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Memòria presentada per a optar al grau de Doctor al

Programa de Doctorat en F́ısica

Department of Structure and Constituents of Matter

Facultat de F́ısica

November 2015

http://www.ub.edu
http://www.ecm.ub.es
http://www.ub.edu/fisica




“ The first principle is that you must not fool yourself — and you are the easiest

person to fool.”

Richard Feynman

“Ah, what a fine day for science!”

Dexter
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Chapter 1

Dynamics and stochasticity

of genetic circuits

1.1 A brief historical perspective

To a physicist, living matter is a wonderfully complex subject of study, but it can

also be overwhelming. The physicist’s reductionist approach to any problem,

trying to find universal laws and use the minimal components that qualitatively

define a system, has been used many times to try to answer questions of bio-

logical significance, and it has not always succeeded. Let us take a look at the

history of physicists and mathematicians that have tried to delve into biologi-

cal matters, to put in context the work presented in this thesis (Frigola et al.,

Submitted).

Mathematically-minded scientists (such as physicists) have historically tried to

contribute to biology in two main ways. One is the resolve to find some sort of

general, simple principles that govern biology, like the ones that can be found

in the atomic world or in the heavens. Not completely independent is a second

contribution, trying to apply concepts learned from physics and mathematics

to biological problems. Of these, the first is still in its infancy (despite having

started many decades ago), but the second already has a fertile history of failures

and successes upon which to build present science.
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4 Chapter 1. Dynamics of genetic circuits

The most obvious example of both is the Waddington landscape, the metaphor

proposed over 70 years ago that during development cells roll down through val-

leys that bifurcate, choosing at each new ridge their future cell type (Wadding-

ton, 1942). This view of cell differentiation has actually become a commonly

used and debated paradigm to interpret cellular states, where the valleys of

the landscape are attractors that are reshaped during developmental processes

(Ferrell, 2012).

Another such example is the somehow physical concept of positional informa-

tion, proposed by Lewis Wolpert (Wolpert, 1969). He posited that cells would

need to somehow know their position within a developing organism to define

their cell fate. Nobel Laureate Francis Crick realized in 1970 that the space and

time scales involved in diffusion of biological molecules within the extracellular

space meant that these molecules could be creating gradients across developing

tissues, to fulfil this role and convey this positional information (Crick, 1970a).

Since then, many different molecules have been found to do this type of function

(Rogers and Schier, 2011).

These are examples of successful conceptual frameworks that where relatively

so from the beginning. A perhaps more paradigmatic example in its mixture of

success and failure is the contribution by Alan Turing, most famous from his

work in computer science. In a seminal work in 1952, he proposed that patterns

arising during development could be the natural output of chemical reactions

between an activator and a repressor molecule that diffuse across space with

different diffusion coefficients (Turing, 1952). The validity of this idea was later

proven experimentally in chemical (not biological) systems (Castets et al., 1990;

Vigil et al., 1992). Furthermore, the mechanism was generalized and distilled

to its key components (a short range activation and a long range inhibition) by

Gierer and Meinhardt (1972). This mechanism became a very popular idea and

yet, it is a good example of the failure of the interplay between mathematics

and biology.

Despite the Turing mechanism being able to reproduce many biological patterns

(the most striking example being the fur and skin patterns of several animals

(Murray, 2001)), the molecules that would be enacting the mechanism could

not be found for many years. Thus, the kind of beautiful mathematical idea

that seduced theorists was shunned by biologists. This is only one instance of

models that predicted mechanisms that were not detected in nature, or were
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unable to predict changes in patterning that were observed experimentally. Due

to these cases, a kind of mutual suspicion between experimental biologists and

theorists arose (Lawrence, 2004).

In the last decades, though, an enormous advance in experimental techniques

has allowed to bridge this divide. The knowledge of which biological molecules

participate in development, as well as the ability to manipulate and observe

them in greater spacetime resolution, has allowed mathematical models to be-

come more grounded in biological reality, as well as to reinterpret older models

in light of new, more abundant data. As an example, in the last years some

new examples (not the first) of the Turing mechanism have been successfully

found in fish skin patterning (Kondo et al., 2009). At the same time, theoret-

ical tools did not stop advancing, and relevant progress has been achieved in

nonequilibrium statistical mechanics, dissipative systems, nonlinear dynamics

and complex systems. This, together with the enormous increase in available

computational power, has enabled modelling that is much more relevant to

experimental biology (and vice versa). During the last two decades, interdisci-

plinary research involving members from both communities has become more

and more common, and the aforementioned mutual suspicion has progressively

diluted (Perrimon and Barkai, 2011). Thus we are now in an exceptionally

fertile moment to approach biological problems mathematically, as well as to

embrace the challenge of trying to extract some fundamental principles of how

living matter works.

1.2 Noise in biochemical systems

One of the most active and fertile of these problems are the ones within the area

found between development, gene regulation, and different forms of cell-to-cell

communication, only perhaps rivalled by neuroscience. It is in this area that

our studies are framed, and to understand them we need to do a condensed

review of their biological framework and its relationship to physical concepts.

The cell is a biochemical reactor, with hundreds of different chemical molecules

moving around both in the nucleus and in the cytoplasm (in the case of eukary-

otes) and interacting in a myriad ways (Alberts et al., 2007). These molecules,
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of three main types (DNA, messenger RNA and proteins) have a fundamen-

tal relationship that is the basis of all the function in the cell: the central

dogma of molecular biology. This classic view states that the information en-

coded in genes (DNA) is transcribed (by RNA polymerase) into messenger RNA

(mRNA) molecules which is then decoded and translated (by a ribosome) into

the aminoacid chain that later folds into a protein. This view has become more

nuanced since its original presentation by Francis Crick in 1970 (Crick, 1970b),

with this sequence and information flow still at its core (Figure 1.1).

Figure 1.1 Main information flow of the Central Dogma of Molecular
Biology. According to it, DNA is transcribed into mRNA which is translated
into protein. Not shown are the other information flows: DNA on itself,
RNA on itself, and RNA onto protein. According to the classic view, protein
can modulate the expression but not change the information contained in
DNA or RNA.

Some important additions to this view are RNA chains with functions other than

being transcribed intro proteins, proteins that interact with each other, proteins

that interact with DNA altering transcription of another specific protein, or

proteins that semi-permanently modify DNA (for instance through methylation,

the addition of methyl groups at specific DNA regions), in what is known as

epigenetics. Of special interest to us will be the proteins that modulate the

expression of other proteins. These are called Transcription Factors (TFs), and

bind to the promoter, a region of DNA that does not encode proteins and,

instead, is responsible for modulating the expression of a specific protein that

is encoded adjacent to it.
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These processes, and in particular the protein-protein and protein-DNA inter-

actions form an enormous network of interactions that yield the final protein

amounts that do all functions in the cell. This network is amenable to study

through different mathematical tools. Regardless of how they are studied, it is

often necessary to consider the stochasticity that is inherent to these processes.

All these processes are chemical reactions, that depend on molecules meeting

in space to happen. In a naive view of chemistry, chemical species are very

abundant, and well mixed, so the rate at which they react is constant or, at

least, evolves deterministically.

In cells, however, many molecules are in low amounts (for instance, many genes

have only one copy), which means that whether reactions happen or not at

a certain time becomes a matter of chance (Kepler and Elston, 2001; Bialek,

2011). Furthermore, due to these low numbers, any small fluctuation can have

a meaningful impact in the behaviour of biological systems. This needs to

be accounted for in any model of the cell, or in any description that tries to

understand a cellular process, since however they work, cellular mechanisms

need to work around this. A lot of study has gone into how the cell may

minimize the effects of this noise, learning from the experience of fields such

as electronics, liquid crystals, or other nonequilibrium systems (Sagués et al.,

2007), but in the last years the idea that cells may not only work despite noise

but also profit from it has gained traction and has been demonstrated for several

examples (Losick and Desplan, 2008; Eldar and Elowitz, 2010). Some typical

examples are a population having a heterogeneous response to the same input

(despite having no genetic differences) (Kussell et al., 2005; Veening et al., 2008),

tuning the proportion of this heterogeneity (Acar et al., 2008) or the activation

and deactivation of cellular processes by noise(Balaban et al., 2004).

This noise can be classified in several ways. One classification that will be

useful in this thesis is in the categories of intrinsic and extrinsic. Intrinsic noise

comes from the dynamics that are being studied themselves, like the stochastic

chance that two molecules meet in space and react, or the chance that the DNA

promoter of a protein of study is available for transcription. On the other hand,

extrinsic noise is noise that comes from fluctuations that directly affect the

system but are not being directly modelled, such as the environment of the cell

or the amount of some molecule that is not explicitly part of the model, like RNA

polymerase (often not represented as such, but absorbed into the transcription
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rate of a protein of interest). It could be said that, in a way, intrinsic noise

is noise in (or coming from) the variables of the system, and extrinsic noise is

noise in the parameters (Gardiner, 2008; Garćıa-Ojalvo and Sancho, 2012). In

biological systems, this separation is usually taken further, and intrinsic noise is

taken to be the noise inherent to the process of gene expression or the dynamics

of a particular protein, whereas extrinsic noise is considered to be noise in other

cellular components, affecting all the cell at the same time (Elowitz et al., 2002).

To better understand the two types of noise, we can look at an example in which

they have been experimentally quantified. In a beautiful experiment, Elowitz

and colleagues prepared transgenic bacteria that expressed two fluorescent pro-

teins of different colors (yellow and red) (Elowitz et al., 2002). The promoters

that regulated both proteins were identical, meaning that any modulations of

expression affected them in the same way. The difference in expression between

both proteins in a given cell was due to intrinsic noise, whereas changes that

affected both genes equally, or differences from cell to cell, corresponded to

extrinsic noise (be it due to differences in local environment, small internal dif-

ferences from cell to cell, or variation in molecules such as polymerases) (Elowitz

et al., 2002). What this experiment shows is that the distinction between in-

trinsic and extrinsic is related to the level of description but, at the same time,

it has physical significance.

1.3 Modular biology: Network motifs

The vastly complex network formed by all transcriptional regulations exists and

acts all at the same time, and the precise responses and functions of the cell

are affected by each and every one of the parts of this network. Thus, contrary

to the classical biologist’s view in which each molecule is responsible for one

function, one may think that a network of interacting components needs to be

modelled all at the same time (Hartwell et al., 1999; Barabasi and Oltvai, 2004).

This is a valid approach and, using knowledge from network theory and complex

systems, it often provides insights into the workings of the cell (Barabasi and

Oltvai, 2004). However, there is also another approach, that we take here. Less

than 15 years ago, analysis of known transcriptional networks showed that there

are some highly recurrent (meaning that they happen much more often than

would be expected in a randomly wired network) small regulatory patterns,
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called network motifs (Milo et al., 2002; Alon, 2006, 2007). Theoretical study

of these motifs has shown that each is capable of generating specific dynamics,

that can be linked to specific functions (Alon, 2006, 2007). Studying network

motifs allows a more detailed level of description which includes, for instance,

the different types of noise and how they affect specific functions, as well as an

insight into some of the principles used by the undirected design of evolution

(Alon, 2003).

One very common motif is Negative Auto Regulation (NAR), in which a protein

represses its own expression once it reaches a certain threshold (Alon, 2006,

2007). NAR provides two functions: faster response times and, importantly,

a supression of fluctuations (Alon, 2006, 2007). Another common motif is the

Feed-Forward Loop (FFL), which consists of a protein A that regulates a protein

B which in turn regulates a protein C, but with the particularity that protein A

also regulates C directly (thus feeds-forward)(Milo et al., 2002). Depending on

the sign of these three interactions (that is, whether they repress or activate),

the FFL can do different functions, like acting as a filter against fluctuations or

as a pulse generator (Alon, 2006, 2007). The classical FFL classification defined

two categories depending on whether the direct wiring from A to C was of the

same sign than the one that goes through B (coherent FFL) or of opposite sign

(incoherent FFL), with similar deterministic dynamics and function within each

category (Alon, 2006, 2007). Interestingly, it has been shown that there is an

alternate classification according to their stochastic behaviour, and that this

classification is a good predictor of the functions of the cell in which the FFL

is found (Kittisopikul and Süel, 2010).

1.4 Bistability

Another feature that network motifs can provide is mutistability. A system is

multistable when it has more than one stable state for a given set of parame-

ters (i.e. external and internal conditions). This can be useful to provide two

different but well defined responses to the same input, or to avoid changing

states until the conditions have clearly changed, in a process that is known as

hysteresis (Cherry and Adler, 2000; Ferrell, 2002; Guantes and Poyatos, 2008;

Siegal-Gaskins et al., 2009). Hereby we will concentrate on the particular case

of two simultaneously stable states, called bistability.
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As explained earlier, cells are subject to noisy dynamics and a noisy environ-

ment. Due to differences in history, but also due to small differences from one

cell to another (extrinsic noise), cell populations may show heterogeneity, with

some cells in each state. These states can be experimentally observed: when

a histogram of the concentrations in the population is done, a bimodal dis-

tribution arises, with one peak at each stable state (Ferrell Jr., 1998; Becskei

et al., 2001; Acar et al., 2010) (Figure 1.3 B). This bimodality observed in a

single population does not necessarily correspond to bistability and can instead

be due to ultrasensitive (Shu et al., 2011) or excitatory behaviours (Kalmar

et al., 2009). A theoretical analysis of the system that underlies bimodality

can provide evidence as to what dynamic behaviour is generating the bimodal-

ity by pinpointing additional specific features that should be expected, such as

hysteresis when bistability arising from saddle node bifurcations underlies the

bimodality (Becskei et al., 2001).

One very common way of achieving bistability in biology is having a Positive

Feedback Loop involving a strong enough nonlinearity (Cherry and Adler, 2000;

Ferrell, 2002). A Positive Feedback Loop appears when a protein enhances its

own expression, be it by directly binding to its own promoter or by interact-

ing with other proteins that, in turn, interact with its promoter. The direct,

most simple case, is called autoactivation. There are other known common PFL

motifs. A very simple one is that of Mutual Activation, in which a protein X

activates the transcription of a second protein Y , which in turn activates X

back. Another simple possibility is mutual repression, in which Y represses X

expression, and the positive feedback is achieved when X represses Y in turn,

eliminating the repression and thus enhancing its own production (Tyson et al.,

2003). Mutual activation, as well as mutual repression and autoactivation, need

a strong enough nonlinearity in the transcriptional regulations to drive bistabil-

ity (Cherry and Adler, 2000). This is commonly achieved through cooperativity:

if one protein is not enough to do the regulation, and instead several copies need

to be bound at the same time, the regulation scales nonlinearly, with the number

of molecules necessary as an exponent.

Other bistable motifs involve interactions other than transcriptional. In particu-

lar, a computational exploration through evolutionary algorithms de novo, with

the ingredients of transcriptional networks, found new circuit architectures that
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display bistability. In these circuits, the proteins X and Y interact postranscrip-

tionally, forming a dimer which is then degraded (François and Hakim, 2004).

This sort of sequestering of each protein by the other, that has been termed

molecular titration, has been shown to enable nonlinear behaviour (Buchler

and Louis, 2008). Thanks to this nonlinearity, the linear transcriptional feed-

back is able to achieve bistability. Two of these motifs are the Mixed Feedback

Loop (MFL) and what was termed Autoactivation with Complex (AAC). In the

MFL, Y transcriptionally represses X and they form a dimer together, closing

the feedback loop through one transcriptional and one post-transcriptional re-

pression (hence the ’mixed’ part of the name). In AAC, X autoactivates and

also forms a dimer with Y . In both cases, titration through dimer formation is

needed to obtain bistability because the transcriptional regulations are linear.

Both cases seem to be biologically relevant and the MFL, in particular, has been

found to happen in natural circuits with a much higher frequency than would

be expected by pure chance (François and Hakim, 2005).

To better understand the phenomenon of bistability (beyond what circuits can

generate it), and some of the concepts already discussed here, let us see a

specific example of bistable PFL. Imagine a protein X with a basal production

rate R (which incorporates both transcription and translation). This protein

can activate its own production with cooperativity n, up to an amount R + r

when there are very high amounts of protein. For such a system, the dynamic

equation for the concentration x could be, as used several times in the literature,

(Keller, 1995; Smolen et al., 1998; Becskei et al., 2001; Cheng et al., 2008))

dx

dt
= R+

rxn

Kd + xn
− kdegx, (1.1)

where cooperativity emerges in a Hill function of order n, K
1
n

d sets the protein

concentration at which autoactivated production is half its maximum value r

(and is mechanistically related to the binding-dissociation of protein and DNA)

and kdeg is the degradation rate of the protein.

To better understand the key parameters and behaviours of the system, it is

useful to take dimensionless variables that absorb some of the parameters of

the system. To do that, we take kdeg as the reference timescale for the system,

and K
1
n

d as the relevant scale of concentration. This yields the dimensionless

dynamic equation
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dx̃

dt̃
= R̃+ r̃

x̃n

1 + x̃n
− x̃, (1.2)

where both parameters and variables have been rescaled:

x̃ =
x

n
√
Kd

, t̃ = kdegt, (1.3)

r̃ =
r

kdeg
n
√
Kd

, R̃ =
R

kdeg
n
√
Kd

. (1.4)

This dynamic equation tells us the deterministic evolution of the system. By

setting the derivative dx
dt = 0 and solving the subsequent equation, we can

obtain the steady state value xst. By varying a control parameter such as r̃

and obtaining the steady states, we can obtain a bifurcation diagram (Strogatz,

2014) like the one in Figure 1.2 A. Notice how for 1.8 < r < 4 there are

two stable steady states separated by an unstable steady state (meaning that,

although it fulfils dx
dt = 0, the smallest perturbation will grow and drive the

system away from it).

The shape of this bifurcation diagram is also what enables the hysteresis men-

tioned earlier: if the system starts at a low r and this maximal transcription rate

is progressively increased (due to a change in external conditions, for instance),

it will remain at the low x state until it reaches the r = 4 threshold, when it

will rapidly switch to a high x, whereas if it begins in the high x state, it will

need to reach the much lower threshold of r = 1.8 to switch (Figure 1.2 A). This

has been observed for different systems, but as an example, let us consider the

lactose utilization network of model bacterium E. coli (Ozbudak et al., 2004).

In this example, x would be the concentration of a lactose metabolizing pro-

tein, and r would be regulated by lactose in the medium (Figure 1.2 B). If the

lactose metabolism is off, there needs to be a large lactose signalling to switch

it on, whereas if it is already on lactose needs to drop to very low values for it

to switch off (Figure 1.2 B). This may have the biological usefulness of avoid-

ing responding to spurious changes in the environment: activating metabolic

pathways is a costly and complex process, and it is therefore beneficial to avoid

commiting to a change in these processes unless it is really necessary (Lambert

and Kussell, 2014).
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Figure 1.2 Bifurcation diagram and hysteresis. A Bifurcation diagram
for the steady states xst of equation 1.2, with R̃ = 0.063, n = 2. Continuous
lines are stable steady states, whereas dashed line represents the unstable
steady state. Arrows schematically show the change in concentration of a
system starting at high r and lowering it progressively, or starting at the
lower end and increasing r. Dotted lines show where each of the systems
switch states. B Hysteresis in lactose utilization of E. coli. Figure is a
qualitative reproduction of the results from Ozbudak et al. (2004), with a
scatter plot in which cells are put at different concentrations of TMG (a
sugar similar to lactose) and fluorescence proportional to the activity of
their lactose uptake is measured. Arrows indicate the initial state for each
of the subpanels, and it can be seen how depending on their history, they
switch states at a different external concentration of TMG. In color in digital
version.

Equation (1.1) can be undersood as gradient dynamics arising from a potential

defined as dx
dt = −dUdt . We can derive this potential function that underlies the

dynamic equation, which will have two minima at the stable states, separated

by a barrier, with its peak in the unstable steady state (Figure 1.3 A). Under

specific noise conditions, this potential is reciprocal to the bimodal distribution

of the concentrations in a population, with the peaks of the distribution at the

minima of the potential wells and the width of the peaks related both to the

shape of the well and the intensity of fluctuations(Gardiner, 2008; San Miguel

and Toral, 2000):

Pst(x) ∼ e
−U(x)

B , (1.5)

where Pst is the steady state distribution of the system and B is a parameter

related to noise intensity.

More interestingly, it has long been known from physics that fluctuations can
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Figure 1.3 Stochastic state switching. A From the deterministic dynam-
ics a potential can be derived that has two minima and a barrier separating
them. B Experimental observation of switching in a population. If the high
concentration state is eliminated, it will repopulate over time, yielding infor-
mation about the state switching. C Modelling and observation of switching
in a single cell. Stochastic simulations allow us to observe the dynamics of a
cell that spontaneously switches states. Figure adapted from (Frigola et al.,
Submitted). In color in digital version.

enable spontaneous switching from one state to the other (Figure 1.3 C) (Gar-

diner, 2008; Van Kampen, 2007). It was observed by biologists as early as ten

years ago (Acar et al., 2005), usually deduced by looking at whole populations

due to the limitations in resolution of experimental techniques, although more

recently it has been observed at the single-cell level (Singer et al., 2014). In

the first case, one of the two peaks in a population is selected. Then, if the

distribution of concentrations in the population is measured at different times,

it can be seen how the eliminated peak is gradually repopulated, as cells switch

back and forth, until the steady state is reached again (Figure 1.3 B). From the

evolution of this repopulation, dynamical information about the switching can

be gleaned (Acar et al., 2005).
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1.5 Challenges in network motifs and stochas-

ticity

In the last 15 years, genetic networks have been extensively studied to try to

unravel the function their subnetworks or motifs do (Tyson et al., 2003; Barabasi

and Oltvai, 2004; Alon, 2007; Lim et al., 2013), to try to fix or manipulate them,

as well as to design genetic circuits with specific functions (Hasty et al., 2002;

Khalil and Collins, 2010; Estrada and Guantes, 2013; Lim et al., 2013), among

others. Many of these studies were deterministic or, as a first step, added noise

in naive ways, without much information of the source or nature of this noise.

However, at the same time, the enormous improvement in space and time res-

olution of experimental techniques has allowed to measure cell dynamics and,

with them, stochastic behaviours (Eldar and Elowitz, 2010; Munsky et al., 2012;

Levine et al., 2013). This has allowed us to distinguish between different sources

of noise (Elowitz et al., 2002; Singh et al., 2012), with different properties and

even to use these measurements to infer the details of the underlying network

(Munsky et al., 2009, 2012).

It has long been known in physics that noise can have nontrivial effects, beyond

a simple perturbation of the deterministic system, and that these nontrivial

effects depend strongly on the type and origin of the noise (Horsthemke and

Lefever, 1984; San Miguel and Toral, 2000; Sagués et al., 2007). Only in the

last years have these nontrivial effects started to be studied in biological sys-

tems. And indeed, it seems that noise in biological systems can interact with

gene architecture and they can significantly affect its design or function (Süel

et al., 2006; Kittisopikul and Süel, 2010), differently depending on the nature of

noise (Morelli et al., 2008; Frigola et al., 2012; Jaruszewicz et al., 2013). How-

ever, comparisons between different types of noise or explanations for specific

biological examples remain infrequent, if not rare. In chapter 2 we compare a

bistable Positive Feedback Loop under a noise that generates a simple perturba-

tion from the deterministic state, and under a more complex and realistic noise,

and qualitatively reproduce an experimentally observed phenomenon, asymmet-

ric switching, in which the stability of each of the states is differently affected

by noise.
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Although quite a few studies have already concentrated on studying how specific

circuits behave under noise (Lipshtat et al., 2006; Cheng et al., 2008; Strasser

et al., 2012; Weber and Buceta, 2013), not many have compared the effect of

different types of noise (Tao et al., 2007; Morelli et al., 2008; Li and Li, 2008;

Jaruszewicz and Lipniacki, 2013; Jaruszewicz et al., 2013; Caravagna et al.,

2013), even less have compared differences of deterministically similar architec-

tures under noise (Süel et al., 2006; Kittisopikul and Süel, 2010) and, to our

knowledge, none have done a two-level comparison between the effects of differ-

ent noise types on different circuit architectures. In chapter 3, we perform one

such comparison, of five different motifs that can be assimilated to a Positive

Feedback Loop and generate bistability, under noise coming from five different

biochemical origins.

Rather than a general study of network motifs and other gene circuits that is

then linked to specific functions, we can also approach them from specific real-

izations, i.e. by modelling small circuits that are found to do specific functions

in biological systems, or by trying to find out which minimal circuit is responsi-

ble for a certain function. These specific circuits have been often studied in the

context of cell decisions which, in multicellular organisms, often consist of cell

type specification (Perkins and Swain, 2009; Graham et al., 2010; Garcia-Ojalvo

and Martinez Arias, 2012). This study of specific circuits is complementary to

the more general, theoretical approach, as focusing on actual biological circuits

may clear up what parts of the theoretical studies are more biologically relevant,

as well as bring to light unexpected aspects of the problems.

In the second part of results of this thesis we take this approach, studying

a specific plant system. Not many of the examples of modelling of specific

gene regulatory circuits are in plant biology (see for instance Jönsson et al.

(2005); Cruz-Ramı́rez et al. (2012); Pokhilko et al. (2013)), despite the Stem

Cell Niches of Arabidopsis thaliana (a very popular plant model) being a subject

of intense experimental study (Aichinger et al., 2012). In chapters 4, 5 and 6

we tackle some aspects of the problem of the regulation of quiescence, a state

of arrested progression of the cell cycle, of a group of stem cells in the root of

Arabidopsis thaliana. A standing collaboration with the plant developmental

biology group led by Dr. Ana I. Caño-Delgado at the Center for Research in

Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB) allows us to work with

problems of biological significance that need a modelling approach to be more
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completely solved. In particular, in Chapter 4 we bring together in a model

the experimental results of our collaborators to predict the behaviour of a gene

recently discovered by them to be regulating quiescence. In chapter 5 we extend

this model to add another gene, and make new predictions.

