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SUMMARY 

In oenology, microorganisms have been traditionally analysed using conventional 

techniques based on morphological tests supplemented with physiological tests or 

molecular techniques. These techniques allow obtaining accurate, repetitive and 

reproducible results, but requiring trained personnel and laborious and time consuming 

sample preparation. In the case of physicochemical parameters of grape must and wine, 

the conventional methodologies such as distillations and alkalimetric or iodimetric 

titrations are expensive, time consuming and poor environmentally friendly and have 

been gradually replaced by faster analytical technique such as spectrophotometric or 

enzymatic analysis specially in mid and large size wineries. Moreover, near infrared (NIR) 

and mid infrared (MIR) spectroscopies had been a revolution for wineries increasing 

extensively, the number of parameters of grape musts and wines analysed per hour. 

Infrared spectroscopy combined with multivariate analysis has been successfully used to 

study, discriminate and classify microorganisms. Attenuated total reflectance infrared 

spectroscopy (ATR-FTIR) provides bands from all the cellular components of 

microorganisms, mainly from cell membrane and cell wall that permit the classification of 

microorganisms. With the present work, we propose to extend the current applications of 

infrared technology to build up spectral models to study, discriminate and classify 

“unknown” wine yeasts species. The results from this project can provide the wine 

industry and research communities with simple, fast, non-destructive, accurate and 

sensitive technique for discriminating yeast strains commonly used for wine fermentation 

that are difficult to isolate and identify. The technique is simple, cost-effective, and 

requires low sample volume. Furthermore, once the instrument is purchased, there is 

minimal operational cost involved on performing this technique. Due to the use of MIR 

spectroscopy in wine quality control, the wine industry is already familiar with this 

technology. 

The first experimental study was based on performing the spectral analysis of 

different Saccharomyces cerevisiae strains fermenting grape must to obtain their unique 

signature profiles. Three commercial S. cerevisiae strains (ES454, E491, and ES181) and 

two grape musts (Grenache Blanc from Gandesa, Terra Alta, and Chardonnay musts 

from Lleida, Costers del Segre, respectively) were used. DNA extraction and PCR 

amplification were applied as reference techniques to prove strain differentiation. 

Microvinifications were performed with 150 mL of cleaned must at 17°C. Fermented 
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juices at exponential (48 and 120 h for Chardonnay and 198 h for Grenache blanc) and 

stationary phase (172 h for Chardonnay and 344 h for Grenache blanc) were centrifuged, 

and the pellets obtained were placed onto ZnSe crystal. Spectra were collected in the 

attenuated total reflectance (ATR) mode in the mid-infrared region (4000–700 cm
-1

) and 

analysed by a multivariate analysis technique, soft independent modeling of class analogy 

(SIMCA). Results showed that ATR-FTIR coupled to SIMCA analysis was a powerful 

tool to discriminate S. cerevisiae cells at strain level and detect biochemical changes 

experimented by yeast strains depending on their growth phase. The biochemical 

differences detected between S. cerevisiae strains at exponential and stationary phases 

were mainly related to differences in their cell wall composition. At exponential phase the 

main groups were related with glucans β(14) or β(16) and mannoproteins, and at 

stationary phase the main groups were linked to glucans, manoproteins and lipids. 

One of the common oenological practices is the addition of nitrogen to grape 

must to ensure optimal nutritional conditions of yeasts and prevent fermentation 

problems such as slow and sluggish fermentations. In the second study, we mainly 

focused on studying the potential of using ATR-FTIR in the mid-infrared range (MIR) 

combined with SIMCA analysis to study biochemical changes of S. cerevisiae cells 

supplemented with nitrogen at the beginning of alcoholic fermentation process. 

Microvinifications were performed with 150 mL of Grenache blanc cleaned must 

inoculated with a commercial strain of S. cerevisiae E491 with and without the addition of 

commercial inorganic and organic nitrogen preparations: 10 g/hL ammonium salts with 

thiamin nutrient as a inorganic source and 30 g/hL for organic nitrogen source rich in 

amino acids, vitamins and minerals. Fermentations were performed at 21ºC and samples 

by IR analysis were taken at 0 h (initial point), 18 h (early exponential phase), 42 h 

(exponential phase) and 90 h (stationary phase). Samples (1.5 mL) were taken from 

fermentation batches using sterile material and centrifuged (15900 g for 5 min at room 

temperature). After centrifugation, the supernatant was carefully removed, and the pellets 

were washed three times under the same conditions described above using 1 mL of saline 

solution. After the cleaning process, 1.5 µL of each pellet was placed onto Zinc Selenide 

(ZnSe) crystal in order to acquire the spectral data. Six spectra per each sample and time 

(0 h, 18 h, 42 h and 90 h) were collected in the attenuated total reflectance (ATR) mode 

in the mid-infrared region (4000-800 cm
-1

). 
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The SIMCA analysis confirmed that S. cerevisiae cells grown with the addition of 

inorganic and organic nitrogen were biochemically different from those cells grown 

without extra nitrogen added. Depending on the source of nitrogen used and the 

physiological phase studied, the yeast cell wall components that were revealed to 

differentiate no supplemented and supplemented S. cerevisiae cells were different. In the 

case of inorganic source of nitrogen, at exponential phase the components were protein 

structures and at stationary phase there was a contribution of lipid esters. Nevertheless, 

when a source of organic nitrogen was used, the main changes at exponential and 

stationary phase were produced by changes on nucleic acids and lipid esters. 

