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Introduction

There are well documented patterns of behavior that individuals exhibit when relat-

ing to others or when making economic decisions. For instance, individuals tend to

interact disproportionately with others that are similar to them, either in sociode-

mographic attributes as gender and race, and/or in opinions, attitudes and political

views. This phenomenon, known as homophily, is a robust tendency of the way people

relate to each other. One of the consequences of individuals behaving this way is that,

through a process of social influence, they might reproduce behaviors and thoughts

of those with whom they intensively interact. Furthermore, non-cognitive dimensions

of personality, as self-control capacity, confidence or perseverance are usually in play,

affecting consumption plans or promoting procrastination on tasks.

This dissertation incorporates these patterns of behavior into economic models of

social learning and timing decisions related to task performance.

In chapter 1, Homophily and the Persistence of Disagreement, we argue how

disagreements might perpetuate in society when individuals develop their attitudes by

communicating disproportionately with others that are similar to them. Disagree-

ments among individuals might indeed have pernicious consequences, derived from

the difficulty in arriving at agreed decisions. In this chapter we consider a dynamic

model of attitude formation in which individuals develop their attitudes by incorpo-

rating those of others in their social network. Within our framework, individuals are

homophilous, that is, the attention they pay to each other is based on whether they

possess similar traits. A key and natural feature of our framework is that we allow

for the intensity of attention among individuals to vary over time. In particular, the

attention to different attributes co-evolves with attitudes, in a way governed by their

salience. The salience of an attribute is given by the difference in attitudes between

the groups of individuals possessing and lacking it. Since we assume that attributes

that exhibit wider differences in attitudes receive more attention, we show that when

there is, initially, a unique most salient one, it receives growing attention over time in

detriment of the remaining attributes. This process causes the cleavage of the soci-

ety in two groups of thinking. This situation takes place because individuals redirect

their attention towards others similar to them in the initially most salient attribute,

sufficiently fast, meaning that this process precludes the complete mixing of attitudes.

iii



Introduction iv

Our results can be understood as coming from a process of identity formation.

Initially confronted with several attributes according to which individuals might build

their personality, they progressively focus in only one of them and, consequently, de-

velop their relationships and attitudes according to it. These results can also be under-

stood as a theory of polarization, since two groups of individuals will be in persistent

disagreement.

In chapter 2, Disagreement in Näıve Models of Attitude Formation: Com-

parative Statics Results, we complement the study of chapter 1 by exploring how

altering individual behavior in natural directions affects the attitude formation pro-

cess. It is not difficult to think in real life situations in which individuals do not have

certain or well elaborated attitudes about an issue at hand, but these attitudes are

noisy. We thus explore the case in which attitudes are subject to shocks. Specifically

we consider that individuals’ initial attitudes are random draws from a given distribu-

tion. We show that disagreement is robust to the introduction of randomness and that

is more likely to persist across the attribute for which the distribution of the difference

in initial attitudes has the highest mean. We also discuss the case in which individuals

relate to each other with different intensities. In fact, as McPherson et al. (2001) doc-

ument, young and high educated people exhibit lower gender homophily than old and

low educated people, respectively. We find that when some individuals exacerbate the

attention they pay to similar others, on the basis of the initially most salient attribute,

disagreement still persists across it but its magnitude increases and the process of con-

vergence is faster than in the case discussed in chapter 1, when individuals influence

each other with the same intensity. We finally explore the question of what are the

general conditions that the evolution of homophily has to satisfy for disagreement to

persist. In chapter 1 we discuss a particular process in which the evolution of ho-

mophily gives raise to persistent disagreement. That is the case because homophily

with respect to the initially most salient attribute increases over time in such a way

that the convergence of attitudes to a common value is precluded. In contrast, the

constant homophily feature in Golub and Jackson (2012) is a key element affecting the

speed of convergence to consensus, an outcome that always emerges. Our aim is then

to go a step forward in the understanding of what are the homophily patterns that

give raise to either persistent disagreement or consensus. In this regard, we find that

in general disagreement persists whenever the process by which individuals intensify

their relations with others with whom they share the initially most salient attribute,

is fast enough. More specifically, there are two forces playing a role: on the one hand

individuals pay increasing attention to others on the basis of this attribute but on

the other hand, they also always pay a positive amount of attention to everyone else.

Disagreement persists if and only if the first force dominates the second.

In chapter 3, When to Do the Hard Stuff? Dispositions, Motivation and

iv



Introduction v

the Choice of Difficulties, we discuss the relevance of non-cognitive abilities in the

decision of when to face onerous but valuable tasks. For this purpose we consider a

dynamic framework in which a decision maker is characterized by the potential with

which she can fully execute her non-cognitive abilities. We show that when the decision

maker is of low abilities (that is, when she has a low potential) she decides to always

face low value easy tasks whereas when the decision maker is of high abilities (that

is, when she has a high potential) she decides to always face onerous but valuable

tasks. In the latter case the decision maker enjoys higher utility than in the former, in

which she decides to always avoid difficulties. We also explore the case in which the

execution of non-cognitive abilities is sensitive to outcome achievements, that is, when

motivation plays a role. We model motivation by assuming that successes and failures

in previous easy tasks affect the decision maker’s execution of abilities. We show that

in this context the decision maker may decide to jump from low value easy tasks to

onerous but valuable tasks at some point in time. Intuitively, being successful in easy

tasks motivates the decision maker to do the hard stuff. If indeed individuals behave

in this way, there might be policy implications potentially different from the ones

derived when considering that human capital accumulation is the main determinant

of performance.

v



Chapter 1

Homophily and the Persistence of

Disagreement

1.1 Introduction

Disagreement is an everyday life phenomenon. When in 1987 the American public

was confronted with the question of whether the government should guarantee every

citizen enough to eat and a place to sleep, 80% of black people agreed whereas only

55% of white people. For around 25 years these percentages have remained almost

constant. Disagreements tend to persist, most of the times, over non-factual issues. In

fact, differences in attitudes regarding a wide range of topics of ethical and ideological

content have persisted among the American public during the aforementioned period.1

Despite this evidence, existing models of communication and learning, regardless

of whether individuals behave as Bayesian or use rules of thumb, typically lead to

consensus. This is the case in DeMarzo et al. (2003), Acemoglu et al. (2010), Golub

and Jackson (2010), Golub and Jackson (2012), Smith and Sørensen (2000), Gale and

Kariv (2003) and Banerjee and Fudenberg (2004).2 They are, thus, not suitable for

explaining the persistence of disagreement.

The purpose of this paper is to investigate intuitive processes allowing for persis-

tent disagreements. To do so we study the dynamics of attitude formation following

DeGroot (1974), a parsimonious and widely used framework in which individuals use

the rule of thumb of averaging others’ attitudes to develop their own over time. As

pointed out by Ellison and Fudenberg (1993), Acemoglu and Ozdaglar (2011) and

Golub and Jackson (2012), the computational requirements imposed on agents that

behave as Bayesian, updating their (common) priors regarding the true state of the

nature according to all relevant information, have placed rules of thumb as a useful and

1Detailed information is available at http://www.people-press.org/2012/06/04/section-2-

demographics-and-american-values.
2We discuss notable exceptions at the end of this section.

1
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Homophily and the Persistence of Disagreement 2

powerful alternative for the understanding of learning and communication processes.

This reason seems to be borne out by recent evidence supporting, in particular, averag-

ing models as a consistent description of individuals’ updating behavior. For instance,

experimental results in Chandrasekhar et al. (2012) and Grimm and Mengel (2014)

favor a DeGroot procedure over a Bayesian one.3 The DeGroot procedure allows us

to capture the natural idea that individuals usually form and update their attitudes

regarding a given issue through own experiences, by observing others’ actions and by

communicating with others about their attitudes and behavior. That is, learning is

social and takes place within the individuals’ social network.

But in the canonical DeGroot procedure, which considers a time independent av-

eraging rule, consensus always eventually emerges, under fairly mild conditions. Dis-

agreement only persists in the extreme situation in which there are groups of indi-

viduals completely ignoring each other’ attitudes.4 In fact, communication models

based on DeGroot procedure, as Golub and Jackson (2010) and Golub and Jackson

(2012), work with strongly connected (and time independent) network structures in

which individuals incorporate everyone else’s attitudes, thus always deriving consensus

results. In particular, Golub and Jackson (2012) discuss the effects of homophily, the

robust tendency of individuals to associate disproportionately with similar others, on

the speed of convergence to consensus, an eventual outcome that is never precluded

no matter the level of homophily.5 In contrast with these papers, we propose a version

of DeGroot procedure in which we incorporate the natural idea that the intensity of

individual interactions varies over time.6

We thus explore a particular mechanism allowing for the co-evolution of homophily

in sociodemographic attributes and attitudes. In our approach the type of an indi-

vidual is defined as a subset of exogenous attributes and we assume that individuals

are homophilous with respect to them, that is, common attributes, for instance same

gender, are important in determining whether any pair of individuals relate to each

other. However, in contrast with the literature, we postulate that the intensity of

homophily evolves over time. In particular, it is governed by the salience of attributes.

The salience of an attribute is given by the difference in attitudes between individuals

possessing and lacking it. The more salient an attribute the higher the attention that,

on the basis of it, individuals pay among themselves, that is, the more homophilous

towards this attribute individuals are. As a consequence, the lower attention that

these individuals pay to others not sharing this attribute with them.

3See also Corazzini et al. (2012) and Brandts et al. (2014).
4See Jackson (2008), chapter 8, for two characterizations of consensus.
5See McPherson et al. (2001) for a survey on homophily. In Golub and Jackson (2012) homophily

is technically defined in as the second largest eigenvalue of the matrix of linking densities among

types.
6See Kossinets and Watts (2006).

2



Homophily and the Persistence of Disagreement 3

There is a large literature in the context of consumer choice supporting the idea

that individuals focus in aspects in which their alternatives differ more, that is, in

aspects that are salient. For instance, in Bordalo et al. (2013) consumers’ purchas-

ing decisions are driven by either the price or the quality of products, depending on

which aspect is furthest from prices and qualities of an average bundle.7 There is

also evidence suggesting a negative relationship between differences in attitudes and

interactions among individuals. Specifically, Suanet and Van de Vijver (2009) study

the relationship between perceived cultural distance, that is, individual reports of

discrepancies in attitudes and values between the home and the host culture, and the

acculturation of foreign students in Russia. They find a positive (respectively negative)

relationship between perceived cultural distance and interactions of foreign students

with co-nationals (respectively host nationals). Also, Sole et al. (1975) consider exper-

iments in which individuals have to decide whether to grant help to a stranger. They

find a positive relationship between rates of helping and attitude similarity and also

how one dissimilar attitude is sufficient to cause significantly lower rates of helping.

Finally, Rosenbaum (1986) and Singh and Ho (2000) offer support to the idea that

repulsion to others with dissimilar attitudes is the main mechanism shaping homophily.

With this model at hand we answer the following questions:

Q1: Under which conditions does attributes’ salience preclude consensus, and there-

fore, promote the persistence of disagreement?

Q2: How does eventual disagreement look like? In particular, which ones are the

types exhibiting different attitudes?

Q3: How does salience relate to the speed of convergence to the eventual situation

in which disagreement persist?

Our results are as follows. We find that disagreement persists if and only if there is,

initially, a unique attribute for which the difference in average initial attitudes is the

highest, that is, a unique most salient attribute. When this is the case, this attribute

becomes increasingly salient, receiving growing attention in detriment of the remain-

ing attributes. In other words, the ties among individuals sharing it, will progressively

gain strength in detriment of the ties based on the remaining shared attributes. As

a result, the society appears eventually divided in two groups of thinking, according

to whether individuals possess or lack the initially most salient attribute. Thus, the

difference in average eventual attitudes between the groups of individuals possessing

and lacking the initially most salient attribute persists while the differences in average

7See also Kőszegi and Szeidl (2013) and the references therein.

3



Homophily and the Persistence of Disagreement 4

eventual attitudes associated to the possession and lack of the remaining attributes

vanish. As we will see disagreement persists because the aforementioned dynamic is

fast enough. By fast enough we mean that the force that drives individuals to develop

strong ties with specific individuals dominates the one that pushes them to pay atten-

tion to everyone else. Thus, the complete mixing of attitudes is precluded. This process

can be understood as one by which individuals construct their identity. That is, ini-

tially confronted with several attributes upon which they may build their personality,

they progressively focus in only one of them, developing their relations and attitudes

according to it. Our results can also be understood as a theory of polarization, since

two groups of individuals are in persistent disagreement.

With respect to the properties of disagreement, we find how the difference in av-

erage eventual attitudes between the groups of individuals possessing and lacking the

initially most salient attribute is a proportion of the difference in average initial atti-

tudes between these two groups.

With respect to the speed of convergence we find that, everything else equal, the

higher the difference in average initial attitudes related to the initially most salient

attribute or the lower the difference in average initial attitudes related to any other

attribute, the higher the magnitude of disagreement and the quicker the convergence

to a situation in which it persists.

Our work is related to previous papers discussing disagreement. Specifically, Krause

(2000) and Hegselmann and Krause (2002) study disagreement in a model of bounded

confidence in which individuals only consider others’ attitudes when they are suffi-

ciently close to their own. There are, at least, two differences with their approach.

The first one is that while our primary source of attention are individual types as well

as their attitudes, they directly focus on similarity in attitudes and do not explicitly

model homophily in attributes. The second one is that they assume that the attitudes

of the peers finally considered by any individual, matter at the same extent. This is not

generally true in our case because homophily depends precisely on types and evolves

over time. In Acemoglu et al. (2013) disagreement persists because of the presence

of stubborn agents, interpreted as leaders or media sources, that never change their

attitudes. We do not model the presence of such agents.

The rest of the paper is organized as follows. Section 1.2 describes the model.

Section 1.3 derives the condition for disagreement to persist and provides its properties.

Section 1.4 deals with the speed of convergence. Section 1.5 concludes. Section 1.6

contains the technical proofs.

4



Homophily and the Persistence of Disagreement 5

1.2 Preliminaries

Let I = {1, 2, . . . , n} be a finite set of attributes. The type A of an individual is

defined by the attributes possessed by this individual, that is, A ⊆ I. Thus, there are

2n types. Let us denote by Ac the complementary set of A. Given two types A and B,

we say that they are i-similar whenever attribute i is either present or absent in these

two types. Otherwise, we say that they are i-dissimilar. Finally we define I(AB) as

all the attributes for which A and B are similar, i.e., I(AB) = (A ∩ B) ∪ (Ac ∩ Bc).

Notice that attributes are dichotomous, that is, either a type possesses an attribute or

lacks it.8

The (column) vector of attitudes at time t ∈ Z+ is denoted by at ∈ [−1, 1]2
n
,

where the component relative to type A is aAt . The average attitude across all types is

denoted at and the average attitude across all types possessing (respectively lacking)

attribute i is denoted at[i] (respectively at[−i]).9 Without loss of generality let us

normalize the average initial attitude to zero, that is, a0 = 0.

Attitudes evolve according to an average-based process similar to DeGroot (1974).

Namely, each of the components of at+1 is a weighted average of attitudes in at. Let

Wt be the 2n × 2n-matrix of weights describing the updating of attitudes from time t

to time t+ 1. We have that:

at+1 = Wtat.
10 (1.1)

Notice that every entry of Wt is the weight that type A assigns to type B. Let wA,Bt

denote this weight. As in Golub and Jackson (2012), individuals are homophilous,

a behavior that can be captured as follows: every attribute i has a non-negative

value αit and the weight that type A assigns to type B, is the sum of values of the

attributes they share, that is, wA,Bt =
∑

i∈I(AB) α
i
t. For normalization purposes we

set
∑

i α
i
t = (2n−1)−1. That is the right normalization because a type A is i-similar

to exactly 2n−1 types. Then,
∑

B w
A,B
t = 2n−1

∑
i α

i
t = 1. In this paper, we study

the case in which homophily, namely, the magnitude of αit, co-evolves with attitudes.

In particular, it depends, at every t, on the difference in average attitudes between

individuals possessing attribute i and individuals lacking it, that is, ∆t[i] = at[i]−at[−i]
(the salience of attribute i at time t). We assume without loss of generality that the

differences in average initial attitudes are non-negative and such that ∆0[1] ≥ ∆0[2] ≥
· · · ≥ ∆0[n] ≥ 0.11

8See Schelling (1969) for a discussion of this assumption. Also, as McPherson et al. (2001) point

out, the distinction in terms of social distance appears to be of the type same versus different, and

not on any more elaborated forms of stratification.
9Formally, at = (2n)−1

∑
A a

A
t , at[i] = (2n−1)−1

∑
A:i∈A a

A
t and at[−i] = (2n−1)−1

∑
A:i/∈A a

A
t .

10With this updating rule, a0 = 0 implies that at every time t, at = 0. See section 1.6.
11They preserve this order and remain non-negative over time. See step 1 in the proof of the main

5



Homophily and the Persistence of Disagreement 6

We link homophily and salience by the well-known Luce form, that is:

αit =
1

2n−1
∆t[i]∑
j

∆t[j]
. (1.2)

We endow this functional form with the following interpretation: the attention that

individuals pay to other when they share a given attribute, depends on how big the

differences in attitudes associated to this attribute are in relation to the differences

associated to the remaining attributes.

The following example illustrates the notation above:

Example 1. Consider the case in which types come from the combination of two

attributes. Thus, there are four types, namely, {1, 2} {1}, {2} and {∅}. The structure

of the 4× 4-matrix of weights at an arbitrary time t is:

Wt =

{1, 2} {1} {2} {∅}


α1
t + α2

t α1
t α2

t 0 {1, 2}
α1
t α1

t + α2
t 0 α2

t {1}
α2
t 0 α1

t + α2
t α1

t {2}
0 α2

t α1
t α1

t + α2
t {∅}

To make clear how homophily in exogenous attributes determines the structure of

attention, let us consider type {2}. It is 1-similar to type {∅} and 2-similar to type

{1, 2}. Thus, it pays a non-negative amount of attention to both types. Also, it pays

more attention to these types than to type {1}, with whom it does not share any

attribute. Consider also type {1, 2}. It is 1-similar to type {1} and 2-similar to type

{2}. Thus, it pays a non-negative amount of attention attention to them. It also pays

zero attention to type {∅}, with whom it does not share any attribute.

Suppose that initial attitudes are: a
{1,2}
0 = 0.8, a

{1}
0 = 0.2, a

{2}
0 = −0.05 and

a
{∅}
0 = −0.95. Thus, the differences in average initial attitudes associated to attribute

1 and 2 are ∆0[1] = 0.5(0.8 + 0.2) − 0.5(−0.05 − 0.95) = 1 and ∆0[2] = 0.5(0.8 −
0.05)− 0.5(0.2− 0.95) = 0.75, respectively. The initial homophily, driven by salience

through expression (1.2), becomes α1
0 = 0.29 and α2

0 = 0.21, for attributes 1 and 2,

respectively. The interaction matrix above thus becomes:

W0 =

{1, 2} {1} {2} {∅}


0.5 0.29 0.21 0 {1, 2}
0.29 0.5 0 0.21 {1}
0.21 0 0.5 0.29 {2}

0 0.21 0.29 0.5 {∅}

Theorem.

6



Homophily and the Persistence of Disagreement 7

In the following figure we depict this interaction structure. For this purpose, let us

color types as follows: types possessing attribute 1 are blue and those lacking it are

green. Types possessing attribute 2 are white while types lacking it are red. Thus,

{1, 2} is a mixture of blue and white, {2} is a mixture of green and white, {∅} is a

mixture of green and red and {1} is a mixture of blue and red:

Figure 1. Depicting initial interactions

1,2

1

∅

2

0.21

0.29

0.5

0.29

0.5

0.21

0.21

0.29

0.5

0.29

0.5

0.21

We use this structure as a running example in subsequent sections.

1.3 The persistence and properties of disagreement

To analyze under which conditions disagreement persists, notice that expression (1.1)

can be solved recursively to get at+1 = W Ta0 where W T =
∏T

t=0WT−t. Thus one can

express attitudes at an arbitrary point in time t as a function of initial attitudes. Notice

that if the matrix describing point-wise interactions, as the one in example 1, was

constant over time, consensus will eventually emerge. The reason is that individuals

would then be able to incorporate, directly or indirectly, everyone else’s attitudes

at every point in time. Formally, the (constant) matrix of interactions is strongly

connected and aperiodic and thus consensus is guaranteed.12 In our framework, this

is equivalent to establish that all eventual attitudes will be equal to zero. Formally,

a∞ = limt−→∞ at+1 = 0.

12See Jackson (2008), chapter 8.
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Allowing for the intensity of the attention that individuals pay to each other to

vary over time, opens the possibility of persistent disagreement. Clearly, the existence

and properties of eventual attitudes can be understood by investigating the existence

and properties of the limiting product of time dependent interactions matrices. We

denote this limit by W∞. Formally, W∞ = limT−→∞W
T .

In order to state our main result, let us discuss the concept of Dobrushin coefficient

of ergodicity. Ergodicity coefficients provide information about the extent to which all

the rows of a matrix are equal.13 The Dobrushin coefficient of ergodicity of a matrix

M is defined as:

τ(M) =
1

2
max
ij

∑
k

|mik −mjk|. (1.3)

It lies between zero and one and is different from zero if and only if the rows of

M are not the same. Now, we present our main result, that describes the form and

extent of disagreement in eventual attitudes. It is as follows:

Theorem. For every configuration of initial attitudes, eventual ones always exist.

They exhibit disagreement if and only if attribute 1 is, initially, the most salient (that

is, if and only if ∆0[1] > ∆0[2]). In this case, eventual attitudes are such that, for

every type A:

|aA∞| =
1

2
τ(W∞)∆0[1] (1.4)

where τ(W∞) ∈ (0, 1]. Furthermore, aA∞ > 0 if and only if 1 ∈ A.

Several aspects merit further attention. First, disagreement is almost the unique

outcome of this process.14 When there is, initially, a unique most salient attribute,

it gains increasing attention in detriment of the attention paid to the remaining at-

tributes. Thus, eventual homophily is based upon one, and only one, dimension.

Consensus would emerge if and only if there were, at least, two initially most salient

attributes. In the extreme case in which all differences in average initial attitudes

were equal, all attributes will deserve the same initial homophily, which will be also

constant over time. In this case consensus will eventually emerge. Specifically, every

attribute i will be receiving always same amount of attention, αit = (2n−1n)−1.15

13See Stachurski (2009) for a reference on the Dobrushin coefficient in the study of economic models

with a Markovian structure. See also Ipsen and Selee (2011) and Chatterjee and Seneta (1977) for the

study of convergence properties of inhomogeneous Markov chains by means of ergodicity coefficients.
14Since differences in average attitudes are real numbers, they are generally different. Also the

results remain the same if we consider that initial attitudes are defined over the entire real line

instead of belonging to [−1, 1].
15When all differences in average initial attitudes are equal to zero, expression (1.2) is not defined.