There are not many studies of stochastic behaviour in plants yet (Walther et al.,

2012; Meyer and Roeder, 2014), and some of these do not explicitly account

for noisy dynamics but just consider probabilistic behaviour in cell decisions

(Roeder et al., 2010). This is possibly because precise dynamical information,

with resolution at the cellular level, is still not abundant enough. For this

same reason, in chapter 6 we do a small study of the synchronization in the

spontaneous division of slow-dividing Quiescent Centre that simply considers

stochastic cell decisions phenomenologically, without considering the mechanism

that generates them.

All these studies go in the direction of trying to understand both dynamics and

function of small regulatory circuits in biology, from different perspectives, with

the ultimate goal of unveiling some of the principles behind the functioning of

living cells.





Part II

Noise in bistable gene

circuits
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Chapter 2

Autoactivating loop under

intrinsic noise

In this chapter we begin our investigation on the effects of noise on positive

feedback loops by studying the simplest loop possible, the self activation pre-

sented in the previous section, under the effects of the most obvious noise source,

the intrinsic noise due to finite molecule number. To this end, we derive the

stochastic model that accurately represents intrinsic noise, and compare it to

a model that only has additive noise, which allows phenomenology such as

stochastic switching but disables the specific features of our noise source. We

also compare our results to experimental data on the stochastic phenomenon of

stochastic switching, to see whether the properties of intrinsic noise are capable

of explaining some of the particularities in the observations.

Most of the work presented in this chapter was published in the form of a

research article in 2012 (Frigola et al., 2012).

21
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2.1 The model

2.1.1 Deterministic description

We use the same simple chemical kinetic model that was presented in section

1.4 of the introduction. We take the deterministic equation there formulated

for such a system, already reduced to dimensionless variables (equation (1.2)).

The equation is, then

dx

dt
= R+ r

xn

1 + xn
− x = −dU(x)

dx
, (2.1)

where

x =
xdim
n
√
Kd

, t = kdegtdim,

r =
rdim

kdeg
n
√
Kd

, R =
Rdim

kdeg
n
√
Kd

,

and U(x) =
∫ x
0
dx
dt dx is the energy potential, which for n = 2 reads:

U(x) = r arctan(x) +
x2

2
− (r +R)x. (2.2)

This potential describes the evolution of the system after a perturbation, and

when the system is bistable, it allows us to compute the energy barrier that

needs to be overcome to escape from one stable state, over the unstable state,

to the other stable state:

∆U = U(xunstable)− U(xstable) (2.3)

This deterministic description is independent of the cell volume V . However,

when this framework is related to stochastic kinetic reactions, the dependence

on the cell volume becomes evident. We therefore need a value for V , as well

as for all other parameters. We use the parameter values from Cheng et al.

(2008), who previously studied this model with intrinsic noise: Kd = 10 nMn,

Rdim = 0.4 nM min−1, kdeg = 2 min−1, and n = 2. In order to satisfy V x = N ,

where N is the number of molecules, then the dimensionless cell volume shall

be V = Vdim
xdim
x

= Vdim
n
√
Kd,which, using the value Vdim = 30 nM−1, is

V = 94.9.
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2.1.2 Stochastic description I: Multiplicative noise model

When the molecular species are present in small numbers, the stochasticity

of chemical reactions becomes more evident and the deterministic description

no longer describes accurately the real dynamics. A stochastic description is

then required. Biochemical reactions can be described by birth-death processes

governed by chemical Master equations (Kepler and Elston, 2001). To model

the autoactivation circuit dynamics we have considered two one-step processes

N → N + 1 and N → N − 1. The Master equation will then be (Gardiner,

2008):

∂P (N, t)

∂t
= W1(N − 1)P (N − 1, t)+ (2.4)

+W2(N + 1)P (N + 1, t)− (W1(N) +W2(N))P (N, t),

where P (N, t) is the probability distribution at time t. The transition proba-

bilities per unit time are, as formulated in (Cheng et al., 2008):

W1(N) =

R+ r
Nn

Nn + V n

V, (2.5)

W2(N) = N. (2.6)

N stands for the number of molecules and V for the nondimensional cell volume

(properly adjusted for the dimension transformation described above). Rather

than a full description of the biochemical system, this Master equation is a

translation of the deterministic system where we consider the effective rates of

production and degradation generated by all the underlying reactions.

Rewriting the Master equation with continuous variables (i.e. concentrations),

the corresponding Fokker-Planck equation for the system can be (Bialek, 2000;

Van Kampen, 2007)

∂P (x, t)

∂t
= − ∂

∂x
A(x)P (x, t) +

1

2V

∂2

∂x2
B(x)P (x, t), (2.7)
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A(x) =
rx2

x2 + 1
− x+R, (2.8)

B(x) =
rx2

x2 + 1
+ x+R, (2.9)

where P (x, t) is the probability of having a concentration x at time t. The

Fokker-Planck equation is amenable to theoretical stochastic analysis. This

equation can be readily solved in the stationary regime (Van Kampen, 2007),

obtaining the steady state probability

Ps(x) = Ce−2V φ(x), (2.10)

where C is a normalization constant and φ(x) is the effective stochastic potential

(as opposed to the deterministic potential in Eq (2.2))

φ(x) =
1

2V
ln

B(x)

V

− ∫ x

0

A(s)

B(s)
ds. (2.11)

For A(x) and B(x) as in equations (2.8) and (2.9), this stochastic potential has

been studied in (Cheng et al., 2008).

An equivalent description to the Fokker-Planck equation, which provides actual

individual stochastic trajectories as opposed to probability distributions, is the

Langevin equation. The Langevin equation corresponding to Eq (2.7) in the Itô

interpretation (Gardiner, 2008) is

dx

dt
= A(x) +

√
B(x)ξ(t) (2.12)

where ξ(t) is a Gaussian white noise with

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 =
1

V
δ(t− t′). (2.13)

This corresponds to the so-called chemical Langevin equation (Gillespie, 2000).

This description identifies B(x)/V with the square power of the noise intensity.

The noise becomes reduced as the cell volume V increases. For V → ∞, we

recover the deterministic description of Eq (2.1).

Notice that the noise term appears in the Langevin equation with a state-

dependent term,
√
B(x), multiplying it. Therefore, the intrinsic noise coming
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from the biochemical reactions arises naturally in this equation as a multi-

plicative noise. Hereafter we refer to this dynamics (either in the Langevin,

Fokker-Planck or Master equation description) as the multiplicative noise sce-

nario.

The Langevin description enables the time-integration of the dynamics, obtain-

ing simulated stochastic trajectories. The Gillespie algorithm also allows to

simulate the time evolution of the number of molecules according to conditional

probabilites related to the transition probabilities of the Master equation (Gille-

spie, 1977). In contrast with the Master equation description, the Langevin

approach focuses on a continuous variable, the concentration of the molecular

species.

2.1.3 Stochastic description II: Additive noise model

For comparison, we also studied the states and dynamics of a description that

takes constant noise regardless of the protein concentration x. This corresponds

to analyzing the autoactivation circuit in a thermal bath. It does not correspond

to a description based on the stochastic chemical equations, and the noise term

does not account for intrinsic fluctuations.

We constructed this dynamics from the Langevin equation by setting the de-

terministic dynamics plus a noise term which is state-independent:

dx

dt
= A(x) +

√
B0ξ(t), (2.14)

with ξ(t) as in Eq (2.13) and with A(x) given by Eq (2.8). Notice that the

difference with the multiplicative noise scenario (Eq (2.12)) relies on the use of

B0, a constant, instead of the function B(x). Hereafter we call this approach

the additive noise case, since the noise enters in an additive way. The stationary

solutions and the bifurcation diagram for the average concentration 〈x〉 are the

same as for the deterministic model.

The Fokker-Planck equation corresponding to the above Langevin equation

(2.14) reads (Gardiner, 2008):

∂P (x, t)

∂t
= − ∂

∂x
A(x)P (x, t) +

B0

2V

∂2

∂x2
P (x, t). (2.15)
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From this Fokker-Planck equation we can obtain the stochastic potential for the

additive case, Ū(x)

Ū(x) =
1

2V
ln

B0

V

− ∫ x

0

A(s)

B0
ds = C1 + C2U(x), (2.16)

where C1 = 1
2V ln

B0

V

 and C2 = 1
B0

are constant factors that only depend

on B0 and V i.e. on the noise intensity. These shift and scale factors are the

only difference between Ū(x) and U(x) (Eq (2.2)). Accordingly, the relative

stability of the states provided by this function is the same as the one derived

from the energy potential U(x).

For a good comparison between the additive and multiplicative noise cases, we

chose a value of B0 such that the stochastic potential φ(x) and the potential Ū

coincide at the OFF state value of the multiplicative noise dynamics. For each

r, a B0 value can be evaluated. However, we observed no significant differences

if the same value of B0 was used for all r values. Thus in all figures, unless

indicated otherwise, we have used B0 = 0.09 which corresponds to r = 1.5.

2.1.4 Mean First Passage Time (MFPT)

The MFPT gives the average time to switch from one state to another one. For

the Fokker-Planck equation of Eq (2.7), the MFPT T (x) satisfies the following

differential equation (Gardiner, 2008),

A(x)
∂T (x)

∂x
+

1

2V
B(x)

∂2T (x)

∂x2
= −1, (2.17)

which can be solved with the proper boundary conditions: an absorbing bound-

ary at the potential maximum separating both stable states and a reflecting

boundary either at 0 or ∞ , depending on which transition is studied (Gar-

diner, 2008), where we define the OFF state as the one with lower 〈x〉, which
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is always close to zero, and the ON state as the one with larger 〈x〉:

TOFF→ON = 2V

xmax∫
xOFF

dy

ψ(y)

y∫
0

ψ(z)

B(z)
dz, (2.18)

TON→OFF = 2V

xON∫
xmax

dy

ψ(y)

∞∫
y

ψ(z)

B(z)
dz, (2.19)

where

ψ(x) = exp


x∫

x0

2V A(x′)

B(x′)
dx′

 . (2.20)

with x0 = 0 for the OFF → ON transition, and x0 = xmax for the ON → OFF

transition.

The MFPTs (Eqs (2.18) and (2.19)) were computed both for the multiplicative

noise case, with A(x) and B(x) given by Eqs (2.8) and (2.9), and for the additive

noise case, with A(x) given by Eq (2.8) and B(x) = B0.

2.1.5 Numerical integration and simulations

Due to the difficulty of solving equations (2.18),(2.19) analitically, in particular

in the multiplicative noise scenario, we have used different complementary (and,

for additional certainty in the results, redundant) numerical strategies.

We computed stochastic trajectories of the system through two different meth-

ods. Langevin equations (2.12) and (2.14) have been simulated using an exten-

sion of Heun’s method (Garćıa-Ojalvo and Sancho, 2012). Heun’s method uses

a predictor of the evolution of x,

x̄ = x(t) + f(x(t))∆t+ g(x(t))
√

∆tRnd. (2.21)

Where Rnd is a number obtained from a random number generator that follows

a gaussian distribution of mean zero and variance one, and that we generated

using the method from (Toral and Chakrabarti, 1993). The formula for the final

value of x is (Carrillo et al., 2003)
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x(t+ ∆t) = x(t) +
f(x(t)) + f(x̄)

2
∆t+ g(x(t))

√
∆tRnd. (2.22)

We also simulated the discrete system represented by the Master equation (2.4)

(which only represents the multiplicative noise system) by using the Gillespie

algorithm (Gillespie, 1977). This algorithm uses two uniformly distributed ran-

dom numbers at each step to exactly reproduce a statistically correct time

evolution of the discrete stochastic variables, that follows the same distribution

as the Master equation. To do this, it chooses the time of the next reaction

according to an exponential distribution the parameter of which is related to

the total probability per unit time that a reaction (or change in the system)

happens, and which next reaction happens proportionally to the probability of

each of them.

These two methods were used both to compute the steady states and their

fluctuations, and to compute the MFPTs. To compute the states and their

fluctuations, we computed 500 ≤ N ≤ 1000 trajectories of the system with

initial conditions normally distributed around each deterministic stable state

for a time t = 100, pruning those that crossed the unstable state into the

opposing stable state, and computed the statistics on the final state of every

trajectory, both for the Langevin and Gillespie dynamics. To compute the

MFPTs, 100 ≤ N ≤ 500 trajectories were initiated also around each of the

deterministic stable states. To be consistent with the theoretical definition of

MFPTs, we stopped each trajectory when it reaches the the unstable state, and

saved this time as its First Passage Time. In the case of Langevin dynamics,

we took δt = 5.0× 10−3.

Finally, we also numerically integrated MFPTs from their theoretical expres-

sions (2.18),(2.19) and the steady state probability distributions from expres-

sion (2.10) (combined with the potentials (2.11) and (2.16)) repeatedly using a

Romberg algorithm (Press et al., 1993), with tolerance ε = 10−6, initial num-

ber of subintervals n0 = 100 and maximum iterations of trapezoidal estimates

7 < nmax < 10, depending on the integral.
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2.2 Results

2.2.1 Bistability

As explained in section 1.4 of the Introduction, it is well known that positive

feedback loops formed by autoactivation exhibit bistability. Specifically, both

the deterministic and stochastic models presented in subsections 2.1.1, 2.1.2 and

2.1.3 have been shown to have a bistable regime (Becskei et al., 2001; Cheng

et al., 2008). However, no detailed comparison of both descriptions had been

performed at the time of doing this work, as far as we know. In this section

we are interested in evaluating the effect of intrinsic fluctuations in the steady

states. Accordingly, we compare the bifurcation diagrams for the stochastic

multiplicative noise and for the deterministic models. From a biophysical point

of view, by doing so we are comparing the features of the same autoactivation

circuit in two cells with very different volumes. The autoactivation circuit in

the cell with a small volume would be described by the stochastic multiplica-

tive noise model, whereas it would be well approximated by the deterministic

description in the cell with a very (extremely) large volume.

The bifurcation diagram for the control parameter r, related to the maximal

molecular production rate, is shown in Fig. 2.1. The steady state solutions of

the bifurcation diagram have been obtained by computing numerically (Math-

ematica Software (Wolfram Research, 2010)) the minima and maxima of the

potentials, Eqs (2.2) and (2.11), for the deterministic and stochastic multiplica-

tive noise models. The results for the deterministric model are the same as

those shown in Figure 1.2 but are repeated here for comparison with those of

the intrinsic noise case. As it is shown, both descriptions show a very similar

bifurcation diagram with a bistable regime for intermediate values of r in which

two stable states, a low-concentration state (OFF) and a high-concentration

(ON) state, can coexist. The steady state concentrations are very similar in

the two descriptions. A difference between the bifurcation diagrams is an en-

largement of the bistability region for the stochastic multiplicative noise model.

However, when stochastic switching between the states is taken into account,

this enlargement becomes not relevant for the parameters here used, and it has

been shown that for this region it is extremely easy to escape from the OFF

state and to switch (irreversibly, for very long time scales) to the ON state

(Cheng et al., 2008). Hence, bistability is not expected to be observed in this
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Figure 2.1 Steady state values do not change significantly when
intrinsic noise is included. Bifurcation diagram for the deterministic
model (black) and the multiplicative noise model (gray, light red in digital
version). Stable steady states (continuous lines) and unstable steady states
(dashed lines) are minima and maxima, respectively, of the potentials. The
bifurcation diagram of a stochastic description with a thermal bath (addi-
tive noise) is necessarily the same as the one of the deterministic model.
The stationary probability distribution for the multiplicative noise model,
Eq (2.10), for different r values is shown in grey scale. Insets: Stationary
probability distributions for the multiplicative noise model for r = 2.15 (top)
and r = 4.00 (bottom). Figure adapted from (Frigola et al., 2012). In color
in digital version.

region, precluding the observation of differences between the deterministic and

the stochastic descriptions (compare insets in Fig. 2.1). In fact, bistability

is especially obvious in a narrow region (r ≈ 2, see grey areas in the figure).

However, a more general study of this effect done by others (Weber and Buc-

eta, 2013) has shown that, while the steady state concentrations may not change

much in the common bistable region of the deterministic and stochastic systems,

this enlargement of the bistable region due to intrinsic noise can be larger than

we show here and, more importantly, it can be relevant in the sense that the

states can be stable enough against stochastic switching that they are expected

to be observable.
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2.2.2 Fluctuations

Intrinsic stochasticity of the biochemical reactions of the autoactivation circuit

result in state-dependent multiplicative noise (see section 2.1.2, (Cheng et al.,

2008)). Fluctuations are expected to be larger in the ON state than in the OFF

state (Fig. 2.2A) because the noise intensity increases with the concentration

according to the function B(x) (Eq (2.9)). Since dynamics such as MFPTs

depend on absolute fluctuations we have computed the standard deviation of

concentrations in each stable steady state.

We can approximate these fluctuations by doing a linear approximation of the

steady state. If we define a new variable for the system

x = xst + δx, (2.23)

where xst is the deterministic steady state, such that A(xst) = 0, and we ex-

pand A(x) and B(x) around xst to their first nonzero terms, the Fokker-Planck

equation (2.7) becomes (Van Kampen, 2007)

∂P (δx, t)

∂t
= −A′(xst) ∂

∂δx
δxP (δx, t) +

1

2V
B(xst)

∂2P (δx, t)

∂δx2
, (2.24)

where A′(x) stands for A′(x) = dA(x)
dt . Then, it can be shown that the intensity

of the fluctuations, represented by the variance, is (Van Kampen, 2007)

〈δx2〉 − 〈δx〉2 = 〈δx2〉 =
1

2V

B(xst)

−A′(xst)
=

1

2V

B(xst)

1− 2rxst

(xst 2+1)2

. (2.25)

The denominator of this expression does not vary much for our values of xst,

except very close to the bifurcation points, where 〈δx2〉 diverges. Due to this, the

fluctuations σ =
√
〈δx2〉 mostly follow B(xst) and, since it is a monotonically

increasing function, the fluctuations will be larger in the ON state than in the

OFF state (save for a very small region near one of the bifurcation points).

Indeed, numerical simulations of the stochastic multiplicative noise dynamics

corroborate that absolute fluctuations are larger in the ON state than in the

OFF state (Fig. 2.2B).
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Figure 2.2 Intrinsic multiplicative noise drives larger absolute
fluctuations in the ON state. A Time evolution of the concentration
x for r = 2.18. Error bars denote the fluctuations size in each state, which
is much higher in the ON state. B Fluctuations in the OFF steady state
(filled symbols and solid line) and in the ON steady state (empty symbols
and dashed line) for the multiplicative noise model (grey symbols, light red
in digital version), its linear approximation from Eq (2.25) (blue lines) and
for the additive noise model (black symbols). Fluctuations are measured as
the standard deviation from the steady state. For the multiplicative noise
model, fluctuations in the ON state are larger than in the OFF state. For
the additive noise model, fluctuations in the OFF and ON states are simi-
lar. Standard deviations have been computed over samples of sizes ranging
from 100 to 1000 repetitions of the corresponding Langevin dynamics at
time t=100. For the additive noise model, B0 has been recalculated for
each point. However, the results are qualitatively identical to those with a
constant B0. Figure adapted from (Frigola et al., 2012), where theoretical
lines of panel B have been added. In color in digital version.

The coefficient of variation (i.e. relative fluctuations, defined as the standard

deviation over the mean) is larger in the OFF state and slowly decreases for

larger volumes (see Table 2.1) (Paulsson, 2004), in agreement to the linear

approximation which states that σ
xst scales with 1√

V
(from Eq (2.25)). According

to the linear approximation the ratio of the coefficients of variation should stay

constant when changing volume, since both coefficients scale equally. However,

simulations show that it very slowly decreases as volume increases. This effect is

small, and the larger coefficient of variation in the OFF state is still preserved.

In any case, it is important to notice that the coefficient of variation is not the

relevant magnitude in our analysis as we will show below.

Fluctuations in an energy potential well depend on the shape of the potential.
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OFF ON OFF/ON

V = 94.9 0.474 0.131 3.62
V = 474.5 0.208 0.062 3.33

Table 2.1 The ratio between fluctuactions in the OFF and ON
states is mantained at larger volumes. Relative fluctuations in each
steady state for two different nondimensional cell volumes V for r = 2.13 for
the multiplicative noise model. Relative fluctuations have been computed
as the ratio between the standard deviation over the mean steady state.
Standard deviations and mean values have been extracted from Langevin
dynamics as in Fig. 2. As shown, relative fluctuations decrease with cell
volume, but are always larger in the OFF state. The ratio between the
relative fluctuations in the two states is indicated in the last column. This
ratio is little sensitive to the cell volume, staying close to the theoretical
value of 3.77 (from eq. (2.25)) for this r.

Since the energy potential corresponding to autoactivation dynamics is asym-

metric, we can expect the ON and OFF states to exhibit different standard

deviations even if the noise intensity is the same in both cases. To corroborate

that the differences in standard deviation observed in Fig. 2.2B are driven by

intrinsic noise and are not just the result of an asymmetric energy potential,

we computed the standard deviation for each steady state for the additive noise

model, in which noise stands for a thermal bath and not for intrinsic fluctua-

tions. In this additive noise model, the noise intensity is the same for all states

and the dynamics are subjected to the energy potential of autoactivation. As

shown in Fig. 2.2B, fluctuations in the additive noise model are very similar in

the OFF and ON states. This result indicates that the asymmetry of the energy

potential does not drive a significant difference in the fluctuations around each

steady state, and thus is not responsible for the large differences observed in

the multiplicative noise model with intrinsic noise.

Altogether we have shown that intrinsic noise in the positive feedback loop of

autoactivation creates larger absolute fluctuations in the ON state than in the

OFF state.
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2.2.3 Stochastic switching

Stochastic switching dynamics depend on the energy potential and on fluctu-

ations. Since intrinsic noise drives different fluctuations in the ON and OFF

states we may expect different switching dynamics from each state. To evaluate

the role of intrinsic noise on the switching dynamics, we measured the escape or

switching rates as the inverse of the MFPT (section 2.1.4) for the multiplicative

noise dynamics. When plotting these rates as a function of the energy barrier

(Eq (2.3)), we see that the switching becomes asymmetric: for the same energy

barrier height, it is more probable to switch from the ON state than from the

OFF state (Fig. 2.3A).

To corroborate whether this asymmetry is driven by intrinsic noise, we measured

the escape rates for the additive noise model. For this model, the asymmetric

effect is absent (Fig. 2.3B). Together, our results show that state-dependent

intrinsic noise in autoactivation dynamics drive an asymmetric switching.

Importantly, the differences in fluctuations among the ON/OFF states arising

from intrinsic noise are preserved for different cell volumes and are little sen-

sitive to changes in the cell volume (Table 1). Hence, we can expect that the

phenomenology of asymmetric switching rates holds for a wide range of cell

volumes. Fig. 2.4 shows this is indeed the case. For larger cell volumes the

switching rates decrease overall (since the switch becomes more stable (Bialek,

2000)), but they still show a similar relative asymmetry. It is still more probable

to switch from the ON state than from the OFF state for equal energy barrier

height values. This result stresses the importance of intrinsic fluctuations at a

fundamental level.

The asymmetry can be also observed by analyzing the behaviour of the value of

r at which the switching rates from the OFF states and from the ON states are

the same. This value is larger when intrinsic noise is taken into account than

when only additive noise is present (raddc = 1.99, rmultc = 2.16, see Fig. 2.5).

This shift indicates that intrinsic fluctuations enlarge the region of values of the

control parameter r for which it is less frequent to switch from the OFF state

than from the ON state.
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Figure 2.3 Intrinsic multiplicative noise generates an asymme-
try in switching rates. A Switching rate versus energy barrier for the
stochastic system with intrinsic multiplicative noise. The lines represent
the values obtained through theoretical MFPT calculations, Eq (2.17), and
the circles represent the values obtained through simulation (Gillespie and
Langevin are identical). In both panels, the energy barriers were calculated
from Eq (2.2). Light grey color (blue in digital version) corresponds to
switching from ON to OFF and dark grey color (green in digital version)
corresponds to OFF to ON switching. B Switching rate versus energy bar-
rier for the additive noise case. Notice how the rates for both states keep
the same relation with the energy barriers. Colour code is as in previous
panel. Symbols correspond to theoretical MFPT calculations. Simulations
are in perfect agreement, but are not represented for clarity. In both panels,
the nondimensional cell volume is V = 94.9. Figure adapted from (Frigola
et al., 2012). In color in digital version.

This shift is preserved even at larger volumes: when the volume is increased

5-fold, the region still remains enlarged. rc shifts a little, but still stays far away

from the value for the additive noise system (Fig. 2.6).

Our results show that intrinsic fluctuations in autoactivation dynamics intro-

duce a state-dependent noise which consistently drives larger absolute fluctua-

tions in the ON state and elicit a faster switching rate from this state than from

the OFF state for the same energy barrier height.

2.2.4 Stochastic potential

We compared the stochastic potential of the multiplicative noise model Eq (2.11)

with the energy potential Eq (2.16). Note we used Eq (2.16) which is, up to

scale and shift factors, the deterministic energy potential Eq (2.2).
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Figure 2.4 The asymmetry of switching rates does not disappear
at larger volumes. Switching rates for different cell volumes as a function
of the energy barrier. Switching rates (computed from Eq (2.17)) of the
stochastic system with intrinsic multiplicative noise for an adimensonal cell
volume V = 94.9 (circles) and for a larger volume V = 5 × 94.9 (crosses).
Light grey color (blue in digital version) corresponds to ON to OFF switch-
ing and dark grey color (green in digital version) corresponds to OFF to
ON switching. The asymmetry of the switching rates is observed for both
volumes. Figure adapted from (Frigola et al., 2012). In color in digital
version.

The two potentials are shown in Fig. 2.7. The stochastic potential for the multi-

plicative noise scenario has been previously reported in (Cheng et al., 2008). As

shown in Fig.2.7, the multiplicative noise affects drastically the ON state, reduc-

ing the barrier height and decreasing the curvature of the potential at the ON

state. Moreover, the fact that the well potential in the ON state becomes flat-

tened due to the intrinsic multiplicative noise implies larger fluctuations in the

copy number which, in turn, will induce faster transitions. These two changes

favor the transition rate from the ON state to the OFF one, thus reducing the

stability of the ON state.

