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Abstract

Nowadays, the human textual data constitutes a great proportion of the shared information

resources such as World Wide Web (WWW). Social networks, news and learning resources

as well as Knowledge Bases (KBs) are just the small examples that widely contain the textual

data which is used by both human and machine readers. The nature of human languages is

highly ambiguous, means that a short portion of a textual context (such as words or phrases)

can semantically be interpreted in different ways. A language processor should detect the

best interpretation depending on the context in which each word or phrase appears. In case

of human readers, the brain is quite proficient in interfering textual data. Human language

developed in a way that reflects the innate ability provided by the brain’s neural networks.

However, there still exist the moments that the text disambiguation task would remain a

hard challenge for the human readers. In case of machine readers, it has been a long-term

challenge to develop the ability to do natural language processing and machine learning.

Different interpretation can change the broad range of topics and targets. The different in

interpretation can cause serious impacts when it is used in critical domains that need high

precision. Thus, the correctly inferring the ambiguous words would be highly crucial. To

tackle it, two tasks have been developed: Word Sense Disambiguation (WSD) to infer the

sense (i.e. meaning) of ambiguous words, when the word has multiple meanings, and Entity

Linking (EL) (also called, Named Entity Disambiguation–NED, Named Entity Recognition

and Disambiguation–NERD, or Named Entity Normalization–NEN) which is used to explore

the correct reference of Named Entity (NE) mentions occurring in documents. The solution
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to these problems impacts other computer-related writing, such as discourse, improving

relevance of search engines, anaphora resolution, coherence, and inference.

This document summarizes the works towards developing an unsupervised Entity Linking

(EL) system using graph-based semantic similarity aiming to disambiguate Named Entity

(NE) mentions occurring in a target document. The EL task is highly challenging since each

entity can usually be referred to by several NE mentions (synonymy). In addition, a NE

mention may be used to indicate distinct entities (polysemy). Thus, much effort is necessary

to tackle these challenges. Our EL system disambiguates the NE mentions in several steps.

For each step, we have proposed, implemented, and evaluated several approaches. We

evaluated our EL system in TAC-KBP4 English EL evaluation framework in which the

system input consists of a set of queries, each containing a query name (target NE mention)

along with start and end offsets of that mention in the target document. The output is either a

NE entry id in a reference Knowledge Base (KB) or a Not-in-KB (NIL) id in the case that

system could not find any appropriate entry for that query. At the end, we have analyzed our

result in different aspects. To disambiguate query name we apply a graph-based semantic

similarity approach to extract the network of the semantic knowledge existing in the content

of target document.

Keywords: Entity Linking, Named Entity Disambiguation, Knowledge Base Population,

Graph-based Semantic Similarity.

4Knowledge Base Population contest framework in the Text Analysis Conference.
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Chapter 1

Introduction

Recently, the needs of world knowledge for Artificial Intelligence (AI) applications are

highly increasing. A system intelligence can be measured by amount of its interaction and

knowledge about the real world entities. As an appearance of the world knowledge, a KB is a

crucial resource to keep and categorize facts, entities and their relations. Large scale KB has

been proved to be valuable for many natural language processors such as question answering

[48], information extraction [73], coreference resolution [76] and word sense disambiguation

[26]. The Internet is growing to be a wide and complex global KB known as the Semantic

Web, according to the World Wide Web Consortium (W3C). A KB helps towards process of

huge amount of information in a short span of time. A well-structured KB reduces a firm cost

by decreasing the amount of human resources’ time spent aiming to discover information

about - among countless possibilities - trade laws or firm policies and objectives. However,

the high cost of manual elicitation to create the KB, forces toward automatic acquisition from

text. This requires two main abilities.

1. extracting relevant information of mentioned entities including attributes and relations

between them (Slot Filling), and

2. linking these entities with entries in the KB (Entity Linking–EL).
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The scope of the achieved work presented in this document is limited to the EL task.

EL has recently observed many attentions from the researchers, especially for IE purposes.

A traditional IE task includes three main steps:

• NE Recognition and Classification: Detecting NE mentions occurring in target docu-

ments and classify them different entity types such as such as Person, Organization or

GeoPolitical entities. There are several relevant work in [2, 14, 19, 50, 83], and the

review article by Nadeau and Sekine [61].

• Coreference Resolution: Group two or more NEs and other anaphoric mentions in a

document or a set of documents that refer to the same real world entity. For example,

"Mr. President", "B. Obama", and "Barack Obama" occurring in a set of documents

might refer to the same entity [3, 69, 89, 94].

• Relation Extraction: The relation extraction task is to determining the relation between

two NEs occurring in the target documents. As an example, occurring two person

names regarding to the football match, a relation extraction system should return sport,

match, and football as answer [5, 86].

This traditional view over IE has received considerable attention. However, they are not often

the only structured information. Another task that has recently observed many attention is

NED. It includes disambiguation of a NE mentions occurring in target documents and linking

them to the correct entities in the KB. However, the NED task alone is not enough in a new

defined IE task, especially for automatic KBP tasks. In the recently defined IE task, the

new extractions must be merged with previously extracted information in the reference KB.

It in turn requires linking extracted information in text to entries in a KB and determining

whether any duplicate exists between the information. If yes, to update the corresponding

entry. In the case that there is no entry corresponding to new extraction information, a new

entry should be created in the KB to locate that information.
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Entity Linking (EL), also known as record linkage or grounding is an important step

towards addressing the goals of KB augmentation and can also be used in other areas such

as topic detection, machine translation, and information retrieval. It can also be viewed

as an unsupervised Named Entity Disambiguation (NED) problem at large scale. EL is

the task of referring a NE mention in a document to the unique entity within a reference

KB. A NE mention is a mention that uniquely refers to an entity by its proper name,

acronym, nickname, alias, abbreviation or other alternate name. Entities can have different

types such as person (e.g.“James Taylor"), organization (e.g. “Microsoft"), and

geo-political entities (e.g. “New York City"). In the EL task, new extractions must

be merged with previously extracted information in KB. As an example for linking NEs

to a reference KB (e.g. Wikipedia), when seeing the text “American politician

Chuck Hagel", the NE mention “Chuck Hagel" should be linked the Wikipedia entity

“http://en.wikipedia.org/wiki/Chuck_Hagel". A system input in the EL

task1 is defined as:

• a knowledge base K = {e1, . . . ,en} ⊆ KT , where ei ∈ K is the ith entity in the K and

KT is the set of all entities around the world.

• a query name q occurring in a target document dq ∈ D , where D is the collection of

target documents.

The system output is either:

• the entity ei to which q refers, or

• NIL if such an entity does not exist in KB.

1Based on the EL task definition in TAC-KBP 2014

http://en.wikipedia.org/wiki/Chuck_Hagel


4 Introduction

The task is formalized as a function:

link(q,K) =

 ei if 1 ≤ i ≤ n

NIL otherwise
(1.1)

where link(q,KB) is the function to detect the correct entity for a query name. In other words,

given a set of queries, each of which consisting of a query name (target NE mention) and a

document in which the query name occurred, and the start and end offsets of the query name,

the system should provide the identifier of the KB entity to which the query name refers if

existing, or a NIL Id if there is no such KB entry. The EL system is also required to cluster

together queries referring to the same Not-in-KB (NIL) entities and to provide a unique ID

for each cluster.

1.1 EL Applications

EL is a new task in the field of NLP which has attracted many attentions in the recent years.

It has a high potential for being improved with a wide range of applications. Following, some

applications in the business environment are explained.

• Recently, the activity of security threats (e.g., extremist groups) is highly increasing in

the virtual environments such as forums, weblogs, and social networks like Facebook

and Twitter. The security agencies may gather many unstructured information about

them. Manual extraction of mentions (e.g. persons, organizations, locations, and future

events) from the unstructured data is however highly time consuming and is against

the essence of these threats that need velocity in reaction. EL would be an appropriate
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solution to automate the process of mapping necessary information from the huge

amount of unstructured documents to the structured data during a short span of time.2

• EL systems can be used in the platform of all human-computer/robot dialogue systems.

To communicate, these systems should firstly infer the speech dialogue. This in turn

requires disambiguation of NE mentions in the human dialogue. As an application,

an EL system can be applied in the humanoid robots and assistive machines such as

diagnosis systems. In addition, it could be used in wide range of embedded systems

such as natural language processors embedded within new generation of cars, tv,

mobile devices.

• It can be used for all systems that use a KB. In general, a KB is not a static collection

of information, but a dynamic resource that may itself have the capacity to learn,

for instance, as part of an AI expert system. To this end, a KB needs continuous

augmentation of its entries (update). However, manual augmentation of entries is

highly time consuming. For this purpose, EL systems are highly beneficial in order

to automate the elicitation of structured information from documents and help IE to

create/update entries in KB.

• EL system can be used to annotate texts with semantic information. One example is the

Wikify! [57] which automatically generates a link to Wikipedia for each disambiguated

NE mentions existing in the target documents. This technique is also used by news

agencies to provide significant information for their clients. Another application is

in the digital libraries where the goal is to cluster and link the same authors both in

papers and in citations [33].

2For this reason, the EL task within KBP contests in the framework of TAC is supported by U.S. Department
of Defense.



6 Introduction

• EL can be used for a broad range of applications in companies with different subjects of

activity. In the companies that focus on the email services, it can be applied to process

the email messages and to extract upcoming events and task along with their dates.

Subsequently, it can link them to a calendar. Several companies work on knowledge

discovery task focusing in the real-life entities. For instance, some financial companies

used such systems to monitor events like company mergers and other financial activities

like bilateral contracts and product releases.

1.2 Problem Definition

EL is the task of referring Named Entity (NE) mentions occurring in a natural language text

to their correct entities (persons, organizations, and geo-political entities) in a reference KB.

EL task is non-trivial due to highly ambiguous nature of human language. In the task, text

processors are usually faced to many challenges in correctly linking mentions. The EL task

is challenging for three main reasons:

1. Polysemy. One query name may be used to refer distinct entities. It can be interpreted

in different ways depending on the context in which it appears. As an instance for

person entities, consider the following sentence:

“George Bush brought to the White House a dedication

to traditional American values and a determination

to direct them toward making the United States a kinder

and gentler nation.",

“George Bush" might refer to either “George H. W. Bush", the 41st President

of the United States, or “George W. Bush", 43rd President of the United States.
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The polysemy may also exist given that some entities are incompletely referred. Query

names can be pseudonyms or nicknames, and are often acronyms. Organization and

geo-political entities are also faced to these challenges. “ABC" can be referred to

more than hundred entities such as “American Broadcasting Company" or

“Australian Broadcasting Company". The query name “Georgia" can be

linked to either “Georgia (country)" or an American state. In addition, two NE

mentions may overlap. For instance, in the following sentence:

“The University of York, is a research-intensive

plate glass university located in the city of York,

England. In 2012 York joined the Russell Group in

recognition of the institution’s world-leading research

and outstanding teaching.",

“University of York" is an overlapping mention that refers to both “University

of York" as an organization and also to “York" as a geo-political entity. In addi-

tion, the second and third occurrences of “York" in the quotation above refer to a

geo-political entity and to an organization entity, respectively. The ambiguity can be

more challenging. For instance, in the sentence:

“The Big Apple is hosting a famous soccer match.",

the “Big Apple" refers to “New York City". In discussion fora, e.g., blogs and

other social media documents such as tweets, the texts might contain orthographic

irregularities such as misspellings which make the EL even harder. For instance, in the

sentence:

“James Hatfield is working with Kirk Hammett.",
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the NE mention “James Hatfield" can refer to the American author. But, the

correct form of “Hatfield" is “Hetfield" referring to the main songwriter and

co-founder of heavy metal band, Metallica.

2. Synonymy. One entity in the KB can be referred by several query names. For example,

in the following sentence:

“Former American president George W. Bush (a.k.a.

Bushie, Dubya) is widely known to use nicknames to

refer to journalists, fellow politicians, and members

of his White House staff.",

“Bushie and “Dubya are synonym and both referring to “George W. Bush",

43rd President of the United States. Besides, Metonymy can sometimes be a form of

synonymy by which an entity is called not by its own name but rather by the name of

something associated in meaning with that entity. For example, consider the following

sentence:

“Hollywood is a neighborhood in the central region

of Los Angeles, California. It is notable for its

place as the home of the entertainment industry, including

several of its historic studios.",

the “Hollywood" is used as a metonym for the U.S. film industry.

3. Absence. Many query names occurring in the target documents are referring to not-

in-KB (NIL) entities. Indeed, for that query names there are not a mapping entity in

the reference KB. An EL system should detect them. Each set of NIL query names

referring to the same not-in-KB entity should be clustered together in a group.
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These examples indicate that EL task is faced to many challenges. Tackling these chal-

lenges would be very tough without extracting the semantic knowledge from the neighboring

context of those NE mentions. In next section, we will briefly describe our approach to

overcome these difficulties. Consequently, in the Section 3 our approach would be explained

in detail.

1.3 Hypothesis

The hypothesis behind this work is based on this fact that query names existing in a document

are usually coherent. They form an inter-related semantic network and each group of

mentions can be clustered by one or more topics. Furthermore, in a document with different

and distinct subjects, the mentions are usually more correlated whenever their offsets in the

document get closer. Thus, to disambiguate a query name we extract this network between the

NE mentions existing in the target document. To this objective, we present an unsupervised

approach to disambiguate NE query names. Our system generates a network of relations

using a graph-based method and based on semantic similarity between the NE mentions.

1.4 The Proposal and Contributions

Recently some researchers proposed their EL systems following supervised disambiguation

techniques. These approaches are however faced to lack of enough annotated training data.

Semi-supervised and unsupervised techniques are alternatives to overcome this problem.

To tackle the challenges mentioned in 1.2 we have developed an unsupervised EL system.

It disambiguate query names occurring in the target documents in a pipeline. It includes

Document Preprocessing step to preprocess the target document (Section 3.1), Candidate

Generation and Filtering step to generate a set of candidates generated for each query
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name and then to filter-out the least reliable (Section 3.2), Candidate Ranking step to

rank candidates in order to find out the best matching KB candidate for each query name

(Section 3.3) and NIL clustering step to cluster those queries without any candidate in KB

(Section 3.3.3). For each step, we have proposed techniques to tackle the facing challenges.