Wineries performing spontaneous fermentations, consider Non-Saccharomyces 

yeast species a key factor for their role on providing desired and distinct regional 

characteristics to their wines and for improving wine characteristics such as mouth-feel, 

complexity and integration of flavours. Traditionally, methods to discriminate yeasts are 

based on morphological tests supplemented with physiological tests. Molecular 

techniques such as restriction fragment length polymorphism analysis of PCR-Amplified 

Fragments (PCR-RFLP) could be used for the identification of different wine yeast 

species. Nonetheless, molecular techniques required trained personnel and sample 

preparation is laborious and time consuming. Therefore, there is a need for simple, high-

throughput, and reliable technique for rapid discrimination of Saccharomyces cerevisie 

and Non-Saccharomyces species in the wine sector. 

In the third study, the potential of using attenuated total reflectance infrared 

spectroscopy (ATR-FTIR) combined with multivariate analysis to discriminate S. cerevisie 

and Non-Saccharomyces wine yeast species was investigated. Thirty eight strains (twenty 

nine S. cerevisie  and nine Non-Saccharomyces) isolated from Spanish wines and 

identified by molecular techniques, were inoculated to Tempranillo thermovinificated red 

must and fermented juices were taken after 48 h at 28ºC. Pellets obtained after a 

centrifugation process, were placed onto diamond crystal. Spectra were collected in the 

attenuated total reflectance (ATR) mode in the mid-infrared region (4000–800 cm
-1

) and 

were analysed by a multivariate analysis technique (SIMCA). To discriminate between 

yeast strains, 2-classes SIMCA model of Non-Saccharomyces and S. cerevisiae strains was 

built up showing tight clustering but close grouping (interclass distance of 1.7). Then, two 

SIMCA models were created separately with IR data from Non-Saccharomyces and S. 

cerevisiae strains and were validated obtaining scores above 89%. Physiological growth 
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phase of each strain was taken into consideration to build up SIMCA models improving 

substantially the close grouping detected between yeasts strains or species. Discrimination 

between Non-Saccharomyces and S. cerevisiae strains was linked to cell wall components. 

To summarize, there is a need for simple, high-throughput, and reliable technique 

for rapid analysis of microorganism in the wine sector. The technology proposed after 

complete development, is desired to be able for rapid characterization of yeast used in 

winemaking sector. Some companies that are selling IR equipment’s have already 

developed applications with Fourier transform mid or near infrared spectroscopy to 

analyse quality routine and quality control parameters in wine or grape must but they have 

not develop any application to study yeast or bacteria. With the present work we offer the 

possibility of providing new applications of the traditional uses of infrared spectrometer 

for the winemaking sector. 
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RESUM 

En l'enologia, els microorganismes han estat analitzats tradicionalment mitjançant 

l’ús de tècniques convencionals o bé mitjançant tècniques moleculars. Aquestes tècniques 

permeten obtenir resultats precisos, repetitius i reproduïbles, però requereix personal 

format i una preparació complexa de la mostra. En el cas de paràmetres fisicoquímics de 

most de raïm i vi, les metodologies convencionals com ara destil·lacions i valoracions 

alcalimètriques o iodimètriques que són cares, laborioses i poc respectuoses amb el medi 

ambient. Aquestes, han estat reemplaçades gradualment per tècniques analítiques més 

ràpides com ara anàlisis espectrofotomètrics o enzimàtics, especialment en cellers mitjans 

i de grans dimensions. D'altra banda, l’espectroscòpia d’infraroig ja sigui proper (Near 

Infrared, NIR) o mitja (Mid Infrared, MIR), ha estat una revolució per als cellers 

augmentant àmpliament el nombre de paràmetres de mosts i vi analitzat per hora. 

L'espectroscòpia d’infraroig combinada amb l'anàlisi multivariant s'ha utilitzat amb èxit 

per estudiar, discriminar i classificar microorganismes. L’espectroscòpia infraroja de 

reflectància total atenuada (Attenuated Total Reflectance – Fourier Transform Infrered, 

ATR-FTIR) proporciona bandes de tots els components cel·lulars dels microorganismes, 

principalment de la membrana i la paret cel·lular que en permeten la seva classificació. 

Amb el present treball, es proposa estendre les aplicacions actuals de la tecnologia 

d'infraroig per construir models espectrals per estudiar, discriminar i classificar espècies 

"desconegudes" de llevats en el vi. Els resultats d'aquest projecte poden proporcionar a la 

indústria vitivinícola i a les comunitats científiques un tècnica simple, ràpida, no 

destructiva, precisa i sensible per discriminar diferents soques de llevat utilitzades 

habitualment per a la fermentació del vi. La tècnica és senzilla i rentable, i requereix un 

baix volum de mostra. A més, una vegada adquirit l'instrument, hi ha un cost operacional 

mínim implicat en la utilització d'aquesta tècnica. Atès a l’actual ús de l'espectroscòpia 

MIR en el control de qualitat del vi, la indústria vitivinícola ja hi està familiaritzada. 

