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Abstract 
Traumatic brain injury (TBI) is a leading cause of morbidity and disability worldwide. It is 

the most common cause of death and disability during the first three decades of life and 

accounts for more productive years of life lost than cancer, cardiovascular disease, and 

HIV/AIDS combined.  

 Disturbances of attention, memory, and executive functioning are the most common 

neurocognitive consequences of TBI at all levels of severity and have a major impact on 

daily living activities. Despite new techniques for early intervention and intensive care 

units, both increasing the survival rate, there is still no surgical or pharmacological 

treatment for the re-establishment of lost functions following brain injury. Dating back to 

Luria’s theory from 1978, there is a common belief that direct retraining of damaged 

cognitive processes through repeated stimulation and activation of the targeted brain areas 

can help patient recovery. Neurorehabilitation is the process of exploiting cerebral plasticity 

to reduce brain deficit. Cognitive Rehabilitation (CR), as part of Neurorehabilitation, aims 

to reduce the impact of disabling conditions and to improve the cognitive deficits caused by 

TBI. CR treatment consists of hierarchically organized tasks that require repetitive use of 

impaired cognitive functions.  

 While task repetition is not the only important feature, it is becoming clear that 

neuroplastic change and functional improvement only occur after a number of specific tasks 

are performed in a certain order and repetitions and does not occur otherwise. Until now, 

there has been an important lack of well-established criteria and on-field experience by 

which to identify the right number and order of tasks to propose to each individual patient.  

 Finding recommendations for the sequence of tasks and repetitions that will induce 

better improvement in a single patient is a difficult problem because: tasks show high order 

of interactions among them and cummulative effects, and also treatment lengths and 

sequential task configuration is open.  

 This thesis proposes the CMIS methodology to support health professionals to 

compose CR programs by selecting the most promising tasks in the right order. 

 Two contributions to this topic were developed for specific steps of CMIS through 

innovative data mining techniques: SAIMAP and NRRMR methodologies. 
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 SAIMAP (Sequence of Activities Improving Multi-Area Performance) proposes an 

innovative combination of data mining techniques in a hybrid generic methodological 

framework to find sequential patterns of a predefined set of activities and to associate them 

with multi-criteria improvement indicators regarding a predefined set of areas targeted by 

the activities. SAIMAP is introduced as an integrative methodology that uses both data and 

prior knowledge with preprocessing, clustering, motif discovery and classes` post-

processing to understand the effects of a sequence of activities on targeted areas, provided 

that these activities have high interactions and cumulative effects. 

 Furthermore, this work introduces and defines the Neurorehabilitation Range (NRR) 

concept to determine the degree of performance expected for a CR task and the number of 

repetitions required to produce maximum rehabilitation effects on the individual. An 

operationalization of NRR is proposed by means of a visualization tool called SAP. SAP 

(Sectorized and Annotated Plane) is introduced as a visualization tool to identify areas 

where there is a high probability of a target event occurring. Three approaches to SAP are 

defined, implemented, applied, and validated to a real case: Vis-SAP, DT-SAP and FT-

SAP, the parametric heatmap-based visualization proposed to overcome the limitations 

detected in Vis-SAP. 

 Finally, the NRRMR (Neurorehabilitation Range Maximal Regions) problem is 

introduced as a generalization of the Maximal Empty Rectangle problem (MER) to identify 

maximal NRR over a FT-SAP.  

 These contributions combined together in the CMIS methodology permit to identify 

a convenient pattern for a CR program (by means of a regular expression) and to instantiate 

by a real sequence of tasks in NRR by maximizing expected improvement of patients, thus  

provide support for the creation of CR plans.  First of all, SAIMAP is intended to provide 

the general structure of successful CR sequences for a single patient providing the length of 

the sequence and the kind of task recommended at every position (attention tasks, memory 

task or executive function task). Next, NRRMR aims to provide specific tasks information 

to help decide which particular task is placed at each position in the sequence, the number 

of times it needs to be repeated, and the expected range of results to maximize 

improvement along the treatment.  
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 From the Artificial Intelligence point of view the two methodologies proposed are 

general enough to be applied to other problems matching the same structure where a 

sequence of interconnected activities with cumulative effects are used to impact on a set of 

areas of interest, for example spinal cord injury patients following a physical  rehabilitation 

program or elderly patients facing cognitive decline due to aging who make use of 

cognitive stimulation programs or also on educational settings, to find the best way to 

combine mathematical drills in a program for a specific Mathematics course. 

. 
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Chapter 1. Introduction 
 

1.1 Introduction 
Traumatic brain injury (TBI) – defined as an alteration in brain function, or other evidence 

of brain pathology due to an external cause – is a leading cause of morbidity and disability 

worldwide (Scholten, et al.,2014). There is one case of TBI every 15 seconds and every 5 

minutes someone becomes permanently disabled due to a head injury (Kouroupetroglou, 

2013). 

 In Europe, brain injuries from trauma are responsible for more years of disability 

than any other cause (Nimmo, 2011). It is the most common cause of death and disability 

during the first three decades of life and accounts for more productive years of life lost than 

cancer, cardiovascular disease, and HIV/AIDS combined (Zitnay, et al., 2008). The 

incidence is increasing in lower income countries and the World Health Organization 

predicts that TBI will be the third major cause of disease and injury worldwide by 2020 

(Dinsmore, 2013). Furthermore, TBI is considered a silent epidemic, because society is 

largely unaware of the magnitude of the problem (Rusnak, 2013).  

 The consequences of TBI vary from case to case but can include motor, cognitive, 

and behavioral deficits in the patient, disrupting their daily life activities at personal, social 

and professional levels. The most important cognitive deficits after suffering a TBI are 

those related to attention, decrease in memory and learning capacity, worsening of the 

capacity to schedule and to solve problems, a reduction in abstract thinking, communication 

problems, and a lack of awareness of one’s own limitations. These cognitive impairments 

hamper the path to functional independence and a productive lifestyle for the person with 

TBI. 

 Despite new techniques for early intervention which increase the survival rate, there 

is still no surgical or pharmacological treatment for the re-establishment of lost functions 

following brain injury. Cognitive rehabilitation (CR) (Pascual-Leone, Amedi, Fregni, & 

Merabet, 2005) is currently considered the therapeutic process for re-establishing 

functioning in everyday life. A typical CR program mainly provides exercises which 

require repetitive use of the impaired cognitive system in a progressively more demanding 
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sequence of tasks ( Sohlberg & Mateer, 2001). The rehabilitating impact of a task or 

exercise depends on the ratio between the skills of the treated patient and the challenges 

involved in the execution of the task itself. Thus, determining the correct training schedule 

requires a very precise trade-off between sufficient stimulation and sufficiently achievable 

tasks. This is far from intuitive and is still an open problem, both empirically and 

theoretically (Green & Bavelier, The cognitive neuroscience of video games, 2006). It is 

difficult to identify this maximum effective level of stimulation; therapists use their 

expertise in daily practice without precise guidelines on these issues.  

 

1.2 Motivation 
There is a common belief that CR is effective for TBI patients, based on a large number of 

studies and extensive clinical experience. Different statistical methodologies and predictive 

data mining methods have been applied to predict the clinical outcomes of the rehabilitation 

of patients with TBI (Rughani, y otros, 2010) (Ji, Smith, Huynh, & Najarian, 2009); (Pang, 

y otros, 2007); (Segal, y otros, 2006); (Brown, McClelland, Diehl, Englander, & Cifu, 

2006);       (Rovlias & Kotsou, 2004); (Andrews, y otros, 2002). Most of these studies focus 

on determining survival, predicting disability or the recovery of patients, and looking for 

the factors that better predict the patient’s condition after TBI. 

 However, current knowledge about the factors that determine a favorable outcome 

is mainly empirical and the benefit of such interventions is still controversial (Rohling, 

Faust, Beverly, & Demakis, 2009). (ECRI, 2011). The development of new tools to 

evaluate scientific evidence of such effectiveness will contribute to a better understanding 

of CR. 

 Several meta-analyses (Cicerone, y otros, 2011) identify structural limitations that 

make it difficult to find scientific evidence under classical approaches, related mainly to the 

existence of uncontrolled factors and the intrinsic difficulty of guaranteeing the sample 

heterogeneity. Classical approaches tend to generate evidence about effectiveness by 

comparing two or more interventions in selected and comparable groups. Determining the 

comparable groups relies on identifying the factors that influence recovery or chronicity, 

which should be controlled during the study, and these factors are unknown in 
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neurorehabilitation. It seems that patient improvement might depend inter alia on the 

location of the injuries, cognitive profile, the duration and intensity of the proposed 

treatments and their level of completion (Whyte & Hart, 2003), (Cicerone, y otros, 2011), 

(de Noreña, y otros, 2010). 

 However, these seem to be only some of the determining factors and they cannot by 

themselves explain the overall phenomenon. Although these factors are considered in the 

design of rehabilitation treatments, other relevant factors exist that are much more difficult 

to control, and which are related to the high variability of the lesions, the complexity of 

cognitive functions, and the lack of proper instrumentation by which to systematize 

interventions. This produces intrinsic group heterogeneity and classical comparative studies 

do not perform well (Gibert & García-Rudolph, 2006). In turn, this  makes it difficult to 

advance knowledge on the pathophysiology of cognitive neurorehabilitation. 

 For these reasons, other approaches have to be found to better understand the CR 

process, with the aim of obtaining scientific evidence about its effectiveness and providing 

relevant information for the establishment of general guidelines for CR program design that 

can assist CR therapists in clinical practice.  

 Analyzing data from new perspectives can contribute to this field (Jagaroo, 2009). 

Our proposal in this thesis is to approach the problem from a data-driven perspective, by 

developing new tools that can reduce uncertainty in the field. 

 

1.3 Research framework 
This work has been performed within a collaboration framework between Dr. Karina Gibert 

from Universitat Politècnica de Catalunya-BarcelonaTech and Institut Guttmann-

Neurorehabilitation Hospital.  

1.3.1 Institut Guttmann-Neurorehabilitation Hospital 

Institut Guttmann (founded on 27 November 1965, Barcelona) is a specialized hospital in 

the medical and surgical treatment and comprehensive rehabilitation of people with spinal 

cord injury, acquired brain injury or other neurological disabilities (Institut Guttmann - 

Hospital de Neurorehabilitació, 2015). As stated in Article 7 of its Statutes, the Institut 
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Guttmann's main objective is to promote, encourage, and ensure the full rehabilitation of 

people affected by spinal cord injury, acquired brain injury or other neurological 

disabilities, and to provide the most appropriate support and services to achieve a 

satisfactory social reintegration while contributing to the full recognition of their rights and 

effective equalizing of opportunities. The scientific activity of Institut Guttmann, according 

to the organization’s Strategic Plan, aims to: 

• Promote the development and incorporation of new knowledge from the field of 

neuroscience, bioengineering, and medical technology. 

• Integrate the advances made in clinical and translational research to promote better 

care alternatives. 

• Promote the establishment of alliances, agreements or cooperation agreements with 

institutions and entities similar to our organization. 

 As shown in Figure 1.1, the Institut Guttmann has established three research lines: 

Neurorehabilitation of spinal cord injury (L1), Neurorehabilitation of acquired brain 

damage (L2) and Pediatric neurorehabilitation (L3). Each research line incorporates seven 

strategic translational research programs: Bioengineering applied to human functional 

autonomy (P1), Neurostimulation, neuromodulation and noninvasive stimulation (P2), ICT 

(Information and Communications Technologies) applied to neuropsychological 

rehabilitation and cognitive stimulation (P3), Neurorehabilitation in digestive function (P4), 

Regenerative Medicine applied to Spinal Cord Injury and Acquired Brain Injury (P5), 

Analysis of results applied to the generation of knowledge – QvidLab (P6), 

Pharmacological interventions in neurorehabilitation (P7). This thesis takes place in the 

intersection of Line 2 and Program 6: QvidLab. 
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Figure 1.1: Institut Guttmann Research lines and programs. This illustration shows the three main 
research lines and their respective transversal programs. This thesis is in the intersection of Acquired Brain 
Injury research line and Analysis of results applied to the generation of knowledge-QVidLab program. 
 

1.3.2 QVidLab 

The Laboratory for Enhancing Measures of Autonomy, Personal Satisfaction and Quality of 

Life of People with Neurological Disabilities (QVidLab) was set up in 2006, as a result of 

the collaboration agreement between Ministerio de Trabajo y Asuntos Sociales-Secretaría 

de Estado de Servicios Sociales, Familias y Discapacidad, and Institut Guttmann. It is 

intended as an instrument of applied clinical research in order to study a set of biological, 

psychological, and social factors that come together in people with spinal cord injury or 
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acquired brain damage, either in the short, medium and long term, by the application of 

advanced data analysis methodologies (Gil Origüén, 2009). It is built upon Institut 

Guttmann’s Electronical Health Records (EHR), which integrates relevant patient 

information, including structural damage, functional impairment, limitation of participation 

and impact of environmental factors (barriers, facilitators etc.) that might interfere in the 

social inclusion and independent living of disabled persons. The QvidLab is a higher level 

layer to EHR containing multidimensional data suitable for creating a better understanding 

of neurological disabilities and for generating new knowledge (Gibert & Tormos, 2014). 

As shown in Figure 1.1, QVidLab spans transversally along the three main research lines. 

In this work we will focus on the Acquired Brain Injury (ABI) line. ABI is defined as a 

brain injury that has occurred after birth (Brain Injury Association of America, 2015). ABI 

provides a broad umbrella definition and, depending on the severity of the injury, can 

include etiologies such as cerebrovascular accidents (CVAs) or strokes, and encephalitis. 

ABI does not include brain injury that is congenital, hereditary, degenerative or induced by 

birth trauma.  

 ABI includes Traumatic brain injury (TBI), a type of ABI that refers to structural 

injury that has been induced traumatically and/or a physiological disruption of brain 

function resulting from an external force (Vincent, Roebuck-Spencer, & Cernich, 2014). 

Together with stroke, TBI is one of the two main causes of ABI worldwide 

(Kamalakannan, Gudlavalleti , Murthy Gudlavalleti, Goenka, & Kuper, 2015). Without 

losing generality, the methods presented in the following chapters are applied to TBI 

patients but can be addressed to other ABI patients undergoing CR treatment under the 

conditions defined in the upcoming chapters. 

 

1.4 Clinical background 
This section introduces, defines and highlights specific clinical foundations for the 

forthcoming chapters. 

 1.4.1 Traumatic Brain Injury 

TBI is defined as an alteration in brain function, or other evidence of brain pathology, 

caused by an external force (Menon, Schwab, Wright, & Maas, 2010). Alteration in brain 
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function is defined as one of the following clinical signs: any period of loss or decreased 

consciousness; any loss of memory for events immediately before (retrograde amnesia) or 

after the injury (post-traumatic amnesia, PTA); neurologic deficits (weakness, loss of 

balance, change in vision, dyspraxia paresis/plegia, sensory loss, aphasia, etc.); any 

alteration in mental state at the time of the injury (confusion, disorientation, slowed 

thinking, etc.). Other evidence of brain pathology includes visual, neuroradiological, or 

laboratory confirmation of damage to the brain (Menon, Schwab, Wright, & Maas, 2010). 

 The central factor is that brain damage results from external forces as a consequence 

of direct impact, rapid acceleration or deceleration, a penetrating object (e.g. gunshot) or 

blast waves from an explosion. The nature, intensity, direction, and duration of these forces 

determine the pattern and extent of damage. 

1.4.2 Cognitive Rehabilitation 

Cognitive rehabilitation (CR), tries to improve the deficits caused by TBI in daily living 

activities (Bernabeu & Roig, 1999) by retraining attention, memory, reasoning/problem 

solving, and executive functions. The plasticity of the central nervous system plays a 

central role (Pascual-Leone, Amedi, Fregni, & Merabet, 2005) in CR, based on therapeutic 

plans to stimulate non-damaged neurons that can modify their structure by learning from 

experience, through repetition (Luria, 1976). Plasticity may represent a surrogate marker of 

functional recovery indicative of behavioral change that is resistant to decay. It is suggested 

(Kleim & Jones, 2008) that a sufficient level of rehabilitation is likely to be required in 

order to get the subject “over the hump,” i.e. repetition may be needed to obtain a level of 

improvement and brain reorganization sufficient for the patient to continue to use the 

affected function outside of therapy and to achieve and maintain further functional gains. A 

great deal of research indicates that behavioral experience can enhance behavioral 

performance and optimize restorative brain plasticity after brain damage (Kleim & Jones, 

2008). Simply engaging a neural circuit in task performance is not sufficient to drive 

plasticity. Repetition of a newly learned (or relearned) behavior may be required to induce 

lasting neural changes. In fact, from the expert’s point of view, there is a clear perception 

that the effectiveness of the task also depends on the replication, as Luria also asserts. 
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A typical CR program mainly provides exercises that require repetitive use of the impaired 

cognitive system in a progressively more demanding ( Sohlberg & Mateer, 2001) sequence 

of tasks. Each task targets a principal cognitive function and can be performed at different 

levels of difficulty, according to the response of the patient. The design of a CR program 

has become an essential issue for patient recovery. The rehabilitating effect of a task or 

exercise depends on the ratio between the skills of the treated patient and the challenges 

involved in the execution of the task itself. The difficulty is related to the level of 

stimulation of cognitively involved functions; maximum activation occurs when the task is 

“just barely too difficult” (Green & Bavelier, 2006). If the task is either too easy or too hard 

for the patient, it appears to be less effective. Active monitoring of the subject’s progress is 

therefore required to adapt the difficulty of the tasks to the potential capacities and progress 

of the subject, always pushing them to reach a goal just beyond what they can attain, but 

not too far. Thus, determining the correct training schedule requires a very precise trade-off 

between sufficiently stimulating and sufficiently achievable tasks. This is far from intuitive 

and is still an open problem, both empirically and theoretically. 

1.4.3 Assessment of the effects of CR  

Before starting the CR program every patient undergoes a Neuropsychological Assessment 

Battery (NAB). This battery includes 28 items covering the major cognitive domains 

(attention, memory and executive functions) measured using standardized cognitive tests. 

NAB consists of a selection of some items from 7 assessment instruments, associated with 

the different cognitive functions, which in turn are evaluated under some specific sub-

functions. In view of the fact that conventional neuropsychological instruments are 

notorious for amalgamating cognitive operations (Jagaroo, 2009); (Sabb, y otros, 2009), in 

the proposed approach a subset of NAB items with the highest levels of specificity has 

been selected in collaboration with domain experts. The final items considered in this work 

are the following 14 non-redundant items: 
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• Memory:  

o Visual and Verbal Memory: 

 The Rey Auditory Verbal Learning Test (Rey, 1964) (RAV075, RAV015 

and RAV015R items)  

• Attention: 

o Sustained Attention:  

 Continuous Performance Task Test (Conners & Sitarenios, 2011) (OMI, 

COMI and CPT items)  

 Trail Making Test-A (Reitan & Wolfson , 1993) (TMTA item)  

o Selective Attention:  

 WAIS-III Selective attention (Wechsler, 1997) (VWAIS item)  

o Divided Attention:  

 Trail Making Test-B (Reitan & Wolfson , 1993) (TMTB item). 

• Executive Functions:  

o Planification:  

 WAIS-III Visuo Construction (Wechsler, 1997) (CUBES item) 

o Inhibition:  

 Stroop Test (Golden, 1994) (INTER item)  

o Flexibility   

 Wisconsin Card Sorting Test (Heaton, Chelune, Talley, Kay, & Curtiss, 

1997) (TERR item)  

 Letter Fluency Test (Artiola i Fortuny, Hermosillo Romo, Heaton, & 

Pardee III, 1999) (PMR item)  

o Categorization:  

 The Wisconsin Card Sorting Test (Heaton, Chelune, Talley, Kay, & 

Curtiss, 1997) (CAT item)  

 

All NAB items are normalized to a 0 to 4 scale (where 0 = No affectation, 1 = mild 

affectation, 2 = moderate affectation, 3 = severe affectation and 4 = acute affectation) (Gil 

Origüén, 2009). 

After this initial evaluation, patients start  CR program  (for 2 to 5 months, depending on 

the patient) using a specific software specifically developed in the hospital 

(PREVIRNEC© platform, at the moment of the submission of this thesis’ initial 
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publications  PREVIRNEC© was the name of the platform, now at the moment of thesis 

submission it is Guttmann, NeuroPersonalTrainer®, but PREVIRNEC© was kept along 

this thesis for consistency ) which is described in the next section (1.4.4). After treatment 

every patient undergoes the same NAB to evaluate the cognitive outcome status. 

Information obtained in the NAB before and after treatment is the basis on which to 

understand the improvement of the patient and, in consequence, the response level to the 

treatment itself. Measuring global improvement in a specific cognitive function (e.g. 

Attention) implies studying response to treatment in each of the subfunctions involved in 

NAB tests (e.g. Sustained, Selective, Divided Attention). Different criteria can be adopted 

(take the subfunctions’ average; take the maximum difference, etc). To the best of our 

knowledge, within the clinical CR therapists community no standardized approach is 

universally accepted to determine the improvement of the patient from a systematic point 

of view. 

1.4.4 Cognitive Rehabilitation Platform 

The Information Technology framework for CR treatments in our clinical setting is the 

PREVIRNEC© platform (Tormos, Garcia-Molina, Garcia-Rudolph, & Roig, 2009). A 

J2EE client-server architecture specifically designed and developed to manage CR plans 

assigned by therapists to patients and the follow up information about the process. 

It is conceived as a tool for the enhancement of cognitive rehabilitation, the strengthening 

of the relationship between the neuropsychologist and the patient, the personalization of 

treatment, the monitoring of results, and the performance of tasks. The platform 

architecture consists of four main modules that group related functionalities vertically, 

sharing the user interface that is personalized depending on the user’s role. This interface is 

also multi-language, with Catalan, Spanish and English already implemented, but being 

open to support any other language. The system also has a Help module, which guides the 

user in order to complete each action. Security aspects are transversal and have to be taken 

into account in every module, in order to keep information and all connections safe due to 

the confidentiality concerns of medical applications. The security module is responsible for 

controlling every access, including the ones related to the patient’s Electronic Health 

Record (EHR). The four modules are briefly described below (Solana, y otros, 2011): 
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Information management: this module groups functionalities related to the generation and 

editing of information that depends on the patient’s EHR, as well as the tests used to 

determine the grade of affection of each cognitive function. These tests are used to define 

the affection profile of the patient. In addition, this module controls the assignation of 

therapies to patients, determining which computerized tasks a patient has to do on a certain 

day. The results of the execution of these tasks are recorded in the system. They can then be 

used by the clinicians to view the evolution of the therapy, to display graphics and reports 

relating to the completion of the sessions, the tasks that have been used, global and 

individual results, and much more. 

Monitoring: To comply with data protection laws, every action carried out by a user is 

stored in both the database and also in a log file, so that the administrator can track every 

action related to a patient and their data. The system also offers a module for monitoring 

the execution of the tasks, so the therapist can then reproduce a task as it was done by the 

patient. This allows the therapist to see exactly what a patient did in the monitored task. 

This is very useful because sometimes merely seeing the numeric results is not enough. 

Administration: This module, although it has the fewest functionalities and users, includes 

very important functionalities such as user management, user profiles, and system 

monitoring (using logs). 

Communication: The main element of this module is the video conference function that 

allows users to communicate using video, audio, and chat. By means of the 

videoconference function, therapists can hold tele-appointments with patients or other 

therapists, removing the distance barriers between users, and helping the patients to feel 

closer to the clinical team. In addition to the videoconference, this module has a mailing 

service for the exchange of internal asynchronous messages and an alert service that lets 

users know what tasks they have to accomplish. 

The platform is based on open source web 2.0 technologies. The main architecture of the 

platform is based on client-server communication using HTTP and XML-RPC, as shown in 

Figure 1.2. 

 

28 

 



 
             Figure 1.2  PREVIRNEC© Client / Server communication schema 

 

A Model-View-Controller pattern was followed during the development phase. As a result, 

the view and the logic to access and process data are separated.  

The new web application requires Java (jdk 1.6, jre 6.x) and it runs over Apache Tomcat 

6.X, as it is based on Servlet/JSP. The database used is MySQL Server 5.X and MySQL 

Java Connector 5.X (JDBC). 

With regard to the programming languages used, all of the environment is a Java 2 platform 

(J2EE, Enterprise Edition) that uses JavaScript and AJAX (SACK library) to dynamically 

change the data displayed on the HTML pages, thereby avoiding the need to reload the 

page every time the user wants to show or edit content.  

For the videoconference module, OpenMeetings have been used. This implements the Real 

Time Multimedia Protocol (RTMP) using a red5 server for audio and video streaming. 

For each person or entity using the system in a determined context and for a specific goal, 

four different user profiles have been defined: 

Patients: man or woman of any age with one or some cognitive functions affected, as a 

consequence of suffering ABI. The caregiver role appears here, considered a secondary 

actor that will help the patient use the system when necessary. 

Therapist: a neuropsychologist who specializes in cognitive rehabilitation in patients with 

ABI, who will have a number of assigned patients and be responsible for their treatment, 

scheduling and the monitoring of personalized and individualized therapies. 

Supervisor: person in charge of the user management for each center, both patients and 

therapists and their assignments, apart from other management and control functions 

applied to the supervising center/s. 
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Administrator: apart from all the typical administration tasks for every informatics system, 

the administrator will be the person responsible for managing the categories, functions, and 

tasks defined in the system, which is the content the therapist will use to schedule therapy 

sessions for their patients. 

1.4.5 Cognitive Rehabilitation Tasks  

The therapeutic content used in PREVIRNEC© tele-rehabilitation sessions consists of 

computerized tasks grouped by cognitive functions. The neuropsychologist creates a tele-

rehabilitation session by assigning a set of tasks to a certain session day. He or she is able 

to configure the difficulty of each task because they all have a set of input parameters. 

At the time of this analysis, PREVIRNEC© includes one hundred and fifteen 

rehabilitations tasks. Each task is defined by a series of parameters that determine its level 

of difficulty. The therapist selects for each task the parameter to be used for the automatic 

adjustment of the difficulty level described above. This dynamic adjustment of the 

difficulty level is performed twice for each task as necessary. This means that if the patient 

does not obtain a task result in NRR in the first execution, PREVIRNEC© automatically 

generates the task with the adjusted difficulty level once; if again the obtained result is not 

in TR, PREVIRNEC© likewise generates a second version of the task. 

 For illustrative purposes one such task designed for visual memory treatment is 

described below in more detail. This task (identified as idTask=151) has been one of the 

most extensively administrated by neuropsychologists and executed by participants during 

the analyzed period (described in Chapter 9). 

 The objective of the task is to recall the position of pairs of identical images in a 

grid. A grid of fixed size (e.g. 5x5 dark colored cells) is presented to the participant at the 

start. When the participant left-clicks on a cell in the grid, an image of an object on a white 

background appears in the cell. This image remains until a second cell is clicked, then both 

images are shown for a period of time (e.g. 1500 ms) for the participant to remember them; 

afterwards both images are covered. Only two cells can be simultaneously discovered in 

one go. When two identical images are discovered, both of them remain visible in their 

cells. The aim of the task is to discover all the images in the grid with the minimum number 

30 

 



of clicks. The parameters that determine the different difficulty levels are shown in Table 

1.1 

 

Number of cells Stimulus type Proximity of the 
second image 

Presentation time 

4x4 

5x5 

6x6 

8x8 

abstract objects 

numbers 

animals 

colors 

 2 cells 

 3 cells 

 4 cells 

Random 

 

1500 ms 

3000 ms 

4000 ms 

 

  Table 1.1 Parameters that determine idTask= 151 level of difficulty  

 

The quantified result parameters for the evaluation of task completion are: the total 

execution time, the total number of discovering clicks, the total number of wrong clicks 

(this number increases if the participant clicks on an image already discovered before, 

meaning that errors are computed after an initial exploration phase), the total number of 

correct clicks (in this case, although it is computed for homogeneity with other tasks, the 

number of clicks for all participants is constant because the task is considered unfinished 

until all the images are discovered; this also means that task151 does not produce 

omissions, and they are presumed to be zero). The task result is computed as: 

 

 Task result = [correct / (correct + wrong + omissions)]*100 

 

In this work, the underlying structure of the CR phenomenon has been analyzed in depth 

and it has been seen that the CR field has some specific characteristics that make the 

successful application of traditional methods difficult: 
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• Patients following a CR program are performing neither a single task nor a single 

type of tasks, but rather a certain complex combination of them that is likely to be 

interrelated or synergistics. A single task approach cannot take into account the 

complex interactions between tasks.  

• Cognitive tasks, even when specifically designed to target a particular cognitive 

function, might also have side-effects on other cognitive functions (Cicerone et al., 

2011). This makes it difficult to examine the isolated effect of a single task in a 

specific cognitive function, and no clear evidences appear when all tasks are 

integrated into a classical model. 

• The additional effect of a single task might be affected by the cumulative effect of 

the sequence of previous tasks executed under the treatment. This might determine 

that order of execution is relevant in the treatment.  

• The effect of a single task may be too subtle to be detected, whereas the effects of 

the whole CR treatment may be sufficient to be detectable, given the cumulative 

effect of rehabilitation already mentioned. 

 

From a structural point of view, these characteristics parallel those holding in nutritional 

epidemiology, where a global approach has been adopted in recent years, and all nutrients 

are analyzed together due to the high degree of interaction between them. This suggests we 

should analyze the overall CR treatment as a whole, by considering all kinds of interactions 

among tasks together, instead of using the traditional single task approach. Thus, in this 

work, CR treatment will be considered as a sequence of cognitive tasks and data mining 

methods will be used to determine the multivariate associations between a CR treatment (or 

relevant subsequences) and the degree of response of the patient. Analyzing CR tasks as 

treatment patterns offers an innovative perspective in neurorehabilitation, and describing 

their relationship with their clinical outcome provides a practical approach for evaluating 

the effects of rehabilitation treatments. It can also enhance our conceptual understanding of 

CR treatments practice, and might be useful in providing guidance for cognitive treatment 

interventions. 
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 In this particular field, because of the cumulative effect of the tasks mentioned 

above, it is reasonable to think that the effect of a certain sequence of CR tasks can respond 

robustly to slight variations of the sequence. Thus, small variations in the sequence of tasks 

performed might keep the global effect of the treatment unaltered. This means that the 

model to be built should admit a certain level of variations around every relevant pattern. 

These characteristics have already been encountered in the bioinformatics fields, 

particularly in the transcription factor binding sites (TFBS) field, where slightly different 

sequences of DNA are associated with a certain biological function. In this field, motif 

discovery or motif finding methods are used to represent these weak patterns. Analogously, 

motif discovery methods will be introduced in our proposed methodology to identify 

patterns of CR treatments, where slight variations in the treatment program might be 

packed in a single CR motif with a similar therapeutic effect, and might be associated with 

a certain response level. 

1.4.6 Zone of Proximal Development 

In the early 1930s, Vygotsky introduced the concept of Zone of Proximal Development 

(ZPD) in the field of child learning, being the distance between the actual capacities of the 

child by himself and their potential capacities when being guided (Vygotsky, 1978). In 

1986, Cicerone and Tupper transferred ZPD ideas to the neurorehabilitation field by 

introducing the zone of rehabilitation potential (ZRP) (Cicerone & Tupper, 1986), i.e. the 

zone in which maximum recovery of cognitive functions might occur, provided that the 

proper help is given to the subject. They propose the use of ZPD as a guiding principle in 

CR. This zone is supposed to reflect the patient’s region of potential restoration thanks to 

cognitive plasticity (Calero & Navarro, 2007). Current neurorehabilitation practice tries to 

design therapeutic plans that keep the subject working in this area during treatment. 

However, determining when the patient works in ZPD or not is still an open issue. Thus in 

most cases CR therapists design CR plans from scratch, determining clinical settings for 

specific patients based mainly on their own expertise. Each specific plan evolves according 

to each therapist’s own criteria and evaluation of the patient’s follow-up. There is as yet not 

enough in-field knowledge regarding which specific intervention (task or exercise 
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assignation) is more appropriate to help CR therapists design their clinical therapeutic 

plans. 

 Learning is enhanced when the match between the skills of the learner and the 

challenges of the subject matter are optimized (Whalen, 1998). Csikszentmihalyi's Flow 

Theory (Csikszentmihalyi, 1991) provides a framework and vocabulary for understanding 

the experiential nexus between the active person and the facilitative environment. The 

experience of Flow creates information that melds actor and activity into one transactive 

system. In this sense, Flow may be seen as the experiential dimension of the ZPD (Whalen, 

1998). 

 Flow or optimal experiences, also referred to as the zone (Csikszentmihalyi, 1991) 

represents a state of consciousness where a person is so absorbed in an activity that he or 

she excels in performance without consciously being aware of his or her every movement.  

According to Luria’s theory outlined above, repeated taxing of the same neurological 

system facilitates and guides the reorganization of the targeted cognitive function. This 

approach requires implementation of repetitive exercises within the planned program which 

require patients to use their impaired cognitive skills at a productive level.  

 The emergence of serious games broadens the discipline of entertainment-education 

in numerous dimensions. Serious games have recently been applied in diverse areas, e.g. 

military training, health, higher education, city planning (Rego, Moreira, & Reis, 2010). 

Prior research demonstrates that videogame attributes, such as task difficulty, realism, and 

interactivity, affect learning outcomes in game-based learning environments (Orvis, Horn, 

& Belanich, 2008). These prior works suggest that in order to be most effective, 

instructional games should present an optimal level of difficulty to learners. This optimal 

range of difficulty is aligned with the Vygotsky’s concept of ZPD, where training should be 

difficult for the learner, but not beyond his or her capabilities. 
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1.5 Thesis Structure 
Chapter 1. Introduces and motivates the general problem, current approaches, the actual 

limitations, and the specific context and background of this research and the thesis 

structure. 

Chapter 2. Presents the problem formal definition, the general objectives and the CMIS 

methodology, as a high level umbrella of 5 steps that combine several contributions of this 

thesis. 

Chapter 3. Addresses the bibliography review, initially underlining the limitations of 

traditional data-driven methods in our context of application, reviews state of the art in the 

context of repeated activities search patterns as well as optimization problems related to our 

proposed methods. 

Chapter 4. Proposes a new data mining methodology (SAIMAP) which combines tools 

from pre-processing, clustering, patterns identification, visualization, and post-processing. 

Chapter 5. Addresses the problem of identification of the general pattern associated with a 

motif, which at different lengths are analyzed leading to a general treatment pattern 

represented as a regular expression. 

 Chapter 6. The NeuroRehabilitation Range (NRR) is introduced in this chapter. Data 

mining techniques are used to build data-driven models for NRR. The Sectorized and 

Annotated Plane (SAP) is proposed as a visual tool by which to identify NRR, and two 

data-driven methods to build the SAP are introduced. Limitations of proposed methods are 

analyzed and we then build on the concept of NRR and SAP tools to present and solve a 

new problem, i.e. the NeuroRehabilitation Range Maximal Regions problem (NRRMR). 

Chapter 7. This chapter formalizes the process of determining the improvement of an 

individual in the several areas of impact after execution of a given task in NRR. 

Chapter 8. The final treatment design proposal is presented. The regular expression 

associated to the recommended treatment is used as a general frame to be instantiated by 

specific tasks maximizing improvements. 

