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Abstract

Playing a musical instrument has been shown to have a positive impact in
the life of individuals in many different ways. Nevertheless, due to physical
disabilities, some people are unable to play conventional musical instru-
ments. In this dissertation, we consider different types of physical disabil-
ities and implement specific digital musical instruments suitable for peo-
ple with disabilities of each type. Firstly, we consider the case of people
with limited sensorimotor upper limb functions, and we construct low-cost
digital instruments for three different scenarios. Results indicate that the
constructed prototypes allow musical expression and improve the quality of
life of these users. Secondly, we consider disabilities such as tetraplegia or
locked-in syndrome with unaffected eye-movements. For individuals with
such conditions, we propose the EyeHarp, a gaze-controlled digital music
instrument, and develop specific target selection algorithms which maxi-
mize the temporal and spatial accuracy required in music performance. We
evaluate the instrument on subjects without physical disabilities, both from
an audience and performer perspective. Results indicate that the EyeHarp
has a steep learning curve and it allows expressive music performances. Fi-
nally, we examine the case of brain-controlled music interfaces. We mainly
focus in auditory event related potential-based interfaces. In particular, we
investigate and evaluate how timbre, pitch and spatialization auditory cues
affect the performance of such interfaces.

vii



viii RESUMEN

Resumen

Se ha demostrado que tocar instrumentos musicales tiene un impacto pos-
itivo en muchos aspectos de la vida de las personas. Sin embargo, debido
a discapacidades fsicas, a un gran nmero de personas les es imposible tocar
instrumentos musicales tradicionales. En esta tesis doctoral consideramos
diferentes tipos de discapacidades fsicas e implementamos instrumentos mu-
sicales digitales adaptados a las capacidades de las personas que las padecen.
En primer lugar, consideramos el caso de personas con discapacidad motora
en los miembros superiores sensoriomotoras. Utilizando materiales de bajo
coste implementamos prototipos en tres escenarios diferentes. Los resulta-
dos indican que los prototipos construidos permiten la expresin musical y
mejoran la calidad de vida de los usuarios. En segundo lugar, consideramos
discapacidades como la tetraplejia o el sndrome locked-in donde aun se con-
servan los movimientos oculares. FEn ese caso, se propone el EyeHarp, un
instrumento que se controla con movimientos de los ojos. Hemos desarrol-
lado algoritmos de seleccin que maximizan la precisin temporal y espacial
requerida en la ejecucin de instrumentos musicales y evaluamos el instru-
mento con gente sin discapacidades, desde la perspectiva de la audiencia
y del msico. Los resultados indican que el EyeHarp tiene una curva de
aprendizaje inclinada y permite interpretaciones musicales expresivas. Fi-
nalmente examinamos el caso de las interfaces musicales cerebro-ordenador.
En particular, investigamos interfaces cerebro-ordenador basadas en poten-
ciales relacionados con eventos auditivos. Investigamos cmo timbre, tono y
espacializacin afectan el rendimiento de dichas interfaces y proponemos y
evaluamos interfaces musicales basadas en esta tcnica.
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CHAPTER ].

Introduction

If I were not a physicist, I would probably be a
musician. I often think in music. I live my
daydreams in music. I see my life in terms of
music... I cannot tell if I would have done any
creative work of importance in music, but I do
know that I get most joy in life out of my violin.

Albert Einstein

1.1 A personal Introduction to the thesis

Playing music has a very important role in my life. The idea of not being
able to play music is stressful. My desire to make research on digital Musical
Instruments (DMIs) designed for people with motor disabilities was born
nine years ago, when a friend that plays the Cretan lira, an instrument
similar to the violin, had a serious accident with his motorbike. The first
two days it was not clear whether he would be able to move his upper
limbs. Fortunately, although he is now paraplegic, he is still able to play
lira, guitar and sing. I became even more sensitive about the quality of
life of people with motor disabilities after watching a movie called The Sea
Inside . This movie is about the true story of a man’s 30-year battle for the
legal right to end his own life. After watching that movie I realized that one
important thing that was missing from this man’s life was the opportunity
to be creative. Having the opportunity to be creative and contribute to the
society in some way would increase the desire to live. Music gives pleasure
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to both the performer and the audience. As a result music benefits the
performer in many ways. Most notably: (i) by expressing one’s feelings
and (ii) by making him feel useful to the others. Being a musician and a
computer scientist I thought that I might contribute to the improvement
of the quality of life of people with motor disabilities by inventing Digital
Musical Instruments adapted to the special needs of each of them.

The biggest part of this thesis is about gaze and brain-controlled music
interfaces. The reason for that is that this kind of interfaces can be con-
trolled even by people with extreme paralysis, like individuals with locked-in
syndrome.

1.2 Motivation

Playing music has been shown to provide several benefits for acquiring non-
musical skills (Coffman (2002)). For instance, musicians have an improved
ability to hear speech in noisy backgrounds (Parbery-Clark, 2009), reduced
age-related auditory degradation (Parbery-Clark et al. (2011); Parbery-
Clark et al. (2011)), increased verbal and auditory memory (Chan et al.
(1998); Ho, Y. C., Cheung, M. C., Chan (2003)) and enhanced auditory
attention (Strait et al. (2010)). Music instrument training is associated
with neurostructural changes (Besson and Schon (2012); Wan and Schlaug
(2010)) both in children (Hyde et al. (2009)) and adults (Bangert and Al-
tenmiiller (2003)). Motor brain regions are enlarged in musicians, when
compared to non-musicians (Elbert et al. (1995)). Gray matter volumes
tend to be larger in musicians than in non-musicians for motor, auditory
and visio-spatial brain regions (Gaser and Schlaug (2003)). Furthermore,
gray mater density is greater in Broca’s (language) area for trained musi-
cians (Sluming et al. (2002)). The corpus callosum, the fibers connecting the
left and right hemispheres was found to be larger in musicians compared to
non-musicians (Schlaug et al. (1995)). Musicians’ resistance to age-related
neural decline is greater for musicians when compared with non-musicians
(Pagnoni and Cekic (2007)). Early instrumental musical training seems to
train attentional networks in the brain, as well as social and interpersonal
skills. Children exposed to musical training show improvements in nonver-
bal memory, IQ, numeracy and spatial cognition (Neville et al. (2008).

However, due to lack of fine motor skills, people with motor disabilities
are often incapable of learning to play a musical instrument and thus, the
benefits of music learning and performance are inaccessible to them. In
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this context, Adaptive Digital Musical Interfaces (ADMI) provide a possible
alternative for allowing people with motor disabilities to enjoy music playing
and its associated benefits.

1.2.1 Types of Physical Disabilities

Disabilities is an umbrella term, covering impairments, activity
limitations, and participation restrictions. An impairment is a
problem in body function or structure; an activity limitation is
a difficulty encountered by an individual in executing a task or
action; while a participation restriction is a problem experienced
by an individual in involvement in life situations. Thus, disabil-
ity is a complex phenomenon, reflecting an interaction between
features of a person’s body and features of the society in which
he or she lives.!

Physical disability (or motor impairment) is a limitation on a person’s phys-
ical functioning, mobility, dexterity or stamina. Other kind of disabilities
include cognitive, intellectual, mental, sensory and developmental. Usually
combination of those are present in individuals. The causes of physical dis-
abilities vary, depending on the average income of the society. For example
in India, the main cause of physical disabilities is Poliomyelitis infectious
disease, when in developed countries such diseases are prevented through
vaccination.

In this thesis, we are interested in the kind of physical disabilities that might
limit an individual from playing music. In this section we introduce the type
of disabilities that mainly concerned us in our research.

Paraplegic people are able to perform almost any musical instrument, as
hand and torso movement is preserved. On the other hand, tetraplegia is
paralysis caused by injury or illness that results in the partial or total loss
of use of all four limbs and torso. It is caused by damage to the brain or
the spinal cord at a high level (C1-C7). Typical causes of this damage are
trauma (such as a traffic collision, diving into shallow water, a fall, a sports
injury), disease (such as transverse myelitis, multiple sclerosis, or polio),
or congenital disorders (such as muscular dystrophy). Sensory functions
(touch, temperature, proprioception, pain) are normally also affected, de-

'World Health Organization. http://www.who.int/topics/disabilities/en/
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pending on the cause of the physical disability. Tetraparesis, on the other
hand, means muscle weakness affecting all four limbs.

Cerebral palsy describes a group of permanent movement disorders that
appear in early childhood. In many cases it causes tetraplegia/tetraparesis,
or even pentaplegia/pentaparesis. Pentaplegia/pentaparesis means all four
limbs are involved, with neck and head paralysis often accompanied by
eating and breathing complications.

Probably the most extreme case of physical disability is the locked-in syn-
drome. Locked-in syndrome is a rare neurological disorder in which there is
complete paralysis of all voluntary muscles apart from the ones that control
the movements of the eyes. The cognitive functions of people with locked-
in syndrome are normally unaffected, but they have no ability to produce
movements (outside of eye movement) or to speak. Communication is pos-
sible only through eye movements or blinking. In locked-in syndrome there
is an interruption of all the motor fibers running from grey matter in the
brain via the spinal cord to the bodys muscles and also damage to the
centers in the brainstem important for facial control and speaking. Sev-
eral different conditions might lead to locked-in syndrome, such as a blood
clot (thrombosis) or stroke. Additional conditions that can cause locked-in
syndrome include infection in certain portions of the brain, tumors, loss of
the protective insulation (myelin) that surrounds nerve cells (myelinolysis),
inflammation of the nerves (polymyositis), and certain disorders such as
amyotrophic lateral sclerosis (ALS)?. Total locked-in syndrome is a version
of locked-in syndrome wherein the eyes are paralyzed as well.

1.2.2 Objectives

In this PhD thesis, we will study three different types of interfaces designed
for people with physical disabilities. In chapter 2 we present DMIs designed
for people with limited upper-limb sensorimotor functions, in chapter 3 we
present a gaze-controlled DMI, and in chapter 4 we present our research in
brain-controlled music.

The objectives of the chapter 2 were to implement prototypes for people
with different kind of physical disabilities and study how this influences
their quality of life. The objectives of chapter 3 were (i) to build a gaze-
controlled DMI, that would allow expressive music performances, (ii) to
research on ways to optimize temporal accuracy in gaze-controlled musical

2http://rarediseases.org/rare-diseases /locked-in-syndrome/
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interfaces and (iii) to implement and evaluate new gaze-selection algorithms
that increase the spatial precision of gaze-controlled interfaces. Finally, the
objectives of chapter 4 were to research on possible ways of (i) implementing
Brain-Controlled interfaces that allow expression of simple musical concepts
(like composing melodies or controlling the chord progression of a compo-
sition) (ii) research on emotion estimation methods using the EEG signal,
and ways of using them in to enhance musical performances.

1.3 Contributions

This thesis investigates the implementation of DMIs for three main groups
of people with physical disabilities: (i) limb-controlled DMIs, for people that
preserve some degree of upper limb movement, (ii) gaze-controlled DMIs for
targeted for people with locked in syndrome and (iii) brain-controlled DMIs
targeted for people with total locked-in syndrome. The contributions of this
thesis can therefore be summarized as follows:

Limb-Controlled

e Showing that using low cost materials, digital musical instruments
designed for people with upper-limb paresis can be constructed and
serve them for music expression and composition.

e Providing publicly available instructions and source code of how to
implement the constructed prototypes.

Gaze-Controlled

e Implementation and evaluation of the EyeHarp, an open-source gaze-
controlled music interface that allows expressive live performances.

e Implementation and evaluation of a new fixation-detection algorithm
that provides improved temporal accuracy when compared to conven-
tional fixation-detection algorithms.

e Implementation and evaluation of different gaze-selection techniques
for improving the spatial accuracy in selecting small targets.
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Brain-Controlled

e Introducing and evaluating a new method for emotion estimation us-
ing a low cost EEG device.

e Implementation of a hybrid Gaze-Brain controlled interface with emo-
tion estimation.

e Showing that the performance of auditory Event-Related Potential
based Brain Computer Interfaces is improved by introducing timbre,
pitch and spatialization cues in the stimuli design.

e Evaluation of low-cost EEG devices in auditory Event-Related Poten-
tial based Brain Computer Interfaces.

e Public available database of recorded EEG signals in auditory oddball
tasks using combination timbre, pitch and spatialization cues in the
stimuli design.

e Implementation of 3 different auditory Event-Related Potential based
Music Brain Computer interfaces aiming to allow basic music perfor-
mance for people with total-locked in syndrome.

1.4 Thesis Outline

In chapter 2, we present three different studies. In each one of them we
implement and evaluate an ADMI for a person with physical disability. In
all three studies, the users maintain some degree of voluntary upper limb
movement (upper limb paresis).

In chapter 3, we present and evaluate the EyeHarp, a gaze-controlled DMI.
Additionally, a new fixation detection algorithm for improved temporal ac-
curacy is presented and evaluated.

In chapter 4, we explore different ways of controlling music using brain activ-
ity. Initially, we report on an approach in which the brain activity measured
in the motor cortex is used to control the contour of a melody. Then, we re-
port on a proposed method for estimating emotional state of the individuals
based on the measured brainwaves. We then describe a musical interface in
which emotion estimation is combined with the previously presented Eye-
Harp interface. Then, we present a study in which low-cost Emotiv EEG
device is evaluated in an auditory oddball paradigm, and another study in
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which we explore how the timbre, pitch and spatialization auditory cues
affect the performance of auditory P300 Brain-Computer Interfaces (BCIs).
Finally, we present and evaluate three different Event-Related Potential
(ERP) based Brain-Computer Musical Interfaces.

Finally, chapter 5 summarizes the contributions of our research.






CHAPTER 2

Digital Musical Instruments for
People with Limited Upper
Limb Functioning

2.1 Background

In this chapter we will describe three different constructed prototypes made
for three different cases of people with motor disabilities. In all three cases,
the mental abilities of the persons were not affected. We are mostly in-
terested in the kind of disabilities that prevent people from having access
to traditional musical instruments. We will focus on cases of people with
limited upper limb control. The main causes of such disabilities are cerebral
palsy disorder and spinal cord injury.

In the past various musical interfaces for people with limited upper limb
movement have been proposed and are in use.

Kirk et al. (1994) presented MIDICreator. The MIDICreator is a physical
device with 14 sockets on the front panel, into which you can plug various
different switches and sensors for detecting movements. It then sends midi
messages to an external sound module.

Skoog!, is a pressure and deformation sensitive cube. It can be played by
pressing, squeezing, rubbing, stroking. tilting and shaking it. The mapping
between the input and the output of the interface can be adjusted using the

"http:/ /skoogmusic.com/, last accessed on 7th of July, 2016
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accompanied software. Although it seems to be a user-friendly interface, it
seems like it provides only basic interaction. It might me an appropriate
interface for specific users.

Bhat (2010) developed TouchTone, a tangible interface with 10 keys ar-
ranged in two rows. The keys are big enough to be pressed by children with
cerebral palsy. The interface was qualitatively evaluated on children with
cerebral palsy. According to the author, the instrument was found to offer
a very high playability across variations in physical ability.

Swingler (1998) is the creator of SoundBeam. Soundbeam is a commercial
product 2. Soundbeam utilizes a sonar proximity sensor and detects the
distance from the sensor of a chosen part of the body of the user. The
distance and velocity of the chosen part of the body (e.g. hand, head) is
translated into midi messages controlling an external sound module.

Similar computer vision approaches have been proposed, such as the Move-
ment to Music System (MTM) introduced by Lamont et al. (2000). The
system uses a web camera to detect movement in certain regions of the
captured frame. Every region is assigned to a specific sound or note. These
regions can be set by the user. Tam et al. (2007) reports that the system has
been found to have positive impact in the body functions of children with
limited movement, while it allows them to have independent play activities.
One of the advantages of this system is its low cost. Another even more
flexible similar system was recently proposed by Oliveros et al. (2011).

In sections 2.2 and 2.3 we describe the implementation and evaluation of
two prototypes made for two persons with spinal cord injury. In section 2.4
we describe the implementation and evaluation of a prototype made for a
person with cerebral palsy.

2.2 A percussive midi controller for a
quadriplegic person

2.2.1 Introduction

In this section we will describe the construction of a midi-controller for
a quadriplegic person. All mentioned interfaces in the previous section are
designed mostly for therapeutic purposes. They do not allow the expression
of complex melodies. Moreover they do not allow expressive performances.

http://www.soundbeam.co.uk/
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In this section we describe the implementation of a prototype constructed
for an amateur musician that after a spinal chord was left quadriplegic. The
purpose of the prototype is to provide him with a midi controller that would
allow him to play music in a similar way traditional musical instruments
are being played.

The subject did not have any objection in revealing his identity. His name
and surname is Kostas Manikis, born in 1982. He was born and currently
lives in Thessaloniki, Greece. As a child, he had 5 years of musical training
on the keyboard but he abandoned it. At the age of 18, as a student at the
Department of Music Technology and Acoustics Engineering in Rethymno,
Crete, he started playing the acoustic guitar as self-educated. At the age
of 25 he starts playing the guitar in local bands of rock, jazz and Greek
traditional music, making a small income out of his performances. At the
age of 28, just before finishing his Bachelor studies, and while being an
active musician, he had a car accident, in which he was injured in the spinal
cord, at the C6/C7 region. Since then he is quadriplegic. Particularly
from the chest and below all motor-sensory functions are impaired. The
movement of the arms is limited. All movements are preserved till the
elbows, apart from the triceps in both hands. From the elbow and under no
motor movement is preserved in both hands. The sensory functions of both
arms are also limited. In order to keep his balance, he normally has to hold
from the wheel chair. Kostas can control the computer using a trackball
and a normal keyboard, after adapting to his hands a special glove with a
small stick at the bottom.

After the injury he bought and tried to play the santouri, a Greek tradi-
tional stringed instrument in the hammer dulcimer family (see figure 2.1).
The mallets were tied on his hands. From the beginning though it was clear
that this instrument was not appropriate for his situation. The santouri
consists of 72 chords. Tuning the instrument is a time-consuming task that
requires high precision even for musicians without disabilities. Kostas was
dependent on friends musicians visiting him in order to tune the instrument
for him. Another limitation of the instrument was the fact that it required
high spatial precision, due to the small distance between the cords. Finally
reaching the distant chords was impossible, as this resulted in loss of equi-
librium of the body, due to paralysis of all muscles below the level of the
chest.

Kostas contacted me, asking me if I can help him implement a music con-
troller that he would use for composing and performing music. The process
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Figure 2.1: The Santouri.

of designing a musical interface for Kostas was a cooperative task. Kostas
is a person with education in both music and music technology. Our pur-
pose was to design and construct an interface that would overcome the
limitations introduced by his disability. Nevertheless, it should encourage
him make use of his motor abilities. Additionally it should work as a midi
controller, something that would allow him to use a big variety of sound
modules on his computer, record his musical ideas and compose music.

2.2.2 Materials and Methods

After trying different mock-ups, we agreed on implementing a percussive
interface that would be played using mallets. The available buttons should
be placed in a reachable distance. Figures 2.2 and 2.3 show the first con-
structed working prototype.

It consisted of 17 piezoelectric sensors, connected to the analog inputs of an
Arduino uno micro-controller. As the available analog inputs of an Arduino
uno are only 6, a Mux Shield II from Mayhew Labs ? input expander was
used, providing 48 available analog inputs. After uploading the software
to arduino uno, the HIDUINO firmware (Diakopoulos and Kapur (2011))

3 Available Online at http://mayhewlabs.com/products/mux-shield-2
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Figure 2.2: First prototype.

is utilized, in order to transform arduino into a true USB-MIDI device for
plug-and-play compatibility.

The piezoelectric sensors, also known as knock-sensors, produces a voltage
in response to some type of physical stress, such as a knock. Each sensor
was connected in parallel with an 100k€) resistor and an analog input of
the shield as shown in figure 2.7. In order to increase the surface of each
knock-sensor, it was glued to a round plate made of iron of diameter 6 cm.
The iron plates were cut using a sheet metal scissor. On top of the iron
plates, a layer of 0.6 cm PVC foam was glued. Each of these sensors were
then placed on 5 cm thick PVC frame of dimensions 50 x 25 cm. This
first prototype was constructed on January, 2014. Three months later, a
more robust construction was made. The PVC frame was replaced by a
wooden one. Another 1-cm thick PVC foam disc was placed under each
knock sensor. An MPX5010DP blow sensor (figure 2.6) was also added,
mapped to the expression midi control-message. Figures 2.4 and 2.5 show
the final prototype. The wooden body of the prototype was with the help
of Dimitris Fotopoulos, who professionally constructs musical instruments,
like guitar and bouzouki 4.

“https://fotopoulos.wordpress.com/
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Figure 2.3: Knock Sensor of the first prototype, before pasting them on the base
made of foam.

A simple threshold was used to detect whether a sensor was hit. This
threshold was set individually for each sensor.

The arrangement of the notes is chromatic, just like they are arranged in
a chromatic accordion, known as bayan. The sensors are arranged in 3x6
arrangement. The notes of the leftmost column are 3-c (¢ in the 3rd octave),
3-c#, and 3-d. The notes on the second leftmost column are 3-d#, 3-e and
3-f. Moving up this way the notes at the rightmost column are 4-d#, 4-e
and 4-f. The range of the controller is 3-c to 4-f.

An additional knock-sensor button is placed at the top-right corner of the
interface. This button is is used as a multiplexer switch. It is used for
switching between the “settings” and the “melody” mode. In the melody
mode, each button corresponds to a note, as described above. In the settings
mode various parameters of the controller can be set. Table 2.2.2 shows all
available settings.

The interface might be monophonic or polyphonic. In the case it is poly-
phonic, a preset duration value is set for each note. The default value is 0.5
seconds, and the user can change that value in steps of 100 ms. When in
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Figure 2.4: Final prototype.

the polyphonic mode, through the blow sensor, attached to the mouth, the
user can control the velocity of the note-on midi messages. In the mono-
phonic mode, the expression control message is controlled through the blow
sensor. Both in the polyphonic and monophonic mode, a way to release all
notes is by blowing out. The expression or velocity values are controlled by
blowing in. The functions of blowing in and out can be inverted by placing
the mouthpiece of the blow sensor in each of the two available holes of the
sensor (see figure 2.6), as the one hole measures positive pressure and the
other one measures negative pressure (vacuum). As mouthpiece we refer
to a small straw. In the monophonic mode, a note is released either when
another note is played or when the user blows out (when blowing-in con-
trols the expression control message). If the blow sensor stays receives no
significant fluctuations for a period more than 5 seconds, the expression and
velocity take a preset value. This allows the user perform without using the
blow sensor. In that case though he is not able to control the dynamics of
the performance. The blow sensor is hanged around the neck of the user,
with the straw being close to his mouth.
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Figure 2.5: The inner part of the prototype when opened.

Corresponding note

Setting

3-c
3-c#
3-d
3-d#
3-e
3-f
3-f#
3-g
3-g#
3-a

2.2.3 Evaluation

Transpose one octave down
Transpose one octave up
Switch Monophonic-Polyphonic Mode
Decrease Note Duration (-100 ms) in Polyphonic Mode
Increase Note Duration (4100 ms) in Polyphonic Mode
Reset all Settings
Transpose one semitone down
Transpose one semitone up
Decrease midi channel number

Increase midi channel number

Table 2.1: Available Settings.

In order to quantitative evaluate the constructed prototype, Kostas was
asked to make a composition and study it. In a period of 4 weeks, at the
end of each week, we made a recording of the performed melody. Only
during the first week, also studied and performed the same melody using
another midi controller that he had been using for about a year along with
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Figure 2.6: NXP MPX5010DP Blow sensor.
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Figure 2.7: Schematic for connecting each piezoelectric sensor to the analog input
expanded shield attached to the arduino uno micro-controller.

the constructed prototype, the korg nanokey 2 midi keyboard (see figure
2.8).

The temporal accuracy and the number of mistakes (omitted notes, wrong
notes) were measured. The score of the composed and performed melody is
shown in figure 2.9.

2.2.4 Results

Figure 2.10 shows the Box and Whisker chart of temporal asynchrony of all 5
recording. A Box and Whisker chart indicates the median value of a dataset
and ts variance. The line (Q3) at the middle of each box corresponds to the
median value of a set. The lower end of the box (Q2) is the median of the
lower half of the dataset, and the upper end of the box (Q3) is the median
of the upper half. The lower ‘T’ symbol corresponds to the lower value
of the dataset, and the upper to the higher. Outside these areas appear
the outliers as small dots. Outliers are the values more than 1.5 times the
distance between Q1 and Q3.
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nancKEYZ2

Figure 2.8: The Korg nanokey 2 is a small midi controller with total length 32.5
cm.

Figure 2.9: The music score of the composed melody that served for the quanti-
tative evaluation of the prototype.

Korg Nanokey Week 1 Week 2 Week 3 Week 4
Omitted Notes 0 3 5 6 1
Wrong Notes 3 0 0 0 0

Table 2.2: Number of wrong and omitted notes for each recording.

Table 2.2.4 shows the number of wrong and omitted notes of each perfor-
mance. As omitted we refer to a note that was not played, and as wrong to
a note that did not exist in the score.

2.2.5 Discussion

Looking at figure 2.10 there is no evidence of improvement in time regarding
the temporal accuracy of the performance. In general the melody was per-
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Figure 2.10: Box and Whisker chart of temporal asynchrony of each of the 4
recordings.

formed well starting from the 1st recording. This indicates that probably a
more demanding task should have been used for studying his improvement.

As seen in table 2.2.4, when using the constructed prototype, some notes
are not being played, while when using the Korg nanokey midi controller,
additional, wrong notes are played. These two facts reflect the weaknesses
of each controller. The Korg nanokey has small buttons, so it is prone
to pushing adjacent buttons. Nevertheless due to its small size it is more
transportable. On the other hand, when performing with the constructed
prototype no wrong notes are played. Nevertheless, some notes are omitted.
This indicates that the sensibility of some buttons should be lowered (i.e.
the threshold value in Volts that should trigger an event).