El primer estudi experimental es basà en l'anàlisi espectral de diferents soques de 

Saccharomyces cerevisiae durant la fermentació alcohòlica de most de raïm per tal 

d’obtenir els seus perfils. Es van utilitzar tres soques comercials de S. cerevisiae (ES454, 

E491 i ES181) i dos mostos de raïm (Garnatxa Blanc de Gandesa, Terra Alta i 

Chardonnay de Lleida, Costers del Segre, respectivament). L’extracció d'àcid 

desoxiribonucleic (ADN) i l'amplificació per Polymerase Chain Reaction (PCR) es van 

utilitzar com a tècniques de referència per demostrar que les soques utilitzades eren 
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diferents. Les microvinificacions es van realitzar amb 150 mL de most net a 17 °C. Les 

mostres de most fermentant es van extreure en fase exponencial (48 i 120 h per 

Chardonnay i 198 h per Garnatxa blanca) i en fase estacionària (172 h per Chardonnay i 

344 h per Garnatxa blanca). Posteriorment es van centrifugar, i els pellets obtinguts es van 

col·locar sobre el cristall de selenur de zinc (ZnSe) posteriorment a la neteja per al seu 

anàlisi. Els espectres es van recollir mitjançant un accessori de reflectància total atenuada 

(ATR) en la regió de infraroig mitjà (4000-700 cm
-1
) i posteriorment van ser analitzats 

mitjançant una tècnica d'anàlisi multivariant, Soft Independent Modeling Class Analogies 

(SIMCA). Els resultats van mostrar que la tècnica ATR-FTIR acoblada a l’anàlisi SIMCA 

era una poderosa eina d’anàlisi per discriminar cèl·lules de S. cerevisiae a nivell de soca i 

detectar els canvis bioquímics que experimenten les diferents soques de llevat en funció 

de la seva fase de creixement. Les diferències bioquímiques detectades entre les soques 

de S. cerevisiae en les fases exponencial i estacionària, estaven relacionades amb diferents 

composicions a nivell de paret cel·lular. En la fase exponencial els grups principals es 

relacionaven amb glucans β(14) o β(16) i manoproteïnes, i en fase estacionària els 

grups principals estaven relacionats amb glucans, manoproteïnes i lípids. 

Una de les pràctiques enològiques comunes és l'addició de nitrogen al most per 

assegurar unes condicions nutricionals òptimes per als llevats i prevenir parades i/o 

fermentacions lentes. El segon estudi es va centrar en la possibilitat d'utilitzar la tècnica de 

ATR-FTIR en la regió de l’infraroig mitjà (MIR) en combinació amb l'anàlisi SIMCA per 

avaluar els canvis bioquímics de les cèl·lules de S. cerevisiae quan diferents tipologies de 

nutrients eren afegits a principis del procés de fermentació alcohòlica. Les 

microvinificacions es van dur a terme amb 150 mL de Garnatxa blanca, inoculant amb 

una soca comercial de S. cerevisiae E491 amb i sense l'addició de preparats de nitrogen 

inorgànics i orgànics comercials: 10 g/hL amb sals d'amoni de nutrients tiamina com una 

font inorgànica i 30 g/hL per a la font de nitrogen orgànic ric en aminoàcids, vitamines i 

minerals. Les fermentacions es van realitzar a 21ºC i els mostrejos es van realitzar a les 0 

h (punt inicial), 18 h (a principis de la fase exponencial), 42 h (fase exponencial) i 90 h 

(fase estacionària). Les mostres (1,5 mL) es van recollir de les diferents microvinificacions 

utilitzant material estèril i posteriorment es van centrifugar (15.900 g durant 5 min a 

temperatura ambient). Després de la centrifugació, el sobrenedant es va retirar amb cura, 

i el pellet resultant es van rentar tres vegades en les mateixes condicions descrites 

anteriorment usant 1 mL de solució salina. Després del procés de neteja, 1,5 µL de cada 
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pellet es va col·locar sobre un cristall ZnSe per tal d'adquirir els espectres. Sis espectres 

per cada mostra i temps de mostreig (0 h, 18 h, 42 h i 90 h) es van recollir utilitzant 

l’accessori de reflectància total atenuada (ATR) en la regió de l’infraroig mitjà (4000-800 

cm
-1

).  

L'anàlisi mitjançant SIMCA dels espectres va confirmar que les cèl·lules de S. 

cerevisiae inoculades en un most amb addició de nitrogen inorgànic i orgànic eren 

bioquímicament diferents d'aquelles cèl·lules inoculades en un most sense addició de 

nitrogen extra. Depenent de la font de nitrogen utilitzada i la fase fisiològica estudiada, els 

components de la paret cel·lular del llevat que van ser detectats per diferenciar cèl·lules 

de S. cerevisiae en mostos amb i sense addició eren diferents. En el cas de la font 

inorgànica de nitrogen, en la fase exponencial els components responsables de la 

diferenciació eren estructures de proteïnes, i en fase estacionària a diferència de la fase 

exponencial hi havia una contribució d'èsters lipídics. No obstant això, quan es va utilitzar 

una font de nitrogen orgànic, els principals canvis en la fase exponencial i estacionària van 

ser produïts per canvis en els àcids nucleics i èsters de lípids. 

Els cellers que realitzen fermentacions espontànies, consideren l’ús d’espècies de 

llevat no-Saccharomyces un factor clau per a dotar els seus vins amb qualitats diferents a 

la resta, proporcionant-l’hi característiques regionals i millorant les característiques del vi, 

com ara sensació en boca, la complexitat i la integració de sabors. Tradicionalment, els 

mètodes per discriminar els llevats es basen o bé en proves morfològiques completades 

amb proves fisiològiques o bé amb tècniques moleculars com ara l’anàlisi de 

polimorfismes de longitud dels fragments de restricció amplificats per PCR (Polymerase 

Chain Reaction - Restriction fragment length polymorphism, PCR-RFLP) que poden ser 

utilitzats per a la identificació de diferents espècies de llevats. No obstant això, les 

tècniques moleculars requereixen disposar de personal capacitat i d’una preparació de 

mostra laboriosa i complexa. Per tant, en el sector vitivinícola existeix la necessitat de 

tècniques simples i fiables per a la discriminació ràpida de Saccharomyces cerevisiae i 

espècies no-Saccharomyces. 

