general three-dimensional reduction is inherent to the sys-
tem, although in general, the corresponding set of variables may
not coincide with the explicit ones used in our case.

It is worth stressing that the experiments are subject to strong
noise sources, mainly due to the stochastic nature of myosin bind-
ing kinetics. This fact is likely to modify in a nontrivial way the
amplitude and shape of the subharmonic peaks, by inducing tran-
sitions between the different oscillatory regimes, and presumably
decreasing the time spent in the subharmonic oscillations in fa-
vor of the fundamental frequency oscillations. Furthermore, the
studied model is not expected to yield an accurate description of
the physical system at molecular level, since the precise forms of
the potentials and transition rates are essentially unknown. Never-
theless, the mere fact that the subharmonic peaks are observable
under the experimental conditions constitutes by itself a strong
evidence of the robustness of this phenomenon. Other types of
complex nonlinear behavior of molecular motor assemblies have
also been reported in the literature for spontaneous sarcomere
dynamics [Günther and Kruse, 2010]. In that case, the assump-
tions of the model accounted for different physical ingredients and
led to notably different nonlinear dynamics, including excitable
behaviour and a Ruelle-Takens route to chaos. The results pre-
sented here suggest that hydrodynamic friction could be tuned in
biological systems in order to suppress undesired multifrequency
oscillations.
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Chapter 7

Flagellar beating

Over the last half century, intensive experimental and theoreti-
cal work has been done to unveil the underlying mechanisms of
dynein coordination in axonemal beating. A variety of different
mechanisms have been proposed to understand how sliding forces
shape the flagellar beat.

In this chapter we will model the eukaryotic flagellum by con-
sidering a generalized Euler-elastica filament bundle with passive
and active internal forces. Recent studies on the dynamics of
flagellar beating used prescribed internal forces [Fu et al., 2008,
Gadêlha et al., 2010] or studied the self-organized beating of
flagella independently of the specific molecular mechanisms un-
derlying the collective action of dyneins [Camalet et al., 1999,
Camalet and Jülicher, 2000, Hilfinger et al., 2009]. Although the
latter approaches are general from a physics perspective, they
obscure dynein kinetics along the flagellum, which have been
shown to be crucial in order to understand several experimental
evidences [Brokaw, 1999, Brokaw, 2014, Ginger et al., 2008]. We
will use a microscopic bottom-up approach, extending the work in
Refs. [Camalet et al., 1999, Riedel-Kruse et al., 2007] by coupling
the fully nonlinear action of dyneins to the flagellum. In this way,
we will be able to study the saturation of the unstable modes,
as a consequence of the nonlinearities arising from the coupling
between the flagellum geometry and the dynein activity.

125
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7.1 Continuum flagella equations

We consider a filament bundle composed of two polar filaments
subjected to planar deformations. Each filament is modeled as an
inextensible, unshearable, homogeneous elastic rod, for which the
bending moment is proportional to the curvature and the Young
modulus reads E. The filaments are of length L and separated by a
constant gap of size b, where b� L (Fig. 7.1c). The position of each
filament is described in terms of a material curve describing the
geometry of the filament bundle centerline r(s, t). The positions of
each polar filament forming the bundle read r± = r± (b/2)n̂, with
the orientation of the cross-section at distance s along its length
defined by the normal vector to the centerline n̂ = − sinφ ı̂ +
cosφ ̂, being φ ≡ φ(s, t) the angle between the tangent vector
ŝ ≡ ∂sr ≡ rs and the ı̂ direction (taken along the x axis). The
subscripts (+) and (-) refer to the upper and lower filaments,
respectively (Fig. 7.1c). The shape of the bundle is given at any
time by the expression:

r(s, t) = r(0, t) +

∫ s

0

(cosφ, sinφ)ds′ (7.1)

The geometrical constraint of the filament bundle, originates an ar-
clength mismatch ∆(s, t) which we shall call ‘sliding displacement’
and that is given by:

∆(s, t) =

∫ s

0

(|∂sr−| − |∂sr+|)ds′ (7.2)

For the sake of simplicity, we set any arclength incongruity between
the two filaments at the base to zero and we consider the filament
clamped at s = 0. A similar treatment can be done by assuming
basal compliance and other types of boundary conditions at the
base (e.g. pivoting or free swimming head); however, we will focus
on the nonlinear action of the motors and leave extensions of the
work to further studies. If we calculate explicitly Eq. 7.2 we obtain
∆(s, t) = b(φ−φ0), where φ0 ≡ φ(0, t). We aim to study the active
and passive forces generated at each point along the arclength
of the filament bundle. We define f(s, t) = f(s, t)ŝ as the total
internal force density generated at s at time t on the plus-filament
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and active (dynein motors) internal structures in the axoneme. Dyneins in the (+) and (-)
filaments compete in a ‘tug-of-war’ and bind/unbind from filaments with rates π± and ε±
respectively. c) Sliding filament mechanism.

due to the action of active and passive forces. By virtue of the
action-reaction law, the minus-filament will experience a force
density −f at the same point. Next, consider that N dyneins are
anchored at each external filament in a region of characteristic
length lc around s, where lc is much smaller than the length of
the flagellum L, and much larger than the length of the regular
intervals dyneins are attached to along the microtubule doublets.
We define n±(s, t) as the number of bound dyneins in a region
of size lc around s at time t which are anchored in the plus- or
minus-filament, respectively. We define a ‘tug-of-war’ of dyneins
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at each point s along the flagellum where two groups of N dyneins
compete. At the same time, we incorporate an elastic resistance of
modulus K between the two filaments describing the presence of
crosslinkers. Under these considerations, the internal force density
f(s, t) reads:

f(s, t) = ρ(n+F+ + n−F−)−K∆ (7.3)

where ρ ≡ l−1
c is the density of ‘tug-of-war’ units along the flagellum

and F±(s, t) is the load per motor each group of dyneins experiences
due to the action of the antagonistic group. The stresses on the
filament bundle are given by a resultant contact force N(s, t)
and resultant contact moment M (s, t) acting at the point r(s, t).
The internal force density f(s, t) only contributes to the internal

moment of the bundle M (s, t) = M k̂ where M(s, t) reads:

M(s, t) = Ebφs − bF (7.4)

where F (s, t) =
∫ L
s
f(s′, t)ds′ and we have used the approximation

∂sφ± ≈ ∂sφ, which is valid for bundles characterized by b � L.
The combined bending stiffness of the filament bundle is given by
Eb = 2EI, where I is the second moment of area of the external
rods.

Next, we address the dynamics of dynein. Let us consider a
minimal two-state mechanochemical model for dyneins such that
two possible states exist k = 1, 2, corresponding to microtubule
bound or unbound dyneins respectively. Since the sum of bound
and unbound motors at s remains constant at all times, we only
study the plus- and minus-bound motor distributions n±(s, t).
Dyneins bind with rates π± and unbind with rates ε± (Fig. 7.1b).
The corresponding bound motor population dynamics will be:

∂tn± = π± − ε± (7.5)

The rates π± and ε± have the form π± = π0(N − n±), ε± =
ε0n± exp(±F±/fc) where ε0 and π0 are constant rates and fc is
the characteristic unbinding force. Here we assume an exponential
dependence of the unbinding force on the load. By considering
that dyneins fulfill a linear velocity-force relationship with stall
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force f0 and velocity at zero load v0, the loads will be defined as
F±(s, t) = ±f0(1∓∆t/v0). Substituting the different definitions,
the internal force density f(s, t) reads:

f(s, t) = f0ρ

(
n̄− n∆t

v0

)
−K∆ (7.6)

where n̄ ≡ n+ − n− and n ≡ n+ + n−. For simplicity, we will
derive the equations governing the tangent angle φ in the limit
of small curvature (but possibly large amplitude) such that ten-
sion forces can be neglected. The derivation of the full nonlinear
elastohydrodynamic equations is given in Appendix E.1. By using
resistive force theory in the limit of small curvature, we obtain
ζ⊥φt = −Msss, where ζ⊥ is the normal drag coefficient (see Ap-
pendix E.1). Combining the last expression with Eq. 7.4 we have:

ζ⊥φt = −Ebφssss − bfss (7.7)

Hereinafter we switch to dimensionless quantities keeping the same
notation. We non-dimensionalize the arclength with respect to the
length scale L, time with respect to the correlation time of the
system τ0 = 1/(ε0 +π0), motor number with respect to N , internal
force density with respect to f0ρN and sliding displacement with
respect to b. The correlation time defines how fast the motors will
respond to a change in load. We also define Sp = L(ζ⊥/Ebτ0)1/4,
µ ≡ Kb2L2/Eb, µa = bf0ρNL

2/Eb and ζ ≡ b/v0τ0. The sperm
number Sp characterizes the relative importance of elastic forces
to viscous drag. The parameter µ denotes the passive sliding re-
sistance, which measures the relative importance of the effective
bundle elastic rigidity compared with the elastic crosslinker resis-
tance of the bundle [Gadêlha et al., 2013]. On the other hand, the
parameter µa denotes the activity of dyneins, measuring the rela-
tive importance of motor force generation compared with bending
resistance. Finally ζ denotes the ratio of the bundle diameter and
the typical deflection induced by the motors. The dimensionless
sperm equation in the limit of small curvature reads:

Sp4φt = −φssss − µafss (7.8)
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where the dimensionless internal force density f(s, t) takes the
form:

f(s, t) = n̄− ζn∆t −
µ

µa
∆ (7.9)

and ∆ = φ− φ0. Since the base is clamped, φ0 = ct, and without
loss of generality we set φ0 = 0. Combining Eqs. 7.8 and 7.9 we
obtain the nonlinear dynamics of φ:

Sp4φt = −φssss + µφss − µan̄ss +

µaζ[nssφt + 2nsφts + nφtss] (7.10)

In the absence of dynein activity (i.e. µa = 0), the last expres-
sion reduces to the dynamics of an Euler-elastica filament bundle
with elastic internal forces [Gadêlha et al., 2013]. Notice that this
expression is obtained considering the sliding mechanism and a
linear velocity-force relationship for dyneins, but it is independent
of dynein kinetics. On the other hand, the dimensionless form of
the bound motor population dynamics n± reads:

∂tn± = η(1− n±)− (1− η)n± exp[f̄(1∓ ζφt)] (7.11)

where η ≡ π0/(π0+ε0) is the duty ratio of the motors and f̄ ≡ f0/fc
dictates the sensitivity of the unbinding rate on the load.