The final prototype was implemented and given to Kostas at the mid of
April, 2014. Since then Kostas has been playing music in a daily basis,
alone and with other musicians using the constructed prototype. He also
got involved in composing music. He reports that when jamming with other
musicians he prefers the constructed prototype over any other controller that
he have tried so far. The reason is that we were able to adapt the interface
to his needs. As Kostas is incapable of moving his fingers, the only way to
play legato would be through a percussive instrument, in which the release
time is predetermined and can be adapted before the performance. Or,
alternatively by using a blow sensor to control the dynamics, the release
and in general the expressive characteristics of the performance.
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Disadvantages

"It has big buttons that favor spa-
tial accuracy”

71t has different arrangement of the
notes when compared to a piano.
This helps in composing and play-
ing melodies that most probably
I wouldn’t in a conventional con-
troller”

"1t offers a lot of settings that can
be easily accessed, such preset note

"1t is heavy. Although this was my
choice when designing it. I now
think that because of this it lacks
in mobility.”

”1 cannot update its firmware with-
out the help of a non-disabled ex-
pert. For that reason I have
not used the breath controlled that
much.”

”It is easy to forget which button
corresponds to each setting”

duration in the polyphonic mode”

Table 2.3: Advantages and disadvantages of the constructed prototype as reported
by the user.

On his soundcloud channel ® there are currently 7 musical compositions, 3
of which were recorded using exclusively the constructed prototype. Alter-
natively, he inputs the notes one by one, using a trackball, or korg nanokey
2 midi keyboard.

He was asked to mention the advantages and disadvantages of the con-
structed prototype with conventional midi keyboards he mentioned the ad-
vantages and disadvantages shown in table 2.2.5.

The prototype can be improved in many ways. Its weight should be reduced.
This would make Kostas able to move it from his desk to his legs in order to
properly play. Although the prototype was constructed in order to play with
both hands, after placing it on his feet, because of its weight, it was difficult
for him to place it in a proper position close to his body. Consequently,
most of the time he plays with one hand, as he used the other one to hold
from the chair.

Every time a firmware update is required, a shortcut should be made be-
tween two pins on the Arduino board, in order to re-install the arduino
firmware and then update the new software. Then another shortcut is made
between the same pins in order to re-install the HIDUINO firmware, which
enables the Arduino to be recognized as a midi controller. Consequently,

Shttps://soundcloud.com/between2notes
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in order to make any software update, we had to travel from Barcelona
to Thessaloniki. Unfortunately, after adding the blow sensor we were able
to visit Kostas just 1 more time. Although tests were made to determine
the optimum sensitivity of the blow sensor, in the long term it was proven
that the sensitivity was low. Too much effort was required to control the
dynamics of the performance. On our next visit to Thessaloniki, an update
will be performed, which will allow adjusting the sensitivity of the sensor
from the settings layer.

In summary, we constructed along with Kostas a percussive midi controller
designed for him. Although the prototype has some disadvantages, like its
weight, it allows Kostas to play music with other musicians, and compose
music. He mostly uses the controller for improvising or playing known
traditional greek songs. Since the prototype was constructed, he plays music
in a daily basis and it has motivated him to get involved more in music
activities. Recently he composed music for the theater and he sees his
future as a semi-professional composer.

2.3 A Guitar Controller for a Person with
limited Sensorimotor Functions

2.3.1 Introduction

In this section we will report on the implementation of a guitar controller
for a person with Brown-Squard syndrome. The work presented in this
section was conducted in coordination with Joan Sandoval and forms part
of his bachelor final thesis project (Sandoval Codina (2015)). Brown-Squard
syndrome is caused by damage to one half of the spinal cord, resulting in
paralysis and loss of proprioception on the same side as the injury or lesion,
and loss of pain and temperature sensation on the opposite side as the lesion.
Proprioception is the sense of the relative position of neighboring parts of
the body and strength of effort being employed in movement.

Our subject is a 38 year old women, named Laura. Laura suffers from
tetraparesis. Symptoms appeared after the extraction of a tumor in the
spinal cord 5 years before we met her. At the time we were implementing the
music controller for her, she was a music therapy student. The movement
of right hand is limited with the fingers being paralyzed. She has lost the
sense of touch and temperature in the left part of his body in all regions
under the neck.



DIGITAL MUSICAL INSTRUMENTS FOR PEOPLE WITH LIMITED UPPER LIMB
22 FUNCTIONING

Before the surgery, she could play the piano and the guitar without diffi-
culties. She now can make only simple melodies in the piano using the left
hand. With the guitar she can play chords and strum, accompanying her
voice, but she is slow placing the fingers on the right positions, as she lacks
the sense of touch. In both cases, she has to look at her hand when play-
ing, as her proprioception is lost. Laura wants to become a music therapist
working with children. The fact that she has to look at her left hand all the
time, limits her communication as a therapist with the children.

2.3.2 Materials and Methods
Preliminary Prototypes

From the beginning Laura expressed her to desire to be able to play the
guitar without having to look at her left hand while playing. She agreed
that we should make a guitar controller that would allow her to play different
chords, either by strumming or by pressing the notes one by one in order to
make arpeggios. Different initial prototypes were tried before implementing
the final prototypes.

The first prototype was implemented using the leap motion® device, capable
of capturing hand and finger movements in three dimensions. In this first
prototype we focused on how melodies and arpeggios could be played.

The software part was implemented using processing programming lan-
guage. As Laura is not capable of moving the fingers on the right hand,
arpeggios could only be played with the left hand. As seen in figure 2.11,
in the first prototype the position of the right hand determined the selected
chord, while with left hand, the different strings can be played. In figure
2.11, in the left part of the screen the white points correspond to the de-
tected fingers. The Leap motion sensor is placed on desk. The vertical
movement of the fingers corresponds to the distance from the sensor. If
each of the fingers crossed the upper blue line, the note corresponding to
this finger was played, depending on the selected chord. If the line placed
lower was crossed, the same note one octave down was played.

When Laura tried the prototype, although she was able to accurately play
arpeggios, she complained that having both hands lifted in form of her for
a prolonged time would be tiring. Moreover she was dependent on looking
at the screen in order to know where to place her hands.

Shttps://www.leapmotion.com/, last accessed on the 10th of July, 2016.
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Figure 2.11: Visual feedback of the first prototype based on Leap motion sensor.

In the next implemented prototype, the arduino microcontroller was utilized
along with an accelerometer and a string-pot sensor. A string potentiometer
is a transducer used to detect and measure linear position and velocity using
a flexible cable and spring-loaded spool. For the needs of this project two
low-cost string pots were constructed. The body of the string-pots were
printed in a 3d-printer. The designed parts fed to the 3d printer were
provided by Chap Robotics FRC team 2468. 7

Figure 2.12 shows the second implemented prototype. The user holds the
device on the left hand with the fingers placed on each of the 4 buttons.
For selecting the chords, the distance measured by the stringpot was used,
along with the inclination of the construction.

When the subject tried the prototype, it was clear that the inclination
could not be used as a parameter. The loss of proprioception on the left
hand resulted in inaccurate control of the inclination. Nevertheless, the
use of stringpots seemed to be a good option for tracking the movement of
the right hand, as it worked in a robust way and it can provide a visual
feedback to the user. If the string is painted with different colors, the user
has feedback on the length of the string and as a result the selected input
action.

"Stringpots STL and assembly instructions available online at
http://www.andymark.com/product-p/am-2618.htm, last accessed on the 10th of
July, 2016.
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Acelerometro

Figure 2.12: The second prototype.

The final prototype

The final prototype was built by modifying the guitar hero III controller
made for Nintendo Wii gaming console. The main board of the controller
was replaced by the arduino microcontroller. Asin 2.2, the hiduino firmware
was used, enabling the arduino microcontroller to communicate through the
midi protocol with a sound module running on a computer. Two stringpots
were also mounted inside the enclosure of Guitar Hero. The buttons of
guitar hero were connected to the digital inputs of arduino. Figure 2.13
shows the back of the modified guitar hero, while 2.14 shows the front of
the controller. Figure 2.15 shows the subject playing the final prototype.

Using the two stringpots, it was possible to compute the position of the
ring that joins them. If a and b are the distances computed by the two
stringpots, then by applying the Pythagorean theorem, the calculated the
coordinates (x,y) of the position of the ring are:

a?+ % —b?
T= g YT Va

Tracking the right hand’s movement in 2 dimensions was used for strumming
virtual strings. The virtual strings were equally distributed close the the
guitar’s body, the same way they are placed in a normal guitar. Every
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Figure 2.13: The back of Guitar hero with modifications, including two stringpots
and pulleys.

Figure 2.14: The front part of Guitar hero with modifications. The position
in two dimension of the hand of the user can be computed by considering the
measured distances of the two stringpots.

time the tracked position crosses a string, the corresponding noteON midi
message is send.

The chords are selected by pressing combinations of the 5 buttons placed
on the neck of the guitar. Figure 2.16 shows the combination of buttons
used to play each of the 7 available chords.
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Figure 2.15: Laura playing the final prototype.
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Figure 2.16: Combination of buttons for playing different chords.

2.3.3 Evaluation
Quantitative

Once the prototype was ready, it was given to the subject and in a period
of a month 7 recording were made. The given task is shown in figure 2.17.
Before making every recording she practiced for 10 minutes the given task.
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Figure 2.17: The chord progression along with the strumming pattern given to
the subject for evaluating the prototype. The arrows show the corresponding hand
movement when strumming.

The recordings were made without using a metronome. When analyzing the
results, in each recording the mean tempo was computed. We report on the
temporal accuracy of the performed strums and on the percentage of these
strums played correctly. The temporal accuracy, was measured by counting
the percentage of strums played in-tempo. In-tempo was considered every
strum with temporal accuracy less or equal to one sixteenth note. The
accuracy in played the right chords was measured by subtracting from the
expected number of chords the number of mistakes. A mistake is counted
in two cases: (i) if during a strum less than two strings were played, or (ii)
if the wrong chord was selected when strumming.

User experience

After a month of using the interface, the subject commented on her expe-
rience with it, the problems that appeared at the moment of using it and
proposed ways to improve it.

2.3.4 Results

Figure 2.18 shows the average temporal accuracy and percentage of strums
played with the correct selected chord across the sessions.

Regarding the user experience evaluation, the most important problem of
the interface was the high resistance of the stringpots. Additionally they
produced a sound when playing the instrument. This was a problem when
playing at low amplitude. On the contrary she found convenient the use
of the buttons on the left hand used for select chords. The subject also
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Figure 2.18: Average temporal accuracy and percentage of strums played with
the correct selected chord across the sessions.

complained about the sound quality of the system. Nevertheless this aspect
was not considered in this study. Using a different guitar synthesizer would
improve the sound quality of the prototype.

2.3.5 Discussion

As seen in figure 2.17a, after the third session there is a clear improvement
in the temporal accuracy of the strums. In the sixth session a perfect perfor-
mance was recorded. While in the first session the temporal accuracy score
50%, in the last session it is 90%. A slight improvement in the performance
is also observed in the chord accuracy. In the first session it was 82% and
in the last session 97%.

The usage of stringpots for detecting the hand movement was proven to
provoke serious negative impact in the user experience because of the high
resistance and the produce noise when playing. Probably another approach
should be considered. In the following section, in figure 2.19 is shown an
implemented prototype for testing various input devices. One of them is a
series of touch-sensitive strings. This would probably be a better approach
to the problem of strumming. Nevertheless, as the subject suffers from lost
the proprioception and sense of touch on the left hand, the appropriateness
of such an approach should be tested. The subject is prone to injuries, as
she lacks the feel of pain on the left hand.



2.4. A GUITAR CONTROLLER FOR A PERSON WITH CEREBRAL PALSY 29

2.4 A Guitar Controller for a Person with
Cerebral Palsy

2.4.1 Introduction

The work presented on this section was mainly performed by Schmidt (2014)
under my co-supervision with Rafael Ramirez. In this section a review of
the mentioned master thesis will be maid. All software and hardware of
this project was implemented by Marcel Schmidt under my co-supervision.
Figures and tables are copied from his master thesis document.

The most recent definition of Cerebral Palsy, based on modern brain imag-
ing techniques, was given by Rosenbaum et al. (2007) : “Cerebral palsy (CP)
describes a group of permanent disorders of the development of movement
and posture, causing activity limitation, that are attributed to non progres-
sive disturbances that occurred in the developing fetal or infant brain. The
motor disorders of cerebral palsy are often accompanied by disturbances of
sensation, perception, cognition, communication, and behavior, by epilepsy,
and by secondary musculoskeletal problems”.

Cerebral palsy is the most common disability in children, rating between 2
and 3 per 1000 live births.

In this case study, the subject is a 36 years old man from Germany. He
suffers from dyskinetic cerebral palsy with choreoathetoid which is char-
acterized by irregular, twisting and curving movements. According to the
Gross Motor Function Classification System (Palisano et al. (1997)), the
degree of his disability falls between categories 4-5 out of 5. He is not able
to walk. His disease prevents him from eat or drink without assistance. He
speech is also affected. He lives in a home for people with motor disabilities.

His mental abilities are not affected, and he finished secondary school. He
works in a sheltered workshop writing articles. He controls the computer
using a trackball and a special keyboard. He was strongly motivated to
learn playing a musical instrument with a preference over the guitar. In
the past he had tried to play the keyboard. Nevertheless, he never had any
proper music training.

From initial interviews, the subject expressed the desire to play the guitar.
In the following section we describe the implementation of a guitar controller
adapted to his needs.
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2.4.2 Materials and Methods
Determining the final Prototype

The initial design of the system was performed considering the movement
abilities of the user and the nature of the guitar as an instrument. The first
priority was to design a system that would allow changing the chords of the
guitar and strumming. The second was to provide the potential of playing
melodies. For accomplishing the first goal, the input system should have at
least 2 analog degrees of freedom: one for selecting the chord and a second
one for strumming.

The user should be able to select a set of N chords in a specific order. Then
using one of the analog inputs, he should be able to select the desired chord.
This would be achieved by dividing the range of the analog input into N
equally distributed areas, each of them assigned to a chord. If for example
the selected chords were F, C, G, Dm and Am, then the range from 0% to
20% would correspond to the chord F, the range 20% to 40% to the chord
C and so on. The same idea was be applied for strumming the strings. The
number of virtual string was six, as in a normal guitar. The first string was
played when the analog input crossed passed the value corresponding to the
10% of its range. The last one when the analog input crossed the 90% of
its range. The remaining string were equally distributed between the first
and the last string.

An initial version of the software was implemented in which the strumming
and chord selection functions were implemented. The software processes the
user input, converts it to MIDI data and sends it to the connected software
synthesizer. The used synthesizer was the VirtualMIDISynth from CoolSoft
on a Windows computer or QSynth on a Linux computer. The software was
implemented using processing programming language®. A first prototype
for testing these functions was implemented, including a variety of sensors.
All sensors were connected to arduino uno micro-controller. Figure 2.19
shows the first prototype implemented for testing different kind of sensors
for controlling either of the two parameters of the system. Additionally the
EyeTribe ? tracker was tried as a gaze-input device, and the camera mouse
(Betke et al. (2002)) as a head tracking system. All inputs were tried for
each of the strumming and chord selection functions for about two minutes.
An additional person was observing the procedure. At the end, the subject

8https://processing.org/, last accessed on Sth of July, 2016
“http://theeyetribe.com/, last accessed on 8th of July, 2016.
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Figure 2.19: The first prototype used for testing a variety of input methods

and the observer an were asked to rate each input device in a scale from 1
to 5. Table 2.4 summarizes the ratings of both the observer and the user.
As guided hand movement we refer to a movement in which the subject was
physically restricted to move an object in only one dimension.

It was impossible to achieve a reliable tracking of the gaze of the subject. As
seen in table 2.4, both the subject and the observer agreed that the finger
movement using the joystick was the most appropriate input for strumming,
while the left to right arm movement was judged as the most appropriate
input for fretting.

We then decided to compare the joystick over a scroll wheel. The user
preferred the mouse wheel over the thump joystick as it “gave more control
and felt more natural as there were small bumps, like real strings”. A
custom scroll wheel was constructed, in which a force resistive sensor was
added, making possible the measurement of the force applied to the scroll
wheel, that could be used for controlling the velocity of the notes.

The final Prototype

Figure 2.20 shows the final prototype. It consists of a “sledge” that can be
freely movement in one dimension. On the “sledge” there is a scroll wheel
and a button. An ultra sonic proximity sensor placed at the left edge of
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Strumming Fretting
Movement (Sensor) User Rating Observer Rating User Rating Observer Rating

Finger movement (buttons) 3 2 3 3

Finger movement (thumb joystick) 4 5 2 1
Finger movement (touch-sensitive strings) 3 2 N/A

Hand movement (slide potentiometer) 2 2 2 3

Arm movement (proximity sensor) 1 1 1 1

Guided arm movement (proximity sensor) 2 3 5 5

Head movement (Camera Mouse) N/A 2 3
Eye movement (EyeTribe) N/A N/A

Table 2.4: User and Observer Rating for different input methods

Figure 2.20: The final prototype.

the device outputs the distance position of the sled from it. The device
is connected through a usb port to a computer running the implemented
software. The software, implemented in processing programming language,
translates the received data to midi messages, driving a guitar synthesizer.
It also provides the visual feedback on the computer’s screen. Figure 2.22
shows the visual feedback provided when playing the instrument. A detailed
overview of the software was presented by Schmidt (2014).

The system provides auto-strumming, auto fretting functions and supported
strum functions. When auto-strumming is ON, the system will strum au-
tomatically following a preset pattern specified in a setting menu. At the
same menu, the user enters a preset chord sequence. When auto-fretting
is ON, the chords will be changed automatically, following the defined se-
quence. When supported strum function is turned on, every-time the user
scrolls, a full strum is assured on the moved direction.
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Figure 2.21: The graphical user interface in play mode.

2.4.3 Evaluation
Quantitative

After the prototype was implemented it was given to the subject so he could
use it on a daily basis and practice playing it. Figure 2.22 shows the subject
playing the final prototype.

A quantitative evaluation was conducted in order to measure the improve-
ment with the interface in time, on tasks of increasing difficulty. In that
case the subject was asked to record 3 different song of increasing complex-
ity once a week in period of 9 weeks. Each song was recorded for approxi-
mately one minute in each mode: first with auto-strumming support, then
with auto-fretting support and last without any support. Table 2.5 shows
an overview of the selected songs.

For each recording the missing chords, additional chords, wrong chords and
correct chords features were extracted. Additionally, the mean distance
and standard deviation between the position of the correctly played chords
and the the supposed positions of the chords were calculated. From each
recording, 90 beats were extracted for analysis. We report in the amount of
strums (chords) performed by the subject (CA), additional chords played
(AC), missing chords (MC), wrong chords (RC) and correct chords (CC).
The AC value is the number given when subtracting the CA from the beat
amount (=90). The MC values indicates how many of the supposed chords
were missing.
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Figure 2.22: The subject using the guitar controller.

Song Name Die Welt  Laudato Si Hallelujah

Tempo in bpm 80 80 80
Chords A, D G, Em C,D G, D7, Am, C
Complexity Low Intermediate High
Strum pattern Down-Down-Down-Down
Time Signature 4/4

Table 2.5: The used in the quantitative evaluation.

Usability Test and User Experience

The usability and user experience test aims to provide information about the
subject’s ability to achieve given goals and how he experiences the interface.
For the usability test the subject had to accomplish a list of given tasks.
While doing those tasks he was observed and asked to think aloud. After all
tasks were accomplished the subject was asked to freely explore the interface
and was interviewed afterwards. In the interview he was asked to tell the
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Figure 2.23: Results for the song “die Welt”.

interviewee about his experience while using the interface as well as how
the interface affected his life in general.

The usability test does not aim to test how well the user can play a song
with the interface but rather if he can achieve goals such as setting up a
song or changing the MIDI port. It consisted of 39 tasks, such as creating
and naming a new song, setting the tempo and the time signature, adding
chords, activating auto-strumming, playing only the first 3 strings of the
guitar and closing the software.

For the user experience test an unstructured interview was chosen to let
the subject freely express his feelings without giving him the impression of
being interviewed.

2.4.4 Results
Quantitative

Figures 2.23, 2.24 and 2.25 show the results for each song over all nine
sessions.
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Figure 2.24: Results for the song “LaudatoSi”.

Usability Test and User Experience Test

For the usability test the subject was able to fulfill all the given tasks.
However as an observer the following problems were noticed: (i) buttons to
change modes were not clear to the user, (ii) a change of hand positions was
observed when using auto strumming mode and the other modes, (iii) the
hand moved on the sledge while sliding (iv) the user changed fingers while
strumming.

When the user was asked to express his feelings about the project he stated:
“I’'m happy that I can finally learn to play the guitar. It is still difficult
to play the songs, especially the strumming. But as with a traditional
instrument, it needs a lot of practice to become an expert. With the auto
strumming activated I can play already a few songs and I even gave a
small performance to my colleagues. When Roberto (his supervisor) was
accompanying me with the piano I felt like playing in a band and it made
me really proud when my colleagues were listening to me playing guitar.
My goal is to practice a lot so I can play at our workshop’s anniversary
next year. It is still a long way but I’'m eager to practice.”
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Figure 2.25: Results for the song “Hallelujah”.

2.4.5 Discussion

When looking at figures 2.23, 2.24 and 2.25 for each song (with auto strum-
ming activated) we can see that the chord amount ratio (blue) stays one.
This is because auto-strumming is activated and therefore the amount of
played chords equals the amount of supposed chords.

We can also see a slight improvement of correct chords over the nine weeks
for all three songs in both auto strumming and auto fretting modes. The
performance with no support is as expected still much lower compared to
the performances with auto modes activated. However, even here we can
see an improvement from the first session to the last session. It is interesting
to see that the performance of the most complex song increased the most
in the case of no support.

The mean distance from the correct chords to the original chords stayed
around 180ms for all three songs which indicates that the strumming is
still random. The maximum distance from a played chord to the original
chord at a speed of 80 BPMs and a down strum for every beat is 375 ms,
and therefore a random strumming would average between Oms and 375ms
which is 187ms.

The usability test suggests a few improvements for upcoming prototypes.
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For instance the functions of the software buttons seem to be unclear and
should have a more clear design. A small label could for instance enhance
the understandability of the graphical user interface. Another very im-
portant observation is that the user applies different hand positions when
playing the interface in different modes. When auto strumming is activated
he rests his left hand on the edge of the sledge, so just his fingers are on
the sledge, but his palm is in front of the sledge and his thumb is being
used as a “brake”. However, with this hand position he is not able to reach
the wheel with his fingers and if he has to strum he has to move his hand
to another position. It was also observed that his hand moves around the
sledge when sliding movements are executed. This leads to the fact that
he has to use different fingers for the strumming depending on his hand
position. A broader wheel as well as some kind of hand guidance could be
implemented to avoid those problems. To see if those changes would aid the
user and improve his/her performance additional testing would be needed.

Although the performance measured quantitatively in general was poor (e.g.
the strumming is random), the user shows signs of satisfaction when per-
forming. The subject might not acquire too high performance skills when
compared with guitarist without disabilities, but he/she might receive the
therapeutic benefits of playing a musical instrument.

Two years after giving the prototype do the subject, we conducted him/her
and asked him on his experience on the prototype. He replied that he still
uses but not really regularly. According to his therapist, he still prefers to
play with auto-strumming turned on, and he stills enjoys playing songs with
it.

2.5 Conclusions

In this chapter we presented the implementation and evaluation of 3 dif-
ferent prototypes designed for 3 distinct cases of people with limited upper
limb function.

The percussive midi controller constructed for a person with spinal cord
injury proved to have a big positive impact in his quality of life. This user
was already a musician before the injury. Before providing him with the
constructed prototype he wouldn’t manage to play music with any instru-
ment. Two years afterwards he is an active music composer, and he plays
music in a daily basis, using the constructed prototype to improvise alone
or with friends and compose music.
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The guitar controller for a person with limited sensorimotor functions al-
lowed our subject to easily change chords with the left hand while strum-
ming with the right hand, as she would do in a normal guitar. The proto-
type although still lacks important improvements that would make it more
usable.

The guitar controller for a person with cerebral palsy had a therapeutic
impact in his life. Although we did not perform any additional evaluation
(apart from the evaluation performed 2 months after with experience on the
prototype), when we asked his therapists, they responded that he/she still
enjoys playing with it, although he might have only slightly improved his
performance.

The importance of all mentioned studies is that, using arduino microcon-
troller and low cost sensors and materials, we were able to construct musical
interfaces that allowed people with limited upper limb functioning to play
music, and enjoy its psychological benefits. As instructions of how to im-
plement them are available in this thesis (and with more technical details
and source code, online), they could be used as examples of how other
people could construct adaptive digital music instruments for people with
disabilities in their community.






CHAPTER 3

Gaze-Controlled Music
Interfaces

3.1 Introduction

In more severe cases of motor disabilities, such as people with locked-in syn-
drome, none of the solutions mentioned in previous chapters is appropriate.
Locked-in syndrome (LIS) is a condition in which a patient is conscious
but not able to move or communicate verbally due to complete paralysis of
nearly all voluntary muscles in the body except the muscles which control
the eyes. In such cases a gaze or brain controlled interface might be only
mean of communication. In this chapter we present our research on gaze
controlled musical interfaces.

In order to clearly see an object of interest, we have to place it on our
fovea Yarbus (1967). The fovea is a high-acuity region of the retina that
covers approximately one degree of visual arc, which is a bit less than the
width of the thumb of an extended arm. Switching from one point of in-
terest to another is achieved through abrupt, fast eye movements, called
saccades. Saccades last between 30 and 120 ms (Krauzlis (2005)). The time
in which the gaze maintains at a single location, is a called fixation. A
fixation lasts at least 100 to 200 ms. During fixations, the eyes make small,
jittery motions of three types: tremor, drift and microsaccades (Martinez-
Conde (2006)). Tremors are movements of high frequency (=80Hz) and low
amplitude (~0.0024° visual angle). Microsaccades are fast movements that
occur 3-4 times every second. Drifts are slow motions that occur between
microsaccades. Drifts and microsaccades have an amplitude of 0.03 to 2 °
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of visual angle. In gaze-controlled applications, in which the fixations are
usually mapped to a pointer, smoothing algorithms eliminate the fixation
micromovements and the noise introduced by the video based tracking of
the pupil.