We set αit = (2n−1n)−1 in this case. Consensus eventually emerges as well.

8
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Second, disagreement persists between two groups. Specifically, types possessing

attribute 1 have the same eventual attitudes and the same happens for types lacking

attribute 1. The eventual Attitudes between these two groups are different.

Third, eventual disagreement, measured as the difference in average eventual atti-

tudes between the groups of types possessing and lacking attribute 1, is a proportion

of the difference in average initial attitudes between the groups of types possessing and

lacking attribute 1. This proportion is exactly given by the ergodicity coefficient of

the infinite product of the point-wise matrices of weights.16 The ergodicity coefficient

then characterizes the distance to consensus in the long-run. It is important to high-

light that this coefficient is fully determined by the initial configurations of attitudes.17

Also, the difference in average eventual attitudes of types possessing and lacking any

attribute different from 1, is zero.18

The case with two attributes is pretty informative. In it, the deviation from consen-

sus in the long-run is given by the ratio of the differences in average initial attitudes

between attributes 2 and 1. Specifically, τ(W∞) = 1 − ∆0[2]/∆0[1]. The following

example illustrates the results:

Example 2. Consider that ∆0[1] = 1 and ∆0[2] = 0.75, as in example 1. The

entries in the interaction matrices evolve as follows:

W0 =


0.5 0.29 0.21 0

0.29 0.5 0 0.21

0.21 0 0.5 0.29

0 0.21 0.29 0.5

 , W1 =


0.5 0.32 0.18 0

0.32 0.5 0 0.18

0.18 0 0.5 0.32

0 0.18 0.32 0.5

 , ..., lim
t→∞

Wt =


0.5 0.5 0 0

0.5 0.5 0 0

0 0 0.5 0.5

0 0 0.5 0.5

 .

Also, W∞ =


0.313 0.313 0.187 0.187

0.313 0.313 0.187 0.187

0.187 0.187 0.312 0.312

0.187 0.187 0.312 0.312

 andW∞ times a0 =


0.8

0.2

−0.05

−0.95

 is a∞ =


0.126

0.126

−0.126

−0.126

 .

Notice how on one hand, types {1, 2} and {1} and on the other hand, types {2}
and {∅} hold the same eventual attitudes. Eventual attitudes of these two groups are

different. In this case τ(W∞) = 0.25.

Fourth, let us denote, for the ease of exposition, λit =
∆t[i]∑
j ∆t[j]

for every attribute i

and at every time t, that is, we make use of expression (1.2) without normalization. It

16Let a∞[i] = limt−→∞ at[i] and a∞[−i] = limt−→∞ at[−i]. Since there are 2n−1 types possessing

(respectively lacking) attribute 1, a∞[1]−a∞[−1] = 2−1(τ(W∞)∆0[1]+τ(W∞)∆0[1])=τ(W∞)∆0[1].
17See step 8 in the proof of the main Theorem.
18That is so because within the 2n−1 types possessing (respectively lacking) attribute 1, there are

2n−2 possessing (respectively lacking) any other attribute i > 1, thus the average eventual attitudes

of i-similar types are the same and the difference between them cancels out.

9
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follows that the requirement in the main Theorem also holds for the general Luce form,

γit =
∆t[i]

δ∑
j ∆t[j]δ

when δ ∈ (0,∞).19 The literature, for instance Chen et al. (1997),

interprets δ as a rationality parameter. In our case δ reflects the extent to which the

difference in attitudes across attribute 1 is exacerbated. When δ → 0 this difference

become less important than before but disagreement still persists. Intuitively, the

magnitude of disagreement happens to be smaller than in the standard case. When

exactly δ = 0, the difference in attitudes associated to attribute 1 is as important as

the differences associated to any other attribute, regardless of their magnitude. In

this case every individual pays always the same attention, αit = (2n−1n)−1, to every

attribute, thus consensus eventually emerges. When δ →∞, the difference in attitudes

associated to attribute 1 is increasingly important and the magnitude of disagreement

increases with respect to the standard case.

1.3.1 Segregation in interactions and disagreement

As we have discussed, 1-similar types eventually interact exclusively among themselves.

They reach this situation by weakening their interactions with 1-dissimilar types.

To summarize this interaction information, we derive here the Spectral Segregation

Index proposed by Echenique and Fryer (2007), for attribute i at time t, henceforth

SSI it .
20 Being based on the nature of individual interactions, it is particularly suitable

in our framework. Other indexes measuring segregation, as the Dissimilarity or the

Isolation Index, are based on partitions (census) of a physical unit (a city). In our

case individuals are not partitioned into physical units, thus, we do not interpret our

interaction process in their terms.21

Before stating the result let us stress the fact that interactions within the groups

of types possessing and lacking any attribute i, follow the same pattern at every time

t. This can be seen using the symmetric interaction matrix in example 1. Interactions

among types possessing attribute 1, collapsed in the submatrix composed by {1, 2}
and {1} take the same form as those of types lacking it, collapsed in the submatrix

composed by {2} and {∅}. The same is true for attribute 2. Thus, the SSI it describes

interactions within both groups. The following result describes the Spectral Index of

Segregation for 1-similar types:

Proposition 1. At every time t, SSI1t =
1 + λ1t

2
. It increases over time, with SSI10 >

n+ 1

2n
and lim

t−→∞
SSI1t = 1.22

19In this case αit = (2n−1)−1γit .
20The Spectral Segregation Index has a static nature, we just repeat its computation at every t.
21See Echenique and Fryer (2007) for a discussion.
22The SSI1t is computed by looking only at interactions among 1-similar types at time t. It is the

10
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Due to our assumptions, the groups of 1-similar types have more intense overall

relations than the groups of i-similar types for attributes i > 1. That comes from

the fact that attribute 1 is always the most salient. Also, interactions among 1-similar

types are gradually intensified on the basis of this attribute. We eventually observe the

extreme situation in which individuals only interact with others if they are 1-similar.

Thus, two disconnected groups, the one composed by types possessing attribute 1 and

the one composed by types lacking it, emerge. In this case the segregation of 1-similar

types ends up being maximal. In others words, the limiting value of the Spectral

Segregation Index is equal to 1.

We can also examine the segregation patterns according to attributes i > 1. It turns

out that SSI it = 2−1(1 + λit) as well. As attributes i > 1 become gradually irrelevant

in shaping interactions, segregation according to them is going to decrease over time.

Also, the limiting value of the index for attributes i > 1 is exactly 0.5.23 To make this

point clearer, recall that eventually two disconnected groups of 1-similar types emerge.

If within any of these two groups we focus on the interaction patterns according to

any other attribute i > 1, we would observe how individuals evenly distribute their

unit of attention between i-similar and i-dissimilar types.

Finally, it is worth mentioning the relationship between the segregation of a group

of i-similar types and the segregation of the members of this group. By definition, the

Spectral Segregation Index is the average of individual segregation indexes. Individ-

ual segregation indexes are computed by distributing the overall Spectral Segregation

Index among the members of the group. Following Echenique and Fryer (2007), this

distribution is done according to the entries of the eigenvector associated to the largest

eigenvalue of the matrix describing interactions of i-similar types. In our case this

eigenvector is composed by ones. It is then the case that, at every point in time t and

for every attribute i, the level segregation of every type is the same, and equal to the

overall Spectral Segregation Index. Intuitively, every type pays the same total amount

of attention to i-similar types. As a consequence, it also pays the same total amount

of attention to i-dissimilar types. In a nutshell, every type segregates its interactions

at the same extent and thus equally contributes to the segregation of its group.

In the following figure we illustrate the evolution of interactions as time goes by

and compute the Spectral Segregation Index. Observe how 1-similar types eventually

interact exclusively among themselves. Observe also how types possessing (respectively

lacking) attribute 2, equally split their unit of attention between themselves and others

largest eigenvalue of the matrix describing these interactions. Also, this result refers to the case in

which λit > 0 for every attribute i. The results are the same when λit = 0 for some/all attributes

i > 1. We address this case in the proof of this proposition.
23Formally, limt−→∞ SSIit = 0.5. Also, SSIi0 ≤ (n + 1)(2n)−1. As above, the SSIit for every

attribute i is computed by looking only at interactions among i-similar types at time t. It is the

largest eigenvalue of the matrix describing these interactions.
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lacking (respectively possessing) attribute 2.

Figure 2. Segregation in interactions
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Another measure for the intensity of interactions is the so called Network Cohesion,

proposed by Cavalcanti et al. (2012). Given a network, represented by a matrix of in-

teractions, Network Cohesion measures how uneven relations are. In other words, how

uniform or fragmented a network is. At every time t, Network Cohesion, henceforth

Ct, can be computed as one minus the largest eigenvalue of the matrix of interactions

Wt. It lies between zero and one, where zero and one represent the lowest and the

largest cohesion, respectively. In our framework, λ1t , is indeed the largest eigenvalue of

the matrix of interactions Wt, thus we have that Ct = 1 − λ1t . Network Cohesion de-

creases overtime and becomes eventually zero, reflecting the eventual emergence of two

disconnected groups of individuals. For instance, in example 2 we have that λ10 = 0.58,

λ11 = 0.64 and limt→∞ λ
1
t = 1, thus C0 = 0.42, C1 = 0.36 and limt→∞Ct = 0.

1.4 Speed of convergence

We focus here on the role of salience in determining the speed of convergence to

the eventual disagreement. One reason as to why is relevant to study the speed of

convergence is because disagreements might indeed have pernicious consequences. In

the presence of a policy intervention aiming to recover consensus, it might be then

important to know the timing for its implementation.

As Alesina and Tabellini (1990) point out, discrepancies between policymakers in

ideological views about social welfare, specifically regarding the desired composition

of government spending in public goods, might cause the accumulation of inefficient

levels of public debt. Also, Voss et al. (2006) show how the organizational success of

non-profit professional theatres was affected by the divergent views of their leaders

regarding the values that should drive the organizations’ behavior and Andreoni and

Mylovanov (2012) discuss how, among other consequences, disagreement might pro-

mote inefficient delays in bargaining. In a broad sense, Friedkin and Johnsen (1999)

state that there might be difficulties in arriving at agreed decisions when individuals

have fixed discrepant preferences.

The speed of convergence to the eventual disagreement is determined by the rela-

tion between the difference in average initial attitudes associated to attribute 1 and the

ones associated to the remaining attributes. In other words, the initial relative salience

of attribute 1 determines how long it takes for individuals to become sufficiently ho-

mophilous with respect to it. Recall that the expression that links homophily based

on attribute 1 and the salience of this attribute is given by λ1t =
∆t[1]∑
i ∆t[i]

. As previ-

ously discussed, eventually 1-similar individuals interact exclusively among themselves

which formally means that limt−→∞ λ
1
t = 1. Thus, when we are sufficiently close to

this interaction pattern, we can state that we are sufficiently close to the equilibrium

in which disagreement persists. It turns out that every time t, λ1t is the second largest

13
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eigenvalue of the point-wise matrix of interactions Wt. As deeply discussed in Golub

and Jackson (2010) and Golub and Jackson (2012), the second largest eigenvalue of a

stochastic matrix plays an important role in the analysis of the speed of convergence.

Our aim in this section is precisely to characterize the time it takes for individuals

to become homophilous exclusively with respect to attribute 1, that is, the minimum

time it takes for λ1t to be above an ε > 0 distance of its limit. For this purpose we

formally define this minimum time as:

Tε = min{t : λ1t ≥ 1− ε}. (1.5)

In what follows we describe the properties of Tε, specifically we define its bounds and

analyze how it behaves in response to changes in the initial relative salience of attribute

1, that is, to changes in the relation between the difference in average initial attitudes

associated to attribute 1 and the ones associated to the remaining attributes. For this

purpose, we focus on the case in which all differences in average initial attitudes are

strictly positive. We also consider the case in which the relative salience of attribute 1

is modified by altering the differences in average initial attitudes, for just one attribute

at a time.24

Before stating the result let ri0 = ∆0[i]/∆0[1] for every attribute i > 1. This ratio

captures the initial relative salience of attribute 1 with respect to any other attribute

i > 1. The smaller this ratio the more salient attribute 1 is with respect to any other

attribute i > 1. Let us exceptionally set r0 = ∆0[n]/∆0[1] and r0 = ∆0[2]/∆0[1].

These two ratios represent extreme cases. Specifically, r0 considers the difference

in average initial attitudes associated to attribute n, which is the smallest one. In

contrast, r0 considers the difference in average initial attitudes associated to attribute

2, which is the second highest one. Let us set λ
1

t = [1 + (n − 1)(r0)
2t ]−1 and define

Tminε = min{t : λ
1

t ≥ 1 − ε} accordingly. Similarly, let λ1t = [1 + (n − 1)(r0)
2t ]−1

and Tmaxε = min{t : λ1t ≥ 1 − ε}. Notice that both, λ
1

t and λ1t , are constructed

from the expression λ1t = [1 +
∑

i>1(r
i
0)

2t ]−1, by substituting all differences in average

initial attitudes, by the smallest and second highest difference, respectively.25 We now

present the result:

24Specifically, for one attribute i, we alter ∆0[i] such that ∆0[1] > ∆0[2] ≥ · · · ≥ ∆0[n] ≥ 0 is

preserved in order, and in magnitude for differences associated to attributes j 6= i. In fact, when

we can decrease or increase any ∆0[i] by decreasing or increasing, in the same magnitude, initial

attitudes of both, the type that possesses all attributes and the type that only possesses attribute i

we consider, differences associated to attributes j 6= i, keep unaltered. The decrease or increase has

to be such that the order above is preserved.
25Given the order of initial differences, when ∆0[i] = 0 for some attribute i ≤ n then, λ

1

t = 1. In

this case Tminε = 0. Similarly, when ∆0[2] = 0 then λ1t = 1. In this case Tmaxε = 0. Also notice that

λ10 = 1 and thus the equilibrium is reached at t = 1.
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Proposition 2. For every configuration of initial attitudes such that disagreement

persists, Tε is non-increasing in the initial relative salience of attribute 1. Furthermore,

Tε ∈ [Tminε , Tmaxε ].

It directly follows that, everything else equal, the higher the difference in average

initial attitudes associated to attribute 1 the higher the overall attention within the

groups of 1-similar types. It is also the case that the lower the difference in average

initial attitudes associated to an attribute i > 1, the higher the overall attention

within the groups of 1-similar types. In particular, attribute 1 becomes relatively more

salient than this other, which is now a weaker competitor for attention. In general

when attribute 1 is fairly salient, individuals exhibit high homophily with respect to

1-similar others and form completely inward-looking groups relatively fast.

Not only the speed of convergence but the magnitude of disagreement is also sen-

sitive to the aforementioned changes in differences in attitudes. To see this consider

the eventual attitudes in expression (1.4) and notice that we can rewrite the ergod-

icity coefficient as τ(W∞) = limT→∞
∏T

t=0[1 + r2
t

0 + ... + r2
t

0 ]−1. It is direct that the

changes in the differences in attitudes decrease the ratios in the denominator, making

the elements of this product point-wise higher than before. Thus, the limiting product

has to also be higher than before.

It is also worth mentioning how it is enough to focus on the evolution of the

homophily value associated to attribute 1 to describe the minimum time of convergence

for the system as a whole. The reason is that this homophily value is always further

away from 1, its limiting value, than any of the homophily values associated to the

remaining attributes is from 0, its limiting value. Then, the time it takes for it to be

sufficiently close to one, is at least the same as the time it takes for the remaining

homophily values to be sufficiently close to zero.

We finally discuss how the configuration of initial attitudes matters in determining

the speed of convergence. Consider the extreme case in which the difference in average

initial attitudes associated to attribute 1 is fairly similar to the differences associated

to the remaining attributes, that is, ∆0[1] ' ∆0[2] = · · · = ∆0[n]. The initial relative

salience of attribute 1 is fairly small in this case and it would take a while for individuals

to gradually redirect their homophilous behavior towards attribute 1. The time to

reach the equilibrium would be considerably high in this case. The other extreme

situation is such that the difference in average initial attitudes associated to attribute

1 is, by far, the highest one, for instance, ∆0[1] > ∆0[2] = · · · = ∆0[n] ' 0. Being the

relative salience of attribute 1 fairly high, individuals would quickly conclude that the

possession or lack of this attribute clearly defines two groups in society, or in other

words, that this attribute is explanatory for social differences. Thus, it would not

take much time for them to become homophilous exclusively with respect to it. The

equilibrium will be reached much more faster than before. When the differences in
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attitudes associated to all attributes i > 1 are zero, the equilibrium is reached at t = 1.

1.5 Conclusions

On the basis of the observation that disagreement in attitudes is a common phe-

nomenon, we propose a model of attitude evolution able to capture its persistence.

In our approach individuals exhibit homophily and the attention they pay to similar

others varies over time. Specifically, homophily co-evolves with attitudes governed by

the salience of attributes.

We find that disagreement is the long-run outcome of this process if and only if there

is a unique attribute that becomes increasingly salient as time goes by. This attribute

is precisely the initially most salient one. Thus, eventual homophily is such that

individuals only pay attention to others if they are similar to them in that particular

attribute. As a product of this behavior, two groups of thinking emerge in the long-

run. The time to convergence to this scenario is non-increasing in the initial relative

salience of this attribute.

We consider our findings to be related to the phenomenon of unidimensionality in

attitudes, a widely discussed topic in political economy. As DeMarzo et al. (2003)

point out, there is a strong debate on whether voting records of Congress and Senate

members can be explained by a unidimensional liberal-conservative model. There is,

in fact, evidence strongly supporting this model. For instance, Poole and Daniels

(1985) find that the voting behavior in the U.S. Congress can be mainly explained by

a single liberal-conservative dimension. We also consider that our model has a direct

application related to the persistence of the gender pay gap. It is sometimes argued

that the reason as to why females consistently self-report to be happier at work than

males, relies on the fact that they have traditionally held lower labor reward aspirations

than males. This phenomenon is known as The Paradox of Female Happiness. Two

references discussing this paradox and related aspects are Bertrand (2011) and Clark

(1997). Divergent aspirations between males and females might be able to explain that

part of the gender gap that remains unexplained even after controlling for relevant

aspects such as skill levels. Our intuition is that a model of wage setting in which

individuals are of both sexes and are endowed with gender biased aspirations, will

deliver as a result a gender pay gap, provided that the updating of aspirations takes

place with our mechanism. Specifically, females might end up self-selected into low

payment jobs, even without discriminatory behavior from the part of employers.

Finally we would like to mention two aspects of the model that we left for future

research: first, our model follows a representative agent approach in which there is one

individual by type. We do not deal with the case in which individuals appear in society

in different frequencies. Second, we have assumed that, in determining the intensity of
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relations individuals sum up the homophily values associated to shared attributes. It

will be interesting to investigate the case in which when any pair of individuals share

two (or more) attributes i and j, the attention they pay to each other at time t is

given by a more general function of αit and αjt , and not just its sum.

1.6 Appendix. Proofs

First of all let λit = ∆t[i]/
∑

j ∆t[j] for every attribute i and at every time t.

Proof of the Theorem. The proof is composed by several steps. In step 1 we show how,

at every time t, λi0 > 0 and λi0 = 0 imply that λit > 0 and λit = 0, respectively. Steps

2-8 analyze disagreement when λi0 > 0 for every attribute i. In particular, Steps 2-5

identify the eigenvalues and eigenvectors of Wt and diagonalize it. Step 6 deals with

the existence of the limiting product of point-wise stochastic matrices, that is, W∞.

Step 7 provides its form. Step 8 establishes the necessary and sufficient condition for

disagreement to persist, qualifying it. Finally, step 9 describes the case in which λi0 = 0

for some/all attributes i > 1.

Step 1. We prove that λi0 > 0 implies that λit > 0 and λi0 = 0 implies that λit = 0, at

every time t. We proceed by decomposing ∆t[i] = (2n−1)−1
[∑

A:i∈A a
A
t −

∑
A:i/∈A a

A
t

]
.

Consider a type A such that i ∈ A. By (1.1), aAt =
∑

B w
A,B
t−1 a

B
t−1. Since wA,Bt−1 =

(2n−1)−1
∑

i∈I(AB) λ
i
t−1, then:

aAt =
∑
B

wA,Bt−1 a
B
t−1 =

1

2n−1

∑
B:i∈B

λit−1a
B
t−1 +

1

2n−1

∑
j 6=i

λjt−1
∑

B:j∈I(AB)

aBt−1.

Since there are 2n−1 types A possessing attribute i,
∑

A:i∈A a
A
t =

∑
B:i∈B λ

i
t−1a

B
t−1 +∑

j 6=i λ
j
t−1
∑

B:j∈I(AB) a
B
t−1. By a similar reasoning, for types A such that i /∈ A,∑

A:i/∈A a
A
t =

∑
B:i/∈B λ

i
t−1a

B
t−1 +

∑
j 6=i λ

j
t−1
∑

B:j∈I(AB) a
B
t−1. Therefore:

1

2n−1

∑
A:i∈A

aAt −
1

2n−1

∑
A:i/∈A

aAt =
1

2n−1

∑
B:i∈B

λit−1a
B
t−1 −

1

2n−1

∑
B:i/∈B

λit−1a
B
t−1

or equivalently, ∆t[i] = λit−1∆t−1[i].
26 From the definition of λit, it follows that at every

t, ∆t[i] ≥ 0 implies that λit ≥ 0. Also, ∆t[i] ≥ 0 if and only if λit−1 ≥ 0 and ∆t−1[i] ≥ 0.

With these two observations we conclude that ∆0[i] > 0 and λi0 > 0 imply that at

every time t, ∆t[i] > 0 and λit > 0, respectively. Also ∆0[i] = 0 and λi0 = 0 imply that

at every time t, ∆t[i] = 0 and λi0 = 0, respectively.27

26As this expression holds at every t, we recursively write ∆t[i] =
∏t−1
s=0 λ

i
s∆0[i].

27Also from the definition of λit it follows that at every t, ∆t[1] ≥ ∆t[2] ≥ · · · ≥ ∆t[n] ≥ 0 implies

that λ1t ≥ λ2t ≥ · · · ≥ λnt ≥ 0. Additionally, ∆t[1] ≥ ∆t[2] ≥ · · · ≥ ∆t[n] ≥ 0 if and only if

λ1t−1∆t−1[1] ≥ λ2t−1∆t−1[2] ≥ · · · ≥ λnt−1∆t−1[n] ≥ 0. Since by assumption ∆0[1] ≥ ∆0[2] ≥ · · · ≥
∆0[n] ≥ 0 then, at every t, ∆t[1] ≥ ∆t[2] ≥ · · · ≥ ∆t[n] ≥ 0 and λ1t ≥ λ2t ≥ · · · ≥ λnt ≥ 0 hold. This

also implies that
∏T
t=0 λ

1
t >

∏T
t=0 λ

2
t ≥ · · · ≥

∏T
t=0 λ

n
t ≥ 0.