En el tercer estudi, s’ha avaluat el potencial de l'ús de reflectància total atenuada i 

l’espectroscòpia infraroja (ATR-FTIR) combinada amb l'anàlisi multivariant per a la 

discriminació d’espècies de S. cerevisiae i no-Saccharomyces. Un total de trenta-vuit 

soques de llevat (vint-i-nou de S. cerevisiae i nou no-Saccharomyces) aïllades de raïm de 
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varietats autòctones espanyoles i identificades mitjançant tècniques moleculars van ser 

inoculades en most de la varietat Ull de Llebre que va fermentar a 28ºC durant 48h. Els 

pellets obtinguts després d'un procés de centrifugació i neteja, es van col·locar en un 

cristall de diamant. Els espectres es van recollir mitjançant la reflectància total atenuada 

(ATR) a la regió mitjana de l'infraroig (4000-800 cm
-1

) i es van analitzar mitjançant una 

tècnica d'anàlisi multivariant (SIMCA). Per discriminar entre les soques de llevat, es van 

construir models SIMCA de 2 classes de les soques no-Saccharomyces i S. cerevisiae 

mostrant una bona agrupació amb una distancia no suficientment gran (distància entre 

classes d'1,7). Llavors, es van crear dos models SIMCA per separat amb les dades d'IR de 

les soques no-Saccharomyces i S. cerevisiae. Aquests van ser validats interna i 

externament obtenint un percentatge d’encert superior al 89%. Per millorar 

substancialment l’agrupació entre soques es va tenir en compte la fase de creixement de 

cada soca. Els models SIMCA van millorar substancialment fent més estreta l’agrupació 

entre les soques d’una mateixa espècie i major la distància entre soques de diferents 

espècies. La discriminació entre soques no-Saccharomyces i soques de S. cerevisiae estat 

en tots els casos vinculada a diferents components de la paret cel·lular. 

En resum, en el sector vitivinícola existeix una necessitat de metodologies simples, 

fiables i rentables per a l'anàlisi de microorganismes. La tecnologia proposada en el 

present estudi després del seu total desenvolupament, és possible que sigui capaç d’oferir 

una caracterització ràpida de llevats complint amb les característiques anteriors. Diverses 

empreses comercialitzadores d’equips d'IR han desenvolupat aplicacions per l’anàlisi de 

múltiples paràmetres rutinaris de control de qualitat en most i vi, però no han 

desenvolupat encara cap aplicació per a l’estudi de llevats o altres microorganismes en el 

sector enològic. Amb el present treball s’ofereix la possibilitat d’incrementar les 

aplicacions dels tradicionals espectròmetres d’infraroig en el sector vitivinícola. 
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1.1. Fundamentals of Infrared Spectroscopy 

Infrared spectroscopy is an analytical technique based on the interaction of 

electromagnetic radiation at infrared range with molecules (Sandt et al., 2003). When 

infrared radiation interacts with the sample, some of the radiation is absorbed by the 

chemical bounds of its molecules and can be easily measured. Each functional group 

absorbs at specific wavenumber producing a bound vibration (Colthup et al., 1975; 

Griffith and de Heaseth, 2007). The spectrum of each sample is unique being a 

“fingerprint” that allows its identification with certainty (Stuart, 2006; Griffiths and de 

Haseth, 2007; Smith, 2011). Mainly types of vibrations are observed in infrared 

spectroscopy, vibrations along chemical bonds called stretching vibrations (ν) that 

produce bond-length changes that can be symmetrical (stretching in phase) or 

asymmetrical (stretching out of phase), vibrations linked to changes in bond angles called 

bending vibrations that can be produced in plane (δ, called scissoring) or out-of-plane (π, 

called twisting) or rocking and wagging were bond length and bond angle is maintained 

stationary (Stuart, 2005). These main types of vibrations are summarized in Figure 1.1. 

 

 

 

 

 

 

 

 

 

Figure 1.1.Main types of molecular vibrations in infrared spectroscopy. 

 

Symmetrical stretching Asymmetrical stretching Scissoring
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For instance, for a nonlinear molecule with Y number of atoms, there are 3Y-6 

fundamental motions of the molecule atoms, or 3Y-6 fundamental vibrations or normal 

modes. A normal mode of vibration is infrared active if there is a change in the dipole 

moment of the molecule during the course of the vibration (Berthomieu et al., 2009). 

When a positive (+z) and negative charge (–z) is separated by a distance (d), the dipole 

moment (μ) is equal to the magnitude of the charge multiplied by this distance (Equation 

1.1). 

      (1.1) 

In order to have an infrared spectrum, the molecule basically needs to have a 

dipole moment due to the fact that symmetric vibrations are usually not detected at the 

infrared range especially when molecules have centres of symmetry (Berthomieu et al., 

2009). Nitrogen and chloride in gas phase are examples of infrared inactive molecules. 

The infrared region of the electromagnetic spectrum ranges from 12.500 to 10 cm
-1

 and is 

divided into three different regions according to their relation with the visible spectrum. 

These regions are called Near-infrared (NIR, from 12.500 to 4.000 cm
-1

), Mid-infrared 

(MIR, from 4.000 to 400 cm
-1

) or Far-infrared (FIR, from 400 to 100 cm
-1

) (Kümmerle et 

al., 1998). Figure 1.2 shows the location of NIR and MIR on the set of spectral regions is 

shown: 

 

 

Figure 1.2. Spectral regions of interest for analytical purposes (adapted from Dufour, 2009 in 

Infrared Spectroscopy for Food Quality Analysis and Control, Chapter 1). 