Briefly, in the document preprocessing step we apply several techniques (described

in Section 3.1) to normalize the document and expand the information in order to assist

the process of disambiguation. In this step, we applied a Rule-based Combined NERC

(RCNERC) system to distinguish query names in the target document. This is a combination

of three NERC systems that is able to amend the result of named entity recognition using

predefined rules. In addition, in this step the system applies other techniques such as text

normalization, acronym expansion, pattern extraction to enrich the target document. In the

candidate generation and filtering step the system initially generates a set of candidates for

each query and it then applies a rule-based approach to filter-out noisy candidates from the

set of whole candidates. It helps to obtain a discriminative set of candidates that increases the

system accuracy in linking task. In the candidate ranking step we proposed our unsupervised

disambiguation approach that uses graph structure towards ranking candidates. It discovers

the semantic knowledge laid in the context of document. To tackle the highly ambiguous

nature of EL task it is crucial to exploit the semantic relations between NE mentions in the

target document. Since our method is unsupervised it does not have the defect of supervised

approaches that is the lack of enough annotated data for training. Finally, for the NIL

Clustering step, we have applied a term clustering approach that groups all same not-in-KB

queries in a cluster indicating a new entity in the KB.

Meanwhile, our research in this area spans over several areas within the field of NLP,

and we believed that a number of distinguishable contributions are contained in our work.

We want to highlight them, listing them below in what we consider their order of decreasing

relevance:
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• C.1: Unsupervised Disambiguation using Local Information. We have proposed an

unsupervised graph-based approach using local information occurring in the target

document (henceforth, local ranker). In our experiments, the local information refers

to the data existing in a sentence where the query name occurs. The hypothesis behind

it, is based on this idea that a relevant semantic relation occurs often between query

name and each NE mention (the pair ⟨query name, NE mention⟩) in the same sentence.

The system uses these semantic relations to rank candidates. To this end, it extracts

the context between each pair in the same sentence. A binary vector (a row matrix) is

then assigned to the context elements (bag of lemmas) between each pair. In order to

rank the candidates, the system generates a star graph for the query name and one for

each candidate. The system computes the similarity between query graph and each

candidate graph. The goal is to select the most similar candidate to the query name.

Central vertex of query graph is labeled with the query name and central vertex of

each candidate graph is labeled with the candidate name. Other vertices in the graphs

are labeled with those NE mentions existing in the set of pairs. Each edge is labeled

with the semantic relation existing between the linked entities. This is represented by a

binary vector corresponding to each pair. The system ranks each candidate based on

the degree of similarity between query graph and each candidate graph. Details are

described in Section 3.3.1.

• C.2: Unsupervised Disambiguation using Global Information. We have proposed

an Unsupervised graph-based approach that takes advantage of global information

(henceforth, global ranker) existing in the target document. This information is the

semantic knowledge not only existing in the query sentence (the sentence where the

query name occurs) but also the information lied in other sentences of the target

document (in our experiment, a text window of 3 sentences, the query sentence and
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the previous and following ones). In this approach, we consider the fact that NE

mentions existing in a document are usually coherent. They form an inter-related

semantic network and each group of mentions can be clustered by one or more topics.

The system exploits the semantic networks between NE mentions. The first approach

(local ranker) computes the semantic similarity just from the target document. On the

contrary, the second approach (global ranker) computes the semantic similarity using

world knowledge, specially using DISCO3 and based on the statistical analysis of very

large text collections (in our experiment, English Wikipedia). The system generates a

graph for the query name and one for each candidate. Each NE mentions occurring

in the text window (three sentences) of the target document, would be a vertex in the

query graph (excluding query name). Likewise, each NE mention, recognized from the

first 10 sentences4 of each candidate’s document, is a vertex for this candidate graph

(excluding query name). The relations (edges) are the semantic similarity (measured

by DISCO) between each two vertices. The system thereupon computes the most

important vertices as the topics for each graph. The topics are recognized by computing

degree centrality for each vertex. Finally, the system ranks the candidates based on

degree of similarity between the topics in the query graph and each candidate graph.

Details are described in Section 3.3.2.

• C.3: Combined Disambiguation approach. In some queries, the query sentence does

not contain any NE mention (the sentence just has the query name). In such cases,

the system cannot apply the local ranker. To solve this problem, the system initially

tries to apply the local ranker. If the query sentence contains no NE mentions (except,

the query name), the global ranker will be used. We have evaluated both ranking

3DISCO is a NLP tools which allows to retrieve the semantic similarity between arbitrary words – http:
//www.linguatools.de/disco/disco_en.html

4We consider the fact that the first sentences in each candidate’s document are more informative. It is a
notable consideration for systems extracting information from Wikipedia pages. See, for instance, [54].

http://www.linguatools.de/disco/disco_en.html
http://www.linguatools.de/disco/disco_en.html
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approaches, separately. We realized that the local ranker has a better performance

for those queries having more than two candidates and the global ranker has better

performance for the queries having two candidates. In order to improve the results,

we combined these two approaches. Using this technique, the results obtained by the

combination approach improved (Figure 4.6).

• C.4: NIL clustering using Alternate Names (ANs). A large amount of the queries refer

to the entities that are not present in the reference KB (NIL queries). For those queries,

the system clusters them in groups, each referring to a same Not-in-KB entity (NIL

Clustering). We proposed a NIL clustering approach. The system consider the first

NIL query as a NIL cluster. The next NIL queries and their properties (query name and

Alternate Names–ANs) are compared with existing NIL clusters. ANs are the name

variants for a query name. The comparison uses a fuzzy matching techniques based on

the Dice similarity between each cluster’s properties and the new query name (and its

ANs). In each comparison if the dice similarity is more than a predefined threshold (in

our experiment, set to 0.8), the new NIL query will be joined to that cluster. Otherwise,

the system generates a new cluster for this query. Details are explained in Section 3.3.3.

• C.5: NE Recognition and Classification using Rule-based Combination Approach

(RCNERC). In this research, we have proposed a Rule-based Combination NERC

(RCNERC) system (three-phase NERC system explained in Section 3.1). The first

step is called recognition phase and is responsible for detecting and classifying query

names to PER (person), ORG (organization), GPE (geo-political entity), MISC (miscel-

laneous), and N/A (not-available) types using three NERC systems (Stanford, Illinois,

and Senna). The second step is called combination phase and combines the classifica-

tion results based on the majority voting between three NERC systems. Finally, the

third step is called amendment phase and modifies the results of combination phase by
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a set of predefined rules. [55] presented a combination NERC technique for linking

entities. Compared with this work, we applied a further step (amendment phase). This

phase takes advantage of pattern extraction and matching to modify NERC annotations.

Our RCNERC system significantly improved the final results of the EL system. It

demonstrated that although the candidate ranking is a crucial step in EL systems,

without a reliable NERC approach, its performance would dramatically be decreased.

• C.6: Three-phase Candidate Filtering. The accuracy of EL systems in ranking candi-

dates is exponentially reduced whatever the number of candidates (for each query) is

increased. Thus, it requires a method to filter-out those candidates which are unlikely

the correct answer. The candidate ranking step is afterward applied to the rest of

candidates. We proposed a rule-based candidate filtering method to reduce the prob-

ability of selecting a wrong entity in the reference KB during the candidate ranking

step. [71] and [39] presented a candidate filtering method for EL task. They applied a

title matching in order to filter-out the candidates. In our filtering technique, we use a

wider range of rules in three main categories: 1) Title Matching, 2) Type Matching

and 3) Pattern Extraction and Matching (Section 3.2). This technique helps to obtain a

discriminating set of candidates that increases the system accuracy.

1.5 Overview of this Document

The rest of this document is organized as follows: Chapter 2 gives a review of the state of the

art and the development of EL systems:

• This Chapter explains about the early history of EL.

• In continue, it describes different part of the most popular EL system architecture as

pipeline and presents literature review on each part of the EL system.
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• And finally, several evaluation framework for EL task are described in this chapter.

Chapter 3 presents our approach and the state of the work that has been carried. This Chapter

is organized in three sections:

• Document Processing section where at the outset the documents are preprocessed.

• Document Generation and Filtering step where a set of candidates for each query are

generated and noisy ones are filtered.

• Candidate Ranking section where the best candidate for each query is chosen. This

section itself includes three parts: a) Candidate Ranking using Local Information, b)

Candidate Ranking using Global Information and c) NIL clustering where the system

clusters each group of NIL queries referring to a same not-in-KB entity.

Chapter 4 describes the evaluation framework and analysis of results. This section includes:

• Introducing the evaluation framework that we used in our experiments containing a)

evaluation task definition, b) evaluation metrics and c) evaluation data.

• presenting the evaluation results and analysis of them.

Finally, Chapter 5 reflects our conclusion and future works on the research.





Chapter 2

State of The Art

This section presents an overview of early history of EL (Section 2.1), the general architecture

of EL systems as well as the research done towards different EL approaches (Section 2.2). A

sketch of the evolution in EL evaluations is presented (Section 2.3) and finally, the Wikipedia

as a valuable KB is briefly reviewed in Section 2.4.

2.1 Early History and Recent Works on EL

Recent works focused on EL in its contemporary history are inspired from the antecedent

research on Word Sense Disambiguation-WSD which is the task of detecting the correct

sense of a word in text. For instance, the word "bar" can be meant as an obstacle, load, rod,

arrow or court. The correct sense of a word in the text is determined given its neighborhood.

Even two occurrences of a word in the same document may have different senses depending

their close neighborhood. Many studies achieved on WSD are quite relevant to EL. [45]

presented its unsupervised WSD algorithm using machine readable dictionaries. Also, [95]

proposed its algorithm for unsupervised WSD. The algorithm is based on two powerful
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constraints - that words tend to have one sense per discourse and one sense per collocation -

exploited in an iterative bootstrapping procedure. EL is a recent task inspired by WSD.

By analogy, both EL and WSD tasks tackle synonymy and polysemy challenges existing

in the human language. However, there are differences between the tasks. In EL task, the

candidates are located in the KB (e.g., Wikipedia, DBpedia). In WSD task, the candidates

are placed in the sense repositories (usually WordNet-WN senses) [32]. In addition, the

candidate generation step in WSD supposes that this lexical database is a complete resource.

On the contrary, the EL task may deal with the queries that are not in the KB. In such

cases, the query is tagged as NIL [7, 52]. The NIL clustering step is applied and the NIL

query will be added to the KB as a new entry. As another difference, the NE mentions

in the EL task usually vary more than lexical mentions in WSD. Therefore, the EL task

requires a wider candidate generation process [44, 90]. The earliest work on the EL task were

presented by [7] and [17]. Their goals were to link NEs occurring in the documents to their

corresponding entries in Wikipedia. They did not use the term EL in their works and they

applied different approaches. [17] used heuristic rules and Wikipedia disambiguation markup

for mapping from NE mentions to their Wikipedia entries. [7] suggested an approach for

not-in-KB entities by learning a NIL threshold to determine whether the entity exists in the

reference KB. Besides, earlier EL studies were focused at each time on disambiguation a NE

mention just using its neighborhood and usually based on supervised models [7, 34, 57, 58].

However, due to the lack of enough informative context, a global process of the target

document using semantic analysis of multiple NE mentions is more strong. Some recent

works later applied this approach by disambiguating a set of relevant mentions simultaneously

which is called collective approaches, usually through supervised or graph-based reranking

models [11, 12, 17, 18, 20, 22–24, 30, 31, 34–36, 42, 43, 47, 58, 74, 78, 85]. Several measures

to choose the “collaborators” include collaborative learning [12], ensemble ranking [42, 74],

co-occurred concept mentions [53, 70], topic modeling [11, 93], relation extraction [13],
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coreference [70], semantic relatedness [13, 38, 70], Neighborhood Expansion with Pseudo-

Relevance Feedback [21], meta-paths [38] and social networks [11, 38]. In our work, we

have also took advantage of the collaborators and have proposed our methods to generate the

networks of similar NE mentions in each target document.

2.2 EL Architecture and Approaches

The EL approaches provided by the researchers usually follow a common architecture in

several major steps. The differences are in proposing diverse techniques for each step of this

architecture. Figure 2.1 shows a general architecture for EL systems including three major

steps. They are described in the following sections.

Fig. 2.1 General EL System Architecture
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2.2.1 Query Expansion

Expanding the query from its context can effectively reduce the ambiguities of the query

name, under the assumption that two name variants in the same document refer to the same

entity. For example, without the query expansion, the query name Roth is linked to seventy-

six entities in Wikipedia, but its expansion John D. Roth is only linked to two entities [97].

Thus, query expansion is performed as the first step for EL. This step often includes a

classification of the query into the possible entity types PER (e.g., George Washington),

ORG (e.g., Microsoft), GPE (e.g., Heidelberg city). The GPE is abbreviation of GeoPolitical

Entity, a geographical area which is associated with some sort of political structure (different

from natural toponyms as rivers, mountains, seas, etc.). Following, some popular techniques

for the query expansion are described.

• Wikipedia Hyperlink Mining. A hyperlink is a structural component that connects

the web page to a different location. The Wikipedia pages contain many hyperlinks

having useful information for the query expansion. The method extracts the name

variants of an entity in KB by leveraging the knowledge sources in Wikipedia: “titles

of entity pages", “disambiguation pages"1, “redirect pages"2 and “anchor texts". With

the acquired name variants for entities in KB, the possible KB candidates for a given

query name can be retrieved by string matching. If the query name is an acronym, it

can be expanded from the target document. [10, 98] employed the Wikipedia hyperlink

mining for the query expansion. For specific types of NE more focuses approaches can

be used as person name grammars for PER, acronym expansion/compression or suffix

removing for ORG and geo-disambiguation techniques for GPE.

• Coreference resolution. Several queries can be expanded based on source document

coreference resolution. The goal is to explore NE mentions that have relations, shared
1http://en.wikipedia.org/wiki/Wikipedia:Disambiguation
2http://en.wikipedia.org/wiki/Wikipedia:Redirect

http://en.wikipedia.org/wiki/Wikipedia:Disambiguation
http://en.wikipedia.org/wiki/Wikipedia:Redirect


2.2 EL Architecture and Approaches 21

events, common attributes or co-occurrences with the query name in the same target

document. When two NE mentions are coreferential, the one is usually a full form (the

antecedent) and the other is an abbreviated form or an acronym (a proform or anaphor).