In eye-tracking-based (gaze-controlled) applications, gaze data might be
used alone or in combination with other input methods, such as head, limb
or breath-controlled buttons. Blinking (closing both eyes) or winking (clos-
ing just one eye) might also be used as input. In this case, usually the gaze
coordinates are used for pointing, and any other input is used for trigger-
ing actions. In case the gaze input is used alone, as the eye movements
are often non-intentional, gaze information must be interpreted carefully to
avoid unwanted responses to user actions. This is described as the “Midas
Touch” problem. The most common gaze selection methods that intend to
handle the Midas touch problem are: (i) Dwell time introduced by Jacob
(1991) and (ii) screen button introduced by Ohno (1998). In the case of
the dwell time method, when a fixation lasts for more than a given time
period (typically about 1 second), a selection is made. In the case of screen
button method, each target is separated in the command name area and
the selection area. Selections are made only when a fixation is detected in
the selection area. An extension of the screen button method is the pEYE
method introduced by Huckauf and Urbina (2008), in which the “slices”
of the “pEYE” are screen buttons. The command name areas of the but-
tons are placed at the interior of the pie, and the selection areas are placed
at the perimeter. Other selection methods that also handle the problem
of the noisy gaze data involve magnification methods, like ZoomNavigator
proposed by Hegner and Skovsgaard (2008)).

An extensive review of eye-controlled music performance systems was re-
cently made by Hornof (2014). Some of these installations do not aim to
resemble traditional musical instruments: they could be described as soni-
fications of eye movements and they are not designed for playing melodies.
Here we will only refer to the approaches that provide the possibility of
playing separate notes. Duet for eyes! was a performance including per-
formers with and without disabilities. The Grid software 2, using dwell-
time selection method and controlled by a Tobii eye tracker 3, was used
to trigger preselected sounds. In a more recent project, called “eye play

! http://illustriouscompany.co.uk /performance/duet-eyes-eyejamming-

eyebodyweaving, last accessed on 10/12/2015
2http://sensorysoftware.com/, last accessed 2015-4-12
3 http://www.tobii.com/, last accessed on 10/12/2015
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http://www.tobii.com/
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the piano” 4, by the University of Tsukuba and FOVE eye tracking vir-
tual reality headset®, people with disabilities were able to trigger notes or
chords of a piano, assigned to buttons on the screen. Blinking was used as
a selection method. In the mentioned gaze-controlled setups dwell-time and
blinking selection methods are used for triggering musical events. However,
dwell-time does not allow triggering events in tempo, while blinking selec-
tion requires two actions in order to trigger a single event: (i) focusing on
a target and (ii) blinking. When compared to the screen-button selection
methods, the blinking method provides a slower interaction time. Moreover,
none of the mentioned systems allow the control of more expressive musical
features, such as loudness.

3.2 The EyeHarp DMI

We present the EyeHarp, a gaze controlled musical interfaces that aims to
allow a rich and expressive gaze-controlled music performance. The Eye-
Harp allows the user to control pitch, timing and dynamics of a melody,
as well as chords and arpeggios in a performance. The EyeHarp interface
consists of two layers: the Step Sequencer layer and the Melody layer. In
the Step Sequencer layer chords and arpeggios can be constructed and in
the melody layer these can be controlled and a melody can be played. The
number of available note buttons can be adapted according to the accuracy
of the eye tracker and the expertise of the performer. The user can switch
between the two layers through a dwell-time activated button.

The EyeHarp is implemented using openFrameworks open source C++
toolkitS. It has a built-in analog synthesizer and it also works as a midi
device, controlling any external software synthesizer. The EyeHarp is cur-
rently an open-source software’ that runs in windows 7 or later operat-
ing systems. Currently two commercial eye-trackers are supported: the
Eyetribe® and Tobii PCEye”. The non-commercial open-source ITU Gaze-
tracker!? is also supported. In all three cases the EyeHarp receives through
a server the raw gaze data. Fixation detection and smoothing algorithms

“http:/ /eyeplaythepiano.com/en/, last accessed on 10/12/2015
http://www.getfove.com/, last accessed on 10/12/2015
Shttp://www.openframeworks.cc/, last accessed on 14/12/2015

"Source code and binaries available at https://github.com/zackbam/TheEyeHarp
Shttps://theeyetribe.com/, Last accessed on 17/12/2015

9http:/ /www.tobiidynavox.com /pceye-go/, Last accessed on 17/12/2015

Whttp:/ /sourceforge.net/projects/gazetrackinglib/, Last accessed on 17/12/2015
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are incorporated in the EyeHarp software. This allows a consistent behavior
of the system when different eye trackers are used.

The interface is diatonic and by default tuned to the C major scale, although
it can be tuned to any possible scale. Only the basic functionality of the
EyeHarp interface will be described here. A more detailed overview of the
more advanced features of the interface was presented by Vamvakousis and
Ramirez (2011).

3.2.1 Gaze data processing

Video-based eye trackers normally track the pupil of the user and the reflec-
tions of a number of infrared light-sources on the cornea in a constant frame
rate. Even when the user is looking at the same point for many consecutive
frames, the received raw gaze coordinates will be spread in a Gaussian-like
distribution around a point. Smoothing algorithms are typically applied be-
fore using the raw gaze data in gaze-pointing tasks. A smoothing algorithm
has the form of:

while Receiving Gaze Data do
smooth.x < SF - smooth.x + (1 — SF) - raw.x;
smooth.y <— SF - smooth.y + (1 — SF) - raw.y;

SF is the smoothing factor (greater than 0 and smaller than 1), smooth.x
and smooth.y are the gaze coordinates on the screen and raw.x, raw.y are
the raw gaze coordinates per frame.

The above algorithm introduces a latency proportional to the distance of the
two consecutive fixation points. For that reason, typically, when a saccade is
detected, the smoothed coordinates maintain the last value of the previous
fixation until a new fixation is detected and the are assigned to the value of
the new fixation point.

Although the accompanying software of both the Eyetribe and the Tobii PC-
eye eye trackers provide the smoothed gaze coordinates, they were judged
insufficient for the purpose of playing melodies in the EyeHarp pie: when
the user was playing two adjacent notes, no saccadic movement was de-
tected. As a result the pointer was moving smoothly from the one fixation
point to the other. The saccadic movement was successfully detected only
when the consecutive focus points were distant enough. This led in poor
temporal control when playing adjacent notes. Moreover the interface did
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not behave with consistency when using different eye trackers. The smooth-
ing algorithm of the EyeTribe and the Tobii PCeye is appropriate only for
gaze-controlled applications in which the temporal accuracy is not a crucial
factor. In order to achieve a consistent system in terms of temporal control,
the smoothing algorithm was re-implemented in the EyeHarp interface, al-
lowing the adjustment of its parameters in such a was that fine temporal
control in achieved for small or large saccadic movements. The evaluation of
the implemented fixation detection algorithms will be presented in sections
3.3 and 3.4.

3.2.2 The Step Sequencer Layer

Figure 3.1 shows the Step Sequencer layer. A step sequencer is an interface
for constructing loops. It consists of a grid of buttons where the vertical
dimension of the grid corresponds to pitch and the horizontal dimension
corresponds to the temporal position in the loop. At the beginning of the
loop, the selected notes of the first column sound simultaneously, followed
by the selected notes of the second columns, and so on. After the notes of
the last column are played, the loop starts from the beginning. The time
interval between the activation of two consecutive columns is constant and
depends on the set tempo.

In order to select a button of the step sequencer, dwell-time selection is
applied (the default dwell time value of the EyeHarp interface is 700 ms).
The buttons are circles with a small focus point in the center. The focus
points help the user focus at the center of each button. The Step Sequencer
layer has two methods for compensating noisy gaze-data. In the first method
the gaze point appears on the screen along with additional fixation points
at the perimeter of the buttons. This helps the user correct the offset
caused by poor tracking. In the second case, when a fixation is detected
and the dwell time period is reached, the buttons of the step sequencer
that are placed within a square region -centered at the fixated point and
covering the 20% of the sequencer area- are magnified by a factor of 2. The
user can then select one of the magnified buttons. By looking outside the
magnified area, all buttons return to their normal size and position. Figures
2 and 3 demonstrates the two described methods. Note that in case of the
magnification method, as the buttons expand, they might come out the
screen. In that case all magnified buttons smoothly move up or down in
order to appear inside the screen.

A number of control buttons (e.g. for changing the meter or tempo, clear-
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ClegrAll

Figure 3.1: The Step Sequencer Layer. In this layer the user can construct
arpeggios and chords which are controlled in the Melody Layer. Buttons in the
same row correspond to notes with same pitch, while buttons in the same column
corrspond to simultaneous notes. If the selected chord in the melody layer is C
major, buttons from bottom to top correspond to notes C4, D4, E4, etc. Notes are
trigered from let to right, starting with the left most column. Dwell-time selection
method is used, i.e. users focus at each button for about 700 ms in order to select
or release a button..

ing the selected notes, switching between layers) are provided and may be
selected using dwell-time. (see figure 3). The note that corresponds to
bottom row of the EyeHarp’s Step Sequencer corresponds to the base note
of the selected chord in the melody later. The notes corresponding to the
other rows in the step sequencer are mapped to the consecutive notes.

3.2.3 The Melody Layer

The Melody layer (Figure 4) is based on pie menus. A pie menu is made
of several “pie slices”. Each slice consists of an inactive area in the center
and the selection area at the perimeter of the circle. The idea of using pie
menus in gaze interaction was introduced by Huckauf and Urbina (2008) in
a typing and a desktop-navigation interface. The idea of the pEYE layout is
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appealing for playing melodies because clicking is not necessary for making
a selection. Once the pointer enters in the selection area at the perimeter of
the pie, a command is triggered. The slices of the pie menu of the Melody
layer can be thought as screen buttons (as introduced by Ohno (1998)).
The command name area is a number for each note and a Latin number for
each chord. The selection area is placed at the perimeter of the pie. At the
center of the selection area of each note, a focus point appears. Optionally
as shown in figure 5, multiple focus points appear in the selection area of
each slice. Outer focus points correspond to high loudness, while inner
points correspond to lower loudness.

If the set scale is C major, c in the 4th octave is placed at 180°. The scale
then goes up counterclockwise. As a default option the pie comes with 14
slices, but the number of slices can be adapted though the setup menu. If
the setup button is pressed in the melody layer, a number of configuration
buttons appear as shown in figure 5. Two repeat buttons on the left can
be used for adjusting the number of notes in the pie. Through four radio
buttons on the top the user can select between three preset sounds of the
EyeHarp internal synthesizer, or select the midi out option. In that case
the interface is sending midi messages to an external synthesizer through
the LoopBe virtual midi port!!.

If the “chords” buttons is active, the last 6 notes of the pie are replaced by
6 chords. These buttons control the harmony of the arpeggio constructed in
the Step Sequencer layer. In order to play a note or change the chord, the
user can either look directly at the selection area of the note/chord or in case
there is a big distance between two consecutive notes, the command name
area might be looked at before focusing on the selection area. Focusing on
close targets is more efficient than focusing on distant ones. Fitt’s law also
applies to gaze interaction as shown by Miniotas (2000). In order to release
a note, the user has to look at any place outside the pie. For that reason
some fixation points are placed outside the pie. When a fixation is detected
at the selection area of a note the note sounds and a button appears at the
center of the pie. This allows the user to repeat the same note twice. If a
fixation is detected inside the button’s area, the same note sounds again.
If a fixation is detected at any other point apart from the selection area of
the pie and this button at the center, the “repeat” button disappears.

A fixation detection algorithm is applied on top of the smoothed gaze coor-
dinates. A selection is made only if two consecutive gaze points are detected

Yhttp://www.nerds.de/en/loopbel.html, last accessed on 17/12/2015
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inside the selection area of the same note and if the distance between them
is less than 2 pixels.

3.3 Temporal Control in Gaze Interaction

Probably the most important characteristic of music is rhythm. Previous
research for finger tapping has shown that people can accurately tap out
rhythms with their fingers as fast as one tap every 100 ms, and that people
tend to tap a few tens of milliseconds before the beat but that this negative
mean asynchrony decreases and disappears with musicians. An extensive
review of the finger tapping synchronization studies was performed by Repp
(2005).

The research in eye movement sensorimotor synchronization though is lim-
ited. In a study performed by Hornof and Vessey (2011) the temporal
accuracy of two fixation and two saccade-based methods was evaluated.
Participants moved their eyes back and forth between two small squares on
a computer display to play handclap sounds to attempt to match a rhythm
of woodblock sounds, in three different tempos: 60 beats per minute (bps),
120 bps and 240 bps. The two small squares were centered on the display
and separated by 12° of horizontal visual angle. A vertical midline sepa-
rated the two squares. The two fixation-based trigger methods were: (i)
dispersion-based, in which a fixation is detected when the raw gaze date
are 0.5° visual angle close for more than 100 ms and (ii) velocity-based, in
which a fixation is detected when the movement of the gazepoints across
the display holds below 20° per second for 100 ms. The two saccade-based
methods were the (a) maximum velocity detection-method, in which the tap
was triggered by the first gaze sample after maximum velocity of the sac-
cade, and (b) the midline crossed condition, in which the tap was triggered
by the first sample across the midline drawn on the display.

The typical metric to describe temporal accuracy is the asynchrony, mea-
sured in milliseconds. Consistent with Repp (2005), if a note is played
earlier there is negative asynchrony, while if it is played later, there is posi-
tive asynchrony. The results of the study indicate that fixation-based gaze-
selection algorithms provide more accurate rhythmic and timing control
than saccade-based gaze-selections algorithms, and that people have a fun-
damental performance limitation for tapping out an eye-controlled rhythm
somewhere between two and four beats per second. The saccade-based
methods resulted in an average negative asynchrony of around -50 ms across
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subjects when playing at a beat of 60 bps. For the same condition, the
fixation-based methods resulted in an asynchrony of less than -8 ms. It is
important to point out that tested fixation-based algorithms introduced a
latency of at least 100 ms from the moment a saccade starts, while in the
case of the saccade-based methods, the introduced latency is less than 20
ms.

The study described in this section was presented at the Proceedings of the
12th International Conference on NIME (Vamvakousis and Ramirez (2012)).

Evaluating the temporal accuracy of the Melody Layer

Materials & Methods Utilizing the dispersion-based fixation detection
algorithms we conducted an experiment studying the temporal accuracy in
the melody Layer of the EyeHarp DMI (Vamvakousis and Ramirez (2012).

The open source desk-mounted binocular ITU gaze tracker was used in this
study, running at 30 Hz. It consists of a modified playstation 3 “Eye”
camera and a pair of infrared led arrays (see figure 3.2) . Although the
initiative of the I'TU gaze tracker is now discontinued by its founders, the
source code can still be found online'? .

Ten healthy subject, with at least 5 years of musical training, were asked
to perform 2 different tasks in the Melody Layer. A metronome set at 60
bps was sounding during both tasks. Subjects were asked to play in-tempo
one note per 2 beats. Afterwards they were asked to perform the same task
using a computer keyboard, with number ‘1’ assigned to the first note of
the scale, number ‘2’ to the second and so on.

The first task consisted of playing an ascending scale. The task was repeated
3 times. Before each repetition they practiced for about 2 minutes. The
purpose of that was to study whether there is any improvement in the
temporal accuracy with practice. Note that this task consisted of playing
only adjacent notes in the pEYE interface .For reasons of consistency in
both cases the frame-rate was set to 30Hz.

The second task consisted of playing an octave interval for 40 times. As in
task 1, it was asked to play one note every to beats.

Results & Discussion Figure 3.3 shows the asynchronies of all 10 sub-
jects for all 8 notes of a scale and all 3 repetitions of the first (playing scale)

2https:/ /sourceforge.net /projects/gazetrackinglib/ last accessed on 19 of May, 2016
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Figure 3.2: The PS3 Eye camera was modified by (i) replacing its lens, (ii)
adding an infrared-pass filter. Two arrays of infrared leds were placed to the left
and right of the camera. Both the infrared-led arrays and the camera when then
placed under the computer screen. The ITU gaze tracker open source software was
then used for calibrating and acquiring the gaze coordinates. Instructions of how to
transforms the PS3 camera into an eye-tracking device were found online. Although
the source code of the project is still online, the support forum is currently down,
as the founders if the initiative currently offer a commercial low cost eye tracking
device called Eyetribe.

task. The average asynchrony across all subjects and repetitions was -95
ms and the standard deviation of the 10 participants means 33.5 ms. The
mean asynchrony and standard deviation for the first repetition was -64 ms
and 410 ms respectively, for the second -124 ms and 252 ms, and for the
third -96 ms and 211 ms. The fact that the standard deviation is gradually
falling, suggests that there is an improvement with practice. Nevertheless
a more prolonged time of practice is required to confirm this hypothesis.

Figure 3.4 shows the same results for the case of the task where the keyboard
was used as input. When using the keyboard as input t average asynchrony
is positive. The standard deviation gradually falls. As expected, the stan-
dard deviation values are much lower when the keyboard was used as input
method.

Figure 3.5 shows the mean asynchrony across all subjects for the 1st and
2nd task. The mean asynchrony for the first task is -46 ms and for the 2nd
task -95 ms. The first task consisted of playing a ascending scale. In this
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Figure 3.3: The asynchrony of each user for all 3 trials of playing an ascending
scale in the Melody Layer. The horizontal axes corresponds to the number of the
note (instance) in each task.

case all notes are adjacent (about 5° of visual angle apart). The second
task consisted of playing notes placed diametrically opposed (about 18° of
visual angle apart). This suggests that the negative asynchrony increases
with distance.

3.4 A new Fixation Detection Algorithm for
Improved Temporal Accuracy of Distant
Targets

3.4.1 Introduction

As already mentioned, Hornof and Vessey (2011), in a study involving 12
musicians, compared the rhythmical precision of producing clapping sounds
by looking back and forth between two small squares separated by 12° of
visual angle. In that study the two factors were trigger method and tempo.
The results suggest that fixation-based eye-control algorithms provide bet-
ter timing control than saccade-based algorithms. The fixation-based al-
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Figure 3.4: Same as figure 3.3, but for the case that the keyboard was used as
input.

gorithms tested in that study imposed a fixation detection latency of 100
ms. The saccade-based algorithms triggered clapping sounds even before a
fixation would have started, as the event was triggered when a saccade was
detected and before a new fixation started.

The results of our study described in 3.3 suggest that asynchrony increases
with distance. This is conforming to the fact that the duration of a saccadic
movement is a linear function of its amplitude. Collewijn et al. (1988a) in a
study involving 4 healthy subjects concluded that the duration of saccades
of amplitude less than 50° of visual angle can be well approximated by the
following linear function:

durationH = 2.7 - amplitude + 23ms (3.1)

Collewijn et al. (1988b) in another study concluded that vertical saccades
of amplitude less than 30° of visual angle can be well approximated by the
following linear function:

durationV = 3.3 - amplitude + 31ms (3.2)

The most commonly used algorithms for detecting fixations are grouped
into two categories: (i) The velocity-based algorithms. In that case if the
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Figure 3.5: Mean asynchrony for the first task and the second task. The first
task consisted of playing a ascending scale. In this case all notes are adjacent
(about 5° of visual angle apart). The second task consisted of playing notes placed
Diametrically Opposed (about 18° of visual angle apart). The standard error of
the 10 participant means is also shown.

distance between two consecutive gaze points is smaller than a threshold,
a fixation is reported, otherwise a saccade is reported. (ii) The dispersion-
based algorithms. In that case, the centroid of N frames is computed. If the
geometric distance of all N frames from the centroid is within a threshold,
a fixation is reported, otherwise a saccade is reported. Variations of the
described velocity and dispersion-based fixation detection algorithms are
commonly used in gaze interaction applications (Shic et al. (2008); San
Agustin (2010); Larsson (2010); Salvucci and Goldberg (2000); Kumar et al.
(2007)).

Normally velocity-based fixation-detection algorithms impose a small de-
tection latency, corresponding to just one frame. If we suppose that the
frame-rate is 60 Hz, this corresponds to 16.6 ms. On the other hand,
dispersion-based algorithms commonly impose a latency of 100 ms.

Driven by the results of the study presented in 3.3, for the purposes of
musical gaze controlled applications, in which temporal accuracy is crucial,
we propose and evaluate a dispersion-based fixation-detection algorithm
whose fixation detection latency depends on the saccadic amplitude. This
is achieved by using different size of time window used for computing the
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dispersion value, depending on the saccadic amplitude.

3.4.2 Methods

The experiment was a 3X3 within-subjects design. The two factors were (i)
fixation-detection algorithm and (ii) distance between targets.

Eye tracking data were collected by the eyetribe binocular desk-mounted 60
Hz eye tracker. The eye tracker was connected to a laptop equipped with
a 15.6 inches screen with resolution 1366X768, an Intel i5 M460 2.53 GHz
dual core CPU running windows 10 operating system. Asio4All Universal
ASIO Driver was used with buffer size 64 and sample-rate 44100 Hz offering
1.5 ms of audio latency. A chinrest maintained an eye-to-screen distance of
60 cm.

Seven male adults with moderate to professional level in playing a musical
instrument were recruited from the Music Technology Group research center
of Universitat Pompeu Fabra. Each participated for about 20 minutes and
completed nine two-minutes blocks. Each block was performed with one of
the three implemented fixation detection algorithms. The ordering of the
blocks was randomized, and counterbalanced across participants. The first
six blocks were to practice with all algorithms (2 blocks for each algorithm)
and we report on the average asynchrony of the last three blocks.

Participants moved their eyes back and forth between two circles on a com-
puter display to play synthesized sinusoidal sounds, to attempt to match
the beat given by a high pitch sinusoidal sound. All sounds had an attack
phase lasting 1 ms followed by a release phase lasting 249 ms. The screen
was divided horizontally in 4 equal parts. The position of the left circle
was at the center of the left part. The position of the right circle was at
the center of one of the remaining parts. In particular, at the beginning
of the experiment, it was at the middle of the second from part from the
left. The moment the user completed a left-right-left eye movement, the
position of the right circle moved to the center of the second part from the
left. After another left-right-left eye movement the right circle moved to
the middle of the third part from the left. This resulted in three possible
saccade amplitudes of visual angles: 9.2°, 17.9° and 25.8°. One repetition
consisted of performing all three saccadic amplitudes.

The following visual feedback were given to the participants during the
experiment: If a note was performed earlier, the color of the button corre-
sponding to it appeared blue, while if it was performed later it appeared
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red. The brightness of blue or red depended on the degree of asynchrony.
The objective of the participants was to maintain the color of the buttons
dark.

The three implemented and studied fixation-detection algorithms were:

(i) Velocity-based (VEL). If the distance between two consecutive gaze
points is smaller than 1.2° of visual angle (=50 pixels), a fixation is re-
ported, otherwise a saccade is reported. In that case, fixation-detection
latency is 16.6 ms.

(ii) Dispersion-based (DISP). The centroid of the last the gaze points cor-
responding to 100 ms, is computed. If the distance of all these points is
smaller than 1.2° of visual angle (=50 pixels), a fixation is reported, oth-
erwise a saccade is reported. In that case the fixation-detection latency is
100 ms.

(iii) Dispersion-based of varying time window (VARDISP). In that case the
number of gaze points contributing in the calculation of the dispersion is
dependent on the amplitude of the saccadic movement, in such a way that
the time required to report a fixation from the moment a saccade starts is
the same for all amplitudes of saccade movement. Equation 3.1 was used
to compute the total fixation-detection amplitude. In specific, the fixation-
detection time was computed using the following formula:

FizationTime = 140 — (2.7 - Visual Angle 4 23)(ms) (3.3)

The value of 140 ms was selected having in mind that the algorithms should
introduce the same amount of latency as the dispersion-based algorithm for
the low-amplitude saccades performed in the experiment. According to this
formula, the fixation-detection latency introduced by the algorithm reduces
linearly with the amplitude of the saccadic movement. Fixation time value
is computed for every new gaze point received from the eye-tracker. The
Visual angle corresponds to the angular distance of the current gaze point
from the smoothed gaze coordinates. The implemented VARDISP algo-
rithm introduces 100, 66.4 and 49.8 ms fixation-detection latency for each
of the 9.2°, 17.9° and 25.8° visual angles respectively.

The overall variance of asynchrony across all 7 subjects, algorithms and sac-
cade amplitudes was computed and asynchronies with absolute values more
that two times the variance were excluded as outliers. Additionally, all gaze
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data were stored in a cylindrical buffer along with a timestamp. The aver-
age frame-rate of the last 20 gaze-data received from the eye-tracker server
was computed for each recorded instance of the experiment. If this value
was more than 32 Hz, the instance was excluded from the analysis. Any
frame-rate lower than 60Hz would be a result of lost gaze frames due to bad
tracking or inefficient connection of the eye-tracker. We assumed that such
a behavior would make the system less responsive, and this might affect the
recorded asynchronies. After applying both data-exclusion criteria, in total
9% of all samples were excluded as outliers. For each saccadic amplitude
both the left-right and the right-left eye-movement were taken into account.

At the end of the session, subject were asked which was the algorithm that
in their opinion would allow better temporal accuracy.

3.4.3 Results

Figure 3.6 shows the average asynchrony and standard error across all sub-
jects, for all three tested fixation-detection algorithms.

An ANOVA was performed for all 3 saccadic amplitudes comparing the
VARDISP algorithm with VEL algorithm and DISP algorithm. In the case
of the 9.2° saccadic amplitude, no statistically significant differences be-
tween the mean asynchronies were detected (VARDISP vs VEL p-value
= 0.27, VARDISP vs DISP p-value = 0.93). In the case of the 17.9°
saccadic amplitude, statistically significant differences were found between
mean asynchronies of the VARDISP and VEL algorithms (p-value = 0.05),
while no statistically significant differences were found between the mean
asynchronies of VARDISP and DISP (p-value = 0.87). In the case of the
25.9° saccadic amplitude, statistically significant differences were found be-
tween mean asynchronies of the VARDISP and DISP algorithms (p-value
= 0.003), while no statistically significant differences were found between
the mean asynchronies of VARDISP and VEL (p-value = 0.29).

All participants declared that they preferred the VEL algorithm. Most
subject agreed that although indeed they tended to play earlier when using
this algorithm, they liked the fact that the algorithm was more responsive.

3.4.4 Discussion

The above results make sense if we consider that the behavior the VARDISP
algorithm is similar to that of the VEL algorithm for short saccadic move-
ments and similar to the DISP algorithm for long saccadic movements. In
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Figure 3.6: Average asynchrony and standard error across all subjects, for all
three tested fixation-detection algorithms.

the case of the low-amplitude saccades (9.2° and 17.9° of visual angle) the
proposed VARDISP algorithm has mean asynchrony similar to the DISP
algorithm and both algorithms perform better than the VEL algorithm.
An explanation for that could be that saccadic movements of small am-
plitude are short in time. Introducing latency before triggering an action
reduces the absolute value of the asynchrony. Similar results were reported
by Hornof and Vessey (2011), were in the case of 12° of visual angle, the
dispersion-based algorithm (introducing 100 ms of detection latency) per-
formed better saccade-detection algorithms (introducing 16.6 ms of detec-
tion latency).