X-ray Far UV Near UV Visible NIR MIR Far IR

0.5 10 nm 200 350 nm 800 2500 nm

4000 cm-1

25 µm

400 cm-1

100 µm

100 cm-1

Micro waves Radio frequencies

100 µm 1 cm 1 m10 cm1 mm

UNIVERSITAT ROVIRA I VIRGILI 
APPLICATION OF INFRARED SPECTROSCOPY IN MID-INFRARED RANGE COMBINED WITH MULTIVARIATE ANALYSIS TO STUDY YEASTS 
INVOLVED IN WINE PRODUCTION 
Miquel Puxeu Vaqué 



Introduction & Objectives 

5 

Usually, a NIR spectrum is quite complex with road overlapping bands and large 

baselines variations leading to difficult interpretations. However, mathematical processing 

techniques such as derivatization and deconvolution can be used as powerful tools to 

improve spectral characteristics removing baselines shifts, improving bands resolution and 

reducing the variability between replicates, and also reducing bands width and resolving 

overlapped bands, respectively (Tooke, 1988; Subramanian and Rodríguez-Saona, 2009). 

In NIR spectrum, the main absorption bands detected are produced by stretching 

vibrations of hydrogen atoms covalently bonded to carbon, oxygen or nitrogen. 

Therefore, a large number of organic materials and food and agricultural products are 

suitable to be analyzed by NIR spectroscopy (Osborne et al., 1993; Batten 1998; Gishen 

et al., 2005). For instance, NIR spectroscopy has been extensively used to determine 

physico-chemical parameters in a large variety of food products such as meat, fruit and 

vegetables, dairy products, cereals, beverages and tea (Woodcock et al., 2008; Lin et al., 

2014; Jamshidi et al., 2015; Lorente et al., 2015; Schmutzler et al., 2015). More recent 

NIR spectroscopy applications are focused on determination of total phenols in cocoa 

beans (Huang et al., 2014), sorting of pistachio nuts in-shell and without at real time (Haff 

et al., 2008), discrimination of honey taking into account their flower origin (Tewari and 

Irudayarj, 2005) and identification of transgenic foods in order to be compared with 

traditional methodologies (Alishahi et al., 2010). Moreover, NIR spectroscopy combined 

with chemiometric analysis has been also used as a rapid method to discriminate 

microorganisms such as Bacillus species and pathogenic and non-pathogenic E. coli 

strains (Sivakesava et al., 2004; Yue et al., 2010; Ghosh et al., 2015). 

MIR is a very robust and reproducible region allowing structural elucidation and 

compound identification even with samples with subtle chemical differences (Naumann, 

2006; Stuart, 2006). MIR spectrum is mainly divided into three regions: the region above 

3000 cm
-1

 that include bands of hydroxyl or amino groups, the region between 3000 and 

1500 cm
-1

 that include stretching vibrations of acyl chain, carbonyl and alkenes groups and 

the region below 1500 cm
-1

 characterized mainly by bending vibrations and some 

stretching vibrations of acyl chain and functionalized groups (Pico, 2012). In the last two 

decades, MIR spectroscopy has grown significantly, especially for food applications (Pico, 

2012). There are commercial MIR equipment’s and spectral data bases created for 

several food applications such as the detection of honey adulteration with sugars 

(Sivakesava and Irudayaraj, 2002), extra virgin olive oil adulteration with cheaper oils 
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(Yang and Irudayaraj, 2001; Yang et al., 2005), the quantification of astringency in wine 

(Costa et al., 2015), for wine quality or authenticity (Banc et al., 2014) or phenolic 

compounds quantification during red winemaking process (Fragoso et al., 2011ab). MIR 

spectroscopy combined with chemiometric analysis has been also used as a rapid and 

reproducible method to detect, identify and characterize bacteria and other 

microorganisms (Sivakesava et al., 2004; Dziuba et al., 2007; Dziuba et al., 2012; 

Wenning et al., 2013). 

FIR region is considered an uncomfortable region where conventional infrared 

methods cease to be efficient while microwave techniques cannot yet be applied in a 

straightforward way (Rothschild et al., 1970). A large part of the far-infrared frequency 

range is also accessible by Raman spectroscopy, although the energy levels concerned are 

the same in both cases, the selection rules governing transitions between these levels are 

different (Stuart et al., 2004). Raman spectroscopy has been introduced as a simple, fast 

and reliable technique for food analysis in the same way that NIR and MIR spectroscopy 

since it provides useful information about the molecular structure. Raman spectra have 

fingerprint properties making them very useful for analytical purposes (El-Abassy et al., 

2015). Despite the fact that the number of Raman spectroscopy applications has been 

steadily increasing in various scientific fields over the last decades, this technique has still 

to be considered as just emerging technique in food industry (El-Abassy et al., 2015). 

Some applications had been developed for rapid determination of free fatty acids in extra 

virgin olive oil (El-Abassy et al., 2009), analytical discrimination between caffeine and 

demethylated analogues of pharmaceutical relevance (Edwards et al., 2005), 

determination of fat milk content (El-Abassy et al., 2011a) and discrimination between 

Arabica and Robusta green coffe (El-Abassy et al., 2011b). 
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1.1.1. The Interferometer (Michelson Interferometer) 

An interferometer is an optical device that allows the generation of interference 

patterns or interferograms in a controlled form (Stuart et al., 2004; Subramanian and 

Rodríguez-Saona, 2009). The main parts are the source (that emits light in the IR region), 

the beam splitter (that divides the IR light in two and recombines the light from two 

mirrors), the movable mirror (it moves along the axis from and towards the beam splitter) 

and the stationary mirror (located back to the beam splitter) (Figure 1.3). The position of 

the two mirrors modifies the distance travelled by the two light beams and is called optical 

path difference (OPD) (Ikemoto et al., 2015). 