When a query name is acronym, the technique helps to expand the full form of this

mention. [10] used a Chinese name coreference resolution system to get the possible

name variants for each query name.

• Statistical Models. With a set of expansions extracted from the target document for

a query name, the method applies a supervised learning algorithm to infer which

expansions are valid. Each ⟨queryname,expansion⟩ pair, in the form of feature vector,

is presented to a classifier (e.g., SVM). A NIL response is returned if there are no

positively classified expansions. Otherwise, the candidate with highest confidence score

is selected. [98] employed a statistical model based on SVM to expand queries. [96]

presented a query expansion feature set to be used by the classifier.

2.2.2 Candidate Generation

A KB always contains a huge number of entities. It is impractical a brute-force searching

to consider whole entities in the KB for linking NE mentions. Thus, candidate generation

step is a solution to retrieve the most important entities in the KB that can potentially be

candidates for the query name. This module selects the KB entities that might correspond to

the query name, typically with basis on string similarity. The common methods to generate

candidate set is described following.

• Fuzzy Title Matching. The fuzzy title matching (aka, approximate title matching)

is the technique of finding the KB entities that match a string pattern in their title

approximately (rather than exactly). For each query, the EL system generates a set

of candidates using fuzzy title matching (e.g., Dice similarity). In this technique, the
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system explores those candidates with a Dice similarity between the query name and

the candidate title higher than a predefined threshold. [10, 59] used the fuzzy title

matching similarity to generate candidates from the KB.

• Information Retrieval (IR). IR obtains information resources relevant to query from a

collection of information resources. Searches can be based on metadata or on full-text

indexing. [67] used the IR technique to generate the candidates. In their system, the

KB was loaded into an IR engine. It retrieved top 100 candidates for each query. In

three separate experiments they load the KB information to the IR engine, first just

KB titles, second title and infoboxes, and finally, the entire KB documents. In their

evaluation, the best recall was obtained by the last experiment.

2.2.3 Methods for Candidate Ranking

This step sorts the retrieved candidates according to the likelihood of being the correct

referent. The ranking methods in the state of the art can be classified into supervised methods,

unsupervised methods and knowledge-based methods [66]. These methods are described

following.

• Supervised Disambiguation (SD). The first category applies Machine Learning (ML)

techniques for inferring a classifier from training (manually annotated) data sets to

classify new examples. Researcher proposed different methods for SD. A Decision List

[82] is a SD method containing a set of rules (if-then-else) to classify the samples. [41]

used learning decision lists for Attribute Efficient Learning. [49] introduced another

SD method, Decision Tree, that has a tree-like structure of decisions and their possible

consequences. C4.5 [77], a widely used algorithm of learning decision trees was

outperformed by other supervised methods [60]. [40] studied on the Naive Bayes

classifier. This classifier is a supervised method based on the Bayes’ theorem and is
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a member of simple probabilistic classifiers. The model is based on computing the

conditional probability of each class membership depending on a set of features under

the hypothesis of conditional independence. Although the model seems, at first glance,

too heavy in practice it works well in this task. [60] demonstrated good performance

of this classifier compared with other supervised methods. [51] introduced Neural

Networks. The model is presented as a system of interconnected neurons usually

organized into an input layer, an output layer and a set of intermediate (hidden) layers.

Although [87] showed an appropriate performance by this model, the experiments

were performed with a small size of data. However, the dependency to large amount of

training data is a major drawback, [66]. Recently, different combination of supervised

approaches have been proposed. The combination methods are highly interesting since

they could cover the weakness of each stand-alone SD methods [66]. SD systems

obviously rely on the set of supervised (annotated) training sets, and, so on a highly

costly human work. This is why researchers have moved to unsupervised or semi-

supervised methods. As whatever supervised approach, SD can suffer the problem

of lacking enough supervised data for training. For facing this problem unsupervised

methods have been proposed.

• Unsupervised Disambiguation (UD). The underlying hypothesis of UD is the distribu-

tional hypothesis, i.e., a word can be defined by the company it has. Indeed, each word

is correlated with its neighboring context. Co-located words generate a cluster tending

to the same sense or topic. No labeled training data set or any machine-readable

resources (e.g. dictionary, ontology, thesauri) are applied for this approach [66]. Con-

text Clustering [84] is a UD method by which each occurrence of a target word in a

corpus is represented as a context vector. The vectors are then gathered in clusters,

each indicating a sense of target word. A drawback of this method is that, a large
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amount of un-labeled training data is required. [46] studied on Word Clustering a

UD method based on clustering the words which are semantically similar. Later on,

[72] proposed a word clustering approach called clustering by committee (CBC). [91]

described another UD method Co-occurrence Graphs assuming that co-occurrence

words and their relations generate a co-occurrence graph. In this graph, the vertices

are co-occurrences and the edges are the relations between co-occurrences.

• Knowledge-based Disambiguation (KD). The goal of this approach is to apply knowl-

edge resources (such as dictionaries, thesauri, ontologies, collocations, etc.) for disam-

biguation [4, 8, 27, 45, 56]. Although these methods have lower accuracy compared

with supervised techniques, they use to have a wider coverage [66].

2.2.4 NIL Clustering

Queries are tagged as NIL (Not-In-KB) when no entity in the KB corresponds to them (or we

are not able to select the appropriate one). So NIL implies that a new entry could be included

into the KB. In a set of documents, several NE mentions may refer to a same NIL entity. In

the KBP contest, all NE mentions related to the same NIL entity should be grouped by the

same id (e.g. NIL001, NIL002, . . . ). So each NIL cluster could correspond to a new entry in

the reference KB. Several techniques have been applied to this task (provided that the query

has been classified as NIL):

• Name String Matching. This technique consists in grouping queries by term matching.

For instance, two NIL queries with the name “ABC" would be clustered together and,

so, would be given the same NIL ID. A query name may contain fragments of other

query names. To this end, the fuzzy string matching is applied. It clusters all NIL

queries with the Dice similarity between the query names higher than a predefined

threshold. [9, 10, 37, 53, 79, 81] used the name string matching to cluster NIL queries.
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• Hierarchical Agglomerative Clustering (HAC). In this approach, those query names

referring to the same Not-in-KB entity are clustered using HAC algorithm. Hierarchical

clustering can be approached by top-down and bottom-up algorithms. The Bottom-up

algorithm (aka., HAC) treats each query names as a singleton cluster at the outset

and then sequentially merge (or agglomerate) pairs of clusters as long as two clusters

exceeded a similarity threshold. [59, 75, 98] presented their works using this approach.

In contrary, top-down approach works by starting with a root cluster, where all the

candidates are placed and then recursively splitting the clusters based on the most

likely partition in each stop.

• Graph based clustering. Using this approach, a graph structure is generated for

the clustering. [97] employed the graph-based approach to cluster the NIL queries.

They used Spectral Graph Partitioning (aka., Spectral clustering) [68] to generate

the globally optimized entity clusters. The results obtained by the spectral graph

partitioning usually outperform the traditional clustering algorithms such as k-means

or minimum-cut [97].

• Topic Modeling. Topic modeling is a statistical model to explore the topics underlying

the documents. The topic modeling approaches are widely used in different NLP appli-

cations [97]. Latent Dirichlet Allocation (LDA) is a common topic model approach

that was first presented as graphical model for topic discovery by [6]. The topics are

probability distributions over words. [92, 97] used the topic modeling for the NIL

clustering.

• Linking to Larger KB and mapping down. This approach clusters NIL queries using a

larger KB. [79] explored the NIL query names in full dump of Wikipedia. From 2,250

queries evaluated, their approach tagged 1,263 to NIL. 56% of the NIL queries were
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linked to the full dump of Wikipedia and 44% of NIL queries had no reference in the

KB.

2.3 EL Evaluation Frameworks

The EL problem is currently receiving substantial attention in the IR community, given its

recent inclusion as a specific task in the NIST-sponsored3 Automated Content Extraction4

(ACE) evaluations (i.e., the ACE-2008 cross-document co-reference resolution task), and

in the Text Analysis Conference5 (i.e., the Knowledge Base Population task, referred to as

TAC-KBP). In addition, the Entity Recognition and Disambiguation (ERD) challenge6 is

recently organized to focus on this task. These frameworks are described following:

• ACE Evaluations. The Automatic Content Extraction 2008 ACE cross-document

co-reference resolution task is pioneer organized evaluation for defining the recent EL

task. The objective of the NIST-sponsored ACE series of evaluations was to develop

human language technologies that provide automatic detection and recognition of

key information about real-world entities, relations, and events in source language

text and to convert that information into a structured form, which can be used by

follow-on processes, such as classification, filtering and selection, database update,

relationship display, and many others. An ACE system produces information about

objects discussed in the source language text. The strings of text are not the objects,

but are merely mentions of the real-world objects about which information should be

extracted. These objects have included, over the course of the evaluations, various

types of entities, relations, events, values, and temporal expressions. The emphasis has

3http://www.nist.gov
4http://www.itl.nist.gov/iad/mig/tests/ace/
5http://www.nist.gov/tac/
6http://web-ngram.research.microsoft.com/ERD2014/

http://www.nist.gov
http://www.itl.nist.gov/iad/mig/tests/ace/
http://www.nist.gov/tac/
http://web-ngram.research.microsoft.com/ERD2014/
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been on object coreference resolution, such that all data pertaining to the same unique

ACE object are collected into a single XML-formatted “record" on a per document

basis.

• TAC-KBP Evaluations. As the most important challenging competition, EL evaluation

a task within the Knowledge Base Population (KBP) track at Text Analysis Conference

(TAC) has been the subject of significant study over the past seven years. Since the

first KBP track held in 2008, the research in the area of EL has greatly developed. TAC

is organized and sponsored by the U.S. National Institute of Standards and Technology

(NIST) and the U.S. Department of Defense. TAC has commenced its activity since

2008 and developed out of NIST’s Text REtrieval Conference (TREC) and Document

Understanding Conference (DUC). The main goal of the KBP track at TAC is to gather

information about a specific entity that is scattered among the documents of a large

collection, and then use the extracted information to populate an existing KB.

• ERD Evaluations. A recent notable contribution to research in the field of EL was

made by the participants of the ERD. As the most structured challenging competition7,

ERD has commenced its activity since 2014 in the content of SIGIR conference8

whereby the organizers intended to improve the results of search engines based on

the recognized entities in the searched queries. The objective of an ERD system is to

recognize mentions of entities in a given text, disambiguate them, and map them to the

entities in a given entity collection or KB. The Challenge is composed of two parallel

tracks. In the “long text" track, the challenge targets are pages crawled from the Web;

these contain documents that are meant to be easily understandable by humans. The

“short text" track, on the other hand, consists of web search queries that are intended

7The ERD organized and sponsored by Google and Microsoft.
8http://sigir.org/sigir2014/

http://sigir.org/sigir2014/
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for a machine. As a result, the text is typically short and often lacks proper punctuation

and capitalization.

• GERBIL: General Entity Annotator Benchmarking Framework. The GERBIL [88]

is an evaluation framework for NED task. The idea behind this framework is to

provide researchers with easy-to-use interfaces that allow evaluation of annotation

tools on multiple datasets. It aims to ensure that researchers can derive meaningful

insights pertaining to the extension, integration and use of annotation applications.

GERBIL provides the results to allow them to easily compare the strengths and

weaknesses of their implementations with respect to the state of the art. With the

permanent experiment URIs provided by this framework, the reproducibility and

archiving of evaluation results can be ensured. Besides, the framework generates data

in machine-processable format, allowing for the efficient querying and post-processing

of evaluation results.

2.4 Wikipedia, a valuable KB in EL task

The Wikipedia is the most important KB which is widely used for different tasks, especially

within the TAC-KBP tracks. Several unique characteristics of the Wikipedia are broadly

used in the EL task such as infobox property of each Wikipedia page. The infobox property

can be used to disambiguate the query names. In addition, each entity is assigned to one or

more than one categories. These types of characteristics have made Wikipedia very popular

for the researchers specially those acting in the EL task. The Wikipedia structure contains

several features including redirection pages, disambiguation pages, infoboxes, categories,

and hyperlinks, which can be used to disambiguate query names:
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• Categories: To each entity in the Wikipedia, one or more categories can be allocated.

These categories indicate the topic associated to each Wikipedia entity.

• Hyperlinks: Each entity occurring in the context of a Wikipedia page of other entities

is referred to by a hyperlink. This Characteristic generates a large network of semantic

knowledge over the Wikipedia KB.

• Redirect Pages: For each possible AN for each Wikipedia entity, there is a redirect

page. For instance, "D.C." is redirected to the Wikipedia page "Washington, D.C.".

There are many samples from this type existing in the Wikipedia.

• Disambiguation Pages: Several entities in the Wikipedia use the same title. For

instance, "ABC" refers to more than one hundred entities. For such names there is a

disambiguation page which is considered as a characteristics of Wikipedia. In each

page, a set of possible entities, each of which with a short description and corresponding

to that name are suggested.

• Infoboxes: An infobox is a structured table located in the right sides of Wikipedia pages.

It summarizes the main information existing in the context of that entity page. The

information inside the infoboxes usually use as facts in different NL task, especially,

the EL task. The infobox format follows existing templates, that are suggested to be

followed by Wikipedia editors. Currently for English Wikipedia more than 10,000

template exist.





Chapter 3

Methodology

This section describes the methodology we used during development of the proposed EL

system. The EL system developed during this research follows the typical architecture in

the state of the art (Figure 3.1). In general, the system links entities in a pipeline including

three main steps: a) document preprocessing, b) candidate generation and filtering, and c)

candidate ranking and NIL clustering. Details of each step are provided next.

3.1 Document Preprocessing

Input to our EL system consists of:

1. a reference KB,

2. a target document,

3. a query (a NE denomination together with an offset in the target document, i.e. an

entity mention in the target document.). The requested entity mention is also called a

query name.
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Fig. 3.1 The architecture of our EL system.