Nevertheless, in the case of 25.9° of visual angle saccadic movements, the
DISP algorithm’s mean asynchrony is +23.5 ms. This can be explained by
the fact that long saccadic movements last longer. In that case, reducing
the detection latency improves the mean temporal accuracy.

The VEL algorithm gives the best mean temporal accuracy for the 25.9°
of visual angle saccadic movement, when compared to the other two algo-
rithms. Nevertheless, in the case of 9.2° and 17.9° of visual angle, it gives
the highest negative asynchrony. Although the DISPVAR, in the case of the
25.9° of visual angle, introduces 34 ms more detection latency than the VEL
algorithm, its mean asynchrony is 11 ms less than the mean asynchrony of
the VEL algorithm. Although this difference is not statistically significant
(p-value=0.29), a possible explanation might be that the subjects might
expect higher latency (as in the case of smaller saccade amplitudes) and
thus might choose to start the saccade earlier.

Although introducing varying fixation-detection latency seems to improve
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the overall mean temporal over traditional fixation-detection algorithms -
that introduces a steady amount of latency-, it is surprising that subjects
expressed a preference over the velocity-based algorithm. The question that
rises is whether through long-term practice, a low-latency fixation-detection
algorithm would give better temporal accuracy than any sophisticated algo-
rithm that gives better results for novice EyeHarp players. Through prac-
tice, the user might train himself to start short saccadic movements later
than short ones.

3.5 Evaluation of the EyeHarp DMI

The studied described in this section has been published in Frontiers in
Psychology (Vamvakousis and Ramirez (2016)).

O’Modhrain (2011) proposed that a DMI can be evaluated from the per-
spective of (i) the audience, (ii) the performer, (iii) the designer and (iv) the
manufacturer. In this evaluation process we evaluate the proposed interface
from the perspective of the audience and the performer.

3.5.1 Audience Perspective

Transparency describes the level to which a performer or spectator can un-
derstand the relationship between the input (gesture) and output (sound).
According to Hunt et al. (2002) and Arfib et al. (2005), an instrument’s ca-
pability for expressive performance is positively correlated to its degree of
transparency, i.e. how clear is the mapping between the gestures of the per-
former and the sound produced by the instrument. Unlike traditional mu-
sical instruments, in DMIs the way the performer’s gestures produce sound
might not be physically evident to the audience. Schloss (2002) suggests
that the lack of an obvious connection between cause and effect dramati-
cally affects the way a performance is perceived by the audience. According
to Schloss, providing visual cues that aim to reestablish the connection be-
tween cause and effect is a key component in making a DMI performance
convincing and effective.

Reeves et al. (2005) proposed an evaluation of DMIs based on audiences
perception of the relationship between input manipulations and audio out-
put. They characterize a performance with low input and output compre-
hension as “secretive”, one with low input and high output comprehension
as “magical”, one with high input and low output as “suspenseful”, and
one with high input and output as “expressive”. Barbosa and Calegario
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(2012) extended Reeves’s classification and proposed 5 different aspects to
be considered in building the “interaction model” of a DMI: (i) The cause
comprehension refers to how clear the available input gestures are. (ii) The
effect comprehension refers to how clear the controlled parameters are. (iii)
The mapping comprehension refers to how clear is the relation between
user’s actions and the resulting sound. (iv) The intention comprehension
refers to what degree the system allows the user to express his musical in-
tentions. (v) The error comprehension refers to whether the possible errors
in the performance were noticeable.

A concert was organized at the concert hall of Universitat Pompeu Fabra.
The performer had been practicing the EyeHarp for a period of 10 weeks,
playing 3 times a week. Every practice session lasted for approximately 20
minutes. The concert consisted of two parts. In the first part the EyeHarp
player performed a piece composed by him for EyeHarp solo performance
and in the second he performed along with two guitar players and a flute
player in a jam session. One of the eyes of the performer was shown at
the center of the screen and the coordinates of his gaze were visualized by
a small cross. A recorded video of the performance'® was then shown to
a group of 31 people, none of whom was familiar with the EyeHarp. All
participants reported at least a basic level in playing a musical instrument.
Before showing the video performance, the audience was informed that the
EyeHarp is a Gaze-Controlled digital musical instrument that consists of
two different layers allowing the user to construct chords and arpeggios,
control the harmony and play melodies. After having watched the video,
the participants responded to a questionnaire. The questionnaire included
questions intended to identify the profile of the listener (age, sex, music ed-
ucation, familiarity with DMIs and eye tracking technology) and questions
exploring the evaluation criteria proposed by Barbosa and Calegario (2012).
All responses were given in the form of linear scale from 1 to 5. Thirty-
one people (6 women) of average age 30.5 years (standard deviation 5.8)
responded to the questionnaire. Procedures were positively evaluated by
the Parc de Salut MAR - Clinical Research Ethics Committee, Barcelona,
Spain, under the reference number: 2013/5459/1. Participants responded
questions for 6 evaluation criteria:

e Cause comprehension: were the available input gestures clear? (1:
not at all. 5: very clear)

13 Available online at https://youtu.be/dS5QkIgKONY


https://youtu.be/dS5QkIgK0NY

60 GAZE-CONTROLLED MUSIC INTERFACES

e Effect comprehension: were the available control parameters clear?
(1: not at all. 5: very clear)

e Mapping comprehension: was the connection between the input ges-
tures and the control parameters clear? (1: not at all. 5: very clear)

e Intention comprehension: how well did the system allow the user to
express his musical intentions? (1: not at all. 5: very well)

e Error comprehension: if there had been errors in the performance,
would they have been noticeable? (1: not at all. 5: very noticeable)

e Enjoyment: how much did you enjoy the performance? (1: not at all.
5: a lot)

3.5.2 Performer Perspective
Quantitative Evaluation

The performer perspective evaluation was carried out with written informed
consent from eight participants in accordance with the Declaration of Helsinki.
Procedures were positively evaluated by the Parc de Salut MAR - Clinical
Research Ethics Committee, Barcelona, Spain, under the reference number:
2013/5459/1. Participants (7 male, 1 female) with mean age of 34 years
(SD 6.7) participated in a single-session quantitative evaluation task. All
participants had some musical instrument playing experience. The quanti-
tative evaluation consisted of a set of tasks using both the step sequencer
and melody layer. Apart from one subject, no participant had previous
experience with the EyeHarp DMI.

The Eyetribe low-cost commercial eye-tracker was used for acquiring the
raw gaze data. Participants were comfortably seated at approximately 60
cm away from a 15.6 inches laptop screen placed at eyes level. All par-
ticipants calibrated with 9 calibration points and 800 ms of sample and
transition time. All participants achieved a 5-star calibration quality in
the Eyetribe calibration software (expected visual angle accuracy = 0.5°)

A set of M-Audio AV40 self-amplified speakers were connected to the
laptop audio output. The ASIO4ALL low latency driver was used, provid-
ing an audio output latency of 7 ms. The EyeHarp application was send-
ing MIDI messages through loopBel virtual MIDI port to Reaper Digital
Audio Workstation (DAW)', running a piano sound module for the Step

Mhttp://www.reaper.fm/, last accessed on 16/3/2015


http://www.reaper.fm/

3.5. EVALUATION OF THE EYEHARP DMI 61

Sequencer layer and a clarinet sound module for the Melody layer. Gaze
data were recorded in the EyeHarp application, whereas MIDI data were
recorded in the Reaper DAW.

Step Sequencer layer evaluation The step sequencer layer evaluation
task consisted of constructing arpeggios with varying number of buttons
in the step sequencer grid. All arpeggios were constructed three times.
The first time the gaze pointer was hidden and no magnification method
was applied (basic method). The second time the gaze pointer appeared
along with additional focus point (gaze feedback method). The third time
the gaze pointer was hidden and the described magnification method was
applied (magnification method). In all cases when the gaze was detected
inside a button, the fixation point was turning green. Figure 6 shows the 3
different arpeggios the participants were asked to construct in each of the 3
tasks. In the first task the grid size was 8x8, in the second 12x12 and in the
third 16x16. In all cases, the participants were asked to correct all possible
mistakes. The time to complete each task was measured.

Melody layer evaluation Four different tasks of increasing difficulty
were designed. Users practiced for about 2 minutes before recording 3 rep-
etitions of each task. At the beginning of each task an arpeggio was con-
structed in the step sequencer layer that served as a metronome. Figure 7
shows the melodies the participants were asked to perform for each task: a
scale in both directions, a scale with repeated notes, “twinkle twinkle little
star”, and a music exercise with a melody and a chord progression.

Qualitative Evaluation

After the quantitative evaluation session participants filled in a question-
naire. Participants responded (in a linear scale from 1 to 5) to the following
questions:

e How much previous practice and training does the performer need
for performing with the instrument, when compared to a traditional
musical instrument? (1: no practice required. 5: extensive practice
required)

e How much control does the performer have on the musical output?
(1: restricted (equivalent to a DJ). 5: extensive musical control that
allows expressive performance.



62 GAZE-CONTROLLED MUSIC INTERFACES

e How much real-time feedback (e.g. visual, auditory) does the user
receive from the system? (1: low feedback. 5: high, multimodal
feedback)

e How tiring is it to play music with your eyes when compared to the
hands? (1: not tiring at all. 5: very tiring)

e Is it hard to play in tempo with your eyes when compared to hands?
(1: equally hard. 5: much harder.)

e Which approach between the magnification lens and the fixation points
do you consider more user-friendly? (1: I prefer the fixation points.
5: I prefer the magnification lens)

All questions were verbally explained to the participants. If anything seemed
unclear to the participants they were free to ask for questions, which were
clarified orally. In the first question, it was orally clarified that by the
phrase “performing with the instrument” it is meant to achieve some basic,
but rewarding interaction with the instrument. By the response “l: no
practice required” we refer to the practice required to achieve a rewarding
performance in a gaming music interface, like the guitar hero of Microsoft
Xbox. By the response “5: extensive practice”, we refer to the practice
required to achieve a rewarding performance in a musical instrument that
is considered to be difficult to learn, like the violin. Similarly, regarding the
second question, it was clarified that by the response “5: extensive musical
control that allows expressive performance” we refer to the control offered
by an instrument like the violin. In question 4, it was orally clarified that
users should respond “1: not tiring at all” if they consider it equally tiring
as playing with the hands.

3.5.3 Results
Audience Perspective

Figure 8 shows the average responses and the corresponding standard de-
viation across all participants. The responses of the audience can be sum-
marised as follows: The available input gestures were clear (average = 3.9,
o = 0.87). The available control parameters were clear (average = 3.8, o
= 1.04). The connection between them was clear (average = 3.7, o= 1.34).
The system allowed the user express his musical intention very well (average
= 4.2, 0 = 0.76). Errors in the performance would have been noticeable
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(average = 3.1, 0 = 1.06). Finally the audience enjoyed the performance a
lot (average = 4.3, 0 = 0.84).

Performer Perspective

Step Sequencer Layer Figure 9 shows the average number of selections
per minute across the 7 participants with no previous experience with the
interface, for each task. The results obtained by the experienced user (M32)
are shown separately at the same graph. The average number of selections
per minute value is computed by dividing the number of required selections
in each task by the time to complete the task.

In all tasks the experienced user performed about 2 to 3 times faster than
the average speed across the native users. The best average performance
(selections per minute) in the case of the 12x12 and 16x16 grid was achieved
with the gaze feedback method. In the case of the 8x8 grid task, it was
achieved with the basic feedback method. The lowest standard deviation
value was achieved in all tasks with the magnification method.

Melody Layer Figure 10 shows for each task and participant the per-
centage values of the notes played according to temporal accuracy. These
values sum 100%, as they correspond to the temporal accuracy of played
notes along with the omitted notes. In dark brown appears the percent-
age of accidentally played notes and in light brown appears the number of
pauses made in each task. As pauses we refer to the cases where the partic-
ipants stopped for one or more bars, in order to continue playing in tempo.
The percentages are calculated by dividing the number of each value with
the total number of selections that should be made in the task. The last
column of each task corresponds to the average value across all participants,
excluding the experienced participant. In figure 10, the code number of each
participants was given by considering their sex, age and level of playing mu-
sic in a scale from 1 to 5 (1: not playing any instrument, 5: professional
level). For example user M48_4 is a 48 year old man with semi-professional
level in playing music.

In all tasks the experienced user played around 20% more notes in tempo
than the novice users, performed less accidental notes and no pauses.

Qualitative Evaluation Figure 11 shows the average and standard de-
viation of the responses of the participants in the performer’s evaluation.



64 GAZE-CONTROLLED MUSIC INTERFACES

3.5.4 Discussion

In the present study an evaluation of the proposed digital musical instru-
ment has been conducted. This evaluation has been conducted both from
the audience and the performer perspective. According to the audience’s
evaluation responses, the EyeHarp digital music instrument offers a trans-
parent correspondence between input gestures and the produced sound,
i.e. participants in the study average rating of their understanding of the
cause (cause comprehension), the effect (effect comprehension), and gesture-
sound correspondence (mapping comprehension) was greater than 3.5 out
of 5 (see Figure 8). This denotes a high level of transparency and compre-
hensibility in the actions and their relationship with the produced sound of
the proposed music instrument. According to Hunt et al. (2002) and Arfib
et al. (2005), these properties (transparency and comprehensibility) are pos-
itively correlated with the capacity of an instrument to allow the musician
to produce expressive performances, and to engage the audience in the per-
formances. Nevertheless, the obtained standard deviation for the gesture-
sound correspondence (mapping comprehension) evaluation (SD=1.33) indi-
cates that some participants did not fully understand this correspondence.
The standard deviation was smaller for the case of the cause and effect
comprehension. Even though the EyeHarp being a diatonic DMI in which
dissonant notes are very seldom produced, average audience evaluation of
the error comprehension was high (i.e. 3.1). This again indicates a good
understanding of the performer actions and corresponding produced music.
All audience participants declared that they enjoyed the performance (av-
erage 4.3 out of 5). Most participants agreed that the interface allowed the
performer to express his musical intentions (average 4.2 out of 5.0) which
may be interpreted as an indication that the EyeHarp can allow the user to
produce expressive performances.

Regarding the results of the evaluation from the performer’s perspective, in
the first task of the qualitative evaluation of the Step Sequencer Layer (i.e.
the 8x8 grid task) it was achieved the best average time per selection. The
resulting average time for the case of the 12x12 grid was almost double of
the average time for the 8x8 grid task. This was expected, as small targets
are harder to select. However, in the case of the 16x16 grid task the average
selection time was less than the the average for the 12x12 grid task. This
can be explained by the fact that most of the notes in the 16x16 grid task
were adjacent notes, which makes the visual search task easier.

The 8x8 grid arpeggio task can be compared to typical dwell-time eye-
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typing task, where the notes are replaced by characters. As seen in figure
9, the average number of notes per minute in the 8x8 grid is close to the
average number of characters per minute in dwell-time typing systems (17
chars/min according to Hansen et al. (2003)).

In the case of the 8x8 grid the gaze feedback method produced the same
results as the basic method, where the only visual feedback to the user is
the brightening of the focus point at the center of the attended button.
This result may be explained by considering the size of the 8x8 buttons:
given their big size there was no difference with the two methods. On
the contrary, in the case of the 12x12 and 16x16 grid, when the detected
gaze coordinates were given as visual feedback, along with additional focus
points, the performance (number of selected buttons per minute) increased
with the gaze feedback method.

The experienced user participating in the study completed all the tasks of
the step sequencer on average 2.8 times faster than the rest of the users.
The difference is even higher in the case of the gaze feedback method. As
concluded by Majaranta and Bulling (2014), if the user tries to look at the
detected gaze coordinates, he may end up chasing the detected point, as it
always is a few pixels away from the point he/she is looking at. It requires
practice to learn how to take advantage of the visual feedback provided by
the cursor in order to compensate for small calibration errors by adjusting
the gaze point accordingly to bring the cursor onto an object. The ex-
perienced user clearly took more advantage of the gaze feedback than the
non-experienced users. The difference in performance between the experi-
enced user and the non-experienced ones may show that the EyeHarp is,
similarly to traditional music instruments, an instrument in which practice
play an important role.

The magnification method always performed worse than the gaze feedback
method and only in the case of the 12x12 grid the obtained results were
better than those obtained by the basic selection method. However, the
magnification method always showed the lowest standard deviation on the
number of selections per minute. This might explain why, as shown in figure
11, the users show a preference for the magnification method over the gaze
feedback method. The gaze feedback method might not be appropriate for
novice users.

All in all, the evaluation of the step sequencer layer, confirmed all results
reported by similar gaze controlled systems in which selecting targets using
dwell-time selection method is required (Hansen et al. (2003); Majaranta
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and Rih (2007)): (i) There is a steep learning curve in gaze interaction, (ii)
magnification methods help in selecting small targets, and (iii) gaze visual
feedback improves the performance of experienced users.

Figure 10 clearly shows that in the melody layer the experienced user (M32)
achieves better temporal accuracy than any other user. This is an indication
that there is a learning process involved for adapting to use the melody layer.
Nevertheless the number of accidental notes produced by the experienced
user in tasks 2 and 3 are close to the average values across novice users.
This indicates that the accidental notes are mainly caused by poor tracking
accuracy, and not by the skill of the performer.

The number of omitted notes is higher in the tasks that require playing
consecutively the same note (tasks 2 and 3). This is due to the behavior
of the button responsible for note repetition: if a fixation is performed in
the inner area of the pie but outside the “repeat note” button, the button
disappears. In addition, due to noisy gaze tracking data, the user may be
focusing on the center of the repeat button but the initial detected gaze
point may fall outside the button area.

Although the tasks were designed with increasing difficulty, the average
performance in the first task was similar to the average performance in the
last task. This may be due to the training effect which compensates the
different difficulty levels of the tasks. The last task is the most demanding,
as it requires changing the chords along with the melody. A high number
of accidental notes were observed during this task (as shown in Figure 10).
This is due to he fact that the the positions of the chords and the notes are
placed diametrically opposite in the interface.

The participants in the performer’s perspective evaluation responded that
the practice required to play the EyeHarp is comparable to the practice
required to play a traditional musical instrument of average difficulty (3 out
of 5 on average). The same response was given on average on the question
about the the control the user has over the musical output (average value
3.1 out of 5), meaning that the control over the output is equivalent to that
of a musical instrument that offers average control over the musical output.

The real-time feedback was rated high by most performers (average 3.9 out
of 5). Most performers agree that playing music with the eyes is more tiring
than playing with the hands (average 3.6 out of 5). Playing in tempo with
the eyes is considered to be harder than playing with the hands (3.2 out
of 5). Summarising the above responses, we could conclude that perform-
ing music with the eyes is more difficult that performing with traditional
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means. Nevertheless, learning the EyeHarp gaze-controlled musical instru-
ment wouldn’t be harder than learning a traditional musical instrument.

The performer perspective evaluation was conducted with people with ex-
perience in playing musical instruments and no disabilities. In order to
evaluate the EyeHarp in a more realistic setting, we would have required to
test it with locked-in syndrome patients. This, we believe, should be done
in the future, and we have started looking for possible participants.

As summary, we have presented and evaluated the EyaHarp, a new gaze-
controlled digital musical instrument. The system was evaluated from the
performer and audience perspective. The obtained results indicate that,
similarly to traditional music instruments, the proposed digital musical in-
strument allows to produce expressive performances both from the per-
former and audience perspective. The participants in the evaluation from
the perspective of the performer responded that the practice required to
master the EyeHarp DMI is similar to the average practice required to
master a traditional musical instrument of average difficulty. The steep
learning curve of the instrument is also reflected on the quantitative data,
when comparing the performances of the experienced user with the novice
users.

The cost of eye-tracking technology decreases every year. The last 5 years
the cost of commercial eye-trackers has been reduced more than 10 times.
Eye-tracking is slowly being incorporated in common place laptops, tablets
and mobile phones. Such devices would allow many users, including users
with motor disabilities, to have access to gaze-controlled applications, in-
cluding the EyeHarp DMI.

The pEYE interface in the melody layer, provides a solution to the Mida’s
touch problem making it possible to play melodies in-tempo when the gaze
of the user is used as the only input. If the physical abilities of the user
allow it, other selection techniques like blinking, using physical buttons or
blowing could be considered. If such selection methods were utilized, the
user would be able to freely visually search the screen without triggering any
undesired notes. This would allow increasing the number of available notes
on the screen, as the central (neutral) area of the melody layer wouldn’t be
necessary. As future work, it would be interesting to compare the perfor-
mance -in terms of overall usability, temporal accuracy and speed- of such
an interface with the current version of the EyeHarp. The advantage of the
screen button selection method may be that just one action is required to
play a note: looking at the selection area. This might allow playing faster
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than in the case of using an independent clicking method which requires
two actions (i.e. looking at the selection area and clicking). On the other
hand, using an independent clicking method might allow placing more notes
on the screen and might allow better temporal accuracy.

Probably the main target group of the proposed DMI is that of people
diagnosed with Amyotrophic Lateral Sclerosis (ALS). ALS is a progres-
sive neurodegenerative disease that affects nerve cells in the brain and the
spinal cord. Individuals affected by the disorder may ultimately lose the
ability to initiate and control all voluntary movements. Nevertheless, mus-
cles responsible for eye movement are usually spared until the final stages
of the disorder (LAWYER (1953); Kiernan et al. (2011)). A large number
of studies have shown that music playing provides a variety of benefits (e.g.
cognitive, psychological) (e.g. Hays and Minichiello (2005)). The EyeHarp
DMI gives the opportunity to ALS patients to have access to such benefits.
This could have a big positive impact in the quality of life of ALS patients
-musicians or not-, by providing them the possibility of playing a musical
instrument.

3.6 Conclusions

In this section we have presented the EyeHarp, a new gaze-controlled digi-
tal musical instrument. Initially we evaluated the temporal accuracy when
playing melodies using a simple dispersion-based algorithm. The finding
propose that the asynchrony is correlated with the distance between con-
secutive fixations.

Driven by this indication we proposed a new fixation detection algorithm
and we compared it in a study involving 7 healthy subjects. The new
algorithm (dispersion-based of varying time window) was compared against
a dispersion-based and a velocity based algorithm. The results indicate that
the new proposed algorithm provides better overall temporal accuracy than
commonly used fixation detection-algorithms.

Finally we evaluated EyeHarp DMI from the audience’s and the performer’s
perspective. The responses of the audience indicate a high level of trans-
parency and comprehensibility in the actions and their relationship with the
produced sound of the proposed music instrument. According to Hunt et al.
(2002); Arfib et al. (2005) ,these properties are positively correlated with
the with the capacity of an instrument to allow expressive performances.
Regarding the quantitative evaluation performed from performer’s perspec-
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tive, the experienced user performed much better in all tasks. He performed
even better when the gaze feedback selection method was active, in which
the user is aware of the detected gaze point. In average, participants in
the evaluation from the performer’s perspective think that the practice re-
quired to play the EyeHarp is comparable to the practice required to play a
traditional musical instrument of average difficulty. The same response was
given in the question about the control the user has over the musical output.
In summary we could conclude that performing with the EyeHarp is more
difficult than performing with traditional means. Nevertheless, learning the
EyeHarp wouldn’t be harder than learning a traditional musical instrument.
The steep learning curve of the instrument is also reflected on the quantita-
tive data, when comparing the performances of the experienced user with
the novice users.






CHAPTER 4

Brain-Controlled Music
Interfaces

4.1 Introduction

An interface in which the brain activity is used as input, is called a Brain-
Computer Interface (BCI). In this chapter we will explore ways that might
enhance musical expression using the brain activity as measured by elec-
troencephalography (EEG). Electroencephalography is the most common
technique for measuring brain activity in order to build a BCI for its low
cost and high temporal resolution of a few milliseconds. Other alterna-
tives for measuring brain activity include near-infrared systems (fNIR) (e.g.
Coyle et al. (2007)), magnetoencephalography (MEG) (e.g. Mellinger et al.
(2007) and functional magnetic resonance imaging (fMRI) (e.g. Sitaram
et al. (2007). fMRI and MEG require expensive, heavy and unportable
equipment. fNIR on the other hand is cheaper and more compact. As
both fNIR and fMRI measure the cerebral blood flow, they have poor tem-
poral resolution. Extensive BCIs reviews can be found in Wolpaw et al.
(2002), McFarland and Wolpaw (2011), Edlinger et al. (2012) and Kaur
et al. (2012).

The EEG signal consists of a number of EEG channel. Each channel rep-
resents the difference in voltage between two electrodes placed on the scalp
of the subject. Normally the electrodes are places in standard positions de-
fined by the international 10-20 system (Niedermeyer and da Silva (2005)).
The main EEG device used in this PhD was the Emotiv Epoc headset.
Figure 4.1 shows the labels assigned to each electrode position, with the
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Figure 4.1: The international 1020 system. The locations provided by the Emotiv
Epoc are highlighted.

positions provided by Emotiv Epoc highlighted.

Zander et al. (2010) proposed three distinct BCI categories, depending on
the way the system derives its output. (i) An active BCI derives its out-
puts from brain activity which is directly consciously controlled by the user,
independently from external events, for controlling an application. (ii) A
reactive BCI derives its outputs from brain activity arising in reaction to
external stimulation, which is indirectly modulated by the user for control-
ling an application. (ii) A passive BCI derives its outputs from arbitrary
brain activity without the purpose of voluntary control, for enriching a
human-computer interaction with implicit information.

Another distinction we can make is based on the underlying neuromecha-
nism:

Event Related Potentials An event-related potential (ERP) is the mea-
sured brain response that is the direct result of a specific sensory, cognitive,
or motor event (Nunez and Srinivasan (2006)). It is one of the most robust
ways to built a BCIL. The most common example is the P300 speller. The
user thinks of a specific letter he wants to write and looks at a matrix of
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flashing letters. About 300ms after the desired letter flashes, a positive pick
appears in the EEG signal. P300 evoked potentials appear with any kind
of stimulus, including auditory events. Other evoked potentials include Vi-
sual Evoked Potentials or Error Related Negativity. Event related potential
BClIs are reactive BCls.