17
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Step 2. At every time t, 1 is an eigenvalue of Wt, with right-eigenvector u of size 2n×
1, where u has all components equal to 1. This directly follows from the stochasticity

of Wt. Notice that u is time independent. We thus omit the time subscript.

Step 3. At every time t and for every attribute i, λit is an eigenvalue of Wt, with

right-eigenvector ui of size 2n × 1, where ui has the following form: the component of

ui associated to type A is equal to 1 if i ∈ A and equal to −1 otherwise. We prove

that by showing that the pair (λit, u
i) satisfies the eigenvalue equation, Wtu

i = λitu
i.

Consider an attribute i and an arbitrary type A. Suppose first that i ∈ A. Notice

that there are exactly 2n−1 types B possessing attribute i. Also, notice that for every

j 6= i, there are exactly 2n−2 types B possessing attribute i that are j-similar to A

and 2n−2 types B lacking attribute i that are j-similar to A. Therefore, the row in Wt

corresponding to type A, multiplied by ui, is equal to:

∑
B:i∈B

wA,Bt −
∑
B:i/∈B

wA,Bt =

2n−1λit + 2n−2
n∑
j 6=i

λjt − 2n−2
n∑
j 6=i

λjt

2n−1
= λit.

Since every type A is such that i ∈ A, the RHS of the eigenvalue equation also equals

λit. Thus, we conclude that (λit, u
i) is a pair of eigenvalue and right-eigenvector of Wt.

The proof for the case in which A is such that i /∈ A is analogous and hence omitted.

As in step 2, the eigenvectors ui corresponding to every λit are also time independent.

Step 4. At every time t, the remaining eigenvalues of Wt are zero. Consider any

type B such that |B| ≥ 2. We start by proving that for every type A, wA,Bt =∑
i∈B w

A,{i}
t − [|B| − 1]wA,∅t . By doing so, we are proving that the column vector of

weights associated to type B is a linear combination of the column vectors of weights

associated to types containing at most one attribute and hence, there are at most n+1

independent columns in Wt. Notice that getting rid of the normalization 1/2n−1, we

are left with:

∑
i∈B

w
A,{i}
t =

∑
i∈B∩A

(λit +
∑
j∈Ac

λjt) +
∑

i∈B∩Ac

∑
j∈Ac,j 6=i

λjt

and that this is equivalent to:

∑
i∈B∩A

(λit +
∑
j∈Ac

λjt) +
∑

i∈B∩Ac

(
∑
j∈Ac

λjt − λit) =
∑
i∈B∩A

λit +
∑
i∈B

∑
j∈Ac

λjt −
∑

i∈B∩Ac

λit. (1.6)

Second, notice that:

(|B| − 1)wA,∅t = (|B| − 1)
∑
j∈Ac

λjt . (1.7)

18
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Thus, the difference between expression (1.6) and (1.7) is equal to
∑

i∈B∩A λ
i
t +∑

j∈Ac λ
j
t −
∑

i∈B∩Ac λit. This expression can be rewritten as
∑

i∈B∩A λ
i
t+
∑

j∈I∩Ac λ
j
t −∑

i∈(I\Bc)∩Ac λit =
∑

i∈B∩A λ
i
t +
∑

i∈Bc∩Ac λit. This is equivalent to wA,Bt =
∑

i∈I(AB) λ
i
t

where I(AB) = (B∩A)∪ (Bc∩Ac) as defined in section 1.2. Thus, rank(Wt) ≤ n+1.

Recall that the rank of a matrix is equal to the number of non-zero eigenvalues.

Since steps 2 and 3 already identified n+ 1 of them, indeed rank(Wt) = n+ 1. Thus,

the rest of the 2n − (n+ 1) eigenvalues are zero.

Step 5. We prove here that Wt is always diagonalizable and provide its form. From

symmetry of Wt there is an orthogonal diagonalization Wt = UΛtU
′, where U is an

orthonormal basis. Orthonormal eigenvectors have unitary euclidean norm and are

orthogonal to each other. Therefore, for the zero eigenvalues, there exist eigenvectors

u0 with ‖u0‖ = 1, orthogonal to each other and to both, u/‖u‖ and every ui/‖ui‖,
where ‖u‖ = 2n/2 and ‖ui‖ = 2n/2, for every i. Since by steps 2 and 3 u and every

ui are time independent, every u0 is also time independent. Now, fix the following

order of eigenvalues: first eigenvalue 1, afterwards eigenvalues λit, by type, and finally

the zero eigenvalues in a fixed order. Then U =

[
u

‖u‖
ui

‖u1‖
...

un

‖un‖
u0 . . . u0

]
, and the

diagonal matrix of eigenvalues at time t is:

Λt =



1 0 0 0 · · · 0 0 · · · 0

0 λ1t · · · · · · · · · 0 0 · · · 0

0 0 · · · · · · · · · 0 0 · · · 0

0 0 0 0 · · · λnt 0 · · · 0
...

...
...

...
...

...
... 0 0

0 0 0 0 0 0 0 0 0


Since at every time t the matrix Wt is diagonalizable over the same eigenspace,

hence W T = UΛTU ′ where ΛT =
∏T

t=0 Λt with diagonal entries: 1,
∏T

t=0 λ
i
t for every

attribute i and zeros.

Step 6. Here we deal with the existence of W∞ and a∞. By step 5, W∞ =

U limT−→∞ ΛTU ′, provided that the RHS of this expression exists. We confirm here

that this is, in fact, the case. In computing limT−→∞ ΛT we focus on the non-zero

diagonal entries of ΛT . Eigenvalue 1 is constant over time, thus its limiting product

is 1. Since at every time t λit ∈ (0, 1) for every i,
∏∞

t=0 λ
i
t exists in [0, 1). Thus,

U limT−→∞ ΛTU ′ exists and defines both, W∞ and a∞ = W∞a0, for every a0.

Step 7. We provide here the specific form of W∞. Suppose that ∆0[1] > ∆0[2].

Consider attribute 1 first. Let rit = ∆t[i]/∆t[1] for every attribute i and at every time

t. We then rewrite λ1t = (∆t[1])(∆t[1] +
∑

i>1 ∆t[i])
−1 = [1 +

∑
i>1 r

i
t]
−1. By step 1,

rit = λit−1∆t−1[i]/λ
1
t−1∆t−1[1]. From the expression of λit it follows that λit−1/λ

1
t−1 =

∆t−1[i]/∆t−1[1] = rit−1. Thus, rit = (rit−1)
2 and recursively we get that rit = (ri0)

2t .
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Thus, λ1t = [1 +
∑

i>1(r
i
0)

2t ]−1. It is important to notice that, 0 < ri0 < 1 for attributes

i > 1. It then follows that limt−→∞ λ
1
t = 1. This opens the possibility for

∏∞
t=0 λ

1
t 6= 0.

We prove that this is indeed the case by equivalently stating that
∑∞

t=0 log(λ1t ) exists.

In order to do it, we consider r20, the highest ratio smaller than one, and construct

a new homophily value as follows: we replace ri0, for attributes i > 1, with r20 in λ1t .

Specifically, we have that λ1t = [1+(n−1)(r20)
2t ]−1. Since r20 ≥ ri0 for every i > 1, then

λ1t ≥ λ1t at every time t. We prove that
∑∞

t=0 log(λ1t ) exists, so does
∑∞

t=0 log(λ1t ), by

comparison. We proceed by testing the absolute convergence (and hence the conver-

gence) of
∑∞

t=0 log(λ1t ), using the ratio test. It is well known that an adaptation of the

L’Hopital rule can be used to find limits of sequences. We thus define f(x) and g(x)

as functions of a real variable x and {st} such that at every t, st = f(t)/g(t). Then,

we evaluate limx→∞ f(x)/g(x) = limx→∞
log(1 + (n− 1)(r20)

2x+1
)

log(1 + (n− 1)(r20)
2x)

. Since 0 < r20 < 1,

this limit is indeterminate. By L’Hopital limx→∞ f(x)/g(x) = limx→∞ f
′(x)/g′(x) =

2(r20)
2x(1 + (n− 1)(r20)

2x)

(1 + (n− 1)(r20)
2x+1)

= 0. Thus, limt−→∞ st = limx→∞ f(x)/g(x) = 0. This im-

plies that
∑∞

t=0 |log(λ1t )| exists. Since at every t, λ1t ≥ λ1t , then |log(λ1t )| ≤ |log(λ1t )|.
Thus, by comparison

∑∞
t=0 |log(λ1t )| exists, so does

∑∞
t=0 log(λ1t ).

Consider now attributes i > 1. For a given i > 1, let j denote attributes other

than it and let rjt = ∆t[j]/∆t[i]. Then λit = [1 +
∑

j 6=i(r
j
0)

2t ]−1. Notice that r10 > 1.

Then limt−→∞ λ
i
t = 0 and

∏∞
t=0 λ

i
t = 0 for attributes i > 1. Summing up we have that∏∞

t=0 λ
1
t = µ1 with µ1 ∈ (0, 1) and

∏∞
t=0 λ

i
t = 0 for i > 1. Under this scenario:

lim
T−→∞

ΛT =



1 0 0 0 · · · 0 0 · · · 0

0 µ1 ...
... · · · 0 0 · · · 0

0 0
...

... · · · 0 0 · · · 0

0 0 0 0 · · · 0 0 · · · 0
...

...
...

... · · · ...
... · · · 0

0 0 0 0 0 0 0 0 0


, U lim

T−→∞
ΛT =

1

2n/2



1 µ1 0 0 · · · 0 0 · · · 0
...

...
...

... · · · ...
... · · · 0

1 µ1 0 0 · · · 0 0 · · · 0

1 −µ1 0 0 · · · 0 0 · · · 0
...

...
...

... · · · ...
... · · · 0

1 −µ1 0 0 0 0 0 0 0


and thus,

W∞ = U lim
T−→∞

ΛTU ′ =
1

2n



1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

... · · · ...
... · · · ...

1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1

... · · · ...
... · · · ...

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1


.
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Notice that since eigenvectors u0, associated to the zero eigenvalues, occupy the

last columns (respectively rows) of U (respectively U ′), they are not involved in these

products.

Suppose now that ∆0[1] = ∆0[i] for some attributes i > 1. Let e be the number of

attributes i > 1 such that ∆0[1] and ∆0[i] are equal. Then limt−→∞ λ
1
t = [e+ 1]−1 6= 1,

This implies that
∏∞

t=0 λ
1
t = 0. By the same reasoning this is also the case for attributes

i > 1 such that ∆0[1] = ∆0[i]. For attributes i > 1 such that ∆0[1] > ∆0[i], then

limt−→∞ λ
i
t = 0 by a similar arguments as above and thus

∏∞
t=0 λ

i
t = 0 for them.

Under this scenario, every entry in W∞ is (2n)−1.

Before concluding let us consider the general case in which γit = ∆t[i]
δ/
∑

j ∆t[j]
δ

with δ ∈ (0,∞). We can rewrite γ1t = [1 +
∑

i>1(r
i
0)
δ(δ+1)t ]−1 in this case. No-

tice that limt→∞ γ
1
t = 1 and thus, limt→∞ γ

i
t = 0 for i > 1. We study the con-

vergence of
∑∞

t=0 log(γ1t ) using the same reasoning as before, where now γ1
t

= [1 +

(n − 1)(r20)
δ(δ+1)t ]−1. Using similar algebra and reasoning as above we conclude that

limx→∞ f
′(x)/g′(x) =

2(r20)
δ2(δ+1)x(1 + (n− 1)(r20)

δ2(δ+1)x)

(1 + (n− 1)(r20)
δ2(δ+1)x+1)

=0 for δ 6= 0. It is then

the case that
∑∞

t=0 log(γ1t ) converges, meaning that disagreement persists. When

∆0[1] = ∆0[i] for some attribute(s) i > 1 consensus emerges as above.

Step 8. We establish here the necessary and sufficient condition for disagreement to

persist. We also qualify disagreement. Recall that a0 = 0. The eventual attitude of a

type A is the result of multiplying its corresponding row inW∞ times the column vector

of initial attitudes. Consider first that ∆0[1] > ∆0[2]. Then W∞ is the one derived in

step 7. For the first 2n−1 rows of W∞, corresponding to types A such that 1 ∈ A, we

thus have that aA∞ = 2−1µ1

[
1

2n−1
∑

A:i∈A a
A
0 −

1

2n−1
∑

A:i/∈A a
A
0

]
= 2−1µ1∆0[1]. For the

subsequent 2n−1 rows corresponding to types A such that 1 /∈ A, aA∞ = −1

2
µ1∆0[1].

Thus, in general, for every type A, |aA∞| = 2−1µ1∆0[1] and eventual attitudes are

positive if and only if A is such that 1 ∈ A. That is, disagreement persists.

We are left to prove that τ(W∞) = µ1. Consider expression (1.3). Fixing any

column in W∞, the maximum distance between any two rows is µ1/2n−1 , which sum-

ming across the 2n columns and dividing by 2 yields µ1. Finally, since µ1 =
∏∞

t=0 λ
i
t =

limT→∞
∏T

t=0

[
1 +

∑
i>1 (∆0[i](∆0[1])−1)

2t
]−1

, we have that, |aA∞| = 2−1τ(W∞)∆0[1].

Consider now that ∆0[1] = ∆0[i] for some attributes i > 1. By step 7, every entry

of W∞ is (2n)−1. In this case aA∞ = 0 for every type A. That is, consensus eventually

emerges.

We then conclude that disagreement persists if and only if attribute 1 is, initially,

the unique most salient attribute.

Step 9. We consider the case in which λi0 = 0 for some/all attributes i > 1. Step

1 relies on the linearity of the updating process. Thus, it still holds. Since at every

t, Wt remains stochastic, step 2 holds. For the attributes i such that λit > 0, the
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statement in step 3 hold as well. Step 4 holds with the difference that now there are

2n − (n + 1 − N) zero eigenvalues, where N is the number of attributes i such that

λit = 0. In the extreme case in which λit = 0 for every attribute i > 1, the column

corresponding to the empty type and the n−1 columns corresponding to the singleton

types with attributes different from 1, are the same. In such a case N = n − 1 and

there are 2 independent columns. The eigenvalues different from zero at every t are

1 because of stochasticity and λ1t = 1. Since at every t, Wt remains symmetric, step

5 holds. Step 6 deals with the existence of W∞, which is based on the existence of

the limiting product of non-zero eigenvalues. It also goes through. Since the form

of W∞ depends only on whether ∆0[1] > ∆0[2], despite of λit being 0 for some/all

attributes i > 1, step 7 holds. Finally step 8, that establishes the necessary and

sufficient condition for disagreement to persist, qualifying it, also holds. Notice that

when λi0 = 0 for all attributes i > 1 then W∞ = W0. Also, µ1 = 1 and the equilibrium

is reached at t = 1.

�

Proof of Proposition 1. We compute here the Spectral Index of Segregation at every

time t. For this purpose we directly follow Echenique and Fryer (2007). Before pro-

ceeding recall that by step 1 in the proof of the main Theorem, positive (respectively

zero) homophily values remain positive (respectively zero) all along the process. Recall

also that
∑

i λ
i
t = 1 at every time t. Consider first the case in which for every attribute

i, λit > 0.

Consider only types possessing attribute 1. Denote the matrix of their interactions

by 1t. Since all types have attribute 1 in common, they pay a positive amount of

attention to each other, thus 1t has only one connected component composed by all

individuals in 1t. We now compute the largest eigenvalue of 1t. Our claim is that

λt = λ1t + 2−1
∑n

j 6=i λ
j
t , with associated time independent right-eigenvector u of size

2n−1 × 1, where u is composed by ones, is the largest eigenvalue of 1t. We first prove

that (λt, u) is a pair of eigenvalue and right-eigenvector of 1t. Second, we argue that

λt is the largest eigenvalue of 1t.

First, notice that every type A shares attribute 1 with 2n−1 types. It also shares

the rest of attributes with 2n−2 types. Thus, any row of 1t by u reads (2n−1λ1t +

2n−2
∑n

j 6=i λ
j
t)(2

n−1)−1. This is equivalent to λt×1. Therefore, the eigenvalue equation

is satisfied and (λt, u) is a pair of eigenvalue and (column) eigenvector of 1t. Second,

by Perron-Froebenius Theorem, being 1t a positive matrix, it has a unique largest

eigenvalue, which is strictly positive (that is, the spectral radius of 1t). It is bounded

above by the maximum sum of the entries of a row in 1t (see Meyer (2000), chapter

8). Notice that every row of 1t sums up to the same value, which is precisely λt.

Suppose that there is other positive real eigenvalue, different than λt, which is the

largest. Then it has to be also larger than the maximum sum of the entries of a row
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in 1t, contradicting the Perron-Froebenius Theorem. Then, λt has to be the largest

eigenvalue. We rewrite it as λt = λ1t + 2−1(1 − λ1t ) = 2−1(1 + λ1t ). Let us denote

SSI1t = λt. Finally, it directly follows that λt increases with λ1t . Since limt−→∞ λ
1
t = 1

then limt−→∞ SSI
1
t = 1 as well. Also, if every attribute i was initially equally salient,

then λi0 = 1/n for each of them. Since attribute 1 is the initially most salient, it has to

be that λi0 > 1/n. Thus, SSI10 > (n+ 1)(2n)−1. Notice that the analysis is exactly the

same when we consider interactions of types lacking attribute 1. In fact, the matrix of

interactions is exactly 1t. Also, in computing the SSI it for attributes i > 1, we follow

similar arguments. Thus, we omit the proofs.

Consider now the case in which for attribute 1, λ1t > 0 and for some/all attributes

i > 1, λit = 0.28 We prove here that when for an attribute i, λit = 0 then the SSI it is, at

every t, equal to one half.29 Given the evolution of the homophily values, as described

in the proof of Theorem 1, this is also its limiting value. Recall that, by step 1 in the

proof of Theorem 1, when for an attribute i such that 2 ≤ i ≤ n, λit = 0, this implies

that λjt = 0 for all attributes j > i. Let us focus on types possessing attribute i. The

analysis is exactly the same when we consider interactions of types lacking attribute

i. Two cases arise:

C.1. Suppose that for every attribute j such that 1 < j < i, then λjt = 0,

then interactions among types possessing attribute i are defined by two connected

components, based on the lack or possession of attribute 1. The matrices defining these

two connected components are the same and have all their entries positive. One of the

matrices has 2n−2 types possessing attribute 1 and the other has 2n−2 types lacking it.

The analysis within each matrix is exactly the same as before. In each of them, the

sum of every row is 2n−2(2n−1)−1λ1t = 0.5. Thus, within each component, SSI it equals

to one half at every time t. Thus, the average of the SSI it of each component is also

equal to one half.

C.2. Suppose that for some/all attributes j such that 1 < j < i, λjt > 0. In

this case there is only one connected component. The reason is that types possessing

(respectively lacking) attribute 1 are always connected among themselves and these

two groups are connected between them since both contain types that are similar in

attributes j < i, with λjt > 0. The sum of the entries of every row of the matrix of

interactions is 2n−2(λ1t +
∑

j 6=i λ
j
t)(2

n−1)−1 = 0.5. Thus, the index is equal to one half

at every time t.30 �

28Recall that when all differences in average initial attitudes are equal, either positive or zero, then

λit = 1/n for every i and at every t. Then, SSIit = (n + 1)(2n)−1 for every attribute i and at every

t. See the proof of the main Theorem.
29Notice that when computing the SSIit for an attribute i such that λit > 0 in the presence of

attributes j 6= i such that λjt = 0, the matrix of interactions of i-similar types has all its entries

positive. Thus, the analysis is the same as before.
30In this case the matrix of interactions is just non-negative. Since it is irreducible, the Perron-
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Proof of Proposition 2. Consider the case in which all differences in average initial

attitudes are positive. In section 1.4 we comment on the case in which some/all

differences associated to attributes i > 1 are zero.

To start with, we set the bounds for Tε in expression (1.5). For this purpose recall

that Tminε = min{t : λ
1

t ≥ 1 − ε} and Tmaxε = min{t : λ1t ≥ 1 − ε}. First, let

r0 = ∆0[n]/∆0[1]. Now, consider λ1t = [1 +
∑

i>1(r
i
0)

2t ]−1 and replace every rit =

∆t[i]/∆t[1] for attributes i > 1, with r0 to obtain λ
1

t = [1 + (n − 1)(r0)
2t ]−1. Notice

that λ
1

t ≥ λ1t at every t. Solving λ
1

t ≥ 1− ε for t, we get the expression for Tminε , that

is, t = log

(
log

(
ε

(1− ε)(n− 1)

)
log(r0)

−1
)

1

log(2)
. At every t′ < t it follows that

λ
1

t ≤ 1− ε, implying that λ1t ≤ 1− ε. Therefore, Tminε is a lower bound for Tε. Second,

let r0 = ∆0[2]/∆0[1]. Replace every ri0, for attributes i > 1, with r0 in λ1t . We get

λ1t = [1 + (n− 1)(r0)
2t ]−1. Notice that λ1t ≤ λ1t at every t. Solving λ1t ≥ 1− ε for t, we

get the expression for Tmaxε , that is, t = log

(
log

(
ε

(1− ε)(n− 1)

)
log(r0)

−1
)

1

log(2)
.

At every t′ > t it follows that λ1t ≥ λ1t ≥ 1− ε. Thus, Tmaxε is an upper bound for Tε.

Notice that making Tminε and Tmaxε positive is always possible, for small enough ε > 0.

We now focus on how Tε behaves with respect to changes in the the initial relative

salience of attribute 1. Specifically, we do so by proving that λ1t is decreasing in ri0.

Recall that we consider that the variation in ri0 comes from varying ∆0[i], one at a

time. This is done in such a way that ∆0[1] > ∆0[2] ≥ ... ≥ ∆0[n] ≥ 0 is preserved in

order, as well as in magnitude for differences associated to attributes j 6= i. Consider

the expression of λ1t above. We have that ∂λ1t/∂r
i
0 = −2t(ri0)

2t−1[1+
∑

i>1(r
i
0)

2t ]−2 < 0.