Chapter 9. This chapter presents the application of the proposed methods in a clinical 

context: the Neuropsychology Department of the Acquired Brain Injury Unit at Institut 

Guttmann Neurorehabilitation Hospital (IG) where TBI patients undergo CR treatments 
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Chapter 10. Conclusions, discussion, and limitations of the proposed approaches are 

outlined as well as future lines of research. 

1.6 Summary 
This chapter introduces, contextualizes and motivates the general medical problem that 

initially motivated the thesis from both medical and technical points of view. The relevance 

of the addressed medical problem is highlighted, being TBI responsible for more years of 

disability than any other cause. TBI is currently treated through Cognitive rehabilitation 

(CR). While cognitive rehabilitation task repetition is not the only important factor, it is 

becoming clear that neuroplastic change and functional improvement only occur after a 

number of specific tasks  are performed in a certain order and number of repetitions and 

does not occur otherwise. However there are not enough scientific evidences yet to 

establish clear guidelines to design the specific sequences of neurorehabilitation tasks to be 

prescribed to each single patient. This chapter remarks the current limitations in the area 

and highlights the need of new data driven approaches to better understand patient´s 

rehabilitation process, with the aim of obtaining scientific evidence about its effectiveness 

and improve prescription of individual treatments. The Information Technology framework 

supporting CR treatments in our clinical setting is described (the PREVIRNEC© platform). 

Finally this chapter presents the specific  research framework where this thesis took place:  

a collaboration framework between Dr. Karina Gibert from Universitat Politècnica de 

Catalunya-BarcelonaTech and Institut Guttmann-Neurorehabilitation Hospital, at the 

intersection of the Neurorehabilitation of Acquired Brain Damage Research Line and the  

QVidLab   (Laboratory for Enhancing Measures of Autonomy, Personal Satisfaction and 

Quality of Life of People with Neurological Disabilities) Program of Institut Guttmann. 

. 
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Chapter 2. Problem Formulation, Objectives 
and Methodological Proposal 
 
As presented in Chapter 1 the general clinical motivation of this thesis is to support the 

design of CR programs. This requires an understanding of the general process and 

particularly the relationship between CR tasks and cognitive improvements of the targeted 

functions measured by standardized tools (such as NAB introduced in section 1.4.3).  

CR are a particular case of finding patterned sequences of activities that interact among 

them. Thus, from the methodological point of view, the main objective of this thesis is 

 

 

 

To this purpose a first effort to analyze the structure of the problem and formalize it, has 

been done and some specific objectives have been faced to approach several aspects of the 

problem as pieces of a general methodology presented in Chapter 4 as the thesis proposal. 

 

2.1 Problem Formulation  
Given 
 
𝐼𝐼 = {𝑖𝑖1 … 𝑖𝑖𝑛𝑛} a set of individuals  
 
T = {Ts  s=1:T   } a set of activities (or tasks) that can be executed by any individual  
 
A  = {A1, A2,…., Aa} set of impact areas such that each task impacts in a certain area of A 
 
f :  T  A  a function that relates an activity with its area of impact:  f(Ts ) = Aj ,    
                    s=1:T ,  j=1:a ,  being Aj  the area of impact of  activity Ts 

 
Given an scenario in which each individual i executes a sequence of 𝑡𝑡𝑓𝑓𝑖𝑖activities, one at 
each time t = 1. . 𝑡𝑡𝑓𝑓𝑖𝑖. as shown in Figure 2.1 
 

to provide a formal frame to find the right sequence of interacting 

activities to be followed for a maximum improvement in multiple areas. 
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Figure 2.1. Representation of individuals executing sequences of activities impacting areas which 

 are evaluated before and after the period of executions. 
 
 
 
Given i, the matrix 𝑅𝑅𝑖𝑖 provides the list of all his executions (runs): 
 
𝑅𝑅𝑖𝑖 = [𝑖𝑖,𝑇𝑇, 𝑡𝑡](𝑡𝑡𝑓𝑓𝑖𝑖 ,3)   
 
Matrix R represents the total set of activities executed by all individuals  
 

𝑅𝑅 =

⎣
⎢
⎢
⎢
⎢
⎡
[𝑅𝑅1]
[𝑅𝑅2]
⋮

[𝑅𝑅𝑖𝑖]
⋮

[𝑅𝑅𝑛𝑛]⎦
⎥
⎥
⎥
⎥
⎤

(𝜌𝜌,3)

  

 
being 𝜌𝜌 = ∑ 𝑡𝑡𝑓𝑓𝑖𝑖

𝑛𝑛
𝑖𝑖=1   the total number of activities’ executions performed by all individuals. 

 
On the other hand, the sequence of activities executed by an individual i on time 𝑡𝑡 =
1. . 𝑡𝑡𝑓𝑓𝑖𝑖is 𝑠𝑠𝑖𝑖 = (𝑇𝑇𝑖𝑖1, … ,𝑇𝑇𝑖𝑖𝑖𝑖, … ,𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖). In fact, 𝑠𝑠𝑖𝑖 is  𝑠𝑠𝑖𝑖 = 𝑅𝑅𝑖𝑖[2]𝑇𝑇 . The longest sequence having 
length 𝑀𝑀𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1..𝑛𝑛 𝑡𝑡𝑓𝑓𝑖𝑖 
 
∀ 𝑠𝑠𝑖𝑖  the vector  𝑣𝑣𝑖𝑖  can be defined:  𝑣𝑣𝑖𝑖 =( ni1…niT), niT  = number of repetitions of task T 
performed by individual i in the total sequence si 
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𝜒𝜒 = [𝑇𝑇𝑖𝑖𝑖𝑖](𝑛𝑛,𝑀𝑀𝑡𝑡)  with    𝑖𝑖 = {1. .𝑛𝑛}, 𝑡𝑡 = �1. . 𝑡𝑡𝑓𝑓𝑖𝑖�,    is a matrix where each row indicates the 
sequence of activities performed by individual i. Note that this might not be a rectangular 
table, as each row has length 𝑡𝑡𝑓𝑓𝑖𝑖 ≤ 𝑀𝑀𝑡𝑡,∀𝑖𝑖 = 1. .𝑛𝑛. 
 

𝑁𝑁 =  �
[𝑣𝑣1]
⋮

[𝑣𝑣𝑛𝑛]
�   contains the profile of the sequence performed by i in terms of number of 

tasks of each type   
 
 
𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖) is the area of impact of activity 𝑇𝑇𝑖𝑖𝑖𝑖 executed by individual i in time t 
 
In the general scenario 
 

F = 

 
 

𝐹𝐹(𝑠𝑠,𝐴𝐴) = �
1 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 

 
 0  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                             

     

 

In the case of tasks impacting multi areas f is the main or primary area impacted by each 
task 
 
𝑠𝑠ia = (𝐴𝐴𝑖𝑖1, … ,𝐴𝐴𝑖𝑖𝑖𝑖 , … ,𝐴𝐴𝑡𝑡𝑡𝑡𝑖𝑖) is the sequence of areas impacted by the activities executed by 
individual i in the period [1, 𝑡𝑡𝑓𝑓𝑖𝑖], being 𝐴𝐴𝑖𝑖𝑖𝑖 ∈ A ∀ t = 1.. 𝑡𝑡𝑓𝑓𝑖𝑖. 
 
𝜒𝜒a = [𝐴𝐴𝑖𝑖𝑖𝑖](𝑛𝑛,𝑀𝑀𝑡𝑡)  with  𝑖𝑖 = {1. .𝑛𝑛}, 𝑡𝑡 = �1. . 𝑡𝑡𝑓𝑓𝑖𝑖�,  is a matrix where each row indicates the 
areas of impact of the sequence of activities performed by individual i. 
 
𝜒𝜒p = [𝑝𝑝𝑖𝑖𝑖𝑖](𝑛𝑛,𝑀𝑀𝑡𝑡)  with  𝑖𝑖 = {1. .𝑛𝑛}, 𝑡𝑡 = �1. . 𝑡𝑡𝑓𝑓𝑖𝑖�,  𝑝𝑝𝑖𝑖𝑖𝑖  performance of execution of task t by 
individual i in sequence si 
   
Y1t….Yat  a set of numerical indicators of performance for individuals in each area of impact  
 
𝑌𝑌𝑗𝑗𝑗𝑗 measures the global performance obtained of individual i in the Area of impact  
𝐴𝐴𝑗𝑗 ∈ A   𝑗𝑗 = 1. .𝑎𝑎  in a certain time point t. 
𝐸𝐸0 = (𝑌𝑌10 …𝑌𝑌𝑎𝑎0)  evaluates the performance levels of individuals in the different areas of 
impact before executing their sequence of activities. 
 
𝐸𝐸𝑓𝑓 = (𝑌𝑌1𝑓𝑓 …𝑌𝑌𝑎𝑎𝑎𝑎)  evaluates the performance levels of individuals in I, in the areas of 
impact in A after executing their corresponding sequence of activities described in 𝜒𝜒. 
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𝐷𝐷𝑗𝑗 = 𝑌𝑌𝑗𝑗0 − 𝑌𝑌𝑗𝑗𝑗𝑗   evaluates the effect of  𝜒𝜒  in the performance levels of Aj. Note that a 
global effect of the whole sequences is measured, taken into account that several activities 
in the sequence might impact on the same area. Ideally 𝑌𝑌𝑗𝑗𝑗𝑗 will be an implicit or explicit 
function of all those activities impacting Aj independently of their position in the particular 
sequence, due to the cumulative effect of activities discussed above.  
 
Assuming that 0 indicates best performance,  
 

                 𝐷𝐷𝑗𝑗  > 0  indicates improvement 
 
                 𝐷𝐷𝑗𝑗  ≤ 0  indicates non-improvement 

 
Depending on the particular application, other semantics might also be assigned to the 
values of the performance indicators as well, and this will require reinterpretation of values 
of the 𝐷𝐷𝑗𝑗  variables accordingly. 

 
𝛥𝛥= (𝐷𝐷1……𝐷𝐷𝑎𝑎)  provides the effect of 𝜒𝜒 over each area of impact. 
 
X =(X1…XK) additional information over individuals XK might be either numerical or 
qualitative 
 
Being B: Boolean expression build over 𝜒𝜒a , L: Label;  KB = { r: B  L }  is a 
Knowledge base composed by a set of rules partially expressing the a priori knowledge in 
the domain. It is important to note here that no assumption of completeness is imposed over 
KB. 
 
Eventually, a binary variable Z might be available for model assessment,  indicating the 
success of an individual performing its sequence of activities under a certain criterion of 
performance,   
 

𝑍𝑍 = �
𝑌𝑌𝑌𝑌𝑌𝑌, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 
 𝑁𝑁𝑁𝑁,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 

 
Eventually Z might be a multidimensional vector and each component might be a function 
of some 𝛥𝛥 component. 
 
 
Also, hi provides the scoring p and improvement z associated to the execution of T by 
individual i   
hi = [i,T,p,z] and V provides this information of all executed tasks 
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𝑉𝑉 = �

[ℎ1]. .
[ℎ𝑖𝑖]. .
[ℎ𝑛𝑛]

�    

 
 
Under all these premises, it is desired to find: 

 
a sequence of activities �𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛𝜇𝜇�

𝑛𝑛
 with 𝑎𝑎𝑙𝑙 ∈ A,  l: 1... 𝑛𝑛𝜇𝜇 such that the  

global effect of the sequence over the whole set of impact areas A leads to a 
successful performance. 
 
 
 

 
2.2 Possible Instances of the Thesis Problem 
 

This general problem responds to the structure of many different real scenarios where the 

proposed methodology might help. Here some examples are presented. All of them can be 

treated as particular cases of the stated problem. See Table 2.1 on how to instantiate the 

proposed methodology to the different cases.  

CR program. Find the best way to combine CR tasks  in a sequence to configure the CR 

program of a TBI patient. Such tasks might stimulate different cognitive functions like 

Attention, Memory or Executive functions or several of them simultaneously. Repetition of 

tasks produce cumulative therapeutic effects even if there are other tasks in the middle. 

Improvement of the patient is assessed using a standard battery of assessment tests (NAB 

battery presented in section 1.4.3). 

Primary Education. Find the best way to combine mathematical drills in an educational 

program for a specific math course. Each drill might work different students’ skills like 

Logics, abstraction, mental calculus, algebraic structures, … or several of them 

simultaneously. Repetition of drills produce cumulative formative  effects even if there are 

other drills in the middle (in this particular scenario it might be considered that repetition of 

a drill means several instances of the same problem with different numbers). Improvements 

of students’ skills is evaluated through exams. 
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Physical training to prevent frailty.   Find best way to combine physical training 

exercises that can be performed following assisted videotutorials such as Condition Coach 

(CoCo) platform (Roessing, 2014) addressing different activities  (e.g. aimed for 

coordination, strength, endurance, balance) to prevent frailty in elderly population. 

Standard physical assessment batteries are applied to evaluate improvements in the 

different muscular  groups targeted  by  exercises (e.g. grip strength, arm-hand 

coordination, knee). 

 CR program Primary Education Physical training 

I TBI patients in CR Children at primary school Elderly population 

T CR tasks patients 

execute during 

treatment  

Educational problems based 

learning program for 

mathematics course 

Physical exercises 

for frailty prevention 

A cognitive functions 

targeted by tasks  

(attention, memory, 

executive functions 

PREVIRNEC 

platform) 

Students skills in Logics, 

Numerical , Algebra, 

Calculus, students skills in 

logics 

Muscular groups 

targeted  exercises 

(e.g. grip strength, 

arm-hand 

coordination, knee, 

CoCo platform) 

𝑅𝑅𝑖𝑖 Sequence of CR 

tasks executed by 

patient 

Sequence of math drills 

executed by children in class 

or at home 

Sequence physical  

exercises executed 

by old adults 

Y NAB battery Examinations  Jamar dynamometer 

X numerical (age, 

GCS, days in PTA) 

or qualitative 

(gender or 

Educational level). 

Characteristics of students, 

age, family characteristics, 

other related courses scores 

Age, blood pressure 

Z Global cognitive 

improvement 

criteria 

Evaluation of marks along 

course examinations 

Global physical 

assessments scales 

Table 2.1 Instantiation of proposed methodology to different application domains 
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2.3 The CMIS Methodology for Designing Cumulative Multiple 

Impact Sequences   
 

In order to identify sequences of activities such that the global effect of the sequence 

over the set of impact areas leads to successful performance, the general method CMIS 

is proposed as a sequence of steps where each one is detailed in the specific section.  

The notation introduced in Section 2.1 is assumed. 
 

1. SAIMAP methodology (see details in Chapter 4) 
First of all, given the sequences of activities performed by each individual R, a reduced 
set of characteristics motifs M are found to profile the sequences followed by a small 
number of groups of individuals who behave similarly. 
 
Input: R, f, E0, Ef, F 
 
Output: 
a set of patterns M describing the behavior of the individuals when executing activities 
M= {𝜇𝜇1, 𝜇𝜇2, … 𝜇𝜇𝑚𝑚} ∀ µ ∈ M µ is a sequence of impact areas of variable length (always 
lower than Mt). Thus, each pattern µ is expressed as: 
𝜇𝜇 = (𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛𝜇𝜇  ) with 𝑎𝑎𝑙𝑙 ∈ A l: 1... 𝑛𝑛𝜇𝜇 
Such that 
 ∀ µ , µ′  ∈ M : 𝜇𝜇 ≠ 𝜇𝜇′ 
 ∀ i ∈ I, ∃ µ ∈ M ∶ µ is a subsequence of  𝑠𝑠𝑖𝑖 
 ∀ 𝜇𝜇′ ∈ M,   𝜇𝜇′ ≠ 𝜇𝜇, µ is a not subsequence of 𝑠𝑠𝑖𝑖 
 Thus, M inducing a partition P over I. Being P = {𝐼𝐼𝜇𝜇1 … . 𝐼𝐼𝜇𝜇𝑚𝑚}, 
 
 𝐼𝐼𝜇𝜇 = {𝑖𝑖: µ is a subsequence of  𝑠𝑠𝑖𝑖 } 

 
 
2. Identification of the general patterns execution global pattern (See details in 

Chapter 5) 
Provides a scheme of contiguous positions of the sequences where a particular area has 
to be impacted  
 

 Input: M 
 

Output: S={S 1,..,SM
 } such that ∀ µ  ∈ M  S ∈ S is the general pattern associated to the 

motif µ ∈ M in the form of a regular expression (see Chapter 5)  ([A]r,)* 𝐴𝐴 ∈ P(A) 
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3. Identification of NRRs for each task (See details in Chapter 6) 
For the whole set of tasks a Neurorehabilitation range is induced from data indicating 
the conditions in which the task need to be executed to be therapeutic 
 
Input: Vmatrix  
 
Output: K NRR knowledge base and NRR matrix    

 
4. Evaluate Improvements on each area of impact (See details in Chapter 7) 

Find the impact of each task over an area according to the number of times executed by 
each patient, the areas impacted by each task (F) and the improvement of each patient in 
each area of impact (∆) 
 
Input: 𝝌𝝌, ∆,  F 
 
Output:  ϒ 

   
5. Treatment design (See details in Chapter 8) 
 Give the general pattern of the sequences and the observed impact of tasks executed 

under NRR in the different areas, compose a sequence of tasks that fits the patterns in 
NRR conditions 

 
Input: ϒ, S, NRR 
 
Output: The list of programs 
 

 

2.4 Summary 
This chapter presents the formal definition of the thesis problem as well as the general and 

the specific objectives of this work. Although understanding CR treatment patterns was the 

medical problem motivation of this research, after a deep analysis of the structure of the 

problem behind, a generic methodological problem was identified which constitutes the 

main problem of this thesis. Thus, from the methodological point of view, this thesis 

pretends to provide a formal frame to find the right sequence of interacting activities to be 

followed for a maximum improvement in multiple areas of impact, provided that tasks can 

interact among them, produce cumulative effects by repetition (even under a discontinuous 

pattern) and simultaneously impact, each of them, several impact areas. These premises are 

much more general than classical approaches where independence, contiguity, non 

cumulative effects of pure tasks impacting a single area at a time use to be assumed. This 
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opens a broad scope of complex real problems that can be analyzed under the proposed 

CMIS methodology which previously were difficult to model, from a global perspective, as 

illustrated in section 2.2. 

 The design of CR programs appears therefore as a particular case of the general problem 

faced in the thesis about finding patterned sequences of activities in front of high order 

interactions either among tasks and impaired areas.  

Section 2.3 presents the general Cumulative Multiple Impact Sequences (CMIS) 

methodology to solve the described thesis problem. The CMIS methodology is presented as 

a high level umbrella of 5 innovative steps that combine several contributions of this PhD 

thesis to identify the best sequence of tasks to be recommended to a specific individual, 

according to his profile and what performed better in similar situations. The CMIS relies on 

two main contributions described in later chapters. SAIMAP (section 4.1) and NRR 

(Chapter 6), both introduced in this research for the first time.  

SAIMAP takes as input the sequences of activities performed by each individual and a 

reduced set of characteristic treatment motifs are found to profile the sequences followed 

by groups of individuals who behave similarly. The second phase takes as input the 

previous set of motifs and returns a regular expression representing them (section 5.1). At 

the third phase Neurorehabilitation Range (NRR) is induced from data indicating the 

conditions in which the task need to be executed to be therapeutic (or effective), for the 

whole set of tasks. NRR concept is introduced, to determine the degree of performance 

expected for a CR task and the number of repetitions required to produce maximum 

rehabilitation effects on the individual. The fourth phase (section 7.1) aims to evaluate 

improvements on each area of impact by means of standardized assessment tools. Last 

phase (section 8.1)  composes a specific sequence of tasks that fits the given  general 

pattern obtained from second phase and maximizes expected impact of the total sequence 

(according to an optimization of the expected improvement function that takes into account 

NRR). 
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Chapter 3. State of the Art 
 

As presented in section 1.3.1, this thesis is framed within Institut Guttmann’s Analysis of 

Results applied to the generation of knowledge research Program. Before our attempts to 

extract useful knowledge from data, it is important to present the overall approach, the 

Knowledge Discovery in Databases (KDD) process and its elements, such as Data Mining 

(DM). Afterwards some particularities of the application of DM in the field of neurology 

are addressed and relevant applications on TBI are reviewed. Related problems such as 

finding patterns in sequential data and specific applications, as well as traditional 

approaches on our field of application are reviewed in this chapter.  

 

3.1 Knowledge Discovery in Databases 
This section focuses on describing and explaining the process that leads to discovering new 

knowledge. It defines a sequence of steps (with eventual feedback loops) that should be 

followed to discover knowledge (e.g. patterns) in data. Each step is usually realized with 

the help of available commercial or open-source software tools as will be shown in the 

application chapters. 

 Since the 1990s, several KDD processes have been developed. The initial efforts 

were led by academic research and were quickly followed by industry. The basic structure 

of the model proposed by Fayyad et al (Fayyad, Piatetsky-Shapiro, & Smyth , 1996) is the 

one proposed in this thesis. The process consists of multiple steps that are executed in a 

sequence. Each subsequent step is initiated upon successful completion of the previous step 

and requires the result generated by the previous step as its input. 

 KDD is defined (Fayyad, Piatetsky-Shapiro, & Smyth , 1996) as the nontrivial 

process of identifying valid, novel, potentially useful, and ultimately understandable 

patterns in data. Here, data are a set of facts (for example, cases in a database) and pattern is 

an expression in some language describing a subset of the data or a model applicable to the 

subset. Hence, in our usage here, extracting a pattern also designates fitting a model to data; 
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finding structure from data or, in general, making any high-level description of a set of 

data. 

The Fayyad et al. KDD model consists of nine steps, which are outlined as follows: 

1. Developing and understanding the application domain. This step includes learning the 

relevant prior knowledge and the goals of the end user of the discovered knowledge. 

2. Creating a target data set. Here the data miner selects a subset of variables (attributes) 

and data points (examples) that will be used to perform discovery tasks. This step usually 

includes querying the existing data to select the desired subset. 

3. Data cleaning and preprocessing. This step consists of removing outliers, dealing with 

noise and missing values in the data, and accounting for time sequence information and 

known changes. 

4. Data reduction and projection. This step consists of finding useful attributes by applying 

dimension reduction and transformation methods, and finding invariant representation of 

the data. 

5. Choosing the data mining task. Here the data miner matches the goals defined in Step 1 

with a particular DM method, such as classification, regression, clustering, etc. 

6. Choosing the data mining algorithm. The data miner selects methods to search for 

patterns in the data and decides which models and parameters of the methods used may be 

appropriate. 

7. Data mining. This step generates patterns in a particular representational form, such as 

classification rules, decision trees, regression models, etc. 

8. Interpreting mined patterns. Here the analyst performs visualization of the extracted 

patterns and models, and visualization of the data based on the extracted models. 

9. Consolidating discovered knowledge. The final step consists of incorporating the 

discovered knowledge into the performance system, and documenting and reporting it to 
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the interested parties. This step may also include checking and resolving potential conflicts 

with previously believed knowledge. 

 A very important consideration in the Knowledge Discovery Process is the relative 

time required to complete each step. It includes reviews of partial results, possibly several 

iterations, and interactions with the data owners. In general, we acknowledge that the data 

preparation step is by far the most time-consuming part of it.  

 Given these notions, we can consider a pattern to be knowledge if it exceeds some 

interestingness threshold, which is by no means an attempt to define knowledge in the 

philosophical or even the popular view. As a matter of fact, knowledge in this definition is 

purely user-oriented and domain-specific and is determined by whatever functions and 

thresholds the user chooses. 

3.1.1 Data Mining  

While KDD refers to the overall process of discovering useful knowledge from data, data 

mining refers to a particular step in this process. Data mining is the application of specific 

algorithms for extracting patterns from data. The term Data Mining was introduced 

relatively recently, in the mid-1990s, although data mining concepts have an extensive 

history. Data mining covers areas of statistics, machine learning, data management and 

databases, pattern recognition, artificial intelligence, and other areas. All of these are 

concerned with certain aspects of data analysis. As a result, they have much in common but 

each also has its own distinct problems and types of solution. The fundamental motivation 

behind data mining is autonomously extracting useful information or knowledge from data 

stores or sets. The goal of building computer systems that can adapt to special situations 

and learn from their experience has attracted researchers from many fields, including 

computer science, engineering, mathematics, physics, neuroscience, and cognitive science.  

 Unlike the majority of statistics, data mining typically deals with data that have 

already been collected for some purpose other than the data mining analysis. The majority 

of the applications presented in this chapter use data formerly collected for any other 

purposes. Data mining research has led to a wide variety of learning techniques that have 

the potential to renew many scientific and industrial fields. 
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 The knowledge discovery goals are defined by the intended use of the system. We 

can distinguish two types of goal: (1) verification and (2) discovery. With verification, the 

system is limited to verifying the user’s hypothesis (Piatetsky-Shapiro , Brachman , 

Khabaza , Kloesgen , & Simoudis , 1996). With discovery, the system finds new patterns 

autonomously. We further subdivide the discovery goal into prediction, where the system 

finds patterns for predicting the future behavior of some entities, and description, where the 

system finds patterns for presentation to a user in a human-understandable form. In this 

thesis, we are primarily concerned with discovery-oriented data mining.  

 

3.2 Data Mining in Neurology   

DM can be limited in a medical context in general and particularly in neurology by several 

factors. One of them is the accessibility to data that often is distributed in different settings 

(clinical, administration, insurers, labs, etc.). Besides, data may be incomplete, corrupt, 

noisy, or inconsistent. Ethical, legal, and social issues (data ownership, privacy concerns) 

may also arise. Many patterns found in DM may be the result of random fluctuations and 

therefore many such patterns may be useless. DM of medical data requires specific medical 

knowledge as well as knowledge of DM technology. DM requires institutional commitment 

and funding. Another unique feature of medical data mining is that the underlying data 

structures of medicine are poorly characterized mathematically, as compared to many areas 

of the physical sciences. Physical scientists collect data which they can put into formulas, 

equations, and models that reasonably reflect the relationships among their data. On the 

other hand, the conceptual structure of medicine consists of word descriptions and images, 

with very few formal constraints on the vocabulary, the composition of images or the 

allowable relationships among basic concepts. The fundamental entities of medicine, such 

as inflammation, ischemia or neoplasia, are just as real to a physician as entities such as 

mass, length or force are to a physical scientist; but medicine has no comparable formal 

structure into which a data miner can organize information, such as might be modeled by 

clustering, regression models or sequence analysis.  

 Another related issue is the lack of canonical form in medical terms, in 

mathematics, a canonical form is a preferred notation that encapsulates all equivalent forms 
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of the same concept. For example, the canonical form for one-half is 1/2, and there is an 

algorithm for reducing the infinity of equivalent expressions or aliases, namely 2/4, 3/6, 

4/8, 5/10, ... , down to 1/2. Agreement upon a canonical form is one of the features of any 

mature intellectual discipline.  

Unfortunately, in biomedicine even elementary concepts have no canonical form. For 

example, the canonical form for even a simple idea such as: adenocarcinoma of colon, 

metastatic to liver has no consistent form of expression. Naturally the individual medical 

words all have a unique spelling and meaning; but there are a number of distinct 

expressions (and many others, easy to imagine) such as the following that are all medically 

equivalent: Colon adenocarcinoma, metastatic to liver; Colonic adenocarcinoma, metastatic 

to liver; etc. 

 In our previous research (Gibert K. , García-Rudolph, Curcoll, Pla, & Tormos, 

2009) an integral Knowledge Discovery Methodology (clustering based on rules by states) 

which incorporates artificial intelligence (AI) and statistical methods as well as 

interpretation-oriented tools, is used to extract knowledge patterns about the evolution over 

time of the Quality of Life (QoL) of patients with Spinal Cord Injury. The methodology 

incorporates the interaction with experts as a crucial element with the clustering 

methodology to guarantee the usefulness and interpretability of the results. 

 

3.3 Mining in Traumatic Brain Injury 

A number of studies employ traditional DM techniques in TBI such as Classification (K-

Nearest Neighbor, Decision Tree, Support Vector Machines, Neural Networks, and 

Bayesian Methods), Regression, Clustering, Association Rules, and Sequential Patterns. 

Most are used to anticipate the treatment’s outcome from the usual course of the disease 

and/or the peculiarities of each individual case. Overall, these studies focus on determining 

survival, predicting gross outcome, and/or identifying predictive factors of a patient’s 

condition after TBI (usually acute TBI). As yet there is no consensus on an optimal method. 

Thus, different approaches have been explored (Theodoraki, Katsaragakis, Koukouvinos, & 

Parpoula, 2010). The sections below review some of them. 
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3.3.1 Classification Techniques 
The problem of data classification attempts to learn the relationship between a set of feature 

variables and a target variable of interest. Many practical problems can be expressed as 

such relationships involving features and target variables, thus providing a broad range of 

applications (Aggarwal C. , 2014) as shown in the following sections for our specific 

domain. Classification is learning a function that maps (classifies) a data item to one of 

several predefined classes (Weiss & Kulikowski, 1990). A wide variety of classification 

methods exist, but below we present a subset of popular techniques applied in subsequent 

chapters of this work.  

 

Decision Trees: Most decision tree learning algorithms are variations on a top-down 

greedy search algorithm, with the most notable example being ID3 (Iterative Dichotomizer 

3) by Quinlan (Quinlan, 1986). Quinlan references Hunt’s Concept Learning System (CLS) 

(Hunt, 1962) as inspiration and a precursor to ID3. Hunt’s Concept Learning System was a 

divide and conquer scheme that could handle binary (positive and negative) target values, 

with the decision attribute being decided by a heuristic based on the largest number of 

positive cases. DTs offer a series of advantages: they are self-explanatory and when 

compact, they are also easy to follow. In other words if the decision tree has a reasonable 

number of leaves, it can be grasped by non-professional users. Furthermore decision trees 

can be converted to a set of rules. Thus, this representation is considered as 

comprehensible. Among traditional classification techniques, decision trees are the most 

common choice mostly because of these advantages. 

 Since 1993 a number of publications considered different variables to address the 

problem of outcome prediction. In one of the first studies (Pilih, Mladenić, Lavrač, & 

Prevec, 1997) DTs are considered to be useful for the analysis of the importance of clinical 

parameters and of their combinations for the evaluation of the severity of brain injury and 

for outcome prediction. Due to a small number of patient data available for this study the 

induced DTs cannot yet be considered as a reliable prognostic tool. 

 Presented as an alternative to RCT, the analysis of existing patient data is proposed 

in (McQuatt, Sleeman, Andrews, Corruble, & Jones, 2001) as an attempt to predict the 

several outcomes and to suggest therapies. It uses DT techniques to predict the outcome of 
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head injury patients. The work is based on patient data from the Edinburgh Royal Infirmary 

which contains both background (demographic) data and temporal (physiological) data. 

 In (Brown, 2006) the primary goal was to consider all clinical elements available 

concerning a survivor of TBI admitted for inpatient rehabilitation, and identify those factors 

that predict disability (n = 3463). Predictor variables included all physical examination 

elements, measures of injury severity (initial Glasgow Coma Scale score, duration of post-

traumatic amnesia (PTA), length of coma, CT scan pathology), gender, age, and years of 

education. The duration of PTA, age, and most elements of the physical examination were 

predictive of early disability. The duration of PTA alone was selected to predict late 

disability and independent living.  

 Similar analysis has been performed in (Chesney, y otros, 2009) where trauma 

injury data collected over 10 years at a UK hospital are analyzed. The data include injury 

details such as patient age and gender, the mechanism of injury, various measures of injury 

severity, management interventions, and treatment outcome. The data mining algorithm 

C5.0 was also used to determine those factors in the data that can be used to predict 

whether a patient will live or die. In this case, C5.0 shows with 77% accuracy that gender 

and whether the patient was referred from another hospital is important for outcome 

prediction.  

 In (Garcia, Martins, & Azevedo, 2013) a C4.5 algorithm was used to analyze severe 

TBI, for the purposes of identifying a model of death prediction. The database consisted of 

748 records, each of which has 18 attributes that represent the characteristics related to TBI 

(e.g. Glasgow Comma Scale, Marshall Classification, Type of Associated Trauma, Age, 

Cause of TBI, Sex). Outcome prediction was classified by C4.5 algorithm with an accuracy 

of 87%, including combinations of indicators that lead to survival and death. 

 

Artificial Neural Networks: An NN when used for classification is typically a collection 

of neuron-like processing units with weighted connections between them. To solve a 

particular problem, NN uses neurons which are organized processing elements (Dunham, 

2003). An NN is adaptive in nature because it changes its structure and adjusts its weight in 

order to minimize the error network (Silver, y otros, 2001). Adjustment of weight is based 

on the information that flows internally and externally through the network during the 
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learning phase. In NN multiclass, problems may be addressed by using a multilayer feed 

forward technique in which neurons are employed in the output layer rather than using one 

neuron. 

 In one of the first attempts to apply ANN (Lang, Pitts, Damron, & Rutledge, 1997) 

conclude that outcome (dead versus alive) at 6 months after severe head injury can be 

predicted with logistic regression or ANN models based on data available 24 hours after 

injury. 

 Most subsequent attempts focused on dichotomous result, such as alive vs. dead. In 

order to predict more specific levels of outcome, (Min-Huei, Yu-Chuan, Wen-Ta, & Ju-

Chuan, 2005) was conducted to determine if ANN modeling would predict outcome in five 

levels of Glasgow Outcome Scale (death, persistent vegetative state, severe disability, 

moderate disability, and good recovery) after moderate to severe head injury. 

 One approach to predicting an ICU patient’s severity level at ICU discharge (or 

death, in some cases) could be to use both admission data and additional clinical data as 

they become available on subsequent days in the ICU to serve as inputs into ANN for 

developing a prediction model (Crump, Silvers, Wilson, Schlachta-Fairchild, & Ashley, 

2014). 

 In (Güler, Gökçil, & Gülbandilar, 2009) a diagnostic system to detect the severity of 

traumatic brain injuries was developed using artificial neural networks. Three layered back 

propagation neural networks were used, with an input layer of 10 nodes whose output 

provided the inputs to a hidden layer. Thirty-two patients with TBI of different age and 

gender were taken in the study. Electroencephalography, Trauma and Glasgow coma scores 

were used for evaluating the data. The results obtained from the system were compared 

with the findings of neurologists. A significant relationship was found between the findings 

of neurologists and systems output for normal, mild, moderate, and severe 

electroencephalography tracing data.  

 In (Rughani, y otros, 2010) authors designed an ANN to predict in-hospital survival 

following traumatic brain injury. For comparison with traditional forms of modeling, 2 

regression models were developed using the same training set and were evaluated on the 

same testing set. The ANN was compared with the clinicians and the regression models in 

terms of accuracy, sensitivity, specificity, and discrimination. When given the same limited 
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clinical information, the ANN significantly outperformed regression models and clinicians 

on multiple performance measures. 

 In (Gholipour, Rahim, Fakhree, & Ziapour, 2015) ANN were used to predict 

survival and length of stay of patients in the ward and the intensive care unit (ICU) of 

trauma patients and to obtain predictive power of the current method. This ANN model was 

used based on back-propagation, feed forward, and fed by Trauma and Injury Severity 

Score (TRISS) components, biochemical findings, risk factors and outcome of 95 patients. 

In the next step a trained ANN was used to predict outcome, ICU and ward length of stay 

for 30 test group patients by processing primary data. The sensitivity and specificity of an 

ANN for predicting the outcome of traumatic patients in this study calculated 75% and 

96.26% respectively. 93.33% of outcome predictions obtained by ANN were correct. 