These results show that intrinsic fluctuations from finite molecule numbers can

drive large changes in a positive feedback loop based on autoactivation which

could reduce the differences in the stability of the steady states. Hence, the
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Figure 2.5 Intrinsic multiplicative noise increases the domain
where the OFF state predominates. Switching rates for stochastic
transitions from ON to OFF (light grey, blue in digital version) and vicev-
ersa (dark grey, green in digital) for the additive (dashed lines) and for the
multiplicative (continuous lines) systems, computed from Eq (2.17). The
critical value rc at which the switching rates for the two transitions are
equal is shifted from raddc = 1.99 in the additive case to rmultc = 2.16 for the
multiplicative noise scenario. Results for Langevin simulations of the addi-
tive noise model (squares) and for Gillespie simulations of the multiplicative
noise model (circles) are depicted. For the multiplicative noise case, the di-
mensional MFPT as a function of the dimensional maximal production rate
of the autoactivation rdim was previously reported by Cheng et al. (2008),
with our results in agreement with them. Figure adapted from (Frigola
et al., 2012). In color in digital version.

relative stability of the bistable states is a dynamical phenomenon which is very

sensitive to the noise characteristics.

2.3 Discussion

We have presented a theoretical and numerical analysis of the role of intrin-

sic noise in a bistable switch with autoactivation dynamics. Our theoretical

approach is consistent and independent of a particular scenario either using

Master or Langevin equations, and is complemented with numerical integra-

tions and stochastic simulations. Our results exemplify that intrinsic noise in
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Figure 2.6 At larger volumes the increased domain where the
OFF state predominates is preserved. Switching rates for stochastic
transitions from ON to OFF (light grey, blue in digital version) and viceversa
(dark grey, green in digital) the multiplicative system with adimensional cell
volumes V = 94.9 (circles) and V = 5× 94.9 (crosses). We see how rc shifts
from rV0

c = 2.16 to rV x5c = 2.13 (marked with dashed lines), but still stays
far away from the critcal value for the additive noise scenario, raddc = 1.99
(marked with red continuous line). The red cross marks the point at which
the lines for the additive system in Fig. 2.5 cross. Symbols are only guides to
distinguish different curves, all data from numerical integration of equations
(2.18) and (2.19). In color in digital version.

autoactivation dynamics, which result in multiplicative noise (state-dependent

fluctuations), are a relevant ingredient for the dynamics. Specifically, while in

the conditions of our study the bifurcation diagram is mostly unchanged when

intrinsic noise is taken into account, the switching dynamics and the relative

stability of the states are very sensitive to state-dependent fluctuations.

It has been previously shown that noise can be different in the ON and OFF

states of feedforward loop genetic circuits (Kittisopikul and Süel, 2010). For a

genetic circuit involving positive and negative feedbacks it also has been shown

that intrinsic noise can stabilize a deterministically unstable state (Turcotte

et al., 2008). Herein, we show that intrinsic noise in autoactivation dynamics

makes the ON state less stable. Specifically, intrinsic noise drives larger abso-

lute fluctuations in the ON state which elicit a faster switching rate from this

state than from the OFF state for the same energy barrier height. Remarkably,
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Figure 2.7 Intrinsic multiplicative noise changes the relative sta-
bility of the ON state. Stochastic potential of the additive noise model
(black dashed line, Eq (2.16)) and of the multiplicative noise scenario (red
continuous line, Eq (2.11)) for r = 2.15. As shown, the ON state is clearly
destabilized by multiplicative noise. This is also observed for different values
of r. Figure from (Frigola et al., 2012). In color in digital version.

this phenomenology holds for different cell volumes, and accordingly for differ-

ent noise intensities. We have termed this phenomenon asymmetric stochastic

switching.

Asymmetric stochastic switching has been observed in the gallactose signalling

network in yeast (Acar et al., 2005). In this network, a positive feedback loop

involving the cytoplasmic molecule Gal3p drives bistability of low (OFF) and

high (ON) pathway activity states in which GAL3 expression is low and high

respectively (Acar et al., 2005). For a specific parameter regime, yeast cells

can switch spontaneously and stochastically between these states during the

time period being analyzed. When comparing the switching rates from each

(OFF/ON) state for the same value of the energy barrier height, Acar et al.

obtained that it is more probable to switch from the ON to the OFF state than

viceversa (Acar et al., 2005) (Figure 2.8), similarly to our own results (Figure

2.3). Moreover, they measured the fluctuations of GAL3 expression in each state

and concluded that fluctuations are larger in the ON state than in the OFF state
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Figure 2.8 Experimentally observed switching rates are also
asymmetric Experimental data vs modeled potential barrier extracted
from (Acar et al., 2005). The results are qualitatively similar to ours, show-
ing a similar asymmetry in the same direction. As in previous figures, light
grey (blue in digital version) color corresponds to switching from ON to OFF
and dark grey (green in digital) color corresponds to OFF to ON switch-
ing. Circles are experimental data, and lines are only guides to the eye.
All datapoints were extracted from (Acar et al., 2005). In color in digital
version.

(Acar et al., 2005). These two features, larger probability of switching from the

ON state and larger fluctuations in the ON state, are analogous to the ones

we obtain by theoretical and numerical means for the stochastic autoactivation

switch with intrinsic noise (Fig. 2.9).

It remains to be elucidated which noise sources are present in this experimental

system and how they are coupled with the specific circuit topology of the gallac-

tose signalling network. Our results suggest that, for states where the amounts

of protein are very distinct, intrinsic noise can be sufficient to drive asymmetric

switching between them.

Together, our study explains that although the bistability phenomenon is rather

independent of the noise characteristics, the relative stability of each state and

stochastic switching dynamics are dynamical features very sensitive to the kind

of noise: additive or multiplicative. A simplistic approach with an additive
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Figure 2.9 Intrinsic noise drives larger fluctuations in the ON
state in agreement with experiments Larger fluctuations in ON state
are seen experimentally (black dots), an effect that is reproduced when in-
cluding intrinsic noise in the model (green crosses) but not with additive
noise (grey stars). Experimental points extracted from (Acar et al., 2005).
In color in digital version.

noise can not address all the possible phenomenologies and one has to resort to

carefully considering noise as an intrinsic part of the system, which is relevant

at a fundamental level and not as a correction.





Chapter 3

Noise sources and positive

feedback loop architecture

3.1 Introduction

As shown in the Introduction and in Chapter 2, fluctuations have been known

to be both beneficial and detrimental to biological systems. In particular, when

they affect a bistable system, they have been experimentally shown to enable

stochastic switching (Acar et al., 2005) and population heterogeneity (Dubnau

and Losick, 2006). Both these effects have been theorized but also experimen-

tally supported to be beneficial to the cell (Acar et al., 2008; Veening et al.,

2008). On a more theoretical level, noise in biochemical systems has been shown

to enhance the bistability range of positive feedback loops (Weber and Buc-

eta, 2013) and even enable bistability in deterministically monostable systems

(To and Maheshri, 2010; Strasser et al., 2012), results that had been shown in

generic contexts much earlier (Horsthemke and Lefever, 1984) but not in genetic

circuits. Furthermore, in genetic circuits these effects have been theoretically

shown to depend on the specific origin of the noise: be it noise due to low

molecule numbers, gene state switching, or noise due to the timescales involved

in specific chemical reactions (such as dimerization or protein-gene binding and

unbinding) (Jaruszewicz et al., 2013; Jaruszewicz and Lipniacki, 2013).

43
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On the other hand, noise is known to interact with genetic circuit architecture in

such a way that it generates different functions on otherwise equivalent circuits

(Süel et al., 2006), going as far as allowing for classifications that are entirely

different to the deterministic, classical ones (Kittisopikul and Süel, 2010).

Herein we do an extensive comparison of the effect of different noise types on

different circuits that enable bistability. In particular we consider the motifs

that are most recurrent in generation of bistability: different simple architec-

tures that lead to a transcriptional Positive Feedback Loop (Autoactivation,

Mutual activation and Mutual inhibition), which are known to generate bista-

bility when the transcriptional regulations are nonlinear enough. Beyond these,

we consider other topologies that have also been shown to be capable of bista-

bility through a mechanism that, in the end, is also a feedback coupled to a

strong enough nonlinearity. In this case, however, both the nonlinearity and

part of the feedback come from a post-transcriptional interaction in the form of

molecular titration (François and Hakim, 2004; Buchler and Louis, 2008). These

circuits have two proteins X and Y that form a complex that is degraded, and

achieve bistability through two different transcriptional interactions: the Au-

toActivation with Complex (AAC) has a transcriptional activation of protein X

by itself that, importantly, is linear, whereas the Mixed Feedback Loop (MFL)

has a transcriptional repression of protein X by protein Y that is again linear.

The MFL has been shown to be over-represented in statistical analyses of gene-

protein interaction databases (Yeger-Lotem and Margalit, 2003; François and

Hakim, 2005). A summary of all the circuits can be found in Figure 3.1.

Figure 3.1 Schematic representation of the five circuits studied in this
chapter. Top row: Autoactivation, Mutual Activation, Mutual Inhibi-
tion. Bottom row: Autoactivation with Complex and Mixed Feedback
Loop. Pointed arrows represent activations and blunted arrows repressions.
Continuous lines are transcriptional interactions and dashed lines are post-
transcriptional interactions.
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3.2 Model and noise sources

To be able to represent different noise sources, we built a model in which DNA

can be in one of three states: off, on, or TF-bound (Figure 3.2). In the off

(inactive) state, the promoter has no transcriptional activity. In the on state,

transcription occurs at a basal level r, and in the TF-bound state, the tran-

scription rate is ε times the basal one.

The promoter can switch from off to on and back at constant rates (kon,koff ).

We termed this gene switching, and it represents different biological processes

such as chromatin remodelling or necessary activation by a third protein that

does otherwise not participate in our small network. When the promoter is in

the on state, the molecule TF (for Transcription Factor, representing whichever

molecule is doing the transcriptional regulation) can bind to it with a rate

proportional to the concentration of TF (k+ × TF ), and unbind from the TF-

bound state at a constant rate (k−). We have called this reaction protein-

promoter binding. Transitions from the off to the TF-bound state and back are

forbidden: the promoter must be on for TF to bind to it (Figure 3.2).

Notice that gene switching and protein-promoter binding can and oftentimes

have been lumped in a single process, if the transcriptional regulation completely

enables or disables promoter activity (Morelli et al., 2008; Jaruszewicz et al.,

2013). In our case, however, they are separate and give rise to two different

noise sources: one affects whether the promoter is active at all, and the other

one affects the regulatory feedback.

The transcriptional activity from the on and the TF-bound promoter produces

mRNA molecules m at rates r and εr respectively. These mRNA molecules can

degrade with a rate dm. Protein molecules X are translated from mRNA with

a rate tx, and also degrade with rate dx (Figure 3.2). As explained later in the

text, the inclusion of explicit mRNA gives rise to a specific noise source.

The transition probabilities per unit time for all these reactions, as they would

be implemented in the corresponding Master Equations or in the Gillespie al-

gorithm are
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Figure 3.2 DNA regulation and gene expression model. The promoter
(represented here as ’DNA’) has an off state with no activity, which tran-
sitions to an on state and back with constant rates kon,koff . In the on
state, mRNA is expressed with rate r. When the promoter is in this state, a
transcription factor TF can bind an unbind to it with rates k+,k−. The pro-
moter with the transcription factor bound to it has a transcription rate εr.
mRNA is always translated into protein at the same rate tx. Both mRNA
and protein are degraded with linear rates dm and dx respectively.

W (DNAoff → DNAon) = kon

W (DNAon → DNAoff ) = koff

W (DNAon → DNATF ; TF → TF − 1) = k+ × TF

W (DNATF → DNAon; TF → TF + 1) = k− (3.1)

W (m→ m+ 1) = r ×DNAon + εr ×DNATF

W (X → X + 1) = tx ×m

W (m→ m− 1) = dm ×m

W (X → X − 1) = dx ×X

Where DNA represents the promoter and its states, and between parenthesis for

each reaction (i.e. transition) is the change in the system it produces. The cross

× represents multiplication. This is the generic case that applies for all 5 systems

and is shown in Figure 3.2. For Mutual Activation, Mutual Inhibition, AAC and

MFL, there is a second promoter for protein Y , with equivalent reactions and

transition probabilities. Furthermore, all systems have additional dimerization

reactions. Autoactivation, Mutual Activation and Mutual Inhibition have a

homodimerization reaction, with transition probabilities per unit time
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W (X → X − 2; X2 → X2 + 1) = kD+ ×X × (X − 1) (3.2)

W (X2 → X2 − 1; X → X + 2) = kD− ×X2

In these cases, the dimer does the function TF. In Autoactivation X2 regulates

the promoter of X, whereas in Mutual Activation and Mutual Inhibition X2

regulates the promoter of Y and vice versa.

The dimerization in AAC and MFL is different. In these cases, proteins X and

Y form a heterodimer C (for ’complex’) that degrades, providing additional

nonlinearity that enables bistability. The transition probabilities per unit time

for these are

W (X → X − 1; Y → Y − 1; C → C + 1) = kD+ ×X × Y

W (C → C − 1; X → X + 1; Y → Y + 1) = kD− × C (3.3)

W (C → C − 1) = dC × C

This C does not perform the function of TF in these cases. Instead, in AAC

the TF that regulates X is protein X itself (in monomeric form), and in the

MFL the TF that regulates X is a monomer of Y . In both cases, protein Y is

not transcriptionally regulated, and thus its promoter does not have access to

the TF-bound state.

3.2.1 Noise sources

All these reactions give rise to different noise sources. The intensity of each noise

is defined to be proportional to a parameter or parameters of the system. The

exact dependence of this is unclear, and also unimportant: in all our analysis, we

define a reference point and study noise as it varies from this reference point.

Furthermore, we vary parameters with the constraint that the deterministic

solutions of the system do not change. This usually means that equilibrium

constants for each reaction are fixed.
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The first noise sources have already been introduced in the previous section.

They are the noises coming from the discrete states of DNA: gene switching

and protein-promoter binding. We define, a priori, the noise arising from these

sources as the inverse of their rate, either forward or backward, both are equiva-

lent since they are changed together to keep the equilibrium constant (kon, koff

for gene switching and k+,k− for protein-promoter binding). This is supported

by previous studies (Morelli et al., 2008; Jaruszewicz et al., 2013), as well as by

the reasoning that faster reactions are closer to an adiabatic approximation.

We have also considered the noise of the dimerization reaction. This is only pos-

sible in the states with cooperative transcriptional regulation (Autoactivation,

Mutual Activation and Mutual Inhibition). With the same reasoning as in the

case of DNA state changes, and also supported by previous studies (Jaruszewicz

et al., 2013), we a priori consider this noise to be inversely proportional to the

speed of the reactions kD+ and kD−. In Autoactivation with Complex and

Mixed Feedback Loop, since the Complex C degrades, the equilibrium solutions

will change when kD+ and kD− are varied, even if their ratio KD = kD+

kD−
is kept

constant (because the equilibrium of C depends on X and Y as C = kD+XY
kD−+dC

).

Furthermore, in these systems C acts as a sink in a competetive degradation,

so it is not trivial to change dC and leave the deterministic system unchanged.

For these reasons, we do not consider this noise source for these two systems.

The inclusion of separate mRNA and protein dynamics in our model also allows

us to observe noise effects that may arise from this separation, such as burst-

ing. In the last ten years, the burstiness of gene expression has been shown

to be a very relevant source of biological noise, and a dominant mode of gene

expression (Dar et al., 2012). Both mRNA and proteins can be expressed in

bursts. Transcriptional bursting (i.e. mRNA expressed in bursts) only happens

when gene switching is present and is slower than the degradation of mRNA

(Golding et al., 2005; Munsky et al., 2012). Translational bursting (i.e. protein

expressed in bursts) happens when the amount of mRNA molecules is very low

and fluctuating (usually averaging less than 1) but several protein copies are

expressed from each mRNA molecule (Ozbudak et al., 2002; Friedman et al.,

2006; Raj and van Oudenaarden, 2008; Weber and Buceta, 2011). Both can

and have been experimentally deduced to coexist in prokaryotes and eukary-

otes (Golding et al., 2005; Raj and van Oudenaarden, 2008). As such, in our

model we consider a joint noise source that we term simply ’bursting’. This is
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proportional to the degradation rate of mRNA dm, which generates a bursty

mRNA transcription. But it will be also proportional to protein translation tx,

which will be varied equally so that the average protein levels do not change.

At higher dm, mRNA levels are lower, generating also a more bursty protein

expression.

Lastly, we consider a more classical noise source, that is already studied in Chap-

ter 2 of this thesis. This is volume (or ’finite molecule number’), that is known

to scale intrinsic noise. This has oftentimes been considered as ’transcriptional

noise’ in literature (Jaruszewicz et al., 2013; Jaruszewicz and Lipniacki, 2013).

Notice that although volume V does not appear in the transition probabili-

ties (3.1) (3.2) and (3.3), the values of the parameters are properly rescaled

so that the steady state numbers of molecules scale with volume (Table 3.1).

This volume noise corresponds, in a way, with changing many noise sources at

the same time: by increasing the number of molecules and keeping concentra-

tions constant we are increasing the frequency of many reactions (even of those

such as dimerization, which when working with numbers of molecules instead of

concentrations have a rate divided by volume, because such scaling is precisely

to keep the transition probabilities with dimensions of molecules/time: kD+ is

scaled by V so that W (X → X − 2; X2 → X2 + 1) = kD+ × X × (X − 1) =

X× (X−1)× k′D+

V ∝ X ). For this reason we do not use the naming convention

of ’transcriptional noise’.

All in all, we have five possible noise sources: Gene switching, protein-promoter

binding, dimerization, bursting and volume.

Parameters were chosen so that there are two states with comparable stability

(measured in terms of the Mean First Passage Time to escape each state),

and so that many timescales are similar in many systems, as can be seen in

table 3.1. AAC and MFL are based on the parameters from (François and

Hakim, 2004). In all cases parameters have been chosen within biologically

meaningful ranges (for a concise but complete summary of biological timescales

for our reactions in eukaryotes and prokaryotes, see (Jaruszewicz et al., 2013)).

Since gene switching and dimerization noises are inversely proportional to the

timescale of the reactions, we chose relatively large values for these rates.
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kon 200 200 200 200 1000
koff 200 200 200 200 1000

k+
200 nM−1

V
200 nM−1

V
200 nM−1

V
200 nM−1

V
89.44 nM−1

V
k− 20 20 20 20 49.4

kD+
20 nM−1

V
20 nM−1

V
20 nM−1

V
2000 nM−1

V
528 nM−1

V
kD− 200 200 200 20 0.016
V 40 nM−1 40 nM−1 40 nM−1 40 nM−1 440 nM−1

rx 1 nM× V 1 nM× V 4 nM× V 0.6 nM× V 14.7 nM× V
ry - 1 nM× V 4 nM× V 10 nM× V 11.77 nM× V
ε 15 15.05 0.01 24 0.073
tx,y 2 2 20 2 117.6
dm 10 10 10 10 117.6
dx,y 1 1 1 1 1
dc - - - 1.4 4

Table 3.1 Parameters for all reactions in each model. Parameters have
been adimensionalized to a reference timescale of dx = 5× 10−4 s−1. Some
parameters in the table appear to have dimensions of concentration, but
once they are rescaled by the volume, these dimensional units are lost in
favour of molecule numbers. kon,off ,k+,−,kD+,− are equal for X and Y
when applicable. Volume V = 40 nM−1 corresponds to a volume of about
67µm3 which is of the order of the volume of eukaryotic cell nuclei and of
some bacteria (Milo et al., 2010).

3.2.2 Measurements and definitions

To measure how each noise source affects stability of states, we measured how

Mean First Passage Time (MFPT) of each transition changes with the different

noise intensities. To this end, we chose a reference point in parameter space

(the one shown in table 3.1) and varied each noise intensity individually, both

increasing and decreasing it, in such a way that the deterministic states of the

system remained unchanged as explained. Then, for each point, we computed

the steady state distributions in the 2D X,Y plane (where X and Y are the

number of protein monomers), to determine the actual steady states of the

system when noise is considered.

To compute the MFPTs, we chose a set of coordinates so that transitions were

mostly unidimensional for each system: we transformed the X,Y plane into a

new plane with coordinates X − Y ,X+Y
2 (which is a simple 45 degree rotation

with a rescaling of one axis). These two axes are reasonably good reaction
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coordinates for the transitions of each of our states: Autoactivation and Mu-

tual Activation do their transitions along the X+Y
2 direction, whereas Mutual

Inhibition, Autoactivation with Complex and the Mixed Feedback Loop have

transitions mostly in the X − Y direction (Figure 3.3). Thus, when plotting

their steady state distributions for each of these coordinates, the states are well

separated only in one of the directions (Figure 3.3).

Figure 3.3 X − Y ,X+Y
2

histograms and their projection onto each axis.
Grey lines in the 2D plane mark the X,Y axes, and delimit regions inac-
cessible to the system because either X < 0 or Y < 0. (In color in digital
version).



52 Chapter 3. Noise and PFL architecture

We then computed the analogue to the deterministic unstable state as the min-

imum in the steady state distribution as projected in whichever axis we con-

sidered the reaction coordinate for each system. To avoid false positives in the

transition, however, we considered several First Passage Time definitions. The

first is, obviously, to consider a successful transition when the trajectory first

passes the minimum that separates the states. But since when this minimum

is very flat it may not be very indicative of whether the trajectory has become

trapped in the new state, we also considered going different distances into this

arriving state.

If we name the reaction coordinate Z (Z = X+Y
2 or Z = X − Y , depend-

ing on the system as discussed earlier), and define Zmin,Zmax1,2
such that

p(Zmin) is the local minimum between the states and p(Zmax1,2
) are the peaks

of the distribution, the different distances are Z1/10, Z1/5 and Z1/3 defined as

p(Z{1/10,1/5,1/3}2,1) =
p(Zmax1,2

)−p(Zmin)

{10,5,3} + p(Zmin). That is, we consider the

distances that involve arriving at 1/10th, 1/5th or 1/3rd of the probability of

the peak of the arriving state (Figure 3.4 A).

Figure 3.4 Thresholds for First Passage Time computation. A Steady
state distribution in the X−Y dimension for the reference point of the Mixed
Feedback Loop. Points mark thresholds for transitions: purple cross marks
de minimum of the distribution, yellow empty circle is 1/10th into the state,
blue triangle 1/5th and green full circle is 1/3rd into the state. B Mean
First Passage Times computed as detailed in the text, for the transition
from the state on the right to the state on the left, for all 4 thresholds and
for different volumes (the thresholds were computed independently for each
value). Each line corresponds to the threshold with the same symbol and
color in panel A. In color in digital version.

We computed these four MFPTs for each of our points by simulating N = 500

trajectories starting in each of the stable steady states (defined as the peak of
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the distribution in X,Y space, with the other variables in equilibrium with it)

using the Gillespie algorithm, and recording each FPT as previously defined. As

it can be seen in the example shown in Figure 3.4 B, the MFPT when crossing

the maximum is often much smaller than the other three definitions. For this

reason, all following results use the threshold for transitions at 1/10th, since it

seems to avoid false positives but is as close as possible to the separation of the

states.

We also computed the First Passage Time histograms, to check whether the

MFPT is a good measurement of stability. Figure 3.5 shows how the First Pas-

sage Time distributions for the reference point of each system fit an exponential

quite well. Furthermore, we used Mathematica software (Wolfram Research,

2010) to apply different statistical tests and were unable to reject the hypoth-

esis of an exponential distribution. In particular, the Cramér-Von Mises test

(Darling, 1957) does not reject the exponential distribution hypothesis at the

5% level (p = 0.05) in any case. Therefore, we can safely assume that the MFPT

captures the relevant information of the transition rates between states.

To see the effect on each system we would have needed to compare the MFPT

from each state, T1 and T2 (where state 1 is always the state that has a higher

concentration of X at the reference point, and T1 is the MFPT to escape from

it) and then compare the systems. For a much simpler comparison of each

system, we defined two quantities that distill the information that interests us

from these MFPTs. First, we defined Global Stability as G = T1 + T2, which

gives information about how propense each system is to switching from any of

the two states, for each noise value. We also considered Relative Stability as

R = T1−T2

G , which only shows how stable is each state compared to the other,

regardless of how frequent switching is. These quantities make comparison of

different systems much easier, at no information loss.

We then systematically varied each noise source, changing the relevant timescale

or parameter without changing the deterministic solution for the protein con-

centration: in the case of gene switching, protein-promoter binding and dimer-

ization, the timescale is changed keeping the equilibrium constant, and in the

case of bursting the ratio tx
dm

is maintained constant. Each noise was reduced by

a factor of 10 from the reference (2 for Volume noise) and increased by factors

of 10 and 100 (2 and 4 for Volume noise), and Global and Relative stabilities

were computed for each of these points. We also computed points outside this
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Figure 3.5 First Passage Time distributions. Boxes represent the his-
togram of N = 500 FPTs computed as specified in the text, for the tran-
sition from the state with higher amount of X (state 1) to the state with
a lower amount (state 2), except for Mutual Inhibition, which is symmet-
ric, in the reference point. Error bars are computed assuming a poisson
distribution of errors, according to the formula σ =

√
pi
N

. Continuous line

represents the exponential distribution λe−λx with λ = 1
MFPT

, as computed
for each system. A Autoactivation, MFPT = 207.15. B Mutual Activa-
tion, MFPT = 2333.3. C Mutual Inhibition, MFPT = 200.1. D AAC,
MFPT = 8974.6. E MFL, MFPT = 40.3.

range, or with a finer resolution of points within it, as needed to understand

the effect of specific noises on some systems.