Thus, when ri0 decreases, at every time t λ1t is higher than before and the time it takes

for it to be sufficiently close to its limit is therefore smaller. Being Tε an integer, we thus

state that the time it takes for λ1t to be sufficiently close to its limit cannot be higher

than before. Finally, notice that λ1t determines the minimum time of convergence for

the system as a whole. The reason is that at every time t, λ1t is further away from 1,

its limiting value, than any of the remaining homophily values is from 0, its limiting

value. To see this notice that at every time t,
∑

i λ
i
t = 1, then λ1t ≥ 1− ε implies that∑

i>1 λ
i
t ≤ ε. When only λ1t and λ2t are different from zero, then λ1t ≥ 1−ε implies that

λ2t ≤ ε. When λit is also different from zero for some attributes i > 2, then λ1t ≥ 1− ε
implies that ε/(n− 1) ≤ λ2t < ε, with λ2t ≥ λit for any attribute i > 2.

�

Proof of footnote 10. We show that a0 = 0 implies that at = 0, at every t. By step

5 in the proof of the main Theorem, at every t, Wt is diagonalizable over the same

eigenspace. Let G be the projection onto the eigenspace of Wt corresponding to eigen-

Froebenius eigenvalue is equal to the sum of entries of any row in the interaction matrix, which is

here always the same. The associated time independent eigenvector is u of size 2n−1× 1 with unitary

entries.
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value 1. Let Gi be the projection onto the eigenspace of Wt corresponding to eigenvalue

λit. By the Spectral Theorem, W Ta0 = Ga0 +
∑n

i=1(
∏T

t=0 λ
i
t)G

ia0 (see Meyer (2000),

pages 517-520). We proceed by describing how row j of Gi looks like. Denote by

Gi
jk the jk entry of Gi. It is constructed using eigenvectors in U , in step 5 in the

proof of the main Theorem, as follows: Gi
jk = Uj(i+1)U

′
(i+1)k. In constructing row j of

Gi, we fix column i + 1 in U , i.e., the eigenvector corresponding to λit, and consider

its j entry. Entry j takes value 1/2n/2 if i ∈ A and −1/2n/2 otherwise. Entry j is

multiplied, by the k entries corresponding to row i + 1 in U ′, one in a turn. Notice

that row i + 1 of U ′ is the (transposed) eigenvector associated to λit. Thus, row j of

Gi is just the eigenvector associated to λit, divided by 1/2n/2, whenever i ∈ A and

its negative otherwise. Matrix G is constructed in the same way and is composed

by ones. Thus, aAs = a0 + 2−1
∑n

i=1(−1)1+1i∆0[i]
∏s

t=0 λ
i
t, where 1i is the indicator

of type A possessing attribute i. Since there are 2n−1 types possessing and lacking

every attribute i, respectively, when summing aAs for all types, the second term in the

previous expression cancels out. Specifically,
∑

A a
A
s =

∑
A a0 = 2nas. Since a0 = 0

then at every time s, as = 0. �
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Chapter 2

Disagreement in Näıve Models of

Attitude Formation: Comparative

Statics Results

2.1 Introduction

In chapter 1 we proposed a model of attitude formation able to capture the persistence

of disagreement. In our approach, individuals, defined by an arbitrary number of at-

tributes, exhibited homophily, the tendency to interact or pay attention to others that

are similar to them in terms of shared attributes. We allowed for the possibility that

the attention that individuals paid to similar others was co-evolving with attitudes.

This co-evolution, that opened the possibility of persistent disagreement, was governed

by the salience of attributes. The salience of an attribute was given by the magnitude

of the difference in attitudes between the groups of individuals possessing and lacking

it. We found that disagreement persisted if and only if there was a unique attribute

that became increasingly salient over time.

In our approach individuals had attitudes that were known with certainty, that is,

not subject to shocks, and these individuals incorporated others’ attitudes following

a weighted averaging rule in which relations were symmetric, that is, in which the

attention that any pair of individuals paid to each other was the same. In that context,

the link between differences in attitudes, determining salience, and attention was given

by the Luce form. We endowed the Luce form with the following interpretation: the

attention that individuals pay to each other when they share a specific attribute,

depends on how big the difference in attitudes associated to this attribute is in relation

to the differences associated to the remaining attributes.

In this paper we explore how previous findings react to natural modifications in

the assumptions regarding individual behavior. To start with, it might be the case
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Disagreement in Näıve Models of Attitude Formation 27

that individuals do not exhibit certain attitudes with respect to a given issue, but that

these attitudes are subject to shocks, or are random. In contexts in which individuals

aim to learn the true state of the world, randomness might be interpreted as lack of

information (noise) regarding the issue at hand, as in Golub and Jackson (2010), as

the degree of attitudes’ precision, as in DeMarzo et al. (2003), or as experts having

subjective probability distributions about the true state, as in DeGroot (1974). In

situations in which individuals deal with ideological issues, (maybe) without a well-

defined state of the world, we might interpret attitudes’ randomness as flexibility or

lack of stubbornness. Regarding this point we consider, for the case in which types are

defined by two attributes, that initial attitudes of every type are randomly drawn from

symmetric continuous distributions. We find that the persistence of disagreement is

robust to this type of randomness. In particular, disagreement may now persist across

either attribute, being more likely to persist across the one for which the mean of the

distribution of the initial difference in attitudes is the highest.

It is also natural to think in situations in which the (intensity of) relations that

individuals establish depend(s), not only on the salience of shared attributes, but on

the specific nature of these attributes. In fact, McPherson et al. (2001) collect empirical

studies documenting how gender homophily is lower when people is young than when

old. Gender homophily is also lower for high educated than for low educated people

and for Anglos than for African Americans. This might imply, in particular, that pairs

of individuals within a relation no longer devote the same amount of attention to each

other, that is, that relations are no longer symmetric. We translate these insights in

the context of our model as follows: suppose we have four types of individuals, that is,

an individual can be either young or old and also either a female or a male. Consider

that young people establish less intense relations with the same-gender others than

old people. This behavior could emerge in our model when individuals have different

sensitivity to differences in attitudes between groups. Specifically, when confronted

with information about differences in attitudes between males and females, old people

exacerbate the differences in attitudes by gender with respect to young people. Thus,

gender is more salient for old people than for young people. As one can observe,

the intensity of (gender) relations between pairs of individuals depends on another

attribute defining them (youth). We find that disagreement persists across the initially

most salient attribute and that its magnitude is higher than in the case in which the

attention that any pair of individuals within a relation devote to each other is the

same. Also, the time of convergence to the eventual disagreement is lower.

Finally, we explore the more general question of what are the conditions that the

evolution of homophily has to satisfy for disagreement to persist. We consider here

that individuals are defined by an arbitrary number of attributes. As mentioned, in

chapter 1 we used Luce as a particular rule for the evolution of homophily and we
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discussed how this evolution gave raise to persistent disagreement. That was the case

because homophily with respect to the initially most salient attribute increased over

time in such a way that the convergence of attitudes to a common value was precluded.

In contrast, the constant homophily feature in Golub and Jackson (2012) only affects

the speed of convergence to consensus, an outcome that always emerges. We thus

find relevant to go beyond in reconciling these two views and in the understanding

of what are the homophily patterns that give raise to either persistent disagreement

or consensus. We find that in general disagreement persists if and only if the process

by which individuals intensify their relations with others with whom they share the

initially most salient attribute, is fast enough. More specifically, there are two forces

playing a role: on the one hand individuals pay increasing attention to others on the

basis of this attribute but on the other hand, they also always pay a positive amount

of attention to everyone else. For disagreement to persist it has to be that the first

force dominates the second.

The rest of the paper is organized as follows. Section 2.2 discusses random at-

titudes. Section 2.3 focuses on the case in which individuals’ homophilous behavior

varies according to a particular attribute defining them. Section 2.4 develops results

on disagreement under a general representation of homophily. Section 2.5 concludes.

Section 2.6 contains the technical proofs.

2.2 Random attitudes

Let us consider the model in chapter 1 and assume that individuals are composed by

two attributes, denoted by 1 and 2. Thus, the type A of an individual is {1, 2}, {1}
, {2} or {∅}. Let ãA0 be the initial attitude of a type A. Let it follow a symmetric

continuous distribution, with mean aA0 and variance σ2
A. Initial attitudes of all types

are assumed to be independent although not necessarily identically distributed. Let

∆̃0[1] = 2−1(ã
{1,2}
0 − ã{∅}0 + (ã

{1}
0 − ã

{2}
0 )) and ∆̃0[2] = 2−1(ã

{1,2}
0 − ã{∅}0 + (ã

{2}
0 − ã

{1}
0 ))

be the distributions of the initial differences in attitudes associated to attribute 1

and 2, respectively. They have means ∆0[1] = 2−1(a
{1,2}
0 − a{∅}0 + (a

{1}
0 − a{2}0 )) and

∆0[2] = 2−1(a
{1,2}
0 −a{∅}0 +(a

{2}
0 −a

{1}
0 )), respectively, and the same variance,

∑
A σ

2
A/4.

We assume without loss of generality that these means are such that ∆0[1] ≥ ∆0[2] ≥ 0.

In linking homophily and salience, we discuss the Luce form, as in chapter 1. Thus:

λ̃1t =
|∆̃t[1]|

|∆̃t[1]|+ |∆̃t[2]|
and λ̃2t =

|∆̃t[2]|
|∆̃t[1]|+ |∆̃t[2]|

.

Notice that the homophily values could, in principle, be positive or negative, de-

pending on the realization of the random variables ∆̃t[1] and ∆̃t[2]. As we assume that
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the only aspect that matters is the magnitude of the differences in attitudes and not

their sign, we work with differences in absolute value.

As a preview of the results, we find that the persistence of disagreement is robust

to this type of randomness. In contrast with the deterministic case, in general dis-

agreement persists across either attribute with positive probability. Disagreement will

persist across attribute 1 with probability equal to one when the minimum among all

possible realizations of |∆̃0[1]| is higher than the maximum among all possible realiza-

tions of |∆̃0[2]|. We now discuss how the likelihood that disagreement persists across

either attribute depends on the features of the distributions of initial differences in

attitudes associated to these attributes. The results are as follows:

Proposition 1. In general disagreement persists across either attribute 1 or 2 with

positive probability. Also, the difference between the probability that disagreement per-

sists across attribute 1 and the one that it does across attribute 2 is given by:

(2P (ã
{1,2}
0 − ã{∅}0 ≥ 0)− 1)(P (ã

{1}
0 − ã

{2}
0 ≥ 0)− P (ã

{1}
0 − ã

{2}
0 < 0)). (2.1)

Specifically, disagreement across attribute 1 is at least as likely as disagreement

across attribute 2. Both events are equally likely if and only if both attributes are,

initially, equally salient in mean (that is, if and only if ∆0[1] = ∆0[2], or equivalently,

a
{1}
0 − a

{2}
0 = 0) whereas disagreement across attribute 1 is the most likely event if

and only if attribute 1 is, initially, the most salient in mean (that is, if and only if,

∆0[1] > ∆0[2], or equivalently, a
{1}
0 − a

{2}
0 > 0).

Notice that expression (2.1) is non-negative. That is so because the (symmetric)

distributions of ã
{1,2}
0 − ã{∅}0 and ã

{1}
0 − ã{2}0 have non-negative means.1 Furthermore,

regardless of the variance of ã
{1}
0 − ã{2}0 the probability that it takes values higher or

equal than zero, increases with its mean. Thus the likelihood of disagreement across

attribute 1 increases.2

Notice that since we focus on perturbations in initial attitudes, once they are

realized, eventual attitudes acquire the same form as the ones in the main Theorem

in chapter 1. We now clarify this point. For this purpose let ãA∞ denote the eventual

attitude of a type A:

Remark 1. Suppose that disagreement persists across attribute 1. Then, ãA∞ = a0 +

2−1
(

1− |∆̃0[2]|/|∆̃0[1]|
)

∆̃0[1] if 1 ∈ A and ãA∞ = a0− 2−1
(

1− |∆̃0[2]|/|∆̃0[1]|
)

∆̃0[1]

if 1 /∈ A.

Remark 2. Suppose that disagreement persists across attribute 2. Then, ãA∞ = a0 +

2−1
(

1− |∆̃0[1]|/|∆̃0[2]|
)

∆̃0[2] if 2 ∈ A and ãA∞ = a0− 2−1
(

1− |∆̃0[1]|/|∆̃0[2]|
)

∆̃0[2]

if 2 /∈ A.

1See the proof of Proposition 1.
2When expression (2.1) is strictly positive an increase in the mean of ã

{1,2}
0 − ã{∅}0 also increases

its value.
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The following examples illustrate these findings and related aspects. In example 1

we pin down the probability that disagreement persists across either attribute when

initial attitudes are uniformly distributed. In example 2, initial attitudes are normally

distributed. We document how the probability that disagreement persists across at-

tribute 1 may increase or decrease with the mean and the variance of initial attitudes:

Example 1. First, let initial attitudes be such that a
{1,2}
0 ∼ U [0, 1], ã

{1}
0 ∼

U [−1, 1], ã
{2}
0 ∼ U [−1, 1] and ã

{∅}
0 ∼ U [−1, 1]. Thus, ∆̃0[1] and ∆̃0[2] have means

∆0[1] = ∆0[2] = 0.25. From Proposition 1, disagreement across either attribute is

equally likely. To see this recall that the probability that disagreement persists across

attribute 1 minus the probability that it does across attribute 2 depends on ã
{1,2}
0 −ã{∅}0

and ã
{1}
0 − ã

{2}
0 . As ã

{1}
0 − ã

{2}
0 follows a (symmetric) triangular distribution with mean

zero, this difference in probabilities is zero. Second, let initial attitudes be such that

a
{1,2}
0 ∼ U [0, 1], ã

{1}
0 ∼ U [0, 1], ã

{2}
0 ∼ U [−1, 1] and ã

{∅}
0 ∼ U [−1, 1]. Thus, ∆̃0[1]

and ∆̃0[2] have means ∆0[1] = 0.5 and ∆0[2] = 0, respectively. From Proposition 1,

disagreement across attribute 1 is the most likely event. As above we focus on the

distributions of ã
{1,2}
0 − ã{∅}0 and ã

{1}
0 − ã

{2}
0 . Let y ≡ ã

{1,2}
0 − ã{∅}0 . It follows a triangular

distribution with density:

f(y) =


1 + y

2
if −1 < y < 0

0.5 if 0 ≤ y ≤ 1

1− y

2
if 1 < x < 2

.

Thus, P (y ≥ 0) = 1 −
y=0∫

y=−1

1 + y

2
= 0.75. Also, let z ≡ ã

{1}
0 − ã{2}0 ≥ 0. Notice

that it follows the same distribution as y. Thus, P (z ≥ 0) = 0.75 as well. In this case

expression (2.1) equals 0.25. Thus disagreement persists across attribute 1 and 2 with

probabilities 0.625 and 0.375, respectively.

Example 2. Let initial attitudes be normally distributed with means such that

∆0[1] ≥ ∆0[2] > 0 and variances equal to one.3 In the first figure we depict the

probability that disagreement persist across attribute 1, as a function of the mean of

the distribution of difference in attitudes associated it. In particular we keep ∆0[2] and

increase ∆0[1]. On the x-axis we depict the ratio x = ∆0[1]/∆0[2] and on the y-axis,

the probability of disagreement across attribute 1. We observe a positive relation. In

the second figure we depict the distribution of eventual attitudes when disagreement

persists across attribute 1 for the case in which ∆0[1] =6 and ∆0[2] = 2 and thus

x = 3.4

3As stated in chapter 1 the results remain the same if we consider that initial attitudes are defined

over the entire real line.
4We simulate the process 1500 times for any configuration of the ratio x. The Matlab code is

available upon request.
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Figure 1. Probability that disagreement persists across attribute 1
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Figure 2. Distribution of eventual attitudes
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Within this example, it is also worth illustrating how the variances of the dis-

tributions of initial attitudes may play a role in determining the likelihood of dis-

agreement. Let us consider that initial attitudes are normally distributed with the

same means as above, for the cases in which ∆0[1] > ∆0[2] ≥ 0. In contrast, let the

variances of these random variables, instead of being all equal to one, be such that

ã
{1}′
0 − ã

{2}′
0 and/or ã

{1,2}′
0 − ã

{∅}′
0 are mean preserving spreads of ã

{1}
0 − ã

{2}
0 and/or

ã
{1,2}
0 − ã{∅}0 , respectively. Thus, 0.5 < P (ã

{1}′
0 − ã{2}

′

0 ≥ 0) < P (ã
{1}
0 − ã

{2}
0 ≥ 0) and/or

0.5 < P (ã
{1,2}′
0 − ã{∅}

′

0 ≥ 0) < P (ã
{1,2}
0 − ã{∅}0 ≥ 0).5 Notice that expression (2.1) in

Proposition 1 has now lower value than before, meaning that disagreements across

either attribute are closer to being equally likely.

To conclude, disagreement manifests as two groups holding different eventual at-

titudes. In remark 1 (respectively remark 2), the difference in average eventual atti-

tudes associated to attribute 1 (respectively 2) persists whereas the one associated to

attribute 2 (respectively 1) is zero.6

2.3 Non-symmetric Homophily

Let us consider the model in chapter 1 and assume that individuals are composed

by two attributes. Let attribute 1 refer to gender (for instance, possessing it means

being female whereas lacking it means being male) and attribute 2 refer to youth (for

instance, possessing it means being young whereas lacking it means being old). Recall

that at every time t, λ1t =
∆t[1]

∆t[1] + ∆t[2]
and that λ2t =

∆t[2]

∆t[1] + ∆t[2]
. Recall also that,

without loss of generality we consider that differences in average initial attitudes are

such that, ∆0[1] ≥ ∆0[2] ≥ 0.

Suppose that old types (those lacking attribute 2) are more homophilous with

respect to gender than young types (those possessing attribute 2). In our context this

means that old types are more sensitive to differences in attitudes associated to gender

5Notice that ∆0[1] = ∆0[2] ≥ 0 holds when a
{1}
0 − a

{2}
0 = 0. In this case, regardless of the

variances, disagreement across either attribute is equally likely. See the proof of Proposition 1.
6When disagreement persists across attribute 1, the difference in average eventual attitudes as-

sociated to attribute 1 is ∆̃∞[1] = (2n−1)−1(
∑
A:i∈A ã

A
∞ −

∑
A:1/∈A ã

A
∞) = (2n−1)−12n−1(ãA∞ :

1 ∈ A − ãA∞ : 1 /∈ A) = |∆̃0[1]| − |∆̃0[2]| (respectively |∆̃0[2]| − |∆̃0[1]|) when ∆̃0[1] ≥ 0 (re-

spectively ∆̃0[1] < 0). Since disagreement across attribute 1 persists when |∆̃0[1]| > |∆̃0[2]|,
∆̃∞[1] has either positive or negative support. Furthermore, the distribution of the difference

in average eventual attitudes associated to attribute 2 is degenerated at zero. To see this no-

tice that within the 2n−1 types possessing attribute 1 there are 2n−2 types possessing and lack-

ing attribute 2, respectively. The same happens within the 2n−1 types lacking attribute 1, hence,

∆̃∞[2] = (2n−1)−1(
∑
A:2∈A ã

A
∞ −

∑
A:2/∈A ã

A
∞) = 2−1(2n−2)−12n−2(ãA∞ : 1 ∈ A, 2 ∈ A + ãA∞ : 1 /∈

A, 2 ∈ A) − ãA∞ : 1 ∈ A, 2 /∈ A + ãA∞ : 1 /∈ A, 2 /∈ A) = 2−12(a0 − a0) = 0. The analysis is the same

when disagreement persists across attribute 2.
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than young types. Notice that given our structure of attention, as old types are more

homophilous with respect to gender than young types, they are also less homophilous

with respect to youth than young types. We now formally describe the matrix of

interactions as:

Wt =
1

2

{1, 2} {1} {2} {∅}


λ1t + λ2t λ1t λ2t 0 {1, 2}
β1
t β1

t + β2
t 0 β2

t {1}
λ2t 0 λ1t + λ2t λ1t {2}
0 β2

t β1
t β1

t + β2
t {∅}

,

where at every time t, β1
t and β2

t are assumed to depend on ∆t[1] and ∆t[2] and

be such that old people exacerbate homophily towards gender. Specifically, let β1
t ,

β2
t ∈ [0, 1] be such that β1

t + β2
t = 1 and β1

t > λ1t , β
2
t < λ2t . In particular, β1

t = 1

whenever λ1t = 1 and thus β2
t = 0 whenever λ2t = 0. For the ease of exposition one can

consider that β1
t and β2

t are transformations of λ1t and λ2t , respectively, such that old

people are more sensitive to the salience of gender than young people. For any specific

homophily structure defined in these terms it follows that interactions, represented by

the matrix above, become non-symmetric. Finally, the law of motion of attitudes is

given by at+1 = Wtat, as in chapter 1.

We now elaborate on the consequences that this new type of interactions has on

disagreement. The results are as follows:

Proposition 2. For every configuration of initial attitudes, eventual ones always exist

and exhibit disagreement across attribute 1. Specifically, types hold the same eventual

attitude if and only if they share attribute 1. Furthermore, eventual disagreement is

larger than in the symmetric case where, at every t, β1
t = λ1t and β2

t = λ2t .

The extreme version of this new scenario is such that at every time t, and regardless

of the magnitude of differences in attitudes, β1
t = 1 and thus, β2

t = 0. Then attribute

2 (youth) does not play any role for old types, namely, {1} and {∅}, and they only pay

attention to others, based on the gender dimension, that is, they only pay attention

to types {1, 2} and {2}, respectively (and to themselves).

In general this process will give raise to disagreement across attribute 1 even in the

case in which the differences in average initial attitudes are the same, that is, when

∆0[1] = ∆0[2]. That is so because attribute 1 deserves even more attention now that

in the case in which relations are symmetric. The process also converges faster than

before to the eventual disagreement. The following example illustrates these findings:

Example 3. Consider that initial attitudes are a′0 = [0.8 0.2 − 0.05 − 0.95].

In this case ∆0[1] = 1 and ∆0[2] = 0.75, and thus, as stated in the main Theorem
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Disagreement in Näıve Models of Attitude Formation 34

in chapter 1, disagreement persists and manifests in two groups defined according

to the possession or lack of attribute 1, holding different eventual attitudes. These

are, a′∞ = [0.125 0.125 − 0.125 − 0.125]. Let α > 1 and set β2
t = (λ2t )

α < λ2t ,

thus β1
t = 1 − (λ2t )

α > 1 − λ2t = λ1t . In particular, for α = 2 we have that a′∞ =

[0.341 0.341 −0.226 −0.226]. The eventual disagreement, measured as the difference

in average eventual attitudes between the groups of individuals possessing and lacking

attribute 1, is 0.25 in the symmetric case and 0.567 in the case described here. The

later would also increase with the value of α.