 

Support Vector Machines: The concept of SVM introduced by Vapnik (Vapnik, 1998) is 

based on statistical learning theory. The SVM classifier creates a hyper plane or multiple 

hyper planes in a high-dimensional space that is useful for classification, regression, and 

other efficient tasks. In some cases it is difficult to perform separation of data points in the 

original input space; to make separation easier the original finite dimensional space is 

mapped into a new, higher dimensional space. Kernel functions are used for non-linear 

mapping of training samples to a high-dimensional space. Various kernel function such as 

polynomial, Gaussian, sigmoid etc., are used for this purpose (Cristianini & Shawe-Taylor , 

2000). 

 In (McBride, Zhao, Nichols, & Abdul-Ahad, 2011) Support Vector Machine (SVM) 

analyses are employed to classify 15 TBI and 15 normal individuals’ EEG recordings taken 

during a working memory test. The features used by the SVM analyses include different 

sets of event-related Tsallis entropy functionals. The analyses demonstrate a strong 

correlation between the Event-Related Functionals (ERFs) and the presence of TBI, 

attaining classification accuracies as high as 90%.  

 In (Aribisala, y otros, 2010) SVM was applied to classify the quantitative MRI data, 

in particular quantitative MRI techniques (T1, T2 mapping and diffusion tensor MRI) in 24 

mild TBI patients and 20 matched controls. Quantitative MRI data can be used to separate 

mild TBI patients from the control group. Our results show that SVM can detect changes in 
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normal appearing tissues in some patients suffering mild TBI as compared with the control 

group. These changes may represent damage to neuronal tissue and further work is needed 

to determine whether this is responsible for the cognitive and affective symptoms 

commonly seen following mild head injury, which include memory loss, inability to 

concentrate, irritability, and depression. 

 

Bayesian methods: Bayesian approaches employ probabilistic concept representations and 

range from the Naïve Bayes to Bayesian Networks (Domingos & Pazzani, 1997). The basic 

assumption of Bayesian reasoning is that the relation between attributes can be represented 

as a probability distribution (Maimon & Last, 2001). It is usually considered (Maimon & 

Rokach, 2005) that the most straightforward Bayesian learning method is the Naïve Bayes 

classifier (Duda & Hart, 1973). This uses a set of discriminant functions for estimating the 

probability of a given instance belonging to a certain class. More specifically it uses Bayes 

rule to compute the probability of each possible value of the target attribute given the 

instance, assuming the input values are conditionally independent given the target attribute. 

Surprisingly, a variety of empirical research shows that the Naive Bayes classifier can 

perform quite well compared to other methods, even in domains where clear feature 

dependencies exist (Domingos & Pazzani, 1997). Furthermore, Naive Bayes classifiers are 

also very simple and easy to understand (Kononenko, 1990). 

 This study (Sakellaropoulos & Nikiforidis, 1999) concerns the development and 

validation of Bayesian Networks for the assessment of prognosis after 24 hours for head-

injured patients of the outpatients department in the University Hospital of Patras, Greece. 

Different selection strategies resulted in BNs with varying structures and prognostic 

performance. 

 In (Klement, y otros, 2012) when predicting the need for computed tomography 

(CT) imaging of children after a minor head injury, an ensemble of multiple Naive Bayes 

(NB) classifiers was derived as the prediction model for CT imaging decisions in 

imbalanced data. Naïve Bayes classifiers are specially suited to overcoming the imbalance 

problem. Imbalance is commonly encountered when analyzing clinical data where the 

population of patients with a health condition is usually significantly smaller than the 

population of relatively healthy ones. (Klement, Wilk, Michalowski, & Matwin, 2011) 
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demonstrates that a model that performs well can be developed by utilizing data 

undersampling when constructing an ensemble prediction classifier composed of multiple 

NB classifiers.  

 

Comparative studies: A number of papers propose the comparison of several of the 

classifiers presented in the previous section in several TBI applications. 

Lang and colleagues were the first group to demonstrate that an ANN was as accurate, 

sensitive, and specific as standard logistic regression in predicting 6-month survival 

following severe head injury (Lang, Pitts, Damron, & Rutledge, 1997). 

Yin and colleagues (Yin et al., 2006) carried out a pilot study on the effectiveness of 

Bayesian Networks, Decision Trees, Logistic Regression, Support Vector Machines and 

Artificial Neural Networks on outcome after severe brain injury. The dataset consisted of 

over seven hundred patients with severe brain injury and estimated the model performance 

using 10-fold cross validation.  

 A reliable model predicting the outcome proved to be impracticable, but several 

aspects to be taken into account for this kind of study were outlined. In particular, the 

validation techniques for evaluating the realistic prediction reliability of extracted models 

and then the significant influence of outcome classes aggregation on prediction 

performance proved crucial. No individual algorithm outperformed the others, and authors 

suggested the application of multiple algorithms in parallel to reduce errors. 

 More recently, (Segal, y otros, 2006) have compared an ANN with a multiple 

regression model in predicting several different functional outcome scores at 1 year after 

TBI. They showed that linear models performed with the same accuracy as an ANN.  

Another group (Eftekhar, Mohammad, Ardebili, Ghodsi, & Ketabchi, 2005) actually 

showed that an ANN was less accurate than linear regression in predicting survival, 

although it was marginally better at discriminating outcomes. 

 In (Pignolo & Lagani, 2011) compared four different machine learning methods 

(C4.5, SVM, Naïve Bayes and K-NN) to identify the most suitable algorithm in the 

prognostic evaluation of subjects in a vegetative state. They concluded that all tested 

algorithms are usable in this respect. SVM models may be a useful clinical tool to exclude a 

positive outcome. K-NN and C4.5 could be used for the same purpose, but their sensitivity 
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and specificity are inferior to SVM. The Naïve Bayes classifiers do not appear usable for 

differential prognosis, due to poor efficiency in recognizing a specific class of subjects, but 

have limited classification errors and can still be considered as a valid (ancillary) 

prognostic tool. It may be worth noting that C4.5 remains a tool with potential clinical 

application in spite of poor performances; it is the only algorithm among those studied to be 

able to provide graphical models that are user-friendly for the clinician. 

 The study by (Sujin, Woojae, & Rae, 2011) compared mortality prediction. The 

authors of this study compared the artificial neural networks, support vector machines, DT, 

and conventional logistic regression models. The best performance was achieved with the 

DT model. 

 In our previous research (Serra, y otros, 2013) based on a set of pre-treatment 

assessments, distinct classifiers (C4.5, SVM, Naïve Bayes and K-NN) are trained to predict 

whether the patient will improve in one or any of three cognitive areas: attention, memory, 

and executive functioning. Results show that variables such as the age at the time of injury, 

the patient's etiology or the neuropsychological evaluation scores obtained before the 

treatment are relevant for prognosis and easily yield statistically significant accuracies. 

 In (Marcano-Cedeño, y otros, 2013) in order to analyze treatment outcome 

prediction, we also applied and compared three different data mining techniques: the 

AMMLP model, a backpropagation neural network (BPNN) and a C4.5 decision tree. The 

prediction performance of the models was measured by ten-fold cross validation and 

several architectures were tested. The results obtained by the AMMLP model are clearly 

superior, with an average predictive performance of 91.56%. BPNN and C4.5 models have 

a prediction average accuracy of 80.18% and 89.91% respectively. The best single 

AMMLP model provided a specificity of 92.38%, a sensitivity of 91.76%, and a prediction 

accuracy of 92.07%. 

 

3.3.2 Regression Models 
Regression-based methods attempt to explicitly model the relationship between inputs or 

independent variables and the outputs, typically in the form of parametric equations in 

which the parameters are estimated from the data. These methods often provide explicit 

estimates of measures of association between individual inputs and the outcome, adjusted 
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for other inputs, with standard error estimates provided from the modeling paradigm used 

(Dasgupta, Sun, König, Bailey-Wilson, & Malley, 2011). The most common class of 

regression methods in the literature comes from the class of generalized linear models 

(McCullagh & Nelder, 1989) which includes linear regression, logistic regression, and 

Poisson regression. Based on a number of independent variables regression is of two types: 

linear and non-linear. Linear regression identifies the relation of a dependent variable and 

one or more independent variables. It is based on a model which utilizes linear function for 

its construction. Linear regression finds out a line and calculates vertical distances of points 

from the line and minimizes the sum of the square of the vertical distance. In this approach, 

dependent and independent variables are already known and the purpose is to spot a line 

that correlates between these variables (Fox, 1997). 

 Because of the strong association with the initial GCS score and outcomes, a 

number of investigators have studied the predictive value of the initial GCS score using 

various logistic regression techniques (Benzer, Traweger, & Ofner, 1995). 

 The objective of (Hukkelhoven, y otros, 2005) was to develop and validate 

prognostic models that use information available at admission to estimate a 6-month 

outcome after severe or moderate TBI. This study evaluated mortality and unfavorable 

outcome, that is, death, and vegetative or severe disability on the Glasgow Outcome Scale 

(GOS), at 6 months post-injury. They included seven predictive characteristics: age, motor 

score, pupillary reactivity, hypoxia, hypotension, computed tomography classification, and 

traumatic subarachnoid hemorrhage. 

 (Martins, y otros, 2009) investigated the mortality of Brazilian patients with severe 

TBI at the time of discharge, using a multiple logistical regression analysis. They analyzed 

clinical, demographic, radiologic, and neurosurgical variables, and mortality at time of 

discharge of all consecutive patients (n = 748) with severe TBI. 

 The aim of this work (Larsson, Björkdahl, Esbjörnsson, & Sunnerhagen , 2013) was 

to explore the extent to which social, cognitive, emotional, and physical aspects influence 

participation after TBI. Data were analyzed with logistic regression. As most data were 

ordinal, non-parametric statistics were used and the logistic regression was chosen as 

suitable for this kind of data. The analyses gave 5 predictors reflecting emotional and social 

aspects, which could explain up to 70% of the variation in participation. The study also tells 

58 

 



us that a great deal of the explanation should also be seen as being connected to an 

interaction between several aspects. The findings will contribute to the body of knowledge, 

but further studies are needed to be able to improve participation for persons with disability 

after a TBI. 

.  

3.3.3 Cluster Analysis 
Clustering is different than classification since it has no predefined classes. Clustering has 

traditionally been studied as a branch of statistics (Arabie & Hubert, 1996) and in natural 

sciences (Massart & Kaufman, 1983). The general problem of clustering is stated as 

follows: given a set of data points, partition them into a set of groups which are as similar 

as possible (Aggarwal & Reddy, 2013). 

 When facing complex questions, our natural tendency as human beings is to break 

the subject into smaller pieces each of which can be explained more simply. Therefore 

clustering can be seen as a preliminary step and once proper clusters have been indentified 

it is often possible to find patterns within each one (Berry & Linoff, 2004).  

  In general the major clustering methods fall into one of the following categories, 

although it is difficult to provide a crisp categorization because a given method might have 

features from several categories:    

  

Partitioned Clustering: The datasets having n data points partitioned into k groups or 

clusters. Each cluster has at least one data point and each data point must belong to only 

one cluster. Based on the choice of cluster centroid and similarity measure, the partition 

clustering method is divided into two categories: K-Means (Hartigan, 1975) and K-

Mediods (Kaufman & Rousseeuw, 1990). K-means first selects the k-centroid randomly 

and then assigns the data points to these ‘k’ centroids based on some similarity measure. 

For every iteration, a data point is handed over to the cluster based on similarity of cluster 

mean (the distance between the data points) (Hamerly & Elkan, 2003). Unlike K-means, K-

medoids use medoids instead of mean to group the cluster. Medoid is one of the most 

centrally located data point in the database. Initially, the medoids for each cluster are 

arbitrarily selected  and after that data point is grouped with that medoid to which it is most 

similar.  
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Hierarchical Clustering: Hierarchical clustering builds a cluster hierarchy or, in other 

words, a tree of clusters, also known as a dendrogram. Every cluster node contains child 

clusters; sibling clusters partition the points covered by their common parent. Hierarchical 

clustering methods are categorized into agglomerative (bottom-up) and divisive (top-down) 

(Jain & Dubes, 1988). An agglomerative clustering starts with one-point (singleton) 

clusters and recursively merges two or more most appropriate clusters. A divisive 

clustering starts with one cluster of all data points and recursively splits the most 

appropriate cluster. The process continues until a stopping criterion (frequently, the 

requested number k of clusters) is achieved.  

 Among hierarchical methods here we particularly highlight Clustering Based on 

Rules (ClBR) which combines inductive learning elements with statistical methods to 

enhance clustering results (Gibert, Aluja, & Cortés, 1998). The main idea of ClBR is to 

allow the user to introduce constraints on the formation of clusters (classes), providing 

them in a declarative way. These conditions imposed by experts induce a sort of super-

structure on the domain; clustering is performed within this structure respecting the user 

constraints. It uses an adaptation of the chained reciprocal neighbors algorithm (de Rham, 

1980) which is based on the concept of reciprocal neighbors (RN). At every step, a pair of 

RN is aggregated in a new class. 

Density Based Clustering. Most partitioning and hierarchical methods cluster objects based 

on the distance between objects. Therefore they can handle only spherical clusters and are 

not suitable for discovering clusters of arbitrary shapes. Density-based methods continue 

growing a given cluster as long as the density (number of objects or data points) in the 

neighborhood exceeds a given threshold. There are two major approaches for density-based 

methods. The first one pins density to a training data point (Density-Based Connectivity) 

(Ester, Kriegel, Sander, & Xu, 1996) and the second approach pins density to a point in the 

attribute space (Density Functions) (Hinneburg & Keim, 1998). 

 One of the first contributions (Crosson, Greene, Roth, Farr, & Adams, 1990) 

analyses WAIS-R performance in 93 TBI adults. In (Maleca, Machuldaa, & Smigielskia, 

1993) neuropsychological test data and educational attainment for 47 patients were also 

studied. Relationships of cluster membership to injury severity (coma days) and disabilities 
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(Portland Adaptability Inventory; PAI) were examined. Results of this cluster analysis 

suggest a model of TBI-related disability which predicts level of chronic disability from 

pre-injury functioning, injury severity, and impairments in remote memory and adaptive 

abilities. 

  In (Fleming, Strong, & Ashton, 1998) the purpose was to investigate the 

relationship between self-awareness, emotional distress, motivation, and outcome in adults 

with severe traumatic brain injury. A sample of 55 patients was selected from 120 

consecutive patients with severe TBI. A three-cluster solution was selected, with groups 

labeled as high self-awareness (n = 23), low self-awareness (n = 23), and good recovery (n 

= 8). Rehabilitation timing and approach may need to be tailored to match the individual's 

level of self-awareness, motivation, and emotional distress. 

 Cluster analysis can be particularly useful in identifying profiles of performance on 

neuropsychological testing that may be related to important disorder-related variables such 

as treatment outcomes, medication response, and longer-term prognosis. Illustrative of this, 

(Allen, y otros, 2010) investigated attention and memory heterogeneity in 150 children and 

adolescents with TBI using the Test of Memory and Learning (TOMAL). Clusters derived 

from this sample were compared to clusters derived from 150 age- and sex-matched normal 

controls to determine whether differing patterns of learning, memory, and 

attention/concentration would be evident among the groups. Also, the TBI clusters were 

compared on a number of important clinical, cognitive, and behavioral variables, to 

determine whether cluster membership might be associated with unique patterns of 

cognitive and behavioral disturbances. 

 (Thaler, y otros, 2010) also examined WISC-III clusters in 123 children with TBI. 

Cluster analysis of the WISC-III scores also identified four clusters that were similar in 

many respects to those identified by (Donders & Warschausky, 1997). Comparisons 

between the clusters on behavioral ratings generally indicated that the most severely 

impaired cluster typically exhibited the most severe behavioral disturbances. The samples 

for these two studies were comparable in many respects. Both studies identified average 

and low average clusters, as well as a more severely impaired cluster with selective 

impairment on perceptual organization and processing speed. 
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 In their investigation, (Allen, Thaler, Cross, & Mayfield, 2013) in order to develop 

severity classifications based on TMT performance, Part A and Part B raw scores (time in 

seconds) were submitted to hierarchical cluster analysis using Ward’s method with squared 

Euclidean distance as the distance measure. Ward’s method of cluster analysis was selected 

because it is consistent with the cluster analytic methodology of previous studies of 

neuropsychological variables in children with TBI that examined TMT performance as an 

indicator of brain injury severity approximately one year following injury in children who 

sustained a TBI. The TMT clusters correspond in a general way with mild, moderate, and 

severe classifications, although the best-performing cluster obtained scores that were in the 

average range. 

 In a recent work, (Snell, Surgenor, Hay-Smith, Williman, & Siegert, 2015) 

examined associations between baseline demographic, clinical, psychological variables 

(distress, injury beliefs and symptom burden) and outcome 6 months later. A two-step 

approach to cluster analysis was applied (Ward's method to identify clusters, K-means to 

refine results). Three meaningful clusters emerged (high-adapters, medium-adapters, low-

adapters). Baseline cluster-group membership was significantly associated with outcomes 

over time. Cluster analysis supported the notion that groups could be identified early post-

injury based on psychological factors, with group membership associated with differing 

outcomes over time. 

 In our previous research (Gibert K. , y otros, 2008) a KDD framework is proposed 

where first, descriptive statistics of every variable was done, data cleaning and selection of 

relevant variables. Data was then mined using a generalization (Exogenous Clustering 

based on rules, EClBR ) allowing the KB to be defined in terms of variables that will not be 

considered in the clustering process itself, to get more flexibility. Several tools as Class 

panel graph are introduced in the methodology to assist final interpretation. A set of 5 

classes was recommended by the system and interpretation permitted profiles labelling. 

From the medical point of view, composition of classes corresponds closely with different 

patterns of increasing level of response to rehabilitation treatments. 
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3.3.4 Association Rules (AR) 
Association Rule Mining (ARM) is the process of discovering collections of data attributes 

that are statistically associated in the underlying data. Association rules "aim to extract 

interesting correlations, frequent patterns, associations or causal structures among sets of 

items in the transaction databases or other repositories" (Agrawal & Srikant, 1994) 

Apriori Algorithm: This algorithm is based on the principle that if an item does not fulfil a 

minimum support constraint or is not frequent then its descendants are also not frequent. 

Therefore this item must be removed from the transaction database because it does not 

contribute to the construction of association rules. Unlike classification and clustering, 

efficiency is the evaluation factor of association mining. Various methods are used to 

improve the efficiency of Apriori algorithms such as Hash table, transaction reduction, 

partitioning etc., (Agrawal & Srikant, 1994) (Agrawal, Imielinski, & Swami, 1993). 

Frequent Pattern Tree Algorithm (FP-Tree): FP-tree algorithm identifies the frequent 

item sets without generating candidate item set. This algorithm has two steps: in the first 

step, FP tree data structure is constructed and in the second step frequent item set is fetched 

from this data structure (Han, Pei, & Yin, 2000). 

AR attracts researchers attention mostly in the field of brain imaging. For content-based 

retrieval, association rules are employed to reduce the dimensionality of the feature vectors 

that represent the images and to improve the precision of the similarity queries (Ribeiro, y 

otros, 2009). The method proposed in (Chaves, Ramírez, Górriz, & Illán, 2012) evaluates 

the reliability of ARs aiming to discover interesting associations between attributes in 

functional brain imaging, i.e. single photon emission computed tomography (SPECT) and 

positron emission tomography (PET). 

 

3.3.5 Sequential Pattern Mining 
Sequential pattern mining, which discovers frequent subsequences as patterns in a sequence 

database, is an important data mining problem with broad applications, including the 

analysis of customer purchase patterns or Web access patterns, the analysis of sequencing 
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or time-related processes such as scientific experiments, natural disasters, and disease 

treatments, the analysis of DNA sequences, and so on. 

 The sequential pattern mining problem was first introduced by Agrawal and Srikant 

(Agrawal & Srikant, 1995) based on their study of customer purchase sequences, as 

follows: Given a set of sequences, where each sequence consists of a list of elements and 

each element consists of a set of items, and given a user-specified min support threshold, 

sequential pattern mining is to find all frequent subsequences, i.e. the subsequences whose 

occurrence frequency in the set of sequences is no less than min support. 

 Several efficient algorithms have been proposed for sequential pattern mining such 

as ClaSP (Gomariz, Campos, Marin, & Goethals, 2013) CloSpan (Yan, Han, & Afshar, 

2003) GSP. (Srikant & Agrawal, 1996) PrefixSpan (Pei, y otros, 2004) SPADE (Zaki, 

2001) and SPAM (Ayres, Flannick, Gehrke, & Yiu, 2002). Sequential pattern mining 

algorithms can be categorized as using a horizontal database format (e.g. CloSpan, GSP and 

PrefixSpan) or a vertical database format (e.g. ClaSP, SPADE, SPAM). The vertical format 

has the advantage of generating patterns and computing their support without performing 

costly database scans. This allows vertical algorithms (CM_SPADE, CM-SPAM) to 

perform better on datasets with dense or long sequences than algorithms that use the 

horizontal format, and to have excellent overall performance (Fournier-Viger, Gomariz, 

Campos, & Thomas, 2014). 

 Although sequential pattern mining methods are suitable for our problem, we will 

see that they do not provide useful results from a clinical point of view. Indeed, sequential 

pattern mining methods can provide most frequent subsequences in a dataset, and 

subsequences do not require continguity of elements. Therefore this seems to be a suitable 

framework to model the slight variations of the patterns required in our problem. 

 However, the complexity of the solutions space provided by these kind of methods 

seems to be higher than the one in the original dataset itself and this seems to increase 

complexity instead of improving understanding about the underlying structure of the 

problem as will be seen in the application presented below. 

 Patterns in healthcare domain include the common patterns in paths followed by 

patients in hospitals, patterns observed in symptoms of a particular disease, patterns in daily 

activity, and health data (Gupta, 2011). 
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 A recent example of mining in a medical context is the application of the sequential 

pattern mining algorithms on a database known as the RSU Dr. Soetomo medical database 

to find sequential disease patterns (Yuliana, Rostianingsih, & Budhi, 2009). However, age 

and gender were not included into the sequential rules and the author only displayed a 

selection of rules.  

 Other existing works aimed at detecting medical sequential patterns tended to focus 

on time series data (Pradhan & Prabhakaran, 2009) or specific illnesses, such as 

investigating patterns that predict the onset of thrombosis and identifying traits leading to 

atherosclerosis in a database of approximately 1400 middle-aged men (Klema, Novakova, 

Karel, Stepankova, & Zelezny, 2008). 

 To the best of our knowledge the identification of sequential patterns where a TBI 

rehabilitation treatment is considered as a sequence of CR tasks has not yet been addressed. 

In addition, and as stated in the introduction, the methodologies used in related works 

previously mentioned do not resist sets of variables with cumulative effects among them 

and a high degree of interaction. 

 

3.4 Motif Discovery in Sequential Data  

A motif is a short distinctive sequence pattern shared by a number of related sequences. 

The distinctiveness of a motif is mainly reflected in the overrepresentation of the motif 

pattern at certain locations in the related sequences and the underrepresentation elsewhere.   

 One of the early origins of motif discovery in the context of DNA analysis is the 

computer program written in 1977 by Korn (Korn, Queen, & Wegman, 1977). Especially 

relevant to gene activities are regulatory elements bound by proteins such as TFs 

identification (D’Haeseleer, 2006). Because a single protein often recognizes a variety of 

similar sequences, motifs are subject to some degree of sequence variation at each motif 

position without losing their function. 

 More than a hundred methods (Klepper & Drabløs, 2010) have been proposed for 

motif discovery in recent years, representing a large variation with respect to both 

algorithmic approaches as well as the underlying models of regulatory regions. Among 

them, MEME (Multiple Expectation-Maximization for Motif Elicitation) (Bailey & Elkan, 
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1995) is one of the best-established motif-finding tools, being quick and accurate enough 

and with suitable implementations available (Das et al., 2007). MEME searches for motifs 

by performing Expectation Maximization (EM) on a motif model of a fixed width and 

using an initial estimate of the number of sites. 

 A few existing applications can be found of motif discovery methods used to find 

relevant patterns in non-genetic sequences. In (Burred, 2012) they are applied to acoustic 

analysis; sounds are first transformed into a sequence of discrete states, and these subjected 

to the MEME algorithm for motif discovery, searching for repetitive patterns in sounds. In 

(Jawad, Kersting, & Andrienko, 2011) the relationship between biological sequences and 

mobility mining are revisited, searching for patterns in traffic sequence data. In (Syed, 

Stultz, & Guttag, 2010), motifs search is applied to find precursors of acute clinical events 

regarding electrocardiographic activity. 

 However, to the best of our knowledge, no works applying motifs to the 

identification of patterns in CR treatments have been conducted. 

 

3.5 Maximal Empty Rectangle (MER) 
Computational Geometry is a subfield of algorithm theory that involves the design and 

analysis of efficient algorithms for problems involving geometric input and output (Mount, 

2002). In this thesis, Computational Geometry is required for automatic identification of 

some patterns of task performance and an adaptation of a MER algorithm will be used for 

the development of the NRRMR model. The MER problem consists of recognizing all 

maximal empty axes-parallel (isothetic) rectangles in a rectangular space region where 

some points are located. It was first introduced in 1984 (Naamad, Lee, & Hsu, 1984) as 

follows: 

Given a rectilinearly oriented rectangle A in the Cartesian plane and a set S ={P1, 

P2…Pn} of n> 1 points in the interior of A, where each point Pi is specified by its X 

and Y coordinates (Xi, Yi), i = 1,2, …,n and A specified by its left boundary Al, right 

boundary Ar, top boundary At and bottom boundary Ab. The maximum empty 

rectangle (MER) problem is to find a maximum area rectangle whose sides are 
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parallel with those of A and which is contained in A such that no point of S lies in its 

interior.  

Several algorithms have been proposed for the planar problem over the years (Dumitrescu 

& Jiang, 2013). For instance, an early algorithm by Chazelle, Drysdale and Lee (Chazelle, 

Drysdale, & Lee, 1986) runs in O(nlog3n) time and O(nlogn) space. The fastest known 

algorithm, proposed by Aggarwal and Suri in 1987 (Aggarwal & Suri, 1987), runs in 

O(nlog2 n) time and O(n) space. A lower bound of Ω(nlogn) in the algebraic decision tree 

model for this problem has been shown by Mckenna et al. (Mckenna, O’Rourke, & Suri, 

1985). 

 This problem arises in situations where a rectangular plant is to be located within a 

similar region that has a number of forbidden areas or when a ‘perfect’ rectangular piece 

from a large, similarly shaped metal sheet with some defective spots is to be cut. The 

problem could also be further modified so that the length and width of the sought-after 

rectangle have a certain ratio or a certain minimum length. 

Maximal empty rectangles also arose in the enumeration of maximal white rectangles in 

image segmentation (Baird, Jones, & Fortune, 1990). 

 More recently, applications can be found in data mining (Edmonds, Gryz, Liang, & 

Miller, 2003) geographical information systems (GIS), and very large-scale integration 

design (Augustine, y otros, 2010). 

 

3.6 Limitations of Traditional Methods 
There are inherent difficulties in appraising the quality of rehabilitation studies by 

traditional evidence-based methods. This is particularly true of the complex, experience-

based treatments that predominate in rehabilitation over medically-oriented treatments such 

as pharmacotherapy and surgery (Johnston, Sherer, & Whyte, 2006). Interventions that 

involve explicit teaching, behavior change, and/or environmental manipulations cannot 

typically be hidden from the patient or the therapist. Thus the removal of bias by using 

standard blinding procedures, such as placebo treatment, is not straightforward. Unlike 

medical treatments which may be aimed at specific symptoms, rehabilitation interventions 

usually target multiple or complex outcomes at the levels of activity and participation. 

67 

 



Identification of a primary outcome for such treatments may be impossible and even 

inappropriate. Goals associated with successful treatment will vary across participants, 

meaning that simple outcome measures may not provide universal and objective metrics of 

improvement. Moreover, a highly meaningful intervention may appear meaningless if the 

wrong outcome measure is selected. Rehabilitation interventions are often delivered by 

members of multiple disciplines working synergistically, complicating the application of 

quality appraisal standards that do not incorporate them (Fann, Hart, & Schomer, 2009). 

Randomized Controlled Trials: Randomized controlled trials (RCTs) where patients are 

randomly assigned to at least two comparison groups are best able to control for threats to 

the internal validity of studies and ensure pre-treatment equivalence of experimental and 

control groups, strengthening the basis for statistical inference. Completing an RCT with an 

adequate sample size, appropriate randomisation techniques to account for variability in the 

diagnostic conditions and a combination of patient, service and/or system level outcome 

measures is difficult due to competition for rehabilitation research funding and the 

individual nature of brain injuries. 

 The majority of published studies that describe patients with brain injury use single-

case design or are small case series. This reflects the individual nature of rehabilitation 

interventions, the challenges of using more complex designs, and the relative simplicity of 

conducting single case studies. While RCTs may suffer from problems with applicability of 

results or the heterogeneity of included patients or wider population, “studies of individuals 

and small case series can be optimal for exploring a new treatment, for titrating therapies, 

for documenting a promising variation in behavioural therapies, for enhancing knowledge 

of generalisation of treatment to a new group, and to enhance understanding of why some 

patients respond to a treatment of known (average) effectiveness whereas others do not, that 

is, for extending results of an RCT” (Johnston, Sherer, & Whyte, 2006). 

 The disadvantages associated with single case design studies are well reported. 

These include the difficulty in drawing cause-and-effect conclusions (limited internal 

validity), possible biases when interpreting outcomes due to observer bias and bias in data 

collection, and crucially, the problem of generalising findings from a single individual to a 

group or wider population (limited external validity). While researchers can take steps to 

attempt to limit the biases associated with this design there remain difficulties in assessing 
68 

 



behaviours which do not reverse back to baseline after withdrawal of treatment, indicating 

that the treatment may not have been the key variable affecting change. Single case studies 

are usually ranked at the bottom of the traditional hierarchy of evidence (Greenhalgh, 

2006). 

Ehical Issues: There are also ethical constraints in using RCTs, particularly with severely 

affected patients for whom clinicians believe there are no realistic alternative interventions 

to specialised care. Notably for conditions in which multidisciplinary rehabilitation has 

become the standard of care without systematic evidence to support it in practice, denying 

services randomly in order to conduct an RCT could be considered unethical (Prvu Bettger 

& Stineman, 2007). 

 

3.7 Serious Games in Cognitive Rehabilitation 
Videogames involving the sensory-motor system and problem-solving skills are serious 

candidates for neuro-rehabilitation and motor or cognitive training. In (Green & Bavelier, 

2007) several improvements in gaming activity were identified, from reaction times to 

spatial skills. The opportunities for using this kind of media to improve cognitive functions 

in individuals with particular needs (as reviewed for surgeons and soldiers) or for training 

and retraining of individuals with special health-related problems (such as young disabled 

or the elderly) involving the nervous system were also highlighted. An improvement in the 

spatial resolution of attention in videogame players has been observed (Green & Bavelier, 

2007). A persistent difficulty is that training can be more or less efficient depending on how 

it is administered and this is directly related with tasks difficulty management (Linkenhoker 

& Knudsen , 2002). 

 

3.8 Flow in Computer Mediated Environments 
Learning is enhanced when the match between the skills of the learner and the challenges 

of the subject matter are optimized (Whalen, 1998). Csikszentmihalyi's Flow Theory 

(Csikszentmihalyi, 1991) provides a framework and vocabulary for understanding the 

experiential nexus between the active person and the facilitative environment. The 
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experience of Flow creates information that melds actor and activity into one transactive 

system. In this sense, Flow may be seen as the experiential dimension of the ZPD (Whalen, 

1998). 

 Flow or optimal experiences, also referred to as “the zone” (Csikszentmihalyi, 

1991) represents a state of consciousness where a person is so absorbed in an activity that 

he or she excels in performance without consciously being aware of his or her every 

movement.  

Within a Computer Mediated Environment (CME), the experience of flow in the past 20 

years has demonstrated an increase in communication, office productivity software on 

desktop computers, learning, general web activity, online consumer settings, and online 

search experiences among others (Finneran & Zhang, 2005). 

 The practical implications of the consequences of flow experiences are clear, 

important, and promising. It is expected that a good understanding of the flow phenomenon 

would guide ICTs designers to build products that lead users to flow experiences. Little 

research is available concerning the application of data mining techniques in Flow. In 

(Mathwick & Rigdon, 2004) cluster analysis is used to identify a “flow cluster” comprised 

of individuals with high Internet search skills and a search task that presents a high 

navigational challenge. 

 From a research perspective however, flow is poorly defined in CME because of the 

numerous ways it is conceptualized, operationalized, and measured. Flow experience is 

associated with a person doing an activity. In traditional flow studies, the activities tend to 

be very clear: playing music, climbing a cliff, playing chess or reading a book. Most 

existing flow studies in CME do not clearly differentiate between factors that are related to 

the task and those that are related to the artifact. 

 Thus, there is a need to re-conceptualize flow in CME to consider the uniqueness of 

the artifacts and the complexity they add to the flow phenomenon. Indeed one of the aims 

of this work is to use PREVIRNEC© to produce flow experiences in the subject, thus 

incrementing the benefits of the neurorehabilitation process.  
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3.9 Summary 
This chapter addresses the bibliography review of the different areas involved in the thesis. 

Being a multidisciplinary research, several areas have been reviewed, initially underlining 

the limitations of traditional Data Mining (DM) methods in our context of application. DM 

applications in the field of neurology have been analyzed in section 3.2. No works 

addressing high interactions among factors by considering cummulative effects nor multi-

impact areas were found, neither in general, nor in the particular medical fields. A common 

belief in the literature is that DM on medical data requires specific medical knowledge as 

well as knowledge of DM technology.   Therefore methodological approaches addressed in 

this field should and prior domain knowledge in the DM process.  

This chapter presents a number of studies that employ traditional Data Mining techniques 

in TBI such as Classification (K-Nearest Neighbor, Decision Trees, Support Vector 

Machines, Neural Networks, Bayesian Methods)  as well as  Regression, Association Rules 

and Clustering methods. Among hierarchical clustering methods we particularly highlight 

Clustering Based on Rules (it is proposed as part of the SAIMAP methodology introduced 

in Chapter 2 and detailed in Chapter 4) which combines inductive learning elements with 

statistical methods to enhance clustering results.  An important property of the method is 

that it permits to incorporate the interaction with clinical experts and prior domain 

knowledge in the DM process, increasing interpretability of the resulting classes.  

Then the state of the art is reviewed in the context of repeated activities search patterns 

search (e.g. Sequential Pattern Mining methods). Some of them will be applied to our 

application case and results compared. Computational Geometry is reviewed, as in the step 

of NRR identification it is reduced by matrix algebra manipulations into a Computational 

Geometry problem. Motifs discovery techniques in sequential data is also reviewed  as it is 

also introduced as part of SAIMAP methodology to describe treatment patterns. 

 

 

  

71 

 



Chapter 4. Sequence of Activities Improving 
Multi-Area Performance (SAIMAP) 
Methodology  

 

In this chapter, the combination of pre-processing tools, clustering, motif discovery and 

post-processing techniques is proposed in a hybrid methodological frame, where sequential 

patterns of a predefined set of activities with high order interactions and cumulative effects 

among them are associated with multi-criteria improvement in a predefined set of areas of 

impact.  The use of motifs is relevant because the cumulative effect of performed activities 

is robust to the time period intervals occurring between them and small interferences in a 

certain sequence do not decrease their effect on individuals performing them. 

