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English 

The ultimate goal of this thesis is to set the stage for finding general design principles 

underlying the relationship between network design and network function in two-

component (TCS) and His-Asp phosphorelay (PR) signal transduction systems. Design 

principles are important because i) they can explain the evolution of a particular 

biological feature, and ii) understanding structure-function relation in molecular 

systems enables many biotechnological applications.  

This thesis starts with a review of the methods for and results from the study 

of design principles in molecular systems. This review also discusses the importance of 

studying those design principles. 

Next, we home in on TCS and PR, the prevalent signal transduction circuits in 

bacteria. These circuits are also present in eukaryotes (but not in animals). Their 

modular structure allowed evolution to generate a great diversity of unique circuit 

designs for the internal signal transmission within the cascade. Identifying the existing 

unique designs allows us to set the stage for a systematic comparison of the dynamic 

responses that are exclusive to each design. This identification is done by surveying the 

fully sequenced and annotated genomes and proteomes of more than 7000 different 

organisms. In this survey we identify the operon and protein domain organization of 

proteins involved in TCS and PR. From this organization we infer the unique topologies 

of TCS and PR circuits. We find that there is a positive selection for the clustering of 

HK, RR and HPt domains, both in operons and in multidomain TCS/PR signaling 

proteins. Regarding the TCS/PR operon composition, we find 530 different 

combinations of HK, RR and HPt coding genes grouped in operons in the surveyed 

genomes. As for the TCS/PR gene fusion events, we find 50 unique combinations of 
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HK, RR and HPt domains that occur in a single polypeptide chain of the surveyed 

organisms. 

Finally, we compare dynamic properties associated with three types of TCS 

circuit designs through mathematical modeling and analysis of the alternative circuits 

to be compared, within the framework of Biochemical Systems Theory. The first design 

is a canonical TCS. The second and third designs are TCS which include an additional 

protein that can interact either with the sensor kinase preventing its phosphorylation, 

or with the phosphorylated RR protecting it from dephosphorylation, respectively. We 

find that the possibility of bistability in the response of the TCS module is decreased by 

a RR binding third component, but an HK binding third component can either increase 

or decrease the parameter space of bistability of the network, depending on the 

monofunctionality or bifunctionality of the HK.  

Overall, this thesis represents an example of how bioinformatics and 

computational biology can be combined to play an important role in molecular 

systems biology, enabling the systematic characterization of circuit designs and the 

study of the unique dynamic responses associated to each design.  
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Català 

L’objectiu d’aquesta tesi és trobar principis generals que permetin entendre com 

l’estructura d’una xarxa molecular de transducció de senyals afecta les seves 

propietats funcionals. Els principis de disseny són importants perquè i) expliquen 

l’evolució d’un determinat caràcter biològic, i ii) la comprensió de la relació estructura-

funció en sistemes moleculars permet multitud d’aplicacions biotecnològiques.  

La tesi s’inicia revisant els mètodes usats per a l’estudi de principis de disseny 

en sistemes moleculars i alguns dels resultats obtinguts fins ara, i discutint la 

importància de l’estudi dels principis de disseny. 

A continuació ens centrem en els sistemes de transducció de senyals coneguts 

com two-component systems (TCS) i histidina-aspartat phosphorelays (PR), 

predominants en bacteris i també presents en eucariotes no animals. La naturalesa 

modular d’aquests sistemes moleculars ha facilitat que evolucionin generant un gran 

nombre de variacions en l’estructura del circuit de transmissió de senyals. La 

identificació dels diferents dissenys del circuit és el primer pas per a establir les 

característiques funcionals associades a cada disseny. Per fer aquesta identificació, 

explorem els proteomes seqüenciats de més de 7000 organismes i fem un inventari 

dels diferents tipus d’organització en operons i proteïnes dels dominis proteics que 

intervenen en TCS i PR. A partir d’aquesta informació deduirem alternatives existents 

en la natura pel que fa al disseny d’aquests circuits moleculars. En aquesta exploració 

genòmica i proteòmica observem que la selecció natural afavoreix l’agrupament dels 

dominis proteics implicats (HK, RR i HPt) tant en operons com en proteïnes que 

contenen diversos dominis. Pel que fa a la composició dels operons, hem trobat 530 

tipus diferents de combinacions gèniques en els proteomes explorats. Quant a la fusió 
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de gens que codifiquen HK, RR o HPt, trobem 50 combinacions diferents d’aquests 

dominis en les proteïnes dels organismes explorats. 

Per acabar, comparem el comportament dinàmic de 3 circuits diferents de TCS 

mitjançant la modelització matemàtica dels sistemes a comparar, emprant les eines i 

conceptes aportats per la teoria de sistemes bioquímics. Comparem les respostes d’un 

TCS canònic amb les d’un TCS on una proteïna addicional interacciona amb la HK 

evitant la seva fosforilació, o bé amb el RR impedint la seva desfosforilació. Observem 

que l’espai de valors paramètrics on el sistema presenta biestabilitat es redueix amb la 

presència d’un tercer component que inhibeix la defosforilació del RR. En canvi, si el 

tercer component interacciona amb la HK, l’espai de biestabilitat pot ser ampliat o 

reduït, depenent de si la HK és monofuncional o bifuncional. 

Aquesta tesi és, per tant, un exemple de com biologia, informàtica i 

matemàtiques poden combinar-se en l’àmbit de la biologia de sistemes moleculars per 

la caracterització de les respostes específicament associades a cada disseny d’un 

circuit molecular. 

  



   

xiv 

 

Castellano 

El objectivo principal de esta tesis es la búsqueda de principios de diseño que 

relacionen la estructura y la función de redes bioquímicas de transducción de señales, 

concretamente en two-component systems (TCS) y phosphorelays (PR). Los principios 

de diseño nos interesan ya que i) pueden explicar la evolución de un determinado 

carácter biológico, y ii) el conocimiento de la relación entre estructura y función en 

sistemas moleculares tiene multitud de aplicaciones biotecnológicas.  

La tesis se inicia con una revisión de los métodos usados para el estudio de 

principios de diseño en sistemas moleculares y algunos de los resultados obtenidos 

hasta ahora, seguida de una discusión sobre la importancia del estudio de dichos 

principios de diseño. 

A continuación centramos nuestro estudio en TCS y PR, vías de transducción 

de señal dominantes en bacterias y también presentes en eucariotas no animales. La 

estructura modular de estas redes moleculares ha permitido que evolucionen dando 

lugar a una gran variedad de diseños de circuitos transmisores de señales. Identificar 

esta variedad de diseños nos permite plantear comparaciones entre las propiedades 

funcionales asociadas a cada diseño. Exploramos los proteomas secuenciados de más 

de 7000 organismos y hacemos un inventario de los distintos tipos de organización en 

operones o proteínas de los dominios proteicos implicados en TCS y PR (HK, RR y HPt). 

A partir de este inventario, trataremos de deducir el repertorio de estructuras 

existentes en la naturaleza para estos circuitos moleculares. En esta exploración 

genómica y proteómica observamos que la selección natural provoca la agrupación de 

los dominios proteicos HK, RR y HPt tanto en operones como en proteínas. En cuanto a 

la composición de los operones, encontramos 530 combinaciones diferentes de genes 
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en los operones de TCS/PR de los proteomas explorados. En relación con la fusión de 

genes que codifican HK, RR o HPt, encontramos 50 combinaciones diferentes de estos 

dominios en las proteínas de los organismos explorados. 

Para terminar, comparamos las propiedades dinámicas de tres circuitos 

distintos de TCS, mediante modelización matemática en el marco de la teoría de 

sistemas bioquímicos. Comparamos las respuestas de un TCS canónico con las de un 

TCS en el cual una proteína adicional se une a la HK inhibiendo su fosforilación, o bien 

se une al RR inhibiendo su defosforilación. Observamos que el espacio paramétrico de 

biestabilidad del sistema queda reducido por la presencia de un tercer componente 

que se une al RR. En cambio, si el tercer componente se une a la HK, el espacio de 

biestabilidad puede ser ampliado o reducido, dependiendo de si la HK es 

monofuncional o bifuncional. 

Por tanto, esta tesis es un ejemplo de cómo biología, informática y 

matemáticas pueden combinarse en el campo de la biología de sistemas moleculares 

para caracterizar las respuestas asociadas a distintos diseños de circuitos moleculares. 
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This thesis aims at setting the stage for a systematic understanding of how specific 

circuit designs associate with particular dynamic responses in a class of signal 

transduction biochemical pathways referred to as Two Component Systems (TCS) and 

Phosphorelays (PR). This will allow the methodical identification of design principles in 

this class of circuits.  

This introduction will present the state of the art and frame the work in the area of 

molecular systems biology. Sections 1.1 and 1.2 briefly discuss what this discipline 

encompasses today and how it evolved historically. Then, section 1.3 presents and 

discusses the mathematical approximations that make the work we do possible. 

Subsequently, section 1.4 exposes the notion of biological design principles in 

molecular systems biology and discusses its importance. After this, section 1.5 briefly 

describes the biological systems in which I focus, TCS and PR. This is followed in section 

1.6 by a short presentation of the methods used in the thesis. Section 1.7 describes the 

organization of the remainder of this thesis. Finally, section 1.8 presents the goals of 

the thesis. 

 

1.1. Molecular systems biology 

A system can be defined as a network of interacting elements that acts as a whole. 

Biological entities at all scales (ecosystems, organisms, organs, tissues, cells, 

organelles, biochemical pathways, …) are highly complex systems made up of a set of 

interconnected subsystems, that is, they are “systems of systems”. For centuries, the 

predominant approach to the study of such biological entities has been from the 

philosophical position known as reductionism, grounded on the premise that the 

properties of a given system can be deduced from the analysis of the properties of 
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their individual components [1, 2]. Therefore, the usual strategy has been the 

decomposition of a complex system into simpler parts, in order to perform a separate 

analysis of each of them. This approach has proved to be successful and led to a great 

progress in cellular and molecular biology, developing a catalog of the building blocks 

of life (organelles, metabolites, proteins, genes, …) and explaining the physicochemical 

basis of numerous living processes, but also has its limitations: a system cannot be 

entirely understood by the sole analysis of the properties of its parts, given that the 

interactions between different elements, as well as influences from the environment,  

give rise to the emergence of new system’s properties that are not present in the 

isolated components [3-5]. Moreover, these interactions in biological systems are 

often nonlinear and make the system’s behavior difficult to predict. The focus must be 

shifted from the system’s constituents to their interactions if one is to fully understand 

the system’s dynamics and its response to environmental changes. 

Molecular systems biology is a field of biology that approaches the study of 

biochemical systems (metabolic networks, signaling pathways or gene circuits) from an 

integrated (holistic) perspective, trying to understand the complexity of the system as 

a whole, and the rules and principles that govern its function [6]. 

Since the advent of the “omics” technologies in the 90’s, the large amount of 

data gathered in the databases provides a detailed picture of the molecular state of 

the cell, if we are able to find a systemic approach in order to integrate this huge 

amount of information. On the other hand, the current computational power along 

with the choice of appropriate mathematical methods allows performing simulations 

of complex nonlinear systems such as biological networks. The integration of 

experimental data from multiple cellular components combined with computational 

simulations based on mathematical models that describe a given molecular network 
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allows the comprehension of the functional properties of that network and the 

prediction of its behavior under different conditions.  

Some of the mathematical concepts that allow us to measure important 

functional properties of biological networks were adapted from other fields of science 

(analysis of dynamical systems, control theory, electronics, computing). These 

functional properties include for example stability, sensitivity, signal amplification, 

response time, the existence of oscillations and stochastic fluctuations.  

What are each of these properties? Stability refers to the ability of a system to 

respond to small perturbations without changing its qualitative behavior. This property 

comes from the mathematical theory of dynamical systems and was first applied to 

biological systems by Thom [7]. Coming from the same mathematical field, sensitivity 

measures the change in a system’s variable (a metabolite concentration or flux, for 

example) with respect to a variation in the value of a parameter (examples of 

parameters are rate constants, kinetic orders, enzyme levels, …) [8]. Signal 

amplification (also known as gain), in electronics, is the ratio of the change in the 

output of a circuit to the change in the input signal. When applied to biochemical 

systems, it is often computed in its logarithmic form (and then referred to as 

logarithmic gain). Response time, a magnitude derived from engineering, is the time a 

system takes to respond to a signal. It can be calculated as the time needed to reach a 

given percentage of the maximal induction or inhibition. Oscillations can be defined as 

periodic variations in the steady state values of the output (measured as the 

concentration of the output molecule, if the system in question is a biochemical 

system). Stochastic fluctuations of a system cause a random distribution of its 

response, characteristic observed in all biological systems due to intrinsic and extrinsic 

sources of noise [9]. 



  Introduction  

6 

 

The measure of all these functional properties through mathematical tools 

such as ordinary differential equations, Taylor series, logarithms and power law 

functions provides a view of an operational biological system as an engineered device 

whose behavior can be described in a mathematical language. Therefore, to achieve 

such systemic understanding of a biochemical network is an interdisciplinary task 

which requires the flux of tools and concepts between many different disciplines, such 

as biology, mathematics, engineering and computer science. 

1.2. Historical origins of systems biology 

The rationalist tradition of Western philosophy tends to have a reductionist point of 

view. In spite of this, problems of integration and organization have always caused 

great interest in biology. Although systems biology has recently gained popularity 

(especially from the year 2000 onwards) due to the aforementioned emergence of the 

omics techniques and the increase in computational power, the importance of this 

field of study was recognized at least since the nineteenth century.  

Claude Bernard was an early precursor of systems biology’s theoreticians in 

the 19th century. This French physician and scientific thinker proposed that 

mathematics should be used in all fields of science, in order to discover the underlying 

laws of natural phenomena. However, he also recognized that biology was still too 

poorly understood to be the subject of a quantitative analysis, and it was necessary to 

previously gather all the new facts possible: “The most useful path for physiology and 

medicine to follow now is to seek to discover new facts instead of trying to reduce to 

equations the facts which science already possesses …” but “ … the application of 

mathematics to natural phenomena is the aim of all science, because the expression of 

the laws of phenomena should always be mathematical” [10]. Already in the 20th 
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century, an influential precedent of system’s thinking was set by Alexander Bogdanov, 

who in his book Tectology [11], published in the 1910s, tried to identify universal laws 

of organization shared by all kind of systems and addressed issues like the emergence 

of new properties in a complex through the interactions of its components, 

anticipating many of the ideas that were presented some years later by Ludwig von 

Bertalanffy in the General Systems Theory [5]. Bertalanffy popularized the assumption 

of the existence of general principles that can be applied to any system, irrespective of 

the nature of the entities involved, and the impossibility of understanding the system’s 

behavior by the independent analysis of its components due to the nonlinearity of 

their interactions. In his General Systems Theory, Bertalanffy presented a conceptual 

framework for the study of systems in general (biological, physical or social systems), 

incorporating concepts such as organization and wholeness, until then absent in 

conventional science. 

During the first decades of the 20th century, essentially all of the basic 

molecular mechanisms and most of the individual enzymes of a living cell such as E. 

coli were defined. Once the biochemical basis for the individual reactions were 

unraveled, a more synthetic approach was needed in order to attempt the study of the 

integrated behavior of intact biochemical networks, and an appropriate mathematical 

method of analysis had to be created which would take into account the nonlinear 

nature of biological systems. Merging ideas from Bode analysis in electrical circuits and 

Taylor’s theorem, in 1969 Michael Savageau proposed a mathematical formalism 

based on the power-law representation of all biochemical processes which allows 

modeling nonlinearities and limits the amount of experimental data required for the 

description of molecular networks. This mathematical framework is known as 
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Biochemical Systems Theory, and provides the foundations for the analysis and 

mathematical modeling of biochemical systems. 

 

1.3. Mathematical modeling of biochemical systems 

In order to study the function of complex and highly nonlinear biochemical networks 

one must use appropriate mathematical and computational tools that are capable of 

reproducing the dynamics of those networks. Mathematical modeling is an essential 

means to identify the topology of a system, compare the dynamic behavior of 

alternative network structures and characterize the underlying rules that govern the 

systemic behavior of a network. 

Biochemical Systems Theory (BST) [12-14] is a mathematical modeling 

framework for the analysis of molecular systems in biology developed by Michael 

Savageau and co-workers since the late 1960s. In BST, the dynamic behavior of these 

networks of biochemical reactions is modeled with systems of ordinary differential 

equations (ODE), and biochemical processes are described by using the power-law 

formalism [15-17].  

In this formalism, to capture the nonlinear nature of biological systems, the 

rate at which a given process occurs (production or consumption of a given molecule) 

is approximated by the first two terms of its Taylor series expansion, in logarithmic 

space. 

( ) ( ) [ ]
[ ] ( )0
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0101 loglog

log
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The Xj’s are the variables that affect the process and the subscript 0 stands for 

the value of that variable at a given operating point. 

By regrouping terms, Eqn. (1) can be rewritten as 

( ) niniini XgXgXXv log...loglog,...,log 111 +++= α                                         (2) 

where 
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Eq. 2 can now be transformed back into Cartesian coordinates and expressed 

as a product of power-law functions: 

( ) ∏
=

=
n

j

g
jini

ijXXXv
1

1,..., α
                                                                                        (5) 

where αi and gij play the role of the apparent rate constant and the apparent kinetic 

order with respect to Xj for the net production of Xi, respectively. 

By applying this approximation, and considering that the change in the 

concentration of a variable is given by its aggregate rate of production ( ∏
=

n

j

g
ji

ijX
1

α ) 

minus its aggregate rate of degradation (
ijh

j

n

j

i X∏
=1

β ), the ordinary differential 

equations describing a system of n chemicals are the following: 
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           (6) 

These kind of models are called S-systems (because of their ability to capture the 

synergistic and saturable characteristics of biological complex systems) and they are a 

special class of generalized mass action (GMA) models.  

A GMA model is a system of ODE of the form: 

∑ ∏
= =

=
∂
∂ n

j

d

k

g
kij

i ijkXa
t

X

1 1                 (7) 

In a GMA-system, all the processes of the model that affect the levels of a 

given species are considered individually, instead of being aggregated into a 

productive term and a consumption term as in the case of an S-System. Thus, the rate 

of each individual process that contributes to change the concentration of a given 

substance Xi is approximated using a power law, derived as described in Eqs 1-5. If the 

process produces (consumes) Xi, aij will be positive (negative) in Eq 7.  

Mathematical modeling allows us to study design principles of molecular 

networks. Such studies are almost always unfeasible to do experimentally. This is so 

because mathematical models permit performing an exhaustive comparison between 

the dynamic behaviors of alternative designs for a given network, in order to identify 

functional differences related to the topological variations of the systems being 

compared. Such exhaustive comparisons are very hard, if not impossible, to perform 

experimentally. To be sure that the differences in the system’s behavior are due to 

differences in the system’s architecture, we can use the method known as 

mathematically controlled comparisons, developed in the early seventies by Michael 

Savageau [13, 18-22]. 
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In brief, this method requires: 

(i) Defining alternative designs for the system under analysis. 

(ii) Defining the functional requirements for the biological process the system 

is involved in. 

(iii) Defining internal equivalency conditions: all processes that are identical in 

both alternative designs that are to be compared must have the same parameter 

values. 

(iv) Defining external equivalency conditions: we fix the alternative parameters 

so as to impose that a specific functional property is the same in both systems. 

Once maximal external equivalency is achieved, the remaining differences in 

the behavior of the systems must be due to differences in design. Then, functional 

advantages can be highlighted and related to a specific alternative design. This 

strategy (modeling and comparison between alternative designs for a given 

biochemical network) is a useful method in the search of design principles in molecular 

systems. 

 

1.4. Design principles in molecular circuits 

Are there patterns or motifs that are prevalent in a given type of biological system? 

Can we find rules underlying the structure of specific biochemical systems, as we can 

find them in engineered designs? 

It seems that the answer to those questions is yes. Some quantitative and 

qualitative features of molecular networks are observed more frequently than 

expected by chance alone in biological systems performing a given function. The 
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presence of these features can be rationalized as having evolved under a selective 

pressure to provide a functional advantage to the system. These recurrent motifs that 

make the system more effective in performing its biological function are known as 

biological design principles [13, 23], and exist at all levels of organization of life, from 

the molecular level to the whole organism, populations and ecosystems. Such design 

principles have been identified in many aspects of molecular circuits [13, 21-27] and 

allow understanding why a given design was selected for a specific (class of) molecular 

system(s).  

For example, it was established that regulation of a biosynthetic unbranched 

pathway by overall negative feedback of the end product to the first reaction of the 

pathway has several physiological advantages with respect to other possible modes of 

feedback inhibition [28]: a pathway with that control mechanism is more robust to 

perturbations in parameter values, responds faster to fluctuations in the metabolite 

concentrations, and the flux through the pathway is more responsive to changes in the 

demand for the end product. 

An example in the context of signal transduction is that Two Component 

Systems (TCS, see section 1.5) with a bifunctional histidine kinase sensor1 (SK) are 

more efficient at amplifying the signal and suppressing crosstalk. Therefore, having a 

bifunctional SK is more advantageous when crosstalk represents pathological noise, 

while having a monofunctional SK is more advantageous in situations where the 

physiological response requires the integration of signals [29].  

Another design principle for TCS is that, if the TCS is involved in responses that 

require hysteresis, it needs to fulfill two conditions: i) the reversible formation of a 

                                                           
1
 A bifunctional SK shows both kinase and phosphatase activities: when phosphorylated, transfers its 

phosphate group to its cognate response regulator (RR), and when dephosphorylated, it mediates the 
dephosphorylation of its cognate RR. 
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dead-end complex between the unphosphorylated forms of SK and response regulator 

(RR), and ii) RR dephosphorylation mainly done by an alternative phosphatase, 

independently of unphosphorylated SK [30]. 

These are three examples of qualitative features of a molecular system’s 

design that give rise to physiological properties that may imply a functional advantage 

of the system.  

The results of this work (see section 4) suggest another principle for the design 

of TCS: when a third component binds and inhibits the SK (prevents SK 

autophosphorylation), it increases the possibility of a bistable response, while a third 

component that binds and stabilizes the active (phosphorylated) form of the RR 

(prevents RR dephosphorylation) has the opposite effect. Therefore, the first design is 

advantageous when a switch-like response is required, and the second one is more 

suitable if the system needs to react in a gradual way. 

 

1.5. Two component systems and His-Asp phosphorelays 

In this work we will focus on the analysis of Two Component Systems (TCS). TCS and 

phosphorelays (PR) are phosphotransfer signaling pathways that enable bacteria to 

sense and respond to environmental stimuli [31, 32]. In these systems, a sensor 

histidine kinase (SK), which contains a site of histidine phosphorylation, is the protein 

that autophosphorylates from ATP in response to an environmental signal. The 

phosphorylated SK can transfer its phosphate group to an aspartate residue of the 

response regulator protein (RR) that either mediates the cellular response, mostly 

through transcription activation (in TCS), or transfers the phosphate to a second SK 
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(containing an HPt - histidine phosphotransferase domain) that will subsequently 

transfer it to a second RR. This four-step His-Asp phosphotransfer cascade is known as 

phosphorelay (PR) (See Figure 1). TCS and PR are widely occurring in prokaryotes. 

However, only PR-like modules have been found in some eukaryotic organisms like 

protozoa, fungi and plants (although they appear to be absent in animals) [33-37]. 

In addition to SKs and RRs, some TCS are also known to interact with specific 

phosphatases that regulate dephosphorylation of the RR [38]. These core components 

of TCS and phosphorelays are often complemented by auxiliary proteins that play a 

regulatory role in the activity of the signal transduction module by regulating the 

transmission of the cognate signal to the SK. For example, the SK CheA  is controlled 

through its interaction with membrane receptors that detect chemical compound in 

the medium and direct organisms towards higher concentrations of nutrients [39]. 

Another example is the SK NRII that regulates nitrogen fixation, whose activity 

is modulated through its interaction with the protein PII [40].  

The apparently modular structure of TCS and PR circuits seems to have 

facilitated the evolution of a variety of designs in different organisms, allowing the 

module to adapt its performance to the regulation of many different types of 

biological functions. The prototypical structure of these phosphotransfer signaling 

cascades permits multiple variations: the SK can be monofunctional or bifunctional; 

one SK can phosphorylate more than one RR, or one RR can be phosphorylated by 

more than one SK; there can be one or more than one phosphotransfer step (in TCS 

and PR respectively); the SK and RR domains can be fused in the same protein; 

auxiliary proteins (such as an alternative phosphatase or a third component) can be 

present or not; ... 
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Figure 1. Prototypical Two Component System (TCS), and prototypical phosphorelay (PR). TCS 
and PR are both His-Asp phosphotransfer signal transduction pathways. TCS, prevalent in 
prokaryotes, are signaling systems composed of a sensor kinase (SK) and a response regulator 
(RR). The SK regulates the activity of the pathway changing its phosphorylated state in response 
to a given stimulus. When phosphorylated, the SK transfers the phosphate group from its 
histidine residue to an aspartate residue in the cognate RR, and the phosphorylated RR 
activates a given cellular response. PR are four-step His-Asp phosphotransfer pathways found 
in prokaryotes and some eukaryotes but not in animals, in which the phosphate group is first 
transferred from the SK to a receiver domain of a RR, typically attached to the SK, then to a 
histidine phosphotransfer domain (Hpt) and finally the phosphate is relayed to a second RR, 
which induces the response. 

 

TCS PR
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1.6. Methodology 

Since the whole work comprised in this thesis is conceived to be theoretical and 

computational, the methodology that will be used is based upon the following 

computational tools: 

Materials 

The genome database at NCBI provides more than 10000 fully sequenced genomes, 

which will be surveyed in order to analyze the clustering of TCS/PR genes in each 

organism and the combination of TCS/PR protein domains in their corresponding gene 

products, and try to deduce from these data the structure of the TCS/PR circuits found 

in nature. 

Identification of circuit design 

Bioinformatics methods will be used to identify the relevant proteins and domains in 

the surveyed proteomes and compare the HK, RR, and HPt ortholog sequences found 

at PROSITE (http://prosite.expasy.org/) to the sequences of proteins in the fully 

sequenced and annotated genomes. Blast [41] and hmmer [42] will be used to survey 

a proteome or genome database, searching for homolog sequences, while Mega 6 [43] 

will be used to perform alignments of homolog sequences. Wolfram Mathematica [44] 

will be used for the statistical analysis of the results. 

Model Building 

Once the various types of design for TCS and PR circuits have been computationally 

identified from the genome exploration, mathematical models will be built for each of 

them. The mathematical models will be built using the formalisms of BST [12-14]. This 
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will ensure that general models can be built and analyzed. In addition, it will guarantee 

that the results will be general and independent of parameter values. The analysis will 

combine Mathematically Controlled Comparisons and other methods identified and 

reviewed in the section 2 of this thesis.  

Wolfram Mathematica [44] and Copasi [45] will be used to build the 

mathematical models of molecular systems and perform the simulations. 

PERL will be used to make scripts, to automate database searches, handle 

large amounts of data, perform repeated actions, ... 

 

1.7. Organization of this thesis 

We start our search of design principles in TCS and PR circuits by reviewing in section 2 

the methods used for the study of design principles in molecular systems and the 

results achieved thus far. This chapter led to the publication of a paper in 

Mathematical Biosciences [46]. 

Next, in section 3 we perform an extensive survey of the fully sequenced and 

annotated genomes and proteomes of 7609 organisms belonging to all domains of live 

with the purpose of identifying genes coding for TCS/PR proteins, analyzing their 

clustering in the genome and the composition of protein domains in the individual 

TCS/PR proteins. From the results of that genomic survey, we hope to be able to trace 

some alternative architectures of the TCS/PR circuits found in nature. This chapter led 

to the publication of a paper in PeerJ [47]. 
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In section 4 we analyze one of those alternative TCS circuit designs: a TCS in 

which an additional third protein interacts either to the SK or to the RR. Through 

mathematical modelling we try to identify the differences in the dynamic behavior of 

the TCS caused by the presence of that auxiliary protein. This chapter led to the 

publication of a paper in PLoS One [48]. 

 In section 5, the overall results obtained from the whole work are discussed, 

and finally, in section 6 the final conclusions derived from those results are concisely 

exposed. 

 

1.8. Goals 

The general goal of this thesis is to contribute for the systematic identification of 

design principles in TCS and PR circuits. In order to achieve that general goal, more 

specific goals were posed. These more specific goals are: 

1. Review the conceptual methods developed in the context of BST for the study 

of design principles in molecular networks. 

2. Review the results of the application of the methods mentioned above in 

studying design principles in gene circuits, cellular rhythms, molecular 

metabolic pathways and signal transduction networks. 

3. Perform an extensive survey of the presence of TCS/PR protein domains (HK, 

RR and Hpt) in the proteomes of species from all taxonomic groups with fully 

sequenced and annotated genomes. 

4. Analyze how TCS/PR protein domains organize in the individual signaling 

proteins. These protein domains can either be found in independent proteins 
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or can be fused in a single multi-domain protein. We want to carry out a 

phylogenetic study of the domain composition of TCS/PR proteins in each 

phylum. 

5. Measure the tendency of genes encoding TCS/PR domain containing proteins 

to be clustered in the genome in neighboring positions forming operons, in 

each phylum. 

6. Find all unique types of operons of TCS/PR coding genes that occur in the 

organisms with fully sequenced genomes. 

7. Try to deduce, from the phylogenetic study of domain organization in TCS/PR 

proteins and genomic location of TCS/PR protein coding genes, alternative TCS 

and PR circuit topologies. 

8. Start the systematic analysis of alternative TCS/PR circuit topologies by 

studying the physiological effect on the dynamics of a canonical TCS of an 

additional protein which can either interact with the SK (preventing  SK 

activation through phosphorylation) or with the RR (stabilizing the activated  

form of the RR). 
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2.1. Abstract 

Most aspects of molecular biology can be understood in terms of biological design 

principles. These principles can be loosely defined as qualitative and quantitative 

features that emerge in evolution and recur more frequently than one would expect 

by chance alone in biological systems that perform a given type of process or function. 

Furthermore, such recurrence can be rationalized in terms of the functional advantage 

that the design provides to the system when compared with possible alternatives. This 

chapter focuses on those design features that can be related to improved functional 

effectiveness of molecular and regulatory networks. We begin by reviewing 

assumptions and methods that underlie the study of such principles in molecular 

networks. We follow by discussing many of the design principles that have been found 

in genetic, metabolic, and signal transduction circuits. We concentrate mainly on 

results in the context of Biochemical Systems Theory, although we also briefly discuss 

other work. We conclude by discussing the importance of these principles for both, 

understanding the natural evolution of complex networks at the molecular level and 

for creating artificial biological systems with specific features. 

 

2.2. Introduction 

One of the most important goals in biology is the understanding of how the molecular 

features of biological systems have emerged and become fixed. Emergence of these 

features during evolution is random, due to different mechanisms such as mutation 

and recombination. Fixation of the different alternative features can be accidental, 

due to chance. Another possibility is that they become fixed because they generate 
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molecular variants that make fitter organisms that survive and reproduce better. In 

this process, the predominance of a given molecular feature is a consequence of 

natural selection acting as a process that increases the frequency of designs with a 

better functional performance. Differentiating between the two possibilities allows 

researchers to identify the biological design principles of the molecular systems of 

interest [1, 2]. In this context, biological design principles can be defined as repeated 

qualitative and quantitative features of biological components and their interactions 

that are observed in molecular systems at high frequencies and improve the functional 

performance of a system that executes a specific process. Such principles have been 

found in many aspects of molecular biology [3]. 