 

 

 

 

 

 

Figure 1.3. Diagram of interferometer designs by Michelson (adapted from Subramanian and 

Rodríguez-Saona, 2009 in Infrared Spectroscopy for Food Quality Analysis and Control, Chapter 7). 

 

When the two mirrors are at the same distance (zero path difference, ZPD) the 

reflected light beams are in phase and interfere constructively obtaining the highest 

intensity during constructive interference. This case only occurs when the OPD between 

the mirrors is an integer (n) multiple of the wavelength (λ). Otherwise, if the mirrors are 

not in phase, the interference is destructive, leading to a beam of low intensity. Moreover, 

a completely destructive interference could be created when the path difference is (n + ½) 

multiple of the wavelength. In other cases, the path differences constructive and 

destructive take place obtaining light intensity variations. (Subramanian and Rodríguez-

Saona, 2009). 

The plot resulting of the intensity of light (in volts) over the OPD is known as 

interferogram (Figure 1.4). The main parts are known as Centerburst and Wings. The 

Centerburst represents the total intensity of the source without the sample signal 
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interference and provides the total amount of energy from the source. The Wings are the 

parts of the interferogram at either side of the Centerburst and are where constructive and 

destructive interferences take place at varying level (Smith, 2011). 

 

 

Figure 1.4. Typical interferogram acquired by a modern FTIR (adapted from Smith, 2011). 
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1.1.2. Fourier Transformation 

Fourier transform (FT) is the mathematical procedure applied to interferograms 

to obtain the desired spectrum. In Figure 1.4 could be seen two different interferograms 

with and without the presence of sample, the FT of the both interferograms and the 

resulting spectrum obtained after rationing truncation (Subramanian and Rodríguez-

Saona, 2009; Smith, 2011). 

The invention of fast Fourier transform (FFT), was an improvement of the first 

FT, by Cooley and Tukey (1965) improving the performances of these early FTIR 

spectrometers being the first commercial FTIR spectrometers in late 1960s (Cooley and 

Tukey et al., 1965). Nowadays, due the rapid commercial development and extensive 

research, FTIR is considered one of the most powerful techniques for chemical analysis 

because its simplicity, sensitivity, versatility, speeds of analysis and wide range of 

applications (Subramanian and Rodríguez-Saona, 2009). 

 

 

Figure 1.5. Illustration of how a mid-infrared spectrum is obtained from the interferogram 

(adapted from Subramanian and Rodríguez-Saona, 2009 in Infrared Spectroscopy for Food 

Quality Analysis and Control, Chapter 7).  
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1.1.3. Infrared Spectroscopy Work Modes 

Depending on the way that infrared radiation interacts with the sample, two modes 

of work with infrared spectroscopy can be defined (Stuart, 2005; Naumann, 2006; 

Alvarez-Ordoñez et al., 2011) Transmission and Reflectance methods (Attenuated Total 

Reflectance spectroscopy, Specular Reflectance spectroscopy, Diffuse Reflectance 

spectroscopy) (Stuart, 2005; Subramanian and Rodríguez-Saona, 2009). A third way of 

working is Infrared Spectroscopy is using a microscope coupled to a FTIR, called FTIR 

microspectroscopy. 

 

1.1.3.1. Transmission Methods 

 Transmission spectroscopy is the oldest and most used straightforward infrared 

method (Stuart, 2004). This technique is based on de the absorption of infrared radiation 

at a specific wavenumber as it passes through a sample (Stuart, 2005; Naumann, 2006). 

Using this approach, it is possible to analyse samples in liquid, solid or gas state using 

specific transmission cells per each application (Subramanian and Rodríguez-Saona, 

2009). For instance, when samples are liquid, fixed and semi-permanent cells filled for 

instance with syringe port or peristaltic pumps can be used. Some authors have used these 

systems to perform multi-component analysis such as alcoholic strength, total acidity, 

volatile acidity, pH, malic and lactic acid, glucose and fructose content for wine and must 

(Patz et al., 1999; Nieuwoudt et al., 2004; Patz et al., 2004; Lachenmeier, 2005; Triebel et 

al., 2007). Transmission spectroscopy has been also used to analyse microorganisms 

(Foster et al., 2004). For instance, Baldauf et al., (2007) used transmission MIR 

spectroscopy to differentiate Salmonella enterica serovars and Dziuba et al., (2006) to 

identify lactic acid bacteria at genus level. 

 

1.1.3.2. Reflectance Methods 

Reflectance methods are mainly divided into two groups depending if the 

reflexion of the IR light is internal or external. Attenuated total reflectance (ATR) is a 

type of internal reflectance technique based on the total internal reflection phenomenon. 

2011). Studied sample is placed onto crystal with a high refractive index (higher than 

studied sample) and when the IR radiation interacts with the crystal, an evanescent wave is 

UNIVERSITAT ROVIRA I VIRGILI 
APPLICATION OF INFRARED SPECTROSCOPY IN MID-INFRARED RANGE COMBINED WITH MULTIVARIATE ANALYSIS TO STUDY YEASTS 
INVOLVED IN WINE PRODUCTION 
Miquel Puxeu Vaqué 



Introduction & Objectives 

11 

produced which penetrates into the sample and into the detector (Naumann, 2006; 

Stuart, 2006; Smith, 2011). Figure 1.6 shows a diagram of ATR work mode: 

 

Figure 1.6. Schematic diagram of ATR transmission FTIR sampling techniques (adapted Stuart, 

2004). 