2.4 A general representation of homophily

In this section we relate the persistence of disagreement to the properties and evolution

of homophily. For this purpose we use the model in chapter 1 but we define homophily

values in broader terms. Specifically, let γit be the homophily value associated to

attribute i at time t. Let this value depend on the differences in average attitudes

associated to (possibly) all attributes. As in chapter 1 we assume that at every time

t, γit is non-negative and we normalize to one the total amount of attention that every

individual devotes to others. It then has to be the case that at every time t the

sum of these homophily values is one, formally,
∑

i γ
i
t = 1.7 We finally assume that

the homophily values satisfy two properties that deal with the monotonicity aspects

of attention with respect to the differences in attitudes. The first one states that

the attention that every attribute enjoys is positive if and only if the difference in

attitudes across it, is positive. The second one states that if attribute i exhibits a

higher difference in attitudes than attribute j then the former enjoys higher attention

than the latter:

Within differences monotonicity (WDM). ∆t[i] = 0 implies that γit = 0 and

∆t[i] > 0 implies that γit > 0.8

Across differences monotonicity (ADM). ∆t[1] ≥ ∆t[2] ≥ · · · ≥ ∆t[n] ≥ 0

implies that γ1t ≥ γ2t ≥ · · · ≥ γnt ≥ 0.

We also set the technical condition that limt−→∞ γ
i
t exists for every attribute i and

that limt−→∞
∑

i γ
i
t =

∑
i limt−→∞ γ

i
t = 1.

We now state the condition for the persistence of disagreement and provide its

form:

Proposition 3. For every configuration of initial attitudes, eventual ones always exist.

They exhibit disagreement if and only if homophily based on attribute 1, approaches

7See chapter 1, section 1.2.
8When ∆t[i] = 0 for every attribute i, we set γit = 1/n.
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value 1 sufficiently fast (that is, if and only if
∞∑
t=0

logγ1t exists). In this case, eventual

attitudes are such that, for every type A:

|aA∞| =
1

2
τ(W∞)∆0[1]

where τ(W∞) ∈ (0, 1]. Furthermore, aA∞ > 0 if and only if 1 ∈ A.

In general disagreement persists whenever the process by which individuals pro-

gressively intensify their relations with others similar to them in attribute 1 is fast

enough. Intuitively there are two forces playing a role: on the one hand individuals

pay increasing attention to others on the basis of attribute 1 but on the other hand,

they also pay a positive amount of (possibly indirect) attention to everyone else. For

disagreement to persist, it has to be that the first force dominates the second. Needless

to say that the Luce form, presented in chapter 1, satisfies these requirements. As an

illustration, for the case with two attributes
∑∞

t=0 logγ
1
t = log(1 − ∆0[2]/∆0[1]) and

τ(W∞) = 1−∆0[2]/∆0[1], with ∆0[1] > ∆0[2] ≥ 0.

Disagreement materializes in two groups of thinking, defined according to whether

individuals possess or lack attribute 1. We cannot specify the closed form expression

for the ergodicity coefficient τ(W∞) in this case, since it depends on the particular

functional form for the homophily values. We just set τ(W∞) = limT→∞
∏T

t=0 γ
1
t in

this case.

The following examples illustrate the requirement in the proposition above. For

this purpose, we consider updating rules that are mainly based on modifications of the

Luce form in expression (1.2), with the exception of example 7. Example 4 deals with

a scenario in which consensus is achieved whereas in examples 5 to 7 disagreement

persists.

Example 4. Eventual consensus. Consider the following updating rule:

γ1t =


∆t[1]

∆t[1] + ∆t[2]
if γ1t−1 < H ∈ [0, 1)

γ1t−1 if γ1t−1 ≥ H ∈ [0, 1)

.

Let γ2t = 1 − γ1t at every time t. Under this rule individuals use Luce to deter-

mine the attention they pay to others, but whenever a level H of homophily has been

reached, they are no longer sensitive to changes in differences in attitudes. In this case

interactions become static from some point in time on, and thus, individuals do not

become homophilous exclusively with respect to attribute 1. The requirements in the

proposition above are therefore not satisfied and consensus will eventually emerge.

Example 5. The persistence of disagreement. Let initial attitudes be a′0 =

[0.8 0.2 − 0.05 − 0.95]. Thus, the difference in average initial attitudes associated to
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attribute 1 is ∆0[1] = 0.5(0.8 + 0.2)− 0.5(−0.05− 0.95) = 1 and the one associated to

attribute 2 is ∆0[2] = 0.5(0.8−0.05)−0.5(0.2−0.95) = 0.75. Consider the generalized

Luce form, γ1t =
∆t[1]δ

∆t[1]δ + ∆t[2]δ
and γ2t =

∆t[2]δ

∆t[1]δ + ∆t[2]δ
. When δ = 1.2, γ10 = 0.58

and γ20 = 0.42. The entries in the interaction matrices evolve as follows:

W0 =


0.5 0.3 0.2 0

0.3 0.5 0 0.2

0.3 0 0.5 0.3

0 0.2 0.3 0.5

 , W1 =


0.5 0.34 0.16 0

0.34 0.5 0 0.16

0.16 0 0.5 0.34

0 0.16 0.34 0.5

 , ..., lim
t→∞

Wt =


0.5 0.5 0 0

0.5 0.5 0 0

0 0 0.5 0.5

0 0 0.5 0.5

 .

Also, W∞ =


0.33 0.33 0.17 0.17

0.33 0.33 0.17 0.17

0.17 0.17 0.33 0.33

0.17 0.17 0.33 0.33

 and W∞ times a0 =


0.8

0.2

−0.05

−0.95

 is a∞ =


0.16

0.16

−0.16

−0.16

 .

In this case τ(W∞) = 0.32.9 Notice that the relation between attributes 1 and 2,

summarized in (∆0[2]/∆0[1])1.2, exacerbates with respect to the case in which δ = 1.

Example 6. The persistence of disagreement. Consider the case in which

γ1t =
β∆t[1]

β∆t[1] + δ∆t[2]
and γ2t =

δ∆t[2]

β∆t[1] + δ∆t[2]
, with β > δ > 0. Notice that the

relation between attributes 1 and 2, that is, δ∆0[2]/β∆0[1], exacerbates with respect

to the case in which β = δ. This process leads to disagreement for any configuration

of initial attitudes, that is, even in the case in which ∆0[1] = ∆0[2]. The reason is that

γ10 > γ20 and ∆1[1] = γ10∆0[1] > ∆1[2] = γ20∆0[2], thus form t = 1 the main Theorem

in chapter 1, and thus the requirements in the proposition above, apply.

Example 7. The persistence of disagreement. Let initial attitudes be a′0 =

[0.8 0.2 − 0.05 − 0.95]. Thus, the difference in average initial attitudes associated

to attribute 1 is ∆0[1] = 1 and the one associated to attribute 2 is ∆0[2] = 0.75, as in

example 5. Consider the following updating rule:

γ1t =



0.5 if ∆t[1] = ∆t[2] ≥ 0

1 if ∆t[1] > ∆t[2] = 0

0 if ∆t[2] > ∆t[1] = 0(
∆t[1]

∆t[2]

)α
if ∆t[2] > ∆t[1] > 0

1−
(

∆t[2]

∆t[1]

)β
if ∆t[1] > ∆t[2] > 0

.

9The entries of W∞ are a function of τ(W∞), thus we can recover its value once W∞ is known.
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We set α and β such that (∆t[1]/∆t[2])α and (∆t[2]/∆t[1])β are smaller than one

half. Let γ2t = 1− γ1t , at every time t. Let us set, for instance, β = 2.5.10 The entries

in the interaction matrix evolve as follows:

W0 =


0.5 0.26 0.24 0

0.26 0.5 0 0.24

0.24 0 0.5 0.26

0 0.24 0.26 0.5

 , W1 =


0.5 0.28 0.22 0

0.28 0.5 0 0.22

0.22 0 0.5 0.28

0 0.22 0.28 0.5

 , ..., lim
t→∞

Wt =


0.5 0.5 0 0

0.5 0.5 0 0

0 0 0.5 0.5

0 0 0.5 0.5

 .

Also, W∞ =


0.31 0.31 0.19 0.19

0.31 0.31 0.19 0.19

0.19 0.19 0.31 0.31

0.19 0.19 0.31 0.31

 and W∞ times a0 =


0.8

0.2

−0.05

−0.95

 is a∞ =


0.12

0.12

−0.12

−0.12

 .

In this case τ(W∞) = 0.24.

2.5 Conclusions

We have explored the model of attitude formation presented in chapter 1 allowing for

natural modifications in the initial assumptions about individuals’ behavior. The aim

has been to identify how these natural changes affect previous findings regarding the

persistence of disagreement.

With respect to non-symmetric homophily, it would be interesting to explore the

case in which, on the one hand attribute 1 is, initially, at least equally salient as

attribute 2, that is, ∆0[1] ≥ ∆0[2], but on the other hand some individuals pay more

attention than before to others similar to them in attribute 2, that is, at every time t

β2
t > λ2t and thus, β1

t < λ1t . In particular, β2
t = 1 whenever λ2t = 1 and thus β1

t = 0

whenever λ1t = 0. Our conjecture is that in this case two situations might arise. First,

it might be that differences associated to attribute 1 remain the highest in subsequent

points in time. In this case the challenge is to carefully study whether the process

leads to eventual consensus or persistent disagreement. Second, it might also be the

case that differences in attitudes associated to attribute 2 become the highest at some

point in time. In this case disagreement persists across this attribute.

Related to the last scenario consider, as a first illustration, the particular case in

which ∆0[1] = ∆0[2] > 0 but β1
t < λ1t . Then it directly follows that ∆1[1] < ∆1[2].

Thus, λ11 < 2−1 < λ21 and β1
1 < 2−1 < β2

1 . The analysis from t = 1 on is the same

10Since at every time t it is the case that ∆t[1] > ∆t[2] > 0, we do not specify any value for

α. Also, since ∆t[1]/∆t[2] (respectively ∆t[2]/∆t[1]) is decreasing over time whenever ∆t[2] > ∆t[1]

(respectively ∆t[2] < ∆t[1]) we set α and β to be constant. See steps 1 and 7 in the proof of the main

Theorem in chapter 1.
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than the one carried out in building Proposition 2, now applied to differences across

attribute 2. Thus, disagreement persists across this attribute. As a second illustration,

consider the particular case in which ∆0[1] > ∆0[2] > 0, that is, attribute 1 is initially

the most salient, but at every time t β1
t = 0 and thus β2

t = 1. In this case disagreement

also persists across attribute 2.11

Another possibility is to study the case in which, some types exhibit constant

homophily, that is, the attention they pay to similar others does not co-evolve with

attitudes. This is the case if, for instance, β1
t = α in (0,1), at every time t. In this case,

when the limiting matrix of interactions, namely, limt→∞Wt, exists with limt→∞ λ
1
t ∈

[0, 1), this matrix would be such that no pair of rows are orthogonal.12 Following

Leizarowitz (1992), consensus will eventually emerge in this case. When limt→∞ λ
1
t ∈

(0, 1), eventual interactions allow attitudes to flow from every individual to any other.

In other words, the graph describing these interactions is strongly connected.

2.6 Appendix. Proofs

Proof of Proposition 1. We compute here the probability that disagreement persists

across attribute 1 and across attribute 2. For this purpose, let us first focus on the

case in which ∆0[1] > ∆0[2] ≥ 0, or equivalently, a
{1,2}
0 − a{∅}0 + a

{1}
0 − a{2}0 > a

{1,2}
0 −

a
{∅}
0 + a

{2}
0 − a{1}0 . Notice that ∆0[1] −∆0[2] = a

{1}
0 − a{2}0 . Thus, a

{1}
0 − a{2}0 > 0 has

to hold. Since ∆0[2] ≥ 0 and a
{2}
0 − a{1}0 < 0, then a

{1,2}
0 − a{∅}0 ≥ a

{1}
0 − a{2}0 > 0 has

to hold as well.

Now, consensus emerges whenever |∆̃0[1]| = |∆̃0[2]| and disagreement persists

across attribute 1 (respectively attribute 2) whenever |∆̃0[1]| > |∆̃0[2]| (respectively

|∆̃0[1]| < |∆̃0[2]|). To see this notice that once initial attitudes are realized, the pro-

cess exactly mimics the one presented in chapter 1. In what follows we describe the

probability that either consensus emerges or disagreement persists. The probability

that |∆̃0[1]| = |ã{1,2}0 − ã
{∅}
0 + ã

{1}
0 − ã

{2}
0 | = |ã{1,2}0 − ã

{∅}
0 + ã

{2}
0 − ã

{1}
0 | = |∆̃0[2]| is

zero. That is so because this expression holds when exactly ã
{1}
0 − ã

{2}
0 = 0 and/or

ã
{1,2}
0 − ã

{∅}
0 = 0. Since these differences follow continuous distributions, the proba-

11From the proof of Proposition 2, we have that ∆t[1] = (λ1t−1/2)∆t−1[1] and ∆t[2] = ((λ2t−1 +

1)/2)∆t−1[2]. Thus, λ11 =
∆1[1]

∆1[1] + ∆1[2]
=

(λ1t−1/2)∆0[1]

(λ1t−1/2)∆0[1] + (1− λ1t−1/2)∆0[2]
. This is equivalent to

λ11 = (1 + r20(2 − λ10)/λ10)−1 where r20 = ∆0[2]/∆0[1]. Notice that λ10 = (1 + r20)−1. Since λ10 < 1,

thus λ11 < λ10. At t = 2, λ12 =
1

1 + r20((2− λ11)/λ11)(2− λ10)/λ10
. Since λ11 < λ10 it follows that λ12 < λ11.

In general, at every point it time, λ1t+1 < λ1t , so that λ1t tends to 0 and λ2t tends to 1. Thus, for

sufficiently large t, it has to be that λ2t >λ
1
t and thus ∆t[2] > ∆t[1]. From this point on, we apply to

proof the proof of Proposition 2 to attribute 2.
12Notice that for limt→∞Wt to exist it remains to be checked that limt→∞ λ1t exists.
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bility that this happens is zero.13 Disagreement persists across attribute 1 whenever

|∆̃0[1]| = |ã{1,2}0 − ã
{∅}
0 + ã

{1}
0 − ã

{2}
0 | > |ã

{1,2}
0 − ã

{∅}
0 + ã

{2}
0 − ã

{1}
0 | = |∆̃0[2]|. This

expression is satisfied when ã
{1,2}
0 − ã{∅}0 ≥ 0 and ã

{1}
0 − ã{2}0 ≥ 0, or ã

{1,2}
0 − ã{∅}0 < 0

and ã
{1}
0 −ã

{2}
0 < 0 hold. Thus, P (|∆̃t[1]| > |∆̃t[2]|) = P (ã

{1,2}
0 −ã{∅}0 ≥ 0∩ã{1}0 −ã

{2}
0 ≥

0) + P (ã
{1,2}
0 − ã{∅}0 < 0 ∩ ã{1}0 − ã{2}0 < 0). Since ãA0 are independent to each other,

this is equivalent to:

P (ã
{1,2}
0 − ã{∅}0 ≥ 0)P (ã

{1}
0 − ã

{2}
0 ≥ 0) + P (ã

{1,2}
0 − ã{∅}0 < 0)P (ã

{1}
0 − ã

{2}
0 < 0).

On the contrary, disagreement persists across attribute 2 whenever |∆̃0[1]| =

|ã{1,2}0 − ã
{∅}
0 + ã

{1}
0 − ã

{2}
0 | < |ã

{1,2}
0 − ã

{∅}
0 + ã

{2}
0 − ã

{1}
0 | = |∆̃0[2]|. This expres-

sion is satisfied when ã
{1,2}
0 − ã{∅}0 < 0 and ã

{1}
0 − ã{2}0 ≥ 0 , or ã

{1,2}
0 − ã{∅}0 ≥ 0 and

ã
{1}
0 − ã

{2}
0 < 0 hold. Then P (|∆̃0[1]| < |∆̃0[2]|) is:

P (ã
{1,2}
0 − ã{∅}0 ≥ 0)P (ã

{1}
0 − ã

{2}
0 < 0) + P (ã

{1,2}
0 − ã{∅}0 < 0)P (ã

{1}
0 − ã

{2}
0 ≥ 0).

We can thus rewrite, P (|∆̃0[1]| > |∆̃0[2]|)−P (|∆̃0[1]| < |∆̃0[2]|) = P (ã
{1,2}
0 − ã{∅}0 ≥

0)(P (ã
{1}
0 − ã

{2}
0 ≥ 0) − P (ã

{1}
0 − ã

{2}
0 < 0)) + P (ã

{1,2}
0 − ã

{∅}
0 < 0)(P (ã

{1}
0 − ã

{2}
0 <

0) − P (ã
{1}
0 − ã

{2}
0 ≥ 0)). This expression is equivalent to (2P (ã

{1,2}
0 − ã

{∅}
0 ≥ 0) −

1)(P (ã
{1}
0 − ã

{2}
0 ≥ 0)−P (ã

{1}
0 − ã

{2}
0 < 0)). Since ã

{1}
0 − ã

{2}
0 has positive mean (recall

that a
{1}
0 − a

{2}
0 > 0) and the difference of independent symmetric random variables is

symmetric, then P (ã
{1}
0 − ã

{2}
0 ≥ 0) > 0.5.14 The same argument holds for ã

{1,2}
0 − ã{∅}0

and thus P (ã
{1,2}
0 − ã{∅}0 ≥ 0) > 0.5. This implies that the expression above is positive.

Since P (|∆̃0[1]| > |∆̃0[2]|) = 1− P (|∆̃0[1]| < |∆̃0[2]|), disagreement across attribute 1

is the most likely. In the extreme case in which P (ã
{1,2}
0 − ã{∅}0 ≥ 0) = P (ã

{1}
0 − ã

{2}
0 ≥

0) = 1 the, probability that disagreement takes place across attribute 1 is exactly one.

Let us consider now the case in which ∆0[1] = ∆0[2] ≥ 0. We have that ∆0[1] −
∆0[2] = a

{1}
0 − a

{2}
0 = 0. Also, since differences are non-negative, a

{1,2}
0 − a{∅}0 ≥ 0 has

to hold. This implies, again by symmetry, that P (|∆̃0[1]| > |∆̃0[2]|) − P (|∆̃0[1]| <
|∆̃0[2]|) = 0. In this case, disagreement across either attribute is equally likely.

�

Proof of Remark 1. Suppose that disagreement persists across attribute 1. Notice that

the expression of eventual attitudes is based on the expression of the deterministic

ones in the main Theorem of chapter 1, that is, aA∞ = 2−1τ(W∞)∆0[1] if 1 ∈ A

and aA∞ = −2−1τ(W∞)∆0[1] if 1 /∈ A, with τ(W∞) = 1 − ∆0[2]/∆0[1]. That is

so because both, the homophily values and the differences in attitudes, preserve their

13Notice that as ã
{2}
0 is continuous, so is −ã{2}0 . The sum ã

{1}
0 + (−ã{2}0 ) is thus continuous. See

Sheldon et al. (2002).
14See Stroock (2010).
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properties when these differences enter in absolute value in the Luce form. Specifically,

for every realization of initial attitudes and for every attribute i, ∆t[i] = λit−1∆t−1[i].

Thus, ∆t[i] 6= 0 if and only if λit−1 6= 0 and ∆t−1[i] 6= 0. Also, given the Luce

form, λit 6= 0 if and only if ∆t[i] 6= 0. Furthermore, ∆0[i] > (<) 0 implies that at

every time t, ∆t[i] > (<) 0 and λi0 > 0 implies that at every time t, λit > 0. Also,

∆0[i] = 0 and λi0 = 0, imply that at every t, ∆t[i] = 0 and λit = 0, respectively.15 For

every realization of initial attitudes the ergodicity coefficient, τ(W∞), now becomes

1 − |∆0[2]|/|∆0[1]|.16 We thus have that ãA∞ = a0 + 2−1(1 − |∆̃0[2]|/|∆̃0[1]|)∆̃0[1] if

1 ∈ A and ãA∞ = a0 − 2−1(1− |∆̃0[2]|/|∆̃0[1]|)∆̃0[1] if 1 /∈ A.17

�

Proof of Remark 2. It follows a similar reasoning as the proof of Remark 1. We there-

fore omit it here. �

Proof of Proposition 2. Before proving the persistence of disagreement we state useful

facts regarding the evolution of homophily values.

Let us focus first on the case in which ∆0[1] > ∆0[2]. It then follows that λ10 >

2−1 > λ20. Let us denote λ∗t = (λ1t +β1
t )2
−1 ∈ (0, 1]. Notice that as ∆t[1] = 2−1((a

{1,2}
t +

a
{1}
t )− (a

{2}
t + a

{∅}
t )), using Wt in the main body, we can rewrite ∆t[1] = λ∗t−1∆t−1[1].

Similarly, we have that ∆t[2] = (1− λ∗t−1)∆t−1[2]. As these expressions hold for every

t, we get that ∆t[1] =
∏t−1

s=0 λ
∗
s∆0[1] and ∆t[2] =

∏t−1
s=0 (1− λ∗s)∆0[2] . Now, for the

ease of exposition let λ̂1t , be the homophily value of attribute 1 under the process

described in chapter 1, where Wt is symmetric. Now, since by assumption β1
t > λ1t

at every t, then λ11 =
λ∗0∆0[1]

λ∗0∆0[1] + (1− λ∗0)∆0[2]
> λ̂11. Thus ∆2[1] = λ∗1∆1[1] is higher

than in the symmetric case and, ∆2[2] smaller. As a consequence, λ12 > λ̂12. In general

at every time t, β1
t > λ1t > λ̂1t and β2

t < λ2t < λ̃2t , with λ10 = λ̂10. Consider now a

sequence of ones. Since at every time t, 1 > λ1t ≥ λ̂t and by step 7 in the proof

of the main Theorem in chapter 1, limt→∞ λ̂
1
t = 1, then limt→∞ λ

1
t = 1. Also since

1 ≥ β1
t > λ1t , thus limt→∞ β

1
t = 1.18 Recall that, by the same step,

∑∞
t=0 |log(λ̂1t )| was

convergent. Since at every t, λ∗t = (λ1t + β1
t )2
−1 > λ̂1t then |log(λ∗t )| ≤ |log(λ̂1t )|. Thus,

by comparison
∑∞

t=0 |log(λ∗t )| converges and hence
∏∞

t=0 λ
∗
t = δ ∈ (0, 1]. Since at every

time t, λ∗t > λ̂1t , then δ > µ =
∏∞

t=0 λ̂
1
t ∈ (0, 1]. Finally, since limt→∞ 1− λ∗t = 0, then∏∞

t=0(1− λ∗t ) = 0 holds.