For example, sequence biases that facilitate the control of gene expression 

under different conditions, with appropriate timing, are recurrent and can be 

rationalized as having evolved under a selective pressure to minimize the metabolic 

cost associated with the process of synthesis [4-6]. As another example, certain types 

of protein domains that are more abundant in proteomes and are associated with 

specific functional requirements for protein stability suggest a recurrent evolutionary 

design associated with that specific function [7, 8]. As a final example, an interesting 

structural design principle is found in glycogen. This molecule has evolved to provide a 

reservoir of glucose and to make glucose available quickly and in large amounts when 

required.  Melendez-Hevia and co-workers showed that the branching in the structure 

of glycogen is an optimal solution to the problem of optimizing storage space and fast 

glucose mobilization [9, 10]. 

If design principles emerge from the evolution of complex biological systems, 

one may expect to identify such principles at all organizational levels, from metabolic 

and gene networks, organs, and physiology, to organisms and their interactions [2]. 
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Here we center our attention on the evolution of structure and regulation of molecular 

networks in cells. These include gene networks, metabolic pathways, signal 

transduction cascades, cell cycle, immune response, and other molecular networks. 

The study of design principles in the context of regulatory molecular networks started 

as early as the seventies (see, for example, [11-20]). These early studies were 

performed in the context of BST (Biochemical Systems Theory) [20, 21], a body of work 

providing a set of tools that facilitate the creation and analysis of mathematical models 

for biological systems [21]. The current surge in interest towards network motifs and 

the modular structure of molecular networks is partially a consequence of those early 

studies. However, it is also a consequence of the amount and complexity of the 

biological information that continuously accumulates and becomes available to us. 

This creates a situation where learning how biology works hinges on the possibility of 

understanding general organizational principles in biological systems, rather than 

through memorizing massive ‘‘grocery lists’’ of biological facts. 

There have been several methods developed within the BST framework 

specifically to studying design principles in molecular networks. One of these methods 

is that of the Mathematically Controlled Comparisons [11, 12, 22, 23]. This technique 

facilitates the analysis and comparison of the differences in systemic behavior 

between alternative designs for the same network. The compared behaviors range 

from steady-state characteristics to dynamic behavior and parameter robustness. The 

comparisons are mathematically constrained in a way that ensures that any 

differences in behavior are a consequence of the differences in design and not of other 

spurious changes between systems. Recently, design space representations that 

provide a simplified way to analyze the different phenotypic regions of systemic 

behavior were developed within the same theoretical framework [24-26]. 
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In this chapter, we review some of these methods, and results of their 

application to the study of molecular networks.  We focus mainly on studies within the 

context of BST, although we also briefly discuss other relevant work. We conclude by 

discussing the importance of biological design principles and how they can be 

organized in the future. 

 

2.3. Molecular circuits vs the molecular network of the cell 

This special issue of Mathematical Biosciences focuses mostly on design principles that 

can be inferred for the structure and regulation of molecular circuits that are 

responsible for specific biological functions, and on how such principles correlate to 

those functions. 

These biological design principles are a consequence of evolution selecting for 

particular features that make some circuits more effective in performing their 

biological function. Given that evolution acts on organisms and populations [27], it is 

fair to ask two questions about the previous sentence. The first question is how 

appropriate is it to identify functional effectiveness of a specific circuit or module 

rather than that of the entire network of circuits. The second question is how can we 

be sure that a particular design is a consequence of selection because it is functionally 

more effective, rather than an accident of evolution. 

To answer the first question one must consider two aspects. To begin, one 

must admit that at the molecular level living organisms seem to evolve in a modular 

way. Several examples point to this. Proteins evolve mostly through domain 

recombination, and specific functions are associated with each type of protein 
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domains [28]. The expression of genes coding for proteins of many pathways is 

coordinated in operons and regulons [29, 30]. In addition, recent work suggests that, 

given the parallel and multiple demands that biological systems have to cope with 

during evolution, it is likely that their functionality has evolved in a modular fashion 

[31-35]. Considering that such modularity appears to be extended in biology, one must 

also consider that most mutations in a circuit are likely to cause malfunctioning of that 

circuit. The malfunction of the circuit contributes to decrease the fitness of the 

organism (see, for example, [36]). These two considerations suggest that it is indeed 

appropriate to consider functional effectiveness of circuits, when isolated from the 

entire molecular network of the cell.  

To answer the second question one must consider that alternative designs 

come about randomly for any given molecular circuit, through the natural forces and 

events that generate diversity in biology (mutation, cross-over, ...). If various 

alternatives are selected during evolution under different conditions, this implies that 

not all network designs are functionally equivalent and that each design would provide 

for a better functionality under the conditions in which it was selected2. 

 

2.4. Functional effectiveness of molecular networks 

A fundamental aspect in the study of biological design principles is how to define 

functional effectiveness criteria for a given circuit and how to analyze the effect of 

changes in the design of the circuit on those criteria. In essence, one should 

                                                           
2
 In this discussion we disregard the effect of random drift and population size. We assume that the 

population is always sufficiently large so that the effect of Muller’s ratchet in fixing deleterious 

mutations is small. 
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understand the biology that a given type of circuit is involved in, find out what the 

specific role of that circuit is, and identify physiologically relevant aspects of that role 

that can be associated with improved or decreased functionality. 

It is hard to propose an algorithm to define functional criteria that are 

applicable to every type of circuit one could be interested in. For example, in signal 

transduction circuits, one should consider specific criteria related to signal 

interpretation, such as amplification, delay, frequency response, noise propagation, 

correlation between input and output [37, 38]. In contrast, in some moiety 

conservation cycles, one would apply considerations that are similar to those 

engineers apply when designing batteries [24, 39]. However, there are some general 

criteria that are applicable, in a broad sense, to different modules. For example, the 

ability to maintain performance under small perturbations in parameters values 

(robustness) seems to be a desirable characteristic for many different systems [40, 41]. 

In essence, several physiologically relevant criteria are simultaneously 

important for the appropriate function of a circuit. Analyzing the molecular circuits 

that perform a given biological process provides important insights into what 

interactions determine that the circuit functions as it should under different conditions 

[42]. Furthermore, it helps understanding if different design characteristics of those 

circuits are linked, making it so that if one characteristic is selected for or against, 

others are automatically implemented or excluded (see, for example, [43, 44]). In 

addition, contradictory functional demands may be placed upon a molecular biological 

network of interest, constraining its evolution. These considerations imply that it is 

difficult to intuitively understand how a design may have been selected for or against. 

Such an understanding requires the use of appropriate analytical tools to evaluate how 
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changes in the design can simultaneously affect all relevant functional aspects of the 

circuit. 

2.5. Methods to analyze design principles 

An accurate analysis of the effect of alternative designs of a molecular circuit on the 

circuit’s function requires that one understands what that function is. This knowledge 

is essential to identify the relevant performance criteria that need to be analyzed in 

order to understand the selection of alternative designs for the circuit. As stated 

above, some of these criteria will be quite general (robustness, stability, ...), while 

others will be system specific. 

When characterizing the effect of a circuit’s design on the performance of that 

circuit, one is typically interested in understanding either (a) the functional 

performance limits of a given design or (b) why analogous systems have alternative 

designs under different conditions or in diverse organisms. The performance limits of 

the circuit can be analyzed from qualitative (for example, can a given network 

structure generate oscillatory behavior or multistationarity?) or quantitative (for 

example, by how much should gene expression change during some adaptive response 

in order to ensure organism survival?) perspectives. Whatever the perspective, the 

analysis is typically done by building mathematical models that represent the circuit 

and analyzing these models using one or two of an array of different methods. 

Methods to determine the functional performance limits of a given circuit 

include, for example, approaches such as Reaction Network Theory (RNT) [45-57]. RNT 

permit identifying necessary conditions in the structure of mass actions circuits that 

lead to robustness, oscillations and multistationarity, independent of the parameter 

values. This is done using a combination of graph theory and differential equations 
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theory in order to analyze the stoichiometric matrix of the circuit [54, 55, 58-66]. RNT 

calculates (a) the rank of the stoichiometric matrix of the network, (b) the number of 

different sets of reactants and/or products of individual reactions in the network, and 

(c) the number of isolated subnetworks in which the circuit can be decomposed. With 

these three numbers, a deficiency is calculated for the network and, based on this 

deficiency, the necessary conditions for different types of dynamic behavior are 

determined (Fig. 1). 

Other qualitative methods, such as the pentose phosphate pathway (PPP) 

game [58, 59], have been used to understand what is being optimized during the 

evolution of a particular solution for the structure of a circuit or network. The PPP 

game considers all possible reaction paths that a set of biological enzymes can 

generate between different metabolites. Then, it compares these alternative paths to 

the ones that naturally evolved in organisms (Fig. 2). These comparisons have led to 

the inference that minimization of the number of steps is a significant driving force in 

the evolution of metabolic circuits [59, 60]. 

Limits of functional performance of circuits can also be characterized through 

the use of numerical methods. For example, the physiological constraints that may 

shape the evolution of changes in gene expression during heat shock response of the 

yeast Saccharomyces cerevisiae have been systematically studied [61-63]. An initial 

approach to the problem led to the creation of a mathematical model representing the 

main metabolic pathways involved in this response. Then, the numerical criteria that 

represented minimal requirements for survival were identified. Finally, a large scale 

Monte Carlo (MC) sampling of the parameters of the system was performed, 

eliminating all parameter combinations that generate systems that did not meet the 



  Methods for and results from the study of design principles in molecular systems  

33 

 

minimal criteria.  Once this was done, an analysis of the parameter sets generating 

systems that were feasible led to the identification of numerical design principles for  

 

 

 

Figure 1. Reaction Network Theory (RNT). By analyzing the structure of (usually 
mass action) reaction networks, RNT derives deficiency-related theorems that, 
depending on that deficiency δ, certify existence of single or multiple steady state 
and/or limit cycles. The theory, in its basic forms, requires knowing the rank of the 
stoichiometic matrix of the network, as well as the number of complexes in the 
reactions and the number of linkage classes. 
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Figure 2. Pentose Phosphate Pathway (PPP) like games. By starting from 
elementary nutritional sources and using all enzymatic activities that are known, 
these games determine all possible reaction pathways that lead from the 
elementary carbon sources to the biological molecules. A comparison of these 
pathways to those occuring in living beings supports the notion that nature selects 
for the shortest paths between elementary nutritional sources and biological 
building blocks (see text for details). 
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these parameters that can be justified by the functionality of the system. This 

approach can be applied to similar problems, although it can become computationally 

demanding for systems with increasing dimensions. Recently, a more efficient 

approach to the problem was developed and applied. Instead of using large scale MC 

sampling, global optimization methods are used to map the parameter space in such a 

way that all regions of this space that meet minimal functionality criteria can be 

identified [61-64]. 

The concept of design spaces has been recently systematized and proposed by 

Michael Savageau and co-workers as an alternative to fully characterize the different 

phenotypical regimes of a molecular circuit [24-26]. These different regimes are 

identified with regions in the parameter space in which different elementary processes 

dominate the dynamic change in the level of each variable of the circuit. In short, one 

creates a model for the circuit of interest and then performs dimensional reduction on 

the model in such a way that the number of parameters is minimized. Then, the 

parameter space of the reduced model is divided into regions where different 

dominant elementary processes regulate the production and consumption of each of 

the variables in the system. The borders between regions identify approximate 

boundaries for the different phenotypes of the model in the parameter space (Fig. 3). 

There are also methods that are specifically tailored to address questions 

about why alternative designs exist for analogous circuits performing the same 

function. The first method specifically developed to address these questions was 

published in the early 1970s by Michael Savageau [14-16, 18-20]. In this pioneering 

work, he developed the first version of what is now known as Mathematically 

Controlled Comparisons. Later, this method was further developed and applied to 

various biological problems [11, 12, 22, 23]. These comparisons can be done in fully  
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Figure 3. Design spaces. This method decomposes the mathematical model of the 
system into the elementary modes of consumption and production of each of the 
variables. Each combination of these elementary modes is a region Ri in the design 
space. By analyzing the simpler models in the space of variables and/or parameters 
one is interested in, one can identify ‘‘pure’’ possible phenotypes for the circuits. 
The borders between the regions correspond to zones where two production (or 
consumption) terms for a given variable have the same numerical value (see text 
for details). 
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analytical form or numerically [22, 23, 65], depending on the models being compared 

and on the questions one is asking [46, 49, 67]. Mathematical details can be found in 

the literature [11, 12, 66, 68-70]. Briefly, the use of this method requires (see also Fig. 

4): 

(i) Defining the functional requirements for the biological process or 

network under analysis. 

(ii) Defining alternative designs for the system. 

(iii) Defining basic criteria of internal equivalency between alternative 

designs. In general, all processes that are identical in the alternative 

networks are considered to have exactly the same parameter values in 

the two systems. This is equivalent to making control experiments in a 

wet lab. 

(iv) For each pair of comparisons, the system in which the process with 

alternative designs has the largest number of parameters is usually 

taken as the reference, while the other system is taken as the 

alternative. Then, one defines external equivalency conditions. The 

reasoning underlying such conditions is as follows. There are certain 

behaviors of the system that are important for its function. If the 

reference process had mutated in  such  a way that it became the 

alternative process, then, in the best of all possible worlds nature could 

mutate the parameters of this  alternative  such  that  it  would  make  

both  systems equivalent with respect to at least some of those 

behaviors. Therefore, if one takes each of the parameters of the 

alternative system and imposes that a specific behavioral trait is the 

same in the alternative and in the reference, one can fix the value for 



  Methods for and results from the study of design principles in molecular systems  

38 

 

each of the alternative parameters. This comparison process assumes 

that evolution has an infinite amount of tries and time to make 

alternative designs as equivalent as possible when a specific 

functionality is required. Although this may not be the case in biological 

evolution, the results obtained by using the method, so far, indicate that 

these assumptions are reasonable for successfully identifying design 

principles in many cases. 

(v) When maximal external equivalency is achieved, any remaining 

differences in the behavior of the systems are exclusively attributable to 

the differences in design. Then, advantages in the functional 

performance of the system can be highlighted and related to the 

emergence of a particular design under specific conditions. 

 

 

Other approaches to identify and study biological design principles are also 

available. For example, one can study a catalog of network designs to identify 

functional alternatives that have been implemented by nature during evolution [71]. 

For example, this approach was used to identify design principles for biochemical 

oscillators [72]. The analysis and classification of network motifs according to their 

dynamical behavior also follows this strategy [73, 74]. 
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Figure 4. Mathematically controlled comparisons. This method permits comparing 
the functional effectiveness of alternative circuits for biological networks that 
perform the same function. This is done through the creation of mathematical 
models for the alternative designs. Then, one implements a set of controls to 
ensure that any differences between the behavior of the two models is only due to 
the differences in network structure. Typically, the comparison is done by taking 
the ratio of the property of interest in the reference system [M1] to the 
corresponding property in the alternative system (s) [M2]. If the property is always 
larger in the reference system, the ratio will always be larger than one [upper line 
in the last panel of the figure]. If the property is always smaller in the reference 
system, the ratio will always be smaller than one [lower line in the last panel of the 
figure] (see text for details). 
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2.6. Design principles in molecular systems 

2.6.1. Design principles in gene circuits 

Gene regulation networks show a number of recurrent motifs that could represent a 

fundamental topology of regulatory circuits that is independent of the specific genes 

involved in the circuit. One of the most prevalent motifs is a feed forward loop in 

which a transcription factor X regulates another transcription factor Y and both 

regulate a given gene Z. This motif can generate eight different basic designs. In four of 

these designs the direct effect of X on the gene expression of Z is similar to the indirect 

of X on the gene expression of Y compounded with the effect of Y on the gene 

expression of Z. These are called coherent designs. Four other designs are incoherent 

(Fig. 5). An initial theoretical analysis of the different designs shows that coherent 

loops are advantageous for delaying response to a signal, while incoherent loops work 

more effectively as accelerators of response to a signal [67]. This lead to the 

suggestion that coherent feed-forward loops should be selected in environments 

where the distribution of the input pulse duration is sufficiently broad [75]. More 

recent work shows that both types of loop can accelerate or delay response to a signal, 

depending on parameter values [76]. Incoherent loops have also been proposed as a 

functionally more effective mechanism for detecting fold-change in gene regulation 

[14]. 

One of the earliest case studies where design principles have been identified in 

molecular circuits regards the relationship between mode of regulation for gene 

expression and the demand for the gene product, leading to the proposal of the 

demand theory for gene expression [14, 69, 70, 77]. The theoretical results correctly 



  Methods for and results from the study of design principles in molecular systems  

41 

 

predict that positive regulation is preferentially selected for genes whose product is 

required over a large fraction of the life cycle of the individual (high demand genes), 

while negative regulation is preferentially selected for genes whose product is 

required for a small fraction of that life cycle (low demand genes) [66, 68, 78-80]. The 

biological explanation for the prediction boils down to a ‘‘use it or lose it’’ principle. 

The effect of losing the binding site for the regulation is proportional to the fraction of 

time that it is under use. For example, if a positively regulated gene is under low 

demand, there is a much smaller fraction of the life cycle of the individual when losing 

this regulation will affect the individual. Conversely, if a negatively regulated gene is 

under high demand,  there  is  a  much  smaller  fraction  of  the  life  cycle  of  the 

individual when losing this regulation will also affect the individual. In other words, this 

theory proposes that rate at which Muller’s ratchet will turn for deleterious mutations 

in the binding sites is proportional to the fraction of time that those sites are inactive 

(Fig. 6). 

 

Figure 5. All possible types of feedforward loops in three-species genetic circuits. 
Arrows with triangular heads indicate activation, while heads with square heads 
indicate inhibition. 
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Figure 6. Demand Theory: Arrows with triangular heads indicate activation, while 
arrows with square heads indicate inhibition. Originally, demand theory predicted 
that negative regulation of gene expression is observed under low demand, while 
positive regulation is observed under high demand. This was explained by higher 
probability of losing negative regulation sites under high demand and positive 
regulation sites under low demand. More recently, it was suggested that the 
correlation between mode of regulation and demand is a consequence of the 
fraction of the life cycle in which binding of non-cognate regulators could lead to 
noise in gene expression (see text for details). 

 

Recently, however, some doubts have been presented with respect to this 

interpretation, and similar predictions were shown to arise if one considers how the 

different modes of regulation minimize errors during transcription. Systems in which 

free sites are more error-prone (exposed to binding by non-specific factors) than sites 

bound to their cognate partner, will tend to evolve mechanisms that keep the sites 

bound most of the time, thus minimizing errors [81]. Noise filtering was also put 

forward as a possible explanation for the different modes of gene regulation [37, 82, 
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83]. Approaching the problem from an alternative perspective showed that gene 

circuits with negative regulation are better at filtering noise out of signals with high 

intensity, while positively regulated circuits are more efficient in filtering noise out of 

low intensity signals. 

These explanations for selection between alternative modes of gene 

regulation may not be mutually exclusive. Classical demand theory [69] predicts that 

loss of binding sites has a smaller effect on fitness if those binding sites are rarely used. 

Therefore, to keep regulation, it should be implemented using the type of binding site 

that is used most often for the gene in question in the organism of interest. The noise-

related variation of the theory states that fitness is affected mostly because of 

inappropriate binding in the absence of the cognate regulator, resulting in deleterious 

gene expression [81]. However, these two aspects are complementary. Under low 

demand, with a positive regulator, the binding site would be available for binding. If 

this binding leads to expression of the gene when it is not needed, there would be a 

deleterious effect that would select for sites where such binding would not occur. This 

could cause loss of the positive regulatory effect through selection, while classical 

demand theory argues that such loss could come about even by drift. A similar 

argument can be made for negative regulation in a high demand environment. It is 

conceivable that both evolutionary effects could contribute for the observed 

regulatory pattern under different conditions. There are studies that hint at such 

complementarity. Effective population size and the typical time scale of environmental 

variations appear to be key parameters in determining the fitness advantage of the 

different modes of regulation [84]. The ‘‘use-it-or lose-it’’ principle that underlies 

classical demand theory is valid for small populations with long time scales of 

environmental variations. Conversely, a complementary principle will be valid for 
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populations with large effective sizes in rapidly changing environments [84]. Under 

these conditions, one would expect that both, positive and negative regulation, be 

stable. 

Design principles have also been identified for other aspects of how gene 

circuits function and for the interplay between genotype and phenotype. One example 

of this are the design principles described for the organization of the gene networks 

that are responsible for regulating the development of sea urchin embryos, suggesting 

a number of strategies that may play similar roles in different organisms [85, 86]. 

Another example is the aptitude of polyphasic positive feedback loops 3 to work as 

count-up cellular timers used to defer the response to stimuli, counteracting protein 

dilution during cell growth and proliferation [87]. 

The quantitative design aspects of the regulation of gene expression have also 

been analyzed. One example of this is the study that shows that the minimal 

requirement for network dosage compensation to exist in genetic circuits is that the 

circuit is regulated by both, a positive and a negative regulator [88]. Another example 

has to do with regulation of changes in gene expression during stress response. Such 

changes enable organisms to regulate pathway fluxes and metabolite concentrations 

in ways that permit an appropriate adaptive response to changing environmental 

conditions. Adaptive responses are fundamental for survival and can be achieved 

following different strategies that change gene expression from a given reference 

initial state to the adapted state. Analyzing these strategies reveals that, in Escherichia 

coli amino acid biosynthetic pathways, genes from the same transcript are translated 

into proteins in such a way that each subsequent enzyme in a pathway becomes 

                                                           
3
 A polyphasic feedback loop is an architecture that temporally divides a feedback loop into different 

phases, through modification of the feedback signal strength. 
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available when enough of its substrate is produced by the previous enzyme of the 

pathway (Fig. 7) [89]. 

Operative changes in gene expression that are required to attain a given 

adaptive response while maintaining a set of basic physiological requirements have 

been investigated by Sorribas and co-workers [61, 62, 64, 80].  Based on previous work 

by Voit and Radivoyevitch [63], they have identified the physiological requirements 

that constrain the quantitative changes in gene expression during the adaptive 

response of yeast to heat shock, using a Monte-Carlo based approach [62]. More 

recently a global optimization method that exactly maps the operating regions of gene 

expression space that meet the physiological requirements for cell survival has been 

developed [61, 64]. The results of applying this method to the analysis of changes in 

gene expression during yeast stress response are consistent with those from the 

Monte-Carlo approach (Fig. 8). 

This new technique allows for identifying feasibility regions in the enzyme 

activities so that a number of physiological constraints required for cell survival are 

met. These feasibility regions contain many admissible expression values for the genes 

that are compatible with a given set of physiological requirements. As such, one 

expects that evolution selects gene expression patterns that fall within these regions. 

The available experimental data is consistent with the computational predictions, 

suggesting that the physiological constraints that were used to identify the feasibility 

regions are close to those that are active in vivo.  

The technique described above maps the gene expression space, identifying 

regions in this space which give rise to phenotypes that fulfill physiological constraints. 

The opposite approach would be to use single-cell techniques to measure the position 
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of individual cells in the gene expression space, and analyze the geometry of the 

region containing the actual single-cell gene expression data of a given cell-type. Using 

this approach led to the observation that cell populations performing multiple tasks 

fall within the high dimensional gene expression space in simple low dimensional 

polyhedrons with a number of vertices equal to the number of tasks cells must 

confront. The vertices of these polytopes are optimal gene expression profiles for each 

of the tasks [90]. This geometry of gene expression profiles is related to the concept of 

Pareto optimality: no gene expression profile can be optimal for all tasks faced by the 

cell, and the trade-off between these tasks shapes the distribution of cells in the gene 

expression space. This technique can be used to infer the biological tasks represented 

by the vertices of the polytopes [91]. 

 

Figure 7. Design principles in translation of multicystronic mRNAs. In biosynthetic 
pathways, it appears that the accumulation of enzymes after translation lags 
behind the accumulation of the substrate for that enzyme. This makes biological 
sense, as the cell would not spend resources building enzymes before it needs 
them at sufficiently high concentrations (see text for details). 
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Figure 8. Design principles for changes in gene expression during stress response. A 
minimal model of metabolism that still accounts for important changes was built. 
Subsequently, this model was cast into non-linear form. Finally, global optimization 
methods were used to determine the ranges of changes in gene expression with 
respect to the basal level that would allow the cell to survive. These ranges are 
represented in blue in the spider plot on the right of the figure. Each axis of the 
graph represents one of the different genes in the model. Full lines indicate 
experimentally measured microarray profiles.  
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2.6.2. Design principles in RNA circuits 

In the 1970s, Michael Savageau and co-workers found evidence for parallel processing 

as a design principle in RNA splicing. Such processing decreases the losses of immature 

intermediates, has shorter processing times, and is more amenable to evolutionary 

refinements [92]. The current surge of interest in RNA circuits has led to the 

identification of additional design principles in new types of RNA circuits [93-96]. For 

example, consider the following three regulatory mechanisms for riboswitch action: 

transcriptional termination, translational repression and mRNA destabilization. The 

ratio between reversible and irreversible rate constants is shown to have a critical 

impact on the performance of the circuit, establishing three operating regimes with 

distinct tuning properties.  

Regulation of gene expression by small RNAs has also been analyzed [97, 98]. It 

was found that such regulation has features that are distinct from protein-mediated 

gene regulation. The strength of repression is set by the ratio between transcription 

rates of sRNA and the target gene: at target’s high expression, sRNA may have no 

effect. The threshold value is tunable through controlling the rate of sRNA 

transcription. The model predicts reduced variance in protein level for sRNA-mediated 

regulation (attenuation of noise), and high sensitivity to changes in sRNA near the 

threshold. Different mRNA species are expected to compete for binding with the same 

pool of sRNA in a hierarchical crosstalk where targets of a given binding strength affect 

(but are not affected by) targets of lower binding strength. This form of regulation also 

provides a very fast temporal responsiveness, making sRNA mediated repression a 

good system when levels of mRNA need to shift reversibly and quickly in response to 

signals [99]. 
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MicroRNAs (miRNA) are a class of short non-coding RNAs that post-

transcriptionally control mRNA expression through degradation or translational 

repression. A distinctive feature of these molecules is that individual miRNAs can 

regulate a large number of mRNA targets, and each target gene can be regulated by 

multiple miRNAs, forming complex regulatory networks with target hubs. Pairs of 

miRNAs with very close binding sites show cooperative or synergistic behavior, while 

single miRNAs typically induce only mild repression to their targets. Mathematical 

modelling suggests that such collective miRNA repression induce fine-tuning and noise 

buffering in the regulation of gene expression, and is a means to overcome the low 

specificity inherent to regulation by each individual miRNA [100, 101]. Recent work 

suggests that miRNA cooperativity is a frequent mechanism for enhanced and efficient 

gene silencing by pairs of miRNAs in the human genome [102]. 

 

2.6.3. Design principles in metabolic networks 

One of the first problems to be analyzed by means of Mathematical Controlled 

Comparisons was the regulation of a biosynthetic pathway by overall negative 

feedback of the end product to the first reaction of the pathway (Fig. 9). By comparing 

this design to other possible modes of feedback inhibition, it is seen that the overall 

negative feedback from the final product of an unbranched pathway to the first 

reaction of the pathway had several physiological advantages [15, 19, 103, 104]. These 

advantages include a production of the pathways’ end product that is better regulated 

by cellular demand and less sensitive to spurious interactions with the environment. 

Later on, it was shown that overall feedback was the most functionally advantageous 

regulatory loop by inhibitory feedback that such pathways can have [105]. 
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It was also found that a feedforward inhibition of the Amino-acyl-tRNA 

synthase by an intermediate of the amino acid biosynthesis pathway stabilizes that 

biosynthesis [103, 104]. Additionally, it was found that when reversible reactions are 

at the beginning of these pathways, regulation by demand is more effective, as is 

speed of adaptation to cellular demand signal [106]. 

Recently, it was found that the robustness of the activity of one of the enzyme 

isocitrate dehydrogenase in the glyoxylate bypass regulation relies, in addition to other 

known features of the system, on the existence of a ternary protein complex where 

the kinase activity is higher than the phosphatase activity. This model is quite general: 

it may apply to other systems with a bifunctional enzyme that catalyzes antagonistic 

reactions [107]. 

 

Figure 9. Design principles for negative feedback in unbranched biosynthetic path- 
ways. All possible alternatives were considered. Even in the presence of additional 
feedback, overall feedback (top-most reaction scheme) increases the functional 
effectiveness of the circuit (see text for detail). 
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Other metabolic modules that have been analyzed in search for design 

principles are moiety conservation cycles. An analysis of the glucose 6-phosphate 

dehydrogenase (G6PD)–glutathione reductase (GSR) pathway, which catalyzes the 

reversible redox cycle of NADPH/NADP, found that each enzyme is designed with 

different functional demands. The activity of the NADP-reductive G6PD far exceeds the 

capacity of human erythrocytes for a steady NADPH supply, which is limited upstream 

of G6PD. The analysis indicates that maintaining such a surplus of G6PD activity 

ensures sufficient robustness of the NADPH concentration and responsiveness of the 

NADPH supply. These results suggest that large excess capacities found in some 

biochemical and physiological systems, rather than representing large safety factors, 

may reflect a close match of system design to unscrutinized performance 

requirements [44]. These results are complemented by the analysis of the kinetic 

activity of the GSR enzyme. The normal activity of GSR is under selective pressure by 

virtue of its ability to minimize the accumulation of oxidized glutathione. Contrary to 

the assumption of a single functional requirement, natural selection for the normal 

activities of the distinct enzymes in the pathway is mediated by different 

requirements. Much, if not most, of the enzymes may thus be fulfilling functional 

demands other than flux [43]. 

It was also found that even though negative feedback is often used in 

biochemical networks to achieve homeostasis, under certain conditions this feedback 

can cause the steady state to lose stability and be replaced by spontaneous oscillations 

of metabolites. The conditions for oscillation are: sufficient ‘‘memory’’ (or time delay) 

in the negative feedback loop, sufficient nonlinearity in the reaction kinetics, and 

proper balancing of the timescales of components in the loop [72]. Another interesting 

and well known result is that the coupling of positive feedback loops and the decrease 
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of negative feedback loops in a network increase the stability of its steady state. A 

recent report that support this design principle analyzes both random networks and 

models of specific biological networks to conclude that concatenate negative feedback 

loops decrease the stability of steady states while concatenated positive feedback 

loops increase that stability [108]. 

Melendez-Hevia and co-workers used the pentose phosphate pathway game 

(Fig. 2; see above) to understand how some of the more central metabolic pathways 

have evolved. These researchers developed and used the pentose phosphate pathway 

game (Fig. 2) to build alternative pathways to get from one metabolite to another in a 

metabolic network. By  combining  constraints  about the minimal number of carbon 

atoms that could be exchanged between metabolites with optimality principles 

favoring a minimal number of pathway steps  between metabolites, they concluded 

that the principle of the minimal number of steps is consistent with pathway evolution 

in general [50, 51, 58-60]. Later, this method was combined with thermodynamic 

constraints and used to argue that glycolysis is quantitatively designed in an optimal 

way with respect to flux optimization, ATP production and ATP usage [109-111]. 

However, it should be stressed that different a priori thermodynamic constraints could 

change the results of this analysis. Sometime later Mittenthal and co-workers 

developed a more complex version of the game [112-114]. They generated alternative 

networks relaxing the number of carbons that could be exchanged between 

metabolites, included a larger fraction of irreversible reactions in the networks and 

considered additional types of reactions and inputs. Pathway evolution was shown to 

be consistent with the rules of the modified game, because the predicted pathway was 

the same as those observed in real organisms. Recently, an evolution of this method 

was applied to study if central metabolism in E. coli follows a similar optimality 
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principle. The new rules consider that exchange of chemical groups between 

metabolites is limited by the functionality of enzymes described in the EC 

classification. With these rules, it was found that central metabolism is structured in a 

way that uses the minimal number of steps to connect the key precursor metabolites 

essential for biomass and energy production. Paths between consecutive precursors 

cannot be made shorter. The non-precursor compounds in the network form the 

shortest possible bridges between the precursors. Thus, central metabolism appears 

to be a minimal walk in chemical space between precursors [115]. This minimization of 

the number of steps between precursors could be driven by constraints imposed to 

the growth of E. coli by protein synthesis [116]. This biosynthetic process is often 

growth limiting, which would imply that cells with shorter pathways may have a 

competitive advantage due to their economy in proteins. Furthermore, short pathways 

have fewer intermediate and generate higher flux than long pathways of equally 

effective enzymes [117, 118]. This optimality principle allows making predictions: in 

organisms where a precursor is no longer essential, a shortcut would evolve that 

bypasses that precursor compound; and if a longer-than-minimal path is found 

between two compounds, an essential metabolite lies on that path. One question is 

that most pairs of precursors separated by more than one step could have been 

connected by several other alternative paths of the same length (but not shorter). 