In Chapter 9 section 9.4 the results of applying this method on a real case study are 

presented. In section 9.10 it is discussed why the use of motif discovery is preferred for our 

problem to a classical supervised approach based on learning performance on the basis of 

sequences of tasks. 

 
 

• The relationship among the patterns in M and the improvements in global or/and 
individual areas of impact  in A  due to execution of activities in T and the 
characteristics of individuals associated with the pattern (associations between M 
and X)  This means finding associations between M and Z. In particular, given a 
threshold 𝛾𝛾 it is searched the subset N ⊆ M: ∀ µ ∈ N  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑍𝑍| 𝐼𝐼𝜇𝜇1 = 𝑌𝑌𝑌𝑌𝑌𝑌�  ≥ 𝛾𝛾  
 
 

• As described in Chapter 2, a set of distinct patterns (with no intersecting 
subsequences) M= {𝜇𝜇1,𝜇𝜇2, … 𝜇𝜇𝑚𝑚}, 𝜇𝜇 = (𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛𝜇𝜇  ) with 𝑎𝑎𝑙𝑙 ∈ A , inducing a 
partition over I is discovered over data to characterize groups of individuals 
following a similar sequence of activities. 
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4.1 The Sequence of Activities Improving Multi-Area 

Performance (SAIMAP) Methodology  
 
Given the R matrix 
 

1. Preprocessing 
1. Build 𝑠𝑠𝑖𝑖 ∀𝑖𝑖 = {1, … ,𝑛𝑛} as 𝑠𝑠𝑖𝑖 = (𝑅𝑅𝑖𝑖[2])𝑡𝑡 𝑠𝑠𝑖𝑖contains the sequences of tasks performed 

by i 

2. Build 𝝌𝝌 = �
𝑠𝑠1
⋮
𝑠𝑠𝑛𝑛
� as the matrix containing the sequence of tasks performed by each 

individual 
3. Identify the frequency threshold f  to retain a task 
4. Recategorize T  by using a new category OTHERS grouping all infrequent tasks 
5. Determine  l   the threshold task length to be considered (percentile -95 of length of      

treatments distribution). 
Use only first  l  columns of 𝜒𝜒 for the whole study and complete shorter sequences by 
“NULL” values 

6.Build   
𝛥𝛥= (𝐷𝐷1……𝐷𝐷𝑎𝑎)   effect of 𝜒𝜒 over each area of impact  
Z as a function of a subset of 𝛥𝛥 

2. Descriptive Analysis    
1.Build frequency plot of  first l  columns and  f  tasks of χ   
2.Build heatmap of  first l  columns and  f  tasks of χ   
3.Build heatmap of  first l  columns and f  tasks of 𝜒𝜒a  

3. Prior expert knowledge acquisition   
 Knowledge is represented by means of lf-Then rules in order to provide maximum 

flexibility and expressiveness to the expert. Only available knowledge is collected even 
if it is a partial description of the domain. 
Build KB = { r: B  L }  from a priori experts knowledge in target domain 

4. Clustering of matrix  𝛘𝛘:   
 The idea is to obtain standard patterns of sequences in terms of the areas impacted by the 

tasks performed by the users. 
 The methodology might accept any clustering method, but in our approach Clustering 

based on rules (Gibert and Zonicki, 1999) is strongly recommended, as it will be 
justified in the section 4.1.1 below. 
Let P = �C1. . Cξ� be the set of classes found, being P a partition of I (∀ C ∈  P, C ⊆ I) 

5. Split of χ per class:   
 Divide the data matrix in submatrices according to the different classes found in 

previous step. 
      ∀ C ∈ P build  χCa = χa|C = [Ait]ncMt, i={i:i:1..n and i ∈ C}, nc =card{C} 
χCa  contains only the rows corresponding to individuals in class C 

6. Visualization of classes 
 ∀ C ∈ P build a heatmap of χCa  
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7. Find motifs per class 
1.Define an alphabet ζ of a single letters associated to the areas of impact in A such that 
∀ A ∈ A is represented by w ∈ ζ 

2.∀ C ∈ P build  χC
ζ  by replacing the activities in χCa  by their corresponding initial in ζ 

3.∀ C ∈ P find motifs of χC
ζ   of length l (other methods can be used as well but          

MEME method is recommended; in any case a motif discovery method that does not 
use secondary and tertiary sequences must be used) 

  Let  𝑒𝑒𝑙𝑙 = �eC1l … ecMl �  be the vector with the E-values for all motifs found 
  ∀ motif  𝑚𝑚𝐶𝐶

𝑙𝑙 ,  C ∈ P, l ∈  [lmin, lmax]  
  Let   ΠCl  be the letter probability matrix indicating the presence of the letter of alphabet 

in each position of the motif. 
  Eventually l might range in a certain interval [lmin, lmax] 

8. Determine a level of minimum quality for motifs (α) 
      Usually  α = 0.05 is considered but other values can be considered as well 
9. Prunning motifs: Retain the more frequent motifs for interpretation 

1.∀ C ∈ P build 𝑀𝑀𝐶𝐶
∗ = �𝑚𝑚 𝑖𝑖𝑖𝑖 𝑀𝑀𝐶𝐶  | 𝑒𝑒𝑐𝑐𝑚𝑚   ≤ 𝛼𝛼� 

10. Visualize motifs 
1. ∀ C 𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯 𝐌𝐌𝐂𝐂  on the basis of πCl   using the  SeqLogo representation, and       

interpret the motifs. 
2. The characteristics of the sequences associated to each class might be easily   

identified over the motifs visualization. 
3. Describe which areas of impact are addressed at which points of the sequences in each 

class 
11. Analyze the effect of executing activities over the different areas of impact 

1.Build multiple boxplot of Dj vs P, ∀ Dj ∈ 𝛥𝛥 
2. Kruskal-Wallis between  Dj and P 
Identify which areas improve the most in which classes. 

12. Project all other illustrative variables over the clusters: 
1. ∀ Xk in  X 
  If Xk is numerical 
   Build the multiple boxplot Xk vs P 
   If Xk | P ∼ N then  
     ANOVA 
                 else 
     Kruskal-Wallis test 
  If Xk is qualitative 
   Build the Stacked Barchart of Xk vs P 
    If  Xk vs P cross table all cells have more than 5 elements then 
     χ2 independent test 
   else 2-tailored Fisher exact test     
 2. Retain all significant variables in X and build the description of additional 
characteristics of each cluster 
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13. Build final interpretation. 
Associate the descriptions of motifs with the profile of performance and the 
characteristics of the individuals in each class, and constitute the final characterization of 
P 

 

4.1.1. Proposed techniques 
Although the proposed methodology is available for any clustering or motif discovery 

method, in this work a particular implementation  using Clustering Based on Rules (ClBR) 

and MEME method is proposed. Brief description for this methods is provided below, 

together with the specific approach proposed for pattern interpretation. 

 Clustering phase (ClBR):  Clustering Based on Rules (ClBR) combines inductive learning 

elements with statistical methods to enhance clustering results  (Gibert et al., 1998). In our 

previous research ClBR was applied for knowledge discovery on the response to 

neurorehabilitation treatment of TBI  patients where CR tasks have not been considered  

(Gibert et al., 2008). The main idea of ClBR is to allow the user to introduce semantic 

constraints on the formation of clusters (classes), providing them in a declarative way, in 

particular a rules knowledge base is used. This conditions provided by experts, formalize 

the apriori domain knowledge and induce a sort of super-structure on the domain; 

clustering is then performed within this structure by respecting the user constraints, and 

better approaching the clinical meaning of the resulting classes. 

In the present analysis ClBR is applied to sequential data to identify meaningful classes of 

patients following similar sequences. Prior domain knowledge is considered, like the length 

of the prescribed treatment. 

Motif discovery (MEME): The resulting clusters are then subjected to the MEME 

algorithm for motif discovery. MEME takes as input a group of sequences and the length of 

the searched motifs and outputs a motif for the group under different conditions. In our 

proposal we suggest not to restrict the number pof motifs in every single sequence as it 

makes sense that the motif might repeat several times along the treatment. 

MEME then calculates the E-values of the discovered motifs, similar to a p-value for the 

log-likelihood of the motif. The motif with the smallest E-value in the searching space is 

proposed as the best motif characterizing the input dataset. 
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MEME also provides the position-specific probability matrix (PSPM, denoted as Π𝐶𝐶𝑙𝑙  in the 

mehtodology) for the discovered motifs, representing the importance of each letter in each 

position of the motif. The PSPM matrix is the input to the sequence logos (Schneider and 

Stephens, 1990) (SEQ_LOGOS tool) providing the graphical representation for the 

discovered motif. The most representative motif for each of the classes is obtained together 

with its logo by using different motif lengths. 

Patterns interpretation: Logos of all classes from different increasing lengths are used to 

understand regularities in the treatments of different classes. 

The logos permit to sinthetyse the characteristics of treatments followed in each class. Then 

the relationships between those typical treatments and evaluations of patients performance 

might be analyzed. In our application, performance is evaluated through standardized 

neuropsychological assessment battery (NAB presented in section 1.4.3) and effect of 

treatment might be computed as pre-post differences over these batteries.  

Statistical tests and multiple boxplots (Tukey, 1977) are used to relate the discovered 

groups with patient’ characteristics, level of impairment and associated with specific 

treatment patterns. The proposal includes ANOVA or Kruskal-Wallis test (denoted as K_W 

in the proposed algorithm) for numerical variables depending on the characteristics of the 

variable itself  and χ2 independence test  (Tukey, 1977) or two-tailored exact Fisher test 

(Agresti, 2012). 

 

 

4.2 Summary 
This chapter introduces the Sequence of Activities Improving Multi-Area Performance  

(SAIMAP) which is used in the first step of the CMIS methodology. SAIMAP uses a 

combination of pre-processing tools, clustering, motif discovery and post-processing 

techniques.  SAIMAP takes as input the sequences of activities performed by each 

individual to find a reduced set of characteristics motifs for profiling the sequences 

followed by groups of individuals who behave similarly. It  is proposed as an hybrid 

methodological frame in 13 formal steps, where sequential patterns of a predefined set of 

activities with high order interactions and cummulative effects among them are associated 
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with multi-criteria improvement in a predefined set of impact areas that might be targeted 

in parallel by a single task (or not).  

The SAIMAP basically finds groups of similar treatments first, then characterizes them by 

using motif discovery methods local to each group. 

Although the proposed methodology is available for any clustering or motif discovery 

method, in this work a particular implementation using Clustering Based on Rules and 

MEME method is proposed. Sequence logos of all classes from different increasing lengths 

are used to understand regularities in the treatments of different classes. Then the 

relationships between those typical treatments and evaluations of patients performance is 

analyzed. Statistical tests and multiple boxplots are used to relate the discovered groups 

with patient’ characteristics, level of impairment and associated with specific treatment 

patterns. The proposal includes ANOVA or Kruskal-Wallis test for numerical variables and 

χ2 independence test or two-tailored exact Fisher test, depending on the characteristics of 

the variable itself.   

. 
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Chapter 5. Identification of the general pattern 
associated to a motif  
 

5.1 General Pattern Identification 
In this step each discovered motif included in M is analyzed and a general pattern of the 

form ([A]r,)* 𝐴𝐴 ∈ A. is produced, giving a fix structure for the sequence design. For 

example the motif shown in Figure 5.1  

 
    Figure 5.1 Graphical representation of motif 
 

Will produce the global pattern (making a simplification of details and assigning a major 

area to each pattern): 

     [TCTC2T9A3T2] 

The main principles are to use regular expressions built over the ΠCl   found by SAIMAP for 

every motif. 

As a basic reference, the structure of the pattern will follow the  regular expression  ([A]r)*  

where 𝐴𝐴 ∈ A. 

However, as it is known that the motif might contain positions with uncertainty in which 

several letters appear (as it can be seen in the example and considering that in our context 

some tasks might address several impact areas simultaneously) we are working now in 

generalizing the pattern to an alphabet 

  B = P (A) to produce patterns of the form ([B]r)*   

where some combination of different areas is also considered, and a more realistic approach 

is reached. 
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This will orient in the design of the final sequence of activities to select pure tasks for pure 

positions of the sequence where a single area requires impact according to the pattern, or to 

select tasks simultaneously addressing two or more areas in other positions indicated by the 

pattern  

  [T(C|T)(T|A)(C|T)2(T(T|C)T(T|A)T2(T|C)3(T|A)4T2 ] 

 

 

Given l the length of the motif, the matrix 

    Π𝐶𝐶 
𝑙𝑙 =  �

𝜋𝜋𝐶𝐶 𝐴𝐴1
1 ⋯ 𝜋𝜋𝐶𝐶 𝐴𝐴𝑎𝑎

1

⋮ ⋱ ⋮
𝜋𝜋𝐶𝐶 𝐴𝐴1
𝑙𝑙 ⋯ 𝜋𝜋𝐶𝐶 𝐴𝐴𝑎𝑎

𝑙𝑙
�  𝐶𝐶 ∈ P,  𝐴𝐴1 … 𝐴𝐴𝑎𝑎 ∈ A 

 

where  𝜋𝜋𝐶𝐶 𝑎𝑎
𝑝𝑝  is the probability that area 𝑎𝑎 ∈ A is impacted by the task executed in position 

p,  p ∈ 1.. l.   It holds that  ∑  π𝐶𝐶 𝑎𝑎
l

 ( ∀𝑎𝑎∈ A) = 1    

Then 

1. Determine the threshold 𝛾𝛾 ∈ [0,1) such that a minimal probability of impact is retained in 

Π𝐶𝐶 
𝑙𝑙  

2. Build  Π𝐶𝐶𝑙𝑙
∗  where 

  Π𝐶𝐶𝑙𝑙
∗[𝑝𝑝,𝑎𝑎] = �𝜋𝜋𝐶𝐶 

𝑙𝑙 [𝑝𝑝,𝑎𝑎],     𝑖𝑖𝑖𝑖 𝜋𝜋𝐶𝐶 
𝑙𝑙 [𝑝𝑝,𝑎𝑎]  ≥   𝛾𝛾   

0,              𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
   p = 1..l,  a ∈ 𝑤𝑤 

3. Extract the suitable letters for a position of the motif: Process the matrix  Π𝐶𝐶𝑙𝑙
∗ by rows to 

build 𝑊𝑊𝐶𝐶 
𝑙𝑙 such that 𝑊𝑊𝐶𝐶 

𝑙𝑙 = ( 𝑤𝑤𝑐𝑐1 , … , 𝑤𝑤𝑐𝑐𝑙𝑙), with 

  𝑤𝑤𝑐𝑐𝑃𝑃 = { 𝑎𝑎 ∈ A: 𝜋𝜋𝐶𝐶 𝑎𝑎
𝑝𝑝  > 0} 

4. Build regular expression from 𝑊𝑊𝐶𝐶 
𝑙𝑙  

Find a regular expression S  collapsing the repeated contiguous words in a single powered 

expression in such a way that  

𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑤𝑤𝑐𝑐𝑃𝑃) = 1  then 𝜔𝜔 = a, a ∈ 𝑤𝑤𝐶𝐶 

𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑤𝑤𝑐𝑐𝑃𝑃) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑐𝑐𝑃𝑃+1) = ⋯𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑐𝑐𝑃𝑃+𝛿𝛿)  a single term (𝑤𝑤𝑐𝑐𝑃𝑃)𝛿𝛿−1 is generated 

𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑤𝑤𝑐𝑐
𝑝𝑝) >1,  collapse all elements in 𝑤𝑤𝑐𝑐

𝑝𝑝 in a single string separating every element 

with “|” 
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Example:  

 𝑤𝑤 = {𝐶𝐶|𝑇𝑇},   𝜔𝜔 = 𝐶𝐶|𝑇𝑇;  𝑤𝑤 = {A} then 𝜔𝜔=A 

 

Example: Assume C = LONG6 and  l = 15 and that the resulting motif gives ΠLONG615  
 

ΠLONG615 = 

 
The resulting logo is shown in Figure 5.2 

 

 
  Figure 5.2 Graphical representation of LONG6 class motif l =15 
 

Selecting 𝛾𝛾 = 0.25  it happens that ΠCl
∗ = ΠCl  

The resulting wC
l  is: 

wC
l = ({C}, {C,T}, {C,T},{T},{C},{C}, {C,T},{C},{C,T},{C,T},{C},{A,C},{T},{C,T},{C}) 

The corresponding set of words is 

wC
1=C, wC

2=C|T, wC
3 = C|T, wC

4=T, wC
5=C, wC

6=C, wC
7=C|T, wC

8=C,  wC
9=C|T, wC

10=C|T,  

wC
11=C, wC

12=A|C,  wC
13=T, wC

14=C|T, wC
15=C 

 
 A         C         G         T         p 
 0.000000  1.000000  0.000000  0.000000   1 
 0.000000  0.250000  0.000000  0.750000   2 
 0.000000  0.750000  0.000000  0.250000   . 
 0.000000  0.000000  0.000000  1.000000   . 
 0.000000  1.000000  0.000000  0.000000   . 
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.750000  0.000000  0.250000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.250000  0.000000  0.750000  
 0.000000  0.750000  0.000000  0.250000  
 0.000000  1.000000  0.000000  0.000000  
 0.750000  0.250000  0.000000  0.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.750000  0.000000  0.250000  
 0.000000  1.000000  0.000000  0.000000   15 
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giving the sequence: C(C|T)(C|T)TCC(C|T)C(C|T)(C|T)C(A|C)T(C|T)C 

where contiguous repeated patterns appear in some positions 

 
  

Thus the resulting regular expression for this motif is: 

S =  [C(C|T)2TC2(C|T)C(C|T)2C(A|C)T(C|T)C] 

Taking 𝛾𝛾 = 0.4 

  

ΠCl
∗
= 

 
 the resulting sequence of  𝑤𝑤𝑐𝑐𝑃𝑃 is CTCTCCCCTCCATCC that results in the following 

expression S = [CTCTC4TC2ATC2] 

Thus, depending on 𝛾𝛾 the more or less flexibility is given to the final pattern to be 

considered for the treatment designs. 

 

5.2 Summary 
Taking as starting point the motifs identified by means of SAIMAP methodology in 

previous chapter, this chapter addresses the problem of identification of the general pattern 

associated with a given motif. The discovered motifs for each class at different lengths are 

analyzed leading to a general treatment pattern represented as a regular expression where 

the areas targeted at every position of the treatment are specified. This gives a fix structure 

C(C|T)(C|T)TCC(C|T)C(C|T)(C|T)C(A|C)T(C|T)C 

A         C         G         T         p 
 0.000000  1.000000  0.000000  0.000000   1 
 0.000000  0.000000  0.000000  0.750000   2 
 0.000000  0.750000  0.000000  0.000000   . 
 0.000000  0.000000  0.000000  1.000000   .  
 0.000000  1.000000  0.000000  0.000000   .  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.750000  0.000000  0.000000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.000000  0.000000  0.750000  
 0.000000  0.750000  0.000000  0.000000  
 0.000000  1.000000  0.000000  0.000000  
 0.750000  0.000000  0.000000  0.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.750000  0.000000  0.000000  
 0.000000  1.000000  0.000000  0.000000   15 

2 2 2 
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for the sequence design and will orient the health professional in the composition of the 

final sequence of activities provided that the set of areas impacted by each task are known. 

  

82 

 



 

Chapter 6. Neurorehabilitation Range (NRR) 
Sectorized and Anotated Plane (SAP) and 
NRR Maximal Regions (NRRMR) methods 
 

 
• In this chapter we build on the concept of NRR and SAP tools to solve what we 

refer to as the NeuroRehabilitation Range Maximal Regions problem (NRRMR). 

• Automatize the identification of NRRs with data-driven models that are able to 

avoid the limitations observed in the SAP performance. 

• Overcome the problem of occlusions that appeared in the SAP, being a pure 

visualization tool, is, and  

• Find a variable number of NRRs for a given CR task, according to different user-

defined conditions concerning the acceptable degree of uncertainty. 

 

6.1 Neurorehabilitation Range 
In Clinical Pharmacokinetics, therapeutic range is defined as a range of drug concentrations 

within which the probability of the desired clinical response is relatively high and the 

probability of unacceptable toxicity is relatively low. Within this therapeutic range the 

desired effects of the drug are observed. Below it there is a greater probability that the 

therapeutic benefits are not realized (non-response or treatment-resistance); above it, toxic 

effects may occur (DiPiro & Spruill, 2010). 

In this chapter, the concept of NeuroRehabilitation Range (NRR) is introduced as a 

translation of the classical therapeutic range from pharmacology to the field of 

neurorehabilitation (García-Rudolph & Gibert, 2014). The role of pharmacs in disease 

treatment is assumed in neurology by the role of neurorehabilitation tasks. The effect of 

treatment corresponds here to the restoration of cognitive functions.  

 Using this analogy, we will consider that a cognitive rehabilitation treatment task 

behaves in NRR if the desired clinical response is obtained i.e. if an observable 
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improvement in the targeted cognitive function is registered for the patient. As finding 

therapeutic range in pharmacokinetics consists of determining the proper drug 

concentration to be administered to a patient, finding NRR of a cognitive rehabilitation task 

is defined as determining the proper level of task difficulty to be proposed to the patient to 

obtain an optimal cognitive improvement of the targeted cognitive function.  

We presume that being able to determine the NRR will provide a model that can help us to 

know better the relevant factors determining the ZRP proposed by Cicerone and Tupper 

(Cicerone & Tupper, 1986). 

 In PREVIRNEC©, following the execution of a given task T the subject gets a 

result RT ranging from 0 to 100. Section 1.4.5 details how this result is obtained, in this 

section we merely remark that a 0 result denotes the lowest level of task completion and a 

100 the highest. Being the NRR of task T defined as NRR(T)=[r-,r+], and being r-,r+ in [0, 

100], using a simple test it is easy to determine whether or not the patient performed the 

task in NRR:  

in NRR(RT)  iff  RT  ∈ NRR(T)  ≡  r- ≤ RT ≤ r+ 

 

• Tasks that are too easy will produce results higher than r+ and are probably out of 

ZRP because they only involve undamaged brain areas and do not demand 

impaired cognitive functions to be activated. In this case, we say the task has been 

executed in SupraNeuroRehabilitation Range (SNRR). 

• Tasks that are too difficult will produce results lower than r- and are also likely to 

be out of ZRP. This is because they intensively required the implication of the 

impaired brain areas that cannot react to the excessively difficult cognitive 

stimulus. In this case we talk about InfraNeuroRehabilitationRange (INRR). 

 

Currently, some hypotheses to determine a proper model for NRR(T), are being tested for 

the values of r-,r+. The aim of this chaper is to define a method by using data-driven 

models with PREVIRNEC© database to extract useful knowledge. 

As a first attempt to find the neurorehabilitation range of a cognitive task executed by 

means of PREVIRNEC©, the result obtained by the patient in the execution of the task is 

used. The number of executions of the task performed by the patient is considered, as it is 
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known that repetition is highly related to activation of brain plasticity, which is in the core 

of cognitive functions re-establishment, as introduced in Chapter 1. 

The proposed methodology presents two strategies for the analytical and graphical 

identification/visualization of neurorehabilitation and non-neurorehabilitation ranges based 

on the notion of Sectorized and Annotated Plane introduced below. The two models for 

NRR obtained are compared and discussed for the specific case of task151, related to visual 

memory cognitive function. 

 

6.2  Sectorized and Annotated Plane (SAP) 
 

Given three variables Y, X1, X2, where Y is a qualitative response variable, with values 

{y1,y2,...}, and X1, X2 numerical explanatory variables, the SAP is a 2-dimensional plot 

with X1 in the x axis, X2 in the y axis and rectangular regions with constant Y displayed 

and labeled with Y values as outlined in Figure 6.1. An SAP is therefore a graphical 

support tool aimed at visualization, where the response variable is constant in certain 

regions of the X1xX2 space. Eventually, allowing a relaxation of strict constant Y in the 

marked regions, the SAP might include an indicator of region purity, adding the probability 

of occurrence of the labeling value. 
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Figure 6.1.  General Sectorized Annotated Plane (SAP) description 

 

Given a particular CR task, and assuming Y as a binary variable reporting improvement of 

the patient in the cognitive function targeted by the task (yes, no), the SAP leads to 

response zones where participants show similar response to treatment. The SAP shows a 

plane sectorization directly related to treatment response. This allows identification of 

logical restrictions (rules) determining the different outcomes of treatment. 

The SAP is built following two methodologies that implement two different strategies, the 

first one based on graphical visualization and the second based on the plane partitions 

induced by decision trees, as introduced below. 

In our context V matrix provides the performance obtained by each individual on each task 

execution. A new column is added to V, giving the repetition number of each execution in 

the sequence performed by each patient.  

 

Example.: Let us suppose patient 1002 following a treatement with  

S1002=[T80, T83, T65, T80, T82, T145, T68, T81, T82, T145, T66, T79, T79, T46, 

 T79, T79, T148, T148, T151, T79, T85, T148, T148, T15] 
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The scorings achieved for each execution are also available and idPatient 1002 improves 
after treatment, V’  matrix will contain his executions as shown in Table 6.1  

V’= 

     
i t p z patientIndex 

1002 T80 75 YES 1 
… 

    1002 T83 37 YES 1 

… 
    

1002 T65 0 YES 1 

… 
    

1002 T80 90 YES 2 

… 
    

1002 T82 50 YES 1 

… 
    

1002 T145 76 YES 1 

… 
    

1002 T68 0 YES 1 

… 
    

1002 T81 81 YES 1 

… 
    

1002 T82 69 YES 2 

… 
    

1002 T145 80 YES 2 

… 
    

1002 T66 0 YES 1 

… 
    

1002 T79 64 YES 1 

… 
    

1002 T79 75 YES 2 

… 
    

1002 T46 94 YES 1 

… 
    

1002 T79 64 YES 3 

… 
    

1002 T79 81 YES 4 

… 
    

1002 T148 20 YES 1 

… 
    

1002 T148 60 YES 2 

… 
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1002 T151 91 YES 1 

… 
    

1002 T79 50 YES 5 

… 
    

1002 T85 64 YES 1 

… 
    

1002 T148 20 YES 3 

… 
    

1002 T148 40 YES 4 
  Table 6.1. Tasks executions for idPatient 1002 

 

The SAP is performed by using columns < P,patient index, Z > 

 

6.3 The NRR 
The NRR defined in section 6.1 extends to a bi-variate expression where:  

 

KNRR = {  
 if  performance p ∈ [p-,p+] & number of repetitions r ∈ [r-,r+] then T is in NRR, 

∀𝑡𝑡 ∈ 𝑇𝑇  
 }  
 
 The intervals [p-,p+] and [r-,r+] are determined by SAP. 
 
Alternatively a representation in form of matrix is also suitable.  

The NRR matrix provides NRR found in all tasks in T as shown in Table 6.2. 

 

 

  

 

 

 

 

 

 
    Table 6.2. The NRR matrix for all T 

IdTask Results Number of Executions 

 Lower bound Upper bound Lower bound Upper bound 

T1 p- p+ r- r+ 

.. ..  ..  

TT    p- p+ r- r+ 
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6.3.1 Visualization-Based SAP (Vis-SAP) 
 

Data is plotted regarding X1 and X2, and each point is marked with different colors 

according to the values of Y. This categorized scatterplot (sometimes known as letterplot) 

is an exploratory technique for investigating relationships between X1 and X2 within the 

sub-groups determined by Y. For the particular application presented here, X1 is the 

number of executions of the task performed by the subject (Tasks repetitions), X2 is the 

result obtained at every single execution (Results), while Y is the effect of the 

neurorehabilitation process (improvement/non-improvement). 

This exploratory analysis is used to identify systematic relationships between variables 

when there is no previous knowledge about the nature of those relationships. The constant-

Y regions detected in the plot can be expressed in the form of logical rules involving the 

implied variables. The SAP is built on the basis of these rules.  

 

6.3.2 Decision Tree-Based SAP 
 

The tuple (X1,X2,Y) = (Execs151, Results, Improvement) can be treated as a classical 

classification problem, where Improvement has to be recognized on the basis of Execs151 

and Results. The training dataset is used to induce a decision tree classifier which is later 

evaluated with the test set in the usual way. For the testing, the class label is ignored and 

predicted by the classifier. Performance of classifier is evaluated by comparing both 

predicted and real class. The confusion matrix and taxes of misclassification can be 

provided. 

Here, the Weka (Hall, y otros, 2009) software has been used to apply the J48 (Witten & 

Frank, 2005) decision tree algorithm which implements Quinlan’s C4.5 algorithm (Quinlan, 

1986) building an unpruned tree.  

Once the decision tree has been constructed, it is converted into an equivalent set of rules in 

the usual way. 
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6.3.3 Frequency table SAP (FT-SAP) 
 

The main problem with Vis-SAP is that in every pixel in the image several points might be 

overlapped and not always labeled with the same response value. Detection of NRR regions 

is performed by labeling each pixel with the majority label, using a simple voting scheme 

and without taking into account the balance between improvement and non-improvement 

pixels overlapped. 

In this section, a numerical representation of the Vis-SAP is used, based on a two-way 

matrix, precisely indicating how many points of each class are overlapped at any pixel in 

the graph (García-Rudolph & Gibert, 2015). 

As in Vis-SAP, in this approach X1 is the result obtained at every single execution (Result), 

X2 is the number of executions of the task performed by the subject (Executions), while Y 

is the effect of the neurorehabilitation process: improvement/non-improvement (YES,NO) 

assessed by standardized neuropsychological tests. 

Given mExec the maximum number of Executions of a task and mResults the maximum 

scoring of a task  i=(1:mExec), j=(1:mResults), we define 

mij = number of subjects such that (X2= i) & (X1 = j) & (Y= YES) 

nij = number of subjects such that (X2= i) & (X1 = j) 

pij = mij / nij = percentage of subjects such that (X2= i) & (X1 = j) & (Y = YES) 

For each (i,j) the matrix P= (pij) is built as shown in Table 6.3: 
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Execs/Results 0 1  … i 

1     

2     

.     

.     

j    𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖𝑖𝑖�  

..     

  

  Table 6.3. pij  is the proportion of improving patients in pixel (i,j) 

 

 

 

An FT-SAP is a graphical visualization where a gradient color from red to green can be assigned to 
pixel (i,j) according to its pij as shown in Figure 6.2        

                

           

  Figure 6.2 Color gradient for pij values in quartiles 

 

Given a threshold 𝛾𝛾𝛾𝛾[0,1] the NRRMR regions can be found over the FT-SAP (𝛾𝛾) as the set of 
regions (r,s)×(t,u) such that 

 

 ∀(𝑖𝑖, 𝑗𝑗) 𝑟𝑟 ≤ 𝑖𝑖 ≤ 𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 ≤ 𝑗𝑗 ≤ 𝑢𝑢, 𝑖𝑖𝑖𝑖 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 𝛾𝛾 
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Given 𝛾𝛾, a 2-color gradient can be defined providing a neat heatmap of the FT-SAP (𝛾𝛾) (as shown  
in Table 6.4). Being qij defined as: 

 

𝑞𝑞𝑖𝑖𝑖𝑖 = �
1  𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 𝛾𝛾
0  𝑝𝑝𝑖𝑖𝑖𝑖 < 𝛾𝛾 

Therefore a binary matrix Q is obtained, being Q=(𝑞𝑞𝑖𝑖𝑖𝑖). Q is a mask over FT-SAP filtering 
pixels according to 𝛾𝛾 (for empty cells, no color is provided for the pixel). 
 
 
 
 
 

Execs/Results 0 1 … r … i …    s … 

1          

2          

..          

t          

..          

j      𝑝𝑝𝑖𝑖𝑖𝑖     

..          

u          

..          

                             

 Table 6.4. A 2-color heatmap defining a two dimensional NRR for  𝑝𝑝𝑖𝑖𝑖𝑖 ≥ γ   

 

6.3.4 Analytical identification of  NRR 
Taking as input parameter the Q matrix resulting from filtering FT-SAP over 𝛾𝛾, a method to 

automatically identify NRR (given maximum width and length of the surface to be 
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searched as user defined parameters) is described below. The idea is to find all rectangular 

groups of 1s cells equal to or greater than the minimum width and length provided by the 

user (García-Rudolph & Gibert, 2015). 

It is solved by two pass linear O(n) time algorithm (n being the number of cells in the input 

matrix). As shown in Figure 6.3 below, first pass scans the matrix by columns, numbering 

cells consecutively until a red element (a 0 cell) is found and second pass scans by rows, 

searching for elements matching the length and width provided as parameters.  

As is shown in the R code after Figure 6.3 the method allows for the simultaneous 

identification of the NRRs satisfying the user-defined conditions. The MAXRES and 

MAXEXEC values in the R code correspond to mResults and mExec respectively, as 

defined above. The proposed pseudo code is introduced below: 

 

Input 
Anxm matrix of red(0)/green(1) elements obtained after FT-SAP (γ): 
MAXROW maximum number of rows  
MAXCOL maximum number of columns 
  
Output  
NRR maxrowxmaxcolumn 
First pass 
For each column from bottom to top 
   Repeat 
     Number green element incrementally  
   Until a red element is found → Restart numbering 
 
Second pass 
For each row from left to right 
  NRRrows = 0 #Number of rows of the NRR solution so far 
  Repeat 
  If element >= MAXCOL  
       Increment NRRrows 
       NRR=NRR+NRR[element] 
  Else NRRrows = 0 
  Until NRRrows = MAXROW     
Return NRR 
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   Figure 6.3 Example of the two-pass algorithm 

#First pass 
for (j in 1:MAXRES){ 
cont  ⃪ 1 
 for (i in MAXEXEC:1) { 
 if (y[i,j]==0){ 
cont  ⃪  1 
b[i,j] ⃪  NA} 
 else {b[i,j] ⃪ cont  
cont  ⃪ cont+1} 
}} 
#Second pass 
Mdat  ⃪  b 
apply(mdat, 1, function(x) { 
  r  ⃪  rle(x >= MAXROW) 
  w  ⃪  which(!is.na(r$values) & r$values & r$lengths >=MAXCOL) 
  if (length(w) > 0) { 
    lapply(w,FUN=function(w1){ before  ⃪  sum(r$lengths[1:w1]) - r$lengths[w1]; 
                               c(before+1,before+r$lengths[w1]) }) 
  } else 
    NULL 
}) 

94 

 



With this algorithm the green rectangles as specified by the user in the FT-SAP for a given 

threshold  𝛾𝛾 can be identified and NRR established accordingly. 

As will be seen in Chapter 10, some real cases provide large green areas contaminated by a 

small percentage of isolated red points that could be assumed as part of the NRR, provided 

that an uncertainty tax becomes associated with it. This implies modification of the 

previous algorithm to find regions with a certain degree of contamination. But the 

generalization about the provided implementation is not evident. Thus, a classical version 

of the MER algorithm has been used instead and properly modified. Section 6.4 provides 

our implementation of the classical MER and Section 6.4.1 provides the proposed 

generalization to permit a certain degree of contamination in the regions. 

 

6.4 Maximal Empty Rectangle (MER) method 
In this section, the SAP is transformed into a masked binary matrix and a geometric 

optimization algorithm (the Maximal Empty Rectangle problem (MER) (Naamad, Lee, & 

Hsu, 1984) is generalized to the NRRMR, allowing for the identification of regions 

satisfying user-defined conditions. Proposed methods are extended to any number of tasks 

grouped in cognitive functions, allowing for the identification of NRR of not only a single 

task, as in (García-Rudolph & Gibert, 2014) but a group of them.  The key idea of the 

present work is to transform the Vis-Sap method from into a geometric optimization 

algorithm that avoids the visual effect of occlusions while permitting some degree of 

impurity in the detected areas of the NRR to be taken into account.  