7.2 Linear stability analysis

The non-moving state of the system is characterized by φ = 0
and n±(s, t) = n0 ≡ π0/(π0 + ε0e

f̄ ). This means that the flagellum
is aligned with respect to the x-axis and the number of plus-
and minus-bound motors is constant in space and time. Next
we do a linear stability analysis on Eqs. 7.10, 7.11 defining the
corresponding perturbed variables around the base state as φ = δφ
and n± = n0 + δn±. Defining the modulation δn ≡ δn+ = −δn−
around n0 and considering f̄ ζφt � 1 we obtain:

δnt = −τ̄−1δn+ (1− η)ζf̄ef̄n0φt

Sp4φt = −φssss + µφss + 2[µaζn0φtss − δnss] (7.12)
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where τ̄ ≡ n0/η. We use the ansatz φ = φ̃(s)eσt and δn = δñ(s)eσt

where σ is a complex eigenvalue. From the first expression in
Eq. 7.12 we get δñ = χ′(σ)φ̃, where χ′(σ) is a complex response
function:

χ′(σ) = ζf̄n0(1− n0)
σ

1 + στ̄
(7.13)

Using Eq. 7.9 and considering f = f̃(s)eσt, we obtain f̃ = χ(σ)φ̃,
where χ(σ) is a second complex response function:

χ(σ) = 2ζn0

[
f̄(1− n0)

σ − σ2τ̄

1− (στ̄)2
− σ

]
− µ

µa
(7.14)

The latter response functions are a generalization of the results in
Ref. [Riedel-Kruse et al., 2007] for a complex eigenvalue σ and are
equivalent to the results in Ref. [Bayly and Wilson, 2015]. With

the ansatz φ̃ ∼ δñ ∼ eiqs in the second expression of Eq. 7.12, we
obtain the characteristic equation:

q4 − χ̄q2 + σ̄ = 0 (7.15)

where χ̄ ≡ µaχ, σ̄ ≡ σSp4. Solving Eq. 7.15, we obtain four
possible roots:

qi = ±
(
χ̄

2
±
√( χ̄

2

)2

− σ̄
)1/2

, i = 1, . . . , 4 (7.16)

where qi, χ̄, σ̄ ∈ C. Therefore the eigenfunctions read:

φ̃(s) =
4∑

j=1

Φje
iqjs (7.17)

where Φj ∈ C. Once φ̃ is known, δñ(s) = δNφ̃(s) exp(i∆θ) where
δN = |χ′| and ∆θ = arg(χ′). Therefore, the evolution of δn is the
same as for φ except for a phase shift ∆θ and an overall change on
the amplitude δN , which depends on χ′(σ). This result indicates
the presence of a time delay between the action of motors and the
response of the flagellum. Indeed, an active force proportional to
the time delay of the curvature was proposed as a mechanism to
generate bending waves [Brokaw, 1971]. Time delays commonly
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arise in systems where molecular motors work collectively as shown
in Section 6. In order to find φ̃(s), we need to impose the four
boundary conditions, obtaining a linear system of equations for
Φj , j = 1, . . . , 4 (see Appendix E.2). By setting the determinant of
the system to zero, we find the set of complex eigenvalues σn, with
the corresponding growth rates λn = Re[σn] and frequencies ωn =
Im[σn], which satisfy the boundary conditions, where λn, ωn ∈ R.
We order the set of different eigenvalues according to its growth
rate λn+1 > λn, such that the first one has the largest growth
rate λ1. Defining u = (φ, δn)T , the general solution of the system
reads:

u(s, t) =
∑

n

An

(
φ̃n
δñn

)
eλnteiωnt + c.c (7.18)

For λn < 0, ∀n, solutions decay exponentially to the non-moving
state. On the other hand, when λ1 becomes positive the system
undergoes a Hopf bifurcation and oscillates with frequency ω1.
Next, we study the marginal stable solutions, i.e. when the maxi-
mum growth rate equals zero (λ1 = 0). In these cases, we define
the critical frequency of oscillation as ωc ≡ |ω1|. Traveling waves
propagate from tip to base, a feature already reported for clamped
conditions [Camalet et al., 1999, Bayly and Wilson, 2015].

Flagella profiles are shown in Fig. 7.2a and b (top) for low (a)
and high (b) viscosity. In Fig. 7.2c, the marginal stability curve
(i.e. λ1 = 0) in phase space is shown. Intuitively, as Sp is increased
the traveling instability occurs for larger motor activity µa and
the critical frequency of oscillation ωc typically decreases. For
low viscosity (Sp = 5) the wave propagation velocity is slightly
oscillatory whereas for high viscosity (Sp = 10) it becomes more
uniform (Fig. 7.2a and b, bottom). These results are in agreement
with studies on migrating human sperm, where in the limit of
high viscosity waves propagated approximately at constant speed
[Smith et al., 2009]. For high viscosity, curvature tends to increase
from base to tip, finally dropping to zero due to the zero curva-
ture boundary condition at the tail (see Fig. 7.2d and Appendix
E.2). This modulation is consistent with experimental studies on
human sperm, which show a meandering effect as viscosity is in-
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creased. In the latter case, the effect is more pronounced possibly
due to external elastic structures such as the outer dense fibers
[Smith et al., 2009]. Defining k ≡ max |qi|/2π as the wavenumber,
we obtain that it increases almost linearly with viscosity (Fig.
7.2d, inset). Similar results can be obtained defining k from the
covariance matrix (see Section 7.5).

7.3 Parameter choice

Here we present the choice of parameters based on experimental
studies on sperm flagella. We first discuss the passive proper-
ties of a flagellum. The typical length of a human flagellum is
L ' 50 µm and the axonemal diameter is found to be b ' 200 nm
[Gaffney et al., 2011]. The bending stiffness of the filament bundle
has been reported to be Eb ' 0.9 ·10−21 N·m2 for sea-urchin sperm
[Gadêlha et al., 2013, Gaffney et al., 2011] and Eb ' 1.7 · 10−21

N·m2 for bull sperm [Riedel-Kruse et al., 2007]. On the other hand,
the interdoublet elastic resistance from demembranated flagellar
axonemes of Chlamydomonas yields an estimated spring constant
2 · 10−3 N/m for 1 µm of axoneme [Minoura et al., 1999], thus
K ' 2 · 103 N/m2. Finally, typical medium viscosities for sperm
flagella range from ζ⊥ ' 10−3 Pa·s in low viscous media to ζ⊥ ' 1
Pa·s in high viscous media [Gadêlha et al., 2010].

Next, we discuss the mechanochemical parameters associated to
axonemal dynein. Axonemal dyneins are subdivided in inner and
outer arms depending on its position in the axoneme, and can be
found in heterodimeric and monomeric forms (see Section 5.2). For
the sake of simplicity, we consider identical force generating dynein
motor domains acting along the flagellum. The total number of
motor domains in a beating flagellum has been estimated to be
' 105 [Ma et al., 2014, Nicastro et al., 2006]. The stall force has
been found in the range f0 ' 1 − 5 pN [Sakakibara et al., 1999,
Hirakawa et al., 2000]. Following Ref. [Riedel-Kruse et al., 2007]
we choose the characteristic unbinding force for dynein such that
f̄ = 2. Axonemal dynein is characterized by a low duty ratio
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estimated to be η ' 0.14 and speeds at zero load in the range
v0 ' 5− 7µm/s [Sakakibara et al., 1999, Howard, 2001]. We take
the detachment rate at zero load as ε0 ∼ 10 s−1. Finally, we
need to estimate ρ and N . Considering the length of the human
sperm flagellum (L ' 50 µm) we obtain ' 2 · 103 motors/µm.
In our description, we divide the axoneme in two regions with
corresponding dynein teams. Therefore, we have ρN ' 103 motors/
µm. In order to find ρ, we need to choose a criterion to decide
the typical length scale lc = ρ−1 in our coarse-grained description.
From Eq. 7.16, we notice that the typical length scale in the system
can be given by lc ∼ L/

√
µa =

√
Eb/bf0ρN . Using the previous

parameters we get lc ∼ 1 µm and therefore ρ ∼ 1 µm−1 and
N ∼ 103. From the previous considerations, we obtain Sp ' 4−20,
µ ' 50− 100, µa ∼ 103 and ζ ' 0.4. The motor activity will be
studied in a broad range (µa ' 103 − 104) since it plays the role
of the main control parameter in our study.