Feedback based: Slow Cortical Potentials (SCP), Sensorimotor
Rhythm (SMR) BCIs is a skill that users can practice. The brain it-
self has a significant plasticity in acquiring new skills. When appropriate
feedback is given, the user can be trained to consciously control the ex-
tracted EEG features. SCP and SMR manipulation are the most successful
examples of feedback based BCls.

Slow Cortical Potentials are potential shifts in the EEG signal of 2 Hz or
less. It is not localized in the cortex. In general a negative shift is a sign of
readiness/mobilization, while positive shift indicates an ongoing cognitive
task or inhibition of neuronal activityHinterberger et al. (2004a). In every
day life negativity could appear when they call us by name (readiness)
and positivity when we try to understand what they are telling us. The
Thought Translation device proposed by Birbaumer et al. (2000) is based
on SCP manipulation and is probably the most robust and simple current
active BCI. SMR (or mu rhythm) manipulation is achieved by measuring the
activity over the sensorimotor cortex. Both SMR and SCP can be achieved
with auditory or visual feedback (Nijboer et al. (2008b)).

Motor Imagery By measuring the activity of separate regions on the
sensorimotor cortex, and after applying the appropriate spatial filters, ex-
tracting the appropriate features a classifier is trained to distinguish between
a number of imagery movements. For example in a hybrid gaze-brain inter-
face proposed by Lee et al. (2010) the user “grabs” the items he is focuses
on.

More invasive techniques lead to more robust and accurate interfaces. In a
study conducted by Hochberg et al. (2012), a woman was able to control a
robotic arm in a broad space to grab a bottle and drink. To achieve this,
a microelectrode array was attached on a small, local population of motor
cortex (MI) neurons.

Response to mental tasks Users are instructed to perform a mental
task, like solving a equation or performing music imageryBlokland (2009).
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Then following a similar procedure described in motor imagery, a classifier
is trained to distinguish between the given mental states.

4.1.1 State of the Art in Brain Computer Music Interfaces

The idea of producing sound using the electro-physiological measurements
of the brain activity, ages back to 1934, when Adrian E.D. and Matthews
B.H.C E.D. and B.H.C. (1934) sonified the signal coming from “electrodes
applied to the head” while studying the Berger rhythm '. The most straight-
forward way of producing sound or music through the EEG signal is by
mapping features extracted from the EEG signal to sound or music param-
eters. EEG sonification is a way of representing mental states using auditory
output. The application of different sonifications vary (an extensive review
was made by Véljamée et al. (2013)). (i) Monitoring applications inform
a third person about the state of the subject (e.g. during surgery). (ii) A
similar offline scenario is offered by diagnostic applications (e.g. sonifica-
tion of sleep states). (iii) Neurofeedback applications inform the user about
his own mental state, normally aiming to achieve a specific state of mind
(e.g. meditation or concentration). (iv) Brain-Computer Interface feedback
and communication applications. As an example, Teitelbaum (1976) used
the alpha waves (EEG signal band-passed to the 8-13 Hz range) and other
biological signals to control an electronic synthesizer.

The first use of EEG for a musical composition was conducted by Alvin
Lucier, in 1965 performing the musical piece Music for Solo Performer.
The amplified EEG signal was driven to loudspeakers. Various percussions
attached to the loudspeakers would resonate producing the first artistic
EEG-sonification (Lucier (1976)). Most sonification approaches map the
power of different frequency bands of the EEG into control parameters.
Table 4.1.1 shows the mental association related to different power bands.
An example of such a sonification was presented by Hinterberger and Baier
(2005), in which each of 6 frequency bands of the EEG signal is assigned an
instrument of a MIDI device. The EEG signal from 1 (Cz - basic setup) or
3 electrodes (Cz, C3 and C4) is filtered into various frequency bands result-
ing in 17 control channels. These channels controlled either the pitch or the
volume of 11 midi instruments, resulting in a “Orchestral Sonification”. Ten

L«g rhythmic oscillation of potential at a frequency of 10 cycles per second .

detected in the human subject by electrodes applied to the head . . . present when the
subject lies quietly with eyes closed and disappearing when attention is fully occupied”
(Hans Berger, 1929)
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EEG Rhythm Frequency Band  Mental Association

Delta 6 <= 4Hz Sleep

Theta 4Hz <6 < 8Hz deep meditation, deep relaxation, drowsiness
Alpha 8Hz <a < 13Hz  Relaxed wakefulness, closed eyes

Beta 13Hz <B < 30Hz Awake, alertness, mental activity

Gamma ~v >30 Hyper-awareness, stress, anxiety

Table 4.1: Bands of EEG activity and associated mental states for a healthy
young adult

subjects were instructed to try to focus on different sounds of the orches-
tra and the difference of the mean value (t-test) for each input parameter
was computed. This difference was significant in the case of some subjects
-especially in the alpha power region-, indicating that some subjects were
able to control these parameters by focusing in different instruments, with-
out any training.

Wu et al. (2009) attempted one more direct EEG to midi sonification where
the pitch, duration and intensity of the piano notes are controlled by simple
EEG features.

The notion of feedback might be crucial in a BCI. It has been proven than
when appropriate feedback is given, subjects are able to control their Slow
Cortical Potentials. Thilo Hinterberger et al. in Hinterberger et al. (2004b)
examined whether SCP regulation can be achieved when auditory feed-
back is given. Audio feedback was compared with visual and combined
(audio+visual) feedback. Fifty-four different subject were trained over 3
sessions to control their SCP, 18 in each category (visual, auditory, com-
bined). Although the subjects were able to better control their SCP when
visual feedback was given, the authors conclude that SCP self regulation is
feasible with auditory feedback as well.

In Nijboer et al. (2008b) visual and auditory feedback were compared for
controlling the sensorimotor rhythms. SMR desynchronization (non-motor
imagery) produced a bongo sound, while SMR synchronization produced
a harp sound. 16 participants were divided in two groups of auditory and
visual feedback. After three training sessions both groups achieved accuracy
more than 70% in choosing two different visual or auditory targets.

Another example of direct EEG sonification was performed by Sebastian
Maella et al Mealla et al. (2011). Groups of two people tried to reproduce
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a pre-recorded musical piece by interacting with the Reactable -a musical
tabletop interface- and electrophysiological measurements of one of them.
Heart beat was controlling the tempo on the Reactable interface (Jorda
(2010)) while the alpha-theta bands (4-12Hz) of one dry electrode placed
on the frontal lobe was driving the a direct sonification (in the audible sound
frequency spectrum) of a sound puck on the Reactable. Both users were able
to manipulate the pucks with their hands. In 5 out of 16 groups, the EEG
data were pre-recorded (placebo group). The subjects in the non-placebo
group reported more confidence and control during the interaction process
supporting the feasibility of physiology-based interaction in multi-modal
interfaces for collaborative music.

Although there is evidence that even with direct sonification approaches,
when appropriate auditory biofeedback is given a user could be trained to
control a auditory BCI, this might be particularly difficult to accomplish.
For that reason many researchers are trying non-direct EEG sonification,
based on various EEG potentials and trying higher-level mappings.

Ben Swift et. al in Swift et al. (2007) (2007) describes a Mind Attention
Interface based on detecting the functional connectivity ? that appears dur-
ing musical processing. The amount of measured functional connectivity is
a measurement of user’s attention and affects navigation in a space of Har-
monic Triads, generating a chord progression.

E. Miranda in Miranda et al. (2003) developed one more interface based
on the user’ s attention - the “brain soloist”-. This could be described as
a music imagery driven interface. In this EEKG BCI, the system is initially
trained to distinguish between two mental states: passive and active listen-
ing (whether the user sings the tune mentally or not). The system consisted
of an 128-channel Geodesic System. After applying appropriate Laplace Fil-
tering, an autoregressive algorithm was utilized to extract the features that
trained a neural network. The achieved accuracy was reported to be more
than 95% within 3 subjects. The performer listens to a steady rhythmic
part and riffs are played sporadically. After one riff is played the system
checks if active listening is detected. In that case a variation of this riff is
generated and played back. Otherwise the same riff is played unchanged
until active listening is detected.

2Functional connectivity describes the task-dependent connections between distinct
brain functional regions. It can be detected by observing synchronous activity in different
regions of the brain.
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Blokland (2009) explores the feasibility of a BCI based on music imaginary.
In such a BCI the system first has to be trained to distinguish whether the
user is internally listening to a certain melody. Using the Biosemi Active-2
64 electrodes system and a linear logistic regression classifier just a poor
62% maximum classification rate was achieved.

In 2005 Miranda et. al developed a system where EEG patterns control
music generating algorithms Miranda and Boskamp (2005). The generative
component of the system employs artificial intelligence techniques to imitate
different musical styles. In particular the demonstrated system activates
generative rules of two different musical styles depending on the whether
the system has dominant low or high frequencies components. The tempo
of the composition is controlled by a signal complexity analysis algorithm.
The authors indicate the need of a biofeedback system that would train
the performed to gain control over the biological signals. Later Miranda
et al. (2008) proposed a generative music approach based on constraint
satisfaction techniques. In such a system the rules of classical harmony can
be expressed as mathematical relations between the notes that are expressed
as integers. The system then searches for an acceptable solution that does
not violate any constraint. As a Constraint Satisfaction Problem might
have more than one solution, EEG data could drive the automated music
generation, while the constraints guarantee a melodic outcome.

Makeig et al. (2011) proposes a musical BCI that aims to sonify the emotions
of the performer. The system is trained to distinguish between 5 emotions
that the performer was instructed to feel while listening to a musical parts
and afterwards the performer regenerates these parts by bringing himself in
the desired emotional state.

Examples of P300 based systems, based on visual stimuli, for composing mu-
sic are those presented by Grierson (2008) and Hamadicharef et al. (2010).
In such a system the name of the notes in a musical scale flash on a com-
puter screen, and P300 evoked potentials provoke the intention of the user
to select a note. In a similar way a P300 online step sequencer was pre-
sented by Chew and Caspary (2011). The BCI2000 software was used for
presenting the flashing notes in the sequencer grid and a Stepwise Linear
Discriminant Analysis that comes with the BCI2000 software was utilized
to create the P300 classifier 4.2. Evaluation over 10 participants resulted to
an average accuracy of 86%.
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Figure 4.2: MusEEGk. A P300 based step Sequencer. The left matrix is used
for selecting the notes while the right matrix displays the notes selected

4.2 Motor Imagery

Motor imagery is another mechanism used in BCIs. In this case the user
imagines of moving a part of his body, such as a hand or a leg. This
has been shown to produce increased activity in the region of the motor
cortex at the frequency band 7.5 Hz to 12.5 Hz. This electrical activity
is commonly referred as mu-rhythm. When provided with feedback, users
can be trained to voluntarily control the power of mu-rhythm. The most
typical application is moving a cursor in two dimensions on a computer
screen. This idea was first presented by Wolpaw et al. (1991). Large mu
rhythm amplitude moved the cursor up and low amplitude down. After
several weeks of training, subjects learned to control mu-rhythm quickly and
accurately (hit targets within 3 seconds). Alternatively, auditory feedback
can produce similar results. In a study performed by Hinterberger et al.
(2004a), the frequency and amplitude of the peak of the mu rhythm power
were mapped to different parameters of a sonification through midi. In
specific the amplitude of the mu rhythm was mapped to the amplitude of
the produced sound, and the frequency of the detected mu rhythm peak
was mapped to the pitch of the sound. Five out of ten subjects achieved in
a single session a correct response rate of 60%.

McCreadie et al. (2013) conducted an experiment on 20 participants com-
paring visual with different types of auditory feedback in mu-rhythm manip-
ulation training. The results indicate that stereophonic auditory feedback
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with broadband noise provides the most robust auditory feedback method.
Although with visual feedback the participants achieved more accurate ma-
nipulation of their mu-rhythm, with auditory feedback a positive learning
curve was observed.

The study presented on this section was presented at the Proceedings of the
Fifth International Brain-Computer Interface Meeting 2013 (Vamvakousis
and Ramirez (2013)).

4.2.1 Playing Melodies using mu-rhythm

In a study involving 6 male right-handed subject, the classification accuracy
of real and imagery toes movement over resting state was studied. This
system was then used to move the pitch of a virtual instrument one step up
or down in the ¢ major scale. Results were published in Vamvakousis and
Ramirez (2013).

Continuous feet movement has been reported to cause Event-Related Syn-
chronization (ERS) around the FC3 and FC4 standard positions of the EEG
in the high alpha and low beta band (Pfurtscheller et al. (2006); Jeon et al.
(2011); Wang et al. (2009)).

Materials and Methods Six male right-handed healthy subjects, of av-
erage age 34 years, took part in one real and one imagery movement exper-
iment. Each session consisted of the following steps: Twelve trials (6 move-
ment and 6 non-movement) of 10 seconds each were randomized. When an
arrow pointing upwards appeared on the screen continuous real (in the case
of the real movement session) or imagery (in the case of imagery movement
session) toes movement should be performed for 10 seconds, while if the
arrow pointed downwards they should stay relaxed for 10 seconds. The
subjects were instructed to avoid any unnecessary muscular activity.

The Emotiv Epoc EEG headset was used to capture EEG data. The headset
was placed in a way that the frontal electrodes captured the motor cortex
region. Using OpenVibe software, in an on-line scenario, the signal was
filtered in the 10-17Hz band using a fourth order Butterworth band pass
filter. The data recorder for each subject were used to train an LDA and
a third degree polynomial SVM classifier. A moving 2 seconds window of
hop size 100 ms was applied on each channel and the power of each window
was used as a feature for the classifier. During the recording the sum of the
power of all channels were added and plotted on the screen. During real or
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Figure 4.3: ERS observed in the motor cortex of a subject during real feet move-
ment

imagery toes movement the objective of the participants was to maximize
the displayed power value. The classifiers were trained using different time
intervals within the 10 seconds period of each trial.

The classifiers were trained using different time intervals within the 10 sec-
onds period of each trial.

Results and Discussion Toes movement was observed to cause a gradual
increase of the computed power as opposed to the resting state, as a result
of ERS in the sensorimotor cortex (see figure 4.3). In 4.2 the average 10-
cross validation performance and variance for 6 subjects, for different time
intervals is displayed. Looking at the table we can make the following
observations: (i) The polynomial SVM classifier always outperforms the
LDA classifier. (ii) Mu rhythm synchronization needs some time to develop
both in the case of real and imagery movement. When the last 3 out of
10 seconds are used for the classification, the average SVM 10-fold cross
validation performance is 91.65% in the case of real movement and 85.57%
in the case of imagery movement. The overall performance falls when earlier
intervals are used. This indicated that ERS takes some time to develop.
(iii) Real toes movement resulted in stronger ERS than imagery movement.
Although in the case of 7-10 s window with SVM polynomial classifier the
85.57% average performance indicates that an imagery movement based
interface is feasible.

As a case study a simple musical application was designed, where the last 3
seconds of a 10 seconds movement or non-movement trial were used to con-
trol the contour of a melody. Initially the threshold of an LDA classifier is
computed by asking the user to perform three 10-second long real movement
and non-movement trials. Then every 10s the user performs a movement
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Table 4.2: 10-fold cross validation performance average and variance for 6 subjects
for different time intervals with an LDA and a

Real Movement Imagery Movement
Performance (%) Variance (%) Performance (%) Variance (%)
Time Interval LDA SVM LDA SVM LDA SVM LDA SVM

7-10 87.79 91.65 0.43 036 79.65 85.57 0.81  0.29
5-10 77.95 82.25 0.51  0.84 70.47 75.62 0.41  0.29
2-5 71.17 75.30 1.55 1.31 69.15 74.97 0.82 0.64
0-10 69.31 71.51 1.04 0.8  65.88 69.55 0.12  0.17

or non-movement trial depending on his intention. When movement is de-
tected (value higher than the threshold) the melody moves up while in the
opposite case, it moves down. Preliminary results on one subject indicate
that the contour of the melody is controlled with enough accuracy.

4.3 An emotion estimation method through
EEG signal

Introduction

Though music performances, the performer is expressing emotions. A re-
view on research on communication of emotion in music performance was
made by Juslin (2001). In BCMIs, where the brain activity is recorded, it
is possible to detect emotions (e.g. Chanel et al. (2006); Choppin (2000);
Horlings et al. (2008); Musha et al. (1997); Vourkas et al. (2000). There
have been several approaches to EEG-based emotion detection, but there
is still little consensus about definite conclusions. These emotions can be
used to enhance the expressiveness of a BCMI, or of any music interface.

Alpha and beta wave activity may be used in different ways for detecting
emotional (arousal and valence) states of mind in humans (more details
later). Choppin (2000) propose to use EEG signals for classifying six emo-
tions using neural networks. Choppin’s approach is based on emotional
valence and arousal by characterizing valence, arousal and dominance from
EEG signals. He characterize positive emotions by a high frontal coherence
in alpha, and high right parietal beta power. Higher arousal (excitation)
is characterized by a higher beta power and coherence in the parietal lobe,
plus lower alpha activity, while dominance (strength) of an emotion is char-
acterized as an increase in the beta / alpha activity ratio in the frontal lobe,
plus an increase in beta activity at the parietal lobe.
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Bos (2006) describes an approach to recognize emotion from EEG signals
measured with the Brainquiry EEG PET device. He uses a limited number
of electrodes and trains a linear classifier based on Fishers discriminant anal-
ysis. He considers audio, visual and audiovisual stimuli and trains classifies
for positive/negative, aroused/calm and audio/visual/audiovisual.

Takahashi (2004) uses a headband of three dry electrodes to classify five
emotions (joy, anger, sadness, fear, and relaxation) based on multiple bio-
potential signals (EEG, pulse, and skin conductance). He trains classifiers
using support vector machines and reports the resulting classifying accuracy
both using the whole set of bio-potential signals, and solely based on EEG
signals.

Lin et al. (2010) apply machine-learning techniques to categorize EEG sig-
nals according to subject self-reported emotional states during music listen-
ing. They propose a framework for systematically seeking emotion-specific
EEG features and exploring the accuracy of the classifiers. In particular,
they apply support vector machines to classify four emotional states: joy,
anger, sadness, and pleasure.

In this study, we describe an approach to detecting emotion from electroen-
cephalogram signals measured with a (low-cost) Emotiv EPOC headset. We
present to subjects auditory stimuli from a library of emotion-annotated
sounds and record their response EEG activity. We then filter and process
the signal in order to extract emotion-related features and apply machine
learning techniques to classify emotional states into high/low arousal and
positive/negative valence (e.g. happiness is a state with high arousal and
positive valence, whereas sadness is a state with low arousal and negative
valence). Our approach differs from previous works in that we do not rely in
subject self-reported emotional states during stimuli presentation. Instead,
we use a library of emotion-annotated sounds publicly available for emo-
tional research. Figure 4.4 illustrates the different steps of our approach.

The study described in this section has been published in LNCS (Ramirez
and Vamvakousis (2012)).

4.3.1 Methods

Data Collection

Subjects were instructed to look at a cross in the a computer screen and to
remain seated during the experiment. Subjects listened to selected sounds
from the TADS library of emotion-annotated sounds which is available for
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Figure 4.4: Schematic view of the system.

emotion research (Lang et al. (1999)). Based on the annotations provided
by the stimuli databases, we selected 12 sound stimuli situated in the ex-
tremes on the arousal-valence emotion plane: three positive/aroused, three
positive/calm, three negative/calm, and three negative/aroused. The stim-
uli were selected to be as much as possible on the extremes of the two-
dimensional emotion plane and as unanimous as possible, since we do not
consider self-reporting information to cater for person-dependent deviations.

Initially, the subjects are informed about the experiment procedure and
instructed to follow the usual guidelines during stimuli presentation (e.g.
do not blink or move). Once this was done, 12 sound stimuli are randomly
presented each one for five seconds and a 10 second silent rest is inserted
between stimuli. The purpose of the 10 second silent rests is to set a neutral
emotional state of mind in between stimuli.

Feature Extraction

In EEG signals the alpha (8-12Hz) and beta (12-30Hz) bands are particular
bands of interest in emotion research for both valence and arousal (Niemic
et al. (2002)). The presence of EOG artifacts (eye movement/blinking) is
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most dominant below 4Hz, ECG (heart) artifacts around 1.2Hz, and EMG
(muscle) artifacts above 30Hz. Non physiological artifacts caused by power

lines are normally present above 50Hz Fatourechi et al. (2007); Coburn and
Moreno (1988).

Thus, fortunately a byproduct of extracting the alpha and beta frequencies
is that much of the noise present in EEG signals is considerably reduced.
We apply bandpass filtering for extracting alpha and beta frequency bands.
Using Fourier frequency analysis, the original signal is split up in frequen-
cies in order to remove specific frequencies, before transforming back the
signal with only the frequencies of interest. For this research, we apply the
bandpass filter implementation provided by the OpenVibe software (Renard
et al. (2010)).

From the EEG signal of a person, we determine the level of arousal, i.e.
how relaxed or excited the person is, by computing the ratio of the beta
and alpha brainwaves as recorded by the EEG. We measure the EEG signal
in four locations (i.e. electrodes) in the prefrontal cortex: AF3, AF4, F3 and
F4 (see figure 4.1). As mentioned before, beta waves are associated with an
alert or excited state of mind, whereas alpha waves are more dominant in a
relaxed state. Alpha activity has also been associated to brain inactivation.
Thus, the beta/alpha ratio is a reasonable indicator of the arousal state of
a person.

In order to determine the valence level, i.e. negative or positive state of
mind, we compare the activation levels of the two cortical hemispheres.
This is motivated by psychophysiological research which has shown the im-
portance of the difference in activation between the cortical hemispheres.
Left frontal inactivation is an indicator of a withdrawal response, which is
often linked to a negative emotion. On the other hand, right frontal inacti-
vation may be associated to an approach response, or positive emotion.

As mentioned before, high alpha activity is an indication of low brain ac-
tivity, and vice versa. Thus, an increase in alpha activity together with a
decrease in beta waves may be associated with cortical inactivation Niemic
et al. (2002). F3 and F4 are the most used positions for looking at this al-
pha activity, as they are located in the prefrontal lobe which plays a crucial
role in emotion regulation and conscious experience.

Although previous research suggests that hemispherical differences are not
an indication of affective valence (feeling a positive or negative emotion),
it has been suggested that it is an indication of motivational direction
(approach or withdrawal behavior to the stimulus) Harmon-Jones (2003).
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Figure 4.5: The Arousal-Valence plane, describing emotional states. Arousal is
in the x axis and valence in the y axis.

In general, however, affective valence is related to motivational direction.
Therefore, comparing hemispherical activation seems to be a reasonable
method to detect valence. Thus, we estimate the valence value in a per-
son by computing and comparing the alpha power a and beta power b in
channels F3 and F4. Specifically,

valence = apy/bpy — aps/brs (4.1)

Valence and Arousal Classifiers

In this section we describe our approach to training and evaluating clas-
sifiers for the task of detecting the emotional state of mind of a person
given the person’s observed EEG data. We approach this problem as a
two 2-class classification problem. In particular, we apply machine learning
techniques to classify high/low arousal and positive/negative valence emo-
tional states. The obtained classifiers can be used to classify emotions such
as happiness, anger, sadness, and calm. Figure 4.5 shows these emotions in
the arousal/valence plane.

We are interested in inducing two classifiers of the following forms:
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ArousalClassifier(EEGdata([t,t + c])) — {high,low}
and
ValenceClassifier(EEGdata([t,t + c])) — {positive, negative}

where EEGdata([t,t+c]) is the EEG data observed at time interval [t, ¢+ c]|
and {high,low} and {positive, negative} are the sets of emotional states to
be discriminated. The results reported in this paper are obtained with c=1s
and with increments of ¢ of 0.0625s. For each subject in the EEG data sets
we train a separate classifier.

In this paper we evaluate two classifiers, Linear Discriminant Analysis (LDA)
Scholkopft and Mullert (1999) and Support Vector Machines (SVM) Cris-
tianini and Shawe-Taylor (2000), for classifying an emotion state for each
EEG segment. Linear discriminant analysis and the related Fisher’s lin-
ear discriminant are methods used in statistics, pattern recognition and
machine learning to find a linear combination of features which character-
izes or separates two or more classes of objects or events. The resulting
combination may be used as a linear classifier. LDA is closely related to
regression analysis, which also attempt to express one dependent variable as
a linear combination of other features. In regression analysis however, the
dependent variable is a numerical quantity, while for LDA it is a categorical
variable (i.e. the class label).

On the other hand, SVM is one of the most popular supervised learning
algorithms for solving classification problems. The basic idea in SVM is
to project input data onto a higher dimensional feature space via a kernel
transfer function, which is easier to be separated than that in the origi-
nal feature space. Depending on input data, the iterative learning process
of SVM would eventually converge into optimal hyperplanes with maxi-
mal margins between each class. These hyperplanes would be the decision
boundaries for distinguishing different data clusters. Here, we use linear
and radial basis function (RBF) kernel to map data onto a higher dimen-
sion space. The results reported are obtained using the LDA and SVM
implementations in the OpenVibe software Renard et al. (2010).

We evaluated each induced classifier by performing the standard 10-fold
cross validation in which 10% of the training set is held out in turn as test
data while the remaining 90% is used as training data. When performing
the 10-fold cross validation, we leave out the same number of examples per
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Figure 4.6: Classifiers (LDA, SVM with linear kernel, and SVM with radial basis
function kernel) accuracies for high-versus-low arousal for all subjects.

30 H s SVM RBF

20 1

10

3

class. In the data sets, the number of examples is the same for each class
considered, thus by leaving out the same number of examples per class we
maintain a balanced training set.

4.3.2 Results

Given that we are dealing with 2-class classification tasks and that the num-
ber of instances in each class is the same, the expected classification accu-
racy of the default classifier (one which chooses the most common class) is
50% (measured in correctly classified instances percentage). For the high-
versus-low arousal, and the positive-versus-negative valence classifiers the
average accuracies obtained for SVM with radial basis function kernel clas-
sifier were 77.82%, and 80.11%, respectively. For these classifiers the best
subject’s accuracies were 83,35%, and 86.33%, respectively. The correctly
classified instances percentage for each subject and each learning method is
presented in Figures 4.6 and 4.7.