Why the particular minimal path that occurs in the cell was selected out of these 

alternatives? Possibilities to explore include effects that can differentiate between 

paths of equal length, such as energy and reduction potential, toxicity effects of 

intermediate compounds and differential enzyme efficiency in each possible path. 

Design principles at the molecular level have also started to be linked to 

macroscopic organism fitness. For example, ammonia was used to analyze a fitness 
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tradeoff between resource abundant and resource limited environments for S. 

cerevisiae. This was done by analyzing the level of noise in Gdh1p expression and 

correlating it to the relative balance between resistance to toxic levels of ammonia 

and fitness in lower levels. It was found that as the noise in Gdh1p expression 

increased, this conferred enhanced resistance to ammonia toxicity. On the other hand, 

lower variation (noise) in Gdh1p levels exhibits greater fitness in physiological 

concentrations of ammonia [36]. 

Global metabolic responses have also been analyzed in search for design 

principles. For example, analyzing yeast data, it was found that the metabolic pathway 

map and the protein–protein interaction network (PIN) have significant positive 

correlation between the shortest paths across both network types. The sub-systems of 

the entire PIN appear to follow specific organizing principles: while physical 

interactions between proteins are generally dissortative (proteins of high degree 

interact with proteins of low degree), interactions between metabolic enzymes were 

observed to be assortative (enzymes frequently interact with other enzymes of similar 

degree or number of links associated with a node)[119]. 

Simple and robust growth laws connect growth rate with cell composition 

[120]. Growth rate of cells is maximized by interlocking two regulatory loops. They 

coordinate the amino acid flux between supply (amino acid synthesis and transport) 

and consumption (protein synthesis). One of the loops is the negative feedback by 

end-production inhibition of amino acids biosynthesis [19], discussed above. The 

second loop is the aminoacid supply-driven feedforward activation of ribosomal 

protein synthesis, restoring flux balance [121]. 



  Methods for and results from the study of design principles in molecular systems  

55 

 

An analysis of E. coli cells cultured under different growth-limiting conditions 

shows that the regulation of cellular proteome can be understood in terms of the 

general function of proteins. If the proteins are partitioned into several types of 

function, activity of the proteins in each partition is regulated in a coordinated fashion 

to respond to the specific metabolic challenge limiting the growth rate. Despite the 

complexity in the molecular details of the adaptive response, this coarse-grained 

approach suggests a principle for resource allocation in proteome economy [122]. 

Such top-down view, as in the characterization of the state of a gas through 

macroscopic measures such as temperature and pressure, captures the collective 

behavior of the metabolic network and gives a simple quantitative picture of the global 

regulation of the metabolic response that can be profitably used in future omics 

studies. 

 

2.6.4. Design principles in cellular rhythms 

The presence of a negative feedback loop in a network is a necessary condition for that 

network to be able to generate oscillations. Thus, different topological circuits can be 

associated with this dynamical behavior [72]. Oscillatory phenomena are the basis of 

cellular rhythms and may be found in different contexts, from metabolism [123] to 

development [124] and circadian rhythms [125]. Understanding the fundamental 

biological design principles underlying the networks generating such cyclic behaviors is 

an important question. 

One of the most well studied cellular oscillators is cell cycle. Basic design 

principles have been identified for the networks regulating the cellular process. 
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Models created by using molecular information suggest that the molecular mechanism 

regulating the eukaryotic cell cycle is composed of two bistable switches (governing 

G1-S and G2-M transitions) and an oscillator (controlling mitotic exit) [126]. The 

bistable switches are controlled by a molecular antagonism between CDKs and their 

antagonists. This switch has two alternative states: G1 (low CDK activity) and S-G2-M 

(high CDK activity) [127-129]. ‘‘Starter Kinases’’ (SKs) and ‘‘Exit Proteins’’ (EPs) flip the 

switch back and forth. Transitions between these states are controlled by two 

negative-feedback loops. The Start transition (G1-S) is triggered by a class of SKs that 

are down-regulated by the very species they are aiding. The Exit transition (M to G1) is 

promoted by a class of EPs that kill the very species they depend on. This topology 

creates a dynamic of irreversible transitions. Start and Exit checkpoints block 

progression through the cycle if any serious problems are encountered (DNA damage 

blocks Start, incorrect chromosome alignment block Exit). A size checkpoint at the 

Start transition ensures balanced growth and division. This control system of cell cycle 

regulation has four fundamental properties: alternation of S and M; check-points; 

irreversibility; balanced growth and division. Variations of this model also account for 

alternative modes of cell division, such as oogenesis (cell growth without division), 

fertilized egg division (rapid mitotic cycle without growth), endoreplication (repeated 

rounds of DNA synthesis without mitosis) and meiosis. Recent work by the groups of 

Nurse and Cross suggests that the different cell cycles have evolved from duplication 

and divergence from a primordial cell cycle with a single cyclin. The accumulation of 

this cyclin throughout the cell cycle allowed for the progression of the cycle. Cell 

division led to an abrupt decrease in that concentration, restarting the cycle [128, 130-

133]. 
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Other important biological oscillators are the networks responsible for 

regulating the circadian rhythm of organisms. These biological processes appear to 

have evolved independently for different groups of organisms [134]. For example, the 

proteins that regulate the circadian clocks of cyanobacteria and those of multicellular 

organisms evolved from different ancestors and generated networks that have diverse 

regulatory loops. On top of a stable oscillation, the networks of genes and proteins 

responsible for the circadian clock need also appropriate mechanisms for input signals 

that are required to reset and entrain the clock when conditions change. Inputs that 

are known to entrain the clock include light, temperature, and food. All known 

circadian clock networks use a multi-loop structure to obtain circadian oscillations that 

can, in principle be obtained with a single negative feedback loop. The presence of 

these multiple feedback loops appear to provide the clocks with higher flexibility that 

allows these clocks to be entrained and have their phase more easily reset by the input 

signals, while remaining fairly insensitive to noise and having a robust period [135, 

136]. This makes evolutionary and biological sense, because organisms on earth have a 

constant circadian period that often requires phase resets either due to changes in the 

day–night cycle or to moves between different time zones. A linear analysis of a non-

mechanistic model for the circadian clock of Arabidopsis further suggests that the 

circadian clock of this plant requires a mechanism for rapid light inputs if the clock is to 

adjust to photoperiod-dependent changes [137]. More complex instances of circadian 

clocks have also been analyzed. For example, in mammals, several thousand neurons 

of the suprachiasmic nucleus generate rhythms of approximately 24 h [138]. A 

mathematical model of the system suggests that the neurotransmitter feedback loop 

plays an important role in the appropriate synchronization of the ligth/dark cycles, 

allowing the network to resynchronizing the clock after a perturbation that simulates a 
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‘jet-lag’ of several hours. Other design principles have been proposed for networks to 

achieve phase-splitting behavior [139]. 

Another important issue about the networks that regulate biological rhythms 

is to understand in which situations one can expect the networks that regulate each 

autonomous rhythm to interact. Furthermore, how does that interaction benefit the 

fitness of the organism? Finally, are there specific modes of interaction (design 

principles) that improve the functional effectiveness of the interactions under different 

conditions? 

The answer to the first question is positive [140]. Cell cycle is also regulated by 

the circadian clock in Synechococcus elongatus [141] and in mice [140]. This regulation 

is consistent with a model where cell cycle rate decreases during the night [142]. The 

structure of the network that integrates both oscillators is still unclear. Thus, the 

answers to the second and third question are still missing. Nevertheless, in S. 

elongatus, a phosphorylation cascade of circadian clock proteins that signal to the 

putative transcription factor RpaA is involved in linking the two processes. It is 

tempting to speculate that in a photosynthetic organism such as S. elongatus it would 

make physiological sense to decrease the rate of cell cycle during the night, as the 

main source of energy for the cell is shut-off. If availability of resources is an important 

selective pressure in the coupling of the circadian and cell cycle oscillators, one might 

expect that cells from diurnal animals will go through cell cycle faster during the day, 

while cells from nocturnal animals will have a faster cell cycle during the night. An 

analysis of available data for nocturnal rodents is consistent with this prediction (see 

figures in [143, 144]). 



  Methods for and results from the study of design principles in molecular systems  

59 

 

Another strategy that can be used to generate oscillations provides a simple 

mechanism for coupling these oscillations to cell cycle. This strategy is based on the 

transient gene dosage imbalance caused by the location of two genes in opposite sides 

of the bacterial chromosome. This simple mechanism has been observed in the 

phosphorelay controlling sporulation in Bacillus subtilis and, along with a delayed 

negative feedback-loop between the proteins of the phosphorelay, is responsible for 

cell-cycle coordinated pulses of the sporulation master regulator Spo0A following DNA 

replication [145].  

 

2.6.5. Design principles in signal transduction networks 

Signal transduction is another area where design principles have been studied, both in 

prokaryotes and eukaryotes. The identification of many types of design principles for 

these networks has been reported. Here, we will discuss only a few of these reports, 

focusing mostly on phosphorylation cascades, both in prokaryotes and in eukaryotes. 

In prokaryotes, signal transduction through phosphorylation events is 

mediated by Two Component Systems (TCS) or Phosphorelays (PR).  In these systems, 

a sensor protein modifies its own phosphorylation state in response to some signal 

from the environment. The phosphate is then transferred to a response regulator 

protein that either modulates physiological response (in TCS) or transfers it again to a 

second histidine kinase that will subsequently transfer the same phosphate to a 

second response regulator (in PR; see Fig. 10).  TCS are ubiquitous in bacteria, and 

homologous pathways have been identified in several eukaryotic organisms as well, 

including S. cerevisiae, Arabidopsis thaliana, Neurospora crassa and Dictyostelium 

discoideum. 
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The modular aspect of TCS and PR circuits has facilitated the evolution of a 

variety of signal transduction modules. One circuitry motif that exemplifies this 

versatility is the four-step His-Asp-His-Asp PR. Different PR show the same alternating 

pattern of histidine and aspartate phosphorylation sites, but can utilize a different 

pattern of covalent linkage between individual protein domains: the four 

phosphorylation sites of the Kin-Spo0 pathway (in Bacillus subtilis) are found in 

independent proteins, whereas one protein can join the first two or three members of 

the PR (Sln1p-Ypd1p-Ssk1p and BvgS-BvgA pathways, in S. cerevisiae and Bordetella 

pertussis, respectively). The discovery that the yeast Sln1 pathway employs a PR 

mechanism with the same His-Asp-His-Asp configuration reported for the Kin-SpoO 

and BvgS-BvgA systems suggests that this signaling strategy may be widely utilized by 

eukaryotes as well as prokaryotes. However, it appears to be absent in mammals [146-

149]. 

 

Figure 10. Prototypical Two Component Systems (A), Phosphorelays (B), and MAP 
kinase cascades (C). HK – histine kinases; RR – response regulators; HPt – 
intermediate phosphotransfer protein, accepting phosphate on a histidine. MAPK – 
MAP kinase; MAPKK – MAPK kinase; MAPKKK – MAPKK kinase; ~P – 
phosphorylated form of the proteins. See text for mechanistic details. 
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Several aspects of the physiological regulation by TCS have been analyzed. One 

of these is the apparent insensitivity of the input–output relationship of TCS modules 

to changes in the concentrations of the system’s components [54]. It was found that 

this insensitivity can justify a design of the TCS that require three biochemical features: 

(i) ATP dependence of dephosphorylation; (ii) sensor kinase bifunctionality (the sensor 

catalyzes the phosphorylation of the response-regulator but also the 

dephosphorylation of the phosphorylated RR); and finally, (iii) the two-step nature of 

the sensor kinase (autophosphorylation and phosphotransfer) [150]. In contrast, it was 

found that TCS mediating responses that require hysteresis should have a channel for 

response regulator (RR) dephosphorylation that is independent from the sensor 

protein. In addition it is also required that the dephosphorylated forms of sensor and 

RR form a reversible dead-end complex [38, 151]. It has also been shown that TCS 

modules where the sensor kinase is bifunctional should be preferentially selected in 

physiological responses that need to be buffered against crosstalk, while TCS with 

monofunctional sensors should be selected in situations where the physiological 

response requires the integration of signals [151]. However, the use of signaling 

pathways with multiple inputs and a single output entails a loss of information about 

input signals. How cells integrate information from multiple inputs to modulate their 

gene expression states is poorly understood. Information theory can be adapted to 

study a biological circuit performing information processing and signal integration. The 

analysis of quorum sensing in Vibrio harveyi revealed that information transmission is 

primarily limited by interference from other signals, not by noise. Cells must tune the 

kinase activity of each signaling branch of the quorum sensing circuit to simultaneously 

learn about individual inputs. Cells can increase how much they learn about individual 
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signals by manipulating the different autoinducer production rates. Bacteria can learn 

preferentially about a particular input in a particular environment by using simple 

feedback loops to control receptor numbers. This analysis suggests that the need to 

minimize interference between signals probably imposes strong constraints on the 

design of signal-integration networks [152]. 

Some TCSs are positively autoregulated: the regulon controlled by active RR 

often includes the TCS operon, leading to a feedback loop. Positive autoregulation 

does not necessarily give rise to overall positive feedback. Mathematical model 

analysis shows that the effective sign of this feedback is determined by the values of 

the kinetic parameters of the system, making TCSs capable of tuning feedback sign, 

switching between positive and negative feedback to achieve appropriate outputs in 

different circumstances. Attainment of negative feedback depends on sensor 

bifunctionality (so that the sensor protein of the TCS can both increase and decrease 

the fraction of active RR) and RR activation independent of its cognate sensor. The 

feedback sign is physiologically relevant, since negative feedback reduces noise and 

gives rise to fast overshooting responses and positive loops lead to bistability, 

phenotypic heterogeneity and a stronger learning effect [153]. 

How does feedback lead to bistability [154]? The effect of the interplay of two 

positive feedbacks on the network bistability has been studied theoretically and 

experimentally. One example is the mycobacterial stress-response network which 

consists of the MprA/MprB TCS along with the σE-RseA sigma/anti-sigma factor 

system, involved in persistence in mycobacteria. This network contains two positive 

feedback loops. Positive autoregulation of the mprAB operon by MprA-P gives rise to a 

positive feedback. A second positive feedback arises from the transcriptional 

activation of σE by MprA-P and subsequent upregulation of mprAB operon by σE. The 
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analysis of reduced versions of the network, to understand the role of each 

component, shows that the second feedback involving σE makes the network bistable, 

but only due to the post-translational regulation of σE by its anti-sigma factor RseA, 

which increases effective cooperativity and leads to bistability [155].  Bifunctionality of 

the sensor kinase avoids bistability in the positively regulated TCS. 

Recently, the effect of the number of steps in the signaling of PR cascades was 

analyzed [156]. Under simplifying mechanistic assumptions, models for cascades with 

less than four steps are not capable of ultrasensitivity responses to signals. Thus, the 

authors suggest that 4-step PR cascades are the simplest evolutionary solution to the 

problem of high signal amplification in bacterial signal transduction. 

Despite the simplicity of regulatory loops in TCS and PR signaling pathways, 

these are capable of exhibiting complex temporal dynamics both on short and long 

timescales [157]. For example, positive autoregulation in the PhoB/PhoR TCS provides 

a regulatory mechanism that allows cells to adapt to changing environments by 

expressing different optimal levels of PhoB and PhoR proteins [158]. Another example 

of a sophisticated dynamics is found when, upon nutrient-limited conditions, the PR 

responsible for sporulation initiation in B. subtilis shows a pulsatile level of its output 

molecule, the phosphorylated master regulator Spo0A [159]. These series of pulses are 

successively larger and span over the course of several cell cycles, until a threshold is 

reached and cells commit to sporulation. As mentioned in the previous subsection, this 

pulsatile behavior is the consequence of a negative feedback-loop in the PR between 

Spo0F and KinA (substrate inhibition of the histidine kinase), which makes the system 

very sensitive to the ratio of KinA and Spo0F concentrations. As a result, any 

perturbation of this ratio can force the system to produce a pulsed response [145]. On 

the evolutionary timescale, these pathways have expanded in many species to 
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respond to a wide range of stimuli. This expansion has been driven by gene duplication 

and the subsequent diversification of specificity residues in the HK and RR, coevolving 

to retain their interaction while becoming insulated from their counterparts [160]. 

The eukaryotic equivalent of TCS and PR are MAP cascades (Fig. 10). These 

cascades are composed of three proteins. The first step in the cascade is the MAPKKK 

protein. It becomes phosphorylated in response to some signal and it in turn 

phosphorylates the second proteins of the cascade, the MAPKK. MAPKKs in turn 

phosphorylate MAPK, which then regulate the physiological response. Unlike TCS and 

phosphorelays, ATP is consumed in each phosphorylation event in MAPKs. It was 

shown that this type of signal transmission could account for high signal amplification 

[161, 162], and that the most energy efficient way to regulate this signal transduction 

is by signaling both the phosphorylating and dephosphorylating enzymes that control 

the cascade [163]. Such amplification depended on the existence of a highly 

cooperative mechanism in the phosphorylation of the proteins in the cascade and on 

an increase in the concentration of protein in each subsequent step of the cascade. 

Nevertheless, several questions about the design of these cascades remain 

unanswered. 

For example, why do MAPK cascades use three kinases instead of one? (other 

membrane-to-nucleus signaling pathways, such as the cAMP/protein kinase A and the 

Jak/Stat pathways, employ a single kinase). A numerical analysis of a MAPK cascade 

model shows that, with typical parameter values, the three step cascade behaves like 

a highly cooperative enzyme, even if none of the individual enzymes is regulated 

cooperatively. The degree of ultrasensitivity increases as the cascade is descended and 

depends critically on the assumption that the dual phosphorylation of MAPKK and 

MAPK occurs through a two-collision mechanism [164]. Thus, MAP cascades can 
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convert graded inputs into switch-like outputs, filter out noise and flip from off to on 

over a narrow range of input stimuli. This sort of behavior would be appropriate for a 

signaling system that mediates processes where cells switch rapidly between discrete 

states without assuming intermediate positions, like in mitogenesis, cell-fate 

induction, and oocyte maturation. 

Other questions that regard the design of MAP cascades concern the 

relationship between the concentrations of the enzymes in the three steps of the 

cascade [165-167]. Computational analysis provides rationale for why the MAPK and 

MAPKK concentrations are similar. The response time of the cascade is critically 

dependent on specific combinations of ranges of cellular MAPK and MAPKK 

concentrations. Concentrations of these signaling components fall within a region 

where the cascade seems to achieve optimal efficiency and rapid activation. When the 

MAPKK concentration becomes very different from the concentration of MAPK an 

undesirable delay is predicted in the response.  Both increases and decreases in the 

MAPK and MAPKK concentrations result in a reduction in the efficiency of this initial 

response [166]. The way that MAPK cascades interact has also been analyzed. 

Interacting MAPK cascades are capable of implementing useful logic and amplitude-

dependent signal processing functions (‘‘exclusive-or’’ function and an in-band 

detector or two-sided threshold) and their implementation requires only limited 

crosstalk. This behavior cannot be achieved with a single cascade or with non-

interacting cascades. A significant challenge still remaining is to determine if this 

potential is actually realized in the cell and if the computationally evolved solution 

resembles the solution chosen in the evolution of life. We also have yet to consider the 

cascade in a larger context, embedded in feedback loops, engaged in crosstalk with 

other signaling networks or protected from crosstalk by scaffolds [167]. 
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As mentioned above, signal transduction networks regulate their response 

using (typically negative) feedback loops. Such down-regulation of the response to 

signals can increase the correlation between the input and the output of the network 

[168, 169]. Recent work suggests that evolution of feedback as a mechanism to 

regulate the response in signal transduction networks must optimize opposing goals. 

On one hand this mechanism should increase the correlation between signal and 

output. On the other hand, it should be able to decrease the transmission of noise 

through the network. A network that maximizes the correlation signal-output also 

increases the effect of noise on that output [170]. This is easy to understand because 

by perfectly correlating input and output, a network will also perfectly correlate noise 

in the input to noise in the output. Thus, depending on the particular system one 

might expect feedback loops that preferably buffer the response of the network 

against noise, while in other systems the feedback loops will preferably maximize the 

correlation between input and output. 

2.7. Final remarks 

To be able to write this chapter we struggled with the question of what is a biological 

design principle. The definition we gravitated towards is by no means the only one 

available. However, once we accepted it as a working definition, we could review some 

of the work that has improved our understanding of such principles in molecular 

circuits. The importance of that work is justified because it improves our 

understanding of how biology works. The appropriateness of considering functional 

effectiveness of molecular circuits rather than fitness of the whole organism in the 

analysis is also discussed in this review. After establishing a framework for thinking 

about design principles, we discuss the different theoretical and mathematical 
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methods that are usually applied to study them. We finish by presenting examples of 

those principles in different types of molecular circuits. We restricted the discussion 

mostly to intracellular networks, with some exceptions [86]. This means that most of 

the work that deals with design principles in molecular networks that regulate 

development is not included (for example, see [22, 74, 171-173]). Nevertheless, the 

examples given here present a general view of the research in this field. 

Considering the work reviewed and presented here, one could feel that many 

of the design principles are somewhat ad hoc and too system specific. This view raises 

the important question of whether, over time, something like a ‘‘periodic table’’ of 

universal design principles that are valid for all types of biological circuits can be built. 

In other words, can we identify network elements, either qualitative or quantitative, 

that are almost always associated with specific types of behavior? 

There appear to be cases where the answer is positive. For example, it is well 

known that the existence of a positive feedback loop is a necessary condition for 

multistability in molecular networks [154]. Also, a sort of ‘‘uncertainty principle’’ was 

proposed for feedback in biological systems [170]. This principle roughly states that 

feedback can be used to maximize correlation between input and output of a 

biological system at the cost of increasing noise amplification or used to decrease 

noise amplification at the cost of decreasing correlation between input and output. 

This imposes fundamental limits to how much evolution can optimize responses to 

noise in molecular systems through the evolution of feedback interactions. Results of 

Reaction Network Theory that relate the structure of the network with the possibility 

of different types of dynamical behaviors may also fit into this category of basic design 

principles [40, 48, 51, 54, 55]. The common link between all these principles is the fact 
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that they are independent of the specific function of the circuit being analyzed and 

represent hard constraints to dynamical behavior imposed by network structure. 

As opposed to these ‘‘elementary’’ design principles, most of the principles 

discussed in this review hinge heavily on understanding the function of the circuit 

under analysis. Showing that a given feature improves the function of the circuit is 

crucial to explain why that feature is fixed during evolution. Such features are specific 

elements in the network (for example, bifunctionality in bacterial two component 

systems [151]), particular ranges of parameter values that enable a given dynamic 

response (for example, survival during heat shock adaptation in yeast [62]), or both 

(for example, only specific network designs with a given range of parameter values 

permit creating a developmental system with one stripe [74]). Take the analogy of a 

‘‘periodic table of design principles’’ a bit further, many of the principles discussed in 

this special issue may be more like ‘‘molecules’’, for which no periodic table exists, 

rather than like ‘‘atoms’’, for which it does. 

This does not in any way demeans the usefulness of these principles for 

understanding the way biological systems work and how they came to be as they are. 

If fact, an engineer might argue that proof of understanding of a system comes from 

building instances of the system that work under different regimes and demand 

specifications. From this perspective, creating more restricted catalogues that 

associate a specific functional behavior in a given type of system to a specific design 

element for that system may be more useful that a general periodic table. Such 

catalogues could become extremely useful for Synthetic Biology, enabling the 

construction of artificial biological circuits of a certain type with specific properties and 

behavior. 



  Methods for and results from the study of design principles in molecular systems  

69 

 

Synthetic Biology is the major body of work that is absent from this review. 

This choice was made because many good and extensive reviews on the subject have 

been published recently. We refer the readers to some of those reviews for more 

details [174-190]. Researchers are using decades of accumulated molecular knowledge 

to engineer new circuits within organisms that either implement new functionality or 

test some of the predictions made in the past through the analysis of design principles 

(see, for example, [16, 191]). Synthetic biologists design and implement non-naturally 

occurring biological networks that perform a given function. Identification of design 

principles, on the other hand, focuses on understanding the emergence of these 

designs from evolution. Both activities are complementary and design principles can 

greatly assist and guide the development of Synthetic Biology applications (see, for 

example, [192] for a more detailed discussion on this subject). The merging of Design 

Principle analysis to Synthetic Biology creates a field of opportunities that may 

immensely potentiate our understanding of how organisms work at the molecular 

level and why they came to work like they do [193]. 

Biomedical research is another area that may in the future benefit from the 

study of biological design principles. If principles that guide shifts between pathogenic 

and healthy states can be identified, these can be used to devise strategies for better 

treatments. Furthermore, host-pathogen interactions might also have evolved in such 

a way that these interactions and their regulation can be classified into a small set of 

principles that can be used to facilitate host survival. 

In summary, it seems to us that there may come a time when a hierarchy of 

design principles will need to be established and accepted for molecular networks. It is 

hard to imagine what such a hierarchy will look like. One possibility is that it becomes 

organized along the lines discussed above. It could be that there will be a set of design 
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principles that are universal and constrained by network structure. Then, on top of 

these, and specific to the networks that regulate the biological processes of interest, 

one will identify principles that explain if and why such networks have been selected 

to perform the process. If this is the case, then we believe that the work reviewed here 

constitutes a very encouraging head start towards the goal of such a classification. 
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3.1. Abstract 

Two Component Systems and Phosphorelays (TCS/PR) are environmental signal 

transduction cascades in prokaryotes and, less frequently, in eukaryotes. The internal 

domain organization of proteins and the topology of TCS/PR cascades play an 

important role in shaping the responses of the circuits. It is thus important to maintain 

updated censuses of TCS/PR proteins in order to identify the various topologies used 

by nature and enable a systematic study of the dynamics associated with those 

topologies. 

To create such a census, we analyzed the proteomes of 7609 organisms from 

all domains of life with fully sequenced and annotated genomes. To begin, we survey 

each proteome searching for proteins containing domains that are associated with 

internal signal transmission within TCS/PR: Histidine Kinase (HK), Response Regulator 

(RR) and Histidine Phosphotranfer (HPt) domains, and analyze how these domains are 

arranged in the individual proteins. Then, we find all types of operon organization and 

calculate how much more likely are proteins that contain TCS/PR domains to be coded 

by neighboring genes than one would expect from the genome background of each 

organism. Finally, we analyze if the fusion of domains into single TCS/PR proteins is 

more frequently observed than one might expect from the background of each 

proteome.   

We find 50 alternative ways in which the HK, HPt, and RR domains are 

observed to organize into single proteins. In prokaryotes, TCS/PR coding genes tend to 

be clustered in operons. 90% of all proteins identified in this study contain just one of 

the three domains, while 8% of the remaining proteins combine one copy of an HK, a 

RR, and/or an HPt domain. In eukaryotes, 25% of all TCS/PR proteins have more than 
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one domain. These results might have implications for how signals are internally 

transmitted within TCS/PR cascades. These implications could explain the selection of 

the various designs in alternative circumstances.  
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3.2. Introduction 

Historically, Two Component Systems and Phosphorelays (TCS/PR) have been 

considered as primary environmental signal transduction cascades in prokaryotes [1, 

2]. In TCS/PR, environmental signals regulate the autophosphorylation state of a 

sensor histidine kinase. In TCS this sensor transfers its phosphate to a response 

regulator, which will in turn directly regulate the relevant cellular responses to the 

signal. The sensor and response regulator may be two independent proteins. They may 

also be the same protein, containing independent domains that are responsible for 

each of the two functions. In PR, additional phosphotransfer steps may happen before 

the phosphate reaches the response regulator protein(s) that directly controls cellular 

responses (Figure 1). PR are considered to be a main form of signal transduction in 

bacteria [3, 4] . They are less frequently present in eukaryotes and absent in animals 

[5-8] . 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.Two component systems. A–  Prototypical two component system with one 
phosphotransfer step between HK and RR. B –  3-step phosphorelay, with four protein domains 
involved in the signal transduction process and 3 phosphotransfer steps. 
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The mechanism of signal sensing in the various types of TCS/PR have been 

studied with great detail and is reviewed elsewhere [9-11]. Extensive and insightful 

reviews have also been published about the topology (pattern of molecular 

interactions between the proteins in the cascade), crosstalk and signal transmission in 

TCS/PR [10, 12-30], as well as about the domain structure and evolution of the 

proteins involved in the cascades [1, 2, 11, 27, 31-43]. 

There are several protein types and domains that nature uses in TCS/PR 

cascades. For example, CHEW adapter proteins permit transmitting information about 

nutrient gradients to the TCS that regulates bacterial response to those gradients [44]. 

In another example, the PII protein regulates the activity of the TCS that responds to 

nitrogen depletion in the environment [45]. There are other cases where external 

proteins bind proteins from a TCS/PR cascade and modulate their stability [46]. These 

protein types are used in TCS/PR with specific biological functions and are not 

common to all TCS/PR cascades.  

Nevertheless, there are four types of protein domains that are common to all 

TCS/PR cascades. Sensor domains, with wide sequence variability, are responsible for 

capturing the environmental changes and adjusting the activity of the cascade [2, 22]. 

Irrespective of protein domain organization, signal transmission within a TCS/PR circuit 

is done using histidine kinase (HK) domains, response regulator (RR) domains, and/or 

histidine phosphotransfer (HPt) domains. These last three domains are responsible for 

internal signal transmission (IST) within the cascade and represent the focus of the 

current work.  Because they are common to all TCS/PR cascades, the results from our 

study are generally applicable and do not depend on the specific environmental signal 

or biological response mediated by the cascades.  
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Several examples demonstrate that the dynamic range and signal-response 

curve that a given cascade might exhibit is closely related to the interactions between 

the various proteins and to the organization of IST domains within each cascade 

protein [46-52]. For example, circuits where each IST domain is in an independent 

protein are more likely to participate in crosstalk and branching is more likely to occur 

in the signal transduction process [27, 37]. In addition, noise propagates differently in 

a cascade of independent IST domain proteins than in a cascade where IST domains 

are found within the same protein [53] (Figure 2). Also, TCS where phosphatases are 

involved in dephosphorylating the response regulator protein may show hysteretic 

behavior. In contrast, TCS where the sensor protein works both as phosphodonor and 

phosphatase for the response regulator may only exhibit graded responses to changes 

in the signal [49].  

 

Figure 2.Four different patterns of covalent linkage between the protein domains involved in 

phosphorelays. A – A four protein phosphorelay. B – A phosphorelay with and hybrid kinase at 
the beginning of the cascade. C – A two protein phosphorelay where the first two 
phosphotransfer steps between domains occur in a single protein. D – A one protein 
phosphorelay, where all phosphotransfer steps take place between domains of a single protein. 
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These and other examples [52, 54-56] show that connectivity of the TCS/PR 

circuits and domain organization of the proteins play an important role in shaping the 

responses of the cascades to their cognate signals. It is thus important to maintain 

censuses of TCS/PR proteins in order to identify the various network topologies used 

by nature and enable a systematic study of the internal signal transduction dynamics 

associated with those topologies. Information about such topologies can be retrieved 

for a detailed analysis from several databases [57, 58].  