In all cases, noise was changed to the parameters of both X and Y , when

applicable. In the case of Mutual Inhibition, since the states are completely

symmetrical and therefore Relative Stability would always be 0, we also studied

the case where noise only changed for the parameters of protein X. Only for

Mutual Inhibition, then, in the following sections we refer as ’symmetrical’ to

the case with parameters changed for both X and Y and as ’asymmetrical’ to

the case where only parameters for X changed.
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3.3 Results

3.3.1 Effect on steady states

Before computing the stability of the states through MFPT simulations, we used

the information from the steady state distributions we computed to observe the

effect of each noise source on the states themselves. Although, naturally, the

height and width of the peaks of the distribution changes easily with noise, the

position of the peaks themselves does not change for many noise values (Figure

3.6). Notably, when it does change, it sometimes changes dramatically. The

noise sources that affect the states the most are the two DNA switching rates,

kon and k+. These go as far as making the distribution trimodal, making one

of the two states degenerate, when they are high enough (Figure 3.6 A,B,E).

3.3.2 Definition of dimerization noise

In section 3.2.1, we defined dimerization noise as the inverse of the dimerization

rate timescale as is shown to behave in (Jaruszewicz et al., 2013) for the toggle

switch. However, when we computed the MFPTs varying this noise, we found

that the stability increased at large noise values for all three systems where it

is applicable (Figure 3.7).

This is a puzzling result, as it goes opposite to previously reported results

(Jaruszewicz et al., 2013) and also contravenes the a priori characterization

related to adiabaticity. It does not dispute the results from previous studies

at all, though. Rather, one could say that depending on model details and

parameter values, dimerization noise has two regimes of dependence with the

timescale of its reaction, at least for mutual inhibition. In agreement with this

argument, dimerization noise was shown to be proportional to the dimerization

rate (as we also find) in (Morelli et al., 2008) for a model identical to the one

in (Jaruszewicz et al., 2013), although it was not interpreted this way, since

they did not define such a quantity as ’dimerization noise’. In any case, in the

following sections we redefine dimerization noise as proportional to the timescale

of the reaction, since that is the behaviour found in our studies.
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Figure 3.6 Effect of noise on steady states. Different symbols denote
numerically computed maxima and minima of the distribution of the plotted
variable for each noise type. Lines are a guide to the eye and denote stability
of the state: continuous lines for stable states (maxima of distribution) and
dashed lines for unstable states (minima of the distribution). Purple crosses
correspond to volume (V ). Green crosses correspond to gene switching (kon).
Light blue triangles correspond to protein-promoter binding (k+). Dark
blue squares correspond to protein dimerization (kD). Gold, empty circles
correspond to bursting noise (dm). In the case of volume noise, X and Y
do not show actual numbers of molecules and are instead rescaled back as
X̃ = X × V

VRef
.
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Figure 3.7 Global Stability vs Dimerization noise. Blue squares, mutual
activation. Dark red, empty circles, Mutual Inhibition S, for Symmetrically
changed parameters. Light red, full circles, Mutual Inhibition A, for Asym-
metrically changed parameters. Orange diamonds, autoactivation. Symbols
are numerical results computed as detailed in text, and lines are guides to
the eye. In color in digital version.

3.3.3 Effect of Volume

We first see the effect, across all systems, of increasing the number of molecules.

When we looked into the effect of increasing volume we found that, as ex-

pected, all systems behaved similarly, with decreased global stability as volume

decreases (Figure 3.8 A). Regarding symmetry between states, although later

sections explore this further, there is a somewhat general result: increasing vol-

ume increased the stability of the state with more protein in all circuits except

for the Mixed Feedback Loop (State 1 is always the state with more amount of

X, and in all cases that coincides with the state with more protein, except in

the Mixed Feedback Loop, see Figures 3.3 and 3.6). This is a nice confirmation

of our main result in Chapter 2 for an autoactivating loop: increasing intrinsic

noise stabilizes the state with less protein (The ’OFF’ state, in the notation of

Chapter 2).

We then looked into the behaviour of each individual system.
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Figure 3.8 Blue squares, mutual activation. Red circles, Mutual Inhibi-
tion: Bright red, empty circles, noise changed symmetrically; light red, full
circles, noise changed only for X. Green triangles, AAC. Purple, inverted
triangles, MFL. Orange diamonds, autoactivation. Error bars in Relative
Stability indicate error propagated from SEM. Error not shown in Global
stability because its size is comparable to that of the symbols.

3.3.4 Purely transcriptional systems

3.3.4.1 Autoactivation and Mutual Activation

We started with Autoactivation, as the simplest circuit here that can generate

bistability. The effects of noise on this circuit had also been studied by our-

selves (see Chapter 2,(Frigola et al., 2012)) and by others (Cheng et al., 2008;

Jaruszewicz et al., 2013). In particular, previous studies concentrated on vol-

ume and gene switching noise (Cheng et al., 2008; Jaruszewicz et al., 2013).

Mutual Activation has very similar results, as shown further in this section,

and has an equivalent deterministic behaviour (Figure 3.9), so we show them

together.

In particular, Jaruszewicz et al. (2013) did a similar study to the one presented

here, comparing the effect of number of molecules and gene switching on an

autoactivating loop very similar to ours. We therefore compare our results to

theirs here. These results can be summarized as follows: In a PFL driven by

autoactivation, transcriptional noise (related to number of molecules, like our

volume), favors (i.e. differentially stabilizes) the low concentration state (i.e.

state 2 or ’OFF’), whereas gene switching noise favors the high concentration

state (i.e. state 2 or ’ON’) (Jaruszewicz et al., 2013). It is also worth it to briefly

explain the model used in this previous study (Jaruszewicz et al., 2013): it also
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Figure 3.9 Deterministic bifurcation diagram of X vs ε for Autoactiva-
tion and X+Y

2
(or X, since they are equal) vs ε for Mutual Activation.

Darker (purple in digital version), thick line represents Mutual Activation
whereas lighter (green in digital version), thinner line represents autoacti-
vation. Continuous lines represent stable states whereas the dashed line
represents the unstable state. In color in digital version.

has DNA switching, although it only has two states to our three. Instead of

having a constant switching rate and then a binding of protein to promoter, its

states are equivalent, in terms of the transcriptional activity they drive, to our

DNAoff and DNAon, but their switching rate kon scales with (1 + k′X2), in-

corporating a constant leaky term and an approximation for cooperative protein

binding.

As explained in the previous section, volume noise destabilizes state 1, which

has high levels of X. Figure 3.10 A and B show this more clearly. This result,

also shown by Jaruszewicz et al. (2013), is preserved in Mutual Activation,

with only changes in the specific stabilities and their slopes in relation to noise

intensity.

Unlike volume noise, we found that the effect of gene switching noise saturated

at decreasing noise values (Figure 3.10 C). In addition, gene switching noise is

similar to volume noise, since it favors stability of the state with less protein,

except at very high noises (Figure 3.10 D), which have an abnormal behaviour

that we will analyze later. This result for the effect of gene switching noise
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Figure 3.10 Global and Relative stability of Mutual Activation (blue,
squares) and Autoactivation (orange, diamonds) as a function of (A,B)
transcription noise, (C,D) gene switching noise, and (E,F) protein-promoter
binding noise. Panels A,C,E represent global stability and panels B,D,F
represent relative stability of the two states. Error bars in Relative Stability
indicate error propagated from SEM. Error not shown in Global stability
because its size is comparable to that of the symbols. Symbols are numeri-
cal results computed as detailed in text, and lines are guides to the eye. In
color in digital version.
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on Relative Stability does not agree with the reported findings of Jaruszewicz

et al. (2013), which found that gene switching noise favored the state with more

protein.

Contrary to gene switching, protein binding noise favored the high protein state

at low noise values. This can be considered to be in agreement to Jaruszewicz

et al. (2013), since their ’gene switching’ corresponds to both our gene switch-

ing and our protein binding. Beyond a threshold, however, the behaviour re-

versed, like with gene switching (Figure 3.10 F). Furthermore, and even more

surprisingly, global stability also changed slopes, increasing at very high protein-

promoter binding noise values (Figure 3.10 F).

Figure 3.11 Mean First Passage Times as a function of gene switching
and protein-promoter binding noises for (A,C) Mutual Activation, and (B,D)
Autoactivation. Green, continous line is MFPT to escape from State 2 to
State 1 (OFF → ON) whereas purple, dot-dashed line is the time for the
opposite transition. Symbols are numerical results computed as detailed in
text, and lines are guides to the eye. In color in digital version.

This reversal of behaviour at high noises is puzzling, and worth trying to ex-

plain. To that end, we plotted both the separate Mean First Passage Times

from each state (Figure 3.11) and the steady state distributions depending on
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these two noise intensities (Figure 3.12). One thing that can be readily seen

is that although global stability does not show it, there was also an increase

in stability for high noise values in gene switching noise, for one of the states

(Figure 3.11 B). Another effect that is observable is that the MFPT for both

states evolves similarly in each case, but the escape time from the state that

is most destabilized by each type of noise goes through this change at lower

noise values (State 1, or ON, for gene switching noise and State 2, or OFF, for

protein binding noise) (Figure 3.11).

Furthermore, although it seems that these thresholds are at different noise values

for each noise type, they actually happen at similar timescales. Consider that

the noise intensity of this transition for autoactivation
konRef

kon
= 100 corresponds

to rates of kon = koff = 2. A similar transition happens at
k+Ref

k+
= 10, which

corresponds to k− = 2 (Figure 3.10 D,F).

Figure 3.12 Steady state histograms for diferent gene switching and pro-
tein binding noise values in the Mutual Activation system. Color shows
probability value in a logscale to better see the changes at very low proba-
bilities. Crosses and dashed lines show the evolution of distribution maxima
and minima depending on noise.

What happens is that at this slow timescales of gene state change, these re-

actions dominate switching: they happen rarely enough that, when they do,
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they necessarily provoke a transition. This also helps understand which state is

overall more affected by which noise: State 1, the high concentration state, is

more affected by gene switching because if the gene turns off, the state is unsus-

tainable. State 2, the low concentration state, is more destabilized by protein

binding because when a dimer molecule binds to the promoter, production is

enhanced and State 1 is favored.

When these timescales become slow enough, switching times start to go up

with them, provoking this effect of nonmonotonic stability. This can also be

seen in that the steady state concentrations themselves change at these limits

and, at very high noise values, the distribution becomes trimodal, with two

peaks at low concentrations for high gene switching noise and two peaks at high

concentration for high protein binding noise (Figure 3.12). Thus, this effect is

caused because we have, in a way, a mixture of bistability and bimodality due

to the discrete gene states.

We also explored bursting and dimerization noise but found that, for these

systems and for the ranges explored, they have relatively small effects (Figure

3.13). The effect that they do have, however, is quite similar. The effect of both

noises on Global Stability saturates at high noise values (as opposed to the low

noise saturation of gene switching). Furthermore they both, but dimerization in

particular, have a small but non-negligible effect on Relative Stability, favouring

the low concentration state like volume and gene switching noise.

In general, we can conclude that noise strongly tends to stabilize the low concen-

tration state of the Autoactivation and Mutual Activation circuits, compared

to the high concentration one, since we observed this effect for all noise sources,

with the only exception of protein-promoter binding at low noise values. This

can be considered a generalization of the main result of chapter 2.

3.3.4.2 Mutual Inhibition

We continued by studying Mutual Inhibition. As a classical motif underlying

bistability, its relationship to noise has been studied many times, with different

perspectives (Tian and Burrage, 2006; Morelli et al., 2008; Strasser et al., 2012;

Jaruszewicz and Lipniacki, 2013). As such, many of our results in this section

incrementally add on to the results of others, as well as confirm or clarify them.
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Figure 3.13 Global and Relative stability of Mutual Activation (blue,
squares) and Autoactivation (orange, diamonds) as a function of (A,B)
dimerization noise and (C,D) bursting noise. Panels A,C represent global
stability and panels B,D represent relative stability of the two states. Error
bars in Relative Stability indicate error propagated from SEM. Error not
shown in Global stability because its size is comparable to that of the sym-
bols. Symbols are numerical results computed as detailed in text, and lines
are guides to the eye. In color in digital version.

We focused our comparison to previous results by Morelli et al. (2008) and

Jaruszewicz and Lipniacki (2013). Both studies used an identical model of the

toggle switch, which is very similar to ours. The only differences are that they do

not have a DNAoff state and they both have a complete repression of expres-

sion when protein is bound to the promoter, i.e. ε = 0 in our notation, whereas

we have a finite ε = 0.01. Both also studied the same noise sources as each other:

protein-promoter binding and dimerization noise, but they each focused on dif-

ferent perspectives of the system. Morelli et al. (2008) changed noise symmetri-

cally, providing results comparable to our Global Stability, whereas Jaruszewicz

and Lipniacki (2013) focused on the effect of asymmetrically changed noise on

the Relative Stability of the states.

Let us describe the main results of these studies that are of interest to us here

(which are not by any means all their results). Morelli et al. (2008) found that
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dimerization noise is directly proportional to dimerization and dedimerization

rates (as anticipated in section 3.3.2) and protein-promoter binding noise is in-

versely proportional to its rates. When looking at their results, one also realizes

that the system is quite insensitive to both noise sources (finding a change in

switching rates of, at most, 1 order of magnitude for up to 4 orders of magnitude

change in the timescales of the reactions), although they do not explicitly report

this result (Morelli et al., 2008). The main results in Jaruszewicz and Lipniacki

(2013) are that increasing protein-promoter binding noise in the promoter of X

enhances the stability of the low X state, whereas increasing dimerization noise

for X increases the stability of the state with high X (Jaruszewicz and Lipni-

acki, 2013). Recall from sections 3.3.2 and 3.2.2 that Jaruszewicz and Lipniacki

(2013) considered (and showed) dimerization noise to be inversely proportional

to the reaction timescale. Therefore, their result can also be read as saying that

making the dimerization of X slower stabilizes the high X state.

When we measured how Global and Relative stabilities changed with noise we

found that, overall, mutual inhibition was not very sensitive to noise changes

(Figures 3.14 and 3.15). The noise source that affected the system the most

is gene switching, both in Global Stability when it was changed symmetrically

and in Relative stability when it was changed only for the promoter of X,

dramatically favoring the state with lower X (Figure 3.14 C,D).

The noise that affected the system second most was the one that originates

in dimerization. In particular, it had a large effect on relative stability when

changed asymmetrically (Figure 3.15 A,B). However, we had to decrease the

noise value further than initially intended to observe this effect. It is interesting

to note that an increase of dimerization noise in X enhances the stability of

the low X state. This result is the same shown by Jaruszewicz and Lipniacki

(2013) and it makes intuitive sense: when we add noise to the dimerization

of X, we are actually making the transcriptional repression of Y more noisy,

thereby destabilizing the state that depends on Y being repressed (the low Y ,

high X state). However, notice that as explained earlier, the relationship of

the dimerization timescale kD+ with dimerization noise in (Jaruszewicz and

Lipniacki, 2013) remains opposite to ours. That is, if we consider how kD+ is

changed instead of considering dimerization noise, our results regarding Relative

Stability are no longer comparable.
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Figure 3.14 Global and Relative stability of Mutual Inhibition S (for
Symmetrically changed noise, dark red, empty circles) and Mutual Inhibition
A (for Asymmetrically changed noise, light red, full circles) as a function
of (A,B) transcription noise, (C,D) gene switching noise, and (E,F) protein-
promoter binding noise. Panels A,C,E represent global stability and panels
B,D,F represent relative stability of the two states. Error bars in Relative
Stability indicate error propagated from SEM. Error not shown in Global
stability because its size is comparable to that of the symbols. Symbols are
numerical results computed as detailed in text, and lines are guides to the
eye. In color in digital version.
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Figure 3.15 Global and Relative stability of Mutual Inhibition S (for
Symmetrically changed noise, dark red, empty circles) and Mutual Inhibition
A (for Asymmetrically changed noise, light red, full circles) as a function of
(A,B) dimerization noise and (C,D) bursting noise. Panels A,C represent
global stability and panels B,D represent relative stability of the two states.
Error bars in Relative Stability indicate error propagated from SEM. Error
not shown in Global stability because its size is comparable to that of the
symbols. Symbols are numerical results computed as detailed in text, and
lines are guides to the eye. In color in digital version.

When we checked the effect of protein-DNA binding, the result we obtained was

the opposite to gene switching and dimerization noises: noise favors the high X

state (Figure 3.14 F), although weakly. The intuitive explanation for this result

is similar to that of dimerization: more noise in X repression enables the easier

release of this repression and an increassed expression of X, destabilizing the

low X state in favor of the opposite one.

In this case our result is opposite to the one obtained by Jaruszewicz and Lip-

niacki (2013). However, note that our gene switching noise result is similar to

their protein-promoter binding result. Interestingly, the result that coincides

in both cases is the one in which DNA is completely inactivated. This poses

the question, then, of whether what defines our (and their) gene switching re-

sult is a DNA transition that brings transcription completely to a halt, rather
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than a specific mode of DNA regulation (constant or mediated by protein bind-

ing). Furthermore, these results and their comparison to previous ones mirror

the ones we obtained for autoactivation, suggesting some fundamental cause

underlying them.

Like all other noise sources, volume and bursting noise affected Global Stability

when changed both symmetrically and asymmetrically (Figures 3.14 A and 3.15

C) by a not very large amount. However, unlike with other noises, their effect

on Relative Stability was completely negligible (Figures 3.14 B and 3.15 D).

The most relevant results in this section are, possibly, that Global Stability

of Mutual Inhibition is not very sensitive to our noise sources (a result that

is also extracted from the data in (Morelli et al., 2008) for dimerization and

protein-promoter binding noises), and that the noise that affects relative stabil-

ity the most is, by far, gene switching. Furthermore, like in Mutual Activation

and Autoactivation, the only noise source that stabilizes state 2 (the high X

state) is protein-promoter binding. In Mutual Inhibition, though, some noise

sources did not strongly stabilize either state, unlike with Mutual Activation

and Autoactivation, where all noises change Relative Stability.

3.3.5 Mixed motifs: AAC and MFL

Finally, we measured the effect of all different noise sources (except, as detailed

in section 3.2.1, dimerization) on the Mixed Feedback Loop and the Autoacti-

vation with Complex circuits. We put these two systems in a single category a

priori, due to their particularity of needing post-transcriptional interactions of

X and Y to yield bistability.

We found that the Global Stability of the AAC is, in general, much more sen-

sitive than that of the MFL. However, the qualitative dependence of Global

Stability with noise is remarkably similar in both circuits for transcriptional

and gene switching noises, except for their different slopes (Figure 3.16 A,C).

For bursting and protein-promoter binding noises, the dependence also seems

qualitatively similar but the slope of the MFL Global Stability is so small that

the similarity is hard to establish (Figure 3.16 E,G). The response of Relative

Stability, however, is quite dissimilar for each motif in all cases.



Chapter 3. Noise and PFL architecture 69

Figure 3.16 Global and Relative stability of AAC (green, triangles) and
MFL (purple, inverted triangles) as a function of (A,B) transcription noise,
(C,D) gene switching noise, (E,F) protein-promoter binding noise and (G-
H) bursting noise. Panels A,C,E,G represent global stability and panels
B,D,F,H represent relative stability of the two states. Error bars in Relative
Stability indicate error propagated from SEM. Error not shown in Global
stability because its size is comparable to that of the symbols. Symbols are
numerical results computed as detailed in text, and lines are guides to the
eye. In color in digital version.
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Volume noise generates almost no effect on the relative stability of the MFL,

whereas a change in volume of factor 8 is capable of almost completely changing

states in the AAC (Figure 3.16 B). This is a remarkable difference given the

similarity of their dependence of Global Stability with volume.

A similar thing happens for gene switching noise and bursting noises: AAC is

very sensitive, with noise dramatically favoring the low X state, whereas the

MFL Relative Stability is almost unaffected (Figure 3.16 D,H).

Both circuits are also very sensitive in their relative stability when protein-

promoter binding noise is changed, and can go to complete asymmetry in only

an order of magnitude change in the timescale of the reactions (Figure 3.16

F). They do it differently, though. MFL changes from one state to the other,

whereas AAC shows a nonmonotonic behaviour more similar to Mutual activa-

tion and Autoactivation. In fact, when we compared AAC and Mutual Activa-

tion we saw that, like with Autoactivation, they are very similar (Figure 3.17

). Notice that, although this is an ’asymmetric’ system like Mutual Inhibition

and MFL in that it has two species X and Y with opposed concentrations, it

has a positive interaction in the form of an autoactivation, unlike these other

two circuits.

Interestingly, in an analogous way to the AAC being similar to the purely-

positive feedbacks, MFL is comparable to Mutual Inhibition. Like it, it is not

very sensitive to noise, and the effect of volume and gene switching is remarkably

similar in both circuits (Figure 3.18 ). The largest difference between Mutual

Inhibition and the Mixed Feedback Loop can be found on the much larger effect

of protein-promoter binding on the Relative Stability of MFL (Figure 3.18 F).

All in all, the classification according to bistability mechanism does not give a

lot of information about the effect of noise on the circuit: AAC is much more

stable and sensitive to noise than MFL and, although their global stabilities

are qualitatively comparable, AAC is overall much more similar to Mutual Ac-

tivation and MFL to Mutual Inhibition. It is worth it to highlight that the

Relative Stabilities of both circuits are extremely sensitive to protein-promoter

binding noise. If we focus on the differences of each circuit with the other cir-

cuits they seem to be similar to (i.e. if we compare AAC to the activation

circuits and MFL to Mutual Inhibition), the Relative Stability of AAC is much

more sensitive to Volume and bursting noises than Mutual Activation (Figure
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Figure 3.17 Global and Relative stability of AAC (green, triangles) and
Mutual Activation (blue squares) as a function of (A,B) transcription noise,
(C,D) gene switching noise, and (E,F) protein-promoter binding noise. Pan-
els A,C,E represent global stability and panels B,D,F represent relative sta-
bility of the two states. Error bars in Relative Stability indicate error prop-
agated from SEM. Error not shown in Global stability because its size is
comparable to that of the symbols. Symbols are numerical results com-
puted as detailed in text, and lines are guides to the eye. The data in this
figure already appear in Figures 3.10, 3.13 and 3.16, but they are grouped
and presented again for a better comparison. In color in digital version.
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Figure 3.18 Global and Relative stability of AAC (green, triangles) and
Mutual Activation (blue squares) as a function of (A,B) transcription noise,
(C,D) gene switching noise, and (E,F) protein-promoter binding noise. Pan-
els A,C,E represent global stability and panels B,D,F represent relative sta-
bility of the two states. Error bars in Relative Stability indicate error prop-
agated from SEM. Error not shown in Global stability because its size is
comparable to that of the symbols. Symbols are numerical results com-
puted as detailed in text, and lines are guides to the eye. The data in this
figure already appear in Figures 3.14, 3.15 and 3.16, but they are grouped
and presented again for a better comparison. In color in digital version.
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3.17), whereas MFL is much more sensitive than Mutual Inhibition to protein-

promoter binding, but also much less sensitive to gene switching (Figure 3.18).

3.3.6 Five-way comparison of the circuits

To be able to compare all systems at a glance, we defined Global Stability Sen-

sitivity and Relative Stability Sensitivity as how much the Stabilities changed

when decreasing and increasing noise intensity by a factor 10 (2 for volume

noise) above and below the reference point:

GSensNoise λ = log
(
GNoise/10

)
− log (GNoise×10) (3.4)

RSensNoise λ = abs
(
RNoise/10 −RNoise×10

)
, (3.5)

where Noise stands for the reference value, and λ indicates that these expres-

sions are computed for each noise source. That is, we computed the differ-

ence between the maximum and the minimum stabilities within this range of

two orders of magnitude. When the relationship between noise and stability

is monotonous, this quantity is an effective slope of that relationship at each

reference point. In the case of G, we use logarithms to see the change in or-

ders of magnitude, so that each system is within its own scale and they are all

comparable. We also define Total Sensitivities as

TotalGSens =
∑

λ∈{NoiseTypes}

GSensNoise λ (3.6)

TotalRSens =
∑

λ∈{NoiseTypes}

RSensNoise λ, (3.7)

and the percentage contribution of each noise to this total,
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%GSensNoise λ =
GSensNoise λ∑

λ∈{NoiseTypes}
GSensyNoise λ

(3.8)

%RSensNoise λ =
RSensNoise λ∑

λ∈{NoiseTypes}
RSensNoise λ

. (3.9)

Visually, Total Sensitivity is the total height of each system’s bar in panels A

and B of Figure 3.19 A,B.

Although this kind of representation eliminated qualitative details, and sen-

sitivity to changes at extreme noise values, it allowed us to compare all five

systems at a glance. The first thing we can see is that each system had different

sensitivity overall, but Global Stability Sensitivity correlates well with Relative

Stability Sensitivity (Figure 3.19 A,B). The effect of each noise source on the

global stability, though, is not always indicative of its contribution to relative

stability changes. That is, there are noise sources that do not affect Global

Stability by much but have an important contribution to Relative Stability

Sensitivity, and vice versa (Figure 3.19 C, D).

We also observed that, although the details of the percentual effect of each noise

source on stability vary for each system, there is a certain generality in what

are the most and least important noises. In particular, Volume and protein-

promoter binding tend to be the main contributors to both Global and Relative

Stability Sensitivity. For most systems, bursting also has an important effect

on Global Stability, whereas gene switching tends to affect Relative Stability

more.

If we focus on the main differences between systems, the clear outlier is the

MFL, with a disproportionate Global Stability Sensitivity to Volume noise, and

also a very large Relative Stability Sensitivity to protein-promoter binding.