 

Reflectance techniques may be used for samples that are difficult to analyse by the 

conventional transmittance methodology. The intensity of the reflected light depends on 

the sample preparation size, the shape of its particles and its molecular organization 

(Smith, 2011). Unlike transmittance, reflectance involves easier and faster sample 

preparation, the depth of radiation penetration into the sample is not exactly known and 

the surface of the sample influences the spectra more than the interior (Subramanian et 

al., 2006; Subramanian et al., 2007). 

Attenuated total reflectance (ATR) is a type of reflectance technique based on 

total internal reflection (Stuart, 2005; Naumann, 2006; Smith, 2011; Alvarez-Ordóñez et 

al., 2011). The IR radiation travels from a medium with higher refractive index (ATR 

crystal) to a medium with lower refractive index (sample), and some amount of light is 

reflected back into the low refractive index medium (Stuart, 2005; Smith, 2011). The 

depth of penetration of IR radiation in the ATR crystal is a function of wavelength (λ), 

the refractive index of the sample (n1) the refractive index of the crystal, (n2) and the angle 

of incident radiation, ( ). The depth of penetration (dp) for a non-absorbing medium is 

given by the following Equation 1.2 (Stuart, 2005): 

 

   (    ) (        (     )
  

 

 ) (1.2) 
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The ATR crystals are selected by their low solubility in water and their high 

refractive index. The most used crystals are zinc selenide (ZnSe), germanium (Ge), 

diamond or thallium/iodide (KRS-5) (Stuart, 2005). Their properties are shown in Table 

1.1. 

Table 1.1. Main properties of common ATR crystals (adapted from Smith, 2011). 

ATR Crystal Refractive index Wavenumber Range pH Range 

ZnSe 2.42 15 000 – 600 5 – 9 

Ge 4.00 5 500 – 600 1 – 14 

Diamond 2.42 
30 000 – 2 200 

2000 - 400 
1 - 14 

KRS-5 2.37 20 000 - 250 5 - 8 

 

Numerous researchers have used ATR spectroscopy combined with 

chemometrics to analyse microorganisms being the ZnSe crystal one the most suitable for 

this application (Borel et al., 1993; Sivakesava et al., 2004; Branan et al., 2007). For 

example, Suci et al., (1998) studied the interactions between antimicrobial agents and 

bacterial biofilm formation. Kümmerle et al., (1998) obtained fast and reliable 

identification of food-borne yeasts developing a standardized sample preparation 

procedure and to select the most significant spectral windows for efficient identification. 

Gupta et al., (2007) analysed food-borne pathogens such as Escherichia coli O26, S. 

typhimurium, Yersinia enterocolitis and Shigella boydii. It is worty to mention that ATR 

spectroscopy is generally used to analyse samples with high water content (Friedel et al., 

2013).  

Diffuse reflectance is based on external reflectance measurements when the IR 

beam is reflected back from the sample surface in random direction, involving both 

absorption and scattering (Stuart, 2005; Naumann, 2006; Subramanian and Rodríguez-

Saona, 2009). The scattering is due to the rough sample surface and this technique is well 

suited for highly scattering samples such as freeze-dried biological samples or powder 

(Naumann, 2006). Diffuse reflectance spectra could be nosier than ATR spectra due to 

light losses when IR radiation is reflected from rough surface (Smith, 2011). The 

packaging density and particle size influence the intensity of the output beam and hence 

the spectral intensity (Subramanian and Rodríguez-Saona, 2009). A diffuse reflectance 
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accessory employs two flat mirrors to direct the light and one concave focusing mirror 

exactly above the sample to concentrate the IR beam on to the sample (Subramanian and 

Rogríguez-Saona, 2009). A diagram of Reflectance sampling technique is shown in Figure 

1.7. 

 

Figure 1.7. Schematic diagram of Diffuse Reflectance transmission FTIR sampling techniques 

(adapted from Subramanian and Rodríguez-Saona, 2009 in Infrared Spectroscopy for Food 

Quality Analysis and Control, Chapter 7). 

 

Diffuse reflectance technique has been also tested to study microorganisms in 

different food matrices (Goodacre et al., 2000; Rodríguez-Saona et al., 2004). When this 

technique is used to differentiate bacteria, the spectra obtained shows the entire cell 

biochemistry (Winder et al., 2004a). Nonetheless, some studies have stated that bacteria 

differentiation at strain level is more suitable when IR spectra are collected using ATR-

FTIR (cell surface chemistry) rather than diffuse reflectance spectroscopy (Winder et al., 

2004ab). 

1.1.3.3. FTIR Microspectroscopy 

This technique combines an infrared spectrometer with a microscope in order to 

study very small sample quantities (Stuart et al., 2005). FTIR microspectroscopy offers 

high quality spectra recorded from much less sample material. For microbiological 

analysis, this technique can reduce the incubation time from approximately 24 h to 6-10 h 

(Choo-Smith et al., 2001; Maquelin et al., 2003). For example, Yu et al., (2005) used 

FTIR microspectroscopy to discriminate and detect pathogenic strains of S. enteritidis, S. 

typhimurium), E. coli (serotypes O26, O27 and O157:H7), Y. enterocolitica and Shigella 

8

Detector

Source
Mirror

Sample

UNIVERSITAT ROVIRA I VIRGILI 
APPLICATION OF INFRARED SPECTROSCOPY IN MID-INFRARED RANGE COMBINED WITH MULTIVARIATE ANALYSIS TO STUDY YEASTS 
INVOLVED IN WINE PRODUCTION 
Miquel Puxeu Vaqué 



CHAPTER 1 

14 

boydii. Wenning et al., (2002) used FTIR microspectroscopy to identify a total number of 

63 yeast strains. 

