

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

Memory Architectures for Exaflop
Computing Systems

A dissertation presented by

Milan Pavlović
to�e Department of Computer Architecture

in ful�llments of the requirements

for the degree of Doctor of Philosophy

in the subject of Computer Science

Advisor — Alex Ramirez

Co-advisor — Petar Radojković

Universitat Politècnica de Catalunya

Barcelona, Spain

December, 2015

To my parents / Mojim roditeljima

Abstract

Most computing systems are heavily dependent on their main memories, as their

primary storage, or as an intermediate cache for slower storage systems (HDDs).

�e capacity of memory systems, as well as their performance, have a direct impact

on overall computing capabilities of the system, and are also major contributors to

its initial and operating costs.

Dynamic Random Access Memory (DRAM) technology has been dominating

themainmemory landscape since its beginnings in 1970s until today. However, due

to DRAM’s inherent limitations, its steady rate of development has saturated over

the past decade, creating a disparity between CPU andmain memory performance,

known as thememory wall.

Modern parallel architectures, such as High-Performance Computing (HPC)

clusters and manycore solutions, create even more stress on their memory systems.

It is not trivial to estimate memory requirements that these systems will have in the

future, and if DRAM technology would be able to meet them, or we would need to

look for a novel memory solution.

�is thesis attempts to give insight in the most important technological chal-

lenges that future memory systems need to address, in order to meet the ever grow-

ing requirements of users and their applications, in manycore and HPC context.

We try to describe the limitations of DRAM, as the dominant technology in today’s

main memory systems, that may impede performance or increase cost of future

v

systems. We discuss some of the emerging memory technologies, and by compar-

ing them with DRAM, we try to estimate their potential usage in future memory

systems.�e thesis evaluates the requirements of manycore scienti�c applications,

in terms of memory bandwidth and footprint, and estimates how these require-

ments may change in the future. With this evaulation in mind, we propose a hybrid

memory solution that employs DRAM and PCM, as well as several page placement

and page migration policies, to bridge the gap between fast and small DRAM and

larger but slower non-volatile memory.

As the aforementioned evaluations required custom so�ware solutions, we

present tools we produced over the course of this PhD,which continue to be used in

Heterogeneous Computer Architectures group in Barcelona Supercomputing Cen-

ter. First, Limpio — a LIghtweight MPI instrumentatiOn framework, that provides

an interface for low-overhead instrumentation and pro�ling of MPI applications

with user-de�ned routines. Second, MemTraceMPI, a Valgrind tool, used to pro-

duce memory access traces of MPI applications, with several innovative concepts

included (�lter-cache, iteration tracing, compressed trace �les).

Acknowledgments

�e work presented in this thesis was done in Barcelona Supercomputing Center

(BSC), Barcelona, Spain. BSC provided �nancial support and access to resources

that were indispensable for our research. Our work was also supported by the

Ministry of Science and Innovation of Spain (contract number TIN-2007-60625

and TIN2012-34557), Generalitat de Catalunya under grant 2014-SGR-1261 and

2014-SGR-1051, HiPEAC European Network of Excellence on High Performance

and Embedded Architecture and Compilation, the TERAFLUX project (ICT-FP7-

249013), Mont-Blanc project (European Community’s Seventh Framework Pro-

gramme [FP7/2007-2013] under grant agreement number 288777), and the grant

SEV-2011-0067 of Severo Ochoa Program awarded by the Spanish Government.

vii

List of publications

• MilanPavlovic,MilanRadulovic,AlexRamirez andPetarRadojkovic. Limpio
— Lightweight MPI instrumentatiOn. In Proceedings of the 2015 IEEE 23rd
International Conference on Program Comprehension (ICPC), pages 303–306,
May 2015.

• Milan Pavlovic, Nikola Puzovic and Alex Ramirez. Data placement in HPC
architectures with heterogeneous o�-chipmemory. In Proceedings of the 2013
IEEE 31st International Conference on Computer Design (ICCD), pages 193–
200, Oct 2013.

• Milan Pavlovic, Yoav Etsion and Alex Ramirez. On the Memory System Re-
quirements of Future Scienti�c Applications: Four Case-Studies. In Proceed-
ings of the 2011 IEEE International Symposium on Workload Characterization
(IISWC), pages 159–170, Nov, 2011

• Milan Pavlovic, Yoav Etsion and Alex Ramirez. Can Manycores Support the
Memory Requirements of Scienti�c Applications? In Proceedings of the 2010
1stWorkshop on Applications forMulti- andMany-Core Processors (A4MMC),
pages 65–76, Jun, 2010.

• Milan Pavlovic and Alex Ramirez. PowerManagement on O�-Chip DRAM.
In Proceedings of the 2009 Advanced Computer Architecture and Compilation
for Embedded Systems (ACACES), Jul, 2009.

ix

Contents

Abstract v

Acknowledgments vii

List of publications ix

List of Tables xv

List of Figures xviii

1 Introduction 1

2 Background 7
2.1 DRAM . 7

2.1.1 DRAM fundamentals . 8
2.1.1.1 DRAM cell and array structure 8
2.1.1.2 Cell capacitor and DRAM refresh 10
2.1.1.3 DIMM packaging . 10

2.1.2 DRAM development and history 13
2.1.3 Obstacles for DRAM scalability . 14

2.1.3.1 Bandwidth scaling 15
2.1.3.2 Capacitor scaling . 16

xi

2.1.3.3 Refresh and power scaling 17
2.2 Emerging memory technologies . 17

2.2.1 Superseding DRAM — the winning recipe 18
2.2.2 Emerging memory technologies — overview 19
2.2.3 PCM (Phase Change Memory) . 19
2.2.4 STT-MRAM . 21

2.2.4.1 STT-MRAM design challenges and techniques 22
2.2.5 Resistive Random Access Memory (R-RAM) 23

2.2.5.1 R-RAM types . 24
2.2.5.2 R-RAM array and cell structure 25
2.2.5.3 R-RAM opportunities and future 28

2.2.6 Memristor . 28
2.2.7 Opportunities in HPC for emerging memory technologies 30

2.2.7.1 DRAM refresh . 30
2.2.7.2 Check-pointing . 30
2.2.7.3 Memory errors . 31

2.2.8 Emerging memory technologies — summary 32

3 Memory requirements of HPC applications 35
3.1 Introduction . 36
3.2 Related work . 37
3.3 Methodology . 38
3.4 Memory footprint . 42
3.5 Memory bandwidth . 45

3.5.1 Bandwidth scales linearly . 45
3.5.2 Cache effectiveness . 48

3.6 CPI stack . 51
3.7 Arithmetic performance . 58
3.8 Summary . 60

4 Hybrid memory architectures 63
4.1 Introduction . 64

4.1.1 Overview of emerging memory technologies 65
4.2 Proposal . 66

4.2.1 System architecture . 66
4.2.2 Static page placement . 68
4.2.3 Spill migration . 69
4.2.4 Dynamic page migration . 72

4.3 Evaluation . 74
4.3.1 Architecture parameters . 76
4.3.2 Results . 76

4.4 Related work . 82
4.5 Summary . 83

5 Limpio — LIghtweight MPI instrumentatiOn 85
5.1 Introduction . 85
5.2 Background . 87
5.3 Architecture . 87
5.4 Case studies . 89

5.4.1 MPI profiler . 90
5.4.2 Computation to communication ratio 92
5.4.3 Tracing and visualization . 93
5.4.4 External instrumentation tools . 94

5.5 Related work and tools . 95
5.6 Summary . 95

6 Conclusions 97

Bibliography 107

xiii

List of Tables

2.1 Traditional and emerging memory technologies comparison 20

3.1 The per-processor and overall memory footprints measured for the benchmark appli-
cations. 42

3.2 The memory bandwidth measured at different levels of the memory system for the
benchmark applications. 46

3.3 Hit-rates measured for the different cache levels. 49
3.4 CPI stack model . 51

4.1 Characteristics of current and emerging memory technologies. 66
4.2 Overview of data placement policies . 74
4.3 Overview of simulated applications, their total memory footprint and time of the

simulated part. 75
4.4 Overview of simulated architecture parameters 76

5.1 MPI profile, ALYA application, 256 processes 91

xv

List of Figures

2.1 Structure of a DRAM cell . 8
2.2 DRAM array . 9
2.3 30-pin SIMM diagram . 11
2.4 72-pin SIMM diagram . 12
2.5 168-pin Registered DIMM (RDIMM) diagram 12
2.6 200-pin Small Outpline DIMM (SO-DIMM) diagram 12
2.7 DRAM chip capacity development . 13
2.8 STT-MRAM cell and cell-array . 22
2.9 Evolution of the memory footprint . 26
2.10 Sneak path . 26
2.11 MOSFET and BJT . 27
2.12 Structure of a memristor device, and its equivalent circuit model 29

3.1 Spatial and temporal distribution of counter sets 39
3.2 Flattening the sparse per-processor traces into a unified trace 39
3.3 Evolution of the memory footprint . 44
3.4 Projections of overall memory footprints for large-scale parallel systems, based on a

linear regression model. 45
3.5 Projections of overall memory bandwidth for large-scale parallel systems, based on

linear regression. 46
3.6 WRF memory bandwidth . 47
3.7 MILC 32p L2 cache effectiveness . 50

xvii

3.8 MILC CPI stack . 52
3.9 WRF CPI stack . 53
3.10 GADGET 32p — CPI stack and L1 cache traffic 54
3.11 SOCORRO 128p CPI stack . 56
3.12 CPI stack average values . 57
3.13 Arithmetic performance . 59
3.14 Bandwidth-performance ratio . 60

4.1 Target architecture . 67
4.2 Empty page buffer size analysis . 70
4.3 Back migration threshold analysis . 72
4.4 Performance comparison between PCM-only and DRAM-only system 77
4.5 Overall performance and amount of PCM writes comparison of different data place-

ment policies . 78
4.6 Overall performance and amount of PCM writes comparison of different data place-

ment policies . 79
4.7 Overall performance and amount of PCM writes comparison of different data place-

ment policies . 80

5.1 Limpio instrumentation — sequence diagram 89
5.2 Relative MPI communication time, ALYA, 4–1,024 processes 92
5.3 MPI call visualization, ALYA application, 256 processes 94

Chapter 1
Introduction

Computing systems play signi�cant role in every modern home or business, and

they constantly improve their capabilities to meet growing requirements of users

and their applications. Such systems, in any of their forms, either desktop, laptop,

embedded, or servers, rely on memory systems as their primary storage, or as an

intermediate cache for slower storage systems (HDDs).�e capacity of memory

systems, as well as their performance, have a direct impact on overall computing

capabilities of the system, and are alsomajor contributors to its initial and operating

costs.

As it is the case with most of the components of any modern computer, the ele-

ments of a memory subsystem have seen quite a few technological changes through-

out its development history. Although memory systems typically employ several

di�erent technologies, depending on overall system requirements or the role of a

particular memory component, any technology they are built upon has both cost

and physical limitations if we try to scale it down or push to some performance limit.

�e researchers always have to evaluate if the costs of improving or minimizing the

existing technology become higher than the bene�ts it may bring. Whenever such

situation happens, a fresh idea and an innovative technology is needed in order to

1

Chapter 1 Introduction

answer the future requirements of the industry.

Dynamic Random Access Memory (DRAM) technology has been dominat-

ing the main memory landscape of most computing systems since its beginning

in 1970s until today. Its relatively low cost per unit of stored data and high access

speed have satis�ed the most typical requirements of computing systems.�e �rst

DRAM devices had 1,024 bits of storage, and are known as 1Kb DRAMs.�e tech-

nology improvements have secured the increase in storage capacity by a factor of 4

every three years, which was in line with the advances in CPUs. However, a�er the

introduction of the 128Mb product in year 2000, a 2× increment became the rule,

which, along with the uneven improvements in memory speed, created a disparity

between CPU and main memory, known as thememory wall [87].

�e termHigh-Performance Computing (HPC) is typically used for the practice
of aggregating computational power of a large number of CPUs, in order to deliver

performance that is far superior than any desktop workstation, for solving complex

problems in science, engineering or business. It is o�en used interchangeably with

the term supercomputing. Because of their important role in computational science,
supercomputers are today considered the “third pillar” of science, behind theory

and experimentation.�ey �nd their widest usage in computationally intensive

tasks in various �elds, such as quantum mechanics, weather forecasting, climate

research, oil and gas exploration, molecular modeling, as well as complex physical

simulations. In these disciplines, HPC can provide insights that would otherwise

be impossible to obtain, by serving as a platform for simulations that replace ex-

pensive and sometimes dangerous experiments.�e computational power of an

HPC system, therefore, directly shapes the scope of scienti�c research, and the level

of details of the simulated experiments. It is clear that creating a powerful HPC

ecosystem is a very important task for any science-oriented society.

Computational performance of a supercomputer is expressed in �oating point

operations per second (FLOPS). From 1960s,when early supercomputers performed

in the range of 1 MFLOPS, over 1980s when �rst 1 GFLOPS system is created, in

2008 we have reached a 1 PFLOPS barrier.�e TOP500 project maintains a list

of the 500 most powerful supercomputing systems in the world, along with their

details. Currently, the �rst place on TOP500 list holds Tianhe-2 from National Su-

percomputing Center in Guangzhou, China, built in 2013, with peak performance

of over 54 PFLOPS. Optimistic estimates predict that the �rst Exa�op system (1018

�oating point operations per second) will be built by the end of this decade.

2

1.0

However, in order to advance to an Exa�op system,wemust solve numerous sci-

enti�c and technological challenges, such as reducing power requirements, coping

with run-time errors, exploiting massive parallelism, and many more. Otherwise,

the initial and operational cost of such a system may far outweigh its potential

bene�ts. One of the most important design decisions in any HPC system is the

architecture of the main memory system. As the memory wall becomes larger with

time, many researchers see it as a major obstacle for reaching 1 EFLOPS milestone

in supercomputing.

�is thesis attempts to give insight in the most important technological chal-

lenges that future memory systems need to address, in order to meet the ever grow-

ing requirements of users and their applications, in manycore and HPC context.

We try to describe the limitations of DRAM, as the dominant technology in today’s

main memory systems, that may impede performance or increase cost of future

systems. We discuss some of the emerging memory technologies, and by compar-

ing them with DRAM, we try to estimate their potential usage in future memory

systems.�e thesis evaluates the requirements of manycore scienti�c applications,

in terms of memory bandwidth and footprint, and estimates how these require-

ments may change in the future. With this evaulation in mind, we propose a hybrid

memory solution that employs DRAM and PCM, as well as several page placement

and page migration policies, to bridge the gap between fast and small DRAM and

larger but slower non-volatile memory.

�e contributions of this thesis are the following:

• Evaluation of the memory system requirements of scienti�c HPC applica-

tions, running on MareNostrum supercomputer at Barcelona Supercomput-

ingCenter, and characterization of thememory performance requirements of

future manycore architectures. Our analysis covers most important memory-

related metrics, such as memory footprint and memory bandwidth, and re-

veals memory intensive segments in each application by examining their CPI

stacks. It also quanti�es the impact of the memory system on arithmetic per-

formance of the applications. As a result, we conclude that the limitations in

DRAM scalability will not have negative e�ects on manycore systems in the

next several years.

• Proposal of an architecture with a hybrid memory design that places two

technologically di�erent memory modules in a �at address space. On such

system, we evaluate several HPC workloads against di�erent data placement

3

Chapter 1 Introduction

and migration policies, compare their performance by means of execution

time and the number of non-volatile memory writes, and consider how it

can be applied to the future HPC architectures. Our results show that the

hybrid memory system with dynamic page migration and limited DRAM

capacity, can achieve performance that is comparable to a hypothetical, hard

to implement, DRAM-only system.

• Design and implementation of Limpio, a framework for pro�ling of MPI

applications. Limpio overrides standard MPI functions, and executes instru-

mentation routines before and a�er the selected MPI calls. Users themselves

can write and customize the instrumentation routines to �t the requirements

of the analysis. Limpio can invoke external application pro�ling tools, and

can switch between various tools in a single execution. It can also generate

application traces of timestamped events that can be visualized by general-

purpose visualization tools or libraries. Limpio is regularly used in Barcelona

Supercomputing Center for instrumentation of large-scale HPC applications.

�e thesis is organized as follows:

Chapter 2 gives a brief overview of DRAM as the dominant technology in to-

day’s main memory systems. It covers the fundamentals of DRAM, the advances

that this technology experienced over time, limitations in its scalability, and its spe-

ci�c role in HPC. Furthermore, it presents a survey of most promising emerging

memory technologies that have the opportunity to replace DRAM in future main

memory systems. We compare them with DRAM, and discuss their advantages,

disadvantages and their potential usage in memory systems. We also give closer

insight in the opportunities that non-volatile memory technologies could bring to

HPC.

Chapter 3 makes an evaluation of memory requirements of several scienti�c

HPCapplications, in terms of bandwidth and footprint. In order to estimatewhether

DRAM technology would be able to meet the needs of future manycores, we make

a projection of these metrics for the next-generation systems.

Chapter 4 proposes a hybrid memory architecture, with DRAM and PCM, and

evaluates di�erent page placement and page migration policies, for balancing per-

formance and lifetime of the memory system.�e evaluation is performed using

HPC workloads, as the proposed hybrid design can be employed in HPC systems.

4

1.0

Chapter 5 presents a tool that is designed and developed over the course of this

PhD, and continues to be used in Heterogeneous Computer Architectures group

in Barcelona Supercomputing Center. Limpio — a LIghtweight MPI instrumenta-

tiOn framework, that provides an interface for low-overhead instrumentation and

pro�ling of MPI applications with user-de�ned routines.

Chapter 6 summarizes the conclusions from all the contributions presented in

this thesis.

5

Chapter 2
Background

2.1 DRAM

DRAM (Dynamic Random Access Memory) is the most commonly used mem-

ory technology for main memories of modern computers. It earned its popularity

with relatively simple production process, low cost per unit of storage, performance

that could match the requirements of CPUs, and high reliability. Equally important,

advances in semicondutor fabrication, that, with the increase in transistor density,

fueled scaling of microprocessors over the last several decades, could also be suc-

cessfully applied to DRAM.�is brought more bandwidth and more capacity with

each new DRAM generation.

In this section we will take a closer look at the basics of DRAM technology,

and explore the limitations that slowed down its evolution and created a disparity

between CPU and main memory, known as the memory wall [87]. We will also
explore the role of DRAM in HPC, and particular memory demands in modern

supercomputing.

7

Chapter 2 Background

(a) 1T1C (b) 3T1C

Figure 2.1: Structure of a DRAM cell

2.1.1 DRAM fundamentals

�e main building block of any semiconductormemory is a cell, where we can store
one bit. Depending on the technology employed, one cell can contain di�erent num-

ber of components in various con�gurations, and exhibit di�erent characteristics to

the memory consumer. For example, typical SRAM cell is comprised of four or six

transistors. Early DRAM cell employed three transistor, while the modern DRAM

cell consists of one transistor and one capacitor. One bit of information is stored as

a charge, either in a powered transistor, or in a capacitor.

2.1.1.1 DRAM cell and array structure

For storing one bit of information, modern DRAM devices utilize a cell structure

that comprises one transistor and one capacitor (1T1C). A circuit diagram of such

cell is shown on Figure 2.1a. A cell is switched on by applying voltage on the gate of

the access transistor (wordline). A�er that, the voltage that represents the bit that

needs to be stored, from the bitline starts to charge the storage capacitor. When the

storage capacitor is charged, it can hold the stored charge a�er the access transistor

is switched o� by removing the voltage from the wordline. However, due to the

capacitor leakage, stored charge can be retained only for a limited time. For this

reason, all DRAM cells must periodically be refreshed, in a process where stored

data is read and written back. Following subsections will explain in more details

the characteristics of a storage capacitor, and the process of DRAM refresh.

Reading the data from 1T1C DRAM cell discharges the storage capacitor and

places the content of the cell onto a shared bitline. From there, the sense ampli�ers

8

DRAM 2.1

Figure 2.2: DRAM array

pick up the small voltage di�erence, and amplify it until a bit line is either on the

lowest or on the highest voltage, representing logical ‘0’ or ‘1’. In the process of

reading, the original content of the storage capacitor is destroyed, so the information

from the sense ampli�ers needs to be written back to a memory cell.

First DRAMdesigns used a three-transistor and one-capacitor structure (3T1C),

shown in Figure 2.1b, as its main storage cell.�e transistors are separately used

for read and write operations. When reading the data from the 3T1C DRAM cell

the charge in a capacitor is preserved even a�er the stored bit is transferred to the

bitline and the sense ampli�ers, whichmakes the reading operation faster. However,

this performance bene�t was outweighed by a much smaller footprint of a 1T1C

cell, so 3T1C structure is not used in modern DRAM devices.

A bankof storage cells is organized as a two-dimensionalmatrix,where each row

of cells shares a common wordline, and cells on the same column are connected

to the same bitline. A simpli�ed illustration is shown in Figure 2.2. A�er a row

address is decoded to select one row, all the storage capacitors that share the row’s

wordline discharge on their respective bitlines, and change their voltage levels.�e

sense ampli�ers then resolve the resulting voltages into a digital value. One read

operation moves the contents of the entire row to the sense ampli�ers.

�e capacitance of a storage capacitor is typically much smaller than the bitline

capacitance. For this reason, sense ampli�ers need to have a reference voltage in

order to accurately detect the small changes on the bitline, and turn them to a logical

‘0’ or ‘1’. It means that, instead of a single bitline, a pair of bitlines with matching

9

Chapter 2 Background

capacitance is used for detecting the voltage di�erence.

2.1.1.2 Cell capacitor and DRAM refresh

In a manufacturing technology used in modern DRAMs, the storage cell capaci-

tance is in the order of 30 fF.�e DRAM access transistor’s leakage current is in

the order of 1 fA. A DRAM cell with these values of cell capacitance and leakage

current, can hold electrical charge that is su�cient to resolve to the correct digital

value for an limited period of time, ranging from hundreds of milliseconds to tens

of seconds.

However, the intensity of the transistor leakage current is dependent on tem-

perature, so the data retention times can be signi�cantly di�erent, not only from

one cell to another at the same time and temperature, but also for the same DRAM

cell at di�erent moments. Memory systems must be designed so that none of the

cells in a memory array loses its stored charge beacuse of the transistor leakage

current.�erefore, all the cells in a DRAM device need to be refreshed before any

single bit in the entire device loses its stored charge due to leakage. For modern

DRAM devices, it means that the cells need to be refreshed once every 32 or 64

ms. Wherever DRAM design involves storage cells with low capacitance values or

high leakage currents, the refresh interval needs to be reduced in order to guarantee

proper data retention in cells in the device.

2.1.1.3 DIMM packaging

�e early generations of computing systems allowed their users to expand the mem-

ory capacity by designing sockets where additional DRAM devices could be in-

serted. �is was o�en a di�cult and error prone process, as the pins on the de-

vices might be bent or defective, faulty devices were di�cult to identify, and it was

physically possible to insert the device in the wrong orientation.�e solution lied

in creating memory modules that enclose a number of DRAM devices, and that

have the standardized interface towards the rest of the architecture. Over the time,

memory modules and their characteristics became the integral part of the memory

system speci�cation.