We now proceed to state the persistence of disagreement. Let us consider the

evolution on attitudes, given by at+1 = Wtat. Notice that we can rewrite Wt as:

15For more details, see steps 1 and 7 in the proof of the main Theorem in chapter 1.
16See chapter 1, section 1.3.
17In contrast with chapter 1 we do not impose here that for every realization of initial attitudes,

their average is equal to zero.
18Since β1

t > λ1t > λ̂t, β
1
t and λ1t are closer to 1, their limiting value, at every time t. That means

that the process converges faster to the eventual disagreement than in the symmetric case.
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Wt =
1

4

{1, 2} {1} {2} {∅}


1 + λ1t + λ2t 1 + λ1t − λ2t 1− λ1t + λ2t 1− λ1t − λ2t {1, 2}
1 + β1

t − β2
t 1 + β1

t + β2
t 1− β1

t − β2
t 1− β1

t + β2
t {1}

1− λ1t + λ2t 1− λ1t − λ2t 1 + λ1t + λ2t 1 + λ1t − λ2t {2}
1− β1

t − β2
t 1− β1

t + β2
t 1 + β1

t − β2
t 1 + β1

t + β2
t {∅}

It then follows that aAt+1 = at + 2−1((−1)1+1iλ1t∆t[1] + λ2t∆t[2]) if 2 ∈ A and

aAt+1 = at + 2−1((−1)1+1iβ1
t ∆t[1]− β2

t ∆t[2]) if 2 /∈ A, where 1i is the indicator of type

A possessing attribute 1. To make this point clearer, notice that using the ones in every

entry in a row of matrix Wt multiplied by at, we compute average attitudes at t + 1.

Similarly, using the weights associated to attribute 1 (respectively attribute 2), i.e., λ1t
or β1

t (respectively λ2t or β2
t ) we compute differences in average attitudes associated

to attribute 1 (respectively attribute 2). They enter with positive sign if and only

if the type possesses attribute 1 (respectively attribute 2). Using the expressions for

∆t[1] and ∆t[2] above we rewrite aAt+1 = at+2−1((−1)1+1iλ1t
∏t−1

s=0 λ
∗
s∆0[1]+λ2t

∏t−1
s=0(1−

λ∗s)∆0[2]) if 2 ∈ A and aAt+1 = at+2−1((−1)1+1iβ1
t

∏t−1
s=0 λ

∗
s∆0[1]−β2

t

∏t−1
s=0(1−λ∗s)∆0[2])

if 2 /∈ A. Since
∏∞

t=0 λ
∗
t = δ,

∏∞
t=0(1 − λ∗t ) = 0, limt→∞ β

1
t = 1 and limt→∞ λ

1
t = 1

it follows that limt→∞ a
A
t+1 = limt→∞ at + 2−1δ∆0[1] if 1 ∈ A and limt→∞ a

A
t+1 =

limt→∞ at − 2−1δ∆0[1] if 1 /∈ A, provided that limt→∞ at exists. We prove that this is,

in fact, the case. In doing so, notice that simple algebra yields at = a0+4−1
∑t−1

s=0(λ
2
s−

β2
s )∆s[2] = a0 + 4−1

∑t−1
s=0(λ

2
s − β2

s )
∏s−1

m=0(1− λ∗m)∆0[2]. Thus, we need to prove that∑∞
s=0(λ

2
s − β2

s )
∏s−1

m=0(1− λ∗s) exists. In doing so we prove that
∑∞

s=0(λ
2
s − β2

s ) exists.

Given that, at every time s, λ2s − β2
s > (λ2s − β2

s )
∏s−1

m=0(1 − λ∗m) we will conclude, by

comparison, that
∑∞

s=0(λ
2
s − β2

s )
∏s−1

m=0(1 − λ∗m) exists. We proceed as follows: that∑∞
s=0(λ

2
s−β2

s ) diverges, is equivalent to state that
∏∞

s=0(1−(λ2s−β2
s )) = 0.19 We rewrite

this expression as
∏∞

s=0((1−λ2s)+β2
s ) =

∏∞
s=0(λ

1
s+β2

s ). From step 7 in the proof of the

main theorem in chapter 1, we have that
∏∞

s=0 λ̂
1
s ∈ (0, 1]. Recall that since, at every s,

λ1s ≥ λ̂1s and λ1s +β2
s < 1, it has to be that

∏∞
s=0(β

2
s +λ1s) ∈ (0, 1]. Thus,

∑∞
s=0(λ

2
s−β2

s )

exists, so does
∑∞

s=0(λ
2
s−β2

s )
∏s−1

m=0(1−λ∗m), by comparison. Now, Let α ∈ [0,∞) be the

value of this infinite sum. We thus have that limt→∞ a
A
t = a0 + 4−1α∆0[2] + 2−1δ∆0[1]

if 1 ∈ A and limt→∞ a
A
t = a0+4−1α∆0[2]−2−1δ∆0[1] if 1 /∈ A. As stated above, δ > µ,

and thus, eventual disagreement is higher than in the symmetric case.

Let us now consider the case in which ∆0[1] = ∆0[2]. Then λ̂1t = 2−1 at every time

t, by the proof of the main Theorem in chapter 1. By the same arguments as above

λ01 = λ̂01 and λ1t > λ̂1t at every time t > 1. Thus, ∆t[1] is higher than the one in the

symmetric case at every time t > 1. If we consider the process as starting at time

t = 1 with λ1t > λ̂1t , same arguments as above follow. Thus, disagreement persists

across attribute 1 and is higher than in the symmetric case. �

19See Apostol (1977), chapter 8.
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Proof of Proposition 3. This proof is based on the proof of the main Theorem in chap-

ter 1. We proceed to explain, one in a row, which of its steps hold here. Step 1

describes a property that relies on both, the linearity of the updating process and on

the Luce form. Specifically, Luce guarantees that at every t, ∆t[i] ≥ 0 implies that

λit ≥ 0. By (WDM), this step holds. Steps 2-5, dealing with the diagonalization of

Wt, do not depend on the Luce form, we thus, they apply here. Step 6 only relies

on non-negativity of homophily values and on the fact that
∑

i γ
i
t = 1, not on their

specific form, thus it also holds. Step 7 absolutely relies on the Luce form. The new

step is as follows:

Step 7. We first consider the case in which the limiting product of the homophily

values is different from zero for one attribute i. Notice that this limiting product

cannot be different from zero for more than one attribute. The reason is that in this

case
∑

i limt−→∞ γ
i
t > 1 contradicting the properties of γit. We prove that

∏∞
t=0 γ

i
t = µi

with µi ∈ (0, 1) for attribute i implies that
∏∞

t=0 γ
j
t = 0 for attributes j 6= i. We

also show that if there is such an attribute, it has to be attribute 1. Second, we

consider the case in which the limiting product of homophily values is zero for all

attributes. Before proceeding, recall that limt−→∞ γ
i
t exists for every attribute i and

limt−→∞
∑

i γ
i
t =

∑
i limt−→∞ γ

i
t = 1.

First, suppose that
∏∞

t=0 γ
i
t = µi with µi ∈ (0, 1), or equivalently, that

∑∞
t=0 log(γit)

exists. This implies that limt−→∞ γ
i
t = 1. Thus, limt−→∞ γ

j
t = 0 for every attribute j,

implying that for non of them,
∏∞

t=0 γ
j
t = µj with µj ∈ (0, 1), but

∏∞
t=0 γ

j
t = 0. Now,

recall that by (ADM) and step 1 in the proof of the main Theorem in chapter 1, at

every t, ∆t[1] ≥ ∆t[2] ≥ · · · ≥ ∆t[n] ≥ 0 and γ1t ≥ γ2t ≥ · · · ≥ γnt ≥ 0 hold. Suppose,

that there is an attribute i > 1 for which
∏∞

t=0 γ
i
t = µi with µi ∈ (0, 1) holds. This

implies that limt−→∞ γ
i
t = 1 and limt−→∞ γ

1
t = 0. Thus, for high enough t, γit would

be arbitrarily close to 1 while γ1t would be arbitrarily close to 0. Given that, at every

t, γ1t ≥ γ2t ≥ · · · ≥ γnt ≥ 0 holds, the former statement cannot be true. We therefore

conclude that
∏∞

t=0 γ
1
t = µ1 with µ1 ∈ (0, 1) and

∏∞
t=0 γ

i
t = 0 for attributes i > 1.

Under this scenario we have that:

W∞ =
1

2n



1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

... · · · ...
... · · · ...

1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1

... · · · ...
... · · · ...

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1



,
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where µ1 =
∏∞

t=0 γ
1
t .

Second, suppose that
∏∞

t=0 γ
1
t = 0 and limt−→∞ γ

1
t = 1. It implies that limt−→∞ γ

j
t =

0 for every attribute i > 1. Thus, no attribute i > 1 is such that
∏∞

t=0 γ
i
t = µi with

µi ∈ (0, 1). Suppose now that
∏∞

t=0 γ
1
t = 0 and limt−→∞ γ

1
t = α with α ∈ (0, 1).

Then,
∑

i>1 limt−→∞ γ
i
t = 1− α with 1− α ∈ (0, 1). Thus, no attribute i is such that∏∞

t=0 γ
i
t = µi with µi ∈ (0, 1). Finally, suppose that

∏∞
t=0 γ

1
t = 0 and limt−→∞ γ

1
t = 0.

Then, either for exactly one attribute i > 1, limt−→∞ γ
i
t = 1, or for some (possibly all)

attributes i > 1,
∑

i>1 limt−→∞ γ
i
t = 1. None of these cases can hold. The reason is

that for high enough t, some γit would be arbitrarily close to a positive number (which

is 1 when for exactly one attribute i > 1, limt−→∞ γ
i
t = 1) while γ1t would be arbitrarily

close to 0. Since, at every t, γ1t ≥ γ2t ≥ · · · ≥ γnt ≥ 0 holds, this cannot be true. We

therefore conclude that in all these cases
∏∞

t=0 γ
i
t = 0 for all attributes. Under this

scenario all entries of W∞ are (2n)−1.

Step 8. By step 7, the necessary and sufficient condition for disagreement to persist

is that
∑∞

t=0 logγ
1
t exists. When this is the case, eventual attitudes take the same

form as in step 8 in the proof of the main Theorem in chapter 1, where τ(W∞) =

limT→∞
∏T

t=0 γ
1
t .

Step 9. It depends partially on Luce, since it guarantees that, at every t, ∆t[i] ≥ 0

implies that λt[i] ≥ 0. By (WDM) this step holds. �
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Chapter 3

When to Do the Hard Stuff?

Dispositions, Motivation and the

Choice of Difficulties

3.1 Introduction

One of the reasons as to why individuals tend to avoid difficult tasks is because they

do not feel able enough to confront them. Not coping with them might, however,

imply foregoing the opportunity of getting better economic outcomes, not available

otherwise. As Liebow (1967) documents in his study of the Negro male community of

Washington inner city:

Convinced of their inadequacies, not only do they not seek out those few better-

paying jobs which test their resources, but actively avoid them, gravitating in a mass

to the menial, routine jobs which offer no challenge -and therefore posse not threat-

to the already diminished images they have of themselves(...). Thus, the man‘s low

self-esteem generates a fear of being tested and prevents him from accepting a job with

responsibilities or, once on a job, form staying with it if responsibilities are thrust on

him, even if wages are commensurably higher.

The story above offers two interesting insights. The first one is that individual

dispositions might dramatically influence decisions of huge economic relevance. When

documenting the relationship between the achievement motive, that is, individual dis-

positions to strive for success, and upward mobility patterns in the United States,

Atkinson and Feather (1966) highlight how, despite of the fact that education is the

main determinant of upward mobility, individual dispositions should not be neglected.

In fact, 65% of the people who exhibited upward mobility patterns at a higher extent,

44



When to Do the Hard Stuff? 45

only had high school education or less.1 The second one is the trade-off between tasks’

difficulty and their economic outcomes. While a routine job is probably more easily

developed than a very demanding one, good economic outcomes, as higher wages or

promotion opportunities, might only be available in the latter.2

Our purpose in this paper is to understand and highlight the role played by individ-

ual dispositions in shaping avoidance behavior. We interpret individual dispositions

as an expression of non-cognitive abilities.3 Examples of non-cognitive abilities are

emotional stability, that manifests, among others aspects, in self-confidence and self-

esteem, or conscientiousness, that manifests, among others aspects, in perseverance.4

In order to do it, we develop a tractable model in which the decision maker, hence-

forth DM, who is characterized by a disposition (that is, a non-cognitive abilities level),

decides the optimal time to deal with difficulties.

Our approach is as follows. We consider a dynamic framework in which at every

point in time the decision maker, henceforth DM, might experience two states, namely,

the full capacity state and the deteriorated capacity state, with a constant probability.

In the full capacity state she enjoys high dispositions while in the deteriorated capac-

ity state her dispositions are low. Tasks are of two types, namely, easy and difficult.

On the one hand, getting good economic outcomes is less likely under difficult than

under easy tasks but on the other hand, outcomes associated to difficult tasks are

more valuable than outcomes associated to easy tasks. We consider that states and

economic performance are positively related, specifically, the higher the DM’s disposi-

tion the higher the probability of being successful when developing a task, either easy

or difficult. It is worth mentioning that no effort decision is analyzed here. The only

decision of the DM has to make is when to confront difficulties. We assume that once

she decides to confront them, she sticks at this decision forever.

We also study the case in which the DM’s disposition is sensitive to outcome

achievements. As Mruk (2006) points out, the demands of life are not constant, so

self-esteem levels will fluctuate depending on what is happening in a person’s life. Re-

dundancy, bereavement, illness, studying, gaining a qualification, parenthood, poverty,

being a victim of crime, divorce, promotion at work will all have an impact on our

self-esteem levels. Self-esteem levels go up and down and can change over time. Also,

1To establish comparisons between the prestige of occupations of parents and sons, private house-

holds populated by people older than 21 were interviewed. Specific measures related to individual

dispositions to strive for success were collected.
2Also, as Atkinson and Feather (1966) suggest, high prestige occupations are perceived as being

more difficult to attain than low prestige occupations. This hierarchy can be seen as a series of tasks

in which the outcome value comes together with difficulty.
3We will interchangeably use the term state, disposition or simply ability when referring to the

non-cognitive ability level that the individual enjoys.
4See John and Srivastava (1999) for the Big Five domains of non-cognitive abilities, their traits

and facets.
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as Bénabou and Tirole (2002) point out, motivation helps individuals to persevere

in the presence of setbacks. We formalize this idea by allowing the probabilities of

experiencing the full capacity state and the deteriorated capacity state to evolve over

time. Specifically, we assume that their value at a given period depends on their value

and on the likelihood of good economic outcomes in the previous period.5

Our results are as follows. We find how a low disposition DM will avoid difficulties

forever while a high disposition DM will cope with them since the beginning. Thus,

individuals with poor abilities get trapped into low value easy tasks. However, when

motivation plays a role, the achievement of good economic outcomes out of easy tasks

leaves the DM with the disposition of coping with difficulties from some point in time

on.6 In line with this finding it is worth mentioning the results of a program carried

out in West Bengal, by the indian microfinance institution Bandhan, consisting on

providing extremely poor individuals with productive assets. The authors observed

how people ended up working 28% more hours, mostly on activities not related to

the assets they were given and that their mental health had improved. The program

was considered to have injected a dose of motivation, that pushed people to start new

economic activities.7

Our proposal is closely related to the branch of literature that links poverty and

psychology. For instance, Dalton et al. (2014) discuss the importance of aspirations

failure in the perpetuation of poverty. This paper, as ours, highlights the role of

internal constraints as a source of behaviors that might preclude individuals from

getting high welfare achievements. Their research question is, however, different from

ours, whereas they focus in one particular bias, namely, aspiration failure, we analyze

the role of non-cognitive abilities. We also find relations with the literature of addiction

and self-control. Specifically, Bernheim and Rangel (2004) study patterns of addictive

behavior of a DM that operates in two modes, namely, cold and hot. When in the

cold mode, the DM selects her most preferred alternative whereas when in the hot

mode, choices and preferences may diverge because the DM losses cognitive control.

This paper presents a theory of addiction whereas ours focuses on the effects of non-

cognitive abilities in the decision of facing onerous but valuable tasks. Also, Ozdenoren

et al. (2012) exhaustively account for the dynamics of self-control performance of a DM

that has to choose her optimal consumption path. We depart from this paper since

we focus on outcome achievement and motivation, and not on capacity exhaustion, as

the main driver of decisions.

The paper is organized as follows. Section 3.2 presents the baseline model. In this

5In particular we assume that probabilities evolve according to a Markov process.
6This is consistent with Ali (2011), a model in which a long-run self, the planner, has to decide, at

every point in time, whether to allow the short-run self, the doer, to face a menu in which a tempting

alternative is available. The planner does so whenever the doer experiences high self-control.
7The full article is available at http://www.economist.com/node/21554506.
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version, the probability of experiencing the full capacity state is time independent.

Section 3.3 presents the extended model. In it, the probability of experiencing the full

capacity state is sensitive to outcome achievements. The dynamics of its evolution

is therefore outlined. In both sections, optimal strategies and their associated utility

gains are presented. Section 3.4 concludes. Section 3.5 contains the technical proofs.

3.2 A model on avoidance behavior

Let s1 and s2 denote the two states that the DM might experience. When experiencing

s2 the DM is in the full capacity state and enjoys high abilities. When experiencing s1

the DM is in the deteriorated capacity state, meaning that she executes her abilities

poorly. At every point in time, t ∈ Z+, she has a probability q ∈ [0, 1] of experiencing

s2. Thus, she experiences s1 with probability 1 − q. Tasks are of two types, easy or

the difficulty level d1, and difficult or the difficulty level d2.

The likelihood of getting good economic outcomes is denoted pij, with i, j = 1, 2.

Subscript i refers to the DM’s state, that is, either s1 or s2, whereas subscript j refers

to the difficulty of the task, that is, either d1 or d2. Probabilities are as follows: first,

fixing difficulty, the likelihood of good economic outcomes increases with the DM’s

state. There is, in fact, a large amount of literature posing non-cognitive abilities as

one of the factors determining performance and outcomes, for instance, in the domains

of education and in the labor market.8 Second, fixing the DM’s state, the likelihood of

good economic outcomes decreases with task’s difficulty. The following table presents

these probabilities:

Table 1. Success probabilities

s1 s2

d1 p11 < p21

< <

d2 p12 < p22

Notice that no direct relation is established between p11 and p22. Finally, good

economic outcomes are worth just 1 unit when they are the result of developing easy

tasks and K > 1 units when they come out of developing difficult tasks.

We make an assumption regarding the success probabilities. It captures the idea

that individuals with low dispositions are more vulnerable than individuals with high

dispositions to the characteristics of the tasks they deal with. For high disposition

8See Heckman et al. (2006) and Balart and Cabrales (2014) for an illustration of this relationship.
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individuals, task’s difficulty is less relevant than for low disposition individuals in de-

termining their chances of success.9 We formally express it as:

Assumption 1: p11 − p12 > p21 − p22.

The second assumption is related to the strategies among which the DM chooses:

Assumption 2: once the DM decides to face difficulties, she commits to this de-

cision forever.

In fact, there exists evidence showing that in many situations individuals become

locked into (possibly) costly courses of action and a cycle of escalation of commitment

arises. The justification of previous decisions, the necessity to comply with norms

or a desire for decision consistency in the decision making process, might encourage

commitment.10 The strategies available to the DM therefore comprise choosing the

point in time in which to face difficulties. We denote by (∞) the always avoiding

difficulties strategy and by (0) the facing difficulties since the beginning strategy. A

strategy consisting on facing difficulties from a point in time 0 < t <∞ on, is denoted

(t).11

The DM behaves as an expected utility maximizer. Thus, she determines her opti-

mal path of action at the initial point in time, taking into account her disposition, that

is, the point-wise probability q of being in the full capacity state. We consider that

the DM is risk neutral. We then focus on the role of dispositions without dealing with

risk aversion issues.12 Thus, the current expected utility of developing an easy task at

time t is qp21 +(1− q)p11 and that of developing a difficult task is K(qp22 +(1− q)p12).
Furthermore, let δ ∈ (0, 1) denote the discount factor of the stream of pay-offs. We

formally state the DM’s problem as follows:

When experiencing the full capacity state, s2, with probability q, the DM decides,

at t = 0, the point in time t to face difficult tasks, in order to maximize her long-run

expected utility. Specifically, she solves:

9On the domain of cognitive abilities Gonzalez (2005) provides experimental evidence on how

increasing task difficulty, understood as workload, was more detrimental for low ability individuals.
10See Staw (1981) for the concept of escalation of commitment. See also Arkes and Blumer (1985)

and Thaler (1980) for a justification of this phenomenon based on the sunk cost effect.
11It is worth to stress how the explicit introduction of time does not aim to describe the evolution

of abilities along the life cycle. Time only aim to capture the point-wise choice of task difficulty.
12See Tanaka et al. (2010) for a paper studying the relationship between poverty and risk and time

preferences.
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Max
t

u((t)) = Max
t

t−1∑
i=0

δi(qp21 + (1− q)p11) +K
∞∑
i=t

δi(qp22 + (1− q)p12).

As stated, the only decision the DM has to make is when to jump into difficulties.

The second part of the sum above reflects the fact that once she decides to do so, she

sticks at this decision forever.

3.2.1 Results

It seems intuitive that individuals who enjoy better dispositions tend to perform tasks

better. In fact, it is common that people tend to avoid difficulties when they do not

feel prepared to face them. The results in this section capture this idea. When the

DM experiences the full capacity state with high enough probability, she will opt for

difficulties since the beginning. In contrast, when the probability of experiencing the

full capacity state is low enough, she will prefer to avoid them forever.

We build our results building a function λ : [0, 1]4 × R −→ R, that depends on

the primitives of the model, defining the environment in which the DM makes her

decision, namely, the success probabilities and the value of these outcomes. It defines

a domination threshold between the strategy of facing difficulties since the beginning,

(0), and the strategy of postponing them for one period (1).13 For values of q higher or

equal than this threshold, (0) is preferred to (1) and for values of q smaller than it, (1)

is preferred to (0). This information will be enough to identify the optimal strategy.