Highly ambiguous query names often occur in the target documents: they may refer to several

entities in KB. In such cases, document preprocessing is the first step of the EL task in the

system and can reduce the ambiguity and enrich the documents through finding variants of

each query name, query type annotation and integrating more discriminative information. In

order to preprocess the target document, the system applies the following techniques:
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Query Information Extraction. In order to proceed each query, the system extracts

queries’ information consisting of a query Id (queryId), a name string (queryName),

target document Id (docId), and the start and end offsets where the name string occurs

(begOfst, endOfst). This information is used in different parts of system according to

the needs. The most important one is the query name which is the same as NE mention

occurring in the specific offset of the target document.

Text Normalization. To goal of this step consists of removing noise from documents

and providing basic structure to them. The target document has to be normalized in order

to be used in further steps. A normalized document can increase the accuracy of the

system in linking candidates. Non-textual part of documents and HTML tags (e.g., in

Web documents) are considered noise. Besides, textual part of documents are splitted into

sentences using a statistical sentence boundary detection tools called Splitta [28]. It includes

proper tokenization and models for sentence boundary detection. Its models are trained from

Wall Street Journal news and the Brown Corpus.

Rule-based Combination NERC Approach (RCNERC). The NE Recognition and Clas-

sification (NERC)1 is one of the initial steps in the linking task which can enrich the target

document by annotating and classifying the query names to different types. It can help

to filter-out those candidates with type different to each query type. Our system classifies

queries into three entity types:

• PER: to indicate person type entities (e.g., “George Washington", the first presi-

dent of the United States). Usually, a huge amount of query names occurring in the

documents categorized as PER.

1n.b. The query type is not known a priori and has to be guessed.
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Fig. 3.2 The architecture of the RCNERC system.

• ORG: to represent organization type entities (e.g., “Microsoft", an American multi-

national technology corporation). A considerable occurrences of query names with the

ORG type are in the form of acronym.

• GPE: to represent geo-political entities (e.g., “Heidelberg city", a city situated

on the River Neckar in south-west Germany). There are some cases that select the

correct query type between ORG and GPE would be highly challenging. We will

discuss it later on.

An accurate NERC system has high impact on the final result of the system. We particularly

focused on this step to provide a NERC system as accurate as possible. For this reason, the

first step was to reduce the error rate of the NERC system. Each NERC system (even those
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in state of the art) has an error rate. To minimize this ratio, we proposed a three-phase NERC

approach as indicated in Figure 3.2.

1. Recognition and Classification Phase. In this phase we have used three major state-of-

the-art NERC systems including Stanford [25]2, Illinois [80]3 and Senna [16][15]4.

• Stanford: Stanford NER is a Java implementation of a Named Entity Recognizer.

It provides a general implementation of (arbitrary order) linear chain Conditional

Random Field (CRF) sequence models.

• Illinois: It uses several features to achieve new state of the art performance on the

NER task using four fundamental design decisions: text chunks representation,

inference algorithm, using non-local features and external knowledge.

• Senna: It outputs a host of NLP predictions: part-of-speech (POS) tags, chunking

(CHK), NER, semantic role labeling (SRL) and syntactic parsing (PSG).

Each NERC system provides their results that could be PER (person), ORG (organi-

zation), GPE (geo-political entity), MISC (miscellaneous), and N/A (not available).

Some documents such as discussion fora (blogs, forums) do not often follow a standard

structure and query names are usually lowercase. Thus, we run NERC system two

times, one without any change on the document and next by uppercasing all the words

(excluding stopwords). By this technique, many query names annotated by N/A type

can be recognized.

2. Combination Phase. In the second phase, the system incorporates the results of all

NERC systems (Stanford, Illinois, and Senna) using a combination technique and

based on the majority voting. The idea behind that is that query type having the

2http://nlp.stanford.edu/software/CRF-NER.shtml
3http://cogcomp.cs.illinois.edu/page/software_view/NETagger
4http://ml.nec-labs.com/senna/

http://nlp.stanford.edu/software/CRF-NER.shtml
http://cogcomp.cs.illinois.edu/page/software_view/NETagger
http://ml.nec-labs.com/senna/
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X X X −→ X

X X Y −→ X

X Y Z −→ 3rd Phase

X X
– −→ X

X
– – −→ X

– – – −→ 3rd Phase

Table 3.1 The rules used in the Combination phase. X, Y, or Z illustrates PER, ORG, and
GPE and “−" represents “N/A" or “MISC" query types.

most agreement (at least two NERC systems) is likely the correct type for that query

name. As shown in Table 3.1 this module recognizes the query type using the combi-

nation rules. For instance, consider the result of first (recognition and Classification)

phase as follows: “[NERC1:PER; NERC2:PER; NERC3:ORG]", the result of

combination phase would be “[CNERC:PER]" given that the PER type has the ma-

jor agreement. As another example, considering “[NERC1:ORG; NERC2:N/A;

NERC3:MISC]" the result of combination phase would be “[CNERC:ORG]". In the

case that all NERC systems have three different answers or all answers are N/A or

MISC, the system will classify the query name in the third phase.

3. Amendment Phase. The third phase modifies the results of the second (Combina-

tion) phase using predefined rules such as pattern extraction and matching rules.

For instance, we have provided a set of patterns containing general organization

terms (such as “group", “team", “Inc.", “Institute", “School", “Center",

“Foundation") (Table 3.2-1). Those query names that contain such terms are modi-
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# Pattern System Act Example

1 X1 or X2 or X3 ∈ {ORG terms} RCNERC (Amendment phase) “Apple Inc.”

2 [X] ⟨ORG relation⟩ [Y] RCNERC (Amendment phase) “Spain vs England"

3 [GPE X], [GPE Y] Candidate Filtering “London, England"

4 [GPE X]{. . . }[GPE Y] Candidate Filtering
“Barcelona ...
Spain"

Table 3.2 The patterns used for type amendment and candidate filtering.

fied and tagged as "ORG". As an example, the query name “Apple Inc.” is tagged

as ORG, given that it contains a general organization term (“Inc.”). In addition, there

is a challenging case for most existing NERC systems. This problem occurs when

some entities are referred to by their simple form. For instance, in the string “Spain

vs England", the query names “Spain" and “England" should refer to organi-

zations, especially, sport teams like “Spain national football team". But

the existing NERC systems often detects “Spain" or “England" as a geo-political

entity. We have used pattern matching techniques for facing this problem (Table 3.2-

#2). We consider a text window of size ±30 offsets around each query name. In this

window if the system detects the organization patterns like “[X] vs [Y]", or “[X]

won [Y]", the query names X or Y are re-annotated as ORG. Besides, many query

names, especially in discussion fora (forum, blogs) refer to unknown persons, e.g.,

“hawk2005" or “sunboy_US". This query names should be tagged by PER type.

The NERC systems often tag them as MISC or N/A. Thus at the end of amendment

phase if the system could not categorize a query name using the predefined sets of

organizations and geo-political names, it is annotated as PER type.
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Alternate Name Generation During the study we inferred that many query names have

more than one informative form in the same target document. For instance, consider the

query name “Barack". Its expansion “Barack Obama" occurring in the same target

document can be used as an Alternate Name (AN) for this query name. Thus, instead of

searching for all “Barack" in the KB, we only search for the candidates with the title

name “Barack Obama". This technique helps to filter-out many noisy candidates can

cause occurring a mistake in detecting true answer. We added the AN generation module

to reduce our searching domain in the KB and to make the process more accurate. ANs

can considerably reduce the ambiguities of the query name and improve accuracy, under

the assumption that two name variants in a same document can refer to the same entity.

Besides, AN generation effectively contributes on an improvement of the recall allowing

the identification of KB candidates whose names are distant from the original query name

(especially, acronyms and nicknames). This module generates a set of name variants for each

query name following the techniques below:

1. Document-based Acronym Expansion. Acronyms form a major part of query names

and can be highly ambiguous. For instance, “ABC” is referred to around 100 en-

tities. As another example, “JT” can refer to either “Justin Timberlake" an

American singer and actor, “James Taylor" lead singer of Kool and the Gang,

or “Jersey Telecom“ the Jersey telephone company. The purpose of acronym

expansion is to reduce its ambiguity. We consider two expansion mechanisms. The

first one reformulates acronyms according to textual patterns, e.g., finding expres-

sions like “Congolese National Police (PNC)”, or “PNC (Congolese

National Police)”. In some cases, the distance between the acronym and its

full names is long. Thus, we apply the second strategy; the system explores inside the

target document to gather all subsequent words with the first capital letters in order

and matched with the acronym letters. For instance, “American Broadcasting



3.1 Document Preprocessing 39

Fig. 3.3 Two techniques for acronym expansion.

Company" can be mapped to “ABC", both occurring in the same target document. In

this case, supposing q as query name, the expansion has the following characteristics:

• the number of capitalized words is len(q).

• the first letter of the words inside the expansion form occurs in q.

• the first letters of the words inside the expansion form are in the same order as

they are in q.

• the lowercase word can only be one of the “for", “and", “in", “of" and “at".

2. Gazetteer-based Acronym Expansion. In some occasions, the query names can be

expanded using external mapping gazetteers in the form of ⟨abbreviation, expansion⟩

such as:

• the US states mappings such as the pair <“CA", “California"> or <“MD",

“Maryland">.

• Country abbreviation mappings such as the pairs <“UK", “United Kingdom">,

<“US", “United States">, or <“UAE", “United Arab Emirates">.

3. Redirect and Nickname Mapping. We have provided a dictionary of mappings in

order to redirect the query names to their more informative form. As an exam-
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ple, “president Obama" can be mapped to the “Barack Obama" the US pres-

ident. Further, a query name may indirectly refer to an entity. For instance, the

query names “the Big Kiwi" and “Greek Freak" refer to the American basket-

ball players “Steven Adams" and “Giannis Antetokounmpo", respectively.

Given that many existing nicknames are in the Wikipedia, we have developed a

module to automatically extract them from the Wikipedia documents. This mod-

ule detects the nicknames using pattern extraction technique. For instance, in the

sentence “Kenny Satterfield nicknamed Andersen ‘Birdman’ for

his arm span", the “Andersen ‘Birdman’" is considered as the nickname

for “Kenny Satterfield".

4. Google Crosswiki Dictionary. A query name may contain orthographic irregularity

(e.g., “Equador" is the wrong form of “Ecuador", a country in South America)

or have partial form of its entity name (e.g., “Barca" the abbreviated form of “FC

Barcelona"). These query names usually exist in less-structured target documents

such as discussion fora. To get more discriminating form of a partial query name, we

use Google Crosswiki dictionary. It keeps a huge amount of IR data related to the

Google search queries. For each query, there are a sort of suggested named entities,

each of which associated with a confidence score. As an example, supposing the query

“Man U", the first suggest in the dictionary is “Manchester United F.C." with

a confidence score higher than other entities.

3.2 Candidate Generation and Filtering

After preprocessing step, the system explores a set candidates for each query name in two

steps. At the outset, a set of initial candidates is generated more focusing on recall. Next, we
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Algorithm 1: Candidate Generation

Input:

q : query name

Vq = {v1
q, . . . ,v

1
q} : set o f ANs containg q itesel f .

K : re f erence KB

C = {} : set o f candidates

thr : Dice threshold

Process:

1: f or vk
q ∈Vq :

2: f or e ∈ K :

3: i f Dice(e,vk
q)≥ thr :

4: C.append(e)

5: return C

(a)

Algorithm 2: Candidate Filtering

Input:

C = {c1, . . . ,cn} : set o f candidates

Boolean Ff : Filtering f unction

Process:

1: f or ci ∈C :

2: i f Ff (ci) :

3: C.remove(ci)

4: return C

(b)

Table 3.3 The Algorithms used for the Candidate Generation step (a) and for the candidate
filtering step (b).
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filter-out some candidates by applying several matching techniques. Details of each step are

provided next.

Candidate Generation. A KB always contains a huge number of entities. It is impractical

a brute-force searching to consider whole entities in the KB to discover the best match to each

query names. Thus, candidate generation step is a solution to retrieve the most important

entities in the KB that can potentially be candidates for the query name. The set of candidates

generated in this step likely contains the correct entity, if it exists. Table 3.3a shows the

algorithm used for the candidate generation step. Given a query name, a set of candidates is

found by fuzzy name matching similarity. The system retrieves those entities in KB whose

names are similar enough, using Dice measure, to one of the name variants of the query

found by the AN generation step. In our experiments we used a similarity threshold of 0.9,

0.8 and 1 for PER, ORG and GPE, respectively.

Candidate Filtering. During the candidate generation step, our priority was retrieving the

candidates as much as possible to ensure the existence of the correct candidate in the set of

whole candidates. Indeed, that step is less focused on the precision and more on boosting

the recall. In the candidate filtering step, we filter-out those candidates which cannot be a

true answer as shown in Table 3.3b. This technique helps the EL system to select the best

candidate. The system faces this step using three filtering techniques:

1. Title Matching. This technique removes the unmatched candidates by defining a set

of noisy terms for each type. We define the noisy set containing terms like “group",

“team" for GPE type. If the system infers that the query type is GPE, then, all

candidates which their titles contain the noisy (organization) terms are removed from

the set of candidates. Likewise, we can use this set to remove redundant candidates for

a query name recognized as PER. In general, each general organization terms (e.g.,
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“Inc.", “team", “company") can be considered as a noisy term in the title of the

candidates when the query type (recognized by the NERC system) is PER or GPE.

Thus, the system eliminates those entities from the set of candidates. For instance,

suppose the query name “Liverpool" with the GPE type inferred by the NERC

system. The system removes the candidate “Liverpool railway station"

from the set of candidates given that the “railway" and “station" are considered

as noisy terms for a query with the GPE type.

2. Type Matching. In our experiments, the entities existing in the reference KB are usually

associated with their types. The types are PER, ORG, GPE, and UNK5 . The system

extracts each candidate type from its corresponding KB document6 and compares each

candidate type with the query type recognized and classified by our NERC system.

It thereupon eliminates those candidates having different types. As an example for

this step, consider “England" as a query name in the target documents. The system

retrieves two candidates in the candidate generation step : “England" as a country

and next as a football team. If the system recognizes its type as ORG, then, the

candidate with the GPE type (“England" as the country) will be removed from the

set of candidates.