Various architectures of memory modules typically di�er in the characteristics

10

DRAM 2.1

Figure 2.3: 30-pin SIMM diagram

of the DRAM devices they enclose, their count, the width of the data bus that in-

terfaces the module with the rest of the system, and the signal frequency that they

operate on. First standardized memory modules appeared in the end of 1980s, as a

Single In-line Memory Module (SIMM). SIMM provided 30-pin (Figure 2.3) or 72-
pin (Figure 2.4) interface, with 8 or 9 (for 30-pin) and 32 to 36 (for 72-pin) signals

lines on the data bus, along with the lines for power, ground, address, command

and chip-select.�e contacts on either side of the bottom of a SIMMmodule were

electrically identical.�e computing systems of that time typically employed four

equivalent SIMMs to a wider memory interface, and used parity checking.

In the late 1990s, SIMMs were gradually replaced by Dual In-line Memory Mod-
ule (DIMM). DIMMs are physically larger than SIMMs, they provide wider data bus
to the rest of the system, and the contacts on two sides of the bottom of a module

are eletrically di�erent, which allows for a denser routing of electrical signals. More-

over, larger real estate on a DIMMgave opportunity for a higher capacity devices, as

well as room for some sophisticated control logic, that allowed bu�ering of address

and control signals in Registered DIMMs (RDIMMs) (Figure 2.5). On the other
hand, small-footprint personal computers and mobile devices, require a smaller al-

ternative to a DIMM such as Small Outline DIMM (SO-DIMM) (Figure 2.6), while
retaining throughput and capacity characteristics of traditional DIMM packagings.

However, a packaging process in a �xed format implies restricting available area

and space for the storage elements of DRAM. Ease of installation and expandability

that came with standard memory packaging is paid by a limited scalability, both

in bandwidth and capacity. Memory architects are bound to produce innovative

solutions for ever-growingmemory demands, in a very constrained environment of

a standard memory package. Otherwise, the production of non-standard memory

modules would dramatically increase their cost and negatively impact the main-

tainability of a large scale computing system.

11

Chapter 2 Background

Figure 2.4: 72-pin SIMM diagram

Figure 2.5: 168-pin Registered DIMM (RDIMM) diagram

Figure 2.6: 200-pin Small Outpline DIMM (SO-DIMM) diagram

12

DRAM 2.1

1970 1973 1978 1981 1984 1987 1991 1994 1997 2001 2004 2007 2010 2013 2016

Year

1 Kb

4 Kb

16 Kb

64 Kb

256 Kb

1 Mb

4 Mb

16 Mb

64 Mb

256 Mb
512 Mb

1 Gb
2 Gb

4 Gb
8 GbDRAM chip capacity development

First produced
Production period

Figure 2.7: DRAM chip capacity development

2.1.2 DRAM development and history

In this section we will make an overview of the evolution of DRAM technology,

since its beginnings in 1970. We try to analyze the main factors that led DRAM

to quickly become the mainstream technology for main memories, and those that

allowed it to remain in dominant position until today.

DRAM products are commonly recognized by their capacity, i.e. the number

of bits per chip, also referred as “granularity”. �e �rst products had a capacity

of 1,024 bits and were named 1K DRAMs. As brie�y presented in Section 2.1.1.1,

and illustrated on Figure 2.1b, �rst DRAM storage cell design consisted of three

transistors, needed for controllingDRAMcell operations, andone capacitor,needed

for storing charge representing bit of data.

Subsequent DRAM generations increased the amount of storage by a factor of

4.�e development trend of DRAM since its beginnings is presented in Figure 2.7.

Horizontal axis represents time, and vertical axis shows the capacity of a DRAM

chip in logarithmic scale.�e grey area on the �gure represents the time period in

which a particular DRAM chip was being produced.

13

Chapter 2 Background

In 1975, GordonMoore reported that his prediction from 1965 of an annual dou-

bling of the number of transistors on a chip remained true [57]. In fact, Moore also

predicted that the doubling rate would slow down to a period less than two years.

�is turned to be remarkably correct in case of DRAMs, as their 4-fold increase in

capacity occurred roughly every four years.

Moreover, Moore identi�ed three main contributors for such a fast increase in

the number of transistors per chip:

• Improvements in manufacturability leading to larger die sizes

• Innovation in cell layout for more e�ciency

• Higher resolution lithography for increased density

When quantifying the relative contributions of each of these factors in case of

DRAM, the industry produced a balance of these contributions with 50% due to

lithography, 25% due to an increase in die size manufacturability, and 25% due to

innovative reductions in cell size per bit. Similar distribution remained the same

for the next few decades, fueling the predicted DRAM chip capacity increase.

�is 4-fold increase in capacity every 3 years was sustained in the industry until

the introduction of the 128 Mb product, a�er which a 2-fold increment became the

rule.�e main reason for this — lithography was le� as the only contributor im-

proving the DRAM chip capacity, as the increase in die size and the improvements

in cell size came to their saturation.

�e following section will explore the various obstacles that are alse considered

as a major factor against DRAM scalability.

2.1.3 Obstacles for DRAM scalability

With the discussed fundamentals of DRAM we are able to get a better overview of

the inherent technological obstacles that might slow down, or even completely stop

DRAM scaling in future.

14

DRAM 2.1

2.1.3.1 Bandwidth scaling

Today, the fastest con�guration of theDDR3DRAMtechnology achieves 1600MT/s

per 64-bit data channel and provides 12.8 GB/s per channel, while the sustained

bandwidth is typically 20%—25% lower because of page and bank con�icts. Indica-

tively, modern architectures such as the Intel Nehalem-EX [43] employ 4 channels,

whereas the IBM Power7 [34] employs twice as many DDR3 channels, peaking at

102.4 GB/s of data. Existing DRAM densities enable such con�gurations to directly

connect a single chip to a few hundreds GBs of DRAM.

Achieving higherbandwidthswith existing technology is feasible,but at a cost [31].

Increasing the bandwidth of the chip-to-memory bus typically requires either in-

creasing memory channel frequencies, or its bit width. But increasing the frequen-

cies hinders signal integrity, which implies shorter wires.�e limited distance in

turn, restricts the board area on whichDIMMs can be placed, and thereby limits the

number of DIMMs connected to a single CMP. On the other hand, increasing the

number of channels (or channel width) requires a matching increase in the number

of processor pins, which results in more expensive processors: more pins imply

larger processors, which are more costly (fewer processors per wafer). In addition,

operating multiple channels and DIMMs in parallel greatly increases the power

consumption of the memory system.

Alternatively, emerging technologies such as 3D-stacking and multi-chip pack-

aging can potentially overcome the bandwidth hurdle by placing multiple DRAM

dies in a single package. It is estimated that the bandwidth between 3D-stacked

DRAM layers will be 100× faster than o�-chip bandwidth and can thereby reach

the TB/s domain [85, 11, 52]. Moreover, such technologies e�ectively eliminate the

pin-count and wire lengths problems. In contrast, these technologies o�er a limited

DRAM capacity, as they are limited in the number of DRAM components they

can pack together due to thermal dissipation and constrainted physical area.�is

limitation is aggrevated when we account for the additional memory redundancy

required to facilitate fault tolerance in integrated packaging technologies, as these

do not allow to replace faulty DRAM components [33].�ese restrictions, therefore,

is expected to limit the overall on-chip DRAM capacity to a few dozens of MBs.

Relying to only one of the existing technologies thus means sacri�cing either

high bandwidth or high capacity. Importantly, the packaging limitations we dis-

cuss are impervious to the underlying memory technology. Even though we base

15

Chapter 2 Background

our discussion on the characteristics of the prevalent DRAM technology, similar

limitations apply to alternative emerging technologies.

2.1.3.2 Capacitor scaling

In order to scale down the area occupied by one memory cell, one needs to think

about scaling down the area occupied by the cell’s storage capacitor. On the other

hand, the stored capacitance, typically proportional to the capacitor’s size, needs

to be su�cient to quickly enough set the sense ampli�ers over the sensing thresh-

old. It also needs to be high enough to reliably dominate over di�erent sources of

noise (leakage, switching disturbances, radiation-induced charge) on the bitline.

4Mb DRAM chips typically had their bitline capacitance in a range of 150–350 fF.

�ese values remained roughly the same until today, because the gains in per-cell

capacitance were mostly cancelled by increasing the number of cells per bitline.

�erefore, the required storage capacitance is expected to remain from 30–40 fF,

which becomes a real challenge in an area-constrained cell.

In order to maintain the capacitance of the memory cell’s storage capacitor

relative to the bitline capacitance, with the cell size reduction in successive DRAM

generations, planar capacitors were replaced by trench and stacked capacitors in

the mid-1980s by IBM, Texas Instruments, and Toshiba [7].�e three-dimensional

structure of a trench capacitor enables decoupling the e�ective surface area of the

capacitor from the area of the memory cell, which resulted in continuous scaling

of the storage capacitor while maintaining its capacitance in the desired range.

For further scalability options, and higher capacitance per unit area yield, the

manufacturers have introduced capacitor dielectrics with higher dielectric con-

stants. Typically, DRAM storage capacitors up to the 0.15-µm generation have used
the NO (nitrite-oxide) dielectric. A�er that Ta2O5 was introduced for the 0.12-µm
generation, and further scaling to 0.1 µm required a material with a relative dielec-
tric constant of over 20, such as barium strontium titanate (BSTO) [78].

With the minimum lithographic feature size of a memory cell scaled down, the

series resistance of the storage capacitor can become a dominant factor in the total

resistance. It can cause degradation in the transfer of charge between the bitline

and the capacitor. Typically, the capacitor’s series resistance should not be higher

than 50 kΩ.

16

Emerging memory technologies 2.2

2.1.3.3 Refresh and power scaling

With increase in DRAM capacity, the time and energy spent in refresh operations

become more signi�cant. More memory cells need to be refreshed, and with the

lower retention time of the storage capacitors, they need to get refreshedmore o�en.

Liu et al. [47] showed that with these constraints a hypothetical DRAM device of

64Gb would spend 46% of its time and 47% of energy for refresh operations. For

comparison, modern 4Gb DRAM device spends 8% of the time and 15% of the

energy on refresh.

However, due to fabrication inconsistencies, retention times of the storage ca-

pacitors may di�er from one memory cell to another. Refresh time of a device is

chosen conservatively, so that it is su�cient to guarantee the integrity of a cell with

shortest retention time. As a consequence,most of the refresh operations are unnec-

essary for a vast majority of cells that can retain data for signi�cantly longer time.

�is opens up the opportunity for mechanisms that keep track of weak cells that
have shorter retention times [4, 39], in order to lower the refresh rate for the rest

of the cells. Some solutions, like RADR [47], continuosly track for any changes in

each cell’s retention time and adapt its refresh rate. Others take a di�erent approach,

and either propose not using rows with weak cells at all, or mapping critical data

to cells with longer retention times [79, 49].

�at would bring signi�cant bene�ts in both performance and energy consump-

tion of a DRAM system.

2.2 Emerging memory technologies

As elaborated in the previous section, existing memory systems based on DRAM

face inherent limitations that impede scaling of bothmemory bandwidth and capac-

ity. Moreover, analyses of the modern HPC systems show that the main memory is

one of the major contributors to the total energy consumption, and consequently

to the operational cost. With these issues in mind, we have enough reasons to be

concerned that DRAM would not be able to successfully meet all the requirements

of future HPC systems and applications (we will more thoroughly analyze the re-

quirements of future HPC applications in Chapter 3).

17

Chapter 2 Background

In the following sections we will de�ne an ideal set of characteristics of the

hypothetical memory technology that would supersede DRAM in HPC systems.

�en, we will make a brief survey of the promising emerging memory technologies,

with their main features and perspectives for future development. Finally, we will

pay closer attention to the bene�ts that these new technologies bring speci�cally to

HPC systems.

2.2.1 Superseding DRAM — the winning recipe

�e ultimate memory technology that would replace any existing solution would

have to be scalable to any capacity, to provide in�nite bandwidth, without latency,

and at no cost. As it is the case with most engineering problems, these idealistic

requirements are not only unfeasible when considered separately, but also make

opposing constraints among them.

• Ingredient #1 — non-volatility

As power consumption of DRAMdevices starts to dominate in overall power

breakdown of the system, much of which comes from a stand-by or refresh

power, non-volatility becomes one of the most desirable characteristics of

future memory systems. In that sense, HPC could make further use of non-

volatile memories by performing check-pointing without incurring any per-

formance overhead.

• Ingredient #2 — cell density

As explained previously, the area occupied by a single DRAM cell is largely

determined by the size of the storage capacitor. Emerging memory technolo-

gies make use of di�erent storage mechanisms which have the possibility

of scaling to much smaller sizes.�at increases the cell density, and allows

larger capacity devices on the same chip area.

• Ingredient #3 — endurance

Many non-volatile technologies exhibit limited endurance — each cell can

be written limited number of times before the storage material becomes un-

reliable. Despite many wear-leveling mechanisms that are used to prolong

the lifetime of a write-limited device, it is important to have a technology

with decent endurance, especially in a memory intensive HPC environment.

18

Emerging memory technologies 2.2

• Ingredient #4 — read and write latency

Latencies of read and write operations in DRAM are comparable. Due to

storage material constraints, some non-volatile memories o�en have much

higher write latency. Moreover, non-volatile memories generally have higher

read and write latencies when compared to DRAM.

2.2.2 Emerging memory technologies — overview

Existing memory hierarchies rely upon absolute performance di�erences among

constituent memory technologies, such that each layer in the hierarchy employs

a memory technology that outperforms the level below it in every performance

aspect, yet providing better power consumption and density characteristics than the

layers above it.�is strict ordering of memory technologies is, however, changing,
as emerging memory technologies o�en have a combination of characteristics that

does not directly imply its position in memory hierarchy.

�is emerging complexity is manifested in the Table 2.1, which lists various

performance and design characteristics: read/write latency, write endurance, stor-

age density, power consumption, etc., for both traditional and emerging memory

technologies.

2.2.3 PCM (Phase Change Memory)

PCM is regarded as an emerging technology, although the phase changing concept

has its roots in 1962,when Pearson et al. described the switchingmechanismpresent

in As-Te glasses. However, a�er several more important research papers on that

topic, the immature material quality and high power consumption of the device

made further commercialization of PCM unfeasible.�e research resumed in late

1990s, when the �rst modern PCM design was described [77], and the test chips

fabricated in 2000 [25].

PCM stores data using a phase-change material that can be in one of two physi-

cal states: crystalline or amorphous. As a consequence, it provides superior density

relative to DRAM, and it can be used to provide a much higher capacity for the

memory system than DRAM can within the same budget. Furthermore, a PCM

19

Chapter 2 Background

Traditional technologies Emerging technologies

DRAM SRAM
Flash

FeRAM MRAM PCRAM Memristor
NOR NAND

Knowledge level mature advanced product advanced beginning
Cell elements 1T1C 6T 1T 1T1C 1T1R 1T1R 1M
Half pitch (F) (nm) 50 65 90 90 180 130 65 3-10
Smallest cell area (F2) 6 140 10 5 22 45 16 4
Read time (ns) <1 <0.3 <10 <50 <45 <20 <60 <50
Write/erase time (ns) <0.5 <0.3 105 106 10 20 60 <250
Retention time (years) secs N/A >10 >10 >10 >10 >10 >10
Write op. voltage (V) 2.5 1 12 15 0.9–3.3 1.5 3 <3
Read op. voltage (V) 1.8 1 2 2 0.9–3.3 1.5 3 <3
Write endurance 1016 1016 105 105 1014 1016 109 1015

Write energy (fJ/bit) 5 0.7 10 10 30 1.5×105 6×103 <50
Density (Gbit/cm2) 6.67 0.17 1.23 2.47 0.14 0.13 1.48 250
Voltage scaling fairly scalable yes no poor promising
Highly scalable technological barriers poor promising

Table 2.1: Traditional and emerging memory technologies comparison

cell can be in di�erent degrees of crystallization, thereby enabling more than one

bit to be stored in each cell, further improving data density in PCM [9]. It can also

be expected that PCM is going to scale better than DRAM [23]

On the other hand, PCM is much slower than DRAM, and it would make a

memory system comprising exclusively of PCM, to have much increased memory

access latency; thereby, adversely impacting system performance. More, PCM de-

vices are likely to sustain signi�antly reduced number of writes compared toDRAM,

therefore the write tra�c to these devices must be reduced. Otherwise, the short

lifetime may signi�cantly limit the usefulness of PCM for commercial systems.

Qureshi et al. explore Phase Change Memory (PCM) as a way to bridge the
latency access gap between DRAM and persistent storage, and create large capacity

main memory system that would avoid costly hard disk accesses, and still provide

su�cient bandwidth to the processors [68].

20

Emerging memory technologies 2.2

2.2.4 STT-MRAM

Research exploring the magneto-resistance caused by the spin polarized current

can be tracked back in the ’90s [19][74][35]. Although, signi�cant scienti�c e�orts

of optimizing and applying this phenomenon to create a novel non-volatile mem-

ory is a relatively new approach. Only around ten years ago, in 2005, Hosomi et
al. [28] presented a non-volatile memory utilizing spin transfer torque magnetiza-
tion switching for the �rst time. In the following years, there has been a notable

dedication of academic scientists andmemorymanufactures researching this novel

non-volatile memory technology.

�e storage and programmability of STT-MRAM revolves around a Magnetic

Tunneling Junction (MTJ). An MTJ is constituted by a thin tunneling dielectric

being sandwiched between two ferro-magnetic layers. One of the layers has a �xed

magnetization while the other layer’s magnetization can be �ipped. As Figure 2.8(a)

and (b) depict, if both of the magnetic layers have the same polarity, the MTJ exerts

low resistance therefore representing a logical “0”; in case of opposite polarity of the

magnetic layers, the MTJ has a high resistance and represents a logical “1”. In order

to read a value stored in an MTJ, a low current is applied to it.�e current senses

theMTJ’s resistance state in order to determine the data stored in it. Likewise, a new

value can be written to the MTJ through �ipping the polarity of its free magnetic

layer by passing a large amount of current through it [88].

Figure 2.8(c) illustrates a simpli�ed STT-MRAM array [37][38][62] based on

1T-1MTJ cell.�e cells are organized into rows and columns, similar to the conven-

tional DRAMmodules.�e main di�erence is that, instead of the capacitor used in

DRAM, one bit of data is stored in the MTJ. In this design, the word lines WL1. .m

activate particular rows of the cell array, while the bit lines BL1. .n are used to per-

form read or write operation to the corresponding MTJs.�e current required for

these operations is driven by the source lines SL1. .m .�e main drawback of the 1T-

1MTJ STT-MRAMcell is a long and energy-hungrywrite operation.�is motivated

further research on the STT-MRAM cell design, and recently the manufacturers

revealed advanced 2T-2MTJ, 3T-2MTJ and 4T-2MTJ cells in a pursuit to mitigate

this drawback [2][61][59].

STT-MRAM can be used to build byte-addressable memory devices with pin

structure compatible to the conventional DRAM chips [37]. �erefore, existing

DRAM modules can be seamlessly replaced with STT-MRAM modules, without

21

Chapter 2 Background

….

….

….

…
.

…
.

…
.

…
.

…
.

…
.

….

….

….
Free magnetic layer

Fixed magnetic layer

(a) STT-MRAM cell
Low resistance MTJ - Logical '0'

Free magnetic layer

Fixed magnetic layer

(b) STT-MRAM cell
High resistance MTJ - Logical '1'

BL1 BL2 BLn

MTJ

WL1

SL1

WL2

SL2

WLm

SLm

(c) STT-MRAM cell array

Figure 2.8: STT-MRAM cell and cell-array

requiring any modi�cation in the rest of the system architecture.�is may suggest

an easier incorporation of STT-MRAM in the existing systems.

2.2.4.1 STT-MRAM design challenges and techniques

Process variations coming from magnetic devices and CMOS technology are im-

posing many important design challenges to STT-MRAM at a nanometer scale.

�e variations in doping and geometry, originating from CMOS process insta-

bility, can signi�cantly in�uence the resistance of transistors in STT-MRAM array,

and thus impact its design.�e NMOS selection transistor in an STT-MRAM cell

works in the linear region when writing logical ‘1’. A seemingly insigni�cant varia-

tion of the NMOS device parameter or a small inaccuracy of gate-to-source voltage

may cause a big di�erence in the switching current through the MTJ.

�e variations in the process parameters of MTJ, as the key element of the infor-

mation storage in STT-MRAM, directly in�uence the stability of the STT-MRAM

cell.�ese variations can be caused by quantummechanical tunneling of the oxide

thickness resulting in a large spread in resistive states of the MTJ.

In order to mitigate large number of writes, which according to Zhou et al [90]

22

Emerging memory technologies 2.2

contribute to over 70% of STT-MRAM dynamic energy, they proposed a read-

before-write scheme that can identify unnecessary writes to memory. To do this,

each column needs to be extended by a set of decision circuitry which compares the

existing bit and the bit to be written, and decide if it is possible to avoid executing

the write.�e drawback of this method is further slowdown of write operations, as

they need to be preceded by a read.

�e number of writes to STT-MRAMcells can further be reduced by employing

data inverting. Before writing new data to a block of cells, a specialized circuitry

would calculate the Hamming distance (HD) between the existing data and the

data to be written. Whenever calculated HD is greater than half of the block size,

the data is inverted before storing, and a bit for determining the inversion status of

the block is set.

�e unbalanced write patterns to a memory system demand that the wear-

leveling techniques need to be employed, in order to increase the endurance of

the memory system.�e most common wear-leveling techniques use special tables

to store the number of accesses to each block of cells. Periodically, themost accessed

blocks are logically swapped with the least accessed block, which increases storage

overhead and latency, but improves on the endurance of the system.

2.2.5 Resistive Random Access Memory (R-RAM)

Resistive Random Access Memory (R-RAM), in its broad sense, represents any ran-

dom access memory that stores data as a di�erence in resistance between two states

that represent logic ‘0’ or ‘1’. Generally, a single R-RAM cell has a metal-insulator-

metal (MIM) structure, where the di�erence in resistance of the insulator layer,

between high-resistance state (HRS) and low-resistance state (LRS), can be used

to store one bit of data.�ere are several materials that can be used as an insulator

layer for this purpose. So far, R-RAM has taken advantage of its high scalability, low

read and write energy operations, and simple production, to serve as a replacement

for more traditional data storage technologies (HDD and �ash memory). Recent

advances in cell structure made improvements in read and write latency, so these

devices can see their potential use as the main memory. Similarly to PCM, each R-

RAMcell can extend its data storage capacity by increasing the number of resistance

states, and that way store two or four bits instead of only one.

23

Chapter 2 Background

2.2.5.1 R-RAM types

�ere are two basic types of R-RAM,which di�er in physical and chemical processes

in order to achieve changes in resistance of the insulator layer: electrochemical met-
allization devices and valence change devices.

Electrochemical metallization devices make use of �laments, conductive paths
formed inside the insulator that connect the two terminals.�ypically, they occupy

only a tiny fraction of the insulator layer, but are enough to change its resistivity.

Filament is not a conductive material, like metal or semiconductor. Instead, it is a

modi�cation in a chemical structure in the dissolving ions within the insulator layer.

It can be created or removed from the material by applying continuous voltage on

the terminals.

