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Abstract
Sampling, as a musical or synthesis technique, is a way to reuse recorded
musical expressions. In this dissertation, several ways to expand sampling
synthesis are explored, especially mosaicing synthesis, which imitates target
signals by transforming and compositing source sounds, in the manner of a
mosaic made of broken tile.

One branch of extension consists of the automatic control of sound trans-
formations towards targets defined in a perceptual space. The approach
chosen uses models that predict how the input sound will be transformed
as a function of the selected parameters. In one setting, the models are
known, and numerical search can be used to find sufficient parameters; in
the other, they are unknown and must be learned from data.

Another branch focuses on the sampling itself. By mixing multiple sounds
at once, perhaps it is possible to make better imitations, e.g. in terms of the
harmony of the target. However, using mixtures leads to new computational
problems, especially if properties like continuity, important to high quality
sampling synthesis, are to be preserved.

A new mosaicing synthesizer is presented which incorporates all of these el-
ements: supporting automatic control of sound transformations using mod-
els, mixtures supported by perceptually relevant harmony and timbre de-
scriptors, and preservation of continuity of the sampling context and trans-
formation parameters. Using listening tests, the proposed hybrid algorithm
was compared against classic and contemporary algorithms, and the hybrid
algorithm performed well on a variety of quality measures.
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x resum

Resum
El mostreig, com a tècnica musical o de śıntesi, és una manera de reutil-
itzar expressions musicals enregistrades. En aquesta dissertació s’exploren
estratègies d’ampliar la śıntesi de mostreig, sobretot la śıntesi de “mosaic-
ing”. Aquesta última tracta d’imitar un senyal objectiu a partir d’un con-
junt de senyals font, transformant i ordenant aquests senyals en el temps,
de la mateixa manera que es faria un mosaic amb rajoles trencades.

Una d’aquestes ampliacions de śıntesi consisteix en el control automàtic de
transformacions de so cap a objectius definits a l’espai perceptiu. L’estratègia
elegida utilitza models que prediuen com es transformarà el so d’entrada en
funció d’uns paràmetres seleccionats. En un cas, els models són coneguts, i
cerques númeriques es poden fer servir per trobar paràmetres suficients; en
l’altre, els models són desconeguts i s’han d’aprendre a partir de les dades.

Una altra ampliació es centra en el mostreig en si. Mesclant múltiples sons
a la vegada, potser és possible fer millors imitacions, més espećıficament
millorar l’harmonia del resultat, entre d’altres. Tot i aix́ı, utilitzar múltiples
mescles crea nous problemes computacionals, especialment si propietats com
la continüıtat, important per a la śıntesis de mostreig d’alta qualitat, han
de ser preservades.

En aquesta tesi es presenta un nou sintetitzador mosaicing que incorpora
tots aquests elements: control automàtic de transformacions de so fent servir
models, mescles a partir de descriptors d’harmonia i timbre perceptuals, i
preservació de la continüıtat del context de mostreig i dels paràmetres de
transformació. Fent servir proves d’escolta, l’algorisme h́ıbrid proposat va
ser comparat amb algorismes clàssics i contemporanis: l’algorisme h́ıbrid va
donar resultats positius a una varietat de mesures de qualitat.



Contents

Abstract ix

Resum x

List of Figures xiv

List of Tables xvi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Texture Synthesis and Transfer . . . . . . . . . . . . . . . . . 2

1.3 The Role of Transformations . . . . . . . . . . . . . . . . . . 5

1.4 The Role of Mixtures . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . 13

2 State of the Art 15

2.1 Mosaicing synthesis . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Descriptor-controlled Synthesis and Transformation . . . . . . 26

2.3 Additional Applications of Sparse Decompositions of Audio . 31

3 Design of Transformation Models for Sampling Synthesis 33

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 No Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xi



xii contents

3.3 Predictive Models . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Choosing Parameters . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Selective Models . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Why predictive models were used . . . . . . . . . . . . . . . . 38

3.7 Conditional models . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Error Measures in Model-based Design . . . . . . . . . . . . . 39

4 Control of Sound Transformations by Target Descriptors 43

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Predicting Descriptors under Transformation . . . . . . . . . 47

4.5 Parameter Selection by Smooth Optimization . . . . . . . . . 54

4.6 Numerical Search . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Basic Experiments . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . 62

4.10 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.11 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Learning Predictive Models of Sound Transformations 63

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 SVR Prediction of Descriptors . . . . . . . . . . . . . . . . . 65

5.4 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . 70

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7 Learning Sparse Linear Models of Transformations . . . . . . 81

5.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Creating Audio Mosaics with Mixtures and Transforma-
tions 89

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Perceptual Descriptors . . . . . . . . . . . . . . . . . . . . . . 92

6.4 An Objective Function for Mixture Mosaics . . . . . . . . . . 98

6.5 Mosaicing Methods based on Greedy Sparse Decompositions . 104

6.6 Synthesis Example . . . . . . . . . . . . . . . . . . . . . . . . 114

6.7 Alternate Approaches based on real and convex optimization 118

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



contents xiii

7 Subjective Evaluation of Sound Mosaics using Listening
Tests 127
7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.3 Design of the Listening Tests . . . . . . . . . . . . . . . . . . 129
7.4 Statistical Analysis and Results . . . . . . . . . . . . . . . . . 143
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 156

8 Conclusion 161
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A Questionnaire 167

B Sound Files 171

C Additional Background 173
C.1 The Curse of Dimensionality in Statistical Estimation . . . . 173
C.2 P versus NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
C.3 Regularization and MAP estimation . . . . . . . . . . . . . . 175
C.4 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . 175

D Related Music Hacks 177

Bibliography 179



List of Figures

1.1 Distribution of similarity (dot product of chroma vectors) of
small source database with target frame, without and with trans-
formation (transposition) . . . . . . . . . . . . . . . . . . . . . . 7

1.2 A conceptual sketch imagining interactive control of the sound
sources used to render music by way of a pointing gesture. . . . . 12

1.3 Roughly 400ms visualized from an example score. . . . . . . . . . 14

3.1 Graphical view of a black box transformation, or a predictive
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 An illustration of the measurable descriptor vectors along with
error vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 An ideal transformation by descriptor system . . . . . . . . . . . 45

4.2 Centroid ratios diverge under downsampling due to bandlimiting 53

4.3 Cross-section of actual transformation space for one variable
band (out of 16) and a resampling parameter. . . . . . . . . . . . 54

4.4 Prediction error of spectral moments under resampling . . . . . . 59

4.5 Descriptors of ten input sounds, transformed to match a target . 60

5.1 Predicting the descriptors of single resampled frames. . . . . . . 66

5.2 Predicting the mean descriptors of resampled frames. . . . . . . . 67

5.3 Generated noise envelopes for input sounds for two different
spectral widths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Coarse grid search (small training size) over γ and C hyperpa-
rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 System performance with respect to training size . . . . . . . . . 74

xiv



list of figures xv

5.6 Comparison of instance predictions with regard to training size . 75

5.7 Comparison of instance predictions with regard to γ . . . . . . . 76

5.8 Comparison of instance predictions with regard to ε . . . . . . . 77

5.9 Comparison of instance predictions with regard to C . . . . . . . 78

5.10 Average error per band of cross-validation input sounds . . . . . 79

5.11 Average cross-validation error by transformation parameter . . . 80

5.12 Power response to a sinusoid with different resampling factors. . 83

5.13 Power response for one resampling factor at higher frequencies,
showing aliasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.14 Power response to a sinusoid with different single-sideband mod-
ulation frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.15 Power response to exponential distortion at a low gain. . . . . . 86

5.16 Power response to exponential distortion at a high gain. . . . . . 86

6.1 A musical example illustrating transposition and mixtures . . . . 91

6.2 Recovered scores for inexact (left) and exact continuation exam-
ple sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Example of phasiness caused by resampling on a grid (inexact)
vs. exact resampling . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Sampling diagram showing target positions vs. source positions
with colors denoting the transpositions in semitones. . . . . . . . 116

6.5 Similarities between target, model, and synthesis descriptor se-
quences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6 Changes in track length and model fidelity due to different looka-
head horizons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.7 Illustration of spreading/branching effect of dynamics operator . 122

7.1 Model of a cross-synthesis process with two input signals in re-
lation to three quality scales . . . . . . . . . . . . . . . . . . . . . 135

7.2 Screenshot (condensed) from MUSHRA implementation used in
collecting quality ratings . . . . . . . . . . . . . . . . . . . . . . . 138

7.3 Box plots showing ID (top, left) and naturalness scores (bottom,
left) by algorithm condition. . . . . . . . . . . . . . . . . . . . . . 146

7.4 2D histograms of ID scores and naturalness ratings grouped by
condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.5 Box plots comparing grouped MUSHRA scores by condition . . . 157

7.6 Significant post-hoc group differences for identification scores
and MUSHRA ratings (Q1-3) . . . . . . . . . . . . . . . . . . . . 158

7.7 Kendall tau correlation distribution over all test/retest screen
pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



List of Tables

5.1 Optimal values of γ and C for different training sizes . . . . . . . 74

7.1 Summary of methods tested with groups and capabilities. . . . . 130
7.2 Condensed scoring rubric for assigning ID scores . . . . . . . . . 133
7.3 Ordered distribution of individual mosaics to ten subjects . . . . 134
7.4 List of sounds collected as potential input sounds . . . . . . . . . 140
7.5 Partially-specified list of ideas for proposed targets and sources

for different tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.6 Final list of target-source pairs (objects) along with the tasks

they were used in the experiment . . . . . . . . . . . . . . . . . . 141
7.7 Overview of statistical methods used in the analysis . . . . . . . 144
7.8 Source open identification summaries for all subjects grouped by

object, along with average ID scores for each condition . . . . . . 148
7.9 Selected qualitative comments on individual mosaics, grouped by

object, along with average naturalness ratings for each condition 149

xvi



Chapter 1

Introduction

This dissertation explores, and attempts to expand experimental methods
in sampling synthesis, the technology based on the use and manipulation of
recorded sounds. This is done through two main strategies. One strategy
is to incorporate automatically controlled sound transformations, which is
a problem of general interest in computer music and a complex problem in
itself. Another strategy is to incorporate mixtures of sounds, which is not
possible using existing synthesis methods. These strategies are applied to a
setting analogous to and inspired by image texture transfer.

1.1 Motivation

Recorded sound and music have over the last century become increasingly
ubiquitous. Mobile devices can hold large music collections and stream
larger music collections from the Internet. With an affordable field recorder
with solid-state electronics and high quality microphones, new sounds can
be recorded in high fidelity by anyone. These sounds can then be edited
with one of many Digital audio workstation (DAW) applications to yield
produced sound or music recordings, or be used as assets for interactive
performance.

Sound transformations (sound effects) play a large role in the production,
editing, and performance of sound. Many qualities of the sounds can be
modified, including pitch and time-scale, aspects of timbre and sense of
space; allowing them to fit in (or stick out) of a given context.

In the DAW, the composer chooses sound sources from their own ideas;
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2 introduction

isolates and manipulates audio clips manually, as if cutting tape and taping
together the cuts; and applies effects and modulates their parameters, as
if pushing buttons and turning knobs on guitar pedals. This alone, in an
interactive process, is enough to help create works of high complexity which
would be difficult to create using only physical tools.

Still, the range of possibilities offered by sampling and multiple sound effects
necessitates many new choices that must be made by the composer.

But what if the recordings themselves have their own opinions about which
one should be sampled and how, in a given context? And if the effects
also have opinions on which one should be used and how, on which sound?
When the materials are able to speak their own opinions, the intricate work
of editing might be better supported. (This idea is inspired by Latour, who
claims that scientists act as spokesmen for formerly unrepresented objects
[—, 1987, Section 2.A.2, Spokesmen and women]).

The keys to accessing those opinions are: descriptors of a sound, which give
information on where a sound is in a perceptual space; and models of sound
transformations, which point in the directions that each transformation is
able to modify the source sounds in that space. When the composer is able
to define a target in the perceptual space, the materials can offer clues on
which sources to use, and which directions to move in the transformation
space.

The following application, texture transfer, which was developed originally
in image processing research, can provide a model setting in which this
added information can be used in synthesis.

1.2 Texture Synthesis and Transfer

Texture in images is usually only implicitly defined, but texture mapping,
the art of mapping an image source to a surface in 3D graphics, seems
to have motivated the application known as texture synthesis [Heeger and
Bergen, 1995, 1. Introduction], as image textures needed to be mapped
to larger objects without repetition and to surface geometry without dis-
tortion. Their representation of image texture, the image pyramid, is es-
sentially a bandpass filter that decomposes the energy at different scales
and edges in different orientations into layer images, along with image his-
tograms that summarize the color distributions at each layer. This repre-
sentation allows solving the first problem, that of generating a larger non-
repeating image from a smaller example, in the following way. The new
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image is synthesized by taking an input noise image, and equalizing it at
different scales and orientations to match the source texture histograms.

The stochastic, noisy approach of Heeger and Bergen, in which texture is
modeled explicitly as a parametric distribution, however, does not seem
to be the most common approach. Rather, more common is sampling di-
rectly from the image sources, usually in such a way that respects the local
statistics of the image texture. For example, the systems of [Efros and Le-
ung, 1999; Ashikhmin, 2001], copy pixels progressively in order to match
neighborhoods of each filled pixel; while the systems of [Efros and Freeman,
2001; Kwatra et al., 2003] copy contiguous patches of pixels that minimize
artifacts at boundary edges.

Several systems take those or similar representations, and apply them to
synthesis with the following additional objective: that the output image
should also generally match a second target image. This application, tex-
ture transfer, produces a rendering that overall resembles the structure of
the target image, while the local detail and pattern reflects the source tex-
ture. Examples of these systems based on copying patches or pixels include
[Ashikhmin, 2001; Efros and Freeman, 2001; Ingram and Bhat, 2004].

By contrast, the recent image texture transfer system [Gatys et al., 2015]
uses the following approach perhaps more akin to Heeger and Bergen: the
source and target images are used to train convolutional neural networks,
which encode visual features at different scales. Then, an input noise image
is modified so it fits the target networks at the coarse scales, while fitting the
source networks at the detail scales, as optimized with a gradient descent
method.

The image and sound domains differ in many respects. One main difference
is that images of objects occlude each other in the visual field; for each image
pixel, there is generally only one object present except at edges. While
physical occlusion also affects sounding objects, imparting directional and
spectral characteristics, the signals of sounding objects in a scene readily mix
and an occluded object will nonetheless be heard by the listener, though it
might be masked by other objects in the time-frequency domain. Therefore,
mixtures should be more important in the sound than the image domain.

In the survey of [Schwarz, 2011], a great number of sound texture synthesis
methods are reviewed. To pick just one example, the systems of [Ker-
sten and Purwins, 2010, 2012] decompose the source sounds (fire and water
sounds) into multiscale signal atoms (Debauchies wavelets) and then train
generative models in order to sample new sounds from the models.
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Despite the fact that there are many documented systems of sound tex-
ture synthesis, it is harder to find references to sound texture transfer in
the literature. Regardless, this general idea (explained further) served as
inspiration in this thesis, both in the development of new synthesis meth-
ods (Chapter 6) and in their evaluation (Chapter 7). Mosaicing synthesis
(overview in Chapter 2), in which sounds are selected and sampled accord-
ing to a descriptor target, is one possible way of fulfilling the goal of sound
texture transfer; it is also the strategy chosen in developing the methods of
this thesis. This strategy in the sound domain seems analogous to the pre-
dominant texture transfer strategy in the image domain of non-parametric
sampling, i.e. copying and assembling 2D patches of the source image.

The survey of Schwarz adopts the restrictive definition of sound texture
of [Saint-Arnaud and Popat, 1998] which excludes speech and music (as
they convey information and long-term structure). Going further, [Schwarz,
2011, Section 1.1.1. What Sound Texture is Not] excludes contact sounds
(as fine structure properties do not remain constant) and soundscapes (as
they contain informative events). By excluding sources that have structure
at larger scales, these restrictions might help to create models that can
generate sound texture without having to model and generate long-term
information.

However, one need not restrict the use of these kind of sources in sound tex-
ture transfer. That is, given a target structure defined as a time-sequence
of descriptors for harmony and timbre (and possibly others), the aforemen-
tioned sound types (music, speech, contact sounds, and soundscape events)
can be used as source textures, adapting them to the musical and sonic
context defined by that target. In this setting, as opposed to texture syn-
thesis, no model of large-scale structure is needed, because that structure
is provided rather by the target signal.

In the opinion of the author, the difference between structure and texture
can be seen as simply a matter of scale. The mechanics of the image texture
transfer systems seem to support this idea. For example, the system of
Gatys et al. works explicitly by combining two different models at different
scales, while systems based on copying neighborhoods [Ashikhmin, 2001;
Efros and Freeman, 2001] trade-off implicitly between the coarse scale of
the target and the local neighborhoods modeled in the source.

In a way, this idea of combining signals at different scales fit the limitations
of sampling synthesis, because it is naturally constrained to working with
the descriptor trajectories contained in the source material (local detail that



1.3. the role of transformations 5

could be seen as texture) as lamented by Wessel et al. [1998], rather than
being able to modulate controls arbitrarily as in, e.g. additive synthesis.

The proposed algorithm of Chapter 6 takes the following approach to sound
texture transfer: it searches for continuous sections of source sounds that
when transformed and mixed together, best match with the target signal in
the descriptor space. This strategy favors sampling longer continuous sec-
tions, and listening tests show (Chapter 7) that it was better at preserving
the sense of the source than alternatives.

Limiting the synthesis to what can be directly sampled and transformed
(as was done) could be considered a conservative approach, given that we
have also just mentioned systems that model spectral-temporal content and
generate new signals (as in systems of Kersten and Purwins). Alternative
approaches, based on either modeling and generating new signals, or simply
recombining spectral or atomic components, are certainly also interesting
and viable (some of which will probably be bolstered by recent advances
in recurrent neural networks); some systems of this type are also listed in
Section 2.1.4 (p. 22).

But rather than using generative signal models or spectral/atomic recombi-
nation to generalize and adapt source signals, the approach of the framework
of this dissertation was to use transformations for this generalization. This
came from a belief that transformations, when appropriately controlled and
limited, could still result in relatively “natural” sounds that continue to
reflect the sampled source material.

In the next section, we discuss how sound transformations, although not an
important part of the image texture transfer systems mentioned, can play
a key role in sound texture transfer.

1.3 The Role of Transformations

As mentioned, the approach taken in this thesis is that of automatically
selecting, transforming, and compositing samples, referred to as Mosaicing
(further detailed in Chapter 2). In a survey of systems of this type, referred
to by Schwarz as Concatenative corpus-based synthesis systems, a similar
definition is given [Schwarz, 2007]:

Concatenative corpus-based synthesis methods use a large database
of source sounds segmented into units and a unit selection algo-
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rithm that finds the sequence of units that match best the sound
or phrase to be synthesized, called the target.

The emphasis in this analysis seems to be on “large database”. The role of
transformations is acknowledged,

The selected units can then be transformed to fully match the
target specification and are concatenated.

i.e. it is assumed that the selected units can be transformed to completely
match the target. Despite this pivotal role for transformations, they are
given only minimal attention within the framework of the survey, and the
feasibility of such transformations are not examined.

However, if the database is sufficiently large, the probability is
high that a matching unit will be found, so the need to apply
transformations is reduced.

The survey seems to prefer this ideal scenario, i.e. when the database is
large enough so that the need for transformation is mostly avoided.

However, the user of the system might not wish to use a large database,
because they would have less choice in which material is used. Rather, they
might want to apply samples from a specific sub-corpus purposefully, as
short as minutes or seconds of audio, onto another musical or sonic context,
as in the texture transfer application (previous section). As the purpose of
texture synthesis is to extrapolate new material from a small sample, the
purpose of texture transfer is to adapt a possibly small sample to a new
setting.

Other sampling applications that seem to be appropriate for small or medium
source databases can be found in Chapter 2, State of the Art.

In a smaller sample, the coverage of the source in descriptor space should be
quite limited. To give an informal example (from my early experiments),
take as source a short melodic excerpt in which the pitches (and pitch
classes) are limited. Chances are, some of the pitches in the target will
not be present in the source, and so transposing some source units will be
necessary.

Figure 1.1 shows the similarity, here computed with the dot product of
chroma vectors, for a given target frame with respect to the source frames
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(the distribution in blue) and all possible transpositions (the distribution in
green). When transpositions are added via resampling, the given sources are
multiplied in descriptor space, giving the wider similarity spectrum shown.
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Figure 1.1: Distribution of similarity (dot product of chroma vectors) of small
source database with target frame, without (blue) and with (green) transformation
(transposition).

Of course, there is previous work applying transpositions in mosaicing syn-
thesis [Simon et al., 2005], but the principle is general; transformations
multiply the potential coverage of source units in descriptor space. Not
necessarily to arbitrary points, that depends on each of the specific trans-
formations, descriptors, and source units; but predictive models of transfor-
mations, not part of the previous work using transpositions, can be used to
see which target points are feasible as well as predict side-effects to related
descriptors.

To characterize how transformations affect the source units, strategies for
modeling them are proposed (Chapter 3). For example, in the proof-of-
concept study described in Chapter 4, a spectral model of two effects used
together with many parameters is developed, and parameters are automat-
ically chosen using the model. Chapter 5 is an early attempt to learn these
models automatically.

Even if a large database is to be used, the typical distribution of audio
in descriptor space is highly non-uniform. Haro Berois [2013, Chapter 3,
Rank-frequency distribution of audio timbral descriptors] shows: in terms
of codewords which are basis vectors of timbre representation (Bark and
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MFCC coefficients), some codewords are much more common and the rest
are progressively rarer in distribution in reasonably large databases.

That concerns individual components, but many features such as chords
and timbres are judged in combination. One would guess that certain phe-
nomena: e.g. certain synthetic chords, microtonal clusters, or instrumental
timbre combinations, are only rarely encountered and with few close neigh-
bors, no matter how large the database is. When the target is a combination
of different aspects (harmony, timbre, spatial characteristics, etc...), finding
a match in the source database should be vanishingly small.

Where the source material is sparse in the descriptor space, using transfor-
mations to add new neighbors around the existing sources is one tool for
creating closer matches that do not exist in the original source database.
Another tool is to allow the combination of original or transformed sources.

1.4 The Role of Mixtures

As mentioned in the last section, the source database might not have a
full gamut of combination features, e.g. chords, that the user might like
to synthesize/imitate. A natural strategy is to allow the combination of
simpler features that may be present or more common in the sources.

To put this in somewhat abstract terms, imagine the goal is to synthesize
an approximation to the sequence of descriptor vectors: (y1, ..., yt) using the
set of s available sources (also given in descriptor space): {~a1, ...,~as}.

The approach taken by most previous work uses the path minimization
approach, meaning to solve an optimization problem fitting of this basic
form (although the distance function is a simplification):

arg min
s[t],wt

T∑
t=1

‖yt − wt~as[t]‖2︸ ︷︷ ︸
distance to target

+ f(s[1], ..., s[t])︸ ︷︷ ︸
addl. penalties

, (1.1)

where s[t], t = 1...T is a sequence of source frame indices chosen for each
target frame, wt is a gain chosen for the tth target frame, and f is some
function of s[t], t = 1...T . In this way, a single stand-in (a source frame
with some gain applied) is chosen for each target frame and the function f
decides which sequences of sources are better or worse.

Instead of choosing just a single weighted source frame for each target frame,
an alternate approach is to allow each target frame to be approximated by
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a weighted sum of all source frames. In this case, we choose a sequence of
weight vectors ~wt, t = 1...T , and solve the following optimization problem:

arg min
~wt

T∑
t=1

‖yt −A~wt‖2 + f(~w1, ..., ~wT ), (1.2)

where A is a d × n matrix of source descriptor vectors, and f is similar to
the penalty function in the previous problem.

It is interesting to note that although the optimal solutions of both problems
will depend on the target and source descriptors, the distance to the target
(the collective distance to the target frames given by the sum of squared
norms) of Eq. 1.2 will always be less than or equal to that of Eq. 1.1. This is
because the approximation of Eq. 1.1 is a special case of the approximation
of Eq. 1.2, i.e. the case when each ~wt is a 1-sparse vector (consisting of only
one non-zero value).

The second approach presumes that there is a meaningful way to synthesize
sounds that are in-between a group of sources in descriptor space. Addi-
tionally, although the approximations of 1.2 contain all sources as terms,
there are practical reasons for using fewer terms and fewer simultaneous
sources in synthesis. Both issues are dealt with in Chapter 6.

In Chapter 2, previous work using mixtures is discussed, and in Chapter 6,
new mosaicing algorithms using mixtures are introduced, and evaluated in
Chapter 7.

1.5 Research Questions

In this section, motivating research questions are stated along with brief
answers referencing the text.

1.5.1 How can general-purpose control of sound
transformations be achieved?

This is addressed by the model system presented in Chapter 4. The strat-
egy introduced is to model in some way the transformations in descriptor
space; and to use appropriate numerical optimization techniques to select
the transformation parameters.
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1.5.2 How can adding sound transformations affect
sampling synthesis?

Adding transformations increases the potential similarity with target mate-
rial, even when using a simple transformation such as transposition. This
is demonstrated in Chapter 6.

1.5.3 What kinds of models of sound transformations are
possible?

This is addressed in Chapters 3, 4, 5. It is argued that predictive mod-
els (introduced in Chapter 3) are more flexible in the context of synthesis
systems.

1.5.4 Of what use are models in control of sound
transformations?

This is discussed in Section 2.2.1 of State of the Art. Models avoid the
computational effort of having to transform and analyze new sources to
find out what their descriptors are, during the parameter search process.
This should be critical in making interactive systems.

1.5.5 Can models of sound transformations in descriptor
space be learned from data?

Yes, with the reservation that posing these models as general smooth regres-
sion models leads to statistically very hard problems that will not generalize
well in prediction. This is explored in the experiment of Chapter 5.

1.5.6 How can mixtures and transformations be
incorporated into mosaicing algorithms?

In Chapter 6, a mosaicing system is presented which incorporates mixtures
and transformations along with standard criteria and criteria especially rel-
evant, such as continuity criteria, to sampling synthesis.

1.5.7 Do hybrid mixture-mosaicing algorithms produce
results of sufficient quality?

The algorithms in Chapter 6 are explored technically in Chapter 6, and
evaluated subjectively in Chapter 7.
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1.5.8 Which dependencies arise when integrating sampling
synthesis with descriptor-controlled transformation?

Continuity of source sampling (as in mosaicing) and continuity of transfor-
mation are two important concerns when integrating transformation with
sampling synthesis. In some cases, these concerns interact (are interdepen-
dent), such as the case of using resampling as a transformation in mosaicing,
in which the transposition factor affects the speed of source signal evolution
(this is embodied in the π∆src penalty in Section 6.4.1, p. 101).

Due to the fact that continuous solutions in time are sought, along with the
consideration of a number of additional criteria, it is argued that predictive
models of transformations are more flexible for this purpose than selective
models (as defined and argued in Ch. 3).

1.6 Applications

The main application of this thesis is the mosaicing algorithm of Chapter 6
that implements a kind of texture transfer, by the following process. First,
the target signal is analyzed and turned into a descriptor sequence of har-
mony and timbre descriptors. Then, an optimization process determines
a score that should produce an output similar to those target descriptors.
Finally, the mosaic is rendered by transforming the source signals by the
indicated parameters and mixed as indicated by the score. Figure 1.3 shows
a detail view of atoms from an example score.

Although there is no interactive implementation of this algorithm yet, the
algorithm is causal, so it should be possible in the future. Figure 1.2 is an
early conceptual sketch showing how the source texture could be switched
interactively in real-time.

Besides the texture transfer application, it should be possible to use the
framework of transformation models to implement “transformation by ex-
ample” systems, meaning effects units that tune their parameters according
to some target or reference sound. It should also be possible to add mixtures
into this framework.

1.7 Contributions

This section sums up the research contributions.
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Figure 1.2: A conceptual sketch imagining interactive control of the sound sources
used to render music by way of a pointing gesture.

1.7.1 A Case Study on Optimizing Analytic Models for
Control of Transformations

In Chapter 4, analytic models of a cascade of two transformations are de-
veloped and optimized to find parameters given target descriptors.

1.7.2 A Design and Evaluation for Learning Predictive
Models of Transformations

In Chapter 5, predictive models of a transformation are learned from data.
They are evaluated by comparing their predictive performance with that
of an analytic model. Additionally, failure modes of the statistical learning
method’s hyperparameters are illustrated.
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1.7.3 Mixture Mosaicing Methods incorporating Sound
Transformations

In Chapter 6, new hybrid mosaicing methods that promote both mixtures
and continuity are introduced. These methods are causal, relatively efficient
(compared to MP), and should be compatible with real-time implementa-
tion.

1.7.4 Design of Listening Tests for Mosaicing Methods

In Chapter 7, a series of listening tests, designed to evaluate audio texture
transfer systems are presented. These tests include a test to identify the
source of a sound, and comprise mainly a leading form of audio quality
testing (MUSHRA) in order to distinguish quality factors resulting from
different mosaicing algorithms.

1.7.5 Validation of Mixture Mosaicing for Musical Texture
Transfer

In Chapter 7, the new mosaicing methods presented in Ch. 6 are evalu-
ated along with classical mosaicing algorithms and signal oriented atomic
decomposition methods (MP).

1.8 Dissertation Structure

This chapter introduced the motivation for the research and the main re-
search questions, as well as mentioning some possible applications. Next,
Chapter 2 outlines previous work regarding mosaicing synthesis, and syn-
thesis and transformations controlled by target descriptors. Then, Chapter
3 gives some terminology and preliminaries concerning transformation mod-
els. Chapter 4 develops a model of a small set of transformations, and shows
a proof-of-concept strategy for controlling these transformations by numer-
ical optimization. Chapter 5 is an attempt to learn transformation models
from data.

In Chapter 6, new mixture mosaicing methods are introduced, and evaluated
in Chapter 7 with listening tests for the application of texture transfer. In
Chapter 8, we summarize the results and discuss some future work.
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Figure 1.3: Roughly 400ms visualized from an example score. Bubbles depicting
synthesis atoms detail the following fields: Source position in seconds, transposition
in semitones, linear atom weight, and gain coefficient. The heavy arrows denote
exact continuous links between atoms in subsequent frames. This example was
generated at 44.1kHz sampling rate, 8193 sample window size and 1024 hopsize,
36 chroma bands and 40 mel-spaced bands with half weight to each, with a high
cost on creating new tracks, gain, and change in transposition.



Chapter 2

State of the Art:
Audio Mosaicing, Descriptor-controlled

Synthesis and Transformation,

and Sparse Decompositions of Audio

This chapter is a technical review of automatic audio mosaicing systems,
and their capabilities, solution methods, and limitations.

However, mosaicing is only a particular instance in a class of systems, those
that work towards targets specified in descriptor spaces, i.e. descriptor-
controlled synthesis and transformation systems. Through this lens, mosaic-
ing is simply sampling synthesis controlled by descriptors. Reviewing this
larger class is useful because it opens up more insights and methods that are
possibly applicable. Indeed, the proposed system described in Chapter 6,
can be seen as an embedding of descriptor-controlled transformation within
mosaicing.

Finally, we review the uses of and techniques for sparse decompositions of
audio. This will shed light on what is unique, useful, and significant about
our proposed methods.

2.1 Mosaicing synthesis

First, we focus on descriptor-controlled sampling synthesis, also known as
audio mosaicing. It is referred to as such, because it creates audio mosaics:

15
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sound compositions assembled from audio samples of potentially disparate
sound sources to contribute an overall musical or sonic impression for the
ears; in the same way that a physical mosaic is assembled from tiles of
varying color and texture that contribute to form a larger image for the
eyes.

Within sound synthesis, mosaicing belongs to a larger family of sampling
synthesis. In sampling synthesis, sound is derived from existing samples
rather than being generated numerically, for example, in the cases of phys-
ical modeling and abstract algorithm synthesis. Concerns in sampling syn-
thesis include how to flexibly modify these samples (addressed by strategies
such as spectral modeling), as well as how to select, and assemble in time,
the samples from a database [Smith, 1991].

Mosaicing is thus a special case of sampling synthesis, in which an abstract
target descriptor sequence determines which samples (from a wide variety of
sound classes) are used and how they are modified and composed. This is in
contrast to more specific types of sampling synthesis, for instance, sample-
based singing synthesis, in which the descriptors might demand specific
phonemes and notes.

In this review, the following definitions are used:

descriptors Data that describe the content of the audio samples, allowing
for a measure of similarity between the target and source units.

source The audio samples to be assembled in synthesis.

target The synthesis goal, i.e. a time-sequence of descriptors.

units The smallest undivided audio samples to be selected, transformed,
and assembled. These can either be of uniform or non-uniform dura-
tion.

In this review, the main comparison is limited to systems that deal mainly
with sound data, and that synthesize the output with sampling synthe-
sis, guided by time-sequences of descriptors representing a target signal;
although other work is also mentioned in passing.

Perhaps the first audio mosaicing system driven by descriptors was the
Caterpillar system [Schwarz, 2000]. In this system, target units, derived
either from a score or analyzed audio samples, are matched up with source
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units. Both the target and source units are of non-uniform length, informed
by rhythmic, onset, and envelope analysis of the input signals.

The guide for this matching process is a cost function, in which the total
cost is divided up into two parts: first, the target costs, based on similarity
between the matched target and source units; second, the concatenation
costs, based on finding good sequences of concatenated source frames, e.g.
that continue the sampling context, if possible.

The total cost can be conceived as the cost of a path over time, through a
graph of source units. If the costs are limited to the two types mentioned
above, target costs and concatenation costs, the optimal path can be found
using the Viterbi path decoding algorithm [Viterbi, 1967]. This algorithm
uses space and time O(NT ), where N is the number of source units and T
is the length of the sequence of target units, rather than in time O(NT ),
the number of possible paths. In practice, this is still quite costly, so there
is usually some pruning of the best local matches at each time step.

This approach, including much of the terminology, are inspired by sampling
approaches to speech synthesis, i.e. Concatenative Speech Synthesis (CSS).
The method of using the Viterbi algorithm to find the best sequence of
samples seems to have originated with [Hunt and Black, 1996].

Further development of the system [Schwarz, 2003, 2004] brought many
enhancements, including a wide variety of descriptors and specific modifi-
cations for synthesis of artistic speech [Beller et al., 2005].

In the Musaicing system [Zils and Pachet, 2001], additional cost functions
are proposed that regulate the overall representation of source sounds in
the final mosaic, referred to as cardinality constraints. For example, two
examples given are the “all-different” constraint, i.e. all samples used should
be different, and that “80% of sounds should be percussive”. In general,
cost functions that have this global scope, as opposed to the strictly local
costs of the target and concatenation costs, are incompatible with Viterbi
path search.