Close observation of Figure 3.19 together with the figures of the previous sec-

tions, Figure 3.8 A in particular, also lead us to observe another result: it seems

that the total Stability Sensitivity (that is, the total height of each bar in figure

3.19 A and B) is related to the Global Stability at the reference point. Indeed,

when we plotted the Total Global Sensitivities against the logarithm of stability
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Figure 3.19 Contribution of each noise source to changes in stability for
each circuit. Mut Act stands for Mutual Activation, Auto stands for Autoac-
tivation and Mut Inh stands for Mutual Inhibition (S: with Symmetrically
changed parameters and A: with Asymmetrically changed parameters) A
Global Stability Sensitivity of each circuit to all noises. B Relative Stability
Sensitivity of each circuit to all noises. C As panel A, but each system is
normalized by its Total Sensitivity (the total height of its bar in panel A)
D As panel B, but each system is normalized by its Total Sensitivity (the
total height of its bar in panel B).

at the reference point, a linear relationship emerged (Figure 3.20 A). Interest-

ingly, we were unable to uncover any relationship between average number of

molecules and stability or sensitivity (Figure 3.20 B).

3.4 Discussion and perspectives

We have performed a study and comparison of the effect of five different noise

sources on five different bistable circuits. This is, to our knowledge, the most

extensive study of this type to date, and it hints at possible biological functions

of each circuit, as detailed below. However, it has much room for improvement.
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Figure 3.20 Total Global Sensitivity versus Stability at reference point
and versus molecule number A Total Global Sensitivity versus stability at
reference point. Crosses are values for each system, dashed line is a linear
fit with r2 = 0.86 B Global sensitivity of each circuit (as the sum of the
sensitivities to all noise sources) versus average number of free X and Y
molecules for each circuit computed as the average of the steady state X
plus Y in both states of each system.

One of the novelties of our study is including post-transcriptional circuits that

appear to exist in biological systems and can also enable bistability, and one of

our main findings also relates to these circuits. We found that, although both

post-transcriptional circuits involve two proteins that have strongly opposed

states, the Autoactivation with Complex circuit is quite similar to Autoacti-

vation and Mutual Activation, whereas the Mixed Feedback Loop is similar to

Mutual Inhibition. This points toward an intrinsic characteristic depending on,

for instance, the number of positive and negative transcriptional regulations (as

was already found for the Feed Forward Loop (Kittisopikul and Süel, 2010) )

that warrants further investigation but is beyond the scope of this type of study

and possibly beyond the information it can yield. This opens a perspective of

a systematic study of bistable circuits with different number of positive and

negative interactions, and their relationship with noise.

Most of our results are in the specific dependency of Global and Relative Sta-

bility of each circuit. It is very interesting to see that all circuits have some

noise source that, when tuned (only as a noise source, without changing the

deterministic bistability of the system) can completely or almost completely

switch extreme stability from one state to the other. Mutual Inhibition is quite

insensitive to all noise sources, but strong gene switching noise in one of the
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genes can completely destabilize its high concentration state. The MFL, in-

stead, is very sensitive to noise in the protein-promoter binding reaction. In

the AAC a change in molecule number without affecting concentration (i.e.

a change in volume noise) completely changes the stability of the state, and

protein-promoter binding does as well. For Mutual Activation and Autoacti-

vation protein-promoter binding noise is also a key player, but this circuit is

the one that is less clearly sensitive to a single noise source, being sensitive

to volume and gene switching as well. This type of results could lead to the

design of novel genetic circuits, with tunable properties according to the noise

characteristics of the environment they are inserted in.

All these results are relevant, but they could depend on parameter values. Al-

though the parameters were chosen so that molecule numbers are similar and the

relevant timescales are relatively close to each other, an extensive parameter ex-

ploration should be performed to generalize these results. It was not performed

here because our method is computationally expensive and does not allow for a

wide exploration. We could have explored an additional parameter set for each

system, but that would not have provided a lot more information. Instead, one

of several methods available for fast computation of MFPTs or transition rates

should be used. Two such methods that would be suitable for this are Weighted

Ensemble (Kromer et al., 2013; Donovan et al., 2013) which allows for a fast

computation of equilibrium distributions and of switching rates, and Forward

Flux Sampling (Allen et al., 2009) which does not facilitate so much the com-

putation of equilibrium distributions but, besides allowing for fast computation

of transition rates, also yields information of the transition pathways, giving an

additional dimension to compare the systems and the effect each noise source

has on them.

One last point that needs to be addressed is the apparent dependency of Global

Stability Sensitivity with Global Stability at the reference point. This may

actually give information of the dependency of Global Stability with noise. In

an exponential, for instance it is natural to find that the slope of this function

at a given point is proportional to the value of the function at the point. In a

way, exponentials that are equal except for an offset in the vertical axis can also

be interpreted as having an offset in the horizontal axis. Our case is clearly not

exponential, though: consider that our proportional slopes are after taking the

logarithm in both axes.
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One could still think that, for a fair comparison of all five systems, the MFPT

curves and the sensitivity should be normalized in some way to eliminate this

effect. We, however, think that this is not the case for several reasons. First and

foremost, dividing by the value at the Global Stability at the reference point

does not eliminate this dependency, because the slopes shown are in logarithmic

scale, and any normalization would need to a more complex function than just

dividing, and therefore would need to a priori assume some general dependency

of Global Stability with the parameters.

Furthermore, the parameters were chosen to avoid at least some of this effect,

and if it remains that is a result by itself. Also, the picture in which the different

functions would line up with a displacement in the horizontal axis is patently

false here: the functions are actually qualitatively different. Lastly, normalizing

by rescaling the horizontal axis or moving the reference point would be similar

to changing the definition of each noise so that, rather than changing the pa-

rameters or timescales as we do here, we were changing the noise itself. However

this, again, eliminates some of the information provided by our results (namely,

the relationship of each parameter with the noise it generates). Furthermore, it

is not an approach that has been used in previous studies.

This discussion only justifies not normalizing the different Global Stability

curves and Sensitivities. The more general study discussed earlier in this sec-

tion would also help to clear this point up, which highlights the importance of

performing it as a continuation of this work.
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Chapter 4

Modelling a stem cell

regulation genetic module

4.1 Introduction

This Chapter presents the modelling contribution to a study of a regulatory

circuit of a specific type of stem cells in the root of the plant model organism

Arabidopsis thaliana. First the experimental data on which the model herein

formulated relies is presented. Afterwards, the model and its analysis, together

with the experimental evaluation of a prediction of the model is presented. This

work has been done with the experimental collaboration of the plant develop-

mental biology group of Ana I. Caño-Delgado at the Center for Research in

Agricultural Genomics (CRAG). Most of the work in this chapter has been

published in a research paper (Vilarrasa-Blasi et al., 2014).

4.1.1 The stem cell niche of the root of Arabidopsis thaliana

Dynamical systems theory, as well as stochastic processes, have been widely

used as a paradigm to describe and understand developmental processes, and in

particular the processes of pluripotency maintenance or stem cell differentiation

(Rué and Garcia-Ojalvo, 2013). The differentiation process has been classically

81
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viewed as the evolution through a changing multistable landscape (Ferrell, 2012;

Huang, 2012), but there are also studies that show that stem cells may be an

excitable system, rather than a multistable one (Kalmar et al., 2009).

In this chapter we study a specific system of stem cells, set in the root of model

plant Arabidopsis thaliana (hereafter Arabidopsis). Arabidopsis has the usual

properties of model systems such as a short life cycle and size (Koornneef and

Meinke, 2010), and the added benefits of a simple anatomic structure and a

small genome size. Furthermore, its root is a system particularly amenable to

study, due to its very simple structure (Dolan et al., 1993) and its transparency,

which allows observation of its inner cells and use of fluorescence techniques

through relatively simple microscopy methods.

Arabidopsis has two stem cell niches, one at the tip of the shoot and one at the

tip of the root. These stem cell niches consist of a small group of pluripotent

stem cells named the organizing centre, surrounded by groups of stem cells that

are precursors to specific cell types or lineages (see Figure 4.1 for the root stem

cell niche) (Scheres, 2007). These precursors are continuously dividing to give

rise to the different cell types, whereas the organizing centre cells have their cell

cycle arrested and rarely divide, remaining in what is called a quiescent state

(Aichinger et al., 2012; Cheung and Rando, 2013). Whenever any stress or

damage compromises the function of the surrounding stem cells the organizing

centre, also called Quiescent Centre (QC), divides and replaces the damaged

cells to ensure proper root growth (Aichinger et al., 2012). The Quiescent

Centre is also responsible for the preservation of the identity of its sorrounding

cells: if it is destroyed, the stem cells around it differentiate, losing stemness

(Van den Berg et al., 1997).

There are many questions of joint physical and biological interest within this

context. From a more physical point of view, cell types are often interpreted

as being different attractors for the cellular system, and stem cells, with their

complex relationship to cell types, offer an opportunity to study the dependence

and emergence of these attractors from a complex network, the dynamical be-

haviours such as multistability or excitability that can be found within them

or, at the tissue level, the emergence of patterns (Garcia-Ojalvo and Martinez

Arias, 2012). These problems have their biological counterpart in how is cell

differentiation regulated, how it can be controlled, and so on. Regarding the

Quiescent Centre specifically, common biological questions are how its position
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is determined, how it helps establish the order that sorrounds it, or how its qui-

escense is maintained and released when necessary. In this collaborative work,

we seek to tackle these questions of biological interest and also to highlight their

physical aspect.

Figure 4.1 Root tip and stem cell niche of Arabidopsis. The light grey
(pink in digital version) cells are the Quiescent Centre, and the dark grey
(blue in digital version) cells sorrounding it are different types of stem cells.

4.1.2 BRAVO: A Brassinosteroid regulated cell specific

repressor of divisions in the quiescent centre

All the work presented in this chapter is done in collaboration with the previ-

ously mentioned research group in Arabidopsis thaliana development, specialized

in Brassinosteroid signaling. Hereby we summarize the research done by our col-

laborators which is the basis of our study as published in (Vilarrasa-Blasi et al.,

2014). Brassinosteroids (BRs) are plant steroid hormones, analogue to animal

steroids, that have been shown to be key regulators of plant growth and devel-

opment (Caño-Delgado et al., 2010). Brassinosteroid signaling activates plasma

membrane proteins such as BRI1, which trigger a cascade that promotes the

dephosphorilation of transcription factors BES1 and BZR1, allowing them to
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enter the nucleus and regulate DNA expression (Vert et al., 2005; Zhu et al.,

2013). This pathway is well known, but how it regulates specific developmental

events is an intense field of research.

It has been shown by our collaborators, and later confirmed by others, that

BRs promote the division of the QC cells (González-Garćıa et al., 2011; Hey-

man et al., 2013). Since BR signaling components are expressed ubiquitously in

the plant, it stands to reason that a mechanism exists in QC cells to counteract

this signaling and preserve the low division rates of quiescence. A transcriptomic

approach done by our collaborators identified a single protein of a known family

of transcription factors (the MYB proteins), BRAVO (BRASSINOSTEROIDS

AT VASCULAR AND ORGANIZING CENTER) that is expressed specifically

in the QC (and in neighbouring vascular initial stem cells) and is transcription-

ally regulated both by BES1 and BZR1 (Figure 4.2 A)(Vilarrasa-Blasi et al.,

2014). Analysis of bravo loss-of-function mutants showed that QC divisions are

dramatically increased when BRAVO is not functional, and no other phenotype

is observed, indicating that BRAVO is a negative regulator of QC divisions

(Vilarrasa-Blasi et al., 2014). These increased divisions are similar to those of

plants treated with Brassinolide (BL), the most active BR compound, or of

BES1 gain-of-function mutants (bes1-D), but these other plants also show al-

tered cell cycle progression and differentiation in other parts of the root such as

the meristem (González-Garćıa et al., 2011) (the region of rapidly dividing cells

that is responsible for root growth). Furthermore, BL treated plants show QC

divisions and a decrease in BRAVO expression (Vilarrasa-Blasi et al., 2014).

Altogether, these data show that BRAVO, a target of BR signaling, is a QC

specific repressor of cell division (Vilarrasa-Blasi et al., 2014).

The QC phenotype of the double mutant bravo/bes1-D indicated that BRAVO

and BES1 regulation of QC divisions are not completely dependent on each other

(i.e. they are at least partially independent), since double bravo/bes1-D mutants

have increased divisions compared to both single mutants. The question arises

then of how the BR signals and the effect of BRAVO are integrated into the final

regulation of QC divisions. Transactivation assays show that BES1 strongly

and directly represses BRAVO transcription, whereas BRAVO enhances its own

production (Figure 4.2 B).

BES1 has been shown to heterodimerize with proteins of the MYB family,
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Figure 4.2 Experimental information about BRAVO and its interactions.
A Venn diagram of up- or down- regulated genes in the QC and vascular
initials according to different markers (yellow and blue) and of genes tar-
geted by BES1 and BZR1 (pink and green) B Transactivation assays. GUS
activity measures the transcription of the BRAVO promoter (BRAVOp) de-
pending on what proteins are added. Notice how BES1 strongly represses
activity, whereas BRAVO strongly activates it. C FRET-FLIM results. Bars
show mean CPF lifetime. When BRAVO-CFP is coexpressed with BES1-
YFP, the mean lifetime is reduced. In all cases, triple asterisks show that
difference with control is statistically significant with p < 0.001. All panels
and data are by our collaborators, and can be found in (Vilarrasa-Blasi et al.,
2014). They are all also part of the Ph.D. thesis of Josep Vilarrasa-Blasi,
(Vilarrasa-Blasi, 2014).

to which BRAVO belongs. Indeed, Fluorescence Resonance Energy Transfer-

Fluorescence Lifetime Imaging Microscopy (FRET-FLIM) showed that BRAVO

and BES1 interact, forming a heterodimer (Figure 4.2 C). Furthermore, in

transactivation assays with both BES1 and BRAVO, BRAVO is expressed at

the basal level, not affected by the repression by BES1 nor the activation by

BRAVO (Figure 4.2 B). This may be due to dimerization of both proteins or

due to how the joint transcriptional regulation is integrated. This is explored

further in section 4.2.

It is unclear how all these elements come together to regulate quiescence, in

particular how the apparently conflicting signals from BES1 and BRAVO are
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integrated. We have participated in unraveling these questions with a contin-

uous exchange with our collaborators, and one of its results is a mathematical

model that sheds some light on the features of the BRAVO-BES1 mutual regu-

lation and that we present in the following sections.

4.2 The BRAVO-BES1 module

4.2.1 Model derivation

To understand how the cross-regulations between BES and BRAVO integrate

BR signaling to control QC divisions, we built a mathematical model that takes

into account BRAVO-BES1 dimerization, BRAVO transcriptional control by

BRAVO and BES1, and other details such as BES1 phosphorilation and de-

phosphorilation to represent BR signaling. However, we do not include details

of how QC divisions are regulated downstream BRAVO and BES1. We also

make one approximation: for simplicity, we consider only one binding site for

BRAVO and another, non interfering one for BES1, despite there being more

than one candidate site for each protein (Vilarrasa-Blasi, 2014). Our approx-

imation is justified in the fact that BES1 seems to bind preferentially to one

of these binding sites (Vilarrasa-Blasi, 2014), and in the assumption that more

binding sites would not change results significantly. A cartoon of our model is

shown in figure (Figure 4.3). All this can be represented by the following 17

chemical reactions:

Figure 4.3 Cartoon of the elements included in our model: transcriptional
repression of BRAVO by BES1, transcriptional autoactivation of BRAVO,
BRAVO-BES1 dimer formation and BES1 dephosphorilation according to a
signal. All degradations have been omitted for simplicity.
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D1 +M
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ε2α−−→ D1 +D2B +M

D1M +D2B
ε3α−−→ D1M +D2B +M (4.1)

B
kP+−−−⇀↽−−−
kP−

Bd

M
dM−−→ ∅

∅ β−→ B
dB−−→ ∅

Bd
dBd−−→ ∅

M +Bd
kD−−−−⇀↽−−−
kD+

C
dC−−→ ∅

Where M represents BRAVO (M stands for MYB, the family of proteins to

which it belongs), B represents BES1, Bd is dephosphorilated (active) BES1

and C is the BES1-BRAVO heterodimer. We have also assumed independent

binding sites for BRAVO and BES1 in the BRAVO promoter (D1 andD2 respec-

tively). Explicit mRNA dynamics with linear mRNA degradation and protein

production proportional to mRNA concentration have been omited for simplic-

ity, and are included in the parameter α which includes all these steps in protein

production. α is the basal rate of production when no transcriptional regula-

tion occurs, and the different ε parameters represent the ratio between basal

and regulated production. Therefore, ε will be ε > 1 when transcription is

activated and ε < 1 when transcription is repressed.

Using mass action kinetics, we can translate these reactions into the following

six ordinary differential equations, where ẋ stands for the time derivative of x:
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Ḋ1 = kM−D1M − kM+MD1; D1 +D1M = Dtot1

Ḋ2 = kB−D2B − kB+BdD2; D2 +D2B = Dtot2

Ṁ = α (D1D2 + ε1D1MD2 + ε2D1D2B + ε3D1MD2B) + kM−D1M (4.2)

− kM+MD1 − kD+MBd − dMM

Ḃd = kp−B + kB−D2B + kD−C − kP+Bd − kB+BdD2 − kD+MBd − dBd
Bd

Ḃ = β + kp+Bd − kp−B − dBB

Ċ = kD+MBd − kD−C − dCC

Assuming that binding and unbinding of proteins to DNA is much faster than

the other reactions of the system, it is straightforward to reduce equations (4.2)

to four equations, obtaining:

Ṁ = αDtot1Dtot2

1 + ε1KMM + ε2KBB + ε3KMKBMB

1 +KMM +KBB +KMKBMB
+ kD−C − kD+MBd − dMM

Ḃd = kp−B + kD−C − kP+Bd − kB+BdD2 − dBd
Bd (4.3)

Ḃ = β + kp+Bd − kp−B − dBB

Ċ = kD+MBd − kD−C − dCC

where KM =
KM+

KM−
and KB =

KB+

KB−
are the equilibrium constants of BRAVO

and BES1 binding to the BRAVO promoter. Although we have dynamic equa-

tions, we only studied the steady states, by setting all derivatives dx
dt = 0 and

solving the corresponding system of equations numerically, through Mathemat-

ica software (Wolfram Research, 2010).

4.2.2 Parameter determination

For most of the parameters in this model, we had little information about their

values, so we needed to choose them somehow arbitrarily. However, the trans-

activation data shown in Figure 4.2 B contains information about the relative
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rates of BRAVO transcription depending on the different regulation modes.

Therefore, we first tried to extract numerical information from this experiment.

In this assay, purified BRAVO and/or BES1 proteins are introduced in To-

bacco (N. benthamiana) leaves containing the BRAVO promoter copied from

Arabidopsis, and its transcription is measured through the activity of the GUS

reporter (Froidure et al., 2010). We modeled the behaviour of this measured

GUS activity, to be able to fit it to the parameters of our model. We assumed

a linear degradation of Gus activity, and assumeed negligible degradations of

Bd (active BES1), M (BRAVO) and their heterodimer (their total amounts are

therefore constant). Gus production is proportional to that of M . Therefore,

the set of equations we used is:

Ḋ1 = kM−D1M − kM+MD1; D1 +D1M = Dtot1

Ḋ2 = kB−D2B − kB+BD2; D2 +D2B = Dtot2 (4.4)

˙Gus = α (D1D2 + ε1D1MD2 + ε2D1D2B + ε3D1MD2B)− degGusGus

According to this, the stationary value of Gus concentration, Gusst, would be

Gusst =
αD2

tot

degGus

1 + ε1KMM
st + ε2KBB

st + ε3KMKBM
stBst

1 +KMMst +KBBst +KMKBMstBst
, (4.5)

where we have considered that Dtot1 = Dtot2 = Dtot. Now, for the basal activity

of the assays (first column in Figure 4.2), we take eq. (4.5) with Mst = Bst = 0,

and we obtain

Gusstbasal =
αD2

tot

degGus
= A0, (4.6)

where A0 = 1500±400. Now we can compare this basal Gus to each of the tran-

scriptionally regulated values, by substituting Mst and Bst by 0 or Mtot, Btot

in equation (4.5) according to the experimental conditions of each datapoint:
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GusstM

Gusstbasal
=

1 + ε1KMMtot

1 +KMMtot
= A1 (4.7)

GusstB

Gusstbasal
=

1 + ε2KBBtot

1 +KBBtot
= A2 (4.8)

Where GusstM,B is Gusst when only M (BRAVO) and B (BES1) are present,

respectively, and Gusstbasal corresponds to the control, without introduction of

any protein. We therefore obtain A1 = 3.9 ± 1.9 by comparing the last and

first columns in Figure 4.2 B. Notice that this sets the dependence between two

parameters ε1 and KMMtot, with the lower bounds ε1 ≥ 3.9 and KMMtot ≥
0. If KMMtot ≥ 10 then ε1 ≈ 3.9. Something similar happens with A2 =

0.07 ± 0.18. We obtain the bounds ε2 ≤ 0.07 and KBBtot ≥ 13.28. When

KBBtot ≥ 100, 0.06 ≤ ε2 ≤ 0.07.

When both BES1 and BRAVO are present, we obtain

GusstM+B

Gusstbasal
=

1 + ε1KMM
st + ε2KBB

st + ε3KMKBM
stBst

1 +KMMst +KBBst +KMKBMstBst
= A3 (4.9)

where

Bst =
Btot

1 +
kD+

kD−
Mst

; Mst =
Mtot

1 +
kD+

kD−
Bst

(4.10)

and A3 = 1.4± 0.6. Here we assumend that Mtot and Btot are the same for all

datapoints. But because the system is overdetermined, there is a wide range

of values for the system parameters compatible with this A3. To choose one

set of parameter values we defined an Euclidean norm for the distance between

de results of this simple model for GUS activity and the measured values (as

shown in (Ashyraliyev et al., 2009)):

VMLE =

n∑
i=1

(
Gusst(parameters,Mtot, Btot)−Gusmeasuredi

)2
σ2
i

(4.11)
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Because information about the exact quantities Mtot, Btot used in the experi-

ments was unavailable, but were known to be large, we chose Btot = Mtot =

100 nM. We then minimized this norm using Mathematica Software (Wol-

fram Research, 2010), obtaining ε1 = 3.9, ε2 = 0.068, ε3 = 1.353, KM =

72.66 nM−1, KB = 82.06 nM−1, KD = kD+/kD− = 164.76 nM−1, with VMLE =

1.85 × 10−5. Since eqs. (4.3) depend also on kD+ and kD− we set them as

kD+ = 329.52 h−1 nM−1 and kD− = 2 h−1 which satisfies the equilibrium con-

stant determined by the fitting.

Due to the overdetermination of the system, this is still only one of the large

number of parameter sets that can reproduce the experimental values and yield

small values of VMLE < 10−4 (Figure 4.4). Furthermore, our arbitrarily chosen

Mtot, Btot also give an additional constraint to the parameters, in particular to

the binding constants KM and KB , which could take many values. However,

the parameters yielded by the fitting mean that both binding sites are close to

their saturation regime, meaning that our results are valid as long as the actual

binding constants are large enough.

Figure 4.4 Value of VMLE (colormap) as a function of ε3 and KD =
kD+/kD−, for the other parameters as obtained by the fitting. Notice how
there is a very large number of ε3,KD pairs that yield similarly low values.
In color in digital version.

The rest of the parameters were chosen within biologically reasonable ranges,

and are: Dtot1 = Dtot2 = 0.6 nM, α = 3 nM h−1, β = 3 nM h−1, dM = dB =

dC = 0.02 h−1, dBd
= 0.002 h−1, kP+ = 0.01 h−1 and kP− = 0.002 h−1.
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4.3 Results

4.3.1 Model results

When we analyzed the steady states of the system for these parameters, we

found that it is bistable (Figure 4.5 A) . This is not surprising, since our module

can be interpreted as a combination of the AAC and MFL circuits explored in

Chapter 2. Furthermore, the circuit robustly drives two distinct states where the

amounts of free BRAVO and free dephosphorilated BES1 are strongly opposed

(Figure 4.5 A) and are either [HIGH BRAVO, LOW BES1] or [LOW BRAVO,

HIGH BES1] that are preserved for total BRAVO (Figure 4.5 C) but not so much

for total BES1 (Figure 4.5 D). At very low values of BR signaling, represented by

the dephosphorilation rate kP−, only the [HIGH, LOW] state exists, whereas

at high values of it only the [LOW, HIGH] state is stable. This allows the

system to sharply switch from one state to the other. Since apparently, as we

explained in section 4.1.2, BRAVO and BES1 regulate QC divisions somewhat

independently, this makes biological sense: strongly opposed states, together

with a sharp transition, would ensure that there is a clear signal telling the

QC whether it should divide or not, avoiding harder to interpret intermediate

signaling levels.

To evaluate robustness of these results and see the relevance of the different

reactions and parameters, we explored parameter spaces, varying parameters

pairwise. These show that, while the right combination of values for the dif-

ferent transcriptional regulations ε is important, dimerization is key both for

bistability and for the strongly opposed states (Figures 4.5 B and 4.6 A,C,D).

This indicates that dimerization is the main element driving nonlinearity in

this system. Beyond this, bistability and two distinct, opposed states are quite

robust to changes of several orders of magnitude in several parameters (Figure

4.6).

We also performed a sensitivity analysis by varying several parameters in the

same proportion (1% ) and measuring the change in the BRAVO steady state.