7.4 Nonlinear motor dynamics

In Fig. 7.3a we show two finite amplitude solutions by numerically
solving the nonlinear motor dynamics (see Appendix F). Fig. 7.3a
(left) corresponds to a case where the system is found close to
the Hopf bifurcation, whereas Fig. 7.3a (right) corresponds to
a regime far from the bifurcation. We notice that the marginal
solution obtained in the linear stability analysis (Fig. 7.2b) gives a
very good estimate of the nonlinear profile close to the bifurcation
point, although it does not provide the magnitude of φ nor δn.
Frequencies are found to be ∼ 10 Hz comparable to typical sperm
frequencies on the order of ' 10−20 Hz [Gaffney et al., 2011] and
maximum amplitudes are found to be relatively small, around 10%
of the total flagellum length. The color code in Fig. 7.3a indicates
the value of the semi-diference of plus- and minus-bound motors
δn. Plus-bound motors are predominant in regions of positive
curvature (φs > 0) along the flagellum and viceversa. Remarkably,
less than ' 5% bound dyneins are sufficient to produce ' 1 µm
amplitude oscillations. In Fig. 7.3b, the time evolution of φ and δn
is shown at s = 3/4 for the cases in Fig. 7.3a, respectively. The tan-
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gent angle φ is delayed respect to δn, in agreement with the linear
stability analysis. Close to the instability threshold, both signals
are very similar since the system is found near the linear regime;
however, far from threshold, both signals greatly differ. For high
motor activity, both the tangent angle and the fraction of bound
dyneins at certain points along the flagellum exhibit cusp-like os-
cillations (Fig. 7.3b, right). This behaviour is typical of molecular
motor assemblies working in the nonlinear regime far from the
instability threshold [Jülicher and Prost, 1997]. Experimentally,
similar cusp-like shapes of the curvature were found in sea urchin
sperm [Ohmuro et al., 2004]. Despite the signals S in Fig. 7.3b
(right) are nonlinear, they keep the symmetry S(t+ T/2) = −S(t)
as a consequence of both plus and minus motor populations being
identical, a property also found in spontaneous oscillations of mo-
tor assemblies [Jülicher and Prost, 1997]. Finally, in Fig. 7.3c we
study how the amplitude and frequency of the oscillations vary
with the distance from the bifurcation point ε = µa−µca. For small
ε, the absolute value of the tangent angle seems to follow a square
root dependence, characteristic of a supercritical Hopf bifurcation;
however, in the strongly nonlinear regime the curve deviates from
this trend. On the other hand, the beating frequency decreases for
increasing activity. This fact can be understood in simple terms
since the activity µa is proportional to f0N ; hence, the larger the
activity, the stronger each dynein team becomes. Consequently,
the necessary time for a dynein team to win increases, leading to
a smaller beating frequency.

7.5 Principal component analysis

In order to analyze the nonlinear solutions we use principal compo-
nent analysis [Werner et al., 2014, Jolliffe, 2002]. This technique
allows us to treat flagellar shapes as multi-feature data sets, which
can be projected to a lower dimensional space characterized by
principal shape modes. Here we will analyze the data following
Ref. [Werner et al., 2014] to study sperm flagella. The covariance
matrix C as defined in [Werner et al., 2014] is shown in Fig. 7.4a
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for µa = 4300 (left) and µa = 5600 (right). In both cases, we
find anti-correlation between tangent angles which are a distance
λ/2 apart. Hence, a certain wavelength λ can be identified. Inter-
estingly, the number of local maxima along the diagonals in the
covariance matrix decreases from µa = 4300 to µa = 5600, indi-
cating that motor activity tends to eliminate correlations between
points along the flagellum. Employing an eigenvalue decomposition
of the matrix C, we can obtain the eigenvectors vi, . . . ,vr and
their corresponding eigenvalues d1, . . . , dr. Without loss of gener-
ality, we sort the eigenvalues in descending order d1 ≥ . . . ≥ dr.
We find that the first two eigenvalues capture > 99% variance
of the data. This fact indicates that our flagellar waves can be
suitably described in a two-dimensional shape space, since they
can be regarded as single-frequency oscillators. Notice that this
would not hold for multifrequency oscillations, where an additional
dimension is required (see Section 6). Each flagellar shape can be
expressed now as a linear combination of the eigenvectors vk:

φ(t) =
r∑

k=1

Bk(t)vk (7.19)

where Bk are the shape scores computed by a linear least-square
fit. In Fig. 7.4b (left), the two first eigenvectors v1, v2 are shown.
In Fig. 7.4b (right), the flagellar shape at a certain time (black
line) is reconstructed (dashed grey line) by using the two shape
scores B1, B2 showing an almost perfect fit. Finally, in Fig. 7.4c we
show the shape space trajectories beginning with small amplitude
eigenmode solutions. While close to the bifurcation the limit cycle
is circular (Fig. 7.4c, left), far from the bifurcation the limit cycle
becomes distorted (Fig. 7.4c, right). We conclude that motor
activity in the nonlinear regime significantly affects the shape of
the flagellum and that linear solutions only provide good estimates
sufficiently close to the Hopf bifurcation.
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7.6 Bending initiation

Finally, bending initiation is an interesting problem that can be
studied from the nonlinear equations including various initial con-
ditions. In Fig. 7.5a,b the spatiotemporal transient dynamics are
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shown for the case of an initial eigenmode solution corresponding
to the maximum eigenvalue (a) and an initial sine perturbation
in φ, with equal constant bound motor densities (b). In case (b)
traveling waves propagate in both directions and interfere during
the transient dynamics at t = t0 (Fig. 7.5b, 7.5c (right)). However,
in the steady state both the eigenmode and sine cases reach the
same steady state solution, despite the sinusoidal initial condition
being a superposition of eigenmodes. Therefore, we conclude that
the fastest growing mode is likely to be the one that takes over
in the steady state. In Fig. 7.5c (left) the transient dynamics are
shown for plus- and minus-bound dynein populations. Both popu-
lations decay exponentially with characteristic time τ̄ to n0 and
begin oscillating in anti-phase around this value, in a ‘tug-of-war’
competition.

7.7 Conclusions

In this chapter we have formulated a set of nonlinear equations
describing self-organized flagellar beating, taking into account the
coupling of dynein activity with the geometry of the flagellum. Our
analysis reveals the spatiotemporal dynamics of dynein kinetics
and the flagellum shape for different regimes of motor activity,
medium viscosity and flagellum elasticity. We have found that far
from the bifurcation, linearized solutions fail to describe the flag-
ellar shape and nonlinear effects arise in the system solely due to
motor activity. An important aspect which is not studied explicitly
in this work is the sense of traveling wave propagation. For the sake
of simplicity, we have used clamped boundary conditions at the
head which are known to induce traveling waves which propagate
from tip to base [Camalet et al., 1999, Bayly and Wilson, 2015].
It is beyond the scope of our study to determine the effects of
different boundary conditions and the role of basal compliance at
the head of the flagellum, which are known to crucially affect wave
propagation [Riedel-Kruse et al., 2007]. Further work needs to be
undertaken to assess the different casuistry in the problem.
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Our study provides a deterministic description of flagella; how-
ever, real flagella is subject to chemical noise due to the stochastic
binding and unbinding of dynein motors. Recently, some studies
have provided some insights on this problem by studying a noisy
oscillator driven by molecular motors. However, their approach
was not spatially extended [Ma et al., 2014]. Our framework can
be suitably extended to include chemical noise in the system
through Eq. 7.11 by considering a chemical Langevin equation
for the bound dynein populations including multiplicative noise
[Gillespie, 2000]. From our study, it can be easily deduced that,
considering a force-independent unbinding rate, fluctuations of
bound motors around the base state have mean Nη and variance
Nη(1− η), in agreement with the results in Ref. [Ma et al., 2014]
where a different model was used. One of the most exciting future
challenges in the study of cilia and flagella is the visualization of
the spatiotemporal activity of dyneins inside the axoneme. This
would reveal how dynein activity couples with flagellum shape and
unveil the mechanisms coordinating dynein activity and flagellar
beating.
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Chapter 8

General conclusions

In the present thesis we have studied different examples in which
cytoskeletal motors self-organize and cooperate in cellular pro-
cesses.

In the first part, we have carried out a complete theoretical and
experimental study on the collective behaviour of single-headed
kinesin KIF1A, which constitutes a remarkable example of Brown-
ian motor and a model motor to study intracellular transport.

We have proposed a two-state noise-driven ratchet mechanism
to study the collective action of single-headed KIF1A motors in
vitro extending previous works for the case of vanishing dwell time
[Brugués and Casademunt, 2009, Orlandi et al., 2010]. Addition-
ally, by using a lattice approach to describe KIF1A dynamics, we
have verified the robustness of the cooperative phenomena found
in the Langevin description:

• The presence of finite dwell time in the system reveals non-trivial
phenomena associated to a great enhancement of the collective
force generation of motors. In simple terms, the combination
of several motors in a two-state ratchet enables a switch from
a low force noise-driven mechanism (∼ kBT l/l

2
D with diffusion

length lD =
√

2D/ω) to a filament-binding mechanism with
a high force scale (∼ U/l). In order for cooperative effects to
emerge, motor positional and internal degrees of freedom must
be correlated. The cooperative mechanism of force generation is
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robust within a variety of motor-motor interactions, such as re-
pulsive and confining interactions. This effect is able to produce
a two-order of magnitude gain on the collective efficiency up to
values of ∼ 10−2. The collective stall force at a given velocity
grows faster than proportional to N up to around 5 KIF1A
motors. For N ∼ 5 − 10 the force scaling of KIF1A remains
roughly proportional to the number of motors, and for large
N the total force produced by the motor ensemble eventually
saturates.

• The presence of finite dwell time also reveals staircase shaped
velocity-force curves which arise in the high diffusion limit. This
effect is a consequence of the inhomogeneous motor density
distribution in the cluster and the particular high noise intensity
in the system. We find that each plateau corresponds to the
recruitment of a new motor to the leading team, and the effect
persists for backward movement until the recruitment of the
totality of motors.