In order to find approximately good mosaic solutions, the cost functions are
formulated into a soft Constraint Satisfaction Problem (CSP), and heuristic
search method known as Adaptive Search [Codognet and Diaz, 2001] is
applied. The authors claim this gives good results on large databases. This
method was also later adopted in Caterpillar [Schwarz, 2003].

Not all systems need to use complicated sets of cost functions and intricate
search methods to get interesting results; simple matching based on nearest
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neighbors may be sufficient. Soundmosaic [Hazel, 2001] and MATCon-
cat [Sturm, 2006] are two examples of systems that work based on matching
uniform duration units based on similarity to the target units alone.

Several proposals have been made to improve the relevance and descriptor
information associated with the source units. In a framework for “event
synchronous music analysis-synthesis” (referred to here as ESMAS) [Je-
han, 2004] units at the onset and beat levels are provided. The units are
segmented with a technique based on the auditory spectrogram, which is
meant to extract perceptually relevant units from polyphonic source audio.
Similar in character is the LoopMash system [Bachmann et al., 2012, p.
161], which uses target replacement of beat units, one of the few interactive
real-time systems that target-based mosaicing.

In the Audio Analogies system [Simon et al., 2005], pitch information
from MIDI scores is used to segment a monophonic audio source. Then, a
new score can be synthesized with transpositions of the original note units,
using with an optimal path approach. The system of [Dannenberg, 2006]
(referred to as CSUSAT) uses a similar premise, except it uses polyphonic
source units aligned to a score, segmented into maximally long sets of con-
current pitches.

In the Guidage system [Cont et al., 2007], more intended for audio retrieval
than for resynthesis, a new descriptor over entire audio sequences called the
Audio Oracle is proposed. This descriptor is a Markov model (a graph)
predicting how the descriptors evolve and repeat in time. When searching
for similar audio sequences, the system also builds a reconstruction of the
target as a side-effect of the search. This system seems to be unique in con-
sidering the dynamics of the source signals, as represented by a finite state
machine; how they might repeat in cyclic patterns or terminate. Eargram
mentioned in Section 2.1.5 uses a similar strategy.

To the present date, few systems have extended mosaicing beyond the con-
catenative dimension (sequences of units) to the mixture dimension, in
which several sounds are mixed to create a better approximation of the
target. The Bayesian Spectral Matching (BSM) system [Hoffman et al.,
2009] was the first mosaicing system to synthesize simultaneous mixtures of
time-overlapping segments to get closer matches. In this system the units,
fixed-length subsequences of source frames, are mixed with different gains
to create a spectral approximation to the target. The model for this system
is a temporal Bayes net in which the relative strengths of each shifted source
are treated as latent or hidden variables. The posterior distribution over
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sources and shifts is estimated using Gibbs sampling and the highest prob-
ability assignment to the hidden variables (maximum a posteriori, MAP) is
sonified to produce the mosaic.

Another mosaicing system supporting mixtures, an early version of the pro-
posed system described in Chapter 6 (here referred to as AugMos), was
documented [Coleman et al., 2010]. Like BSM, it supports approximation
by a weighted mixture of fixed-length source segments; single frames, in
the case of AugMos. It uses a different sparse projection technology, basis
pursuit (BP) [Chen et al., 2001]. In addition, it supports tonal transposi-
tions of the source units, facilitated by models that predict the descriptors
of a given transposition. The approximation itself is carried out in the re-
duced dimensional perceptual space consisting of filter banks representing
harmony (PCP, or chroma features), and mel-spaced filter banks (described
in Section 6.3, p. 92).

The sparse projection approach used in AugMos is described in more detail
in Sections 6.7 and 6.7.1, starting page 118.

2.1.1 Unit Transformations in Mosaicing Systems

Let’s take a closer look at transformations enabled in Mosaicing and Con-
catenative Synthesis systems thus far.

First we examine Caterpillar [Schwarz, 2004, p. 155]:

The transformations applied in Caterpillar are only the adap-
tation of the mean loudness of the selected units to the target
units, and the shortening of selected units that are longer than
the target units.

Two reasons are given for limiting the transformations:

The reason for limiting the transformations to loudness change
and shortening is that these two are the only ones that do not
degrade the sound quality. Moreover, they do not necessitate a
sound representation other than the sampled signal.

In the Musaicing system, no transformations of the units are mentioned
[Zils and Pachet, 2001]; likewise with the ESMAS system [Jehan, 2004];
and the Guidage system [Cont et al., 2007].
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In MATconcat two transformations of source units are supported, that of
reversing the source segments, and that of convolving the selected segments
with the target segments. In Soundmosaic, the volumes of the segments
are scaled [Hazel, 2001].

In the Audio Analogies system, a combination of resampling (to change
pitch) and synchronized overlap-and-add (SOLA) is used to match audio
segments to the midi pitch and length of the target [Simon et al., 2005]. By
contrast, CSUSAT did not use pitch transpositions [Dannenberg, 2006].
This is perhaps because SOLA might not be appropriate for the polyphonic
source units in that system. If CSUSAT were to alternately use resampling,
as in the proposed system of Chapter 6, the system would have to account
for the change in length of the tonally transposed synthesis units.

In the BSM system, mosaics are produced by applying gains derived from
the MAP-estimated mixtures of the input frames, no other transformations
are applied to the source units [Hoffman et al., 2009, Section 3.2, “Sonifying
the MAP estimate”].

In the AugMos system, two transformations, tonal transposition (imple-
mented by bandlimited resampling) and filtering, were supported [Coleman
et al., 2010]. The model predicted transpositions are first selected from
the dictionary by the sparse projection algorithm. Then, after the sparse
representation is chosen, the filter parameters are chosen based on the syn-
thesis model, based on quadratic smoothing of the filter gain parameters in
time-frequency.

In the LoopMash system, many effects can be applied manually, i.e. by tog-
gling selected units occurring on specific beats: such as reverse, staccato,
scratch, stutter, and others [Bachmann et al., 2012, p. 167, Applying Slice
Modifiers and Slice Effects]. There are also some target driven effects avail-
able, such that the volume, temporal envelope, spectral envelope, and the
sample length (through time-scaling) of the units can modified to be closer
to the target units [Bachmann et al., 2012, p. 171, Audio Parameters].

2.1.2 Unit Transformations in Other
Concatenative Synthesis Systems

Outside of mosaicing systems, other concatenative synthesis systems such
as speech synthesizers also use unit transformations enabled by signal pro-
cessing. Three such examples are: achieving target prosody through pitch
modification and spectral envelope modifications based on the source-filter
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decomposition [Valbret et al., 1992], as well as spectral smoothing (filtering)
designed to smooth spectral discontinuities at concatenative unit boundaries
[Plumpe et al., 1998].

In a singing voice synthesis system [Bonada and Serra, 2007], both time-
varying filters and pitch changes are applied as transformations to the units,
using a technique referred to as Voice Pulse Modeling (VPM). These trans-
formations model the following aspects of the target and source units: pitch
and prosody, evolution of speech formants, vibrato, and other expressive
characteristics.

2.1.3 Summary of Target-based Sound Mosaicing

Continuity constraints, which maximize the length of original subsequences
from the source material, and minimize the number of necessary new con-
catenations, have been used in several systems: Caterpillar, Musaicing,
and Audio Analogies. One system, Guidage, takes this even further,
by detecting which unit transitions are common within the source material
itself.

This type of constraint is more generally a transition cost. Although the Au-
dio Analogies and LoopMash systems include non-trivial target-based
transformations, they do not include transition costs on the evolution of the
transformation in time, even though this is possible in a path minimization
framework.

Perhaps because those systems use note and beat length units, it is not
necessary to consider the transformation beyond the length of the unit.
Still, it may be useful in systems which have shorter, more granular units,
or that wish to have continuous evolution of transformation parameters, to
also consider transition costs concerning their evolution in time. Such a
transition penalty is used in the proposed system, given in Equation 6.20
(p. 103).

Advantages of the path minimization approach are clear: the ability to find
variable-length subsequences of original source material, and the minimiza-
tion of general continuity between sequenced units. On the other hand, the
sparse mixture approach allows closer spectral approximations of the target
material.

However, the two approaches are difficult to reconcile, as there is no exist-
ing algorithm known to the author that combines transition costs within
a framework supporting sparse mixtures. That is, neither the formulation
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of path minimization (e.g. in Caterpillar) nor the formulation of a con-
straint satisfaction problem (in Musaicing) are able to consider a search
domain including spectral mixtures. Furthermore, the sparse projection
method employed in BSM only considers fixed-length subsequences from
the source database (in AugMos just single frames). Neither considers
general continuity, as expressed by transition costs, of variable-length unit
sequences.

The proposed system in Chapter 6 is an attempt to combine the two frame-
works of path minimization and sparse mixtures.

2.1.4 Cross-synthesis based on Atomic Decompositions
and Non-negative Matrix Factorization (NMF)

In this section, some relatively recent work in cross-synthesis techniques
based in atomic and NMF decompositions is discussed. These approaches
are relatively “granular”, as they are built by rearranging or modifying units
representing frames of the input.

Matching pursuit (MP) [Mallat and Zhang, 1993] (further explained in Sec-
tion 6.5.1, p. 104) is a sparse approximation method that is often used for
time-domain decompositions of audio. In [Collins and Sturm, 2011], two
cross-synthesis processes based on decomposing the source and target with
a Gabor dictionary were proposed. But rather than resynthesizing the tar-
get with source units directly, the atom weights of the target are modulated
or mixed with the source weights. These modifications can operate differen-
tially according to temporal or spectral characteristics of the Gabor atoms,
in a way similar to the “molecular” transformations of [Sturm et al., 2008a;
Sturm, 2009].

Alternately, in another method proposed [Collins, 2012, Section 8.1, Sparse
Concatenation], a dictionary consisting of short segments of the source sig-
nal was used to reconstruct the target signal with MP. This method is
essentially the same as the mp method (as described in Section 7.3.2, p.
130), only without the tonal transpositions used for mp. Chapter 7 gives a
subjective evaluation comparing the quality characteristics of mosaics gen-
erated from mp and other methods.

Non-negative Matrix Factorization (NMF) [Lee and Seung, 1999] is a nu-
merical technique that can be used to separate non-negative signals into
parts. It is widely used for audio source separation [Smaragdis et al., 2014].
In the audio setting, it is most common to factor the spectrogram matrix
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(consisting of each frame of the power spectrum in time) into two matri-
ces. One matrix contains a set of single-frame spectral components, and
the other matrix contains a set of sparse gains for the activation of each
spectral component in time.

In the FactorSynth system [Burred, 2014], cross-synthesis is implemented
by taking the target spectral components, and substituting them with the
source spectral components, where these two sets are matched according to a
timbre similarity measure based on MFCC descriptors. To resynthesize the
output signal from the spectrogram, which requires estimating the phases
of the output mixtures of power spectral components, a new scheme based
on Wiener filtering was proposed.

The HarmonyMixer system [Fukayama and Goto, 2014] has the goal of
taking source and target signals, and imposing the relative target chord
qualities on the source, rather than reconstructing the target using the
source units (using our terminology, in which the source units are sampled).
In this system, a similar decomposition and matching process occurs, except
the NMF decomposition is performed on a transposed form of the chroma-
gram matrix, and chroma components representing chords are swapped or
interpolated.

The modified chromagram is resynthesized by first estimating two sequences
of transposed source frames with a dynamic programming procedure. The
first sequence accounts for positive changes to the original chromagram, and
is synthesized by adding the transposed source frames back to the original
source frames. The second sequence accounts for negative changes, and is
synthesized by linear filtering of the original source frames.

One recent and promising work using NMF for target signal imitation is
the LetItBee system [Driedger et al., 2015]. In this system, the target
spectrogram is factored using the source spectrogram using NMF, resulting
in a sparse activation matrix allowing resynthesis of the target from weighted
combinations of source frames, as in BSM and AugMos.

However, the system encourages several desirable solution qualities by ap-
plying a sequence of functions, linear and nonlinear, to the activation ma-
trix before a final NMF update. These qualities are: that repeated source
frames are avoided, that only few sources activated at once (sparsity at a
time instant), and that longer sequences of time-activations are preferred.
These same qualities are also promoted in the proposed system, although
with a different mechanism (based on penalty functions), and in a more
complicated setting allowing transformation of source units.
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2.1.5 Interactive Alternatives to Fixed Target Mosaicing

Several systems have proposed to bring something similar to mosaicing into
an interactive and real-time context. Rather than reconstructing a fixed
target signal, they provide ways to interact, arrange, and perform with the
source units in a database, usually by navigating in a descriptor space.

In Mosievius [Lazier and Cook, 2003], an alternate model of the “sound
sieve” is developed, based on user-defined ranges in descriptor space. These
regions are used to segment units, to include or reject them from presen-
tation, even to transform units lying in one part of the feature space to
another.

In the CataRT system [Schwarz et al., 2006], a database of analyzed and
segmented sound units is represented as an interactive scatter plot. In
this plot, multidimensional scaling is used to project the high-dimensional
descriptors into a lower dimensional projection that organizes the sound
units by similarity. The mouse is used to point to nearby units in descriptor
space, and different triggering modalities are available for performance.

The Mused system [Coleman, 2007], designed for selecting sound units
for sample-based sound and music composition, also uses an interactive
scatter plot to navigate a database of segmented units. To aid the selection
of specific sound units, the user can select ranges of the descriptor space
(similar to the “sound sieve” concept from Mosievius) and the scatter plot
rapidly updates as units are included or excluded. This technique of giving
immediate visual feedback of a query result, “dynamic queries” [Ahlberg
et al., 1992], is previous work in the field of information visualization.

The recent Memory Mosaic [Mital, 2015] is a mobile sampling instrument
that uses automatic segmentation and an interactive scatter plot, similar to
CataRT and Mused.

The Eargram system [Bernardes et al., 2013] intended as an improvisa-
tional and compositional tool, is based on multiple views of the database
that include an interactive scatter plot. Eargram provides several inter-
esting real-time triggering strategies, including one modeling the dynamics
of sources in descriptor space (akin to the representation of Guidage).

Another branch of systems, e.g. SoundSpotter [Casey and Grierson,
2007], focuses on triggering similar sounds from a database in response to
live input. Rather than trying to transform and arrange the source sounds
to be as perceptually similar to the target sound as possible, the focus is
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on creating a compositional feedback loop between the performer and the
system [Casey, 2011].

The prototype system of [Janer et al., 2009] is a beat-based loop system
(similar to LoopMash). But instead of target units that are matched by
similarity, a symbolic score is used, in which the user places marks in a
step sequencer. The marks represent different sound categories (percussive
and noisy) which are triggered. Sound units belonging to each category are
identified by automatic sound classification.

None of the systems cited in this section use advance planning by minimizing
transition costs (in contrast to some of the systems of the main Section 2.1,
i.e. Caterpillar, Musaicing, or Audio Analogies). This is likely due
to its high computational cost. Instead, more immediate selection methods
are used. [Schwarz et al., 2006] explains:

Because of the real-time orientation of CataRT, we cannot use
the globally optimal path-search style unit selection based on a
Viterbi algorithm as in Caterpillar, neither do we consider
concatenation quality, for the moment. Instead, the selection is
based on finding the units closest to the current position x in
the descriptor space, in a geometric sense...

But it is still possible to use some representation of dynamics. For ex-
ample, it is computationally simple to employ triggering based on Markov
dynamics, as in Eargram. The key is that there are no target costs in
this setting to balance with the transition costs, which typically requires
dynamic programming.

Dynamic programming can be adapted to some limited real-time settings.
In the work of [Costello et al., 2013], a phase vocoder is used to time-warp
a live source input so that it is temporally more similar to a target sound
file. This certainly seems in the spirit of mosaicing, even if it doesn’t allow
interaction with a multitude of different sounds at once.

Another real-time system that incorporates dynamics in various forms is
Improvasher [Davies et al., 2014]. Beat tracking is used to trigger beat
units with the audio input, and the chord sequence history (represented
with chroma vectors) is used to predict which source units will harmonically
match the input.
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2.1.6 Mosaicing with Other Data besides just Sound

Other systems present novel ways to describe audio content with respect to
synthesis and resynthesis. The Sound-by-Numbers system [Cardle et al.,
2003] uses linked motion paths to describe the audio and uses a target mo-
tion path to generate a new soundtrack using the correspondence between
motions in the target and source paths.

Sven König’s Scrambled Hackz system [Van Buskirk, 2006] is another
mosaicing system that uses target audio to assemble beat units from source
clips consisting of musical video.

2.2 Descriptor-controlled Synthesis
and Transformation

Next, we look at systems for descriptor-based control of other synthe-
sis methods and transformations. This will provide additional inspiration
about design decisions involved in selecting transformation parameters for
units.

In general, these systems can be divided into two categories: those that
iteratively synthesize and analyze the result in descriptor space, and those
that use models of the sounds in descriptor space to obviate the need for
iterative synthesis.

2.2.1 Synthesis controlled by Descriptors

Additive synthesis is one class of synthesizers for which control by descrip-
tors has been quite well explored. In the system of [Wessel et al., 1998],
referred to as Time-Axis, two input/target descriptors, fundamental fre-
quency (F0) and loudness, are used to control the amplitudes and frequency
parameters for an additive synthesizer based on data of real instrumental
timbres.

That sampling synthesis preserves the continuity of phrases is cited as an
inflexibility, which is an impetus for their system:

Analysis-synthesis methods have for the most part privileged
time warping and pitch shifting. Musical signals analyzed by
such methods as the phase vocoder and sinusoidal modeling al-
low composers to stretch and shrink the time axis independent
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of the pitch and to alter the pitch without altering the duration.
These time and pitch modifications have been put to practical
and creative use, but the fact that the time-stretched sounds pre-
serve the order of the evolution of the sound’s spectral features
greatly constrains the nature of the potential transformations.
The data from such analysis methods does not afford the con-
struction of new phrases, this is to say, new sequences of pitches
and amplitudes.

The title of that paper, “Removing the Time Axis from Spectral Model
Analysis-Based Additive Synthesis” thus refers to removing the time-
dependency inherent in sampling synthesis.

The control is accomplished by using two different machine learning meth-
ods, one parametric and the other non-parametric, in order to perform the
mapping between descriptors and synthesizer parameters. The system of
[Jehan, 2001; Jehan and Schoner, 2001], referred to here as Audio-Driven,
follows the same pattern but adds innovations such as an additional con-
trol descriptor, brightness; as well as adding a synthesizer component for
the residual noise spectrum (as in spectral modeling synthesis). Another
system, Perceptsynth [Le Groux and Verschure, 2008], is essentially sim-
ilar to Time-Axis; although, it simplifies the machine learning problem by
first reducing the additive synthesis parameters using principal components
analysis (PCA). Ssynth [Verfaille et al., 2006a] is yet another example of an
additive synthesizer controlled by interpolating data from additive analysis
of instrument recordings.

Those systems used analysis data from specific instrument recordings to
learn models that map high-level controls to synthesis parameters. But it is
also possible to control synthesis using models that go in the other direction:
that take as input synthesis parameters, and that output a prediction in
descriptor space of the output. With this second type of model, it is possible
to abstract away from any specific instrument timbre. These distinct model
classes will be further discussed in Chapters 4 and 5.

One such system is the Timbral Synthesizer [Mintz, 2007]. It uses a
predictive model of MPEG-7 instrumental descriptors (covering both spec-
tral and temporal envelope characteristics) to drive an additive synthesizer.
Instead of being learned from data, the model is derived from spectral theo-
rems. The target descriptors are converted into linear “synthesis equations”
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(satisfying constraints for target descriptors) comprising a linear program
(LP), a type of convex optimization problem.

Rather than using relatively generic high-level descriptors to control to an
additive synthesizer, the Singterface system [Janer, 2008] has as its goal
using the voice as synthesizer controller. To this end, methods were de-
veloped that track the voice formants, segment the input into notes, and
map the result to a singing voice concatenative synthesizer. The mapping
from descriptors to concatenative units, which additionally aligns the input
signal to the song text, is done with dynamic programming.

2.2.1.1 Systems using Iterative Synthesis

The VocaListener system [Nakano and Goto, 2009] has a similar goal to
that of the previous system: to adapt a singing synthesizer score (includ-
ing timing, pitch, and dynamics parameters) to be sufficiently similar to a
recorded performance. This is accomplished in roughly the following way:
the initial score is synthesized, and aligned with the target signal. Then,
the score parameters are iteratively updated, and the process is repeated
until the score is suffiently close to the target.

Like VocaListener, and in contrast to the previously mentioned model-
based systems, this class of systems instead use an iterative synthesis loop,
meaning the following: first, some starting parameters are synthesized.
Then, the generated audio is analyzed, and new parameters can be pro-
posed, repeating until stopping conditions are met. In this strategy, a model
linking the synthesis parameters with the output/target descriptors is not
necessarily required, and potentially any synthesis technique may be used.
Perhaps that is why this strategy is also used by the following two systems.

FeatSynth [Hoffman and Cook, 2007] is a framework that uses genetic
search to find parameters that match a target descriptor sequence. For
example, an accompanying tutorial [Hoffman, 2007], mentions this example:
the mixture of two sinusoidal generators with a white noise generator, all
being controlled by target descriptors consisting of spectral centroid and
spectral rolloff.

SynthBot [Yee-King and Roth, 2008] is another system that also uses
genetic algorithm search in an iterative synthesis loop to tune parameters of
a completely generic, black box synthesizer; in this case, of VST synthesizers
to match a target sequence of mel-frequency cepstral coefficients (MFCCs).
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However, in some cases when the synthesis methods (or transformation
methods) are known in advance, this extra computational effort in param-
eter search can be avoided by using models.

2.2.2 Transformation controlled by Descriptors

A common and general strategy related to descriptor-controlled transfor-
mations is Analysis-Synthesis. In this strategy, there is an analysis method
that finds parameters that exactly or almost exactly reproduce an input
sound with a given synthesis method. Those parameters can then be inter-
polated or modified with parameters corresponding to target descriptors so
that the output more closely resembles the target.

Many classic transformation techniques use this approach, such as pitch and
time stretch modifications in the phase vocoder [Flanagan et al., 1965; Dol-
son, 1986], harmonic models such as SMS [Serra, 1989], and other source-
filter based modifications [Verfaille and Depalle, 2004]. The parameters
available in these synthesis methods are frequently low-level (short-time
spectra, harmonic additive synthesis, and filters) and do not map directly
to higher level perceptual descriptors of interest; although the Analysis-
Synthesis strategy has also been applied to the setting of singing voice syn-
thesis in the Singterface system.

In the Feature Modulation Synthesis (FMS) approach, target descriptors
of interest (temporal, spectral, or harmonic) are paired with transforma-
tions that attempt to modify them directly with minimal side-effects to
other descriptors [Park et al., 2007, 2008; Park and Li, 2009]. This promis-
ing paradigm could be paired with sampling synthesis, by applying cross
synthesis to the sources using target features.

However, this is not sufficiently general to work for all sampling applications.
For example, in the case of mixture synthesis, where rather than applying
the same target descriptors to each of the mixture sources, one might prefer
to apply different transformation parameters to each of the sources, such
that they produce a mixture that is close to the target descriptors (the
approach taken in this thesis). This scenario is more general (based on
optimization of parameters) and possibly allows higher quality solutions,
given the continuity criteria of the transformations.

Whereas the input of a synthesis model consists of target descriptors only,
the input of a transformation model must also take into account the de-
scriptors of the input sound, leading to a higher dimensional function. In
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the case of learned models, this may lead to a harder estimation problem
(see Appendix C.1).

Barring an easy relationship between transformation parameters and de-
scriptors, an alternative strategy consists of formulating a model that pre-
dicts how the transformed sound’s descriptors change with differing param-
eters, akin to the predictive model of Timbral (Section 2.2.1).

The system of [Coleman and Bonada, 2008] (also documented in Chapter
4) used essentially that approach. The goal of the system was to control
a set of two transformations, resampling and equalization, using standard
moments of the power spectral distribution, (mean, standard deviation,
skew, kurtosis, etc) as target descriptors. First, based on Fourier theorems
[Smith, 2007], a model was derived that predicted the change in descriptors
of interest. Then, a gradient-based heuristic search was used to find optimal
transformation parameters for each descriptor target.

In a related work of [Caetano and Rodet, 2009], the goal was to find pa-
rameters for a filter that was intermediate in a perceptual space, for the
purposes of sound morphing. The descriptors were essentially the same
as the previous study, and genetic algorithms were used to find the filter
parameters. This approach can also used to choose mixing parameters, in
automatic mixing applications, such as one that chooses gains according to
desired monitor levels using local search [Terrell and Reiss, 2009].

Certain types of transformations might be easier to optimize. One such
class consists of transformations that are linear in their inputs, leading to
the optimization problems being convex. The work of [Olivero et al., 2013]
examines linear transformations that are literally multipliers to the inputs,
such as a mask applied to a Gabor representation of the sound in order to
find smooth interpolations in timbre space. The optimization problem is
solved efficiently and leads to a unique optimum, as the problem is convex.

Spectral theorems might not be available for every possible sound transfor-
mation, in which case being able to learn changes in descriptors of trans-
formed sounds from data would be useful. As far as learning general pre-
dictive models of the evolution of descriptors under sound transformations,
there has been little work so far. One such attempt [Coleman and Villavi-
cencio, 2010], to learn changes in a filter bank descriptors under resampling,
is further documented in Chapter 5.
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2.2.3 Summary of Descriptor-controlled Synthesis
and Transformation

On one hand, there seem to be clear examples of synthesis systems that can
be controlled by high-level descriptor controls, including examples of sys-
tems that learn from real instrumental data. On the other hand, there seem
to be fewer systems for controlling sound transformations with descriptor
controls, and even fewer that learn models of how transformations change
a sound in descriptor space. Perhaps this discrepancy is due to a difference
in the problem difficulty between synthesis and transformation.

2.3 Additional Applications of
Sparse Decompositions of Audio

Finally, as an important topic in this dissertation, we would like to highlight
some interesting uses of sparse decompositions of audio. For example, as
shown by [Sturm et al., 2008a; Sturm, 2009], atomic decompositions have
structure in time and frequency that can be used for sound transforma-
tions. In addition, this structure can also be used for denoising [Sieden-
burg and Dörfler, 2013], separating harmonic from transients [Siedenburg
and Dörfler, 2011], filling in corrupted or clipped samples in an application
known as “audio inpainting” [Adler et al., 2012; Siedenburg et al., 2014],
detecting harmonic notes [Gribonval and Bacry, 2003]; not to mention au-
dio source separation [Smaragdis et al., 2014], sound localization [Gretsistas
and Plumbley, 2010], and identifying birds when there are several of them
singing at the same time [Stowell et al., 2013].





Chapter 3

Design of Transformation
Models for Sampling Synthesis

This chapter introduces some terminology for discussing models of trans-
formations in the abstract, with a view to applying them in sample-based
synthesis applications controlled by target descriptors. Whether the models
are derived from knowledge of the transformation, or learned from exam-
ples consisting of inputs, outputs, and parameters, there seem to be several
distinct approaches possible.

Another purpose for this chapter is to justify the choice of focus, regarding
this thesis and regarding the synthesizer of Ch. 6, on one type of model, the
predictive model, rather than another type of model, the selective model,
based on the main problems faced in sampling synthesis.

3.1 Preliminaries

Whether one wishes to choose parameters for a simple transformation, or a
network composed of many transformations with their own parameters, each
transformation itself can be viewed as a black box that transforms input
audio samples into output audio samples, with the result varying according
to which parameters are used.

However, at the modeling level, it is not necessary to use audio samples;
rather, a lower-dimensional descriptor representation is used. This allows
the user to express a synthesis goal, the target, in some perceptually rele-

33
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vant space. Along with the target, the input and output samples are also
represented in descriptor spaces.

For the target descriptors, they should reflect the qualities of interest re-
lating to the transformation or synthesis goal. The output vector should
contain at least the same set of descriptors in the target vector, since a
main goal is matching the target vector as well as possible according to
some distance function.

The input vector, in turn, should be a set of descriptors that predicts, suffi-
ciently well, the output descriptors relevant to the target. This might be a
bigger set than the target descriptors, because some signal information that
is not relevant to the perceptual target might still help in better predicting
the output descriptors.

It is assumed that we have extractors that turn samples into descriptors.

In total, this gives three descriptor vectors: the target ~dT, input ~din, and
output ~dtr vectors, and a parameter vector ~ptr containing the numerical
controls of the transformation.

3.2 No Model

The black box transformation, denoted as f�, has the following form:

f�(~din, ~ptr) = ~dtr, (3.1)

or in the case of synthesis, with no corresponding input signal,

f�(~psyn) = ~dsyn. (3.2)

That is, by observing black box transformations, one can record tuples
(triplets) of the form (~din, ~ptr, ~dtr). With executable access, one can also
produce new transformations by free choice of input sound (which deter-
mines ~din), and parameter vector ~ptr.

Although the functional description of a black box transformation is identi-
cal to the simplest form of the following model type, a pragmatic distinction
can still be made between systems that search for feasible or optimal param-
eters by repeated application of a black box synthesizer or transformation
(referred to in Section 2.2.1.1, p. 28 as Iterative Synthesis), and systems
that use models to avoid the additional computational effort that repeated
application in search entails.
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Figure 3.1: Graphical view of a black box transformation, or a predictive model.

3.3 Predictive Models

These forms of Eqs. 3.1 and 3.2 also correspond directly to the first type of
model, predictive models. The simplest type of predictive model, fpre, has
the form:

fpre(~din, ~ptr) ≈ ~dtr, fpre(~psyn) ≈ ~dsyn. (3.3)

That is, predictive models are those that, through either analysis or machine
learning, predict the output descriptors, without respect to the target signal.
The triplets of Eq. 3.1 can be used to learn models from data using the
supervised machine learning paradigm.

An active learning paradigm (in which the learning algorithm chooses the
input patterns using some clever criterion that maximizes new information,
in order to learn the concept with relatively fewer examples; see [Settles,
2009] for overview) could also be used. However, an important motivation
for active learning, the high cost of producing labels (output patterns) in
domains such as speech processing (in which human effort may be required),
is not as important in this case, given that black box transformations can
be called without human input.

It is the class of predictive models that form the basis of the optimization
experiment of Chapter 4 and the learning experiment of Chapter 5; and in-
deed of the models used in the mosaicing algorithms of Chapter 6. However,
some alternative model classes are possible (further sections).

In order to model cascades (series) of transformations, predictive models
may be combined with function composition, as shown in the system design
of Chapter 4.
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Note that the input space to these functions is larger in the transformation
case than in the synthesis case, if the parameter vector has otherwise the
same dimension. This increase in dimensionality can, in some cases with
certain types of models, cause the statistical problem of learning the model
to become more difficult (see Appendix C.1).

3.4 Choosing Parameters

Given a predictive model (or a black box transformation), simply evaluating
the model does not alone fulfill the synthesis goal. In order to achieve the
goal of bringing the output to the target specified in descriptor space, an
additional search process is necessary.

For the immediate problem of choosing transformation parameters ~ptr when
at least some target descriptors ~dT are specified, this search process can take
the form of a regularized optimization (explained in Appendix C.3):

arg min
~ptr

[
m
(
~dT, fpre(~din, ~ptr)

)
+ fpen(~ptr)

]
= ~popt, (3.4)

where m is some kind of metric, a distance function in the descriptor space,
and fpen is some penalty function that expresses some preferences for cer-
tain parameters over others. In general, this flexibility in choosing certain
solutions over others, based on additional criteria, could be considered an
advantage of the predictive model approach.

The penalties expressed by fpen could include: a preference for smaller
amounts of transformation (in order to minimize distortion of the input
sounds), and if multiple time frames are considered, a preference for contin-
uous changes in parameters (again, to minimize distortions resulting from
temporal discontinuities in parameters). These two concerns are indeed
represented in the penalty functions of Section 6.4.1 (p. 101).

However, the problem of selecting parameters (given in Eq. 3.4), is only a
subproblem with regard to concatenative synthesis, for example, in which
source sound units must also be selected and arranged (as in Eqs. 1.1, 1.2,
p. 8). Rather, the full problem is a joint optimization, in which both source
sound units and transformation parameters must be selected.

3.4.1 Complexity of Parameter Search

The difficulty of the search problems will vary with the individual effects and
the number of effects involved, but in general the optimization problems will
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not necessarily be convex, which means that local search alone is not enough
to find a global optimum. For an example of this, see the relatively simple
joint optimization of a resampling parameter and equalization parameters,
found in the system of Chapter 4. In these cases, either exhaustive search
approaches such as grid search or global optimization, which can require
effort exponential in the size of the problem, or heuristic search approaches,
which are not guaranteed to find the best optimum, must be used.

However, in many cases, sets of gain parameters form linear representa-
tions (such as in filter bank equalization, or in modification of spectral or
wavelet coefficients), leading to convex subproblems that can be solved ef-
ficiently with local search. For examples of this, see the system of [Olivero
et al., 2013] focusing on time-frequency multipliers, or the use of quadratic
smoothing to find filter gains as in [Coleman et al., 2010, Section 4. Unit
and Parameter Selection].

3.5 Selective Models

As the goal is to find parameters that get the transformation output closest
to the target (more precisely expressed by Eq. 3.4), one can also imagine a
model that does this directly. In fact, this is possible, and in some cases fits
the wider application goal.

So, the functional form of these models would be:

fsel(~din, ~dT) ≈ ~popt, fsel(~dT) ≈ ~popt, (3.5)

for the transformation and synthesis cases respectively.

The algorithmic result of this model type, ~popt is not necessarily the result
of an optimization process, although it could be produced by a process
as described in Eq. 3.4. Alternately, such a model could be learned by
generalizing the same tuples from the black box transformation Eq. 3.1, by
substituting the output vector ~dtr for the target vector ~dT in the model.

This latter approach, that of generalizing the black box tuples, is exactly
the approach used for learning the selective models in the trio of additive
synthesis systems controlled by pitch and loudness descriptors (Time-Axis,
Perceptsynth, Audio-Driven; the latter including a brightness descrip-
tor) as described in the previous chapter in Section 2.2.1.

This approach seems, at first glance, equivalent to the approach of predic-
tive models described in Section 3.3. After all, the relation comprising the
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observed tuples could be the same for both model types, predictive and
selective.

Even though it seems they are closely related, from several perspectives
these forms are not necessarily equivalent. From a mathematical perspec-
tive, just the assumption that one of the models is a function (a many-to-one
relation) would be different in the two model types. Smoothness assump-
tions, as well, used to learn models from data, would also differ given the
different domains.