While MIST2 [57] contains information about less than 3000 genomes, Pfam 

[59] contains a few hundred sequences divided among the HK, RR, and HPt domain 

families involved in TCS/PR cascades. Currently, at the NIH there are over 10000 fully 

sequenced and annotated genomes that are freely accessible to the public. Because of 

this, obtaining a more up to date census of the TCS/PR in these genomes is an 

important task that we set out to do. We analyzed the TCS/PR proteins of 7609 

organisms from all domains of life with fully sequenced and annotated genomes. We 

focus on the IST domain families HK, RR, and HPt of TCS/PR cascades. First, we survey 

the number of TCS/PR domains in each organism and how these domains are arranged 

into individual proteins. Then, we find all different type of operon organizations and 

analyze how much more likely are proteins that contain TCS/PR domains to be coded 

by neighboring genes than one would expect from the genome background. Finally, we 

analyze how the percentage IST domain fusion within TCS/PR proteins changes among 

all analyzed genomes.  

Our census finds that there are 50 alternative ways in which the HK, HPt, and 

RR domains are observed to organize into single proteins. 90% of all proteins identified 

in this study contain just one RR or HK domain, while 8% of the remaining proteins 

combine one copy of a HK, a RR, and/or a HPt domain. We also find that more than 
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25% of all TCS/PR eukaryotic proteins have more than one domain. Our results are 

consistent with previous works and identify TCS/PR proteins in all non-animal phyla. 

Overall, our results set the stage for a systematic study to compare the internal 

dynamic behavior of signal transduction associated with each circuit topology in 

TCS/PR cascades. 

 

3.3. Material and Methods  

3.3.1. Identification of proteins containing TCS/PR domains 

The fully annotated proteomes of 9961 organisms were downloaded from NCBI’s 

genome database (January 2014 version). 2352 of these proteomes were eliminated 

because they belonged to phages, virus, satellite DNA sequences, or organisms whose 

taxonomic classification was still not fully resolved. The remaining 7609 proteomes 

belonging to 35 phyla from Bacteria, 6 phyla from Archaea and 11 eukaryotic phyla 

(Supplementary Table 1) were further analyzed in search for proteins containing 

domains of types HK, RR and HPt. These domains are associated with IST in all TCS/PR 

cascades. Other protein domains (such as the CHEW adaptor domain or the P2 protein 

from NRI/NRII, among many others) were not included in the analysis because they are 

specific of certain TCS/PR cascades. The sensor domain of TCS/PR cascade proteins 

was also not included due to its sequence variability. Thus, the results from our study 

are general for all TCS/PR cascades.  

We used PROSITE (http://prosite.expasy.org) to obtain a set of well curated 

sequences that can be used as a seed to identify TCS/PR proteins in the relevant 

proteomes. We downloaded a multiple alignment of all relevant ortholog sequences 
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for each protein domain (HK – PS50109 PROSITE Domain, RR – PS50110 PROSITE 

Domain and HPt – PS50894 PROSITE Domain) from PROSITE. We then used these three 

multiple alignments as a set of query sequences for two independent searches. One 

was done using HMMER [60]. For each multiple alignment downloaded from PROSITE, 

we built a profile HMM using hmmbuild, and performed the search of the profile HMM 

against all proteomes selected from the NCBI database using jackhmmer. The second 

search was done in parallel using PSI-BLAST [61]  and the three multiple alignments 

downloaded from PROSITE as a query. HMMER finds homologues that are more 

distantly related than those found by BLAST. 

We simultaneously use BLAST and HMMER because they have different 

sensitivities in detecting sequence similarities. BLAST generates a higher number of 

false negatives, while HMMER generates a higher number of false positives. By using 

both and filtering the results, we hope to obtain a more precise picture of the 

conserved domains. In each search we queried the 7609 proteomes in order to 

identify proteins with domains that are homologous to those used as queries.  

In addition, the consensus sequence was calculated for each domain (HK, RR 

and HPt) independently. Using an in-house PERL script, the most common residue in 

each position was identified for each of the three multiple alignments. This residue 

was taken as the consensus value for that position in the corresponding protein 

domain. Subsequently the three consensus sequences were used to search each 

proteome using PSI-BLAST [61]. In all three searches, the hits selected were the ones 

with an e-value lower than 10-6 and with a domain coverage of at least 80%. 

After performing these three searches, a PERL script was also used to perform 

a fourth text-mining search and identify the proteins that were annotated in each 
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proteome as being histidine kinases, sensory kinases, hybrid kinases, response 

regulators or histidine phosphotransferases.   

The results of the four searches were merged into a non-redundant set. A total 

amount of 469421 proteins containing HK, HPt and/or RR domains were identified. 

This set was curated in the following way: 

1 – First we manually looked at the annotation of the proteins to identify functions 

that are not involved in TCS/PR cascades (e.g. serine kinase). 

2 – Then, we build a PERL script that automatically eliminates proteins annotated with 

those functions from the list. 

3 – We finish by automatically comparing the number of proteins in the list and the 

number of proteins containing terms related to TCS/PR cascades. 

4 – We repeat steps 1-3 until the number of proteins in the list and the number of 

proteins containing only terms related to TCS/PR cascades are the same. 

In this way, we semi manually identified 36169 proteins that were annotated 

as being something other than a TCS/PR protein. These proteins were eliminated. 

Frequent protein types found in the discarded set of proteins are serine/threonine 

kinases and several types of regulatory transcription factors. 

The remaining 433255 proteins were then reanalyzed and an additional set of 

17727 proteins were found to be annotated as being hypothetical or partial proteins. 

For each of the three domains, the set of 17727 hypothetical and partial proteins were 

aligned using Clustal X in order to identify the conserved histidine motif in the HK and 

HPt domains, and the conserved aspartate residue in RR domains. Those sequences 

without a conserved histidine or aspartate residue were eliminated from the data, 
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leaving a grand total of 415525 annotated proteins and 17724 partial/hypothetical 

proteins containing HK, RR and/or HPt domains.  

A PERL script was developed to filter the curated data sets and determine 

both, the domain composition of each protein and, when they belonged to the same 

organism, the relative position of their corresponding genes with respect to each other 

in the genome. 

Once we had identified all proteins containing HK, RR or HPt domains, and the 

relative genomic position of their corresponding genes, we looked for all type of 

operons of TCS/PR coding genes that occur in the organisms with fully sequenced 

genomes. For this purpose, we performed a search of all genes coding HK, RR or HPt 

protein domains that are located in consecutive positions on prokaryotic genomes. We 

assumed that they constitute a transcription unit, although this may introduce a small 

error, as consecutive operons coding for independent TCS/PR exceptionally exist. In 

our search, we allow the presence of a gap in the operon, that is, a gene which does 

not encode any HK, RR or HPt domain, because this could be a gene with regulatory 

functions in the operon.  

The statistical treatment of data was carried out independently with and 

without taking into account the hypothetical and partial proteins found. Both results 

are qualitatively the same. In the Results section of this chapter we give the results 

from the analysis of the set of proteins without the hypothetical and partial proteins. 

The sequence files for all domains are also available at 

http://web.udl.es/usuaris/pg193845/Salvadoretal.html.  
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3.3.2. Numerical and Statistical Data analysis  

To estimate how the clustering of the various TCS and PR proteins in a genome 

differed from what one would expect by chance in the context of that genome, we 

took the following approach. First, we calculated how frequently one would expect 

proteins containing TCS/PR domains to be coded by neighboring genes in a genome if 

the order of genes was fully random, given the total number of proteins in that 

genome, and the number of proteins involved in TCS/PR cascades. The expected 

neighboring frequencies under this assumption can be computed by Eqs. 1-6. In these 

equations F(P1↔P2) represents the expected frequency of the neighboring events in 

a genome for genes coding proteins of types P1 and P2, nRR represents the number of 

proteins containing one RR domain in the proteome, nHK represents the number of 

proteins containing one HK domain in the proteome, and P represents the total 

number of proteins annotated to the proteome.  

n n
F(HK RR)  

P -1 P -2
RR RR↔ = +       Eq. 1 

Eq. 1 represents the probability that a gene localized in position j of the 

genome is located next to a gene coding for a protein that contains an RR domain, 

either in positions j-1 or j+1, if gene order is random in a genome. The first term of the 

sum represents the probability of the presence of an RR gene in one of the two 

possible locations irrespective of its presence also in the other genome location, and 

the second term is the probability of the presence of the RR gene in one of the two 

genome locations when it is not found in the other one. We note that we are not 

calculating the probability of having a consecutive gene pair containing HK and RR 

domains. Rather, for any genomic position j, we ask what the probability of its 
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neighboring a gene containing an RR domain is. Eq. 1 gives a good estimation of this 

random probability, given that the total number of protein coding genes is tens to 

hundreds of times larger than the number of IST domain coding genes, and assuming 

that position j represents neither the first nor the last genomic position. This expected 

RR neighboring frequency will be compared with the actual fraction of HK genes that 

are found next to RR genes in order to study their genomic distribution. 

n n
F(HK  RR  HK )  6

2 P -1 P -2
HK RR↔ ↔ = × ×

     Eq. 2 

Eq. 2 computes the probability of finding an RR gene and a second HK gene in 

the genomic neighborhood of a given HK gene. Because these three consecutive genes 

can be sorted in 6 different ways, we must multiply by 6 the probability of an 

individual neighboring event. Again, note that we assume having an HK domain 

containing gene, and ask what the probability of its neighboring genes containing 

additional HK and RR domains is. 

2

n n 1 n 1
F(HK  RR  HK RR )  12

2 P 1 P 2 P 3
RR HK RR− −↔ ↔ ↔ = × × ×
− − −   Eq. 3 

Similarly, in Eq. 3 we compute the probability that, considering that we have 

found a gene containing an HK domain in a given place in the genome, we also find in 

consecutive genomic positions around that HK gene location another HK gene and two 

RR genes, if gene organization is random. These four genes can be sorted in 24 

different ways, but we don’t differentiate between the two RR genes and therefore 

there are only 12 possible spatial arrangements of these series of four genes. 

n n
F(HKRR  HK  RR)  6

P -1 P -2
HK RR↔ ↔ = × ×     Eq. 4 
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In Eq. 4, the probability of the event is computed in exactly the same way as in 

Eq. 2. 

2- P

n

1- P

n
  RR) F(HKRRHPt RRRR +=↔

     Eq. 5 

2- P

n

1- P

n
  RR) F(HKRRHK RRRR +=↔      Eq. 6 

Eq. 5 and Eq. 6 compute the probability of finding and RR gene placed in the 

genome next to an HKRRHPt or an HKRRHK gene respectively, exactly in the same way 

as described above for Eq. 1. 

Once these expected frequencies were computed using Eqs. 1-6, we calculated 

the odds ratios of the observed neighboring events with respect to the expected 

neighboring event. All numerical and statistical calculations were done using 

Mathematica [62]. 

 

3.3.3. Statistical Models 

To analyze the relationship between the number of TCS/PR gene fusion events and the 

proteome size, we built a linear model that would better fit our data for % of fused HK 

(RR, HPt) domains vs. total number of HK (respectively, RR, HPt). We also built linear 

models of total number of IST domains in an organism vs. total number of proteins in 

the proteome and phylogeny (prokaryote, eukaryote). In other words, we fit the data 

to Eq. 7:  

( )1 2 lo gN u m b er o f IST d om ain s T o ta l nu m b er o f p ro te in s in p ro teo m e P hy enyα α ε= + +

Eq. 7. 
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In Eq. 7, the variable phylogeny can assume two values. If the organism is a 

prokaryote, the variable has value 1; otherwise it has value 2. An ANOVA analysis was 

used to determine whether the coefficients for each control variable of the linear 

model are significantly different from zero. If so, this implies that the variable is 

relevant in explaining the variation observed in the dependent variable.    

When fitting the data to the linear models we also calculated the R2 and 

adjusted R2 of the models. R2 shows how well terms (data points) fit a curve or line; 

adjusted R2 also indicates how well terms fit a curve or line, but adjusts for the number 

of terms in a model.  

 

3.4. Results 

3.4.1. Survey of proteomes containing proteins with 

domains involved in internal signal transduction (IST) in 

TCS/PR cascades 

Bacteria 

Table 1 summarizes the full set of results for bacteria. Proteins with HK and RR 

domains are present in the proteome of 100% of the species analyzed from the 

following bacterial phyla: Aquificae, Chlorobi, Verrucomicrobia, Chloroflexi, 

Cyanobacteria, Deferribacteres, Deinococcus-Thermus, Dictyoglomi, Acidobacteria, 

Nitrospirae, Planctomycetes, Epsilonproteobacteria, Spirochaetes, 

Thermodesulfobacteria, and Thermotogae. In contrast, proteins containing HK and/or 
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RR domains were not identified in a small percentage of species in the following phyla: 

Actinobacteria – 0.63% (4 out of 635 species surveyed), Bacteroidetes – 9.36% (22 out 

of 235 species), Firmicutes – 0.68% (14 out of 2066), Fusobacteria – 5.26% (2 out of 

38), Alphaproteobacteria – 3.55% (16 out of 451), Betaproteobacteria – 1.64% (6 out 

of 366), Deltaproteobacteria – 1.22% (1 out of 82), Epsilonproteobacteria – 0.24% (1 

out of 410), Gammaproteobacteria – 1.83% (41 out of 2246), Synergistetes – 9.09% (1 

out of 11). Interestingly, no proteins containing HK or RR domains were identified in 

most Tenericutes species. Only 18 out of the 111 surveyed Tenericutes species have 

proteins with HK and RR domains. 

The percentage of species in each phylum with proteins containing HPt 

domains is lower than the percentage of species with HKs and RRs, and ranges from 

less than 10% (Chlamydiae, Tenericutes) to more than 90% (Deferribacteres, 

Acidobacteria, Nitrospirae, Planctomycetes, Deltaproteobacteria, 

Epsilonproteobacteria, Gammaproteobacteria, Spirochaetes, Thermodesulfobacteria, 

and Thermotogae). It should be noted that HPt domains are also used by proteins that 

import PTS sugars [63], which means that not all HPt domains we found are involved in 

PR or TCS signal transduction. 

Archaea 

Proteins with HK and RR domains were identified in the proteome of 154 out of 179 

Euryarchaeota species, 9 of the 11 Taumarchaeota species and only 2 out of 51 

Crenarchaeota species surveyed. Proteins with HPt domains were identified in the 

proteome of 115 Euryarchaeota species and in 7 of the 11 Taumarchaeota species 

surveyed. No proteins containing HK, RR, or HPt domains were identified in 

Nanoarchaeota, Nanohaloarcheota, and Korarchaeota (Table 1). 
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Table 1. Percentage of species in each phylum with TCS/PR proteins. 

Domain Phylum Abbreviaton nº of 

species 

surveyed 

% of species 

with 

HK and RR 

domains 

% of species 

with HPt 

domains 

Bacteria Actinobacteria At 635 99.37 14.49 
Bacteria Aquificae Aq 13 100.00 76.92 
Bacteria Armatimonadetes Ar 1 100.00 100.00 
Bacteria Bacteroidetes Ba 235 89.79 49.79 
Bacteria Chlorobi Cb 14 100.00 71.43 
Bacteria Caldiserica Cd 1 100.00 0.00 
Bacteria Chlamydiae Cm 108 98.15 1.85 
Bacteria Lentisphaerae L 1 100.00 100.00 
Bacteria Verrucomicrobia V 10 100.00 80.00 
Bacteria Chloroflexi Cf 23 100.00 65.21 
Bacteria Chrysiogenetes Cr 1 100.00 100.00 
Bacteria Cyanobacteria Cy 118 100.00 75.42 
Bacteria Deferribacteres Df 4 100.00 100.00 
Bacteria Deinococcus-Thermus Dt 20 100.00 35.00 
Bacteria Dictyoglomi Dc 2 100.00 0.00 
Bacteria Elusimicrobia El 1 100.00 0.00 
Bacteria Acidobacteria Ac 9 100.00 100.00 
Bacteria Fibrobacteres Fb 1 100.00 100.00 
Bacteria Firmicutes Fi 2066 99.42 37.80 
Bacteria Fusobacteria Fu 38 94.74 28.95 
Bacteria Gemmatimonadetes Ge 1 100.00 100.00 
Bacteria Nitrospinae  Ni 1 100.00 100.00 
Bacteria Nitrospirae Nt 4 100.00 100.00 
Bacteria Planctomycetes  Pl 20 100.00 100.00 
Bacteria Alphaproteobacteria A 451 96.67 58.31 
Bacteria Betaproteobacteria B 366 98.36 59.56 
Bacteria Deltaproteobacteria D 82 98.78 98.78 
Bacteria Epsilonproteobacteria E 410 100.00 98.54 
Bacteria Gammaproteobacteria G 2246 98.31 95.46 
Bacteria Zetaproteobacteria Z 1 100.00 100.00 
Bacteria Spirochaetes S 274 100.00 99.64 
Bacteria Synergistetes Sy 11 90.91 63.64 
Bacteria Tenericutes T 111 15.32 7.21 
Bacteria Thermodesulfobacteria Th 2 100.00 100.00 
Bacteria Thermotogae Tt 17 100.00 100.00 
Archaea Crenarchaeota C 51 3.92 3.92 
Archaea Euryarchaeota Eu 179 86.03 64.25 
Archaea Korarchaeota K 1 0.00 0.00 
Archaea Thaumarchaeota Ta 11 81.82 63.64 
Archaea Nanoarchaeota N 1 0.00 0.00 
Archaea Nanohaloarchaeota Nh 1 0.00 0.00 
Eukarya Alveolates  Av 5 0.00 20.00 
Eukarya Amoeboflagellates Am 1 100.00 100.00 
Eukarya Euglenozoa Eg 5 40.00 0.00 
Eukarya Microsporidians Mi 2 50.00 0.00 
Eukarya Ascomycetes As 31 54.84 96.77 
Eukarya Basidiomycetes Bs 2 100.00 100.00 
Eukarya Eudicots Ed 2 100.00 100.00 
Eukarya Monocots M 1 0.00 100.00 
Eukarya Nematodes - 1 0.00 0.00 
Eukarya Arthropods - 7 0.00 0.00 
Eukarya Chordates - 10 0.00 0.00 
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Eukaryotes 

HK and RR domains were identified in the proteomes of 20 in 35 fungi species. 32 fungi 

species contain proteins where the HPt-domain was identified. HK, HPt, and RR 

domains were identified in the proteomes of the 2 eudicot species surveyed, but only 

HK and HPt, and not RR domains, were identified in Oryza sativa.  

There are only two surveyed protist phyla that contain proteins with IST 

domains. These phyla are Euglenozoa and Amoeboflagellates. We analyzed five 

Euglenozoa species. Out of these, only Leishmania donovani and Leishmania major 

contain proteins with HK and RR IST domains. These domains are always found in 

separate proteins. Interestingly, only one RR domain containing protein was identified 

in each of the two species. Surprisingly, only HK domains were identified in proteins 

from Leishmania infantum and Trypanosoma brucei. No IST domains were identified in 

Leishmania braziliensis. In Dictyostelium discoideum (Amoeboflagellates), the HK 

domain was only identified in hybrid HKRR, HKRR1RR2, or HKRR1HK2RR2 proteins. In 

contrast, RR domains also appear in proteins where no other IST domains are 

identified.  

No HK, RR, or HPt domains were found in animal proteomes in the context of 

TCS/PR cascades 

.  
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3.4.2. Percentage of proteins with HK, RR or HPt domains 

in the surveyed proteomes 

For simplicity, hereafter we shall refer to proteins containing IST domains typical from 

TCS/PR cascades as TCS/PR proteins. On average, between 1 and 2% of a prokaryotic 

proteome is composed of TCS/PR proteins (mean = 1.37%). In contrast, when an 

eukaryotic proteome contains TCS/PR proteins, they account for between 0.05% and 

0.2% of the entire proteome (mean = 0.11%). In bacteria, Deltaproteobacteria is the 

group with the highest average percentage of TCS/PR proteins (Figure 3). In contrast 

Tenericutes and Chlamydiae almost tie with the lowest average percentage of TCS/PR 

proteins (Figure 3). 

It has been observed in previous analyses that the number of proteins 

containing IST domains associated with TCS/PR cascades increases almost 

quadratically with the number of total proteins in a proteome [64, 65]. We further 

wanted to assess if this dependency is significantly different between eukaryotes and 

prokaryotes. To do so we fit the data to the linear model described by Eq. 7. An 

ANOVA analysis shows that phylogeny is important in explaining the variation in total 

number of IST domains found in a proteome (p<10-25). Because of this we divided the 

dataset in prokaryotes and eukaryotes, and fit each dataset to the linear model shown 

in Figure 4. We find that the fraction of variability in number of IST domains explained 

by proteome size in eukaryotes doubles that of prokaryotes. This suggests that the 

number of IST domains could evolve differently in prokaryotic and eukaryotic 

organisms. 
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Figure 3.Percentage of TCS/PR proteins in the proteome per phylum. The colored box represents the range of percentage values comprised between the 25% and 
the 75% quantiles, and the edges of the vertical bar denote the upper and lower percentage values for each phylum. Phylum abbreviations are given in Table 1. 
Phyla with only one species surveyed are not represented in the figure. Their percentage of TCS/PR proteins per phylum are: Ar (0.93), Cd (0.89), L (0.68), Cr (3.73), 
El (0.78), Fb (0.81), Ge (3.15), Z (2.47), Ni (1.97), K (0), N (0), Nh (0), Am (0.17) and M (0.04).We have found only 2 TCS/PR proteins in Av (5 sp): 1 HPt in T. annulata 
and 1 HK in T. parva.  
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Figure 4.Percentage of TCS/PR proteins in the proteome versus total number of proteins in 

the proteome. The upper graph depicts the data from prokaryotes, and the lower graph 
depicts the data from eukaryotes. R

2
 is 0.21 for prokaryotes and 0.49 for eukaryotes. This 

means that proteome size explains 21% of the variation in the percentage of TCS/PR in 
prokaryotes and 49% in eukaryotes.  

 

3.4.3. Survey of TCS/PR protein types 

We find fifty unique types of TCS/PR proteins, when it comes to IST domain 

organization within a single polypeptide chain. These unique types of TCS/PR proteins 

are shown in Table 2, sorted by abundance. In that table, the protein identifier 

describes the type of IST domain (HK, HPt, or RR) and the number describes how many 



 A survey of HK, HPt and RR domains and their relative organization in TCS and PR 

103 

 

domains of a given IST type are found in each protein. Hereafter we shall refer to 

proteins containing only one HK IST domain as HK protein type, proteins containing 

one HK domain and one RR domain as HKRR protein type, and so on and so forth. 

Overall, all phyla where IST domains associated with TCS/PR cascades were 

identified have RR and HK protein types, with the exception of Monocots, which lack 

RR domains. HKRR protein type (also known as hybrid HK) is present in all phyla where 

TCS/PR proteins were identified, except in Aquificae, Tenericutes, Chlamydiae, and 

Crenarchaeota (Supplementary Table 2). Together, HK, RR, and HKRR proteins 

represent 94% of all TCS/PR proteins that were identified. 

In prokaryotes, RR or HK protein types are the most abundant. Together, they 

represent more than 90% of all TCS/PR proteins found in the genomes of many 

organisms (Supplementary Table 2). HKRR represent the third most abundant type of 

TCS/PR protein, oscillating between less than 1% (Firmicutes) and more than 10% 

(Cyanobacteria) of all TCS/PR proteins (Supplementary Table 2). The remaining protein 

types (HPt, HKRRHPt, HK1RRHK2, HKRR1HPtRR2, HK1RR1HK2RR2, ...) range from less than 

1% to 5 % of all TCS/PR proteins identified in a phylum. Of these less abundant protein 

types, the three-domain HKRRHPt protein is more abundant than HK1RRHK2. The HPt 

domain is more frequently found in combination with other IST TCS/PR protein 

domains than alone in a protein, with the exception of Firmicutes, Tenericutes,  
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Table 2. Types of TCS/PR proteins found in the 7609 surveyed species. The protein identifier describes 
the type (HK, HPt, or RR) and number of TCS/PR domains fused in each protein. 

Protein type Total 

number of 

proteins 

found 

Percentage of 

proteomes with 

this type of 

protein 

Number of 

species with 

this type of 

protein 

Average number of 

proteins/organism 

RR 219436 97,07 7386 29,71 
HK 151849 95,98 7303 20,79 

HKRR 18383 48,57 3696 4,97 
HKRRHPt 9097 40,85 3108 2,93 

HKHPt 5506 41,99 3195 1,72 
HPt 3534 28,05 2134 1,66 

RR1RR2 2034 17,60 1339 1,52 
HKRR1RR2 2017 13,59 1034 1,95 

HKRR1HPtRR2 982 8,12 618 1,59 
HK1RR1RR2RR3 580 6,58 501 1,16 

HK1HK2 450 4,07 310 1,45 
HK1RRHK2 392 3,30 251 1,56 

RRHPt 312 3,47 264 1,18 
HKRRHPt1HPt2HPt3 141 1,85 141 1,00 

RR1RR2HPt 130 1,45 110 1,18 
HKRRHPt1HPt2HPt3HPt4 108 1,42 108 1,00 

HK1RR1HK2RR2 90 0,79 60 1,50 
RR1RR2RR3HPt 72 0,51 39 1,85 

HKRRHPt1HPt2HPt3HPt4HPt5 61 0,80 61 1,00 
HKRRHPt1HPt2 58 0,72 55 1,05 
HK1HK2RRHPt 39 0,50 38 1,03 

HK1HK2HPt 39 0,50 38 1,03 
HKHPt1HPt2 36 0,46 35 1,03 
RR1RR2RR3 34 0,32 24 1,42 

HKRR1RR2RR3HPt 33 0,37 28 1,18 
HPt1HPt2 21 0,20 15 1,40 

HKHPt1HPt2HPt3 16 0,20 15 1,07 
HK1HK2RR1RR2RR3 9 0,12 9 1,00 

HK1HK2HK3 9 0,04 3 3,00 
HKRR1RR2RR3RR4RR5HPt 7 0,09 7 1,00 

HKRRHPt1HPt2HPt3HPt4HPt5HPt6HPt7 7 0,09 7 1,00 
HKRR1RR2RR3RR4 6 0,08 6 1,00 

HK1HK2HK3HK4RR1RR2 6 0,08 6 1,00 
HK1HK2RRHPt1HPt2 5 0,07 5 1,00 

HKRR1RR2RR3RR4HPt 5 0,07 5 1,00 
RR1RR2RR3RR4 2 0,03 2 1,00 

HK1HK2RR1RR2HPt1HPt2 2 0,03 2 1,00 
HK1HK2RR1RR2RR3RR4 2 0,03 2 1,00 

HK1HK2HK3HK4 2 0,03 2 1,00 
HK1HK2HPt1HPt2 2 0,03 2 1,00 

HKRR1RR2HPt1HPt2 2 0,03 2 1,00 
HK1HK2HK3RR 1 0,01 1 1,00 
HPt1HPt2HPt3 1 0,01 1 1,00 

HK1HK2RRHPt1HPt2HPt3 1 0,01 1 1,00 
HKRR1RR2RR3HPt1HPt2HPt3 1 0,01 1 1,00 

HPt1HPt2HPt3HPt4 1 0,01 1 1,00 
HKRR1RR2HPt1HPt2HPt3 1 0,01 1 1,00 

HK1HK2RR1RR2HPt 1 0,01 1 1,00 
HK1HK2RR1RR2RR3RR4RR5RR6HPt 1 0,01 1 1,00 
HKRRHPt1HPt2HPt3HPt4HPt5HPt6 1 0,01 1 1,00 
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Actinobacteria, Bacteroidetes and Spirochaetes. We also observe that HKRR1HPtRR2 is 

more abundant than HK1RR1HK2RR2 (Supplementary Table 2). 

The relative abundances of proteins containing IST domains associated with 

TCS/PR cascades in eukaryotes are different from those of prokaryotes. In broad 

terms, HK and RR protein types tend to make for a smaller fraction of TCS/PR proteins 

in eukaryotes than in prokaryotes, while the opposite is observed for HKRR proteins. 

Another clear distinction between prokaryotes and eukaryotes refers to HPt-

containing proteins: HPt protein type represents more than 10% of all TCS/PR proteins 

in eukaryotes. In prokaryotes, except in Tenericutes, HPt proteins typically account for 

less than 1% of TCS/PR proteins. Moreover, no HKRRHPt or HKRR1HPtRR2 protein types 

were found in eukaryotes (Supplementary Table 2). 

Among protists, Euglenozoa proteomes contain mostly HK protein type, 

although HKRR type is the most abundant in D. discoideum (Amoeboflagellate). There 

are cases of inactive HK domains that have lost their histidine. When identified, these 

proteins were eliminated from the analysis as described in Methods. However, there is 

always the possibility that some such proteins have passed our filters. To control for 

that possibility we created a multiple alignment of the Euglenozoa HK proteins. We 

found that the HK domains contained the conserved histidine motif that is needed for 

HK signal transduction. Hence, these proteins could be active HK proteins. 

Furthermore, if we lower our e-value for cut-off to 10-4, many of these proteins will 

also be flagged as containing RR domains with conserved aspartate residues, 

suggesting that such proteins could be HKRR types with a high degree of sequence 

divergence from other HKRR proteins we identified. Thus, the HK proteins in this clade 

might either be hybrid HKs or be active in a context that does not involve a TCS/PR 

cascade. TCS/PR proteins are almost absent in Alveolates. In the fungi phyla (Table 1), 
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HKRR is the most abundant protein type in Basidiomycetes, making up for almost 50% 

of total TCS/PR proteins. In contrast, RR, HK and HPt protein types are relatively more 

abundant than HKRR protein type in Ascomycetes. A remarkable result in fungi is the 

relative abundance of HK1RRHK2 and HK1RR1HK2RR2, which are much more frequent in 

eukaryotes (above 10%) than in prokaryotes. In plants, RR is the most abundant 

protein type in Eudicots, making for about 60% of all TCS/PR proteins.  

 

3.4.4. Distribution of genes coding for TCS/PR protein types 

in the genomes 

Previous surveys found that many of the TCS/PR proteins are mostly organized in 

operons and/or regulons in prokaryotes  [33, 64, 66, 67]. Consistent with this, we find 

that between 60% and 90% of genes containing HK domains are neighbors to genes 

containing RR domains. Exact percentages depend on the phylum, but below 20% of 

the total prokaryotic HK coding genes are orphan, that is, they are not neighboring any 

other gene coding for a protein that contains at least one IST domain. We also have 

found some clusters of genes coding HK, RR or HPt domains in eukaryotes, but all of 

them are a succession of genes with identical domain composition. Although the 

existence of operons has been reported in the eukaryote C. elegans [68], the gene 

clusters identified in our search have independent promoters. 

Altogether, we found 530 different types of gene clusters coding for TCS/PR 

proteins. We now briefly describe these results, shown in Supplementary Table 9. 
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Neighborhood analysis for HK and RR protein types 

In most prokaryotes neighboring genes coding for HK and RR protein types are 

between 50 and 100 times more frequent than one might expect by chance alone. In 

some species, this frequency is even higher (Supplementary Figure 1, Supplementary 

Table 3). Several phyla have a small percentage of species containing only orphan HK 

and RR protein types in their genomes (20 out of 2066 species in Firmicutes, 2 out of 

635 in Actinobacteria, 6 out of 235 in Bacteroidetes, 11 out of 2246 in 

Gammaproteobacteria, 48 out of 451 in Alphaproteobacteria, 7 out of 366 in 

Betaproteobacteria, 4 out of 108 in Chlamydiae, 3 out of 118 in Cyanobacteria and 9 

out of 179 in Euryarchaeota). Most of these species have a number of TCS/PR proteins 

below the average of their phylum. 