3. Pattern Extraction and Matching. Our pattern extraction technique is useful to dis-

criminate query names and improve the accuracy of the system in discovering the

correct entities. This technique has a high impact, especially, for query names with

GPE types. Consider the query name X occurring in the pattern “[GPE X], [GPE

Y]” (Table 3.2-#3). We have previously provided a gazetteers of cities, states, and

countries. If X exists in the gazetteer containing the city names and Y exists in the

5UNK indicates unknown query types.
6The reference KB (Wikipedia) contains for each entry an associated document that we name its content as

wikitext.
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gazetteers containing the state or country names, and also the pattern “[X], [Y]”

exists as a candidate in the set of candidates, then the candidate filtering step is ap-

plied. For instance, assume the query name X as “London” and Y as “England”.

If “London, England" exists in the set of candidates, other candidates referring

to “London, Ontario, Canada”, “London, California”, or “London,

Ohio” are removed form the set of candidates. As another example, if the system

discovers the NE mention “Spain" in the same document where the query name

“Barcelona" exists, then, the system infers that the correct candidate for this query

name is “Barcelona, Spain" (Table 3.2). Other entities such as “Barcelona,

Arkansas“ and “Barcelona, Cornwall" will be removed from the set of can-

didates (Table 3.2-4). Consequently, the ranking step will be ignored since the pattern

would be considered as strong evidence for that query name.

3.3 Candidate Ranking

After generating the set of candidates the system selects the candidate that is a correct

reference for that query name. This step ranks candidates based on the degree of similarity

between the set of candidates and each query name (Table 3.4). To this purpose, we have

proposed an unsupervised disambiguation approach that combines two graph-based methods.

The first one uses the sentence in which the query name occurs (local ranker) and the second

(global ranker) exploits the information in the text window in size of ±1 sentence of the query

sentence7 (totally three sentences). The reason to select three sentences around the query

name is that we considered the semantic relatedness of this text window highly coherent.

The details of each method are provided next.

7The query sentence is a sentence where the query name occurs.
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Algorithm 3: Candidate Ranking

Input:

q : query name

C = {c1, . . . ,cn} : set o f candidates.

Linkq : the correct candidate f or query name q.

Process:

1: i f C == /0 :

2: linkq = nil

3: else :

4: f or ck in C :

5: i f ck = ArcMax Sim(q,C) :

6: linkq = ck

7: return linkq

Table 3.4 The Algorithm used for Candidate Ranking step.

3.3.1 Candidate Ranking using Local Information

This section describes an unsupervised graph-based approach using local information occur-

ring in the target document (local ranker). In our experiments, the local information refers to

the data existing in a sentence where the query name occurs. The hypothesis behind it, is

based on this idea that a semantic relation exists between query name and each NE mention

(the pair ⟨query name, NE mention⟩) in the same sentence. The system uses these semantic

relations to rank candidates. To this end, it extracts the context between each pair in the same

sentence. A binary vector (a row matrix) is then assigned to the context elements (bag of

lemmas) between each pair. In order to rank the candidates, the system generates a star graph

for the query name and for each candidate. The system computes the similarity between
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query graph and each candidate graph. The goal is to select the most similar candidate to the

query name. Central vertex of query graph is labeled with the query name and central vertex

of each candidate graph is labeled with the candidate name. Other vertices in the graphs

are labeled with those NE mentions existing in the set of pairs. Each edge is labeled with

the semantic relation existing between the linked entities. This is represented by a binary

vector corresponding to each pair. The system ranks each candidate based on the degree of

similarity between query graph and each candidate graph. Following detail of each step is

explained.

Binary Vector Generation. In this step, we exploit the context between components of all

the pairs ⟨query name, NE mention⟩ occurring in the query sentence of the target document,

and all sentences of each candidate document (Wikitext). Our hypothesis is based on the fact

that the context between the components of each pair contains discriminating information

and can be used to rank candidates. The system only considers the query sentence instead of

all sentences in the target document. Consider a query name q along with its target document

dq in which the query name occurs, the query sentence so and a set of NE mentions occurring

in the query sentence Mso = {m1
q, . . . ,m

r
q}. The system extracts each pair λi composed by the

query name q and each NE mention mi
q ∈ Mso:

λi = ⟨q,mi
q⟩ (3.1)

where, i ∈ {1, . . . , |Mso|}. Consider the set of candidates C = {c1, . . . ,cn}. Let the set of all

sentences in each candidate’s document Sc = {s1
c , . . . ,s

t
c}, and a set of NE mentions in each

candidate’s document Mc = {m1
c , . . . ,m

u
c}, the system extracts each pair λ consisting of query
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name and a mention both occurring in the same sentence:

λi, j,k = ⟨qi, j,mi, j,k⟩ (3.2)

where, i ∈ {1, . . . , |C|}, j ∈ {1, . . . , |Sc|}, and k ∈ {1, . . . , |M j|}, i.e., mi, j,k is the k-th mention

in j-th sentence of i-th candidate. As an example to show how the binary vectors are made,

consider the following sentences:

“Toyota was the largest automobile manufacturer in 2012

(by production) ahead of the Volkswagen group and General

Motors.",

“Toyota was started in 1933 as a division of Toyoda

Automatic Loom Works devoted to the production of automobiles

under the direction of the founder’s son, Kiichiro Toyoda.",

Assuming the query name as “Toyota", the pairs from the first sentence would be:

λ1 = ⟨“Toyota”,“Volkswagen⟩

λ2 = ⟨“Toyota”,“General Motors⟩,

and from the second sentence are:

λ3 = ⟨“Toyota”,“Toyoda Automatic Loom Works⟩

λ4 = ⟨“Toyota”,“Kiichiro Toyoda⟩,

The context between occurrences q and m defined as follows:

Wλ = w1w2 . . .wn, (3.3)
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for the example above the context between the elements of the pairs are defined as:

Wλ1=“was the largest automobile manufacturer in 2012 (by production)

ahead of the",

Wλ2=“was the largest automobile manufacturer in 2012 (by production)

ahead of the Volkswagen Group and",

Wλ3=“was started in 1933 as a division of",

Wλ4=“was started in 1933 as a division of Toyoda Automatic Loom

Works devoted to the production of automobiles under the direction

of the founder’s son,",

the word sequence Wλ is then lemmatized, and all stopwords are removed. The system

gathers all lemmas of all pairs together to create a bag of lemmas.

Lλ = {l1, l2, . . . , ly} (3.4)

LT =
⋃

λ∈Λ

Lλ (3.5)

where Lλ is a bag of lemmas of each pair λ , Λ is a set of all existing pairs, LT is a bag of

lemmas of all pairs Λ. For our example, Lλ and Lλ are as following:

Lλ1={“be", “large", “automobile", “manufacturer", “2012", “production",

“ahead" }

Lλ2={“be", “large", “automobile", “manufacturer", “2012", “production",

“ahead", “volkswagen", “group"}

Lλ3={“be", “start", “1933", “division"}
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Lλ4={“be", “start", “1933", “division", “toyoda", “automatic", “loom",

“works", “devote", “production", “automobile", “direction", “founder",

“son"}

Λ = {λ1,λ2,λ3,λ4 . . .}

LT ={“be", “large", “automobile", “manufacturer", “2012", “production",

“ahead", “volkswagen", “group", “start", “1933", “division", “toyoda",

“automatic", “loom", “works", “devote", “production", “automobile",

“direction", “founder", “son", . . . }, Next, the system generates for each pair λi a

vector of features using the bag of lemmas (binary vectors). For doing so, the system

generates a binary vector (a row matrix) ϕi assigned to pair λi (Equation 3.6). Following

the distributional hypothesis our claim is that ϕi represents the semantics relation between

q and m. The value of each element of the vectors is initially set to zero. The number of

vectors is equal to the number of pairs (|Λ|) and the number of elements of each vector, i.e.

the dimension of the semantic space, is equal to the number of lemmas in LT (|LT |). For each

vector, if the system finds same lemma in both bag of lemmas (LT ) and the corresponding

Lλ , the element of that vector is set to one (Equation 3.6).

ϕi =

[ l1 l2 . . . ld

b1
i b2

i . . . bd
i

]
(3.6)

Each element in vectors is equal to:

b j
i =

 0 if l j not in Lλi

1 if l j in Lλi

(3.7)
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In the example we can consider the following binary vectors:

ϕ =


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20

12
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33
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to
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ic
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om

w
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ks
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te
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. . .

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 . . .

3 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 . . .

4 0 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...


The Interpretation of the matrix below is, whether the ith lemma from the bag of total

lemmas exists in the set of lemmas belongs to each pair. If yes, the corresponding value of

the matrix is equal to 1, otherwise, 0.

Graph Generation. In order to rank the candidates, the system generates a star graph

for the query Gq = (Vq,Eq), and for each candidate, Gc = (Vc,Ec), in which V and E are

the sets of vertices and edges respectively (Figure 3.4). This step aims to generate a graph

structure to measure the similarity between Gq and each Gc in order to select the most similar

candidate to the query. Central vertex of Gq is labeled with the query name and central

vertex of each Gc is labeled with the candidate name. Other vertices in Gq and Gc are labeled

with those NE mentions existing in the set of pairs λ ∈ Λ. Each edge is labeled with the

semantic relation existing between the linked entities which is represented by a binary vector

ϕ corresponding to each pair λ . Given that we are dealing with star graphs, each graph Gi

with central vertex i can be represented as the list of pairs (e j,v j) for all outcoming edges of
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Fig. 3.4 A sample graph structure.

vertex i (Equation 3.8).

Gi := {⟨e j,v j⟩}i = {⟨ϕ j,m j⟩}i (3.8)

Graph Ranking. For ranking candidates, each Gc∈C is scored based on the similarity

between Gq and Gc which is equal to the degree of similarity between outcoming edges of

both graphs Gq and Gc (Equation 3.9).

Sim(Gq,Gc) = Sim({⟨ϕi,mi⟩}q,{⟨ϕ j,m j⟩}c) (3.9)

In order to calculate Sim(Gq,Gc), the system first compares the similarity β between each

vertex mi ∈ Gq and each vertex m j ∈ Gc (except q and ci) using Levenshtein distance metric
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(Equation 3.10).

βmi,m j = 1−
levmi,m j

|mi|+ |m j|
(3.10)

where βmi,m j is the degree of similarity between mi ∈ Gq and m j ∈ Gc, and levmi,m j is

Leveshtein metric for measuring the difference between two strings mi and m j, and |mi|

and |m j| are lengths (number of characters) of mi and m j, respectively. For instance, if

mi=“Barcelona" and m j=“F.C. Barcelona", then, levmi,m j = 5 and |mi|+ |m j|= 23,

therefore, βmi,m j = 1− 5
23 = 0.78. In addition, the system compares the similarity β between

each edge ϕi ∈ Gq and each edge ϕ j ∈ Gc using Dice metric (Equation 3.11).

βϕi,ϕ j = diceϕi,ϕ j =
2Ti, j

Ti +Tj
(3.11)

where βϕi,ϕ j is the degree of similarity between ϕi ∈ Gq and ϕ j ∈ Gc, and diceϕi,ϕ j is the

function to calculate dice coefficient between ϕi and ϕ j, Ti, j is the number of positive matches

between vectors ϕi and ϕ j, and Ti and Tj are the total number of positive presences in the

vectors ϕi and ϕ j respectively. For instance in Equation 3.11, suppose that ϕi=[1110001010]8

and ϕ j=[0010001011], then, diceϕi,ϕ j =
2×3

9 = 0.66. Furthermore, for each Gc the system

generates a set of links Hq,c = {h1, . . . ,h f }, each link h between vertices mq and mc. As

shown in Figure 3.5, each link h has attached weight α . To calculate the value of each α , the

system combines the similarities βmi,m j and βϕi,ϕ j (Equation 3.12).

αh∈Hq,c = βmi,m j +(1−βmi,m j)βϕi,ϕ j (3.12)

8In this example, we assumed |ϕ|= 10, however in the real samples, |ϕ| is much more than this amount
(usually, |ϕ|> 100).
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Subsequently, to score each candidate, the average of all α values for each Gc is obtained:

Sim(Gq,Gc) = Xc∈C =
∑h∈H αh

|H|
(3.13)

where Xc∈C indicates the score obtained by the candidate c ∈C. The system then selects that

candidate having the highest score as the correct reference of the query (Equation 3.14).

answerq := {z ∈Cq|∀c ∈Cq : Xc ≤ Xz} (3.14)

where answerq indicates the entity in the KB to which the query refers.

3.3.2 Candidate Ranking using Global Information

In previous approaches, we took advantage of semantic relation between the query name and

NE mentions in the query sentence. However, in many cases the query name is the only NE

mention existing in the query sentence. In other words, in these cases the query sentence

does not contain enough evidence to disambiguate the query name. For these cases we have

proposed a graph-based approach based on global information in the target document (global

ranker). In this approach, we consider the fact that NE mentions existing in a document are

usually coherent. They form an inter-related semantic network and each group of mentions

can be clustered by one or more topics. Furthermore, in a document with different and distinct

subjects, the mentions are usually more correlated whenever their offsets in the document

get closer. Thus, to disambiguate a query name we extract this network between the NE

mentions existing in the target document. To this objective, we present an unsupervised

approach to disambiguate NE query names. Our system generates a network of relations

using a graph-based method and based on semantic similarity between the NE mentions.
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Fig. 3.5 A sample graph structure with α relation.

Graph Generation. In the graph generation step, the system generates a set of graphs

for the query name q and each candidate ci. The vertices are NE mentions (except the

query name) extracted from target document and each candidate’s document. Each edge is a

semantic relation between each two vertices. We measure the relation degree between each

two vertices using the semantic similarity between them. To measure the semantic similarity,

we apply DISCO (extracting DIstributionally related words using CO-occurrences). The

similarities are based on the statistical analysis of very large text collections. The detail is

provided next.
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Fig. 3.6 Extracting those NE mentions having significant semantic relation with query name
q. The dotted lines represent weak semantic relations less than the predefined threshold (in
our experiments, set to 0.01).

(a) Query Graph Generation. Consider query name q along with its target document

dq in which the query name occurs and with the start and end offsets of the query

name. We consider a text window (±1 sentence around the sentence containing q).