We found that for high phosphorilation values, the state is sensitive to several

parameters. This is not expected to be very relevant, though, since this state

has negligible amounts of BRAVO and therefore changes to it are not expected

to be important (Figure 4.7).
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Figure 4.5 The BRAVO-BES1 model enables bistability. A Amounts of
BRAVO (dark grey, red in digital version) and free dephosphorilated BES1
(light grey, green in digital version) as a function of BES1 dephosphorila-
tion rate kP−. When free BRAVO is at high amounts, free dephosphorilated
BES1 is almost absent. This [HIGH,LOW] state is represented by squares.
Similarly, when free dephosphorilated BES1 is in high amounts, free BRAVO
is almost absent. This [LOW, HIGH] state is represented by triangles. Lines
with symbols represent the stable steady states of the system. Dotted lines
only represent the sharp transition that occurs when one state disappears.
B BRAVO and BES1 as a function of kP− and dimerization rate kD+. Col-
ored regions correspond to where BES1 and BRAVO that differ by at least
one order of magnitude. The light grey (green in digital version) region
corresponds to the [LOW,HIGH] state, darker grey (red in digital version)
region corresponds to the [HIGH,LOW] state, and darkest grey (blue in dig-
ital version) region is bistable. C As A but with total amounts of BRAVO.
Notice how sharp transition and opposed states are maintained but are sep-
arated by less than 2 orders of magnitude, whereas in panel B there is a
separation of 7 orders of magnitude. D As panel B but with total amounts
of dephosphorilated BES1. Empty squares represent total dephosphorilated
BES1 when there is no BRAVO production. In color in digital version.
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Figure 4.6 Strongly opposed states and bistability are compatible with
large ranges of parameter values. Colored areas (red, green and blue) corre-
spond to those parameter regions where the free BRAVO and free dephos-
phorylated BES1 stable stationary amounts differ in one or more orders
of magnitude (i.e. their ratio is 10 or larger). In these regions we can
define the stable states of (free BRAVO, free dephosphorylated BES1) as
(HIGH,LOW) (dark grey areas,red in digital version) and (LOW,HIGH)
(light grey areas, green in digital version). Bistable parameter regions with
two stable states (HIGH, LOW) and/or (LOW, HIGH) are denoted in darker
grey (blue in digital version). White stands for those regions where the
amounts of free BRAVO and free dephosphorylated BES1 differ in less than
one order of magnitude. Parameter space of A BRAVO auto-activation
strength (ε1) and dimerization rate (kD+) of BRAVO with dephosphory-
lated BES1, B the equilibrium constants of binding/unbinding reactions of
the BRAVO promoter with BRAVO (KM ) and with dephosphorylated BES1
(KB), C strengths of BRAVO auto-production (ε1) and dephosphorylated
BES1-mediated production of BRAVO (ε2), D strengths of BRAVO auto-
production (ε1) and production jointly regulated by BES1 and BRAVO(ε3),
E heterodimer degradation rate (dC) and dephosphorylation rate (kP−) and
F dephosphorylated BES1 degradation rate (dBd) and dephosphorylation
rate (kP−). All remaining parameter values as specified in section 4.2.2. In
color in digital version.
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Figure 4.7 Sensitivity analysis measuring the relative change in the stable
stationary amount of free BRAVO when a parameter is increased (filled sym-
bol) or decreased (empty symbol) in 1% for A low dephosphorylation rates
kP− = 10−4h−1, i.e. in the (HIGH,LOW) state of (free BRAVO, free dephos-
phorylated BES1) and B higher dephosphorylation rates kP− = 10h−1, i.e.
in the (LOW,HIGH) state of (free BRAVO, free dephosphorylated BES1).
In B, free BRAVO amounts are rather sensitive to several parameter values.
Yet, for this high dephosphorylation rates, the amount of free BRAVO is
in all cases negligible compared to that in low dephosphorylation rates (see
Fig. 4.5).

Finally, we explored whether our conclusions are robust to changing some of our

initial assumptions. To this end, we challenge one of our implicit hypotheses,

namely that the dimer is inactive and does not bind to DNA. So, instead, we

include the possibility that the dimer binds either to the BRAVO or to the

BES1 binding site in the BRAVO promoter. This is not unwarranted, since

other MYB transcription factors have been shown to dimerize with BES1 and

jointly regulate DNA (Li et al., 2009). We considered two variants of the model

that extend it with three more reactions:

D1 + C
k1C−−−−⇀↽−−−
k1C+

D1C (4.12)

D1C +D2
ε1Cα−−−→ D1C +D2 +M ; D1C +D2B

ε3α−−→ D1C +D2B +M

when the complex binds to the BRAVO binding site, and

D2 + C
k2C−−−−⇀↽−−−
k2C+

D2C (4.13)

D1 +D2C
ε2Cα−−−→ D1 +D2C +M ; D1M +D2C

ε3α−−→ D1M +D2C +M

when the complex binds to the BES1 binding site. We did not explore the

possibility of the complex being compatible with both sites.
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The parameters are a straightforward analogue to the original model, and we

also define the equilibrium constant of the binding and unbinding of the complex

to DNA as KC1 = kC1+/kC1− and KC2 = kC2+/kC2−, for each site respectively.

Notice how, for simplicity, we have assumed that the production rate of BRAVO

is always the same when the promoter is fully occupied, regardless of whether

the complex binds to the BRAVO binding site D1 or the BES1 binding site D2,

and regardless of the function done by the complex when it is alone.

This means that ε3 is always the same for all cross terms of two different proteins

bound to the promoter. Therefore, the only new parameters are KC1, εC1 in

one case and KC2, εC2 in the other. All the other parameter values are as in

section 4.2.2. We explored different values for the couples of free parameters

(KC{1,2}, εC{1,2}), and found that although the bistable region is diminished

and in some cases destroyed, the properties of having a [HIGH,LOW] and a

[LOW,HIGH] states with strongly opposed amounts of BRAVO and BES1 and

a sharp transition between them holds (Figure 4.8).

4.3.2 Experimental testing of model predictions

Our model yields certain predictions. The strongest and more easily testable

one is that there is a sharp transition from a high BRAVO to a low BRAVO

concentration at a BR signaling threshold. We designed an experiment to test

this prediction. For that, our collaborators planted Arabidopsis seeds in media

containing different concentrations of Brassinolide (BL), which activates BR

signaling and therefore has an indirect relationship to our activation parame-

ter kP−. Assuming a linear dependence between BL concentration and kP−,

the model predicts a sharp transition. These seeds contained the construct

pBRAVO:GFP, meaning that Green Fluorescent Protein is expressed with the

same regulations as BRAVO, but does not share its post-transcriptional regula-

tions, such as dimerization with BES1, nor its degradation rate, which is much

slower for GFP. It would therefore correspond to total BRAVO rather than free

BRAVO in our model, but recall that total BRAVO also has a sharp transition,

as can be seen in Figure 4.5 C. They then took confocal microscopy images of

the root tips of these plants when the seedlings were 6 days old, and we quanti-

fied the fluorescence of each individual QC cell. This yielded an ultrasensitive

curve (meaning that it fits a Hill function of cooperativity larger than 1) of
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Figure 4.8 Bifurcation diagrams when complex is active. As in fig-
ure 4.5, squares represent the [HIGH,LOW] state and triangles represent
the [LOW,HIGH] state.The different scenarios are: (Left) The heterodimer
binds to the DNA at the BRAVO binding site [Eqs. (4.12)]; (Right) The het-
erodimer binds to the DNA at the BES1 binding site [Eqs. (4.13)]; The het-
erodimer (Top) represses, (Middle) drives at basal rate or (Bottom) activates
BRAVO transcription when it is the only element bound to the promoter. In
all cases, a switch is found. Parameter values as in B with (Left) KC1 = KM

and (Top) ε1C = 0.1, (Middle) ε1C = 1, (Bottom) ε1C = ε1 = 3.9; (Right)
KC2 = KB and (Top) ε2C = ε2 = 0.068, (Middle) ε2C = 1, (Bottom)
ε2C = 2.
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mean fluorescence versus BL concentration (Figure 4.9), with a threshold at an

external BL concentration BL = 2.7× 10−3nM.

Figure 4.9 pBRAVO:GFP expression in QC cells as a function of BL con-
centration. Points stand for mean fluorescence per QC cell averaged over n
(18 < n < 100) QC cells of 6-day-old seedlings continuously treated at each
indicated concentration of BL. Data from two experiments. s.e.m is indi-
cated as error bars. Fluorescence (in arbitrary units) has been normalized
to the control (CTL) average fluorescence. The curved line represents the

function y = 1−
0.91xh

xh + 0.0027h
with h = 2.8 and x representing with and is

the BL concentration, denoting the ultrasensitive response of pBRAVO:GFP
response to BL.

4.4 Discussion

The experimental work of our collaborators, that discovered the novel transcrip-

tion factor BRAVO and showed, for the first time, a gene that linked Brassi-

nosteroids to regulation of quiescence, is extremely relevant and informative by

itself. Nevertheless, it left some questions partly unanswered. Namely, what
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are the key interactions between BES1 and BRAVO (among the ones experi-

mentally observed) and how do they come together for BRAVO and BES1 to

regulate quiescence with their antagonic functions of repressing and activating

divisions.

Our mathematical model highlights that mutual repression through dimeriza-

tion is key for a sharp transition between two states of strongly opposed BES1

and BRAVO, either through bistability or through ultrasensitivity. Further-

more, we showed that this holds under a variety of conditions, such as different

regulation modes of BRAVO and for wide ranges of parameters.

Although we were unable to design an experiment to test the assertion that the

dimer is essential for this sharp transition, we were able to test other predictions

for the model. In particular, a signal-response curve of BRAVO production

against BR signaling indeed showed a very sharp transition. However, since the

relationship of the BR signaling in the experiment and our kP− is not completely

determined, further experiments are needed to test the predictions of the model,

such as a precise measurement of this relationship.

To test the bistability predicted by the model, an experiment could be done to

show hysteretic behaviour, which would mean that the response of the system is

dependent on its history. This behaviour is particular to the bistability arising

from our model. In our case, if at time t = 0 a QC senses a very high BR

signaling and this signaling is decreased, the cells will only switch states if it is

decreased further than a threshold (in Figure 4.5, at kP− ' 2×10−3), whereas if

at time t = 0 the QC cells sense a very low BR signaling that is then increased,

the threshold that needs to be reached will be much higher (in Figure 4.5, at

kP− ' 3× 10−2).

This could be done in our plants, in principle, with a setup similar to our previ-

ous experiment: plants could be grown at very high or very low BL concentra-

tions, and then changed to media containing other, intermediate concentrations.

If the system is bistable the fluorescence curve should mimic the free BRAVO

curve in Figure 4.5. In reality, however, this experiment is technically complex,

because there are different timescales involved, such as the response time of the

observed GFP when changing the signal, the timescale of division, and so on,

that complicate the specific design of the experiment. Furthermore, high BL

concentrations affect the plant in many more ways than the division of the QC,
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introducing a confounding factor. The first experimental design done by our

collaborators and ourselves involved growing plants for 4 days in the starting

medium, then changing them and measuring them two days later. The results

were quite unclear, with part of a response that did not seem hysteretical but

also with a memory effect at big signalling changes. In the future, the exper-

iment design should be refined and new trials done to conclude whether this

experimental approach is useful or must be discarded.

Altogether, our model answers the questions of how BRAVO and BES1 co-

ordinate to act in concert and not give conflicting signals to the Quiescent

Centre. However, it does not shed any light on how quiescence is regulated

downstream this module, beyond the fact (concluded directly from experiments)

that BRAVO signaling does not go through BES1 nor does BES1 signaling go

through BRAVO. This has been, and will certainly be in the future, a matter

of intense study.



Chapter 5

Regulation of quiescence by

the WOX5 transcription

factor

5.1 WOX5, another key player in quiescence re-

gulation

The module shown in Chapter 4 showed how BES1 and BRAVO are always

strongly opposed to not give conflicting signals to quiescence regulation. It re-

mained to be elucidated how our module was related to transcription factor

WOX5 (WUSCHEL HOMEOBOX 5), a QC marker which participates in the

function of the Quiescent Centre as an organizer by preserving the stem cell

identity of neighbouring cells (Haecker et al., 2004; Sarkar et al., 2007). In ad-

dition, showrt after our results were published, WOX5 was linked to quiescence

maintenance through repression of Cyclin D, a protein responsible for the tran-

sition from G1 to S phase (Forzani et al., 2014). This shows an overlapping

function of WOX5 and BRAVO. Furthermore, our collaborators had already

shown in (Vilarrasa-Blasi et al., 2014) that BRAVO activates WOX5.

The common function and regulatory link between WOX5 and BRAVO suggests

that WOX5 could also be a player in the BES1-BRAVO module, acting all

101
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together to regulate quiescence. For this reason, we decided to study our module

with the inclusion of WOX5.

5.1.1 Experimental evidences

We summarize here the first experimental evidences relating WOX5, BRAVO

and BES1, obtained by our collaborators led by Ana I. Caño-Delgado. The

first of these results is that BRAVO activates WOX5 (Vilarrasa-Blasi et al.,

2014). This is known because when pWOX5:GFP is crossed with BRAVO

mutant bravo, fluorescence goes down dramatically (Figure 5.1 A,B). It was

also found by our collaborators that WOX5 promotes BRAVO expression. This

is seen both by decreased expression of BRAVO in WOX5 mutants, and because

WOX5 induced overexpression outside the QC (through specific lines, that allow

to overexpress WOX5 upon treatment of hormone Dexamethasone) leads to

BRAVO expression alongside it (Vilarrasa-Blasi, 2014).

Finally, BES1 also activates WOX5. This was shown by several results. The first

of them is that BL treatment triggered WOX5 expression in cells that do not

have it in normal conditions (i.e. non-QC cells) (González-Garćıa et al., 2011).

The second of them is that, although BRAVO expression decreased in the gain of

function mutant bes1-D, WOX5 expression did not (Figure 5.1 C-E) (Vilarrasa-

Blasi et al., 2014). Lastly, an unpublished experiment by our collaborators

showed, through Chromatin immunoprecipitation (ChIP) and PCR, that BES1

directly binds to the promoter of WOX5 and activates it.

5.1.2 The extended model

To analyze this system, we built on the model presented in section 4.2 to in-

clude all the additional experimentally deduced interactions between WOX5

and BRAVO or BES1. We made, however, additional assumptions to constrain

the complexity of the model. Firstly, we did not assume independent binding

sites for all transcription factors that regulate BRAVO (BRAVO itself, BES1,

and WOX5), because that would generate seven parameters for the differential

production rates, plus the three binding strengths. Instead, we considered a

single binding site for all three proteins, thus restricting the number of param-

eters for the regulated production rates to three. Recall, from section 4.2, that
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Figure 5.1 Experimental evidence of WOX5 interactions. A-B BRAVO
mutant shows decreased WOX5 expression. A WOX5 promoter activity in
wild type plant shown by fluorescence. Arrow indicates QC cells. B WOX5
promoter activity shown by fluorescence in BRAVO mutant. C-E. bes1-D
shows decreased expression of BRAVO but not WOX5. C Wox5 promoter
activity in gain of function mutant bes1-D. D BRAVO expression in plants
with additional pBRAVO:BRAVO-GFP (These have double the amount of
BRAVO, the one corresponding to the native promoter plus the BRAVO
tagged with GFP) E pBRAVO:BRAVO-GFP in bes1-D gain of function
background. All figures from (Vilarrasa-Blasi et al., 2014).

the original two independent binding sites were already an approximation. We

are now making the alternative assumption that the two binding sites are inter-

acting and exclusive. In any case, as it will be shown, our results suggest that

this simplification is not crucial.

Regarding the regulation of WOX5, we made two different hypotheses. The

fact that both increases of BES1 and BRAVO can lead to increased WOX5 can

seem paradoxical, since free BES1 and free BRAVO are always strongly opposed.

There are two possible explanations for this. Either both BRAVO and BES1

regulate WOX5 independently, and in the experimental data one regulator is

a strong enough activator and in large enough quantities to compensate for

the absence of the other, or both BES1 and BRAVO, together as a complex,

activate WOX5 expression. The complex is a good candidate for regulation

because, as explained in section 4.3.1, this type of complexes are already known

to bind to DNA and regulate gene expression. In the first case, we made the

same approximation as for the BRAVO promoter: there is a single binding site
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for both transcription factors. In the second case, there is naturally only one

binding site, as there is only one activator molecule.

With this, we can derive the set of differential equations for both systems. We

omit the step of writing the chemical reactions, as they are analogous to (4.1),

as is the derivation of differential equations from them. The equations for the

system when WOX5 is regulated by BES1 and BRAVO independently read:

˙DMM = kMM+MDM − kMM−DMM ; DM +DMM +DMB +DMW = DtotM

˙DMB = kMB+BdDM − kMB−DMB ; ˙DMW = kMW+WDM − kMW−DMW

˙DWM = kWM+MDW − kWM−DWM ; DW +DWM +DWB = DtotW

˙DWB = kWB+BdDW − kWB−DWB

Ṁ = α (DM + εMMDMM + εMBDMB + εMWDMW ) + kD−C + kMM−DMM

+ kWM−DWM − kMM+MDM − kWM+MDW − kD+MBd − dMM
(5.1)

Ḃd = kp−B + kMB−DMB + kWB−DWB + kD−C − kP+Bd − kMB+BdDM

− kWB+BdDW − kD+MBd − dBd
Bd

Ḃ = β + kp+Bd − kp−B − dBB

Ẇ = γ (DW + εWMDWM + εWBDWB)− dWW

Ċ = kD+MBd − kD−C − dCC.

And when it is regulated by the BRAVO-BES1 complex,
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˙DMM = kMM+MDM − kMM−DMM ; DM +DMM +DMB +DMW = DtotM

˙DMB = kMB+BdDM − kMB−DMB ; ˙DMW = kMW+WDM − kMW−DMW

˙DWC = kWC+CDW − kWC−DWC ; DW +DWC = DtotW

Ṁ = α (DM + εMMDMM + εMBDMB + εMWDMW ) + kD−C + kMM−DMM

− kMM+MDM − kD+MBd − dMM (5.2)

Ḃd = kp−B + kMB−DMB + kD−C − kP+Bd − kMB+BdDM

− kD+MBd − dBd
Bd

Ḃ = β + kp+Bd − kp−B − dBB

Ẇ = γ (DW + εWDWC)− dWW

Ċ = kD+MBd + kWC−DWC − kWC+CDW − kD−C − dCC.

Where the only changes are in the binding and unbinding of C to DW (which

in (5.1) are binding and unbinding of M and B to DW ) and in the production

term of W . In both systems, KXY (+,−) stand for (binding, unbinding) rates

of molecule Y to promoter DX of protein X, DXY represent the promoter of

X with Y bound to it, and εXY represent how upregulated or downregulated

is production of protein X (in relation to its basal rate) when Y is bound to

its promoter. As in equations (4.2), M stands for BRAVO (MYB56), B stands

for phosphorilated, inactive BES1, Bd is dephosphorilated, active BES1 and

C is the BRAVO-BES1 complex. The newly introduced variable W stands

for WOX5, with basal production rate γ and degradation rate dW . All other

parameters are defined as in equations (4.2). Notice that εMM and εMB are

equivalent to ε1 and ε2 of equations (4.2), but ε3 has no analog here, because

it is not possible for BRAVO and BES1 to be bound to the BRAVO promoter

at the same time.

To simplify the analysis, we also considered DNA and inactive BES to have

very fast dynamics and thus to be in equilibrium. We set the derivatives of

the fast variables to zero, which is not a rigorous procedure (as the remaining

equations lack the time-scaling factors that would appear in a proper adiabatic

approximation), but which yields exactly the same steady states as the full

system. Thus, we obtain 4 equations for our relevant proteins:



106 Chapter 5. Regulation of quiescence by WOX5

Ṁ = α
1 + εMMKMMDMM + εMBKMBDMBd + εMWKMWDMW

1 +KMMDMM +KMBDMBd +KMWDMW
+

+ kD−C − kD+MBd − dM

Ḃd = β′ + kD−C − kD+MBd − d′Bd
Bd (5.3)

Ẇ = γ
1 + εWMKWMDWM + εWBKWBDWB

1 +KWMDWM +KWBDWB
− dWW

Ċ = kD+MBd − kD−C − dCC,

for the system independently regulated by BES and BRAVO, and

Ṁ = α
1 + εMMKMMDMM + εMBKMBDNBd + εMWKMWDMW

1 +KMMDMM +KMBDMBd +KMWDMW
+

+ kD−C − kD+MBd − dMM

Ḃd = β′ + kD−C − kD+MBd − d′Bd
Bd (5.4)

Ẇ = γ
1 + εWKWCDWC

1 +KWCDWC
− dWW

Ċ = kD+MBd − kD−C − dCC.

Where KXY = kXY +

kXY−
, β′ = β kP−

kP−+dB
and d′Bd

= dB
kP+

kP−+dB
+ dBd

.

The fitting approach of section 4.2.2 is of limited application here. Because

BES1 and BRAVO do not have a cross term in this model, the third datapoint

A3 only serves here to set the values KMM , KMB and the dimerization equilib-

rium constant KD = kD+

kD−
, which have large ranges of values compatible with

experimental data and even the constrains of which strongly depend on the cho-

sen Mtot, Btot. Therefore, we only take the fitted εMM = 3.9 and εMB = 0.068,

whereas for KMM , KMB and Deq we only take the general result that they are

of the same order of magnitude and ranging 10−1−102 for the binding constants

and 10−3 − 103 for the dimerization constants given our chosen range of Mtot,

Btot 10− 1000nM.
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5.2 Results

5.2.1 Bistability

We first analyzed the phenomenology that these models allow. To better under-

stand this phenomenology, and other analyses that are explained in following

sections, we first computed the nullclines of the system. A nullcline is a curve

that shows for which values of the variables the derivative of one of them be-

comes zero, and they are helpful to qualitatively understand the dynamics of

the system and how different regimes (such as monostability or bistability) are

achieved.

Because there are four variables but we wanted to represent the nullclines in 2-

D, we restricted ourselves to the dependence of two variables at a time. To this

end, we assume the other two variables to always be in equilibrium and set their

derivatives to zero. We numerically solved the nullclines of the two variables of

the given phase space, using Mathematica software (Wolfram Research, 2010).

Figure 5.2 summarizes the different qualitative behaviours of these nullclines.

For very wide ranges of parameter values, the nullclines ˙BES1 = 0 and ˙BRAV O =

0 are qualitatively the same: when plotted against WOX5 concentration, they

both show a highly nonlinear shape in which they almost mirror each other

(Figure 5.2 A). In BRAVO-BES1 space, instead, they are monotonic decreasing

curves, and parameters only regulate their curvature and relative position, de-

pending on which they will intersect in one or three points, but always at high

BRAVO when BES1 is low and viceversa (very much as in the BRAVO-BES1

module without WOX5) (Figure 5.2 C).

WOX5 has a very simple behaviour that changes with a few key parame-

ters. In the model in which WOX5 is separately regulated by BES1 and

BRAVO, ˙WOX5 is zero for two values of WOX5 for almost all values of BES1

and BRAVO, one higher and one lower, with a sharp transition in between.

When εWM > εWB , the low value of WOX5 will be at high BES1 (and low

BRAVO)(Figure 5.2 B), whereas when εWM > εWB , the low value of WOX5

will be at high BRAVO (and low BES1)(Figure 5.2 D). Notice how this is sim-

ply an effect of competition between BRAVO and BES1 to saturate the WOX5

promoter.
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Something very different happens when WOX5 is regulated by the BRAVO-

BES1 Complex. In this case, the ˙WOX5 = 0 nullcline is at the same value

of WOX5 for any BES1 and BRAVO beyond a threshold (that is very small)

(Figure 5.2 E). Noticeably, and contrary to what happens in the case of sepa-

rate regulation by BES1 and BRAVO, the WOX5 nullcline is very similar as a

function of BES1 or BRAVO .

Figure 5.2 Nullclines for the WOX5-BES1-BRAVO module. A,C Null-
clines for ˙BES1 = 0 (green) and ˙BRAV O = 0 (red). All variables not
shown are assumed to be in equilibrium. These nullclines are qualitatively
the same regardless of choice of regulation for WOX5. B,D Nullclines for

˙WOX5 = 0 when WOX5 is regulated by BRAVO and BES independently.
B εWM < εWBD εWB < εWM E ˙WOX5 = 0 nullclines when WOX5 is
regulated by the BRAVO-BES1 complex. Although no tics are shown, all
axis are in logarithmic scale.

We first focused on the effect that including WOX5 has on bistability and sharp

transitions, as the primary function of the BRAVO-BES1 module. To that end

we chose parameters as close as possible to the original model, with minimal

changes. These parameters are dM = dB = dC = dW = 0.02 h−1, dBd
=

0.002 h−1, KMM = KWM = 1 nM−1, KMB = 2 nM−1, kD+ = 1 h−1 nM−1,

kD− = 1 h−1, β = 4 nM h−1, α = 1 nM h−1, γ = 0.15 nM h−1, kP+ = 0.05 h−1,

kP− = 0.1 h−1, and regulation rates for BRAVO εMM = 3.9, εMB = 0.068,

εMW = 5. The only relevant changes from chapter 4 are in KMM , KMB and

kP−. However, recall from section 4.2.2 that the specific values of binding

constants were hard to determine. Because this model increases the number of

binding constants from 2 to 5, we chose small round values that simplify the
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relationship between all of them. As for kP−, we are now considering BES1 to

be active by default, but will vary it throughout our analysis. These parameters

are equal for both models (Eqs. (5.3) and (5.4)).

In the model for independently regulated WOX5 (Eqs. (5.3)), we set KWB =

3 nM−1, KWM = 1 nM−1, εWM = 15, εWB = 2.

In the model for jointly regulated WOX5 (Eqs. (5.4)), through BES1-BRAVO

complex, we set εWC = 2 and KWC = 1 nM−1.

We then compared these two models with the same model with WOX5 pro-

duction γ set to γ = 0. When plotting the bifurcation diagrams for all three

systems we see that all three models preserve bistability as a mechanism for

sharp transitions from high to low BRAVO states upon BR signalling, as well

as a strong opposition of BES1 and BRAVO (Figure 5.3).

Figure 5.3 Bifurcation diagrams for all 3 models A Without WOX5. B
WOX5 is regulated by BRAVO and BES1 separately. C WOX5 is regulated
by BRAVO-BES1 complex. Continuous lines are stable states, and circles
are unstable states. Green is BES1, red is BRAVO, blue is WOX5 and purple
is WOX5×BRAVO. Squares mark the (High,Low) state whereas triangles
mark the (Low,high) state.

WOX5, however, does not have such extremely low nor high values as BRAVO.