Finally, from a statistical learning perspective, the different input dimen-
sionalities could affect the number of examples necessary to generalize with
certain models (see Appendix C.1).

3.6 Why predictive models were used

For our applications in sample-based synthesis, there is a more practical
objection to simple selective models. For many such applications, joint se-
lection of a context of several units is required, whether simply favoring
continuous changes in parameters to preserve continuity in synthesis (as
mentioned in Section 3.4), or the joint selection over concatenative source
units and unit transformation parameters as is done in the mosaicing algo-
rithms of Chapter 6.

The regularized estimation of Eq. 3.4 (also having the same structure as the
mosaicing unit selection Eqs. 1.1 and 1.2, p. 8) explicitly includes the form
of the predictive model. The estimation’s scope can be expanded by adding
more variables to the argument, and new concerns can be added by adding
new terms to the penalty function. In each case, predictive models can
query each point in the parameter space to see how well it fits the context.

On the other hand, consider a selective model, which answers the question:
“given an input ~din and target ~dT, what should the parameter vector ~p
be?”. If it is a mathematical function, it will always return the same ~p
answer for any given ~din and ~dT. Thus, with the form of Eq. 3.5, it is
not straightforward to search among variations in sets of ~p parameters, for
example, that are continuous in time, because the selective model gives you
just a single ~p answer for each query.

Perhaps it is possible to rehabilitate the selective model for this purpose,
e.g. by adding an additional neighborhood parameter ~p0, as in:

fsel+(~din, ~dT, ~p0) ≈ ~popt. (3.6)
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In that case, in solving those problems, it would still be necessary to search
in parameter space; whereas the idea of selective models was to be able to
avoid explicit parameter seach.

As the subproblem of parameter selection is to solve regularized problems
of the form given by Eq. 3.4, predictive models were used in this thesis.

3.7 Conditional models

One criticism of the previous model types described is that they are point-
wise estimates, i.e. in both cases, they return a single point in descriptor or
parameter space, but do not reflect the uncertainty of the model estimate.

Although this type of model is not treated substantially in this thesis, the
following is a brief sketch of what they could look like.

For example, in the case of predictive models, these models assume that if
the input and parameters are known, the output is exactly known in de-
scriptor space. However, perhaps the uncertainty of the estimate is greater
in some descriptors rather than others, or even greater in some part of the
input and parameter spaces than others.

To express the uncertainty in the output descriptor space, a conditional
probabilistic model could be used, perhaps of this form:

f ~Dtr
(~dtr| ~Din = ~din, ~Ptr = ~ptr). (3.7)

Using this type of model, the parameter or unit selection processes could
take into account the estimated uncertainty in the predicted output descrip-
tors, and perhaps manage this risk by avoiding the riskier areas of the search
spaces. This type of model could also account for accumulated uncertainty
in cascades of transformations, something that is not done with pointwise
predictive models.

3.8 Error Measures in Model-based Design

As model-based systems (models of transformations, models of mixtures)
rely on estimates for controlling the synthesis outcome, it is useful to make
a distinction between different types of error encountered by the system
(e.g. for debugging purposes).
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That is, descriptor controlled synthesis and transformation can be viewed as
a progressive projection of the ideal descriptor target into the real synthesis
space in which error is accumulated in the multiple steps.

One clear distinction that can be made, is the distinction between, on one
hand, the deviation in the model-predicted optimum of the search and the
target, versus the deviation between that model-predicted optimum and the
output created by synthesis.

From the three vectors that can be measured: ~dT, the target vector, ~dopt =

fpre(~din, ~popt), the optimum from parameter selection in descriptor space,

and ~dtr, the actual output in descriptor space; the following three error
measures can be derived.

By comparing estimates of the first two error vectors, one can see which
causes more error in the system: either distance in the model class (e.g.
with different transformations or unit databases), or inaccuracies in the
model itself.

3.8.1 Model Error

The model error is defined as the vector from the target to the optimum in
the model space.

ME(~dT, ~dopt) = ~dT − ~dopt. (3.8)

This optimum could either be a true optimum, or if using approximate
solutions this would also incorporate error contributed by the search process.
Another error type could also be added to account for this search error, but
here it is omitted for simplicity.

3.8.2 Empirical Error

The empirical error is defined as a vector from the expected result from the
model to the real synthesized result:

EE(~dopt, ~dtr) = ~dopt − ~dtr. (3.9)

3.8.3 Total Error

The total error is defined as a vector from the target to the real synthesized
result:

TE(~dT, ~dtr) = ~dT − ~dtr. (3.10)
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By the triangle inequality (if using a distance metric like the Euclidean
norm):

‖TE‖ ≤ ‖ME‖+ ‖EE‖, (3.11)

i.e. the total error is upper bounded by the sum of “component” errors, and
one can compare the relative amounts of error from model and empirical
errors.

A summary of the error measures is depicted in Figure 3.2.

Td

optd

trd

TE

EE
ME

Figure 3.2: An illustration of the measurable descriptor vectors (solid lines) along
with error vectors (dotted lines).





Chapter 4

Control of Sound
Transformations by Target

Descriptors using gradient-based search

methods and Predictive Models

This chapter covers the system design and experiment reported previously in
“Sound Transformation by Descriptor using an Analytic Domain” [Coleman
and Bonada, 2008]. The previous paper is revised and somewhat expanded.

4.1 Abstract

In many applications of sound transformation, such as sound design, mixing,
mastering, and composition the user interactively searches for appropriate
parameters. However, automatic applications of sound transformation, such
as mosaicing, may require choosing parameters without user intervention.
When the target can be specified by its synthesis context, or by example
(from descriptors of the example), “adaptive effects” can provide such con-
trol. But there exist few general strategies for building adaptive effects from
arbitrary sets of transformations and descriptor targets.

In this study, the usually direct (procedural) link between analysis and
transformation in adaptive effects is decoupled. This link is instead re-
placed by a coupling of predictive models of effects (overview in Ch. 3) with
search methods used to find optimal transformation parameters within those

43
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models.

This is meant to allow more diverse sets of transformations and descriptors
in the field of adaptive effects, besides those for which direct mappings be-
tween effects parameters and descriptors are already known. However, this
approach has an added cost in computational effort, mainly that incurred
in the parameter search (see Section 3.4 in the previous chapter).

Analytic predictive models are developed for two simple effects, resampling
and equalization, and combined to model a cascade of those effects. This
model is then searched to find optimal transformation parameters given a
target, and the numerical accuracy of the control is examined.

4.2 Introduction

Sound transformations (commonly: effects) are practically used by sound
and music producers in a variety of contexts: mixing, mastering, synthesis,
composition, sound design for varying media. Effects are typically modeled
as mathematical functions transforming one or more input audio signals into
output signals according to a set of numerical parameters. These parameters
usually are tuned either interactively or according to some knowledge of the
transformation domain.

Because this process can be immediate and interactive, it is usually fast
and effective for a user to find parameters which correspond to their tar-
get sound goals for the input sounds in question. However, the assumption
that parameters can be effectively manually tuned could break down un-
der several conditions: if the parameter space is too large (there are too
many parameters), if that space is too complex (e.g. nonlinear) to be inter-
actively searched, or if the desired result needs to be synchronized or finely
articulated in time.

For example, consider an automatic mosaicing system that selects “source”
sound samples from a database to match input “target” samples, then com-
posites them into a score (such as those discussed in Section 2.1). To im-
prove the match quality, the retrieved source sounds could be transformed
to be more similar to their targets. But for the system to be automatic, the
transformation parameters should be selected without human input.

Adaptive effects “in which controls are derived from sound features” [Ver-
faille and Depalle, 2004] (the terms descriptor and feature are used here
synonymously) are often implemented directly via an analysis-synthesis
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Figure 4.1: An ideal transformation by descriptor system, which uses available
transformations to bring input sounds close to a target, and also discriminates
between candidate source sounds in a database.

paradigm, with a modification of the analysis representation used to steer
the result of the synthesis towards the target. This offers a direct route to
control effects by descriptors, usually by exploiting mathematical proper-
ties of transforms such as the short-time Fourier transform (STFT) or the
source-filter model, in such a way that allows independent algorithmic mod-
ification of desired properties of the sound. In these systems, the analysis of
the target is coupled directly with the transformation of the input material.
However, this approach requires the development of a procedural model
that links the fixed transformation with effective, independent changes in
a fixed target descriptor set; hence with many sets of transformations and
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descriptors, this may not be possible.

An alternative approach would allow consideration of any target descriptors
of interest, using the set of transformations that are available. By breaking
the link between analysis and transformation, we intend to allow both wider
and more complex sets of effects and descriptors, but also wider sets of
criteria to be considered.

Instead of using a transformation domain that allows direct modification
according to a target, an alternative strategy is to build predictive models
of sets of transformations in descriptor spaces (in previous version of this
article: a “transformation-descriptor” (TD) space).

By first determining the relationship between the input sound, the trans-
formation parameters, and the output descriptors, one can provide a map
of the space. Then, numerical optimization techniques can be used to find
transformation parameters that best meet the target (as well as other objec-
tives). Thus, this numerical search provides an additional link in the middle
of this chain, after the analysis and before transformation/synthesis, where
procedural mappings were in the previous work.

4.3 Related Works

Several previous works [Arfib and Verfaille, 2001; Verfaille and Arfib, 2002;
Verfaille and Depalle, 2004; Amatriain et al., 2003; Verfaille et al., 2006b,c];
[Verfaille, 2003 as cited by Verfaille et al., 2006c]) have as their subject
adaptive transformations. As defined in [Verfaille et al., 2006c], these ef-
fects are controlled by “a time-varying control derived from sound features
transformed into valid control values using specific mapping functions”. For
example, in [Verfaille and Depalle, 2004], the STFT and source filter model
form a basis over which some aspects of the sound (at once descriptors and
parameters) can be independently modified.

As arbitrary or more complex sets of descriptors are included, the chance
of extending or discovering such “specific mapping functions” lessens. As
an antidote to the specificity of these mappings, we propose an alternative
that is somewhat generic. First, that the domain of parametric transforma-
tions can be modeled with respect to the target descriptors; second, that
numerical search (the generic part) fills in the procedural gap.

Concatenative synthesis synthesizers, ranging from a those dealing with a
single-instrument (like the singing voice, as in [Bonada and Serra, 2007]) to
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audio mosaicing (which deals with diverse sound material, as in [Schwarz,
2007]) use similar synthesis techniques. These systems generate sequences
with different target descriptor sequences from a limited sample database,
and could likewise be extended by transforming the input sound closer to its
intended target. In this application context, we would also like to be able
to select source samples that are most easily transformed to the targets.
Figure 4.1 illustrates this concept of “Transformation by Descriptor” in a
sampling synthesis context.

Perhaps the closest work, in the area of generic control of sound synthesis,
is that of [Hoffman and Cook, 2007] (previously mentioned in Section 2.2.1).
Similar to the work described in this chapter, it uses indirection between
analysis and synthesis, using numerical optimization to control parametric
synthesizers from frame-based audio features, and thus explores a similar
technique. The main difference between this and that work, is that this work
uses models whereas that work does not, and this work deals with trans-
forming sounds (the output sound is generated by the input sound samples)
whereas that work uses synthesis models controlled by target descriptors.

4.4 Predicting Descriptors under Transformation

By modeling our transformation space with predictive models, we intend to
guide the search process towards its intended target. Each transformation
is thus modeled as a function mapping an input sound (represented by its
descriptors) and a parameter vector, to an output sound again represented
by descriptors (as proposed in Section 3.3, although the notation here differs
slightly from the previous chapter).

Feature vector of input sound : ~din (length determined by context)
Hopefully something that predicts ~dtr well.

Feature vector of transformed sound : ~dtr of length D
There are D descriptors of interest, need not match ~din.

Vector of transformation parameters : ~p

The transformation function : ~t( ~din, ~p) = ~dtr

Model of transformation : t̂( ~din, ~p) ≈ ~dtr

In other words, an approximation of ~t, the real transformation.

Target feature vector : ~T of length D (matches ~dtr in dimension).
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4.4.1 Descriptors: Spectral Magnitudes and Moments

The input descriptors used are the spectral magnitudes, i.e. |Xk| where k is
an index of a positive frequency bin.

The descriptors of interest (predicted output descriptors and target descrip-
tors) are statistical moments of the spectrum (such as those in [Peeters,
2004, Section 6.1, Spectral Shape descriptors]). In general, statistical mo-
ments describe global (as opposed to local, as in limited to certain frequen-
cies) shape characteristics of a distribution.

The resampling model in this section applies to arbitrary and higher order
moments, such as skewness and kurtosis; although the automatic control ex-
periments reported in Section 4.7.3 used only spectral centroid and spectral
spread (standard deviation).

The spectral moments are defined as functions (specifically, expectations) of
the normalized magnitude spectrum Nms, where the kth normalized mag-
nitude is defined as:

Nmsk(x) =
|Xk|∑
|Xi|

. (4.1)

The first two spectral moments, the spectral centroid and spectral std. de-
viation, are defined as follows:

dmean = µ =

∑
k|Xk|∑
|Xk|

, dstd = σ =

√∑
(k − µ)2|Xk|∑
|Xk|

. (4.2)

Skewness and kurtosis are central moments (with the mean subtracted)
normalized by powers of the standard deviation:

dskew =

∑
(k − µ)3|Xk|
σ3
∑
|Xk|

, dkurt =

∑
(k − µ)4|Xk|
σ4
∑
|Xk|

. (4.3)

As a shorthand, these moments and higher moments (except dstd) can be
represented in the following way. Let m be a function with arguments k, µ
and σ. Then, each moment can be represented as a function composition
of an individual m function with a function M of a single variable z:

M(z) = E|X|[z] =

∑
z|Xk|∑
|Xk|

, dm = m ◦M =

∑
m(k, µ, σ)|Xk|∑

|Xk|
, (4.4)

with mmean(k) = k for the spectral centroid, mvar(k) = (k − µ)2 for the
spectral variance, and mcmn(k) = (k − µ)n for higher central moments.
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4.4.2 Transformations Overview

In these experiments, two simple transformations are modeled. These trans-
formations are bandlimited interpolation (resampling) and linearly spaced
bandpass equalization. In this case, the transformation parameters are the
resampling factor L, and the vector ~h of log-gains (see Section 4.4.4) for
each of the B equalization bands:

~p = (L,~h) = (L, h1, h2, ..., hB). (4.5)

A model is introduced that predicts the coordinated action of both transfor-
mations in the spectrum. Two phenomena are omitted from consideration
and could be considered potential sources of model error. One potential
source of model error is the bandlimited interpolation (which relies on a
filter bank to reconstruct the ideal sinc function), and the other poten-
tial source of model error comes from using a reduced version of the input
spectrum (also a filter bank) to approximate the full spectrum.

4.4.3 Resampling

Resampling (consisting of upsampling and downsampling) is used to change
the pitch and duration of sounds dependently, with a single parameter L
determining the ratio of the output duration to the input duration.

Changing the length of a signal in the time domain (by, e.g. stretching)
has an inverse effect in the frequency domain (compressing), and vice versa.
Smith [2007, Continuous Fourier Theorems, Scaling Theorem] states the
following, which applies to a continuous signal x(t) with Fourier transform:

Scaleα(x)←→ |α|Scale(1/α)(X), Scaleα,t(x) , x

(
t

α

)
, (4.6)

where α (corresponding to parameter L above) is a nonzero real number.

However, the previous result applies to continuous signals, not to sampled
signals. There are additional complications that apply to stretching or
compressing of sampled signals.

Uniformly sampled signals can only represent a limited frequency range,
that between [−fs/2, fs/2], where fs is the sampling frequency. That is,
exact reconstruction of a continuous signal is only possible if the original
signal was bandlimited to that interval (meaning no energy was present
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at other frequencies) [Smith, 2007, Sampling Theory, Sampling Theorem].
fs/2, the upper frequency limit, is referred to as the Nyquist frequency.

When an input signal contains energy outside of this frequency range, that
energy is irrevocably mixed with energy at certain lower frequencies, in
a process (usually unwanted) referred to as aliasing [Smith, 2007, Signal
Operators, Alias Operator]. (This problem is normally dealt with by low-
pass filtering signals before sampling them). However, aliasing is relevant
not only to sampling continuous signals, but also to resampling (changing
the effective sampling rate).

When stretching a signal in time (upsampling, L > 1), the (previously ban-
dlimited) frequencies are scaled down, so there is no risk of aliasing and no
need for further bandlimiting. On the contrary, when compressing a signal
in time (downsampling, L < 1), additional bandlimiting is necessary, which
occurs due to the action of a low-pass filter integrated into the resampling
process [Smith, 2007, Interpolation Theorems, Bandlimited Interpolation of
Time-Limited Signals].

In practice, bandlimited interpolation methods use finite approximations to
an ideal sinc filter [Smith, 2002, Theory of Operation, Theory of Ideal Ban-
dlimited Interpolation], which adds error to the resampled signal. However,
this is not taken into account into the following model.

The bandlimited normalized spectrum, BlNms, is modeled with a “brick-
wall” rectangular mask to simulate bandlimiting. This is done by substi-
tuting for |Xk| in the expression for Nms (Eq. 4.6):

BlNmsL,k(x) =
BlB

(
k
KL

)
|Xk|∑

BlB
(

i
KL

)
|Xi|

, (4.7)

where k
KL is the scaled normalized frequency, and the binary bandlimiting

mask, BlB, is derived from the Heaviside step function H:

BlB(x) = 1−H(x− 1) =

{
1 x ≤ 1

0 otherwise.
(4.8)

Substituting BlNms in M(z) (Eq. 4.4), and scaling the frequency argument
(as indicated by Eq. 4.6) yields a model of resampling for spectral moments:

t̂r(X,L, z) =

∑ z

L
·BlB

(
k

KL

)
|Xk|∑

BlB

(
k

KL

)
|Xk|

. (4.9)
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4.4.3.1 Sigmoids

However, the binary mask BlB based on the step function is discontinuous;
its derivative is zero everywhere except at the discontinuity. Thus it is less
useful in a local search technique, in which derivatives are used to inform
the search method of the local behavior of the function.

Instead, a surrogate composed with the sigmoid function is used:

Blsα(x) = 1− S(α(x− 1)) (4.10)

= 1− 1

1 + eα(x−1)
, (4.11)

where the sigmoid function is defined as:

S(x) =
1

1 + e−x
(4.12)

having the derivative:

dS

dx
= S(1− S) =

ex

(1 + ex)2
. (4.13)

Using a sigmoid, the resulting model is a smooth function, which is necessary
for using gradient descent based optimization methods. (Indeed, in this
manner sigmoids are used to facilitate back propagation, a gradient descent
method used to learn neural network parameters).

This does not completely solve the problem of the local minima created by
the resampling, it just allows the search to find the local minima easier by
giving them directional cues.

4.4.4 Equalization

Equalization is modeled as a bank of rectangular filters that partition the
spectrum into B linearly-spaced bands, apply non-negative gains ~g, and
then add the scaled signals. In practice, the filters used will overlap and
contain small amounts of energy from other bands.

Thus, each transformed magnitude is modeled as being scaled by the ap-
propriate, non-negative gain:

t̂eq(|Xk|, ~g) = gj(k) · |Xk| (4.14)

where j(k) indicates the filter bank that corresponds to the spectral bin k.
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One way of constraining the gains to be non-negative is to use log-domain
(exponents) ~h to control the gains, such as gj = 2hj , giving us:

t̂eq(|Xk|, ~p) = 2hj(k) · |Xk|, (4.15)

which are equivalent (up to a constant) to specifying gains in decibels.

4.4.5 Composition

In order to model a cascade of transformations, the predictive models can
be combined using function composition. For example, to model the series
of (equalization, resampling), the composed model is as follows:

t̂eq,r(X, ~p) = t̂r ◦ t̂eq = t̂r(t̂eq(X, ~d), L). (4.16)

In this case, that particular sequence was chosen for mathematical conve-
nience. Conceptually, independent sets or bands of Fourier coefficients are
scaled by the equalization, which are then shifted and possibly bandlimited
by the resampling. If composed into the opposite sequence, membership in
a given equalization band would vary with resampling parameter L.

The combined predictive model is as follows:

t̂eq,r(X, ~p, z) =

B∑
j=1

2hj ·Bls

(
j

BL

)
·
∑
k∈k(j)

z

L
· |Xk|

B∑
j=1

2hj ·Bls

(
j

BL

)
·
∑
k∈k(j)

|Xk|

(4.17)

where k ∈ k(j) are the Fourier indices that fall in a given equalization band.
(The above model makes the additional approximation of using frequency
masks over filter bands, rather than individual bins, as in Eq. 4.9).

4.4.6 Behavior of Transformation / Model

To give an intuition for the shape of the space we wish to model and search,
several plots are examined. The first, shown in Figure 4.2, shows the effect
of resampling on a set of 10 sounds. The plot shows the ratio of spectral
centroids (output to input) when different values of the resampling param-
eter L are used. On the right side of the function (L ≥ 1), the scaling rule
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Figure 4.2: Centroid ratios (output centroid to input centroid) diverge when
L < 1 due to bandlimiting.

functions perfectly as a rule for predicting the output centroid. In strong
contrast, on the left side with L < 1, the centroid ratios depend strongly on
the individual spectra, as different pockets of energy are bandlimited away
at different values of L.

The next plot, Figure 4.3 shows a grid sampling of a cross-section of the
transformation space of resampling and equalization for the standard de-
viation as a descriptor. By looking at slices of constant h3, it can be seen
that 1) the dstd is non-monotonic with respect to varying L, and 2) these
curves are smooth, perhaps due to the smoothness of the bandlimiting.

By contrast, the moments seem to be monotonic with respect to equaliza-

tion. Looking at Eq. 4.17, we see that the 2hj · Bls
(

j
BL

)
subexpression

merely determines the non-negative weight applied to each scaled z in the
spectrum, leading to limiting cases forming two poles. When one amplifies
a band far above the rest of the bands, or far below, it either predominates
or becomes insignificant in the summation, giving it the slow limiting effect,
as seen in slices of constant L and varying h3.

This gives us hope that in the error space will be relatively smooth and
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Figure 4.3: Cross-section of actual transformation space for one variable band
(out of 16) and a resampling parameter.

easy to follow the gradient in these dimensions, with the non-monotonicity
being confined to the resampling dimension.

4.5 Parameter Selection by Smooth Optimization

For each sound to be transformed, there are input descriptors ~din, a predic-
tive model t̂( ~din, ~p), and a target descriptor vector ~T .

When we use a model to approximate the effect of the transformation, we
replace ~t with t̂. and an error term e. The residual is defined as the difference
vector between the target and the predictive model (similar to the Model
Error, Section 3.8):

~r(din, ~p) = ~T − t̂( ~din, ~p) + e. (4.18)

To optimize the transformation parameters, some function of the residual
is minimized. For mathematical convenience, the sum of squares of the
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individual terms (least-squares) is often chosen [Nocedal and Wright, 1999]:

f( ~din, ~p) =
1

2

m∑
j=1

r2
j (
~din, ~p). (4.19)

4.5.1 Partial Derivatives

Partial derivatives of the objective function f are a basic ingredient of local
search techniques (such as gradient descent). The gradient is defined as the
vector of partial derivatives with respect to each of the parameters:

∇f(~p) =

(
∂f

∂L
,
∂f

∂h1
, . . . ,

∂f

∂hB

)
, (4.20)

Using the least-squares objective function, the gradient reduces to:

∇f(~p) =

m∑
j=1

rj(~p)∇rj(~p) = J(~p)T~r(~p), (4.21)

where J , the Jacobian matrix, is defined as the partial derivative of the
residual in each parameter:

J(~p) =


∂r1
∂L

∂r1
∂h1

. . . ∂r1
∂hB

...
...

. . .
...

∂rD
∂L

∂rD
∂h1

. . . ∂rD
∂hB

 . (4.22)

As the target ~T is constant and the error term e can be assumed to be inde-
pendent, the partial derivatives of the residual are simply the partial deriva-
tives of the transformation model t̂, and have the following form (derivative
of a quotient):

∂~r

∂~p
=
∂t̂

∂~p
=

∂top
∂~p bot− top∂bot

∂~p

bot2 , (4.23)

given subexpressions for the top and bottom:

top =

B∑
j=1

2hj ·Bls

(
j

BL

) ∑
k∈k(j)

z

L
· |Xk|, (4.24)

bot =

B∑
j=1

2hj ·Bls

(
j

BL

) ∑
k∈k(j)

|Xk|. (4.25)
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A subexpression is defined for the summation over each band:

bandj =
∑
k∈k(j)

z

L
· |Xk|. (4.26)

This gives the following partial derivatives for L:

∂bandj
∂L

=
∑
k∈k(j)

(
∂z

∂L
· 1

L
− z

L2

)
· |Xk|, (4.27)

∂top

∂L
=

B∑
j=1

2hj ·
[
Bls′

(
j

BL

)
· −j
BL2

· bandj+

Bls

(
j

BL

)
· ∂bandj

∂L

]
,

(4.28)

where:
Bls′α(x) = −α · S(α(x− 1)) · (1− S(α(x− 1))). (4.29)

The bottom expression is similar to the top, but simpler (since there is no
scaling term in L):

∂bot

∂L
=

B∑
j=1

2hj ·Bls′
(

j

BL

)
· −j
BL2

· bandj , (4.30)

and the following partial derivatives in terms of the log-gains hj :

∂top

∂hj
= 2hj ln 2 ·Bls

(
j

BL

) ∑
k∈k(j)

(
∂z

∂hj
· 1

L

)
· |Xk|, (4.31)

∂bot

∂hj
= 2hj ln 2 ·Bls

(
j

BL

) ∑
k∈k(j)

|Xk|. (4.32)

Some additional complications are necessary if the partial derivatives are to
be computed exactly. For example, the dependencies introduced by partial
derivatives of z ( ∂z∂L in Eq. 4.27, ∂z

∂hj
in Eq. 4.31) are complex indeed (due

to the recursive nature of the spectral moments).

The partial derivatives for general central moments of the form:

mcent(k, µ, σ) =
(k − µ)a

σn
, (4.33)
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including variance, skewness, and kurtosis, with respect to a parameter p
are as follows:

∂mcent

∂p
=

1

σ2n

[
−a(k − µ)a−1σn

∂µ

∂p
− nσn−1 (k − µ)a

∂σ

∂p

]
. (4.34)

The partial derivatives of µ and σ are the same as must be computed for
the top-level partial derivatives (Eq. 4.23):

∂µ

∂p
=
∂t̂mean

∂p
,

∂σ

∂p
=
∂t̂std
∂p

. (4.35)

For the partial derivative with respect to the standard deviation, a square
root must be added:

∂t̂std
∂p

=
∂
√
tvar

∂p
=
∂t̂var

∂p
· 1

2
√
t̂var

. (4.36)

4.6 Numerical Search

Many optimization methods assume f is smooth, and use its derivatives
to navigate around the space. Once a search direction is chosen, several
function evaluations are done at different distances in a process known as
line search. In most cases the search direction should be a descent direction,
i.e. a direction in which the function is decreasing.

For simplicity of development, we have used the normalized gradient descent
with backtracking, with the normalized gradient descent itself as our search
direction.

As our error surface is likely non-convex (and thus has local minima) the
iterated line search will only return one of several local minima. To get
around this problem, we can start the search in different places to sample
different local minima, known as randomized gradient descent.

4.6.1 Penalty Terms (Regularization)

To encourage less extreme parameter transformations when possible,
penalty terms were added to the objective function f (Eq. 4.19). For the
log-gains, the following penalty was used (penalizing gains away from unity):

feq(~h) = κeq

B∑
j=1

h2
j ,

∂feq

∂hj
= 2 · κeq

B∑
j=1

hj , (4.37)
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and for the resampling parameter L, the following penalty was used:

fr(L) = κr[max(L, 1/L)]2,
∂fr

∂L
= 2 · κr max(L, 1/L). (4.38)

The ability to favor certain areas of the parameter space, is an advantage
in flexibility afforded by control using predictive models.

4.7 Basic Experiments

4.7.1 Development Database

A small database of 10 sounds of different types of audio signals was as-
sembled, in order to test the predictors and basic optimization tests. The
sounds were collected from Freesound [Music Technology Group, 2005] and
included speech (adult, baby), sounds (dishes, mouth pop), musical instru-
ments (harmonica, gong), several synthetic electronic beats, and environ-
mental noise.

A minority of the sounds were less than one second long, and longer sounds
were truncated to that duration for the experiments. The input sounds
were analyzed with a number of spectral moments, and some miscellaneous
descriptors including zero crossing and power related descriptors.

4.7.2 Predictors

In the first experiment we attempted to predict a variety of simple time and
Fourier domain descriptors under either resampling or bandpass filtering.
Results are described in Figure 4.4.

4.7.3 Transformation by Descriptor

To test prediction and target-based optimization end-to-end, we used each
of the sounds as an input sound, and likewise each of the sounds as a target,
using the extracted spectral centroid and standard deviation, for a total of
10x10 trials, including the identity trials (serving as a sanity check). Free
parameters for the experiment included constants for the parameter penalty
terms, choice of sigmoid steepness α, and parameters of randomized line
search (trials, starting distribution, step size, contraction rate, etc), all of
which were chosen by hand.

Once parameters are chosen for each set of targets, the input sounds were
transformed according to those parameters. Then, the descriptors of the
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Figure 4.4: A sound is resampled at different rates, and descriptors such as spec-
tral mean, variance, skewness, kurtosis, power, temporal centroid, etc are predicted
given the input descriptors and the resampling rate L. Error is given as relative
error (deviation from actual value / actual value) in the log domain. At L = 1 we
have the identity transformation, thus no error in prediction.

transformed sound were measured, and compared with the original target
descriptors. Figure 4.5 shows a set of input trials against a particular target.

As introduced in the previous chapter (Section 3.8, p. 39) this experiment
yields at least two forms of error, the model error, consisting of the vector
from the target after model optimization, which can explain the difficulty
of search in the model error space, or the adequacy of a particular search
method; and the empirical error, the vector from the model to the trans-
formed sound, which can explain potential errors of the model in describing
the real transformation in descriptor space.

The targets of the control experiment consisted of spectral centroid and std.
deviation, for which numerical results are reported below. Shortly after the
results below, using formulations in 4.5.1, a larger set of spectral moments
were also used as target in a more general spectral moment pursuit.



60 control of sound transformations by target descriptors

target

4

0

0.5
1

4

-100

-50
0 L=0.4,   dB=-17 1 1 8 10 -3 3 -1 -2 -3 -1 3 -2 7 -1 -2

4

-100

-50
0 L=1.0,   dB=2 0 1 -1 -1 1 -0 0 -1 -0 -1 1 -3 1 -0 2

4

-100

-50
0 L=0.9,   dB=-28 -8 -4 -0 -1 3 4 24 9 2 4 -1 -2 -2 -0 -1

4

-100

-50
0 L=0.2,   dB=-22 10 15 -0 -3 -0 4 -2 -3 0 -1 -3 5 2 -3 1

4

-100

-50
0 L=0.1,   dB=-5 2 1 -2 -3 1 -2 1 6 3 -1 5 -3 -3 -1 0

4

-100

-50
0 L=0.8,   dB=-17 -5 -1 2 0 3 16 2 -2 0 -1 -2 -2 1 2 3

4

-100

-50
0 L=0.3,   dB=-15 -2 5 5 -2 7 2 -1 7 -2 -3 -1 -1 6 -4 -3

4

-100

-50
0 L=0.4,   dB=-9 -2 -1 4 1 2 -1 0 -4 -2 1 -4 6 7 -3 5

4

-100

-50
0 L=0.5,   dB=-19 -8 -0 5 8 11 1 -4 -1 3 -1 4 4 4 -4 -3

0 0.5 1 1.5 2       x 104
-100

-50
0 L=0.3,   dB=-10 -3 8 -1 4 -4 6 3 -1 8 -5 0 2 -0 -6 -2

input model trans

Figure 4.5: One of the targets from the preliminary transformation experiment.
10 input sounds are transformed to match a target, shown in the first row. Each
bar represents a descriptor vector, where the left notch is the centroid in Hz,
and the length is the std. dev. Descriptors for input sound are shown in the
dotted bars, optimized model descriptors in the dashed bars, and descriptors after
transformation in solid bars, against the transformed magnitude spectra in dB,
with the transformation parameters L and hj (in dB) overlaid on the sound.

4.8 Preliminary Results

In developing our models of resampling and equalization, the accuracy of
the predictive models were tested, starting over one sound, then generalizing
to our small 10 sound database. A range of parameters for the resampling
model was tested over a set of descriptors to fair accuracy (around 10%),
as shown by Figure 4.4.

On the same set of sounds used as targets to each of the input sounds, we
optimized the transformation parameters to an average of±45 Hz (deviation
in spectral centroid and spectral std. deviation) in terms of the model.
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When these parameters were actually used for transformation and testing,
we got an average of about ±190 Hz in spectral centroid and ±140 Hz in
standard deviation. (This is a strictly numerical error and should probably
be supplemented by perceptual measures in the future).

4.8.1 Optimization Efficiency

Simple penalty terms added to the model made the search take longer, but
returned solutions with less extreme parameters. These added two more
free parameters to the optimization, effectively creating a trade-off between
squared residual error, eq. sharpness, and potential resampling rates.

4.8.2 Qualitative Analysis

After the optimization experiment, the investigator listened to the groups
of transformed sounds to qualitatively evaluate the basic rendered result.

By listening within an input sound group, one gets an idea of the range
of transformation, as a sound is transformed to hit different targets; and
within a target group, one sees how different input sounds are transformed
to hit the same target. An impression of similarity within the same target
was present but not predominant. This would be due to many variations
in the sounds not described by the two dimensions of spectral centroid
and standard deviation, which only give the rough shape of the spectral
distribution of a sound.

One hopes that by adding other descriptors to the target, other spectral
shape coefficients, temporal shape coefficients (along with transformations
that affect them), and particularly descriptors that are strongly perceptually
grounded, that the future synthesis results will be stronger for within-target
similarity.

What can be confirmed from listening is this: that combining transforma-
tions along with penalty terms (Sec. 4.6.1) can produce cooperation among
them in reaching a target. Using either resampling or equalization, there
are more direct and efficient ways to make an input sound more like a tar-
get. For example, by computing the spectral envelope of a target, and then
adjusting the gains of the input directly to have the same envelope. But this
solution can be characterized by its severity of transformation, and its brit-
tleness to subsequent transformations, that may destroy the correspondence
with the direct target.
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4.9 Further Discussion

Numerical optimization as a solution for this type of problem, when we
wish to learn a function from descriptors to parameters or vice versa, has
a disadvantage in terms of increased computational effort, as well as sensi-
tivity to the algorithm parameters and the shape of the objective function.
The complexity of formulating and computing derivatives is an additional
complication in the particular approach of gradient-based optimization.