Before stating the result it is worth highlighting that whenever outcomes out of

difficult tasks do (respectively do not) compensate the decrease in probability of suc-

cessfully dealing with them, that is, whenever p11/p12 ≤ K (respectively K ≤ p21/p22),

the DM finds optimal to always face (respectively to always avoid) difficulties, even

if she is of extreme low disposition, that is, if q = 0 (respectively, even if she is of

extreme high disposition, that is, if q = 1). We then focus on the interesting case in

which p21/p22 < K < p11/p12. Results are as follows:

Theorem 1. The DM’s optimal strategy is to face difficulties since the beginning when-

ever she enjoys the full capacity state with high enough probability (that is, whenever

λ ≤ q) and to always avoid them whenever she experiences the full capacity state with

low enough probability (that is, whenever q < λ).

13Specifically, it is the result of equating the long-run expected utility of (0) and one of (1), under

all possible q. It gives the us the q such that the DM will be indifferent between not postponing

difficulties and doing so for one period. It value is λ =
Kp12 − p11

(p21 − p11)−K(p22 − p12)
. See the proof of

Theorem 1.
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Optimal paths of action are extreme behaviors. Facing difficulties from an interme-

diate point in time is never optimal. Notice that, as going back from difficult to easy

tasks is never considered by the DM, assumption 2 is immaterial here. Notice also that

if for the DM never (respectively always) postponing difficulties is optimal, this is also

be the case for any DM with a higher (respectively lower) disposition. We interpret

the always avoiding difficulties strategy as procrastination on onerous tasks.14

The following example aims to clarify the elements of the model and these results:

Example. Consider a DM who is deciding which type of job to look for or to

accept. An easy (routine) job gives the DM a payoff (wage) of 1 whereas a difficult

(high responsibility) job has payoff K = 1.3. The success probabilities in either job

are:

s1 s2

d1 0.7 0.8

d2 0.5 0.7

In this case λ = 0.31. Thus if the DM is of low enough disposition (that is, if q <

0.31), she finds optimal to always postpone the acceptance of the high responsibility

job, whereas if she is of high enough disposition (that is, if q ≥ 0.31), she will find

optimal to deal with the high responsibility job since the beginning. We depict below

the ranking of long-run expected utilities under the strategies the DM chooses among.

The left figure illustrates the case in which always avoiding difficulties is optimal

whereas the right figure illustrates the case in which facing them since the beginning

is optimal:

Figure 1. The optimal strategy is (∞) Figure 2. The optimal strategy is (0)
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14See O’Donoghue and Rabin (2001) and O’Donoghue and Rabin (2008) for two references on

procrastination.
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The following remark discusses how the threshold λ reacts to the primitives of

the model, defining the environment in which the DM make her decision, namely the

success probabilities and the value of good economic outcomes under difficult tasks:

Remark. The threshold λ is decreasing in p22 and p12 and K and increasing in p21

and p11.

Higher chances of successfully developing either easy or difficult tasks make the DM

more prone to choose each of them. In the same vein, an increase in the value of good

economic outcomes out of difficult tasks incentivizes the DM to face them. An increase

in K directly raises the utility of facing difficult tasks. This happens despite of the

fact that the probability of achieving good economic outcomes in these circumstances

is systematically lower. The results above are summarized as follows:

Corollary. The range of probabilities [q, 1] such that the DM’s optimal strategy is to

face difficulties since the beginning increases (respectively decreases) with the probability

of success under difficult (respectively easy) tasks. It also increases with the value of

economic outcomes out of difficult tasks.

We also describe the utilities derived out of the aforementioned optimal strategies

and analyze the effect of a marginal boost in dispositions. For this purpose we assume

that a marginal increase in dispositions, does not affect the originally optimal strategy.

Also, let us denote α ≡ 1

1− δ
. Results are as follows:

Proposition 1. The long-run expected utility of any optimal strategy is monotonically

increasing and linear in q. Its value is αK(qp22 + (1− q)p12) whenever the DM finds

optimal to face difficulties since the beginning and α(qp21 + (1 − q)p11) whenever the

DM finds optimal to always avoid difficulties. Moreover, the marginal return of an

increase in the DM’s disposition is higher when the DM is already of high dispositions

(that is, when q ≥ λ) than when she is of low dispositions (that is, whenever q < λ).

In the following figure we illustrate the aforementioned statements . In the x-axis we

represent the DM dispositions, that is, the probability of experiencing the full capacity

state. In the y-axis we represent the ranking of long-run expected utilities derived from

the two possible optimal strategies, namely, either always avoiding difficulties or always

facing them, according to the aforementioned probability. Observe how a marginal

increase in the DM’s disposition, increases the utility of any path of action and in

particular, of the optimal one. Observe also how the threshold λ, which decreases

with K, generates a kink, making utility convex (specifically, piece-wise linear) in q:
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Figure 3. Utility as a function of dispositions, with K ′ > K
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To conclude this section, we discuss on the possibility of carrying out a welfare

assessment analysis. The intuition is as follows: consider two individuals. One of

them, the disadvantaged individual, has low abilities and always avoids difficulties,

the other, the advantaged individual, has high abilities and always faces difficulties.

It turns out that the marginal return of boosting abilities is higher for the advantaged

individual than for the disadvantaged individual. Suppose that a social planner has

one unit of resources, devoted to improve abilities. If it is the case that the planner only

cares about maximizing total returns, he might allocate this unit on the advantaged

individual. If he also has equity concerns, he will have to take into account that the

utility gap between the advantaged and the disadvantaged individual will exacerbate.

In this case, the planner might be willing to allocate resources on the disadvantaged

individual.

3.3 The role of motivation

In this section we model how successes and failures might affect the manifestation of

non-cognitive abilities, for instance, self-esteem, self-confidence or perseverance.

We assume that the probability of experiencing the full capacity state varies over

time according to a Markovian process. This modeling aims to capture the idea that

success may boost the manifestation of the non-cognitive abilities while failure may

deteriorate it. Formally, the probability of experiencing the full capacity state at

time t, depends on its value at time t − 1, and also on the success probabilities. Let

q(t) ∈ [0, 1] denote the probability of experiencing the full capacity state.15 Let the

success probablities be the ones described in table 1. The following expression accounts

for the evolution of the probabilities of experiencing either state:

15Thus, 1− q(t) denotes the probability of experiencing the deteriorated capacity state at time t.
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[q(t−1) 1− q(t−1)]

[
p2j 1− p2j
p1j 1− p1j

]
= [q(t) 1− q(t)], (3.1)

where j = {1, 2} accounts for task’s difficulty.16 Consider that at time t − 1 the

DM experiences s2 with probability q(t−1). Then, at time t she will experience s2 with

the probability with which she was successful in the previous period. This is captured

by the first column in the matrix above. Similarly, at t she will experience s1 with the

probability with which she failed in the previous period. This is captured by the second

column the matrix above. Let q(0) be the DM’s initial probability of experiencing the

full capacity state. The current expected utility of developing an easy task at time t is

q(t)p21 + (1− q(t))p11 and the one developing a difficult task is K(q(t)p22 + (1− q(t))p12).
Notice that, as a consequence of q(t) evolving according to a Markovian process,

two stationary probabilities arise. These are, the one related to always facing easy

tasks, denoted qe, and the one related to always facing difficult tasks, denoted qd. We

interpret them as the average long-run frequencies with which the DM experiences the

full capacity state when she always faces easy or difficult tasks, respectively. Since the

likelihood of success is higher in easy tasks, it is the case that the DM is eventually

better off in terms of capacities when she decides to only face easy tasks than when

she decides to only face difficult tasks, more formally, qe > qd.17 The DM’s problem is

as follows:

When experiencing the full capacity state, s2, with probability q(0), she decides, at

t = 0, the point in time t, to face difficult tasks, in order to maximize her long-run

expected utility. Specifically, she solves:

Max
t

u((t)) = Max
t

t−1∑
i=0

δi(q(i)p21 + (1− q(i))p11) +K

∞∑
i=t

δi(q(i)p22 + (1− q(i))p12).

As stated, the only decision the DM has to make is when to jump into difficulties,

in an environment in which her current performance is sensitive to previous outcomes

achievement. The second part of the sum above reflects the fact that once she decides

to do so, she sticks at this decision forever.

16Notice that q(t) depends on the chosen strategy. If the DM decides to face difficult tasks from

t = 5 on, q(4) is the resulting probability of having faced easy tasks for four periods. If she decides to

face difficult tasks from t = 3 on, q(4) is the resulting probability of having faced easy tasks for two

periods and difficult ones from the third period on.
17Let Tk, with k = e, d, denote the transition matrices out of facing either easy or difficult tasks,

involved in expression (3.1), respectively. Their determinants are T e = p21 − p11 and T d = p22 − p12,

respectively. In getting qe and qd we solve [qk, 1− qk]Tk = [qk, 1− qk]. We have that qe = (p11)(1−
T e)−1 and qd = (p12)(1− T d)−1. Suppose that qe < qd. This implies that p11(1− T d) < p12(1− T e)
or p11(1 − p22) < p12(1 − p21) which cannot hold since p11 > p12 and (1 − p22) > (1 − p21). Thus

qe > qd has to hold.
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3.3.1 Results

As in the previous section, we instrument our analysis using a function µ, depending

on the primitives of the model. It defines a domination threshold between the strategy

of facing difficulties since the beginning and the strategy of postponing them for one

period, that is, between (0) and (1). For values of q(0) higher or equal than this

threshold, (0) is preferred to (1) and for values of q(0) smaller than it, (1) is preferred

to (0). This threshold and the stationary probabilities, determine optimal strategies.

Let us first focus on the case in which assumption 2 does not play a role, that is, when

DM’s optimal strategy, in fact, belongs the class of strategies prescribed by assumption

2. We comment on the remaining cases afterwards. Results are as follows:

Theorem 2. The DM’s optimal strategy is to face difficulties since the beginning

whenever she always enjoys the full capacity state with high enough probability (that is,

whenever µ ≤ qd < qe, q(0)), to always avoid them whenever she always experiences the

full capacity state with low enough probability (that is, whenever q(0), qd < qe ≤ µ) and

to face them from an intermediate point in time whenever she gets motivated through

outcome achievements associated to easy tasks (that is, whenever q(0) < µ ≤ qd < qe).

In contrast with results in the previous section, jumping into difficult tasks at some

point in time can be optimal here. We interpret this strategy as one in which the DM

prefers to first deal with easy tasks, because performing properly motivates her to deal

with difficult but more rewarding tasks.18

In the following figure we depict the ranking of utilities in this case. The DM

exhibits single-peaked preferences on the optimal time to face difficulties, with the

peak corresponding to an intermediate strategy:

Figure 4. The optimal strategy is (t)

6

-

(∞)(t)(0)

u((.))

18 It is worth mentioning that if qd = q(0) (respectively qe = q(0)) when facing (respectively avoiding)

difficulties since the beginning is optimal, we are back to the optimal behavior in the previous section.
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The question of when to do the hard stuff arised in Quora, an internet knowledge

market, in which people discuss about a specific given topic. The topic was: Is it

better to do easy tasks first and then move on to harder ones, or vice versa?19 One of

the answers, that accurately illustrates our statement, was:

Important is to evaluate, which are the harder tasks and which the easy tasks. Out

of this it becomes clear, how long it will take to do them. (...) The rest has more

psychological character and is strongly depending on the personality. I personally like

to mix it. This gives the success feeling, if you do the easy tasks and motivates, to

continue with the harder tasks, to make the overall project the success.

If individuals indeed behave this way, there will be chances of improving individual

achievements through playing with motivation. A model of human capital accumula-

tion in which individuals build their skills by developing easy tasks up to the point that

it is optimal for them to face difficulties, might offer the same type of results. However

we truly think that the human capital accumulation story is essentially different from

the motivational story. This difference relies on the following reasoning: while individ-

uals build their human capital in the actual process of developing a task, motivation

results when outcomes are achieved. We think that this is a crucial distinction, that

would posse different policy implications.

We now briefly comment on some cases in which assumption 2 plays a role. That is,

cases in which the DM has to choose the optimal strategy among the class of strategies

prescribed by assumption 2, regardless of whether other path of action would have

delivered higher utility. Under qd < qe < µ ≤ q(0) the DM would have preferred to

switch to easy tasks after have been dealing with difficulties for a while. Within the

class of strategies she can choose among due to assumption 2, the DM exhibits single

deep preferences on the optimal time to face difficulties. The deep corresponds to an

intermediate strategy and the peaks correspond to the extreme strategies or either

never dealing with difficulties or facing them since the beginning. The same happens

under qd < µ ≤ qe, q(0). Among the available strategies prescribed by assumption 2,

the DM ends up dealing with difficulties since the beginning. Finally under q(0), qd ≤
µ < qe the DM would have also preferred to switch to easy tasks after have been

dealing with difficulties for a while. As a result of assumption 2, the best thing the

DM can do is to perform an intermediate strategy.20

The following result deals with the properties of the utility under the three optimal

strategies. It also describes the returns of a boost in the DM’s initial disposition, that

19See http://www.quora.com/Is-it-better-to-do-easy-tasks-first-and-then-move-on-to-harder-ones-

or-vice-versa.
20See the proof of Theorem 2.
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is, q(0). We assume that a marginal increase in the initial disposition, does not affect

the originally optimal strategy. Specifically, for the case in which an intermediate

strategy is optimal we consider that marginal increase in the initial disposition, does

not affect the particular point in time to face difficulties.21 Before stating the results let

us denote by mr((.)), the marginal return of a increase in the DM’s initial disposition,

under any optimal strategy. Proposition 2 is as follows:

Proposition 2. The long-run expected utility is monotonically increasing and linear

in q(0) under any optimal strategy. Moreover, mr((0)) > mr((t − 1)) > mr((t)) >

mr((∞)).

These results, as the ones in Proposition 1, capture the idea that individuals with

better abilities perform better and achieve higher utility. It is also the case that

advantaged individuals, those with high q(0), benefit more from a marginal increase in

their abilities. As the table below illustrates, as q(0) increases within a row, everything

else equal, that is, as the DM is of higher initial dispositions, she moves from finding

(∞) or (t) optimal to finding (0) optimal.

In the previous section we illustrated how the utility of high disposition individuals

that always confront difficulties was higher than the utility of low disposition individ-

uals that always avoid difficulties. We also carry such an analysis in this framework.

As qe > qd, we list in the table below the three combinations in which µ, qe and qd may

appear, the way in which q(0) relates to them and the optimal strategies. Within each

combination we consider that µ, qe and qd remain unaltered. However, they might

be different across combinations. For the ease of exposition we only consider strict

inequalities:22

Table 2. Optimal strategies

C.1 q(0) < qd < qe < µ qd < q(0) < qe < µ qd < qe < q(0) < µ qd < qe < µ < q(0)

(∞) (∞) (∞) (0) or (∞)

C.2 q(0) < µ < qd < qe µ < q(0) < qd < qe µ < qd < q(0) < qe µ < qd < qe < q(0)

(t) (0) (0) (0)

C.3 q(0) < qd < µ < qe qd < q(0) < µ < qe qd < µ < q(0) < qe qd < µ < qe < q(0)

(t) (t) (0) (0)

Let us focus on optimal strategies in the row corresponding to C.2, that is, either

(t) or (0). In this case assumption 2 does not play a role. This allows us to make a

21Formally, when (t) is optimal then t|q(0) = t|q(0)+ε holds.
22For the complete analysis, see the proof of Theorem 2
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neat comparison of the utility gains under these two optimal strategies. The following

lemma summarizes the findings:

Lemma 1. Consider a DM characterized by q(0). The optimal strategy of facing dif-

ficulties since the beginning (that is, whenever µ < q(0), qd < qe) yields higher utility

than the optimal strategy of facing them from an intermediate point in time (that is,

whenever q(0) < µ < qd < qe).

Also, in order to make the intermediate strategy (t) in C.2 and the always avoiding

strategy (∞) in C.1 comparable, we consider, for the latter, the specific situation in

which q(0) < qd < qe < µ. Notice that this is the only situation in C.1 in which

q(0) < qd. Let q(0) be the same in both scenarios and focus on the case in which

the only difference between C.1 and C.2 is that we increase µ, from C.2 to C.1, by

decreasing K.23 Since qe and qd do not depend on K, they remain unaltered. The

following lemma summarizes the findings:

Lemma 2. Consider a DM characterized by q(0). The optimal strategy of facing dif-

ficulties from an intermediate point in time (that is, whenever q(0) < µ < qd < qe)

yields higher utility than the optimal strategy of always avoiding difficulties (that is,

whenever q(0) < qd < qe < µ).

With these two lemmas we conclude that optimal strategies involving the choice of

difficulties at some point in time, yield higher utility than optimal strategies in which

the DM always avoids difficulties.

3.4 Conclusions

Non-cognitive abilities have an impact in determining performance in dimensions of

huge economic relevance, as labor market entry/ search decisions or educational attain-

ments. We link, in a dynamic setting, non-cognitive abilities to the decision of when to

deal with difficult but valuable tasks. We show how low disposition individuals always

avoid difficulties and forego better economic opportunities while high disposition in-

dividuals are willing to deal with difficulties. The behavior of individuals that always

avoid dealing with onerous tasks resembles procrastination results, without relying

on the hyperbolic discounting assumption.24 Also, individuals that get motivated by

outcome achievements find optimal to jump into difficult tasks at some point in time.

23See the proof of Theorem 2, step 1.
24See Rubinstein (2003) for a discussion on this assumption.
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3.5 Appendix. Proofs

Before proceeding we set some useful definitions. Let us denote by u1,(0) and u2,(0), the

DM’s long-run expected utility when she only experiences the deteriorated capacity

state s1, that is when q = 0, and when she only experiences the full capacity state

s2, that is when q = 1, respectively, under strategy (0). Similarly, let us denote by

u1,(1) and u2,(1), the DM’s long-run expected utility when she only experiences the

deteriorated capacity state s1, that is when q = 0, and when she only experiences the

full capacity state s2, that is when q = 1, respectively, under strategy (1).

Let us define functions f : R→ R and g : R→ R as f(λ) = λu2,(1)+(1−λ)u1,(1) and

g(λ) = λu2,(0) +(1−λ)u1,(0), respectively. For λ ∈ [0, 1], these functions are the convex

combination of the DM’s long-run expected utilities, when she experiences s2 with

probability q = 1 and q = 0, out of strategies (1) and (0), respectively. Furthermore,

we say that a strategy (t) dominates strategy (t+ 1) whenever the long-run expected

utility of (t) is higher than the one of (t+ 1). Let (t) > (t+ 1) denote this domination

relationship. Recall that (t) denotes any strategy such that 0 < t < ∞. We also say

that strategy (0) dominates strategy (1) whenever the long-run expected utility of (0)

is higher than the one of (1). Let (0) > (1) denote this domination relationship.

Proof of Theorem 1. The proof is composed by two steps. In Step 1 we derive the

threshold λ such f(λ) and g(λ) equalize. For such a λ, (1) and (0) yield the same

long-run expected utility. For values higher or equal than λ then (0) > (1). For values

lower than λ then (1) > (0). In step 2 we argue how this information is enough to set

the optimal strategy, depending on the values of λ and q.

Step 1. If the DM experiences s2 with probability q = 1, the long-run expected

utility of strategy (0) is u2,(0) = Kp22 + δu2,(0). If she experiences s1 with probability

1 − q = 1, the long-run expected utility of strategy (0) is u1,(0) = Kp12 + δu1,(0).

Similarly, when she experiences s2 with probability q = 1, the long-run expected

utility of strategy (1) is u2,(1) = p21 + δu2,(0) whereas when she experiences s1 with

probability 1 − q = 1, then u1,(1) = p11 + δu1,(0). From previous definitions, f(λ) =

λ(u2,(1) − u1,(1)) + u1,(1) and g(λ) = λ(u2,(0) − u1,(0)) + u1,(0). Solving f(λ) = g(λ) for λ

we get λ((u2,(1) − u1,(1))− (u2,(0) − u1,(0))) = u1,(0) − u1,(1). Notice that u2,(0) − u1,(0) =

K(p22−p12)(1− δ)−1 and u1,(0) = Kp12(1− δ)−1. Thus, λ((p21−p11)−K(p22−p12)) =

Kp12−p11 or λ = (Kp12−p11)((p21−p11)−K(p22−p12))−1. Assumption 1 implies that

p22 − p12 > p21 − p11, thus the denominator of the previous is different from zero, and

λ exists. Also the denominator is negative and for values lower (respectively higher)

than λ then (1) > (0) (respectively (0) > (1)). For values equal to λ we assume

that (0) > (1) as well. Assumption 1 also implies that p11/p12 > p21/p22.
25 Thus,

25By assumption 1, p11 − p12 > p21 − p22. It implies that (p11 − p12)(p12) − 1 > (p21 − p22)(p22)−1

or equivalently p11/p12 > p21/p22.
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∂λ/∂K =
p21p12 − p22p11

((p21 − p11)−K(p22 − p12))2
< 0. Notice than when K = p21/p22 then

λ = 1 and when K = p11/p12 then λ = 0. It then follows that when K < p21/p22

then λ > 1, and no matter q, (1) > (0). On the contrary, when K > p11/p12 then

λ < 0, and no matter q, (0) > (1). We focus on the interesting case such that

p11/p12 < K < p11/p12 and λ ∈ (0, 1). We thus conclude that when q ≥ λ then

(0) > (1) and when q < λ then (1) > (0).

Step 2. We set here the optimal strategies. Two cases arise depending on the

relation between q and λ:

C.1. Suppose that q ≥ λ. By step 1, (0) > (1). Let us compare any pair of

intermediate strategies (t) and (t + 1). We have that u((t)) =
∑t−1

i=0 δ
i(qp21 + (1 −

q)p11) + K
∑∞

i=t δ
i(qp22 + (1 − q)p12) and u((t + 1)) =

∑t−1
i=0 δ

i(qp21 + (1 − q)p11) +

δt(qp21 + (1− q)p11) + K
∑∞

i=t+1 δ
i(qp22 + (1− q)p12). Notice that up to the point in

time t− 1, (t) and (t+ 1) yield the same utility. Notice also that from time t on, the

comparison is between (0) and (1), evaluated from the point of view of time t. Since

it is always the case that q ≥ λ, it follows that (0) > (1), from the point of view of

time t. That is so because we can consider the process as starting at time t and thus,

apply step 1. As a consequence, for any pair of intermediate strategies, (t) and (t+ 1),

it follows that (t) > (t + 1). It is useful to observe that limi−→∞ u((t + i)) = u((∞)).

We then conclude that (0) > (1) > ... > (t) > (t + 1) > ... > (∞) holds. In this case

(0) is optimal.

C.2. Suppose that q < λ. To conclude that (0) < (1) < ... < (t) < (t + 1) < ... <

(∞) we use a similar reasoning as above and thus omit it here. In this case (∞) is

optimal.