AMIM structure typically consists of one inert (Au, Pt...) and one active (Cu,Al,

Ni...) electrode, with the insulator between them. A continuous voltage applied on

the electrodesmoves ions from the activemetal into the insulator space, which then

interact with the dissolving ions in the insulator, to form a compound with conduc-

tive characteristics. When the insulator contains su�cient amount of conductive

compounds, �laments can be formed from the active to the inert electrode. A�er

that, they can conduct current across the insulator layer, e�ectively switching the

material to a low-resistance state. Number of �laments in the material determines

the density of the current. Resetting the material to the high-resistance state is done

by applying opposite voltage, when the conductive compounds are dissolved back

to their original state, thus removing �laments from the insulator, and that way

increasing its resistivity.

On the other hand, a valence change device exploits only physical properties of

the insulator, and uses charge trapping mechanism to add pseudo-states between

the valence and the conduction band. Because of these pseudo-states the electrons

are more likely to move to the conduction band. �e charges migrate into the

insulator by Fowler-Nordheim tunneling, are are then trapped by the defects in the

insulator.�at way, the Shotkky barrier at the metal-insulator junction is lowered,

and thematerial can exhibit conductive properties at lower voltage levels, e�ectively

representing di�erent logic value.

24

Emerging memory technologies 2.2

2.2.5.2 R-RAM array and cell structure

A straightforward and the most common design of a R-RAM array is the crossbar

structure, used for the �rst time in a telecommunication signal routing system.

Conceptually, it comprises two sets ofwireswith switches at their intersection points,

so the signal routing is achieved by selecting a correct switch. In memory devices,

such as R-RAM, the two sets of wires represent word lines (WL) and bit lines (BL),

and the storage material is placed at cross points.�at way, accesing a memory

cell in a crossbar array can be done by supplying a read voltage to its WL and

sensing the resulting current on its BL. If the sensed current is above the prede�ned

threshold, the storage material exhibits a low-resistance state, and a logical ‘1’ is

read. Conversely, if the sensed current is below the threshold, the storage material

is in a high-resistance state, and a logical ‘0’ is read. To parallelize read operation

on the whole WL, we can read the resulting current on all BLs simultaneously.

A single R-RAM cell can exploit its high Ro f f /Ron ratio to be designed without

any switching device for increased array density — the single element connecting

WL and BL is the storage material. A combination of a crossbar structure with a cell

without a switching device is illustrated in Figure 2.9. Due to litography limitations,

each side of thememory cell can be as low as 2F long, giving a single cell area of 4F2.
Apart from such a high density, this design is characterized by a simple fabrication

process, and the ability to construct multiple memory layers vertically, making 3D

stacking a plausible solution.

However, crossbar array without switching elements experiences a side-e�ect

known as a sneak-path, where a low resistance of three or more elements in a series
can lead to a false reading on BL.�is e�ect is illustrated in Figure 2.10. Because of

this, much higher voltage needs to be applied to the selected cell than to the other

cells in a sneak path, to ensure valid readings. Sneak paths also directly in�uence

memory array scalability, as they can degrade the sensing margin in large crossbar

structures. Similarly, this requires R-RAM storage materials to have relatively high

resistance in LRS while keeping the di�erence between HRS and LRS large. For

example, LRS should have a value in the range of killoohms, and HRS in the order

of megaohms [84, 46].

When better access control is required, an active (transistor) or passive (diode)

switching device can be included in each cell. In both cases switches can signi�-

cantly reduce the leakage current, and at least decrease, if not eliminate, the impact

25

Chapter 2 Background

(a) Vertical (b) Perspective

Figure 2.9: Evolution of the memory footprint

Figure 2.10: Sneak path

of sneak paths in an array.�is makes the opportunity for creating larger R-RAM

arrays, without strict limitations in resistance levels that cells without a switching

device have. On the other hand, switching devices may increase the footprint of a

memory cell, and negatively impact the density of the array.

Figure 2.11a shows a design of a R-RAM cell using metal-oxide semiconductor

�eld-e�ect transistor (MOSFET) as an active switching device. By isolating its gate

from other terminals, we can use MOSFET transistor to switch the current on or

o� across the storage material.�e memory cell area in this case is more than 10F2,
which, compared to a cell without a switching device, is a signi�cant increase. To

make things worse, MOSFET layers cannot be integrated vertically, which prevents

3D technology from relieving problems with small density. Some advances in this

aspect are expected from a thin-�lm transistor technology (TFT).

An improved solution can be achieved by replacing MOSFET with a bipolar

junction transistor (BJT) (Figure 2.11b). By using vertical BJTs we can improve

density in a single layer, and obtain 4F2 cell size [76]. However, stacking several
layers in a 3D form remains a problem, because of the fabrication issues.

Instead of using a transistor as an active switching device, R-RAM cell can in-

26

Emerging memory technologies 2.2

(a) MOSFET

(b) BJT

Figure 2.11: MOSFET and BJT

clude a passive element, such as diode, non-ohmic device or chalcogenide material,

integrated into a crossbar structure between the storage material and one of the

terminals.�eir non-linear electrical characteristics allow them to serve as a switch

which is turned on only when the threshold voltage is exceeded.�e alternatives

between the aforementioned passive elements mainly di�er in their mode of oper-

ation, and are used in either unipolar or bipolar R-RAM design, and usually have

di�erent switching threshold voltage. Besides that, they keep the single-cell foot-

print low (at 4F2), but because they never reach the ideal on/o� characteristics, the
e�ect of sneak paths is not fully eliminated.�is constrains the array size to a cer-

tain extent, so the passive switching design is considered as a trade-o� between

active switching and the design without a switching device.

In order to make large R-RAM arrays without switching devices and sneak

paths, Lee et al. [45] have proposed a complementary crossbar structure. In this

design two R-RAM devices are connected together, where one has a role of a switch,

and the other one of a memory cell.�e resistance states of the two elements are

complementary, that is, if one element is in LRS, the other one is in HRS. �at

way the total resistance of an unselected cell is kept high, and the sneak paths are

eliminated. In order to read the value of a particular memory cell, one must �rst set

its appropriate switch cell to a LRS, then read the total resistance, and �nally reset

the switch cell to its complementary state. Although this design can enable large

R-RAM arrays, with a small footprint of a single cell, it su�ers from slow reads and

writes due to the multi-step operation process.

27

Chapter 2 Background

2.2.5.3 R-RAM opportunities and future

As shown in the previous sections R-RAM is a technology that has the potential to

be scaled down to the nanometer level. Ho et al. [27] have shown a 9-nm R-RAM

that can be used to build a crossbar array larger than 64×64, with a programming

current in the order of milliamperes. Retention times and endurance have di�erent

values for various materials, but generally they are higher than 10 years and 106

number of writes.

2.2.6 Memristor

�e traditional circuit theory recognizes three basic passive circuit elements — the

resistor, the capacitor and the inductor.�ey have been the main building blocks

of all electronic circuits that drive modern technology. Resistance, capacitance and

inductance are used to de�ne three equations which relate four fundamental circuit

values — electric current (i), voltage (V), electrical charge (q) and magnetic �ux
(φ):

dV = R × di (2.1)

dq = C × dV (2.2)

dφ = L × di (2.3)

In 1971, Chua [14] set a theory where there exists a fourth basic circuit element,

whichhe calledmemristor, and the value describing it—memristance. Memristance
is, thus, de�ned as a relationship between magnetic �ux and electrical charge:

dφ = M × dq (2.4)

�e unit of memristance is ohm(Ω). However, unlike the resistor where the

resistance is constant in time, and independent of applied voltage or current, mem-

ristance exhibits hysteretic behaviour dependent on the electric charge (V(t) =
M(q(t))I(t)). �erefore, memristance can change its value by controlling the

28

Emerging memory technologies 2.2

Doped Undoped

V

A

Ron Roff
w

D

Figure 2.12: Structure of a mem-
ristor device, and its equivalent cir-
cuit model

amount of electric charge that passes through the device. Furthermore, the mem-

ristor is constant in time when no current is applied, which is the essence of non-

volatility property.

Chua proved that memristor behavior cannot be synthesized using other three

basic elements. However, his work described memristance only as a theoretical

concept, without any evidence of its actual existance. In 2008, Williams et al. [75]

claimed the actual discovery of memristor, by describing its structure, and con�rm-

ing its behavior. Soon a�er that, various research teams, including Hewlett-Packard,

SK Hynix and HR Laboratories, made their �rst experiments with a newly created

element, enabling its application not only in memories, but also in computer logic

and neuromorhic/neuroresistive architectures.

In Figure 2.12 we see the actual structure of a memristor device as a semicon-

ductor thin �lm, placed between twometal contacts.�e �lm comprises doped and

undoped region of a total length D, and an internal state variable w, representing
the length of the doped region.�e two regions di�er in their resistance — doped

has lower resistance and undoped signi�cantly higher. When voltage is applied

to the device, the length w changes because of charged dopant dri�ing [89], e�ec-
tively changing the device’s total resistivity. When the doped region occupies the

full length D, the device has the minimum resistivity of the value Ron . Similarly, if

the undoped region fully extends, the device resistance reaches its maximum at a

value of Ro f f .�e mathematical model of a memristive device can, therefore, be

described as:

R(w) = Ron ×
w
D
+ Ro f f × (1 −

w
D
) (2.5)

In memory systems based on memristors data is stored using ions, instead of

electrons, by de�ning the length of a doped region w relative to the length of the
thin �lm D. When a charge is applied to a memory cell these ions are displaced a

29

Chapter 2 Background

small distance, which causes a large di�erence in cell resistance. And because ions

retain their position a�er the voltage is switched o�, a memristor cell retains the

stored information when the power is lost, giving it the non-volatility.

Although memristors are still in the research stage, with the commercial avail-

ability expected in 2018, it promises performance comparable to DRAM, with a

price as low as Flash, and still demanding less energy for its operation than either

of the aforementioned technologies. Most importantly, memristors show good scal-

ability, not only by shrinking a cell to a 10nm scale, but also by stacking memristor
grids in 3D structures, and by storing multiple bits per cell.

2.2.7 Opportunities in HPC for emerging memory technologies

2.2.7.1 DRAM refresh

One of the most obvious advantages that all non-volatile memory technologies

have over DRAM, is absence of need for periodical refresh. In the �rst part of this

chapter, we analyzed all the consequences of DRAM refresh, most-important being

the degradation of system performance and increased energy consumption. With

its speci�c constraints and requirements, it is important to underline the bene�ts

we might see in HPC, once we remove DRAM refresh from the equation.

2.2.7.2 Check-pointing

A single HPC application process, during its lifetime, can unexpectedly fail and

terminate.�is can happen because of a so�ware bug, or due to any transient or

permanent failure of a hardware component in the system. As a result, the whole

applicationmaymalfunction— the performance can degrade, the produced results

may be incorrect, or the entire execution can terminate. Given that the re-execution

of long-running HPC jobs can be costly and time-consuming, the reliability of the

system is a very important requirement.

Large HPC systems provide fault tolerance by periodical checkpointing, where

the current state of the system is taken as a snapshot, and saved to a persistent

storage. If there happens a failure and the application terminates, it can be restarted

30

Emerging memory technologies 2.2

from the last saved checkpoint, instead of restarting it from scratch [21].

However, in traditional HPC systems, check-pointing brings an additional cost,

as it interferes with the regular execution, and stresses both I/O storage and inter-

connect network. It is estimated that between 15% and 45% of the operational time

of current HPC systems is spent on check-pointing, restarting and partial recom-

putation of the work from the last checkpoint [16, 17]. As the size of the future

HPC systems and applications increases, we can only expect that the time spent

check-pointing would become a dominant component in total execution time. It

is estimated that check-pointing time would go up to 65% of the total operational

time of a 100,000-node cluster [22].

�e systems that use one of the emerging memory technologies for the main

memory,can exploit theirnon-volatility properties to avoid transferring large amounts

of data through the network to a persistent storage.�e memory system itself can

safely store all the information needed for the recovery a�er the job re-execution.

More, if we anticipate the situation where the whole server fails (due to the power

failure), check-point data can be stored in a non-volatile memory of a nearby server.

�at way, we could increase the robustness of a system, without employing inter-

connect network and persistent storage, and avoid the overhead that this brings.

Reducing the overhead of check-pointing would also make room for advanced

techniques in job scheduling. In order to make better utilization of the system, job

scheduler can perform a check-point and interrupt the execution of a long-running

low-priority job, to give the processing resources to a high-priority job. Once the

prioritized jobs are completed, the original jobs can be restarted.�is could also

give bene�ts in system administration, as a system shutdown would not require

emptying the job queue or terminating long-running jobs.

2.2.7.3 Memory errors

�e reliability of a single DRAM cell directly determines the reliability of the mem-

ory system. For future HPC systems that require more memory, DRAM reliability

becomes a very important issue.

First, if the probability of a single cell failure is constant, the overall memory re-

liability decreases with the consistent growth of its capacity [29]. Second, if DRAM

cells keep getting smaller, they retain less amount of charge, which makes them in-

31

Chapter 2 Background

creasingly susceptible to any external disturbance or data corruption [40]. Also, the

distance betweenDRAMelements is already so small that electromagnetic coupling

causes undesirable interactions between the adjacent cells. Finally, as the technol-

ogy scales-down, the relative variation in process technology increases, leading to a

higher number of cells that are exceptionally vulnerable to errors. Currently, mem-

ory errors are addressed by using advanced chip-kill error correction mechanism,
which signi�cantly improves reliability, but it also introduces notable power and

storage overheads [32].

Non-volatile technologies mitigate the transient faults (caused by magnetic or

electrical interference), that account for a signi�cant portion of the overall mem-

ory faults. �erefore, they would not only improve the reliability of the system,

but also reduce the complexity and overheads of the traditional error correction

mechanisms.

On the other hand, neither of the emergingmemory technologies is failure-safe.

�eir failures (stochastic in nature), can be e�ciently controlled with proper ECC

mechanisms [6]. Recent study of Pajouhi et al. [63] analyzes interaction between

device parameters, bit-cell level parameters and di�erent ECCs to optimize the

robustness and energy-e�ciency of STT-MRAM cache. An interesting follow up

would be to extend this work on STT-MRAMmain memory.

2.2.8 Emerging memory technologies — summary

�e previous sections described several emerging memory technologies, and their

characteristics in comparison with DRAM. Some of them are still in their research

phase, or with existing technical obstacles needed to overcome before entering the

mass production stage.

PCM, as the most mature of the emergingmemory technologies, needs to focus

on improving access times and endurance. From the architectural perspective there

already exist several solutions that attempt to mitigate these shortcomings of PCM.

Some of them are described in Chapter 4.

�e applications for an STT-MRAM also require quick reads, which becomes a

challenge because of small sense margins.�ermal �uctuations in manufacturing

process can cause high write errors, which can impede STT-MRAM’s potential, if

32

Emerging memory technologies 2.2

le� unresolved.

�e endurance of R-RAM has been improved signi�cantly, with enabling 1010

write cycles. One of the few things le� to be addressed is their chip-level integration,

which demands improvements in device uniformity and the design of a peripheral

circuit.

Memristor is the newest of the emerging memory technologies, but in a short

time has gained much attention not only because of its memory-related character-

istics, but also for its application in logic circuits and neuromorhic/neuroresistive

architectures. However, Hewlett-Packard research team that led the innovation re-

garding memristor, has recently announced the abandonment of memristors in

their ‘�e Machine’ project, aimed to cope with the �ood of data from Internet of

�ings.

�e successor of DRAM technology is, therefore, di�cult to be predicted. Un-

certainties in new technology development make predictions based on trend ex-

trapolations highly unreliable.

33

Chapter 3
Memory requirements of HPC applications

In this chapter, we observe and characterize the memory behaviour, and speci�-

cally memory footprint,memory bandwidth and cache e�ectiveness, of several well-

known parallel scienti�c applications running on a large processor cluster. Based

on the analysis of their instrumented execution, we project some performance re-

quirements from future memory systems serving large-scale chip multiprocessors

(CMPs). In addition, we estimate the impact of memory system performance on

the amount of instruction stalls, as well as on the real computational performance,

using the number of �oating point operations per second the applications perform.

Our projections show that the limitations of present memory technologies, ei-

ther by means of capacity or bandwidth, will have a strong negative impact on

scalability of memory systems for large CMPs. We conclude that future supercom-

puter systems require research on new alternative memory architectures, capable

of o�ering both capacity and bandwidth beyond what current solutions provide.

35

Chapter 3 Memory requirements of HPC applications

3.1 Introduction

�e inability to e�ciently scale single-thread performance through frequency scal-

ing and instruction level parallelism, has le� on-chip parallelism as the only viable

path for scaling performance, and vendors are already producing chip multiproces-

sors (CMPs) consisting of dozens of processing contexts on a single die [3, 42, 72].

But, placing multiple processing units on a single chip imposes greater stress

on the memory system. While on-chip parallelism is e�ective at scaling the compu-

tational performance of a single chip (i.e. the number of arithmetic operations per

second), it is unclear whether the memory system can scale to supply CMPs with

su�cient data.

In this chapter, we characterize the memory behaviour of several well-known

parallel scienti�c applications representing di�erent scienti�c domain and selected

based on their usage in supercomputing centers across Europe [73]. We predict the

performance required from the memory system, to adequately serve large-scale

CMPs. Based on the knowledge that we have today, and utilizing large processor

clusters as our evaluation platform, wemake a projection onmemory requirements

of futuremulticore systems, in terms ofmemory size,memory bandwidth and cache

size.

Given the lack of parallel applications that can explicitly target future large-

scale shared-memory CMPs, we base our predictions on the per-CPU memory

requirements of distributedmemoryMPI applications. Although this methodology

is imperfect (datamay be replicated between nodes, whichmay result in pessimistic

predictions when addressing shared-memory environments), we believe it provides

a good indication of the requirements from a CMP memory system.

For the applications examined, we show that the per-core working set size typi-

cally consists of hundreds of MBs. In addition, we observe that per-core memory

bandwidth reaches hundreds of MB/s in most cases, and that the bandwidths of

both L1 and L2 caches are typically higher by an order of magnitude. A simple back-

of-the-envelope calculation, therefore, suggests that a CMP consisting of 100 cores

may require dozens of GBs of memory space, accessed at rates up to 100 GB/s.

Furthermore, we demonstrate the impact of memory system performance by

analyzing its e�ect on instruction stalls, and by comparing theoretical and real

36

Related work 3.2

arithmetic performance using the number of �oating point operations per second

that our benchmarks perform.

A common rule of thumb, used for designing the memory system of a super-

computer, dimensions memory size to 2 GB per core, and memory bandwidth to

0.5 bytes/FLOP. However, our results show that these estimates are much higher

than real applications actually require.

�e rest of this chapter is organized as follows. Section 3.2 highlights related

publications on memory system analysis for multicores.�en, in Section 3.3 we

describe our evaluation platform,applications under analysis, andperformance eval-

uation methods.�e following sections present our �ndings on memory footprint

(Section 3.4), memory bandwidth (Section 3.5), as well as the impact of memory

system on CPI stack (Section 3.6) and arithmetic performance (Section 3.7). Finally,

we summarize our conclusions in Section 3.8.

3.2 Related work

Until recent years, the inaccessibility of large scale parallel machines have limited

the ability of researchers to study the memory performance and requirements of

parallel applications. As a result, common wisdom concerning these requirements

mostly relies on characterizing established benchmarks suites, such as SPLASH-

2 [86] or NAS [1].

At the architectural level, Burger et al. [12] point that many techniques used for

tolerating memory latencies do so at an increased memory pin bandwidth, which

will eventually become a critical bottleneck.�ey conclude that in the short term,

more complex caching mechanisms can alleviate this bottleneck, but in the long

term, o�-chip accesses will become too expensive.

Liu et al. developed the memory intensity metric to evaluate the load imposed

by parallel applications on o�-chip memory bandwidth of CMPs [48]. Memory

intensity was de�ned as the number of bytes transferred to and from the chip per

executed instruction, thereby taking into account data locality that is captured by

the on-chip cache.�ey show that, for a given parallel program, when the number

of executing cores exceeds a certain threshold, performance will degrade due to the

bandwidth problem.

37

Chapter 3 Memory requirements of HPC applications

Murphy et al. [58] quantitatively demonstrated the memory properties of real

supercomputing applications, by comparing them with SPEC benchmark suite in

terms of temporal locality, spatial locality and data intensiveness.�ey showed that

the number of unique data items that the application consumes can have an impact

on the performance of hierarchical memory systems much more than the average

e�ciency with which data is stored in the hierarchy.

Alam et al. [5] studied how di�erent memory placement strategies a�ect overall

system performance, by evaluating di�erent AMD Opteron-based systems with

up to 144 cores.�ey measured computational characteristics of the architecture

and communication performance using low-level micro-bechmarks, a subset of

NAS benchmark suite, and several MPI benchmarks.�ey have shown that opti-

mal selection of MPI task and memory placement schemes can result in over 25%

performance improvement.

Finally, Bhadauria et al. explored the e�ects of di�erent hardware con�guration

on the perceived performance of the PARSEC benchmarks [10]. In order to evaluate

how memory bandwidth a�ects the performance of PARSEC benchmarks, the au-

thors reduced the frequency of theDRAMchannels connected to a 4-wayCMP, and

concluded that memory bandwidth is not a limited resource in this con�guration.

In contrast to the above, we focus on the potential of large-scale CMPs to serve

as a supercomputing infrastructure, by characterizing well-known highly parallel

scienti�c applications, and projecting how both current and emerging technologies

can scale to meet their demands.

3.3 Methodology

Our analysis is based on a combination of tracing high-level events together with

reading the hardware performance counters.�e application execution is instru-

mented at the higher abstraction level: CPU bursts, synchronization and commu-

nication events. It produces a full timestamped trace of events, annotated with

hardware performance counters and memory usage statistics associated to each

CPU burst.

�e target platformused for obtaining thesemeasurements is theMareNostrum

supercomputer [54], which consists of a cluster of JS21 blades (nodes), each hosting

38

Methodology 3.3

CPU #1

CPU #2

CPU #3

CPU #4

CPU #5

CPU #6

CPU #7

CPU #8

Counter set #1

Counter set #4

Counter set #3

Counter set #2

Counter set #1

Counter set #4

Counter set #3

Counter set #2

Counter set #2

Counter set #1

Counter set #4

Counter set #3

Counter set #2

Counter set #1

Counter set #4

Counter set #3

Counter set #3

Counter set #2

Counter set #1

Counter set #4

Counter set #3

Counter set #2

Counter set #1

Counter set #4

C.set #4

C.set #3

C.set #2

C.set #1

C.set #4

C.set #3

C.set #2

C.set #1

Figure 3.1: Spatial and temporal distribution of counter sets

CPU #1

CPU #2

CPU #3

CPU #4

CPU #5

CPU #6

CPU #7

CPU #8

Flattened
trace

20 106

1612

12 16 18 18

Individual
CPU bursts

Figure 3.2: Flattening the sparse per-processor traces into a unified trace

4 IBM Power PC 970MP processors running at 2.3 GHz. Each node has 8 GB of

RAM, shared among its 4 processors, and it is connected to a high-speed Myrinet

type M3S-PCIXD-2-I port, as well as two GigaBit Ethernet ports.

In order to avoid contention on the nodes’ RAM, the benchmarks were executed

using only a single processor per node.�erefore, an application running on 64

processors actually had exclusive access to 64 nodes and 256 processors, of which

192 were idle (3 per node), so that each processor used by the application had 8 GB

of memory and the full bandwidth at its disposal.