We consider the text window to filter out those NE mentions that are not relevant to q.

We extract all possible NE mentions Mq = {mq
1, . . . ,mq

n} from the text window. As

shown in Figure 3.6, the system computes the semantic similarity between the query

name and each mention ⟨q,mq
i⟩. To compute the semantic similarity we apply DISCO.

For instance, in our experiment the similarity between the pair ⟨Barcelona,Spain⟩

measured by DISCO is 0.061. The system then selects those NE mentions having

a degree of similarity more than a threshold (in our experiments, set to 0.01) with

the query name. It helps to eliminate those NE mentions without enough semantic

similarity from the set of NE mentions. Next, we generate the query graph Gq =

(Vq,Eq) where the Vq is the set of NE mentions (Vq = Mq) and Eq is the set of semantic

relations (labeled by weight w), each of which between two vertices in Gq. Furthermore,

all edges without semantic relation (aka., w = 0) are disjoined and all single vertices

(the vertices without any incoming edge) are eliminated.
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(b) Candidate Graph Generation. Consider each candidate c associated with its document

dc. The system extracts the set of all NE mentions Mc = {mc
1, . . . ,mc

k} existing in the

first 10 sentences of dc. Similar to the the query graph generation step, we compute

the semantic similarity between the query name q and each NE mention ⟨q,mc
j⟩. The

system next removes those mentions with a similarity less than threshold (0.01). Each

candidate’s graph Gc = (Vc,Ec) is then generated where the Vc is set of NE mentions

in each candidate’s document (Vc = Mc) and Ec is set of semantic relations each of

which between two vertices in Gc. All edges without semantic relation are disjoined

and all single vertices are eliminated. Figure 3.7a shows a set of graphs generated for

the query name and each candidates (in this sample, two candidates).

Graph Ranking. Ranking the candidates is the most crucial task in an EL system. In this

step, the system detects the most relevant candidate for each query based on the semantic

similarities between the topics of the query graph and each candidate’s graph.

(a) Topic Selection. In each graph, we compute the input degree centrality for each vertex.

It recognizes the most important vertices as topics for the query name. To this end, we

compute the degree centrality for each vertex v as follows:

CD(v) = deg(v) =
∑e∈E∗ we

|V |−1
(3.15)

where |V | is total number of vertices in each graph and E∗ is the set of incoming

edges to this vertex v and we is the weight of each incoming edge. In each graph, the

set of n-top vertices (having the highest degree centrality) is considered as the set of

topics relevant to the query (i.e., a topic is simply a node having a high input degree
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centrality.):

TG = {V ′
|n| ⊆VG | ∀v ̸∈V ′, deg(v′i−1)⩾ deg(v′i)⩾ deg(v)} (3.16)

where TG is the set of topics and n is the number of topics which is the same in all

graphs. In other words, TG = {t1, . . . , tn} is the subset of n vertices for each graph

that t1 and tn are the vertices having the highest and lowest degree centrality in this

set, respectively. This step helps to semantically determining the most relevant NE

mentions as the topics for each query. The system iterates the process to generate the

set of n-topics for each graph. In Figure 3.7b, the topics are indicated as filled vertices.

(b) Topic Comparison. To select the best candidate for the query, it should be inferred

which candidate shares the most similar topics with the query. To this objective, we

compute the semantic relations (shown as dotted lines in Figure 3.7b) between the

topics of the query name and each candidate in a top-down order. It implies that the

topic with the highest degree centrality in the query graph is compared with the topic

having the highest degree centrality in each candidate’s graph. As shown by Eq. 3.17,

the total score of each candidate is the average of the semantic similarity obtained

between each pair ⟨tq, tc⟩:

Sc =
∑

n
k=1 Sim(tq

k , t
c
k)

n
(3.17)

where, Sc is the score of candidate c, and tq
k and tc

k are the k-th topic for the query name

q and candidate c, respectively. The Sim function computes the semantic similarity

between tq
k and tc

k and n is the number of topics in the graphs. Finally, the system ranks

the candidates based on the scores and selects a candidate having the highest score as

the correct reference of that query name in the reference KB.
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(a) Set of semantic graphs for the query and candidates.

(b) Topic comparison between the semantic graphs.

Fig. 3.7 An example indicating a set of graphs and also the semantic relations between the
topics in the graphs.
†: n.b. the topics and the relation between them are indicated as filled vertices and dotted
lines, respectively. In the Figure 3.7b, the biggest vertex indicates the first topic and the
smallest one shows the last topic.



3.3 Candidate Ranking 59

Fig. 3.8 An Example for the NIL Clustering approach.
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Algorithm 4: NIL Clustering

Input:

q : query name

CLR = {clr1, . . . ,clrm} : set o f nil clusters.

qnil : nil query.

thrnil : nil threshold.

Process:

1: f or clr j in CLR :

2: i f Sim(qnil,clr j)≥ thrnil :

3: clr j. join(qnil)

4: else :

5: create(clrnew)

6: idclrnew = idqnil

7: return CLR

Table 3.5 The Algorithm used for NIL Clustering step.

3.3.3 NIL Clustering

Many query names refer to the entities that are not present in the reference KB (NIL queries–

NIL). For those queries, the system should cluster them into groups, each referring to a same

Not-In-KB entity (NIL Clustering). To this objective, a term clustering method is applied to

cluster such queries (Table 3.5). At the outset, each initial NIL query forms a cluster assigning

a NIL id. The system afterwards applies a fuzzy matching technique to compare the next

NIL query with each existing NIL cluster using a Dice similarity. The comparison is between

the properties of the new NIL query and each cluster. The properties (of the cluster or NIL

query) are the query name and set of ANs corresponding to that query name. If the similarity
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is higher than a predefined NIL threshold (0.8), the new NIL query obtains the identifier of

this cluster, otherwise, it forms a new NIL cluster obtaining a new NIL id. In our experiments

we manually selected 0.8 as NIL threshold (Equation 3.18). We applied this approach since

it is simple and has a performance near to other NIL clustering approaches. Figure 3.8 shows

an example for our NIL clustering approach. Firstly, consider the query name “AFC" with

id=0542 associated with its AN “Asian Football Confederation" is selected as a

NIL query and is referred to NIL clustering step for assigning a NIL id. Suppose that this

query has no corresponding NIL cluster. It creates a new NIL cluster assigning the query

id as the cluster id. In this example, both query id and NIL id is 0542 (Figure 3.8-a). The

system thereupon explores the corresponding cluster for the next NIL query name “Asian

Football Confederation" with id=0702. It computes the Dice similarity between

the query name (“Asian Football Confederation") and each properties of all NIL

clusters. Upon the first comparison using Dice metric matches, this query is associated to the

cluster. In the example, the appropriate cluster for the NIL query is one with the NIL id 0542

(Figure 3.8-b). Finally, the system explores the suitable cluster for next NIL query “AVC" with

id 1158 associated with its AN “Asian Volleyball Confederation". All Dice

similarities between the new NIL query (“AVC" and its expansion “Asian Volleyball

Confederation" and properties in the NIL cluster are less than the threshold. Therefore,

the new NIL query is considered as a new cluster (Figure 3.8-c). The system iterates the

process until all NIL queries are grouped to the clusters.

idnil =

 idclr if diceq,clr ⩾ 0.8

idq otherwise
(3.18)

where, idnil is the Id of NIL query, idclr is the Id of an existing cluster, dicenil,clr is Dice

function applied to NIL query and existing cluster, and idnclr is Id of a new cluster.





Chapter 4

Evaluation and Result Analysis

In order to evaluate the performance of the system, we have participated in an evaluation

framework (TAC-KBP) which provides joint test-bed to compare the results. In this section

we explain our evaluation framework by which our EL system was examined (Section 4.1)

and subsequently we describe the improvements (Section 4.2.1) and analyze the results in

different aspects (Section 4.2.2).

4.1 Evaluation Framework

We evaluated our system in the framework of the TAC-KBP 2014 Mono-Lingual (English)

EL evaluation track1. With previous versions of our system we also participated in TAC-

KBP 2012 [29] and TAC-KBP 2013 [1]. As the most important challenging competition,

TAC-KBP EL track has been the subject of significant study over the past seven years. Since

the first KBP track held in 20082, the research in the area of EL has greatly developed3. The

1http://www.nist.gov/tac/
2It was initiated in 2008 and developed out of NIST’s Text REtrieval Conference (TREC) and Document

Understanding Conference (DUC).
3The Text Analysis Conference (TAC) is organized and sponsored by the U.S. National Institute of Standards

and Technology (NIST) and the U.S. Department of Defense.

http://www.nist.gov/tac/
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Fig. 4.1 A sample target document for the query name “ADA" from the TAC 2013 data set.

main goal of TAC-KBP track is to gather information about a specific entity that is scattered

among the documents of a large collection, and then use the extracted information to populate

an existing reference KB.

4.1.1 Evaluation Task Definition

Given a set of queries, each of which consisting of a query name and a target document

(Figure 4.1) in which the query name occurred, and the start and end offsets of the query
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name, the system should provide the identifier of the KB entity to which the query name

refers if existing, or a NIL Id if there is no such KB entity. In fact many queries use the same

target document. From 5234 queries in the evaluation data only 118 documents were used.

This increases the difficulty of the task because in each document many mentions and their

corresponding offsets are associated to different queries corresponding or not to the same

entities in KB. The EL system is also required to cluster together queries referring to the

same Not-in-KB (NIL) entities and to provide a unique ID for each cluster.

Each query entry will consist of the following five fields:

• <query id> - A query ID, unique for each entity name mention.

• <name> - The full name string of the query entity mention.

• <docid> - An ID for a document in the source corpus from which the name string was

extracted.

• <beg> - The starting offset for the name string.

• <end> - The ending offset for the name string.

A sample query from the KBP2014 EL evaluation is the following one:

<query id=“EDL14_ENG_0049">

<name>Valerie<name>

<docid>bolt-eng-DF-170-181103-8893099</docid>

<beg>4361</beg>

<end>4367</end>

</query>

The term “<name>" mentioned in the query sample above is equivalent to the query

name (target NE mention).
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4.1.2 Evaluation Metrics

In the evaluation, several queries may refer to the same entity in the KB (in-KB entities).

All NIL queries referring to the same Not-in-KB entity should also be grouped in the same

cluster. Thus, in both cases (in-KB and Not-in-KB entities) an EL system should cluster

the queries. A modified B-cubed [3]4 metric (called B-cubed+) is applied to evaluate these

clusters5. Consider the following equation:

G(e,e′) =

 1 iff L(e) = L(e′)∧C(e) =C(e′)∧GI(e) = SI(e) = GI(e′) = SI(e′)

0 otherwise

where L(e) and C(e) are respectively the category and the cluster of a NE mention e, SI(e)

and GI(e) are the system and gold-standard KB identifier, and G(e,e′) is the correctness of

the relation between two NE mentions e and e′ in the distribution. B-cubed+ precision of

a NE mention is the proportion of correctly related NE mentions in its cluster (including

itself). The overall B-Cubed+ precision is the averaged precision of all NE mentions in

the distribution. B-Cubed+ recall is similar to B-Cubed+ precision, replacing cluster with

category. Formally:

Precision B-Cubed+ = Avge[Avge′.C(e)=C(e′)[G(e,e′)]]

Recall B-Cubed+ = Avge[Avge′.L(e)=L(e′)[G(e,e′)]]

F_Measure B-Cubed+ = 2×Precision×Recall/(Precision+Recall)

4.1.3 Evaluation Data

Reference Knowledge Base. The reference KB includes hundreds of thousands of entities

based on articles from an October 2008 dump of English Wikipedia, which includes 818,741

4The idea behind the B-cubed metric considers the EL task as a cross-document coreference task, in which
the set of tuples is grouped by both in-KB and Not-in-KB entity ids.

5The scorer is available at: http://www.nist.gov/tac/2012/KBP/tools/

http://www.nist.gov/tac/2012/KBP/tools/
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entries. Wikipedia has some features that can be very helpful for the task, like the descriptions

associated with each entry, that can be used to help in the disambiguation process by

comparing the context in which an entity appears against the context of the Wikipedia entry

description. The articles also have a title that formally names the entity, which sometimes

is followed by a string that discriminates entities that share the same name (e.g., Python

(programming language) and Python (mythology) correspond to two different entities in

Wikipedia). As shown in Table 4.1, each entry in the KB includes the following:

• a name string (like, “Parker, Florida")

• an assigned entity type of PER, ORG, GPE, or UKN (unknown)

• a KB entity id (a unique identifier, like “E0000012")

• a set of ‘raw’ slot names and values (facts) which is extracted from Wikipedia in-

foboxes.

• some disambiguating text (i.e., text from each Wikipedia document–wikitext)

KBP reference KB has been created only from those Wikipedia entries containing

infoboxes. In addition, a small percentage of the Wikipedia infoboxes had abnormalities in

their structure that made their infoboxes tough to parse. These entries were also eliminated

from the reference KB by the KBP organizers.

Training and Evaluation Corpus. The training data in TAC-KBP 2014 is the evaluation

data from the its past years. Table 4.2 shows the sources and sizes. We evaluated our system

over TAC-KBP 2014 Mono-Lingual (English) EL evaluation data set. The evaluation data

set includes 5,234 queries, each query consisting of a query name (target NE mention),

with a target document in which query name occurs and start and end offsets of the query

name inside the target document. A target document may be used for several queries often
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<entity wiki_title="Parker,_Florida" type="GPE" id="E0000012"
name="Parker, Florida">

<facts class="Infobox Settlement">

<fact name="official_name">Parker, Florida</fact>

<fact name="subdivision_name"><link entity_id="E0679687">United
States</link></fact>
<fact name="subdivision_name1"><link entity_id="E0373950">Florida
</link></fact>

...
</facts>

<wiki_text><! [CDATA[Parker, Florida

Parker is a city in Bay County, Florida, United States. As of the
2010 census it had a population of 4,317. It is part of the Panama
City-Lynn Haven-Panama City Beach Metropolitan Statistical Area.
According to the United States Census Bureau, the city has a total area
of 6.3 km² (2.4 mi²). 1.9 square miles (4.9 km²) of it is land and
0.5 square miles (1.3 km²) of it (20.16%) is water. [ ..............
] In the city the population was spread out with 21.2% under the age
of 18, 9.1% from 18 to 24, 24.3% from 25 to 44, 28.0% from 45 to 64,
and 17.4% who were 65 years of age or older. The median age was 40.9
years. For every 100 females there were 94.8 males. For every 100
females age 18 and over, there were 91.6 males. As of the 2000 census,
the median income for a household in the city was $35,813, and the
median income for a family was $43,929. Males had a median income of
$28,455 versus $21,205 for females. The per capita income for the city
was $18,660. About 10.1% of families and 12.2% of the population were
below the poverty line, including 21.3% of those under age 18 and 4.6%
of those age 65 or over.