In order to test the validity of our theoretical predictions on
cooperative force generation, we have challenged experimentally
single-headed KIF1A motors to extract membrane tubes from
GUVs in a minimal in vitro setup. Our experimental work has
been complemented with in silico and mean-field models, which
provide a quantitative description of the in vitro system:

• We found that single-headed KIF1A motors are capable to col-
lectively extract tubes from GUVs, under similar conditions
to previous experiments with conventional kinesin. Hence, our
experimental observations validate the theoretical predictions
in Chapter 3 on their high cooperativity. Our in silico model for
longitudinal tube-pulling shows a very good agreement with ex-
periments, providing additional insight on how motors distribute
at the tip and all along the tube. While for conventional kinesin
the leading cluster was estimated in silico to involve . 10 mo-
tors [Campàs et al., 2006], here we estimate that ' 15 KIF1A
motors are sufficient for tubulation under similar conditions.
This is a remarkable result since the stall force of single-headed
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KIF1A is 60 times smaller than that of conventional kinesin.

• Unexpectedly, we found that KIF1A monomers naturally form
helical nanotubes. This entails a remarkable capability to col-
lectively exert significant off-axis forces to the point of coiling
membrane tubes around MTs. We have shown that a simple
mean-field model for KIF1A dynamics captures the essential
off-axis dynamics both at a single-motor level and at a collec-
tive level. The average single-motor pitch is determined by the
MT-motor interactions and the geometry of the MT lattice. The
average tube pitch; however, is a collective effect resulting from
the competition between the longitudinal and transversal forces
generated by the motors.

In the second part, we have focused on the generation of dy-
namical instabilities driven by molecular motors. Specifically, the
spontaneous oscillations in a minimal in vitro system and the
self-organized beating of flagella have been studied.

In the first case, we have studied in detail a minimal three-
variable description for the spontaneous oscillations of collective
molecular motors, based on a generic two-state model coupled to
an elastic element:

• The three-dimensional reduction is shown to capture the es-
sential nonlinear behaviour of the full set of integro-differential
equations. This suggests that a general three-dimensional re-
duction is inherent to the system even though, in general, the
corresponding set of variables may not coincide with the explicit
ones used in our case. Moreover, we find that the reduced system
shares some similarities with the well known Lorenz model.

• We show that the system can produce different types of nonlinear
oscillations which can generally exhibit one or two subharmon-
ics in the limit of large elastic modulus and high mobility. The
type of nonlinear oscillations are found to be sensitive to the
choice of initial conditions. Interestingly, the emergence of two
subharmonics on the spectrum of the backbone signal for large
elastic modulus is in remarkable accordance with similar subhar-
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monic peaks observed experimentally in analogous conditions
[Plaçais et al., 2009]. Hence, our study provides a theoretical
basis for these experimental observations.

Finally, we have used a theoretical framework for planar flagellar
beating providing a nonlinear extension of the works in Refs.
[Camalet and Jülicher, 2000, Riedel-Kruse et al., 2007]:

• We have developed a model describing flagellar beating, taking
into account the nonlinear coupling between dynein dynamics
and flagellum geometry, and formulating a set of nonlinear equa-
tions to test how flagellar amplitude and shape vary with dynein
activity. Close to the bifurcation, the flagellar profiles obtained
using a linear stability analysis are a good approximation to
the actual nonlinear profiles. However, far from the bifurcation,
linear profiles fail to describe the actual flagellar shapes.

• Far from the bifurcation, we find that the tangent angle dy-
namics presents relaxation oscillations with cusp-like maxima
in some regions along the flagellum. This effect is characteristic
of collective molecular motors far from equilibrium coupled to
an elastic element [Jülicher and Prost, 1997]. Interestingly, a
similar behaviour was found experimentally in sea-urchin sperm
[Ohmuro et al., 2004].



Chapter 9

Resum en català

Els enormes progressos de les nanotecnologies durant les últimes
dècades han permès un estudi quantitatiu dels fenòmens biològics
fins a arribar a la escala d’una sola molècula. La possibilitat de visu-
alitzar, manipular i mesurar fenòmens biològics a escala molecular
obre un nou món per a la f́ısica, que pot aplicar els seus mètodes
de modelització per explicar i predir fenòmens abans inabastables
des d’un punt de vista tecnològic. Un clar exemple en són les
pinces òptiques i magnètiques, les quals permeten la manipulació
de biomolècules i la medició de forces amb gran precisió. És en
aquest marc on disciplines com ara la f́ısica estad́ıstica de no equi-
libri, la f́ısica no lineal o la ciència de materials tous conflueixen i
juguen un paper clau. La complexitat dels sistemes biològics, rau
comunament en fenòmens col·lectius en situacions allunyades del
equilibri, autoregulats mitjançant xarxes bioqúımiques complexes
les quals requereixen d’un alt grau d’autoorganització, la qual cosa
implica tant fluxes de matèria i energia com d’informació. Tot
i aix́ı, els nivells d’autoorganització i autoregulació involucrats
en funcions cel·lulars tals com la motilitat i el tràfic intern, es-
tan encara molt lluny d’una comprensió quantitativa satisfactòria
des d’un punt de vista f́ısic. Tals processos requereixen no només
d’una visió qualitativa i descriptiva, sinó també d’una perspectiva
f́ısico-matemàtica per a la seva completa comprensió.

El present treball versa sobre l’estudi de l’acció col·lectiva de
motors moleculars del citoesquelet, amb la finalitat de contribuir
en la comprensió de la generació de força i moviment dins la
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cèl·lula. La tesi està estructurada en dues parts: la primera part
correspon a l’estudi del transport intracel·lular degut a l’acció co-
operativa de motors, en particular, l’estudi es centra en la kinesina
monomèrica KIF1A, la qual constitueix un exemple notable de
motor Brownià en el context biològic. En primer lloc, es duu a
terme un estudi teòric exhaustiu sobre l’acció col·lectiva d’aquests
motors, i posteriorment, es validen experimentalment els resultats
predits mitjançant experiments d’extracció de tubs de membrana.
En la segona part, s’estudia la generació d’inestabilitats dinàmiques
degudes a l’acció cooperativa de motors moleculars. En particular,
es tracten el casos d’oscil·lacions espontànees generades per un
sistema in vitro d’actina i miosina, i el batec autoorganitzat de
flagels degut a l’acció de dinëınes axonèmiques.

Part I: Transport cooperatiu de motors moleculars

Els motors moleculars són protëınes capaces de transformar en-
ergia qúımica en treball mecànic mitjançant la hidròlisi del ATP.
Motors com les miosines o les kinesines, són els responsables de la
contracció muscular o el transport d’orgànuls dins la cèl·lula, re-
spectivament. Les kinesines tenen una important labor en processos
fonamentals com ara la divisió cel·lular o el transport intracel·lular.
T́ıpicament, aquestes protëınes estan formades per dos dominis
motors (forma dimèrica) conectats a un coll que els uneix a la
càrrega que transporten. En contacte amb filaments anomenats
microtúbuls, aquests motors caminen alternant seqüencialment els
seus dominis motors en un mode conegut com ‘hand-over-hand’.
No obstant, existeix una classe de kinesina anomenada KIF1A la
qual és capaç de generar força únicament amb l’ajuda d’un sol
domini motor (forma monomèrica), mitjançant la seva difusió al
llarg del microtúbul i funcionant com a motor Brownià. Aque-
sta kinesina es troba de forma espećıfica en els axons neuronals
i s’encarrega de transportar veśıcules precursores de la sinàpsi.
Les condicions del transport axonal són particularment exigents
ja que els motors han de transportar orgànuls al llarg de grans
distàncies (mil·ĺımetres, cent́ımetres o fins i tot metres en alguns
organismes). Tot i que la kinesina KIF1A es troba normalment
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en la seva forma dimèrica in vivo, curiosament s’ha observat que
aquesta forma també gaudeix d’un estat difusiu, el qual coexisteix
amb un estat processiu en què el motor avança presumiblement
utilitzant un mecanisme semblant al de ‘hand-over-hand’. La raó
per la qual aquesta kinesina, un motor a priori ineficient degut a la
presència d’un estat difusiu, està encarregada d’un transport tan
exigent com ara el transport axonal, és a hores d’ara una incògnita.

Estudis teòrics de motors moleculars modelitzats mitjançant
ratchets Brownians o equacions mestres pròpies de la f́ısica de
no equilibri, han revelat comportaments dinàmics col·lectius no
trivials com la presència de cooperativitat o l’aparició de com-
plexitat en forma de caos o fractalitat. Motivats pels anteriors
resultats, en el present treball hem estudiat la hipòtesi de que
aquests tipus de motors estan particularment adaptats al treball
cooperatiu degut a la transmissió de força gràcies a la presència
d’un estat difusiu. Per a comprovar l’anterior hipòtesi, hem dut
a terme un estudi exhaustiu del comportament col·lectiu de ki-
nesines KIF1A utilitzant una modelització de ratchets Brownians
amb dos estats: un estat lligat al microtúbul i un estat dèbilment
lligat corresponent a l’estat difusiu. Els resultats revelen que la
presència de temps d’espera per a capturar l’ATP, augmenta de
forma dramàtica l’stall force col·lectiva (la força necesària per a
aturar el sistema) quan els motors KIF1A treballen conjuntament
contra una força externa. En particular, l’augment de l’stall force
en funció del nombre de motors és no lineal, permetent que 10
motors cooperin per a produir al voltant de 100 vegades la força
d’un sol motor.

Posteriorment, ens vàrem disposar a comprovar experimental-
ment les nostres prediccions teòriques in vitro. Per això, vàrem
considerar oportú dur a terme experiments biomimètics d’extracció
de nanotubs de membrana. En aquests experiments, t́ıpicament
els motors moleculars s’ancoren en veśıcules unilamel·lars gegants.
En presència d’ATP i d’una xarxa de microtúbuls amb la qual
els motors hi poden interaccionar, aquests cooperen en grups per
a extreure tubs de membrana de les veśıcules gegants, formant
aix́ı xarxes de nanotubs de membrana. Els experiments amb la
forma monomèrica del motor KIF1A foren satisfactoris i malgrat
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la seva ineficiència a nivell individual, els motors varen ser capaços
de cooperar per a extreure nanotubs de membrana. Els nostres
experiments també varen revelar la sorprenent formació de tubs
helicöıdals al voltant de microtúbuls, dels quals en vàrem poder
analitzar la seva geometria i dinàmica. Aquest fet insòlit mostra
una combinació inesperada de generació col·lectiva de força jun-
tament amb una maniobravilitat autoorganitzada dels motors.
L’estudi s’ha completat amb simulacions in silico del sistema i una
modelització mean-field per a entendre la selecció del angle de les
hèlices.