However, in general, the use of predictive models for control of sound trans-
formations enables a potentially freer choice of effects and descriptors to be
coordinated together, versus control based on specific parameter mappings.

4.10 Future Work

The experiments of this chapter have shown that effective, coordinated con-
trol of multiple effects is possible, as long as there exist predictive models
linking the input descriptors with the output and target descriptors.

In order to build maximally flexible transformation systems, predictive mod-
els linking a gamut of general interest effects and descriptors are needed.
Building analytic predictive models, as explored in this chapter, is one ap-
proach.

Another approach, learning predictive models from data, is perhaps even
more attractive, mainly because it does not require the mathematical anal-
ysis that the first approach requires. This second approach is explored in
the following chapter.
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Chapter 5

Learning Predictive Models
of Sound Transformations

using Support Vector Regression

This chapter covers the learning experiment and evaluation reported previ-
ously in “Predicting Transformed Audio Descriptors: A System Design and
Evaluation” [Coleman and Villavicencio, 2010]. The previous paper is re-
vised and expanded, and an additional section about new proposed methods
is added.

5.1 Abstract

Predictive models (of the form of Sec. 3.3), which predict changes to per-
ceptually relevant properties of transformed sounds, can be used to enable
descriptor-driven control of sound transformations (as shown in the pre-
vious chapter). But rather than deriving these models mathematically, it
should be possible to learn these models from data. This chapter docu-
ments such an attempt. In this study, spectral descriptors of a limited class
of sounds under the resampling transformation were modeled with Support
Vector Regression (SVR). The accuracy of the predictions is reported, with
an emphasis on performance as a function of model hyperparameters. On a
cross validation set of resampled inputs, the statistical model predicted an
output filter bank to some degree, yet was less accurate than a comparable
analytically derived model.

63
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5.2 Introduction

Descriptor-driven control is a strategy that can be applied to sound synthesis
as well as to transformations (sound effects), wherein parameters for the
effects are selected that steer the output towards desired target descriptors.

Several works [Hoffman and Cook, 2007; Yee-King and Roth, 2008] (also
mentioned in Sec. 2.2.1.1) in control of parametric synthesis by descriptors
have focused on the optimization of parameters, using a trial and error ap-
proach. This involves an audio synthesis/transformation followed by analy-
sis of the result directly in the search loop, which may require considerable
computational resources.

By modeling relationships between parameters and descriptors, the need to
synthesize/transform candidate parameters can be avoided. A type of model
that we refer to as “predictive” predicts output descriptors with respect to
input parameters. For example, the system of [Caetano and Rodet, 2009]
uses evolutionary search to find a path of spectral envelopes that is smooth
in terms of spectral moments, and can be seen as employing predictive
models. A second type of “selective” model maps target descriptors directly
to control parameters. For example, in the system of [Groux and Verschure,
2008] target descriptors fundamental frequency and loudness are mapped
to control parameters of an additive synthesizer using SVR machines. This
work deals with predictive rather than selective models (for explanations of
model types, see Ch. 3).

As shown in Chapter 4, given a predictive model of a transformation, nu-
merical programming techniques can be used to find acceptable parameters
for descriptor based control. If an analytical predictive model can be de-
rived for our transformation, then the model can be used for such a purpose.
However, if such a model would be too complex to derive, another solution
would be to learn a statistical model from examples, which is the focus of
the experiment of this chapter.

Therefore, it is proposed to predict descriptors of the outputs of audio trans-
formations as a function of their input descriptors and control parameters,
or f( ~din, ~p) = ~dtr, with ~din, the input descriptor vector, ~p the parameter
vector, and ~dtr the output descriptor vector (as discussed in Sec. 3.3).

In this work, the resampling transformation was modeled as a statistical
black box, from input and output descriptors and the transformation pa-
rameter. To this end, a database of signals with certain characteristics
(noisy, stationary, completely described by spectral features) was generated,
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and modeled with Support Vector Regression, after which the accuracy of
the predictions was measured.

This chapter is structured as follows; in Section 5.3, the objects being mod-
eled and the modeling tools are presented. In Section 5.4, the specific ex-
perimental procedure is described. In Section 5.5, the results are reported
and discussed, examining the effects of model hyperparameters on the pre-
dictions and their accuracies. In Section 5.6, conclusions for this study
are given, and in Section 5.7, an alternate approach to learning predictive
models is proposed for future experiments.

5.3 SVR Prediction of Descriptors

5.3.1 Average Magnitude of Bands (AMB)

As descriptors, a rough measure of the spectrum obtained by averaging the
magnitude values from a set of DFT bins is used. This simple measure was
used, partly to be able to compare learned models with an analytic model,
based on the known changes to the resampled spectrum (see next section).

The descriptor for the jth frequency band is as follows:

AvgMagBand(j) =
1

]Kj

∑
k∈Kj

|Xk|, (5.1)

where Kj is the set of DFT bins for band j, ]Kj is the number of such bins,
defined over frequency bands j = 1...B.

These descriptors are linear with respect to gain (which facilitates the an-
alytic model of Sec. 5.3.2.1), and should be adequate for describing noisy
signals. Like the spectral moment descriptors (used in Ch. 4), they are sums
of spectral magnitudes, but they are not normalized as moments are, and
are local, rather than global spectral features.

In this chapter, they are reported in units of nAMB, normalized by the
maximum band value (7.30×10−3 AMB) in the input database.

5.3.2 Resampling Transformation

Resampling is a frequently used audio transformation in which the signal
speed is adjusted by a length factor L (relative to a fixed sampling rate).
This also scales the frequency content, changing the pitch by − log2 L oc-
taves.
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input output, L=2

output, L=0.5

Figure 5.1: Predicting the descriptors of single resampled frames.

Changes brought about by resampling are deterministic and known [Smith,
2002, 2007], but are nonlinear in terms of the parameter with respect to
a filter bank representation, making resampling an interesting test case for
statistical learning.

A typical descriptor extraction process divides an input signal into uniform-
size analysis frames (overlapping or non-overlapping). Resampling changes
the length of its input, and as such, either the number or spacing of frames
in analysis must change, i.e. under a fixed analysis frame rate, there will
be different numbers of input and output frames. Hence, input and output
frames can no longer be directly compared.

One approach to predicting descriptors under varying length would be to
restrict the input to single centered frames, and the resampling factor L
from 0.5 to 2. In that case, part of the input frame content might not be
present in the output frame, or vice versa (as shown in Figure 5.1). Another
approach is to predict descriptors of frames in aggregate (e.g. mean) rather
than for each frame (shown in Figure 5.2). This is the approach chosen for
this study; input sounds are stationary and mean output descriptors are
predicted from mean input descriptors.
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Figure 5.2: Predicting the mean descriptors of resampled frames.

5.3.2.1 Analytic Model

An analytic model for resampling (for comparing with learned models) can
be derived based on the observation that resampling is equivalent to spectral
interpolation [Smith, 2007]:

f( ~fbin, L) = Lα · INTERP( ~fbin, L) (5.2)

and gains per band are scaled according to the change in length, and α is a
constant that minimizes error on the training database (α ≈ 0.5). However,
the ratio of mean output to mean input seems to vary quite a bit by L and
instance (between 0.8 and 1.4), so this could be improved.

5.3.3 SVRs for Descriptor Prediction

Support Vector Machines are a supervised learning technique frequently
used for classification, and their extension to learning real-valued functions
is known as Support Vector Regression (SVR) [Vapnik et al., 1996; Smola
and Schölkopf, 2003]. Both techniques rely on a formulation of linear regres-
sion generalized by a mapping into a higher dimensional space (the kernel
trick), which allows for nonlinear decision boundaries and regression func-
tions. A model is selected by solving a quadratic programming problem
intended to minimize the complexity of the model, in order to counteract
overfitting.

The approach of this study was to pick one class of general models and
tune it as well as possible, in order to estimate the potential benefit of
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such an approach in applications. SVR machines were picked because they
performed well in initial informal tests on the database.

SVR models have the following functional form [—, 2003]:

f(x) =

l∑
i=1

(αi − α∗i )k(xi, x) + b, (5.3)

where x is the query point, xi is the ith input pattern, k is the kernel function
providing the potential nonlinearity to the model, αi and α∗i are positive
and negative weights for that input pattern, and b is a bias term computed
once the weights are already established.

In order to train a given model, a subset of the input patterns, known as
support vectors, are selected and weighted by an optimization process. This
process has two objectives, one being that all the predicted output labels
should be within a certain error threshold ε of the true output labels (if
possible), the other being that the function be as simple (in a particular
sense) as possible.

In the simplified, explanatory case in which models are linear functions of
the form f(x) = 〈w, x〉 + b, this optimization has the following form [—,
2003]:

min
w

1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i ),

such that


yi − 〈w, xi〉 − b ≤ ε+ ξi

〈w, xi〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(5.4)

in which ξi and ξ∗i are “slack variables” that account for deviations of the
prediction outside of the error threshold, and C is a complexity parameter
that measures the trade-off between those deviations and the measure of
complexity ‖w‖2 of the function.

For the nonlinear case, there are additional complexities, e.g. the optimiza-
tion problem is not typically solved in the form above, but in some other
form, the “dual form”, characterized by an implicit representation of the
regression function (as a sum of kernels) and its optimization in terms of
the input pattern weights (αi and α∗i , as seen in Eq. 5.3), rather than a
parameteric representation of the function itself. For a full explanation, see
[Smola and Schölkopf, 2003].
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As suggested in a practical guide to SVMs [Hsu et al., 2003], the Radial
Basis Function (RBF) kernel was used. This kernel maps examples to a
space corresponding to their distance from the support vectors, having the
following form [—, 2003]:

k(x, y) = e−γ‖x−y‖
2
. (5.5)

Finding an optimal model with SVRs typically consists in training models
on the training data, and cross-validating them on other unseen data, in
search for the best hyperparameters (parameters of the class of models),
e.g. using a grid search. Besides the training size, which is an implicit
(and important) hyperparameter, there are three hyperparameters that can
affect the model performance. C, the complexity parameter, determines
the tradeoff between models that fit the data closely and flatter models
(hyperplanes closer to zero). ε (precision), determines the width of the
insensitive-tube in the error function, and informs the model which scale
details are significant to model (although some regression machines use other
formulations of precision). The optimal value of this parameter should be
related to the inherent noise level in the data [Smola et al., 1998] (and thus
sensitive to the scale of the labels).

Finally, any kernel hyperparameters must be optimized as well; in this case
γ, the radius of the RBF kernel (a spherical Gaussian function), which
determines the selectivity of the model; how many of the support vectors
are used to determine the label of the query instance.

Predicting vectors of descriptors (as should the predictive models of this
study) entails predicting output descriptors for all filter bands. There ex-
ist formulations of SVRs for the vector-valued case [Brudnak, 2006], but
implementations are not widespread. Fortunately, aggregating single SVRs
for each output are equivalent under some criteria and have been reported
to give similar performance [Brudnak, 2006].

One more thing should be clear about the approach: it involved conca-
tentating the two arguments, ~din, the input descriptor vector, and ~p, the
parameter vector (in this case, just a single parameter) in order to com-
prise input patterns for the learning algorithm. This could be described
as a homogeneous approach, as parameters ~p and input descriptors ~din are
treated in the same manner by the learning procedure (even though there
are many pragmatic differences in audio processing, between descriptions
of input signals and control signals). Perhaps it was a natural approach
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to learning generic functions with statistical learning methods, but in an
upcoming section (Sec. 5.7), potential disadvantages to the homogeneous
scheme are examined, and alternate approaches proposed.

5.4 Experimental Procedure

First, a database of 400 input sounds was generated by taking uniform white
noise samples of 0.5 seconds each (at 44.1k sampling rate) and filtering them
by a spectral distribution (see Figure 5.3) described by a (bell-shaped) Hann
window surrounded by stop regions a) covering a certain width of frequency
from 5% to 90% (20 values) b) with the non-stop section shifted to different
positions, from hard left to hard right (20 values). Once generated, input
sounds were randomly partitioned into two sets, a training set and a cross
validation set (cross) with an 80% training split.

The training and cross sets are separated by input sounds, in order that
queries are over new sounds (other than sounds in the training set) in the
test condition. In this way, generalization over new input sounds is being
tested by this evaluation.

5.4.1 Learning Database

Next, each input sound was resampled under different resampling factors L,
according to a uniformly-spaced grid of parameters with 41 values of log2L
i.e. (−1,−.95, .., 0, .., .95, 1) or between 0.5 and 2 in terms of L. From each
of the input and output sounds the magnitude spectrum of all frames was
averaged, dropping silent frames at the edges, using an Hann window of
2048 points, an overlap factor of 2, and a zero-padding factor of 4. Then,
from each time-averaged spectrum, a magnitude average was taken over 16
uniformly-spaced (in Hz) frequency bands. These features were exported as
training and test databases to the Weka ARFF format [Garner, 1995] for
the learning tasks: to build and to evaluate LibSVM models [Chang and
Lin, 2011].

To summarize, there were two databases, train and cross, which consisted
of 320 and 80 input sounds. Each input sound had 41 corresponding output
sounds, each of which described by a transformation parameter − log2 L, an
input envelope of 16 bands, and an output envelope of 16 bands. In total,
the data consisted of 541,200 real numbers, which should sum to 2 MB
when represented in 32-bit floating point precision, although the Matlab
data file (containing additional features such as MFCCs) was 89.9 MB, and
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Figure 5.3: Generated noise envelopes for input sounds for two different spectral
widths.

the ARFF format database (containing just the filter bank representation)
was 15.5 MB due to the text format.

5.4.2 Selection of Model Hyperparameters

Model hyperparameters were evaluated by exhaustive search over a coarse
grid, by testing the trained model against the cross validation set. For
simplicity, all features were used as inputs, and a global set of model hyper-
parameters was used, although it might give better performance to different
model parameters for each band.

Due to the nature of the resampling function, in which input energy ends up
in different output bands depending on the parameter L, it was thought that
eliminating certain input descriptors would be counterproductive; although
perhaps feature transformation would have helped.

A grid of parameters (such as in Figure 5.4) for training size, C, ε, and
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γ was iterated over. For each set of model parameters, the corresponding
predictions on the cross validation examples, and a subset of the training
examples were stored. Once generated, the predictions were compared with
the actual transformed descriptors in order to generate error statistics. The
performance of models was described, and the selection between models
made, in terms of the mean of absolute residual (|r|) over all bands.

5.5 Results

The results here reported were not on a true test set, but rather on a simple
cross-validation, as they result from using the cross validation set to select
a model (by tuning hyperparameters). For complete generalization, the test
set would not be used for model selection, but would be a new third dataset.

For the model with best performance, the transformed descriptors of the
cross validation set were predicted with a mean residual per band of 0.0326
nAMB which is around 16.2% of the mean output value (0.206 nAMB). This
performance was achieved using a training set of 12k input-param-output
tuples, complexity C of 3.162, kernel γ of 4.642, and a model precision ε
of 1×10−6. By contrast, the analytic model in Section 5.3.2.1 achieves an
average residual per band of 0.0103 nAMB, which is around 5.14% of the
mean output value.

At first, the importance of the ε parameter was overlooked, causing the
model to fail to attend to the finer details of the regression. Using typical
values of the other parameters we found a more suitable value that improved
the performance by an order of magnitude (effect shown in Figure 5.8).
(Normalizing the output data, as is often recommended, would have also
had the same effect as fixing this parameter).

Next, a broad search for the other parameters with a smaller-than-maximum
training size was conducted. As SVM training time is seemed to be
quadratic with regards to training size, this allowed searching a large hy-
perparameter grid in a reasonable amount of time, after which a small local
grid search was performed on the larger training size.

Figure 5.4 depicts the major trends in the coarse grid search. A roughly
paraboloid shape can be seen, as well as a trend pointing towards greater γ
and lesser C in on the test set. For this training size, it appears that the best
solutions could be found in log10 γ: [0, 2], log10C: [-3, 0], or overlapping
with the corner facing us in the figure (region partially shown).
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Figure 5.4: Coarse grid search (small training size) over γ and C hyperparameters

Along an axis of constant C, we see individual minima with respect to γ
that shift slightly according to C. In the formulation of the RBF kernel used
(Eq. 5.5), γ is inverse to the radial distance of the kernel, so that smaller
γ means a less exclusive kernel that covers many of the training examples
and that larger γ means a more exclusive kernel that covers only a few close
training examples.

By contrast, the trend with respect to C is more subtle and more sensitive
to the other parameters such as γ. Nonetheless, when C is less than the
optimal value it corresponds to underfitting the data, and when C is greater
than the optimal value it correspond to overfitting the data. C seems to be
sensitive to the training size, while the optimal value of γ seems less so.

Looking at optimal hyperparameter values for different training sizes (in
Table 5.1), it can be seen that optimal value of γ is relatively stable with
changing training size. By contrast, the optimal value of C increases with
the increase in training size (more data allows a more complex and less
smooth model).

To see if there was sufficient data for learning to converge, the performance
on the cross validation and training sets with respect to the amount of
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trainsize best (|r| nAMB) best γ best C
12000 0.0326 4.6 3.16
8000 0.0369 4.6 1
4000 0.0460 4.6 0.316
2000 0.0594 3.59 -1∗

Table 5.1: Optimal values of γ and C for different training sizes.
∗Minimum for coarse grid was on edge, hence may not be optimum.
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Figure 5.5: System performance with respect to training size, on training data
(green) and cross-validation data (blue).

training data was examined, given in Figure 5.5. The performance on the
cross-validation set does not completely flatten out, but as training data
increases, cross performance approaches training performance quite closely.

5.5.1 On the Model Hyperparameters

In the following section, the effect of each model parameters on the vector-
valued prediction result is illustrated, showing how changes in those pa-
rameters affect the predictions produced. This is illustrated with triads of
plots: the true values after transformation, a predictive model with subop-
timal parameters (we attend to this to see the effect of the parameters), and
a model with “good” parameters. In each plot, the colored lines show the
descriptor vector (filter bank) at different values of the resampling parame-
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Figure 5.6: Comparison of instance predictions with regard to training size; cross-
validation observations of a particular input sound (top) at different resampling
rates (by color), versus predictions using a small training size (middle), and with
the largest training size (bottom).

ter between 0.5 and 2. The bold line is the transformation with resampling
factor L=1, also equivalent to the input.

Training Size For an insufficient training size, it seems that test examples
don’t converge, i.e. there are insufficient training patterns within the neigh-
borhood of the RBF kernel for a particular query point, so the regression
does not reach the level of the true function. See Figure 5.6 (middle plot
shows small training size).

γ (Gaussian kernel inverse width) As stated earlier, small γ means large
promiscuous kernel (many training patterns are active for a query pattern)
and large γ means a small and selective kernel (few training patterns are
active for a query pattern). As such, overly small γ will result in overly
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smooth approximations. By contrast, an overly large and selective γ will
result in not enough training patterns for a query, so some examples will fail
to converge. See Figure 5.7 (middle plot shows overly smooth approximation
caused by too small γ).
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Figure 5.7: Comparison of instance predictions with regard to γ; cross-validation
observations of a particular input sound (top) at different resampling rates (by
color), versus predictions using non-optimal γ (middle), and with the optimal γ
(bottom).

ε (Precision) controls the width of insensitive-tube for the error function.
Thus, if it is too large, the regression will ignore the smaller details in
the target function. By contrast, if it is too small, it will expend lots of
computational effort overfitting to noise. See Figure 5.8 (bottom plot shows
predictions with overly large ε, which fails to attend to details of the target
function).

C (Complexity) controls the trade-off between overall fitness of the regres-
sion and flatness of the model. In the example given, the regression doesn’t



5.5. results 77

0 2 4 6 8 10 12 14 16
0

0.5

1

trans. observations for instance 30, varyingε

nA
M

B

0 2 4 6 8 10 12 14 16
0

0.5

1

cross predictions, γ=4.64159, C=3.16228, ts=12000, ε=1e−006

nA
M

B

0 2 4 6 8 10 12 14 16
0

0.5

1

cross predictions, γ=4.64159, C=3.16228, ts=12000, ε=0.001

nA
M

B

0.5
0.555
0.616
0.683
0.758
0.841
0.933
1
1.04
1.15
1.27
1.41
1.57
1.74
1.93

output band index

Figure 5.8: Comparison of instance predictions with regard to ε; cross-validation
observations of a particular input sound (top) at different resampling rates (by
color), versus predictions using optimal ε (middle), and with a non-optimal ε (bot-
tom).

completely converge, but we see that when C is less than optimal, the re-
gression stays lower than the target function. See Figure 5.9 (middle plot
shows predictions with too small C).

5.5.2 Distribution of Test Error

By Input Sample In the discussions of model parameters in the previ-
ous section, (Section 5.5.1), it can be seen that despite hyperparameter
optimization, some of the cross-validation instances did not seem to “con-
verge”. By averaging performance for each of the test input sounds, it can
be shown that different inputs have vastly different average performance.
Examining the sorted performance curve (see Figure 5.10) shows two sub-
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Figure 5.9: Comparison of instance predictions with regard to C; cross-validation
observations of a particular input sound (top) at different resampling rates (by
color), versus predictions using non-optimal C (middle), and with a optimal C
(bottom).

sets of cross-validation input sounds with respect to performance divided by
an inflection point: examples 1-25 (the first 30%) contribute more average
error and error variance, while a broad section of about 70% of examples
has lower and relatively uniform errors. These examples seem not to con-
verge (not yet known why), and contribute a proportionally higher amount
of error to the approximation (that perhaps merits further investigation).

By Transformation Parameter (L) The average performance by resam-
pling parameter value is examined (see Figure 5.11), and is relatively flat
(varies between 0.027 and 0.041 nAMB) compared to the difference among
cross input sounds as above. This could be because the training database
had an equal amount of examples for each parameter value (cross distribu-
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(green) and sorted by error (blue).

tion equal to training distribution).

5.6 Conclusions

In the experiments of this chapter, a statistical model learned from data
produced by the transformation (as a black box), was able to achieve an
error rate within a factor 3 of an analytic model, informed by knowledge of
the transformation. This result suggests, at least as a proof-of-concept, that
statistical models may be used to build predictive models of transformations
without resorting to the compexity of deriving those models analytically (as
in the previous chapter).

The model selection procedure, mainly tuning of the hyperparameters, was
documented, allowing common failure modes of SVR models in terms of
hyperparameters to be examined. Hopefully, such experience will assist in
developing future statistical predictive models.

The accuracy of the statistical model compared to the simple analytic model
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Figure 5.11: Average cross-validation error by transformation parameter (unnor-
malized units).

was somewhat disappointing, given several factors: the size of the database
and the time taken to train and tune the larger models (around 1 day on
the personal computer used), and the additional effort needed to pool the
output predictions from the scalar-valued models.

The final models, which used a significant number of the input patterns/
support vectors, and had to duplicate input patterns, due to the pooling of
scalar-valued model outputs, were unwieldy. Their hypothetical cost would
also include that in parameter optimization in computing model gradients,
as in the previous chapter, if these models were to be used for automatic
control.

Given that a maximally general approach was used, based on smooth regres-
sion (approaches that are typically subject to the curse of dimensionality,
see Appendix C.1), perhaps the dimensionality of the input space makes
the problem too difficult. As the curse of dimensionality predicts that the
number of examples needed scales exponentially with the number of input
dimensions, perhaps there were not enough training examples to guarantee
better than the lackluster performance seen.

The author believes that, perhaps by a more specific approach, incorporat-
ing more assumptions relevant to audio transformations (but still applying
to subclasses of effects), that more accurate models should hopefully be
attainable with smaller training sets and small model sizes.
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5.7 Learning Sparse Linear Models of
Transformations: a proposed approach

To recap, in the learning experiment described in this chapter, predictive
models of a sound transformation, resampling (corresponding to pitch and
speed change), were learned using a general nonlinear statistical regression
method, Support Vector Regression (SVR) using Radial Basis Function
(RBF) kernels. To produce input labels for the statistical learning, the
input descriptors ~din and transformation parameter L were concatenated,
in what we call a homogeneous approach. A nonlinear model was needed
because the output descriptors, consisting of frequency filter banks, cannot
be described as a linear function with respect to the parameter L.

This SVR model was able to learn the concept to some degree, but the
accuracy of the model was significantly less than the derived model, despite
training on 12k examples and needing around a day to train. These are high
practical costs and relatively middling predictive power, stemming from the
use of this maximally general modeling approach. Alternatively, perhaps
it should be possible to use some assumptions relevant to audio effects in
order to reduce the complexity of the problem, and thereby learn models
with higher accuracy and less training examples.

Two properties of some audio transformations were not taken into account,
that might admit less complex models, and that might also be applicable
to a wide array of transformations, for example, spectral transformations.

The first property is linearity: there are transformations that are linear in
terms of the spectrum and power spectrum. For example, resampling (the
perennial effect of this thesis) can be shown to be linear with respect to the
input signal, by applying the Scaling Theorem for continuous signals (an
idealized model of resampling, earlier stated as Eq. 4.6, p. 49), along with
the definition of Scale, which yields:

Scaleλ(αx+ βy)←→ α|λ|Scale(1/λ)(X) + β|λ|Scale(1/λ)(Y ), (5.6)

where λ is the scaling parameter.

That is, given a set of input signals and output signals, resampled with a
fixed parameter λ, one could simulate a resampling transformation on any
new input signal that was a weighted sum of the input signals, simply by
weighting and summing the corresponding output signals using the same
input weights.
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Linearity with respect to input signals (for fixed transformation parameters)
should apply not only to resampling and frequency warping, but also to
other effects classes, such as reverbs and linear filters.

The linearity above applying to ideal scaling is exact, but an approximate
linearity with regard to a power spectral representations (in which phase is
discarded, similar to forthcoming in Section 6.3.3) could also be used.

This property alone should be enough to reduce the complexity of the statis-
tical learning task, because, instead of having approximate functions having
Din (number of input descriptors) + P (number of parameters) dimensions,
it should be possible to decompose the problem into a number of subprob-
lems (one for each input × output descriptor) where the input dimension
is only 1 + P . That is, with an effect that is linear in the input, it should
be possible to approximate independently, the individual responses to some
set of basis signals like Fourier basis, that can be used to describe any input
signal of interest.

The second property is sparsity: when a single input bin is active, the
number of active output bins is few, so that in the matrix describing the
function (in the case of a linear function) there are few non-zero entries.

Several examples can be shown where these properties could allow learning
models with low-complexity: two functions that are linear in the input, and
one that is non-linear in the input. In each case we illustrate a kind of linear
response (power response) to the various transformations, by showing the
output energy generated by a sinusoid at each input frequency.

Figure 5.12 shows this power response, computed for resampling with dif-
ferent parameters L, and composited. Figure 5.13 shows the high frequency
power response for L = 1.2, indicating some aliasing in the implementation.
This is a case in which a learned model could incorporate behavior not seen
in the simple analytical model of resampling, and thus be more accurate.

Figure 5.14 shows the power response for single-side band (SSB) modulation
(a modulation effect that shifts frequency content uniformly with respect to
a frequency shift parameter f ; see [Dutilleux and Zölzer, 2002a] for details)
at different frequency shifts.

Since these effects are just shifting around energy from the input in some
way, the power response here will be linear. The lines in the output spectrum
are wider than a single bin, probably due to spectral leakage in the frequency
analysis, not due to the transformations.
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Figure 5.12: Power response to a sinusoid with different resampling factors.

Next, an effect known to be non-linear in the input power spectrum can be
examined: using an exponential distortion effect [Bendiksen, 1997 as cited
by Dutilleux and Zölzer, 2002b]:

f(x) =
x

|x|

(
1− ex2/|x|

)
. (5.7)

Figure 5.15 shows the distortion effect with gain 1, showing just two promi-
nent odd harmonics. Figure 5.16 shows the distortion effect with gain 50,
showing many odd harmonics, and high frequency noise that looks harmon-
ically related due to the linear structures that seem to be present.

In the case of this distortion effect, the power response representation will
not capture second-order effects (when energy in two frequencies combine
nonlinearly), but perhaps it will be a good first approximation.

Of course, the representations shown are discrete representations, input bin
by output bin, but it should be possible to recover the (sparse and linear)
continuous structure present in those plots.

Perhaps the following two-stage approach, to learning models of transforma-
tions that are linear or non-linear with respect to their input power spectra,
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Figure 5.13: Power response for one resampling factor at higher frequencies,
showing aliasing.

can be used. In the first stage, the power spectral response is collected as
above, at all nonlinear parameters, including the input level, if the trans-
formation is nonlinear in the input.

In the second stage, this variation in power response with respect to the
non-linear parameters (and/or level) is modeled. At least two approaches
would be possible. One approach would be to recover the linear structures
that seem to be present, and build a sparse model consisting of weighted
lines. To detect the lines, one could interpret the power spectral response
as an image, and use the Hough transform [Duda and Hart, 1972]. Or, one
could threshold the data, use a clustering algorithm that detects separate
line segments [Thomas, 2011], and fit lines to the clusters as usual. Once
the lines are detected, the gain along the lines could be fit parametrically,
e.g. a piecewise linear function in input and output frequency.

Another approach would be to learn smooth nonlinear functions with two
frequency parameters (input and output) and the small set of nonlinear pa-
rameters (including level), e.g. with general nonlinear models, i.e. as before,
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Figure 5.14: Power response to a sinusoid with different single-sideband modu-
lation frequencies.

but with a much smaller input dimension.

Perhaps a third heterogeneous approach would be one with two stages. For
each different value of the fixed nonlinear parameters, a linear model can
be inferred. Then, a nonlinear mapping between the nonlinear parameters
and the linear models (matrices) can be found.

A general form of the heterogeneous approach, where linearity is expected
in the input parameters, could be written as follows:

fhet(~din, ~ptr) = M(~ptr)~din ≈ ~dtr. (5.8)

By choosing a specific nonlinear model for the matrix function M , for in-
stance a parametric model (rational functions) or a non-parametric model
(a sum of radial basis functions, or a hidden layer neural network), the
matrix function M could be trained with stochastic gradient descent, the
leading approach for training deep neural nets.

Yet another, more specific property that was not exploited in the case of
resampling, due to symmetry with respect to the transformation parameter
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Figure 5.15: Power response to exponential distortion at a low gain.
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Figure 5.16: Power response to exponential distortion at a high gain.
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L, is that the effect of transforming with larger magnitude parameters can
be broken down into iteration of smaller magnitude parameters. In the case
of continuous signals, this follows from the definition of the Scale function
(Eq. 4.6):

Scaleα·β,t(x) = Scaleα,t (Scaleβ,t(x)) = x

(
t

α · β

)
. (5.9)

This symmetry could be used to extend a predictive model trained on a
limited parameter set to a wider parameter set, or possibly to estimate
parameters for a predictive model on the limited from the wider.

Digital signals, however (as previously stated), represent a limited frequency
range, and bandlimited interpolation involves low-pass anti-aliasing filters.
Therefore, an iterative representation of resampling might overestimate the
low-pass effect of iterated anti-aliasing filters, for example. Even so, this
might be an additional way to improve the accuracy of the model relative
to the number of examples needed, for effects which can be represented
iteratively.

In any case, these approaches should decrease the number of input and
model parameters, which should theoretically allow for more accurate mod-
els with lower numbers of training examples. This is done by replacing
the raw input and output features, in which there is an inherent but un-
informative level variation, with power responses. This should allow the
relevant variation of the transformations, with respect to the input signals
and nonlinear parameters, to be captured with fewer examples.

Hopefully, future experiments can prove the utility of such approaches.
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Chapter 6

Creating Audio Mosaics with
Mixtures and Transformations

6.1 Abstract

In this chapter, I describe the main engineering artifact of this dissertation:
software that produces imitations of a target audio signal by transforming
and mixing source audio signals. These imitations are produced by gener-
ating controls for a sampling synthesizer, based on a joint analysis of the
target and source signals in descriptor space that takes into account the
transformation possibilities of the sources.

This joint analysis is computed using several new methods proposed in this
chapter. In each method, the output imitates the target signal so that it
is maximally similar to the target signal’s energy in perceptually motivated
filter banks over time, balanced against other criteria such as amount of
transformation and different aspects of continuity. Rather than choosing a
single transformed source unit to approximate each target unit, the meth-
ods of this chapter use mixtures, i.e. sums of pitch-shifted transpositions
of the source signals at different sampling positions, in order to better ap-
proximate the harmony and timbre (spectral characteristics represented by
filter banks) of the target signals. Further refinements to these methods im-
prove the preservation of source character, by favoring sampling of longer
continuous source extracts.

Some aspects of earlier versions of this system were previously described in
[Coleman et al., 2010] and [Coleman et al., 2011], but the solution methods

89
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have changed (moving to a greedy sparse approximation paradigm), leading
to improvements in efficiency and enabling (in a straightforward way) longer
continuous source extracts, as mentioned above. This chapter tries to make
the system description as complete and up-to-date as possible.

6.2 Introduction

Mosaicing synthesis, in which source sounds are transformed and compos-
ited to form an imitation of a target signal, is one possible approach to the
problem of audio texture transfer, i.e. how to map the impression of timbre
from a sound source or instrument onto an existing sonic or musical context.
With mosaicing, we can produce these target imitations, while creatively
recycling the source signals of our choice. In Chapter 2, State of the Art, a
detailed look at previous work in mosaicing is given.

Classical mosaicing methods generally worked by selecting sequences of in-
dividual source segments that best matched the target (along with other
criteria such as continuity and diversity), e.g. [Zils and Pachet, 2001]. How-
ever, in general, there might not be close matches for all target segments,
especially when the set of source segments is small. This might be especially
true for an audio texture transfer scenario with the following characteris-
tics: a large descriptor space, covering aspects of harmony and timbre; a
relatively small sample of source segments, covering only a small part of
the descriptor space. For example, if the source samples were instrumen-
tal, they might only cover a certain tonality (certain scales and only a few
chords) and certain timbres. The target will most probably fall in areas of
the descriptor space where there is no support in the sources.

To make an analogy between notated pitches and harmony descriptors,
consider the following scenario: the target is a segment with a simultaneous
A minor (a) triad, but source segments are single notes in a pentatonic scale
in B major. As given, no segments match well one-to-one from source to
target (see Figure 6.1).

There are two natural strategies to multiply the possibilities of expression
for a limited set of source segments. One is to support transforming seg-
ments (in this case, transposing them) so they can cover a wider set of the
descriptor space. The other is to allow mixtures of two or more segments.
From the analogy above, one sees how these strategies could work well to-
gether: we can take notes from the B major scale, and transpose them
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Mixture Mosaic Example
Graham







 
  

target s2s1 s5s4s3 s2↓m2s1↓M2 s3↑m2

Figure 6.1: A musical example illustrating transposition and mixtures. In the
first bar we have the target, a chord, and source notes s1-5. Although there are no
direct matches for the target chord, source notes s1-3 can be transposed by small
amounts (minor seconds, m2, or major seconds, M2; shown in second bar) and
mixed for a close match.

individually to nearby notes in the A minor triad, and mix them to make
the simultaneous triad.