�

Proof of the Remark. See the proof of Theorem 1 for the expression of λ and its relation

with K. We analyze here how λ varies with the probabilities of success. Let x ≡
(p21−p11−K(p22−p12))2 be the denominator in the following derivatives. We have that:

∂λ/∂p11 = (Kp22− p21)x−1, ∂λ/∂p12 = K(p21−Kp22)x−1, ∂λ/∂p21 = (p11−Kp12)x−1

and ∂λ/∂p22 = K(Kp12 − p11)x−1. Since K ∈ (p21/p22, p11/p12) then ∂λ/∂pi1 > 0 and

∂λ/∂pi2 < 0 with i = 1, 2.

�

Proof of Proposition 1. Recall that u((0)) = K
∑∞

i=0 δ
i(qp22 + (1− q)p12) = (K(qp22 +

(1−q)p12)(1−δ)−1 and u((∞)) =
∑∞

i=0 δ
i(qp21+(1−q)p11) = (qp21+(1−q)p11)(1−δ)−1.

Since ∂u((0))/∂q = K(p22−p12)(1−δ)−1 > 0 and ∂u((∞))/∂q = (p21−p11)(1−δ)−1 >
0, utilities are increasing and linear in q. Finally, assumption 1 implies that p22−p12 >
p21 − p11, then the marginal return of an increase in q is the highest under (0). �

Before the proof of Theorem 2 let us set two useful claims:
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Claim 1. Consider that the DM repeatedly faces easy tasks. Then, at every time t,

q(0) > q(t) > q(t+1) > qe whenever q(0) > qe and q(0) < q(t) < q(t+1) < qe whenever

q(0) < qe.

Proof of Claim 1. The proof is by induction. Let us focus on the case in which q(0) > qe.

We first prove that for t = 1, q(0) > q(1) > qe holds. We set the induction part

afterwards.

Step 1. q(0) > q(1) > qe. In showing that q(0) > q(1), we compare the initial

probability of experiencing s2, with its first perturbation, after having decided to face

an easy task. Consider expression (3.1) in the main body:

[q(0) 1− q(0)]

[
p21 1− p21
p11 1− p11

]
= [q(1) 1− q(1)].

We have that q(1) = q(0)p21 + (1 − q(0))p11. Recall that q(0) > qe and qe = p11(1 −
p21 + p11)

−1. Thus, q(0) > p11(1− p21 + p11)
−1 or equivalently q(0)(1− p21 + p11) > p11.

We rewrite this expression as q(0) > q(0)p21 + (1− q(0))p11. The RHS of this expression

is exactly q(1). In showing that q(1) > qe we proceed by contradiction. Suppose that

q(1) < qe holds, that is, q(0)p21 + (1− q(0))p11 < qe. This is equivalent to q(0)p21 + (1−
q(0))p11 < p11(1−p21 +p11)

−1 or (p11 +q(0)(p21−p11))(1−p21 +p11) < p11. Rearranging

terms it becomes p11 − p11(p21 − p11) + q(0)(p21 − p11)(1 − p21 + p11) < p11. This is

equivalent to q(0) < p11(1 − p21 + p11)
−1 = qe, contradicting our initial assumption.

Thus, q(0) > q(1) > qe holds.

Step 2. If for an arbitrary t, q(t) > q(t+1) > qe holds, for q(t+1) we have:

[
q(t+1) 1− q(t+1)

] [p21 1− p21
p11 1− p11

]
= [q(t+2) 1− q(t+2)].

In concluding that q(t+1) > q(t+2) > qe we use exactly the same reasoning than in

the previous step. We conclude that q(0) > q(t) > q(t+1) > ... > qe holds. The case

in which q(0) < qe relies on the same argument. The same analysis goes through for

describing the relation between q(t) and qd. We thus omit the proofs here. �

Claim 2. q(i) = q(0)(T k)i + p1k
∑i−1

j=0(T
k)j and q(t+i) = q(t)(T k)i + p1k

∑i−1
j=0(T

k)j with

k = e, d.

Proof of Claim 2. Recall that T d = p22 − p12 and T e = p21 − p11. By expression (3.1)

in the main body, q1 = q(0)T k + p1k. Also q2 = q(1)T k + p1k = (q(0)T k + p1k)T
k + p1k =

q(0)(T k)2 + p1kT
k + p1k. In general q(i) = q(0)(T k)i + p1k(T

k)i−1 + ... + p1kT
k + p1k or

q(i) = q(0)(T k)i + p11
∑t−1

j=0(T
k)j. To conclude that q(t+i) = q(t)(T k)i + p1k

∑i−1
j=0(T

k)j

we follow a similar reasoning. We thus omit it here. �
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Proof of Theorem 2. We follow the same steps than in the proof of Theorem 1.

Step 1. Consider expression (3.1) in the main body. When the DM experi-

ences s2 with probability q(0) = 1, the long-run expected utility out of strategy

(0) is u2,(0) = Kp22 + δ(p22u
2,(0) + (1 − p22)u

1,(0)). When she experiences s1 with

probability 1 − q(0) = 1, the long-run expected utility of strategy (0) is u1,(0) =

Kp12 + δ(p12u
2,(0) + (1 − p12)u

1,(0)). Solving for u1,(0) and u2,(0) we get u2,(0) =
K(p22 − δT d)

(1− δ)(1− δT d)
and that u1,(0) =

Kp12
(1− δ)(1− δT d)

. Thus, u2,(0) − u1,(0) =
KT d

1− δT d
.

When she experiences s2 with probability q(0) = 1, the long-run expected utility

out of strategy (1) is u2,(1) = p21 + δ(p21u
2,(0) + (1 − p21)u

1,(0)). Similarly, when

she experiences s1, with probability 1 − q(0) = 1, the long-run expected utility out

of strategy (1) can is u1,(1) = p11 + δ(p11u
2,(0) + (1 − p11)u

1,(0)). Now, f(µ) =

µ(u2,(1) − u1,(1)) + u1,(1) and g(µ) = µ(u2,(0) − u1,(0)) + u1,(0) Solving for µ such that

f(µ) = g(µ) we get µ =
u1,(0) − u1,(1)

(u2,(1) − u1,(1))− (u2,(0) − u1,(0))
. With respect to the numera-

tor, u1,(0)−u1,(1) = (1−δ)u1,(0)−p11−δp11(u2,(0)−u1,(0)) or equivalently u1,(0)−u1,(1) =
(1− δ)Kp12

(1− δ)(1− δT d)
−p11−

δp11KT
d

1− δT d
=
K(p12 − δp11T d)− (p11 − δp11T d)

1− δT d
. Regarding the

denominator, u2,(1)−u1,(1) = T e+δT e(u2,(0)−u1,(0)) and u2,(1)−u1,(1)−(u2,(0)−u1,(0)) =

T e − (1 − δT e)(u2,(0) − u1,(0)). This is equivalent to
T e(1− δT d)−KT d(1− δT e)

(1− δT d)
.

Thus, µ =
K(p12 − δp11T d)− (p11 − δp11T d)
T e(1− δT d)−KT d(1− δT e)

.26 Since by assumption 1, T d > T e the

denominator is different from zero, hence µ is a real number. Since by assumption

1, the denominator is negative, for values lower than µ then (1) > (0) and for val-

ues higher than it, (0) > (1). For values equal to µ we assume that (0) > (1) as

well. Also by assumption 1, ∂µ/∂K =
(1− δT d)(p21p12 − p11p22)

(T e(1− δT d)−KT d(1− δT e))2
< 0. Further-

more, when K =
p11 − δp11T d

p12 − δp11T d
then µ = 0 and when K =

p21 − δp21T d

p22 − δp21T d
then µ = 1.

Thus, it has to be that
p21 − δp21T d

p22 − δp21T d
<

p11 − δp11T d

p12 − δp11T d
. It also has to be that when

K >
p11 − δp11T d

p12 − δp11T d
then µ < 0. In this case no matter q(0), (0) > (1). In contrast,

when K <
p21 − δp21T d

p22 − δp21T d
, then µ > 1 and no matter q(0), (1) > (0). The interesting

case is such that K ∈
(
p21 − δp21T d

p22 − δp21T d
,
p11 − δp11T d

p12 − p11δT d

)
and µ ∈ (0, 1). We conclude that

when q(0) ≥ µ then (0) > (1) and when q(0) < µ then (1) > (0).

26When the DM does not care about the future, that is, when δ = 0, λ = µ. That q does not

vary over time is conceptually equivalent to think about a DM making one period decisions without

consequences on her subsequent states. Additionally, ∂µ/∂δ = K(K − 1)(p11p22 − p21p22) > 0,

meaning that the more the DM cares about the future the more she postpones difficult tasks, where

good outcomes are less frequent.
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Step 2. We set here the optimal strategies. Consider first, that µ ≤ q(0). By step

1, (0) > (1) from the point of view of q(0). Three cases arise:

C.1. Suppose that µ ≤ qd < qe, q(0). Let us compare any pair of intermediate

strategies, (t) and (t + 1). We thus evaluate u((t)) =
∑t−1

i=0(q
(i)p21 + (1 − q(i))p11) +

K
∑∞

i=t δ
i(q(i)p22 + (1 − q(i))p12) versus u((t + 1)) =

∑t−1
i=0(q

(i)p21 + (1 − q(i))p11) +

δt(q(t)p21 + (1− q(t))p11) +K
∑∞

i=t+1 δ
i(q(i)p22 + (1− q(i))p12). Notice that up to time

t − 1, both expressions yield the same utility. From time t on, the comparison is

between (0) and (1), from the point of view of q(t). Notice that for any strategy (t),

q(t) results from have been dealing with easy tasks up to time t − 1. Thus, by Claim

1, q(t) > µ. This implies that, from the point of view of q(t), (0) > (1). That is so

because we can consider the process as starting at time t, and thus apply step 1. As

a consequence, for any pair of intermediate strategies (t) and (t + 1), it follows that

(t) > (t + 1). Recall that limi−→∞ u((t + i)) = u((∞)).27 We thus establish that

(0) > (1)... > (t) > (t+ 1) > ... > (∞). Then (0) is optimal.

Assumption 2 does not play any role in C.1, that is, the DM’s optimal strategy is

within the class of strategies that it prescribes. However, it does in C.2 and C.3 below.

In both cases the DM would have found optimal to start with difficult tasks and to

switch to easy ones at some point in time. We look for the optimal strategies within

the ones prescribed by assumption 2.

C.2. Suppose that qd < µ ≤ qe, q(0). Let us compare (t) and (t + 1), as above.

We then evaluate u((t)) and u((t + 1)) as defined in C.1. The relevant comparison is

between (0) and (1) from the point of view of q(t). Notice that q(t) results from dealing

with easy tasks up to time t−1. Thus, by Claim 1, q(t) ≥ µ. Then, by step 1, from the

point of view of q(t), (0) > (1) and, as a consequence, (t) > (t+ 1). We thus establish

that (0) > (1) > ... > (t) > (t+ 1) > ... > (∞), being (0) optimal.

C.3. Suppose that qd < qe < µ ≤ q(0). Let us compare (t) and (t + 1) as above.

We then evaluate u((t)) and u((t + 1)) as defined in C.1. The relevant comparison is

between (0) and (1) from the point of view of q(t). Suppose that strategy (t) is such

that q(t) > µ. Again, from the point of view of q(t), (0) > (1). As a consequence,

(t) > (t + 1). Suppose that strategy (t∗ − 1) is such that q(t
∗−1) = µ.28 Notice that

t < t∗ − 1, by Claim 1 and, at least, t∗ − 1 = t + 1. Thus, from the point of view

of q(t
∗−1), (0) > (1). As a consequence, (t∗ − 1) > (t∗). Suppose that strategy (t) is

such that q(t) < µ for the first time. By Claim 1, this point in time has to be exactly

t∗. Thus, from the point of view of q(t
∗), (1) > (0). As a consequence (t∗ + 1) > (t∗).

Suppose that strategy (t) is any is such that q(t) < µ. Notice that t∗ < t, by Claim

1 and, at least, t = t∗ + 1. Thus, from the point of view of q(t), (1) > (0). As a

consequence, (t) < (t + 1), in particular, (t∗ + 1) < (t∗ + 2). In general we have that

27This observation applies to the remaining cases. We omit it in what follows.
28The same analysis follows if we consider that q(t

∗−1) < µ.
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(0) > (1) > ... > (t∗ − 1) > (t∗) < (t∗ + 1) < (t∗ + 2) < ... < (∞). An intermediate

strategy (t) is then the least preferred and the optimal is either (0) or (∞).

Consider now that q(0) < µ. By step 1, (1) > (0) from the point of view of q(0).

Three cases arise. As we use parallel arguments than above, we go briefly over them.

We compare u((t)) and u((t + 1)) in every case. The relevant comparison will be

between (0) and (1), from the point of view of q(t):

C.1. Suppose that q(0), qd < qe ≤ µ. Notice that for any strategy (t), q(t) results

from have been dealing with easy tasks up to time t− 1. Thus, by Claim 1, q(t) < µ.

Thus by step 1, (1) > (0) from the point of view of q(t). As a consequence, for any

pair of strategies, (t + 1) > (t). Thus, (0) < (1) < ... < (t) < (t + 1) < ... < (∞) and

the optimal strategy is (∞).

C.2. Suppose that q(0) < µ ≤ qd < qe. Suppose that strategy (t) is such that

q(t) < µ. Thus, from the point of view of q(t), (1) > (0). As a consequence, (t+1) > (t).

Suppose that strategy (t∗) is such that q(t
∗) = µ. Notice that t < t∗, by Claim 1 and,

at least, t∗ = t+ 1. Thus, from the point of view of q(t
∗), (0) > (1). As a consequence,

(t∗) > (t∗ + 1). Suppose that strategy (t) is such that q(t) > µ for the first time. By

Claim 1, this point in time has to be exactly t∗ + 1. Thus, from the point of view of

q(t
∗+1), (0) > (1). As a consequence (t∗+1) > (t∗+2). Suppose that strategy (t) is any

other such that q(t) > µ. Notice that t∗ + 1 < t, by Claim 1 and, at least, t = t∗ + 2.

Thus, from the point of view of q(t), (0) > (1). As a consequence (t) > (t + 1). We

thus have that, (0) < (1) < ... < (t∗ − 1) < (t∗) > (t∗ + 1) > (t∗ + 2) > ... > (∞).

Then, (t) is optimal.

Assumption 2 does not play a role in C.1 and C.2. However, it does in the last

case. In it, the DM would have preferred to switch from difficult to easy tasks at some

point. We look for the optimal strategies within the ones prescribed by assumption 2.

C.3. Suppose that q(0), qd ≤ µ < qe. Suppose that strategy (t) is such that q(t) < µ.

Thus, from the point of view of q(t), (1) > (0). As a consequence, (t+1) > (t). Suppose

that strategy (t∗) is such that q(t
∗) = µ. Notice that t < t∗, by Claim 1 and, at least,

t∗ = t + 1. Thus, from the point of view of q(t
∗), (0) > (1). As a consequence,

(t∗) > (t∗ + 1). Suppose that strategy (t) is such that q(t) > µ for the first time. This

point in time is exactly t∗ + 1. Thus, from the point of view of q(t
∗+1), (0) > (1). As

a consequence (t∗ + 1) > (t∗ + 2). Suppose that strategy (t) is any strategy such that

q(t) > µ. Notice that t∗ + 1 < t, by Claim 1 and, at least, t = t∗ + 2. Thus, from the

point of view of q(t), (0) > (1). As a consequence, (t) > (t+ 1). Summing up we have

that (0) < (1) < ... < (t∗ − 1) < (t∗) > (t∗ + 1) > (t∗ + 2) > ... > (∞). Then, (t) is

optimal.

�

Proof of Proposition 2. We have three cases depending on the optimal strategy:

C.1.(0) is optimal. We have that u((0)) = K
∑∞

i=0 δ
i(q(i)p22 + (1 − q(i))p12).
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By Claim 2, q(i) = q(0)(T d)i + p12
∑i−1

j=0(T
d)j. Plugging q(i) in the previous ex-

pression we have that u((0)) = K
∑∞

i=0 δ
i(q(i)T d + p12) or KT dq(0)

∑∞
i=0(δT

d)i +

p12T
dK
∑∞

i=0 δ
i
∑i−1

j=0(T
d)j+Kp12

∑∞
i=0 δ

i. Then ∂u((0))/∂q(0) = KT d(1−δT d)−1 > 0.

C.2. (∞) is optimal. We have that u((∞)) =
∑∞

i=0 δ
i(q(i)p21 + (1 − q(i))p11). We

follow exactly the same reasoning than in C.1, and thus omit it here. In this case

∂u((∞))/∂q(0) = T e(1− δT e)−1 > 0.

In both cases utility is increasing and linear in q(0). Since T d > T e, the marginal

return of an increase in q(0) is higher under (0) than under (∞).

C.3. (t) is optimal. We have that u((t)) =
∑t−1

i=0 δ
i(q(i)p21 + (1 − q(i))p11) +

K
∑∞

i=t δ
i(q(i)p22 + (1− q(i))p12). Let us focus first on the first part of the expression,

that is,
∑t−1

i=0 δ
i(q(i)p21 + (1 − q(i))p11). By Claim 2, q(i) = q(0)(T e)i + p11

∑i−1
j=0(T

e)j.

Thus,
∑t−1

i=0 δ
i(q(i)T e + p11) =

∑t−1
i=0 δ

i((q(0)(T e)i + p11
∑i−1

j=0(T
e)j)T e + p11). This ex-

pression is equivalent to q(0)T e
∑t−1

i=0 δ
i(T e)i + T e

∑t−1
i=0 δ

ip11
∑i−1

j=0(T
e)j +

∑t−1
i=0 δ

ip11.

Its derivative with respect to q(0) is T e
∑t−1

i=0(δT
e)i > 0. Consider now the second

part, that is, K
∑∞

i=t δ
i(q(i)p22 + (1 − q(i))p12). By Claim 2, q(t+i) = q(t)(T d)i +

p12
∑i−1

j=0(T
d)j. Thus, we rewrite the previous expression as K(

∑∞
i=0 δ

t+i((q(t)(T d)i +

p12
∑i−1

j=0(T
d)j)T d + p12)). This is equivalently rewritten as K(q(t)T d

∑∞
i=0 δ

t+i(T d)i +

T d
∑∞

i=0 δ
t+ip12

∑∞
j=0(T

d)j +
∑∞

i=0 δ
t+ip12)). By Claim 2 we express the part depend-

ing on q(t) as (q(0)(T d)t + p12
∑t−1

i=0(T
d)i)KδtT d(1− δT d)−1. Taking derivatives w.r.t

q(0) we get Kδt(T d)t+1(1− δT d)−1 > 0. Summing up, we have that ∂u((t))/∂q(0) =

T e
∑t−1

i=0(δT
e)i +Kδt(T d)t+1)(1− δT d)−1 > 0.

We now compare the return of a marginal increase in q(0), in the aforementioned

strategies. Notice that u((0)) = K(
∑t−1

i=0 δ
i(q(i)T d + p12) +

∑∞
i=t δ

i(q(i)T d + p12)) and

u((∞)) =
∑t−1

i=0 δ
i(q(i)T e + p11) +

∑∞
i=t δ

i(q(i)T e + p11). We use similar algebra as

above to conclude that ∂u((0))/∂q(0) = KT d
∑t−1

i=0(δT
d)i +Kδt(T d)t+1(1− δT d)−1 and

∂u((∞))/∂q(0) = T e
∑t−1

i=0(δT
e)i + δt(T e)t+1(1 − δT e)−1 Since T d > T e, we have that

∂u((0))/∂q(0) > ∂u((t))/∂q(0) and ∂u((t))/∂q(0) > ∂u((∞))/∂q(0). We also compare

the marginal return of any pair of intermediate strategies (t− 1) and (t). In this case

t − 1 ≥ 1. We have that ∂u((t − 1))/∂q(0) = T e
∑t−2

i=0(δT
e)i + Kδt−1(T d)t(1 − δT d)−1

and ∂u((t))/∂q(0) = T e
∑t−1

i=0(δT
e)i + Kδt(T d)t+1(1 − δT d)−1. The latter expression

minus the former yields δt−1(K(T d)t − (T e)t), which is positive since T d > T e. �

Proof of Lemma 1. Consider C.2 in table 2 in the main body. Let us denote by q(0)
′

the initial probability in any of the cases in which (0) is optimal. Let us also denote by

q(0) the initial probability in the case in which (t) is optimal. Notice that q(0)
′
> q(0).

Consider the utility of (t) when the DM is characterized by q(0)
′
, that is, when (0) is

optimal. Notice that the utility of (t) is higher when the DM is characterized by q(0)
′

than when she is characterized by q(0) and precisely (t) is optimal. To see this, notice

that up to t− 1 the DM faces easy tasks. Since q(0)
′
> q(0), by Claim 2, q(i)

′
> q(i) at

every i ≤ t−1. Consider now points in time i ≥ t. By Claim 1, q(i) approaches qd from
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below without exceeding it. Also, q(i)
′

may approach qd from below or above, without

exceeding it.29 When q(i)
′

approaches qd from below, by Claim 2, q(i)
′
> q(i). When

q(i)
′

approaches qd from above by Claim 1, q(i)
′
> qd > q(i). Since current expected

utility at every time t, that is, K(q(t)p22 + (1− q(t)p12), is increasing q(t), it has to be

that u((t)) is higher under q(0)
′

than under q(0). Also, under q(0)
′
, u((0)) > u((t)) by

optimality. We thus conclude that the optimal strategy (0) yields higher utility than

the optimal strategy (t).

�

Proof of Lemma 2. Consider that the DM is characterized by q(0). By the proof of

Theorem 2, under q(0) < qd < qe < µ′, (∞) is optimal whereas under q(0) < µ < qd <

qe, (t) is optimal. Recall that µ is decreasing in K, thus µ < µ′ is associated to K > K ′.

By optimality of (t) we have that
∑t−1

i=0 δ
i(q(i)T e + p11) + K

∑∞
i=t δ

i(q(i)T d + p12) >∑t−1
i=0 δ

i(q(i)T e + p11) +
∑∞

i=t δ
i(q(i)T e + p11). Since we consider the case in which q(0)

as well as probabilities of success affecting qd and qe are the same, the RHS of this

expression brings exactly the same utility that when q(0) < qd < qe < µ′, and hence

(∞) is optimal. Thus, u((t)) under q(0) < µ < qd < qe is higher than u((∞)) under

q(0) < qd < qe < µ′.

�

29For Claim 1 to apply we consider, as in previous proofs, the process as starting at time i = t.

Also, the behavior of q(i)
′

depends on whether in approaching qe, qd is exceeded or not.
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