Probe execution of the selected set of applications using all four available pro-

cessors per node, resulted in a decrease of average per-processor bandwidth by 10%–

20%, compared to the execution using only one processor per node.�is proved

our assumption that the contention on one nodes’ RAM, even for those applica-

tions that are less memory-intensive, would introduce error in measuring actual

bandwidth requirements of each processor.

39

Chapter 3 Memory requirements of HPC applications

A very large set of performance counters on PowerPC 970MP allowed us to

track in detail a wide spectrum of memory-related events. However, as it is the case

withmost of the modern processors, PowerPC 970 has only a limited set of physical

counters that can track as many unique events at the same time.�e set of counters

that the processor tracks depends on the processor’s active counter group. In total,

there are ten counter groups, that non-exclusively cover ��y counters.

In order to have as many counters as possible available for further analysis, we

con�gured our tracing mechanism to apply di�erent counter groups to the proces-

sors involved in the execution in a cyclic fashion, where �rst processor would start

tracking counters from �rst counter group, second processor from second counter

group, and so on. To enhance further this spacial distribution of counter groups,

we also con�gured each processor to switch its active counter group to the next one

every �ve seconds.�e execution itself typically took several minutes. Since, in all

our experiments, we used minimum 16 processors, we were able to assign each of

the ten counter groups to at least one processor.

An example of a distribution of counter sets is presented in Figure 3.1, where 8

CPUs are involved, with 4 counter sets, and the selected counter being in set #1. At

any given moment two of the processors are tracking the selected counter.

We calculated average value of each counter for everyCPUburst throughout the

whole execution time, thatway producing a �attened trace as a uni�ed timeline of all

the collected counters. Finally, since the resulting time series consisted of millions

of short periods, we implemented a simple bucketing algorithm that divided the

whole execution time in 200 equal segments and averaged our target values over

each of those segments.

Figure 3.2 depicts the trace �attening process, by showing only those execution

segments that track the selected counter. Each of the segments consists of a series

of individual CPU bursts that contain the values of the selected counter. Flattened

trace is divided into segments that correspond to the CPU bursts. Counter value for

each segment is then derived from the two CPU bursts as the sum of their selected

counter values, and by taking into account respective burst duration.

Importantly, our characterization methodology is validated against the perfor-

mance reported by well-known benchmarks such as LINPACK [20], the de-facto

benchmark of �oating-point performance for high-performance scienti�c comput-

ing.

40

Methodology 3.3

Webase our analysis on a set of four applications, selected according to Simpson

et al.’s survey of high-performance applications used in supercomputing centers

across Europe [73], and chosen to represent the dominant scienti�c domains in

the supercomputing centers surveyed. More importantly, the analysis showed that

each of the selected applications stress di�erent aspects of the memory system.�e

selected applications include:

• GADGET (GAlaxies with Dark matter and Gas intEracT). A code for cosmo-
logical simulations of structure formation. It computes gravitational forces

with a hierarchical tree algorithm, optionally in combination with a particle-

mesh scheme for long-range gravitational forces. It is one of the most o�en

used applications, representing the area of astronomy and cosmology. From

the four applications that we used, GADGET had the highest requirements

of memory size.

• MILC (MIMD Lattice Computation). A set of codes for doing simulations
of four dimensional SU(3) lattice gauge theory, represents the area of par-

ticle physics, and in our analysis had the highest requirements of memory

bandwidth.

• WRF (Weather Research and Forecasting). A next-generation mesocale nu-
merical weather prediction system designed to serve both operational fore-

casting and atmospheric research needs. It is a well-known DEISA bench-

mark from the area of earth and climate. In our analysis, it is characterized

as the application that is bound by the system’s computational resources.

• SOCORRO— self-consistent electronic-structure calculations utilizing the
Kohn-Sham formulation of density-functional theory. Calculations are per-

formed using a plane wave basis and either norm-conserving pseudopoten-

tials or projector augmented wave functions.�is application mostly stresses

the memory bandwidth.

Each of the applications was executed on 16, 32, 64 and 128 processors, with the

exception of GADGET — whose memory footprint could not �t on 16 MareNos-

trum blades.

�e input sets in all of the analyzed applications remained unchanged while

scaling the number of processors. With the advance in multicore design, and scal-

ing the number of processors, it is reasonable to expect that the input sets of the

41

Chapter 3 Memory requirements of HPC applications

Table 3.1: The per-processor and over-
all memory footprints measured for the
benchmark applications. Application #CPUs

Footprint [GB] Maximum
footprint
reduction

Total
footprint
increase

per CPU
total

avg max

GADGET
32 1.27 1.80 57.69 - -
64 0.75 0.98 62.58 45.76% 8.49%

128 0.49 0.68 86.85 30.61% 38.78%

MILC

16 0.57 0.61 9.71 - -
32 0.29 0.31 9.90 49.00% 1.99%
64 0.15 0.16 10.28 48.10% 3.81%

128 0.07 0.09 11.04 46.29% 7.41%

WRF

16 0.19 0.20 3.17 - -
32 0.12 0.12 3.90 38.39% 23.21%
64 0.07 0.07 4.77 38.85% 22.30%

128 0.05 0.05 6.78 28.94% 42.12%

SOCORRO

16 0.18 0.20 3.19 - -
32 0.11 0.12 3.96 37.82% 24.36%
64 0.08 0.09 5.56 29.87% 40.25%

128 0.06 0.07 8.68 21.93% 56.14%

applications being executed will also grow. It is clear that the memory requirements

of such applications can only be higher than the ones that we evaluate, and that the

memory technology limits can be reached sooner than projected in this work.

3.4 Memory footprint

In this section, we try to quantify the memory footprint of parallel applications, as a

key factor determining the size requirements of both on-chip and o�-chip memory

in future CMPs.

Table 3.1 shows the average andmaximumper-processor footprints for the appli-

cations under analysis.�e total footprint is calculated as the number of processors

multiplied by the maximum per-processor footprint. In case that the memory sys-

tem does not satisfy the maximum footprint requirements of a given application,

it would crash when le� out of memory space.�e table also shows the relative

reduction in maximum per-processor footprint, as well as relative increase in total

footprint, both compared to the execution with half as many processors.

42

Memory footprint 3.4

Figures 3.3a to 3.3d describe the progression of the average per-processor mem-

ory footprint for the four applications.�e vertical axis shows thememory footprint

in GB, and the horizontal axis depicts the progression of normalized execution time.

As expected in a strong scalability case, when we divide the same working set

across a large number of processors, the per-processor memory footprint decreases

as the number of processors participating in the computation increases. However,

doubling the number of processors does not halve the size of the per-processor

memory footprint. For both WRF and SOCORRO, doubling the number of pro-

cessors only reduces the per-processor memory footprint by 20–40%. Scaling is

somewhat better for GADGET, for which scaling from 32 to 64 processors reduces

the per-processor footprint by 45%, while scaling further to 128 processors reduces

the footprint by only 30% more. Scaling for MILC is very good, as footprint reduc-

tion is very close to 50%.

�is suboptimal reduction in per-processor memory footprint is partially an

artefact of using distributed memory applications, and it is caused by the replica-

tion of data between processors. Many distributed algorithms that employ spatial

metrics to partition the entire problem set into segments, replicate segment borders

among processors assigned with neighbouring segments. For example, partitioning

a large matrix into small sub-matrices will typically involve replication of the rows

and columns on segment borders.�erefore, reducing the per-processor segment

size will inevitably increase the portion of the segment that constitute as part of its

border — that is replicated on the processor assigned with the neighbouring seg-

ment, and thus increase the percentage of application data that is replicated among

the nodes. As a result, total memory footprint increases along with the number

of processors, as shown in Table 3.1. Shared memory environment, on the other

hand, would not experience an increase in the total memory footprint, but still, we

would see more impact on the working set captured by caches and increase in cache

coherency tra�c.

Figure 3.4 extends the measurements through linear regression, and projects

the total memory footprint for larger number of processors.�e vertical axis on

Figure 3.4 shows the estimated total footprint, and the horizontal represents the

number of processors. Points on the graph represent the actual values measured

from the executed application, while the lines show the linear regression of the total

footprint for the particular application (the projection lines do not have a linear

appearance due to the logarithmic axes).

43

Chapter 3 Memory requirements of HPC applications

0 20 40 60 80 100
Execution time [%]

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

M
em

or
yf

oo
tp

rin
t(

pe
rc

or
e)

[G
B]

(a) GADGET

0 20 40 60 80 100
Execution time [%]

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

M
em

or
yf

oo
tp

rin
t(

pe
rc

or
e)

[G
B]

16 processors
32 processors
64 processors
128 processors

(b) MILC

0 20 40 60 80 100
Execution time [%]

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

M
em

or
yf

oo
tp

rin
t(

pe
rc

or
e)

[G
B]

(c) WRF

0 20 40 60 80 100
Execution time [%]

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

M
em

or
yf

oo
tp

rin
t(

pe
rc

or
e)

[G
B]

(d) SOCORRO

Figure 3.3: Evolution of the memory footprint

44

Memory bandwidth 3.5

8 16 32 64 128 256 512 1K 2K 4K
Number of processors

2

4

8

16

32

64

128

256

Es
tim

at
ed

to
ta

lf
oo

tp
rin

t[
GB

]

GADGET
MILC
WRF
SOCORRO

Figure 3.4: Projections of overall
memory footprints for large-scale
parallel systems, based on a linear
regression model.

�e amount of data replication identi�ed in the discussed benchmarks also sup-

ports our projections about the usefulness of caching: even though each processor

participating in a parallel computation needs to access data originally assigned to its

neighbour, aggressive caching can capture such data-sharing patterns and prevent

the data from going o�-chip, thereby saving precious memory bandwidth. More

details about this are provided in Section 3.5.2.

In summary, we see that future manycores consisting of more than 100 cores

must be directly backed with a few dozens GBs ofmainmemory in order to support

scienti�c workloads.

3.5 Memory bandwidth

3.5.1 Bandwidth scales linearly

Consolidating multiple cores on a single chip imposes much higher bandwidth

requirements on the shared components of the memory system — namely the

o�-chip memory and the shared caches. In order to predict those requirements,

we measured the per-processor bandwidth consumed by each benchmark at three

levels: the o�-chip memory, L2 cache, and L1 cache.

Table 3.2 shows the average per processor bandwidth in each of the three levels:

the o�-chip memory, L2 cache, and L1 cache. It also shows the estimated total mem-

ory bandwidth required by all the processors involved in the execution combined.

45

Chapter 3 Memory requirements of HPC applications

Table 3.2: The memory bandwidth mea-
sured at different levels of the memory sys-
tem for the benchmark applications.

Application #CPUs

Average bandwidth Total
memory

bw. [GB/s]

per processor [GB/s]

Memory L2 cache L1 cache

GADGET
32 0.114 4.50 11.04 3.57
64 0.100 3.66 10.96 6.26

128 0.068 2.90 10.91 8.44

MILC

16 0.815 0.52 14.12 12.73
32 0.598 0.80 13.47 18.70
64 0.604 0.75 13.38 37.78

128 0.617 0.77 13.29 77.18

WRF

16 0.117 1.55 7.35 1.82
32 0.102 1.87 8.32 3.18
64 0.091 1.70 8.87 5.69

128 0.050 1.95 10.09 6.22

SOCORRO

16 0.331 4.14 15.35 5.18
32 0.279 3.35 13.39 8.72
64 0.212 2.83 12.08 13.23

128 0.228 2.73 11.75 28.49

Figure 3.5 uses linear regression to present the estimated total memory band-

width required by each application for a particular processor count. Horizontal axis

presents the number of processors used for the execution, while the vertical axis

presents the memory bandwidth. Points in the �gure show the actual measured

values, while the lines show the linear regression, that is calculated in order to es-

timate the total bandwidth requirements for a larger number of processors. Each

series stands for one of the four benchmark applications used in our evaluation.

Both Figure 3.5 and Table 3.2 show that bandwidth requirements for MILC and

Figure 3.5: Projections of overall
memory bandwidth for large-scale
parallel systems, based on linear re-
gression.

8 16 32 64 128 256 512 1K 2K
Number of processors

1

2

4

8

16

32

64

128

Es
tim

at
ed

to
ta

lb
an

dw
id

th
[G

B/
s]

GADGET
MILC
WRF
SOCORRO

46

Memory bandwidth 3.5

0 20 40 60 80 100
Execution time [%]

0

0.05

0.1

0.15

0.2

M
em

or
yb

an
dw

id
th

(p
er

co
re

)[
GB

/s
]

16 processors
128 processors

Figure 3.6: WRF memory band-
width

SOCORRO grow almost linearly with the increase of the number of processors.

MILC is the most demanding application in terms of bandwidth, and requires close

to 80 GB/s when executed on 128 processors. SOCORRO behaves in a similar way,

reaching almost 30 GB/s for 128 processor execution.

GADGET and WRF do not have such a steady growth, and for di�erent rea-

sons. GADGET tends to bene�t from an increased cache e�ectiveness, due to the

reduced working set per processor (as discussed in Section 3.4), and, therefore, less

bandwidth is required from themainmemory.�e L1 cache bandwidth stays on the

same level, which suggests that the total bandwidth requirements of each processor

barely changes with the increase of the number of processors.

On the other hand, WRF experiences a di�erent behaviour, as its initialization

and �nalization phase, which hardly produce any o�-chip memory tra�c, start

to occupy a signi�cant part of the total execution, with the increased number of

processors. In contrast, its computation phase, which is very memory demanding,

becomes relatively shorter and shorter.�erefore, the average bandwidth over the

entire execution decreases, although it stays on the same level during the computa-

tion phase. Figure 3.6 demonstrates this phenomenon by showing how bandwidth

progresses with time. Horizontal axis represents normalized execution time, and

vertical axis o�-chip memory bandwidth. For brevity, Figure 3.6 depicts memory

bandwidth for 16 and 128 processors only.

In summary, we observe that future manycore systems consisting of more than

100 cores may easily require more than 100 GB/s of main memory bandwidth. Mod-

ern architectures such as Intel Nehalem-EX [43] or IBM Power7 [34] employ 4 and

8 DDR3 channels respectively, peaking at 102.4 GB/s of bandwidth. Knowing that

the sustained bandwidth is typically 20%–25% lower due to page and bank con�icts,

47

Chapter 3 Memory requirements of HPC applications

we conclude that such large-scale systems will need to provide higher bandwidth

to support high-performance scienti�c computing.

3.5.2 Cache effectiveness

Compared with the o�-chip bandwidth, the observed L2 cache bandwidth is typi-

cally an order of magnitude higher.�is is understandable as the L2 cache hits �lter

bandwidth that would otherwise go o�-chip.�e same conclusion would apply for

L1 versus L2 bandwidth. To better understand the e�ectiveness of the caches, as well

as the e�ect of increased parallelism on caches, we have investigated the relation

between L1 and L2 cache hit rates, and o�-chip memory bandwidth.

In Table 3.3, we present L1 and L2 hit rates, as well as the e�ect they have on

o�-chip memory bandwidth per processor (also shown in Table 3.2).

We already mentioned, in Section 3.5.1, the e�ect of increased cache e�ective-

ness for GADGET. It is interesting to observe, from Table 3.3, that L1 cache is the

one that makes the di�erence, although its size of 32 KB compared to GADGET’s

extremely large working set of more than 0.5 GB per processor, seems relatively

small.�is could mean that GADGET has very regular memory access patterns,

which target relatively small memory blocks, so that L1 cache can capture most of

the memory accesses, and have increase in e�ectiveness as the size of the blocks

decrease with higher number of processors.

MILC,on the otherhand, is a bit less demandingwhen havingmemory footprint

inmind, whichmakes the transition from 16 to 32 processors (and from 0.57 to 0.29

GB of memory footprint) very favourable for L2 cache. Reduction in per-processor

working set, led to a better locality of access patterns, and that way better �tting

in L2 cache. Huge increase in L2 cache hit rate, from 39.31% to 57.66%, made the

impact on �ltering a great deal of o�-chip memory tra�c.

Furtheremore, MILC’s scalability results in an increase in the relative duration

of the initialization phase, compared to the total execution time, as the number of

processors increase (similar to WRF).�erefore, the stable average hit-rates of the

di�erent caches actually hide the fact that the di�erent phases exhibit very distinct

cache behavior, with the initialization phase enjoying an impressive L1 hit rate of

over 99%, whereas the L1 hit-rate of computation phases decreases as the level of

48

Memory bandwidth 3.5

Application #CPUs
L1 cache
hit rate

L2 cache
hit rate

Mem. bw.
[MB/s]

GADGET
32 93.67% 97.58% 114.26
64 94.41% 97.40% 100.09

128 95.09% 97.77% 67.53

MILC

16 97.13% 39.31% 814.56
32 97.00% 57.66% 598.41
64 96.43% 55.80% 604.44

128 96.74% 56.07% 617.40

WRF

16 93.39% 93.15% 116.67
32 93.71% 94.94% 101.90
64 94.43% 95.02% 91.04

128 94.99% 97.57% 49.74

SOCORRO

16 97.21% 92.74% 331.31
32 97.38% 92.47% 279.16
64 96.83% 93.20% 211.63

128 97.02% 92.45% 227.91

Table 3.3: Hit-rates measured for the different cache
levels.

parallelism increases — from 97% for 32 processors, down to around 95% for 128

processors.�ese lower hit-rates in the computational phases, particularly when

running on 128 processors, have a direct impact on the memory bandwidth (which

increases from 598.41 to 617.40 MB/s) and memory related pipeline stalls.

WRF has particularly high hit rate for both L1 and L2 cache, and therefore, only

a small fraction of all memory accesses ends up reaching o� chip memory. Even

a seemingly minor increase in cache e�ectiveness from 93% to 97% can lead to

a big decrease in o�-chip memory tra�c. If we combine this fact with the e�ect

of relative reduction of WRF’s computation phase (discussed in Section 3.5.1, and

shown in Figure 3.6), the resulting memory bandwidth per processor drops from

116.67 MB/s with 16 processors down to 49.74 MB/s with 128 processors.

E�ective caching has a direct impact on memory bandwidth, as shown on Fig-

ure 3.7.�e �gure shows the relation between o�-chip memory bandwidth (shown

on top subplot), and L2 cache hit rate (shown on bottom subplot), of a MILC exe-

cuted on 32 processors. Due to the lack of space, we omit similar cache e�ectiveness

�gures for other applications. With a constant memory access rate and a constant

L1 hit rate, the two depicted metrics are inversely proportional.�e �gure clearly

identi�es the initialization phase and two iterations, with L2 cache hit rate peaking

to more than 80% during the end of each iteration. As the hit rate increases, the

49

Chapter 3 Memory requirements of HPC applications

Figure 3.7: MILC 32p L2 cache ef-
fectiveness

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
em

or
yb

an
dw

id
th

[G
B/

s]

0 10 20 30 40 50 60 70 80 90 100
Execution time [%]

0

20

40

60

80

100

L2
hi

tr
at

e
[%

]

o�-chip memory goes from 0.6–0.7 GB/s down to ∼0.3 GB/s.

In summary, caches prove to be e�ective bandwidth �lters, and any further

advances in their performance may delay reaching the point when bandwidth re-

quirements of an application can no longer be supported by the existing memory

technologies.

However, contrary to the memory footprint, maximum bandwidth require-

ments imposed by the running application do not need to be met in order for the

application to run. Of course, it is preferred that the memory system provides the

required bandwidth, but if not, the application would not crash. It is clear that the

insu�cient bandwidth would hurt the performance of the system, but we can only

speculate about this performance degradation. For example, if memory provides

only 50% of the bandwidth that one execution segment requires, and if we assume

that this segment is completely memory bound (there are no stall cycles due to any

other core resource but the memory), it would be safe to say that this execution

segment would run half of its maximum speed.

50

CPI stack 3.6

CPI stack component Index Color

others (Stall by BRU/CRU instruction, flush penalty (except LSU flush)) 9

Stall by FPU
instruction

Stall by FPU basic latency
8

Stall by any form of FDIV/FSQRT instruction

Completion
stall cycles

Stall by FXU
instruction

Stall by FXU basic latency
7

Stall by any form of DIV/MTSPR/MFSPR

Stall by LSU
instruction

Stall by basic latency 6

Total cycles
Stall by D-cache miss 5

Stall by
reject

Other reject
4

Stall by translation (rejected by ERAT miss)

Completion
table empty
cycles

others (Flush penalty etc.)
3

Branch redirection (branch misprediction) penalty

I-cache miss penalty 2

Completion
cycles

overhead of cracking/microcoding and grouping restriction
1

PowerPC base completion cycles

Table 3.4: CPI stack model

3.6 CPI stack

�e cycles per instruction (CPI) metric is de�ned as the average number of proces-
sor cycles needed to complete one instruction. For any execution segment, it is

calculated as a total of elapsed cycles divided by the number of completed instruc-

tions. A low CPI value means that the system resources are better utilized, and the

architecture operates closer to its peak performance.

�e PowerPC970MPprocessordispatches instructions to its back end in groups

of �ve.�erefore, the theoretical execution throughput is �ve instructions per cycle,

or conversely, 1
5
= 0.2 cycles per instruction. Several restrictions in PowerPC 970’s

dispatch queue, as well as insu�cient instruction-level parallelism in real applica-

tions, prevent CPI from being as low as 0.2. Instead, our experiments show the

CPI in real applications gets usually between 1 and 1.5, sometimes even as high as 3

(5–15× slower than the peak throughput).

�e CPI stack model, which is the breakdown of CPI value to the individual

51

Chapter 3 Memory requirements of HPC applications

0 200 400 600 800 1000 1200
Execution time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CP
I

(a) MILC 16p

0 100 200 300 400 500 600 700 800
Execution time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CP
I

(b) MILC 32p

Figure 3.8: MILC CPI stack

52

CPI stack 3.6

0 100 200 300 400 500
Execution time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

CP
I

(a) WRF 32p

0 50 100 150 200 250 300
Execution time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

CP
I

(b) WRF 128p

Figure 3.9: WRF CPI stack

latencies contributed by di�erent micro-architectural resources, can therefore be

used to determine the key factors that impede performance. Each component in the

stack describes the average number of cycles an instruction stalled on a particular

core resource (like Load/Store unit, or Floating Point unit).

We construct the CPI stack using the PowerPC 970MP performance coun-

ters [55]. Some of them are speci�c to PowerPC 970MP architecture, so the CPI

stack model for other architectures may contain minor di�erences.�e individual

stack components are described in Table 3.4.�e table also includes both index

and color used in the CPI stack �gures presented in this section.

Figures 3.8–3.11 present the evolution of the CPI stack throughout the entire run

of the benchmark applications (due to space constraints, we only show the full evo-

lution of a subset of the applications and architectural con�gurations).�e global

53

Chapter 3 Memory requirements of HPC applications

0 100 200 300 400 500 600
Execution time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

CP
I

(a) GADGET 32p CPI stack

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600

Execution time[s]

L1 loads per instruction
L1 stores per instruction

(b) GADGET 32p L1 cache traffic

Figure 3.10: GADGET 32p — CPI stack and L1 cache traffic

54

CPI stack 3.6

averages are shown in Figure 3.12. For example, MILC running on 16 processors

(Figure 3.8a) requires 3.2 cycles to complete an instruction, of which an average 0.2

cycles are spent on committing the instruction, 2.3 cycles on stalls associated with

the load/store unit (LSU), 0.5 cycles on the �xed-point and �oating-point units

(FXU and FPU, respectively), and 0.2 cycles on other stalls.