4.3.3 Discussion

The difference between the results obtained and the accuracy of a baseline
classifier, i.e. a classifier guessing at random confirms that the EEG data
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Figure 4.7: Classifiers (LDA, SVM with linear kernel, and SVM with radial basis
function kernel) accuracies for positive-versus-negative valence for all subjects.

contains sufficient information to distinguish between high /low arousal and
positive/negative valence states, and that machine learning methods are
capable of learning the EGG patterns that distinguish these states. It is
worth noting that both learning algorithm investigated (LDA and SVM)
produced better than random classification accuracies. This supports our
statement about the feasibility of training classifiers using the Emotiv Epoc
for the tasks reported.

The accuracy of the classifiers for the same task for different subjects varies
significantly, even using the same learning method. Subjects producing
high accuracies with one learning method tend to produce high accuracies
with the other learning methods. These uneven accuracies among subjects
may be due to different degrees of emotional response between different
individuals, or to the amount of noise for different subjects. In any case, it
has been reported that there exists considerable variation in EEG responses
among different subjects.

It is worth mentioning that in all the experiments performed we provided no
self-assessment information about the emotional states by the subjects. This
contrasts with other approaches (e.g. Lin et al. (2010)) where EEG data
is categorized according to subject self-reported emotional states. Incorpo-
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rating self-assessment information would very likely improve the accuracy
of the classifiers.

We have explored and compared two machine learning techniques for the
problem of classifying the emotional state of a person based on EEG data
using the Emotiv Epoc headset. We considered two machine learning tech-
niques: linear discriminant analysis and support vector machines. We pre-
sented the results of the induced classifiers which are able to discriminate
between high-versus-low arousal and positive-versus-negative valence. Our
results indicate that EEG data obtained with the Emotiv Epoc device con-
tain sufficient information to distinguish these emotional states, and that
machine learning techniques are capable of learning the patterns that dis-
tinguish these states. Furthermore, we proved that it is possible to train
successful classifiers with no self-assessment of information about the emo-
tional states by the subjects.

4.4 Combining Eye Tracking with Emotion
Detection

In the previous section we have shown that beta/alpha frontal activity is
correlated with emotional arousal, and the value computed by 4.1 is cor-
related with emotional valence. In this section we will describe how these
these features were used in a concert setting, in which the estimated emo-
tional state of the performer triggered predefined chord sequences. The
Emotiv Epoc EEG headset was used to capture the brain activity and the
open source I'TU-gaze tracker, presented in section 3.3, was used to capture
the gaze direction of the user.

In a concert setting we wanted to avoid the machine learning approach.
Instead we proposed an approach that gives continuous arousal-valence es-
timated values and no training of any classifier would be required. The
estimated Arousal and Valence values were computed using the following
formulas:

Arousalys = PBF34S/PAF34S + PBF44S/PAF445,

Valencess = PBF3,s/PAF3,s — PBF445/ PAF 4y,

, where PBF34, is the beta power of EEG location F3 over the last 4
seconds, PAF3,s is the alpha power of EEG location F3 over the last 4
seconds, PBF4,, is the beta power of EEG location F4 over the last 4
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seconds and PAF 4 is the alpha power of EEG location F4 over the last 4
seconds.

For the purpose of the performance these values were normalized over 20
seconds. The Arousalsgs and Valencesys values were also computed over a
window of 20 seconds. The normalized values were computed as follows:

_ Arousalss—Arousalaos
Arousalnorm = Arousalmaznorm
Valenceopm = Loencess —Valencesos

Valencemaxnorm )

, where Arousal,orm, Valence,orm are the normalized arousal and valence
values and Arousalmaxorm, Valencemax oy are the maximum absolute
values acquired when subtracting the 20s values from the 5s values for all
sent values from the beginning of the performance.

The normalized values were then sent to the EyeHarp DMI through the
VRPN (Virtual-Reality Peripheral Network) protocol.

The EyeHarp DMI an arpeggiator is implemented as described by Vam-
vakousis and Ramirez (2011). Four different arpeggios were generated, of
varying speed. When high arousal values were received (Arousal,orm > 1),
the volume of the fast arpeggios was increased, while the volume of the
slow arpeggios was decreased. The opposite happened for low arousal val-
ues. This mapping was chosen considering that fast tempos reflect more
emotional tension in music performance , whereas slow tempos are related
to more relaxed emotional states (van der Zwaag et al. (2011)). Arousal
values also affected the brightness of the “pie” in the interface.

Depending on the estimated valence value, three possible chord sequences
were triggered. For low valence values (Valencenorm < —0.2) (sad or angry
emotions), the triggered chord sequence was: Am, Dm, Em, Am. For aver-
age values (—0.2 < Valenceporm < 0.2), the triggered sequence was: Am,
F, G, Am. Finally for positive valence (Valencenorm > 0.2), the sequence
C, F, G, C was triggered. Additionally, the estimated valence affected the
color of the “pie” in the interface. Low valence resulted to green variations,
while high valence to red variations.

4.5 Event-Related Potential-based Interfaces

Over the past two decades BCI research has explored a variety of approaches
for collecting, analyzing, and interacting with brain activity data. In most
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Figure 4.8: EyeHarp performance with EEG emotion recognition. A video of the
performance can be found at https://youtu.be/Wc9690XKmuE

cases, the information is encoded voluntarily by the user, either by perform-
ing some mental task producing a measurable signal to be used as a com-
mand, or by selectively attending to one of the presented stimuli to encode
a choice. Selective attention is often detected by observing event related
potentials (ERPs), in particular the P300 wave whose occurrence is related
to the persons reaction to a particular stimulus, and not to the physical
attributes of the stimulus. P300 potentials, when recorded by electroen-
cephalography (EEG), can be observed as a positive deflection in voltage
with a latency (i.e. delay between the stimulus and the response) of roughly
250-500 milliseconds (Sellers and Donchin (2006); Polich (2007)). They are
usually elicited using the oddball paradigm, in which low probability target
stimuli are randomly mixed with high probability non-target ones.

In the past, visual P300 responses have been widely investigated for im-
plementing BCIs (e.g. Bayliss et al. (2004); Piccione et al. (2006), and
in particular for creating speller applications (Sellers and Donchin (2006);
Farwell and Donchin (1988); Lenhardt et al. (2008); Nijboer et al. (2008a)).
Similarly, auditory P300 responses have been used for implementing speller
applications. In a study conducted by Furdea et al. (2009), a matrix of
characters is presented for reference purposes with its columns and rows
marked by a spoken number that is presented to the subject. Subjects are
instructed to attend to the spoken number, which identifies the character.


https://youtu.be/Wc9690XKmuE
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When the spoken number corresponding to the row or column containing
the character is produced, it elicits a P300 wave, which can be detected
from the EEG. The selected letter is identified according to the row and
column that give a P300 response. The evaluation of the system produced
satisfactory results with performance reaching up to 100% for one subject.
However, it is clear that auditory stimulation with spoken numbers is time
consuming, reducing the information transfer rate (selection of a letter can
take 3.6 minutes).

In a more recent study conducted by Klobassa et al. (2009), the spoken
numbers were replaced by 6 natural sounds, which were mapped to rows
and columns in an intuitive way allowing subjects to learn the mapping
within a couple of sessions. Subjects were divided into two groups: one
group was given auditory and visual stimulations while the other received
only auditory stimulation. Although at the beginning of the experiment
the accuracy of the auditory-only group was lower than the accuracy of the
auditory-visual group, after 11 sessions their accuracy increased comparable
to the one of the auditory-visual group. Inter-Stimulus interval was 500 ms
and the reported average ITR for the auditory modality was 1.86 bits/min.

Most oddball experiments use acoustic cues such as pitch, amplitude or
length. However, other sound properties, such as spatial location of the
stimulus, have been investigated. Halder et al. (2010), conducted a 3-class
oddball experiment comparing 3 auditory modalities: pitch, direction and
amplitude. The pitch modality gave better performance on 70% of the par-
ticipants (average ITR 1.70 bits/min). Teder-Sélejérvi and Hillyard (1998),
conducted an oddball experiment in which an array of seven speakers (with
a separation among them of 9 degrees) presented targets and non-targets
in random order. Subjects attention to a particular direction elicited P300
responses. In a study conducted by Schreuder et al. (2010), explored the use
of virtual spatial localization to separate targets from non-targets through
stereo headphones. Non-targets were produced from a straight direction
(i.e. zero degrees) while targets were produced from a 30 and 90 degrees
direction. The focus of this study was on early mismatch negativity poten-
tials and not in P300 responses, engaging the subjects in passive listening
while they were watching a film. A similar study (Deouell et al. (2006)) was
conducted using free-field speakers with 10 degrees spatial separation.

In a more related study (Schreuder et al. (2010)), a multi-class BCI exper-
iment, which used spatially distributed, auditory cues was conducted. The
stimulus set consisted of 5 stimuli, different in pitch. The subjects were
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surrounded by 5 free field speakers, each of which was assigned to one of
the stimuli. In the experiment, 5 subjects participated in an oddball task
with the spatial location of the stimuli being a discriminating cue. The
experiment was conducted in free field, with an individual speaker for each
location. Different Inter Onset Intervals (IOIs) were investigated: 1000, 300,
and 175 ms. Average accuracies were over 90% for most conditions, with cor-
responding information transfer rates up to an average of 17.39 bits/minute
for the 175 ms condition (best subject 25.20 bits/minute). Interestingly,
when discarding the spatial cues by presenting the stimuli through a single
speaker, selection accuracy dropped below 70% for most subjects.

In a later study (Schreuder et al. (2011), an auditory speller was imple-
mented using the same stimuli presentation design as in Schreuder et al.
(2010), but increasing the set to 6 sounds. In order to optimize the spelling
speed, a dynamic stopping method was introduced. This method minimized
the number of repetitions required for each trial. Sixteen out of 21 subjects
managed to spell a sentence in the first session. These subjects were se-
lected for a second session where they were asked to type two sentences. In
the second session an average of 5.26 bits/min (0.94 chars/min) ITR was
achieved, which sets the current state of the art in auditory P300 spellers.

A very similar auditory BCI system using spatially distributed auditory
cues is proposed by Kéthner et al. (2013). The set of free field speaker is
replaced by stereo headphones. Different 1OIs of 560, 400, 320, 240 and 160
ms were evaluated in a P300 auditory speller paradigm. An average of 2.76
bits/min was reported under the 400 ms IOI condition. Unfortunately the
training of the classification process was performed only for the 560 ms IOL.
The acquired classifier was then used for all studied IOIs. This resulted in
the biased conclusion that bigger IOIs give better selection accuracy. The
opposite results were obtained by Schreuder et al. (2010), when a separate
classifier was trained for each condition.

In another study Hohne et al. (2011), a 9-class auditory ERP paradigm was
proposed where stimuli varied in pitch and stereo panning. Three stimuli
different in pitch (high, medium, low) were presented from three different
locations (left, center, right) using headphones. The proposed auditory
ERP paradigm was used in a predictive text system. Users were able to
spell on average 0.8 characters per minute (3.4 bits/min). In follow-up
study conducted by Hohne et al. (2012), the artificially generated sounds
were replaced with spoken syllables and the two conditions were compared.
Improved classification performance and ergonomics were observed when
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using spoken syllables as stimuli. In a more recent study conducted by
Simon et al. (2014), a stimuli set consisting of 5 animal tones was used in
an auditory speller BCI. The reported average online ITR across 11 users
was 3.29 bits/min.

Other researchers have investigated the feasibility of using the Emotiv EPOC
device for detecting auditory ERPs. Badcock et al. (2013) simultaneously
recorded, using research and Emotiv Epoc devices, the EEG of 21 subjects
while they were presented with 566 standard (1000 Hz) and 100 deviant
(1200 Hz) tones under passive and active conditions. For each subject,
they calculated auditory ERPs (P1, N1, P2, N2, and P300 peaks) as well
as mismatch negativity (MMN) in both active and passive listening con-
ditions. They restricted their analysis to frontal electrodes. Their results
show that the morphology of the research and Emotiv Epoc EEG systems
late auditory ERP waveforms were similar across all participants, but that
the research and gaming EEG system MMN waveforms were only similar
for participants with non-noisy MMN waveforms. Peak amplitude and la-
tency measures revealed no significant differences between the size or the
timing of the auditory P1, N1, P2, N2, P3, and MMN peaks. Based on
these results it was concluded that the Emotiv Epoc EEG system may be
a valid alternative to research EEG systems for recording reliable auditory
ERPs. These results are confirmed by another recent study conducted by
Wang et al. (2015). In another study conducted by Duvinage et al. (2013),
Emotiv EPOC was compared against the ANT device in a 4-class visual
oddball task. Emotiv underperformed ANT (86% versus 93% selection ac-
curacy) among 9 healthy subjects under seating conditions, concluding that
although the Signal to Noise Ratio is lower in the Emotiv device, it could be
effectively used in non-critical BCIs as a user-friendly, low-cost alternative.
In another recent study conducted by Nijboer et al. (2015), Emotivs us-
ability is compared with a 32-channel wet-electrode Biosemi system and an
8-channel dry electrode g.Sahara system. It is concluded that water-based
or dry headsets should be used when aesthetics, easy setup and fun are
important, while for applications that require high accuracy and efficiency
gelled headsets should be preferred.

In another study conducted by Nijboer et al. (2015), Emotiv Epocs amplifier
was combined with a standard infra-cerebral electrode cap with Ag/AgCl
electrodes. The result was a low-cost portable EEG system that was tested
in a single trial 2-class auditory oddball paradigm under sitting and walking
conditions. With an IOTI of 1 second, the single trial accuracy was 77% for
sitting and 69% for walking conditions. The same proposed EEG system,
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in a more recent study [28] was evaluated in a single trial 3-class auditory
oddball task, under walking and sitting conditions. The mean classification
accuracy was 71% for the seating and 64% for the walking condition.

4.6 Evaluation of low cost Emotiv headset for
auditory ERP-based applications

Our research on Brain Computer Interfaces (BCIs) was conducted mainly
using the Emotiv EPOC 14-channel wireless EEG headset. Emotiv Epocis a
low-cost EEG device, marketed mainly for gaming purposes. For that reason
we were concerned about the credibility of the device in Brain-Computer
applications. It consists of 16 wet saline electrodes, providing 14 EEG
channels, and a wireless amplifier (with a sample rate of 128 Hz). The 16
electrodes are aligned with positions in the 10-20 system: AF3, F7, F3, FC5,
T7, P7, O1, 02, P8, T8, FC6, F4, F8, FC4, M1, and M2. The electrode
positioned at M1 acts as reference electrode, while the electrode at M2 is
used for reducing external electrical interference.

A good way to measure the quality of an EEG device is to compare its
performance in standard BCI scenarios. In a study involving 10 subjects
without any disability, we measured the performance of Emotiv headset in
an auditory-oddball paradigm. We then compare its performance in terms
of Information-Transfer Rate (ITR) with similar studies, in which expensive
equipment is utilized. The information transfer rate (ITR) ( (Pierce (2012)),
i.e. the amount of information carried by every selection, can be computed
as follows:

ITS(bits/min) = S - |logy(N) + P -logy(P) + (1 — P) - loga <]1V—]z>}

(4.2)
, where ITR is the number of bits per minute, S represents the number
of selections per minute, N represents the number of possible targets, and
P represents the probability that they are correctly classified. Note that
increasing S by decreasing the number of repetitions would not necessarily
increase the ITR because the accuracy of the classifier (i.e. P) will decrease.
Thus, there is a tradeoff between S and P, and the choice of which one of

the two is more important depends on the type of BCI application.

In a study involving 10 healthy subjects, we evaluate a 6-class auditory P300
paradigm in which the stimuli set consists of sounds of musical instruments
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with different pitch, timbre and spatial distribution (i.e. panning). To the
best of our knowledge, this is the first auditory oddball paradigm study
which explores stimuli varying simultaneously in pitch, stereo spatialization
and timbre.

4.6.1 Methods

The study enrolled 10 volunteer participants (six women) with normal hear-
ing. Age ranged from 25 to 38 (mean = 30, SD = 4). Subjects reported to
have normal hearing, and no difficulty with spatial localization of sounds in
everyday situations. None of the participants had previously participated
in a BCI study.

The Emotiv EPOC EEG system ? was used for acquiring the EEG data.
It consists of 16 wet saline electrodes, providing 14 EEG channels, and a
wireless amplifier (with a sample rate of 128 Hz). The 16 electrodes are
aligned with positions in the 10-20 system: AF3, F7, F3, FC5, T7, P7, O1,
02, P8, T8, FC6, F4, F8, FC4, M1, and M2. The electrode positioned
at M1 acts as reference electrode, while the electrode at M2 is used for
reducing external electrical interferences. We collected and processed the
data using the OpenViBE platform (Renard et al. (2010). In order to trigger
virtual instrument sounds through the OpenVibe platform, a VRPN to
midi gateway was implemented and used along with LoopBe virtual MIDI
port . Sound stimulus was then generated by Propellerhead Reason virtual
instrument host application. Both data acquisition and on-line scenario
were performed on a laptop with an Intel Core i5 2,53 Ghz processor with
4 GB of RAM, running windows 7 64-bit Operating System and using the
laptops internal sound card (Realtek ALC269). By analyzing the audio
recording of a session, the overall output audio latency was found to be 46
ms and the standard deviation 4.38 ms.

Subjects were sat motionless in a comfortable chair facing two loudspeak-
ers, Roland MA-150U placed at 45 and -45 degrees with respect to the
subject’s orientation. The speakers were placed 15 cm below ear level and
approximately at one meter from the subject (see figure 4.9). At the begin-
ning of each experiment, subjects were asked to maintain their eyes closed,
avoid any facial or body movement. The room was not electromagnetically
shielded, and no extensive sound attenuating precautions were taken. All
the experiments were designed as an auditory oddball task.

3http://emotiv.com/epoc/
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Figure 4.9: The sound stimuli are homogeneously distributed in the stereophonic
space. There is a steady 9th musical interval between two consecutive sounds in
pitch. The spectrograms of all stimuli are also shown.

The nature of the auditory stimuli has an effect on the performance of
auditory ERP-based BCIs. In the current study the stimuli set varied in
3 aspects: timbre, pitch and stereo panning. The sound stimuli set con-
sisted of 6 musical instrument sounds: church bell, guitar, cello, kaliba,
organ and balinese bell. The stimuli were homogeneously distributed in the
stereophonic space and varied in pitch (see figure 4.9). The lowest pitch cor-
responded to the church bell (F#0 / 23.12Hz). followed by the cello (G#1
/ 51.91Hz), the organ (A#2 / 116.54Hz), the guitar (C4 / 261.63Hz), the
kalimba (D5 / 587.33Hz) and the balinese bell (E6 / 1318.51Hz).

The musical interval between two consecutive pitches was a major 9th. The
stimuli were placed in the stereophonic space so as to avoid having sounds
with similar timbre or pitch close to each other. The speakers were set to
equal loudness intensity of 60 dB SPL for every stimulus.

While setting up the EEG device, subjects were exposed to each stimulus
in isolation and then to the stimuli mix in order for them to be familiarized
with the sounds. This procedure lasted 5-10 minutes. Then for each subject,
a training session was followed by an online session. A training session
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One Repetition Stimuli Presentation (1050ms)
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Figure 4.10: Stimuli presentation during a repetition

consisted of 10 trials while an online session consisted of 20 trials. Each trial
consisted of 25 repetitions. Each repetition consisted of one presentation of
each of the six sound stimuli in a pseudo-random order, with the constraint
that during a trial two occurrences of the same stimulus were separated
by at least two other stimuli. The Inter Onset Interval (I0I) was 175 ms
and the duration of each stimulus was 100 ms (see figure 4.10). At the
beginning of each trial a stimulus was randomly selected as a target and
played back three times (with IOI 175 ms), followed by a pause of 500 ms
before the trial started. The subjects were asked to count the occurrences
of the target stimulus of each trial. For each subject 3750 non-target and
750 target epochs were recorded taking into account both the training and
online sessions.

The recordings of the training sessions were analyzed in order to obtain a
spatial filter and train a two class (target, non-target) LDA classifier (see
figure 4.11). The EEG signals were downsampled to 32 Hz, digitized with
a resolution of 16 bits, and band-pass filtered with a 4th order Butterworth
1-12Hz filter. Given the noisy nature of the EEG signal, a xXDAWN spatial
filter was applied in order to enhance the P300 response. The xDAWN
algorithm, proposed by Rivet et al. (2009), allows the estimation of a set
of spatial filters for optimizing the signal to signal-plus-noise (SSNR) ratio.
The xDAWN method assumes that there exists a typical response synchro-
nized with the target stimuli superimposed on an evoked response to all the
stimuli, and that the evoked responses to target stimuli could be enhanced
by spatial filtering. A window of 250 to 750 ms after the stimuli presenta-
tion was applied to train the xDAWN algorithm in order to obtain a 14 to 3
channels spatial filter. Given the mean audio latency of 46 ms, this window
is equivalent to a window of 204 to 704 ms. This resulted in a matrix of 48
features. The features produced by the xDAWN filter were used to train a
classifier f of the form:

f(Fs([t +250,t+ 750])) — {target,non — target}
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Figure 4.11: Obtaining a Spatial Filter and an LDA classifier.

,where t is the stimulus presentation time, Fs([t+250,t+750]) is the fea-
ture set generated by the spatial filter, and target and non-target are the
classes to be discriminated. Classification was performed by applying lin-
ear discriminant analysis (LDA) to the training data. LDA finds a linear
combination of features, which separates two or more classes of objects or
events. The resulting combination may be used as a linear classifier.

During the online session, the 48 features vector for each epoch were fed to
the obtained LDA classifier (see figure 4.12), whose output consisted of the
vector distance to the hyper-plane (negative value for targets and positive
for non-targets). These values were fed into a voting classifier. At the end of
each trial (after 25 repetitions of each stimulus), the voting classifier sums
up the hyper-plane distance of each stimulus. The stimulus with minimum
sum is selected as the predicted target for that trial.
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4.6.2 Results
Accuracy and ITR

We distinguish between two accuracy measures: classification and selection
accuracy. Classification accuracy refers to the percentage of sub-trials that
is correctly identified as target or non-target. Selection accuracy refers to
the percentage of trials in which the target stimulus is correctly identified.
Given that we are interested in detecting target stimuli, in the following we
report on selection accuracy.

Table 4.13 presents the online accuracy of each subject. The minimum ac-
curacy for having a practical BCI is considered to be 70% (Kiibler et al.
(2004)). Seven subjects exceeded this threshold. The optimum number
of repetitions which maximize the ITR was also computed for each sub-
ject (offline ITR) in the following manner: for the 7 subjects that achieved
maximum accuracy greater or equal to 70% the number of repetitions that
maximizes the I'TR was computed only for the repetitions that gave ac-
curacy more than 70%. For the 3 subjects with less than 70% accuracy,
we computed the number of repetitions required to reach the maximum
accuracy.

It is interesting to point out that the best subject (F28) only needed 4 rep-
etitions to achieve 75% accuracy, resulting in 17.05 bits/min offline ITR.
The average accuracy across all subjects over different number of repe-
tition is shown in figure 4.13. The average selection accuracy across all
subjects increased as more repetitions were added. In some applications
where accuracy is more important than ITR it would make sense to add
more repetitions per trial.

Amplitude and latency of P300

The P300 potential is described by its amplitude (V) and latency (ms)
within a certain time window. Here we define the P300 amplitude as the
voltage difference (V) between the smallest negative and the largest posi-
tive peak (peak-to-peak measurement). Both the online and training session
data were merged and analyzed using ERPLAB toolbox. The time windows
used for measuring the positive and negative peak amplitude were 220 to
700 ms and 120 and 220 ms after stimulus onset, respectively. Latency was
defined as the period between stimulus onset and the time when the maxi-
mum positive peak amplitude was reached. In the present task, the overall
average largest difference between target and non-target across all subjects
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Online (25 repetitions) Offline (#repetitions to maximize ITR)

Accuracy ITR (bits/min) | Repetitions Accuracy ITR

F28 95% 4.99 4 75% 17.05

F25 85% 3.72 13 85% 7.15%

M38 75% 2.72 15 70% 3.84

F31 5% 2.72 25 75% 2.73

M35 70% 2.30 23 70% 2.5

M28 70% 2.30 23 70% 2.5

Ma32 65% 1.92 25 65% 1.92

M26 60% 1.57 25 60% 1.57

M30 55% 1.25 21 55% 1.49

AVG 2% 2.47 19,9 70% 4.3

Table 4.3: Online and offline accuracy for all subjects. In the case of the offline
analysis the optimum number of repetitions that maximize the ITR was computed

was observed at location AF4. Table 4.4 shows the peak amplitudes and
latencies for each subject at location AF4. Figure 4.14 shows the averaged
target and non-target waveforms of each user at the locations with maxi-
mum target and non-target difference for each subject. The latency values
of table 4.4 are corrected, considering the mean audio latency (46 ms).

Target Epochs Non-Target Epochs
Subject Latency (ms) Peak (V) Latency (ms) Peak (V)

F28 279 6.10 438.38 2.67
F25 602.44 5.59 172.75 0.76
M38 243.06 3.12 414.94 1.85
F31 266.5 5.12 610.25 1.89
M31 641.5 4.27 297.75 1.78
M35 485.25 1.45 180.56 0.58
M28 461.81 3.02 641.5 2.25
M32 313.41 5.63 563.38 1.71
M?26 563.38 7.95 204 3.93
M30 539.94 3.97 235.25 0.14
AVG 469.63 4.62 375.88 1.76

Table 4.4: Peak amplitudes and latency for each subject at location AF4
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Sound Comparison

Table 4.5 shows the confusion matrix of all stimuli for all users. The diagonal
in the table shows the number of correct selections (hits), whereas the other
cells display the number of incorrect selections (errors).

ChBell Cello / Organ Guitar Kalimba Bell / Selection N
/ F#0 G#1 / |/ A#2 /C3/ /D4 / E5/45 Accu-

/ -45 -9 /27 -27 9 racy(%)

ChBell 24 2 5 0 1 3 68.57% 35

Cello 1 22 1 3 4 4 62.86% 35

Organ 1 0 23 0 1 2 85.19% 27

Guitar 2 0 0 24 1 5 75.00% 32

Kalimba 1 1 4 3 23 1 69.70% 33

Bell 3 2 2 1 2 28 73.68% 38
PPV 75.00% 81.48% 65.71% 77.42% 71.88% 65.12%

Table 4.5: Confusion matrix of classification results over all subjects. Selection
accuracy, positive predictive value (PPV), and the number of trials where each
stimulus was selected as a target (N) are given for convenience.