 

Neighborhood analysis for HK-RR-HK2 

Approximately 20% of all prokaryotic species have HK-RR-HK2 consecutive genes in 

their genomes at least 10 (and sometimes 50) times more frequently than one might 

expect by chance alone. Conversely, the frequency of this gene neighborhood 

organization is what one would expect by chance alone in the remaining 80% 

prokaryotic species (Supplementary Table 4).  

 

Neighborhood analysis for HK-RR-HK2-RR2 

In most prokaryotic phyla, between 10% and 60% of species have HK-RR-HK2-RR2 

genes at least 100 times more frequently than one would expect by chance alone 

(Supplementary Table 5). 
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Neighborhood analysis for HKRR-HK2-RR2 

In the majority of prokaryotic species, genes coding for proteins of type HKRR have no 

neighboring genes coding for proteins of types HK or RR. Nevertheless, in more than 

20% of the species of some prokaryotic phyla, such as Proteobacteria or Spirochaetes, 

genes coding for HKRR-protein type are neighbors to genes coding for HK or RR protein 

type with a frequency more than 100 times higher than expected by chance alone 

(Supplementary Table 6). 

 

Neighborhood analysis for HKRRHPt next to RR2 

In most of the prokaryotic species where HKRRHPt protein types are present, the 

observed frequency of HKRRHPt-RR genetic neighborhoods is between 10 and 50 

times more frequent than one would expect by chance alone (Supplementary Table 7).  

 

Neighborhood analysis for HK1RRHK2 next to RR2 

In prokaryotes, HK1RRHK2 is a scarce protein, present only in a few species (Table 2). If 

present, it is located in the genome next to a RR protein type on average 31% of the 

times (Table 3). In Gammaproteobacteria, HK1RRHK2 is present only in 28 out of 2246 

species surveyed, and in 9 of these 28 species, the observed frequency of HK1RRHK2 

genes placed in the chromosome next to RR genes is more than 100 times higher than 

the random expected frequency (Supplementary Table 8). 
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Table 3. Total number of HKRRHPt and HKRRHK proteins found in prokaryotic phyla. Phyla in bold are 
from the bacterial domain. Italicized phyla are from the archaeal domain.  

Phylum Number of 

HKRRHPt/HK1RRHK2  

proteins found 

Number of 

HKRRHPt/HK1RRHK2  

genes with a neighboring 

RR gene 

% of HKRRHPt  / 

HK1RRHK2  genes with 

a neighboring RR 

gene 

Actinobacteria 12/4 9/1 75.00/25.00 
Aquificae 0/0 0/0 -/- 

Armatimonadetes 0/0 0/0 -/- 
Bacteroidetes 107/9 62/4 57.94/44.44 

Chlorobi 4/0 0/0 0.00/- 
Caldiserica 0/0 0/0 -/- 
Chlamydiae 2/0 1/0 50.00/- 

Lentisphaerae 1/0 0/0 0.00/- 
Verrucomicrobia 12/2 9/1 75.00/50.00 

Chloroflexi 16/0 8/0 50.00/- 
Chrysiogenetes 1/0 0/0 0.00/- 
Cyanobacteria 193/28 41/9 21.24/32.14 

Deferribacteres 9/0 7/0 77.78/- 
Deinococcus-Thermus 0/4 0/1 -/25.00 

Dictyoglomi 0/0 0/0 -/- 
Elusimicrobia 0/0 0/0 -/- 
Acidobacteria 1/5 1/2 100.00/40.00 
Fibrobacteres 0/0 0/0 -/- 

Firmicutes 65/97 44/69 67.69/71.13 
Fusobacteria 2/0 2/0 100.00/- 

Gemmatimonadetes 3/0 3/0 100.00/- 
Nitrospinae  0/0 0/0 -/- 
Nitrospirae 4/0 3/0 75.00/- 

Planctomycetes  40/0 18/0 45.00/- 
Alphaproteobacteria 337/10 233/5 69.14/50.00 
Betaproteobacteria 364/9 274/4 75.27/44.44 
Deltaproteobacteria 208/29 131/1 62.98/3.45 

Epsilonproteobacteria 399/0 389/0 97.49/- 
Gammaproteobacteria 7239/28 3336/15 46.08/53.57 

Zetaproteobacteria 2/0 1/0 50.00/- 
Spirochaetes 53/147 16/3 30.19/2.04 
Synergistetes 6/0 6/0 100.00/- 
Tenericutes 0/0 0/0 -/- 

Thermodesulfobacteria 2/0 1/0 50.00/- 
Thermotogae 6/0 5/0 83.33/- 

Crenarchaeota 0/0 0/0 -/- 
Euryarchaeota 9/1 3/0 33.33/0.00 

Thaumarchaeota 0/0 0/0 -/- 
Total 9097/373 4603/115 50.60/30.83 

 

 

  



 A survey of HK, HPt and RR domains and their relative organization in TCS and PR 

110 

 

3.4.5. Gene fusion of TCS/PR proteins 

Gene fusion events 

The number of gene fusion events observed in a genome is expected to be 

proportional to genome size, in a model for neutral evolution of protein domain fusion 

[36, 69]. Thus, if gene fusion events in the case of HK and RR are random one would 

expect that the linear model that would best fit the data for % of fused HK (RR, HPt) 

domains vs. total number of HK (respectively, RR, HPt) domains has slope zero. In 

contrast, if these events are favored, the slope of that model should be positive, and if 

the events are disfavored, that slope should be negative. 

We analyze fusion events of IST domains associated with TCS/PR cascades in 

the individual phyla by creating a linear model of percentage of fused HK (or RR) 

domains as a function of the total number of HK (or RR) domains in the genome and 

calculate the likelihood that the slope is different from zero. The results are shown in 

Table 4. We find that the percentage of fused HK (or RR) domains increases with the 

number of HK (or RR) domains in the genomes. This is consistent with a positive 

selection for fused HKRR proteins. 
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Table 4. Percentage of RR and HK domains in hybrid proteins as a function of the total number of HK 

and RR proteins in the genome. Phyla in bold are from the bacterial domain. Italicized phyla are from 
the archaeal domain. Other phyla are from the eukaryotic domain. 

Phylum RR SK 

Gammaproteobacteria 6.97  + 0.2		
**

 14  + 0.31		
**

 
Betaproteobacteria 1.90  + 0.22	

**
 4.6  + 0.37	

**
 

Epsilonproteobacteria 15.3 − 0.06	
+
 0.17  + 0.36	

*
 

Deltaproteobacteria 17.3 + 0.1	
*
 31.9 + 0.06	

+
 

Alphaproteobacteria 4.1  + 0.29	
**

 3.8  + 0.4	
**

 
Firmicutes −0.6 + 0.1	

**
 1.7 + 0.09	

*
 

Tenericutes --- --- 
Actinobacteria −4.5 + 0.32	

**
 −0.38 + 0.2	

*
 

Chlamydiae --- --- 
Spirochaetes 5 + 0.47	

*
 27.2 + 0.07	

+
 

Acidobacteria −5.7 + 0.26	 −16 + 0.53	
*
 

Bacteroidetes 30.7 + 0.05	
+
 32 + 0.09	

+
 

Fusobacteria −5.8 + 	 −7.1 + 1.5	 

Verrumicrobia 6.7 + 0.3	
+
 6.6 + 0.4	

+
 

Planctomycetes 32.8 − 0.1	
+
 49.8 − 0.21	

+
 

Synergistetes --- --- 
Cyanobacteria 2.2 + 0.3	

**
 5.8 + 0.4	

**
 

Green sulfur bacteria 31.6 + 0.7	
+
 33.5 + 0.5	

+
 

Green non-sulfur bacteria 5.2 + 0.2	 8.9 + 0.2	 
Deinococcus-Thermus −1.2 + 0.2	 −1.6 + 0.2	 

Euryarchaeota 6.9 + 0.6	
*
 15.4 + 0.1	

+
 

Crenarchaeota --- --- 
Nanoarchaeota --- --- 
Korarchaeota --- --- 

Oomycetes --- --- 
Diatoms --- --- 

Parabasilids --- --- 
Diplomonads --- --- 
Euglenozoa --- --- 
Alveolates --- 9.5 + 0.4	

+
 

Amoeboflagellates --- --- 
Choanoflagellates --- --- 
Microsporideans --- --- 
Basidiomycetes 25.7 + 3.7	 88 + 1.1	

+
 

Ascomycetes 37.4 + 2.5	
**

 92.4 − 0.07	
+
 

Red algae --- --- 
Green algae 29.2 + 	

+
 114.7 − 9	

+
 

Mosses --- --- 
Monocots 12.3 + 0.2	

+
 32.9 + 1.9	

+
 

Eudicots 17.4 + 0.1	
+
 71 − 0.5	

+
 

**p-value<10-8; *p-value<10-3;+ non-significant (p-value>0.1) 
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3.5. Discussion 

3.5.1. Scope, caveats, and limitations of our analysis 

In this work we analyze the distribution and prevalence of different types of TCS/PR 

proteins in 7609 organisms belonging to 52 phyla. These proteins are responsible for 

sensing and adequately regulating the cellular responses to environmental cues. To 

date, this is the largest survey of TCS/PR proteins we are aware of. We confirm that 

these proteins are predominantly prokaryotic, although they are also present in many 

eukaryotic phyla. However, functional TCS/PR cascades appear to be absent in 

animals. This is also consistent with previous findings [39] . 

An important feature in this study is that we include all organisms with fully 

sequenced and annotated genomes in our analysis. For example, on the order of one 

thousand Escherichia coli strains are included in our analysis. This would clearly bias 

any deletion/duplication or horizontal gene transfer study of TCS/PR proteins that one 

might make in the full dataset. However, considering all strains and subspecies in our 

analysis is fundamental for identifying extremely low-frequency unique IST domain 

and operon organization types. 

 

3.5.2. Identifying unique types of IST domain organization 

in TCS/PR cascades 

The main goal of this analysis is to identify the unique types of organization for IST 

domains in proteins of TCS/PR cascades. In addition we also perform a less thorough 
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identification of operon organization for TCS/PR proteins. This study was 

independently made in two ways: first, we eliminate all proteins annotated as 

hypothetical or partial. Subsequently we include such proteins in the analysis. Results 

are qualitatively similar in both cases, and the raw sequences in FASTA format can be 

downloaded from http://web.udl.es/usuaris/pg193845/Salvadoretal.html.  

Our analysis identifies 50 unique types of TCS/PR proteins, when it comes to 

intra protein IST domain organization. The most frequent types of proteins with fused 

IST domains are the hybrid histidine kinases, a design with one HK and one RR protein 

domains fused in a single protein. This organization has been observed in most of the 

eukaryotic PRs that have been well characterized genetically and biochemically (for 

example the Sln1p-Ypd1p-Ssk1p pathway in S. cerevisiae [6]  or the  ETR1 system in A. 

thaliana [5]). It is also present in some prokaryotic systems (for example, the 

RcsC/YojN/RcsB pathway, involved in the regulation of capsular polysaccharide 

synthesis in E. coli [70] , and the Lux pathway regulating bioluminescence in V. Harveyi 

[71]). Another relatively frequent type of IST domain organization is when one HK, one 

HPt, and one RR domain are found within a single protein. Such proteins are called 

unorthodox histidine kinase or tripartite HK. Some examples of systems with this 

design are: BvgS-BvgA [72], EvgS/EvgA [73] , ArcB/ArcA [74], TorS/TorR [75], BarA/UvrY 

[76], TodS/TodT [77] and GacS/GacA [76]. 

We also identify 530 unique types of possible operons in prokaryotes and 

some eukaryotes, such as ascomycetes and eudicots (Supplementary Table 9). This 

variety will be used in subsequent works to infer naturally occurring variations in the 

pattern of regulatory interactions between the proteins involved in TCS/PR networks. 

For example, if we find a gene cluster formed by one HK and two RR coding genes, we 

can infer that the signaling pathway has a branching point in which the HK 
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phosphorylates both RR. This alternative circuitry is important because it has been 

proved that network architecture affects network dynamics and can define the 

operational limits of the system in a way that is independent of the specific biological 

processes being regulated [46, 49, 52, 78, 79]. 

We have no way of identifying TCS/PR cascades at the regulon level using only 

sequence data. Many examples for this type of organization exist, such as the Kin-

SpoO pathway [80].  

Why do we focus only on the IST domains of TCS/PR cascades, rather than also 

including also other protein domain that are involved in TCS/PR signal transduction? 

By focusing on these domains and their organization, our results set the stage for an 

analysis of general dynamics organization principles in the internal transmission of 

signals within TCS/PR cascades. The organization of IST domains, either within a 

protein or within an operon, plays an important role in determining the dynamics of 

the signal transmission in a cascade [49, 51, 52, 81]. Hence, that organization is likely 

to be the subject of natural selection.  Had we included other types of domains, we 

would be also analyzing aspects of the input and output of the cascades that are case 

specific and not general to all cascades of a given type. 
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3.5.3. Some physiological, phylogenetic and evolutionary 

considerations 

In prokaryotes, approximately 90% of all PR proteins have only one HK domain or one 

RR domain (Table 2 and Supplementary Table 2), and most of the genes encoding 

these proteins are located in the chromosome next to other PR/TCS genes, forming 

operons. In contrast to this, in eukaryotes proteins of types HK and RR are less 

common, and genes encoding these proteins are never located next to other TCS/PR 

genes in the species surveyed. On the other hand, in eukaryotes there is a higher 

fraction of TCS/PR proteins containing a combination of the HK and RR domains (the 

HPt domain was not found in these eukaryotic multi domain TCS/PR proteins), such as 

HKRR, HK1RRHK2 and HK1RR1HK2RR2. This implies that TCS/PR signal transduction in 

eukaryotes is in principle less prone to crosstalk and noise, as the signal is internally 

transmitted within the same peptide chain [79, 82]. 

Our analysis confirms the ad hoc observation that coordinated expression of 

IST domains and/or TCS/PR proteins involved in the same cascade is frequent. We also 

quantify how much more frequent this coordinated expression is with respect to what 

one would expect by chance alone. Although this is not unexpected [66, 82-84], to our 

knowledge, such quantification had not been done before on such a large dataset. 

This suggests that alternative IST regimes might be favored by evolution in 

prokaryotic or eukaryotic TCS/PR cascades. This can be inferred from the fact that the 

three types of gene expression coordination (regulon, operon, or gene fusion) imply 

different characteristics when it comes to internal signal transmission within the 

cascade. In general, fused genes will have a lower level of noise in signal transduction, 
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followed by genes coded in the same operon, and with genes coded in the same 

regulon permitting the highest level of noise to enter the signal transduction process 

[83]. 

Why is this so? TCS/PR proteins whose expression is coordinated either at the 

regulon or operon levels are potentially translated in different amounts. RR proteins 

typically are orders of magnitude more abundant than HK proteins [49]. This leads to a 

type of signal transduction where amplification of the signal can be high, as many RR 

molecules can be modified by a single HK protein. In contrast, in hybrid kinases where 

the HK and RR domains are fused in the same protein, the ratio of HK/RR domains is 

one to one. This means that each HK domain will likely only phosphorylate one RR 

domain. Moreover, independent HK protein types might also be leakier, 

phosphorylating non-cognate RRs. Similarly, independent RR protein types can be 

more prone to phosphorylation by non-cognate sources. Such non-cognate 

phosphorylation events are physically harder to achieve in HKRR protein types. Thus, 

proteins with fused TCS/PR domains represent a design that will on average transduce 

signals with smaller amplification, but higher fidelity than TCS/PR cascades composed 

only of proteins with individual TCS/PR domains.  

Taking these considerations into account, one might think that maximization 

of internal signal amplification is likely to be an important selective pressure for the 

evolution of TCS/PR cascades in prokaryotes, while fidelity of internal signal 

transmission appears to be a more important selective pressure for the evolution of 

TCS/PR cascades in eukaryotes. These two functional requirements for IST in TCS/PR 

cascades are generic and independent of more specific pressures, such as the type of 

signal they transduce, whether the organism is uni- or multi-cellular, or other similar 

considerations [15, 16, 34, 64, 66, 67]. If and why amplification and fidelity of internal 
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signal transmission are indeed shaping the general organization of TCS/PR cascades is 

a matter to be investigated further in the future. This will be done in a forthcoming 

study by creating mathematical models for the TCS/PR cascade architectures identified 

in this study and comparing the dynamic behavior of each of the alternatives. 
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3.7. Supplementary materials 

Supplementary Table 1: list of the 7609 species, classified per phylum. Due to space limitations, this 

table is not printed here. See Table S1 in the digital version of this thesis. 

Supplementary Table 2:  Percentage of each TCS/PR protein type per phylum. Phylum abbreviations 
are given in Table 1. Only phyla with proteins containing HK, RR or HPt domains are represented. 
Korarchaeota, Nanoarchaeota, Nanohaloarchaeota and phyla from the animal kingdom do not appear in 
the table because we have not found any protein containing HK, RR or HPt domains in the surveyed 

species classified in these phyla. 
Phylum RR HK HKRR HPt HKRRHPt HK1RRHK2 HKRR1HPtRR2 HK1RR1HK2RR2 

At 55.04 43.23 1.00 0.30 0.04 0.01 0.05 0.00 
Aq 55.80 38.41 0.00 1.81 0.00 0.00 0.00 0.00 
Ar 61.54 30.77 3.85 0.00 0.00 0.00 0.00 0.00 
Ba 51.36 36.04 9.16 1.04 0.91 0.08 0.15 0.00 
Cb 38.37 33.06 18.37 0.82 0.82 0.00 2.24 0.00 
Cd 42.86 50.00 7.14 0.00 0.00 0.00 0.00 0.00 
Cm 33.19 66.18 0.00 0.21 0.42 0.00 0.00 0.00 

L 42.50 42.50 7.50 5.00 2.50 0.00 0.00 0.00 
V 46.21 29.66 15.07 0.99 1.18 0.20 0.39 0.20 
Cf 50.14 39.02 7.00 0.32 0.72 0.00 0.05 0.00 
Cr 57.29 32.29 4.17 0.00 1.04 0.00 1.04 0.00 
Cy 44.97 31.94 13.53 1.03 1.80 0.26 0.88 0.20 
Df 51.25 34.69 6.88 0.31 2.81 0.00 0.63 0.00 
Dt 54.14 41.77 1.28 0.23 0.00 0.47 0.00 0.00 
Dc 50.00 46.43 3.57 0.00 0.00 0.00 0.00 0.00 
El 50.00 41.67 8.33 0.00 0.00 0.00 0.00 0.00 
Ac 53.43 33.04 8.79 0.87 0.10 0.48 0.39 0.29 
Fb 48.00 16.00 16.00 4.00 0.00 0.00 4.00 0.00 
Fi 54.90 42.69 0.44 0.60 0.08 0.12 0.04 0.00 
Fu 59.74 37.65 1.09 0.87 0.22 0.00 0.00 0.00 
Ge 47.58 32.26 14.52 0.81 2.42 0.00 0.00 0.00 
Ni 53.42 24.66 15.07 2.74 0.00 0.00 1.37 0.00 
Nt 56.99 29.72 3.50 1.40 1.40 0.00 1.40 0.00 
Pl 53.67 25.84 10.84 1.47 1.89 0.00 1.14 0.00 
A 53.36 31.75 7.66 1.28 1.15 0.03 0.24 0.07 
B 54.56 34.34 5.83 0.54 1.43 0.04 0.51 0.05 
D 49.17 30.06 11.86 1.39 1.63 0.23 0.68 0.10 
E 59.14 33.36 0.83 0.65 4.07 0.00 0.07 0.00 
G 52.58 34.48 3.99 0.91 4.36 0.02 0.27 0.00 
Z 46.07 22.47 26.97 0.00 2.25 0.00 1.12 0.00 
S 49.08 32.84 9.93 1.40 0.33 0.91 0.09 0.00 
Sy 57.14 34.43 1.10 1.83 2.20 0.00 0.73 0.00 
T 54.31 40.10 0.00 5.58 0.00 0.00 0.00 0.00 

Th 50.00 31.25 11.25 1.25 2.50 0.00 0.00 0.00 
Tt 53.73 39.55 0.25 0.00 1.49 0.00 0.75 0.00 
C 63.64 30.30 0.00 6.06 0.00 0.00 0.00 0.00 

Eu 38.20 47.45 11.49 0.08 0.15 0.02 0.05 0.00 
Ta 59.12 36.82 0.34 2.36 0.00 0.00 0.00 0.00 
Av 0.00 50.00 0.00 50.00 0.00 0.00 0.00 0.00 
Am 22.73 0.00 40.91 9.09 0.00 0.00 0.00 4.55 
Eg 6.06 93.94 0.00 0.00 0.00 0.00 0.00 0.00 
Mi 66.67 33.33 0.00 0.00 0.00 0.00 0.00 0.00 
As 28.10 18.60 15.29 19.83 0.00 6.61 0.00 2.48 
Bs 18.18 4.55 45.45 9.09 0.00 9.09 0.00 13.64 
Ed 60.12 7.36 13.50 16.56 0.00 0.61 0.00 0.00 
M 0.00 63.64 0.00 36.36 0.00 0.00 0.00 0.00 
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Supplementary Table 3. Percentage of HK genes and RR genes that are neighbors in the genome to 

other TCS/PR genes. Phylum abbreviations are given in Table 1. Only phyla with HK and RR genes are 
represented. Alveolates are omitted because we found only 1 HK protein and 1 HPt protein in 5 species 
surveyed. 
Phylum Orphan 

HK 
HK next 

to RR 
HK next 

to RR 
and 
HK2 

HK next 
to RR, 

HK2 
and 
RR2 

Orphan 
RR 

RR next 
to HK 

RR next 
to HPt 

RR next to 
HKRRHPt 

RR next to 
HKRRHK 

At 20,64 75,82 0,33 0,40 34,72 59,55 0,08 0,01 0,00 
Aq 37,74 58,49 0,94 0,00 46,10 40,26 0,00 0,00 0,00 
Ar 50,00 50,00 0,00 0,00 62,50 25,00 0,00 0,00 0,00 
Ba 31,33 54,98 1,53 0,61 47,78 38,57 0,10 0,94 0,05 
Cb 37,04 40,74 3,09 0,00 31,38 35,11 0,53 0,00 0,00 
Cd 28,57 71,43 0,00 0,00 0,00 83,33 0,00 0,00 0,00 
Cm 65,62 34,38 0,00 0,00 27,04 68,55 0,00 0,63 0,00 

L 41,18 52,94 0,00 0,00 35,29 52,94 0,00 0,00 0,00 
V 24,92 59,14 0,66 0,00 36,46 37,95 0,43 0,64 0,00 
Cf 32,41 51,50 1,04 1,16 36,04 40,09 0,09 0,27 0,00 
Cr 48,39 16,13 0,00 3,23 70,91 9,09 0,00 0,00 0,00 
Cy 56,50 25,99 0,47 0,06 50,66 18,46 0,10 0,46 0,06 
Df 36,04 53,15 1,80 0,90 39,63 35,98 0,00 3,66 0,00 
Dt 31,01 60,89 1,12 0,84 37,93 46,98 0,00 0,00 0,22 
Dc 30,77 61,54 0,00 0,00 42,86 57,14 0,00 0,00 0,00 
El 60,00 20,00 0,00 0,00 66,67 16,67 0,00 0,00 0,00 
Ac 28,65 58,48 0,00 1,46 41,41 36,17 0,18 0,18 0,18 
Fb 0,00 75,00 0,00 0,00 33,33 25,00 0,00 0,00 0,00 
Fi 12,15 84,82 0,34 0,37 29,32 65,96 0,08 0,06 0,14 
Fu 10,40 86,99 0,29 0,00 40,80 54,83 0,55 0,18 0,00 
Ge 20,00 65,00 0,00 2,50 28,81 44,07 0,00 3,39 0,00 
Ni 33,33 61,11 0,00 0,00 46,15 28,21 0,00 0,00 0,00 
Nt 11,76 61,18 2,35 1,18 30,06 31,90 0,00 1,23 0,00 
Pl 37,91 48,90 0,37 0,18 53,53 23,54 0,88 1,41 0,00 
A 32,43 51,81 0,84 2,84 42,09 30,83 0,72 0,76 0,01 
B 13,04 77,21 0,46 0,94 27,85 48,59 0,20 1,31 0,02 
D 35,58 39,04 1,12 0,83 40,22 23,87 0,46 1,02 0,00 
E 24,20 72,50 0,37 0,31 48,85 40,90 0,02 6,68 0,00 
G 11,86 81,24 0,41 0,25 26,41 53,27 0,46 3,28 0,02 
Z 10,00 90,00 0,00 0,00 21,95 43,90 0,00 0,00 0,00 
S 35,93 45,26 0,09 0,02 50,51 30,28 0,04 0,13 0,00 
Sy 21,28 75,53 0,00 1,06 39,74 45,51 0,64 1,92 0,00 
T 1,27 98,73 0,00 0,00 27,10 72,90 0,00 0,00 0,00 

Th 36,00 60,00 0,00 0,00 37,50 37,50 0,00 0,00 0,00 
Tt 38,36 58,49 0,00 0,63 42,59 43,06 0,00 2,31 0,00 
C 50,00 50,00 0,00 0,00 76,19 23,81 0,00 0,00 0,00 

Eu 69,37 18,61 0,43 0,11 51,56 23,12 0,00 0,04 0,00 
Ta 35,78 40,37 0,92 0,00 50,86 25,14 0,00 0,00 0,00 
Eg 45,16 0,00 0,00 0,00 100,00 0,00 0,00 0,00 0,00 
Mi 100,00 0,00 0,00 0,00 100,00 0,00 0,00 0,00 0,00 
As 100,00 0,00 0,00 0,00 100,00 0,00 0,00 0,00 0,00 
Bs 100,00 0,00 0,00 0,00 100,00 0,00 0,00 0,00 0,00 
Ed 100,00 0,00 0,00 0,00 59,18 0,00 0,00 0,00 0,00 
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Supplementary Table 4. Odds ratios (ratio between the observed and the randomly expected 

frequency) of HK genes located next to RR and HK2 genes in the genome. Only species with HK and RR 
genes are taken into account in the percentages. Alveolates and Monocots do not appear in the table 
because we have not found RR proteins in the surveyed species belonging to these phyla. 
Amoeboflagellates do not appear because we have not found HK proteins in the surveyed species 
classified in this phylum. Phylum abbreviations are given in Table 1. 

 
 

 
 

Phylum % of species with 
2<odds ratio<10 

% of species with 
10<odds ratio<50 

% of species with 
50<odds ratio<100 

% of species with 
odds ratio>100 

At 0.80 6.38 2.23 5.42 
Aq 0.00 0.00 0.00 7.69 
Ar 0.00 0.00 0.00 0.00 
Ba 1.93 15.94 5.80 6.76 
Cb 0.00 7.14 0.00 21.43 
Cd 0.00 0.00 0.00 0.00 
Cm 0.00 0.00 0.00 0.00 
L 0.00 0.00 0.00 0.00 
V 0.00 20.00 10.00 20.00 
Cf 13.04 39.13 0.00 0.00 
Cr 0.00 100.00 0.00 0.00 
Cy 7.63 13.56 2.54 2.54 
Df 0.00 25.00 0.00 0.00 
Dt 0.00 15.00 0.00 0.00 
Dc 0.00 0.00 0.00 0.00 
El 0.00 0.00 0.00 0.00 
Ac 0.00 55.56 0.00 0.00 
Fb 0.00 0.00 0.00 0.00 
Fi 1.72 4.62 1.48 2.71 
Fu 0.00 0.00 0.00 5.56 
Ge 0.00 100.00 0.00 0.00 
Ni 0.00 0.00 0.00 0.00 
Nt 0.00 50.00 0.00 0.00 
Pl 0.00 25.00 10.00 5.00 
A 1.43 15. 71 9.05 12.38 
B 3.64 11.20 1.40 1.12 
D 25.64 32.05 0.00 0.00 
E 1.22 1.47 0.00 16.87 
G 1.00 13.80 20.00 8.02 
Z 0.00 0.00 0.00 0.00 
S 0.40 1.62 2.02 0.81 
Sy 0.00 0.00 0.00 0.00 
T 0.00 0.00 0.00 0.00 

Th 0.00 0.00 0.00 0.00 
Tt 0.00 0.00 0.00 0.00 
C 0.00 0.00 0.00 0.00 

Eu 0.00 8.03 7.30 8.03 
Ta 0.00 25.00 12.50 12.50 
Eg 0.00 0.00 0.00 0.00 
Mi 0.00 0.00 0.00 0.00 
As 0.00 0.00 0.00 0.00 
Bs 0.00 0.00 0.00 0.00 
Ed 0.00 0.00 0.00 0.00 
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Supplementary Table 5. Odds ratios (ratio between the observed and the randomly expected 

frequency) of HK genes located in the genome next to RR, HK2 and RR2 genes. Only species with HK and 
RR genes are taken into account in the percentages. Alveolates and Monocots do not appear in the table 
because we have not found RR proteins in the surveyed species belonging to these phyla. 
Amoeboflagellates do not appear because we have not found HK proteins in the surveyed species 
classified in this phylum. Phylum abbreviations are given in Table 1. 

 
 

 
 

Phylum % of species with 
2<odds ratio<10 

% of species with 
10<odds ratio<50 

% of species with 
50<odds ratio<100 

% of species with 
odds ratio>100 

At 0.00 0.00 0.00 11.96 
Aq 0.00 0.00 0.00 0.00 
Ar 0.00 0.00 0.00 0.00 
Ba 0.00 0.48 0.00 20.77 
Cb 0.00 0.00 0.00 14.29 
Cd 0.00 0.00 0.00 0.00 
Cm 0.00 0.00 0.00 0.00 
L 0.00 0.00 0.00 0.00 
V 0.00 0.00 0.00 20.00 
Cf 0.00 0.00 8.70 34.78 
Cr 0.00 0.00 0.00 100.00 
Cy 0.00 0.00 0.00 10.17 
Df 0.00 0.00 0.00 25.00 
Dt 0.00 0.00 0.00 30.00 
Dc 0.00 0.00 0.00 0.00 
El 0.00 0.00 0.00 0.00 
Ac 0.00 0.00 0.00 66.67 
Fb 0.00 0.00 0.00 0.00 
Fi 0.00 0.10 0.20 7.53 
Fu 0.00 0.00 0.00 0.00 
Ge 0.00 0.00 0.00 100.00 
Ni 0.00 0.00 0.00 0.00 
Nt 0.00 0.00 0.00 50.00 
Pl 0.00 0.00 0.00 25.00 
A 0.00 0.00 0.24 61.22 
B 0.00 0.28 0.28 26.99 
D 0.00 2.56 7.69 62.82 
E 0.00 0.24 0.00 18.09 
G 0.00 0.00 0.00 16.60 
Z 0.00 0.00 0.00 0.00 
S 0.00 0.00 0.00 2.02 
Sy 0.00 0.00 0.00 20.00 
T 0.00 0.00 0.00 0.00 

Th 0.00 0.00 0.00 0.00 
Tt 0.00 0.00 0.00 5.88 
C 0.00 0.00 0.00 0.00 

Eu 0.00 0.00 0.00 6.57 
Ta 0.00 0.00 0.00 0.00 
Eg 0.00 0.00 0.00 0.00 
Mi 0.00 0.00 0.00 0.00 
As 0.00 0.00 0.00 0.00 
Bs 0.00 0.00 0.00 0.00 
Ed 0.00 0.00 0.00 0.00 
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Supplementary Table 6. Odds ratios (ratio between the observed and the randomly expected 

frequency) of HKRR genes located in the genome next to HK2 and RR2 genes. Only species with HKRR 
genes are taken into account in the percentages. Phyla without this type of protein (Aquificae, 
Chlamydiae , Tenericutes, Crenarchaeota, Alveolates, Euglenozoa, Microsporidians and Monocots) do 
not appear in the table. Amoeboflagellates do not appear because we have not found HK proteins in the 
surveyed species classified in this phylum. Phylum abbreviations are given in Table 1. 