For this purpose, a generalization of the MER problem will be introduced (García-Rudolph 
& Gibert, 2015). 

As a first attempt the direct approach to the MER problem is followed: Scan through the 

matrix, stopping at each element. Treat each element as a potential top-left corner of the 

MER rectangle. For each such top-left corner, try all other elements as a potential bottom-

right corner of the MER rectangle. 
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Input  
Amxn  matrix of red/green elements obtained after FT-SAP(γ) 
Output  
MER submatrix of A 
 
findMaxRectangleArea  ⃪  function (A) { 
# 1. Initialize.  
maxArea  ⃪  0; 
area  ⃪  0; 
# 2. Outer double-for-loop to consider all possible positions for top-left corner.  
for (i in 1:m){ 
    for (j in 1:n){ 
   #  2.1 With (i,j) as top-left, consider all possible bottom-right corners. 
    for (a in i:m){ 
 for (b in j:n){ 
    #  2.1.2 See if rectangle(i,j,a,b) is filled. 
            Filled  ⃪  checkFilled (i, j, a, b); 
  #  2.1.3 If so, compute it's area. 
              if (filled){area  ⃪  computeArea (i, j, a, b)} 
 #  If the area is largest, adjust maximum and update coordinates. 
                if (area > maxArea){ 
             maxArea  ⃪  area; 
             topLeftx  ⃪  i; 
             topLefty  ⃪  j; 
             botRightX  ⃪  a; 
             botRightY  ⃪  b 
           } 
     } 
   } 
 }           
} 
maxR  ⃪  c(topLeftx,topLefty,botRightX,botRightY) 
return (list(area=maxArea,rect=maxR)); 
} 
computeArea  ⃪  function (i, j, a, b) { 
if (a<i) {return(-1)} 
if (b<j) {return(-1)} 
return ((a-i+1)*(b-j+1)) 
} 
checkFilled  ⃪  function (i, j, a, b) { 
for (k1 in i:a){ 
 for (k2 in j:b){ 
        if (A[k1,k2]==0){return (FALSE)} 
       } 
} 
return (TRUE) 
} 
 
Regarding the performance, in this approach each top-left corner visits about O(mn) 

locations. For each such top-left corner, the bottom-right corner visits no more than O(mn) 
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positions. An evaluation (checking for 1s) takes O(mn) in the worst-case for each rectangle 

checked. Total: O(m3n3) (worst-case). This means that finding pure regions in the Q matrix 

performs better over time when our implementation proposed  is used.  

Some improvements to the classical MER approach have been identified which improve 

performance: checking the area first before scanning for 1s and prune, ignoring the 

rectangle when the area is too small; also, eliminating as many size-1 rectangles from the 

search as possible and checking corners for 0s before proceeding. 

 

6.4.1. Neuro Rehabilitation Range Maximal Regions problem (NRRMR)  
 
To allow for the identification of non-empty regions (i.e. regions containing some degree of 

0 values) a modification of the checkFilled function is introduced. A user-defined 

TOLERANCE is included as input to the function and only when that value is exceeded is 

the area considered as not filled. Figure 6.4 shows the identification of the maximal 

rectangle containing one non-empty element as output ([topLeftx, topLefty, botRightX, 

botRightY] = [5, 1, 7, 8] Area = 24), instead of the bottom-right rectangle that would be the 

output if no TOLERANCE parameter is introduced ([topLeftx, topLefty, botRightX, 

botRightY]=[13,8,16,12] Area = 20). 

checkFilled <- function (i, j, a, b, TOLERANCE) { 
tol<-0; 
for (k1 in i:a){ 
 for (k2 in j:b){ 
        if (A[k1,k2]==0){ 
 tol<-tol+1; 
         if (tol > TOLERANCE) {return (FALSE)}} 
       } 
} 
return (TRUE) 
} 
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  Figure 6.4 MER with user-defined TOLERANCE = 1 

 

 

6.5 Quality Indicators 

6.5.1 Sector Confidence 
 

Given a sector S from the SAP graph, labeled with Y=y, the sector confidence corresponds 

to the empirical probability of occurrence of event y inside the sector. P(Y=y|S) is 

computed as the ratio between the number of positive cases and the sector size. This is in 

one sense a measurement of the purity of the sector and provides the quality of the 

assignment of class y to all elements in the sector. The higher the confidences of the SAP 

sectors, the better the model is considered. When Y is a binary variable P(Y= yes | S) it 

provides the sensitivity of S, while P(Y = No| ¬S) provides the specificity. As usual, the 

higher the sensibility and specificity, the higher the quality of S.  

We define the global quality of the SAP as the pooled confidence of all sectors. 

Additionally for the SAP of binary variables a pooled specificity and a pooled sensitivity 

can be used as quality indicators. 
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6.5.2 Hypothesis Testing  
 

Thus, the range of results determining those sectors where S is labeled as Y=yes 

(Improvement) determine the NRR of the task.  

The sensitivity of the NRR is related to the fact that patients in NRR improve, or in a more 

relaxed formulation, that there is a high proportion of patient improvement within NRR.  

The specificity is related to the fact that patients out of NRR do not improve. This can be 

measured by the high proportion of non-improving patients in INRR or SNRR or 

equivalently by the low proportion of improving patients in INRR or SNRR.   

A classic 2-sample probability test is used to see whether the response to the CR therapy is 

significantly different for those executing tasks in NRR than those obtaining results out of 

NRR. It is expected that the probability of improvement is significantly higher for those in 

NRR. SAP models that provide sectors without significant differences should be 

disregarded, as they provide NRR with poor identification of the improving population. 

Thus, being 

MRπ  = Probability of improving being in NRR 

RMπ  = Probability of improving being out of NRR 

the hypothesis tested is 

RMMRH ππ =:0  

RMMRH ππ >:1  
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where p0 is the weighted common estimator of   MRπ  and   RMπ  under the Ho, 
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The test is solved under the z-distribution, with 𝜶𝜶 = 0.05. The greater the difference 

between  MRπ   and  RMπ    ( RMMR ππ >  ) the more sensitive and specific is the NRR criterion 
tested, the lower the p-value of the test, and better performs over real patients. 

 

6.6 Summary 
The NeuroRehabilitation Range (NRR) is introduced in this chapter as a translation of the 

classical therapeutic range from pharmacology to the field of neurorehabilitation. The role 

of medications in disease treatment is assumed in neurology by the role of 

neurorehabilitation tasks. The effect of treatment corresponds here to the restoration of 

cognitive functions. The idea is that a task is executed by a patient in NRR if a desired 

clinical response is obtained i.e. if an observable improvement in the targeted cognitive 

function (s) is registered for the patient. The NRR specifies how many times the task must 

be executed and the required performance to be obtained to result therapeutic. The 

proposed NRR model assumes uncertainty and both number of repetitions and expected 

performance degree are expressed by means of intervals.  

Data mining techniques are used in this chapter to build data-driven models for NRR given 

past experiences of real CR treatments where improvements of patients is known.  The 

expected degree of performance for a CR task and the required number of repetitions to 

produce maximum rehabilitation effects on the individual are determined. An 

operationalization of NRR is proposed by means of SAP (Sectorized and Annotated Plane) 

which is introduced as a visualization tool to identify areas where there is a high probability 

of improvement occurring. Three approaches to SAP are formally defined in this chapter 
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Vis-SAP, DT-SAP and FT-SAP; the parametric heatmap-based visualization proposed to 

overcome the limitations detected in Vis-SAP. 

 A classical 2-sample probability test is used to see whether the improvement is 

significantly different for those executing tasks in NRR than those obtaining results out of 

NRR. It is expected that the probability of improvement is significantly higher for those in 

NRR.  Finally, the automatic identification of NRR is reduced to a Computational 

Geometry problem by algebraic manipulation of original data. The  NRRMR 

(Neurorehabilitation Range Maximal Regions) problem is introduced as a generalization of 

the Maximal Empty Rectangle problem (MER), to identify maximal NRR over a FT-SAP. 

This permits to automatically detect NRR of a task based on a sample of executions by 

patients from which improvements after the global treatment are known. 
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Chapter 7. Evaluate improvements on each 
area  of impact  
 
7.1 Improvements evaluation 

 
The inputs to this step is the 𝝌𝝌 matrix and the  ∆ impact evaluation  

 
Till now we have been making an implicit assumption, assuming that function f introduced 

in the problem formulation is a function and this implicitly means that a single area of 

impact is targeted by an activity. This works for the identification of motifs as associating 

to each task the main impact area. 

However, in the case where an activity might impact simoultaneously with more than a 

single area, f is not a bijective function and this is also well aligned with the motif 

structures where in a certain position of the motif, two letters or even more (the areas of 

impact) might be involved. 

This might be taken into account in the sequence design, by choosing tasks impacting 

several areas together (motifs with 2 or more letters). 

To this purpose a more realistic extension of f function is required indicating all areas 

targeted by a task. Thus, matrix F generalizes f  function to a framework of activities 

impacting to multiple areas simultaneously. 

 

F 

           Areas 
Tasks 

A1 … Aa 

T1 1 0 0 

.. .. … … 

TT    1 1 1 

    Table 7.1. F matrix 
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The set of impact areas A is expressed in complete and disjunctive form in matrix F. This 

permits a framework where tasks in T can be multi-area, i.e. impacting simultaneously 

more than one area.  Thus, in this more general and realistic scenario where a task might 

simultaneously impact several areas, f(A) indicates de primary area of impact and F(t,) 

gives the total list of areas impacted by the task. For scenarios with pure tasks impacting a 

single area each, F is a matrix with a single non null cell per row. 

  

𝐹𝐹(𝑡𝑡,𝐴𝐴) = �
     1  𝑖𝑖𝑖𝑖 𝑓𝑓(𝑡𝑡 ) =  A or t marginally impacts A 

 
 0  𝑖𝑖𝑖𝑖 𝑓𝑓(𝑡𝑡 ) ≠  A                                               

     ∀𝑡𝑡 ∈ 𝑇𝑇;𝐴𝐴 ∈A 

 

 

Also, from 𝜒𝜒 matrix it is possible to derive N matrix (giving the number of executions of 

each task t executed by i)      

 

N: 

            Tasks 

Individuals 
T1 … T … TT   

i1 r11    r 1T   

.. .. …   … 

i   𝑟𝑟[𝑖𝑖, 𝑡𝑡]   

.. .. …   … 

in      

    Table 7.2 N  matrix 

 

being r [i,t] the  number of repetitions of task t in the treatment followed by patient i 
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With matrices F, 𝛥𝛥, N and NRR, the  matrix ϒ might be computed, accounting for average 

improvement of patients executing a certain task a certain number of times along treatment, 

in the area impacted by that task (or areas). 

 

ϒ  

        Repetitions 
Tasks  

rmin   rmax 

T1    ϒt,r … 

.. .. …  … 

TT       … 

     Table 7.3. ϒ matrix 

  

Where  

                    
 
The improvement is the average improvement obtained by involved patients in the area 

impacted by the task (according to F) or the mean of average improvements in the 

several areas targeted, if the task impacts more than a single area. The involved patients 

are those executing the task exactly r times along their treatment. 

Moreover, as ϒ is intended to be used for helping composition of individual treatments 

and therapists will have preference for proposing execution of tasks in NRR it is 

expected that task t is never recommended for a therapy a number of times out of its 

corresponding NRR. 

Thus, having matrix NRR which provides the NRR of a given task 
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NRR  

        Ranges 
Tasks  

minrep maxrep minscore maxscore 

T1 𝑟𝑟1−  𝑟𝑟1+  … 

.. .. …  … 

TT    rT
−

 rT
+   

                 Table 7.4. NRR matrix 

 

an interval of times to be repeating task t to get therapeutic results might be obtained. 

Thus, it is expected that given [𝑟𝑟𝑡𝑡−, 𝑟𝑟𝑡𝑡+] for task t, the columns {0, … 𝑟𝑟𝑡𝑡− − 1} and  

{𝑟𝑟𝑡𝑡+ + 1, …  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟} of row t in matrix ϒ are never considered by the therapist. 

Thus matrix ϒ∗ is built as a mask of ϒ masked by non NRR positions 

 

ϒ*  

        Reps   

Tasks 
rmin 𝑟𝑟𝑡𝑡1

− … … 𝑟𝑟𝑡𝑡2
− … … … 𝑟𝑟𝑡𝑡1

+ … 𝑟𝑟𝑡𝑡2
+ … rmax 

T1    �1,𝑟𝑟𝑡𝑡1−             

T2              

…              

…              

…              

TT                 

      Table 7.5. ϒ*  matrix 

  

ϒ[𝑡𝑡,𝑟𝑟]
∗ = �

ϒ [𝑡𝑡, 𝑟𝑟], 𝑖𝑖𝑖𝑖 r ∈ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑡𝑡) = [𝑟𝑟𝑡𝑡−𝑟𝑟𝑡𝑡+]                         
 

 𝑁𝑁𝑁𝑁𝑁𝑁, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                   
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7.2 Summary 
This chapter formalizes the process of determining the improvement of an individual in the 

several areas of impact after execution of a given task in NRR. 

 Here, an important generalization of the general frame is proposed in such a way that 

hybrid tasks are considered in the sense that they are allowed to simultaneously impact 

several cognitive areas (this points to a more realistic scenario like the one happening in CR 

treatments where some CR task simultaneously target for example attention and memory 

functions. A sequence of algebraic matrix operations is defined to efficiently compute the 

average improvement of patients executing a given task a certain number of times. As in 

Chapter 6 the NRR of tasks is obtained, and this establishes an interval in which the task 

must be repeated to be therapeutic, in this chapter this information can be used to constraint 

the feasible solutions space to be considered. Thus ϒ* is a matrix  providing the average 

improvement of patients executing each task a number of times included in the respective 

NRR. 
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Chapter 8. Treatment design  
 

 
8.1 Composing the treatment 
 

Given the set of patterns S and F, the ϒ∗ matrix is used to find feasible solutions. For the 

particular case of finding a single task for each token of the pattern S, the problem 

trivializes to maximize the corresponding column r,  being r the number of times indicated 

by the pattern S , of the matrix ϒ∗|𝐴𝐴, being A the area indicated by the pattern. 

So, given a slot of the pattern of the form  B r   B ∈ P(A)  the designer needs to identify 

an activity that impacts to B areas in Neurorehabilitation range when executed about r 

times, thus, the task choice  will be 

    𝑡𝑡∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡∈𝑇𝑇:𝐹𝐹[𝑡𝑡,]=𝐵𝐵 ϒ∗[t, r] 

As an example, given a pattern T2(C|T)C3(A|T)T4  it contains 5 tokens. For each token two 

types of information appears:  

1) the area to be impacted on the set of areas: B 

2) the number of times to impact them in a contiguous sequence of tasks: r 

r is indicating the column of ϒ∗ to be used for optimizing. B is indicating the subset of 

impact areas to be targeted by the task. Matrix F will identify the subset of tasks targeting 

this particular set of areas. Optimization should occur restricted to those rows in ϒ∗. As ϒ∗ 

has NAN for those tasks where r is out of NRR the solution is guaranteed to be in NRR. 

Thus for first token in the example B=T (means a task impacting on executive functions), 

r=2 (means that it will be repeated twice), set of possible tasks is that of tasks impacting 

only executive functions, that is, those with F rows of the form (0,0,1) these are 10 of the 

total considered tasks: {T23, T34, T48, T53, T54., T55, T56,  T62, T63, T64.}. Thus column 2 of ϒ∗ is 

optimized over the same subset of tasks. The maximum improvement in this column 
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corresponds to the more negative value (as explained before in section 1.4.3) optimum is -

2.45 and corresponds to task  T23 that therefore is selected for the CR proposal. 

For the second token B=C|T, r=1. In a similar way F helps to determine the set of possible 

tasks impacting simultaneously on memory (C) and executive functions (T) which is a set 

of the following 6 tasks: {T47, T58, T72, T89, T94, T135}. Thus column 1 of ϒ∗  is optimized.  

Optimal delta value = -1.25 which corresponds to task T135. 

For the third token B=C, r=3; set of possible tasks impacting only memory: {T4, T11, T15, 

T18, T22, T29, T34, T38, T41, T42, T43, T44…. }.Thus column 3 of ϒ∗ indicates T22 (with optimal 

delta value = -0.45). 

For the fourth token B=A|T, r=1; set of possible tasks impacting simultaneously on 

attention and executive functions: { T78, T80.T99, T102}. Thus column 1 of ϒ∗ indicates T102 

(optimal delta value = 0.34). 

For fifth token B=T, r=4; set of possible tasks impacting only executive functions: {T23, 

T34, T48, T53, T54., T55, T56,  T62, T63, T64.}. Column 4 of ϒ∗ indicates T54 (optimal delta value = 

1.45). 

And following this process the recommendation for the CR program is: 

  T23 T23 T135 T22 T22 T22 T102 T54 T54 T54 T54 

 
8.2 Summary 
 
This is the culmination of the whole process where all elements developed in previous 

chapters integrate together to provide decision support to the therapist that has to compose a 

CR plan for a given person. The main idea is to use the regular expression associated to the 

recommended treatment of a certain type of patient as a general frame to be instantiated by 

specific tasks. Matrix ϒ* is used to solve an optimization problem where NRR of tasks are 

taken into account and the regular expression of the CR pattern is used as the structure to be 

optimized. 
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Chapter 9. Application to TBI CR Programs  
 
 
9.1. Effects of Cognitive Rehabilitation on Traumatic Brain 

Injury Patients 
 

This chapter presents the application of the proposed methods in a clinical context: the 

Neuropsychology Department of the Acquired Brain Injury Unit at Institut Guttmann 

Neurorehabilitation Hospital (IG) where TBI patients undergo CR treatments. 

The Information Technology framework for CR treatments in this clinical setting is the 

PREVIRNEC© platform (introduced in section 1.4.4). This is a J2EE client-server 

architecture specifically designed and developed to manage CR plans assigned by therapists 

to patients and to follow up information about the process (i.e. CR session dates, task 

execution in each session, performance, involved therapists, patients, tasks results, and task 

time, as detailed in section 1.4.4).  

As presented in section 1.1 there are three main cognitive functions to be rehabilitated in a 

CR program: attention, memory, and executive functions; all of them can profoundly affect 

individuals’ daily functioning. Even mild changes in the ability to attend, process, recall 

and act upon information can significantly affect the patient’s quality of life. Consider, for 

example, the cognitive skills required for successful meal preparation. The individual must 

plan a menu, identify the required ingredients, develop a shopping list for the required 

items, and schedule sufficient time for shopping and preparing the meal. Then the 

individual must sequence many food preparation activities in an organized way so that 

everything is ready at dinner time. Even a mild attention or executive function deficit can 

render this difficult, ineffective or even impossible. 

The main hypothesis framing our proposal is: 

 

1) Some CR rehabilitation tasks are designed to improve particular cognitive 

functions, although attention, memory, and executive functions are related and 

interdependent (Sohlberg and Mateer, 2001). Their close interdependence stems 

from both a functional association and their shared neurocircuitry. This means that 
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performing a task that targets memory can also have collateral effects on other 

cognitive functions like attention or executive functions. 

2) The additional effect of a single task might be affected by the cumulated effect of 

the sequence of previous tasks executed under the treatment; this might determine 

that order of execution is relevant in the treatment outcome. 

 

9.2 The Dataset 
 
One hundred and twenty-three TBI adults following a 3-5 months CR treatment at IG 

Neuropsychological Rehabilitation Unit are analyzed in this study. For every patient the 

following demographic and clinical variables are considered: age, gender, educational 

level, Glasgow Comma Scale (GCS) and Post Traumatic Amnesia (PTA) duration. Table 

9.1 shows the basic statistics for numerical variables while frequency distribution of 

qualitative ones are shown in Table 9.2. 

 
Variable N N* Mean Std Dev Min Q1 Median Q3 Max 
AGE 123 0 36.56 6.50 18 25 32 40 68 
GCS 89 34 6.45 3.15 0 4 6,5 40 14 
PTA  40 83 131.6 140.5 34 79 103 136 947 
 
   Table 9.1 Basic descriptive statistics for numerical variables  
    
Initial assessment of TBI severity is reported according to GCS levels. A GCS score of 

eight or less after resuscitation from the initial injury is classified as a severe brain injury. 

The GCS score for a moderate brain injury ranges between nine and thirteen and a score of 

thirteen or greater indicates a mild brain injury or concussion. As detailed in Figure 9.1, 

most GCS scores (86.17%) show severe brain injury level (mean value 6.45±3.15). 

It is known that those whose length of PTA is less than two months have a very good 

chance of at least being able to live on their own (even if they can’t return to work or 

school). On the other hand, patients whose length of PTA is longer than three months are 

unlikely to be able to return to work or school (although they might be able to live on their 

own). As N* shows in Table 10.1, PTA measures were not available for 67% of the 

participants. Considered values show very severe conditions, as indicated by the median 
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(103) being more reliable than the mean because of the outlier visualized in Figure 9.1 

(right). 

 

 

 
 
Figure 9.1. Numerical variables histograms: Age (left), Glasgow Comma Scale scores (center) and Post 
Traumatic Amnesia days (right). 
 
 
Demographic qualitative data are shown in Table 9.2, 91 men (73.98%) and 32 women 

(26.02%) participated in the analysis. The educational background level of each participant 

is categorized into 3 groups: Group 1 (Elementary School, Group 2 (Medium) and Group 3 

(third level education e.g. University degree).  

 
GENDER Count Percentage EDU Count Percentage 
Female 32 26.02 Elementary 60 48.78 
Male 91 73.98 Intermediate 40 32.52 
   High 23 18.70 

 
  Table 9.2. Basic descriptive statistics of gender and educational level  
 
All participants signed to notify their informed consent to the neuropsychological 

procedure, which was approved by IG’s Ethical Committee. All met the criteria for 

initiating IG neuropsychological rehabilitation treatment.  

Following NAB initial evaluation, all patients initiated a 3 to 5-month program (November 

2007 to November 2009) based on personalized interventions in the PREVIRNEC© 

platform where patients worked in every one of the specific cognitive domains, considering 

the degree of the deficit and the residual functional capacity. All patients were administered 

the same NAB neuropsychological assessment at the end of the rehabilitation program. A 

total of 39412 task executions have initially been included in this analysis, involving the 96 

different CR tasks included in the PREVIRNEC© platform. 

112 

 



 

9.2.1 Structure of Database 
 
Originally, the system records the execution of every task as a single row in a log file in 

which the following information is also recorded: 

Date is the date on which the Ts task is executed (date yyyymmdd) 

TaskName is a descriptive name assigned to identify the task Ts 

Score is the result obtained in that execution (0 to 100 real number) 

NumTask is the automatic task generation number assigned to the task (0,1,2) 

Difficulty is the difficulty level of the task (0,1,2,3,4) 

Function is the cognitive function addressed by the task (Attention, Memory, Executive 

functions) 

Subfunction is the specific cognitive subfunction addressed by the task (as described below, 

for the Attention function the addressed subfunctions are visual attention, sustained 

attention, selective attention, etc). 

Original data structure (S1): 

 























.........

.........

.........

.........
nSubfunctioFunctionDificultyNumTaskScoreTaskNameDateTi

 

 

9.3 Instantiation of the Formal Problem 
 

The dataset presented approaches the formal problem presented in Chapter 5 as a particular 

case where a CR treatment is the scenario in which each patient i executes a sequence of 

activities, one at a time: 
 

 
• 𝐼𝐼 is the set of TBI patients undergoing CR treatment at IG 
• T = {Ts  s=1:T   } is a set of CR tasks that patients execute along treatment, where T    

is the total number of different CR tasks as presented in section 9.4.1. 
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• A is the set of areas of impact. In this particular case, it matches the family of 
different cognitive functions targeted by the CR tasks. According to (Sohlberg and 
Mateer, 2001) A={Attention, Memory, Executive functions} are the main 
cognitive functions involved in daily living activities, thus these are also the 
cognitive functions treated on the PREVIRNEC platform. 

• f (T)=a provides the main cognitive function a, (a ∈A) targeted by task T 
• Given a patient i, the matrix 𝑅𝑅𝑖𝑖 provides the list of all tasks executed by the patient i 

with its corresponding execution times throughout his CR treatment 
• Matrix 𝜒𝜒 gives for each row i the sequence of CR tasks performed by patient i 

during treatment 
• The set 𝑌𝑌𝑗𝑗𝑗𝑗, t=1..14 of numerical indicators of performance is, in this case, a battery 

of assessment tools for evaluating the degree of impairment of each cognitive 
function. In IG the NAB battery introduced in section 1.4.3 is applied and in this 
work, 14 relevant and non-redundant items from 7 assessment scales in NAB are 
selected as detailed in section 9.4.1. 

• Dj, for each item selected in NAB, Dj,   is the difference between the scores 
obtained by the patient before and after the prescribed CR treatment 

• 𝛥𝛥= (𝐷𝐷1……𝐷𝐷𝑎𝑎)  represents the effect of CR treatment in all cognitive functions 
• X =(X1…XK) additional information over patients.  XK might be either numerical 

(like age or GCS) or qualitative (like Sex or Educational level). 
• Z indicates a global improvement of the patient after treatment. 

 
 

The execution of each task by a patient occurs at different periodicities for each patient; the 

length of treatment varies according to both the number of tasks executions and total 

treatment time for the different patients; the sequence of task executions differs from one 

patient to the next; the result obtained in an execution determines both the task and 

difficulty of the next task proposed by the system; the effect of a task over cognitive 

functions of the patient is accumulative and the effect of a certain sequence of tasks might 

not be affected by small variations in the sequence itself, i.e. by the introduction of small 

additional tasks in intermediate positions of the sequence. 

For all these reasons, our problem is suitable to be treated under SAIMAP methodology. 
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9.4 The Sequence of Activities Improving Multi-Area 

Performance (SAIMAP) Methodology 

 

9.4.1 Preprocessing 
 
As an initial hypothesis it is assumed (after consulting with experts) that the time interval 

(delay) between the execution of two consecutive tasks is irrelevant for rehabilitation 

purposes, since the cognitive functions of each patient are sensitive to the task execution 

and not so much to the time period between consecutive tasks. Thus, the sequence of tasks 

followed by each patient is to be focused on as the main target, independently of the time 

interval in which they have been performed. This permits a simplification of the problem to 

a new structure in which order of tasks is maintained, but dates are omitted. 

 

First step of preprocessing is building the si sequence of tasks performed by each patient  

 i= {1,…123} on the basis of R matrix by building 𝑠𝑠𝑖𝑖 = (𝑅𝑅𝑖𝑖[2])𝑡𝑡 

 

Being the set of all possible tasks to be executed: 

 
T={GlobalLocal, MathMazeComp, MathMazeExer, ConcOps, Submarine, Matching,BagOfCoins, 

Differences, Figures,PuzzComp, PuzzExer, LetterSoup,Bingo, DiffDirection,StraightLine, 
SameDirection, GroupWords, CategorizationTwo, CategorizationThree, SameCatWords, Circle, 
Platforms, Zigurat, GoNoGoEst, GoNoGoGame, GoNoGoPos, Hanging, SinkFleet, Maze, FourInRow, 
Fourth, JigSaw, BuildSentence, Fragments, Serie, CyclicSerie, SameCat, TempOrder, Position, 
Sequential, Simoultaneous, WordSeqDec, WordSeqSel, WordSeqDifCat, WordSeqSameCat, 
WordSimDec, WordSimSel, WordSimDifCat, WordSimSameCat, WordTempOrder, PairsSeqDec, 
PairsSeqRel, PairsSeqSel, PairsSeqSameOrder, PairsSeqRandOrder, PairsSimDec, PairsSimRel, 
PairsSimSel, PairsSimSameOrder, PairsSimRandOrder, SentSecOrder, SentSecTest, SentSecWrite, 
SentSecQuestion, SentSecTrueFalse, SentSimOrder, SentSimTest, SentSimWrite, SentSimQuestion, 
SentSimTrueFalse, RecSeqNumbers, RecSimNumbers, RemSecNumbers, RemSimNumbers, TextSort, 
TextQuestion, TextWrite, TextTrueFalse, ImgWordTempOrder, ImgWordSeqDecide, ImgWordSeqRel, 
ImgWordSeqSel, ImgWordSeqSameOrder, ImgWordSeqRandOrder, ImgWordSimDecide, 
ImgWordSimRel, ImgWordSimSel, ImgWordSimSameOrder, ImgWordSimRandOrder, 
DrawTemporalOrder, DrawRecognition, SceneRecognition, SceneRecall, VisualMemory, 
VisualSimon} 

 
T   = card (T) = 96 
and R being a matrix that for every task executed by patient provides the  
   〈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒〉  
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All tasks performed by patient i are collected in 𝑅𝑅𝑖𝑖 
 

 𝑅𝑅1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 1
1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 2
1 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 3

⋮
1 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  632
1 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 633
1 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 634⎦

⎥
⎥
⎥
⎥
⎥
⎤

  …..  𝑅𝑅123 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

 

123 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 1
123 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 2
123 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 3

⋮
123 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 621
123        𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺       622
123 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 623⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
Thus: 
𝑠𝑠1 = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 … 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) 
 
𝑠𝑠123 = (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 … 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 
 
tf1 = 634 
tf123= 623 
 
Next,  χ matrix is built by combining all si in the rows 
 
χ =

= �
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 … 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

… … …
  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃    𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 … 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺       𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� 

 
 
Eventually the tasks are identified by a shorter alias, for simplicity: 
 

χ = �
𝑇𝑇127 𝑇𝑇145 𝑇𝑇034 … 𝑇𝑇256 𝑇𝑇045 𝑇𝑇145

… … …
𝑇𝑇123 𝑇𝑇065 𝑇𝑇134 … 𝑇𝑇011 𝑇𝑇032 𝑇𝑇035

� 

 
 
The next step is to determine the minimum f  to retain a task. Regarding the number of task 

executions, as detailed in Figure 9.2, for each IdTask (represented in x exe) the number of 

executions in the y exe clearly shows that there is a pack of 12 tasks from left to right as 

idTask 151 to IdTask 210 that are much more frequently executed than the rest. There are 

also a high number of available tasks, only exceptionally included in CR treatment 

programs. 

 

For our purposes, the subset of the most frequently executed tasks will be targeted and all 

remaining tasks will be recoded into an OTHERS category. 
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Figure 9.2. Frequencies of task executions. X axe shows the identifier of the task and tasks are 
ordered by increasing frequency to the left. Only tasks registering more than 100 repetitions are shown. The 

first 12 tasks on the left-hand side are the most frequently executed. 
 
Table 9.3 details the percentage of the total number of executed tasks for each idTask. It 

shows that the 12 more frequent tasks exceed 70% of the total activity in the period 

considered. Thus taking f = 1000 means to retain only tasks executed more than 1000 times, 

and this points to the 12 more frequent tasks identified above. Given that this percentage is 

close to the Pareto Principle, we will focus on this pack of tasks. 

 
 
IdTask Task name Number of 

executions 
Percentage (all) Percentage 

(selection) 
151 Memory 3369 8.20 11.51 
146 StraightLine 3329 8.10 11.37 
153 TemporalOrder 3226 7.85 11.02 
148 FourInRow 3170 7.71 10.83 
161 Matching 2978 7.25 10.17 
145 Exercise 2951 7.18 10.08 
149 Competition 2589 6.30 8.84 
144 Circles 1780 4.33 6.08 
147 Series 1671 4.06 5.71 
150 DiffDirection 1531 3.72 5.23 
182 GoNoGoGame 1411 3.43 4.82 
210 Platforms 1251 3.04 4.27 
  29256 71.17 99.99 
           

 Table 9.3. Number of executions for the 12 most frequent tasks  
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In addition, only exceptionally do patients perform very large sequences of tasks. It will 

often be possible to identify a threshold length to be considered as most usual. This length 

will be denoted l.  Patterns of sequences will be searched only in the first l  tasks executions 

of the patient’s sequences, to avoid dealing with the sparseness of the final part of the data 

matrix. According to the Pareto principle l   threshold will be determined in such a way that 

no more than 20% of patients perform larger tasks. These data rows are completed with a 

special idTask label (e.g. “NULL”). This transforms an originally variable length matrix 

into a rectangular matrix 𝜒𝜒, to be treated. As each patient’s activities are different, each 

sequence of tasks shows a different length, the shortest one being of length 9 and the 

longest one of length 1391. 

 

              
 

Figure 9.3. Histogram of treatment length. The X axis shows the length of treatment. The Y axis 
shows the observed frequency of treatments of a certain range. 
 
As shown in Figure 9.3, most of the execution lengths are less than 600. Longer sequences 

represent fewer than 17% of patients. 83% of patients have followed CR treatment 

programs shorter than 600 task executions per patient. This includes 103 of the 123 initial 

patients. Therefore in our model we propose an equal-sized rectangular data matrix 

considering l  = 600 executions, 83% of those patients followed shorter sequences of CR 

treatments. This transforms our original variable length matrix into a rectangular matrix χ 

for easier treatment. 

118 

 



 

Next, the matrices to evaluate the effect of the treatment are built: 

In our particular application, Δ = ( ΔA, ΔM, ΔEF) is composed of three normalized effect 

indexes, each one evaluating improvement in one cognitive function. As mentioned in 

Section 1.4.3. the hospital uses a specific battery of tests to evaluate the state of the patient 

before and after treatment. The NAB battery includes a total of 28 items. Together with the 

experts, the items most specifically focused on for evaluation of each of the cognitive 

functions were identified, as shown in Table 9.4. 

 

 

 
 

Test Item Cognitive Function 

Continuous Performance 
Test 

OMI 

    A 
COMI 
CPT 

Trial Making Test TMTA 
WAIS-III Selective VWAIS 
Trial Making Test TMTB 

Rey Auditory Verbal 
Learning Test 

RAV075 
    M RAV015 

RAV015R 
WAIS-III-Visuo-spatial CUBES 

EF 
Stroop Test INTER 

Wisconsing Card Sorting Test TERR 
Letter Fluency Test PMR 

Wisconsing Card Sorting Test CAT 
 

Table 9.4.  Selected tests and items targeting specific cognitive functions  
 
 
As all items evaluate between [0..4] the simple mean is used as a measure of the cognitive 

function performance of the patient either before or after treatment. Thus the Δ components 

are built as the pre – post difference, using those indicators. 

According to (Hart et al., 2005) a global index for each cognitive function is created as the 

average scoring in all items that refer to that cognitive function. As all items indicate higher 

impairment with higher values and it is expected that patients improve along treatment, 

differences between scoring after and before the treatment are expected to be positive. For 

this reason the components of Δ are defined as: 
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9.4.2 Descriptive Analysis 
As a first step in this phase the construction of the frequency plot of the first l  columns and 

f  frequency of tasks for  χ is performed. 

In Figure 9.4 below it can be seen that less frequent tasks (shown in gray and labeled as 

OTHER) are more frequently executed at the beginning of the treatments, but as the 

treatment is longer their frequency decreases. 

 
Figure 9.4. Frequency of the 12 selected tasks along the treatments. The X axis provides the time in 
the CR program where the task was executed. The tasks are identified by colors according to legend 
and circular pantone.      
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Next, the construction of the heatmap of the first l  columns and f  frequency of tasks for  

χ  is performed. 

 

Figure 9.5 below suggests the need for a method of grouping tasks that enables execution 

patterns to be identified. Each task is represented with the colour gradient as in Figure 9.4 

but no structure can be identified either in the figure displayed or by performing 

permutations of patients along the vertical axis. 