If one allows mixtures, a sparse representation is preferred (i.e. using only
few active segments), rather than mixing most of all possible segments si-
multaneously with different weights. This is certainly possible, and even
partly works in the case of spectral methods like ours (creating an amusing
chorus effect). However, in the chorus of many segments, individual source
characteristics are lost. This is the main reason to prefer sparsity, i.e. for
clarity. Additionally, when large number of segments are mixed, many of
them will be similar; mixing similar segments also creates particular dis-
tortions, and violates our synthesis model (see Section 6.3.3). Finally, the
computational cost of transforming and sampling many segments at the
same time could be very expensive. Sparsity thus has a large practical
advantage, especially for interactive and real time applications.

We model a mosaic as a polyphonic sampling process: the mixed signal out-
put of a collection of sampling processes, called tracks in our application,
each track having an independent set of control parameters consisting of:
source position, tape speed, and gain. (The source material being sampled
might be monophonic, like a recording of a single violin, or polyphonic, like
that of an ensemble). At each instant, individual tracks can be created,
and existing tracks can be continued or destroyed; so that the duration of
individual tracks varies. In order to compute the sparse mosaics, we adapt
methods from a family of sparse approximation algorithms distinguished for
efficiency, the so-called “greedy” algorithms; and furthermore adopt addi-
tional heuristics to extend the tracks in time.

Because the track representation consists of groups of signal units (linear
chains of units in time belonging to a single track) rather than indepen-
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dent units, it could be considered an example of what is called “structured
sparsity” (e.g. [Bach et al., 2012]).

The proposed system is the first to integrate the following elements: a) ap-
propriate perceptual descriptors describing short-time harmony and timbre,
b) transforming source sounds, c) mixing those transformed sounds, with
d) variable-length sampling tracks that maintain the continuity of sampling
and transformation. This combination of elements (a-c) leads to a flexibility
of synthesis in the approximating the target, while preserving the character
of the source sounds (in particular, d). Processed mosaics produced by the
system, when compared to mosaics from other alternate mosaicing algo-
rithms, were competitive in quality, as judged by subjective listening tests
(see Chapter 7, Subjective Evaluation of Sound Mosaics using Listening
Tests).

This chapter proceeds with the following structure: first, we detail the
descriptors used to describe short-time sound segments in Section 6.3, Per-
ceptual Descriptors. In the next section, 6.4, An Objective Function for
Mixture Mosaics, we express our preferences for mosaics as a tradeoff be-
tween desired qualities such as similarity to the target signal, use of less
extreme transformation parameters, or the sparsity, in terms of using less
sampling tracks. These preferences take the form of an objective function.
Then, the methods are detailed in Section 6.5, Mosaicing Methods based
on Greedy Sparse Decompositions. After that, we can see properties of the
generated mosaics in Section 6.6. Finally, we will go over some alternate
approaches in Section 6.7, and conclude shortly thereafter.

6.3 Perceptual Descriptors

For controlling the proposed synthesis algorithms, we use certain descriptors
dealing with harmonic and timbric aspects of short time-slices of sound,
hereafter referred to as frames. In general, these descriptors are filter banks;
meaning that they separate an input signal into multiple components, in this
case, components of overlapping frequency ranges in the spectrum. But
rather than explicitly computing these signal components, we estimate the
energy of specific filter bands and collect them into descriptor vectors.

Of the two classes of filter banks we use, both are linear functions of the

short-time power spectrum, i.e. f(X) = M
(
|Xk|2

)
. That is, if x is a

windowed time-domain signal and X is its Fourier transform vector, we
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form the power spectrum,
(
|Xk|2

)
, by collecting the squared absolute value

entries of X at bins k corresponding to positive frequencies. Then each

filter bank can be computed by multiplying some matrix M with
(
|Xk|2

)
.

In the case of both filter banks, M is non-negative and sparse: the entries
of M are all ≥ 0, and for a given filter band, the contribution from most of
the frequency indices is zero.

The significance of using linear functions of the power spectrum will be
discussed in Section 6.3.3, following two subsections about the specific filter
banks.

6.3.1 Chroma Filter Bank

Chroma vectors, also known as Pitch Class Profiles (PCP), are a common
descriptor used for estimating musical harmony, first proposed by Fujishima
as a component of a chord recognition system [Fujishima, 1999]. A chroma
vector gives a rough picture of which musical pitches (without regard to
which octave) are present in a given segment. This idea is based on the
music theoretic idea of pitch classes; that musical notes of the chromatic
scale can be divided into equivalence classes of notes related to each other by
octaves. These descriptors are used in many retrieval systems; for example,
a music thumbnailing system that identifies song choruses [Bartsch and
Wakefield, 2001], a cover song identification system [Serrà et al., 2008],
and an interactive browser for selecting short-duration sounds to sample
[Coleman, 2007].

Several variants have been proposed. For example, the Harmonic Pitch
Class profile (HPCP) descriptor, proposed in [Gómez, 2006], uses the en-
ergy of estimated sinusoidal peaks (rather than the power spectrum) as
its basis. Additionally, several other strategies are applied to make the
harmonic description more accurate: such as using transient detection to
ignore noisy frames, estimating the fine-tuning of the reference frequency, a
spreading function that distributes energy to neighboring pitch classes (used
below), and a weighting function that distributes energy from sinusoids to
harmonically related pitch classes. Müller and Evert have also proposed a
number of variants [Müller and Ewert, 2011].

In general, it is possible to compute chroma at a resolution greater than
a single semitone, in order to capture the harmonic contour and effects in
greater detail. For most of our experiments, we used Bc = 36 chroma bands
(3 bands per semitone).
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We estimate the energy cb in the bth (of Bc) chroma band as:

cb(|X|2) = αc
∑
fk∈Fc

s(∆pm2(k, b)) |Xk|2 , b ∈ {0, . . . , Bc − 1}

where fk =
k

N
fs, k ∈

{
0, . . . ,

N

2

}
, Fc = [50, 4000] Hz

(6.1)

According to pattern, cb is a linear function of the power spectrum
(
|Xk|2

)
.

The main action of cb consists in the application of a spreading function s
(defined in Eq. 6.4) that distributes energy from each DFT bin k to each
chroma band b, and depends only on the pitch difference in semitones ∆pm2

between k and b. fk is the frequency in Hz of bin k with DFT size N , fs
is the sampling frequency, and Fc is the frequency range in Hz of bins that
contribute to chroma. αc is a scaling factor for the energy estimation, i.e. to
bring the total energy estimation in line with that of the mel-spaced filters.

To compute the spreading function s, we first compute the fractional pitch
classes, pbin(k) of a frequency bin k, and pband(c) of a chroma band b, where
the range [0, 1] represents the octave, and f0ref is the reference frequency
in Hz, i.e. the center frequency of the 0th chroma band:

pbin(k) = log2

fk
f0ref

mod 1, pband(b) =
b

Bc
. (6.2)

The relative pitch difference ∆pm2 between frequency bin k and chroma
band b is given in semitones:

∆pm2(k, b) = 12

(
pbin(k)− pband(b) mod

[
−1

2
,
1

2

])
, (6.3)

where x mod
[
−1

2 ,
1
2

]
= (x+ 1

2) mod 1− 1
2 .

For the spreading function s, a Hann window with a width w = 4
3 semitones

(1331
3 cents) is used [Gómez, 2006]:

s(∆pm2) =

{
cos2(π·∆pm2

w ) if −w2 ≥ ∆pm2 ≥ w
2 ,

0 otherwise.
(6.4)

As each frequency bin maps only to a few chroma bands, it is more conve-
nient to loop over the frequency bins and distribute energy to the affected
chroma bands. In this case, ∆pm2 is computed for the bands only implicitly,
by determining the affected central and neighbor chroma bands.
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6.3.2 Mel-spaced Filter Bank

While the first filter bank, the chroma filter bank, accounts for musically
relevant pitch, the second filter bank is intended to account for some aspect
of the timbre of the target sounds. Timbre is, by a traditional definition,
any other quality or attribute that can differ when pitch and loudness are
fixed [American Standards Association, 1951]:

Timbre (Musical Quality). Timbre is that attribute of au-
ditory sensation in terms of which a listener can judge that two
sounds similarly presented and having the same loudness and
pitch are dissimilar.
Note: Timbre depends primarily upon the spectrum of the stimulus,
but it also depends upon the wave form, the sound pressure, and the
frequency location of the spectrum of the stimulus.

By that definition, timbre is multi-dimensional, as two sounds with similar
pitch and loudness can differ in many possible ways. Acoustic features
commonly thought to be important to timbre are the spectral shape, which
includes concepts like the harmonic spectra and formants, and temporal
envelope characteristics (such as attack and decay) [Handel, 1989, pp. 170-
173]. Other related acoustic features include noisiness, dynamic changes
in spectral envelope, and micro-changes in pitch [Schouten, 1968]. Yet,
the definition above could possibly include many diverse aspects, such as
contextual aspects such as room characteristics, or even cultural aspects
regarding the sounds.

The proposed approach is currently limited to describing the spectral shape
over time (with short-time frames); a filter bank approach. As harmony,
estimated by the chroma filter bank, was a strong motivating factor in
describing the target signal, it is convenient for synthesis to have a com-
plementary descriptor for timbre that can be treated similarly in terms of
mathematical and programming concerns. However, it should be possible
to extend this representation with additional aspects of timbre that fit some
approximate linearity condition (as in Section 6.3.3).

The Mel-spaced filter bank was used for our main synthesis experiments.
This filter bank is the computational precursor to a well-known descriptor,
the mel-frequency cepstral coefficient (MFCC). MFCCs are often used as
the front-end feature in automatic speech recognition, as well as commonly
used as spectral descriptors for genre classification. The transformation to
from spectrum to cepstrum, however, includes a logarithmic mapping, which



96 creating audio mosaics with mixtures and transformations

makes them non-linear with respect to mixtures, and hence less appropriate
for our synthesis approach.

The filter bank is made by placing filter center frequencies equidistant in
the Mel scale, which was originally developed as an equal-distance scale for
subjective pitch [Stevens et al., 1937]. Another related scale is the Bark
scale, an attempt to approximate critical bands (the inherent bandwidths
in the cochlea which predict simultaneous masking, for example) [Zwicker,
1961]. The ERB scale [Moore and Glasberg, 1983] is another method to
measure the critical bandwidth in different frequency ranges. (Simultaneous
masking is both level-dependent and asymmetric with regard to frequency
[Scharf, 1971]. Therefore, merely representing a sound with a linear filter
bank based on critical bands is not enough to model masking phenomena;
extra modeling steps would be necessary).

Because any other linear filter bank would also satisfy the approximate
linearity condition (in Section 6.3.3), there is no loss of generality in hav-
ing chosen mel-spaced filters. Any other descriptors that satisfy a similar
condition should be compatible with the synthesis method.

For convenience, we used the implementation of mel-spaced filter banks
provided by Ellis’ Rastamat toolkit [Ellis, 2005]. The bth (of Bm) band has
the following energy:

mb(|X|2) =
∑
fk∈Fm

trik,b |Xk|2 , b ∈ {0, . . . , Bm−1}, Fm = [0, 4000] Hz

(6.5)

The width between bands (half the width of each central band), wmel, and
center frequency of each band b, ctrb,mel, are both given in mel units:

wmel =
fmax,mel − fmin,mel

Bm + 1
, ctrb,mel = fmin,mel + (b+ 1) · wmel, (6.6)

where b ∈ {−1, Bm} denote the boundaries of the edge bands, and fmin,mel

and fmax,mel are the lower and upper frequency edges from Fm converted to
mels.

The filters themselves are triangle-shaped. The point-slope line equations
sampled at DFT frequencies for the left (low) and right (high) sides of the
filters are given by:

lok,b =
fk − ctrb−1,Hz

ctrb,Hz − ctrb−1,Hz
, him,b =

ctrb+1,Hz − fk
ctrb+1,Hz − ctrb,Hz

, (6.7)
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where ctrb,Hz is the center frequency of a band, converted to Hz. Likewise,
the equation for the triangle functions:

trik,b =


lok,b if ctrb−1,Hz ≤ fk < ctrb,Hz

hik,b if ctrb,Hz ≤ fk < ctrb+1,Hz

0 otherwise.

(6.8)

Here, the following conversions between Hz and mel scales are used:

mel(Hz) = 2595 log10

(
1 +

Hz

700

)
, Hz(mel) = 700

(
10

mel
2595 − 1

)
, (6.9)

these having appeared prior in [O’Shaughnessy, 1987].

6.3.3 Approximate Linearity of Filter Banks

As shown in the previous sections, both descriptor filter banks (chroma
and mel-spaced) are linear functions of the power spectrum. This linearity
in terms of the power spectrum is helpful in predicting the descriptors of
simultaneous mixtures of sounds.

Let v denote the mixture of two fixed-length frames with spectra X and Y
and with gains g and h, i.e. v(g, h,X, Y ) = gX + hY , and let f be a linear
function of the power spectrum that represents a descriptor or descriptor
vector.

Namely, the descriptors of a mixture can be estimated in the following way:

f ◦ v = f(gX + hY ) ≈ g2f(X) + h2f(Y ), (6.10)

i.e. a linear approximation in the descriptor domain. This leads to the
setting in which a target is approximated by non-negative (and non-
destructive) combinations of sources, as will be seen in the following section,
6.4.

Equation 6.10 is based on approximating the power spectrum under two
main assumptions, sparsity, e.g. in the case of harmonic sounds, and igno-
rance of individual sinusoid phases.

Sparsity plays a role in the first case, when two mixed sounds have little
common frequency support; for example, harmonic sounds with different
fundamental frequencies and few overlapping harmonics. At frequencies
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with no support overlap, i.e. energy only in Xk or Yk, but not both, the
approximation holds exactly: |gXk + hYk|2 = g2 |Xk|2 + h2 |Yk|2 .

The power spectrum (|Xk|2) is not exactly linear under mixtures, however.
When X and Y have common frequency support, the true energy of the
mixture in that frequency bin can be less or more than estimated by the
sum of the energies. If the phases of Xk and Yk are opposed, energy can be
cancelled in the mixture (going potentially to zero). Likewise, if the phases
of Xk and Yk are similar, the true energy of the mixture can be increased.
For example, taking the case where Xk and Yk are equal, Xk + Yk = 2Xk,
consequently |Xk + Yk|2 = 4 |Xk|2, there is double the expected energy in
that bin.

When the phases of individual sinusoids are not known, it is reasonable to
guess the sum of energies, for the following reason. When adding two sinu-
soids of the same frequency, the following equation governs the amplitude
of the resulting sinusoid (from the law of cosines in the complex plane):

A2
3 = A2

1 +A2
2 + 2A1A2 cos(∆θ), (6.11)

where A1, A2, A3 are the amplitudes of the two summed and the resulting
sinusoid, and ∆θ is the phase difference in radians. If phases are uniformly
distributed, then so is the phase difference. Taking an expectation over
phase differences, the contribution to squared amplitude (energy) of phase
difference cancels.

6.4 An Objective Function for Mixture Mosaics:
with penalty functions for polyphonic sampling,
supporting transposition and variable-length tracks,
from constant length frames described by filter banks

In this section, desired characteristics (criteria) for mixture mosaics are not
only identified, but also given concrete mathematical form as an objective
function. This function expresses a trade-off among these criteria in poten-
tial mosaics.

For example, the mixture should approximate the target descriptors well
given the model. All else being equal, less extreme transformations should
be preferred. The sampling process should not change the tonal transposi-
tion (resulting from the resampling factor) much from one frame to the next,
when sampling from a continuous context. The sampling position should
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evolve forward in time according to the resampling factor. Sparser solu-
tions with less polyphonic sampling, and longer continuous tracks, should
be preferred when possible.

This function is not optimized directly, for a number of reasons: complexity,
causality, etc; but it represents a guess at what the best solutions would look
like. The solution methods are proposed in the following section, Section
6.5.

Mosaics are specified by a sparse data structure, the score, that lists for
each target frame which set of sources and source positions are active (i.e.
that have non-zero gains), along with their transformation parameters and
gains. Let the non-gain parameters at an instant of the sampling process,
be designated as an atom. Each atom is associated with an instantaneous
output signal in descriptor space. As well, atoms are sampled within tracks,
where each track represents a unique sampling context that is continued over
time.

The score structure w (weights) is shown here as a sparse 3d array of size T×
Q×A, with indices t for target frame, q for track, and a for atom block index
(referencing source file index φ, the source position s, and transposition
index u). The domain of w has the following restrictions:

w � 0, ∀(t, q) : ]{a : wtqa > 0} ≤ 1, (6.12)

that is, all weights are non-negative (as discussed in Section 6.3.3), and for
each pair of target frame t and track q, there is at most one active atom.

The objective function fmix(w) is defined as follows:

fmix(w) =
T∑
t=1


2∑
g=1

λfb,g‖Dgwt − yt,g‖22 +
∑

(q,atq)∈Wt+,
at−1,q=�(t,q)

∑
p∈P

πp(atq, at−1,q, σt)

 ,
where Wt+ = {(q, atq) : wtqa > 0}, �(t, q) =

{
a if ∃a : w(t−1),q,a > 0

0 otherwise.

(6.13)

Here Wt+ is the set of active atoms and tracks in target frame t (a support
set), and �(t, q) is a function that gives the atom index a used in the
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previous frame in track q, if any. The rest of the symbols are defined as:

atq index of an atom active in target frame t and track q

at−1,q index of an atom preceding atq in the same track, if any

wt vector (length n) of all atom weights in frame t

wtqa, wt,q,a the weight in target frame t and track q for atom a

g, λfb,g index for filter type, parameter weighting for filter type g

Dg dictionary for filter type g:

a Bg ×A matrix of descriptors of A atoms

yt,g vector of target descriptors in tth target frame for filter type g

πp, p,P penalty function with index p, set of all penalty functions

σt accumulated state about the score at target frame t.

For each frame t, the cost has two quite distinct parts. The first part,
consisting of fidelity terms, measures how close the mixture of source frames
is, based on the assumption of Section 6.3.3, to the target frame descriptors.
This is a convex function known as least squares (sum of squared errors)
that varies smoothly with changes in weights; punishing larger deviations
in a filter proportionally more than smaller ones.

The second part, consisting of penalty functions, represents both the prefer-
ence of certain atoms over others; as well as the dynamics, how the sampling
context and transformation should evolve forward in time. By contrast, this
second part is not smooth with respect to w; costs are incurred, as in a step
function, when the weight for an atom goes from zero to non-zero. (This
could be alternately represented as an additional input βtqa, a binary mask
to be multiplied by the penalty functions). These penalties are sparsity-
inducing, because each penalty must be justified by improvement in fidelity,
but fidelity improvements are diminishing with each new atom.

This two-part objective function can be interpreted as a maximum a priori
(MAP) estimation problem, that is, a trade-off between a fit to the observed
data, the likelihood (according to the target signal), and prior information
(which sampling parameters are expected). In order to facilitate intuitive
understanding of the trade-offs between fidelity and the various penalties,
in each frame, the fidelity error of an empty score is normalized to unity (as
described in the method, Section 6.5.2).

In a related issue, when Dg is low rank (e.g. due to source descriptors being
similar), the least squares problem could be ill-posed, due to the solution not
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being unique (if two sources are the same in descriptor space, least squares
has no reason to prefer one or the other). In this case, regularization, adding
another function to the objective, can make the problem well posed by
distinguishing between otherwise equal solutions. With respect to permuted
track assignments, the objective is not well-posed, but this does not affect
the proposed solution method to be discussed.

Optimizing fmix(w) directly is quite difficult. In fact, a similar problem,
that of finding a linear approximation under a certain error with the least
number of terms, has been shown to be NP-hard [Natarajan, 1995] (see
Appendix C.2 for definition). The combinatorial aspect of this problem, in
that one must choose subsets of active atoms, makes it particularly complex
to solve, as the number of subsets scales exponentially with the number of
atoms (2A). The combination of the quadratic objective and binary choices
in this objective qualify it as a mixed integer quadratic program (MIQP).

Representing the sampling and transformation process as a dictionary, the
matrixDg, reflects not only the mixture assumption; it also implies discretiz-
ing the space of source positions and transformation parameters. (Prepara-
tion of the dictionary in our methods are detailed in Subsection 6.5.2).

An alternate form (of Dgwt) with a generic transformation would be:∑
waf(h(φa, sa), ~pa), where h is the sampling function in descriptor space,

f is a predictive model of the transformation, and ~pa is the vector of trans-
formation parameters for the atom with index a. In any case, when the
other parameters are fixed, the subproblem of assigning weights is convex.
This means that we can find precise assignments of the weights efficiently
with local search.

6.4.1 Penalty Functions

Here, we describe a range of penalty functions relevant to mosaicing. As
mentioned in the previous section, these functions and their associated
parameters allow an explicit trade-off between fidelity error, and other
wanted/unwanted characteristics of the score. The first set of penalties
concern only the parameters chosen at a given instant.

6.4.1.1 Type I: Simple, Instantaneous

One of the simplest, and most necessary penalties, is to limit the amount of
transformation (in this case, transposition using speed/pitch change). Here
uP8 means transposition in octaves, λusqr is the weight for the quadratic
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penalty (more lenient for small transpositions), and λu is the weight for the
l1 penalty (more strict for small transpositions, and more lenient for large
ones, relative to quadratic):

πtransp(uP8) = λusqru
2
P8 + λu|uP8|, (6.14)

where uP8 is a function of uL, the resampling factor used:

uP8 = − log2 uL. (6.15)

Another penalty prefers matches between frames of similar relative signal
levels. This ensures, for example, that we don’t heavily amplify quiet sig-
nals. Let ydB,t and zdB,s be the relative power in decibels (normalized to
the mean energy of the each source or target file) for the target and source
at frames t and s, respectively. Then, λ20dB is the cost of applying 20 dB
of gain (a power of 10) to these relative levels:

πgain(ydB,t, zdB,s) = λ20dB

∣∣∣∣ydB,t − zdB,s

20

∣∣∣∣ . (6.16)

As this penalty also depends on the target (unlike the others), it fits more
as a likelihood penalty, than as a prior.

6.4.1.2 Type II: Markov Dynamics, Continuity

This next group of penalties concern the changes in parameters at a given
instant; put more descriptively, the continuity of individual tracks. Most of
these only apply when existing tracks are continued.

For one, the best sampling position is the one exactly specified by the for-
ward evolution given by the average tape speed. Let ∆sfr = st − st−1,
the difference between source positions in frames, and λ∆fr be the cost for
deviating by one frame.

π∆src(∆sfr, uP8,t, uP8,t−1) = λ∆fr |∆slin(uP8,t, uP8,t−1)−∆sfr| , (6.17)

where the average relative speed in frames is defined by:

∆slin(uP8,t, uP8,t−1) = (2uP8,t + 2uP8,t−1)/2. (6.18)

To complement the above cost, which distinguishes between fine deviations
in source position, a step cost, λmask, is applied to strongly discourage jumps
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in sampling position outside of a short window in the future. Let ∆ss be
the difference in source positions in seconds, and τmask,s be the duration of
the largest allowed jump ahead in seconds:

π∆src mask(∆ss, φ, φt−1) =

{
0 if φ = φt−1, and 0 < ∆ss < τmask,s,

λmask otherwise.

(6.19)

In terms of the transformation, it is a good idea to limit the changes in
transposition within a track. We impose both quadratic and l1 penalties,
λ∆usq and λ∆u:

π∆trans(∆uP8,t) = λ∆usq(uP8,t)
2 + λ∆u|∆uP8,t|. (6.20)

Finally, we apply a fixed cost for creating a new track, so that the number
of tracks should be as low as possible.

πtrack(at−1) =

{
λtrack if at−1 = 0,

0 otherwise.
(6.21)

6.4.1.3 Type III: Dynamics involving Accumulated State

This last set of penalties concern some wider scope, either outside of the
instantaneous time frame, or outside of the current track. The structure σt,
accumulates some aspect of the state at target frame t.

For example, one penalty aims to encourage the diversity of sampling in
different source positions. The accumulation cost for source position s in
track q is defined as:

πaccum(σt, s, q) = λaccum

∑
q′ 6=q

σaccum(s, q′), (6.22)

so that sampling in a track q only affects the costs for the other tracks
(including new tracks).

The source accumulator σaccum,t(s, q) is initialized to zero in the first frame.
When adding new atom to the score at sampling position s′ and track q, a
Gaussian blob with standard deviation τaccum,fr in frames is accumulated at
that position, via the max function:

σaccum,t(s, q, s
′) = max

(
exp

(
−(s− s′)2

2(τaccum,fr)2

)
, σaccum,t(s, q)

)
. (6.23)
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The accumulator is updated each frame according to the decay constant
βaccum,fr:

σaccum,t(s, q) = βaccum,fr · σaccum,t−1(s, q). (6.24)

The last two adjustments, rewards rather than penalties, work to counteract
the sparsity penalties in some cases. The first reduces the total penalty when
the number of current atoms is under a threshold, βmin atoms:

πmin atoms(σt) =

{
−λmin atoms if ]Wt+ < βmin atoms,

0 otherwise.
(6.25)

The second favors continuing all tracks, but differentially favors continu-
ing shorter tracks versus continuing longer tracks, according to an average
duration parameter:

πtrack len(σt) = −λtrack len · exp

(
−σprev frames,t,q

τlen,fr

)
, (6.26)

where σprev frames,t,q is the previous length of track q in frames, and τlen,fr is
the desired mean duration in frames.

6.5 Mosaicing Methods based on
Greedy Sparse Decompositions

In this section, we propose methods for finding mixture mosaics with the
desired criteria, as expressed in the objective function in Section 6.4. We
begin by giving background on the so-called “greedy” methods for sparse
approximation.

6.5.1 Background: Matching Pursuit (MP) and OMP

There are many sparse approximation algorithms, possibly many of which
would be suitable for this application. Their main action is to project
a target signal onto signal components, known as atoms, of a collection
known as the dictionary. This creates a new set of coefficients, that when
multiplied by corresponding atoms of the dictionary, and summed together,
gives the approximation of the target signal, such that only a few non-zero
coefficients are used.

Greedy approximation algorithms seem to offer the simplest and most com-
putationally efficient approach: to make locally optimal decisions (not con-
sidering the set as a whole) at each step. Matching Pursuit (MP) [Mallat
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and Zhang, 1993] is a well-known and simple method. In the “add” step, it
selects the atom with the highest correlation with the residual signal, and
adds it to the representation. Then the atom’s contribution is subtracted
from the residual. Starting from an empty set of atoms, it repeats the “add”
step until stopping criteria are met, e.g. the error is below a threshold, a
limit on number of active atoms is reached, etc.

Orthogonal Matching Pursuit (OMP) [Pati et al., 1993] is a refinement to
MP. It adds a second “reweight” step: to adjust the weights of atoms in the
solution to be optimal in a least-square error sense. This results in making
the residual orthogonal to the active set of atoms; it reduces the chances of
revisiting an atom (modifying its coefficient) from a previous “add” step,
(which tends to occur in plain MP), speeding convergence to the solution.

Our proposed methods use a non-negative variant of the OMP algorithm
(i.e. subject to the non-negativity constraint on w in Section 6.4, Equation
6.12), for every frame of the target signal, applied to target and dictionary
consisting of normalized filter energies (see normalization schemes in Section
6.5.2 below), using penalty functions (such as those in Section 6.4.1) as
criteria for atom inclusion. As this first method does not create coherent
chains of atoms over time, the second method employs a second greedy
strategy to continue atoms into coherent chains.

6.5.2 Preparation of Dictionary and Target

The main preparation tasks, before the algorithms can run, are the extrac-
tion and normalization of descriptors of the target and transposed sources.
The descriptors are sampled uniformly in time (for source and target) and
uniformly in transposition, in fractions of semitones, for the dictionary.

In the batch setting, target and source descriptors are extracted by a stan-
dard short-time Fourier transform (STFT) approach, i.e. according to some
hop size, overlapping window size, and zero-padding factor. From these
short-time spectra, chroma and mel-spaced filter banks are extracted as
described in Sections 6.3.1 and 6.3.2.

6.5.2.1 Target Descriptors

As mentioned in Section 6.4, the target signal is normalized so that the
fidelity error of an empty score is unity. This is in order to have an intuitive
instantaneous trade-off for the penalty functions, in this case, the portion
of target error reduced (improvement of fidelity). For example, imagine a
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cost parameter λatom, that adds a cost for each additional atom used in the
frame. If λatom = 0.2, that means that an additional atom would have to
reduce the initial fidelity error of that frame by 20% in order to be added
in the optimal solution.

Normally, the target is not normalized in standard sparse decompositions,
such as Matching Pursuit computed on audio signals. Rather, there is
an implicit trade-off between adding new atoms, and the squared norm of
the error, which itself corresponds to a physical quantity, the target signal
energy. Therefore, atoms are allocated preferentially to the high-energy
spectral and temporal regions of the target, and the signal-to-noise ratio
(SNR), for example, given a fixed budget of atoms is maximized.

The penalty functions introduced in Section 6.4.1, although the costs vary
over the different atom characteristics, are proxies for sparsity, because each
new atom added to the score incurs these costs. The scale of the fidelity
terms, as shown for the case of audio MP above, modulates the sparsity of
the solution according to this scale.

However, in the case of polyphonic sampling, we might not want the number
of voices to increase only in the louder parts, but rather with complexity,
which is harder to pin down. As well, the fidelity term defined in Equation
6.13, i.e. the weighted sum of squares of residual filter bank energies, does
not correspond to a physical quantity at all. Rather, in the case of two
equally energetic frames, one with energy all in one band, the other with
energy divided equally among two bands, the initial fidelity of the first
frame is twice that of the second. So, the target signals are normalized in
order that the sparsity, all other things being equal, stays approximately
constant.

The target scale factor for a target frame t, tsct, is computed and stored as:

tsct =

√√√√ 2∑
g=1

λfb,g‖yt,g‖22, (6.27)

and the corresponding yt,g signals are divided by tsct.

6.5.2.2 Dictionary (Transposed Source Descriptors)

For computing descriptors of the transposed sources, one has two options.
If sources are known in advance, it is sufficient to process the source files
at all transpositions (sampled uniformly in semitone fractions) and extract
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the descriptors by modulating the hopsize. However, to avoid this extra
processing, or in the case that new sources should be added live, one can
instead use models of transposition to predict the transformed descriptors.

Currently, the following simple models are used. For the chroma bank,
one can assume that the energy is just shifting between pitches, using the
circular shift:

ĉb(ub) = c[b+ub mod Bc], (6.28)

where ub = uP8/Bc is the transposition in whole bands. Though this is not
exactly true, as bandlimited interpolation can shift energy above and below
the chroma region Fc, it is a simple and quick approximation.

To predict the mel-spaced bands, we first predict the interpolated power
spectrum with linear interpolation (shown as lin[]), and apply the mel-
spaced filters:

m̂b(uL) = mb

(
(|X|2)lin[k/uL]

uL

)
. (6.29)

where uL is the resampling factor for transposition index u, k is the fre-
quency bin index, and the filters are defined in Section 6.3.2, Equation 6.5.
This approach could also be used to predict the transposed chroma bank.

As in the case of the target descriptors, the transposed source descriptors are
also normalized by the same function. This is done because the correlation,
the optimal weight for a single atom (the solution to unconstrained least
squares), has the form yT~a/‖~a‖2 (for target y and atom ~a). Scaling the
atoms to unit norm thus saves computation on a frequent and essential step
of this algorithm.

The source scale factor for a target frame s and transposition index u, sscs,u,
is computed and stored as:

sscs,u =

√√√√ 2∑
g=1

λfb,g‖~as,g‖22, (6.30)

and the corresponding ~as,g signals, either the extracted or predicted descrip-
tors, are divided by sscs,u.

The dictionary matrix for filter type g, Dg, is created by constructing the
block index a = s + (u − 1) ∗ S, where s is the source index (of S) and u
is the transposition index. The ath column of Dg is given by ~aa,g, i.e. the
normalized descriptor vector for that filter type.
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6.5.3 Algorithm 1: Frame-based Mosaicing (FrOMPmos)

Now, the first decomposition can be introduced: a simple mixture method
that decomposes individual target frames into source frames. This is done
separately primarily for didactic reasons, but it could also be considered a
special case of Algorithm 2. This algorithm was used as the mix method
in the evaluation of the next chapter, although the alternate strategy of
Section 6.7.1 (p. 119) could be used to produce similar solutions.

For each frame considered independently, this algorithm computes the fi-
delity improvements for each atom, to which it adds a subset of the penalty
costs (the ones not considering predecessor atoms in tracks) as described
in Section 6.4.1. If there is an atom that improves the solution, then this
atom is added to the representation. This is followed by an OMP reweight-
ing step over the subdictionary Dg+ corresponding to the current active
atoms. Then, the process is repeated until there are no more improving
atoms.

This could be simply described as using the OMP approach, applied to
the fmix(w) objective function (Section 6.4, Equation 6.13), independently
for each frame. In this setting, track assignments are ignored, and only
Instantaneous (Type I) and a subset of the Accumulated State penalties
not requiring track assignments (Type III, πaccum and πmin atoms, Section
6.4.1.3) are used.

One quantity in our approach should be explained, because it is not typically
part of pure signal, non-regularized MP/OMP methods, in which there is
no need to relate in signal fidelity to other competing criteria. That is,
they use the atom correlation denoted by ρa, which is the optimal gain as
mentioned earlier, but not ρ2

a, as will be shown, is the change in the fidelity
term with the optimal gain applied.

To see this, we examine the quadratic fidelity term from Eq. 6.13, rewritten
for a single frame and in terms of the current residual r and a candidate
atom with index a, normalized descriptor vector ~a and correlation ρ:

ffid =
2∑
g=1

λfb,g‖rg − ρ~ag‖22 =
2∑
g=1

λfb,g

[
(rg − ρ~ag)T (rg − ρ~ag)

]
=

2∑
g=1

λfb,g

[
rTg rg − 2ρ~aTg rg + ρ2~aTg ~ag

]
.
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By recalling the following, ffid can be further simplified:

2∑
g=1

λfb,g ~a
T
g rg = ρ,

2∑
g=1

λfb,g ~a
T
g ~ag = 1, ffid =

 2∑
g=1

λfb,g‖rg‖22

− ρ2.

This shows that when adding an atom with correlation ρa, the change in
the quadratic fidelity term is −ρ2

a.