 
 

 
 

Phylum % of species with 
2<odds ratio<10 

% of species with 
10<odds ratio<50 

% of species with 
50<odds ratio<100 

% of species with 
odds ratio>100 

At 0.00 0.00 0.72 9.42 
Ar 0.00 0.00 0.00 0.00 
Ba 0.00 8.18 4.40 8.18 
Cb 0.00 14.29 7.14 0.00 
Cd 0.00 0.00 0.00 0.00 
L 0.00 0.00 0.00 0.00 
V 14.29 14.29 0.00 0.00 
Cf 0.00 25.00 5.00 10.00 
Cr 0.00 100.00 0.00 0.00 
Cy 1.10 34.07 8.79 4.40 
Df 0.00 25.00 0.00 0.00 
Dt 0.00 0.00 0.00 0.00 
Dc 0.00 0.00 0.00 0.00 
El 0.00 0.00 0.00 100.00 
Ac 0.00 33.33 0.00 44.44 
Fb 0.00 0.00 0.00 0.00 
Fi 0.00 1.17 2.34 4.68 
Fu 0.00 0.00 0.00 0.00 
Ge 0.00 0.00 0.00 0.00 
Ni 0.00 0.00 100.00 0.00 
Nt 0.00 50.00 0.00 0.00 
Pl 0.00 5.26 26.32 26.32 
A 0.00 8.94 8.94 12.57 
B 0.00 9.31 11.27 25.00 
D 16.88 42.86 2.60 2.60 
E 0.00 9.09 9.09 9.09 
G 0.00 2.98 2.09 17.65 
Z 0.00 0.00 0.00 0.00 
S 0.00 1.27 6.36 31.36 
Sy 0.00 0.00 0.00 0.00 
Th 0.00 0.00 0.00 0.00 
Tt 0.00 0.00 0.00 0.00 
Eu 0.00 3.77 8.49 14.15 
Ta 0.00 0.00 0.00 0.00 
As 0.00 0.00 0.00 0.00 
Bs 0.00 0.00 0.00 0.00 
Ed 0.00 0.00 0.00 0.00 
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Supplementary Table 7. Odds ratios (ratio between the observed and the randomly expected 

frequency) of HKRRHPt genes located in the genome next to RR2 genes. Only species with HKRRHPt 
proteins are taken into account in the percentages. Prokaryotic phyla without this type of protein 
(Aquificae, Armatimonadetes, Caldiserica, Deinococcus-Thermus, Dictyoglomi, Elusimicrobia, 
Fibrobacteres, Nitrospinae, Tenericutes, Crenarchaeota and Thaumarchaeota) do not appear in the 
table. Eukaryotes are not included in the table since we have not found any HKRRHPt protein in this 
domain. Phylum abbreviations are given in Table 1. 

 
 
 

 

Phylum % of species with 
2<odds ratio<10 

% of species with 
10<odds ratio<50 

% of species with 
50<odds ratio<100 

% of species with 
odds ratio>100 

At 0.00 85.71 14.29 0.00 
Ba 1.59 33.33 25.40 4.76 
Cb 0.00 0.00 0.00 0.00 
L 0.00 0.00 0.00 0.00 
V 0.00 80.00 20.00 0.00 
Cf 0.00 44.44 0.00 0.00 
Cr 0.00 0.00 0.00 0.00 
Cy 15.38 32.31 3.08 0.00 
Df 25.00 25.00 0.00 0.00 
Ac 0.00 100.00 0.00 0.00 
Fi 0.00 51.02 22.45 2.04 
Fu 0.00 0.00 0.00 100.00 
Ge 0.00 100.00 0.00 0.00 
Nt 0.00 25.00 50.00 0.00 
Pl 0.00 62.50 0.00 0.00 
A 3.42 48.63 21.92 0.00 
B 1.86 60.25 26.09 0.00 
D 16.92 64.62 0.00 0.00 
E 0.00 1.82 95.32 1.30 
G 5.37 68.49 1.87 0.05 
Z 0.00 100.00 0.00 0.00 
S 14.29 35.71 14.29 0.00 
Sy 0.00 100.00 0.00 0.00 
Th 0.00 50.00 0.00 0.00 
Tt 0.00 0.00 0.00 0.00 
Eu 0.00 12.50 12.50 12.50 
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Supplementary Table 8. Odds ratios (ratio between the observed and the randomly expected 

frequency) of HKRRHK2 genes located in the genome next to RR2 genes. Only species with HKRRHK2 

proteins are taken into account in the percentages. Phyla without this type of protein (Aquificae, 

Armatimonadetes, Chlorobi, Caldiserica, Chlamydiae, Lentisphaerae, Chloroflexi, Chrysiogenetes, 

Deferribacteres, Dictyoglomi, Elusimicrobia, Fibrobacteres, Fusobacteria, Gemmatimonadetes, 

Nitrospinae, Nitrospirae, Planctomycetes, Epsilonproteobacteria, Zetaproteobacteria, Synergistetes, 

Tenericutes, Thermodesulfobacteria, Thermotogae, Crenarchaeota, Thaumarchaeota, Alveolates, 

Amoeboflagellate, Euglenozoa, Microsporidians and Monocots) do not appear in the table. Eukaryotic 

phyla with HKRRHK2 genes are not included in this statistics because none of those HKRRHK2 genes have 

been found neighboring an RR gene. Phylum abbreviations are given in Table 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Supplementary Table 9: List of all clusters of genes containing IST domains found in our search. Due to 

space limitations, this table is not printed here. See Table S9 in the digital version of this thesis. 

 

 

 

 

Phylum % of species with 
2<odds ratio<10 

% of species with 
10<odds ratio<50 

% of species with 
50<odds ratio<100 

% of species with 
odds ratio>100 

At 0.00 0.00 0.00 25.00 
Ba 0.00 25.00 0.00 0.00 
V 0.00 50.00 0.00 0.00 
Cy 0.00 38.89 0.00 0.00 
Dt 0.00 0.00 33.33 0.00 
Ac 0.00 33.33 0.00 0.00 
Fi 1.64 37.70 44.26 0.00 
A 0.00 55.56 0.00 0.00 
B 0.00 22.22 22.22 0.00 
D 0.00 8.33 0.00 0.00 
G 0.00 17.86 3.57 32.14 
S 0.00 3.49 0.00 0.00 

Eu 0.00 0.00 0.00 0.00 



 A survey of HK, HPt and RR domains and their relative organization in TCS and PR 

129 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1.Ratio between the observed and the randomly expected frequency of HK genes located next to RR genes in the genome. Phylum abbreviations 

are explained in Table 1. The colored box represents the range of percentage values comprised between the 25% and the 75% quantiles, and the edges of the vertical bar 

denote the upper and lower percentage values for each phylum.
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4.1.  Abstract 

Signal transduction systems mediate the response and adaptation of organisms to 

environmental changes. In prokaryotes, this signal transduction is often done through 

Two Component Systems (TCS). These TCS are phosphotransfer protein cascades, and 

in their prototypical form they are composed by a kinase that senses the 

environmental signals (SK) and by a response regulator (RR) that regulates the cellular 

response. This basic motif can be modified by the addition of a third protein that 

interacts either with the SK or the RR in a way that could change the dynamic response 

of the TCS module.  

In this work we aim at understanding the effect of such an additional protein 

(which we call “third component”) on the functional properties of a prototypical TCS. 

To do so we build mathematical models of TCS with alternative designs for their 

interaction with that third component. These mathematical models are analyzed in 

order to identify the differences in dynamic behavior inherent to each design, with 

respect to functionally relevant properties such as sensitivity to changes in either the 

parameter values or the molecular concentrations, temporal responsiveness, 

possibility of multiple steady states, or stochastic fluctuations in the system. The 

differences are then correlated to the physiological requirements that impinge on the 

functioning of the TCS.  This analysis sheds light on both, the dynamic behavior of 

synthetically designed TCS, and the conditions under which natural selection might 

favor each of the designs.  

We find that a third component that modulates SK activity increases the 

parameter space where a bistable response of the TCS module to signals is possible, if 

SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a 
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third component that modulates RR activity decreases the parameter space where a 

bistable response of the TCS module to signals is possible. 
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4.2. Introduction 

Two component systems (TCS) are biochemical signaling modules that are ubiquitous 

in bacteria and are also present in some eukaryotes. Prototypical TCS are composed of 

two proteins: a sensor kinase (SK) and a response regulator (RR). The SK 

phosphorylates a histidine residue and subsequently transfers the phosphate to an 

aspartate residue in the RR. There are many variations around this prototype, ranging 

from phosphorelays that can concatenate up to three phosphotransfers 

(His→Asp→His→Asp) between different proteins to hybrid kinases in which the SK and 

the RR domains are fused in the same protein [1,2]. In prototypical TCS, the SK can be 

bifunctional if, when unphosphorylated, it increases the dephosphorylation rate of the 

RR. Otherwise, the SK is monofunctional. The majority of well characterized SKs are 

bifunctional, with a few, such as the chemotaxis regulating CheA, being 

monofunctional.  

In addition to SKs and RRs, some TCS are also known to interact with specific 

phosphatases that regulate dephosphorylation of the RR [3]. These core components 

of TCS and phosphorelays are also complemented by auxiliary proteins that play a 

regulatory role in the activity of some TCS, transmitting the cognate signal to the SK. 

For example, the SK CheA is regulated through its interaction with membrane 

receptors that detect chemical compounds in the medium and direct organisms 

towards higher concentrations of nutrients [4] and the activity of the SK NRII that 

regulates nitrogen fixation is modulated through its interaction with the protein PII [5].  

In recent years, interactions between the TCS and auxiliary proteins were 

identified as a strategy to integrate non-cognate signals in the regulation of TCS [6]. 

For example, the orphan SK RetS interacts with the GacS SK, preventing the response 
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of the latter to its cognate signal [7,8,9,10,11] and the peptide PmrD binds to and 

protects the phosphorylated form of the RR PmrA from the phosphatase activity of its 

cognate SK, PmrB [12]. The GacS/GacA TCS regulates virulence in Pseudomonas 

aeruginosa [13,14], while the PmrB/PmrA TCS is required for resistance of Salmonella 

to acidic and antibiotic stresses, among others [12,15]. These systems raise the 

question of understanding the effect of such interactions with the core TCS module in 

the operating regime of the module and what consequences these effects may have 

on the influence of the module on the cellular physiology of the organism 

[16,17,18,19,20,21,22]. Previous studies suggested that a third component that binds 

to and protects the phosphorylated form of the RR causes delays in the response of 

autogenous TCS systems that regulate their own expression [12,17,22]. However, to 

our knowledge, no studies were made about the effect that binding of a third 

component to the SK has on the potential dynamic behavior of the TCS module. In 

addition, the effect of both types of third component proteins was not studied in TCS 

that do not regulate their own expression.  

In previous work we have used mathematical models to characterize the effect 

of diverse architectures on the signaling response of prototypical TCS. The analysis of 

such models enables understanding if particular physiological responses are more 

effectively achieved by one of several alternative designs of the network that executes 

the biological process of interest [23]. Such studies are difficult, if not impossible to do 

without the assistance of those mathematical models. In the case of the TCS, we 

showed that TCS with bifunctional SKs are more effective in buffering the TCS against 

crosstalk, while monofunctional SK are more effective in integrating different signals 

[24,25]. We have also identified necessary conditions for the existence of post-

translational bistable responses in prototypical TCS [25]. If a system is capable of 
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bistable responses, this means that its output variable can assume one of two possible 

values as a consequence of the same input. The specific value that the variable 

assumes depends on the value that the variable had before the stimulus. Post-

translational bistability is only possible in TCS in which the affinity between the 

phosphorylated SK and unphosphorylated RR is similar to that between the 

unphosphorylated forms of the proteins. In addition, a large fraction of the 

dephosphorylation flux of the RR must be independent of any phosphatase activity of 

the SK [25].  

Given these considerations, in this work our goal is to understand the 

physiological effect of a third protein, such as RetS or PmrD, on the function of 

canonical TCS in the absence of auto-regulation of gene expression. To achieve this, 

we built and analyzed mathematical models for the alternative designs of TCS with and 

without such a third component, and compared the dynamic behavior of the different 

systems. This analysis identifies specific physiological behaviors that are more 

effectively executed by each alternative design for the TCS.   

Our study reveals that a RR-binding third component (TCRR) decreases the 

region in parameter space where a bistable response is possible, while a SK-binding 

third component (TCSK) increases the parametric region where a bistable response is 

possible when the SK is monofunctional and decreases it when the SK is bifunctional. 
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4.3. Methods 

In order to understand the physiological effect of a third component (TC) on the 

function of a prototypical TCS, we built models of TCS with and without that TC and 

compared the dynamical behavior of those models. Figure 1 shows a schematic 

representation of the three models used in our analysis. These models are 

mathematically described by using a mass action system of ordinary differential 

equations (ODE) [26]. The resulting ODE systems for each of the three alternative 

models can be analyzed and compared numerically by running appropriate simulations 

on a computer. 

Figure 1. Analyzed Two Component Systems modules. Model A represents a prototypical TCS. 

Model B represents a TCS with a SK-binding third component (TCSK). Model C represents a TCS with 

a RR-binding third component (TCRR). SK: sensor kinase; RR: response regulator; SKP: 

phosphorylated SK; RRP: phosphorylated RR; Ph: alternative phosphatase that dephosphorylates 

RRP; SKRR: dead-end complex, resulting from the binding of SK and RR; SKPRR: protein complex 

formed by the binding of SKP and RR; SKRRP: protein complex formed by the binding of SK and RRP; 

PhRRP: protein complex formed by the binding of Ph and RRP; SKTC and RRPTC: protein complexes 

formed by the binding of the third component to SK and RRP, respectively; (k1, …, k18): kinetic 

constants of the individual reactions. For simplicity, ATP and the release of inorganic phosphate are 

omitted. To analyze TCS modules with monofunctional sensors, k8 is set to 0. To analyze TCS 

modules with bifunctional sensors, k8 is set to be different from 0. 
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4.3.1. Models and comparisons 

The network model that we use to describe the prototypical TCS in our analysis is that 

defined in Igoshin et al. [25], which is based on earlier work [27]. In Model A, shown in 

Figure 1, the SK can autophosphorylate and/or autodephosphorylate in response to an 

external signal. Both phosphorylated and unphosphorylated forms of SK are allowed to 

bind RR with similar affinities, as reported in [28,29,30]. Binding of unphosphorylated 

SK and RR is reversible and forms a dead-end complex (SKRR). Phosphorylated SK (SKP) 

can transfer its phosphate to the RR. The phosphorylated RR (RRP) will modulate the 

biological levels and activity of relevant proteins. 

This network for the prototypical TCS was modified to study the effect of a TC 

binding to either the SK or the RR. The changes in the network are also shown in Figure 

1. Model B represents a TCS where a third component binds to the SK (TCSK), 

inactivating it. Model C represents a TCS where a third component binds to the 

phosphorylated RR (TCRR) and stabilizes this phosphorylated form. In prototypical TCS 

modules with bifunctional sensors, the unphosphorylated SK can destabilize the 

phosphorylated form of the RR and it increases the dephosphorylation rate of RRP 

(k8>0 in Figure 1). In prototypical TCS modules with monofunctional sensors, the 

unphosphorylated SK has no effect upon the dephosphorylation rate of RRP (k8=0 in 

Figure 1). The model includes a phosphatase that dephosphorylates RRP 

independently of the SK. This is done for generality. In the cases where no such 

phosphatase exists, this set of reactions can be replaced by a single reaction where the 

unstable RRP phosphate bond hydrolyzes over time. An appropriate choice of 

parameter values will make the results of the analysis similar to those described for 

the full model.     
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In this study we analyze the potential effect of a TC in the physiological 

behavior of TCS modules with bifunctional and monofunctional sensors independently. 

If the TC has no effect on the physiological behavior of the TCS, then the presence of 

TC in particular instances of TCS should be understood as an evolutionary accident. If 

the TC has an effect on the physiological behavior of the TCS, this could provide a 

rationale for the selection of a TCS design that includes a TC. To perform the analysis, 

we compare the dynamical behavior of Model A to that of Models B or C, 

independently. This comparison is done in two ways.  

First, Models A and B (or C) are compared ensuring that the parameter values 

of all processes that are common are the same in the two models. This guarantees that 

whatever differences are found are only due to the addition of the TC. This comparison 

is equivalent to comparing an organism where the TCS interacts with a TC to another 

where the TC has been deleted from the genome. This situation could occur, for 

example during the creation of a new biological circuit by genetic manipulation in a 

biotechnological context. Thus, this type of comparison is relevant for understanding 

the differences in behavior of biological circuits created using synthetic biology 

techniques. 

Second, we also perform a mathematically controlled comparison between 

Models A and B (or C). This is a well established method for evaluating the irreducible 

effect of a change in the design of a biological circuit on the dynamic behavior of the 

network [31]. In this comparison, in addition to ensuring that Models A and B (or C) 

have the same values for corresponding parameters of all processes that are common, 

we use the differences between the designs as degrees of freedom that evolution can 

use as a substrate to minimize differences between the dynamic behavior of the two 

systems. If the alternative designs can be made equivalent by using these degrees of 



  Two component systems: physiological effect of a third component 

141 

 

freedom, then one may argue that they cannot be distinguished by natural selection. 

If, after making the systems as equivalent as possible, there are still irreducible 

differences in the physiological behavior between designs, then one may expect one of 

them to be preferably selected when its functionality provides better adaptive 

advantage. In the models under comparison, the difference is the deletion of a protein 

from the module between Model B (or C) and Model A. In this situation, the protein 

burden caused by Model A is lower than that caused by its alternative designs. Hence, 

we allow that the system changes the total concentrations of the remaining proteins 

(SK and/or RR). The details for this comparison are given in subsection 4.3.3. This 

comparison is thus relevant for understanding the differences in the dynamic behavior 

that are intrinsic to the differences in design between Models A and B (or C), and to 

those alone, in evolutionary terms.   

 

4.3.2. Equations 

In order to compare the physiological behavior of the three systems in Figure 1, we 

must create a mathematical representation for each of the networks. The positive and 

negative terms of each ODE correspond to individual reactions that give rise to the 

synthesis and degradation of the reactant, respectively. Each reaction is considered to 

be mass action. 

Because the turnover times for protein synthesis and degradation are much 

higher than those for the phosphorylation-dephosphorylation reactions, we consider 

the total amount of each participating protein to be approximately constant. Thus, 

SKt = SK+SKP+SKPRR+SKRRP+SKRR     
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RRt = RR+RRP+SKPRR+SKRRP+SKRR+PhRRP 

Pht = Ph +PhRRP                                  

TCSKt = TCSK + SKTC 

TCRRt = TCRR + RRPTC 

 

where SKt, RRt, Pht, TCSKt and TCRRt are constant and denote the total amount of SK, 

RR, Ph, TCSK and TCRR respectively. 

Applying all simplifications, the differential equations for Model A become: 

dt

dSKP
= (SKt-SKP-SKPRR-SKRRP-SKRR) k1 - SKP k2 - SKP (RRt-RRP-SKPRR-SKRRP-SKRR-

PhRRP) k3 + SKPRR k4 

dt

dRRP
= SKRRPk6 - RRP(SKt-SKP-SKPRR-SKRRP-SKRR)k7 - (Pht-PhRRP)RRP k11 + PhRRP k12 

 

dt

dSKPRR
= SKP (RRt-RRP-SKPRR-SKRRP-SKRR-PhRRP) k3 - SKPRR (k4 + k5)        (11) 

dt

dSKRRP
= SKPRR k5 - SKRRP (k6 + k8) + RRP (SKt-SKP-SKPRR-SKRRP-SKRR) k7 

dt
dSKRR

= SKRRP k8 - SKRR k9 + (RRt-RRP-SKPRR-SKRRP-SKRR-PhRRP) (SKt-SKP-SKPRR-

SKRRP-SKRR) k10  

dt

dPhRRP
= (Pht-PhRRP) RRP k11 - PhRRP (k12 + k13)  
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Applying all simplifications, the differential equations for Model B become: 

dt

dSKP
= (SKt-SKP-SKPRR-SKRRP-SKRR-SKTC) k1 - SKP k2 - SKP (RRt-RRP-SKPRR-SKRRP-

SKRR-PhRRP) k3 + SKPRR k4 - (TCSK total -SKi) SKP k16 

dt

dRRP
= SKRRP k6 - RRP (SKt-SKP-SKPRR-SKRRP-SKRR-SKTC) k7 - (Pht-PhRRP) RRP k11 + 

PhRRP k12 

dt

dSKTC
= (TCSK total-SKTC) (SKt-SKP-SKPRR-SKRRP-SKRR-SKTC) k14 - SKTCk15 + (TCSK total -

SKTC) SKP k16  

dt

dSKPRR
= SKP (RRt-RRP-SKPRR-SKRRP-SKRR-PhRRP) k3 - SKPRR (k4 + k5)        (12) 

dt

dSKRRP
= SKPRR k5 - SKRRP (k6 + k8) + RRP (SKt-SKP-SKPRR-SKRRP-SKRR-SKTC) k7 

dt

dSKRR = SKRRP k8 – SKRR k9 + (RRt-RRP-SKPRR-SKRRP-SKRR-PhRRP) (SKt-SKP-SKPRR-

SKRRP-SKRR-SKTC) k10 

dt

dPhRRP
= (Pht-PhRRP) RRP k11 - PhRRP (k12+k13)   

 

Applying all simplifications, the differential equations for Model C become: 

dt

dSKP
= (SKt-SKP-SKPRR-SKRRP-SKRR) k1 - SKP k2 - SKP (RRt-RRP-SKPRR-SKRRP-SKRR-

PhRRP-RRPTC) k3 + SKPRR k4 
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dt

dRRP
= SKRRP k6 - RRP (SKt-SKP-SKPRR-SKRRP-SKRR) k7 - (Pht-PhRRP) RRP k11 + PhRRP 

k12 – RRP (TCRR total-RRPTC)k17+ RRPTC k18 

dt

dSKPRR
= SKP (RRt-RRP-SKPRR-SKRRP-SKRR-PhRRP-RRPTC) k3 - SKPRR (k4 + k5) 

dt

dSKRRP
= SKPRR k5 - SKRRP (k6 + k8) + RRP (SKt-SKP-SKPRR-SKRRP-SKRR) k7       (13) 

dt
dSKRR = SKRRP k8 – SKRR k9 + (RRt-RRP-SKPRR-SKRRP-SKRR-PhRRP-RRPTC) (SKt-SKP-

SKPRR-SKRRP-SKRR) k10 

dt

dRRPTC
= RRP ( TCRR total -RRPTC) k17 - RRPTC k18 

dt

dPhRRP
= (Pht-PhRRP) RRP k11 - PhRRP (k12+k13) 

 

The parameters for the models are given in Table 3. All these parameters have an 

experimental basis, clearly presented in Igoshin et al. [25].  

 

4.3.3. Mathematically controlled comparisons 

We aim at comparing the physiological behavior of the three models in order to 

understand if the presence of a TC in a TCS module causes intrinsic differences to the 

potential physiological responses that the modules can have. To make sure that the 

differences observed in the behavior of the systems that are being compared are due 

to the presence of the TC, the comparisons must be made in a controlled way. For this 
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we use the method of mathematically controlled comparisons [31]. This method 

requires that all components and processes that are common to the alternative 

models that are to be compared are made numerically equal, making the models 

internally equivalent. In contrast, the components and processes that are different 

between the alternative models are degrees of freedom that nature could potentially 

use to compensate the changes in the physiological responses caused by the 

differences between systems. In this case, the systems with a TC invest additional 

resources to synthesize a new protein that binds either the SK or the RR and 

modulates their phosphorylation state. All new processes of Models B and C with 

respect to Model A are due to the presence of this TC. In order to control the 

comparison between TCS with TC and the prototypical TCS, the prototypical system 

(Model A) should also be allowed to invest additional resources in adjusting the total 

amount of the SK or the RR. These adjustments will allow the prototypical system to 

have a physiological response that is as similar as possible to that of the model with a 

SK-binding or a RR-binding TC (Models B and C, respectively). This control condition 

ensures maximal external equivalency between the models. Once the maximum 

equivalency is achieved between the compared models, the remaining behavioral 

differences can be related to the presence of the TC. 

To determine the changes in the total amount of SK or RR that make the 

physiological responses between Model A and Models B or C as similar as possible, we 

have used a minimum square differences method. We have calculated the steady state 

responses of the system in Models B and C to changes in the input phosphorylation or 

dephosphorylation rate of the modules, by calculating the steady state concentration 

of RRP in Models B and C, at input signal strengths between 10
-6

 and 10. These curves 

were then used individually to fit Model A and calculate the concentration of SK 
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and/or RR that would minimize the differences in the steady state RRP concentration 

between Model A and Models B or C, independently. All calculations were done using 

Mathematica. The best fits are achieved by allowing the total amount of SK to change 

in Model A. The values for the total amount of SK in Model A that minimize the 

differences between the responses of this model and Model B or Model C are shown 

in Table 1. 

 

Table 1. Values of SKtotal in Model A used in the mathematically controlled comparisons.  

 [SKtotal] in Model A (μM) 

 Monofunctional Bifunctional 

 k1 k2 k1 k2 

Model A|B 0.13 0.13 0.14 0.14 

Model A|C 0.50 0.50 0.90 0.90 

These values are chosen to make the signal-response curves of the prototypical TCS (Model A) and the 

system with a third component (Models B or C) as similar as possible, for responses to an environmental 

stimulus that modulates either k1 (SK autophosphrylation kinetic constant) or k2 (SKP 

autodephosphrylation kinetic constant). A|B stands for Model A controlled for Model B. A|C stands for 

Model A controlled for Model C. 

 

4.3.4. Calculations 

All simulations were performed in Mathematica [45] and COPASI [46]. Analyses of 

regions of bistability were done in Mathematica, using in-house scripts. 
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4.4. Results 

4.4.1. Effect of a third component on TCS signal 

amplification and bistability 

Signal amplification is an important physiological property of TCS. TCS with 

appropriate signal amplification can provide evolutionary advantages to organisms 

harboring them. Thus, understanding how signal amplification is affected by adding a 

TC to a TCS would help in predicting under which conditions to expect such a design to 

be selected. Figure 2 shows that all models can achieve the same signal amplification, 

whether the environmental signal modulates the autophosphorylation (k1) or the 

autodephosphorylation (k2) of the SK. This can be seen because the difference 

between the amount of RRP (phosphorylated RR) when k1 is low (k2 is high) and when 

k1 is high (k2 is low) can be similar for all models.  Nevertheless, Model B responds at 

higher signal intensities and Model C responds at lower signal intensities than Model 

A, when the stimulus modulates the SK autophosphorylation reaction rate (compare 

the curves for k1 response of Model A to those of Models B and C in Figure 2). When 

the signal modulates the SK autodephosphorylation reaction rate, Model B responds at 

lower signal intensity and Model C at higher signal intensity than Model A (compare 

the curves for k2 response of Model A to those of Models B and C in Figure 2). 

However, mostly, the differences in signal intensity at which the systems are turned 

ON or OFF are small.  

In addition, the prototypical TCS shown in Model A can show bistable behavior 

[25], making it possible that a signal can lead to one of two alternative responses, 

depending on the history of the system. Such a response may have some evolutionary 
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advantages, for example in situations like sporulation where an irreversible 

developmental decision is made by cells. Bistable regions in the curves of Figure 2 have 

three values of RRP for a single value of signal intensity. The two extreme values are 

the alternative stable steady states, while the middle value is a biologically irrelevant 

unstable steady state that is mathematically required to exist if two stable steady 

states are present.  In the figure one can see that the signaling ranges where bistability 

exists are different if the environmental signal modulates the autophosphorylation (k1) 

or the autodephosphorylation (k2) of the SK.  

Necessary, although not sufficient, conditions for the existence of such 

bistable behavior in the prototypical TCS are i) the formation of a dead-end complex 

between the dephosphorylated forms of SK and RR and ii) that a sufficiently high 

fraction of the flux for the dephosphorylation of RRP is independent of SK. To 

understand how the presence of a TC affects the possibility of a bistable response in 

the prototypical TCS, we analyzed Models B and C in search of the existence of 

multiple steady states, followed by a comparison of the physiological behavior 

between Models A and B, and between Models A and C.  

Given that signals can in principle modulate either the autophosphorylation 

(k1) or the autodephosphorylation (k2) rate of SK, we performed parallel computational 

experiments independently modulating their intensity. These experiments were done 

independently for models with monofunctional and bifunctional SK (Figure 2).  

Our results show that, in an uncontrolled comparison, the range of bistability 

for the bifunctional prototypical TCS is larger than if a TC binds any of the proteins of 

the module (compare panel B to panels D and F of Figure 2). Bistability for Model B in 

panel D is only observed for k1 signaling, while no bistability is observed for Model C in 
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panel F. On the other hand, the range of bistability for the monofunctional 

prototypical TCS is larger than if a TC binds the RR of the module (compare panel A to 

panel E of Figure 2), but smaller than if the TC binds the SK (compare panel A to panels 

C of Figure 2). Differences among the three systems are more pronounced when the 

signal induces dephosphorylation of the SK (k2), rather than inducing SK 

autophosphorylation (k1).  

An additional definition is needed before presenting and discussing additional 

results. Hereafter the system is said to be in an ON state if most of its RR is in the 

phosphorylated RRP form. If most of the RR is in its dephosphorylated form, the 

system is said to be in its OFF state. With this in mind, and as one might expect, 

systems with a TCSK are in an ON state for a smaller signaling range (panels C and D) 

and systems with a TCRR are in an ON state for a larger signaling range (panels E and F), 

in comparison with the uncontrolled Model A (panels A and B).  

When the comparisons are controlled we see that the response of Model A 

can become similar to that of Model B or C by adjusting the total amount of available 

SK. If the response of Model B is to be mimicked, the total amount of SK in Model A is 

decreased (Figure 2, panels C and D, see methods for the exact values of the total 

amount of SK), while mimicking the response of Model C leads to an increase in the 

concentration of SK (Figure 2, panels E and F, see methods for the exact values of the 

total amount of SK).  

The k2-response curves in Figure 2 panels B and C show that the switch from 

ON to OFF (from high to low levels of RRP) in these models could be irreversible or 

very difficult to reverse. In other words, modulation of the autodephosphorylation rate 

of SK by an external signal could generate nearly irreversible biological switches. 
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Our simulations also show that the necessary conditions for bistability in 

prototypical TCS remain necessary in the TCS with a TC. If either no independent 

phosphatase is present in the system (Ph=0) or no dead-end complex is formed (k10=0) 

all TCS modules analyzed here are monostable (see section “Effect of changes in SK-

independent RRP dephosphorylation and SKRR affinity on bistability” below). 