 

 
Figure 9.5. Heatmap for individual treatments representing the 12 selected tasks. The Y axis 

represents individual patients (identified 1 to 123) and the X axis shows the position of the task along 
the treatment. The first 600 tasks executions are represented.  

Task colors are the same as in Figure 9.4. The heatmap shows the different treatment lengths (e.g. 
patient i=1 at the bottom of the heatmap followed a treatment comprising approximately 30 tasks, 
whereas patient i=2 immediately above followed a treatment longer than 600 tasks). This heatmap 
lacks any recognizable structure or pattern in the task sequences (e.g. i=1 patient shows only blue 

and gray tasks while i=2 shows all 14 colors in apparently random order). 

 

Next, the construction of the heatmap of the first l  columns and f  frequency of tasks for  χa 

is performed. 

Figure 9.6 below provides a heatmeap with a lower granularity of information. Tasks are 

grouped per cognitive function addressed and a color is assigned to every group. Instead of 
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representing the specific tasks executed at every step of the CR program, the cognitive 

function addressed is displayed (green represents memory tasks, red represents attention 

tasks, and yellow represents executive function tasks; gray points to other non-frequent 

tasks not considered at this stage of the analysis). As in Figure 9.4, execution patterns 

cannot be identified from this figure, even when grouped by targeted function . 

 

Figure 9.6. Heatmap of individual treatments representing the cognitive function addressed by each executed 
task. X axis represents the position of the task along the treatment sequence. Y axis represents the individual 

patients. 
 
 

 

9.4.3 Prior Expert Knowledge Acquisition 
 
Domain knowledge is represented by means of IF-THEN rules. A team of licensed and 

doctoral level staff with extensive education and experience has been participating in this 

Knowledge Acquisition stept. The team was made up of 4 members from the Acquired 

Brain Injury Unit at Institut Guttmann Neurorehabilitation Hospital. One of them is the 

medical doctor (in charge of the medical leading of the team) and three neuropsychologists 

as specialized consultants in diagnosis and treatments of the three main cognitive functions 

addressed during CR programs (i.e. attention, memory and executive functions).  Experts 
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expressed knowledge regarding what is considered a long or short treatment according to 

their clinical experience  in terms of the number of tasks it comprises. 
 

KB = { r1: if SeqLength < 450 then SHORT, 
         r2: if SeqLength >480 then LONG 

    } 
 
 

9.4.4 Clustering Phase 
 
The software KLASS v86 was the data mining platform for the ClBR algorithm executions 

(Gibert et al., 1998). 

ClBR was run with the Ward method, Gibert’s mixed distance (Gibert et al., 1998) and KB 

as referred knowledge base. The resulting dendrogram is shown in Figure 9.7.  
 

 
 
Figure 9.7. Dendrogram obtained by the ClBR. Leaves represent individual patients; internal nodes of the tree 
represent the intermediate clusters sequentially built along the Clustering process; the height of each node is 

proportional to the homogeneity of the class. The horizontal dashed cut of the tree represents a partition of the 
dataset in a set of classes (highlighted in different colors). Patients on the right-hand side are singletons that 

do not group within any class and remain isolated. They are not considered at this stage of the analysis. 
 

The Calisnki-Harabasz method (Calinsky-Harabasz, 1974) suggests a cut in 29 classes for 

which 26 are singleton and 3 main groups are conformed. One contains most of the patients 
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satisfying r2 and the other two subdivide patients satisfying r1 into two subgroups. The 

classes obtained are shown in Table 9.5. 

 

 
 

Class label nc 
SHORT70 40 
SHOT86 49 
LONG6 8 
  

  Table 9.5. Number of patients in each identified class 
 
 

9.4.5 Split into Classes 
 
According to experts, singletons were disregarded as exceptional cases to be carefully 

analyzed one by one. 

The data matrix is then divided into 3 submatrices according to the three identified classes: 

SHORT70, SHORT86, and LONG6. 

9.4.6 Visualization per Classes 
 
Local heatmaps are built for every class and displayed in Figure 9.8 to Figure 9.10. It can 

be seen that SHORT70 (Figure 9.8) class contains patients with shorter treatments, fewer 

than 150 executions; SHORT86 class (Figure 9.9) contains patients with intermediate 

length treatments of between 150 and 460 executions; and LONG6 catches all those 

patients following the longest treatments, with more than 460 executions. 
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Figure 9.8. Heatmap representing SHORT70 Class executions 
 
 

 

 
Figure 9.9 Heatmap representing SHORT86 Class executions 
 

 
 
 

 
Figure 9.10 Heatmap representing LONG6 Class executions 

9.4.7. Find Motifs per Class 
 
Toolbox for Motif Discovery (TMOD) version 1.1.1 is the framework for motifs discovery 

(Hanchang et alt 2010) run on a 3.4 GHz Pentium IV computer with 2 GB of RAM.  

MEME (Bailey and. Elkan, 1995) implementation was executed in TMOD with the 

following input parameters: 
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Sequences (in FASTA format) of cognitive functions targeting the different task executions. 

Therefore input data to MEME is the same as for sequential pattern mining. 

Alphabet: DNA sequences or protein sequences. Run with DNA sequences which must 

contain only ACGT letters. For our particular context we adopt the following 

representation: 

 A: represents attention tasks,  

 C: memory tasks,  

 T: executive functions tasks. 

Distribution: how the occurrences of motifs are distributed in the input sequences. 

Run with Any Number of Repetitions (ANR) in this case MEME assumes each sequence 

may contain any number of non-overlapping occurrences of each motif. This option is 

useful because we suspect that motifs repeat multiple times within a single sequence. 

Motif width: run with motifs’ length parameter ranging from l= [6.20] (larger motifs are 

visually difficult to analyze and those shorter than 6 were discarded by domain experts 

because a CR session rarely includes fewer than 6 task executions). 

EM algorithm: The number of iterations of EM to run from any starting point (run with 

default value= 50) 

Performance measure: MEME searches for the motif with the smallest E-value. The E-

value of the motif is an estimate of the number of motifs (with the same width and 

number of occurrences) that would have an equal or higher log likelihood ratio if the 

training set sequences had been generated randomly according to the (0-order portion of 

the) background model. An accepted threshold for E-value is 0.005 (Bailey and. Elkan, 

1995). 

 

MEME is then run with the parameters specified above for each identified cluster 

sequences. Figure 9.11 shows the obtained sequence of logos.  

𝑀𝑀 = �MC1 … MCζ� 

 ∀ C ∈ P MC = {mSHORT70
6 … mSHORT70,

20 mSHORT86
6 … mSHORT86,

20 mLONG6
6 … mLONG6

20 } 

With a total of 14 motifs for each of the 3 analyzed classes. 

 
The matrix with the E-values is: 
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eCl  Length/Class SHORT70 SHORT86 LONG6 
eC6  6 4.3e+002 2.5e-018 2.4e+004 
eC7  7 7.5e-003  2.7e-026 1.0e+004 
eC8  8 1.0e-002 1.8e-028 4.6e+003 
eC9  9 5.4e-004 2.3e-032  4.5e+002 
eC10 10 1.3e-003 7.7e-039  9.0e+001 
eC11 11 1.7e-003 3.2e-046 1.6e+002 
eC12 12 2.9e-006 4.3e-049 5.2e+001 
eC13 13 3.2e-004 2.4e-048 9.0e+001  

eC14 14 8.6e-007 2.8e-055  8.4e+001 
eC15 15 6.8e-005 5.6e-051  6.8e+002 
eC16 16 9.4e-007 2.6e-049 9.5e+001 
eC17 17 1.5e-005 2.5e-045  5.2e+002 
eC18 18 2.3e-007 3.0e-045  2.0e+001 
eC19 19 6.0e-006 3.1e-034 1.3e+002 
eC20 20 6.0e-006 1.9e-039  2.5e+002 

 
 
For each motif a πCl  matrix is given which will be inputed to the motif viewer. Here the 

πSHORT8620  is shown:  
 
 
    A         C         G         T  
 0.435897  0.000000  0.000000  0.564103  
 0.769231  0.025641  0.000000  0.205128  
 0.384615  0.051282  0.000000  0.564103  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.410256  0.000000  0.589744  
 0.000000  0.794872  0.000000  0.205128  
 0.102564  0.128205  0.000000  0.769231  
 0.102564  0.230769  0.000000  0.666667  
 0.025641  0.230769  0.000000  0.743590  
 0.025641  0.179487  0.000000  0.794872  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.153846  0.000000  0.846154  
 0.000000  0.256410  0.000000  0.743590  
 0.025641  0.179487  0.000000  0.794872  
 0.000000  0.384615  0.000000  0.615385  
 0.153846  0.358974  0.000000  0.487179  
 0.256410  0.282051  0.000000  0.461538  
 0.102564  0.512821  0.000000  0.384615  
 0.230769  0.461538  0.000000  0.307692  
 0.307692  0.205128  0.000000  0.487179  
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9.4.8 Determine a Level of Minimum Quality for Motifs 
 
For convention α = 0.05 is used. 
 

9.4.9 Pruning Motifs: Retain more Frequent Motifs for Interpretation 
 
For each motif πCl  and l length, a weighted median of the E-values of the three classes is 

calculated, being the weighting factor the number of patients nc of each class. 

 

9.4.10 Visualize Motifs per Class 
 
 

 
Figure 9.11 Sequence of logos by motif lengths per class. Motif length ranges from 6 to 20 tasks on the 
vertical axis. 
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Stability analysis. 
 

 
 
Figure 9.11b Sequence of logos by motif lengths per class. Motif length ranges from 6 to 20 tasks on the 
vertical axis. 
 
Some motif discovery programs consider secondary and tertiary sequences, influencing the 

motif discovery, as ACGT is associated with nucleotid bases. This would be a problem in 

our context as the motifs could change if a different association was used between letters 

and cognitive functions. MEME is a basic motif discovery method which is not using this 

specific genetic knowledge. Thus, under another codifications, like G for attention, T for 

memory and C for executive functions the discovered motifs do not change as shown in 

Figure 9.11b for three motifs of different lengths, all  from LONG6 class. Similar results 

are obtained for other motifs lenghts,  and classes (SHORT70, SHORT86). Using MEME 

as underlying motif discovery method,  different coding of activities do not affect identified 

motifs.  

Motifs analysis leads to the following descriptions:   

• SHORT70 class shows mainly task executions oriented to executive functions 

(represented as T) and some memory tasks (represented as C), mainly in the first 

part of the sequences. 

• SHORT86 class includes fewer executive functions and memory tasks than the 

other classes but shows a higher number of attention tasks (represented as A) 

executed mainly at the begining of the identified motifs.  
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• In class LONG6 the number of memory tasks clearly increases and is often 

combined with executive function tasks. Eventually some attention tasks are 

performed at the end of the identified motifs. 

9.4.11 Project all Other Illustrative Variables over the Clusters. 
 

There are no significant differences in the characteristics of the patients for the three 

identified classes (GCS, age, PTA, gender and educational level), see Table 9.6 and Table 

9.7 below where p-values for numerical and categorical variables are shown. Therefore 

possible differences in response to the treatments might be attributable to the task patterns 

performed along treatment. 

 
 

GCS 
 Mean StD Median Q1 Q3 IQR 
SHORT70 6.27 2.91 6.00 5.00 7.00 2.00 
SHORT86 6.04   2.63 6.00 4.00 7.00 3.00 
LONG6 6.88 3.09 7.00 4.25 8.00 3.75 
KW p-value 0.667 
 

AGE 
 Mean StD Median Q1 Q3 IQR 
SHORT70 32.80 8.20 33.00 27.00 40.50 13.50 
SHORT86 31.65 7.99 31.00 26.00 39.00 13.00 
LONG6 35.13 9.57 38.50 27.25 42.00 14.75 
KW p-value 0.433 
 

PTA 
 Mean StD Median Q1 Q3 IQR 
SHORT70 84.3 36.9 74.00 54.00 123.00 69.00 
SHORT86 156.7 209.7 89.00 78.50 149.00 70.50 
LONG6 117.67 13.,65 124.00 102.00 127.00 25.00 
KW p-value 0.176 
 
Table 9.6. Numerical variables Mean, Standard deviation, median, Q1, Q3, IQR and p-values (Kruskal-
Wallis test) per class 
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 GENDER EDU LEVEL 
 Female Male  Elemen Interm. High Total 
SHORT70 13 27  19 14 7 40 
SHORT86 12 37  27 14 8 49 
LONG6 2 6  4 3 1 8 
χ2 p-value 0.691 0.949 
Fisher Exact test 0.7448 0.977 
 
Table 9.7. Categorical variables number of occurrences and p-values (χ2 test) per class 
 
 

9.4.12 Analyze the Effect of Executing Activities over the Different 
Areas of Impact 
 
According to (Hart et al., 2005) a global index for each cognitive function is created as the 

average scoring in all items that refer to that cognitive function. The effect of the treatment 

over a certain cognitive function is measured as the value observed in the corresponding 

index when the difference between the score after treatment and the score before treatment 

is computed.  

As introduced in Section 1.4.3, all NAB items are normalized to a 0 to 4 scale (where 0 = 

no affectation, 1 = mild affectation, 2 = moderate affectation, 3 = severe affectation and 4 

= acute affectation). This normalization has been developed as a standardization method 

proposed at Institut Guttmann in QVidLab framework (presented in section 1.3.2). It is 

intended as an instrument of applied clinical research allowing for the standardization of 

different assessment tools for  biological, psychological, and social factors (Gil Origüén, 

2009). Thus, the post-pre difference measures a deficit reduction such that lower values in 

differences indicate a higher deficit reduction or, in other words, a positive response to the 

CR treatment.  

Figure 9.12 shows multiple boxplots with conditional distributions in the three indexes of 

cognitive functions before and after treatment  
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Figure 9.12  Multiple boxplots of Improvement versus class and cognitive function.  
 

 

Figure 9.13 shows the multiple boxplots with the conditional distributions of effect indexes 

(ΔA for attention, ΔM for memory and ΔEF for executive functions) versus the classes. Each 

graph represents the different effects on each class of treatment over a certain cognitive 

function. The first interesting observation is that all groups improve (deficit decreases) after 

treatment and the effects are all below 0 on average. The dimension which is placed around 

more negative values is attention, while memory seems to be the one with the least 

improvement for all groups. On the other hand, it can be seen that SHORT86 class is the 

one with better treatment results regarding attention, while behaving very closely to class 

SHORT70 regarding memory and executive functions. Also, it seems that class LONG6 is 

more resistant to treatment than others, especially regarding memory.  
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Figure 9.13  Multiple boxplots of Improvement versus class and cognitive function. For each cognitive 
function, a multiple boxplot of the corresponding improvement index Δ versus classes is visualized. Every 
boxplot displays between the minimum and maximum value of each Δ, the box indicates the interval between 
first and third quartile, whereas the horizontal line through the box indicates the median. 
 
 

9.4.13 Build Final Interpretation. 
 
Crossing the obtained profiles with the motifs and the effects of therapy it appears that: 

SHORT70 represents short-term treatments, no longer than 150 task executions mainly 

oriented to executive functions preceded in some cases by memory tasks, mainly in the first 

part of the sequences. These persons show better response to treatment mainly in attention 

and executive functions rather than in memory, experiencing an intermediate improvement 

in level of attention compared with other classes. 
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SHORT86 represents intermediate duration treatments, with no more than 460 task 

executions including a higher number of attention tasks executed mainly at the beginning of 

the sequences. Persons in this class show a higher recovery in attention than in other 

functions, being the group with better results for the treatment regarding attention. 

LONG6 represents long-term programs including more than 460 task executions with a 

higher proportion of memory tasks, often combined with executive function tasks and 

eventually some attention tasks at the end of the sequences. However, the persons in this 

class are more resistant to treatment than other classes in memory and attention. 

 
 
9.5 Identification of the General Pattern of the Motifs per Class 
 
Following the indications provided in section 5.1 the regular expressions associated to all 

logos is computed for  𝛾𝛾 = 0.25. In Annex  detailed intermmediate steps are enclosed. Here 

a couple of examples are detailed and final results displayed as regular expressions. 

 
SHORT70 l=7  𝛾𝛾 = 0.25 
 

 
 
 

πSHORT707 = 

 
 
 
 

A  C     G      T    p 
 0.000000  0.000000  0.000000  1.000000 1  
 0.000000  0.000000  0.000000  1.000000 . 
 0.153846  0.230769  0.000000  0.615385 .  
 0.000000  0.000000  0.000000  1.000000 .  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.076923  0.000000  0.923077  
 0.000000  0.000000  0.000000  1.000000 7  
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πSHORT707∗ = 

 
 
 
WSHORT70

7 == ({T},{T},{T},{T},{T},{T}{T}) 
 S = T7 
 
Table 9.8 below summarizes the different expressions for 3 classes varying  l (detalis in 
Annex)  
 
l SHORT70 SHORT86 LONG6 
7 T7 T7 T2CT4 
8 T3(C|T)T4 T2(C|T)T5 T3CT4 
9 T(C|T)T2(A|T)T4 T2(C|T)T6 T2CT(T|C)2T3 
10 (A|C)T(C|T)T2(A|T)T4 T2(C|T)2T5(C|T) (C|T)T2CT(C|T)2T3 
11 CT(C|T)2T7 T2(C|T)2T5(C|T)2 T3CT(C|T)T(C|T)T2C 
12 T(C|T)T(C|T)2T(A|T)2T4 T2(C|T 2T(C|T)3T4 T3CT(C|T)T(C|T)T2C(A|T) 
13 (A|T)T2(C|T)2T(A|C)(A|T)T6 T2(C|T 2T(C|T)3T5 (C|T)CT(C|T)TCT(C|T)T(C|T)T2C 
14 TCT(C|T)2T8(C|T) (A|T)T(C|T)6T2(C|T)T(C|T)2 (C|T)CT(C|T)TCT(C|T)T(C|T)T2(C|T)(A|T) 
15 T2(C|T)2C(A|T)CT8 (A|T)A(A|T)T(C|T)2T(C|T)3T2(C|T)3 T(C|T)2CT2(C|T)T(C|T)2T(A|T)C(C|T)T 
16 T(C|T)(A|T)(A|C)(C|T)2(A|C)(A|T)2

T3(A|T)T3 
(A|C)(A|T)3T(C|T)2T(C|T)3T2(C|T)3  C(A|C|T)(C|T)CT(C|T)TCT(C|T)T(C|T)T2(C|T

)T 
17 T(C|T)TCT(C|T)CT9(A|T) (A|C)2(A|T)3T2CT(C|T)2T4(C|T)2 (C|T)2T(C|T)2CT2(C|T)T(C|T)2T(A|T)C(C|T)T 
18 T3C(C|T)(A|C)T5(A|T)T3(A|T)T  (A|T)A(A|T)T(C|T)5T3(C|T)6  C(C|T)4T(C|T)3TCT2(C|T)TC(C|T)T 
19 TC(C|T)T6(C|T)T2(A|T)2T5 (A|T)2(C|T)2(A|T)2T2(C|T)T(C|T)5T3(C

|T) 
C(C|T)3T(C|T)TCT(C|T)T(C|T)2T(C|T)(A|T)C
(C|T)T 

20 TC(A|T)C2T 9(A|T)2T(A|T)T2 (A|T)3T(C|T)2T6(C|T)T(C|T)2(A|C|T)(
C|T)2(A|T) 
 

T(C|T)TCT(C|T)T(C|T)T2CT(C|T)(A|C)(C|T)2

T(A|T)AT 

Table 9.8. Obtained expressions for each identified class with lengths varying from 7 to 20 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A  C     G      T    p 
 0.000000  0.000000  0.000000  1.000000 1  
 0.000000  0.000000  0.000000  1.000000 . 
 0.000000  0.000000  0.000000  0.615385 .  
 0.000000  0.000000  0.000000  1.000000 .  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  0.923077  
 0.000000  0.000000  0.000000  1.000000 7  
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9.6 Identification of NRRs for each task  
 

9.6.1. Tasks Executions Targeting the Same Cognitive Function: 
NRRMR Method Application 
 

9.6.1.1 Visual Identification of NRR  

  
PREVIRNEC© platform includes 17 tasks addressing primarily the attention function, 59 

addressing primarily memory, and 20 addressing primarily executive functions. During this 

CR treatment, the total number of task executions is 41010 (15475 targeting attention, 

14557 memory, and 10978 executive functions). Figure 9.14 shows FT-SAP (𝛾𝛾=0.8 left 

column and 𝛾𝛾=0.9 right column) for every execution of tasks grouped by CR functions. The 

top pair of plots corresponds to the execution of attention tasks, the middle pair to memory 

tasks, and the bottom pair to executive functions. Three different responses to CR treatment 

patterns can be identified according to how improvement points are distributed. Attention 

tasks are grouped on medium to high values of Results and medium to low values of 

number of executions. Memory is more uniformly spread from low to high values of 

results; executions are all over the plot and executive functions are a mix of the above 

patterns with concentration on high values and also for specific lower values of results and 

executions.  
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Figure 9.14. FT-SAP for each cognitive function: attention (top), memory (middle) and  
executive functions (bottom), 𝛾𝛾=0.8 left column and  𝛾𝛾=0.9 right column 
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9.6.1.2 Analytical Identification of NRR  
 
Task Execution Targeting Attention Cognitive Function. 

Methods presented in section 6.3.4 and 6.4.1 are applied for the analytical identification of 

NRRs. The first plot in Figure 9.14 (attention tasks with 𝛾𝛾=0.8) is now analyzed using the 

method presented in section 6.4.1 to identify maximum zones of improvement for every 

execution of attention tasks, allowing for a tolerance of 2 elements. The results obtained 

(graphically represented in Figure 9.15) are as follows: 

 
𝛾𝛾=0.8 
[topLeftx,topLefty,botRightX,botRightY] = [11, 87, 20 ,88 ] 
Area=20 
 
Tolerance=2 
𝛾𝛾=0.8 
[topLeftx,topLefty,botRightX,botRightY] = [16, 98, 25, 100] 
 Area = 30 
 

Leading to the following NRRs: 

If (Results in [87,88] and Repetitions in [11,20] then P(Improvement)>=0.8 
If (Results in [98,100] and Repetitions in [16,25] then P(Improvement)>=0.8 

 

 

138 

 



 

Figure 9.15 Analytical identification of NRR with and without user-defined tolerance 
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9.6.2 Individual Task Executions: SAP and NRRMR  
 

9.6.2.1 Analysis of PREVIRNEC© Visual Memory Task Using [65,85] Basic 
Criterion 
Nowadays in PREVIRNEC© a first hypothesis is being tested which considers that any 

participant patient has completed any task within NRR if the obtained result is in the 65 to 

85 range, in INRR if it is less than 65, and in SNRR if it is higher than 85. As a reference, 

the current NRR used (Result ∈[65,85]) is visualized in a manually built SAP shown in 

Figure 9.16 with an overall sensitivity = 0.5660, overall specificity = 0.5012 and overall 

quality = 0.5022. The percentages represented in the SAP provide the empirical proportion 

of patients who improved following treatment in every area. About 60% of patients 

performing idTask=151 in NRR really improved. This is far from a random improvement. 

However, to evaluate the quality of the basic NRR used as a reference, a 2-sample 

probability test is used as described in section 6.5.2. 

 

Figure 9.16  Vis-SAP for [68,85] NRR for idTask=151. 
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This enables verification of whether being in NRR really implies a significantly higher 

probability of improvement. 

Table 9.9 contains the relevant information to compute the test by crossing the 

classification of the patients regarding two factors. Improving / Not improving and 

performing the idTask=151 within NRR or not (according to the basic criterion currently 

used).  

 

 

 

 

 

 

 

 

 

 

 Table 9.9 Contingency table for NRR with Result ∈ [65,85] for idTask= 151 

 

The test provided a result that is not statistically significant (z = 0.7316, p = 0.2323). This 

appears to be evidence that using the single result of the task is not enough to detect either 

the NRR or the ZRP zone. In the next sections, a model including the number of executions 

per task is tested. 

 

 

 

 

            

               In  NRR       

 

Improvement 

Yes No Total 

Yes 30 1652 1682 

No 23 1661 1684 

Total 53 3313 3366 

^p(YES) 0.5660 0.4986 0.4997 
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9.6.2.2. Analysis of PREVIRNEC© Visual Memory Task Using Visualization-
Based SAP (Vis-SAP) 
 

The relationship between Results and Number of executions of patients is shown in Figure 

9.17. Improving patients are shown in green and non-improving in red. Areas with a single 

category of patients (improving or not improving) are visually identified. 

 

 

Figure 9.17. Letterplot of TaskExecs vs Result vs Improving/not for idTask=151 

 

Looking at Figure 9.17, an area with no improvement is obtained for participants obtaining 

results higher than 70 and number of executions lower than 40 at the top left of the scatter 

plot. Furthermore, if the number of executions is higher than 60 and results higher than 20, 

a large region can be easily identified in which every participant is labeled in the 

improvement group, leading to the identification of a therapeutic range of results depending 

on the number of executions.  

Two neat regions emerge from the above rules which can be expressed in the form of 

logical restriction rules, and visualized in an SAP diagram (shown in Figure 9.18 with an 

overall sensitivity = 0.939, overall specificity = 0.5523 and overall quality = 0.994). 
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  Figure 9.18:  Vis-SAP for idTask=151 

 

Identified rules are: 

(Execs151 <= 40) AND (Res>70)  Not NRR 

(Execs151 > 60) AND (Res>20)  NRR  

The quality of the induced definition for NRR is assessed by means of the 2-sample 

proportion test (described in 6.5.2). Table 9.10 contains the relevant information to 

compute the test by crossing the classification of the patients regarding two factors. 

Improving / Not improving and performing the idTask=151 within NRR or not (according 

to the rules directly induced over the SAP). The results are z=12.42, p<<< 0.00001 is 

statistically significant. 
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  Table 9.10 Contingency table for VIS-SAP TR for idTask= 151 

 

In this case we can ensure that repeating idTask = 151 more than 60 times and getting 

results higher than 20 in all executions is associated with a group of patients with a sensibly 

higher probability of improving visual memory function. Thus, upon the Vis-SAP criterion, 

NRR (task151) = Execs151 > 60 and Results > 20.  

 

 

9.6.2.3. Analysis of PREVIRNEC© Visual Memory Task Using DT-SAP 
 

Although the visual-based SAP method seems to produce good results, the NRR has been 

defined on the basis of the visual expertise of the data miner, and this approach is totally 

dependent on the ability of the data miner itself. This is why an attempt to find the NRR 

automatically from data is presented. A supervised classification method, the J48 decision 

tree is applied to the target dataset (3366 instances) for SAP generation. Experiments were 

conducted in Weka with J48 decision tree for default configuration input parameters 

            

               In  NRR       

 

Improvement 

Yes No Total 

Yes 199 1483 1682 

No 13 1671 1684 

Total 212 3154 3366 

^p(YES) 0.9386 0.4701 0.4997 
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(confidence factor = 0.25), since default values produced the best accuracy (57.45%), 

precision and recall. As usual, 10-fold cross validation was used to evaluate the goodness of 

results. As shown in Figure 9.19, three leaves of the resulting tree are labeled as an 

improvement.  

     

Figure 9.19 DT for idTask =151 

 

 

Following the path from the root to those leaves, a condition for a patient’s improvement 
can be induced, and the NRR defined as:  

 

(Execs151<=58) AND (Execs151>44) AND (Res>4) AND (Res<=32) OR 

(Execs151<=58) AND (Execs151>45) AND (Res>57) OR 

(Execs151 > 58) AND (Res>8)  NRR 

 

The quality of this induced criterion is assessed through the two samples proportion test 
presented in section 6.5.2 The relevant information for assessing the goodness of the NRR 
found for Task151 is presented in Table 9.11.  
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 Table 9.11 Contingency table for DT-SAP TR for idTask= 151 

 

With this information, the test is statistically significant (z=13.45 p<<<<0.00001). 

In fact, J48 identifies linear partitions of the space by means of linear separators that can be 

represented in an SAP diagram and compared with the zones identified in Figure 9.20 with 

an overall sensitivity=0.87, overall specificity=0.689, and overall quality= 0.716. 

 

              In   NRR       

 

 

Improvement 

YES NO Total 

Yes 375 1307 1682 

NO 71 1613 1684 

Total 446 2920 3366 

^p(YES) 0.8408 0.4476 0.4997 
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Figure 9.20 DT-SAP for idTask=151 

Figure 9.21 shows the ROC curve of the three models. It can be seen that both Vis-Sap and 

DT-SAP perform significantly better than the experts-based current criterion. The Vis-SAP 

method provides a slightly better, also giving the higher global quality. 

 

Figure 9.21. ROC curves comparison for VIS-SAP current hypothesis, VIS-SAP proposed NRR and DT -
SAP 
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9.6.2.4. Clinical Validation 
 

Following the NRR identification phase, 327 patients not included so far in this study were 

considered for participation in order to validate the results. The clinical staff of the hospital 

randomly selected 10 of them - after participants provided consent in the usual way for 

these interventions - to test the validity of the clinical hypothesis about NRR of task 151 

arising from Section 9.6.2.2. Patients were evaluated before treatment according to the 

standard clinical protocol (NAB). The neuropsychologists in charge of the NR program of 

each patient included in the program the execution of task 151 a minimum of 60 times in 

such a difficulty configuration as to guarantee that the patient obtained a result higher than 

20. In this validation phase, the tasks were manually configured for each patient by the 

specialist, according to the performance shown in previous executions and the specific 

clinical condition of each participating patient. 

All patients were evaluated after treatment following the same standard protocol and the 

improvement of the patient was assessed in the usual way by comparing scores before the 

treatment with scores at the end of it. 

Of the 317 patients following the classical NR program, 189 showed improvement and 128 

did not. Meanwhile, we were able to verify that all of the participating patients under the 

NRR recommendations improved in the targeted cognitive function. A twofold impact was 

observed: SAP recommendations can support cognitive therapies with new (previously 

unknown and specific) configurations of tasks and those recommendations show a higher 

probability of obtaining measurable improvements in the participating patients.  

The authors are aware that the sample size is small to guarantee improvement, but it can be 

claimed a guarantee of increasing the probabilities of improvement of the participating 

patients. For the standard treatment group, an improvement tax of 59% was found with a 

95% CI: [0.536, 0.644 ]. This means that the improvement tax would rarely be higher than 

the 64% of patients. The whole set of 10 patients submitted to the NRR recommendations 

improved. The 95% CI with a 100% improvement tax is [1,1], since the length of the CI is 

computed as a function of p(1-p). However, even in the hypothetical case of having one 

patient without improvement in this small size set, this would lead to a 90% of 

improvement with a 95% CI of [0.714, 1], meaning that the improvement tax rarely drops 
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to 71.4%. This lower bound is much higher than the upper bound of the general group, thus 

proving the efficacy of the recommendation. We can also confirm this issue by the standard 

test of comparing two proportions as shown in Table 9.12. 

 

 

 

 

 

 

 

 

 

 

Table 9.12 Contingency table for validation of idTask= 151 

              In  NRR       

 

 

Improvement 

YES NO Total 

Yes 10 189 199 

NO 0 128 128 

Total 10 317 327 

^p(YES) 1.000 0.5962 0.6100 
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9.6.2.5 Visual Identification of NRR FT-SAP 
 

The first application is the FT-SAP for a CR task (idTask =146 targeting the Attention 

cognitive function) with γ = 0.8. The 2-color heat map shown in Figure 9.22 is obtained. 

“Results” are plotted along the x axis ranging from 0 to 100 and “Number of executions” 

along the y axis, also ranging from 0 to 100. Two neat NRR regions can be visually 

identified for high values of Result and mid to high values of number of executions. The 

identified NRR might indicate that other tasks of the same type (e.g. targeting the same 

function or subfunction) could behave in a similar way as confirmed in section 9.6.1.1 

when tasks are grouped by cognitive function. 

CR treatment for this task comprises 3329 executions in total where 1950 of them 

correspond to patients with improvement = YES and 1379 to improvement = NO. 

 

Figure 9.22 FT-SAP(0.8) for idTask= 146 for a total number of 3329 executions 
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9.6.2.6. Analytical Identification of NRRMR  
 

NRRMR method is applied for the analytical identification of the NRRs. The results 

obtained are shown in Figure 9.23 below with input parameter values MAXROW=4 and 

MAXCOLUM=3.  

 
  Figure 9.23 NRR coordinates identified by proposed method 

The resulting NRRs is the following: 

If (Results in [91,94] and Repetitions in [11,13]) then P(Improvement)>=0.8 
If (Results in [95,98] and Repetitions in [21,23]) then P(Improvement)>=0.8 
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9.6.2.7 Vis-SAP and FT-SAP comparison 
 

Figure 9.24 left presents FT-SAP proposed in this work for idTask=151 and 𝛾𝛾 =1 and 

Figure 9.24 right shows Vis-SAP obtained in (García-Rudolph & Gibert, 2014). FT-SAP(1) 

represents a green point at position (i,j) if pij ≥ 𝛾𝛾, where pij = 1, i.e. all patients executing i 

times Task 151 and obtaining score j, improve after treatment.  

 

  Figure 9.24 FT-SAP (left) and Vis-SAP (right) for idTask=151 

 

In Figure 9.24 left, gray cells do not register observations. As shown in Figure 9.24 (right), 

no subject with Y=NO who executed the task more than 60 times obtained results other 

than zero, leading to the identified rule: (NRR(151) = Execs151 > 65 and Res > 20). 

However, it can be seen that the area [22,35]×[15,30] appears as a totally green area in the 

Vis-SAP, whereas there are plenty of red points in the FT-SAP. This indicates that most of 

the points in this area do not have 100% of patients improving. This is the major 

contribution of the FT-SAP. One can evaluate the degree of certainty of the induced NRR 

as the points occlusion occurring in the VIS-SAP is overcome. On the other hand, in the 

areas of the plot with high concentrations of executions and results (as shown for results 

lower than 40 and number of executions lower than 60 in the Figure 9.24 right plot) Vis-
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SAP does not provide a neat visualization. By construction, FT-SAP avoids the confusion 

produced by overlapping points. Decreasing 𝛾𝛾 to 0.5, i.e. admitting half of the patients in a 

non-improving point after the treatment, produces an FT-SAP(0.5) as shown in Figure 9.25 

with many more green points, but it is still difficult to identify an interesting rectangular 

green region to establish a second area of NRR for Task 151. In conclusion, the FT-SAP 

provides a refinement of the Vis-SAP that enables uncertainty to be dealt with and, by 

construction, avoids confusions produced by several patients overlapping in the same point. 

 

Figure 9.25 FT-SAP (0.5) for idTask=151 

When longer periods of CR treatments are considered, including therefore an increasing 

number of subjects, the areas of the plot where no task executions can be found tend to 

decrease. Also, when a group of tasks targeting the same cognitive function is considered 

instead of a single one, more robust NRR can be induced from the proposed FT-SAP 

representation.  
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In addition, both plots in Figure 9.24 agree on the identification of a zone where NRR is not 

achieved, as shown by the high values for results and the low number of executions. This 

seems to suggest that for this type of task, the therapist might expect to achieve NRR for 

lower results. As shown in section 9.6.1.1, where tasks are analyzed grouped by cognitive 

function, a different pattern can be identified for groups of tasks. Executive functions (at 

the bottom of Figure 9.14) seem to be a combination of the attention and memory plots. An 

explanation for this might be that executive functions are those abilities that allow 

individuals to efficiently and effectively engage in complex goal-directed behaviors such as 

planning, sequencing, categorization, flexibility, and inhibition. According to Lezak 

(Lezak, 1995) this includes the capacity to set goals, to form plans, to initiate actions, and 

to regulate and evaluate behavior according to the plan and to situational constraints. 