All the presented CPI stack �gures show that both I-cache miss penalty and

branch misprediction penalty have negligible impact on performance.�is means

that the I-cache is large enough for all the tested applications, so that it rarely experi-

ences a miss. Also, the branch prediction shows e�ciency, as expected for scienti�c

applications [15]. Importantly, these �ndings are not a�ected by the increase in

parallelism.

Figure 3.8 shows that scaling MILC from 16 to 32 processors dramatically de-

crease all LSU related stalls, from 2.3 cycles for 16 processors, to 1.5 cycles for 32

processors.�e bene�t is evident both in the overall CPI value, as well as the exe-

cution time. As shown in Section 3.5.2, this performance improvement is due to

MILC’s reduction in per-processor memory footprint. When running on 16 pro-

cessors, MILC’s working set exceeds the size of data cache. But the increase in the

number of processors reduces the per-processor memory footprint such that it �ts

in the cache for the 32 processor con�guration. With further increase in number

of processors, we do not see such a dramatic improvement in CPI value, because

the working set already �ts in cache.

In the case of WRF, the evolution of the CPI stack clearly reveals the applica-

tion’s initialization, computation and �nalization phases (same as those observed in

Section 3.5.1), which are clearly distinguished by their FPU usage.�e initialization

and �nalization phases hardly exhibit any FPU stalls. In contrast, the computation

phase is highly FPU dependent as about half of its instructions’ stall time is as-

sociated with the FPU. As the number of processors increases, WRF’s scalability

allows its computation phase to shorten. However, the initialization and �nalization

phases are evidently non-scalable and do not bene�t from the increased parallelism.

As such, their execution time does not change, and, therefore, begin to dominate

the overall execution time.�is implies that the application’s overall scalability is

limited, unless the input set size increases.

GADGET’s most obvious CPI stack patterns, shown in Figure 3.10a, are signi�-

cant �uctuations of the overall CPI value, revealing three periodic iterations. Parts

of each iteration with low FPU usage have an overall high CPI value, whereas parts

55

Chapter 3 Memory requirements of HPC applications

Figure 3.11: SOCORRO 128p CPI stack
Other completion stalls (9)
Stall by FPU instruction (8)
Stall by FXU instruction (7)

Stall by LSU basic latency (6)
Stall by D-cache miss (5)

Stall by LSU reject (4)
Other completion table empty cycles (3)

I-cache miss penalty (2)
Completion cycles (1)

0 50 100 150 200 250 300
Execution time [s]

0.0

0.2

0.4

0.6

0.8

1.0

CP
I

with high FPU usage have low CPI value. When correlating this with the frequency

of memory accesses, presented in Figure 3.10b, it is noticeable that high CPI value

corresponds to high memory tra�c (more speci�cally high number of stores).�is

also justi�es fairly large number of LSU stalls (LSU reject, D-cache miss and LSU

basic latency) in this part of the iteration.�erefore, each of the three iterations can

be divided into a communication phase (low FPU usage, lots of memory accesses,

high bandwidth, high CPI), and a computation phase (high FPU usage, few mem-

ory accesses, low bandwidth, low CPI). We do not see much variation in GADGET

graphs for 32, 64 or 128 processors.

Finally, SOCORRO is yet another example of an application that is memory

bound, as we can observe in Figure 3.11. Even though its per-processor working set

easily �ts in the cache (Section 3.5.2), its periodic LSU and cache stalls imply that

each of its iterations operates on a separate chunk of data.�is data is transferred

from the memory to the cache, processed, and stored back to memory.�is scan-

ning access pattern puts a signi�cant load on the memory system, regardless of the

cache size or number of processors.

Figure 3.12 presents the average CPI stack for all the applications tested. First,

it appears that GADGET’s computation pattern does not change when increasing

the number of processors to 128, as indicated by its similar CPI stacks. For MILC,

we observe a gradual increase in CPI (following the aforementioned drop when

increasing the number of processors from 16 to 32), which is mostly attributed due

to LSU related stalls.�is is a consequence of a decrease in L1 cache e�ectiveness,

and therefore, higher memory tra�c (discussed in Section 3.5.2). WRF, on the

other hand, enjoys a slight decreasing CPI trend, due to an increase in the relative

duration of memory intensive phases, and a decrease of computationally intensive

56

CPI stack 3.7

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

G
A

D
G

E
T

 3
2
p

G
A

D
G

E
T

 6
4
p

G
A

D
G

E
T

 1
2
8
p

M
IL

C
 1

6
p

M
IL

C
 3

2
p

M
IL

C
 6

4
p

M
IL

C
 1

2
8
p

W
R

F
 1

6
p

W
R

F
 3

2
p

W
R

F
 6

4
p

W
R

F
 1

2
8
p

S
O

C
O

R
R

O
 1

6
p

S
O

C
O

R
R

O
 3

2
p

S
O

C
O

R
R

O
 6

4
p

S
O

C
O

R
R

O
 1

2
8
p

C
P

I
st

ac
k

Completion cycles (1)
I-cache miss penalty (2)

Other completion table empty cycles (3)
Stall by LSU reject (4)

Stall by D-cache miss (5)
Stall by LSU basic latency (6)

Stall by FXU inst (7)
Stall by FPU inst (8)

Other compleion stalls (9)

Figure 3.12: CPI stack average values

phase.�erefore, all LSU related stall values grow, while FPU related stall values

decline. Finally, SOCORRO’s CPI seems to bene�t slightly with scaling number of

processors, mostly due to a lower amount of LSU related stalls.

In summary, LSU related stalls seem to be the most dominant CPI stack com-

ponent in the applications tested.�e exceptions are GADGET and WRF, whose

computation phases are limited by FPU stalls. It indicates that memory hierarchy

could have an exceptionally high impact on performance of the future manycores.

It is also clear that wider superscalar approach can have a limited impact, and the

only ones that could see the bene�t are FPU intensive applications.

CPI stack components not related to LSU can give us an indication on how

scaling compute performance relates to scaling bandwidth requirements.�at is,

by shortening the time to process a block of data, we would increase the processing

throughput, and, unless the cache hierarchy gets changed, increase the o�-chip

memory bandwidth demand.�erefore, making the same application analysis we

have done in this work on a platform that outperforms PowerPC 970, would make

the slope of our bandwidth projections on Figure 3.5 steeper, and reach memory

bandwidth limits with fewer number of processors.

57

Chapter 3 Memory requirements of HPC applications

3.7 Arithmetic performance

In previous section we presented the impact of memory system on overall architec-

tural performance, expressed as a rate of executed instructions.�is section brings

more focus on arithmetic performance, expressed as a rate of �oating point oper-

ations (FLOPS) executed — probably the most important metric for determining

supercomputer performance.

For PowerPC 970MP architecture, the total number of �oating point operations

in an execution segment is calculated as a sum of the number of operations in each

�oating point unit, and the number of fused multiply-adds. Each �oating point

unit can process one �oating point and one fused multiply-add instruction in a

single cycle. Since we have two �oating point units per core, maximum number of

�oating point operations per cycle is 4, which would give a theoretical maximum

of 9.2 GFLOPS on a machine running at 2.3 GHz.

All our calculations related to the arithmetic performance of a system, excluded

execution segments that did not contain any �oating point operations.�is is done

to estimate better e�ciency of �oating point units during computation phases, elim-

inate changes in relative duration of computation phases compared to initialization

and �nalization phases, and enable correlation of memory and arithmetic perfor-

mance through bandwidth-to-performance ratio. Section 3.6 gives an indication

on the execution segments that utilize the available �oating point resources.

Figure 3.13 presents average and maximum �oating-point performance of our

applications under study. �e �gure shows that real applications achieve only a

small fraction of the peak performance.�is sub-optimal utilization of all the �oat-

ing point resources that the architecture provides can be attributed to various data

dependencies the inhibit ILP.�is is consistent with the results for the highly opti-

mized LINPACK benchmark, which only achieves an average 5.2 GFLOPS — only

57% of the peak 9.2 GFLOPS processor performance.

System designers o�en use processor’s arithmetic performance measurements

to dimension the required performance of other computer system components.

Dimensioningmemory bandwidth is o�en basedon a ratio ofmaximumbandwidth

and maximum theoretical rate of �oating point operations. A common rule of

thumb for obtaining optimal performance is to keep this ratio around 0.5 bytes per

�op.�is means that a processor capable of achieving 9.2 GFLOPS should rely on

58

Arithmetic performance 3.8

 0

 2

 4

 6

 8

 10

G
A

D
G

E
T

 3
2
p

G
A

D
G

E
T

 6
4
p

G
A

D
G

E
T

 1
2
8
p

M
IL

C
 1

6
p

M
IL

C
 3

2
p

M
IL

C
 6

4
p

M
IL

C
 1

2
8
p

W
R

F
 1

6
p

W
R

F
 3

2
p

W
R

F
 6

4
p

W
R

F
 1

2
8
p

S
O

C
O

R
R

O
 1

6
p

S
O

C
O

R
R

O
 3

2
p

S
O

C
O

R
R

O
 6

4
p

S
O

C
O

R
R

O
 1

2
8
p

L
IN

P
A

C
K

 1
6
p

A
ri

th
m

et
ic

 p
er

fo
rm

an
ce

 [
G

F
L

O
P

S
]

Maximum
Average

Figure 3.13: Arithmetic performance

memory that supplies 4.6 GB/s of bandwidth. However, our analysis show that this

ratio is heavily overestimated, and that it should not be taken into account at all,

mostly due to the underutilization of �oating point resources in real applications.

Figure 3.14 shows bandwidth-performance ratios for all the applications under

study, averaged over their time spent in computation phases. As we can see, most of

the applications,with the exception ofMILC, �t verywell with projected bandwidth-

performance ratio of 0.5 B/�op, that has beenmentioned before. However, previous

measurements of average arithmetic performancemade clear that the reason for this

ratio being relatively high is not high bandwidth requirements, but low arithmetic

performance achieved. And indeed, in case of MILC, which performs only 0.3–0.4

GFLOPS bandwidth-performance ratio gets considerably higher than the other

applications. On the other hand, LINPACK, with its average 5.2 GFLOPS, brings

down the ratio to only 0.08 B/�op.

In conclusion, we observe that dimensioning memory bandwidth based on

peak arithmetic performance may be inadequate, due to the overwhelming under-

utilization of processor arithmetic performance in real applications. In this case,

estimates of 4.6 GB/s of memory bandwidth per processor are considerably above

the e�ective requirements.�is is con�rmed by the results presented in Section 3.5,

which shows that none of the test applications exceeds bandwidth of 1 GB/s.

59

Chapter 3 Memory requirements of HPC applications

 0

 0.5

 1

 1.5

 2

 2.5

 3

G
A

D
G

E
T

 3
2
p

G
A

D
G

E
T

 6
4
p

G
A

D
G

E
T

 1
2
8
p

M
IL

C
 1

6
p

M
IL

C
 3

2
p

M
IL

C
 6

4
p

M
IL

C
 1

2
8
p

W
R

F
 1

6
p

W
R

F
 3

2
p

W
R

F
 6

4
p

W
R

F
 1

2
8
p

S
O

C
O

R
R

O
 1

6
p

S
O

C
O

R
R

O
 3

2
p

S
O

C
O

R
R

O
 6

4
p

S
O

C
O

R
R

O
 1

2
8
p

L
IN

P
A

C
K

 1
6
p

B
an

d
w

id
th

-p
er

fo
rm

an
ce

 r
at

io
 [

B
/f

lo
p
]

Figure 3.14: Bandwidth-performance ratio

3.8 Summary

�e increasing multicore density is putting a proportionally higher stress on the

memory system. It is unclear if current memory system architectures will be able

to sustain the increasing number of on-chip cores.

In this chapter we evaluate the memory system requirements of HPC applica-

tions, running on the MareNostrum supercomputer at BSC, and characterize the

memory performance requirements of future manycore designs.

We show that memory size requirements are actually closer to 0.5 GB per core,

and memory bandwidth requirements are under 0.1 Bytes per peak �op.�is is in

contrast to the existing (undocumented) rule of thumb for designing the memory

system of a supercomputer that call for 2GB of memory per core, and 0.5 bytes/�op

peak bandwidth.

Next, we show that on-chip caches, originally placed to mitigate memory laten-

cies, are very e�ective at �ltering bandwidth to the o�-chip memory, with on-chip

bandwidth requirements being orders of magnitude higher.

Moreover, we evaluate the actual �ops achieved by the applications, and show

them to be only a fraction of the peak performance. It is only when computing

bytes per real �ops that the bandwidth requirements get close to the 0.5 mark, but

60

Summary 3.8

it is due to the low �ops, not to the high bandwidth.

In light of our �ndings, we expect that current memory architectures based on

on-chip memory controllers and multiple parallel DDR channels should be able to

sustain multicores for the next decade.

61

Chapter 4
Hybrid memory architectures

�e performance of HPC applications is o�en bounded by the underlying memory

system’s performance.�e trend of increasing the number of cores on a chip im-

poses even higher memory bandwidth and capacity requirements.�e limitations

of traditional memory technologies are pushing research in the direction of hybrid

memory systems that, besides DRAM, include one ormoremodules based on some

of the higher-density non-volatile memory technologies, where one of them will

provide the required bandwidth, while the other will provide the required capacity

for the application.�is creates many challenges with data placement and migra-

tion policies between the modules of such hybrid memory system. In this chapter,

we propose an architecture with a hybrid memory design that places two techno-

logically di�erent memory modules in a �at address space. On such system, we

evaluate several HPC workloads against di�erent data placement and migration

policies, compare their performance bymeans of execution time and the number of

non-volatile memory writes, and consider how it can be applied to the future HPC

architectures. Our results show that the hybrid memory system with dynamic page

migration and limitedDRAMcapacity, can achieve performance that is comparable

to a hypothetical, hard to implement, DRAM-only system.

63

Chapter 4 Hybrid memory architectures

4.1 Introduction

A growing disparity in the rates of performance improvement between CPU and

memory technologies has created a memory wall. So far, its negative impact has

been relieved mostly by creating multi-level cache systems. At the same time, the

increase of a single thread performance has reached a performance wall due to the

inability to increase the operating frequency and to extract the instruction level

parallelism. As a solution, the research community and the manufacturers have

resorted to the use of multi-core systems in order to increase the performance of

the chip.

A recent study has shown that the increase of the number of cores on a single

chip puts great stress on the o�-chip memory memory system: when executed on

a 128-core system, HPC applications require 64 GB of capacity and may require

up to 64 GB/s of o�-chip memory bandwidth [66]. It is clear that current memory

systems will not be able to sustain these requirements when the number of cores

begins to increase.

SRAM and DRAM memories could provide the required bandwidth and ca-

pacity but at a great price. A large SRAM or DRAMmemory would require a high

amount of power: technology scaling brings signi�cant increase in leakage power

for both SRAM and DRAM and increases the power that is needed to refresh the

cells inDRAM. Increasing the bandwidth of the the o�-chipDRAMmemorywould

require increasing the signalling frequency of the wires that connect the DRAM

to the processor, limiting the length of this connection in order to preserve signal

integrity.�is would e�ectively restrict the area on the Printed Circuit Board (PCB)

where DRAM chips could be placed, limiting the number of DIMMs that can be

connected to a chip. Another alternative to increase bandwidth is to increase the

number of channels (or channel width).�is leads to the need for more pins on

the processor, increasing the size and the cost of the processor itself, and would

lead to the increase of the power consumption of the entire memory system.�ese

problems (wire length and pin count) can be resolved by using 3D-stacked DRAM

in the same package with the processor. 3D stacking can bring improvements in

bandwidth butwill o�er only a limited amount ofDRAMdue to thermal dissipation

and constrained area [51].

64

Introduction 4.1

4.1.1 Overview of emerging memory technologies

To overcome these limitations, architects are looking into a number of emerging

memory technologies that could replace DRAM as the o�-chip memory.

Memristor-based memory technologies, like Spin-Transfer Torque Magnetore-

sistive RAM (STT-MRAM) [18] and Resistive RAM (RRAM) [83] store data as a

resistance.�ey are non-volatile, power e�cient and dense compared to standard

SRAM and DRAM technologies. Read and write latencies of these memories are

still larger than those of SRAM or DRAM, and RRAM cells can sustain a limited

number of writes which limits their lifetime.

Another interesting memory technology is Phase Change Memory (PCM) that

uses chalcogenide glass and exploits di�erences between its amorphous (high resis-

tance) and crystalline (low resistance) states to store data. Existing products support

only two states, but PCM allows memory cells to have multiple levels of resistance,

enabling the storage of more than one bit per cell.�e change between the states

is achieved by applying high current to the memory cell, and requires more time

than with STT-MRAM or DRAM (optimistic estimate claims ≈ 100 ns for writing

a PCM cell [44]). Compared to other memory technologies, PCM o�ers excellent

density but at a price of limited endurance (small number of writes into a single

cell) and high energy that is needed to write the data.

Table 4.1 gives a comparison between SRAM and DRAM and the emerging

memory technologies. Looking at the characteristics of the emerging technologies,

we can see that there is no silver bullet: none of the technologies can provide fast
access times combined with high density, high endurance and low power consump-

tion. For example, when a PCM is used as a standalone main memory, the system

is 1.6x slower and uses 2.2x more energy than a system with DRAM only [44]. To

complicate things even more, non-volatile memories either have limited write en-

durance, or require high current for writing data and system architects should seek

to minimize the number of writes to them. An overview of current research trends

in hybrid memory systems is given in Section 4.4.

Out of all emerging memory technologies PCM is the one that is closest to

production in large volumes [88], and in the rest of this chapter we focus on it. We

analyze an architecture with hybrid o�-chip memory system that combines small

DRAMmemory with large PCM memory module. We focus on HPC workloads

65

Chapter 4 Hybrid memory architectures

Table 4.1: Characteristics of cur-
rent and emerging memory tech-
nologies.

Technology Density Read latency Write latency Endurance

SRAM 60–175 F2 ≈ 0.3 ns ≈ 0.3 ns Very High

DRAM 4–15 F2 ≈ 1 ns ≈ 0.5 ns Very High

PCM 6–20 F2 ≈ 60 ns ≈ 100 ns Low

STT-MRAM 8–16 F2 ≈ 10 ns ≈ 10 ns Very High

RRAM 1–4 F2 ≈ 50 ns ≈ 250 ns High

that have high requirements from the memory system. �is chapter makes the

following contributions:

• Detailed modeling and simulation of a 128-core system with heterogeneous

o�-chip memory (DRAM and PCM).

• Evaluation of new pagemigration policies (LRU spill with empty page thresh-

old, lifetime-aware back-migration)

• Analysis of hardware and so�ware static and dynamic strategies for page

placement in such a system from the aspect of both performance and the

number of writes to the non-volatile memory.

• Analysis of trade-o�s between performance and lifetime of non-volatilemem-

ories.

4.2 Proposal

4.2.1 System architecture

To stress the memory system as much as possible we focus on a large multi-core

chip with 128 processors with L1 and L2 caches and two types of o�-chip memory

(Figure 4.1).

Each processor has a private L1 cache while L2 cache is shared and is distributed

among cores.�e system contains a fast and small DRAM memory, and a large

PCM memory. Operating System is responsible for choosing the memory where

a new page will be placed, and for making decisions about page migration from

66

Proposal 4.2

L2
 ca

ch
e

In
te

rc
on

ne
ct

DRAM
Core #1 TLB L1 cache

MIC

Core #2 TLB L1 cache

Core #3 TLB L1 cache

Core #128 TLB L1 cache

DMACMP

PCMMIC

Figure 4.1: Target architecture

one memory to the other.�e decisions about page placement and migration may

be static or dynamic. In the latter case, OS may require information about pages

that is stored in the Memory Management Unit (MMU), such as the number of the

accesses to the page or the time the page was last accesses.�e details about the

page allocation and migration policies are given in the rest of this section.

MMU is responsible for translating virtual to physical addresses, and each pro-

cessor contains a Translation Lookaside Bu�er (TLB) to speed up the translation

process. When a decision is reached to migrate the page between memories, MMU

will use its DMA engine to perform the data movement. In order to prevent page

allocation policies to negatively in�uence cache e�ectiveness by altering physical

address access patterns, and that way signi�cantly change the total number of re-

quests that reach the main memory, we implemented a simple page coloring mech-

anism [36].

A migration starts by identifying which TLB holds the translation for a given

page.�e TLB and caches are then instructed to �ush the cache lines that are part

of that page. A�er possible writebacks are completed, DMA starts copying page

contents from source to destination address. Finally, TLB is provided with the new

translation of the logical page.

67

Chapter 4 Hybrid memory architectures

4.2.2 Static page placement

To better understand the e�ectiveness of the data placement policies that include

migrations, we need to set our baseline using policies that allocate pages without

altering their physical location during the application run.

First touch policy allocates pages in order in which they are requested by the
cores, �rst in DRAM, and a�er exhausting DRAM’s capacity, in PCM.�e e�ec-

tiveness of this policy is hugely in�uenced by the application’s access patterns and

by the size of DRAM. Performance gains are expected only if the initial access to

a hot page happens while there is available space in DRAM. Conversely, if DRAM

space becomes polluted with less reused pages, allocated because of their early �rst

access, a performance degradation is imminent [30].

In order to evaluate the full potential of any static allocation policy, and to create

the most favorable static distribution of pages between DRAM and PCM, we create

a pro�le of memory accesses for each application under study. A pro�le is a list of

all the logical pages accessed by each core during the execution, with the number of

accesses to each page. A page placement policy can then use the pro�le to "predict"

the tra�c intensity on a particular page, and decide about its placement. Of course,

all the policies that rely on the pro�le have to pre-run the application, or at least one

of its iterations, to generate the pro�le itself. In many situations, this is impossible

or impractical, but the results can still serve as an idealistic baseline in comparison

against some other non-pro�le policy.

Static pro�le-based policy ensures that the most accessed pages are allocated
in DRAM, and least accessed in PCM. �e allocation is done at the beginning

of the execution by reading the pro�le, sorting the pages by their access count in

descending order, and allocating them in �rst in DRAM, and then in PCM.�is

policy should eliminate some of the downsides of �rst touch policy. It should bring

performance gains by correctly dividing hot and cold pages over fast and slowmem-

ory ranges. For the same reason, it should also contribute in decreasing number of

writes to PCM, that way extending its lifetime.

To avoid writes to PCM even more, we can modify this policy to take into

account only write access count from the pro�le, instead of the sum of reads and

writes.�at way, PCM will host pages that are least frequently written regardless of

their read tra�c.�is reduction in number of writes to PCM comes at the expense

68

Proposal 4.2

of performance, as hot read-only pages placed in PCMmight bottleneck the system.

Nevertheless, depending on the priority between performance and lifetime, this

may prove as a justi�able tradeo�.

4.2.3 Spill migration

Static allocation policies can not exploit any of the temporal characteristics of the

memory access pattern, because the page’s initial physical location remains un-

changed throughout the execution.�e principle of data caching, prefetching and

many othermigrationmechanisms are targeted to alter the distance of a given piece

of data from the processor, depending on its potential for temporal reuse.