In summary, a TCRR causes a reduction in the TCS parameter space of bistability 

and an increase in the signaling range in which the system is in the ON state (responds 

at lower k1-signal intensity and at higher k2-signal intensity), whether the SK is 

monofunctional or bifunctional. This can be more effectively compensated by 

prototypical TCS through a change (an increase) in the concentration of the SK. In 

contrast, TCSK increases the signaling range in which the TCS can show a bistable 

response if and only if the SK is monofunctional and the environment modulates k2 (SK 

dephosphorylation rate). The behavior of TCS with a TCSK can be mimicked by 

prototypical TCS through a change (a decrease) in the concentration of the SK.  
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Figure 2. Steady state signal-response curves for the various TCS modules. Each plot shows 

the steady state levels of the phosphorylated RR in the y axis at different values of the signal k1 

(SK autophosphorylation rate constant) or k2 (SKP dephosphorylation rate constant) in the x 

axis. When the signal modulates SK dephosphorylation (changes in k2), the system behaves 

symmetrically to when SK phosphorylation (changes in k1) is modulated. In the first case, 

increases in signal intensity cause the fraction of RRP to decrease, while in the latter, increases 

in signal intensity cause the fraction of RRP to increase. A, C, E: Response curves of TCS 

modules with monofunctional sensor. B, D, F: Response curves of TCS modules with 

bifunctional sensor. A, B, Response curves of Model A. C, D: Mathematically controlled 

comparison between the response curves of Model B and those of Model A. E, F: 

Mathematically controlled comparison between the response curves of Model C and those of 

Model A. Mathematical controls are implemented to make sure that the differences in 

response between the alternative modules are due to the presence of third component and 

not to other spurious differences. 
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4.4.2. Effect of a third component on TCS response time 

In addition to signal amplification, the response time to signals is an important 

physiological property of TCS. In evolutionary terms, a change in response time may 

have important consequences to the fitness of the system. Therefore, we analyzed the 

effect of a TC on the response times of the TCS. To do this we performed four 

independent sets of experiments for each of the models, and independently 

considering systems with a monofunctional SK and with a bifunctional SK. In 

experiments 1 and 2 we instantaneously change the signal k1 and measure how long 

the system takes to come within 90% of its new steady state. This measures the 

response time of the system if the physiological signal modulates SK phosphorylation. 

In experiments 3 and 4, we instantaneously change the signal k2 and measure how 

long the system takes to come within 90% of its new steady state. This measures the 

response time of the system if the physiological signal modulates SK 

dephosphorylation. The details about how the experiments were run are as follows: 

1 - We set each system to its OFF state, with k1=10
-5

 s
-1

. Then, we increased the 

value of k1 to a value k1 higher and measured how long the system took to get to within 

90% of its new steady state value. k1 higher  was systematically changed between 10
-5

 

and 10 s
-1

.  

2 - We set each system to its ON state, with k1=10 s
-1

. Then, we decreased the 

value of k1 to a value k1 lower and measured how long the system took to get to within 

90% of its new steady state value. k1 lower was systematically changed between 10
-5

 and 

10 s
-1

.  

3 - We set each system to its OFF state, with k2=10 s
-1

. Then, we decreased the 

value of k2 to a value k2 lower and measured how long the system took to get to within 
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90% of its new steady state value. k2 lower  was systematically changed between 10
-5 

and 

10 s
-1

.  

4 - We set each system to its ON state, with k2=10
-5

 s
-1

. Then, we increased the 

value of k2 to a value k2 higher and measured how long the system took to get to within 

90% of its new steady state value. k2 higher  was systematically changed between 10
-5

 

and 10 s
-1

. 

Results are shown in Figure 3. We see that the response times increase by 

more than two orders of magnitude when the new parameter value k·lower or k·higher 

approaches the threshold value for exiting the bistability region of a system. The peaks 

of slower response in the curves in Figure 3 are in the region of signal intensity that lies 

immediately beyond the border of the bistability ranges shown in Figure 2. Given that 

the peaks of slower response are located at the exit of the bistable region, there is no 

peak in the signal-response time curve when the response is monostable or when 

there is an irreversible turning OFF of the system. Model B and Model A|B (A 

controlled for B) don’t have a peak in their OFF to ON k2-response times (Panel C of 

Figure 3) because these models irreversibly turn OFF after an increase in k2 (as 

depicted in Figure 2 panel C). Model C also has no peak in the response time (Panels C 

and D of Figure 3) because this model has a monostable response to changes in k2 (see 

Figure 2 panel E). In panels G and H of Figure 3, neither of the three systems shows a 

peak in their signal-response time curve because of the lack of bistability in their 

signal-response steady state curve (see Figure 2 panels D and F). When Model A is 

compared to Model B in an uncontrolled manner, the time response peaks of Model A 

appear at signal intensities that are always lower than those where the peak appears 

in the response of Model B. When Model A is compared to Model C in an uncontrolled 

manner, the time response peaks of Model A appear at signal intensities that are 



  Two component systems: physiological effect of a third component 

154 

 

always higher than those where the peak appears in the response of Model C (see 

Figure S1).    

In order to have a proxy of the integral temporal responsiveness of each 

system, we calculated the area under each of the signal- response time curves shown 

in Figure 3. This area is the sum of all the transient response times for each signaling 

response. The values of these areas are given in Table 2 and show that overall 

response times are similar between Models A and B. In contrast, Model A has a faster 

response than Model C. When the comparison is not controlled, differences between 

integrated response times of the three models are small, when the signal modulates 

autophosphorylation of SK. However, if SK dephosphorylation is modulated, Model B 

has the fastest integrated response, followed by Model A. Model C is, again, the 

slowest responder (Table S1). 

In summary, Model B is a faster overall responder than the prototypical TCS 

when the system is turned ON by modulating the phosphorylation rate of the SK, and 

it is a slower responder in any other case. In contrast, Model C is always slower to turn 

ON or turn OFF than the prototypical TCS, under controlled comparison conditions.  
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Figure 3. Temporal responsiveness curves of Models A, B, and C. The systems are at an initial 

steady state and, at time zero, the signal, represented in the x axis, changes instantaneously 

and the time it takes for the system to get to within 90% of the new steady state is measured 

and plotted in the y axis. A-D: Response times of TCS with monofunctional SK. E-H: Response 

times of TCS with bifunctional SK. The OFF to ON plots start with the systems at an OFF steady 

state (low levels of RRP) corresponding to a low value of k1 (A, C, E, G) or a high value of k2 (B, 

D, F, H). The signal is then changed to increase the steady state level of RRP. The ON to OFF 

plots start with the systems at an ON steady state (high levels of RRP) corresponding to a high 

value of k1 or a low value of k2. The signal is then changed to decrease the steady state level of 

RRP.  Peaks that indicate slower response times are located immediately outside the range of 

bistability. The lack of a peak in a curve can be due to monostability or irreversibility. The 

dashed lines indicate the signal value at which Models B and C exit its bistable range. Absence 

of a dashed line indicates irreversible turning ON or OFF of the system (Model B in panel C ) or 

absence of bistability (see the signal-response curves of Figure 2). 
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Table 2. Controlled comparison of the overall response times between Models A and B, and between 

Models A and C
a
.  

 Modulation of SK 

autophosphorylation (k1) 

Modulation of SKP 

dephosphorylation (k2) 

 OFF → ON ON → OFF OFF → ON ON → OFF 

Monofunctional     

 Model A|B  3 646.18 1 244.27 9 129.47 24 524.50 

Model B 3 406.48 1 337.95 9 467.02 24 801.00 

Bifunctional     

 Model A|B 3 917.63 1 501.14 8 656.10 10 565.20 

Model B 3 672.27 1 739.08 8 695.38 10 672.20 

Monofunctional     

Model A|C 1 351.02 1 003.90 21 984.30 26 656.70 

Model C 3 125.05 1 091.73 57 574.80 43 048.20 

Bifunctional     

Model A|C 1 152.38 1 029.89 10 647.20   8 972.97 

Model C 3 358.06 1 195.35 57 212.80 40 114.40 

 

 

a
 The reported values represent the area below each curve in Figure 3, that is, the sum of the transient 

times for each response. A|B stands for Model A controlled for Model B. A|C stands for Model A 

controlled for Model C. 
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4.4.3. Stochastic effects of a third component 

Fluctuations in the amount of proteins that participate in biological reactions can lead 

to stochastic effects in the system's behavior, when the total number of proteins 

participating in reactions is small. We performed stochastic simulations to understand 

the role of stochasticity on the effect of the TC on the physiological response of the 

TCS networks. These simulations take into account that the number of TCS proteins 

present in the cell are typically in the 10-1000 molecules range. 

The simulation experiments performed were similar to those described in 

experiments 1-4 of the previous section, although with a smaller number of data 

points. Figures 4 and 5 show the results of these simulations. 

The OFF → ON plots start with the system at the OFF steady-state (low 

concentration of active RR) corresponding to a low value of k1 (k1=10
-5

 s
-1

) or a high 

value of k2 (k2=10 s
-1

), and depict the temporal trajectory of the RRP concentration 

after an instantaneous increase in k1 or decrease in k2, for three different values of k1 

and k2. 

The ON → OFF plots start with the system at the ON steady-state (high 

concentration of active response regulator) corresponding to a high value of the signal 

k1 (k1=10 s
-1

) or a low value of k2 (k2= 5·10
-6

 s
-1

), and depict the temporal trajectory of 

the RRP concentration after an instantaneous decrease in k1 or increase in k2, for three 

different values of k1 and k2. 

The simulation results for three different signal intensities are plotted in 

Figures 4 and 5. Three independent simulations are shown for each signal intensity. 

The values of k1 and k2 in each trajectory are chosen to be below, next to and above 
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the threshold value at which the system switches from OFF to ON, or from ON to OFF 

(in the cases in which this threshold exists). Because each system has a different 

threshold value, the parameter scan is different for each plot.  

The results from the analysis of the continuous model are consistent with the 

stochastic simulations: as discussed in the previous section (Figure 3), in systems with 

a signal range of bistability the response times increase when the signal intensity is 

near the threshold value at which the system exits the bistability region. One can see 

in Figures 4 and 5 that, in many cases, the curves that correspond to a signal that is 

just outside of the bistability range do not reach steady state during the simulation 

time. These curves correspond with the peaks in Figure 3.  

Furthermore, our simulations predict that the systemic response becomes 

noisier as the signal intensity approaches the threshold value for bistability. Just above 

and just below this value there is an increase in the stochastic fluctuations of the 

system. This can be seen because the triplicate curves corresponding to these values in 

Figures 4 and 5 are much more different among themselves than the triplicate curves 

for the signals away from this threshold. 

The response in the systems A, B and C is noisier when k1 is modulated than 

when k2 is modulated. The OFF to ON trajectories of Model B after an instantaneous 

decrease in k2 confirm that the turn OFF of this system due to an increase in k2 is 

irreversible and the system can’t return to the ON state (see Figure 2 panel C). The 

system C does not have a bistability region in its k2-response curve (see Figure 2 panels 

E and F). Therefore, we don’t find a range of k2 values for which the systemic response 

becomes slower and noisier. 
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Figure 4. Stochastic time trajectories after an instantaneous change in the signal, for the 

three systems modeled with a monofunctional SK. A mathematically controlled comparison 

between Models A and B, and between Models A and C was performed as described in 

methods. The results for three individual runs for each value of k1 or k2 are plotted in each 

panel. Panels in the first column correspond to Model A controlled to be as similar as possible 

to Model B. Panels in the second column correspond to Model B. Panels in the third column 

correspond to Model A controlled to be as similar as possible to Model C. Panels in the fourth 

column correspond to Model C. The circles indicate lines that are replicates of the same 

simulation. Simulations marked with an arrow correspond to a signal intensity close to the 

bistability threshold and show slower and noisier responses. The OFF to ON plots start with the 

systems at an OFF steady state (low levels of RRP) corresponding to a low value of k1 or a high 

value of k2. At time zero, there is an instantaneous increase in k1 or decrease in k2. The ON to 

OFF plots start with the systems at an ON steady state (high levels of RRP) corresponding to a 

high value of k1 or a low value of k2. At time zero, there is an instantaneous decrease in k1 or 

increase in k2. The values for k1 or k2 are chosen to be below, next to and above the threshold 

value at which the system switches from OFF to ON, or from ON to OFF. See text for further 

details.  
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Figure 5. Stochastic time trajectories after an instantaneous change in the signal, for the 

three systems modeled with a bifunctional SK. A mathematically controlled comparison 

between Models A and B, and between Models A and C was performed as described in 

methods. The results for three individual runs for each value of k1 or k2 are plotted in each 

panel. Panels in the first column correspond to Model A controlled to be as similar as possible 

to Model B. Panels in the second column correspond to Model B. Panels in the third column 

correspond to Model A controlled to be as similar as possible to Model C. Panels in the fourth 

column correspond to Model C. The circles indicate lines that are replicates of the same 

simulation. Simulations marked with an arrow correspond to a signal intensity close to the 

bistability threshold and show slower and noisier responses. The OFF to ON plots start with the 

systems at an OFF steady state (low levels of RRP) corresponding to a low value of k1 or a high 

value of k2. At time zero, there is an instantaneous increase in k1 or decrease in k2. The ON to 

OFF plots start with the systems at an ON steady state (high levels of RRP) corresponding to a 

high value of k1 or a low value of k2. At time zero, there is an instantaneous decrease in k1 or 

increase in k2. The values for k1 or k2 are chosen to be below, next to and above the threshold 

value at which the system switches from OFF to ON, or from ON to OFF. See text for further 

details.  
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4.4.4. Robustness of the analysis 

The analysis thus far was done using the specific set of parameter values reported in 

Table 3. In order to study the generality of the results we performed sensitivity 

analyses of the bistability to changes in the different parameter values and 

concentrations of the systems. The results of the controlled and uncontrolled 

comparison between Model A and Model B or C with respect to the effect of changing 

parameter values on a possible bistable response of the TCS are summarized in Table 

4. The detailed results are shown in Figure S2, where we show a set of two-

dimensional sections of the multidimensional parameter space in which bistability is 

observed.   

Overall, a system with a TCSK appears to have a wider parameter range of 

bistability if the SK is monofunctional, and a lower parameter range of bistability if the 

SK is bifunctional, while a system with a TCRR appears to have a lower parameter range 

of bistability, for systems with either a monofunctional or a bifunctional SK, when 

either system is compared to a prototypical TCS.  However, if the comparison between 

Model A and Model B or C is controlled, then we see that the robustness of the 

parameter range of bistability is larger in the prototypical TCS (Model A) with only one 

exception: in systems with a bifunctional SK, Model C has a more robust parameter 

range of bistability. 
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Table 3. Basal values for the parameters and concentrations of the models in Figure 1. 

Kinetic constant Value 

k1 
e
 0.1

 
s

-1
 

k2 0.0005
 
s

-1
 

k3 0.5 µM
-1

s
-1

 

k4 0.5
 
s

-1
 

k5 1.5
 
s

-1
 

k6 0.5
 
s

-1
 

k7 0.05 µM
-1

s
-1

 

k8 0
 
s

-1
 (monofunctional SK)/ 

f
 0.05 s

-1
 (bifunctional SK) 

k9 
f
0.5

 
s

-1
 

k10 
g
0.5 µM

-1
s

-1
 

k11 0.5 µM
-1

s
-1

 

k12 0.5
 
s

-1
 

k13 0.025
 
s

-1
 

a
k14 0.5 µM

-1
s

-1
 

k15 0.5
 
s

-1
 

b
k16 0.005 µM

-1
s

-1
 

a
k17 0.5 µM

-1
s

-1
 

k18 0.5
 
s

-1
 

Proteins Total Concentrations 

RR 6µM 

SK 0.17µM 

Ph 0.17µM 
c
TCSK 1.17 µM 

d
TCRR

 
10µM 

a
 These values were chosen in such a way that the affinity of the TCS proteins with the third component 

would be similar to the affinity between the SK and the RR. 

b
 The value for this parameter was chosen to be one order of magnitude larger than that representing 

SK autodephosphorylation, because the TCSK enhances SK autodephosphorylation. 

c
 TC SK total is the total amount of the third component in Model B. This third component protein binds 

the SK of the TCS module. The amount for this protein was chosen taking into account that basal mRNA 

levels for RetS in GEO micro profiles of Pseudomonas aeruginosa are between 2 and 10 times higher 

than those of GacS. GacS is an SK and RetS is its cognate TCSK [47]. 

d 
TC RR total is the total amount of the third component in Model C. This third component protein binds 

the phosphorylated RR of the TCS module. The amount for this protein was chosen to be in the same 

order of magnitude as that of the RR, as is done in reference [43]. 

e
 This is the average value for the autophosphorylation catalytic constant between Salmonella 

typhimurium and Escherichia coli [16]. 

f
 It should be noted that, for Model C, this value for the phosphatase rate constant could be as high as 

0.14 in Escherichia coli [16]. 

g
 Although some measurements have suggested that the affinity between non-phosphorylated forms of 

the SK and RR is much lower than the affinity between phosphorylated forms of the proteins [48], more 

recent measurements suggest the opposite [10]. 
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Table 4. Percentage of parameter space where bistable responses are possible
a
.  

 Model A Model A|B Model B Model A|C Model C 

Monofunctional      

Input signal: change in k1 8 7.56 6.04 8.98 6.74 

Input signal: change in k2  11.36 21.87 17.52 9.11 4.01 

Bifunctional      

Input signal: change in k1 4.85 4.89 3.81 2.24 4.98 

Input signal: change in k2 11.44 7.77 4.11 1.84 4.31 

 

a
 Some bidimensional sections of the multidimensional parameter space of bistability are shown in 

Figure S2. The results show that in TCS with a bifunctional SK, both a TCSK and a TCRR cause a decrease in 

the size of the parametric region of bistability, with one exception: Model C has a larger parametric 

region of bistability when the signaling target is SK autophosphorylation (k1). However, in systems with a 

monofunctional SK, a TCSK causes an increase and a TCRR causes a decrease in the size of the parametric 

region of bistability if the environment modulates the SK dephosphorylation (k2). A|B stands for Model 

A controlled for Model B. A|C stands for Model A controlled for Model C.  
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4.4.5. Effect of changes in SK-independent RRP 

dephosphorylation and SKRR affinity on bistability 

SK-independent RRP dephosphorylation and SKRR complex formation are needed for 

bistable responses to exist in Models A, B, and C. In order to investigate how 

quantitatively changing these features affects bistability we performed the following 

computational experiments (Table 5). We independently and simultaneously changed 

the values for k8 (the reaction that regulates dephosphorylation by the SK) and k9 

(changing the rate of dissociation between SK and RR) between 10
-6

 and 10. Then, we 

calculated the steady state(s) for each system at different values of the signal 

represented by the parameters k1 or k2. k1 and k2 were independently and 

systematically scanned between 10
-6

 and 10 in logarithmic space at intervals of 0.01 

units. The results are shown in Table 6 and Figure S3. Table 4 shows that, overall, 

bistability is possible in Model C in a smaller interval of parameter values than that for 

Models A and B. However, the picture changes when we analyze only the parameters 

that directly influence the necessary conditions for bistability (k8, k9, k10). For these 

parameters, Model C is the system where overall bistability is possible in a wider range 

of parameter values, followed by Model B. Model A is the one where bistability is 

limited to a smaller region of parameter values. Nevertheless, when Model A is 

controlled to have signal-response curves that are as similar as possible to those of 

either Model B or Model C, Model A becomes the system where bistable responses 

can occur in a larger fraction of the space for k8, k9, and k10. For values of k8 below a 

threshold that depends on the system and is lower in Model B than in Model A, 

bistability is present in both models. Within the range of k8 values that permit 

bistability, an increase in k8 causes an increase in the k2 range of bistability (up to 
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approximately six orders of magnitude for k2 at the threshold value for k8). This is so, 

despite the enlargement of the fraction of RRP dephosphorylated by SK, because the 

increase in k8 causes an increase in the concentration of the SKRR dead-end complex 

(see Figure S4). As k8 decreases, the range of signal k2 in which the models show 

bistability decreases steadily for a few orders of magnitude. Then, a lower boundary is 

reached and bistability is observed for one or less than one order of magnitude of k2 

signal, independently of the value for k8. 

Given that the formation of a dead-end complex between SK and RR is a 

necessary condition for bistability, we also want to understand the isolated effect of 

different fractions of RR and SK being sequestered into this complex on bistability. To 

understand the effect of changing the amount of SKRR dead-end complex on the 

signaling range in which the systems can be bistable we performed the following 

numerical experiment. First, we took each model from Figure 1. Then, we 

systematically scanned the values of the parameters k9 and k10, independently and 

simultaneously, between 10
-6

 and 10 in logarithmic space at intervals of 0.01 units. 

These parameters regulate the amount of SKRR that is formed. Finally, for each pair of 

values for k9 and k10, we independently calculated the steady state(s) for each system 

at different values of the signal represented by k1 or k2. Each of these parameters was 

independently and systematically scanned between 10
-6

 and 10 in logarithmic space at 

intervals of 0.01 units. The results are shown in Table 6 and Figure S3.  

Bistability can be found only for intermediate steady state concentrations of 

SKRR. If too little or too much SKRR is formed, then no bistable response is possible. 

Overall, for bifunctional TCS, Model C has the largest range of SKRR steady state 

concentrations for which bistability is possible, followed by Model B. In its 

uncontrolled form Model A has the smallest interval of SKRR steady state 
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concentrations where bistability is permitted. This interval of concentrations decreases 

further when Model A is controlled to be comparable to Model B. However, when 

Model A is controlled to be comparable to Model C, the range of SKRR steady state 

concentrations that enable bistability becomes the largest of the three systems. In 

monofunctional TCS, Model C has a smaller range of SKRR steady state concentrations 

for which bistability is possible than Model B.  

The notion that Model C is the one in which bistable responses are less 

sensitive to changes in the steady state concentrations of SKRR (in consequence of 

changing the affinity between SK and RR) is misleading. Bistability is only found in this 

model if the affinity between the dephosphorylated forms of SK and RR is much larger 

than that between SKP and RR or SK and RRP. Given that the affinity between all forms 

of SK and RR was measured as similar, it is not likely that bistability can be found in 

vivo in systems that are represented by this model.  

A similar experiment was made by changing independently and simultaneously 

the total amount of SK and RR, followed by independent calculation of the steady 

state(s) for each system at different values of the signal represented by k1 or k2. Again, 

each of the parameters was independently and systematically scanned between 10
-6

 

and 10 in logarithmic space at intervals of 0.01 units. The results are shown in Table 6 

and Figure S3. They are consistent with the situation described for changes in k9 and 

k10.  
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Table 5. Experiments to analyze the effect of changes in different parameter values and protein concentrations on the range of bistability for the alternative TCS 

modules 
a
.  

Sensitivity to changes in Parameter Range of 

scanning 

Parameter Range of 

scanning 

Formation of the SKRR dead-end complex k9 10
-6

-10 s
-1

 k10 10
-6

-10 µM
-1

s
-1

 

Ratio between SKtotal and RRtotal. SKtotal 10
-3

 -10
3
µM RRtotal 10

-3
 -10

3
µM 

Ratio between SKtotal and TCSK total. TCSK total 10
-3

 -10
3
µM SKtotal 10

-3
 -10

3
µM 

Ratio between RRtotal and TCRR total. RRtotal 10
-3

 -10
3
µM TCRR total 10

-3
 -10

3
µM 

Formation of the SKRR dead-end complex  and rate of RRP dephoshoprylation by SK k8 10
-6

-10 k9 10
-6

-10 s
-1

 

 

a
 The steady state(s) for the three models by scanning a)k1 (SK autophosphorylation reaction rate constant) and b)k2 (SKP autodephosphorylation reaction rate constant) 

between 10
-6

 and 10 at different values of the parameters named in the table (see text for details). 
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Table 6. Percentage of parameter space where a bistable response is possible for Models A, B, and C
a
.  

 Experiment  Model A 
b
 Model A|B

 c
  Model B 

b
 Model A|C

 c
  Model C 

b
 

Bifunctional       

 k8,k9,k2 1.8 5.3 2.5 17.8 8.1 

 k9,k10,k2 1.2 0.5 2.7 5.7 4.3 

 SKt,RRt,k2 0.6 NA 1.4 NA 1 

 SKt,TCt,k2 NA NA 10.9 NA 3 

 k8,k9,k1 35.5 33.4 36.7 47.9 39 

 k9,k10,k1 11.3 10.5 11.9 14.3 13.9 

 SKt,RRt,k1 14.1 NA 16 NA 14 

 SKt,TCt,k1 NA NA 31.3 NA 26.4 

Monofunctional       

 k9,k10,k2 11.9 8.2 15.6 20.9 13.1 

 SKt,RRt,k2 7.7 NA 9.2 NA 6.2 

 SKt,TCt,k2 NA NA 4.4 NA 10 

 k9,k10,k1 41.4 40.1 42.7 49.3 40.9 

 SKt,RRt,k1 31.2 NA 34 NA 27.9 

 SKt,TCt,k1 NA NA 75.3 NA 30.7 

a
 A|B stands for Model A controlled for Model B. A|C stands for Model A controlled for Model C.  

ki: kinetic constants for the reactions in the systems shown in Figure 1. SKt: total concentration of SK. 

RRt: total concentration of RR. TCt: total concentration of third component protein. The parameter 

space for ki,kj, and kk was scanned between absolute values of 10
-6

 and 10 for each of the parameters. 

Sampling was uniform in logarithmic space. 

b
 Percentage of the parameter space of ki, kj and kk where bistability is found for Models A, B, and C 

respectively. 

c
 Percentage of the parameter space where bistability is found in Model A controlled for B and for C, 

respectively.  

NA Non Applicable. Mono functional systems have k8=0. The concentration of TC=0 in Model A. Model A 

can not be scanned with respect to the concentration of SK in the controlled comparisons, because SK is 

independently fixed to make the dynamical response of Model A more similar to those of Models B and 

C. 
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4.4.6. Effect of the SK/TCSK and RR/TCRR concentration 

ratios on bistability 

In order to understand how the relationship between the total amounts of SK (RR) and 

TCSK (TCRR) influences the signaling range in which bistable responses are possible, we 

have performed a number of computational experiments.  First, we took Models B and 

C from Figure 1. Then, we systematically, simultaneously and independently scanned 

the total amounts of SK (RR) and TCSK (TCRR) in Model B (Model C), as described in 

Table 5. Finally, for each total amount of SK (RR) and TCSK (TCRR), we calculated the 

steady state(s) for each system at different values of the signal represented by k2. This 

parameter was also systematically scanned between 10
-6

 and 10 in logarithmic space 

at intervals of 0.01 units. The results are shown in Figure S3. We also performed 

similar test replacing k2 by k1.  

 

The range of signal k2 for which Model B can show a bistable response is 

observed to be dependent on the TC. Bistability is observed only within a narrow band 

of the SK-TCSK concentration space. Outside of this band, a bistable response cannot be 

observed. The range of total amount of SK in the system that may lead to a bistable 

response remains approximately constant for low total amounts of TCSK. However, 

within the band of total SK and TCSK in which bistability is observed, as total TCSK 

increases, the range of total SK amount that can generate bistable responses also 

increases. At concentrations of TCSK between approximately 2 and 7 µM, we find 

bistability for total SK concentrations between 0.2 and 0.001 µM or lower. At higher 

total TCSK concentrations, only small amounts of SK are available in free form. This 

prevents formation of the SKRR dead-end complex that is required for bistability.  
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As is the case in Model B, bistability in Model C can be achieved in a narrow 

band of the concentration space. However, within the range of values of this 

simulation, whatever the concentration of TCRR, the system can always show 

bistability.  

 

4.5. Discussion 

4.5.1.  Summary of the comparisons 

Tables 7 and 8 summarize our findings regarding the different physiological criteria 

that are relevant for TCS signal transduction and can be asserted from the analysis of 

our models. In general, if the signaling target is SK autophosphorylation Model C 

responds at lower signaling intensities, followed by Model A, and finally by Model B. If 

the signal enhances SK dephosphorylation, Model B is the one that responds at lower 

signal intensities, followed by Model A, and Model C. This causes Model C to be in an 

ON state for a wider signaling range, and Model B to be in an ON state for a narrower 

signaling range, in comparison with Model A. 

The system with the largest range of signaling in which it can show a bistable 

response depends on both, the type of SK in the module and the SK activity 

(autophosphorylation or autodephosphorylation) that is targeted by the signal. For TCS 

with monofunctional SK, Model A has the largest signaling range for bistability, as well 

as the largest fraction of parameter space where such bistability can be observed, if 

the environment modulates SK phosphorylation. In contrast, Model B has the largest 

signaling range for bistability, as well as the largest fraction of parameter space where 
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such bistability can be observed, if the environment modulates SK dephosphorylation. 

For TCS with bifunctional SK, Model B has the largest signaling range for bistability if 

the environment modulates SK phosphorylation. However, it is Model C that has the 

largest fraction of parameter space where bistability can be observed. In contrast, 

Model A has the largest signaling range for bistability, as well as the largest fraction of 

parameter space where such bistability can be observed, if the environment 

modulates SK dephosphorylation. 

 Modulation of SK dephosphorylation leads to responses that have an 

equally small amount of noise in all Models. However, modulation of SK 

phosphorylation leads to noisier responses in Model B, followed by Model A and finally 

Model C. 

 As is the case with bistability, the model with fastest response times 

depends on the type of SK in the module and on the SK activity (autophosphorylation 

or autodephosphorylation) that is targeted by the signal. Both in systems with 

monofunctional and bifunctional SK, Model A is the fastest to respond (Model C is the 

slowest) whether the signaling target is the autophosphorylation or the 

autodephosphorylation of the SK, with only one exception: Model B turns ON faster if 

SK autophosphorylation is modulated directly. The response times of Models A and B 

are similar, but Model C tends to be much slower than Model A.  
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Table 7. Summary of the comparison of physiologically relevant criteria between the alternative designs for monofunctional TCS 
a
.  

  MONOFUNCTIONAL 

Signaling  target Physiological criterion Model A Model B Model C Model A|B Model A|C 

Phosphorylation  

of SK (k1) 
Sensitivity to signal +++ ++ +++++ ++ ++++ 

 Signaling range of 

bistability 
+++ ++ + ++ ++++ 

 Fraction of parameter 

space with bistability 
++++ + ++ +++ +++++ 

 Noisy response +++ +++++ + ++++ ++ 

 Fast OFF→ON response 

time 
++++ ++ +++ + +++++ 

 Fast ON→OFF response 

time 
+++ + ++++ ++ +++++ 

  Model A Model B Model C Model A|B Model A|C 

Dephosphorylation 

of SKP (k2) 
Sensitivity to signal +++ +++++ ++ ++++ ++ 

 Signaling range of 

bistability 
++ ++++ - ++++ - 

 Fraction of parameter 

space with bistability 
+++ ++++ + +++++ ++ 

 Noisy response + + + + + 

 Fast OFF→ON response 

time 
+++ ++++ + +++++ ++ 

 Fast ON→OFF response 

time 
+++ ++++ + +++++ ++ 

a
 The model with the largest number of “+” signs for a given criterion is the one with the best performance with respect to that criterion.  

A|B stands for Model A controlled for Model B. A|C stands for Model A controlled for Model C. 
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Table 8. Summary of the comparison of physiologically relevant criteria between the alternative designs for TCS with bifunctional SK 
a
.  

  BIFUNCTIONAL 

Signaling  target Physiological criterion Model A Model B Model C Model A|B Model A|C 

Phosphorylation  

of SK (k1) 
Sensitivity to signal ++ + ++++ + +++ 

 Signaling range of 

bistability 
+++ ++ + ++ - 

 Fraction of parameter 

space with bistability 
+++ ++ +++++ ++++ + 

 Noisy response +++ +++++ ++ ++++ + 

 Fast OFF→ON response 

time 
++++ ++ +++ + +++++ 

 Fast On→OFF response 

time 
+++ + ++++ ++ +++++ 

  Model A Model B Model C Model A|B Model A|C 

Dephosphorylation 

of SKP (k2) 
Sensitivity to signal ++++ + ++ + +++ 

 Signaling range of 

bistability 
+++ - - - - 

 Fraction of parameter 

space with bistability 
+++++ ++ +++ ++++ + 

 Noisy response + + + + + 

 Fast OFF→ON response 

time 
+++ ++++ + +++++ ++ 

 Fast ON→OFF response 

time 
++ +++ + ++++ +++++ 

a
 The model with the largest number of “+” signs for a given criterion is the one with the best performance with respect to that criterion. 

A|B stands for Model A controlled for Model B. A|C stands for Model A controlled for Model C. 
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4.5.2. Biological Relevance 

Bacteria often sense and adapt to changes in the environment through TCS and 

phosphorelays. A question that this work addresses is how variations to the 

prototypical TCS by means of an accessory third protein that either binds the SK or the 

RR affect the dynamical behavior of the TCS module.  