Therefore executive functions are considered higher level functions which control the more 

basic cognitive functions such as attention and memory. This implies that preservation of 

the executive functions might determine whether a brain-damaged individual with lower 

level cognitive deficits, e.g. selective or divided attention processing or memory deficits, is 

able to compensate for these deficits and to adapt to the altered situations by restructuring 

activities (Trettin, 2007). 

This suggests that the current NRR considered (the scoring interval [65,85]) might be 

enlarged to include the number of executions as introduced in (García-Rudolph & Gibert, 

2014) and also could be addressed by cognitive function, possibly leading to a different 

NRR for each function, as shown in section 9.6.1.1. 

Methods presented in section 9.6 were tested on a Windows 7 Professional SP 1 PC, Intel 

Core i3 2.40 GHz (2 GB RAM) 64 bits OS. 

The algorithm presented in section 6.3.4 takes a few seconds to run. The MER method 

described in section 6.4 and 6.4.1. took about 15 minutes to execute. Though inefficient, it 

provides a good basis upon which to build. To improve its performance, direction to the 

search needs to be introduced. The proposed algorithm could enumerate the sub-rectangles 

in any random order and still find the correct solution. Instead, we might take advantage of 

the fact that if a small rectangle contains a zero, so will each of its surrounding rectangles. 

Therefore, rectangles will be grown for each possible lower-left corner. This growing 
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process will only produce upper-right corners defining rectangles which contain only 

successes (ones, i.e. improvements). 

As presented in (García-Rudolph & Gibert, 2014) the main drawbacks of the Vis-SAP 

proposal are twofold: on the one hand, the lack of completeness of the Vis-SAP criterion 

proposed. Indeed, looking at the SAP diagram, VIS-SAP is not assigning improvement or 

non-improvement to the whole area, but only to small parts of the diagram corresponding to 

concrete and reduced areas where either improvement or non-response can be ensured. 

Therefore it could be said that Vis-SAP provides a semi-deterministic procedure where a 

particular configuration for both results and repetitions ensures improvement, a second 

configuration where the task does not produce patient improvement, and out of these 

regions the outcome is undetermined. On the other hand, the proposed analysis considers 

each task individually, being NRR defined for every single task. FT-SAP and the proposed 

NRRMR methods overcome both these drawbacks. 

 

 

9.7 Evaluate Improvements on Each Area of Impact  

9.7.1 Build F Matrix  
As introduced in section 9.4.1 T is the set of all executed tasks, T   = card (T) = 96 
 
T={GlobalLocal, MathMazeComp, MathMazeExer, ConcOps, Submarine, Matching, BagOfCoins, 

Differences, Figures, PuzzComp, PuzzExer, LetterSoup, Bingo, DiffDirection, StraightLine, 
SameDirection, GroupWords, CategorizationTwo, CategorizationThree, SameCatWords, Circle, 
Platforms, Zigurat, GoNoGoEst, GoNoGoGame, GoNoGoPos, Hanging, SinkFleet, Maze, FourInRow, 
Fourth, JigSaw, BuildSentence, Fragments, Serie, CyclicSerie, SameCat, TempOrder, Position, 
Sequential, Simoultaneous, WordSeqDec, WordSeqSel, WordSeqDifCat, WordSeqSameCat, 
WordSimDec, WordSimSel, WordSimDifCat, WordSimSameCat, WordTempOrder, PairsSeqDec, 
PairsSeqRel, PairsSeqSel, PairsSeqSameOrder, PairsSeqRandOrder, PairsSimDec, PairsSimRel, 
PairsSimSel, PairsSimSameOrder, PairsSimRandOrder, SentSecOrder, SentSecTest, SentSecWrite, 
SentSecQuestion, SentSecTrueFalse, SentSimOrder, SentSimTest, SentSimWrite, SentSimQuestion, 
SentSimTrueFalse, RecSeqNumbers, RecSimNumbers, RemSecNumbers, RemSimNumbers, TextSort, 
TextQuestion, TextWrite, TextTrueFalse, ImgWordTempOrder, ImgWordSeqDecide, ImgWordSeqRel, 
ImgWordSeqSel, ImgWordSeqSameOrder, ImgWordSeqRandOrder, ImgWordSimDecide, 
ImgWordSimRel, ImgWordSimSel, ImgWordSimSameOrder, ImgWordSimRandOrder, 
DrawTemporalOrder, DrawRecognition, SceneRecognition, SceneRecall, VisualMemory, 
VisualSimon} 
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Matrix F is shown below, split in two columns: 
 
F 

Task Name A M E  Task Name A M E 
GlobalLocal 1    WordSimSameCat  1  
MathMazeComp 1    WordTempOrder  1  
MathMazeExer 1    PairsSeqDec  1 1 
ConcOps 1    PairsSeqRel  1 1 
Submarine 1    PairsSeqSel  1 1 
Matching 1    PairsSeqSameOrder  1 1 
BagOfCoins 1    PairsSeqRandOrder,  1 1 
Differences 1    PairsSimDec  1 1 
Figures 1    PairsSimRel  1  
PuzzComp 1    PairsSimSel,  1  
PuzzExer 1    PairsSimSameOrder  1  
LetterSoup 1    PairsSimRandOrder  1  
Bingo 1    SentSecOrder  1  
DiffDirection 1    SentSecTest  1  
StraightLine 1    SentSecWrite  1  
SameDirection 1    SentSecQuestion,  1  
GroupWords 1    SentSecTrueFalse  1  
CategorizationTwo   1  SentSimOrder,  1  
CategorizationThree   1  SentSimTest  1  
SameCatWords   1  SentSimWrite  1  
Circle   1  SentSimQuestion  1  
Platforms,   1  SentSimTrueFalse  1  
Zigurat   1  RecSeqNumbers  1  
GoNoGoEst   1  RecSimNumbers  1  
GoNoGoGame   1  RemSecNumbers  1  
GoNoGoPos   1  RemSimNumbers,  1  
Hanging   1  TextSort  1  
SinkFleet  1   TextQuestion  1  
Maze   1  TextWrite  1  
FourInRow 1  1  TextTrueFalse  1  
Fourth 1  1  ImgWordTempOrder,  1  
JigSaw 1  1  ImgWordSeqDecide  1  
BuildSentence 1  1  ImgWordSeqRel  1  
Fragments  1   ImgWordSeqSel  1  
Serie  1   ImgWordSeqSameOrd  1  
CyclicSerie  1   ImgWordSeqRandOrd  1  
SameCat  1   ImgWordSimDecide  1  
TempOrder  1   ImgWordSeqRandOrd  1  
Position  1   ImgWordSimRel,  1  
Sequential  1   ImgWordSimSel,  1  
Simoultaneous  1   ImgWordSimSameOrd  1  
WordSeqDec,  1   ImgWordSimRandOrd  1  
WordSeqSel,  1   DrawTemporalOrder  1  
WordSeqDifCat  1   DrawRecognition  1  
WordSeqSameCat  1   SceneRecognition  1  
WordSimDec  1   SceneRecall,  1  
WordSimSel,  1   VisualMemory  1  
WordSimDifCat  1   VisualSimon  1  
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9.7.2  Build N Matrix  
A snapshot of N is shown below for some representative tasks (T56..T64) 

Id T1  … T56 T57 T58 T59 T60 T61 T62 T63 T64  … T96 
i1 60 

 
0 60 10 0 22 1 

 
9 4 

 
60 

i2 25 
 

0 25 16 0 39 22 
 

10 50 
 

25 
i3 49 

 
0 49 10 0 36 1 

 
5 5 

 
49 

i4 48 
 

0 48 1 0 12 0 
 

1 8 
 

48 
i5 23 

 
3 23 1 11 15 13 16 16 24 

 
23 

i6 16 
 

4 16 9 7 20 13 8 17 45 
 

16 
i7 45 

 
52 45 77 60 110 75 

 
34 77 

 
45 

i8 14 
 

15 14 23 8 29 17 7 25 14 
 

14 
i9 20 

 
0 20 10 0 6 17 

 
4 10 

 
20 

… 
            

 
… 

            
 

 17 
 

17 17 53 42 58 79 27 70 84 
 

17 
 10 

  
10 6 

 
4 5 5 10 20 

 
10 

 64 
 

44 64 99 43 103 74 33 92 55 
 

64 
 29 

 
24 29 35 15 23 22 33 55 19 

 
29 

 63 
 

25 63 48 30 76 33 25 70 90 
 

63 
 10 

 
22 10 62 19 36 28 1 58 43 

 
10 

 8 
  

8 3 
 

5 2 3 9 1 
 

8 
 64 

 
87 64 100 85 77 82 63 125 104 

 
64 

 16 
 

9 16 8 4 17 6 4 9 13 
 

16 
 23 

 
3 23 10 6 3 3 14 13 13 

 
23 

 35 
 

22 35 58 33 70 35 7 53 27 
 

35 
i122 11 

 
14 11 35 17 34 26 11 39 17 

 
11 

i123 40 
 

20 40 52 22 48 56 34 45 30 
 

40 

9.7.3 Build Δ  Matrix  
 

id A M F 
 

Id A M F 
1 0,0 -1,0 0 

 
62 -2,8 -0,3 -2,4 

2 -1,7 -0,7 -0,4 
 

63 -1,8 -1,0 -2,6 
3 -0,3 -1,7 0 

 
64 -1,8 -0,3 0,2 

4 -2,3 -2,0 -2,2 
 

65 -1,8 -1,0 -2,2 

5 -1,0 -0,3 -3,2 
 

66 -2,7 -0,3 -1,6 
6 -0,2 -0,3 -1 

 
67 -1,2 0,3 0,2 

7 0,0 -1,3 -2 
 

68 -3,0 0,0 -2,2 
8 -1,8 -0,7 -1,6 

 
69 0,0 -0,7 -0,2 

9 -1,0 -0,7 -1,8 
 

70 -2,2 0,0 -1,4 
10 0,0 -1,7 0 

 
71 -0,3 0,0 -2,4 

11 -1,0 -3,7 -2,8 
 

72 -0,7 -3,7 -0,8 

12 -1,3 -0,7 -1,6 
 

73 -1,8 -3,0 -2,8 
13 -0,5 -0,7 -1,4 

 
74 -1,3 -0,3 -1,6 

14 -1,2 -0,3 0 
 

75 -2,0 0,0 0 
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15 -2,0 -0,7 -2,6 
 

76 -1,5 -0,3 -2 

16 -3,2 -0,7 -0,8 
 

77 -2,5 -4,0 -1 
17 -0,8 -3,0 -1,6 

 
78 -2,5 -1,0 -2,8 

18 -0,7 -0,3 0 
 

79 -1,8 -0,3 -1 
19 0,0 0,3 -0,8 

 
80 -1,2 -2,0 0,2 

20 0,3 -3,3 -0,6 
 

81 -0,8 0,0 -0,2 

21 0,0 -0,3 -1 
 

82 -2,3 -1,0 -1,4 
22 -1,2 -0,3 -1,4 

 
83 0,0 0,0 -0,6 

23 -1,0 -0,7 -1 
 

84 1,3 -0,7 -0,8 
24 -0,3 -0,3 -2,4 

 
85 0,8 0,3 1,2 

25 -1,0 -0,3 -0,6 
 

86 -0,8 -0,7 1 

26 0,0 -0,7 -2,8 
 

87 -1,7 -1,3 -0,4 
27 -2,7 -2,3 -0,6 

 
88 0,0 -2,3 -0,8 

28 -0,3 -1,7 -0,8 
 

89 -2,3 -3,7 -1 
29 0,0 0,0 -1 

 
90 -0,7 -0,3 0 

30 -1,5 0,0 0 
 

91 -1,0 0,3 -1,4 
31 -2,3 -1,7 -3 

 
92 -0,3 0,0 -2 

32 -1,8 -1,0 -0,4 
 

93 -2,0 -3,0 -2,4 

33 -0,7 -0,7 0 
 

94 -1,3 -1,0 0 
34 0,0 0,0 0 

 
95 -2,5 -0,3 -3,2 

35 0,0 0,0 0 
 

96 -0,8 -0,3 -1,6 
36 -0,3 -0,3 -0,4 

 
97 0,0 0,0 -0,2 

37 0,3 0,0 -0,4 
 

98 -1,2 -0,3 -0,8 

38 -2,2 -0,3 -3 
 

99 0,0 -0,3 -1,6 
39 -1,3 0,0 -2,4 

 
100 -0,7 0,7 0 

40 0,3 -2,0 0 
 

101 -0,7 -0,7 -1,6 
41 -1,8 -0,7 -0,2 

 
102 -1,3 -0,7 -2,4 

42 -1,7 0,0 -2,6 
 

103 -0,5 0,0 -2 
43 -0,3 -1,0 0,8 

 
104 -1,7 -1,0 -0,4 

44 -1,2 -4,0 -3,4 
 

105 -1,2 -0,7 -1,6 

45 0,0 -0,3 -0,4 
 

106 -0,2 0,0 0,2 
46 -1,8 -2,3 -1,4 

 
107 -0,8 -1,0 -1,4 

47 -1,0 0,0 0,2 
 

108 -2,0 0,0 -2,4 
48 0,0 -1,0 -1 

 
109 1,8 -0,7 -1,8 

49 0,7 -0,3 -2,2 
 

110 1,7 0,0 -0,8 

50 -2,2 -1,0 -3,2 
 

111 0,0 0,0 -0,2 
51 -1,3 -0,3 -3,2 

 
112 -2,5 0,0 -1,4 

52 -3,2 -0,7 -2 
 

113 -1,7 -0,3 -2,4 
53 -0,2 -0,3 -0,8 

 
114 -2,5 -1,0 -0,8 

54 -2,5 -1,0 -1 
 

115 -0,7 0,0 -0,6 
55 -1,2 -1,0 -2 

 
116 -1,5 0,0 -1,4 

56 -1,2 0,0 -0,6 
 

117 -0,7 0,0 0 

57 -1,0 -2,3 -1,6 
 

118 -1,3 -1,3 0 
58 -2,5 0,0 -2,8 

 
119 0,0 -0,7 -0,8 

59 0,0 -1,0 0 
 

120 -0,5 1,0 -1,2 
60 -1,7 0,0 -2 

 
121 0,0 -3,0 -0,6 

61 -1,2 -1,7 -1,8 
 

122 0,0 0,0 0 

     
123 -2,7 0,0 -2,6 
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9.7.4 Build ϒ* Matrix  
 

ϒ matrix is built from  N, Δ, F, and NRR (as shown in Chapter 6). Figure 9.26 shows a 

heatmap representation of  ϒ* matrix, where green color represents negative values 

(higher levels of improvement) x exe shows the number of executions (from N matrix) 

and y exe the tasks identifiers. For example for T62 the executions interval is [5,15].  

                               

                          

  Figure 9.26 Heatmap representation of  ϒ* matrix 

 

9.8 Treatment Design 
Given a pattern S, matrix F, N, ϒ∗ and NRR obtained as shown in Chapter 6, a treatment 

program is built as in the example shown below, for class SHORT70 and l=8 as shown in 

Figure 9.23. 

 

  
 Figure 9.23 Sequence logo for classs SHORT70 and l=8 
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W= ({T},{T},{T},{C,T},{T},{T}{T},{T}) 
S = T3(C|T)T4 
 
For the first token B=T, r=3 set of possible tasks impacting only executive functions: {T23, 

T34, T48, T53, T54. T55, T56,  T62, T63, T64.}.  Column 3 of ϒ∗ indicates T62 (optimal delta value = 

-1.23). 

For the second token B=C|T, r=1. In a similar way F helps to determine the set of possible 

tasks impacting simultaneously on memory (C) and executive functions (T) which is a set 

of the following 6 tasks: {T47, T58, T72, T89, T94, T135}. Thus column 1 of ϒ∗  is optimized.  

Optimal delta value = -1.25 which corresponds to task T135. 

For third token B=T, r=4; set of possible tasks impacting only executive functions: {T23, 

T34, T48, T53, T54. T55, T56,  T62, T63, T64.}. Column 4 of ϒ∗ indicates T54 (optimal delta value = 

1.45). 

And following this process the recommendation for the CR program is: 

  T62 T62 T62 T135 T54 T54 T54 T54 
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9.10 Comparison between Motif Discovery and Classical 

Supervised Approaches and Sequential Patterns to Find CR 

General Patterns  
 

To show that the predictive power of the features considered (i.e. CR task executions) is 

generic and not biased towards a specific classification scheme, we employed traditional 

classification algorithms that exploit four different machine-learning principles: decision-

tree learning (j48), instance-based learning (IBk), probabilistic learning (Naïve Bayes), and 

RBF neural networks. The prediction performance of the models was measured by ten-fold 

cross validation and several parameter configurations were tested. Table 9.13 shows the 

results obtained with by-default parameters but j48 was also tested with 3 different 

confidence factors (0.25, 0.30, 0.40) decreasing post-pruning and varying the minimum 

number of objects per leaf. For IBk we used the Euclidean distance (with and without 

weighting) and different window sizes were tested, also varying the k parameter for the 

number of neighbors. 

Results in Table 9.13 show that for almost 80% of the executions the performance obtained 

is below 60% and none of them reached a 65% level of accuracy after 10-fold cross 

validation. These results persist no matter the number of features (CR tasks executions) 

introduced in the different models. Table 9.13 shows results for models including only 

initial CR sessions (10 or 20 attributes) up to 600 or 1300 executions. Intermediate values 

(e.g. 700, 800, 900 number of CR tasks executions) were also tested with similar results in 

performance. Regarding sequential pattern mining, tested methods (CM-SPAM and CM-

PREFIXSPAM besides CM-SPADE results presented in Table 9.16) show acceptable 

performance regarding support (e.g. 0.8 or 0.9) and execution time and space. But as 

detailed in Table 9.16 for example when support >= 0.8 CM-SPADE identifies 44690 

frequent sequences of length 9, 101685 sequences of length 10 and 2415 of length 11. 

Frequent sequential pattern algorithms were also tested after performing a ClBR clustering 

phase, but the results obtained were consistent regardless of sequence lengths, i.e. shorter 

sequence clusters did not decrease the number of identified frequent sequential patterns and 

therefore did not lead to a set of frequent patterns that were easier to process.  

161 

 



 
Pattern discovery with traditional classifiers. Preliminary analysis and problem 

representation provided appropriate data structures, data transformations, and domain 

knowledge to undergo patterns discovery. Classical classification techniques (section 3.3.1) 

are proposed to study response to CR treatment. 

Matrix 𝜒𝜒 is used for the classifier with a response variable Z such as 

 

𝑍𝑍 = �
𝑌𝑌𝑌𝑌𝑌𝑌,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡          

 
 𝑁𝑁𝑁𝑁,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛′𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

  

 

Z being composed as indicated in Section 2.1. 

Waikato Environment for Knowledge Analysis (WEKA) (Hall et al 2009), v 3.6.5 was the 

data mining platform for running classifiers. All of them were run with default parameters 

on a 3.4 GHz Pentium IV PC with 2 GB of RAM. The classifiers run in this application 

were: 

• J48 is the WEKA implementation of the C4.5 decision tree (Quinlan 1993).  

• NaiveBayes implements the probabilistic Naïve Bayes classifier (John, 1995).  

• IBk is the implementation of KNN (Aha 1991) the k-nearest-neighbor classifier IBk 

has a parameter (k set in our tests to 1,2,3, and 5) that sets the neighborhood size. 

• RBFNetworks implements a popular type of feed-forward network, radial basis 

function (RBF) network (Witten, 2011). 

Table 9.15 shows prediction accuracy for each classifier after 10-fold cross validation. In 

this study the data set was split into 9 subsets with 12 records and 1 subset with 15. 

Each classifier is trained 10 times, each time using a version of the data in which one of the 

subsets is omitted (testing data). Each trained classifier is then tested on the data from the 

subset which was not used during training. The results are averaged over the 10 classifiers 

to obtain an overall accuracy shown in Table 9.13. 

 

 

 

 

162 

 



Attributes   C4.5 
(J48) 

Naive 
Bayes 

                 KNN (IBk) 
 

RBFNetworks 

   IB1 IB2 IB3 IB5  
10 57.72 54.47 52.84 50.40 53.65 57.62 56.91 
20 56.09 52.84 56.09 54.47 58.53 56.91 47.15 
30 57.72 58.53 56.91 58.53 64.22 58.53 56.09 
40 57.72 56.91 53.65 51.21 56.91 61.78 59.34 
50 53.65 58.53 57.72 57.72 62.60 58.53 59.34 
60 51.21 57.72 57.72 56.91 57.72 56.09 58.53 
70 60.97 57.72 57.72 56.91 60.16 59.34 52.84 
80 59.34 59.34 56.09 54.47 62.60 63.41 54.47 
100 63.41 55.28 56.09 52.03 60.97 61.78 49.59 
600 64.41 61.78 59.34 55.28 60.16 60.16 46.34 
1391 60.16 58.53 60.16 56.09 60.16 62.60 46.22 
 
Table 9.13. Accuracy for each classifier after 10-fold cross validation, first column shows the number of CR 
tasks executions considered, therefore first line (10 attributes) represents an 11-tuple as in Example 1 above. 
 
 
 
Sequential patterns analysis. As presented in section 3.3.5, sequential pattern mining 

techniques might be applied to find patterns of execution of CR tasks targeting cognitive 

functions, identified patterns might help to understand responses to treatment. The input is 

matrix 𝜒𝜒. 

Sequential Pattern Mining Framework (SPMF) version v0.96q was the data mining 

platform for the Sequential Pattern Mining algorithm executions. (Fournier-Viger, 2014) 

All of them were run with default parameters on a 3.4 GHz Pentium IV computer with 2 

GB of RAM.  

SPADE and SPAM are very efficient for datasets with dense or long sequences and have 

excellent overall performance. This is because unlike algorithms using the horizontal 

format, performing join operations to calculate the support of candidates does not require 

scanning of the original database. For example, in a worst-case scenario the well-known 

PrefixSpan algorithm, which uses the horizontal format, performs a database projection for 

each item of each frequent sequential pattern, which is extremely costly. 

CM-SPADE is the SPMF implementation of SPADE algorithm (Fournier-Viger, 2014). As 

presented in section 3.3.5, the support of a sequential pattern is the number of sequences 

where the pattern occurs divided by the total number of sequences in the database. 

Table 9.14 shows for support >= 0.88 identified frequent patterns. The first column shows 

the length of the patterns, the second column the number N of identified sequences for each 
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pattern length, and the support Median, mean, Standard deviation, minimum and maximum 

values as well as Q1 and Q3 statistics. Therefore 31501 patterns of length 15 are found.  

 
 

CM-SPADE 

 LEN N Mean St Dev Min Max Q1 Median Q3 
0.88 1 3 0.9675 0.0422 0.9187 0.9919 0.9187 0.9919 0.9919 

2 9 0.9431 0.0407 0.9024 0.9919 0.9106 0.9106 0.9837 
3 27 0.92442 0.03785 0.88618 0.99187 0.89431 0.90244 0.97561 
4 64 0.91527 0.03536 0.88618 0.99187 0.89431 0.90244 0.95325 
5 118 0.91264 0.03440 0.88618 0.99187 0.88618 0.89431 0.95325 
6 172 0.91591 0.03373 0.88618 0.98374 0.88618 0.89431 0.95122 
7 238 0.92150 0.03073 0.88618 0.96748 0.88618 0.93496 0.95122 
8 354 0.92609 0.02451 0.88618 0.96748 0.89431 0.93496 0.94309 
9 589 0.92715 0.01716 0.88618 0.95935 0.92683 0.93496 0.93496 
10 1064 0.92408 0.01164 0.88618 0.95122 0.91870 0.92683 0.93496 
11 2060 0.91756 0.00976 0.88618 0.94309 0.91057 0.91870 0.92683 
12 4097 0.91035 0.00907 0.88618 0.93496 0.90244 0.91057 0.91870 
13 8192 0.90385 0.00834 0.88618 0.93496 0.89431 0.90244 0.91057 
14 16339 0.89834 0.00760 0.88618 0.92683 0.89431 0.89431 0.90244 
15 31501 0.89391 0.00665 0.88618 0.91870 0.88618 0.89431 0.89431 
16 53247 0.89084 0.00549 0.88618 0.91870 0.88618 0.88618 0.89431 
17 69573 0.88902 0.00438 0.88618 0.91057 0.88618 0.88618 0.89431 
18 64130 0.88794 0.00348 0.88618 0.91057 0.88618 0.88618 0.88618 
19 38554 0.88730 0.00281 0.88618 0.90244 0.88618 0.88618 0.88618 
20 14341 0.88689 0.00230 0.88618 0.89431 0.88618 0.88618 0.88618 
21 3159 0.88651 0.00161 0.88618 0.89431 0.88618 0.88618 0.88618 
22 401 0.88618 0.000000 0.88618 0.88618 0.88618 0.88618 0.88618 
23 32 0.88618 0.000000 0.88618 0.88618 0.88618 0.88618 0.88618 

 24 1 0.88618 * 0.88618 0.88618 * 0.88618 * 

          

 
Table 9.14 Sequential patterns identified by CM-SPADE for a support of 0.88. First column shows the 
different lengths of the discovered patterns and N column the number of patterns, Media column shows the 
Mean support value.  
 
 
 
Sequential pattern mining on each class. SM-SPADE is applied on each of the identified 

classes but as shown in the Table 9.15 below, the problems identified in section 3.3.5 are 

not overcome: e.g. number (N) of identified patterns in each class. 
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CLASS SHORT70 

 LEN N Mean St Dev Min Max Q1 Median Q3 
0.5 1 8 0.7562 0.1223 0.5500    0.8750 0.6312    0.8000 0.8500 

2 52 0.6418 0.0977    0.5000 0.8250 0.5500 0.6500 0.7250 
3 220 0.58136 0.06786 0.50000   0.77500 0.52500   0.57500   0.62500 
4 540 0.54819 0.04859   0.50000   0.72500 0.50000   0.52500 0.57500 
5 658 0.53533       0.03937   0.50000   0.67500 0.50000   0.52500   0.55000 
6 481 0.52651       0.03073   0.50000   0.62500 0.50000   0.52500   0.55000 
7 214 0.51636 0.02314   0.50000   0.60000 0.50000   0.50000   0.52500 
8 42 0.51250       0.02084   0.50000   0.57500 0.50000   0.50000   0.52500 
9 2 0.50000      0.000000   0.50000   0.50000 * 0.50000         * 

0.7 1 6 0.8167      0.0563    0.7250    0.8750 0.7625    0.8375    0.8562 
2 19 0.75000     0.04330   0.70000   0.82500 0.70000   0.75000   0.77500 
3 17 0.72794     0.02319   0.70000   0.77500 0.70000   0.72500   0.75000 
4 6 0.70833     0.01291   0.70000   0.72500 0.70000   0.70000   0.72500 

0.8 1 4 0.8500      0.0204    0.8250    0.8750 0.8312    0.8500    0.8688 
2 4 0.81250     0.01443   0.80000   0.82500 0.80000   0.81250   0.82500 

 
CLASS SHORT86 

 LEN N Mean St Dev Min Max Q1 Median Q3 
0.8 1 16 0.8200 0.1455 0.5800 0.9800 0.6800 0.8400 0.9750 

2 87 0.8480 0.1120 0.5600 0.9800 0.8200 0.8400 0.9600 
3 444 0.86032 0.06557 0.56000   0.9800 0.80000 0.86000   0.92000 
4 1827 0.85606 0.05152 0.56000   0.98000 0.82000   0.84000   0.90000 
5 6694 0.84476     0.04158   0.80000   0.98000 0.80000   0.84000   0.88000 
6 19163 0.83284     0.03304 0.80000   0.96000 0.80000   0.82000   0.86000 
7 38639 0.82293     0.02527   0.80000   0.94000 0.80000   0.82000   0.84000 
8 53869 0.81440 0.01874   0.80000   0.92000 0.80000   0.80000   0.82000 
9 44690 0.80805     0.01362   0.80000   0.90000 0.80000   0.80000   0.82000 
10 16853 0.80442     0.00991   0.80000   0.88000 0.80000   0.80000   0.80000 
11 2415 0.80206     0.00678   0.80000   0.86000 0.80000   0.80000   0.80000 
12 83 0.80289 0.00834 0.80000 0.84000 0.80000 0.80000   0.80000 
13 5 0.80000    0.00000   0.80000   0.80000 0.80000   0.80000   0.80000 

 
CLASS LONG6 

 LEN N Mean St Dev Min Max Q1 Median Q3 
0.8 1 9 0.9583      0.0625    0.8750    1.0000 0.8750    1.0000    1.0000 

2 60 0.94375     0.06271   0.87500   1.00000 0.87500   1.00000   1.00000 
3 320 0.92852 0.06195   0.87500   1.00000 0.87500   0.87500   1.00000 
4 1355 0.91504     0.05835   0.87500   1.00000 0.87500   0.87500   1.00000 
5 4489 0.90541     0.05364   0.87500   1.00000 0.87500   0.87500   0.87500 
6 11659 0.89830     0.04868   0.87500   1.00000 0.87500   0.87500   0.87500 
7 23216 0.89364     0.04453   0.87500   1.00000 0.87500   0.87500   0.87500 
8 35347 0.88998     0.04059   0.87500   1.00000 0.87500   0.87500   0.87500 
9 39390 0.88649     0.03611   0.87500   1.00000 0.87500   0.87500   0.87500 
10 29588 0.88307     0.03072   0.87500   1.00000 0.87500   0.87500   0.87500 
11 13003 0.88003     0.02456   0.87500   1.00000 0.87500   0.87500   0.87500 
12 2860 0.87732     0.01686   0.87500   1.00000 0.87500   0.87500   0.87500 
13 250 0.87600     0.01116   0.87500   1.00000 0.87500   0.87500   0.87500 
14 7 0.87500    0.000000   0.87500   0.87500 0.87500   0.87500   0.87500 

 
Table 9.15. Identified sequential patterns on each class 
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9.11 Summary 
This chapter presents the application of the proposed methods in a real clinical context: the 

Neuropsychology Department of the Acquired Brain Injury Unit at Institut Guttmann 

Neurorehabilitation Hospital (IG) where TBI patients undergo CR treatments . One hundred 

and twenty-three TBI adults following a 3-5 months CR treatment at IG 

Neuropsychological Rehabilitation Unit are analyzed in this study. A total of 39412 task 

executions have been included in this analysis, involving the 96 different CR tasks included 

in the PREVIRNEC© platform. 

The CMIS methodology is presented as a high level umbrella of 5 steps applied in this 

Chapter.The CMIS relies on two main contributions: SAIMAP (section 4.1) and NRR 

(Chapter 6). The results of identifying NRR by means of Vis-SAP and DT-SAP are 

presented. A clinical validation of the obtained results was performed on 327 patients not 

included in the study, this chapter shows that the identified sectors have a clear positive 

effect on patient recovery and also the ones where no recovery effect is shown can be 

considered as useful clinical hypothesis. The NRRMR method is applied to any number of 

tasks allowing for the identification of new NRRs. When grouped by cognitive function 

three clear different patterns are identified.  Afterwards SAIMAP methodology was applied 

to the same dataset, , a previous clustering process is performed in such a way that three 

program profiles are identified. Later, local motif discovery to each profile is performed to 

understand the structure of the tasks sequences associated with the classes. 

Statistical tests seem to indicate that basic demographic and clinical characteristics of the 

patients (GCS, PTA, gender, educational level, age) do not show significant differences 

along the classes thus indicating that differences among groups may be due to the structure 

of the treatment itself.  Afterwards, improvements of the patients for the different classes 

have been studied by means of conditional distributions of improvement indicators (effect 

indexes) versus the classes and this seems to confirm that different responses to the 

treatments are associated to the classes. 
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List of Contributions  
 

The following are the main contributions of this work from both clinical and technical 

points of view: 

• In order to identify sequences of activities such that the global effect of the 

sequence over a set of impact areas leads to successful performance, the general  

CMIS (Cumulative Multiple Impact Sequences) methodology is introduced as a 

sequence of steps. 

• CMIS relies on two main contributions: SAIMAP and NRR both introduced in this 

research for the first time.  

• SAIMAP (Sequence of Activities Improving Multi-Area Performance) is an  

innovative combination of pre-processing tools, clustering, motif discovery and 

post-processing techniques in a hybrid methodological frame, where sequential 

patterns of a predefined set of events with high order interactions and cumulative 

effects are associated with multi-criteria improvement in a predefined set of areas.  

• Definition of the NRR (Neurorehabilitation Range) concept to determine the degree 

of performance expected for a CR task and the number of repetitions required to 

produce maximum rehabilitation effects. 

• Operationalization of NRR by means of SAP 

• Introduce, define, implement, apply, and validate to a real case the Sectorized and 

Annotated Plane (SAP): visualization tool to identify areas with high probability of 

occurrence of a target event. 

• Vis-SAP method: data mining methodologies for building the SAP 

• DT-SAP method: decision-tree based method to automatically build SAP  

• Introduction of a quality measure for SAP based on pooled confidence of all labeled 

sectors. 

• For the SAP of binary variables a pooled specificity and a pooled sensitivity are 

used as quality indicators. 

• Application of SAP to identify the NRR of a given neurorehabilitation cognitive 

task. 
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• The definition of a quality criterion to assess NRR models, based on quality 

indicators introduced for the SAP. The defined criterion quantifies the probability of 

improvement with the execution of a task under certain conditions. 

• FT-SAP has been introduced as a parametric heatmap-based visualization tool to 

overcome the limitation of Vis-SAP method produced by occlusions. 

• Introduction of the NRRMR (Neurorehabilitation Range Maximal Regions): 

Generalization of the Maximal Empty Rectangle problem (MER) to identify 

maximal NRR over a FT-SAP. 

• Innovative combination of Clustering Based on Rules and Motif Discovery in 

SAIMAP methodology 

• Results are compared to state-of-the-art sequential pattern mining techniques and to 

traditional classification algorithms that exploit different machine learning 

principles. 
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Chapter 10. Conclusions and Future Plans 
 

This thesis aims to support the design of sequences of cumulative activities impacting on 

multiple areas in order to obtain a better response to standard assessments performed on the 

areas after the execution of activities. Our approach is twofold: theoretical and practical in 

order to provide recommendations for the selection of the sequence of activities and 

repetitions that will induce a better response of individuals on the activities’ impacted areas. 

It is a difficult problem because activities demonstrate a high level of interaction between 

them and cumulative effects, and also because the length and configuration of activity 

sequences is open. 

From the theoretical point of view, this work proposes two contributions to this topic 

through innovative data mining techniques: SAIMAP (Sequence of Activities Improving 

Multi-Area Performance) and NRRMR (Neurorehabilitation Range Maximal Regions) 

methods, integrated in a general CMIS methodology. SAP has been introduced as a general 

visualization tool to identify areas with a high probability of occurrence of a target event. 

Three approaches to SAP are defined, implemented, applied, and validated to a real case: 

Vis-SAP, DT-SAP and FT-SAP the parametric heatmap-based visualization proposed to 

overcome the limitations detected in Vis-SAP. 