4.6.3 Discussion
Accuracy and ITR

In order to evaluate the performance of the proposed system we should
compare with the state of the art auditory ERP-based BCIs. As each study
performs a different auditory oddball task, probably the most indicative
value in order to compare the performance of different studies is the achieved
ITR. Table 4.6 shows among other, for each study, the best online and/or
offline accuracy and the average I'TR. achieved.

The maximum ITR (17.39 bits/min) has been achieved by Schreuder et al.
(2010) in a 5-class auditory oddball paradigm experiment involving 5 sub-
jects. The stimuli set consisted of 5 artificially generated harmonic sounds,
varying in pitch and 360 spatialization. Fifteen 15 repetitions were recorded
per trial with 175 ms IOI. However, this study only reports the offline ac-
curacy: the ITR is computed by taking into account only the minimum
number of repetitions per trial, computed offline in order to achieve more
than 70% accuracy and maximize the ITR. The second best offline ITR is
reported by Furdea et al. (2009) in an speller paradigm experiment involv-
ing 13 subjects. The stimuli set consisted of 5 spoken numbers. Thirteen
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repetitions were recorded per trial with 625 ms IOI. After determining the
minimum number repetitions to maximize the ITR, the reported ITR was
4.66 bits/min. Halder et al. obtained an ITR of 2.46 in an offline 3-class
auditory oddball paradigm experiment involving 20 subjects. In our study,
after determining the minimum number of repetitions per trial, the aver-
age ITR among all users was 4.3 bits/min. With the exception of the ITR
obtained by Schreuder et al. (2010), the achieved ITR of our study is com-
parable with the I'TR the rest of the offline auditory ERP studies.

The maximum online ITR for an auditory BCI (5.31 bits/min) is reported
by Hohne et al. (2012) who simulated online sessions using pre-recorded
data and applied a dynamic stopping method. The average I'TR of the sim-
ulated sessions sets the state of the art of online auditory BCIs. However,
these results refer only to simulated sessions, not to real online sessions.
The maximum ITR achieved in an online experiment is reported in an-
other study by Schreuder et al. (2011) in which a 6-class auditory oddball
paradigm utilizing spatial and pitch discrimination cues was applied in hex-
o speller. The reported average ITR was 5.26 bits/min. In this study a
dynamic stopping method is applied, minimizing automatically the number
of repetitions per trial and as a result improving the ITR. In another online
study by where no dynamic stopping method was applied the obtained ITR
was 3.4. They studied a 9-class oddball paradigm driving a predictive text
entry system, which involved 12 participants. The online ITR results ob-
tained in our study (2.47 bits/min) are comparable with the result reported
by Hohne et al. (2011). Applying a dynamic stopping method in future
applications might increase our achieved I'TR.

The difference between the obtained online and offline ITR in the current
study and those obtained by the state-of-the-art systems may be due to the
quality of the EEG signal acquired by the different EEG devices and the
different number of channels used. In the studies with the best online and
offline ITRs reported (Schreuder et al. (2010, 2011)) a BrainAmp ampli-
fiers with 56 or more Ag/AgCl electrodes was used. The EEG signals were
sampled at 1 kHz and filtered by an analog bandpass filter between 0.1 and
250 Hz. After applying the analog filter, the data was low-pass filtered to
40 Hz and downsampled to 100Hz. In the case of the online P300 speller
study (Schreuder et al. (2011)), the features used for classification consisted
of two to four amplitude values per channel resulting in 112224 features.
In the case of the 5-class oddball study (Schreuder et al. (2010)), the 20
channels that accounted for most of the difference between the two classes
were automatically selected within each fold of the cross validation. The 10
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channels with the highest positive ROC peak and those 10 with the lowest
negative ROC peak were used. Data from these channels were decimated
by taking the mean of five samples, reducing the data to 16 post-baseline
samples per channel. Samples from all 20 channels were then concatenated
to form a 320 dimensional feature vector. In the current study the Emo-
tiv Epoc EEG device was used. Using 16 saline electrodes, it provides 14
channels in fixed positions and a sampling rate of 128 Hz. The signal was
downsampled to 32 Hz and xDawn algorithm was applied to generate a 14
to 3 channels spatial filter. Epochs had a duration of 500 ms. As a result
48 features were fed to an LDA classifier. The number of channels and
the sample rate of the of the Emotiv device is lower when compared to the
above systems and its price (600$US for the research edition) is about 50
times lower. The difference in accuracy of the Emotiv device and the above
systems has been also observed in visual ERP-based BCIs (Duvinage et al.
(2013)). However, the ITR achieved in the current study is comparable to
the obtained I'TR by most of the reported state-of-the-art systems, showing
that an auditory ERP-based BCI is feasible with low-cost EEG devices and
an off-the-shelf laptop computer.

Amplitude and latency of P300

It is important to mention that the exact response to each stimulus was
impossible to be analyzed in the current study, because of the small IOI.
Due to the size of the considered 101, the evoked potentials of different
stimulus overlap. Nevertheless, target epochs were characterized by higher
amplitudes and longer latency. The overlapping of evoked potentials of
different stimulus is common in P300 systems where maximization of the
ITR is important. As shown in Table 4.6, most of the systems mentioned
in this section share this characteristic, with the exception of the systems
proposed by Halder et al. (2010) and De Vos et al. (2014). These systems
are 2-trial and single trial systems, respectively, and thus a large IOI has
little impact in the resulting ITR.

Sound Comparison

Sound stimuli may vary in pitch, timbre, spatialization and combinations
of those. Table 4.6 summarises the discriminating cues and auditory task
studied in previous studies. Halder et al. (2010) compared the achieved
ITR of stimuli varying in either pitch, spatialization or amplitude. It was
concluded that the maximum mean ITR was achieved when stimuli varied
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in pitch, followed by spatialization. In a later study, Schreuder et al. (2010)
indicated that combining pitch and directional discrimination cues, provides
much higher accuracy than applying just pitch (94% versus 56%). Hohne
et al. (2011) also made use of these two discriminating cues, while in a later
study Hoéhne et al. (2012) replaced the artificially generated sounds with
spoken syllables. In a 5-class oddball paradigm. Klobassa et al. (2009)
performed a 6x6 matrix auditory P300 speller study in which the stimuli
varied in pitch and timbre (sounds of musical instruments). However, to
the best of our knowledge there is no study in which timbre, pitch and
spatialization are combined in a single auditory oddball paradigm.

In the current study all stimuli varied in all these 3 discriminating cues. The
advantage of this approach might be that the task of distinguishing one stim-
ulus from the others might be easier by providing more discriminating cues.
Nevertheless this approach might lead to stimuli sets in which not all stimuli
are equally salient. This might be the case for the Organ/A#2 stimulus in
the present study. It was the stimulus with the highest selection accuracy,
but lowest PPV. On the other hand the Cello/G#1 was the stimulus with
the lowest selection accuracy and highest PPV. This suggests that the organ
was the most salient stimulus while the cello was the least salient one. The
most balanced stimulus was the guitar, as it gives both high accuracy and
high PPV. Unbalanced -in terms of saliency- stimuli sets might harm the
overall performance of auditory BCIs. For instance, a P300 speller could
favor the selection of specific letters, but impede the selection of others.
If the speller interface includes deleting and re-spelling misspelled charac-
ters, a user could spend considerable time trying to spell a single character.
Using musical instrument sounds and three auditory discrimination cues
makes the task of creating a balanced stimuli set a difficult task. Saliency
of music instrument sounds with different timbre is subjective. One solution
to this problem might be allowing the final users of the proposed interfaces
experiment and select each of the stimuli themselves, in order to achieve a
balanced set.

Stimuli with similar stereophonic panning or pitch were not observed to be
confused with each other more than the average. This can be explained
by the fact that neighbouring sounds were produced by instruments with
pitches which differ from each other by a musical interval of a major 9th (14
semitones). In the study with highest ITR in auditory P300-based BCIs, by
Schreuder et al. (2010), the selected musical interval between two consecu-
tive stimuli was a major 2nd (2 semitones). However, Schreuder et al. use
a different loud-speaker for each stimulus, i.e. each sound is generated from
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a different loud-speaker, for implementing directional cues. Using stereo
panning instead of real stimuli spatialization, produces a weaker directional
cue. In the current study, this fact is compensated by generating stimuli
with larger pitch intervals.

Summary and Conclusions

Commercial low-cost EEG devices released in the last few years are bring-
ing Brain-Computer Interfaces (BCIs) out of the laboratory. In the present
study we investigated the feasibility of an auditory P300 interface when us-
ing the low-cost EEG Emotiv EPOC device. Although there are a few stud-
ies indicating the capability of Emotiv system to measure auditory ERPs,
to the best of our knowledge, this is the first time a non-modified Emotiv
system is being evaluated in an auditory ERP-based BCI. A 6-class audi-
tory oddball paradigm experiment was performed on 10 healthy subjects
with online sessions consisting of 20 trials. When averaging over 25 repe-
titions, the mean online selection accuracy across all users was 72%, with
one participant achieving 95% accuracy. The average online ITR among all
subjects was 2.47 bits/min. These results confirm that the Emotiv EPOC
is capable of capturing auditory evoked potentials as has been reported in
previous studies (Badcock et al. (2013); Wang et al. (2015)) and that the
proposed BCI system can provide a low-cost mean of communication for
healthy subjects. Our results suggest that the Emotiv EPOC device to-
gether with off-the shelf computer equipment and a simple and portable
set-up, may provide a promising low-cost technology that could be used in
auditory ERP-based BCls.

4.7 Exploring timbre, pitch and spatialization
auditory cues of auditory ERP paradigms

4.7.1 Introduction

In this study, we explore different combinations of timbre, pitch and spatial
auditory stimuli (TimPiSp: timbre-pitch-spatial, TimSp: timbre-spatial,
and Timb: timbre-only) and three Inter-Stimulus Intervals (ISI) (150ms,
175ms and 300ms), and evaluate our system by conducting an oddball task
on 7 healthy subjects.
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4.7.2 Methods
Participants

Eighteen healthy adults (8 female, mean age 34 years) participated in several
multi-class auditory oddball paradigm. Subjects reported to have normal
hearing, and no difficulty with spatial localization of sounds in everyday
situations.

The Emotiv EPOC EEG system was used for acquiring the EEG data.
The EEG signals were sampled at 128 Hz, digitized with a resolution of 16
bits, and band-pass filter with a 4th order Butterworth 1-12Hz filter. We
collected and processed the data using the OpenViBE platform (Renard
et al. (2010)). In order to trigger virtual instrument sounds through the
OpenVibe platform, a VRPN to midi gateway was implemented and used
along with LoopBe virtual MIDI port . Sound stimulus was then played back
by Propellerhead Reason virtual instrument host application. MBOX low-
latency sound card was used, offering 17 ms output latency. The LoopBe
MIDI port used introduced an additional latency of 1 to 3 ms. Both data
acquisition and on-line scenario were performed on a laptop with an Intel
Core i5 2,53 Ghz processor with 4 GB of RAM, running windows 7 64-bit
Operating System.

The purpose of this auditory modality experiment was to investigate how
the physical characteristics of the sound stimuli of an auditory oddball
paradigm affect the accuracy of the task. Three different ISI were ex-
plored: 300 ms and 175 ms and 150 ms. For the 300 ms and 175 ms
conditions three different stimuli discriminating cues were examined: tim-
bre only (Timb), timbre and spatial (TimSp), and timbre, pitch and spatial
(TimPiSp). For the 150ms condition only the TimPiSp modality was stud-
ied. In the Timb conditions, all stimuli were generated with different timbre
from each other but with fixed pitch (130.81 Hz) and spatial location (cen-
ter); in the TimSp conditions, stimuli were generated with different timbre
and spatial location from each other but fixed pitch; in TimPiSp conditions
all timbre, pitch and spatialization were differentiated (see Table 4.7.2).
In total 7 different conditions were studied: TimPiSp-150ms IST (TimP-
iSp150), TimPiSp-175ms IST (TimPiSp175), TimPi-175ms IST (TimPil75),
Timb175 (Timb175), TimPiSp-300ms IST (TimPiSp300), TimPi-300ms ISI
(TimPi300), Timb175 (Timb300). In all conditions the stimulus set con-
sisted of 6 short sounds (of a duration of 100ms). Blocks of the different
conditions were mixed to prevent time biases.
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Timb TimSp TimPiSp

Pitch (Hz) Stimuli Pitch (Hz) Stimuli Spatial | Pitch (Hz) Stimuli Spatial
130.81 Bell 130.81 Bell -45 23.123 Bell -45
130.81 Snare Drum 130.81 Snare Drum =27 51.91 Cello =27
130.81 Hi Hat 130.81 Hi Hat -9 116.541 Organ -9
130.81 Guitar 130.81 Guitar 9 261.626 Guitar 9
130.81 Kalimba 130.81 Kalimba 27 587.330 Kalimba 27
130.81 Claps 130.81 Claps 45 1318.51 Bali bell 45

Table 4.7: Cue properties in the different conditions

In all sessions, subjects were asked to sit motionless in a comfortable chair
facing two loudspeakers, Roland MA-150U placed at 45 and -45 degrees
with respect to the subjects orientation. The speakers were placed 15c¢m
below ear level and approximately at one meter from the subject (see Figure
4.15). The speakers were set to equal loudness intensity of approximately
60 dB for every stimulus. Subjects were initially exposed to each stimulus
in isolation and then to the stimuli mix in order to familiarize them with
the sounds. At the beginning of each experiment, subjects were asked to
close their eyes, minimize their eye movements and avoid moving during
the experiment. The room was not electromagnetically shielded, and no
extensive sound attenuating precautions were taken. All the experiments
were designed as an auditory oddball task.

For each condition, a training session was followed by an online session.
This resulted in 14 sessions for every subject, each one lasting 5-6 minutes,
depending on the ISI. One minute break interfered between all sessions,
and a 15 minutes break at the middle of the end of the 8th session. The
whole experiment lasted about 2 hours per subject. The collected EEG
data of each training session were used for training the xDawn algorithm
for acquiring a spatial filter and a Linear Discriminant Analysis Classifier,
used in the on-line classification process. Both the training and the on-line
sessions consisted of ten trials. In the 300ms condition each trial consisted
of 90 sub-trials, 15 for each stimuli, while in the 175 and 150ms conditions
each trial consisted of 150 sub-trials, 25 for each stimulus. This resulted
in 900 sub-trials per session (150 of which target) in the 300ms condition
and 1500 sub-trials per session (250 of which target) in the 175 and 150ms
conditions.

Before each trial a random stimulus was randomly selected as the target
stimulus and was played back to the subject (see figure 4.16). A trial can be
divided into N repetitions (where N is 15 for the 300ms conditions and 25 for
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the 175 and 150ms conditions). A repetition consists of a random sequence
of all 6 stimuli. An example of a repetitions stimuli presentation for the
TimPiSp175 condition is shown in figure 4.17. Stimuli were randomized in a
way that the same stimulus never appeared consecutively. The subjects were
instructed to slightly move their index finger every time the target stimulus
appeared and mentally count its occurrences. In the on-line session, 1.9
seconds after each trial, the stimulus detected as target was played back to
the subject followed by an interval of 3 seconds before presenting the target
stimulus of the next trial. Apart from the presentation of the detected
target stimulus at the end of each trial, the training and online sessions
were identical.

During the training session the eeg data was processed as explained in sec-
tion 4.6.1 in order to acquire a spatial filter and an LDA classifier (see figure
4.11).

During the online session, the 48 features vector for each epoch were fed
to the obtained LDA classifier (figure 4.12), whose output consisted of the
vector distance to the hyper-plane (negative value for targets and positive
for non-targets). These values were fed into a voting classifier. When the
corresponding number of repetitions is reached, the voting classifier sums
up the hyper-plane distances for all the repetitions of each stimuli. The
stimulus with minimum sum is selected as the predicted target for that
trial.

4.7.3 Results
ITR and accuracy

We distinguish between two accuracy measures: classification and selection
accuracy. Classification accuracy refers to the percentage of sub-trials that
is correctly identified as target or non-target. Selection accuracy refers to
the percentage of trials in which the target stimulus is correctly identified.
Given that we are interested in detecting target stimuli, in the following we
report on selection accuracy. In order to investigate the system’s accuracy
for different number of repetitions, the voting classifier object in OpenVibe
platform was modified to keep a log of the hyper-plane distances sums of
each stimulus for any number of repetitions.

Tables 4.8, 4.9 and 4.10 provide the online accuracy of all subjects and con-
ditions along with the number of repetitions in the on-line sessions. Figure
4.18 shows the average accuracy and ITR (among subjects) for different
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number of repetitions. The ITR is considered to be zero, if the average
accuracy is less than 70%.

The maximum accuracy is found in the TimPiSp175 condition (97.1%), fol-
lowed by the TimPiSp150 (92.86%), TimbSp 175 (91.4%), Timb175 (88.57%),
TimPiSp300 (88.57%), TimbSp300 (84.3%) and Timb300 condition (80%).

The average accuracy exceeds 70% in all conditions after 10 repetitions
and 80% after 15 repetitions, while after around 18 repetitions the online
accuracy does not improve significantly in all conditions (see figure 4.18).
For a given number of repetitions, the 300 ms condition does not seem
to provide better accuracy than the 175 ms and 150 ms conditions and
as a result gives lower ITR. The maximum average I'TR is achieved with
around 10-15 repetitions for all conditions. In the TimPiSpl175 condition
the average accuracy is more than 90% after 19 repetitions. The maximum
average ITR is found In the TimPiSp150 condition (14.85 bits/min, with
an average of 9.43 iterations). The best subjects performance was in the
Timb175 condition (39.96 bits/min, accuracy 80% with 2 repetitions).

Physiological Response

For each condition and every subject, the training and on-line session EEG
recordings were merged into one dataset and analyzed in Matlab using
EEGIlab (Delorme and Makeig (2004)) and ERPlab toolbox (Lopez-Calderon
and Luck (2014). This resulted in 3000 sub-trials (500 targets) for the
300 ms modality and 1800 sub-trials (300 targets) for the 175 and 150 ms
modalities, for each subject and condition. A window of 200 ms before the
stimulus presentation was used for baseline removal. In all conditions a
threshold of 150V was used for rejecting epochs with artifacts. The per-
centage of rejected epochs for each condition is shown in tables 4.8, 4.9 and
4.10. Since during the experiment, subjects remained still and with their
eyes closed, the high artifact rejection rate between sessions (raging from
0% to 74.4% for the same user) is due to noise introduced by the Emotiv
Epoch. Although the signal was always checked before every session, some
EEG channels became noisy in the middle of a session.

Initially a grand average for all 7 conditions was created for each subject,
and its P300 peak amplitude in the interval 250 and 650 ms was computed
for all EEG channels for the target epochs. For each subject, the EEG
channel with the highest P300 peak values was selected for further analysis.
Tables 4.8, 4.9 and 4.10 show the averaged P300 amplitude and latency for
all conditions and users. Figures 4.19 and 4.20 show the averaged target
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300 ms ISI 175 ms IST 150 ms IST
X =X X
IS . = . IS .
_ z S z S z 3
= 9} = = 5 [} = [} =
3 < — = =1 8 k3] < — = =1 8 k3] < — = =t i k3]
a 4 = 8 @m = A E § 08 B = & = E 3 & =
M30 100 (7) 23,3 (3) 728 479 F8 4.2 100 (12) 159 (5) 5,24 639 F8 38 100 (11) 13.32 (7)  3.55 427 F8 1.2
M46 80 (13) 3,59 (13) 0,13 659 F4 0,2 90 (21) 11,5 (5) 2,36 478 F4 21 100 (23) 7.85 (16)  3.64 484 F4 0.7
M36 70 (8) 4,2 (8) 6,95 458 F4 0,9 100 (14) 134 (8) 6,99 505 F4 14 90 (10) 15.54 (6) 6.66 378 F4 415
M28 100 (15) 583 (8) 0,019 613 AF4 29 100 (25) 5,75 (10) 2,76 597 AF4 29 90 (24) 15.54 (6) 4.02 559 AF4 4.2
F28 100 (15) 8,97 (7) 3,53 433 F4 27 100 (17) 134 (8) 3,14 615 F4 19 100 (15) 11.5 (15)  3.07 648 F4 6.3
F58 90 (15) 4.8 (7) 518 436 F3 22,6 | 100 (25) 591 (25) 1,79 449 F3 69 70 (14) 6.66 (14) 142 391 F3 204
F57 80 (13) 3,59 (13) 1,25 503 F7 134 90 (20) 5 (16) 2,3 248 F7 16 100 (23) 33.57 (2) 209 267 F7 2.7
Mean | 88,5 (12.3) 7,75 (8.4) 349 511 6,7 | 97,1 (19.1) 10,1 (11) 3,51 504 2,94 | 92.86 (17.1) 14.85 (9.43) 3.49 450.57 11.00

Table 4.8: Results for Timbre Pitch Spatial (TimPiSp) modality. For each condition and each user is given: (i) the Selection
Accuracy and in parenthesis the Number of Repetitions Required, (ii) the Maximum ITR achieved and in parenthesis the
Number of Repetitions that maximize it, under the constraint that at least a 70% of accuracy is achieved, (iii) the Amplitude
in V and (iv) the Latency in ms of the P300 peak in the (v) given position and finally (vi) the percentage of rejected epochs
during the off-line analysis.



4.7.

OF AUDITORY ERP PARADIGMS

EXPLORING TIMBRE, PITCH AND SPATIALIZATION AUDITORY CUES

113

300 ms IST

175 ms IST

CE,;, Subject

m46
m36
m28
28
58
57
Mean

Sel. Accuracy (%)

& max ITR (bits/min) 70%

—=
o &
3
—_—
N =
EZ

14.36 (6)
3.59 (13)

48 (7)

1) 104 (4.1)

N ; amplitude (V)

9.03
2.37
4.83
1.83
1.57
4.8

Latency (ms)

ot
=
el

2 2 3 Electrode

AF4
F4
F3
F7

I 5 Rejected Epochs (%)

74.4
2.6
3.3

12.7
0.8

15.1

Sel. Accuracy (%)

max ITR (bits/min) 70%

£ amplitude (V)

5.13
7.58
2.22
4.1

2.77

S Latency (ms)

6
466
388
621
441
296
258
439

2 2 3 Electrode

AF4
F4
F3
F7

Z. Rejected Epochs (%)

N os O 5 OO0
12 N, ot

9.16

Table 4.9: Results for Timbre Spatial modality (TimSp). Fields as in table 4.8.
The ITR is not computed when the limit of 70% accuracy is not reached.
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Table 4.10: Results for the Timbre modality. Fields as in table 4.9
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and non-target responses of each users selected channel for all the 175 and
300 ms ISI conditions, respectively. In all plots, the red line corresponds to
target epochs and the black line to non-target epochs. periodicity of 175
ms can be observed in the 175 ms condition and a periodicity of 300 ms in
the case of 300 ms condition. As expected, this periodicity aligns with the
stimuli presentation periodicity (see figure 4.17).

Figures 4.21, 4.22 and 4.23 show the average of all users target and non-
target responses for all 300ms ISI conditions of 10 EEG channels. When
comparing the 3 modalities, it is observed that while the target ERP re-
sponses are equally strong in all modalities, the TimPiSp gives the weakest
non-target ERP responses, followed by the TimPi and the Timb modalities.
This results in a stronger mismatch negativity value. This is also reflected
in the selection accuracies of each of these modalities: 88.5%, 84.3% and
80% for the TimPiSp, TimSp and Timb modality respectively.

4.7.4 Discussion

For the first time the significance -in an auditory P300 paradigm- of the 3
most important perceptual auditory discriminating cues is studied: Tim-
bre, Pitch and Spatialization, under three possible ISI conditions (300, 175
and 150 ms). The results of our study indicate that the best results are
given when the stimuli are different in all three perceptual modalities, while
shorter ISI results in higher ITR.

As seen in figures 4.19 and 4.20, all subjects have clear EPR responses in
both the 175 and 300 ms conditions, although they vary in intensity and
shape. The mean latency of the P300 peak for all 7 conditions is 468 ms,
while no significant differences in the P300 peak amplitude and latencies
are observed between the different conditions (see tables 4.8, 4.9, 4.10).
Although the signal quality was checked at the beginning of each session,
high epoch rejection rate was observed in some sessions. This might be due
to the unstable behavior of saline water electrodes.

The channels with the strongest average P300 peak for all conditions were
located in the frontal area for all subjects. When looking at the occipital
channels though (figures 4.21, 4.22, 4.23), we can see an early positive de-
flection about 220 ms after the target stimuli presentation. This aligns with
the results of Schreuder et al [7], where it is concluded that in the short
175 ms condition class difference has shifted toward the frontal areas when
compared to the longer 1000 ms ISI condition.
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Despite using a low cost EEG device, the performance of the proposed
system is comparable to state-of-the-art performance. In the TimPiSp150
condition the average selection accuracy obtained is 92.86% with 17.1 rep-
etitions and the average ITR is 14.85 bits/min with 9.43 repetitions. These
results compare well with the state-of-the-art results reported by Schreuder
et al. (2010) (selection accuracy 94%, with 11.6 repetitions; maximum ITR
of 17.39 bits/min, with 5.6 repetitions, PitchSpatial 175ms ISI).

The maximum average selection accuracy is found in the TimPiSp175 con-
dition (97.1%), followed by the TimPiSp150 (92.86%), TimbSp175 (91.4%),
Timb175 (88.57%), TimPiSp300 (88.57%), TimbSp300 (84.3%) and Timb300
condition (80%). The 300ms IST conditions though were studied for a maxi-
mum of 15 repetitions, while the 175 and 150 ms ISI conditions were studied
for a maximum of 25 repetitions. Looking at figure 4.18, we can see that
for the same number of repetitions, the average accuracy is close for the
300 and 175 ms ISI conditions. The ITR though is much lower in the case
of 300ms ISI conditions, as more time is required for the same number of
repetitions. Thus, it is concluded that there is no reason for using long
ISIs in auditory P300 based BCIs. In order to get a significantly stronger
P300 response, When comparing the TimPiSp175 with TimPiSp150 con-
ditions, we see that although the first one gives better selection accuracy
(97.1% versus 92.86%), the second one achieves higher ITR (14.85 versus
10.1 bits/min). In the future, the ISIs limits should be studied in order to
determine the minimum ISI to maximize ITR.