En resum, en la primera part de la tesi hem estudiat l’acció co-
operativa de motors monomèrics KIF1A des d’una vessant teòrica
i a la vegada experimental, confirmant aix́ı la nostra hipòtesi que
els motors KIF1A estan particularment adaptats a l’acció coop-
erativa gràcies a la presència d’un estat difusiu en el seu cicle
d’hidròlisi. La sorprenent formació de tubs helicöıdals al voltant de
microtúbuls, ens fa especular sobre la possibilitat que la generació
de forces transversals pugui ser una estratègia per a evadir possi-
bles obstacles al llarg de l’axó i aix́ı assegurar un tràfic axonal flüıd.
Diverses futures ĺınies de treball són motivades arran dels nostres
resultats. A nivell teòric, l’estudi del comportament col·lectiu de
motors moleculars en dues dimensions al llarg del microtúbul i la
capacitat de maniobra d’aquests grups per a evadir obstacles són
dos qüestions fonamentals que poden tenir implicacions directes
en l’estudi d’embusos en el tràfic axonal en les neurones. A nivell
experimental, seria interessant estudiar fins a quin punt els nostres
resultats són extrapolables a la versió dimèrica del motor KIF1A,
la qual és la forma rellevant in vivo.

Part II: Inestabilitats dinàmiques en agrupacions de
motors

En la segona part de la tesi, hem estudiat la generació d’oscil·lacions
i la propagació d’ones degut a inestabilitats generades per l’acció
d’agrupacions de motors moleculars. Alguns exemples rellevants
dins la cèl·lula són les oscil·lacions mitòtiques i meiòtiques,
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les oscil·lacions espontànees en cèl·lules auditivies, els règims
oscil·latoris en la contracció muscular o el batec de cilis i flagels. En
el llenguatge de sistemes dinàmics, feedback loops positius poden
desestabilitzar l’estat immòbil dels sistema generant oscil·lacions o
ones que es propaguen en sistemes espaialment estesos. La forma,
l’amplitud i el peŕıode de les oscil·lacions són posteriorment selec-
cionats per les no-linearitats espećıfiques del sistema. En particular,
hem estudiat la generació d’oscil·lacions mecàniques en estructures
del citoesquelet com ara són les oscil·lacions espontànees en un
sistema d’actina i miosina o el batec flagel·lar.

En primer lloc, hem estudiat un model genèric, prèviament
proposat, en què els motors moleculars són capaços de generar
oscil·lacions espontànees en presència d’un element elàstic en el
sistema. Aquest model ha descrit satisfactòriament diversos sis-
temes biològics on els motors moleculars generen oscil·lacions
mecàniques. En termes matemàtics, el model consisteix d’un sis-
tema d’equacions integro-diferencials en derivades parcials el qual
hem reduit a un sistema simplificat de tres equacions diferencials or-
dinàries, capturant la dinàmica essencial del sistema. Curiosament,
el sistema d’equacions integro-diferencials comparteix certes sem-
blançes amb les equacions de Markus-Lorenz, les quals descriuen un
exemple de roda hidràulica que presenta caos. L’anterior sistema té
la propietat que, per una tria particular de paràmetres, es redueix
a les conegudes equacions de Lorenz. En el nostre cas, el sistema
mostra certes semblances amb el model de Lorenz encara que no
s’ha detectat la presència de caos. Tot i aix́ı, el sistema original, aix́ı
com també el sistema redüıt, genera oscil·lacions subharmòniques
en el règim d’alta mobilitat (baixa fricció) i mòdul elàstic gran.
Sorprenentment, l’aparició d’oscil·lacions subharmòniques es varen
detectar prèviament en un sistema in vitro d’actina i miosina, util-
itzant una trampa òptica la qual exercia una força recuperadora
en un filament d’actina, oposant-se a la força generada per les
miosines. El nostre estudi doncs, dóna resposta a les oscil·lacions
subharmòniques observades experimentalment en un sistema in
vitro d’actina i miosina.

Finalment, hem estudiat els mecanismes f́ısics del batec flagel·lar
i ciliar. La motilitat flagel·lar juga un rol crucial en la super-
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vivència, desenvolupament, alimentació i reproducció de diver-
sos microogranismes. Els organismes flagel·lats utilitzen un o
més appèndixs per a la seva propulsió. En particular, en el cas
d’organismes eucariotes, l’acció de motors moleculars dins els
flagels o cilis comporta moviments oscil·lants del mateixos, els quals
permeten nedar als microorganismes. L’estructura del citoesquelet
que conforma els flagels i cilis eucariotes s’anomena axonema.
Aquesta estructura té una composició “9+2” caracteŕıstica en
la majoria d’organismes eucariotes, corresponent a 9 doblets de
microtúbuls perifèrics en disposició ciĺındrica envoltant un doblet
de microtúbuls centrals. Cada doblet consisteix d’un microtúbul
al qual les dinëınes estan ancorades a intervals regulars, i un segon
microtúbul a on les dinëınes provinents del doblet véı s’hi enganxen.
En presència d’ATP, les dinëınes generen un moviment relatiu
dels doblets de microtúbuls, generant una força que pot fer-los
lliscar un respecte l’altre en absència de protëınes que les entrel-
liguin. En presència d’aquestes, el moviment relatiu entre doblets
es transforma en flexió. Aquest procés es duu a terme d’una forma
altament coordinada, de manera que quan un grup de dinëınes en
l’axonema està actiu, l’altre grup resta inactiu. En el cas del flagel
espermàtic, aquesta coordinació permet la generació d’ones de
flexió definides en un pla. Actualment, la hipòtesi majoritàriament
acceptada és que la coordinació és un fenomen autoorganitzat,
degut a l’acoplament de l’acció de les dinëınes i la geometria del
axonema.

Per tal d’entendre la generació d’ones al llarg d’un flagel eu-
cariota, hem realitzat un estudi teòric en el qual hem introdüıt
expĺıcitament l’acoplament entre l’acció de les dinëınes i la geome-
tria de l’axonema. El nostre enfocament suposa una extensió no
lineal d’estudis previs, on la dinàmica dels motors moleculars al
llarg del flagel no era incorporada expĺıcitament. En el nostre estudi,
hem derivat un sistema d’equacions no lineals les quals permeten
estudiar l’evolució espaciotemporal del flagel, aix́ı com la dinàmica
de les dinëınes arbitràriament lluny de la bifurcació. Per sobre
d’una certa activitat cŕıtica dels motors, el flagel genera ones que es
propaguen a través d’una bifuració de Hopf. Prop de la bifurcació,
els perfils flagel·lars obtinguts a través de l’anàlisi d’estabilitat
lineal són una bona aproximació als perfils dèbilment no lineals.



9 Resum en català 153

Per altra banda, l’estudi lluny de la bifurcació revela oscil·lacions
cusp-like de l’angle tangent les quals difereixen amb l’anàlisi lin-
eal i concorden amb resultats experimentals d’espermatozoides
d’eriçons de mar. A més a més, també hem analitzat la dinàmica
flagel·lar mitjançant una anàlisi de components principals, la qual
ens ha permès interpretar les oscil·lacions mitjançant dos únics
vectors propis en un espai abstracte de les formes. Finalment,
l’estudi de la iniciació del batec flagel·lar per a diferents condicions
inicials ens ha permès explorar la dinàmica transitòria, observant
en alguns casos, l’interferència d’ones al llarg del flagel.





Appendix A

Analytical VF relationship for KIF1A

In this appendix we present the derivation of the velocity-force rela-
tionship for one single-headed KIF1A motor under an external force
F in the high diffusion limit. Since KIF1A has been reported to
be highly diffusive in the weakly bound state [Okada et al., 2003],
this limit is appropriate for this motor. The next arguments are
based on Ref. [Orlandi et al., 2010]. We will neglect noise in the
U1 state since sliding velocities are usually high enough in this
limit due to low friction. Consequently, the motor will follow a
deterministic movement during the power stroke without being
excessively perturbed by noise. Conversely, dynamics in the U2

state will be stochastic since the motor will follow a diffusive
movement with coefficient D = kBT/λ. The motor will move a
distance ∆x′ in a mean time τ = 1/ω with probability density:

P (∆x = ∆x′) =
1√

4πDτ
exp

[
−(∆x′ + Fτ/λ)2

4Dτ

]
(A.1)

where Fτ/λ is the mean displacement of the motor. We assume a
situation where the motor is found in the minimum of the ratchet
potential and waits a mean dwell time τh = 1/ω? before jumping
to the U2 state. After diffusing for a mean time τ , it will fall back
to the U1 state in a different period of the ratchet. At this point,
the motor will follow a deterministic movement until reaching the
minimum again. The whole movement defines a cycle, and the
overall trajectory of the motor can be understood as the sequence
of multiple cycles. Therefore, we define the mean displacement
〈∆χ〉 as the mean distance the motor travels in a cycle and 〈∆t〉
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as the mean time needed to perform this cycle. With the previous
definitions, the velocity of the motor reads:

V =
〈∆χ〉
〈∆t〉 (A.2)

The mean position 〈∆χ〉 can be expressed as 〈∆χ〉 = l
∑∞

n=−∞ nP(n),
where P(n) is the probability of falling at any position between
(n− 1)l and nl:

〈∆χ〉 =
∞∑

n=−∞
nl

∫ a+ln

a+l(n−1)