A pseudocode version of Algorithm 1 is given on this page.

Algorithm 1 Frame-based mosaicing (FrOMPmos)

Inputs: dictionary Dg, target desc. sequence {yt,g}t∈{1...T}
Parameters: fidelity and penalty parameters of fmix(w)
Outputs: sparse score w

1: w ← initScore()
2: for all target frames t ∈ {1, ..., T} do:
3: r ← yt . Initialize target frame residual.
4: repeat (a, ρa, κa)← SelectAtom(r)
5: if κa < 0 then: . Is there an improving atom?
6: wt,a ← ρa . Add atom a with weight ρa.
7: if ]Wt+ > 1 then, . More than one atom?
8: wt+ ← ReweightFrame(wt+)

9: r ← r − ρa~aa . Update residual.

10: until κa ≥ 0 . No more improving atoms.

11: return sparse score w.

12: function SelectAtom(r)
13: {ρa}a=1...A ← max(λwt,g

∑
g r

T
g Dg, 0) . Compute all correlations+

14: {κa}a=1...A ← −ρ2
a +

∑
p∈P πp(a, σt) . Improvements plus penalties

15: a ← arg mina κa . Find minimum cost atom.
16: return (a, ρa, κa) . Best atom, correlation, and cost

17: function ReweightFrame(wt+)
18: wt+ ← arg minwt+

∑
g λwt,g‖Dg+wt+ − yg,t‖2 s.t. wt+ � 0

19: return wt+

There are many possible methods to solve the non-negative minimization in
ReweightFrame. As the objective is smooth, projected gradient methods
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are a sufficient approach. The problem dimension should be small, given
few entries of Wt+. We use the TFOCS toolkit [Becker et al., 2014] to solve
instances in our implementation.

Once the final linear weights for each frame are selected, they are used to
compute the signal gains for the atoms in that frame:

gain(wt,a) =

√
wt,a · ssca,u

tsct
. (6.31)

This method gives the best match at each frame, but cannot do much
to promote continuity between frames. The best we could do within this
algorithm is imposing additional costs on atoms that are not continuations
of atoms in the previous frame. In some cases, this may work; but in some
cases it can promote duplicate successor atoms, and it does not create a
clear links of succession.

In order to organize continuations of the sampling context, we introduce the
next algorithm. Algorithm 2 assigns atoms to tracks, allowing it to select
unique successor atoms according to the Dynamics (Type II) penalties.

6.5.4 Algorithm 2: Tracks-based Mosaicing (TrOMPmos)

Each atom created by this algorithm is assigned to either a preexisting or
a new track. A two-step process is proposed for approximating each target
frame. In the first step, tracks existing in previous frames are either contin-
ued, by choosing atoms related to these previous ones, or terminated. Here
the continuity penalties strongly affect which atoms are added to previous
tracks. In the second step, new tracks are created by adding any improving
atoms left.

This algorithm uses the same reweighting scheme as the previous algorithm,
which might cause abrupt changes in weight within a track, or might prema-
turely drop tracks that might be continued. It remains future work to more
closely assess the negative effects resulting from this, on output quality and
track continuations, and to possibly propose a smoothing scheme.

Pseudocode is given for Algorithm 2 on the next page.

6.5.5 Further Enhancements

Algorithm 2 is structually complete for creating mixture mosaics with
variable-length continuous tracks. However, two problems persist. First,
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Algorithm 2 Tracks-based mosaicing (TrOMPmos)

Inputs: dictionary Dg, target desc. sequence {yt,g}t∈{1...T}
Parameters: fidelity and penalty parameters of fmix(w)
Outputs: sparse score w; track start and end markers
SelectAtom and ReweightFrame as defined in Algorithm 1

1: w ← initScore()
2: for all target frames t ∈ {1, ..., T} do:
3: r ← yt . Initialize target frame residual.
4: for all q ∈W(t−1)+ do . Continue previous tracks
5: (a, ρa, κa)← SelectAtomTr(r, at−1)
6: if κa < 0 then: . Is there an improving atom?
7: (r, wt+)← AddReweight(r, t, q, a)
8: else trackEndq ← (t− 1) . Track q ends in the previous frame.

9: repeat (a, ρa, κa)← SelectAtom(r) . Create new tracks
10: if κa < 0 then: . Is there an improving atom?
11: q ← NewTrackIndex()
12: (r, wt+)← AddReweight(r, t, q, a)
13: trackStartq ← t . Track q starts in this frame.

14: until κa ≥ 0 . No more improving atoms.

15: return sparse score w.

16: function AddReweight(r, t, q, a)
17: wtqa ← ρa . Add atom a to track q with weight ρa.
18: if ]Wt+ > 1 then, . More than one atom?
19: wt+ ← ReweightFrame(wt+)

20: r ← r − ρa~aa . Update residual.
21: return (r, wt+)

22: function SelectAtomTr(r, at−1) . Includes Continuity penalties
23: {ρa}a=1...A ← max(λwt,g

∑
g r

T
g Dg, 0) . Compute all correlations+

24: {κa}a=1...A ← −ρ2
a +

∑
p∈P πp(a, at−1, σt) . Impr. plus penalties

25: a ← arg mina κa . Find minimum cost atom.
26: return (a, ρa, κa) . Best atom, correlation, and cost
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it might choose sources that cannot match the target well in future frames,
causing shorter sampling tracks. Second, by confining atoms to the uniform
grid (discussed in Sections 6.4 and 6.5.2), particular distortions are intro-
duced in the synthesis output. The following enhancements are intended to
mitigate the above problems.

6.5.5.1 Lookahead (Rolling Horizon)

In Algorithm 2, when selecting the best atom to add in a certain frame, it
is unknown which atoms have successor atoms that can continue the track
into future atoms. If some frames of the target are known in advance, one
can look ahead, and estimate how likely it is that a current atom in a frame
will lead to fidelity improvements for successor atoms in future frames.

For this estimate, or heuristic, there are many possibilities, trading off be-
tween accuracy and computational efficiency (and simplicity). Here, a sim-
ple method is proposed.

Specifically, to the cost for an atom at frame t, we accumulate costs asso-
ciated with frames t+ 1 to t+ τlook,fr, assuming no change in transposition
and steady evolution in source. For the cost/utility of the current atom we
take the minimum of these accumulated time steps. Thus we select atoms
maximizing utility at the current frame and over τlook,fr frames into the fu-
ture. Once atoms are selected, we update the residual which we additionally
maintain for the lookahead frames.

In Section 6.6.1, this strategy is shown to increase the mean and maximum
track length in recovered scores.

6.5.5.2 Continuous sampling

By default, the SelectAtom and SelectAtomTr routines from Algo-
rithm 2 select only atoms from the grid divided uniformly in time (in spec-
trogram frames defined by the hopsize) and uniformly in transpositions
(in semitone fractions). However, synthesizing coherent tracks using only
atoms from this grid causes artifacts relating to phase cancellation, leading
to results sounding “phasey” or “granulated”.

The artifacts are caused when sampling harmonic sources. When maintain-
ing an approximate sampling context, the overlapping frames have similar
frequency support, but the timing inaccuracies between the sampling posi-
tions of predecessor and successor atoms lead to small differences in phase or
frequency that can cause unwanted modulation in the mixture. However,
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by ensuring that the sampling times for exactly continued atoms exactly
follow the forward evolution in time defined by the tape speed (resampling
factor L), and by interpolating L as it evolves at each sample position, over-
lapped sampling can be made equivalent to continuous sampling, and phase
cancellations can be eliminated (within single tracks).

To sample tracks exactly, exact sampling candidates are added to the Se-
lectAtomTr routine. Once the previous atom’s source and transposition
are already known, candidates for exact sampling successor atoms are cho-
sen using only a single degree of freedom, the current transposition. The
exact change in source position for each candidate is then computed accord-
ing to Equation 6.18, page 102.

To encourage the use of exact sampling atoms, a fixed cost, λgrid is added
for the inexact grid atoms. For computing correlations and reweighting
frames at intermediate source positions, the existing dictionary is linearly
interpolated to create mini-dictionaries, on demand.

One further refinement can be made regarding the exact sampling candidate
atoms. While the previous step continues past sampling positions with the
correct continuous values, these candidates are still selected using a grid of
transposition values. To produce transposition values not confined to this
grid, κa, the atom utility function, can be locally interpolated around the
peak, using parabolic interpolation to find the maximum utility transposi-
tion, as in [Serra, 1989]. Then, the source position is updated according to
Equation 6.18.

To hear a comparison of inexact continued tracks (sampling positions de-
fined on a grid) and the exact continued sampling positions, refer to Sound
files “phase-exact.wav” and “phase-inexact.wav” (also listed in Appendix
B). In these examples, a short source excerpt of a single violin playing is
resampled at 7/6 speed, which transposes it up by a whole tone. This
transposed signal is used as a target sound using Algorithm 2, using the
same parameters (see Appendix) except for turning on or off the exact con-
tinuation. Although the exact variant has a number of spurious atoms, it
mostly recovers the main “identity” track on the ↗ diagonal of the score,
and the inexact recovers the diagonal completely (see Figure 6.2). How-
ever, the phasiness effect of the inexact sampling positions can be seen in
the spectrogram, in Figure 6.3, and heard in the sound examples.
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Figure 6.2: Recovered scores for inexact (left) and exact continuation example
sounds, where the target is the source resampled at 7/6 speed, equivalent to trans-
posing up a whole tone. The source input positions and output sampling positions
in time, along with an approximation of the overlapping windows, and the trans-
position factor from resampling (color) are shown.

6.5.6 Resynthesis

Once the score is determined, resynthesis is simply a matter of overlapping
and adding the sampled frames; for exactly continued frames, this entails
interpolation of the resampling rates and sample positions.

6.6 Synthesis Example

In this section, various objective aspects of a synthesis example are shown
for TrompMOS, Algorithm 2.

For the example, one of the mosaics produced for the subjective evaluation
in the next chapter is used. In this example, the source is an excerpt
of monophonic violin passages (Sound 2b, Appendix B) from a minuet of
Boccherini (String Quintet in E, Op.13, No.6); the target is an excerpt from
the opening of Bach’s The Art of the Fugue played on piano.

The following command was used to generate this example:
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Figure 6.3: Example of phasiness caused by resampling on a grid (inexact) vs.
exact resampling. Spectrograms are shown for a target signal (top), same as the
source signal but sped up and transposed by a whole tone; and reconstructions
using exact continuation (middle) and inexact continuation (bottom). For the
inexact continuation (bottom), which samples from a grid of source times, phase
cancellation of partials is clearly shown (e.g. in the first 200ms). Spectrograms
show 23ms windows with 2x overlap.

genMosaic(’fugue1’,’boccherini’,’hopsize’,1024,

’iTargetChannels’,1,’iSourceChannels’,1,’cEnergyPer20Db’,0.2,

’cInexactPenalty’,3.4,’cMix’,0.7,’cTransDeltaSqrPerOctave’,80,

’cTransSqrPerOctave’,0.4,’cSrcAccum’,1,’cTrack’,0.2,

’cTrackLen’,0.2,’mInterpResamp’,1,’sTracks’,1)

which specifies a number of parameters, including a hopsize of 1024 samples,
a λ20dB of 0.2, a constant penalty of 3.4 for inexactly continued (grid) atoms,
a 70% to 30% penalty for fidelity errors in chroma vs. mel-spaced filter bands
(λfb,g), a penalty of 80 for each octave change in instantaneous transposition
(λ∆usq), a penalty of 0.4 for each octave of instantaneous transposition
(λusq), λaccum of 1, cost of creating a new track λtrack of 0.2, cost favoring
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Figure 6.4: Sampling diagram showing target positions (x-axis) vs. source posi-
tions (y-axis) with colors denoting the transpositions in semitones.

longer tracks λtrack len of 0.2; not to mention a number of default parameters.

To give an overview of the score as a whole, see Figure 6.4, which shows the
activations of sources (x-axis) at every instant in the target/output (y-axis).
Figure 6.5 shows the target, model, and synthesis descriptor sequences for
this example.

6.6.1 Lookahead Test

Using a different target, a pop music excerpt from Madonna’s “Give It 2
Me”, we compare results over a range of lookahead horizons, using two dif-
ferent sources (the violin, and water pouring). Otherwise, equal parameters
were used for mosaicing and synthesis. They are compared by maximum
and mean track length, and model fidelity for chroma and timbre. Results
are shown in Figure 6.6.

Looking at the track lengths, we see the first two lookahead frames help
substantially– just a few frames seem to promote longer tracks. Max length
grows up to τlook,fr = 10, while mean length peaks at τlook,fr = 2 (suggesting
a trade-off; when frames are successfully continued, they can suppress other
continuations).
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Figure 6.5: Similarities between target, model, and synthesis normalized descrip-
tor sequences for chroma (above) and mel-spaced filter banks (below)
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In contrast, lookahead does not seem to negatively affect the fidelity error
when more than two frames of lookahead are used. As the lookahead policy
is conservative, and does not promote an atom unless it is improving for
future frames, this is expected.

Figure 6.6: Changes in track length and model fidelity due to different lookahead
horizons. Max and mean track length both benefit from modest lookahead, while
max keeps increasing. Model fidelities (distance from the target) are barely affected
by changes in the horizon.

6.7 Alternate Approaches
based on real and convex optimization

Prior to developing the methods in Section 6.5, and prior to adopting an
explicit representation of tracks, some effort was spent applying another
branch of sparse approximation algorithms, convex methods, in the hope
of finding mixture methods that could also meet the continuity criteria
for multiple frames in the future. In this section, these approaches, their
characteristics, and some of their limitations are sketched.
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Although real and convex approaches to sparse approximation can be more
computationally intensive than greedy approaches, their basic premise and
hope is this: that by formulating combinatorial problems as optimization
over a real domain, by a series of strictly local moves, one arrives at either
a good (general) or an optimal (convex) solution. In a way, this is quite
similar to the greedy premise.

Perhaps as computation becomes cheaper and mathematical techniques im-
prove these approaches will become more competitive; or perhaps there will
be some situations, in which the higher quality that could be achieved with
a long-running batch process might be preferred over the something faster.

6.7.1 Basis Pursuit (BP) and Weighted BP

As mentioned previously, optimizing fmix(w) (Equation 6.13, page 99) due
to its formulation of penalty functions over the support set, is likely to be
computationally hard; finding optimal solutions to fmix as posed may take
exponential time in the size of the problem.

One promising approach is to replace the combinatorial parts of the ob-
jective function, i.e. the parts that depend explicitly on which subsets are
active (in fmix, the penalty functions), with a convex surrogate function
with similar characteristics as the combinatorial one. As long as the do-
main meets some restrictions, this creates a convex optimization problem.

Convex problems have the property that methods using local search can be
guaranteed to find a global optimum. Some classes of convex problems, such
as linear programming (LP), have the remarkable property of admitting
algorithms that find globally optimal solutions in polynomial time in the
size of the problem [Boyd and Vandenberghe, 2004, p. 6]. The running
time is also affected by the desired accuracy and numerical condition of the
problem.

A canonical example of this approach is Basis Pursuit (BP) [Chen et al.,
2001] approximation method, which requires solving an LP problem. For
example, say we want to represent signal y with as few elements of a dictio-
nary D as possible; and want a trade-off between approximation fidelity and
number of elements used. This gives the following optimization problem:

min
x

1

2
‖Dx− y‖22 + λ‖x‖0, (6.32)

where ‖x‖0 denotes the number of non-zero elements of x, and λ is some
trade-off parameter between fidelity and sparsity.
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The BP approach suggests the following convex problem, known as Basis
Pursuit Denoising (BPDN):

min
x

1

2
‖Dx− y‖22 + λ‖x‖1, (6.33)

where ‖x‖1, the l1 norm, denotes the sum of the absolute values of the
entries. The l1 norm favors relatively sparser solutions because coordinates
with a small non-zero weight pay a relatively larger cost, compared the l2
norm or the sum-of-squares penalty; and many coordinates in the solution
are pushed to zero or near-zero.

The BP approach is thus to find the optimal solution to Equation 6.33, to
select the support set of components by checking which elements of x are
greater than a threshold, and to fix the support set, finding an optimal set
of coefficients.

This strategy can be applied to a limited version of fmix, for example, using
only Type I penalties. The idea is to apply the l1 penalty weighted by
the sum of penalties for each atom, which are fixed (denoted here by the
vector πsum of length n). Furthermore, as the domain is non-negative, we
can replace the l1 norm with a linear functional, where 〈x, y〉 denotes the
dot product between vectors x and y.

In this case, the optimization for a single frame can be represented as:

min
w�0
‖Dw − y‖22 + λ〈πsum, w〉, (6.34)

where w is a non-negative length-n vector containing the weight for each
atom. The above problem may be solved directly with a convex optimization
toolkit. The λ that drives the solution uniformly to zero is known, in this
case:

λmax = max
a

|2DT y|a
πsum,a

, (6.35)

found by equating the gradients of the two competing criteria in Equation
6.34. A smaller value than λmax can be chosen, the solution thresholded as
in BP, and the optimal weights found.

This approach can be extended to solve for all frames, as long as there are
only Type I penalties (no dynamics). One can adopt a greedy strategy in
time, and add some of the Type III penalties, such as πaccum (Equation
6.22), which is fixed for each atom once past states are known. One can
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favor different sparsities, such as in πmin atoms (Equation 6.25), simply by
thresholding the convex solution at different levels.

When making frame-by-frame decisions, the approach of Equation 6.34 gives
satisfactory solutions (as in the greedy approach), but it does not make track
assignments or continue tracks forward in time. It was this method that
was used in AugMos [Coleman et al., 2010], as well as in the prototypes
described in Appendix D.

To fully extend the convex approach to the Continuity (Type II) penalties
(with or without tracks) and to compute a so-called smoothing solution
(to find an optimal solution when some of the target signal is known in
advance), one first needs some sort of representation of dynamics that is
compatible with convex or near-convex formulations. Using a linear opera-
tor to represent dynamics is a natural choice, especially because the norm of
an affine function, i.e. ‖Dxt−1− xt‖, is naturally convex for any true norm.

6.7.2 Dynamics and Cost Operators

There are at least two approaches to modeling the second-order costs in
real optimization. One, that can be traced to the Kalman filter, provides
a point estimate for state evolution. Another involves directly representing
the second-order cost matrix implied in fmix. Both can be computationally
expensive to represent and compute.

6.7.2.1 Dynamics Operators: General and 2D Convolution

The function of a dynamics operator is, given a past state xt−1, to give a
likely future state xt = Dxt−1. Sparse linear dynamics can be interpreted
in the following way: if the previous state contains an atom a, then the next
state likely contains an arbitrary subset of future atoms; and the linear func-
tion D gives the superposition of all of those arbitrary subsets, according to
which previous atoms are active. When used in conjunction with a convex
constraint or penalty term, the dynamics operator predicts the most likely
future state as the center point around which greater penalties are applied.

In the general approach, this is complex to even represent, let alone to do
repeated computations, i.e. multiplication with an A×A matrix, where A,
the number of atoms in the dictionary, is large.

The basic concept we would like to represent, for mixture mosaicing, is
that they are branching; i.e. for a single atom in a previous state, it is
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Figure 6.7: Illustration of spreading/branching effect of dynamics operator D.
This operator depicts dynamics in which the source index always moves forward,
and the transformation parameter can shift in either direction.

likely continued by a small set of related atoms in the future. This matches
the general form present in these Continuity (Type II) penalties: π∆src,
π∆src mask, and π∆trans (Equations 6.17, 6.19, and 6.20).

One alternate class of dynamics operators, shift-invariant functions, are eas-
ier to specify and compute (with 2D convolution). Yet, they still represent
this branching property. In our domain, where each atom represents a given
source and transposition, this represents the following: for each presence of
an atom in a past state, an equally shaped blob of related states is deposited
into the future state. See Figure 6.7 for an illustration of a 2D convolution
dynamics operator.

Note that the shift invariance of this operator is contradicted by the non-
shift invariance of the π∆src penalty and the ∆slin function (Equations 6.17
and 6.18). That is because the most likely future state in source position, is
less or more depending on the tape speed/transpositions of past and future
states.

Another contradiction present in this approach: as usual, we are searching
for sparse approximations, but a branching operator is anti-sparsifying; that
is, it converts sparse previous states into non-sparse future states.

6.7.2.2 2D Cost Operators

Perhaps a more direct approach would be to form the cost matrix K im-
plied by sampling the second order costs directly, i.e.

∑
p∈P πp(a, at−1) from
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Equation 6.13, page 99. This leads to a non-convex formulation, discussed
in Section 6.7.4.

Taking in mind the computational and sparsity limitations of these opera-
tors, two approaches to sparse dynamics can be discussed.

6.7.3 Convex Dynamics: Kalman Filters

The convex approach to dynamics is simply to penalize the norm deviation
(commonly sum-of-squares) from the expected state, i.e. ‖Dwt−1 − wt‖22.
This is equivalent to a Gaussian prior probability around the point estimate,
but of course, other norms like l1 can also be used. Deviations from expected
state in this approach are referred to as “innovations”.

It is possible to set up a non-negative dummy variable xt to absorb only
the negative innovations (leading to sparser future states) and so penalize
the positive and negative innovations separately. This gives “discounts” to
the negative innovations [Coleman et al., 2011], in the following way:

min
x,w�0

T∑
t=1

‖Dwt−yt‖22 +λ1〈πsum, wt〉+λ2‖Dwt−1−wt−xt‖+λ3‖xt‖ (6.36)

where both x and y are constrained to be elementwise non-negative, and
the innovation costs are any norms. In this scheme, successor states are
penalized less for atom transition alternatives not taken, and penalized more
for unlikely transitions that are taken.

This scheme was tested with promising results. One drawback is finding
suitable λ parameters that give non-zero solutions for future states, as it’s
not so easy to find closed form λmax as in Equation 6.35 (as the multiple
parameters interact).

6.7.4 Non-convex Dynamics

Two other approaches involve the quadratic or bilinear form i.e.
〈wt, Dwt−1〉. These functions, like the function f(x, y) = xy, are generally
non-convex, having the shape of a saddle-point. This means that optima
found with local search are only guaranteed to be locally but not globally
optimal.

In special cases, if D is positive semi-definite or negative semi-definite, the
form can be convex or concave. In general, it can be formed as a difference-
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of-convex function (a function class that has good performance in heuristic
methods) through singular value decomposition of the matrix.

The first non-convex approach uses a Kalman dynamics operator D, to max-
imize the overlap between the future state, and the future states indicated
by the past state. This is done by minimizing their negative dot product:
−〈wt, Dwt−1〉.

The other minimizes the second-order cost function, in a way similar to the
l1 penalty (more weight is penalized linearly) applied to future and past
states: 〈wt,Kwt−1〉.

Model objective functions covering these approaches would be:

min
w�0

T∑
t=1

‖Dwt − yt‖22 + λ1〈πsum, wt〉 − λ2〈wt, Dwt−1〉, (6.37)

min
w�0

T∑
t=1

‖Dwt − yt‖22 + λ1〈πsum, wt〉+ λ2〈wt,Kwt−1〉, (6.38)

One heuristic method to finding local solutions to non-convex problems is
sequential convex programming (SCP). This approach is to solve a non-
convex problem by solving a sequence of convex approximations to the
original problem.

Two possible SCP strategies can be applied to Equations 6.37 and 6.38.
The first is known as alternating convex optimization. In many problems,
if you isolate a subset of variables, the problem becomes convex when the
other subset is fixed. Then, you can find solutions by alternately fixing and
improving the subsets. When fixing the solution at odd or even times t,
the bilinear terms become linear and convex. Another common strategy
is linearizing, replacing with a first-order Taylor expansion, of concave or
non-convex terms, and updating this expansion every iteration.

6.7.5 Summary of Real and Convex Methods

Real or convex approximations to the mixture mosaics over multiple frames
can be costly, due to computing a linear operator of size A2, where the
number of atoms, A, is large. However, they are capable of finding solutions
that are in some sense optimal over multiple frames in the future. Perhaps
in the future these convex approaches can be combined with explicit track
assignments.
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6.8 Conclusions

In this chapter, new methods for audio mosaicing that operate in the filter
bank energy domain have been presented. These methods are able to imitate
a target signal with mixtures, while also promoting longer subsequences of
the sampling context, and promoting consistency of transformation along
these subsequences.

They are causal, and efficient (thanks to OMP); hence they have promise
for interactive applications. They are adaptable, as penalties can be added
for arbitrary properties.

In addition, lookahead heuristics can be used to increase track length, al-
though this seems to be most effective for a small number of lookahead
frames. Finally, a refinement was described for estimating exact sampling
positions, which seems to counteract the problem of phasiness encountered
when sampling using a regular grid in source position and transposition
factor.





Chapter 7

Subjective Evaluation of Sound
Mosaics using Listening Tests

7.1 Abstract

Listening tests are considered the gold standard methodology for evalu-
ating and comparing different treatments of sound signals. Unfortunately,
they are not often conducted, especially concerning experimental sound and
music synthesis techniques. In this study, old and new approaches to the
application of mosaicing synthesis were compared.

In the listening tests performed, own implementations of two classic algo-
rithms: nearest-neighbor matching and dynamic programming path search
(DP), were compared along with two new methods based on spectral mix-
tures: the first, which considers only mixtures at single frames, and the
second, which encourages longer continuous sampling tracks. These algo-
rithms were implemented in a common framework consisting of short fixed-
duration synthesis frames, perceptually relevant spectral features, and re-
sampling transformations (affecting pitch, timbre, and speed) of the input
sounds, including controls over key synthesis parameters and their evolu-
tion. As well, the above methods were compared with Matching Pursuit
(MP), a leading method for sparse signal decomposition, computed in the
audio domain.

The test consisted of three parts. First, an identification task (ID): on a
subset of isolated samples, subjects attempted to identify the source ma-
terial being sampled and additionally rated samples on a single quality
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scale. Second, a main rating task based on MUSHRA [ITU Radiocommu-
nication Assembly, 2003]: subjects gave ratings to groups of related sound
excerpts differing by algorithm. Rather than using a single quality scale,
as is common in audio quality ratings, three quality dimensions were used,
corresponding to similarity to the target in harmony (Q1), similarity to the
target in timbre (Q2), and preservation of timbre characteristics from the
source (the sampled excerpts, Q3) in the synthesized mosaics. Finally, an
interview was conducted in which the subjects were free to comment on any
of the testing material, the testing procedure, or the research itself.

Results: Matching Pursuit (MP) performed significantly best on the two
target similarity measures (Q1 and Q2). However, on the measure of source
timbre preservation (Q3), it performed significantly worst; and subjects were
least able of all methods to correctly identify the source sound. In contrast,
the continuity-encouraging mixture method (tracks) performed significantly
best on Q3, was in the runner-up group for Q2, and had average performance
on Q1. As well, the source signals from the mosaics created with tracks were
highly identifiable. In general, mixture methods (including mp, mix, and
tracks) seemed to dominate non-mixture methods, for all tasks except ID,
in which the leading group included mixture and non-mixture methods.
By contrast, while continuity preservation seemed to have helped tracks in
Q3, it seemed to have cost performance in Q1. Additionally, MP and DP
both took orders of magnitude more computation time than the other three
causal methods.

7.2 Introduction

Sampling synthesis is the domain of audio synthesis that uses databases
of sampled signals to produce a result. Mosaicing is a sampling synthesis
technique that composites many small pieces of source material to produce
a different result. One application of mosaicing is texture transfer, in which
the textures of source sounds are transferred to musical targets, e.g. as an
imitation or accompaniment. (See Chapter 2, State of the Art for more
background).

In the course of the dissertation research, several new mosaicing strategies
were developed: algorithms combining methods from sparse signal process-
ing (supporting mixtures of several sounds at once to a spectral target)
with perceptually relevant spectral descriptors, and automatic control of
sound transformations. In order to validate and compare them to classi-
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cal synthesis algorithms, an experiment was designed to measure the effect
of the algorithm on several quality attributes of mosaics of identical input
material. The experiment took the form of several listening tests and an
interview.

The listening tests were designed to answer the following basic questions
about the mosaics. First, could subjects identify which source sounds were
used to generate individual mosaics? Second, to which extent did each mo-
saic sound similar to the musical or sonic target? Third, to which extent
did each mosaic preserve sonic characteristics of the source? Synthesis algo-
rithms that perform favorably according to these questions should be good
candidates for texture transfer and mosaicing.

The mosaicing algorithms developed were intended to be used by mu-
sic makers, composers, and sound designers. As potential users, subjects
needed a certain cultural knowledge of harmony and timbre, i.e. not nec-
essarily known to näıve listeners. Thus, listeners were recruited that had a
certain amount of musical training.

The tests were conducted at Pompeu Fabra University (UPF), Music Tech-
nology Group (MTG) in Barcelona, during the week of Monday the 17th

November to Friday the 21st (2014). Twenty subjects in total completed
the test, which took around 2 hours per subject, and one additional sub-
ject completed just the individual mosaics and interview. All subjects had
prior musical training and experience, many were associated with the MTG,
and a few were associated with the Sonology Department of the Escola de
Musica Superior de Catalunya (ESMUC).

7.3 Design of the Listening Tests

7.3.1 Hypothesis

As the design of our synthesis algorithms (treatments) addressed the con-
flicting requirements of spectral mixtures (allowing a better fit to harmony)
and continuity (to preserve characteristics of the source, and to minimize the
artifacts created in transformation and compositing), we wanted to know
if blending these strategies would pay off. Therefore, the hypothesis was
that a hybrid system would perform broadly well on the several quality
measures, though not necessarily the best at any; in contrast to specialist
algorithms that might perform well in one but not in others.
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One example of a specialist system would be a standard dynamic program-
ming path search algorithm, which maximizes continuity of the source (and
therefore seem more natural) but cannot properly match mixtures, as it
produces only a single path. A diametric example would be a mixture algo-
rithm that matches spectral targets more closely, but without support for
continuity.

In addition, it was hoped that mixture strategies would give improvements
in target quality (harmony and timbre), and that continuity strategies would
give improvements in preservation of the source quality. This would provide
evidence for our and other future hybrid strategies.

7.3.2 Mosaicing Algorithms compared

group method mixtures continuity causal

Perceptual Filter
(PF)

near no no yes

mix yes no yes

tracks yes yes yes

dp no yes no

- mp yes no no

Table 7.1: Summary of methods tested with groups and capabilities.

The following mosaicing algorithms were compared:

The first group of algorithms were implemented in a common framework
using descriptor vectors consisting of perceptual filter banks (chroma and
timbre filters). These algorithms belong to the Perceptual Filter (PF) group:

1. near – Classic nearest-neighbor matching done on a frame-by-frame
basis. Supports neither mixtures nor continuity.

2. mix – A Mixture method resembling non-negative matching pursuit
done on a frame-by-frame basis. Supports mixtures but not continuity.

3. tracks – Hybrid tracks algorithm, heuristic algorithm allowing for mix-
tures and continuity. (near and mix are both implemented by this
method with certain features turned off).

4. dp – My implementation of dynamic programming path search, sup-
porting continuity but not mixtures.
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The first three methods of the PF group (near, mix, and tracks) belong to
a subgroup of algorithms that are causal (compute using only signal past).
These methods were all implemented with different parameter variations
using the TrOMPmos algorithm (see Chapter 6, Section 6.5.4, p. 110).
mix ignores track-building in time, and so is equivalent to FrOMPmos
(Section 6.5.3, p. 108).

Lastly, in contrast to the PF methods, the following method operated di-
rectly in the audio signal domain:

5. mp – Matching pursuit decomposition in the audio time domain, us-
ing a dictionary of analytic signal atoms extracted from the sources,
as implemented by MPTK [Krstulovic and Gribonval, 2006]. This
algorithm is not exactly a proper mosaicing algorithm, as it lacks a
descriptor space as well as cost parameters relating to structure of the
mosaic. However, it is capable of producing signal imitations based
on mixtures to arbitrarily high SNRs, making it apt for comparison.
mp supports mixtures but not continuity.

As mentioned in Section 2.1.4, mp is essentially equivalent to the strategy
proposed in [Collins, 2012, Section 8.1, Sparse Concatenation], albeit with
the following enhancement (as with the other methods).

In order to improve the similarity of a short source signal with the target,
all algorithms were augmented with access to all transpositions from one
octave down to one octave up, with three divisions per semitone, for 73
transpositions in total (including the identity). The utility of adding trans-
positions (or other transformations) to a small sound corpus to improve
similarity to the target in descriptor space was discussed earlier (in Section
1.3, Introduction).

A summary of methods and groups by capabilities is given in Table 7.1.

Two additional non-algorithm conditions, hidden reference and anchor, are
introduced by the MUSHRA quality tasks; see Section 7.3.5 below.

7.3.3 Test Protocol

Each test started with an overview of the test, describing the purpose of
the experiment as well as the protocol with component parts (interview,
individual mosaics, MUSHRA training, MUSHRA tests, exit interview).



132 subj. eval. of sound mosaics using listening tests

Then, subjects were interviewed about their music training and past music
activities, including previous experience with music technologies. Next,
some basic mosaicing concepts like source and target signal were explained
with the aid of several sound examples. The closed sound categories for
identification were explained, and subjects could complete the ID task for
individual examples in sequence (see Section 7.3.4 below). After the above
steps were completed, the main quality rating task could proceed.

The bulk of the test consisted of the MUSHRA quality ratings (see Section
7.3.5). First, the three quality scales were defined. Then, the testing soft-
ware was explained and subjects rated three screens (one for each scale)
as training with the experimenter present. Finally, subjects completed the
main ratings task, rating 18 screens in total. To close the experiment,
subjects were interviewed about the test procedures, the testing material
(whether they liked it or not), and any other comments they had about
future applications in audio mosaicing.

7.3.4 Identification (ID) Task, individual mosaics

One main question of importance in this study (mentioned in the Intro-
duction, first question) concerned how identifiable the source sounds were
within the mosaics; and consequently how they were affected by treatments.
This was determined by playing individual mosaics for the subjects, and
having them guess for each mosaic what the source sound was.

Before the listeners were exposed to the source sounds, it was measured
how well the sources could be identified in individual mosaics of differing
treatment. A small subset of target/source signal pairs (hereafter referred
to as objects) was prepared and processed over all algorithm conditions. To
prevent subjects from recognizing a source signal from a previous listening,
they rated only one of each of the five objects, and one of each of the five
algorithm conditions.