For this, we propose a spill migration — a policy that performs data movement

in one direction only, from DRAM to PCM. Unlike traditional memory hierarchy

with cachememories, where data is initially located further from the processor, and

then gradually migrated closer as it experiences more reuse, spill migration policy

�rst allocates a page in fast memory (in our case DRAM), and later evicts it to PCM.

�ese evictions are performed due to the limited DRAM capacity, in order to make

room for the newly allocated pages.�is policy does not account for migrating

back those evicted pages that turn to be heavily used a�er the initial migration has

happened — whatever is copied to PCM stays there.

LRU spill policy keeps track of last access time for each page in DRAM, and
in case of eviction selects one that is least recently used.�e rationale behind this

policy lies in the assumption that all the data used by the application throughout

its execution time can roughly be divided in two categories: �rst, data that is reused

most of the time, and second, data that is reused in a limited period only, or very

rarely reused. If we then assume that DRAM capacity is large enough to �t all the

pages that host data from the �rst category, we can expect that, because of their

reuse, they will never be selected for eviction from DRAM.�en, the evicted pages

should theoretically be those that are rarely used, and those that completed their

high reuse period.�e policy expects that the newly allocated pages will experience

a signi�cant tra�c, at least in the short period a�er their allocation.�erefore, the

gain obtained by initially allocating them inDRAMwill justify the cost ofmigrating

them to PCM, if they become less frequently used later.

Eviction from DRAM can take signi�cant time, especially in a system where in-

69

Chapter 4 Hybrid memory architectures

0 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB
Empty page buffer size

2.50

2.75

3.00

3.25

3.50

3.75

4.00
To

ta
lt

ra
ns

lat
io

n
sta

ll
tim

e
(G

cy
cle

s)
QuantumESPRESSO 128p, 1GB DRAM
NEMO 128p, 1GB DRAM

Figure 4.2: Empty page buffer size analysis

terconnect and memory can become congested by many simultaneous migrations,

each triggered by a memory access from a di�erent core. A naive eviction mecha-

nism would start evicting when one of the TLBs makes a page table miss, and there

are no more empty pages in DRAM’s address space. It means that the translation of

such memory access would have to stall until the eviction is �nished, which leads

to overall execution performance degradation.

To reduce the number of translation stalls, and to eliminate page eviction time

from the translation critical path, we propose triggering the eviction once the num-

ber of empty pages in DRAM falls below a selected value— an empty page threshold.
�atway, corresponding TLB can immediately be providedwith the translation, and

continue processing the request, while the eviction is performed in the background.

�is can also enable more complex eviction mechanisms, and more detailed last

access time analysis, once their operation time is taken o� the translation critical

path.

Selecting the value of empty page threshold is not trivial. Setting it too low

would give TLBs a chance to quickly exhaust a small set of empty pages before any

of the scheduled migrations �nishes. Setting it too high would e�ectively reduce

DRAM capacity, cause premature evictions, and signi�cant interconnect tra�c due

to many “on-the-�y” migrations.

To con�rm these claims, on Figure 4.2 we present overall translation stall time

penalty for di�erent empty page bu�er size, in a systemwith 1GB ofDRAM, running

two di�erent workloads. For low values we notice relatively stable level of total

translation stall time.�is indicates that the average eviction time is higher than

the time in whichTLBs exhaust a small supply of empty pages inDRAM. A scenario

70

Proposal 4.2

where one completed eviction unblocks one stalled translation, but shortly a�er

that is followed by another similar translation-eviction pair makes the empty page

bu�er ine�ective, and the changes in its size irrelevant.

On the other side, large empty page bu�er allows the TLBs to invokemanymore

evictions before any of the translations stalls. However, once that happens penalty

will be very high, due to a huge number of in-�ight migrations and congested in-

terconnect and memory. Measured total translation stall time for large empty page

bu�ers shows that this tradeo� is not bene�cial. Moreover, it is una�ordable sac-

ri�cing signi�cant DRAM capacity to the empty page bu�er, as it can cause other

inne�ciencies not related to the translation stall time.

Figure 4.2 shows that the two opposing causes for high overall translation time

diminish their in�uence at around 8MB of empty page bu�er size.�e sweetspot

e�ect is not overly dramatic, but enough to give us a reason to choose this value as

�xed for the rest of our experiments.

Similarly to prioritizing writes in static pro�le-based policy, we also evaluate a

modi�ed LRU spill policy, where we select least recently written page for eviction,

instead of least recently used. Again, we do that to explore if a decrease in PCM

writes can outweigh potential performance degradation.

LRU spill policy su�ers from similar drawbacks as the �rst touch policy — a

decision to evict a page fromDRAM, andmake PCM its �nal and de�nitive host, is

irreversible, and can be proven costly if suddenly its tra�c increases at some later

point. To better measure the amount of these wrong evictions and their negative

e�ects,wemade use of the pro�le information tomore accurately “predict” expected

tra�c on a given page.�erefore, spill pro�le-based policy can either spare a page
from eviction if its future tra�c is high, or victimize it if it is low, regardless of its

previous access count.�at way, at any moment during the execution, this policy

keeps in DRAM those pages that will have most accesses in the future, and use the

pro�le to make ideal eviction decisions and achieve superior performance than

LRU spill policy. Aside from being unpractical for use because of the need of a pre-

run for generating a pro�le, this policy is technically hard to implement, because

every eviction demands a comparison of each DRAM page statistics against the

corresponding entry in the pro�le. However, as a “perfect spill policy” we can use

it to estimate how well LRU spill policy performs.

Once again, for favoring PCM’s lifetime instead of overall performance, we

71

Chapter 4 Hybrid memory architectures

0.0
0.3
0.6
0.9
1.2
1.5
1.8

Ex
ec

ut
io

n
tim

e

0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 ∞

Back migration threshold

0.2
0.4
0.6
0.8
1.0
1.2

W
rit

es
to

PC
M

Migration writes

(a) NEMO 128p

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Ex
ec

ut
io

n
tim

e

0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 ∞

Back migration threshold

0.2
0.4
0.6
0.8
1.0

W
rit

es
to

PC
M

Migration writes

(b) QuantumESPRESSO 128p

Figure 4.3: Back migration threshold analysis

evaluate modi�ed spill pro�le-based policy, where we select a page for eviction

based on its future write access count, instead of the total access count.

4.2.4 Dynamic page migration

Finally, aDynamic policy introduces page migration in the other direction (from
PCM toDRAM), denoted as back-migration. It is an extension of spill policy, so the

same rules for eviction fromDRAM still stand—whenever a page fault occurs, the

system tries to allocate the page in the DRAM. In case an eviction is needed from

DRAM, a page is selected in the same way as with LRU spill or spill pro�le-based

policy.

�e decision to back-migrate the page is made when the page is accessed in the

PCM.When a page is �rst brought to the PCMwe reset its access counter, regardless

72

Proposal 4.2

of how many times it was accessed in the DRAM. At the same time we keep track

of the number of accesses for every page in the DRAM, as well as the average for

all the pages (nDRAMav g). When a page in PCM is accessed, we compare its access

counter (naccesses) with the average number of accesses to pages in DRAM. If (4.1)

is satis�ed, we migrate the page back to DRAM:

naccesses > back_migration_threshold × nDRAMav g (4.1)

Back migration threshold (BMT) is a value that controls the aggressiveness of
migration triggering. If it is set to zero, a page is migrated as soon as it is touched in

PCM, so theDRAMacts as a typical cache. In this case we expect good performance

as the system tends to alwaysmove active pages toDRAM,but due to a large number

of migrations, number of writes to PCMmay go high. On the other hand, if BMT is

set to in�nity the page never gets migrated back, and then the policy is equivalent

to LRU spill. In between those extremes we would like to search for values that give

good performace and low number of PCM writes.

Figure 4.3 shows impact of changing BMT from 0 to in�nity, on the perfor-

mance and on the number of PCM writes, when executing two of our applications.

Top part of the graph shows execution time normalized to an aggresive migration

setup, when BMT is set to zero. Bottom part presents the number of writes to PCM

normalized to the same setup. Since the aggresiveness of migrations directly in�u-

ences number of writes to both memory modules, we separated PCM writes that

are part of a migration, from those that are requested from the cores.

We can observe that in both cases the execution time is lowest when BMT is

set to zero.�is is expected, since in this case DRAM behaves like a cache, and the

number of application accesses to PCM is close to zero. Same conclusions have been

shown in similar architectures, when migrating pages to on-chip memories [82].

However, due to migrations from DRAM to PCM, the number of writes to PCM is

high. As we increase BMT, two applications show di�erent behaviour. However, we

can spot a value for BMT of 1 as a rough minimum for the number of PCM writes,

which also has a decent performance. In case of NEMO, performance degrades

∼30%, but PCMwrites decrease for the same value. In case of QuantumESPRESSO,

performance stays on roughly the same level, while PCMwrites decrease for almost

50%.

�is gives us enough reason to further investigate two dynamic migration poli-

73

Chapter 4 Hybrid memory architectures

Table 4.2: Overview of data place-
ment policies Data placement

policy
Profile
based

Prioritize
writes

Migrations

DRAM→PCM PCM→DRAM BMT

First touch No No No No -

Static profile Yes No No No -

Static profile(w) Yes Yes No No -

Spill LRU No No Yes No -

Spill LRU(w) No Yes Yes No -

Spill profile Yes No Yes No -

Spill profile(w) Yes Yes Yes No -

Dyn perform No No Yes Yes 0.0

Dyn perform(w) No Yes Yes Yes 0.0

Dyn lifetime No No Yes Yes 1.0

Dyn lifetime(w) No Yes Yes Yes 1.0

cies: �rst, performance-oriented with BMT set to 0, and second, lifetime-oriented,

with BMT set to 1. Similarly as with previous policies, we will also investigate the

modi�cation that takes into account only write accesses.�at is, back-migration is

considered only on a PCM write, and performed if the write count is greater than

the average number of writes to the pages in DRAM, multiplied by BMT.

Table 4.2 summarizes all previously described data placement policies, and

presents an overview of their respective key features — usage of the pro�le infor-

mation, prioritization of writes, allowed migration directions between DRAM and

PCM, and value of BMT (in case back migration is allowed).

4.3 Evaluation

Our investigation focuses on the changes in the execution time and in the number

of writes to PCM as we gradually increase the size of DRAM, from 512MB up to the

size that is larger than the total footprint of the application.We also try to investigate

and explain performance di�erences as we con�gure memory management unit

to allocate pages based on �rst-touch policy, pro�le-based policy and on dynamic

policies. To evaluate the system,we useTaskSim, a trace-driven cycle-accurate CMP
simulator validated against Cell BE [70].

74

Evaluation 4.3

Application Domain Footprint (GB) Time

NEMO Ocean modeling 6.54 ≈ 2 s

CPMD Computational chemistry 7.48 ≈ 20 s

PEPC Plasma physics 8.79 ≈ 30 s

QuantumESPRESSO Particle physics 19.75 ≈ 40 s

GADGET Astronomy and cosmology 57.43 ≈ 1 m

Table 4.3: Overview of simulated
applications, their total memory
footprint and time of the simulated
part.

�e applications that we use for evaluation are listed in Table 4.3. �ey are

production-level HPC codes that use MPI programming model, and we executed

them with realistic input sets.�ese are representatives of scienti�c applications

that are used in today’s supercomputers [73].

To obtain the traces we implementedMemTraceMPI, a Valgrind [60] tool for
tracing load and store instructions of an MPI application. It instruments all the

executed instructions, outputting only information about the memory accesses:

access type (load or store) and access size in bytes.�is information allows for a

detailed simulation of memory accesses. In order to simulate non-memory instruc-

tions, the tool records the number of instructions that are executed between two

consecutive memory accesses. To preserve the dynamic nature of parallel applica-

tion,MemTraceMPI detects calls to MPI functions and records their parameters.
�is allows us to simulate the communication and synchronization among MPI

processes. Since the simulated system is a chip-multiprocessor, communication is

performed using memory copies, and synchronization is achieved using standard

SMP synchronization primitives.

�e platform used for application tracing was MareNostrum, a supercomputer

in Barcelona Supercomputing Center. It is a cluster of JS21 blades, each with 4 IBM

Power PC 970MP 2.3 GHz processors.�e 4 processors on a node shared 8 GB

of RAM, and were connected to a high-speed Myrinet type M3S-PCIXD-2-I port,

and two GigaBit Ethernet ports [81].

Large execution times of our applications led to hundreds of gigabytes of traces

per application. To keep the trace �les at a manageable size, and to maintain ac-

ceptable simulation time, we applied trace �ltering against a simple con�gurable

cache (512KB direct cache), included inMemTraceMPI tool. Only cache misses are
written to the trace. Given that our simulated caches are going to have a larger size

than the trace �lter caches, we are certain that at least the same number of mem-

75

Chapter 4 Hybrid memory architectures

Table 4.4: Overview of simulated
architecture parameters

L1

Capacity: 8 KB

L2

Capacity: 1 MB per core

Word size: 8 B Word size: 32 B

Associativity: 4-way Associativity: 32-way

Latency: 2 cycles Latency: 20 cycles

DRAM CL-tRCD-tRP: 8-8-8 PCM 4× slower than DRAM

TLB Entries: 128 MMU Page size: 8K

ory accesses will reach the main memory, as with un�ltered traces.�is method

has been previously applied in the work of Rico et al. [71] resulting with trace size

reductions of up to 98%.

Even a�er �ltering, simulation times were unacceptable (in the order of days).

To further reduce the size of the traces, we exploited the fact that all applications

iterate multiple times over the input set and included only a few iterations [13, 26].

4.3.1 Architecture parameters

Simulated architecture closely modeled architecture presented in Section 4.2.1, and

Figure 4.1, with the most important parameters presented in the Table 4.4.

4.3.2 Results

Figure 4.4 compares execution times on a system with PCMmemory only (tPCM)

and on a system with DRAMmemory only (tDRAM), both of which are of su�cient

capacity to �t the entire application’s working set. Vertical axis represents execu-

tion time normalized to tPCM , and applications under study are aligned along the

horizontal axis. We notice that only NEMO and CPMD experience changes in ex-

ecution time that is equivalent to the performance di�erence between PCM and

DRAM (4×).�e rest of the applications put more stress on the interconnect than

on the memory system. In those cases, the positive in�uence of the fast memory is

diminished, as particularly is the case with PEPC, and, naturally, we cannot expect

that a system with hybridmemory, regardless of the data placement policy, will give

a performance improvement.

76

Evaluation 4.3

Figure 4.5 shows the main results of our simulations. Each sub�gure presents

one application, testing the e�ectiveness of our page placement policies, aligned on

the horizontal axis. Top part of each sub�gure shows relative slowdown, execution
time normalized on a range from tDRAM to tPCM using (4.2).

relative_slowdown =
tex ec − tDRAM

tPCM − tDRAM
(4.2)

�erefore, a relative slowdownwith a value of 0 would represent a “perfect” data

placement policy, that yields performance equal to the systemwithDRAMmemory

only. Conversely, a system with PCMmemory only would give a relative slowdown

of 1. On a hybrid memory system that we evaluate, using one of the proposed data

placement policies we expect relative slowdown to be between 0 and 1.

Bottom part of each sub�gure represents the number of writes to PCM, with a

special segment showingwrites caused bymigrations, normalized to the total writes.

Di�erent bars enclosed by each data placement policy segment, depict changes in

the aforementioned metrics as the size of DRAM in a system varies from minimal

512 MB, incrementing by a factor of 2 up to a size of the entire application footprint,

where any placement policy would be obsolete, because all the data could �t in

DRAM. On both vertical axes we imposed a cut-o� at a value of 1, so that the low

values remain clear. On any bar that is shortened because of this, we write its real

value.

As expected, First touch policy, with its naive approach, experiences bad per-
formance for all applications unless the size of the DRAM gets very large. Similar

results stand for the number of PCMwrites,with the only exception occurringwhen

compared to the aggressive migration policies, that can direct huge write tra�c to

NEMO CPMD PEPC QuantumESPRESSO GADGET
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

ali
ze

d
ex

ec
ut

io
n

tim
e

PCM-only system

DRAM-only system

Figure 4.4: Performance comparison between PCM-only and DRAM-only system

77

Chapter 4 Hybrid memory architectures

0.0
0.2
0.4
0.6
0.8
1.0

Re
l.

slo
wd

ow
n

51
2

M
B

1
GB

2
GB

4
GB

First touch Static profile Static profile(w)

0.2
0.4
0.6
0.8
1.0

PC
M

w
rit

es

0.0
0.2
0.4
0.6
0.8
1.0

Re
l.

slo
wd

ow
n

51
2

M
B

1
GB

2
GB

4
GB

First touch Static profile Static profile(w)

0.2
0.4
0.6
0.8
1.0

PC
M

w
rit

es

0.0
0.2
0.4
0.6
0.8
1.0

Re
l.

slo
wd

ow
n

51
2

M
B

1
GB

2
GB 4

GB

8
GB

First touch Static profile Static profile(w)

0.2
0.4
0.6
0.8
1.0

PC
M

w
rit

es

0.0
0.2
0.4
0.6
0.8
1.0

Re
l.

slo
wd

ow
n

51
2

M
B

1
GB

2
GB

4
GB

8
GB

16
GB

First touch Static profile Static profile(w)

0.2
0.4
0.6
0.8
1.0

PC
M

w
rit

es

0.0
0.2
0.4
0.6
0.8
1.0

Re
l.

slo
wd

ow
n

51
2

M
B

1
GB

2
GB

4
GB

8
GB

16
GB

32
GB

First touch Static profile Static profile(w)

0.2
0.4
0.6
0.8
1.0

PC
M

w
rit

es

Figure 4.5: Overall performance and amount of PCM writes comparison of different data placement policies

78

Evaluation 4.3

0.0
0.2
0.4
0.6
0.8
1.0

Re
l.

slo
wd

ow
n

51
2

M
B

1
GB 2

GB

4
GB

Spill LRU Spill LRU(w) Spill profile Spill profile(w)

0.2
0.4
0.6
0.8
1.0

PC
M

w
rit

es Migration writes

0.0
0.2
0.4
0.6
0.8
1.0

Re
l.

slo
wd

ow
n

51
2

M
B 1
GB

2
GB

4
GB

Spill LRU Spill LRU(w) Spill profile Spill profile(w)

0.2
0.4
0.6
0.8
1.0

PC
M

w
rit

es Migration writes

0.0
0.2
0.4
0.6
0.8
1.0

Re
l.

slo
wd

ow
n

51
2

M
B

1
GB

2
GB

4
GB

8
GB

Spill LRU Spill LRU(w) Spill profile Spill profile(w)

0.2
0.4
0.6
0.8
1.0

PC
M

w
rit

es Migration writes

0.0
0.2
0.4
0.6
0.8
1.0

Re
l.

slo
wd

ow
n

51
2

M
B

1
GB

2
GB 4

GB

8
GB

16
GB

Spill LRU Spill LRU(w) Spill profile Spill profile(w)

0.2
0.4
0.6
0.8
1.0

PC
M

w
rit

es

1.
79

1.
63

1.
54

1.
43

1.
08

1.
86

1.
63

1.
50

1.
38

1.
09

1.
16

1.
05

1.
13

1.
05

Migration writes

0.0
0.2
0.4
0.6
0.8
1.0

Re
l.

slo
wd

ow
n

51
2

M
B

1
GB

2
GB

4
GB

8
GB 16

GB
32

GB

Spill LRU Spill LRU(w) Spill profile Spill profile(w)

0.2
0.4
0.6
0.8
1.0

PC
M

w
rit

es

1.
01

1.
01

1.
01

1.
01

Migration writes

Figure 4.6: Overall performance and amount of PCM writes comparison of different data placement policies

79

Chapter 4 Hybrid memory architectures

0.0
0.2
0.4
0.6
0.8
1.0

Re
l.

slo
wd

ow
n

51
2

M
B

1
GB

2
GB

4
GB

Dyn perform Dyn perform(w) Dyn lifetime Dyn lifetime(w)

0.2
0.4
0.6
0.8
1.0

PC
M

w
rit

es

1.
51

Migration writes

0.0
0.2
0.4
0.6
0.8
1.0

Re
l.

slo
wd

ow
n

51
2

M
B

1
GB

2
GB

4
GB

Dyn perform Dyn perform(w) Dyn lifetime Dyn lifetime(w)

0.2
0.4
0.6
0.8
1.0

PC
M

w
rit

es

1.
17

Migration writes

0.0
0.2
0.4
0.6
0.8
1.0

Re
l.

slo
wd

ow
n

51
2

M
B

1
GB

2
GB

4
GB

8
GB

Dyn perform Dyn perform(w) Dyn lifetime Dyn lifetime(w)

0.2
0.4
0.6
0.8
1.0

PC
M

w
rit

es

5.
15

2.
66

2.
14

Migration writes

0.0
0.2
0.4
0.6
0.8
1.0

Re
l.

slo
wd

ow
n

51
2

M
B

1
GB

2
GB

4
GB

8
GB

16
GB

Dyn perform Dyn perform(w) Dyn lifetime Dyn lifetime(w)

0.2
0.4
0.6
0.8
1.0

PC
M

w
rit

es

5.
47

2.
40

2.
11

1.
19

1.
32

1.
20

1.
11

1.
39

1.
27

1.
16

1.
02

1.
40

1.
28

1.
16

1.
02

Migration writes

0.0
0.2
0.4
0.6
0.8
1.0

Re
l.

slo
wd

ow
n

51
2

M
B

1
GB 2

GB
4

GB
8

GB
16

GB
32

GB

1.
36

1.
08

1.
13

1.
01

1.
16

Dyn perform Dyn perform(w) Dyn lifetime Dyn lifetime(w)

0.2
0.4
0.6
0.8
1.0

PC
M

w
rit

es

4.
62

3.
16

2.
38

1.
77

1.
34

2.
25

1.
70

1.
29

1.
05

2.
25

1.
92

1.
79

1.
37

1.
02

1.
59

1.
37

1.
20

Migration writes

Figure 4.7: Overall performance and amount of PCM writes comparison of different data placement policies

80

Evaluation 4.3

PCM.�e other two static policies perform better than the �rst touch, as they can

exploit pro�le information for improving both of our relevant metrics. It is worth

noticing that pro�le-based policy can reduce slowdown up to 40% using only the

smallest DRAM size. Static pro�le policy that prioritizes writes (Static pro�le(w))
makes a very small, on chart almost invisible, tradeo� against regular static pro�le

policy (Static pro�le), and a slight decrease in number of PCM writes pays with a
small performance degradation.

LRU spill policy uses its migration capabilities to outperform �rst touch policy,
but inmost cases it is not better than static pro�le-based. Migrations that it executes

do not provoke a signi�cant number of extra writes to PCM, which is good, but

also indicates that PCMwrite tra�c is dominated by those pages that are previously

evicted from DRAM, which is bad. Con�rmation that selecting least recently used

page is o�en a wrong decision comes when comparing it to spill pro�le policy,

which performs in average 20% better, with less PCM writes. Similar to the static

policies, spill pro�le-based policies show little di�erence if they prioritize writes.

Aggressive migration policy (Dyn perform) seems to dominate performance
aspect of most applications, even for small DRAM sizes. However, its performance

boosting capabilities can severely damage the lifetime of PCM, as the number of

PCM writes can grow more than 5 times the baseline, in case of PEPC, QuantumE-

SPRESSO andGADGET.We notice that almost 100% of the PCMwrites, regardless

of DRAM size, are a product of migrations.�is time,modi�ed aggressive dynamic

policy (Dyn perform(w)) shows more obvious di�erence, mostly by signi�cantly
relieving PCM write tra�c, without dramatically reducing performance.