TCS can, in principle, mediate both gradual and switch like (bistable) responses 

to environmental stimuli [32,33]. The switch-like response has typically been 

associated with the positive feedback introduced by genetic regulatory loops in the 

regulation of autogenous TCS. Nevertheless, such feedback does not necessarily imply 

the existence of bistability [34]. In fact, genetic positive feedback loops are not strictly 

necessary for the existence of bistable responses in prototypical TCS. Such responses 

can also come about through post-translational regulation of bacterial signal 

transduction networks [25,35]. Namely, bistability is possible in prototypical TCS if a 

reversible dead-end complex is formed between the dephosphorylated SK and RR and 

if a sufficient amount of RRP is dephosphorylated independently of the SK 

phosphatase activity [25].  

TC proteins that regulate signal transmission to prototypical TCS have been 

known for years [36,37]. However, only recently have such interactions been proposed 

as a way to integrate non-cognate signals in the TCS regulated responses. In fact, these 

interactions have been reported in TCS that are responsible for regulating both, 

resistance to antibiotics and virulence [6,7,8,9,12,13,14,15].   

Biological examples of the first situation can be found in the PmrB/PmrA/PmrD 

system. The third component PmrD binds and stabilizes the active form of the RR, 

PmrA. This system regulates antibiotic resistance in Salmonella and other bacteria. 
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Various studies of the PmrA/PmrB/PmrD system suggest that this TCRR could be an 

intermediate evolutionary step to evolve indirect regulation of the TCS 

[12,16,17,22,38]. The feedforward connector loop formed by PmrD is presented as a 

design that speeds up activation and slows deactivation of the gene expression of the 

proteins in the TCS [17]. Our results suggest that this may not be so in non-autogenous 

TCS. If the TCS has a TCRR, loss of this protein will make the corresponding prototypical 

TCS faster to turn ON and OFF (Table S1 and Figure S1). In fact, if the steady state 

response curve of the prototypical TCS is mathematically controlled to be as similar to 

that of the TCS with a TCRR as possible, then that prototypical system is always faster. A 

TCRR appears also to be a feature that decreases the fraction of parameter space in 

which bistable responses are possible (Tables 4 and 6), except in TCS with a 

bifunctional SK and when the environment modulates SK autophosphorylation. Thus, a 

TCRR creates a TCS module that is less likely to show bistable responses and slower in 

responding to environmental signals, which it can sense at lower intensities than the 

prototypical TCS without any TC, if SK phosphorylation is modulated.  

Antibiotic resistance is arguably a trait whose response should be gradual and 

proportional to the amount of antibiotic found by the bacteria to increase its survival 

chances. If this is not so, and a bistable response is possible, bacteria can be made 

more sensitive to antibiotics [39] and therefore their survival will be hindered. Given 

that bistability has been observed in the antibiotic resistance of some bacteria [39], a 

TC that binds the RR would reduce the possibility of such bistable response, 

potentiating adaptation and tolerance to threatening stress challenges. In addition, 

having such a TC could enable a response at low antibiotic concentrations, thus 

increasing the chances of survival for the organism.            
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The other well studied example of a TC interacting with the TCS is the 

RetS/GacS/GacA system, where RetS reversibly binds and inactivates the SK GacS. This 

system regulates virulence in Pseudomonas aeruginosa. Recently, it has been shown 

that the GacS/GacA TCS acts exclusively through the regulation of the transcription of 

two genes, rsmY and rsmZ [40]. The product of these genes are two untranslated small 

regulatory RNAs (sRNAs), RsmY and RsmZ, that counter translational repression 

exerted by the RNA-binding protein RsmA on target mRNAs encoding virulence factors. 

There is an additional SK, LadS, that appears to counter the action of RetS on GacS. 

However, this effect is indirect, as not direct physical interaction between GacS and 

LadS was observed [10]. It may be that LadS sequesters RetS, as RetS does with GacS. 

Our analysis of a TCS with a TCSK reveals that this module will respond at signal 

intensities that are slightly higher (lower) than those of the prototypical TCS, if SK 

authophosphorylation (autodephosphorylation) is directly modulated. Furthermore, if 

one is to synthetically change a TCS module and create an artificial circuit with a TCSK, 

the engineered circuit will typically respond faster to signals if the environment 

modulates SK dephosphorylation. However, evolution can eventually equalize 

response times by changing the SK concentration of the module and making both TCS 

modules have steady state response curves that are similar. A TCSK can increase the 

signaling range in which a bistable response is possible (Table 6).  Bistability could be 

advantageous when the system has to choose between two different operational 

states [35,41], as is often the case for virulent organisms. For example, Mycobacterium 

tuberculosis is a persistent organism in the lungs of 2/7 of the world population [42]. 

However, only under certain conditions that are not yet completely clear does this 

organism causes tuberculosis [42]. Bistability could provide populations with the 
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capacity to sample which type of phenotype is more advantageous at different times 

and enhance survival of the organisms through  bet-hedging strategies [43,44]. 

Experiments to test the existence of bistability in a TCS with a TCSK could be as 

follows, taking the RetS/GaS/GacA system as an example. First, determine if the 

system can show bistable response: incubate two Pseudomonas aeruginosa strains (a 

wild type strain, with the TC protein RetS, and a RetS mutant strain, without the TC 

protein) at different environmental conditions of inducing signal intensity, allow the 

cells to approach a steady state and measure the levels of expression of the sRNAs 

RsmY and RsmZ. In a TCS module with a monostable gradual response, the level of 

expression of the output molecules should be proportional to the environmental 

inducing signal intensity: at intermediate signal intensities there is an intermediate 

amount of output molecule. However, if the RetS/ GacS/GacA response is bistable, we 

will find that, for intermediate intensities of inducing signal, the measured levels of 

RsmY and RsmZ in single cells are distributed in a bimodal manner, with low and high 

levels (but  no intermediate levels) of this sRNAs. If bistability is present and the in vivo 

effect of RetS is to amplify the signaling range for which a bistable response is possible, 

we will find that this bimodal distribution of the measured levels of RsmY and RsmZ in 

single cells of the RetS mutant strain will be observed in a smaller range of signal 

values. To investigate if the results of our simulations are valid for in vivo conditions 

and if the RetS/GacS/GacA system could have an irreversible response (as observed in 

Figure 2 C), we can incubate both strains in a high-stimulus environment, allow the 

cells to approach a steady state and measure the levels of the sRNAs RsmY and RsmZ . 

If the in vivo system behaves as its in silico proxy, when the stimulus is removed 

(transfer the cells to a non-inducing environment), we will find that in RetS mutant 
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cells the levels of RsmY and RsmZ shift from a low value to a high value, but in wild 

type cells the levels of RsmY and RsmZ remain at a low value. 

The arguments discussed thus far explain part of the biological relevance of 

our work. Another interesting aspect of it regards the modulation of SK 

autophosphorylation and dephosphorylation. Currently the community is inclined to 

assume that dephosphorylation is the target of modulation by environmental signals in 

many cases. However, to our knowledge, conclusive experiments that decide the issue 

are still lacking in most systems and it is still unclear whether the physiological signal 

modulates SK autophosphorylation (k1) or SKP dephosphorylation (k2). That is why we 

have performed our simulations taking as a signal both changes in k1 and k2. An 

unexpected result of our simulations may shed some light on this issue, and allow us to 

hypothesize which one of the reaction rates is modulated by the signal in the case of 

TCS with a TC. We have found that, for TCS with a bifunctional SK, a TC decreases the 

possibility of a bistable response. For TCS with a monofunctional SK, the same effect is 

observed if the signal modulates k1. However, if the signal modulates k2, a TCSK 

increases the range of signal intensities in which a TCS can show bistability, and a TCRR 

decreases it. Thus, for TCS with a monofunctional SK, the results suggest that the 

physiological signal should modulate SK dephosphorylation (k2) both when bistability is 

an advantageous feature in the function of a TCS with a TCSK component, and when 

bistability is a disadvantageous feature in the function of a TCS with a TCRR. Conversely, 

the physiological signal should modulate SK autophosphorylation (k1) when bistability 

is a disadvantageous feature in the function of a TCS with a TCSK. 

 The work presented in this chapter provides motivation for further 

analyses of the TCS responsible for regulating virulence and antibiotic resistance, 

providing clues as to possible mechanisms to both decrease virulence and antibiotic 
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resistance. In the case of virulence, whenever it is regulated by a TCS of the type 

analyzed here, simultaneously targeting the TC and the SK appropriately could prevent 

the organism from becoming virulent. In the case of antibiotic resistance, targeting the 

TC and its interaction with the RR could be used to facilitate locking the bacteria in an 

antibiotic-sensitive state and facilitate treatment of infections.    
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4.7. Supplementary materials 

4.7.1. Supplementary Figures 

Supporting Information Legends 

Figure S1. Temporal responsiveness curves of Models A, B, and C. The systems are at an initial 

steady state and, at time zero, the signal, represented in the x axis, changes instantaneously 

and the time it takes for the system to get to within 90% of the new steady state is measured 

and plotted in the y axis. A-D: Response times of TCS with monofunctional SK. E-H: Response 

times of TCS with bifunctional SK. The OFF to ON plots start with the systems at an OFF steady 

state (low levels of RRP) corresponding to a low value of k1 (A, C, E, G) or a high value of k2 (B, 

D, F, H). The signal is then changed to increase the steady state level of RRP. The ON to OFF 

plots start with the systems at an ON steady state (high levels of RRP) corresponding to a high 

value of k1 or a low value of k2. The signal is then changed to decrease the steady state level of 

RRP.  Peaks that indicate slower response times are located immediately outside the range of 

bistability. The lack of a peak in a curve can be due to monostability or irreversibility Absence of 

a dashed line indicates irreversible turning ON or OFF of the system (Model B in panel C ) or 

absence of bistability (see the signal-response curves of Figure 2). The difference between this 

Figure and Figure 3 is that the time curves for Model A are calculated with the total 

concentration of SK being the same in the three Models. The overall response times (equivalent 

to the sum of all the transient response times for each curve) is shown in Table S1.  

 Figure S2. Effect of changing the parameter values on the range of bistability in the three TCS 

modules. In the panels, the x-axis represents values for k1 (SK autophosphorylation rate 

constant) or k2 (SK dephosphorylation rate constant), and the y-axis represents values for each 

of the other reaction rate constants that are common to the three models (from k2 to k13). The 

region where bistability is possible is shaded in blue. The number above each set of plots 

represents the summation of all areas of bistability in a given model, that is, is a measure of the 

size of the parametric space of bistability. A, B: Comparison between Models A and B, with a 

monofunctional SK. C, D: Comparison between Models A and B, with a bifunctional SK. E, F: 

Comparison between Models A and C, with a monofunctional SK. G, H: Comparison between 

Models A and C, with a bifunctional SK. 

Figure S3. Percentage of parameter space where a bistable response is possible for Models A, 

B, and C. Experiments as described in Table 6. The x and y axis represent the values of the 

scanned parameters, while the z-axis represents the orders of magnitude of signal for which 

there is a bistable response. The red projection represents the area of parameter space where 

bistable responses are possible. A – Bifunctional system, signal modulating dephosphorylation 

of the SK.; B – Bifunctional system, signal modulating phosphorylation of the SK; C – 

Monofunctional system, signal modulating dephosphorylation of the SK.; D – Monofunctional 

system, signal modulating phosphorylation of the SK. See text for details and discussion. For 

higher resolution in this figure, please see the appendix SF3 in the digital version of this thesis. 

Figure S4. Influence of the k8 value (SK bifunctionality rate constant) on the k2 range of 

bistability. Within a k8 range of values, an increase in k8 causes an increase in the k2 range of 

bistability (panel a and b). This is so, despite an enlargement of the fraction of RRP 

dephosphorylated by SK (panel c), because of an increase in the SKRR concentration due to a 

higher value of k8 (panel d). The simulations were performed using the system represented by 

ModelaA.
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Figure S1 
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Figure S2 A. Systems with a monofunctional SK. Input signal = change in k1 
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Figure S2 A (continued) 
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Figure S2 B. Systems with a monofunctional SK. Input signal = change in k2 
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Figure S2 B (continued) 
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Figure S2 C. Systems with a bifunctional SK. Input signal = change in k1 
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Figure S2 C (continued) 

  



  Two component systems: physiological effect of a third component 

192 

 

 

 

 

 

 

Figure S2 D. Systems with a bifunctional SK. Input signal = change in k2 
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Figure S2 D (continued) 
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Figure S2 E. Systems with a monofunctional SK. Input signal = change in k1 
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Figure S2 E (continued) 

  



  Two component systems: physiological effect of a third component 

196 

 

 

 

 

 

 

Figure S2 F. Systems with a monofunctional SK. Input signal = change in k2 
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Figure S2 F (continued) 
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Figure S2 G. Systems with a bifunctional SK. Input signal = change in k1 
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Figure S2 G (continued) 
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Figure S2 H. Systems with a bifunctional SK. Input signal = change in k2 

 



  Two component systems: physiological effect of a third component 

201 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2 H (continued) 
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Figure S3 A. Scanning for k2, bifunctional TCS.  
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Figure S3 A (continued) 
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Figure S3 B. Scanning for k1, bifunctional TCS.  
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Figure S3 B (continued) 
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Figure S3 C. Scanning for k2, monofunctional TCS.  
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Figure S3 C (continued) 
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Figure S3 D. Scanning for k1, monofunctional TCS.  

  



  Two component systems: physiological effect of a third component 

209 

 

 

 

 

 

 

 

 

 

 

Figure S3 D (continued) 

  



  Two component systems: physiological effect of a third component 

210 

 

 

 

 

 

Figure S4 
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4.7.2. Supplementary tables 

Supplementary Table 1. Overall response times for the three systems modeled (uncontrolled 

comparison) 
a
.  

 
Modulation of SK 

autophosphorylation (k1) 

Modulation of SKP 

dephosphorylation (k2) 

 OFF → ON ON → OFF OFF → ON ON → OFF 

Monofunctional     

Model A 3 011.49 1 143.31 15 515.40 27 816.30 

Model B 3 406.48 1 337.95   9 467.02 24 801.00 

Model C 3 125.05 1 091.73 57 574.80 43 048.20 

Bifunctional  

Model A 3 346.30 1 378.56   9 336.50 20 907.90 

Model B 3 672.27 1 739.08   8 695.38 10 672.20 

Model C 3 358.06 1 195.35 57 212.80 40 114.40 

a
 Results of the integral for the signal-response time function of Models A (uncontrolled), B and C. These 

values represent the area below each curve in Supplementary Figure 2, that is, the sum of the transient 

times for each response. 
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5.1. Importance of studying design principles 

Naturally evolved and artificially engineered networks
4
 share some global properties, 

such as the “scale-free” and the “small world” properties, although they may be very 

different in size and the nature of their nodes [1]. In addition, certain patterns of 

interconnections, known as network motifs, are found in networks at much higher 

frequency than expected by chance [2, 3]. For example, one finds the same pattern of 

interconnections between the nodes (genes or proteins) of networks/circuits 

regulating transcription in different organisms, from bacteria and yeast, to plants and 

animals [4-6]. Some of those network motifs can also be overrepresented in other 

classes of networks. For instance, feedforward loops (X regulates Y, and Y regulates Z, 

which is also regulated by X, as shown in Figure 1a) are recurring regulation patterns 

present in both transcription and signal transduction networks. 

Every molecular network that contains these and other motifs is responsible 

for a given type of function in the cell. Hence, it evolved under selective pressures to 

improve its performance. These networks seem to have converged into a restricted set 

of molecular solutions to the challenges imposed by their functional demands. In 

recent years, controlled experiments that test the effect of variations in motifs and 

other design elements of a circuit on its physiological response have identified circuit 

variants that maximize organismal fitness [7]. These experiments reinforce the idea 

that overrepresented patterns found in molecular networks may have become 

recurrent because they can provide functional advantages that are important for 

certain types of networks, even if we do not know what those advantages are to begin 

with. For example, signaling networks often contain a connectivity pattern known as 

                                                           
4
 We note that we will use the words network and circuit interchangeably throughout this discussion.  
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diamond (protein X regulates proteins Y1 and Y2, and both Y1 and Y2 regulate protein Z, 

as shown in Figure 1b), that is not found in transcription networks.   

a. Feedforward loop b. Diamond pattern

X

Y

Z

X

Y1 Y2

Z
 

Figure 1. Two examples of patterns of node interconnections that are overrepresented in certain types of 

networks. X, Y and Z represent either proteins or genes, and arrows represent regulatory interactions between 

the nodes. The arrow points to the regulated molecule. Regulatory interactions can have either positive 

(activation) or negative (inhibition) sign. a) The feedforward loop is a recurrent motif found in both 

transcription and signaling networks. b) The diamond pattern is a network motif typical of signaling networks, 

but not of transcription networks.  

 

Such variations between the topology of networks responsible for different 

functions (transcription regulation or signal transduction, for example) are probably 

due to differences in the timescale, spatial organization, and precision of the various 

types of responses that the different biological processes must orchestrate [2, 3]. For 

example, while a signal transduction cascade catalyzes a set of chemical reactions with 

response times on the range of seconds to minutes, gene expression adaptive 

responses require between minutes and hours to reach their peaks.    

A recurrent feature of a network can also consist of a repeated quantitative 

relation between the system’s components. For example, it has been determined that 
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during adaptation of yeast to heat shock there are changes in gene expression that are 

quantitatively constrained to lead to an efficient response. When this well-defined 

program is activated, among other changes in gene expression, the hexose transporter 

genes are over-expressed by a factor of between 6 and 9, and the glucokinase gene is 

over-expressed at least by a factor of 4 [8]. 

All those qualitative or quantitative common patterns of molecular networks 

involved in certain type of cellular function appear as a result of physical and 

dynamical constraints imposed by the functional needs on the network’s operation, 

and reflect the linkage between the network’s architecture and its physiological 

behavior [9]. Globally, these repeated features seem to suggest the existence of 

biological design principles. Here, we define a biological design principle as a rule that 

explains the existence of a given biological feature based on the effect of that feature 

on the functional effectiveness of the network. Needless to say that the word design 

here is not related with any kind of intelligence or consciousness, but only with the 

pattern of interconnectivity between the network components. Among the daunting 

diversity observed in life, such a rule provides not only understanding about why a 

given feature is how it is, but it may also predict how that feature changes under 

changing conditions of the organism’s milieu [10].  

But how do patterns that fulfill biological design principles arise in natural 

ways? The variability of heritable biological traits is a random, unplanned event that 

arises through genetic processes such as mutation, recombination, and/or horizontal 

gene transfer. Subsequently, these features can either vanish or be passed to the 

offspring and become fixed in the population. Both situations can occur either by 

chance (especially in small effective populations) or as a result of natural selection 

acting on individuals and favoring those who carry traits that entail any advantage to 
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the organism in that particular environment. If we can prove that natural selection 

enriches the networks observed in a population with respect to a given feature or 

pattern because that pattern leads to fitter organisms, then a design principle has 

been identified in nature. The functional rules that explain the improved fitness of an 

organism and justify the biological design principles can be described mathematically, 

independently of whether the design principle is general and applicable to various 

types of networks or specific and applicable only to a limited range of circuits. 

Making sure that the repeated occurrence of a network feature is due to a 

design principle and to natural selection requires proving that they provide functional 

advantages to the network. In other words, we must prove that the feature is the best 

design among known alternatives to carry out the task required of the network. Such 

features are expected to also improve the fitness of the whole organism.  

A circumstantial way to obtain such a proof starts with knowing the specific 

role of the network in the biological function it is involved in. This enables us to define 

the functional criteria that are required for the proper functionality of the network in 

that biological context. Then, mathematical models of alternative network designs can 

be built in order to compare their dynamical behavior. This strategy allows us to 

establish which alternative design has a better performance with respect to each 

functional criterion [11, 12]. 

If we find that the prevalent network’s designs are the most efficient ones 

according to the defined functional criteria, this is consistent with a positive selection 

for those designs, given that they can be viewed as adaptive traits. However, if we 

observe that the prevalent designs are not the most efficient ones from the point of 

view of the functional criteria we chose, we can think that: 
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i) our functional criteria are not properly selected and there might exist 

other unidentified functional criteria that are more important in that 

biological context, or  

ii) our hypothesis is wrong and the existence of that network’s recurrent 

motif cannot be explained by a better functional performance. In this 

case, the trait in question might be the result of random processes such 

as genetic drift. It might also be present as a byproduct of the selection 

of some other correlated characteristic that increases global fitness of 

the organism in a Pareto optimal way [13].  

We remark that in a living organism, some features can be associated with one 

another, and the selection of one of those features can lead to the occurrence of other 

(not necessarily adaptive) traits just because of the linkage between features [14]. This 

is known as a Saint Marcus spandrel. Saint Marcus spandrels can sometimes lead to 

the false positive identification of functional effectiveness criteria, as two or more of 

these criteria might be interdependent. As a consequence, highly correlated functional 

effectiveness criteria should be considered as one common functionality criterion, 

rather than as independent criteria to be tallied when the effectiveness of alternative 

designs is compared.   

Some design principles are general principles independent of the network’s 

specific function. One example of a global design principle, not restricted to a specific 

type of network, comes from the application of Reaction Network Theory. This theory 

proves that a mass-action network can only have more than one steady state if its 

species-reaction graph satisfy strict connectivity conditions that are described by what 

is called the Defficiency One Theorem  [15]. More examples of global patterns that are 

observed in all types of molecular networks are: a positive feedback loop is a 
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necessary condition for multistability and is functionally associated with switch-like 

behavior and a slower system’s response [16, 17]; negative feedback loops reduce 

noise and speed up the network’s response [18]; the more a feedback loop maximizes 

the correlation between input and output, the more the noise amplification [19]. 

Other design principles are system specific, closely related to the precise 

function of the molecular network. Section 2 of this thesis identifies several examples 

of system specific design principles characteristic of gene circuits, metabolic networks, 

cell cycle, and signal transduction networks. For instance, it has been reported that 

two-component signal transduction systems (TCS) mediating responses that require 

hysteresis must meet two conditions: a major flux channel for the response regulator 

(RR) dephosphorylation that is independent of the phosphatase activity of the 

unphosphorylated sensor kinase (SK), and the formation of a dead-end complex 

between the unphosphorylated forms of RR and SK [20]. Moreover, histidine kinase 

bifunctionality (SK catalizes both the phosphorylation of RR and the dephosphorylation 

of phosphorylated RR) minimizes crosstalk [21] and is necessary for input-output 

insensitivity to changes in the concentration of the system’s components [22]. 

As stated above, the identification of design principles in biochemical systems 

could help making sense of the complexity observed in molecular systems, in the same 

way that the periodic table of the elements or knowing the properties of series of 

organic alcohols or acids allows making sense in the diversity of existing chemical 

substances.  

Such a fundamental understanding of the molecular network’s structure in 

terms of its function and evolution is enough to justify the importance of studying 

biological design principles. In addition, this knowledge can be applied to other fields 
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of biological research and engineering: biomedical research can use those principles to 

identify new therapeutic strategies; and synthetic biology takes advantage of the 

knowledge derived from design principles to engineer new circuits within organisms 

which provide them with new physiological properties. This ability to tune organisms is 

a promising opportunity for multiple biotechnological applications such as 

bioremediation, production of substances or agriculture.   

 

5.2. What have we accomplished? 

In this work, after reviewing some of the methods for and results from the study of 

design principles in molecular systems, we have focused on the search of new design 

principles in signal transduction circuits, and more specifically in Two Component 

Systems and other histidine-aspartate Phosphorelays (TCS/PR). We analyzed all fully 

annotated organisms in the NIH genome database, studying the proteomic and 

genomic distribution of protein domains characteristic of TCS/PR cascades (SK, RR and 

HPt). As a result of this phylogenetic analysis, we confirm that, mostly, genes coding 

for proteins involved in TCS/PR cascades have a coordinated expression, but there are 

fundamental differences between prokaryotes and eukaryotes in the way in which 

they implement that gene expression coordination: prokaryotes tend to cluster 

functionally related genes in the genome forming operons, while eukaryotes tend to 

fuse the genes that should be coordinated in one single gene coding for a multidomain 

protein. Why this is so is a question to be answered in future investigations, although 

we suggest in the final discussion in section 3 that the reason could be related with 

signal amplification maximization in prokaryotes and noise minimization in eukaryotes. 
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The extensive census of genes coding for proteins involved in TCS/PR cascades 

we performed, in addition to identifying different strategies for their coordinated 

expression, allows deducing several network designs. Our ultimate aim is to use the 

data from this census to build a library of all alternative TCS/PR network topologies 

existing in nature. The alternative TCS/PR network designs collected in that library will 

be mathematically modeled and subjected to controlled comparisons in order to 

systematically identify the differences in their dynamic behavior. Then, we will try to 

correlate those dynamic differences with the specific functional demands each 

alternative network topology can more efficiently satisfy, with the purpose of finding 

new design principles in TCS/PR signaling pathways. 

As a first step in this set of systematic comparisons between alternative 

TCS/PR network designs, we analyzed the effect of an auxiliary third protein in a 

canonical TCS. This third protein can either bind to the SK and inhibit its 

phosphorylation or bind to and stabilize the phosphorylated form of RR. The 

prototypical TCS (without any third component), as stated above, can show bistability 

if some conditions are met. Our mathematical simulations point out that a TCS with an 

RR binding third component has a smaller parameter space where a bistable response 

to signals is possible, when compared to a prototypical TCS.  An SK binding third 

component also decreases the TCS range of bistability if SK is bifunctional. However, if 

SK is monofunctional, an SK binding third component increases the parametric range 

of bistability of the system, in comparison with the prototypical one. Bistability in the 

system’s response to changes in the environmental inputs could be advantageous 

when a switch-like response to signals is required, as is often the case for virulent 

organisms which have to (irreversibly) choose between to different operational states. 

In contrast, bistability is a disadvantageous feature when the organism has to respond 



 Discussion 

223 

 

in a gradual, proportional way to changing intensities of an input signal, as is the case 

in the cell’s adaptation to different environmental stresses (thermic, acidic or 

antibiotic stress).  

This is only one example of how dynamical system properties can be 

modulated through changes in the network of interactions between the system 

components. Additional comparisons between the dynamical features of alternative 

TCS/PR network designs will provide an overall perspective of the physiological 

properties associated with each variation in the basic pattern of these biochemical 

signaling cascades. Then, perhaps this will give us some clues to understand why 

TCS/PRs are the main signaling pathway in prokaryotes, while signal transduction in 

eukaryotes is chiefly done through other molecular cascades such as the MAP kinase 

cascade.  

 

5.3. How can our work be continued? 

As a continuation of the present work, the following challenges we must face are: 

o Complete an extensive library of the alternative variations in the design of 

TCS/PR circuits. 

o Analyze the dynamical features of each alternative TCS/PR circuit, 

explaining how changes in circuit structure result in different system 

properties that correlate with their functional demands. 

o Build a collection of design principles governing TCS/PR circuits, useful as a 

guide for engineering synthetic regulatory circuits and finding new 

therapeutic strategies. 



 Discussion 

224 

 

o Compare the functional properties of TCS/PR circuits with those of other 

phosphorylation signaling cascades prevalent in eukaryotes, such as the 

MAP kinase cascades, so that we can explain why different signaling 

pathways are preferred in cells from different domains.  

 

5.4. Possible future directions in design principles research 

The biological design principles described in this thesis and, more generally, in the 

primary literature make a collection of isolated examples obtained through ad hoc 

strategies. If we want to promote the advance in the search of biological design 

principles, we should find a more systematic and large-scale enabling way to identify, 

organize, and classify them. Such a systematic identification and classification requires 

the definition of generic functional criteria, valid for all kind of molecular circuits, 

independently of their specific function. 

Information theory could provide a suitable conceptual framework for the 

formulation of such general functional criteria, given that biological regulatory 

networks can be viewed as analog-to-electronic devices, in which a biochemical circuit 

design will be selected if it optimizes the correlation between the environmental signal 

and the system’s output, while minimizing the effect of noise on the response. Such 

optimization allows cells to improve the reliability of their inferences about the state 

of their changing environment and improve the appropriateness of the adaptive 

responses that ultimately increase their fitness and probability of survival. This is a 

challenging task, considering that the environment fluctuates in a noisy way, and cells 

transduce those fluctuating signals through biochemical networks that are themselves 

stochastic and history dependent [23, 24]. Cells must discern the unknown stimulus 
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from the result of their stochastic signal transduction mechanism, and choose the 

proper decision based on that uncertainty. In spite of this, cells are obviously able to 

thrive, either buffering noise or taking advantage of it for several biological activities 

such as generate phenotypic heterogeneity in the population [24-26]. The theoretical 

framework provided by information theory, sequential data processing and optimality 

arguments [27], along with the use of mathematical analytical techniques such as 

graph theory, sensitivity analysis, statistics and thermodynamic analysis could provide 

a way to systematize the way we study and understand how molecular circuits are 

shaped by evolution to allow cells transfer information from their environment to take 

the correct decisions. Such conceptual approach will contribute to develop a standard 

methodology for the systematic identification of biological design principles in all type 

of molecular networks. 
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1. Numerous design principles have been identified so far for molecular networks. Some 

of them are system specific and closely related to the function of that molecular 

network, while others are independent of the network’s specific function and 

represent constraints caused by the circuit structure upon its own dynamical behavior. 

2. A way to systematically study and identify design principles in molecular circuits is still 

forthcoming.  

3. TCS/PR proteins represent, on average, between 1 and 2% of a prokaryotic proteome 

(mean = 1.37%). Among the surveyed proteomes, Deltaproteobacteria is the group 

with the highest average percentage of TCS/PR proteins, while Tenericutes and 

Chlamydiae have the lowest percentage. In contrast, when a eukaryotic proteome 

contains TCS/PR proteins, they account for between 0.05 and 0.2% of the entire 

proteome (mean = 0.11%). These proteins are absent in animals. 

4. Genes coding for TCS/PR proteins involved in the same pathway have a coordinated 

expression tens to hundreds of times more frequently than expected by chance. We 

derive this conclusion from the genomic and proteomic organization of HK, RR and HPt 

protein domains, which are found clustered either forming operons or multidomain 

proteins with a frequency much higher than the expected frequency if gene order and 

gene fusion events were random.   

5. Prokaryotes and eukaryotes differ in the way in which they organize the protein 

domains responsible for internal signal transduction in TCS/PR cascades: prokaryotes 

tend to cluster functionally related genes in the genome forming operons tens to 

hundreds of times more often than expected by chance, while eukaryotes tend to fuse 

the genes that should be coordinated in one single gene coding for a multidomain 

protein. 
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6. We find 530 unique circuit designs for TCS and PR cascades, based on our analysis of 

TCS/PR operon composition.  

7. We find 50 different combinations of HK, RR and HPt domains that can occur in a 

single polypeptide chain in the 7609 surveyed proteomes. RR, HK, HKRR, HKRRHPt, 

HKHPt, HPt, RR1RR2, HKRR1RR2, are the most abundant protein types, sorted by 

abundance. The number of HK and RR gene fusion events increases with the number 

of HK and RR domains in the genome, which is consistent with a positive selection for 

fused HKRR proteins.    

8. The number of TCS/PR proteins in a proteome increases with the total number of 

proteins in that proteome. This relationship between number of TCS/PR proteins and 

proteome size is significantly different between prokaryotes and eukaryotes. R
2
 of our 

linear model is 0.21 for prokaryotes and 0.49 for eukaryotes.  

9. The presence in a TCS of an HK binding third component which prevents HK 

phosphorylation increases the parameter space where a bistable response of the TCS 

module is possible, when the HK is monofunctional, but decreases it if the HK is 

bifunctional. 

10. The presence in a TCS of an RR binding third component which protects 

phosphorylated RR from dephosphorylation decreases the parameter space where a 

bistable response of the TCS module to signals is possible. 
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