In both 300 and 175 ms ISI conditions, the order of the conditions in terms
of selection accuracy is: TimPiSp, TimSp, Timb. Thus, it is clear that the
performance of the system improves as more discriminating cues are added.
This is also concluded when observing the averaged ERP responses of these
conditions (figure 4.23). Although the target stimuli responses have the
same intensity in all conditions, the non-target stimuli responses become
weaker as more modalities are added in the stimuli design. This results in
higher mismatch negativity values and thus, higher selection accuracy.

Schreuder et al. emphasized the importance of sound spatialization in stim-
uli presentation. However, in this case stimuli differed only in pitch and spa-
tialization. Selection scores went down below 70% for most subjects when
the spatialization modality was removed. Our results imply that when
stimuli are different in timbre, the spatialization still affects the selection
accuracy, but not so drastically. In the 300ms ISI conditions, the average
accuracy of TimSp modality is 84.3% while in the Timbre modality the ac-
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curacy is 80%. In the 175 ms ISI conditions, the average accuracy of TimSp
modality is 91.4% and the accuracy of the Timbre modality is 88.57%.

We have presented a multi-class BCI system based solely on auditory stim-
uli, which makes use of low-cost EEG technology. We have explored timbre-
pitch-spatial, timbre-spatial, and timbre-only combinations of timbre, pitch
and spatial auditory stimuli and three inter-stimuli intervals (150ms, 175ms
and 300ms). We evaluated the system by conducting an oddball task on 7
healthy subjects. The maximum accuracy is found in the TimbPiSp175 con-
dition (97.1%), followed by the TimPiSp150 condition (92.86%), TimbSp175
condition (91.4%), Timb175 condition (88.57%), TimPiSp300 condition (88.57%),
TimbSp300 condition (84.3%) and Timb300 condition (80%). The max-
imum average ITR is found in the 150ms ISI, TimPiSp condition (14.85
bits/min, with 9.43 iterations). Lower Inter-Stimulus Intervals lead to
higher ITR, while as more discriminating cues are added the selection ac-
curacy and ITR increases. Based on the TimPiSp modality, an auditory
P300 speller was implemented and evaluated by asking users to type a 12-
characters-long phrase. Six out of 7 users completed the task. The average
spelling speed was 0.56 chars/min and best subjects performance was 0.84
chars/min.

In this study we made use of an EEG device which is valued at about 50-100
times less costly than medical/research quality devices. However, interest-
ingly our results are comparable to those achieved by medical devices. The
obtained results show that the proposed auditory BCI is successful with
healthy subjects and may constitute the basis for future implementations of
more practical and affordable P300-based BCI systems. However, the high
amount of noise introduced during some of the sessions (high epoch rejec-
tion rate in off-line analysis) affects the accuracy of the system, and thus
for crucial BCI applications a more robust and stable EEG device should
be used.

4.8 ERP-based BCMIs

Probably the most robust way of building a voluntarily controlled BCI that
wouldn’t require almost any training on behalf of the user, is through the
P300 potential. The P300 potential is a positive deflection of the cap-
tured electromagnetic activity, 300ms after a rare or unexpected event is
perceived, centred around the vertex of the cortex and spread all over the
cortex. In a multi-class P300-based BCI, a number of stimuli are presented
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to the user in a random order and the user draws his attention to a specific
stimulus (usually by mentally counting its occurrences). After a number of
repetitions of each stimulus, the system is able to predict on which stimulus
the user was focusing on. The nature of the stimulus might be visual, audi-
tory, tactile or combination of these. By altering his attention to different
stimulus the user is able to perform different actions.

The most well-known P300-based multi-class BCI is the P300 speller pro-
posed in 1988 by Farwell and Donchin Farwell and Donchin (1988). In
the typical P300-speller paradigm the user stares at a screen where the
characters are placed on a grid. As the characters are flushing in a ran-
dom order, the user focuses on the character he/she wants to spell. Every
time the attended character flashes, a P300 potential is generated. After a
number of repetitions, the character that causes the stronger P300 peaks
is classified by the system as the attended character. Implementations of
the P300-speller have also been proposed using auditory instead of visual
stimuli (e.g. Schreuder et al. (2011); Kéthner et al. (2013)).

Apart from typing, a big variety of P300-based BClIs - targeted mainly for
locked-in patients- has been proposed, such as controlling the mouse cursor
(e.g. Citi et al. (2008)), controlling an internet browser (e.g. Mugler et al.
(2010)), controlling a wheelchair (e.g. Rebsamen et al. (2007)), painting
(e.g. Laar et al. (2013)), or controlling musical interfaces (e.g. Grierson
(2008); Chew and Caspary (2011)).

Grierson (2008) presented a P300-based BCI where the user selects the
midi-note number placed on a grid, in a similar way a user spells letters
in the P300 speller. The maximum speed achieved among 5 subjects was
one note every 7 seconds. Another P300 based BCI proposed Chew and
Caspary (2011), integrates the idea of the P300 speller in a music 8x8 step
sequencer. The notes of the sequencer are flashing in a random order, and
the user selects them as he/she would select letter in the speller. At the
same time the melody produced by the sequencer is played back. These last
two proposed interfaces use only visual stimuli for controlling the musical
interface. The following proposed P300-based BCMIs are can be controlled
using either only the auditory modality or auditory and visual modality
during the stimuli presentation.

We evaluate a proposed P300 BCMI using the Emotiv Epoc headset, and
in another similar interface using the Enobio 8 wireless EEG headset.
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4.8.1 Brain Sequencer

This application is designed for constructing arpeggios. The user looks at a
6x6 step sequencer on a computer screen. The buttons of the first column
of the sequencer start flashing in a random order with Inter Onset Interval
(IO0I) 300 ms, while at the same time the note assigned to them sounds.
The number of repetitions in the oddball paradigm might vary, depending
on the desired accuracy.

Figure 4.24 shows a user performing with the interface. The tuning of
the notes and the used timbre might also be set by the user. A recorded
performance can be found online at https://youtu.be/PRGHeeOOWMk. In
this performance the 101 was set to 300 ms and the available notes were
these of a pentatonic scale (c, d, e, g, a). Any of the auditory or visual
feedback modality can be turned-off. This was the first preliminary interface
we implemented, and no proper evaluation was performed. We thought that
interfaces in which the stimuli presentation is the musical outcome would
be more interesting.

4.8.2 P300 harmonies

The interface described in this subsection is published at the joint Proceed-
ings of the 40th International Computer Music Conference, ICMC 2014 and
11th Sound and Music Computing Conference (Vamvakousis and Ramirez
(2014)).

The Interface

The interface consists of an arpeggio of six notes that is continuously being
played back. The notes of the arpeggio sound in a random order. The
arpeggio consists of 6 notes separated by an interval of 175ms. The notes
of the arpeggio are controlled through 6 switches, where each switch has
two possible states: up and down. When a switch is in the up-state the
note produced by this switch is one tone or semitone -depending on the
switch- higher than when in the down-state. By focusing on each of the
notes of the arpeggio, the user may change -after 12 repetitions- the state
of the corresponding switch. The state of each switch is shown on a screen
(see figure 4.25). Each switch flashes when the corresponding note is heard.
The user can either focus exclusively on distinguishing the desired sound
or focus as well on the flashing of its corresponding switch. When all notes
of the arpeggio have sounded 12 times, the background color of the screen
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changes, indicating that the user can then focus on the next sound he desires
to change.

In figure 4.25 are shown the notes assigned to each switch. When all switches
are placed in the down-position, the re- sulting arpeggio consists of the notes
G3 (sol in the 3rd octave), B3, D4, F#4, B4, D5, resulting in a G Major
sev- enth chord, while when all switches are in the up-state, the arpeggio
consists of the notes A3, C4, E4, G4, C5, E5, resulting in a A minor/minor
seventh chord. Stereo spa- tialization is applied to the notes: the low pitch
notes are placed to the left while as the pitch goes higher, the spa- tialization
moves to the right. The interface has been tried so far with a sound of a
harp.

By switching his attention to the notes of the arpeggio, the user can build a
big variety of possible harmonies. The advantage of the proposed interface,
when compared to previously proposed P300-based Musical Interfaces is
that it can depend only on the auditory modality: the users changes the
music, only by listening to it. Moreover, there is no time interval between
the trials, resulting in a continuous musical outcome.

In the initial state all switches are placed down. Once the arpeggio starts
being reproduced, every 72 notes (12 occurrences of each one of the 6 stim-
uli), the background color of the screen changes, indicating that the user
might then attend the next note he/she wishes to change. After about 1
second the voting classifier outputs the detected target stimulus, changing
the state of the corresponding switch. As a result a different harmony is
being produced by the arpeggio. This process, allows a continuous play-
back of the musical outcome of the interface. The number of trials -that
determines the duration of the performance- has to be determined at the
beginning of the session.

Classification Process

The classification process is the same as the one described in 4.6.1. At
the beginning of a training session one of the 6 notes of the arpeggio is
played back to the user. After a small interval of 3 seconds, the stimuli are
presented in a random order, under the constraint that at least one note
interferes between two occurrences of the same note. The user is asked to
mentally count the occurrences of the target-stimulus. A stimulus consists
of the sound of the note, along with a blink on the screen of duration 100ms
of the corresponding switch. The Inter-Stimulus- Interval (ISI) is set to
175ms. All stimulus are presented 12 times, until the next target stimulus
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is presented to the user. This process is repeated 6 times -one for each
stimulus-. As a result, the training data consist of 432 epochs, 72 of which
are target epochs.

An epoch consists of the 14-channel recording of the time interval 250 to
750ms after the presentation of a stimu- lus. The signal is downsampled
to 32Hz and band-pass filtered to 1-12Hz. Using the xDAWN (Rivet et al.
(2009)) Spatial Filter Trainer in Openvibe, a 14 to 3 channels spatial filter
is acquired. The 48 resulting values per epoch are then used to obtain
a two-class Linear Discriminate Analysis Classifier (LDA) to distinguish
target from non-target epochs. Once the spatial filter and the LDA classifier
parameters are acquired, the use might start using the interface.

During the on-line session, the features per epoch, are being produced as
in the training session. Then, for each stimulus a voting classifier computes
the sum of the hyperplane distances -given by the LDA classifiers-, and
outputs as the attended stimulus the one with the lowest sum.

Evaluation and Results

The interface was evaluated with 4 subjects (3 male). After training the sys-
tem -as described in paragraph 2.2.1- they were asked to move all switches
up, starting from the leftmost one and moving to the one in the right. The
average age of all subjects was 35 years. The only female subject performed
the task in an exhibition setting, using loudspeakers for sound generation
achieving 100% accu racy 5 . The 3 remaining subjects were asked to per-
form the same task in an office environment, using in-ear head- phones.
The accuracy was 6/6, 4/6 and 5/6. All subjects used both the visual and
auditory modality of the interface to control the interface. The average ITR
among all 4 subjects was 7.37 bits/min, while in the case of the 2 subjects
that performed with 100% accuracy the achieved ITR was 12.31 bits/min.

Discussion

The novelty of the proposed interface lies in the fact that the user voluntarily
interacts with the music while listening to it. The limitation that a P300-
based auditory BCMI introduces is that the stimuli should be presented
in a random order. Even with this limitation though, interesting musical
interfaces can be designed. Such interfaces could be useful for some cases
of locked-in patients. In the proposed BCI, the stimuli presentation of a
trial starts before presenting the outcome of the preceding. Due to this
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Harp/-90 Harpichord/-45 Harp/o Harpichord/45 Harp/90

F ad c4 f4 a4 cH
C g3 c4 ed g4 ch
G g3 b3 d4 g4 b4
Dm a3 d4 4 a4 d5
Am a3 c4 ed a4 cH

Table 4.11: The notes corresponding to each chord. The name of the note is
followed by its octave. For example a3 corresponds to the note a at the 3rd octave.
The musical instrument used and the stereo panning of each stimulus are also
shown.

fact, the Information Transfer Rate of the system increases when compared
to a system where a time interval is introduced between the trials. The
preliminary evaluation presented here, did not study the accuracy of the
system when just the auditory modality is used in stimuli presentation. We
studied this in a different version of the interface presented in the following
section.

4.8.3 BrainLoops

The interface described in this subsection is published at the Proceedings of
the 1st International BCMI Workshop (Vamvakousis and Ramirez (2015)).

The Interface

The interface consists of a dynamically changing 5-class P300 oddball paradigm.
Two different scenarios were implemented: the audiovisual and the audi-
tory. Table 4.8.3 summarizes the timbre of each stimulus (which is the
musical instrument that generates its sound), along with its stereo panning
and the pitch. The pitch of each stimulus varies, depending on which is the
currently selected chord.

During a trial all stimuli appear in a random order, 20 times each. The Inter
Onset Interval (IOI) (time interval between the onset of two consecutive
stimuli) was set to 220ms and the duration of each stimulus to 80ms. At
least one stimulus interferes between two occurrences of the same stimulus.
Each stimulus is mapped to a different chord. In an order from left to right
in the stereo panning position, the stimulus are mapped to the following
chords: F major, C major , G major , D minor and A minor. If during
a trial the user wants to select one of the chords, he/she has to switch his
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attention to the corresponding stimulus and mentally count its occurrences.
At the end of each trial the system detects which was the attended stimulus
and tunes all stimuli to the corresponding chord. There is no time interval
between two trials. Instead, after switching to the selected chord, each
stimulus appears three time, with an order from left to right. This helps
the user to spot the next stimulus he/she wishes to attend. In front of
the user there is a computer screen showing the available chords to be
selected. The chords are placed in the same order as the corresponding
stimuli (see figure 4.26). The currently selected chord is marked in red.
Just in the case of the audiovisual scenario, the chord names are flashing
when the corresponding stimulus sounds. In the stimuli design there are 3
discriminating cues: timbre, pitch and stereo spatialization. From left to
right, the sound of a harp alternates with a sound of a harpsichord in a
way that two neighboring sounds do not share the same timbre. Both of
the selected instruments are stringed and have similar timbre. This was
preferred to preserve the musicality of the interface.

Classification Process

Before using the interface in the online session, a training session is per-
formed in order to acquire data to obtain a two class LDA classifier and
a spatial filter, as explained in 4.6.1. During the training session an arrow
is pointing at the stimulus the user should attend. The training session
consists of 10 trials, in which each stimulus is set as a target twice.

Evaluation and Results

The Enobio 8 wireless electrophysiology sensor systemwas used for record-
ing the brain signals. The proposed interface was evaluated on 8 healthy
subjects (5 male, mean age 29 years, standard deviation 5.46). All sub-
jects gave oral consent to participate in the study. The Enobio 8 wireless
electrophysiology sensor systemwas used for recording the brain signals.

On each user it was first evaluated the audiovisual and then the auditory
scenario. For each scenario a 10-trials training session was followed by a
15-trials online session. In order to evaluate the accuracy of the system,
the users were asked to select all the chords with order from left to right
as shown in figure 1. As the training session consisted of 10 trials, each
stimulus was set as target in 2 trials in that case, while it was set as target
3 times in the online session. An arrow was always pointing to the stimulus
to be attended. The first two repetitions of each stimulus were not taken
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Audiovisual Auditory
10-fold Accuracy 10-fold Accuracy
User Cross Vali- Cross Vali-
. out of 15 . out of 15
dation dation
M32 65.9% 8 63.1% 12
M27  T1% 14 64.7% 5
M34 66.9% 14 62.7% 7
M38 65.3% 8 59.8% 5
F20 70.5% 12 58.3% 8
F27a 66.2% 11 61.1% 7
M28  77.5% 15 60.9% 3
F27b  70.10% 14 57.3% 6
AVG  69.18% 12 (80%) 60.99% 6.63 (44%)

Table 4.12: The 10-fold Cross Validation and selection accuracy for all users in
both the audiovisual and auditory scenario.

into account during the classification process. The reason for that is that
presumably it required some time for the users to spot the desired stimulus.
Table 4.8.3 summarizes the selection accuracy and 10-cross fold validation
of all users. The average selection accuracy for the audiovisual scenario is
80%, while for the auditory scenario it is 44%.

Discussion

In this study we implemented and evaluated an P300-based BCMI and eval-
uated it in two scenarios: the audiovisual and the auditory. In our paradigm
the user is able to change the harmony of the sound stimuli by switching
his attention to each one of them. This is a special case of an auditory
oddball paradigm, where the properties of the stimuli change according to
the selections of the user. This probably makes the oddball task even more
difficult. In the audiovisual scenario, where the users also make use of the
visual cue, the selection accuracy is 80%. When the visual cue is removed,
the selection accuracy falls to 44%. In the audiovisual scenario all users
reported that they counted all 20 occurrences of the attended stimulus in
every trial. On the contrary in the case of the auditory scenario several
subject reported that in some of the trials they were not able to count all
occurrences of the attended stimulus. Subject F27a reported that she was
confusing the 3rd with the 4th stimulus (as they are placed in the stereo
panning from left to right). The same was reported by subject M28. Sub-
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ject F27b reported that was counting about 18 occurrences instead of 20 in
all the trials. Subject M27 could not count correctly the 3rd stimulus in one
of the trials. The rest of the subjects reported that they were able to count
20 trials of the target stimulus in all trials. These subjects happen to have
musical training. The auditory scenario was more difficult for all subjects,
apart from the subjects with musical training (M32, M38, M34 and F20).
The difficulty of the subjects with no musical training to spot the stimulus
in the auditory sce- nario is also reflected in their selection accuracy. Mu-
sicians average 50% while non-musicians 33.3%. Subject M32 was the only
subject that had previous experience with auditory P300-based BCIs. He
was the only one that achieved a high selection accuracy. This indicates
that training might be crucial in such interfaces.

The lower performance of auditory P300-based BCIs compared to the visual
ones is known by previous studies. In the current study though we observe
an even higher difference. This could be explained by the fact that the sound
stimulus are dynamically changing according to the selections of the user.
Another explanation is that the musicality of the interface was taken into
account in stimuli design. The musical interval between to neighbor stimulus
was a 3rd or 4th, while all stimuli are always harmonic with each other.
Dissonant notes might have been easier to distinguish. Another parameter
is the selected timbre of the stimuli. Instead of using a different musical
instrument for each stimulus, we only selected two different instruments
with similar timbre in order to preserve the musicality of the interface.
A way to improve the system’s accuracy could by increasing the number
of repetitions of the oddball paradigm. This would make the interaction
slower. Twenty-two seconds per selection is already a big time interval.
Given the results of the current study, implementing an auditory P300-
based BCMI is hardly feasible.

4.9 Conclusions

In this chapter we investigated different ways of implementing Brain Com-
puter Musical Interfaces. We described a simple application in which the
user controls the contour of a melody by performing imagery feet move-
ments. Then we presented an emotion estimation method based on EEG
data using Emotiv Epoc headset. Our results indicate that EEG data ob-
tained with Emotiv Epoc device contain sufficient information to distinguish
these emotional states, and that machine learning techniques are capable of
learning the patterns that distinguish those states.
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We applied this emotion-estimation technique in a hybrid brain-gaze con-
trolled music performance, in which the performed controlled the melody
with the eyes, while his detected emotional state was driving an arpeggio
generation system.

Then we investigated auditory Event Relate Potential interfaces. In par-
ticular we evaluated the performance of low cost Emotiv Epoc headset in
capturing auditory evoked potentials. Results indicate that Emotiv Epoc
can be used in auditory ERP-based BCIs. We then explored how different
auditory cues (timbre, pitch and spatialization), and combination of those,
affect the accuracy of auditory ERP-based BCIs. Results indicate that
when combining all auditory cues in the stimuli design, the performance is
maximized.

Afterwards we proposed two auditory ERP-based interfaces that allow the
control of the harmony of the auditory stimuli presentation. Results so that
when only the auditory modality is used, the accuracy in this case is low
even when using a high quality EEG device.
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Figure 4.12: Online classification process.
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Average accuracy across all subjects over repetitions

Number of Repetitions

Figure 4.13: ERS observed in the motor cortex of a subject during real feet
movement
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Figure 4.14: Averaged target and non-target waveforms for all users. Only the
location with maximum target and non-target difference is shown for each subject.

15cm

Figure 4.15: Experiment setup: for all experiments two loudspeakers were used
to spatialize the stimuli
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Figure 4.16: A session of the 175 ms ISI conditions. Each session consisted of
10 trials. . Before each trial, a random stimulus was played back as the target
stimulus. In the case of 175ms ISI conditions a trial consisted of 25 repetitions of
all stimuli in a random order and lasted for 26.25 seconds. In the case of 300ms
(15 repetitions) and 150ms (25 repetitions) IST conditions each trial lasted 27 and
22.5 seconds, respectively. In the on-line sessions, the detected target stimulus was
played-back after each trial.
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Figure 4.17: Stimuli presentation of a repetition for the TimPiSp175 condition.
Additionally the averaged ERP response measured in the F3 channel of all users for
the TimPiSp175 condition is shown. The red line corresponds to the target epochs
and the black line corresponds to the non-target epochs. The ERP responses follow
the periodicity of the stimuli presentation.
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(a,b) Averaged on-line performance and ITR of all subjects for
the 175 and 150ms conditions for different number of repetitions. (c,d) Averaged
on-line performance and ITR of all subjects for the 300ms conditions for different
number of repetitions. The ITR is considered to be zero, if the average accuracy
is less than 70%.
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Figure 4.19: 175ms ISI grand average.
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Figure 4.20: 100ms ISI grand average.
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Figure 4.22: 300msTS all subjects 10 electrodes average
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Figure 4.23: 300msT all subjects 10 electrodes average

Figure 4.24: Brain Sequencer: Constructing Arpeggios using auditory or audi-
tory+visual stimuli as an input in a P300 oddball task. The user inputs the notes
one by one. First the note of the first column is selected, followed by the note of
the second column and so on.
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Figure 4.25: From each switch the user can select between two possible notes.
The selected note of each switch is highlighted in blue color. When the program
starts, all switches are placed down.

Dm

F Am

Figure 4.26: The visual feedback. In the case of the audiovisual scenario the
chord names flash when the corresponding stimulus sounds. The red circle indicates
which is the currently selected chord.






CHAPTER 5

Conclusions

5.1 Introduction

In this dissertation we have investigated the feasibility of creating digital
musical interfaces designed for people with different types of physical dis-
abilities.

In chapter 2 we studied three different cases of people with limited upper
limb sensorimotor functions. We have shown that using the arduino micro-
controller with low cost sensors and materials, it is possible to construct
Digital Musical Instruments that might allow people with physical disabili-
ties to perform music. There are indications that this has a positive impact
in their quality of life. In particular in the case of the study presented in
section 2.2, while the user was not able to play any music instrument before
providing him with the implemented prototype, he now sees his future as
a professional music composer, while he has already composed music for
a theatrical play. He states that probably without the constructed midi
controller he would not be able to improvise and generate ideas for his com-
positions. In the case of the study presented in section 2.4, although the
user does not seem to improve much in his playing abilities, the constructed
prototype seems to have a positive impact therapeutically in his life. Fi-
nally, in the case of the study presented in chapter 2.3 the final constructed
prototype had some elements that should be kept, but some basic design
choices should be reconsidered in order to make it usable for the subject.

In chapter 3 we presented the EyeHarp gaze-controlled music interface. We
studied the temporal accuracy in playing simple music exercises. We pro-
posed and evaluated a novel fixation-detection algorithm that according to
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the results provides better temporal accuracy than other commonly used
algorithms. Then we evaluated the EyeHarp as a Digital Musical Instru-
ment from the perspective of the audience and of the performer. Results
indicate that the EyeHarp is a DMI with steep learning curve that allows
expressive performances.

In chapter 4, we examined the possibility of brain-controlled music inter-
faces. Initially we experimented with a sensorimotor rhythm-based music
interface. We then evaluated the potential of estimating emotional states
out of the EEG signal, using the Emotiv Epoch device. Our results indicate
that it is possible to detect basic emotion by applying the methodology we
propose. As a proof of concept, he organized a concert in which within the
EyeHarp interface the performer was the solo part, while the detected emo-
tional states were driving an arpeggio generation system. We then evalu-
ated the performance of Emotiv headset in auditory Event-Related Potential
based brain-computer interfaces. The results indicate that Emotiv Epoc can
be used successfully in such interfaces. Additionally, we investigated how
timbre, pitch and spatialization auditory cues in the stimuli design affect the
performance of such interfaces. Our results propose that by combining all
auditory cues, the performance of such interfaces is maximized. Finally, we
proposed three different auditory ERP-based brain-computer music inter-
faces. We evaluated their accuracy and Information Transfer Rate in two
scenarios: (i) when stimuli consisted of only auditory cues and (ii) when
stimuli were presented from both the auditory and the visual channel. Our
results indicate that in the audio-visual scenario, such an interface might
have a robust performance. Nevertheless, our results indicate that the per-
formance of an ERP-based BCMI using only the auditory channel is low for
implementing usable BCMIs.

5.2 Summary of Contributions

In this dissertation we contributed in three distinct fields of research that
are related to interfaces for people with physical disabilities:

Limb-Controlled

e We confirmed that using low cost materials, digital musical instru-
ments designed for people with upper-limb paresis can be constructed
and serve them for music expression and composition.
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e Publicly available instructions of how to implement the constructed
prototypes.

Gaze-Controlled

e We implemented and evaluated the EyeHarp, an open-source gaze-
controlled music interface. Results indicate that it offers a steep learn-
ing curve and it allows expressive live performances.

e A new fixation-detection algorithm was implemented and evaluated.
Results indicate that it provides improved temporal accuracy when
compared to commonly used fixation-detection algorithms.

e Different gaze-selection techniques for improving the spatial accuracy
in selecting small targets were implemented and compared with each
other.

Brain-Controlled

e Our results indicate that it is possible to estimate emotional states
using the low cost Emotiv Epoch EEG device.

e Our results indicate that the performance auditory Event-Related Po-
tential Brain Computer Interfaces is maximized when the used stimuli
vary in timbre, pitch and spatialization.

e Our results indicate that Emotiv Epoch EEG device can be effectively
used in auditory ERP-based BCls.

e All recorded EEG data from our experiments are publicly available.
EEG recording available at: !

e Auditory and audiovisual Event-Related Potential-based interfaces
and a hybrid Brain-Gaze interface were proposed as possible music
interfaces for people in total locked-in state.

"https://drive.google.com/open?id=0B6BzfrftsEXWTHIHMC1o0UHE4RUO
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