Lifetime-oriented dynamic policy (Dyn lifetime) shows a nice balance between
performance and number of writes, especially for the DRAM size of 1 GB. It is

never too dominant in any aspect, but always among the best policies from what

we evaluated. Performance-wise it shows an improvement of 20–60% over PCM-

only system, and regarding PCM writes 40–60% (except QuantumESPRESSO and

GADGET). It should be noted that lifetime-oriented policy has much more stable

and predictable number of PCM writes than aggressive dynamic policy. When di-

rectly compared it can reduce PCMwrites 20% to 10×, and onlymarginally degrade

performance.�erefore, it might serve well in the wider spectrum of environments.

Dynamic policies, however, are not able to easily extract performance bene�ts

with GADGET, the application with the largest footprint, unless DRAM is larger

than 4 GB. When compared to any of the spill policies, it becomes clear that the

81

Chapter 4 Hybrid memory architectures

dynamic policies cannot signi�cantly reduce the amount of non-migration PCM

writes. A closer insight in access pro�le information reveals that many pages in

GADGET’s working set experience similar tra�c, and, therefore, cannot be easily

divided into “hot” and “cold” segments, suitable for placing in DRAM or PCM,

respectively. If DRAM is too small, this creates a ping-pong e�ect, where many

pages are repeatedly migrated back and forth between DRAM and PCM.

4.4 Related work

Ramos et al. [69] proposed placing DRAM and PCM in a �at address space, with

MC deciding about migrations between them. For facilitating this, they introduced

a novel page ranking and migration policy. However, their target architecture did

not include more than 8 cores, and they did not evaluate HPC applications for

stressing memory bandwidth and capacity.

Qureshi et al. [68] placed DRAM in front of PCM as a cache with the intent

to bridge the latency gap.�eir work tackled PCM endurance issues by managing

lazy-write organization, line-level writes, and wear-leveling.�ey show that a per-

formance improvement of 3× is achievable with a DRAM bu�er of only 3% size of

PCM. By placing our memory modules in a �at address space instead, we try to

increase the overall memory capacity, avoid negative impact of the DRAM cache

on the workloads with low locality, and give the option of further upgrading the

memory system with a module of di�erent characteristics than DRAM or PCM.

Lee et al. [44] explored another hybrid memory organization with PCM and

DRAM as a bu�er, and concluded that PCM’s long latencies, high energy, and �nite

endurance can be e�ectively mitigated.�ese e�ective bu�er organizations and par-

tial writes make PCM competitive with DRAM at current technology nodes. More-

over, proposed solutions are area neutral, which is a critical constraint in memory

manufacturing.

Aposition paper fromHewlett-Packard [56] argues for theOS support in hybrid

memory systems with the combination of DRAM and �ash (or PCM)memory.�e

paper focuses on server workloads, but does not provide a detailed evaluation.

82

Summary 4.5

4.5 Summary

�ere is no silver bullet memory technology that allows high bandwidth, high den-
sity and low latency at the same time. Hence, many research e�orts have focused

on designing hybrid memory systems with di�erent types of memory modules that

in combination o�er the characteristics that are needed. In this work, we looked at

one such system that consists of a small and fast DRAMmemory, and a large and

slower PCMmemory. We have focused on the problem of page placement and page

migration in such system, and, to the best of our knowledge,we have performed �rst

detailed analysis of several algorithms for performing this task. Using a set of High

Performance Computing applications we have analyzed how the design parameters

a�ect both performance of the system and the lifetime of the PCMmemory.

Besides analyzing existing page placement algorithms, such as �rst touch or

pro�le-based policies, we have also developed dynamic algorithms for placement

and migration based on LRU spilling and back-migration using either aggressive

(for performance) or more conservative (for PCM lifetime) policy.

Our analysis has started o�with an expected result: if the only aim is to optimize

for performance than the page placement and migration policy needs to be as

aggressive as possible and needs to utilize DRAMmemory as much as the capacity

allows. Our results show that a system with only 1 GB of DRAM and an aggressive

dynamic policy is only 20–60% slower than the system that has maximum DRAM

capacity.

However, the performance of the aggressive dynamic policy comes at a price in

the number of writes to PCM.�ese writes are costly, and they reduce the lifetime

of the memory, so we have looked at other policies that aim to reduce their number,

while keeping performance at an acceptable level.We have shown that these policies

(calledDynamic lifetime in our analysis) when compared to the aggressive dynamic
policy can reduce the number of PCM writes from 20% to 10×, while reducing

performance up to 10%.

In conclusion, we have shown that page placement is a very important aspect of

a systemwith hybridmemory, and the choice of the policy should be taken seriously

and should depend on the objectives that the system architect has set.

83

Chapter 5
Limpio — LIghtweight MPI instrumentatiOn

5.1 Introduction

Computer architecture research o�en involves measuring various hardware-related

statistics on a given platform during workload executions. �e ability to easily

setup experiments, and process collected results with little overhead, becomes very

important when the researcher needs to repeat the experiments many (hundreds

of) times in di�erent execution environments.�us, the choice of pro�ling tool,

suitable for the problem under study, can be a signi�cant research decision.

Pro�ling tools typically target two categories of users. First, so�ware engineers,

that are interested in application-related statistics, such as time consumption break-

down for each function in the code.�ey can use this information as an indicator on

where to prioritize their code optimization e�orts. Second, computer architects, that

look for statistics about hardware performance counters, for having a better insight

to the system from an architectural perspective.�eir goal is to better understand

how well the hardware executes the workload, instead of how well the application is

85

Chapter 5 Limpio — LIghtweight MPI instrumentatiOn

written.

Both types of pro�ling tools collect their target statistics by introducing instru-

mentation routines in key points in the application.�at typically requires manual

or automatic modi�cation of the code, and recompiling, or at least relinking appli-

cation with the instrumentation library. While this is a trivial step in application

development, hardware engineers are usually provided only with the application

executable, without access to its source code, or details about the compilation pro-

cess. Pro�ling can then only be done with tools that directly instrument the binary,

or use wrapper interposition libraries.

Modern high-performance computing (HPC) clusters execute parallel applica-

tions typically written around an inter-process communication library, OpenMP or

MPI.�erefore, communication function calls are the most obvious candidates for

the instrumentation points. However, even on a 1000+ core machine, many appli-

cations can execute for hours or days, calling communication functions countless

times.�is raises two main concerns. First, instrumentation routines need to be

lightweight, to avoid introducing overhead with respect to native execution, and

that way distort time-related measurements, or have side-e�ects to cache or mem-

ory usage. Second, a timestamped trace of all communication events can become

larger than what the processing tools can handle, or even larger than the available

storage space on a shared cluster1. In such cases user might want to explicitly select

the instrumentation points or choose to trace only a short execution segment.

Tools for post-mortem analysis, with their complexity, can impose a long learn-

ing curve to the beginners. Many times users �nd it easier to express the require-

ments of the analysis with short snippets of code, than to spend signi�cant e�ort

learning the features and coping with versatility of such tools.

In this appendixwe present Limpio—LIghtweightMPI instrumentatiOn frame-

work. Limpio enables the following design goals:

• Users can pro�le the application without recompiling. Instrumentation is

done by dynamic linking.

• Limpio core is lightweight — it introduces no overhead to the native execu-

tion. Users themselves are responsible for the overhead of the instrumenta-

tion routines.

1Some of the applications we analyze produce traces of over 500 GB

86

Background 5.3

• Limpio is customizable — users can write instrumentation routines highly

speci�c to the analysis requirements.

• Limpio is extensible — users can invoke external tools from within instru-

mented calls.

5.2 Background

In order to parallelize numerical computation, scienti�c HPC applications divide

and distribute input data over a large number of processes.�en, through a series of

iterations and inter-process communication steps, they combine intermediate cal-

culations into a �nal result.�erefore, scienti�c HPC applications naturally follow

repetitive patterns, so characterizing their behavior in a few iterations of the main

loop is equivalent to characterizing their entire execution [67]. Similarly, most of

the processes execute the same algorithm on di�erent data, so the behavior of a few

processes can well represent the behavior of the entire application.

Most production MPI applications are by default dynamically linked against

MPI library on a given system2. Although preinstalled shared libraries are typically

found and loaded by the operating system, user can also create and preload his

own library instead. By creating a wrapper for each standard library function, user

creates amechanism to inject his own instrumentation routines before and a�er the

library call, without recompiling or relinking the original application, and without

disrupting native application behavior and functionalities.

5.3 Architecture

Figure 5.1 presents a sequence diagram of an instrumented MPI call in the Limpio

framework, and shows the interaction between the application, user-de�ned in-

strumentation routines, and standard MPI library. Limpio exposes two levels of

interfaces — one to the application, and other to the user functions. From the ap-

plication perspective, Limpio provides a set of wrapper functions for intercepting

2In order to use static linking, user needs to explicitly specify an appropriate �ag when compiling

the application, which is rarely done.

87

Chapter 5 Limpio — LIghtweight MPI instrumentatiOn

all MPI calls. In wrapper functions, Limpio �rst invokes a user-de�ned function

that instruments the start of the MPI call.�en, the execution is passed to the cor-

responding function from the MPI library. Finally, a�er the MPI call completes,

Limpio invokes a user function for instrumenting the end of the MPI call (see

Figure 4.1).

Limpio, by itself, performs no application pro�ling. Instead, it allows users to

create their own analysis tools by writing instrumentation routines. Limpio hooks

the instrumentation routines with relevant MPI wrapper functions, and creates a

shared library object, preloaded before the execution.�e instrumentation routines,

when invoked by the application MPI calls, measure statistics relevant to the user.

Gathered data can be stored as a timestamped event trace for post-mortem analy-

sis, or processed online (while the application runs) for producing a summary of

statistics a�er the application completes.

#include <stdio.h>
#include "limpio.h"

static void start(mpi_function_id_t mpi_function_id) {
printf("Start %s\n", get_mpi_fn_name(mpi_function_id));

}

static void end(mpi_function_id_t mpi_function_id) {
printf("End %s\n", get_mpi_fn_name(mpi_function_id));

}

__attribute__ ((constructor))

static void mpilog_init(void) {
set_start_hook(&start);

set_end_hook(&end);

}

Listing 5.1: Example Limpio tool that logs start and end of MPI calls

Listing 5.1 shows an example of a Limpio tool that logs start and end of MPI

calls. Function mpilog_init(), invoked when the library is initialized, uses func-

tions from Limpio framework to de�ne MPI instrumentation routines — start()

for instrumenting MPI call entry, and end() for MPI call exit.�ese routines print

a message on the standard output, when invoked by the MPI call from the applica-

tion. Similarly to mpilog_init(), there may exist mpilog_fini(), invoked a�er

the application is completed, for outputting any statistics accumulated during the

execution.

88

Case studies 5.4

App MPI
wrapper Start End MPI

User-defined functionsLimpio
Application

domain
MPI

library
Instrumentation library

Figure 5.1: Limpio instrumentation — sequence diagram

5.4 Case studies

Limpio was developed for characterizing large-scale HPC applications. In Com-

puter Architectures group at Barcelona Supercomputing Center, Limpio is regu-

larly used to analyze production HPC applications running on MareNostrum [8]

supercomputer. MareNostrum is one of six Tier-0 HPC systems in PRACE [64],

containing 3,056 compute nodes, each with two Intel Sandy Bridge-EP E5-2670

sockets with eight cores operating at 2.6 GHz.

Access toMareNostrum allowed us to run experiments using up to several thou-

sand cores. Because of a large number of application processes and long execution

time of production HPC applications, it was essential to prepare the instrumenta-

tion tools for processing massive amounts of data. Limpio provided su�cient room

for customization, and we used it to create several tools, each targeting di�erent

aspect of application characterization. In the following sections, we describe some

of the Limpio tools, and illustrate their usage for pro�ling of ALYA application [65].

89

Chapter 5 Limpio — LIghtweight MPI instrumentatiOn

5.4.1 MPI profiler

MPI pro�ler tool produces basic statistics about MPI calls — their per-process and

total number, and the accumulative time they consume relative to the total appli-

cation execution. MPI pro�ler calculates these statistics using online processing

— on each instrumented call, it increments the counter of the corresponding MPI

function, and accumulates the duration of the call. A�er the execution, the tool

generates a summary, as presented in Table 5.1, without producing any traces or

intermediate results during the application run.

Table 5.1 gives a breakdown of MPI calls (columns) over application processes

(rows). Each entry in the table shows howmany times oneMPI function is invoked

by a particular process, as well as the aggregate duration of these calls relative to the

total application execution time (shown in parentheses). Last column summarizes

MPI communication for each process by showing total number of MPI calls, and

their relative duration. Last row gives an overview of each MPI function usage

combined over all the processes.

Pro�le of MPI calls is our �rst step in HPC application analysis. It gives an

overview of the MPI calls that the application uses, and veri�es that most of the

processes have similar behavior from MPI communication perspective. Table 5.1

shows thatALYAhas amaster-worker architecture,where �rst process, substantially

di�erent from the rest, has a role of master, while other 255 processes serve as

workers, and have similar MPI communication pro�les.

�e same analysis could well be performed with some of the existing tools, that

can generate full timestamped MPI event traces, and, in a post-mortem analysis,

summarize event count and duration. However, with that approach, HPC appli-

cations would generate very large MPI traces, which would make post-mortem

analysis prohibitively slow, and could easily surpass the available disk quota on a

shared HPC system. For this reason we chose online analysis to produce this kind

of statistics.

90

Case studies 5.4

M
PI

_S
en

d
M

PI
_R

ec
v

M
PI

_A
llr

ed
uc

e
M

PI
_B

ar
rie

r
M

PI
_B

ca
st

M
PI

_A
llg

at
he

rv
M

PI
_G

at
he

rv
M

PI
_S

en
dr

ec
v

To
ta

l

Pr
oc

es
s#

1
76

50
(0

.4
%

)
23

14
(0

.1
%

)
74

75
7(

90
.0

%
)

63
(0

.0
%

)
28

(0
.0

%
)

2(
0.

2%
)

1(
0.

0%
)

0(
0.

0%
)

84
81

9(
92

.9
%

)
Pr

oc
es

s#
2

9(
0.

2%
)

30
(6

.2
%

)
74

75
7(

30
.3

%
)

63
(0

.0
%

)
28

(0
.0

%
)

2(
0.

1%
)

1(
0.

0%
)

14
06

35
(1

2.
8%

)
21

55
29

(5
1.

4%
)

Pr
oc

es
s#

3
9(

0.
2%

)
30

(6
.2

%
)

74
75

7(
41

.2
%

)
63

(0
.0

%
)

28
(0

.0
%

)
2(

0.
1%

)
1(

0.
0%

)
84

38
1(

3.
3%

)
15

92
75

(5
2.

9%
)

Pr
oc

es
s#

25
4

9(
0.

3%
)

30
(6

.1
%

)
74

75
7(

40
.0

%
)

63
(0

.0
%

)
28

(0
.1

%
)

2(
0.

1%
)

1(
0.

0%
)

56
25

4(
1.

6%
)

13
11

48
(4

9.
7%

)
Pr

oc
es

s#
25

5
9(

0.
3%

)
30

(6
.1

%
)

74
75

7(
40

.1
%

)
63

(0
.0

%
)

28
(0

.1
%

)
2(

0.
1%

)
1(

0.
0%

)
56

25
4(

2.
0%

)
13

11
48

(5
0.

2%
)

Pr
oc

es
s#

25
6

9(
0.

3%
)

30
(6

.1
%

)
74

75
7(

38
.9

%
)

63
(0

.0
%

)
28

(0
.1

%
)

2(
0.

1%
)

1(
0.

0%
)

11
25

08
(2

.6
%

)
18

74
02

(4
9.

6%
)

To
ta

l
99

67
(0

.3
%

)
99

67
(6

.1
%

)
19

13
77

92
(3

1.
4%

)
16

12
8(

0.
0%

)
71

68
(0

.1
%

)
51

2(
0.

1%
)

25
6(

0.
0%

)
39

48
98

32
(7

.6
%

)
58

67
26

46
(4

7.
2%

)

Ta
bl

e
5.

1:
M

PI
pr

ofi
le,

AL
YA

ap
pl

ica
tio

n,
25

6
pr

oc
es

se
s

91

Chapter 5 Limpio — LIghtweight MPI instrumentatiOn

5.4.2 Computation to communication ratio

Another important metric for analysis of HPC applications is computation to com-

munication ratio. When inter-process communication dominates over e�ective

computation time, especially on high number of processes, gains in parallel perfor-

mance can diminish and be prevailed by the execution cost. Limpio MPI pro�ler

measures relative MPI communication time — the time spent in all MPI library

function calls, relative to the total execution time. Increase in relative MPI com-

munication time, with the increase in the number of processes, indicates limited

application scalability.

Figure 5.2 shows relative MPI communication time for ALYA application, for

various number of processes. �e �gure separates MPI communication time of

the master process, and the average of the worker processes.�e results show how

MPI communication starts being dominant for high number of processes, which

decreases the relative time spent in computational segments.�erefore, the increase

in parallelism is not paid o� by the appropriate performance improvement (for a

256× increase in number of processes — from 4 to 1,024, we measure only 86×

speedup).

�is experiment required analysis of nine executions of the application (from

4 to 1,024 processes). By performing online analysis with Limpio MPI pro�ler, we

avoided time-consuming process of collecting a large timestamped event trace and

its post-processing. Moreover, optimized instrumentation routines introduced neg-

ligible overhead in the instrumented execution,which is importantwhenmeasuring

any time-related statistics.

Figure 5.2: Relative MPI commu-
nication time, ALYA, 4–1,024 pro-
cesses

4 8 16 32 64 128 256 512 1024
Number of processes

0

20

40

60

80

100

Re
lat

ive
M

PI
co

m
m

un
ica

tio
n

tim
e

[%
]

Master process
Worker process

92

Case studies 5.4

5.4.3 Tracing and visualization

Pro�lers typically summarize their target statistics in a concise table, sacri�cing

data about their evolution and variability throughout the execution. Observing the

changes inmeasuredmetrics over time gives insight in application-speci�c patterns,

iterative behavior, correlation between measured metrics, or transient bottlenecks

in the system. For that, we need a trace of timestamped events, triggered by anMPI

call, where the current state of user-de�ned statistics is measured and saved.

In order to avoid producing large trace �les, and to make their analysis or visu-

alization feasible, Limpio provides a mechanism to selectively disable instrumenta-

tion in speci�cMPI function calls,by setting the environment variableMPIINSTR_EXCLUDE.

Once the users obtain theMPI pro�le, they can disable instrumentation in themost

frequent MPI calls.�at way the granularity of the instrumentation points is coars-

ened, and the trace size is reduced. In our example, ALYA produced a pro�le (Ta-

ble 5.1) where MPI_Allreduce and MPI_Sendrecv constitute the vast majority of

all MPI calls. Disabling instrumentation of these two calls (Listing 5.2) reduces the

trace to the size that can be handled by the tools for visualization or post-mortem

analysis.

...

export MPIINSTR_EXCLUDE=MPI_Allreduce,MPI_Sendrecv
...

Listing 5.2: Excluding instrumentation of specific MPI functions

Traditional tools for trace visualization have to be compatible with the trace

format generated by instrumentation tools. In Limpio, users can de�ne the trace for-

mat in the instrumentation routines, and then visualize the trace using any external

general-purpose visualization tool or library.

Figure 5.3 presents an example of a visualization of an MPI communication

trace. It is obtained by running ALYA, instrumented and traced with Limpio (with

most frequent MPI calls excluded), and rendered using Matplotlib.�e �gure con-

�rms application repetitive behavior, with MPI_Barrier as the call that precedes

and follows each iteration.

93

Chapter 5 Limpio — LIghtweight MPI instrumentatiOn

Process #3
Process #2
Process #1

0 10 20 30 40

Process #256
Process #255
Process #254

130 140 150 160
Execution time [s]

MPI_Barrier
Other MPI calls

Figure 5.3: MPI call visualization, ALYA application, 256 processes

5.4.4 External instrumentation tools

�e ability to recognize boundaries of application iterations, allows us to use Limpio

for invoking external tools, and using them in a precisely de�ned segment of the

application execution. For example, with the information extracted from a trace

of timestamped events (Section 5.4.3), Limpio tool can be con�gured to detect

iterations of the main loop, that are good representative of the overall application

behavior. In that segment, it can invoke tools for instrumenting application at the

instruction-level granularity, such as Pin [53] or Valgrind [60].

An example code for that functionality is given in Listing 5.3. In function

start(), it is determined if the execution has reached target iteration (nth call of a

targetMPI function), and in that case, external instrumentation tool is attached to a

running process. Similarly, in function end(), when the target iteration completes,

Limpio sends a signal to the external tool, and detaches it from the process.

#include <signal.h>
...

static void start(mpi_function_id_t mpi_function_id) {
if (is_instrumentation_segment_starting()) {
sprintf(attach_instumentation_command, "%s -pid %ld",

path_to_instrumentation_binary, (long)getpid());
system(attach_command);

}

}

static void end(mpi_function_id_t mpi_function_id) {
if (is_instrumentation_segment_ending())
kill(getpid(), SIGUSR1);

}

...

Listing 5.3: Attaching and detaching an external instrumentation tool

94

Related work and tools 5.6

Combining Limpio with external instrumentation tools has multiple uses. First,

instruction-level instrumentation usually introduces large performance overhead,

and it is reasonable to apply it only on a short execution segment. Second, if external

instrumentation is used for generating instruction or memory traces, their size can

be controlled by modifying the length of the tracing segment.

5.5 Related work and tools

Tool mpiP [80] produces MPI function pro�les similar to Limpio MPI pro�ler. It

does not require recompiling, but it needs linking to the mpiP library. For pro�ling

a segment of the execution, user needs to change application source code.

Score-P [41] provides an infrastructure for pro�ling, tracing, andonline analysis

of HPC applications. Instead of direct instrumentation, it can use sampling, but

users need to recompile the application with Score-P instrumentation command.

Extrae [24] is a tool for tracing application performance data. Extrae can instru-

ment applications based on a wide range of programming models (MPI, OpenMP,

CUDA,OpenCL, etc.). With various interpositionmechanisms for injecting probes

into the target application, it provides many instrumentation options for HPC ap-

plication analysis. Extrae uses clustering to detect iterative patterns and to choose

the most interesting regions to present to the analyst [50]. However, Extrae cannot

instrument a user-de�ned subset of MPI calls, nor it can be used for online analysis.

Extrae is not designed for triggering calls to external pro�ling tools.

5.6 Summary

�is appendix presents Limpio,a framework forpro�ling ofMPI applications. Limpio

overrides standard MPI functions, and executes instrumentation routines before

and a�er the selected MPI calls. Users themselves can write and customize the in-

strumentation routines to �t the requirements of the analysis. Limpio can invoke

external application pro�ling tools, and can switch between various tools in a single

execution. It can also generate application traces of timestamped events that can be

visualized by general-purpose visualization tools or libraries. Limpio is regularly

95

Chapter 5 Limpio — LIghtweight MPI instrumentatiOn

used in Barcelona Supercomputing Center for instrumentation of large-scale HPC

applications.