]]></wiki_text>

</entity>

Table 4.1 An entry sample in the reference KB. The entry represents the geo-political entity
“Parker, Florida" associated with its facts and document (wikitext).

corresponding to different offsets of the same query name. In addition, the distribution of

queries per type is not uniform in the evaluation data.

4.2 Evaluation Results and Analysis

In this section, we describe the results obtained by our EL system and analyze them in

different aspects. Table 4.3 illustrates our results measured by accuracy, B-cubed, and B-
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Genre/Source
Size (entity mentions)

Person Organization GPE

2009 Eval 627 2710 567

2010 Training Web data 500 500 500

2010 Eval Newswire 500 500 500

2010 Eval Web data 250 250 250

2011 Eval Newswire 500 491 500

2011 Eval Web data 250 259 250

2012 Eval Newswire 702 388 381

2012 Eval Web data 216 318 221

2013 Eval Newswire 333 333 333

2013 Eval Web/Discussion Fora data 333 333 333

Table 4.2 Training data for TAC-KBP 2014 EL task.

cubed+ metrics (The metrics are explained in Section 4.1.2). We have computed precision,

recall, and F1 for both B-cubed and B-cubed+ metrics. We evaluated two systems: first, our

baseline system [65] by which we participated in TAC-KBP 2014 (mentioned by BL_SYS)

and second, the results obtained by our final system (mentioned by F_SYS) in which we

applied several improvements over BL_SYS. The table also splits the results by those query

answers existing in reference KB (In-KB) and those not in the KB (NIL) also by three query

types: person (PER), organization (ORG), and geo-political entity (GPE). As shown in the

table, we evaluated the systems over three evaluation genres including News Wires (NW),

Web Documents (WB), and Discussion Fora (DF). Both WB and DF (e.g., fora, blogs)

are highly challenging given that they contain many orthographic irregularities. Below in

Section 4.2.1, we explain the improvements we applied within F_SYS. Consequently in
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System
Results

Metrics

Accuracy B3 P. B3 R. B3 F1 B3+ P. B3+ R. B3+ F1

All 0.840 0.963 0.813 0.882 0.820 0.702 0.757

In-KB 0.800 0.964 0.876 0.918 0.779 0.751 0.765

NIL 0.888 0.963 0.739 0.836 0.868 0.645 0.740

PER 0.864 0.978 0.804 0.883 0.851 0.713 0.776

ORG 0.744 0.944 0.798 0.865 0.716 0.614 0.661

GPE 0.862 0.938 0.850 0.892 0.826 0.754 0.788

NW 0.793 0.949 0.856 0.900 0.768 0.703 0.734

WB 0.846 0.959 0.792 0.867 0.822 0.689 0.749

DF 0.875 0.980 0.796 0.878 0.862 0.714 0.781

Table 4.3 The F_SYS results measured by the accuracy, B-cubed, and B-cubed+ metrics over
TAC-KBP 2014 Mono-Lingual (English) EL evaluation data set.

Section 4.2.2, we analyze the results of each system in different aspects as well as the impact

of each improvement on F_SYS performance.

4.2.1 Improvements

Compared with the baseline system (BL_SYS), we improved our final system (F_SYS) in

several ways including:

• We applied a global ranker (candidate ranking using global information) in the cases

that query sentence in the target document is not enough informative as is the case

where no NE but the query name occurs in this content. The global ranker generates a

query graph in which the vertices are the NE mentions extracted from a text window

of 3 sentences (including query sentence)‘. It also generates a set of graph, each of
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Fig. 4.2 The results of BL_SYS and F_SYS measured by B3+ F1 and the accuracy over the
TAC-KBP 2014 Mono-Lingual (English) EL evaluation data set.

which related to a candidate. The vertices in each candidate graph are the NE mentions

extracted from the first 10 sentences of the candidate document. Each edge in the set of

graphs is weighted with the semantic similarity between each two vertices. Although,

the vertices can also consider all unigrams (such as verbs, adj.), in our experiences we

only consider the NE mentions occurring in the target documents.

• We applied a dictionary of nicknames extracted from the Wikipedia. Many enti-

ties such as persons, organizations, and geo-political entities are known by their

nicknames. For instance, “Dubya", “The Big Apple", and “the Country

Music Capital" refer to “George H. W. Bush", “New York City", and

“Nashville, Tennessee", respectively. The dictionary of nicknames helps to in-

fer the correct reference of such query names. To provide the dictionary of nicknames,
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we have previously developed a system to extract the nicknames from the content of

Wikipedia documents.

• Many query names existing in the target document contain orthographic irregulari-

ties. For instance, in sentence “Man utd vs Liverpool", the query name “Man

utd" is referred to “Manchester United F.C." or in sentence “Equador is

country in South America", the correct form of “Equador" is “Ecuador".

To tackle this problem, we applied Google CrossWiki dictionary containing a huge

amount of mapping based on the search results obtained by Google search engine.

• We applied pattern extraction and matching to recognize geo-political entities (Ta-

ble 3.2). Consider the query name X occurring in the pattern “[GPE X], [GPE

Y]”. We have previously provided gazetteers of cities, states, and countries. If X

exists in the gazetteer containing the city names and Y exists in the gazetteers con-

taining the state or country names, the candidate filtering step is then applied. For

instance, assuming X (query name) as “Barcelona” and Y as “Spain”, other enti-

ties such as “Barcelona, Arkansas“ and “Barcelona, Cornwall" will be

removed from the set of candidates. In addition, we use the evidences to select correct

geo-political entities. For instance, in sentence:

“Texas is an unincorporated community located along

the border of Monroe and Old Bridge townships in Middlesex

County, New Jersey, United States."

Consider “Texas, New York", “Texas, West Virginia", and “Texas,

New Jersey" as the candidates for the query name “Texas". The system se-

lects “Texas, New Jersey" as the correct reference of this query name. The NE
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mention “New Jersey" is considered as an evidence for choosing the candidate

“Texas, New Jersey".

• A difficult challenge in the EL task is the case that a query name can simultaneously

refer to either organization or geo-political entities. For instance, in the string “Spain

vs England", the NERC systems often detect “Spain" or “England" as geo-political

entities. However, they are organizations and usually refer to sport teams. To tackle,

we consider a text window of size ±30 offsets around the query name. The system

extracts the organization patterns in the text window, e.g., “[X] vs [Y]", or “[X]

won [Y]" (Table 3.2). The query names X or Y are recognized as ORG and all

geo-political entities are eliminated from the set of candidates.

• NERC is an important subtask in EL. In BL_SYS, we applied only one NERC system

(Illinois). However, we realized that relying on just one NERC system causes reduction

in the accuracy of the system. Thus, we applied a hybrid approach–RCNERC (details

in Section 3.1) in F_SYS by combining three NERC systems: Stanford, Illinois, and

Senna.

4.2.2 Result Analysis

In this section, we analyze the results obtained by BL_SYS and F_SYS. We evaluated

both systems over TAC-KBP 2014 EL evaluation data. Figure 4.2 represents the results

by BL_SYS and F_SYS compared with the median of all participants in TAC-KBP 2014

EL evaluation track and also with the team obtained the highest result. Our final system

(F_SYS) could achieve a result better than the median and BL_SYS and less than the highest

result. As shown in the figure, BL_SYS better detects and clusters Not-In-KB entities (NIL)

than In-KB entities. By applying several improvements (described in Section 4.2.1), the

accuracy of F_SYS in linking in-KB entities increased (0.364 to 0.765). The lowest results
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(a)

(b) (c) (d)

Fig. 4.3 The recall, precision and F1 of each three phases of RCNERC system.
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of BL_SYS belongs to GPE queries (0.358), given that the number of candidates generated

for the GPE type is more than PER and ORG and therefore is more ambiguous. In addition,

the lowest result in F_SYS belongs to ORG (0.661) which is less than the median (0.708).

This reduction was considerably compensated applying the pattern extraction and matching

techniques (Table 3.2). F_SYS has a score higher than BL_SYS in linking In-KB queries.

Since the number of GPE-In-KB queries is more than the GPE-NIL queries, it caused a better

result for Overall-GPE queries in F_SYS. Besides, the highest and lowest improvements

in our results (compared with B_SYS) belong to GPE (+0.430) and PER (+0.120) queries,

respectively. In addition, the nearest and farthest results to the participant with the highest

score belong to GPE (-0.049) and ORG (-0.166), respectively.

We also analyzed the result of RCNERC system in each phase. Figure 4.3a indicates the

precision and recall of the NERC systems in the recognition phase (Stanford, Illinois, Senna),

in the combination phase, and also in the amendment phase. The precision in detecting query

types in the recognition phase is better than its recall. The reason is because of orthographic

irregularities existing in target documents such as discussion fora. The NERC systems in

recognition phase recognize them as MISC or N/A. We have solved this issue by inferring the

correct query types in the combination and amendment phases. Also in this phase, the PER

type has the highest difference between recall and precision and GPE has the lowest in all

Stanford, Illinois and Senna NERC systems. We can consider this difference as wide diversity

and highly ambiguous nature of person entities (compared with organization and geo-political

entities) in the target documents, especially in discussion fora. We improved the recall and

reduce the difference between them in the last phase. As depicted in the Figure 4.3b, the

precision obtained for the PER type is the highest in all phases. It demonstrates that if the

system could detect the person query names in the target documents, most of the time, it

annotates them correctly. On the contrary, the precision for ORG type is the lowest one.

Because the existing NERC systems usually have a lower precision in annotating organization
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query names and often recognize them as a geo-political entity. In the recognition phase, the

highest recall belongs to the GPE type, but in combination and amendment phases the PER

type has the highest one. It demonstrates that PER type took advantage of the combination

phase more than other types (Figure 4.3c). We also measured F1 in each phase. Figure 4.3d

illustrates F1 for PER, ORG and GPE types in different phases. The F1 in last two phases for

all types is higher than the first phase. It demonstrates the positive impact of our proposed

three-phase RCNERC system in detecting mention types.

Figure 4.4 represents the distribution of candidates for each query in the candidate

generation step (initial candidates) and candidate filtering step (filtered candidates6). The

initial and filtered candidates are depicted by the black and gray spots, respectively. As

shown in this figure, the system generates less than three candidates for most queries. We

also illustrated the frequency of the queries by the number of candidates in Figure 4.5. The

Figure 4.5a shows the frequencies after the candidate generating step and Figure 4.5b shows

the frequencies after applying the candidate filtering step. The number of candidates was

successfully reduced to just one candidate by applying our pattern extraction and matching

techniques. It helps to boost the accuracy of system in detecting the correct candidate. For

instance, if the query name is “London" and the system detects mention “England" in

the same target document, it realizes the semantic relation. Consequently, it eliminates

all other entities such as “London, Ontario", “London, Arkansas", “London,

California", “London, Kentucky" and “London, Minnesota" from the set

of candidates. In the latest version of Wikipedia (2015 dump of Wikipedia), 19 entities

(considering just GPE entities) are referred by query name “London". This makes the

process highly ambiguous. By our filtering method (using pattern matching) we eliminate

other candidates and achieve just one candidate.

6The candidates that remain after filtering step
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Fig. 4.4 The distribution of candidates for each query in the candidate generation step (initial
candidates) and in the candidate filtering step (filtered candidates).
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(a)

(b)

Fig. 4.5 Frequency of the the queries by the number of candidates.

Table 4.4 shows the accuracy error rate in both candidate generation and candidate

filtering steps. This error rate indicates whether the correct answer of the EL system is among

the set of candidates in both candidate generation and candidate filtering steps. We have



4.2 Evaluation Results and Analysis 79

Accuracy Error Rate In-KB PER-In-KB ORG-In-KB GPE-In-KB

Candidate Generation 0.168 0.169 0.274 0.100

Candidate Filtering 0.008 0.002 0.027 0.007

Table 4.4 The Accuracy error rate in candidate generation and candidate filtering steps.

computed the error rate only for in-KB queries. The table separately shows the error rates for

those in-KB queries which are PER, ORG, and GPE. As shown in the table, the error rate in

the candidate filtering step (0.008) is much less than the error rate in candidate generation

step (0.168). In the candidate generation step, the highest error rate is below ORG type

(0.274) and the lowest one is below GPE type (0.100). Similarly, the highest error rate in the

candidate filtering step is below ORG type (0.027) and the lowest one is below PER type

(0.002). It should be mentioned that the errors in the candidate generation and filtering steps

affects on the results of the candidate ranking step. Therefore, a reason to get a low score for

the ORG type in Figure 4.2 is within the candidate generation step. This step generates a set

of candidates using the Dice similarity. On the contrary with the PER and GPE types, those

entities with the ORG type can be referred by very short mentions. We have used a trade-off

between the number of candidates and the dice similarity threshold (0.8 for ORG type) in the

candidate generation step. Thus, in some ORG queries the correct answer is eliminated from

the set of candidates.

Further, we explain the result of candidate ranking step. This step was applied to

the queries with two or more candidates, 274 over 5,234 queries. The queries with no

candidates are considered as NIL (3,057 queries). In addition, for those queries with one

candidate (1,903 queries), that candidate is selected as the answer of the EL task. We

also evaluated the accuracy of F_SYS by two ranking approaches, first, using local ranker

F_SYS Local (Section 3.3.1) and, second, using global ranker F_SYS Global (Section 3.3.2).
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(a) (b)

(c)

Fig. 4.6 The B3+ precision and recall of Local (a), Global (b) and Local+Global (c) rankers
by the number of candidates.
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Impact on F_SYS B3+ F1

All in-KB NIL NW WB DF PER ORG GPE

Redirects +0.033 +0.058 +0.002 +0.029 +0.061 +0.01 0 +0.028 +0.135

Nicknames +0.030 +0.045 +0.012 +0.010 +0.014 +0.062 +0.045 +0.012 +0.003

Pattern Extraction +0.005 +0.007 0 +0.004 +0.009 0 -0.001 +0.003 +0.022

RCNERC +0.078 +0.138 +0.007 +0.141 +0.079 +0.024 +0.112 +0.056 0

Table 4.5 The impact of improvement modules on the F_SYS results (measured by the B3+
F1 metric).