P (∆x)d∆x (A.3)

Defining α ≡ vτ/(l − a), β ≡ 1/
√

4Dτ , ā ≡ a/l and f ≡ F/λv,
we can rewrite Eq. A.3 as:

〈∆χ〉 =
β√
π

∞∑

n=−∞
nl

∫ ā

ā−1

dz exp[−β2(z + n+ αf(1− ā))2] (A.4)

If we take the limit β → 0 (D →∞) we can convert the sum into
an integral by means of the change of variable s = nβ. The result
is:

〈∆χ〉 =
l

β
√
π

∫ ā

ā−1

dz

∫ ∞

−∞
s exp[−(s+β(z+αf(1−ā)))2]ds (A.5)

Computing the integrals we obtain:

〈∆χ〉 =
l

2
[1− 2ā− 2fα(1− ā)] (A.6)

Similarly, the expression for 〈∆t〉 reads:

〈∆t〉 =
∞∑

n=−∞

∫ nl

a+l(n−1)

(
τ + τh −

x

v − F/λ

)
P (∆x)d∆x+

+
∞∑

n=−∞

∫ a+nl

nl

(
τ + τh +

x

v l−a
a

+ F/λ

)
P (∆x)d∆x

(A.7)
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Non-dimensionalizing as before, and following the same assump-
tions we obtain:

〈∆t〉 =

(
τ + τh
1− f

)
1− ā

1− ā(1− f)
(A.8)

Finally the motor velocity reads:

V (f)β→0 = v(1− f)
[1− 2ā− 2fα(1− ā)][1− ā(1− f)]

2ατ (1− ā)2
(A.9)

where ατ ≡ v(τ + τh)/(l − a). From the last expression we can
extract the stall force of the motor:

Fs = λvmin

[
1,
f(ā)

2α

]
(A.10)

The function f(a) = (1− 2ā)/(1− ā) is a decaying function of the
asymmetry parameter which is 1 at ā = 0 and 0 at ā = 1/2. In
this limit V1(0) depends uniquely on the asymmetry of the ratchet
and the time between steps. From Eq. A.10 we find two different
stall forces leading to different stall mechanisms. λv is the force
needed to drag the motor up the ratchet slope i.e. U/l. This case
corresponds to a force which impedes the motor to reach the next
minimum. On the other hand, the second stall force λvf(ā)/2α
corresponds to the case in which the motor cannot move forward
by diffusing to the next period of the track. Substituting the differ-
ent values we find that the stall force reads (1− 2ā)kBT l/l

2
D, with

the diffusion length lD ≡
√

2D/ω. This fact leads the motor to
undertake cycles switching to the diffusive state and falling back
to the same period. Finally, we notice the stall force is not affected
by the dwell time in this limit.





Appendix B

Simulation of stochastic processes

In this appendix we describe in detail the simulation of Langevin
dynamics and the implementation of the Gillespie algorithm.

B.1 Langevin dynamics

We illustrate the procedure used in Section 3.1 to simulate
Langevin dynamics [Sancho et al., 1982]. Let us consider an equa-
tion describing the stochastic dynamics of a quantity x(t):

dx

dt
= f(x) + ξ(t) (B.1)

where f(x) is a general function of the variable x(t) and ξ(t) is a
rapidly fluctuating random term which has zero mean and it is
delta correlated in time. Let us consider a small time interval ∆
and formally integrate Eq. B.1:

x(t+∆) = x(t) +

∫ t+∆

t

f(x(t′))dt′ +

∫ t+∆

t

ξ(t′)dt′ (B.2)

For sufficiently small ∆, the function f can be approximated as
f(x(t′)) ' f(x(t)) and hence:

x(t+∆) = x(t) + f(x(t))∆+

∫ t+∆

t

ξ(t′)dt′ (B.3)
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The last term must be evaluated by means of stochastic calculus.
Considering the equivalence ξ(t)dt =

√
2DdW (t), where W (t) is

the Wiener process [Gardiner, 1985] and D is the strength of the
random term, the stochastic integral reads:

∫ t+∆

t

ξ(t′)dt′ =
√

2D[W (t+∆)−W (t)] =
√

2D∆γ (B.4)

where γ corresponds to a Gaussian random number with zero
mean and variance 1. The Gaussian random number γ can be
generated using the Box-Müller formula [Box and Müller, 1958]:

γ =
√
− ln η1 cos(2πη2) (B.5)

where η1 and η2 are two uniformly distributed random numbers
taken in the interval [0,1]. Finally, the algorithm for the dynamics
of x(t) reads:

x(t+∆) = x(t) + f(x(t))∆+
√
−2D∆ ln η1 cos(2πη2) (B.6)

B.2 Gillespie algorithm

We illustrate the Gillespie algorithm used in Section 3.2.1.2 to
simulate KIF1A dynamics on a lattice [Gillespie, 1976]. Let us
consider M possible processes (e.g. reactions, transitions) labeled
σ = 1, . . . ,M and let’s define the reaction probability density
function P (τ, σ) where τ ∈ [0,∞). This quantity is defined as
follows: P (τ, σ)dτ is the probability at time t that the next reaction
will occur in the differential time interval (t+ τ, t+ τ + dτ) and
will be a σ-process. This probability density has the form:

P (τ, σ) = aσ exp

(
−

M∑

ν=1

aντ

)
(B.7)

where aσ is the rate at which the σ-process occurs. The direct
method [Gillespie, 1976] is a consistent way to simulate multiple
stochastic processes. Let us write P (τ, σ) in the following form:

P (τ, σ) = P1(τ)P2(σ|τ) (B.8)
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where P1(τ)dτ is the probability that the next process will occur
in the time interval (t+ τ, t+ τ +dτ), irrespective of which process
will be, and P2(σ|τ) is the probability that the next process will
be a σ-process, given that the process occurs at time t+ τ . By the
addition theorem for probabilities we have:

P1(τ) =
M∑

σ=1

P (τ, σ) (B.9)

using (B.8) and (B.9) we obtain:

P2(σ|τ) =
P (τ, σ)∑M
ν=1 P (τ, ν)

(B.10)

Finally using (B.7) we can express the last quantities in terms of
the rates aσ:

P1(τ) = a exp(−aτ) (B.11)

P2(σ|τ) = aσ/a (B.12)

where a ≡∑M
σ=1 aσ. The idea of the method is to first generate a

random value τ according to P1(τ), and then generate a random
number σ according to P2(σ|τ). The resulting random pair (τ, σ)
will be distributed according to P (σ, τ). This means that first we
generate a random number to know the necessary time τ for the
next process to occur, and next we generate a second random
number to know which process will be. The first random value τ
can be easily generated by drawing a random number r1 from the
uniform distribution in the unit interval and using:

τ =
1

a
ln(1/r1) (B.13)

Finally the random number σ can be generated by drawing a
second random number r2 from the uniform distribution in the
unit interval and taking σ to be the integer such that:

σ−1∑

ν=1

aν < r2a ≤
σ∑

ν=1

aν (B.14)
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In general aσ may depend on time, external fields, etc. Therefore
a general algorithm will contemplate time dependent rates aσ(t).
The algorithm works as follows:

1. At time ti our system is found in configuration Ci.
2. Update the values of aσ(ti) for σ = 1, . . . , N and a(ti).
3. Draw a first uniformly distributed random number r1 ∈ [0, 1] to

calculate τ using (Eq. B.13).
4. Draw a second uniformly distributed random number r2 ∈ [0, 1]

to calculate σ using (Eq. B.14).
5. Perform process σ and update the configuration of the system
Ci → Ci+1.

6. Update the time ti → ti+1 = ti + τ .
7. Go back to step 1.



Appendix C

Cell culture and purification of KIF1A

In this appendix we provide a detailed explanation of the pu-
rification protocol for the A382 KIF1A construct used in the
experiments in Chapter 4. This protocol was designed by Dr. S.
Roth in the FOM Institute AMOLF (The Netherlands). We de-
scribe the composition of the mediums and buffers used during the
purification process and we detail the different steps: pre-culture,
induction, recuperation of the lysate and purification.

C.1 Mediums and buffers

The composition of 1 L LB medium for bacteria was 10 g of Bacto
Tryptone, 5 g Yeast extract, 10 g NaCl and ddH2O to final volume.
For the case of 1.5 % agar plates, 15 g of agar was added before
autoclaving.

The different buffers used where the lysis buffer (200 mL, pH
8.0), washing buffer (200 mL, pH 7.0) and elution buffer (20 mL,
pH 7.0). In Tables C.1 and C.2, the composition of the buffers is
shown:
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Product Lysis buffer

Imidazole 20 mM

MgCl2 1 mM
NaPi, pH 7.0 50 mM

NaCl 250 mM
Glycerol 10 %

Triton X 0.1 %

Table C.1 Composition of the lysis buffer. Just prior to use, add β-mercaptoethanol 5

mM + 1 tablet of protease inhibitor cocktail / 50 mL

Product Washing buffer Elution buffer

Imidazole 20 mM 500 mM
MgCl2 1 mM 1 mM

NaPi, pH 7.0 50 mM 50 mM

NaCl 250 mM 250 mM
Glycerol 10 % 10 %

Table C.2 Composition of the washing and elution buffers. Just prior to use, add β-
mercaptoethanol 5 mM and MgATP 0.1 mM.

C.2 Protocol

Pre-culture

• Prepare 1L bottle and 2L Erlenmeyer of LB medium and auto-
clave.
• Transfer 100 mL of LB medium in a 250 mL Erlenmeyer and

add ampicillin to 100 µg/mL final concentration.
• Scrape a transformed single colony with a pipette tip from the

agar plates and transfer the pipette tip with bacteria into the
250 mL Erlenmeyer.
• Incubate at 37 ◦C at 220 rpm overnight.