However, notice how in the independently regulated WOX5 model (Figure 5.3

B), WOX5 still has a strong opposition with free BES1, even if at first look it

does not look like it due to the very large range and logarithmic scale in the

vertical axis. Therefore, these results suggest that the regulation of quiescence

by BR signaling (in our model represented by BES1 dephosphorilation) could

still be mediated by WOX5 thanks to its regulation by BRAVO, although it

would be a poorer regulator than BRAVO itself.

When WOX5 is regulated by the BES1-BRAVO complex the situation is more

complicated. Due to the joint regulation by BES1 and BRAVO, the [HIGH
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BRAVO, LOW BES1] and the [LOW BRAVO, HIGH BES1] states produce

similar effects on WOX5 (remember how the nullclines in Figure 5.2 E were

very flat and behaved equally when increasing BRAVO or BES1, instead of

being mirrored). Due to this, both stable states have very similar levels of

WOX5. This means that, if the actual regulation of WOX5 is done by the

BES1-BRAVO complex, WOX5 cannot be regulating quiescence. When we

plotted the product BRAV O × WOX5, which is proportional to the stable

state concentration a BRAVO-WOX5 complex would have (CBRAV O−WOX5 =
kDimerization

kDedimerization+degCBRAV O−WOX5
BRAV O×WOX5), we observed that it has low

and high values strongly opposed to BES1, like BRAVO. These results show that

if WOX5 is activated only by the BES1-BRAVO complex, then WOX5 concen-

tration becomes effectively independent of BES1d dephosphorilation and hence

of BR signalling, while the WOX5-BRAVO complex does not. Therefore, in this

scenario, WOX5 alone could not be mediating changes in quiescence induced by

BR signalling and, instead, either the BRAVO-WOX5 complex would be medi-

ating this regulation or BRAVO itself would be responsible of this BR-mediated

function, with WOX5 regulating quiescence independently of BR signalling.

We also computed how different parameters affected bistability. We proceeded

as in Figure 4.6 with all three systems. What is most noticeable is how the

module becomes much less sensitive to the value of BRAVO autoactivation

strength KMM (Figure 5.4 A,D,G). This is natural, since now BRAVO does not

have only one positive feedback loop through self activation but an additional

one, indirectly through WOX5. Like in the original module, a minimum effect

of the dimer, as measured both by kD+ and dC is needed to obtain bistability

(compare Figure 5.4 A,D,G to Figure 4.6 A and Figure 5.4 B,E,H to Figure 4.6

E).

Also with respect to dC , the bistability range is greatly increased when including

WOX5 (Figure 5.4 B,E,H). This, however, depends on the exact parameters

chosen. For instance, when decreasing inactive BES1 production β the bistable

region is enlarged, but in such a way that sharp transitions are impaired (see

discussion for details). In contrast when increasing inactive BES1 production β,

the inclusion of WOX5 actually decreases bistability, but preserves the capacity

for sharp transitions (Figure 5.5). For other parameters, such as active BES1

degradation (dBd
), WOX5 has no noticeable effect on the system (Figure 5.4

C,F,I).
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Figure 5.4 Bistability depending on different parameters for all 3 systems.
A-C Model without WOX5. D-F Model with WOX5 independently regu-
lated by BES1 and BRAVO. G-I Model with WOX5 regulated by BES1-
BRAVO complex. As in figure 4.6, gray and black areas correspond to
those parameter regions where the free BRAVO and free dephosphorylated
BES1 stable stationary amounts differ in one or more orders of magnitude
(i.e. their ratio is 10 or larger). Dark grey areas (in red in digital ver-
sion) correspond to the (HIGH BRAVO,LOW BES1), light grey areas (in
green in digital version) correspond to a (LOW BRAVO,HIGH BES1) state,
and black areas (in blue in digital version) have two opposed stable states.
White stands for those regions where the amounts of free BRAVO and free
dephosphorylated BES1 differ in less than one order of magnitude.

5.2.2 Excitability and oscillations

The shapes of the nullclines in Figure 5.2 suggest that the system may be

capable of other dynamic behaviours. Indeed, the system in which WOX5 is

regulated by the BRAVO-BES1 complex only shows bistability, but the system

with independent BRAVO and BES1 regulation shows Type II excitability for

some sets of parameter values. Type II excitability is that which does not

have a single sharp threshold above which there is a response of a fixed size

but, instead, shows a response proportional to stimulus (Strogatz, 2014). If the
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Figure 5.5 Bistability depending on dC vs kP− for different values of
β. A-D Model without WOX5. E-H Model with WOX5 independently
regulated by BES1 and BRAVO. I-L Model with WOX5 regulated by BES1-
BRAVO complex. First column (panels A,E,I) has β = 3. Second column
(panels B,F,J) has β = 4 and is equivalent to panels B,E,H of figure 5.4.
Third column (panels C,G,K) has β = 5. Fourth column (panels D,H,L)
has β = 10. Gray and black areas correspond to those parameter regions
where the free BRAVO and free dephosphorylated BES1 stable stationary
amounts differ in one or more orders of magnitude (i.e. their ratio is 10
or larger). Dark grey areas (in red in digital version) correspond to the
(HIGH BRAVO,LOW BES1), light grey areas (in green in digital version)
correspond to a (LOW BRAVO,HIGH BES1) state, and black areas (in blue
in digital version) have two opposed stable states. White stands for those
regions where the amounts of free BRAVO and free dephosphorylated BES1
differ in less than one order of magnitude.

system is perturbed far enough from the stable state, it does a large excursion

along state space. When considering the stochastic version of the dynamics,

fluctuations can drive these excursions spontaneously. We observed this by

simulating the full system of reactions from which equations (5.1) were derived

(22 reactions for 7 variables) using the Gillespie algorithm with a small volume

(Figure 5.6) (that rescales the parameters with units of concentration, to obtain

molecule numbers). The parameters that yielded excitability are the same as

the ones that yield bistability as detailed in 5.2.1, with the only changes of β =

3 nM h−1, γ = 0.008 nM h−1, dW = 0.002 h−1, εMW = 12, εWM = 2, εWB = 15,

KMB = 3 nM-1 and KWB = 1 nM-1 and α = 0.5 nM h−1. For a full description

of the system, we also needed to choose values for protein-promoter binding and
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unbinding rates kXY+,−. To be consistent with our previous assumption that

these reactions are fast, we took kXY− = 100 nM h−1 and kXY+ = kXY−×KXY

in all cases.

Figure 5.6 Excitability in the BRAVO-BES1 module. A Nullclines and
excitable trajectory. Green nullcline corresponds to BES1, red to BRAVO
and blue to WOX5. In grey is a trajectory with volume V = 1 nM−1 that
does two spontaneous excursions. B Same trajectory as in A, showing all
three variables over time. Red corresponds to free BRAVO, green to free
active BES1, and blue to WOX5.

The system is also capable of oscillations, that are also maintained under fluc-

tuations with a remarkably constant period (Figure 5.7). We found oscillations

to happen for parameters, again, very similar to those of section 5.2.1, with the

only changes being β = 3 nM h−1, γ = 0.08 nM h−1, α = 0.5 nM h−1, εMW = 9,

εWM = 2, εWB = 25 and KWB = 8 nM h−1 (with binding rates as for the

excitable parameter set). Notice that both in this case in in that of excitatory

behaviour, we did not change the parameters that were obtained or constrained

by the fitting of experimental data.
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Figure 5.7 Oscillations in the BRAVO-BES1 module. A Nullclines and
oscillating trajectory. Green nullcline corresponds to BES1, red to BRAVO
and blue to WOX5. In grey is a trajectory with V = 10 nM−1.B Same
trajectory as in A, showing all three variables over time. Red corresponds
to free BRAVO, green to free active BES1, and blue to WOX5.

Both dynamic behaviours are very suggestive as modes of regulation of quies-

cence. Unfortunately, neither of these two results are likely to be happening in

the WOX5-BRAVO-BES1 module in QC cells. Since WOX5 inhibits QC divi-

sion, and given that BRAVO also inhibits division (independently or through

WOX5), these results, in which WOX5 and BRAVO oscillate in opposition or

do excursions in opposite directions (WOX5 increases, BRAVO decreases, see

Figure 5.6 A), are very hard to interpret. If this were happening in the bio-

logical realization of the module, there would need to be another complex step

of integration of signals before regulation of quiescence, so we did not pursue

these results further.
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5.3 Discussion

We included a candidate gene for quiescence regulation, WOX5, in the BES1-

BRAVO module assuming two different regulations for BRAVO and BES1 upon

WOX5. The models used have certain simplifications with respect to the original

model we studied for BRAVO and BES1, but reproduce most behaviour of the

module when no WOX5 is present. Furthermore, including WOX5 can preserve

bistability and sharp transitions and it increases the range of bistable behaviour

for some sets of parameter values. This, however, is not always advantadgeous

for sharp transitions: when bistability starts at a threshold dephosphorilation

kP− and is not lost even if kP− is increased, there is no deterministic mechanism

for sharp transitions: the high BRAVO state exists for all values of kP− and

so the system will not escape it when increasing BR signal. In these cases

the transition, if it exists, must be stochastic. However, as we saw in previous

chapters, the AAC regulatory circuit that is part of the BRAVO-BES1 module

can be extremely stable. Indeed, in these cases where bistability persists for

very high dephosphorilation rates kP−, we were unable to observe stochastic

transitions regardless of whether WOX5 was included or not.

Another feature that our modelling highlighted is that the fact that both BES1

and BRAVO regulate WOX5 positively lead to levels of free WOX5 that are

much less opposed to active BES1 than those of free BRAVO (Figure 5.3). In

the case of WOX5 regulated by the BES1-BRAVO heterodimer the states are

almost identical, whereas in the case where BRAVO and BES1 regulate WOX5

independently WOX5 still has two different states, but their concentrations are

closer to those of total BRAVO than to the more extreme values of free BRAVO

(Figure 5.8). This led us to propose that WOX5 is not doing its quiescence

regulation function by itself, but rather jointly with some other element. A

good candidate for this is BRAVO itself, which may be dimerizing with WOX5

to do their joint function.

Further exploration of our models showed that this module is capable of ex-

citability and oscillations only under the independent regulation hypothesis. It

is unclear whether this excitability is relevant to the function of our circuit.

Given that BRAVO and WOX5 repress QC divisions and BES1 activates them,

the obvious picture for excitatory regulation of quiescence would be a state of
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Figure 5.8 Bifurcation diagram of total BRAVO (free BRAVO plus
BRAVO bound to BES1 and to DNA), in red, and total WOX5, in blue.

high BRAVO and WOX5 in which these two do an excursion to low concen-

trations concomitantly to an increase in active BES1. In our model, the stable

state has high BRAVO and low BES1 (as expected) and BRAVO does an excur-

sion to low values at the same time as BES1 doing an excursion to high values

(also as expected). WOX5, however, increases its value with BES1 during the

excursion, which is opposed to the expected behaviour (Figure 5.6). Therefore,

if this module regulates quiescence through excitability it must do it through

something a bit more convoluted, such as dimerization and joint regulation of

quiescence by WOX5 and BRAVO.

The oscillations that our model yielded are even less believable to be happening

in wild type plants. In the oscillations we observed through our model, BRAVO

has very low concentrations over time, and is also opposed to WOX5 (Figure

5.6). In contrast, wild type roots show expression of both BRAVO and WOX5

in the QC (Vilarrasa-Blasi et al., 2014; Vilarrasa-Blasi, 2014). Therefore, we

discard these oscillations as the behaviour of wild type QC cells. Since these

oscillations require a threshold level of BES1 dephosphorilation kP− to happen,

below which there is a state of high BRAVO and low BES1, this may be the

behaviour of QC cells under some induced BR signalling. Still, the hypothetical

function of these oscillations is unclear.

Going to the more general interest of how our regulatory motifs are capable

of certain dynamic behaviours it is worth noting that, to our knowledge, ex-

citability has not been described with the exact same ingredients of this module.



117

In particular, minimal excitable circuits that have post-transcriptional interac-

tions, such as the one shown in (Rué and Garcia-Ojalvo, 2011) have one protein

repressing the other, whereas in our module nonlinearity comes from a mutual

post-transcriptional repression in the form of molecular titration. This may only

be a particular case of more general circuits. It remains to be seen, however,

how this circuit can be reduced to a known, minimal, 2-element circuit.

Oscillations, on the other hand, had already been described for the Mixed Feed-

back Loop (François and Hakim, 2005), which is a motif included in the base

BRAVO-BES1 module. The Mixed Feedback Loop that has oscillations, how-

ever, has a transcriptional activation instead of repression (in our case, that

would happen if BES1 activated BRAVO instead of repressing it). This activa-

tion is provided in our circuit through the activation of WOX5 by BES1, and

then of BRAVO by WOX5.

All in all, the most relevant results of our modelling here are the prediction that

WOX5 levels do not change much in QC cells, the proposal that the regulation

of Cyclin D3 by WOX5 is done jointly with BRAVO, and the observation of

dynamic behaviours beyond sharp transitions of bistability that are enabled by

the inclusion of WOX5 in the BRAVO-BES1 module.





Chapter 6

Synchrony of Quiescent

Centre cell divisions

6.1 Introduction

As we saw in chapter 4, the mechanism through which the Quiescent Centre

(QC) cells divide is unknown and a subject of intense research at the moment.

Furthermore, although quiescence has long been defined as a reversible arrested

state outside of the cell cycle, and therefore with no cell divisions (Cheung

and Rando, 2013), Arabidopsis root Quiescent Centre cells are not defined by

nondivision but by a slow infrequent division rate (Aichinger et al., 2012). Al-

though it seems clear that this quiescent state is released to respond to stresses

(Aichinger et al., 2012), it is unclear whether the slow division rate of wild

type plants is due to spurious signals that mimic stresses or to a very slow pro-

gression in cell cycle (Aichinger et al., 2012). Moreover, how this release (or

not) is regulated remains an open question. Although in previous chapters we

showed a module that does regulate this, a separate question is how signalling

is relayed to that module where it comes from, and whether there is some kind

of feedback or cell-to-cell communication that shapes the decision. This topic

of cell decision-making in stem cells and its relationship with stochasticity is

one that has been intensely studied in the last years, both at the level of au-

tonomous and collectives decisions, and more recently their interplay (Perkins

119
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and Swain, 2009; Graham et al., 2010; Garcia-Ojalvo and Martinez Arias, 2012;

Smith et al., 2015).

In this chapter we analyze quantified divisions of the QC, to find that these

are not independent but synchronized within each plant, and compare differ-

ent models that suggest that this synchrony is likely to come from cell-to-cell

communication, rather than periodic or spurious signals. We also compare di-

vision data to fluorescence data already introduced in chapter 4, and find that

although there is also synchrony in fluorescence, the relationship between mea-

sured fluorescence and measured division is not straightforward.

6.2 Results

6.2.1 Null hypothesis: QC cells divide independently

As part of the experimental work introduced in section 4.1, divisions were quan-

tified in large numbers of plants of each mutant genotype or BR treatment.

Divisions were observed morphologically: QC cells under no stress divide per-

iclinally (in the direction in which the root points), and the ’bottom’ cell (the

one closer to the tip) differentiates as a Collumella Stem Cell and moves away

to the next cell file (Cruz-Ramı́rez et al., 2013). During this process there is

an undetermined period of time in which both QC cells remain in the QC cell

file, in the space that the original cell occupied. This is what is considered as

’observing’ a division.

This quantification of divisions was done to observe and quantify the raw effect

of each molecular component on the quiescent state of cells (Vilarrasa-Blasi

et al., 2014). This data, however, contain additional information. Plants were

classified as None Divided (ND), Partially Divided (PD) and All Divided (AD),

depending on whether no observed cells were divided in the QC, only some (but

not all) cells were divided or all cells were divided (Figure 6.1). This granularity

may contain indirect information on how QC divisions are regulated.

A small clarification should be done at this point: the (ND, PD, AD) states

do not correspond to the whole QC, but to observed cells. The QC is a disk

composed of about 10 cells but the typical direction of observation (and the one

necessary to observe divisions clearly), from the side, can only put a maximum
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Figure 6.1 Experimentally measured QC divisions in different phenotypes
and treatments. AD, PD and ND are as indicated in the text. Col-0 is the
wild type plant. ’+ BL’ indicates a continuous treatment with Brassino-
lide. bes1-D is the gain-of-function mutant of BES1. bri1-116 is a dominant
mutant of Brassinosteroid receptor BRI1. bravo-2 is a mutant of BRAVO.
Data courtesy of Josep Vilarrasa-Blasi and Ana I. Caño-Delgado. Data were
taken from n > 50 plants in each case.

of 4 or (rarely) 5 in one plane at the same time. So observations are of 2 to 5

cells in each plant, with almost all of them being of the central diametral file of

3 or 4 cells.

From the data in Figure 6.1, we can easily conclude that QC divisions are

synchronized in some way. Consider a simple model in which each cell has a

probability pd = a of being observed as dividing and a probability pnd = b =

1 − a of being observed as not dividing, in apparent quiescence. Then, if the

probability for each cell is independent from the others, and assuming that 4

cells are observed, we can define the probability of the QC of a plant to be in

the ND (0 divided cells), PD (1,2 or 3 divided cells) or AD (4 divided cells) as:

pND = b4

pPD = 4a3b+ 6a2b2 + 4ab3 = (a+ b)4 − a4 − b4 = 1−ND −AD (6.1)

pAD = a4

Where the factors in pPD correspond to the possible combinations in which

each substate can appear (e.g., there are 4 possible combinations of 1 divided
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and 3 nondivided cells). When trying to fit this model to the experimental data

it becomes obvious that Partially Divided is extremely underrepresented in the

actual plants (Figure 6.2). Or rather, the extreme states AD and ND are very

overrepresented, indicating a synchrony in observable cell division.

Figure 6.2 Experimentally measured divisions from figure 6.1 compared
to possibilities of a model in which divisions of each cell are independent.
Left panel is Col-0, the wild type, and right panel is bravo mutant bravo-
2. AD/ND fit mean that rates a and b in equation (6.1) have been chosen
so that the proportion of either AD or ND fit with the experimentally ob-
served value, leaving the rest free. Observe how the independent divisions
invariably yield larger PD than the experimental value.

The observation that divisions are synchronized is potentially relevant. How-

ever, this data should be able to provide more information on the origin of this

synchronization.

6.2.2 Single cell model of non-independent division

To try to shed light on how divisions are synchronized, we can take the simple

probabilistic model introduced in the previous section and generalize it. Now,

the parameters a and b will be functions instead of constants. In particular, we

will consider two simple hypotheses: that division is dependent on the number of

cells that are already divided, and that it depends on time. The first hypothesis

corresponds with the scenario that cells release a signal upon division, making

other cells divide (this is also valid if the signal is released before division: what
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matters is the cell decision itself), and the second can be made to represent

spurious signals that trigger or enhance division in all cells or a division rate

that depends on regular external factors that affect all cells at the same time.

We will have a process, then

nd
b(n,t)−−−−⇀↽−−−−
a(n,t)

d (6.2)

where nd is the nondividing state of a cell and d is its dividing state, and n

is the number of cells that are dividing other than the one modeled. This is a

master equation that can be written as

ṗd = a(n, t)pnd − b(n, t)pd (6.3)

1 = pd + pnd, (6.4)

which, in the case of constant a and b, is a telegraph process (Gardiner, 2008).

This model can be analyzed by itself, but it is of little use to analyze the

collective dynamics of the QC. For that, we can expand it into a model that

includes the divisions of all 4 observed cells but preserves the information of

single cell division transition probabilities per unit of time:

0d
a0(0,t)−−−−⇀↽−−−−
b1(1,t)

1d
a1(1,t)−−−−⇀↽−−−−
b2(2,t)

2d
a2(2,t)−−−−⇀↽−−−−
b3(3,t)

3d
a3(3,t)−−−−⇀↽−−−−
b4(4,t)

4d (6.5)

Where an(n, t) = (4 − n)a(n, t) and bn(n, t) = nb(n, t) are obtained by multi-

plying the single cell transition probabilities per unit of time by the number of

cells that can perform the transition in either direction. This collective model

corresponds to the equations
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ṗ0d = b1(1, t)p1d − a0(0, t)p0d

ṗ1d = b2(2, t)p2d + a0(0, t)p0d − (a1(1, t) + b1(1, t))p1d

ṗ2d = b3(3, t)p3d + a1(1, t)p1d − (a2(2, t) + b2(2, t))p2d (6.6)

ṗ3d = b4(4, t)p4d + a2(2, t)p2d − (a3(3, t) + b3(3, t))p3d

ṗ4d = a3(3, t)p3d − b4(4, t)p4d.

The states of this model can easily be mapped onto the observed states (ND,PD,AD)

as p0d ≡ pND, p4d ≡ pAD and p1d + p2d + p3d ≡ pPD.

We now make a symplifying assumption. Because we want to understand how

division is regulated, we will consider that b(n, t) is a constant, b(n, t) = b. This

function represents the probability that a division that has happened stops

being visible, i.e. the daughter cell migrates away from the QC. If we make the

assumption that there is a fixed delay from division to differentiation, b should

be a constant. This is only a working assumption, and not necessarily true,

because synchrony in differentiation is also a possible cause for synchrony in

observed divisions.

We also consider two different forms for a(n, t), one dependent only on n, a(n),

and another dependent only on time, a(t).

When the transition probabilities per unit of time do not depend on time, the

steady state for equations (6.6) can be solved. We assumed that the probability

to observe a given division state pobsn is equal to the steady state probability pstn .

This probability is

pstn =
1

C

n−1∏
i=0

ai(i)

4∏
i=n+1

b (6.7)

C =

4∑
n=0

(

n−1∏
i=0

ai(i)

4∏
i=n+1

b) (6.8)

Because we are in a steady state, we can rescale all timescales, and the specific

value of b becomes irrelevant. Therefore we simplify the system and set b = 1.
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Regarding the function a(n), since we lack additional information to make a

more complex or realistic assumption, we define the simplest possible function

for the n-dependent a(n):

a(n) = a+ αn (6.9)

Notice that in this function, the probability to divide is proportional to the

observed number of dividing cells n out of a total of 4 observed cells, which

is not the real number N of dividing cells in the QC, out of about 10 cells.

However, as explained in appendix A, the expected value of N depends linearly

on observed n. Therefore, we can write a function of n and expect that the

linear factors will be absorbed into α.

In the case where a(n, t) does depend on t but not on n (a(n, t) = a(t)), given

that the data that we have does not have dynamic information, and to simplify

calculations, we considered the simplest possible time-varying function for a(t),

a periodic step function

a(t) =

{
a 0 ≤ t ≤ τ

α τ ≤ t ≤ T
(6.10)

with two values a and α and a period T . Making the assumption that each time

the division transition probability changes, the system reaches the steady state

very fast (i.e. the transitory is negligible), the probability pobsn of observing each

division state at a random point in time simply becomes the weighted average

of the probability of the two regimes:

pobsn =
τ

T

(
1

C

n−1∏
i=0

a

4∏
i=n+1

b

)
+ (1− τ

T
)

(
1

C

n−1∏
i=0

α

4∏
i=n+1

b

)
, (6.11)

Where τ = τ
T is the fraction of time spent in each regime. One could think

that this representation, then, also represents the possibility that the cells are

bistable and spend some time in each state, stochastically switching. It does

not, because the time-varying rates affect all cells at the same time, so any

bistability is at the plant level. What it does represent are any inputs that

change with time, be it periodic or even spurious (assuming that stationarity
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is reached fast during each spurious signal, and that these spurious signals act,

on average, a fraction τ of the time).

Again, we set b = 1 here. In this case the value of b cannot strictly be considered

to be irrelevant: because the system is dynamic, its specific timescales are

important and do affect, for instance, how long it takes for the system to reach

the steady state every time a changes. However, once we assume this relaxation

to be instantaneous, b becomes a free parameter.

phenotype AD PD ND

Col-0 0.04 0.1 0.86
bravo 0.23 0.47 0.30

bes1-D 0.5 0.19 0.31

Table 6.1 Fraction of plants in AD, PD and ND states, from data in
Figure 6.1.

We then fitted these two models to three experimental cases of most interest:

The wild type Col-0, the bravo mutant and the bes1-D gain-of-function (Table

6.1 and Figure 6.1), with experimental data provided by our collaborators in

the group of Dr. Ana I. Caño-Delgado. To this end we defined an euclidean

norm for the distance between pND,PD,AD in our model and the frequency of

AD, PD, ND in measurements (Ashyraliyev et al., 2009), similarly to chapter

4,

VMLE =

∑
X∈{AD,PD,ND} (FrequencyX − pX)

2

σ2
X

, (6.12)

where we approximated the error in the measurements σ2
X according to the

Bernouilli variance, σ2
X ∝ FrequencyX(1 − FrequencyX). We minimized this

distance through a Nelder Mead method using Mathematica software (Wolfram

Research, 2010), limiting the search range for τ from 0 to 0.5 (because a 0.5 <

τ < 1 is equivalent to a 0 < τ ′ < 0.5 with switched definitions of a and α).

Both models fit the data extremely well (Tables 6.2 and 6.3), which is to be

expected, given that we only have 3 datapoints, and two (in the case of a(n))

or three parameters (in the case of a(t)) with which to fit them.

In the case of a(n), we computed the fraction α
a to obtain a measure of how well

synchronized is each phenotype. The results show the bravo mutant to have a
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slightly impaired synchrony with respect to the wild type. Oppositely, bes1-D

has more synchrony than the WT(Table 6.2).

phenotype VMLE a α α
a

Col-0 2× 10−16 5.65× 10−3 1.108 196
bravo 7.9× 10−4 6.19× 10−2 1.22 19.7

bes1-D 9× 10−32 3.55× 10−3 4.228 1191

Table 6.2 Fitting of the model with division transition probability per
unit time a(n) = a+ αn.