Figures 4.6a, 4.6b and 4.6c respectively depict B3+ precision and recall values of Local,

Global and Local+Global rankers with respect to the number of candidates. The local ranker

(Figure 4.6a) has a better precision and recall for queries with 3 or more candidates while

the global ranker (Figure 4.6b) has better results for the queries with 2 candidates. Using

combination approach for the rankers, we improved the results in most parts. As shown in

Figure 4.6c the combination of both rankers boosts precision and recall.

In addition, we separately measured the impact of each module by which we improved

the results of F_SYS (compared with BL_SYS). These modules are Redirects, Nicknames,

Pattern Extraction and Matching, and RCNERC. Table 4.5 depicts the result of each module

measured by B3+ metric. This table shows the module impacts in different perspectives: for

in-KB and NIL queries, over three genres (NW, WB, and DF), and finally for different query

types. Among different modules, the highest and lowest impacts belong to the RCNERC

system (+0.078) and Pattern Extraction (+0.005). It demonstrates that our three-phase NERC

system has a high impact on system’s overall result. The Redirect and Nickname modules

almost had the same impact on the F_SYS (+0.03). Besides, the modules have higher impacts

on in-KB queries compared with NIL queries. Of these, the RCNERC again has the highest
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impact on the in-KB queries (+0.138). In general, the modules have low impact on the

NIL queries. Among different genres, NW (+0.141) and WB (+0.079) have the highest

impacts from the RCNERC system, respectively. In case of DF, the highest impact belong

to the Nickname module (+0.062) since the nicknames occur in DF more than two other

genres. Among query types, the PER type has the highest influence from the RCNERC

system (+0.112) and the lowest from Pattern Extraction module (-0.001). In case of ORG and

GPE type, the highest impacts are from RCNERC system (+0.056) and Redirects (+0.135),

respectively. The RCNERC has a high impact on PER type since the three-phase NERC

system highly improved its recall. While the most positive impact of Redirects occurs for

GPE type (+0.135), the results of PER type improved more by the Nicknames mapping

(+0.045). Meanwhile, the pattern extraction module outcomes a little negative impact on PER

type (-0.001). It has a positive influence on ORG and GPE types. The table demonstrates

that the improving modules have the positive impacts in most parts (except one with a little

negative impact–Pattern Extraction/PER).



Chapter 5

Conclusions and Future Work

This document described the works towards developing an Entity Linking (EL) system

aiming to disambiguate NE mentions existing in a target document. The EL task is highly

challenging since each entity can usually be referred to by several NE mentions (synonymy).

In addition, a NE mention may be used to indicate distinct entities (polysemy). During

this research we found that the EL task is even more challenging due to the wide range of

difficulties faced to the task. Thus, much effort is needed to overcome these challenges. To

overcome, it is so necessary and crucial to address this this hardness with the help of semantic

knowledge under the context of documents. There are the cases that disambiguation task is

even tough for a human annotator and obviously is more challenging for a machine. Thus,

the future perspective of the task and its success depends on how much we can tackle the

difficulties with the semantic process of the existing resources.

In this research, we evaluated our EL system in TAC-KBP working framework in which

the system input is a set of queries, each containing a query name, target document name,

and start and end offsets of query name existing in the target document. The output is either a

NE entity id in a reference KB or a NIL id in the case a system could not find any appropriate

entity for that query. Our results show that we have had overall results higher than median of
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all participants in TAC-KBP 2014 EL evaluation track. The main contributions of the thesis

have been presented in Section 1.4.

Even if the writing of their PhD thesis is a major undertaking for any graduate student,

it is also true that any work of research, even if it closes pending questions, always leaves

new ones open. This thesis is no exception, and a number of ideas have not been thoroughly

explored–including some which have been scratched at the surface. This section tries to

collect such possible future lines of research, grouping them by the chapter in which the

work related to them is exposed.

• The EL systems usually answer correctly in the case of well-known and trivial query

names, however, they are generally faced to crucial challenges when either query

names are highly ambiguous or the document in which the query exist, lacks enough

discriminative information related to that query. In such situations, semantic analysis of

the target document would be highly essential. Although in this research we proposed

the methods to exploit the semantic knowledge lied in the document, however, there

still exist the cases that the disambiguation task is even challenging for a human

annotator. This urges not only deep semantic analysis of the target document but also

the use of different knowledge resources. Thus, more effort by the researcher focused

on this topic is necessary to tackle this type of challenges.

• As a future work, the approach can be developed over a multi-lingual EL systems

to disambiguate named entity mentions existing in cross-lingual documents. In the

first stage, the system can be prepared to work over Spanish and Chinese-language

documents and then over the Right-to-Left languages such as Persian and Arabic. The

idea behind is that a large amount of web information is provided by Right-to-Left

languages, however, there still exist no considerable tools for linking entities in such

languages.
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• Although we could improve the recall and precision of NERC system in detecting dif-

ferent types, but there are still challenges that should be solved during NE recognition

and classification. Since the accuracy of the NERC system has a high impact on the

system’s final answer, each efforts in this step would improve the whole performance

of the system.

• The performance of EL systems tightly relied on the resources used in disambiguation

task. Out of date resources will directly affect of the system. To this end, it is necessary

to keep them updated in short span of time. The Nickname mapping dictionary is an

example in this case. Nowadays, the use of Nicknames is increasing which makes the

linking task highly ambiguous. Providing the dictionary of Nickname mappings is the

best way to resolve this issue. However, manually elicitation of Nicknames dictionary

would be highly tough and time consuming. In our study, we developed a module to

automatically extract nicknames from the source documents using pattern matching

technique. As a future work, this module should be developed to encompass more

patterns. It helps accurately extracting more nicknames.

• Try to experiment on the collaborative native of some queries as in the case of several

queries referring to the same reference document.
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Evaluation Results

Detailed Evaluation Results obtained by BL_SYS and F_SYS
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System: BL_SYS Measurement

Accuracy B+ Precision B+ Recall B+ F1

All Docs-Overall-All Entities 0.646 0.622 0.517 0.564

All Docs-Overall-PER 0.737 0.723 0.601 0.656

All Docs-Overall-ORG 0.569 0.528 0.463 0.494

All Docs-Overall-GPE 0.448 0.411 0.317 0.358

All Docs-InKB-All Entities 0.403 0.391 0.340 0.364

All Docs-InKB-PER 0.470 0.464 0.403 0.432

All Docs-InKB-ORG 0.267 0.248 0.227 0.237

All Docs-InKB-GPE 0.380 0.364 0.307 0.333

All Docs-NotInKB-All Entities 0.928 0.890 0.723 0.798

All Docs-NotInKB-PER 0.953 0.931 0.761 0.838

All Docs-NotInKB-ORG 0.938 0.871 0.752 0.807

All Docs-NotInKB-GPE 0.713 0.594 0.354 0.444

NW-Overall-All Entities 0.627 0.598 0.532 0.563

NW-Overall-PER 0.779 0.764 0.694 0.727

NW-Overall-ORG 0.607 0.550 0.513 0.531

NW-Overall-GPE 0.423 0.396 0.312 0.349

NW-InKB-All Entities 0.495 0.480 0.435 0.457

NW-InKB-PER 0.700 0.691 0.631 0.659

NW-InKB-ORG 0.302 0.267 0.271 0.269

NW-InKB-GPE 0.355 0.344 0.292 0.316

NW-NotInKB-All Entities 0.856 0.801 0.700 0.747

NW-NotInKB-PER 0.909 0.883 0.799 0.839

NW-NotInKB-ORG 0.881 0.805 0.731 0.766

NW-NotInKB-GPE 0.670 0.582 0.384 0.463

WB-Overall-All Entities 0.648 0.616 0.484 0.542

WB-Overall-PER 0.789 0.762 0.585 0.662

WB-Overall-ORG 0.614 0.587 0.480 0.528

WB-Overall-GPE 0.419 0.372 0.297 0.330

Table A.1 The results obtained by BL_sys over TAK-KBP 2014 Mono-Lingual (English) EL
evaluation data set.
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System:
BL_SYS:
continued

Measurement

Accuracy B+ Precision B+ Recall B+ F1

WB-InKB-All Entities 0.381 0.366 0.323 0.343

WB-InKB-PER 0.468 0.461 0.429 0.445

WB-InKB-ORG 0.315 0.301 0.257 0.277

WB-InKB-GPE 0.362 0.339 0.290 0.313

WB-NotInKB-All Entities 0.937 0.887 0.658 0.755

WB-NotInKB-PER 0.954 0.917 0.666 0.771

WB-NotInKB-ORG 0.986 0.943 0.757 0.840

WB-NotInKB-GPE 0.679 0.517 0.328 0.402

DF-Overall-All Entities 0.658 0.646 0.534 0.585

DF-Overall-PER 0.692 0.685 0.570 0.622

DF-Overall-ORG 0.264 0.218 0.230 0.224

DF-Overall-GPE 0.606 0.565 0.389 0.461

DF-InKB-All Entities 0.325 0.320 0.252 0.282

DF-InKB-PER 0.327 0.325 0.252 0.284

DF-InKB-ORG 0.063 0.058 0.053 0.056

DF-InKB-GPE 0.517 0.497 0.408 0.448

DF-NotInKB-All Entities 0.963 0.944 0.791 0.86

DF-NotInKB-PER 0.964 0.953 0.806 0.874

DF-NotInKB-ORG 1.000 0.804 0.876 0.839

DF-NotInKB-GPE 0.914 0.799 0.325 0.462

Table A.2 continued.
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System: F_SYS Measurement

Accuracy B+ Precision B+ Recall B+ F1

All Docs-Overall-All Entities 0.840 0.820 0.702 0.757

All Docs-Overall-PER 0.864 0.851 0.713 0.776

All Docs-Overall-ORG 0.744 0.716 0.614 0.661

All Docs-Overall-GPE 0.862 0.826 0.754 0.788

All Docs-InKB-All Entities 0.800 0.779 0.751 0.765

All Docs-InKB-PER 0.802 0.791 0.754 0.772

All Docs-InKB-ORG 0.684 0.661 0.620 0.640

All Docs-InKB-GPE 0.872 0.836 0.833 0.834

All Docs-NotInKB-All Entities 0.888 0.868 0.645 0.740

All Docs-NotInKB-PER 0.914 0.900 0.680 0.775

All Docs-NotInKB-ORG 0.817 0.783 0.607 0.684

All Docs-NotInKB-GPE 0.824 0.787 0.443 0.567

NW-Overall-All Entities 0.793 0.768 0.703 0.734

NW-Overall-PER 0.821 0.805 0.747 0.775

NW-Overall-ORG 0.704 0.667 0.587 0.624

NW-Overall-GPE 0.826 0.798 0.737 0.766

NW-InKB-All Entities 0.801 0.777 0.753 0.765

NW-InKB-PER 0.816 0.803 0.756 0.778

NW-InKB-ORG 0.656 0.610 0.616 0.613

NW-InKB-GPE 0.856 0.832 0.820 0.826

NW-NotInKB-All Entities 0.780 0.752 0.617 0.678

NW-NotInKB-PER 0.830 0.809 0.733 0.769

NW-NotInKB-ORG 0.748 0.717 0.561 0.630

NW-NotInKB-GPE 0.718 0.678 0.433 0.528

WB-Overall-All Entities 0.846 0.822 0.689 0.749

WB-Overall-PER 0.845 0.830 0.659 0.735

WB-Overall-ORG 0.825 0.803 0.679 0.736

WB-Overall-GPE 0.870 0.826 0.757 0.790

Table A.3 The results obtained by F_sys over TAK-KBP 2014 Mono-Lingual (English) EL
evaluation data set.
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System: F_SYS:
continued

Measurement

Accuracy B+ Precision B+ Recall B+ F1

WB-InKB-All Entities 0.790 0.766 0.744 0.755

WB-InKB-PER 0.711 0.703 0.682 0.692

WB-InKB-ORG 0.774 0.765 0.704 0.733

WB-InKB-GPE 0.864 0.818 0.822 0.820

WB-NotInKB-All Entities 0.906 0.881 0.630 0.735

WB-NotInKB-PER 0.914 0.896 0.647 0.751

WB-NotInKB-ORG 0.889 0.851 0.647 0.735

WB-NotInKB-GPE 0.897 0.864 0.461 0.601

DF-Overall-All Entities 0.875 0.862 0.714 0.781

DF-Overall-PER 0.892 0.882 0.726 0.796

DF-Overall-ORG 0.545 0.530 0.442 0.482

DF-Overall-GPE 0.948 0.910 0.795 0.849

DF-InKB-All Entities 0.809 0.794 0.757 0.775

DF-InKB-PER 0.830 0.819 0.782 0.800

DF-InKB-ORG 0.484 0.468 0.386 0.423

DF-InKB-GPE 0.942 0.904 0.901 0.902

DF-NotInKB-All Entities 0.935 0.924 0.674 0.780

DF-NotInKB-PER 0.938 0.929 0.684 0.788

DF-NotInKB-ORG 0.769 0.756 0.647 0.698

DF-NotInKB-GPE 0.971 0.933 0.431 0.590

Table A.4 continued.
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Abstract: This article presents the works towards developing an unsupervised Entity

Linking (EL) system using graph-based semantic similarity aiming to disambiguate

Named Entity (NE) mentions occurring in target documents.
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Wikipedia-based knowledge resource.
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base. To this end, we presented our system taking advantage of a topic modeling

approach to rank candidates of each entity mentions occurring in the query text.
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(Published) [1]
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de Catalunya ‘ (UPC) in its second participation at TAC-KBP 2013 in both the Entity
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