The subjects listened to them, with repeats if necessary, and then completed
two tasks relating to the source sound of the mosaic:

• closed selection from broad categories of sound: environmental, single
instrument music, multiple instrument music, or non-music speech
(see Questionnaire, Appendix A for details)

• open description: verbally identify, in broad and specific terms, the
source sound
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score component full credit partial credit

category 0.5 if correct 0.25 if one of several answers

description 0.5 if correct 0.25 if one of several answers

code - source ok categories short correct description

J – waterPour ENV water pouring

L – ducks ENV/SPEECH ducks mixed with human

M – tuning POLY an orchestra tuning

H – breathy ENV/SPEECH either noise or breath is ok

F – boccherini MONO a single violin playing

Table 7.2: Condensed scoring rubric used in assigning ID scores; along with
correct categories and example descriptions; multiple in ok categories indicates
either would be correct. Object codes correspond to those listed in Table 7.6, page
141.

Each trial was then graded on a scoring rubric, giving an ID score for each
mosaic. Half a point was given for the correct category, and half a point
was given for a correct description. If several conflicting options were given
for category or description, one quarter point was given instead. Table 7.2
gives a condensed scoring rubric along with the correct answers for each
source to identify.

The following design was used to distribute the conditions and presentation
orders among objects and subjects (shown in Table 7.3). Between subjects,
the mapping from objects to conditions never coincides in more than one
mosaic. The absolute order of presentation (which mosaic is presented first,
etc.) was balanced over both objects and conditions. The precedence order
of presentation (which mosaic follows which other mosaic) was unbalanced
but symmetric over S1-5 versus S6-10 in objects, and completely unbalanced
and regular over conditions.

In addition to identifying the source sounds, subjects were also asked to rate
the naturalness of each mosaic (from 1-least natural to 5-most natural) and
to describe what informed their scores (artifacts, noise, control gestures).
For details, see the Questionnaire, Appendix A (p. 167).

7.3.5 Source and Target Quality Tasks

The second and third research questions (from the Introduction) ask how
similar the mosaic is to the target, and how well source characteristics are
preserved in the mosaic. To this end, a listening test based on the MUSHRA
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subject number (in group of 10)
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

order object code and condition number

1st F4 M1 J3 L5 H2 J4 M1 F3 H5 L2

2nd H3 F5 M2 J4 L1 L3 J5 M2 F4 H1

3rd L2 H4 F1 M3 J5 H2 L4 J1 M3 F5

4th J1 L3 H5 F2 M4 F1 H3 L5 J2 M4

5th M5 J2 L4 H1 F3 M5 F2 H4 L1 J3

Table 7.3: Ordered distribution of individual mosaics to ten subjects (top row,
S1-S10) in presentation order (left column, from top to bottom). Each letter cor-
responds to a source-target pair in the testing material (given in Table 7.6, page
141), and each number corresponds to one of the five algorithm conditions (given
in Subsection 7.3.2, but reordered).

standard (Multi Stimulus test with Hidden Reference and Anchor), given by
International Telecommunications Union (ITU) standard ITU BS.1534 [ITU
Radiocommunication Assembly, 2003], was implemented. This method was
designed for “the comparison of high quality reference sounds with several
lower quality test sounds”. This seems appropriate for our task, as the
distortions induced by mosaicing algorithms are quite strong compared to
transmission or compression systems.

In this method, groups of test material are compared and rated on a com-
mon quality scale; the test works with the aid of interactive software that
allows the subject/evaluator random access to any of the excerpts including
an explicit reference (the target), allowing comparison between all excerpts
within a group. The standard also defines a hidden reference (perfect qual-
ity) and anchor signals (highly distorted, low quality); these frame the
quality of distortions introduced by the algorithms. The design of the an-
chor is specific to the distortions in question, and is addressed in its own
section (Section 7.3.6.3, Anchor Sounds).

Rather than using a single quality scale as in similar listening tests (for in-
stance, in transmission or compression systems), mosaics were evaluated on
three different quality scales (referred to as “attributes” in the MUSHRA
standard). This was based on two requirements. First, sound and music
perception are multidimensional; two dimensions important for the similar-
ity to the target are harmony (this will be scale Q1) and timbre (Q2).

Second, rather than transmission systems, which have a single input signal,
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mosaicing is a kind of cross-synthesis with two input signals: the target
sound (what sound to imitate), and the source sound, where the samples
and texture are derived from. We would like to know if the synthesis pro-
cess transforms the source into something unrecognizable, or adds strong
artifacts. Thus, the third quality scale (Q3) concerns the preservation of
timbre characteristics of the source. See Figure 7.1 for a synthesis model
that relates the three quality scales Q1-Q3 to the target, source, and mosaic
signals.

While some aspects of harmony from the source can be carried over (e.g.
the source only has certain intervals or chords present) this is not an explicit
goal of the system and can be seen as a side-effect. As a sound is transferred
into a new context, the absence or presence of artifacts could be seen as an
aspect of realistic source timbre preservation.

xsynth mosaic

target
Q1 (harmony), Q2 (timbre)

source
Q3 (source timbre)

Figure 7.1: Conceptual model of a cross-synthesis process “xsynth” taking two
input signals (target and source), and outputting a single mosaic signal. The dotted
lines show the two quality scales concerned with the similarity between target
and mosaic (Q1-harmony and Q2-timbre) and the scale concerned with similarity
between the source and mosaic (Q3-timbre preservation).

In the testing interface, the following questions associated with each quality
scale were asked:

Q1 How well is the harmony of the target/reference sound recreated?

Q2 How well is the timbre of the target/reference sound recreated?

Q1 and Q2 used the following scale, with descriptions on the top row (in-
termediate values shown as dashes on the test screen), and scores on the
bottom row:
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badly
recreated

- not so well
recreated

- average - well
recreated

- perfectly
recreated

1 2 3 4 5 6 7 8 9

Q3 How well is the timbre of the source/reference sound preserved?

Q3 used the following scale:

badly
preserved

- not so well
preserved

- average - well
preserved

- perfectly
preserved

1 2 3 4 5 6 7 8 9

In addition, the testing interface was translated into Catalan and Spanish
for ease of use with potential evaluators, and was used for some quality
ratings. The questions were translated as statements in Catalan: Q1-‘El so
recrea l’harmonia de l’objectiu/la referencia...’, Q2-‘El so recrea el timbre
de l’objectiu/la referencia...’, and Q3-‘El so conserva el timbre del so de
l’origen/la referencia...’, with the following quality scale: ‘malament’, ‘-’,
‘no gaire bé’, ‘-’, ‘més o menys’, ‘-’, ‘força bé’, ‘-’, ‘perfectament’.

Likewise, the questions were translated as statements in Spanish: Q1-‘El
sonido recrea la harmonia del objetivo/la referencia...’, Q2-‘El sonido recrea
el timbre del objetivo/la referencia...’, Q3-‘El sonido conserva el timbre del
sonido de la base/la referencia...’, with the following quality scale: ‘mala-
mente’, ‘-’, ‘no tan bien’, ‘-’, ‘más o menos’, ‘-’, ‘bastante bien’, ‘-’, ‘perfec-
tamente’.

In order to measure the consistency of ratings, some of the groups of material
were retested a second time. Due to the large amount of test material and
limited time per subject, not all of the material was retested. The retested
ratings were used only to measure the consistency of the subjects; just the
first test of each screen was used in the further analysis of ratings.

As it was not a main goal of the study to correlate the different attributes,
and for reasons of test length, not all scales were uniformly tested on all
of the test material. Rather, target material was selected with prominent
characteristics in either harmony or timbre; the algorithms themselves had
a parameter to favor either harmony or timbre. Yet for all targets, we found
it relevant that the source characteristics should be preserved. Thus, the
sets of material tested in Q1 and Q2 were disjoint, but Q3 included screens
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also tested on Q1 and Q2. (Which objects were tested on which scales is
listed in Table 7.6, page 141).

The complete MUSHRA test was composed of screens in which a related
group of excerpts were rated. Each group comprised a single object (with
defined source and target) processed over all conditions (algorithms, anchor,
and hidden reference). The training session was composed of three unique
screens (not repeated later), one from each quality scale Q1-Q3. The test
session was composed in blocks of a single quality scale at a time, starting
with Q1, with four unique and two retested screens (total six); then with Q2,
with three unique and one retested screen (total four); and finally Q3, with
six unique and two retested screens (total eight). The order of screens within
blocks was randomized for each evaluator, though in a few unanticipated
cases (due to the test software used), repeated screens were presented back-
to-back. In total, there were thirteen unique and five retested screens.

This test was implemented by configuring MUSHRA test software developed
by Thomas Bisitz at Hörtech. This software uses buttons instead of sliders
for the quality scales; it also supports multiple quality scales with changing
color labels. An example screen from the test is shown and explained in
Figure 7.2.

7.3.6 Selection and Preparation of the Test Material

In selecting test material, a range of input signals with different character-
istics was sought: source sounds that would be challenging to identify un-
der harsh treatments, target sounds with polyphonic harmonies that would
show the benefit of new synthesis approaches, and difficult to imitate dy-
namic timbres to see what is possible with mosaicing. At the same time, it
was desired to present interesting and entertaining material to subjects, who
volunteered freely for a long test. Therefore, some earlier proposed objects
(that weren’t working in synthesis) were later omitted from the tests. To
summarize, this process was both informal and subjective; some material
was selected to test the benefits of new approaches and the limits of older
ones; the tuning of parameters and final selection could have been prone to
some bias.

Selection tasks are integral to sample-based sound design [Coleman, 2007];
not all sound transformations work well on all input material, partly ne-
cessitating the selections made. To ensure that each method could perform
sufficiently, parameters for each object/method intersection were tuned, and
these were reused over quality scales between Q1/Q2 and Q3 (excepting
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Figure 7.2: Screenshot (condensed) from MUSHRA implementation used in col-
lecting quality ratings. At the top, the title shows the question relating to the
current quality scale. At left, descriptions of quality gradations are given, with
the corresponding ratings given to the right. On the bottom row are buttons
corresponding to the treatments (including the reference signal, not rated); when
selected, the button is highlighted green and the given excerpt is played, crossfading
from the previously playing excerpt.

anchor signals, which were separately constructed according to the quality
scale being tested).

The process for selecting and preparing the test material was roughly as
follows: first, a pool of potential input sounds was selected to cover a wide
range of categories of sound (next section, see Table 7.4, p. 140). Next,
based on our knowledge of the material and algorithms, a partially speci-
fied list that identified potential target and source signals for different cat-
egories was proposed (see Table 7.5, p. 141). Then, potential source and
target pairs (objects) were proposed and systematically tried out with the
algorithms. During this process, parameters were tuned for the algorithms
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(Section 7.3.2) to produce better sounding mosaics. Some objects, when no
parameters were found producing good mosaics, were excluded. As well,
three new input files were added at this stage (see last rows of Table 7.4, p.
140), giving the final selected target-source pairs (see Table 7.6, p. 141).

For the MUSHRA tasks, anchor signals were also generated (see Section
7.3.6.3, Anchor Sounds). Once all material was prepared, it was all normal-
ized to the same RMS value, in order to have roughly comparable loudness.

7.3.6.1 Input Sounds

To begin, a set of input sounds were proposed coming from three broad cat-
egories: music signals, speech signals, and environmental sounds. Music sig-
nals were either polyphonic music, consisting of ensembles playing multiple
parts or an instrument playing simultaneous notes, or monophonic music,
with single instrumental lines. As speech, non-musical speech was speci-
fied. Finally, environmental sounds are predominantly neither music nor
speech (though they occasionally might include one or the other), but are
emitted from physical interactions in the world. Gaver’s taxonomy of every-
day listening [Gaver, 1993] helps to further divide simple sonic events from
the environmental sounds into solid interactions (Vibrating objects), gas in-
teractions (Aerodynamic sounds), and liquid interactions (Liquid sounds),
each from which an input sound was selected. The initial input sounds are
listed in Table 7.4.

7.3.6.2 Sound Mosaics (Algorithms)

The final target-source pairs selected are given in Table 7.6. The majority
of the results used the following basic parameters at 44.1k sampling rate: a
window size of 8193 samples (186 ms), and a hop size of 1024 samples (23 ms,
hop rate of 43 per second) for 4x overlap between windows; except in some
cases using the (madonna) targets, in which greater temporal resolution was
sought; thus, a smaller hop size of 512 sample and 8x overlap was used.

The causal PF algorithms (mix, near, and tracks) all shared the same pa-
rameter set, consisting of the basic overlap-add parameters, and the cost
parameters defined in Chapter 6, Section 6.4.1, page 101. The non-causal
PF algorithm, dp, had a more limited parameter set for two reasons. First,
it was not completely integrated into the framework of the others; and sec-
ond, the full integration of some state elements is tricky (such as the source
accumulator, described in Section 6.4.1.3, which maintains an accumulated
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main category
/ name subcategory; description (length); tested?
environmental
bees animal, air sound; binaural recording of buzzing bees (23s); Y
breathy human-like, synthesized; breathy sounds generated from for-

mant filters (15s); Y
inflation air sound; someone blowing up a balloon (12s); Y

mixsteps solid sounds; vibrating objects, keys, footsteps on floor (9s); N
waterPour water sound; water poured into a filling container, some echo

at the end (12s); Y
music

8bit synthesized instrumental; distinct 5ths tonality (14s); N
boccherini bowed-string instr.; solo violin line from a minuet (15s); Y
brenda human singing voice; female soprano singing a major arpeggio

with nonsense words (5s); Y
fugue piano instrumental; polyphonic (fugue) intro of 4 voices from

the Art of the Fugue (Bach) w/ medium tempo (31s); Y
gradus piano instrumental; fast passage from Debussy’s Doctor Gradus

ad Parnassum (17s); N
kidsing human singing voice; kid singing song in Hindi (22s); Y
madonna pop music; Madonna’s “Give It 2 Me”, chorus with voices, syn-

thesizers, percussion, and harmonizing effects (15s); Y
madonnaS short version of madonna, above (4s); Y
orchestra orchestral; an orchestral texture in a minor key and fast waltz

tempo (10s); Y
tuning orchestral; tuning sequence with rich open chords (23s); Y
wordsFall folk music; male and female voices singing in harmony with

guitar and piano accompaniment, “Falling Slowly” from Once
(7s); Y

speech

challenge male voice; Polish words, tough to pronounce (2s); N

exposure female; voice gives a warning about loud sounds (8s); N

goodwill male; president speaks about goodwill (7s); N
purenoise female; says “this is pure noise”. Sibilant, high-passed (1s); Y
environmental
ducks animal sounds and human voice; man imitating birds has a

conversation with ducks (32s); Y
crickets animal sounds; crickets and frogs on a summer night (81s); Y
music
mandolin plucked string; monophonic minor key melody played on man-

dolin (49s); Y

Table 7.4: List of sounds collected as potential input sounds, showing the main
category, excerpt name, subcategories and text description (length), and whether
or not included in final test material; the last three sounds were added in the final
stage of parameter tuning/selection.
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task
source or

suggested inputs w/ summarized reasons
target

ID source boccherini, bees, tuning, breathy, mixsteps, wa-
terPour

Q1
(harmony)

target fugue (very hard polyphony), wordsFall (unison
harmony), madonna, orchestra (minor harmony),
gradus (difficult and quick)

Q2
(timbre)

target purenoise (speech), orchestra (has interesting tim-
bral rhythm, high and low instruments), inflation
(imitation of a natural sound with clear dynam-
ics), madonna (prominent vocal timbre)

Q3
(src. timbre)

source boccherini, kidsing, goodwill, breathy, tuning

Table 7.5: Partially-specified list of ideas for proposed targets and sources for
different tasks

object target source task source anchor Q3
A fugue boccherini Q1, Q3 ducks
B inflation breathy Q2, Q3 boccherini
C madonna breathy Q2, Q3 mandolin
E madonna kidsing Q3 brenda
F madonnaS boccherini ID, Q1 NA
G orchestra boccherini Q1, Q3 crickets
H orchestra breathy ID, Q2 (training) NA
J orchestra waterPour ID NA
K purenoise brenda Q2 NA
L wordsFall ducks ID, Q3 (training) mandolin
M wordsFall tuning ID, Q1 (training) NA
N wordsFall bees Q1, Q3 inflation

Table 7.6: Final list of target-source pairs (objects) along with the tasks they
were used in the experiment; last column shows which alternate sources were used
in generating anchors for Q3 task.
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weight for source frames as they are sampled) without causing the state
space, and consequently the computation time and space, to explode (the
state space is exhaustively searched in standard dynamic programming).

The signal-domain approach, mp, was limited in several ways in order to
produce results in a finite (but large) amount of time. First, the algorithm
was run with a fixed number of iterations (n=1000). Second, the analytic
signal dictionaries were limited to only the first 100 source frames, before
transpositions (multiply by 73), and before translations to all given hops in
the target (multiply by frames in target). The second measure was necessary
because the dictionaries had become so large that MP seemed not to achieve
any number of iterations in limited time. Finally, due to a rendering bug
in MPTK, there was slight clipping in some of the outputs that was unable
to be fixed before the test.

Neither of the restrictive measures nor the bug appear to have hindered mp
significantly, as it produced the best approximations of target signals (Q1
and Q2; see Section 7.4.2).

7.3.6.3 Anchor Sounds

Anchor sounds are meant to provide a lower bound on MUSHRA quality
measures. As such, they should be related to the distortion in question.

The anchor signals used for each task were created with the following pro-
cedures:

• Q1 (target harmony): A special version of the near method was pro-
grammed such that the chroma target was modified by shifting it by
random step functions. It thus followed the chroma contours of the
target, but with clearly wrong notes.

• Q2 (target timbre): Again, a version of the near method with a dis-
torted target was used. In this case, both the chroma and timbre
target signals were modified (as they are correlated) by speeding up
the progression by 50%, and flipping the spectrum and inversing time.
Therefore, the spectral and temporal shape of the target should have
been quite different.

• Q3 (source timbre): For distorting the timbre of the source, the near
method was used, changing the source input so it was a different source
sound (thus not preserving the source in comparison to the reference).
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7.4 Statistical Analysis and Results

The previous section (7.3) has described in detail the testing material and
procedures. In this section, the statistical analysis and basic results are
covered.

In designing the analysis, an earlier version of the MUSHRA standard was
consulted [ITU Radiocommunication Assembly, 2003], that suggests esti-
mating means and standard deviations of each group, and forming confi-
dence intervals around those means for significance tests. However, a recent
update of the standard gives considerably more detail to the question of sta-
tistical analysis, including a section recommending the parametric ANOVA
[ITU Radiocommunication Assembly, 2014, Section 9.3, Application and us-
age of ANOVA, p. 15]; while the permutation test is recommended as a non-
parametric alternative [ITU Radiocommunication Assembly, 2014, Attach-
ment 3, Description of non-parametric statistical comparison between two
samples using re-sampling techniques and Monte-Carlo simulation methods,
p. 23].

Whereas general MUSHRA scores are defined on real number scales with
many gradations, the push-button MUSHRA implementation used was con-
fined to discrete scores (refer to Section 7.3.5, Figure 7.2). The ID scores
and naturalness ratings were also given on discrete scales. As all scales were
discrete, it would have been harder to justify a parametric approach. There-
fore, nonparametric methods were used for the analysis, which could be less
sensitive (would find fewer significant differences if the residual distributions
were truly Gaussian) but do not make any distributional assumptions.

Rather than the permutation test, another standard nonparametric ap-
proach was chosen, that of methods based on rank statistics. In following,
the responses were interpreted either as ordinal data (only ordered ranks
of items matter) or interval data (degree of difference between items mat-
ters), using methods that compared either ranks of items or ranks of their
differences. Where present (in the MUSHRA data), anchors and hidden
reference groups were excluded from analysis, as they were artificially cre-
ated to give the lowest and highest scores and give no information on the
relations between the algorithms.

For each data type, a Kruskal-Wallis one-way anova was first conducted
over the five algorithm conditions. This established if condition affected
scores, by testing for stochastic dominance (ordinal analysis, if one group
consistently beat any of the others in rank in the sample among all pairs of
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data test type test name scale type
ID scores and
naturalness ratings

omnibus Kruskal-Wallis one-way
anova

ordinal

post-hoc Wilcoxon rank-sum test ordinal

MUSHRA ratings
omnibus Kruskal-Wallis one-way

anova
ordinal

post-hoc Wilcoxon signed-rank test interval
MUSHRA
test-retested screens

correlation Kendall τ correlation ordinal

Table 7.7: Overview of statistical methods used in the analysis

ratings).

Afterwards, a post-hoc analysis was conducted to see which differences be-
tween pairs of groups were significant. For the identification and natural-
ness scores, which were measured independently for individual mosaics, a
Wilcoxon rank-sum test was used (ordinal analysis) to compare pairs of
conditions. By contrast, for the MUSHRA scores, which could be thought
of as grouped (a single subject on a single screen rates a group of conditions
by comparing between them), a Wilcoxon signed-rank test was used (inter-
val analysis) to compare pairs of conditions. In both cases, to prevent false
positives from multiple comparisons the Bonferroni correction was applied
(n=10, for

(
5
2

)
pairs of algorithm conditions), which could either be seen as

dividing the target p-values or multiplying the observed p-values. Table 7.7
(p. 144) gives an overview of the methods used for the analysis.

Why did we analyze the individual mosaics only with ordinal methods, but
analyze the MUSHRA data with more powerful interval methods? In the
case of the individual mosaics, each evaluator rated five mosaics, each having
differing object and method. Thus, there were no privileged paired compar-
isons among the individual ratings given by a single evaluator. Therefore,
as in the ordinal methods, each rating is ranked against each other rating.
However, the situation with MUSHRA ratings was the reverse. For exam-
ple, when the evaluator or the object differed, we don’t know if the same
scale was used to give the ratings. But we do know that on each screen,
the evaluator made direct comparisons of the mosaics on the same screen.
In this case, the differences (and the intervals) between the methods can be
analyzed directly (by the signed-rank test).
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7.4.1 Individual Ratings (ID scores and naturalness
ratings)

For the identification and naturalness rating tasks, individual mosaics were
presented to the subjects (one for each of the five conditions). The ID scores
are created by rating the subject’s open identification of the sampled source
and closed selection of a category for the sampled source. These were graded
by rubric as earlier described in Section 7.3.4, giving a discrete distribution
over scores [0, .25, .50, .75, 1]. The naturalness ratings were given on a scale
from 1 (least natural) to 5 (most natural), but some subjects specified some
ratings between points on the scale (in half-points) in order to be consistent
with quality ratings given for previous excerpts.

Conditions and objects were distributed to subjects in balanced sets of 10
subjects (as described in Section 7.3.4; see Table 7.3, p. 134), each con-
tributing two ratings for each mosaic; two balanced sets were measured,
along with an extra subject, yielding 4-5 ratings for each mosaic (between
20-22 for each condition or object). This scheme gives fewer overall mea-
surements than the MUSHRA data; however, clear patterns still emerged.
Figure 7.3 shows the distribution of ID scores and naturalness ratings first
by condition, and second by object (so that distribution by conditions can
be compared with distribution by object) as box plots.

Most saliently, mp samples led to the worst identification of the source
sound. A Kruskal-Wallis test found that condition has a highly signifi-
cant effect on ID scores (H=25.0, df=4, p < 0.01). Post-hoc analysis using
a Wilcoxon rank-sum test with Bonferroni correction (n=10) showed dif-
ferences between (dp, mix, tracks) and mp and were all highly significant
(p < 0.01) with (80%, 71%, 77%) of the pairs from the first group beating
mp, and that differences between near and mp were significant (p < 0.05)
with 73% favorable comparisons for near. Differences among the (dp, mix,
near, tracks) group were however not significant (all p > 0.05).

As far as the naturalness scores, the tracks condition gave the highest abso-
lute scores. A Kruskal-Wallis test found a significant effect of condition on
naturalness scores (H=10.5, df=4, p < 0.05), but post-hoc analysis revealed
only negligible effect sizes between pairs of groups.

By examining the ID and naturalness scores together, one can gain addi-
tional insights on their relationship. Figure 7.4 consists of heat maps, or 2D
histograms, of the ID scores and naturalness ratings collected for all mosaics
of each condition. One insight: in the mp condition (3rd column) along the
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Figure 7.3: Box plots comparing ID (top, left) and naturalness scores (bottom,
left) by algorithm condition. For each column, the actual score distributions are
overlaid in text. Variation by object is shown (top and bottom, right) only for
comparison.

bottom row, there is a series of mosaics which subjects rated naturalness
higher than 1, but could guess no information correctly about the source
(ID score=0). This situation is precisely reversed for dp (1st column) and
tracks (5th column), in which there is a large row of mosaics with complete
identification (ID score=1) but varying in naturalness rating.

The summaries of comment transcriptions for individual mosaics (see Ta-
ble 7.8, p. 148) further emphasize differences in how identifiable the source
sounds were. Note for the mp method (3rd row for each object) especially
for some sources, in many cases subjects either misidentified the target as
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Figure 7.4: 2D histograms of ID scores and naturalness ratings grouped by con-
dition. At each intersection, the count indicates the number of mosaics rated with
that naturalness rating (x-axis) and ID score (y-axis).

the source, or stated that they couldn’t identify the source, whereas for the
other methods that was largely not the case. The table of qualitative com-
ments (Table 7.9, p. 149) will be referenced in further sections to support
characterization of the methods.

Comments were interpreted by the author and annotated in English, al-
though they might have been spoken in Catalan or Spanish. The author
maintains the recordings of the interviews.

7.4.2 MUSHRA Ratings (Q1, Q2, and Q3)

Data from the MUSHRA tasks could be interpreted as both ordinal data;
or as interval data, in which each pair of two conditions given by a single
user on a single screen forms a quality difference interval. The ratings were
measured on differing scales (defined in Section 7.3.5, p. 133) according to
questions (Q1, Q2, and Q3) from 1 to 9.

Figure 7.5 shows the distribution of Q1, Q2, and Q3 ratings by condition and
object as box plots. Distributions by object are shown only for comparison
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object: source target
method (mean ID score %): open identification
J: water pouring orchestra
dp (100%): “water being poured” “water in a tube” “water?” “water”
mix (95%): “water in the toilet” “rippling liquid” “water poured in a jar” “water flowing from
a pitcher or in nature” “water or fire”
mp (55%): “running water” “water, keys, boot, or wooden instrument” “noise and tonal,
metallic impact” “windy sound and knocking on wood” “organ or synth?”
near (69%): “pouring water” “can’t ID source” “water opened tap, cleaning hands”
tracks (81%): “water gargling and pouring” “water pouring” “water falling into a container”
“festival organ”
L: ducks+human folk song
dp (63%): “could be anything” “animal sound” “like a child’s voice singing” “geese + goats
+ humans”
mix (75%): “noisy, could be speech, ‘gr gr’ ” “speech” “transformed speech” “group of speak-
ers”
mp (0%): “a folk song” “string instruments” “bowed string” “piano, woman, man, other
instrument”
near (31%): “singing voice, young boy or soprano” “circus organ + noisy, non-tonal” “monkeys
shouting” “speech, male voices” “human voice + synth”
tracks (69%): “speech” “speech, mouth sounds” “man talking very fast” “male voice”
M: orch. tuning folk song
dp (88%): “string instruments” “jazz or metal wind instruments” “string instrument, tuning?”
“strings and voice”
mix (55%): “synthesizer, no attack, long decays” “symphonic music” “orchestra, strings and
percussion” “stretched string instrument” “violin or machine-like”
mp (19%): “singing voices and instruments” “can’t ID, not music or speech” “two people
singing” “touching papers, can’t ID source well”
near (69%): “orchestra, string ensemble, some percussion” “violin sound” “orchestra, can’t
tell which instrument” “strings”
tracks (75%): “creak (noise)” “baroque orchestra, strings, trumpet, drums” “orchestra” “tun-
ing orchestra, can’t distinguish source from target”
H: breathy noises orchestra
dp (75%): “animal voice, like a cat” “breathing sound, snoring” “a child or a baby “can’t say
source”
mix (50%): “machine, like a vacuum cleaner” “group of people talking in a bar” “dog sound,
dry and reverberated” “synth lead”
mp (63%): “group of male singers or accordion” “noise is the source” “single voice, breathing”
“might be natural sound or string”
near (94%): “breathing, could be zombies” “hissing or noise + voice” “monkey or primate”
“someone whispering” “animal or speech”
tracks (80%): “male voice, unvoiced, background” “mouth sounds, snort, laugh” “human
voice, breathing sounds” “human or animal voice, scratchy”
F: solo violin Madonna pop
dp (90%): “squeaky door/violin” “violin” “violin could be source or target” “wind instrument”
“a violin”
mix (75%): “strings” “violin” “strings” “string instrument, mistuned”
mp (0%): “can’t hear source” “can’t ID source, distorted and noisy” “metallic percussion
sound” “friction, object being dragged”
near (75%): “strings and percussion” “violin” “synth or violin”
tracks (81%): “violin, layered” “several violins, could be polyphonic source” “violin, with bow
noise” “strings or accordion”

Table 7.8: Source open identification summaries for all subjects grouped by ob-
ject, along with average ID scores for each condition (left side). ID scores were also
based on closed selection of source category (not shown).
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object: source target
method (mean nat score %): selected qualitative comments
J: water pouring orchestra
dp (3.5): “pitch altered. artifacts at the end, frequency is too high, sound is unnatural.” “seems
natural, not strange, follows some dynamic changes, like tube modulation” “energy not directed,
randomly constructed”
mix (3.2): “can hear filtered sound, a lot of pieces that are connected slices repeated in the excerpt.”
“echo is not natural. pitch changing indicates processing.” “a good example of how arbitrary sounds
can be processed to make something else”
mp (3.2): “sound is strange. rhythm seems unnatural or unexpected. missing the target rhythm.
uncanny valley“ “tonally coherent, very natural sounds.” “doesn’t remind him of an instrument.
old piano inside an automatic car. scratchy, like songs of tom waits”
near (4.0): “notes sliced and transitions have sudden changes, not smooth. less natural, because
musical content played in unnatural style” “changes pitch like a musical instrument, like bassoon or
clarinet. can hear a tube character but also water”
tracks (4.5): “can hear layered overdubbed sounds” “very natural, didn’t hear artifacts.”
L: ducks+human folk song
dp (2.5): “more artifacts than noise.” “not too many artifacts.” “exotic mixing, sounds like nature.
sounds like a mashup of animals.”
mix (2.0): “speech is pitched by tech, effect is very current. voice like a smurf.”
mp (3.0): “like the sound with some added noise or like some of the instruments transformed (like
a snare drum with a loose spring)” “has a filter, structure good, volume steady, there is interference
and weird compression”
near (2.5): “quite granular, more than macroscopic mosaicing” “tries to make a polyphonic texture,
like target, but doesn’t succeed” “source seems less natural, doesn’t sound like they should“
tracks (2.0): “kind of noisy” “velocity is unnatural” “cannot hear artifacts, changes are smooth.
no distortions or loops. seems like instruments, maybe not natural. in some moments, fast changes
could be seen as strange”
M: orch. tuning folk song
dp (1.75): “MP3 artifacts, like birdies” “I like the ‘flutter’ effect” “not so nice, not playing a melody,
each note an unnatural change” “not flowing, discontinuous in intensity unnatural”
mix (2.3): “high frequency rubbing sound is an artifact, or score would be 3.” “pitch shifting effect
not natural for strings.” “not playing in a natural way, stretched sound.”
mp (2.0): “original material [note: the target] easy to hear, but sounds boomy, like in a cave.”
near (3.5): “sliding unnatural, rapid transitions from soft to percussive.” “noises appear and
disappear without sense, disturbing noise bursts” “goes off pitch. swishing sound between notes.”
“some transients made it sound artificial.”
tracks (3.13): “heavily processed. target sound is not clear”
H: breathy noises orchestra
dp (2.5): “less natural because of artifacts” “could not be acoustic, not too many artifacts.” “mosaic
is granulated. don’t hear a space.”
mix (1.5): “comes from a broken amp/loudspeaker. perceived musical sense, but it sounds noisy,
like something broken”
mp (1.5): “clicks or artifacts, breathy from voice. can hear a coherent tune garbled” “noises between
note changes that sound artificial” “transposition used to make it pitched, sounds artificial”
near (2.63): “only part of the animal sound is present. doesn’t sound like natural sound.” “it
sounds like a mix of two things with echo. hears loops for some reason, hears sonic repetition”
tracks (3.6): “disagreeable, annoying, aggressive, danger”
F: solo violin Madonna pop
dp (2.4): “natural instrument playing with a lot of effort.” “synthetic. short rapid sounds, hard to
play” “violin here is more human violin than before, but might be a synth”
mix (3.0): “transitions between phrases, dips in amplitude, warble/tremolo” “no noisy cuts, sound
is more continuous” “mistuning characteristics of strings. polyphonic effect”
mp (1.88): “clicking, beats, background noise, and high frequency distortions” “low frequency bumps
make the rhythm. strongly filtered, like a notch filter, very low and high pass“ “timbre metallic,
scraping sound, can hear clipping”
near (2.25): “a click, or some modulation, but more or less continuous, with some pattern. the
impression of something played in reverse”
tracks (3.38): “sounds like an unknown but imaginable instrument with several notes. not 5 because
some effects being used”

Table 7.9: Selected qualitative comments on individual mosaics, grouped by ob-
ject, along with average naturalness ratings for each condition (left side).
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with the distribution by conditions; in general the distributions by object
are more uniform and similar, showing a comparatively smaller effect by
object.

On the target harmony task (Q1), the mp condition clearly gave the high-
est ratings. A Kruskal-Wallis test confirmed a highly significant effect of
condition on Q1 scores (H=122.8, df=4, p < 0.01). Using Wilcoxon signed-
rank tests with Bonferroni correction (n=10), all pairwise differences were
significant (p < 0.05) except for (mix, near), giving the following partial
order of groups by Q1 scores (from highest, descending): mp, (mix, near),
tracks, with dp last.

On the target timbre task (Q2), the mp condition also gave the highest rat-
ings. A Kruskal-Wallis test confirmed a highly significant effect of condition
on Q2 scores (H=44.5, df=4, p < 0.01). The signed-rank test with Bonfer-
roni correction found all pairwise differences highly significant (p < 0.01)
except for the trio of (dp, mix, near) giving the following partial order of
groups by Q2 scores (descending): mp, tracks, with the trio (dp, mix, near)
last.

On the source timbre preservation task (Q3), the tracks condition gave the
highest ratings. The Kruskal-Wallis test confirmed a highly significant effect
of condition on Q3 scores (H=196.6, df=4, p < 0.01). The signed-rank test
with Bonferroni correction found all pairwise differences highly significant
(p < 0.01) except for the pair of (mix, near) giving the partial order of
groups by Q3 scores (descending): tracks, (mix, near), dp, with mp last.

7.4.3 Summary of Post-hoc Results

The significant post-hoc results are summarized in a family of graphs (Fig-
ure 7.6, p. 158). For each data type, arrows are drawn showing stochastic
dominance between conditions (relations are transitive). Naturalness rat-
ings had no significant post-hoc group differences, and so were excluded.
One salient point: there were no significant post-hoc differences for any
task between mix and near . These results are interpreted in Section 7.4.5,
Discussion of Method Results.