Induction

• Next day, prewarm the 2L LB medium, add ampicillin (100
µg/mL) and 25 mL of overnight culture.
• Shake at 210 rpm at 37 ◦C.
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• Check OD 600 every 30 min.
• When OD 600 reaches 0.3, set temperature to 30 ◦C in a water

bath and add IPTG 300 µM. Let it shake at 160 rpm.
• Induce 4h at 30 ◦C.
• Transfer the culture into 1L buckets to centrifuge and spin down

at 5000 rpm for 30 min at 4 ◦C.
• Right after the spin, take out the supernatant and resuspend

in 50 mL Lysis buffer (add β-mercaptoethanol and protease
inhibitor cocktail prior to use).
• Flash freeze in liquid nitrogen.

Recuperation of the lysate

• Prewarm the water bath at 37 ◦C.
• Take a bucket of ice and place the tube for the centrifuge at 4
◦C.
• Thaw quick the lysate in the water bath and place it as soon as

it is melted on ice.
• Add lysosyme (1 mg/mL) to break the membrane and a knife

tip of DNAse (≈ 2 mg).
• Incubate the cell suspension on a shaking platform at 4 ◦C for

20 min.
• Dip pellets in liquid nitrogen until fully forzen.
• Thaw the pellets by spinning them in a water bath at 37 ◦C for

5 min.
• Put them back in the shaking platform at 4 ◦C for 20 min more.
• Freeze and thaw again (as above).
• Pass the cell lysates through a blunt needle (low gauge) a few

times to shear genomic DNA. Cell lysates should not be very
viscous at the end of the incubation.
• Pour the lysate in tubes for the rotor. Take a sample ‘0’ and

balance well.
• Spin down 30 min at 15000 rpm at 4 ◦C.
• During the spin, prepare a Ni NTA column.

– Put 2 mL of Ni NTA beads in a 50 mL Falcon.
– Add 8 mL of lysis buffer, spin 2000 rpm, 1 min at 4 ◦C.
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– Discard the supernatant. Repeat one more time and keep on
ice.

• Collect the supernatant from the spin. Take a sample of the
supernatant (S) and a sample of the pellet (P).

Purification

• Retrieve the supernatant from the spin and place it on the
cleaned Ni NTA beads
• Put in a rotating wheel at 4 ◦C for 2h.
• 30 min before the end, add MgATP and β-mercaptoethanol to

the wash and elution buffers.
• Prepare the tubes for the lysate, the elution and the different

washes.
• Run the lysate and the beads through the column and collect

the flow through in the different lysate tubes.
• Wash the column with 15 mL washing buffer and collect the

flow through in 1mL batches for control purposes.

If labeling:

– Close column.
– Add tris(2-carboxyethyl) phosphine hydrochloride (TCEP)

solution 1mM and incubate 30 min.
– Wash 3 times with washing buffer to get rid of the excessive

TCEP. Collect flow through in 1mL batches.
– Prepare a stock solution of 8mM labeling molecule (EZ-

Link BMCC-biotin or DylightTM 550 Sulfhydryl reactive
dye, Thermo scientific).

– Add the solution of labeling molecule to the protein (1 mL)
bound in the column and mix to have a 10X mol excess. Make
sure that all the Ni NTA beads are in contact with the reagent
by adding phosphate-buffered saline (PBS).

– Incubate 30 min at room temperature.
– Wash three times with washing buffer and collect flow per

mL.

• Elute with elution buffer and collect the flow through per mL.



Appendix D

Theoretical description of a tubular
helix

In this appendix we describe the geometry and energetics of a tubu-
lar helix relevant to the membrane tube extraction experiments
presented in Chapter 4.

D.1 Geometry and energetics of a tubular helix

We consider a tubular helix of radius r (tube radius) winding on
an imaginary cylinder of radius R (MT radius plus some extra
space occupied by the motors, depicted as a dashed circle in Fig.
D.1a, left), such that r + R is the distance between the center
of the MT and the center of the tube. The helix moves along
the z-axis with an angular pitch p which is the distance the helix
advances per radian along the z-axis. Each point on the surface of
the helix is determined by the vector X. We can parametrize every
point on the helix surface with two variables {s, φ}, where s is the
arclength following the path of the helix through its center and φ
is an angle which determines at a given s the position of a point
in the circle of radius r. If we call a the angle the helix moves per
arclength unit, the distance the helix advances along the z-axis
after moving a distance s along the helix will be pθ, where θ ≡ as.
If we move an arclength unit, we are moving a distance ap in the
z-axis and a distance aR0 in the axis perpendicular to the z-axis,
where R0 ≡ R + r. In this way we find 1 = a2(R2

0 + p2). On the
other hand, the angle ζ the center of the helix forms respect to
the z-axis fulfills (see Fig. D.1b):
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tan ζ =
R0

p
(D.1)

The position of the center of the left-handed helix is r(s) =
(R0 sin θ, R0 cos θ, pθ). We can parametrize the surface of the tubu-
lar helix X(s, φ) as:

X(s, φ) = r(s) + r[n(s) cosφ+ b(s) sinφ] (D.2)

with φ ∈ [0, 2π), using the orthonormal triad {t,n, b} such that
t(s) = ∂sr

|∂sr| , n(s) = ∂st
|∂st| and b(s) = t∧n

|t∧n| (see Fig. D.1a, right). The

mean curvature of the surface H(φ) can be determined through
the first and second fundamental forms gµν(s, φ) = ∂µX ·∂νX and
Πµν(s, φ) = ∂µνX · n, µ, ν = s, φ; which in a matrix form read:

g =

(
E F
F G

)
Π =

(
L M
M N

)
(D.3)

The mean curvature can be calculated through the expression
H(φ) = EN−2FM+GL

2 det(g)
[Kamien, 2002, Gray, 1993] which leads to:

H(φ) =
1

2

[
1

r
+ rK(φ)

]
(D.4)

where K(φ) = − C cosφ
r(1−rC cosφ)

and C = R0

R2
0+p2

is the curvature of the

helical spine curve of the tube. We notice that for p → ∞ the
curvature tends to the one of a cylinder of radius r i.e. 1/2r. The
total surface of a tubular helix of lenght L and radius r is 2πrL,
the same as for a cylinder. Consequently, the surface energy is
2πrLγ, and it does not depend on the pitch. Let us define the
small quantity ε ≡ rC. This quantity is bounded below 1 in the
experiments. Considering the first correction up to fourth order in
ε, the free energy of the system can be approximated as:

F ' πκL

r

(
1 +

1

2
ε2
)

+ 2πrLγ − FL (D.5)

In the limit p → ∞ (or ε → 0), we recover the free energy of a
cylindrical tube with extraction force F = 2π

√
2κγ and diameter

2r =
√
κ/γ. Therefore, we conclude that the last two expressions



D.2 Superhelical effect on the tube pitch 169

for the cylindrical case are accurate to second order in ε and yield
good approximations to the actual values for the helical tubes.
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Fig. D.1 Geometry of a tubular helix winding around a MT. a) Sketch of the tube with

radius r and the imaginary cylinder of radius R depicted as a dashed circle containing the
grey region. The radius of this cylinder corresponds to the radius of the MT plus some

extra space occupied by the motors. We associate a orthonormal triad {t,n, b} at each

point X(s, φ) on the surface of the helical tube. The vector r(s) defines the position of the
nanotube center at s, and the angle φ defines a point on the tube surface. b) Helical tube

forming a helical angle ζ with respect to the z-axis.

D.2 Superhelical effect on the tube pitch

Let us consider a helical tube of pitch P growing around a MT
which has superhelicity of pitch Psh. The angle that the tube will
advance per arclength unit will be:

a(p′) = a(p) + a(psh) = a(p)(1 + ξ) (D.6)

where p′ is the angular pitch, p is the angular pitch for a 13pf MT
and ξ is the relative increase in angle which reads:

ξ =

√
1 + cot2 ζ

1 + cot2 ζsh
(D.7)

where cot ζsh = psh/R0.
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D.3 Estimation of the off-axis force

We can estimate the off-axis force exerted by the motors by using
free energy arguments. From Eq. D.5 we find that a lower bound
of the excess free energy ∆F associated to the winding of the tube
reads:

∆F ' πκL

2r
ε2 (D.8)

This excess free energy is due to the work KIF1A motors perform
in the off-axis direction Woff along the tube. This work can be
estimated to be:

Woff = 2πRMTNwFoff (D.9)

where Foff is the total off-axis force exerted by the motors and Nw is
the winding number. Actually, the above expression underestimates
the work by taking the radius of the displacement as that of the
microtubule, and not that of the point at the membrane where the
force is exerted. The winding number can be expressed in terms
of the angle the helix moves per arclength unit a as Nw = La/2π.
Equating the last two expressions we obtain the total off-axis force:

Foff =
πκε3/2

2RMT

√
1 +

R

r
(D.10)

In our experiments ε ' 0.04− 0.5. Which gives a lower bound of
the total off-axis force in the range Foff ' 0.04− 2 pN.



Appendix E

Elastohydrodynamic flagella equations

In this appendix we provide the derivation of the nonlinear elasto-
hydrodynamic flagella equations by using a formalism based on
the special theory of Cosserat rods [Antman, 1995]. An equivalent
derivation can be found in Ref. [Camalet and Jülicher, 2000] using
a formalism based on the minimization of an energy functional
for the flagellum. Finally we discuss how boundary conditions are
obtained considering the case of clamped condition at the base.