The model with time-varying rates has one more parameter, so the good fit is

even more expected. In any case, we can see how all three phenotypes are com-

patible with two global states, one with more divisions and the other one with

less divisions, that alternate over time (Table 6.3). There are some interesting

details, such as the fact that both bravo and bes1-D have more divisions than

the wild type in each state, and that bes1-D is the only phenotype that spends

more than half the period on its highly dividing state (Table 6.3).

However, it is hard to link these results to anything mechanistic about the

behaviour of the module. For this reason, we made further measurements of

existing experimental images taken by our collaborators, both in the wild type

and the bravo mutant, to obtain another dataset with a higher level of detail. In

this case, we distinguished between Partially Divided QCs with less or equal half

of the cells divided, or with more than half (Table 6.4). Notice that these data

do not fit perfectly with previous data. This is because observation of divisions

uses morphological criteria that are not completely clear-cut. However, both

data sets follow similar tendencies and, within each one, the same person did

the measurements for every phenotype (with the later data set being measured

by ourselves and the former by our collaborators), making the phenotypes fit

for comparison. This is also the reason we perform two separate analyses: the

previous dataset included the mutant bes1-D whereas this one does not.

Although the a(t) model performed slightly worse in this case, the differences in

the performance of both models are still not large enough to allow us to choose

between them (Tables 6.6 and 6.5). The time-dependent model shows, like with

the previous dataset, that bravo has an increased division rate in both states.

In fact, its a is so large that we can consider it to be almost infinite, i.e. for a

fraction of the time cells are almost continuously dividing. But even its α, the
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phenotype VMLE a α τ

Col-0 4× 10−16 2.7 1.1× 10−7 0.1
bravo 8× 10−4 5.6 0.17 0.44

bes1-D 4.4× 10−15 0.11 68 0.47

Table 6.3 Fitting of the model with time-varying division transition prob-
ability per unit time.

phenotype AD PD>50% PD≤50% ND

Col-0 0.055 0.127 0.2 0.618
bravo 0.394 0.243 0.333 0.03

Table 6.4 Fraction of plants in AD, PD>50%, PD≤50% and ND states.
Data from N > 25 plants in each case.

low division rate, is larger than the a of wild type (Table 6.5). We could think

that, if the mechanism behind the synchrony is indeed a time-varying signal,

the bravo mutant either is hypersensitive to it or at least does not process it

in the same way, leading to these strange results of high divisions all the time.

Notice also that, where the bravo mutant had a much larger τ than the wild

type with the previous dataset, now has it smaller. This inconsistency, together

with such a large value for α, point in the direction of this model not explaining

well the results.

As for the model with the n-dependent division rate a(n), it confirms the result

from the previous dataset that bravo has an impaired synchrony (Table 6.6),

since its ratio α
a is almost 10 times smaller than that of the wild type. Further-

more, this corroboration also increases the credibility of the other result of this

model in the previous dataset: that bes1-D has enhanced synchrony.

phenotype VMLE a α τ

Col-0 0.29 1.73 1.9× 10−2 0.34
bravo 0.81 6× 104 2.67 0.26

Table 6.5 Fitting of the model with time-varying division transition prob-
ability per unit time to data with PD separated in two substates.
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phenotype VMLE a α α
a

Col-0 0.017 0.038 0.73 19.2
bravo 0.48 0.5 1.1 2.2

Table 6.6 Fitting of the model with n-dependent transition probability
per unit time to data with PD separated in two substates.

6.3 Discussion

We established, through simple probabilistic analysis of division data, that there

is a synchrony in the division of Quiescent Centre cells. Rather than a synchrony

in the decision to exit the quiescent state or to divide, it is a synchrony in the

probability to observe cells within the same plant dividing, although those are

highly likely sources for this synchrony.

Furthermore, both simple models of time-dependent rate of division or of a rate

that depends on the state of other cells phenomenologically fit with the data.

However, slightly worse fits and inconsistencies in its results seem to indicate

that the synchrony being mediated by spurious or periodic signals that act on

all cells at the same time is less likely than the possibility that division is syn-

chronized through some sort of cell-to-cell communication. It is true, however,

that the time-dependent model has more arbitrarily imposed conditions such

as the shape of the time-varying function and, importantly, the fact that we

neglect transient behaviours.

Still, if we consider that the driving force behind synchrony is, as it seems, cell-

to-cell communication, we saw that the gain-of-function bes1-D has enhanced

synchrony, whereas the bravo mutant has impaired communication, seeming to

indicate different origins for the division phenotypes. However, to fully under-

stand these phenotypes more information on the significance of the quiescent

state would be needed.

A fair criticism to our modelling is that we impose a one step process, which

means that cells decide sequentially and does not contemplate delays. Our

model already has a relatively large number of parameters for the few data

points available, even though making mechanistic assumptions allows us to

greatly constrain the number of parameters. Other, more general models, would

need arbitrary assumptions in the parameters, and the trials we have made led
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to less clear results. Specifically, we tried a model in which there is a probabil-

ity that all cells transition to the divided state or out of it at the same time,

i.e. from 0d to 4d and back, with constant division and dedivision rates in the

intermediate states. Preliminary results showed it to be a much poorer fit to

experimental data.

In general, more data are needed, both to be able to build more complex models

(considering separately the states with any number of divided cells) and to con-

firm the results from the bes1-D mutant. Furthermore, it would be interesting

to incorporate to the model data from the wox5 mutant, the third participant

in our regulation module from chapter 5
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Chapter 7

Conclusions

7.1 Summary of results

All the work presented in this thesis revolves around different aspects of biolog-

ical systems that can be understood as bistable. In the first two chapters, we

theoretically analyzed different network motifs that enable bisability, and their

dynamics under noise. The last three chapters, on the other hand, concentrate

on a real system of stem cells: the Quiescent Centre of the root of Arabidopsis

thaliana. In dialogue with experimental collaborators of the plant developmen-

tal biology group lead by Dr. Ana I Caño-Delgado (CRAG), we first tried to

unravel how different genes that control the quiescence (cell cycle arrest) of

these cells integrate in a module that yields different functions. Finally, we did

a simple probabilistic model to study whether the release of this quiescence is

synchronized, and in what way.

In the second chapter we showed in a simple Positive Feedback Loop, consti-

tuted by an autoactivation, that proper consideration of noise as multiplicative,

derived from the dynamics of the system, instead of just as a perturbation of

the deterministic behaviour, was sufficient to qualitatively account for an ex-

perimentally observed result (Frigola et al., 2012). The state-dependent noise

due to the finite molecule number (in the nomenclature of Chapter 3, volume

noise) generated an asymmetry in switching rates with respect to their deter-

ministically predicted stability, a phenomenon that was observed in stochastic

133
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cell state switching of yeast (Acar et al., 2005). Furthermore, noise was exper-

imentally observed to be larger in one state than in the other, similarly to our

theoretical results. The results in this chapter highlight the necessity to con-

sider noise as an integral part of the system when studying its dynamics, rather

than assuming deterministic dynamics and adding a perturbation to them.

We then moved forward to a fully stochastic analysis, in which we built a model

of gene transcription that involved several reactions, each of which could gen-

erate noise with different impacts. In Chapter 3, we utilized this to model five

different circuit architectures that generate bistability, and studied how noise

coming from each of the different reactions affected each circuit. These five cir-

cuits were the classical Positive Autoregulation, Mutual Activation, and Mutual

Inhibition, and the more novel Mixed Feedback Loop and Autoactivation with

Complex, that include molecular titration in their mechanism of bistability gen-

eration. A global result of our study was that, surprisingly, the Autoactivation

with Complex responds to noise quite similarly to the Positive Autoregulation

and the Mutual Activation, whereas the Mixed Feedback Loop has a response

very similar to Mutual Inhibition. This suggests some sort of general rule of

how bistable switches are built and their response to noise, possibly related to

the number of positive or negative trasncriptional regulations they have.

We also showed that each circuit is sensitive to specific noise sources, both

in Global Stability of the circuit and in Relative Stability of each state with

respect to the other. In particular, which noise source affects more the system

is strongly dependent on the circuit that generates bistability. This suggests

that each circuit may appear in biologically different contexts, depending on

what noise sources dominate and which state needs to be more stable, both if

they need to be robust against noise or when noise is constructively used as

a tuning mechanism for their dynamics. In particular, the Relative Stability

of Autoactivation with Complex is very sensitive to changes in volume, which

suggests that it could appear in circuits that change their function during cell

growth, and makes it unsuitable for other kinds of functions (unless it is coupled

to other motifs that soften this sensitivity).

We then moved on to a specific biological system, in which we modelled the

interactions of BRAVO, a gene shown by our collaborators to regulate stem

cell quiescence in the root of Arabidopsis thaliana, and BES1, a transcription
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factor that regulates gene expression according to the signalling of the Brassi-

nosteroid hormone family. In Chapter 4 we used theoretical modelling to show

that the autoactivation of BRAVO and its repression by BES1, together with

their formation of a dimer, enables their expression to be strongly opposite for

extremely wide ranges of parameter values (Vilarrasa-Blasi et al., 2014). Fur-

thermore, it can drive bistability and an ultrasensitive switch between states

upon a Brassinosteroid signalling threshold. Although we were unable to repro-

duce the bistable bifurcation diagram, we were able to experimentally observe

a sharp transition upon a threshold external Brassinosteroid signalling.

Chapter 5 extended this model to include WOX5, a gene that is only expressed

in the Quiescent Centre (Sarkar et al., 2007), and has been shown to directly

regulate quiescence (Forzani et al., 2014). Including the interactions that were

previously known and those unveiled by our collaborators, namely that WOX5

upregulates BRAVO and is also upregulated by it and by BES1, we were able

to show that this module is, in principle, capable of excitability and even oscil-

lations, although these behaviours do not seem to be happening in wild type,

unstressed plants. According to our models, which contemplate the possibility

of independent regulation of WOX5 by BES1 and BRAVO, and alternatively

that the BES1-BRAVO complex could be doing the regulation, it is unlikely

that WOX5 responds strongly to Brassinosteroid signalling. Therefore, we pre-

dict that it does its regulatory function upon quiescence together with BRAVO

(which does respond sharply and strongly to hormone signalling), for instance

by forming a complex that regulates it. This prediction remains to be tested.

Finally, in Chapter 6 we concentrate on the measurements of Quiescent Centre

cell divisions done by our collaborators. We first noted that these divisions

cannot be cell autonomous, with each cell independently deciding, since plants

with all or none their cells divided are much too frequent. We then built min-

imal probabilistic models on how these divisions may be synchronized: by an

external signal acting on all cells at the same time, or with rates that depend

on the behaviour of the other cells. We showed that, despite both models be-

ing extremely simplistic, the model with cell-to-cell communication fits better

the data and has more coherent results, suggesting that this synchronization

mechanism is, at least, an important player in the biological system. We were

also able to compare different phenotypes, seeing that the bravo mutant has

a strongly diminished cell-to-cell communication, whereas the gain-of-function
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bes1-D has increased synchronization. Since both mutants exhibit many more

divisions than the wild type, but opposed behaviours regarding synchrony, this

suggests that they have different roles in the regulation of quiescence and its

synchronization.

7.2 Future perspectives

Most of the work in this thesis opens future perspectives and ways in which it

can be either improved or built upon. After our comparison of additive and

intrinsic multiplicative noise in chapter 2, the obvious questions are related to

the effect of different noise sources or of extrinsic noise. However, both of these

possibilities have already been considered by others since this work was first

done (de Franciscis et al., 2014; Jaruszewicz et al., 2013). Even by ourselves, in

the work presented in chapter 3.

The effect of extrinsic noise coupled to specific architectures has not received

a lot of attention (Assaf et al., 2013; de Franciscis et al., 2014), despite its

potential importance, since it can represent noise in the rest of the network in

which the module is embedded. Therefore, one way to complete the results of

chapter 3 would be to include this type of noise.

Other, more important ways to go forward with the work presented in chapter

3 is to confirm its results by studying other parameter sets (as discussed in the

chapter), and try to link the different motifs to specific biological functions, as

was done by Kittisopikul and Süel (2010). Another interesting question opened

by the chapter is whether response to noise can be predicted by some charac-

teristic of the network, such as the number of positive or negative interactions.

This could be studied by generalizing the work to bistable Positive Feedback

Loops with more than two genes, and try to find general rules that apply to

all of them. Such a generalization would also be useful to the study of two-cell

network motifs or circuits (Rouault and Hakim, 2012).

Moving on to our studies of the Quiescent Centre of Arabidopsis in Chapters 4

to 6, it remains to be seen if our results presented in Chapter 3 for the Autoac-

tivation with Complex and Mixed Feedback Loop, the combination of which

conforms the module presented in Chapter 4, apply to the BRAVO module.
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Despite experimental limitations in the measurement of noisy dynamics, a the-

oretical study could be done. Furthermore, our study on the addition of WOX5

to the module in chapter 5 concentrates on steady states and on overall dynam-

ical behaviours of the system, but the stochastic and deterministic switching

between states can be studied. Depending on the predictions that arise, exper-

iments could be proposed. An experimental question that would be a priori

interesting is trying to ascertain the exact relationship of BRAVO expression,

as measured through fluorescence, and division, which according to our mea-

surements is unclear. Again, this study would require dynamical measurements

which are technically challenging.

Dynamical measurements would also be needed to be able to study synchrony

of divisions in more detail than we do in chapter 6: the static picture lumps

together several phenomena as an observed division. With additional data,

more complex models could be done, perhaps including single cell dynamics

and cell to cell communication.

Experiments that can be more easily done are those related to the prediction,

presented in chapter 5, that WOX5 and BRAVO act physically together to

regulate quiescence. The first step would be to confirm if BRAVO and WOX5

actually dimerize, and if they do the role of this dimer would need to be tested.

This is actually research in progress by our collaborators.

Overall, the work in this thesis opens up interesting perspectives in the field of

gene regulatory circuits and their relationship with noise, in a more theoreti-

cal aspect, and also in more experimental questions that can be tackled with

modelling.
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The results presented in Chapters 3, 5 and 6 are in preparation for submission,

and expected to be submitted shortly.
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Appendix A

Number of dividing cells

given a number of observed

divisions

When divisions are independent, it does not matter whether we model detected

divisions or observed divisions. But if we propose a division probability that

depends on how many cells are dividing the question could be raised: can we

know, given an observed number of divisions, how many divisions are actually

happening? Can we establish a relationship to better define the dependence of

division probability of a given cell with the number of already divided cells?

This can be done through Bayes’ theorem

p(Ndiv|ndivobs) =
p(ndivobs|Ndiv)p(Ndiv)

p(ndivobs)
, (A.1)

where p(Ndiv|ndivobs) is the probability that Ndiv divisions are happening given

an observed ndivobs number of divisions. p(Ndiv) is the prior probability that

Ndiv divisions are happening. In the same vein, p(ndivobs) is the probability to

observe a certain number of divisions. We do not know p(Ndiv) since Ndiv is

not something we have observed, and in this section we assume no knowledge of

p(ndivobs). However p(ndivobs|Ndiv), the probability to observe ndivobs divisions

when the QC has Ndiv divisions, is known.

141



142 Appendix A. Observed divisions and actual divisions

This is given by the hypergeometric distribution. Given Ntot cells among which

Ndiv divide, and an observation of nobs cells, the probability to see ndivobs cells

dividing is

P (ndivobs) =

(
Ndiv

ndivobs

)(
Ntot−Ndiv

nobs−ndivobs

)(
Ntot

nobs

) . (A.2)

If we assume a total of 10 cells and 4 observed cells, and take the simplified

notation N = Ndiv, n = ndivobs,

P (n|N) =

(
N
n

)(
10−N
4−n

)(
10
4

) =

N !
(N−n)!n!

10−N !
(6−N−n)!(4−n)!

210
. (A.3)

Unfortunately, this function cannot be easily expressed in a simple way, such

that we can extract a relationship between n and N to improve our functions

of n-dependent division. We can, however, compute all possible values and

tabulate them (Table A.1)

Observed divisions n
0 1 2 3 4

N
u

m
b

er
of

d
iv

is
io

n
s

N

0 1 0 0 0 0
1 0.6 0.4 0 0 0
2 0.333 0.533 0.133 0 0
3 0.166 0.5 0.3 0.333 0
4 0.071 0.381 0.429 0.114 0.005
5 0.024 0.0238 0.476 0.238 0.024
6 0.005 0.114 0.429 0.381 0.071
7 0 0.033 0.3 0.5 0.166
8 0 0 0.133 0.533 0.333
9 0 0 0 0.4 0.6
10 0 0 0 0 1

Table A.1 Probability to observe n divisions given N total divisions when
there is a total of 10 cells of which 4 are observed.

If we normalize the columns, we obtain an estimation of p(Ndiv|ndivobs) =

p(N |n), assuming a uniform prior distribution p(Ndiv).
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From this, we can compute the expected value of N given an observation n,

〈N〉n =

N=10∑
N=0

N × p(N |n), (A.4)

and we obtain that

〈N〉0 = 1, 〈N〉1 = 3, 〈N〉2 = 5, 〈N〉3 = 7, 〈N〉4 = 9, (A.5)

which corresponds to the relation

〈N〉n = 2n+ 1, (A.6)

which is a linear function of n. Therefore, as long as our functions that regulate

division are linear on n, they represent equally well the ’actual’ functions in N ,

since the constants 2 and 1 will be absorbed into the parameters of the function.

This relationship is not universal, and it only works for 4 observed cells out

of 10 total cells. For n = 3 out of N = 10 cells, for instance, it is 〈N〉n =

2.4n+ 1.4 = n+ 1.4(n+ 1). However, it is still linear.





Appendix B

Resum en català

El desenvolupament d’animals i plantes és un procés complexe en el que, a

partir d’una sola cèl·lula, sorgeixen les intrincades estructures de l’organisme

multicel·lular. La formació d’aquestes estructures suposa una regulació molt

acurada en l’espai i el temps del comportament de les cèl·lules, i en particular

de la seva diferenciació en tipus cel·lulars distints, per part de la xarxa formada

pels gens i les seves interaccions. Aquests processos són de gran interès biològic,

però també f́ısic, ja que aquesta regulació comparteix propietats amb sistemes

que han estat, i són, estudiats des del punt de vista de la f́ısica.

Aquest estudi dels processos del desenvolupament amb les eines de la f́ısica es

va iniciar ja fa més de cinquanta anys, però no és fins les últimes dècades que ha

començat a ser realment fruct́ıfer. El gran avenç en les tècniques experimentals

durant els últims quinze anys, amb una resolució en l’espai i el temps mai

vista abans, ha suposat la recolecció de moltes i molt precises dades. Aquesta

detallada informació experimental ha permès que els models f́ısics i matemàtics

estiguin ben fonamentats en la realitat biològica, aix́ı com també comprovar les

prediccions detallades d’aquests models.

De tots els elements que aporta la f́ısica a l’estudi de sistemes biològics, en

aquesta tesi ens centrem en dos. D’una banda en el comportament estocàstic

de diversos processos cel·lulars, que apareix degut a les escales d’espai i temps de

la cèl·lula, i als baixos nombres de molècules que participen en alguns d’aquests
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processos. Aquest tipus de processos han estat estudiats en aquest i altres con-

texts per la f́ısica estad́ıstica de no equilibri. D’altra banda, també ens interessen

les dinàmiques no trivials que sorgeixen quan petits grups de gens formen un

circuit d’interaccions no lineals. Els sistemes dinàmics i la f́ısica no lineal ens

permeten en aquests casos entendre els comportaments que emergeixen, com

poden ser oscil·lacions o multiestabilitat.

La primera part de la tesi està dedicada a estudiar, a nivell teòric, com l’arquitectura

de petites xarxes genètiques biestables interactuen amb les fluctuacions. En

primer lloc estudiem com afecta l’estocasticitat al cas més simple de retroali-

mentació positiva, la autoactivació, en que una protëına activa la seva pròpia

expressió. Mostrem que considerar les fluctuacions com una simple pertorbació

del sistema determinista no descriu el sistema de manera acurada, sino que cal

derivar-ne el comportament a partir de la dinàmica del sistema, en el nostre

cas obtenint el que es coneix com a soroll multiplicatiu. A més, observem com

tenir en compte aquest soroll multiplicatiu és suficient per a reproduir quali-

tativament un resultat experimental: el fet observat en el llevat S. Cerevisiae

que els ritmes d’escapament des d’un estat d’alta concentració de protëına a

un de baixa concentració són més ràpids, en proporció a la barrera energètica

que ha de superar el sistema, que els ritmes per a canviar de l’estat de baixa

concentració al que en té més (Acar et al., 2005; Frigola et al., 2012).

A continuació ampliem l’estudi, afegint a l’autoactivació quatre circuits biesta-

bles que involucren dos gens, i comparem com fluctuacions estocàstiques de

cinc oŕıgens diferents afecten a les transicions espontànies entre els dos estats

de cada circuit. El nostre estudi mostra com cada circuit és sensible a fonts de

soroll espećıfiques, que poden canviar completament quin dels dos estats és més

estable, aix́ı com canviar el ritme global de les transicions en varis ordres de

magnitud. Quines són aquestes fonts de soroll canvia de circuit a circuit, i per

tant aquests resultats suggereixen que els diferents circuits podrien aparèixer

en contexts biològics diferents depenent de quina font de soroll domini i de quin

estat cal que sigui més estable.

A la segona part de resultats de la tesi, ens centrem en un circuit genètic d’un

sistema biològic espećıfic. Estudiar aquests tipus de circuits permet, d’una

banda, entendre millor les dinàmiques teòriques a través de veure com es fan

efectives en casos concrets i, a més, respondre preguntes d’interés biològic. En

el nostre cas estudiem, gràcies a la col·laboració amb el grup experimental de
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biologia del desenvolupament en plantes dirigit per Ana I. Caño-Delgado al

Centre de Recerca Agrigenòmica (CRAG)(CSIC-IRTA-UAB-UB), les cèl·lules

del Centre Quiescent de l’arrel de la planta A. thaliana. Aquestes són un grup de

cèl·lules mare a la punta de l’arrel que es divideixen amb molt baixa freqüència,

i tenen la doble funció d’organitzar espaialment les cèl·lules mare del seu voltant

(precursores dels diferents tipus cel·lulars), d’una banda, i de dividir-se en cas

de dany per a restablir aquesta estructura i funcions, per l’altra.

Els nostres col·laboradors van descobrir la protëına BRAVO, que regula la qui-

escència (la propietat de dividir-se a molt baixa freqüència) d’aquestes cèl·lules

(Vilarrasa-Blasi et al., 2014), i van estudiar la seva interacció amb BES1, una

altra protëına que regula la transcripció de diversos gens en funció de la senyal-

ització de les hormones Brassinoesteroides, i que fomenta la divisió de les

cèl·lules quiescents. A partir dels seus resultats experimentals, constrüım un

model que mostra com el circuit format per aquestes dues protëınes és capaç de

generar biestabilitat i ultrasensibilitat, garantint transicions abruptes entre un

estat amb una concentració elevada de BRAVO i molt baixa de BES1, i un estat

oposat amb baix BRAVO i BES1 elevat. A més, el nostre model mostra com

la interacció d’aquestes dues protëınes, que formen un heterod́ımer, és essencial

per a aquestes funcions (Vilarrasa-Blasi et al., 2014).

Després de mostrar això, ampliem el nostre model per a incloure una tercera

protëına, WOX5, que només s’expressa al Centre Quiescent i que recentment

s’ha mostrat que regula la quiescència de manera directa. En incloure inter-

accions ja conegudes i d’altres trobades pels nostres col·laboradors, veiem que

la inclusió de WOX5 fa que aquest mòdul sigui capaç de mostrar excitabili-

tat i oscil·lacions, tot i que aquests comportaments no semblen trobar-se en

les plantes, com a mı́nim fora de situacions d’estrès. També veiem com, sota

diverses hipòtesis, sembla poc probable que WOX5 sigui sensible als nivells de

senyalització dels Brassinoesteroides, i per tant de BES1. Això ens porta a fer

la predicció de que la regulació de la quiescència per part de WOX5 és conjunta

amb BRAVO, que śı que és molt sensible (ultrasensible), possiblement formant

un d́ımer BRAVO-WOX5.

Per últim, estudiem un altre aspecte de la quiescència però deixant d’estudiar

els circuits genètics expĺıcitament. L’observació de les divisions de les cèl·lules

del Centre Quiescent en diferents fenotips mostra que les divisions no són

autònomes, ja que els estats a on totes les cèl·lules estan dividides o cap ho
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està es troben sobrerrepresentats. Constrüım doncs models probabiĺıstics sen-

zills que intenten trobar quin és l’origen d’aquesta sincronia. En particular

considerem la possibilitat de que hi hagi un senyal temporal senzill que fa que

la probabilitat de les cèl·lules de dividir-se depengui del temps, o la de que aque-

sta probabilitat depengui de quantes cèl·lules ja s’han dividit (enlloc del temps).

Trobem que malgrat els dos models són compatibles amb les dades, el model de

comunicació cel·lular proporciona uns resultats més coherents que el del senyal

temporal. Això ens du a dir que probablement aquesta comunicació sigui un

agent important a la regulació de les divisions del centre quiescent. També

observem com aquesta sincronia és de naturalesa diferent en els diferents mu-

tants de la planta. En particular, el mutant bravo mostra una degradació de

la sincronia, mentre que el guany de funció bes1-D l’augmenta. Això suggereix

que els diferents gens participen de maneres diferenciades en la regulació de la

quiescència i la seva sincronia.

En resum, podem dir que aquesta tesi gira al voltant de l’estudi de circuits

genètics. D’una banda amb dos estudis teòrics sobre la relació de la seva ar-

quitectura amb el soroll, i de l’altra amb dos models, directament basats en

experiments, d’un circuit regulatori de cèl·lules mare en plantes. Aquest circuit

ens du a fer també un breu estudi probabiĺıstic de la sincronia en el comporta-

ment de les cèl·lules mare.
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M.-P. González-Garćıa, J. Vilarrasa-Blasi, M. Zhiponova, F. Divol, S. Mora-
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