7.4.4 Retest Analysis

The underlying question of a retest analysis is: how reliable, or on the
contrary, how random were the ratings given by the listeners? Given two
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vectors where the coordinates are ranked by order, the Kendall τ corre-
lation [Kendall, 1938] measures how many orders between coordinates are
preserved or inverted; where τ = −1 means all orders are inverted, and
τ = 1 means all orders are preserved.

The Kendall τ was used to analyze the test/retest screens for all five retested
MUSHRA screens (Section 7.3.5). Two measures were computed for each
test/retest screen pair: τA, tau over all conditions (including hidden refer-
ence and anchor), and τC , tau just over the five algorithm conditions.

Figure 7.7 (p. 159) shows the distributions of τA and τC over all retest
pairs, as well as averages for each subject. Starting with τA, we can see
that for each subject screen, there were always more condition pairs (over
all conditions) preserved than inverted (τA > 0). Looking at τC , (over
only algorithm conditions) we can see this is not the case; there seem to
be four screen pairs with (τC < 0) and several at (τC = 0). Some of these
inversions could be attributed to the 2-3 algorithm conditions (1-3 condition
pairs) in the post-hoc results that were statistically insignificant according
to Kruskall-Wallis (see summarized results in Section 7.4.3). However, when
averaging by subject over retest screens, all subjects were consistent enough,
by the criteria of preserving more algorithm orders than not (τ̄C < 0).

We chose to retain all subjects with average τC > 0, or who on average
maintained more algorithm conditions in order than not. As all subjects
added (on average) consistent information according to this criterium, no
subjects were rejected. In addition, no individual screens were rejected to
avoid unbalancing the data. (As mentioned in Section 7.3.5, only the first
instances of each screen, and not the corresponding retested screens, were
used in the analysis of the MUSHRA ratings in Section 7.4.2).

7.4.5 Discussion of Method Results

7.4.5.1 Matching Pursuit (mp)

As a technique for producing signal imitations using dictionaries of trans-
posed source frames, mp mosaics performed the best on average (among all
other methods) in quality scales Q1 and Q2 (recreation of target harmony
and timbre).

However, the source qualities seem to have been poorly preserved by this
approach, such that subjects had significant trouble identifying the sources
(see Section 7.4.1); and that subjects rated mp excerpts, on average, the
worst in quality scale Q3 (timbre preservation of source; see Section 7.4.2).
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In the view of the author, a goal of mosaicing is to reproduce/imitate target
characteristics, while still preserving some source characteristics (see Section
7.2, Introduction). But rather than preserving the source characteristics,
the mosaics generated by mp seem to have preserved more of the target,
with source characteristics poorly preserved as evidenced by the low ID
scores and low Q3 ratings.

As a listener, my impression of the mp excerpts was this: they seem as if
they were temporally precise copies of the target under a non-linear filter-
ing process. This insight was partially supported by subject comments on
mosaics from the ID task: when describing the quality of mp mosaics, some
subjects used language consistent with filtering processes (see Table 7.9, p.
149, third row; “boomy”, “compression”, “strongly filtered”).

This temporal closeness with the target could be due to a predominance of
phase in the objective function. In the matching pursuit family of signal
decompositions, signal correlations are used to drive the optimization; this
prioritizes phase over magnitude such that a phase inverted signal with the
same magnitude spectrum would have negative correlation with the target,
despite being similar by other measures, such as spectral shape measures
(e.g. spectral moments) that disregard or discount phase.

When using dictionaries of sampled signals to recreate target sounds, match-
ing pursuit can subtractively combine atoms to cancel frequencies present
in the sources, and can even add arbitrary phase shifts to atoms in the case
of analytic signal dictionaries. This subtractivity would seem to allow these
approaches to allocate energy to frequencies co-occurring in sources and tar-
get, while suppressing leftover energy from used source atoms in frequency
regions of low or no energy in the target.

Making reference to an unrelated phenomenon in cosmology, the term dark
energy [Sturm et al., 2008b] was coined to refer to the property of atomic
decompositions to create groups of imperceptible atoms compensating for
error signals. One could coin a similar term, spooky filtering, to refer to
the filter-like quality imparted by the process of reconstructing a target
signal in the time-domain with sampled signal dictionaries. That is, the
quality of imposing some subtle temporal-spectral qualities of the source
(which ones exactly would be an interesting subject of further research), but
mainly recreating the target characteristics. Kernel-based filters from image
processing [Milanfar, 2013], being filters driven by a dictionary or corpus,
also warrant some comparison and consideration in the further study of
spooky filtering.
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Due to the implementation of mp in this study, the atomic detail of re-
constructions was dependent on target length. This was because a fixed
budget of atoms was used for recreating all target signals, short or long.
This resulted in low atomic detail for some long targets and high detail
for some short targets. Alternatively, constant atom density per target du-
ration could have been used. However, in that case, atoms would still be
attracted to the most energetic temporal regions rather than being spread
more uniformly in time, as was done with the structured sparsity approach
of the proposed algorithms.

Another quality flaw that was noticed when recreating a slowly varying tonal
target (fugue, object code A), was that the repetition of atoms in mp was
more prominent than in tracks. This might have been caused by two possible
factors. For one, all of the causal PF methods including tracks incorporated
a cost penalizing recently used source frames (see Equation 6.22, p 103). As
well, tracks searched for longer continuous sampling contexts, which might
also have reduced repetition.

Finally, mp was one of the most computationally expensive methods; see
Section 7.4.6 below.

7.4.5.2 Causal PF methods (mix , near , and tracks)

The mosaics generated by the causal methods from Group PF (mix , near ,
and tracks) seemed to have much in common, as evidenced by their quality
ratings. In fact, ratings from mix and near were not statistically distin-
guished on any task. As a group, they were beaten by mp (Q1 and Q2) but
beat mp in Q3. If we want to transfer or keep source qualities in the mosaic
(Q3), the tracks method performed best. This is probably because tracks
sampled longer continuous excerpts from the source material; otherwise the
mosaics were generally similar to those of mix and near .

For the target similarity scales (Q1 and Q2), there appears to have been
some trade-off. For the target harmony scale (Q1), mix/near seems to have
beat tracks. Perhaps tracks overly constrained the atoms used to reconstruct
the target, where it only allowed atoms that contribute to several target
frames, whereas mix and near would have both made decisions based on
the signal in each target frame (and so could perhaps better follow the
spectral peaks of the target). In a more puzzling reversal, tracks beat mix/
near in target timbre (Q2). It could be that the longer continuous tracks
afforded by tracks were somehow more convincing as a timbre imitation than
something with a more granular texture, often the case with mix/near .
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7.4.5.3 Dynamic Programming method (dp)

Along with the Group PF methods, dp was more identifiable probably due
to maintaining longer sampling tracks (as well as for the causal methods;
not using spooky tricks, and heuristic methods for not reusing segments).
On Q1 (harmony) dp performed the worst, perhaps because it was the
most constrained, having to find a single global path through the material
(and thus less able to hit local maxima like the causal PF methods). On
Q2 (timbre) dp performed on par with mix/near ; it might be that local
maxima were less important than continuity for timbre perception.

Phase distortion (cancellation of out-of-phase sinusoids) seemed more
prominent in dp than in the other Group PF methods. As the three meth-
ods: dp, mix , and near all sampled from discrete parameter spaces (sam-
pling position and transposition), they all should have been prone to it; But
among the three only dp maintains the sampling context, virtually assuring
that the overlapped frames had common frequency support. Perhaps that is
why dp performed worse than the other Group PF methods on Q3 (source
timbre preservation). By contrast, tracks used a later developed refinement
strategy: of sampling subsequent atoms of a track with continued values for
the sampling position (Section 6.5.5.2) which should have prevented this
distortion. A similar refinement could also potentially be applied to dp-like
methods (albeit differently implemented).

7.4.6 Computational Effort

In addition to comparing the method results perceptual properties, we offer
a brief comparison of computational performance of the methods. Timing
averages are reported over twelve generated results for each method, run on
the same cluster (HPC cluster at Pompeu Fabra University, DTIC). The
quickest methods were near and mix , instantaneous methods (using no
information out of the current frame), taking on average 2m53s and 3m46s
per mosaic. The median performing method was tracks, which looks ahead
some frames but is still causal, taking 15m36s on average per mosaic. The
slowest methods were mp and dp, taking on average 8h33m and 9h08m per
mosaic. These methods both operated over the whole signal.

MPTK [Krstulovic and Gribonval, 2006], the toolkit used to implement
mp, is highly optimized, using several clever linear algebra optimizations to
speed up computation [Sturm and Christensen, 2012]. However, we had to
limit the dictionary size to get results in a reasonable amount of time (see
Section 7.3.2). Most of our implementations using perceptual descriptors
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(mix, near, and tracks) were faster than the exact signal oriented approach
of mp, partly because the dimensionality of the signals were greatly reduced
prior to the main computations in the Group PF methods (from thousands
of samples in a frame, to less than a hundred descriptors per frame), and
partly because sub-problems for frames or groups of frames were considered
in isolation in these methods.

7.4.7 Additional Feedback from Subjects

In general, most subjects were enthusiastic about the test material. One
subject asked for a beta version of the software to aid musical composition;
several afterwards said they would be interested in using it to compose if
offered in a further evaluation. In addition, some selected their favorite
excerpts from the MUSHRA testing material. However, one subject men-
tioned that many of the mosaics seemed far from the synthesis goal, and
marked at least one mosaic (ID task) as “annoying”.

7.5 Conclusions

Regarding the main hypothesis, the hybrid system did indeed perform rela-
tively well on a variety of quality measures, and outstandingly on Q3, which
measured preservation of the source.

Regarding two auxiliary hypotheses: first, did mixture methods help to pro-
duce better target quality (harmony and timbre) mosaics? In support, mp
(a mixture method) performed clearly the best on target quality measures.
However, a mixture method, tracks, was beaten by a non-mixture method,
near in Q1 (harmony), although this was reversed in Q2 (timbre); and the
differences between mix (mixture) and near were not significant on target
quality ratings. Perhaps then, the reason for the deficiency of tracks was
due to its being constrained in time, as near and mix were not; or possibly
due to the fact that solutions of tracks could have been non-optimal.

Mixtures clearly played a leading role in the success of mp in target quality
measures; but part of that success must have relied on spooky effects such
as cancellation of energy in unwanted frequencies. The mixture methods
based on a perceptual filter bank domain (without the same capabilities
afforded by mp), mix and tracks, may or may not had improved target
quality, as the evidence was indecisive. tracks was also constrained in time
due to continuity support, which may have limited the target quality gain
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from mixtures, and also used greedy solutions in time, which might have
missed better solutions.

The second auxiliary hypothesis was: did continuity supported methods
(tracks, dp) help to better preserve source quality in mosaics? The evidence
in favor is strong, as tracks mosaics were highest in Q3 quality. In addition,
dp, a weak method overall in quality, beat non-continuity method mp in Q3;
although it lost to near . dp mosaics were subject to phase distortion, which
should have also reduced the source quality, in opposition to any quality
improvement from continuity. Therefore, it appears that continuity played
a strong role in preserving source quality.

Regarding the several suppositions made in explaining the method results,
in this and previous sections: in order to tease out the cause of target quality
deficiencies in tracks (Q1 and Q2), further experiments could be done to
see the effects of different parameter settings, and to test the optimality of
the solutions given by tracks.

Our study showed performance gains for certain mixture methods over non-
mixture methods for tasks related to target similarity; and showed that
encouraging continuity can also improve quality attributes related to pre-
serving source qualities. Given this evidence, we see the most promise for
texture transfer applications, in methods that combine mixtures and conti-
nuity preservation.
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Figure 7.5: Box plots comparing grouped MUSHRA scores by condition (left
column) for Q1 (top), Q2 (middle), and Q3 (bottom). Dotted green line divides
the control conditions (left of line, excluded from analysis), from the algorithm
conditions (right of line). For each column, the actual score distributions are
overlaid in text. Variation by screens (objects) are shown (right column) only for
comparison; see Table 7.6 for descriptions of objects.
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Figure 7.6: Significant post-hoc group differences for identification scores and
MUSHRA ratings (Q1-3). Arrows point from higher quality to lower quality.
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Chapter 8

Conclusion

In the research of this dissertation, the techniques of sampling synthesis were
expanded in the following ways. First, predictive models of transformations
were examined and a tentative framework concerning these models and their
use was also proposed. Numerical experiments concerning predictive models
were conducted, concerning descriptor-based automatic control and learning
models from examples. The use of audio mixtures in mosaicing synthesis
was also furthered, in particular, by proposing sparse decompositions in a
perceptually motivated, lower dimensional space. This technique formed
the basis of a mosaicing synthesis algorithm, which was evaluated using
perceptual listening tests.

In the listening tests, the quality ratings corresponding to the hybrid method
performed well on a variety of measures, including a measure of the source
quality preservation (in which it performed best individually) and how well
the source could be identified, although it did not perform individually best
in other measures.

The main numerical problems encountered in this dissertation, those of
transformation parameter selection and learning of predictive models from
data, are prone to two curses of dimensionality (in the original sense of R.
Bellman: that of function optimization, and additionally that of statistical
learning). Knowing this and having a clearer view of the big picture, going
forward I would place a higher emphasis on heuristic optimization methods
and learning of predictive models with lower general complexity (for exam-
ple, that include some element of linearity) than I have during the course
of this research.

161
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Although the research has proposed new methods, from a practical perspec-
tive several tasks remain to be done, such as: including enabling more trans-
formations and allowing these to be controlled jointly, facilitating mosaicing
with larger source databases, and finally implementing similar methods as
real-time interactive instruments. The following section addresses these
challenges.

8.1 Future Work

8.1.1 Model-based Descriptor Control of Transformations

One goal that needs work is to enable larger sets of transformations, along
with relevant descriptor domains, to be used in descriptor-controlled trans-
formations, and subsequently, in mosaicing systems like the one proposed.

A part of this goal is creating more models to support a desired set of
descriptors and transformations, and solving the practical problem of how
to efficiently learn predictive models from data (of appropriate complexity)
would satisfy that goal. The SVR models tried in Ch. 5 were a proof of the
viability of this concept, but they suffered from multiple practical issues,
those being: they were less accurate than a simple derived model (perhaps
due to the curse of dimensionality and the model class used), they had a
cumbersome training procedure that took on the order of days (as a function
of the data size needed), they stored multiple copies of essentially the whole
training set which was already quite large.

In contrast, an ideal system would only need a linear or small polynomial
number of examples in terms of the problem dimension, and should be able
to train with only modest computational resources. An approach to finding
the appropriate model class can be found in Section 5.7, p. 81.

The models in this dissertation have focused on spectral descriptors (for
harmony, timbre, and spectral shape), but a general purpose system could
include other descriptors such as roughness, and temporal or spectral mod-
ulation features as well.

As mentioned in Ch. 3 and demonstrated in 4, predictive models can be
composed to model several effects in series. The second part of the goal of
enabling more transformations is to deal with the complexity of optimizing
a nonlinear function of many variables (the original curse of dimensionality).
This means that grid search, the method used to minimize a function of two
variables, source position and resampling factor, will be insufficient when
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more effects are added with accompanying “nonlinear” parameters. Moving
from the exhaustive method previously used to a heuristic real optimization
method, such as genetic algorithms (as employed in [Caetano and Rodet,
2009]) will probably yield efficiency improvements.

Perhaps there are additional criteria or priors that can reduce the search
space, like a sparsity constraint preferring that only few effects are active
at a time.

8.1.2 Mixture Mosaicing

In Chapter 6, causal greedy algorithms are presented that create mixture
mosaic scores by optimizing over multiple criteria. However, it is not known
how good these solutions are compared to the global optimum. Additionally,
for synthesis applications not operating in real time, it might be interesting
to use more heavy optimization methods to see how much the solutions can
improve.

One technique for evaluating optimization algorithms is generating prob-
lems with known optimal solutions. In this case, this would mean to gener-
ate sparse sampling and transformation trajectories along with gains, and
rendering them to a target signal, possibly with added noise (even though
the results might not be that musical). Then, the mosaicing algorithms can
be run to see how often and under which conditions these original trajec-
tories are recovered. This would show how good the recovered scores are,
even though in the general case of different source and target material, there
might not exist sparse trajectories that recreate the target with low error.

A number of alternate approaches could be taken, in an effort to find more
optimal solutions. As mentioned previously, the fmix objective function
defined in Equation 6.13 (page 99) is a mixed integer quadratic program
(MIQP), for which toolkits (using the Branch and Bound strategy) are
available, and should always find the global optimum, although in general
have exponential complexity.

Besides the greedy methods used in the algorithms of Ch. 6, and the global
methods discussed above, there are several other paradigms that may be
used, outlined in the sections below.

8.1.2.1 Bayesian (Graphical) approaches

Another common way to describe an estimation problem is a maximiza-
tion over probability distribution of possible solutions (e.g. a ML or MAP
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estimation). In some sense, this is equivalent to the cost function repre-
sentation. However, rather than writing out a joint distribution explicitly,
it is possible to represent probability distributions as graphs of conditional
distributions, i.e. graphical models.

This permits more complex models to be expressed, as well as new optimiza-
tion methods to be used. For example, in the system described in [Hoffman
et al., 2009] and [Hoffman, 2010, Chapter 8], which had very similar goals
to the one described in Chapter 6, Markov Chain Monte Carlo (MCMC)
is used to sample from the posterior distribution over sources and shifts in
sampling positions, giving an alternate way to find an optimal score. Varia-
tional Bayes methods [Fox and Roberts, 2011] which minimize a sequence of
simplified point-wise models, are another technique for MAP estimation in
graphical models. Sequential Monte Carlo (SMC) methods (such as Particle
Filters) represent yet another approach to optimizing probabilistic models,
one that is heuristic and causal, and that has been used in a number of
tracking applications.

8.1.2.2 Structured Sparsity

The sparsity structure in many applications is better described by having
a small number of related groups of atoms, rather than the having the
absolute smallest number of atoms. This setting has been referred to as
structured sparsity. For example, the setting described by the fmix objective
could easily be seen as structured sparsity: tracks are groups of atoms in
contiguous sets of target frames, with each frame having a single atom,
which are related to predecessor and successor atoms by distinct limits on
changes in source position and transformation parameters.

One promising approach for structured sparse problems is the generic ap-
proximation algorithm of [Hegde et al., 2015]. Another consists of the “social
sparsity” operators of [Kowalski et al., 2013].

8.1.2.3 Convex methods

In this approach, the combinatorial problem of selecting atoms is reformu-
lated as a convex optimization problem, solved with local search, and some
process like thresholding determines the combinatorial solution. These ap-
proaches to optimizing fmix are outlined in Chapter 6, Section 6.7.
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8.1.2.4 Approximate Dynamic Programming

See Appendix C.4, p. 175.

Finally, some practical improvements to our concrete methods are possible.

8.1.3 Improving the Efficiency of TrOMPmos

The most costly part of the OMP algorithm, in our case, was computing the
correlations of all of the atoms with the target. This effort could be reduced
by using an approximate method, such as an approximate k-Nearest Neigh-
bors approach, to quickly find a few nearest neighbors in logarithmic time,
perhaps like the one of [O’Hara and Draper, 2013]. [Vitaladevuni et al.,
2011] and [Tjoa and Liu, 2011] are two such approaches in this direction.

Similarly, another way to reduce the load on the atom selection loop, would
be to first cluster the atoms corresponding to transformed units, and then
to select atom clusters instead of individual atoms in the SelectAtom
routine. This would reduce the number of calculations for this step.

It has been shown that where sparse solutions exist, random projections,
which effectively lower the dimensionality of the problem to be solved, can
be performed under certain conditions without affecting the solution qual-
ity, the paradigm of which has been referred to as “compressed sensing”
[Donoho, 2006]. This would further reduce the computational burden of
the sparse approximation algorithm.

8.2 Summary

This dissertation contributes to the field of sampling synthesis and to the
use of descriptor-controlled transformations therein.

1. It examines both relevant methods in sampling synthesis and
descriptor-controlled synthesis and transformations in order to find
gaps in the state of the art.

2. It proposes a framework which clarifies the role of predictive models
in sampling synthesis.

3. It formulates a number of predictive models in various descriptor do-
mains for resampling.
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4. It validates a method of generic control for sound transformations
using heuristic gradient-based methods.

5. It reports on initial experiments to learn predictive models from data,
and examines shortcomings of the approach.

6. It proposes new hybrid methods of audio mosaicing that integrate per-
ceptually relevant target descriptors, descriptor-controlled transfor-
mations, criteria traditionally important for sampling synthesis such
as continuity, and audio mixtures of simultaneous source sounds.

7. It presents listening tests designed for the musical texture transfer ap-
plication, that measure the quality of sound excerpts in several distinct
quality dimensions, as well as other properties such as identifiability
of the source sounds.

8. It evaluates the hybrid mosaicing methods along with classical path-
based methods, simple mixture methods, and atomic signal approxi-
mation methods applied to mosaicing, using listening tests.

9. It proposes future directions for improving the current system.



Appendix A

Questionnaire
This form was used as a prompt for the subject interviews (initial and exit, Section
7.3.3, p. 131), as well as to sequence and record subject responses for the ID task
(Section 7.3.4, page 132). It was also re-typeset to fit the dissertation format.

Do you have music training? How many years of training?

Do you play an instrument? What is your primary instrument? Do you sing?

Do you work in audio technology / mixing / music or sound production?

Introduction to Mosaics (play the example mosaics)

Mosaics are hybrid sound signals generated from a target signal and a source signal.
The source signal is the material used to reconstruct the mosaic, such that the
mosaic still retains some qualities, for example: timbre, of the source. The target
signal is what the output should sound like, what the mosaic should try to imitate.

When asking about the quality of the harmony with respect to a target, we mean:
are the notes correct? Are some notes missing? If the target signal has multiple
melodies (polyphony) are they reproduced?

When asking about the quality of the timbre with respect to a target, we mean:
if the target has low frequency and high frequency sounds, are their counterparts
present in the mosaic? Are rhythms in timbre from the target reproduced?
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Questionnaire, Page 2

Definitions of sound categories:

Environmental sound
– sounds generated by nature, or by simple object interactions

Monophonic music
– music with only single melodic line or note being played at a time

Polyphonic music
– music with multiple melodic lines or notes being played at a time

Non-music speech
– human speech outside of any musical context

Do you agree with these definitions for the purpose of the questionnaire?

Excerpt code 1:

Please circle the category of sound source:

Environmental sound / Monophonic music / Polyphonic music
/ Non-music speech

Describe, in broad and more specific terms, the sound source:

Please rate the naturalness of the generated sound:

1-least natural 2-less natural 3-average 4-more natural 5-most natural

Do you have any more comments about this example?
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Questionnaire, Page 3

Excerpt code 2:

Please circle the category of sound source:

Environmental sound / Monophonic music / Polyphonic music
/ Non-music speech

Describe, in broad and more specific terms, the sound source:

Please rate the naturalness of the generated sound:

1-least natural 2-less natural 3-average 4-more natural 5-most natural

Do you have any more comments about this example?

Excerpt code 3:

Please circle the category of sound source:

Environmental sound / Monophonic music / Polyphonic music
/ Non-music speech

Describe, in broad and more specific terms, the sound source:

Please rate the naturalness of the generated sound:

1-least natural 2-less natural 3-average 4-more natural 5-most natural

Do you have any more comments about this example?
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Questionnaire, Page 4

Excerpt code 4:

Please circle the category of sound source:

Environmental sound / Monophonic music / Polyphonic music
/ Non-music speech

Describe, in broad and more specific terms, the sound source:

Please rate the naturalness of the generated sound:

1-least natural 2-less natural 3-average 4-more natural 5-most natural

Do you have any more comments about this example?

Excerpt code 5:

Please circle the category of sound source:

Environmental sound / Monophonic music / Polyphonic music
/ Non-music speech

Describe, in broad and more specific terms, the sound source:

Please rate the naturalness of the generated sound:

1-least natural 2-less natural 3-average 4-more natural 5-most natural

Do you have any more comments about this example?
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Sound Files

1. Phase artifacts from grid continuations, from Ch. 6, Section 6.5.5.2:

a) phase-exact.wav

b) phase-inexact.wav

c) source: boccShort.wav

d) target (source resampled up a major 2nd): boccShortUM.wav

2. Input sounds from Ch. 7 used from Freesound:

a) bees - “20080127 1300 Panales abejas cerca.wav” from user
“Manuel Calurano” link

b) boccherini - “violin minuet boccherini (edit).wav” from user
“FreqMan” link

c) kidsing - “2002 indien kids sing 8.wav” from user “dosa1” link

d) inflation - “Balloon inflation.mp3” by user “Perry Duke” link

e) waterPour - “water pour into jar.wav” by user “modcam” link

f) tuning - “Orchestra Tuning.wav” by user “gelo papas” link

g) purenoise - “this is pure noise.wav” by user “epanody” link

h) goodwill - “men of goodwill.wav” by user “ERH” link

i) ducks - “Speaking with Ducks.wav” by user “Puzze Dao” link

j) crickets - “FrogsAndCrickets ExcerptB JMA 24Bit 48k.wav” by
user “greysound” link
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k) exposure - “ExcessiveExposure.wav” by user “acclivity” link

3. Demonstration sounds from Music Hacks, Appendix D:

a) makeitrick-violin.mp3

b) makeitmussorgsky-violin.mp3

4. Sounds used in listening tests of Ch. 7 (normalized.zip):

a) AT.wav A1.wav A2.wav A3.wav A4.wav A5.wav AAH.wav
AAS.wav AS.wav AT.wav

b) BT.wav B1.wav B2.wav B3.wav B4.wav B5.wav BAS.wav
BAT.wav BS.wav BT.wav

c) CT.wav C1.wav C2.wav C3.wav C4.wav C5.wav CAS.wav
CAT.wav CS.wav

d) ET.wav E1.wav E2.wav E3.wav E4.wav E5.wav EAS.wav ES.wav

e) exT.wav exM1.wav exM2.wav exM2b.wav exS.wav

f) FT.wav F1.wav F2.wav F3.wav F4.wav F5.wav FAH.wav FS.wav

g) GT.wav G1.wav G2.wav G3.wav G4.wav G5.wav GAH.wav
GAS.wav GS.wav

h) HT.wav H1.wav H2.wav H3.wav H4.wav H5.wav HAT.wav
HS.wav

i) J1.wav J2.wav J3.wav J4.wav J5.wav JS.wav JT.wav

j) K1.wav K2.wav K3.wav K4.wav K5.wav KAT.wav KS.wav
KT.wav

k) L1.wav L2.wav L3.wav L4.wav L5.wav LAS.wav LS.wav LT.wav

l) M1.wav M2.wav M3.wav M4.wav M5.wav MAH.wav MS.wav
MT.wav

m) NT.wav N1.wav N2.wav N3.wav N4.wav N5.wav NAH.wav
NAS.wav NS.wav

The codes used in the filenames are the following: the first capital
letter is the object code (Table 7.6, p. 141). The second string de-
notes T=target, S=source, AH=anchor harmony, AS=anchor source,
AT=anchor timbre, and the numbers denote algorithm conditions (i.e.
the order given by Table 7.8, p. 148). ‘ex’ denotes an example used
to explain mosaics and quality scales.

https://freesound.org/people/acclivity/sounds/33711/
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Additional Background

C.1 The Curse of Dimensionality
in Statistical Estimation

The “curse of dimensionality”, originally coined by Bellman [as cited by
Donoho, 2000], can apply to many different domains (e.g. optimization,
search, machine learning, numerical integration, distance measures), but
the common cause is differences in the nature of low and high dimensional
spaces.

The curse hereto mentioned, the Curse of Dimensionality in Statistical Es-
timation, refers to the fact that in a quite general formulation of machine
learning (in which it is only assumed the modeled functions are mathemat-
ically smooth), exponentially more examples are required as the number
of input dimensions increases in order to guarantee the same error rate
[Donoho, 2000, Section 6.2: Curse in Statistical Estimation].

The broad model class subject to this curse is thought to include many oth-
erwise effective nonparametric models such as k-nearest neighbors, kernel
density estimators, support vector machines (SVMs) with Gaussian kernels,
Gaussian processes, and several manifold learning algorithms; what these
algorithms have in common is that their models are mostly determined by
training examples near the query point [Bengio et al., 2005]. Neural net-
works also fall into the class of models that approximate smooth functions in
general, although it has been argued that some learning architectures, such
as convolutional or pooled neural networks, provide additional structure
that might help alleviate that curse [Bengio et al., 2013].
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Now, it is not the case that all learning problems suffer exponentially, nor
that learning problems with more dimensions are always harder. Rather,
parametric models and regularized models, which both add information and
structure to the learning process, allow generalizing with fewer examples (as
long as their structural assumptions are met).

For example, it is shown that data generated by a linear plus noise model, in
order to estimate linear model coefficients, the number of examples needed
grows only linearly with the dimension, rather than the general case of
needing exponentially more examples, as above [Hastie et al., 2009, Section
2.5: Local Methods in High Dimensions].

C.2 P versus NP

“P versus NP” refers to a yet unsolved, but important problem in worst-
case complexity analysis of computational problems [Fortnow, 2009]. Using
the formalism of decision problems (equivalent to yes-or-no questions) on
Turing machines (a widely accepted, general, yet minimal formalism of com-
putation), P is the class of all problems that can be solved in a number of
steps polynomial in the input size. NP is the class of all problems that
when given a solution, the solution can be checked in polynomial time.

The main question, whether these two classes of problems are different (P
6= NP) or the same (P = NP) is unresolved; but many computer scientists
believe the former possibility over the latter [Gasarch, 2012].

NP-hard refers the class of problems that, if a polynomial time algorithm
were found for an NP-hard problem, it could also be used to solve problems
in NP in polynomial time (by way of reduction: a way to convert instances
of NP problems into instances of the NP-hard problem). NP-complete
refers to the NP-hard problems that are also in NP (are checkable).

This is mentioned in the thesis merely to establish a connection between
the class of optimization problems discussed therein (sparse approximation
problems) and standard computational complexity theory.

For a more in-depth look at these complexity classes, please see [Sipser,
1997, Part 3, Complexity Theory. Ch. 7, Time Complexity].
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C.3 Regularization and MAP estimation

Often, it happens that there are several competing objectives in an opti-
mization problem. The simplest way of combining multiple objectives is to
add together their objective functions, like so:

arg min
x
f(x) + λg(x), (C.1)

where x is the variable, and f and g are objective functions, and λ is a
parameter expressing the relative importance of loss between f and g. This
is referred to as regularization.

Beyond the generic use of combining multiple objectives, several specific uses
for regularization are common. For example, if an optimization problem is
ill-posed (meaning that many solutions are equivalent), an additional term
can be added corresponding to the squared norm of the variables (referred to
as Tikhonov regularization, or ridge regression), allowing a unique optimum
to be found. Another use for regularization is in statistical learning, in which
limiting the complexity of the chosen model (as in SVMs), is thought to help
generalization and control overfitting, in which models attend to irrelevant
details in the data.

In many regularized optimization problems, the component objective func-
tions can be divided up into those that depend on some observed data, and
those that do not, but express some general beliefs about the model shape.
In the Bayesian framework, with components expressed as probability dis-
tributions, the former can be referred to as a likelihood distribution, and
the latter as a prior distribution, and the regularized optimization as “max-
imum a posteriori” (MAP) estimation. Even without explicit probabilistic
formulations, they can still be thought of as such.

Regularization in the context of approximation is discussed in [Boyd and
Vandenberghe, 2004, Section 6.3.2, Regularization, p. 306].

C.4 Dynamic Programming

Dynamic Programming is a very general optimization strategy, formulated
by Bellman [2003] based around recursively decomposing a larger optimiza-
tion problem with many decisions into smaller interrelated problems.

This property was referred to by Bellman as the “Principle of optimality”,
here explained for the case of a process that takes different states in multiple
time steps [—, 2003]:
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An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must con-
stitute an optimal policy with regard to the state resulting from
the first decision.

Problems that support this property are referred to as having “optimal
substructure”.

Many useful algorithms are based on this principle, including path search/
Viterbi decoding. In these cases, the state space is finite or discretized, and
the “value function” (in one formulation, defined as the minimum cost of
arriving to state s on the N th step) can be computed recursively using value
function tables computed for the previous, (N − 1)th step, over the entire
state space (or some useful subset thereof). By enumerating the state space
resulting from individual decisions and linking them (a trade-off in space),
these methods avoid the combinatorial difficulty of enumerating all possible
sequences (e.g.) of states.

For a guide to this approach in discrete optimization and many applications,
see [Cormen et al., 2001, Ch. 15, Dynamic Programming].

Now, when mixtures are concerned, states involve a combinatorial superpo-
sition of atoms, making the above strategy, based on complete enumeration
of the state space, prohibitively expensive in time and space. However, in
many cases, there are still ways to approximate this value function without
complete enumeration and using less space. These strategies have previously
been applied in the field of reinforcement learning. This paradigm has been
referred to as Approximate Dynamic Programming (ADP) [Powell, 2011].

ADP methods approach multiple decision problems as statistical learning
problems. Although these methods have not been tried in this thesis, they
offer yet another avenue of attack for synthesis methods based on sparse
mixtures.
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Related Music Hacks

Besides the main algorithms explored in Chapter 6, some small mosaicing
scripts were prototyped using the Echo Nest’s Remix API [The Echo Nest,
2009; Lindsay and Hutchison, 2009]. These prototypes were built and exhib-
ited in the context of two Music Hack days hosted by the Music Technology
Group.

The Remix API combines an analysis framework that subdivides music
sound files into rhythmic units (tatums, beats, measures) as well as on-
set/event units, along with a programmatic interface to rearrange and com-
bine these units, and several rendering engines that render to a sound or
video file.

The two prototypes, developed in 2010 and 2011, apply the Basis Pursuit
(BP) strategy described in Section 6.7.1, p. 119. The first hack, “Remix
Sound Harmonizer: MakeItRick”, approximates a target music sound file by
projecting each non-uniform length target event unit onto a dictionary com-
posed of all transpositions of the source units (implemented by resampling).
The second hack, “MakeItMussorgsky”, permits a score in midi format to
be used as target, by artificially creating the target chroma vectors corre-
sponding with the indicated notes.

Results are demonstrated by sound files “makeitrick-violin.mp3” and
“makeitmussorgsky-violin.mp3”, which use respectively as targets, Rick
Astley’s “Never Gonna Give You Up”, and the Promenade from Modest
Mussorgsky’s “Pictures at an Exhibition”.
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