E.1 Derivation of the equations

The equilibrium equations for a rod subject to general contact
forcesN (s, t) and contact momentsM (s, t) reads [Antman, 1995]:

Ns + Fext = 0

Ms + ŝ×N +Lext = 0 (E.1)

where Fext, Lext are general external forces and torques. The
internal moment of the bundle M(s, t) reads:

M = (Ebφs − bF )k̂ (E.2)

where F (s, t) =
∫ L
s
f(s′, t)ds′. Differentiating the last expression

respect to the arclength we have:

Ms = ŝ× [(Ebφss + bf)n̂+ τ ŝ] (E.3)
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where τ(s, t) is the tension inside the flagellum. In the absence of
external torques (Lext = 0) and using the second equation in Eq.
E.1 we obtain the resultant contact force:

N = −(Ebφss + bf)n̂+ τ ŝ (E.4)

Differentiating the contact force respect to the arclength we have:

Ns = (−Ebφsss − bfs + φsτ)n̂+ (Ebφsφss + bφsf + τs)ŝ (E.5)

Next we consider the flagellum is immersed in a fluid with low
Reynolds number and follows a viscous drag force given by resistive
force theory. The force Fvis is given by:

Fvis = −ζ⊥(n · rt)n̂− ζ‖(s · rt)ŝ (E.6)

Using the first equation in Eq. E.1 and considering Fext = Fvis we
have:

rt =
1

ζ‖
(Ebφsφss + bφsf + τs)ŝ

+
1

ζ⊥
(−Ebφsss − bfs + φsτ)n̂ (E.7)

Using the fact that ŝt = φt n̂ we obtain an equation for φ:

φt =
1

ζ‖
φs(Ebφsφss + bφsf + τs)

+
1

ζ⊥
(−Ebφssss − bfss + φssτ + φsτs) (E.8)

An equation for the tension can be obtained by using the inexten-
sibility condition ∂t(ŝ · ŝ) = 2ŝt · ŝ = 0. The differential equation
for the tension reads:

τss −
ζ‖
ζ⊥

(φs)
2τ + Eb∂s(φsφss)

+ b∂s(φsf) +
ζ‖
ζ⊥
φs(Ebφsss + bfs) = 0 (E.9)

Next we non-dimensionalize the last equations as in Section 7.1.
Additionally, we define ζ̄ ≡ ζ⊥/ζ‖ and we non-dimensionalize the
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tension with respect to Eb/L
2. Finally, the dimensionless equations

read:

Sp4φt = ζ̄[(φs)
2(φss + µaf) + τsφs]

− φssss − µafss + φssτ + φsτs (E.10)

τss−
1

ζ̄
(φs)

2τ = −∂s(φsφss)−µa∂s(φsf)− φs
ζ̄

(φsss+µafs) (E.11)

E.2 Boundary conditions

We need to specify the contact moment and the contact force at
the boundaries. At s = 0 we have:

Mext|s=0 = [−Ebφs|s=0 + bF (0, t)]k̂

Next|s=0 = [Ebφss|s=0 + bf(0, t)]n̂− τ(0, t)ŝ

(E.12)

At s = L we have:

Mext|s=L = Ebφs|s=Lk̂
Next|s=L = −[Ebφss|s=L + bf(L, t)]n̂+ τ(L, t)ŝ

(E.13)

Next we switch to dimensionless variables where the external
contact moment is scaled by Eb/L, and external contact force and
tension by Eb/L

2. At s = 0 we have:

Mext|s=0 = [−φs|s=0 + µaF (0, t)]k̂

Next|s=0 = [φss|s=0 + µaf(0, t)]n̂− τ(0, t)ŝ

(E.14)

where now F (s, t) =
∫ 1

s
f(s′, t)ds′. At s = 1 we have:

Mext|s=1 = φs|s=1k̂

Next|s=1 = −[φss|s=1 + µaf(1, t)]n̂+ τ(1, t)ŝ

(E.15)
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Next we consider the case of small curvature where φs � 1 and
τ ≈ 0. At the distant boundary condition we have no applied
contact force or contact moment thus Mext|s=1 = Next|s=1 = 0.
This lead to the conditions φs|s=1 = 0 and φss|s=1 = −µaf(1, t)
respectively. The external contact force and contact moment at
the base Next|s=0 = Fhead, Mext|s=0 = Mhead are given by the
specific viscous fluid dynamics assumed. By considering a clamped
condition, the base is fixed rt|s=0 = 0, and we obtain the condition
φsss|s=0 = −µafs|s=0. Additionally, the base is clamped and thus
Mext|s=0 = 0. In the linear analysis, the four boundary conditions
in Fourier space read:

φ̃(0) = 0

φ̃sss(0) = −χ̄φ̃s(0)

φ̃s(1) = 0

φ̃ss(1) = −χ̄φ̃(1) (E.16)

Concerning the constraints on the dynein distribution due to
the boundary conditions, at s = 0 we have that φt|s=0 = 0 and
thus both plus and minus distributions decay exponentially with
characteristic time τ̄ to n0 at the steady state. For the case of
s = 1, φt|s=1 is different from zero in general, thus the specific
boundary conditions for φ at the tail constraint the evolution of
dynein bound motor distributions.



Appendix F

Integration of the nonlinear flagella
equations

In this appendix we provide the numerical algorithm to solve the
nonlinear Eqs. 7.10, 7.11 in Chapter 7, numerically. We consider a
uniform discretization in the arclength s of the bundle centerline
with M intervals of step size ∆s = 1/M . The discrete points
are denoted sm = (m − 1)∆s, m = 1, . . . ,M + 1 and the time
is discretized as tn = n∆t. Any continuous function X(s, t) is
denoted Xn

m in the discretized version. The study is done with
∆s = 2.5 · 10−4 and ∆t = 5 · 10−5 (dimensionless units).

F.1 Tangent angle dynamics

We will use a first-order IMEX scheme for the integration of
the tangent angle φ in the very first time step (n = 0) and a
second-order IMEX scheme for n ≥ 1 [Ascher et al., 1995]. After
discretization, the problem reduces to a linear system of equations
of the form Aφn+1 = b, where A is a (M + 1)× (M + 1) matrix
and b and φn+1 are M + 1 vectors.

In the first time step (n = 0) we will use a first order IMEX
scheme. The elements of the matrix A corresponding to the rows
m = 3, . . . ,M − 1 take the form:

[A]mm′ = δmm′ + α[D4]mm′ − 2β([N]mm′ − [H]mm′) (F.1)

where α ≡ ∆t/(Sp∆s)4, β ≡ µaζ/(2Sp4∆s2), Dk are dimensionless
operators corresponding to the k-th derivative of second-order in
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accuracy, N is the operator containing the nonlinear terms in Eq.
7.10 and H is the operator containing the clamped conditions at
the head of the flagellum. Standard centered operators are used
whenever possible for Dk, but at the boundaries skewed operators
are applied [Tornberg and Shelley, 2004]. The elements of N for
m = 3, . . . ,M − 1 and m′ = 1, . . . ,M + 1 take the form:

[N]mm′ = [G0
2(n)]mm′ + [G0

0(n)]mm[D2]mm′

+2[G0
1(n)]mm[D1]mm′ (F.2)

where the operators G0
k are diagonal matrices with elements:

[G0
k(X)]mm′ = δmm′DkX

n
m (F.3)

where DkX
n
m is a real number denoting the k-th derivative of the

quantity X at point m at time n. The elements of m = 3, . . . ,M−1
and m′ = 1, . . . ,M + 1 of the matrix H reads:

[H]mm′ = [G0
2(n)]mm[E]mm′ (F.4)

where E is a matrix with ones in the first column and zeros
elsewhere. Finally, the elements bm, m = 3, . . . ,M − 1 read:

bm = φnm + γ[G0
2(φ)]mm − δ[G0

2(n̄)]mm

−2β{[G0
2(n)]mm(φnm − φn1 )

+[G0
0(n)]mmD2φ

n
m + 2[G0

1(n)]mmD1φ
n
m} (F.5)

where γ ≡ µ∆t/(∆s2Sp4) and δ ≡ µa∆t/(∆s
2Sp4). For n ≥ 1,

the elements of the matrix A corresponding to the rows m =
3, . . . ,M − 1 take the form:

[A]mm′ =
3

2
δmm′ + α[D4]mm′ − 3β([N]mm′ − [H]mm′) (F.6)

The elements of N for m = 3, . . . ,M − 1 and m′ = 1, . . . ,M + 1
read:

[N]mm′ = [G2(n)]mm′ + [G0(n)]mm[D2]mm′

+2[G1(n)]mm[D1]mm′ (F.7)

where Gk are diagonal matrices with elements:
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[Gk(X)]mm′ = δmm′(2DkX
n
m −DkX

n−1
m ) (F.8)

The elements of H for m = 3, . . . ,M − 1 and m′ = 1, . . . ,M + 1
read:

[H]mm′ = [G2(n)]mm[E]mm′ (F.9)

Finally, the elements bm, m = 3, . . . ,M − 1 read:

bm = 2φnm −
1

2
φn−1
m + γ[G2(φ)]mm − δ[G2(n̄)]mm

+β{[G2(n)]mm[−4(φnm − φn1 ) + (φn−1
m − φn−1

1 )]

+[G0(n)]mm(−4D2φ
n
m +D2φ

n−1
m )

+2[G1(n)]mm(−4D1φ
n
m +D1φ

n−1
m )} (F.10)

The four remaining equations (m = 1, 2,M,M + 1) are found
imposing the four boundary conditions in a similar manner. The
boundary conditions will be the same for n = 0 and n ≥ 1 except
that we will use the operators G0

k for n = 0 instead of Gk.

F.2 Dynein dynamics

Dynein dynamics is solved by using a simple implicit method on
Eq. 7.11. The evolution of n± follows:

nn+1
±,m =

nn±,m +∆t η(1− nn±,m)

1 +∆t(1− η) exp(fn±,m)
(F.11)

where fn±,m = f̄ [1∓ ζDt(φ
n
m−φn1 )] and DtX

n
m = (Xn+1

m −Xn
m)/∆t.
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