From a practical point of view this work introduces a new concept, the NeuroRehabilitation 

Range (NRR) as the framework to describe the degree of performance of a CR task which 

produces maximum rehabilitation effects. The NRR helps provide an operational definition 

for the zone of maximum rehabilitation potential and represents an operationalization of the 

Zone of Proximal Development (ZPD). Analytical and visual tools are also proposed, 

defined and validated in this work, in order to find an operational definition of an NRR 

from a data-driven approach. For this particular application, the SAP identifies areas with a 

high probability of cognitive improvement. Although SAP is not a complex concept, it has 

shown great potential for finding the NRR region of a cognitive rehabilitation task in 

quickly, simply and very intuitively. This has proved to be highly useful at clinical practice 
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level. Also, for the first time, the NRR is defined as a bivariate structure involving 

conditions in both results and repetitions of the tasks. 

A quality criterion to assess NRR models, based on pooled confidence and pooled 

specificity is also introduced in this work. The defined criterion is based on the capacity of 

an NRR model to detect the patients improving with the execution of a task. This provides 

some form of global performance indicator, although ROC curves have also been used to 

test the quality of obtained models. It confirms that both proposed methods outperform the 

univariate and static NRR [65,85] currently used by the experts, and also that Vis-SAP 

performs slightly better than DT-SAP. 

Clinicians established an initial hypothesis about the NRR, assuming it to be fixed and task-

independent (NRR(T)= [ 65, 85] ); these bounds have been defined according to CR 

therapists’ expertise. PREVIRNEC© allows systematic pre- and post-evaluation of 

participants covering the major cognitive domains. This provides empirical data useful to 

validate or clarify clinical hypothesis. For the first time, data collected through the 

PREVIRNEC© platform has been used to learn more about the NRR. Although the ratio of 

improvement of patients in that initial NRR was not low, this work provided evidence that 

a formulation for NRR regarding only the Results obtained is insufficient to identify the 

group of patients with better response to CR treatment. According to our results NRR 

cannot be defined by means of univariant analysis (considering only the Result of 

performing a task). A predictive model considering other implied co-variables needs to be 

developed. This thesis is a first attempt in that direction. It has been shown that the number 

of repetitions that a patient performs of a certain task is also relevant for the patient’s 

outcome, according to literature. Bidimensional NRR, depending not only on performances, 

but also on repetition, significantly improves the CR treatment design. On the other hand, 

the range of therapeutic performances might change from task to task. This work proposes 

to target a specific performance-range for each task (or cognitive function) instead of the  

current [65,85] range used for the whole set of cognitive tasks available.  

This work provides objective criteria for NRR that can be integrated into the daily clinical 

practice of the institution, as well as operationalized for the PREVIRNEC© platform, and 

which provides the support required to verify clinical hypothesis. 
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Furthermore, SAP and MER (Maximal Empty Rectangle) solutions were adapted and 

applied to automatically generate data-driven models in order to identify bi-dimensional 

NRRs, taking into account the proper combinations of repetition of tasks and performance. 

A method is introduced to identify a variable number of NRRs satisfying a certain degree 

of reliability (𝛾𝛾) for a given task. A direct MER algorithm is implemented and modified to 

identify a region’s minimum (𝛾𝛾) probability of improvement, in order to solve the NRRMR. 

Proposed methods are also applied to any number of CR tasks grouped in cognitive 

functions. This allows for the identification of NRR, not only for a single task but for a 

group of them stimulating the same cognitive function.  

When grouped by cognitive functions, a different response pattern has been identified for 

memory skills, attention or executive functions, suggesting that NRR might also depend on 

the targeted function. Further analyses, including subfunctions of each cognitive function, 

are currently underway.  

Until now, CR plans have been mainly built from scratch for every patient, on the basis of 

the expertise of the therapist and the follow-up of the patient, because no standard 

guidelines were available in this domain. The findings from the present study have led to 

new actionable knowledge in the field of rehabilitation practice, opening the door towards 

more precise, predictable, and powerful CR treatments that are customized for the 

individual patient. Clinical hypotheses are being formulated by specialists on the basis of 

these results and are currently under validation, as a previous step to the establishment of a 

methodology for personalized therapeutic interventions based on clinical evidence.  

As future research lines, the automatic construction of SAP still requires more work since 

decision trees imply, by construction, some intrinsic error taxes in every branch that will 

always be propagated to the NRR performance and automation from Vis-SAP has to be 

started from scratch. 

This work is currently being enriched by analyzing how patients walk through the SAP 

areas (or sectors) during their rehabilitation process. This can be analyzed by connecting 

the points corresponding to the same patient in the SAP and finding prototypical patterns 

according to the form of the paths designed on the SAP. Later on, this dynamic analysis can 

be generalized to find dynamic patterns on the global treatment of the patient involving the 
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whole sequence of tasks performed during the treatment, and providing information about 

the possible positive interactions between tasks that empower the improvement capacity. 

Although the NRR models that use number of executions and results seem to provide quite 

a high level of sensitivity and specificity, other factors, such as task difficulty, may be 

supposed to be highly determinant of cognitive improvement. Extension of the current 

proposals to include such other factors is currently being explored. 

Finally, better interpretation of results obtained results by clinicians can be expected when 

other demographic and clinical variables are included in the model, e.g. participants’ 

educational level, age, time since injury, obtained results in pre-treatment evaluation. 

As presented in Chapter 3, other factors may be supposed to be highly determinant of 

response to treatment, such as the TBI severity reported by GCS, the time since injury, age, 

and educational level (Cicerone, 2011). Extension of the current proposals to include such 

other factors is currently being explored, provided that the formal framework is easily 

extendable to hypercubes instead of two-way tables as shown in this work. 
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Annex 

 
 
Regular expressions generation (section 5.1) 
 
 
SHORT70  l=8 
 

 
 
 0.076923  0.076923  0.000000  0.846154  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.076923  0.461538  0.000000  0.461538  
 0.076923  0.153846  0.000000  0.769231  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000 
 
W= ({T},{T},{T},{C,T},{T},{T}{T},{T}) 
ω = T3(C|T)T4 
 
 
 
SHORT70 l=9 
 

 
 
 
 0.076923  0.000000  0.000000  0.923077  
 0.076923  0.230769  0.000000  0.692308  
 0.000000  0.153846  0.000000  0.846154  
 0.000000  0.000000  0.000000  1.000000  
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 0.307692  0.153846  0.000000  0.538462  
 0.000000  0.000000  0.000000  1.000000  
 0.153846  0.000000  0.000000  0.846154  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000 
 
W= ({T},{C,T},{T},{T},{A,T},{T},{T}{T},{T}) 
T(C|T)T2(A|T)T4 
 
 
 
 
SHORT70 l=10 
 

 
 
 0.333333  0.666667  0.000000  0.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.416667  0.000000  0.583333  
 0.000000  0.083333  0.000000  0.916667  
 0.083333  0.000000  0.000000  0.916667  
 0.416667  0.083333  0.000000  0.500000  
 0.000000  0.000000  0.000000  1.000000  
 0.083333  0.000000  0.000000  0.916667  
 0.083333  0.000000  0.000000  0.916667  
 0.000000  0.000000  0.000000  1.000000 
 
W= ({A,C},{T},{C,T},{T},{T},{A,T},{T}{T},{T},{T}) 
(A|C)T(C|T)T2(A|T)T4 
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SHORT70 l= 11 
 

 
 
 
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.333333  0.000000  0.666667  
 0.000000  0.333333  0.000000  0.666667  
 0.000000  0.000000  0.000000  1.000000  
 0.166667  0.000000  0.000000  0.833333  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 
W= ({C},{T},{C,T},{C,T},{T},{T},{T}{T},{T},{T},{T}) 
CT(C|T)2T7 
 
 
SHORT70 l=12 
 

 
 
 0.133333  0.000000  0.000000  0.866667  
 0.000000  0.600000  0.000000  0.400000  
 0.133333  0.000000  0.000000  0.866667  
 0.000000  0.666667  0.000000  0.333333  
 0.000000  0.600000  0.000000  0.400000  
 0.000000  0.000000  0.000000  1.000000  
 0.333333  0.000000  0.000000  0.666667  
 0.333333  0.000000  0.000000  0.666667  
 0.000000  0.066667  0.000000  0.933333  
 0.000000  0.133333  0.000000  0.866667  

181 

 



 0.200000  0.000000  0.000000  0.800000  
 0.000000  0.133333  0.000000  0.866667  
 
W= ({T},{C,T},{T},{C,T},{C,T},{T},{A,T}{A,T},{T},{T},{T},{T}) 
T(C|T)T(C|T)2T(A|T)2T4 
 
 
SHORT70 l=13 
 
 

 
 
 
 0.266667  0.000000  0.000000  0.733333  
 0.066667  0.000000  0.000000  0.933333  
 0.000000  0.066667  0.000000  0.933333  
 0.000000  0.533333  0.000000  0.466667  
 0.000000  0.733333  0.000000  0.266667  
 0.200000  0.133333  0.000000  0.666667  
 0.266667  0.733333  0.000000  0.000000  
 0.400000  0.133333  0.000000  0.466667  
 0.066667  0.133333  0.000000  0.800000  
 0.000000  0.000000  0.000000  1.000000  
 0.066667  0.000000  0.000000  0.933333  
 0.066667  0.200000  0.000000  0.733333  
 0.133333  0.000000  0.000000  0.866667 
 
W= ({A,T},{T},{T},{C,T},{C,T},{T},{A,C}{A,T},{T},{T},{T},{T},{T},{T}) 
(A|T)T2(C|T)2T(A|C)(A|T)T6 
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SHORT70 l=14 
 

 
 
 0.000000  0.000000  0.000000  1.000000  
 0.000000  1.000000  0.000000  0.000000  
 0.200000  0.000000  0.000000  0.800000  
 0.200000  0.500000  0.000000  0.300000  
 0.000000  0.500000  0.000000  0.500000  
 0.100000  0.000000  0.000000  0.900000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.100000  0.100000  0.000000  0.800000  
 0.000000  0.200000  0.000000  0.800000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.100000  0.000000  0.900000  
 0.100000  0.200000  0.000000  0.700000  
 0.100000  0.200000  0.000000  0.700000 
 
W= ({T},{C},{T},{C,T},{C,T},{T},{T}{T},{T},{T},{T},{T},{T},{C,T}) 
 TCT(C|T)2T8(C|T) 
 
 
SHORT70 l=15 
 

 
 
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.333333  0.000000  0.666667  
 0.000000  0.500000  0.000000  0.500000  
 0.000000  0.833333  0.000000  0.166667  
 0.333333  0.000000  0.000000  0.666667  
 0.000000  1.000000  0.000000  0.000000  
 0.166667  0.166667  0.000000  0.666667  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
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 0.000000  0.166667  0.000000  0.833333  
 0.166667  0.000000  0.000000  0.833333  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000 
 
W= ({T},{T},{C,T},{C,T},{C},{A,T},{C}{T},{T},{T},{T},{T},{T},{T},{T}) 
T2(C|T)2C(A|T)CT8 
 
 
SHORT70 l=16 
 

 
 
  0.000000  0.000000  0.000000  1.000000  
 0.000000  0.333333  0.000000  0.666667  
 0.250000  0.000000  0.000000  0.750000  
 0.250000  0.750000  0.000000  0.000000  
 0.000000  0.250000  0.000000  0.750000  
 0.083333  0.416667  0.000000  0.500000  
 0.583333  0.333333  0.000000  0.083333  
 0.250000  0.166667  0.000000  0.583333  
 0.250000  0.166667  0.000000  0.583333  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.083333  0.000000  0.916667  
 0.333333  0.083333  0.000000  0.583333  
 0.166667  0.166667  0.000000  0.666667  
 0.083333  0.000000  0.000000  0.916667  
 0.000000  0.000000  0.000000  1.000000 
W= 
({T},{C,T},{A,T},{A,C},{C,T},{C,T},{A,C}{A,T},{A,T},{T},{T},{T},{A,T},{T},{T}, 
{T}) 
T(C|T)(A|T)(A|C)(C|T)2(A|C)(A|T)2T3(A|T)T3 
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SHORT70 l=17 
 

 
 
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.333333  0.000000  0.666667  
 0.000000  0.000000  0.000000  1.000000  
 0.166667  0.833333  0.000000  0.000000  
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.500000  0.000000  0.500000  
 0.166667  0.666667  0.000000  0.166667  
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.166667  0.000000  0.000000  0.833333  
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.500000  0.000000  0.000000  0.500000 
 
W= ({T},{C,T},{T},{C},{T},{C,T},{C}{T},{T},{T},{T},{T},{T},{T},{T},{T},{A,T}) 
T(C|T)TCT(C|T)CT9(A|T) 
  
 
SHORT70 l=18 
 

 
 
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.333333  0.000000  0.666667  
 0.000000  0.500000  0.000000  0.500000  
 0.333333  0.666667  0.000000  0.000000  
 0.166667  0.166667  0.000000  0.666667  
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 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.333333  0.000000  0.000000  0.666667  
 0.166667  0.000000  0.000000  0.833333  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.500000  0.000000  0.000000  0.500000  
 0.000000  0.166667  0.000000  0.833333 
 
W= 
({T},{T},{T},{C},{C,T},{C,T},{A,C}{T},{T},{T},{T},{T},{A,T},{T},{T},{T},{A,T},{
T}) 
T3C(C|T)(A|C)T5(A|T)T3(A|T)T  
 
 
SHORT70 l=19 
 

 
 
 0.166667  0.000000  0.000000  0.833333  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.666667  0.000000  0.333333  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.000000  0.000000  1.000000  
 0.166667  0.166667  0.000000  0.666667  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.333333  0.000000  0.666667  
 0.000000  0.166667  0.000000  0.833333  
 0.166667  0.000000  0.000000  0.833333  
 0.500000  0.000000  0.000000  0.500000  
 0.333333  0.166667  0.000000  0.500000  
 0.166667  0.000000  0.000000  0.833333  
 0.166667  0.166667  0.000000  0.666667  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000 
 
W= 
({T},{C},{C,T},{T},{T},{T},{T}{T},{T},{C,T},{T},{T},{A,T},{A,T},{T},{T},{T},{T},
{T}) 
TC(C|T)T6(C|T)T2(A|T)2T5 
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SHORT70 l=20 
 

 
 
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.833333  0.000000  0.166667  
 0.333333  0.000000  0.000000  0.666667  
 0.000000  0.833333  0.000000  0.166667  
 0.000000  0.833333  0.000000  0.166667  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.000000  0.000000  1.000000  
 0.166667  0.166667  0.000000  0.666667  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.166667  0.000000  0.833333  
 0.500000  0.000000  0.000000  0.500000  
 0.333333  0.166667  0.000000  0.500000  
 0.166667  0.000000  0.000000  0.833333  
 0.333333  0.166667  0.000000  0.500000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 
W= 
({T},{C},{A,T},{C},{C},{T},{T}{T},{T},{T},{T},{T},{T},{T},{A,T},{A,T},{T},{A,T}
,{T},{T}) 
TC(A|T)C2T 9(A|T)2T(A|T)T2 
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SHORT86 l=8 
 

 
 
 0.020408  0.000000  0.000000  0.979592  
 0.040816  0.020408  0.000000  0.938776  
 0.000000  0.367347  0.000000  0.632653  
 0.142857  0.000000  0.000000  0.857143  
 0.081633  0.000000  0.000000  0.918367  
 0.000000  0.102041  0.000000  0.897959  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.081633  0.000000  0.918367  
 
W= ({T},{T},{C,T},{T},{T},{T},{T}{T}) 
T2(C|T)T5 

 
 
SHORT86 l=9 
 
 

 
 
 0.000000  0.000000  0.000000  1.000000  
 0.083333  0.000000  0.000000  0.916667  
 0.000000  0.472222  0.000000  0.527778  
 0.000000  0.111111  0.000000  0.888889  
 0.055556  0.000000  0.000000  0.944444  
 0.000000  0.000000  0.000000  1.000000  
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 0.000000  0.083333  0.000000  0.916667  
 0.055556  0.000000  0.000000  0.944444  
 0.000000  0.111111  0.000000  0.888889  
 
W= ({T},{T},{C,T},{T},{T},{T},{T},{T},{T}) 
T2(C|T)T6 
 
 
 
 
SHORT86 l=10 
 

 
 
 
 0.040816  0.000000  0.000000  0.959184  
 0.040816  0.000000  0.000000  0.959184  
 0.020408  0.510204  0.000000  0.469388  
 0.000000  0.367347  0.000000  0.632653  
 0.122449  0.000000  0.000000  0.877551  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.102041  0.000000  0.897959  
 0.142857  0.020408  0.000000  0.836735  
 0.000000  0.102041  0.000000  0.897959  
 0.000000  0.428571  0.000000  0.571429  
 
W= ({T},{T},{C,T},{C,T},{T},{T},{T},{T},{T},{C,T}) 
T2(C|T)2T5(C|T) 
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SHORT86 largo11 
 

 
 
 0.020000  0.000000  0.000000  0.980000  
 0.000000  0.120000  0.000000  0.880000  
 0.000000  0.560000  0.000000  0.440000  
 0.000000  0.260000  0.000000  0.740000  
 0.140000  0.040000  0.000000  0.820000  
 0.000000  0.080000  0.000000  0.920000  
 0.000000  0.220000  0.000000  0.780000  
 0.100000  0.000000  0.000000  0.900000  
 0.000000  0.100000  0.000000  0.900000  
 0.000000  0.340000  0.000000  0.660000  
 0.000000  0.220000  0.000000  0.780000  
 
W= ({T},{T},{C,T},{C,T},{T},{T},{T},{T},{T},{C,T},{C,T}) 
T2(C|T)2T5(C|T)2 
 
 
SHORT86 l=12 
 

 
 
 0.163265  0.000000  0.000000  0.836735  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.571429  0.000000  0.428571  
 0.000000  0.448980  0.000000  0.551020  
 0.000000  0.000000  0.000000  1.000000  
 0.081633  0.367347  0.000000  0.551020  
 0.061224  0.346939  0.000000  0.591837  
 0.000000  0.265306  0.000000  0.734694  
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 0.000000  0.081633  0.000000  0.918367  
 0.000000  0.142857  0.000000  0.857143  
 0.000000  0.142857  0.000000  0.857143  
 0.000000  0.183673  0.000000  0.816327 
 
W= ({T},{T},{C,T},{C,T},{T},{C,T},{C,T},{C,T},{T},{T},{T},{T}) 
T2(C|T 2T(C|T)3T4 
  
 
 
SHORT86 l=14 
 

 
 
 0.500000  0.000000  0.000000  0.500000  
 0.020000  0.000000  0.000000  0.980000  
 0.000000  0.200000  0.000000  0.800000  
 0.000000  0.680000  0.000000  0.320000  
 0.040000  0.300000  0.000000  0.660000  
 0.000000  0.320000  0.000000  0.680000  
 0.080000  0.380000  0.000000  0.540000  
 0.040000  0.360000  0.000000  0.600000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.040000  0.000000  0.960000  
 0.000000  0.220000  0.000000  0.780000  
 0.000000  0.040000  0.000000  0.960000  
 0.060000  0.280000  0.000000  0.660000  
 0.080000  0.660000  0.000000  0.260000 
 
W= 
({A,T},{T},{C,T},{C,T},{C,T},{C,T},{C,T},{C,T},{T},{T},{C,T},{T},{C,T},{C,T}) 
 
(A|T)T(C|T)6T2(C|T)T(C|T)2 
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SHORT86 l=15 
 

 
 
 0.600000  0.020000  0.000000  0.380000  
 0.840000  0.000000  0.000000  0.160000  
 0.300000  0.060000  0.000000  0.640000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.380000  0.000000  0.620000  
 0.000000  0.660000  0.000000  0.340000  
 0.120000  0.060000  0.000000  0.820000  
 0.060000  0.340000  0.000000  0.600000  
 0.020000  0.220000  0.000000  0.760000  
 0.020000  0.200000  0.000000  0.780000  
 0.020000  0.000000  0.000000  0.980000  
 0.000000  0.160000  0.000000  0.840000  
 0.000000  0.240000  0.000000  0.760000  
 0.020000  0.260000  0.000000  0.720000  
 0.060000  0.460000  0.000000  0.480000  
 
 
W= 
({A,T},{A},{A,T},{T},{C,T},{C,T},{T},{C,T},{C,T},{C,T},{T},{T},{C,T},{C,T},{C,T}
) 
(A|T)A(A|T)T(C|T)2T(C|T)3T2(C|T)3 
 
 
SHORT86 l=16 
 
 

 
 
 
 0.560000  0.260000  0.000000  0.180000  
 0.500000  0.100000  0.000000  0.400000  
 0.740000  0.000000  0.000000  0.260000  
 0.440000  0.060000  0.000000  0.500000  
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 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.240000  0.000000  0.760000  
 0.000000  0.800000  0.000000  0.200000  
 0.080000  0.100000  0.000000  0.820000  
 0.060000  0.260000  0.000000  0.680000  
 0.000000  0.280000  0.000000  0.720000  
 0.040000  0.260000  0.000000  0.700000  
 0.020000  0.020000  0.000000  0.960000  
 0.000000  0.140000  0.000000  0.860000  
 0.000000  0.240000  0.000000  0.760000  
 0.000000  0.200000  0.000000  0.800000  
 0.080000  0.340000  0.000000  0.580000  
 
W= 
({A,C},{A,T},{A,T},{A,T},{T},{C,T},{C,T},{T},{C,T},{C,T},{C,T},{T},{T},{C,T},{C,
T},{C,T}) 
(A|C)(A|T)3T(C|T)2T(C|T)3T2(C|T)3  
 
 
 
 
 
SHORT86 l=17 
 
 
 
 

 
 
 
 0.340000  0.440000  0.000000  0.220000  
 0.560000  0.300000  0.000000  0.140000  
 0.540000  0.080000  0.000000  0.380000  
 0.700000  0.000000  0.000000  0.300000  
 0.480000  0.060000  0.000000  0.460000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.220000  0.000000  0.780000  
 0.000000  0.800000  0.000000  0.200000  
 0.080000  0.100000  0.000000  0.820000  
 0.060000  0.260000  0.000000  0.680000  
 0.000000  0.280000  0.000000  0.720000  
 0.060000  0.220000  0.000000  0.720000  
 0.020000  0.040000  0.000000  0.940000  
 0.000000  0.160000  0.000000  0.840000  
 0.000000  0.220000  0.000000  0.780000  
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 0.000000  0.280000  0.000000  0.720000  
 0.060000  0.340000  0.000000  0.600000  
 
W= 
({A,C},{A,C},{A,T},{A,T},{A,T},{T},{T},{C},{T},{C,T},{C,T},{T},{T},{T},{T},{C,T
},{C,T}) 
(A|C)2(A|T)3T2CT(C|T)2T4(C|T)2 
 
 
 
 
SHORT86 l=18 
 
 

 
 
 0.540000  0.000000  0.000000  0.460000  
 0.880000  0.060000  0.000000  0.060000  
 0.360000  0.100000  0.000000  0.540000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.440000  0.000000  0.560000  
 0.000000  0.660000  0.000000  0.340000  
 0.120000  0.180000  0.000000  0.700000  
 0.060000  0.260000  0.000000  0.680000  
 0.020000  0.340000  0.000000  0.640000  
 0.020000  0.120000  0.000000  0.860000  
 0.020000  0.000000  0.000000  0.980000  
 0.000000  0.200000  0.000000  0.800000  
 0.000000  0.300000  0.000000  0.700000  
 0.020000  0.300000  0.000000  0.680000  
 0.000000  0.460000  0.000000  0.540000  
 0.240000  0.440000  0.000000  0.320000  
 0.120000  0.480000  0.000000  0.400000  
 0.180000  0.400000  0.000000  0.420000 
 
W= 
({A,T},{A},{A,T},{T},{C,T},{C,T},{C,T},{C,T},{C,T},{T},{T},{T},{C,T},{C,T},{C,T}
,{C,T},{C,T},{C,T}) 
(A|T)A(A|T)T(C|T)5T3(C|T)6  
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SHORT86 l= 19 
 

 
 
 0.361111  0.083333  0.000000  0.555556  
 0.305556  0.000000  0.000000  0.694444  
 0.111111  0.416667  0.000000  0.472222  
 0.111111  0.361111  0.000000  0.527778  
 0.361111  0.083333  0.000000  0.555556  
 0.305556  0.138889  0.000000  0.555556  
 0.000000  0.083333  0.000000  0.916667  
 0.027778  0.027778  0.000000  0.944444  
 0.000000  0.361111  0.000000  0.638889  
 0.083333  0.194444  0.000000  0.722222  
 0.000000  0.305556  0.000000  0.694444  
 0.055556  0.333333  0.000000  0.611111  
 0.000000  0.555556  0.000000  0.444444  
 0.000000  0.361111  0.000000  0.638889  
 0.111111  0.250000  0.000000  0.638889  
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.194444  0.000000  0.805556  
 0.083333  0.000000  0.000000  0.916667  
 0.000000  0.444444  0.000000  0.555556 
 
W= 
({A,T},{A,T},{C,T},{C,T},{A,T},{A,T},{T},{T},{C,T},{T},{C,T},{C,T},{C,T},{C,T},{
C,T},{T},{T},{T},{C,T}) 
(A|T)2(C|T)2(A|T)2T2(C|T)T(C|T)5T3(C|T) 
 
 
 
SHORT86 l=20 
 

 
 
 
 0.435897  0.000000  0.000000  0.564103  
 0.769231  0.025641  0.000000  0.205128  
 0.384615  0.051282  0.000000  0.564103  
 0.000000  0.000000  0.000000  1.000000  
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 0.000000  0.410256  0.000000  0.589744  
 0.000000  0.794872  0.000000  0.205128  
 0.102564  0.128205  0.000000  0.769231  
 0.102564  0.230769  0.000000  0.666667  
 0.025641  0.230769  0.000000  0.743590  
 0.025641  0.179487  0.000000  0.794872  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.153846  0.000000  0.846154  
 0.000000  0.256410  0.000000  0.743590  
 0.025641  0.179487  0.000000  0.794872  
 0.000000  0.384615  0.000000  0.615385  
 0.153846  0.358974  0.000000  0.487179  
 0.256410  0.282051  0.000000  0.461538  
 0.102564  0.512821  0.000000  0.384615  
 0.230769  0.461538  0.000000  0.307692  
 0.307692  0.205128  0.000000  0.487179 
 
W= 
({A,T},{A,T},{A,T},{T},{C,T},{C,T},{T},{T},{T},{T},{T},{T},{C,T},{T},{C,T},{C,T}
,{A,C,T},{C,T},{C,T},{A,T}) 
(A|T)3T(C|T)2T6(C|T)T(C|T)2(A|C|T)(C|T)2(A|T) 
 
 
LONG6 l=7 
 

 
 
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000 
 
W= ({T},{T},{C},{T},{T},{T},{T}) 
T2CT3 
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LONG6 l=8 
 

 
 
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000 
 
W= ({T},{T},{T},{C},{T},{T},{T},{T}) 
T3CT4  
 
 
 
LONG6 l=9 
 
 

 
  
 
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.500000  0.000000  0.500000  
 0.000000  0.333333  0.000000  0.666667  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
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 0.000000  0.000000  0.000000  1.000000  
 
W= ({T},{T},{C},{T},{C,T},{C,T},{T},{T},{T}) 
T2CT(T|C)2T3 
 
 
 
 
LONG6 l=10 
 
 

 
 0.000000  0.285714  0.000000  0.714286  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.571429  0.000000  0.428571  
 0.000000  0.285714  0.000000  0.714286  
 0.000000  0.142857  0.000000  0.857143  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000 
 
W= ({C,T},{T},{T},{C},{T},{C,T},{C,T},{T},{T},{T}) 
(C|T)T2CT(C|T)2T3 
 
LONG6 l=11 
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 0.000000  0.142857  0.000000  0.857143  
 0.000000  0.142857  0.000000  0.857143  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.428571  0.000000  0.571429  
 0.000000  0.142857  0.000000  0.857143  
 0.000000  0.285714  0.000000  0.714286  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.857143  0.000000  0.142857 
 
W= ({T},{T},{T},{C},{T},{C,T},{T},{C,T},{T},{T},{C}) 
T3CT(C|T)T(C|T)T2C 
 
 
 
LONG6 l=12 
 
 

 
 
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.333333  0.000000  0.666667  
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.333333  0.000000  0.666667  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.833333  0.000000  0.166667  
 0.333333  0.000000  0.000000  0.666667  
 
W= ({T},{T},{T},{C},{T},{C,T},{T},{C,T},{T},{T},{C},{A,T}) 
T3CT(C|T)T(C|T)T2C(A|T) 
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LONG6 l=13 
 

 
 
 0.000000  0.428571  0.000000  0.571429  
 0.142857  0.714286  0.000000  0.142857  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.285714  0.000000  0.714286  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  1.000000  0.000000  0.000000  
 0.142857  0.000000  0.000000  0.857143  
 0.000000  0.285714  0.000000  0.714286  
 0.000000  0.142857  0.000000  0.857143  
 0.000000  0.285714  0.000000  0.714286  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.857143  0.000000  0.142857  
 
W= ({C,T},{C},{T},{C,T},{T},{C},{T},{C,T},{T},{C,T},{T},{T},{C}) 
(C|T)CT(C|T)TCT(C|T)T(C|T)T2C 
 
 
 
 
LONG6 l=14 
 

 
 
 0.000000  0.428571  0.000000  0.571429  
 0.142857  0.714286  0.000000  0.142857  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.285714  0.000000  0.714286  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  1.000000  0.000000  0.000000  
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 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.428571  0.000000  0.571429  
 0.142857  0.142857  0.000000  0.714286  
 0.000000  0.285714  0.000000  0.714286  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.714286  0.000000  0.285714  
 0.285714  0.000000  0.000000  0.714286 
 
W= ({C,T},{C},{T},{C,T},{T},{C},{T},{C,T},{T},{C,T},{T},{T},{C,T},{A,T}) 
(C|T)CT(C|T)TCT(C|T)T(C|T)T2(C|T)(A|T) 
 
 
 
 
LONG6 l=15 
 
 

 
 
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.750000  0.000000  0.250000  
 0.000000  0.250000  0.000000  0.750000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.250000  0.000000  0.750000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.750000  0.000000  0.250000  
 0.000000  0.250000  0.000000  0.750000  
 0.000000  0.000000  0.000000  1.000000  
 0.750000  0.000000  0.000000  0.250000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.250000  0.000000  0.750000  
 0.000000  0.000000  0.000000  1.000000 
 
W= ({T},{C,T},{C,T},{C},{T},{T},{C,T},{T},{C,T},{C,T},{T},{A,T},{C},{C,T},{T}) 
T(C|T)2CT2(C|T)T(C|T)2T(A|T)C(C|T)T 
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LONG6 l=16 
 
 

 
 
 
 0.000000  1.000000  0.000000  0.000000  
 0.333333  0.333333  0.000000  0.333333  
 0.000000  0.333333  0.000000  0.666667  
 0.166667  0.666667  0.000000  0.166667  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.333333  0.000000  0.666667  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.500000  0.000000  0.500000  
 0.166667  0.000000  0.000000  0.833333  
 0.000000  0.333333  0.000000  0.666667  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.666667  0.000000  0.333333  
 0.166667  0.000000  0.000000  0.833333 
 
 
W= 
({C},{A,C,T},{C,T},{C},{T},{C,T},{T},{C},{T},{C,T},{T},{C,T},{T},{T},{C,T},{T}) 
C(A|C|T)(C|T)CT(C|T)TCT(C|T)T(C|T)T2(C|T)T 
 
 
 
 
 
LONG6 l=17 
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 0.000000  0.250000  0.000000  0.750000  
 0.000000  0.500000  0.000000  0.500000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.750000  0.000000  0.250000  
 0.000000  0.250000  0.000000  0.750000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.250000  0.000000  0.750000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.750000  0.000000  0.250000  
 0.000000  0.250000  0.000000  0.750000  
 0.000000  0.000000  0.000000  1.000000  
 0.750000  0.000000  0.000000  0.250000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.250000  0.000000  0.750000  
 0.000000  0.000000  0.000000  1.000000  
 
 
W= 
({C,T},{C,T},{T},{C,T},{C,T},{C},{T},{T},{C,T},{T},{C,T},{C,T},{T},{A,T},{C},{C,
T},{T}) 
(C|T)2T(C|T)2CT2(C|T)T(C|T)2T(A|T)C(C|T)T 
 
 
 
LONG6 l=18 
 

 
 
 
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.571429  0.000000  0.428571  
 0.000000  0.571429  0.000000  0.428571  
 0.000000  0.571429  0.000000  0.428571  
 0.000000  0.285714  0.000000  0.714286  
 0.000000  0.142857  0.000000  0.857143  
 0.000000  0.714286  0.000000  0.285714  
 0.000000  0.285714  0.000000  0.714286  
 0.142857  0.571429  0.000000  0.285714  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.142857  0.000000  0.857143  
 0.000000  0.000000  0.000000  1.000000  
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 0.000000  0.571429  0.000000  0.428571  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.857143  0.000000  0.142857  
 0.000000  0.571429  0.000000  0.428571  
 0.000000  0.000000  0.000000  1.000000 
 
W= 
({C},{C,T},{C,T},{C,T},{C,T},{T},{C,T},{C,T},{C,T},{T},{C},{T},{T},{C,T},{T},{C}
,{C,T},{T}) 
C(C|T)4T(C|T)3TCT2(C|T)TC(C|T)T 
 
 
 
 
 
LONG6 l=19 
 
 

 
 
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.666667  0.000000  0.333333  
 0.000000  0.500000  0.000000  0.500000  
 0.000000  0.500000  0.000000  0.500000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.500000  0.000000  0.500000  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.333333  0.000000  0.666667  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.500000  0.000000  0.500000  
 0.000000  0.500000  0.000000  0.500000  
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.500000  0.000000  0.500000  
 0.500000  0.000000  0.000000  0.500000  
 0.000000  1.000000  0.000000  0.000000  
 0.000000  0.500000  0.000000  0.500000  
 0.000000  0.000000  0.000000  1.000000  
 
W= 
({C},{C,T},{C,T},{C,T},{T},{C,T},{T},{C},{T},{C,T},{T},{C,T},{C,T},{T},{C,T},{A,
T},{C},{C,T},{T}) 
C(C|T)3T(C|T)TCT(C|T)T(C|T)2T(C|T)(A|T)C(C|T)T 
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LONG6 l=20 
 
 

 
 
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.333333  0.000000  0.666667  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.833333  0.000000  0.166667  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.666667  0.000000  0.333333  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.500000  0.000000  0.500000  
 0.000000  0.166667  0.000000  0.833333  
 0.000000  0.000000  0.000000  1.000000  
 0.000000  0.833333  0.000000  0.166667  
 0.000000  0.000000  0.000000  1.000000  
 0.166667  0.333333  0.000000  0.500000  
 0.500000  0.333333  0.000000  0.166667  
 0.000000  0.333333  0.000000  0.666667  
 0.000000  0.500000  0.000000  0.500000  
 0.166667  0.000000  0.000000  0.833333  
 0.666667  0.000000  0.000000  0.333333  
 0.666667  0.166667  0.000000  0.166667  
 0.166667  0.000000  0.000000  0.833333  
 
W= 
({T},{C,T},{T},{C},{T},{C,T},{T},{C,T},{T},{T},{C},{T},{C,T},{A,C},{C,T},{C,T},{
T},{A,T},{A},{T}) 
 
T(C|T)TCT(C|T)T(C|T)T2CT(C|T)(A|C)(C|T)2T(A|T)AT 
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