96

Chapter 6
Conclusions

Most computing systems are heavily dependent on their main memories, as their

primary storage, or as an intermediate cache for slower storage systems (HDDs).

�e capacity of memory systems, as well as their performance, have a direct impact

on overall computing capabilities of the system, and are also major contributors to

its initial and operating costs.

DRAM is themainstream technology formainmemories ofmodern computers.

Its dominant position is based on a simple production process, low cost per unit of

storage, performance that could match the requirements of CPUs, and high relia-

bility. Scaling trend of DRAM technology has slowed in the past decade, creating

a disparity between the CPU and main memory performance, also known as the
memory wall. It is estimated that DRAM improvements in the future will be even
more impeded by inherent limitations in DRAMmemory design.

Modern parallel architectures, such as High-Performance Computing (HPC)

clusters and manycore solutions, create even more stress on their memory systems.

It is not trivial to estimate memory requirements that these systems will have in the

future, and if DRAM technology would be able to meet them, or we would need to

97

look for a novel memory solution.

Emerging memory technologies try to overcome the limitations of DRAM, and

answer the ever-growing demands of future computer applications. Many of them

are still in the research phase, or with a fundamental drawbacks that makes them

inferior to DRAM. However, their variety and plenty of space for their research

can lead to the emergence of a DRAM successor. More, their usability in hybrid

memory systems already improves on their overall value in thememory technology

landscape.

In this thesis we attempted to give insight in the most important technologi-

cal challenges that future memory systems need to address, in order to meet the

requirements of future users and their applications, in manycore and HPC context.

In Chapter 2 we described the limitations of DRAM, as the dominant technology

in today’s main memory systems, that may impede performance or increase cost of

future systems. We discussed some of the emerging memory technologies, and by

comparing them with DRAM, we tried to estimate their potential usage in future

memory systems.

As its �rst contribution presented in Chapter 3, the thesis evaluates the require-

ments of manycore scienti�c applications, in terms of memory bandwidth and

footprint, and estimates how these requirements may change in the future. As a

result, we conclude that the limitations in DRAM scalability will not have negative

e�ects on manycore systems in the next several years.

With this evaulation inmind, and as the second contribution presented in Chap-

ter 4, we propose a hybrid memory solution that employs DRAM and PCM, as well

as several page placement and page migration policies, to bridge the gap between

fast and small DRAM and larger but slower non-volatile memory. Our results show

that the hybrid memory system with dynamic page migration and limited DRAM

capacity, can achieve performance that is comparable to a hypothetical, hard to

implement, DRAM-only system.

Finally, our third contribution, presented in Chapter 5 describes a tool that is

designed and developed over the course of this PhD, and continues to be used

in Heterogeneous Computer Architectures group in Barcelona Supercomputing

Center. Limpio — a LIghtweight MPI instrumentatiOn framework, that provides

an interface for low-overhead instrumentation and pro�ling of MPI applications

with user-de�ned routines.

Bibliography

[1] G. Abandah and E. Davidson. Con�guration independent analysis for charac-

terizing shared-memory applications. In Intl. Parallel Processing Symp., pages
485–491, Mar 1998.

[2] K. Abe,H. Noguchi, E. Kitagawa,N. Shimomura, J. Ito, and S. Fujita. Novel Hy-

brid DRAM/MRAMDesign for Reducing Power of High PerformanceMobile

CPU. In IEEE International Electron Devices Meeting (IEDM), 2012.

[3] A. Agarwal, L. Bao, J. Brown, B. Edwards, M. Mattina, C.-C. Miao, C. Ramey,

and D. Wentzla�. Tile processor: Embedded multicore for networking and

multimedia. In Hot Chips, Aug 2007.

[4] J.-H. Ahn, B.-H. Jeong, S.-H. Kim, S.-H. Chu, S.-K. Cho, H.-J. Lee,M.-H. Kim,

S.-I. Park, S.-W. Shin, J.-H. Lee, B.-S. Han, J.-K. Hong, P. Moran, and Y.-T. Kim.

Adaptive self refresh scheme for battery operated high-densitymobile dram ap-

plications. In Solid-State Circuits Conference, 2006. ASSCC 2006. IEEE Asian,
pages 319–322, Nov 2006.

[5] S. R. Alam, R. F. Barrett, J. A. Kuehn, P. C. Roth, and J. S. Vetter. Characteriza-

tion of scienti�c workloads on systems with multi-core processors. In IEEE
Intl. Symp. on Workload Characterization, pages 225–236, Oct 2006.

[6] C. Augustine, A. Raychowdhury, D. Somasekhar, J. Tschanz, K. Roy, and V. De.

Numerical analysis of typical stt-mtj stacks for 1t-1r memory arrays. In Elec-

99

tronDevicesMeeting (IEDM), 2010 IEEE International, pages 22.7.1–22.7.4,Dec
2010.

[7] D. Baglee andR. Parker. Trench capacitor forhighdensity dynamic ram, July 10

1990. US Patent RE33,261.

[8] Barcelona Supercomputing Center. MareNostrum III System Architecture.

http://www.bsc.es/marenostrum-support-services/mn3, 2013.

[9] F. Bedeschi, R. Fackenthal, C. Resta, E. Michele Donze, M. Jagasivamani,

E. Buda, F. Pellizzer, D. Chow, A. Cabrini, G. M. Angelo Calvi, R. Faravelli,

A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande. A multi-level-

cell bipolar-selected phase-changememory. In Solid-State Circuits Conference,
2008. ISSCC 2008. Digest of Technical Papers. IEEE International, ISSCC ’08,
pages 428–430, 2008.

[10] M. Bhadauria, V. M. Weaver, and S. A. McKee. Understanding parsec perfor-

mance on contemporary cmps. In IEEE Intl. Symp. on Workload Characteri-
zation, Oct 2009.

[11] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh, D. Mc-

Caule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley, S. Shankar,

J. Shen, and C. Webb. Die stacking (3D) microarchitecture. In IEEE Micro,
pages 469–479, 2006.

[12] D. Burger, J. R. Goodman, and A. Kägi. Memory bandwidth limitations of

future microprocessors. In Intl. Symp. on Computer Architecture, pages 78–89,
1996.

[13] M.Casas,R.M. Badia, and J. Labarta. Automatic phase detection and structure

extraction of MPI applications. International Journal of High Performance
Computing Applications, 24(3):335–360, 2010.

[14] L. Chua. Memristor —�e missing circuit element. Circuit �eory, IEEE
Transactions on, 18(5):507–519, Sep 1971.

[15] Z. Cvetanovic and R. E. Kessler. Performance analysis of the alpha 21264-

based compaq es40 system. In Intl. Symp. on Computer Architecture, pages
192–202, 2000.

[16] J. T. Daly. ADTSC Nuclear Weapons Highlights: Facilitating High�rough-

put ASC Calculations. Technical Report LALP-07-041, Los Alamos National
Laboratory, Los Alamos, NM, USA, 2007.

[17] J. T. Daly, L. A. Pritchett-Sheats, and S. E. Michalak. Application MTTFE vs.

Platform MTTF: A Fresh Perspective on System Reliability and Application

�roughput for Computations at Scale. In Workshop on Resiliency in High
Performance Computing, 2008.

[18] Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L.-C. Wang, and

Y. Huai. Spin-transfer torque switching in magnetic tunnel junctions and

spin-transfer torque random access memory. Journal of Physics: Condensed
Matter, 19(16):165209, 2007.

[19] B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and

D. Mauri. Giant magnetoresistive in so� ferromagnetic multilayers. Phys.
Rev. B, 1991.

[20] J. Dongarra, J. Bunch, C. Moler, and G. Stewart. Linpack.

www.netlib.org/linpack.

[21] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A Survey of

Rollback-recovery Protocols in Message-passing Systems. ACM Comput.
Surv., 2002.

[22] K. Ferreira, R. Riesen, R. Old�eld, J. Stearley, J. Laros, K. Pedretti, T. Korden-

brock, and R. Brightwell. Increasing Fault Resiliency in a Message-Passing

Environment. Sandia National Laboratories, Tech. Rep., 2009.

[23] R. F. Freitas andW.W.Wilcke. Storage-class memory: the next storage system

technology. IBM J. Res. Dev., 52(4):439–447, July 2008.

[24] H. Gelabert and G. Sánchez. Extrae User Guide Manual for version 2.2.0.

Barcelona Supercomputing Center (BSC), 2011.

[25] M. Gill, T. Lowrey, and J. Park. Ovonic uni�ed memory - a high-performance

nonvolatile memory technology for stand-alone memory and embedded ap-

plications. In Solid-State Circuits Conference, 2002. Digest of Technical Papers.
ISSCC. 2002 IEEE International, volume 1, pages 202–459 vol.1, Feb 2002.

[26] J. Gonzalez, J. Gimenez, M. Casas, M. Moreto, A. Ramirez, J. Labarta, and

M. Valero. Simulating whole supercomputer applications. Micro, IEEE,
31(3):32–45, 2011.

[27] C. Ho, C.-L. Hsu, C.-C. Chen, J.-T. Liu, C.-S. Wu, C.-C. Huang, C. Hu, and

F.-L. Yang. 9nm half-pitch functional resistive memory cell with <1 ua pro-
gramming current using thermally oxidized sub-stoichiometric wox �lm. In

101

Electron Devices Meeting (IEDM), 2010 IEEE International, pages 19.1.1–19.1.4,
Dec 2010.

[28] M. Hosomi,H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane,H. Ya-

mada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano. A Novel

Nonvolatile Memory with Spin Torque Transfer Magnetization Switching:

Spin-RAM. In IEEE International Electron Devices Meeting, 2005.

[29] A. A. Hwang, I. Stefanovici, and B. Schroeder. Cosmic Rays DonâĂŹt Strike

Twice: Understanding the Nature of DRAM Errors and the Implications for

System Design. In 17th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2012.

[30] R. Iyer, H. Wang, and L. Bhuyan. Design and analysis of static memory man-

agement policies for CC-NUMAmultiprocessors. College Station, TX, USA,
Tech. Rep, 1998.

[31] B. Jacob, S. W. Ng, and D. T. Wang. Memory Systems: Cache, DRAM, Disk.
Morgan Kaufmann, Burlington, MA, USA, 2008.

[32] X. Jian, H. Duwe, J. Sartori, V. Sridharan, and R. Kumar. Low-power, Low-

storage-overhead Chipkill Correct via Multi-line Error Correction. In In-
ternational Conference on High Performance Computing, Networking, Storage
and Analysis, 2013.

[33] L. Jiang, R. Ye, and Q. Xu. Yield enhancement for 3D-Stacked memory by

redundancy sharing across dies. In IEEE/ACM Intl. Conf. on Computer-Aided
Design, pages 230–234, 2010.

[34] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd. Power7: IBM’s next-

generation server processor. IEEE Micro, 30:7–15, 2010.

[35] J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, andD. C. Ralph. Current-

Driven Magnetization Reversal and Spin-Wave Excitations in Co /Cu /Co

Pillars. Phys. Rev. Lett., 2000.

[36] R. E. Kessler andM. D. Hill. Page placement algorithms for large real-indexed

caches. ACM Trans. Comput. Syst., 10(4):338–359, Nov. 1992.

[37] C. Kim,D. Kang,H. Kim,C. Park,D. SOHN,Y. Lee, S. Kang,H. Oh, and S. Cha.

Magnetic Random Access Memory, 2013.

[38] H. Kim, S. Kang, D. SOHN, D. Kim, and K. Lee. Magneto-resistive memory

device including source line voltage generator, 2013.

[39] J. Kim and M. Papae�hymiou. Dynamic memory design for low data-

retention power. In D. Soudris, P. Pirsch, and E. Barke, editors, Integrated
Circuit Design, volume 1918 of Lecture Notes in Computer Science, pages 207–
216. Springer Berlin Heidelberg, 2000.

[40] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and

O.Mutlu. Flipping Bits inMemory without Accessing them: An Experimental

Study of DRAMDisturbance Errors. In ACM/IEEE 41st International Sympo-
sium on Computer Architecture (ISCA), 2014.

[41] A. Knüpfer, C. Rössel, D. Mey, S. Biersdor�, K. Diethelm, D. Eschweiler,

M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. Nagel, Y. Oleynik, P. Philip-

pen, P. Saviankou, D. Schmidl, S. Shende, R. TschÃĳter, M.Wagner, B.Wesarg,

and F.Wolf. Score-P: A Joint PerformanceMeasurement Run-Time Infrastruc-

ture for Periscope, Scalasca, TAU, and Vampir. In Tools for HPC 2011, pages
79–91. Springer Berlin Heidelberg, 2012.

[42] P. Kongetira, K. Aingaran, andK. Olukotun. Niagara: A 32-waymultithreaded

Sparc processor. IEEE Micro, 25:21–29, 2005.

[43] S. Kottapalli and J. Baxter. Nehalem-EX CPU architecture. InHot Chips, Aug
2009.

[44] B. C. Lee,E. Ipek,O.Mutlu, andD. Burger. Architecting phase changememory

as a scalableDRAMalternative. InProceedings of the 36th annual international
symposium on Computer architecture, ISCA ’09, pages 2–13, New York, NY,
USA, 2009. ACM.

[45] M.-J. Lee, Y. Park, B.-S. Kang, S. eon Ahn, C. Lee, K. Kim, W. Xianyu, G. Ste-

fanovich, J.-H. Lee, S.-J. Chung, Y.-H. Kim, C.-S. Lee, J.-B. Park, and I.-K. Yoo.

2-stack 1d-1r cross-point structure with oxide diodes as switch elements for

high density resistance ram applications. In Electron Devices Meeting, 2007.
IEDM 2007. IEEE International, pages 771–774, Dec 2007.

[46] D. Lewis and H.-H. Lee. Architectural evaluation of 3d stacked rram caches.

In 3D System Integration, 2009. 3DIC 2009. IEEE International Conference on,
pages 1–4, Sept 2009.

103

[47] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu. Raidr: Retention-aware intelligent

dram refresh. In Proceedings of the 39th Annual International Symposium
on Computer Architecture, ISCA ’12, pages 1–12, Washington, DC, USA, 2012.
IEEE Computer Society.

[48] L. Liu, Z. Li, and A. H. Sameh. Analyzing memory access intensity in parallel

programs on multicore. In Supercomputing, pages 359–367, 2008.

[49] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: Saving dram

refresh-power through critical data partitioning. SIGPLAN Not., 46(3):213–
224, Mar. 2011.

[50] G. Llort, J. Gonzalez, H. Servat, J. Gimenez, and J. Labarta. On-line detection

of large-scale parallel application’s structure. In International Symposium on
Parallel and Distributed Processing (IPDPS), pages 1–10. IEEE, 2010.

[51] G. Loh. 3D-StackedMemoryArchitectures forMulti-core Processors. InCom-
puter Architecture, 2008. ISCA ’08. 35th International Symposium on, pages
453–464, 2008.

[52] G. H. Loh. 3D-stacked memory architectures for multi-core processors. In

Intl. Symp. on Computer Architecture, pages 453–464, 2008.

[53] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood. Pin: Building customized program analysis tools

with dynamic instrumentation. SIGPLAN Not., 40(6), June 2005.

[54] �eMareNostrum system architecture. http://www.bsc.es/plantillaA.php?cat_id=200.

[55] A. Mericas. Performance monitoring on the POWER5™ microprocessor. In

Performance Evaluation and Benchmarking, pages 247–266. CRC Press, 2005.

[56] J. C. Mogul, E. Argollo,M. Shah, and P. Faraboschi. Operating system support

for NVM+DRAM hybrid main memory. In Proceedings of the 12th conference
on Hot topics in operating systems, HotOS’09, pages 14–14, Berkeley, CA, USA,
2009. USENIX Association.

[57] G. E.Moore et al. Progress in digital integrated electronics. IEDMTech. Digest,
11, 1975.

[58] R. C. Murphy and P. M. Kogge. On the memory access patterns of supercom-

puter applications: Benchmark selection and its implications. IEEE Trans.
Computers, 2007.

[59] R. Nebashi, N. Sakimura, H. Honjo, S. Saito, Y. Ito, S. Miura, Y. Kato, K. Mori,

Y. Ozaki, Y. Kobayashi, N. Ohshima, K. Kinoshita, T. Suzuki, K. Nagahara,

N. Ishiwata, K. Suemitsu, S. Fukami, H. Hada, T. Sugibayashi, and N. Kasai. A

90nm 12ns 32Mb 2T1MTJ MRAM. In IEEE International Solid-State Circuits
Conference, 2009.

[60] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic

binary instrumentation. ACM Sigplan Notices, 42(6):89–100, 2007.

[61] H. Noguchi, K. Kushida, K. Ikegami, K. Abe, E. Kitagawa, S. Kashiwada, C. Ka-

mata, A. Kawasumi, H. Hara, and S. Fujita. A 250-MHz 256b-I/O 1-Mb STT-

MRAM with Advanced Perpendicular MTJ Based Dual cell for Nonvolatile

Magnetic Caches to Reduce Active Power of Processors. In Symposium on
VLSI Technology (VLSIT), 2013.

[62] H. Oh. Resistive Memory Device, System Including the Same and Method of

Reading Data in the Same, 2014.

[63] Z. Pajouhi, X. Fong, and K. Roy. Device/Circuit/Architecture Co-design of

Reliable STT-MRAM. In Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition, 2015.

[64] Partnership for Advanced Computing in Europe (PRACE). Prace research

infrastructure. http://www.prace-ri.eu.

[65] Partnership for Advanced Computing in Europe (PRACE). Uni�ed European
Applications Benchmark Suite, July 2013.

[66] M. Pavlovic, Y. Etsion, and A. Ramirez. On the memory system requirements

of future scienti�c applications: Four case-studies. IEEEWorkload Character-
ization Symposium, 0:159–170, 2011.

[67] R. Preissl, T. Kockerbauer, M. Schulz, D. Kranzlmuller, B. Supinski, and D. J.

Quinlan. Detecting patterns in MPI communication traces. In International
Conference on Parallel Processing (ICPP). IEEE, 2008.

[68] M.K. Qureshi,V. Srinivasan, and J. A. Rivers. Scalable high performancemain

memory system using phase-change memory technology. In Proceedings of
the 36th annual international symposium on Computer architecture, ISCA ’09,
pages 24–33, New York, NY, USA, 2009. ACM.

105

[69] L. E. Ramos,E. Gorbatov, andR. Bianchini. Page placement in hybridmemory

systems. In Proceedings of the international conference on Supercomputing, ICS
’11, pages 85–95, New York, NY, USA, 2011. ACM.

[70] A. Rico,F. Cabarcas,A.Quesada,M. Pavlovic,A. J. Vega,C.Villavieja,Y. Etsion,

and A. Ramirez. Scalable simulation of decoupled accelerator architectures.

Universitat Politecnica de Catalunya, Tech. Rep. UPC-DACRR-2010-14, 2010.

[71] A. Rico, F. Cabarcas, C. Villavieja, M. Pavlovic, A. Vega, Y. Etsion, A. Ramirez,

andM.Valero. On the simulation of large-scale architectures usingmultiple ap-

plication abstraction levels. ACM Trans. Archit. Code Optim., 8(4):36:1–36:20,
Jan. 2012.

[72] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, P. Dubey, S. Junkins, A. Lake,

R. Cavin, R. Espasa, E. Grochowski, T. Juan, M. Abrash, J. Sugerman, and

P. Hanrahan. Larrabee: A many-core x86 architecture for visual computing.

IEEE Micro, 29(1):10–21, 2009.

[73] A. D. Simpson, M. Bull, and J. Hill. Identi�cation and Categorisation of Appli-
cations and Initial Benchmarks Suite, 2008. www.prace-project.eu.

[74] J. Spong, Speriosu, R. E. Fontana, M. M. Dovek, and T. Hylton. Giant Magne-

toresistive Spin Valve Bridge Sensor. IEEE Transactions on Magnetics, 1996.

[75] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. �e missing

memristor found. Nature, 453:80–83, May 2008.

[76] D. B. Strukov and R. S. Williams. Four-dimensional address topology for

circuits with stacked multilayer crossbar arrays. Proceedings of�e National
Academy of Sciences, 106:20155–20158, 2009.

[77] S. Tyson, G. Wicker, T. Lowrey, S. Hudgens, and K. Hunt. Nonvolatile, high

density, high performance phase-change memory. In Aerospace Conference
Proceedings, 2000 IEEE, volume 5, pages 385–390 vol.5, 2000.

[78] A. M. Vasilevskĭi, V. A. Volpyas, A. B. Kozyrev, and G. A. Konoplev. E�ect

of UV radiation on the relaxation characteristics of ferroelectric thin-�lm

capacitors. Technical Physics Letters, 34:561–564, July 2008.

[79] R. Venkatesan, S. Herr, and E. Rotenberg. Retention-aware placement in dram

(rapid): so�ware methods for quasi-non-volatile dram. In High-Performance
Computer Architecture, 2006.�e Twel�h International Symposium on, pages
155–165, Feb 2006.

[80] J. Vetter and C. Chambreau. mpiP: Lightweight, Scalable MPI Pro�ling, 2005.

[81] D. Vicente and J. Bartolome. BSC-CNS Research and Supercomputing Re-

sources. InHigh Performance Computing on Vector Systems 2009, pages 23–30.
Springer, 2010.

[82] C. Villavieja, Y. Etsion, A. Ramirez, and N. Navarro. FELI: HW/SW support

for on-chip distributed shared memory in multicores. In Proceedings of the
17th international conference on Parallel processing - Volume Part I, Euro-Par’11,
pages 282–294, Berlin, Heidelberg, 2011. Springer-Verlag.

[83] R.Waser, R. Dittmann, G. Staikov, and K. Szot. Redox-Based Resistive Switch-

ing Memories–Nanoionic Mechanisms, Prospects, and Challenges. Advanced
Materials, 21(25-26):2632–2663, 2009.

[84] R. Waser, R. Dittmann, G. Staikov, and K. Szot. Redox-based resistive switch-

ing memories âĂŞ nanoionic mechanisms, prospects, and challenges. Ad-
vanced Materials, 21(25-26):2632–2663, 2009.

[85] D. H. Woo, N. H. Seong, D. L. Lewis, and H.-H. S. Lee. An optimized 3D-

Stacked memory architecture by exploiting excessive, high-density tsv band-

width. In Symp. on High-Performance Computer Architecture, pages 1–12, 2010.

[86] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. �e SPLASH-2

programs: characterization and methodological considerations. In Intl. Symp.
on Computer Architecture, pages 24–36, 1995.

[87] W. A. Wulf and S. A. McKee. Hitting the memory wall: Implications of the

obvious. SIGARCH Comput. Archit. News, 23(1):20–24, Mar. 1995.

[88] Y. Xie. Modeling, Architecture, and Applications for EmergingMemory Tech-

nologies. Design Test of Computers, IEEE, 28(1):44–51, 2011.

[89] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S.

Williams. Memristive switching mechanism for metal/oxide/metal nanode-

vices. NATURE NANOTECHNOLOGY, 3(7):429–433, July 2008.

[90] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. Energy reduction for stt-ram us-

ing early write termination. In Computer-Aided Design - Digest of Technical
Papers, 2009. ICCAD2009. IEEE/ACMInternational Conference on, pages 264–
268, Nov 2009.

107