 

1.2. Multivariate Analysis 

Multivariate analysis is a statistical method used to analyse multiple variables of data 

such as IR spectra data applying mathematical models (Miller and Miller, 2005; 

Naumann, 2006; Oliveri et al., 2011). Multivariate analysis is divided into two different 

categories, unsupervised and supervised (Beebe et al., 1998; Brereton, 2003; Avarez-

Ordóñez and Prieto, 2012) depending on the previous knowledge of the data analysed.  

Unsupervised techniques do not require dependent variable for modeling. Instead, 

these techniques search for patterns among the independent variables, and different 

group of samples are formed based on the structure of variables (Anzanello et al., 

2014ab). Some examples of unsupervised methods are Principal Component Analysis 

(PCA) and Hierarchial Cluster Analysis (HCA), among others (Dunn and Wold, 1995; 

Kansiz et al., 1999; Brereton, 2003; Naumann, 2006; Alvarez-Ordoñez et al., 2011; 

Anzanello et al., 2014). Supervised multivariate methods are applied on two groups of 

variables (independent and dependent) establishing a relationship between independent 

and dependent variable, yielding a model to classify new samples into categories (Huang 

et al., 2015). Some examples of supervised methods are K-Nearest Neighbor (KNN), 

Linear Discriminant Analysis (LDA) and Soft Independent Modeling Class of Analogy 

(SIMCA), among others (Dunn and Wold, 1995; Kansiz et al., 1999; Brereton, 2003; 

Naumann, 2006; Naumann, 1991; Anzanello et al., 2014ab). Moreover, for quantitative 

prediction, multivariate regression methods such as Partial Least Squares Regression 

(PLSR) and Principal Component Regression (PCR) may be used (Haaland and Thomas, 

1988; Brereton, 2003; Miller and Miller, 2005). 

 

1.2.1. Unsupervised Techniques 

1.2.1.1. Principal Component Analysis 

Principal Component Analysis (PCA) is based on the assumption that high 

variance value or high variability is synonymous of high amount of information (Dunn 
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and Wold, 1995; Brereton, 2003). Therefore, PCA algorithms search for the maximum 

variance direction in the multidimensional space originated by all the data analysed. The 

direction in which exists the high variance represents the first principal component (PC), 

the direction that contains the maximum information after the first PC, and at the same 

time is orthogonal to the first is called the second component. The process continues 

until desired variance is explained or until all variance is explained (Jolliffe, 1982). All the 

studied samples could be projected in the space created by the new PC, and the 

coordinate values are called scores. At the same time, the PCs are expressible as a lineal 

combination of the original variables and the coefficients which multiply each variable are 

called loadings (Dunn and Wold, 1995). PCA has been used in NIR and MIR 

spectroscopy by numerous authors in the last decade (Kansiz et al., 1999; Rodríguez-

Saona et al., 2001; Lin et al., 2004; Al-Qadiri et al., 2008; Sundaram et al., 2012). 

1.2.1.2. Hierarchial Cluster Analysis 

In Hierarchial Cluster Analysis (HCA) the clustering of samples is based in inter-

object distances in high dimensional space (Miller and Miller, 2005). Different distances 

measurements such as Euclidean and Mahalanobis could be used to determine the 

similarity between samples (Naumann, 2006). Sample classification by HCA involves 

calculating the distance between pairs of samples and grouping the samples with smallest 

distance into the same cluster. Then, the distance of all the remaining samples and this 

first clusters is calculed, and samples with the closest intercluster distance are grouped in a 

new single cluster. This procedure is repeated different times until all samples are 

grouped in a cluster (Naumann, 2006). Results of HCA are shown in dendrograms 

helping the identification of groups of similar individuals (Sandt et al., 2003). 

In infrared spectroscopy, HCA has been also used to discriminate 

microorganisms (Kümmerle et al., 1998; Gomez et al., 1999; Ngo Thi and Naumann, 

2007; Alvarez-Ordoñez and Prieto, 2010). Nonetheless, some studies have shown that 

HCA was not useful to differentiate bacteria such as Lactobacillus species analyzed 

byFTIR spectroscopy (Curk et al., 1994; Oust et al., 2004).  
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1.2.2. Supervised Techniques 

1.2.2.1. Soft Independent Modeling Class Analogy  

Soft Independent Modeling Class Analogy (SIMCA) is a classification 

methodology based on individual Principal Component Analysis modelling of each class 

that can classify samples according to the training sample data (Brereton, 2003; Alvarez-

Ordóñez et al., 2011; Al-Qadiri et al., 2008). SIMCA technique is used to predict 

unknown samples and three different situations could be presented: a new sample may be 

classified as no belonging to any of the set of known classes, a new sample fits to one of 

the pre-defined classes, or finally fit to more than one pre-defined classes (Ergon et al., 

2002; Naes, et al., 2001). Moreover, SIMCA also allows knowing the important variables 

in the training sample (Brereton, 2003). The outputs are mainly class pojections, 

interclass distances, misclassifications and discriminating power (Brereton, 2003). Class 

projections are three dimensional representations of the samples clusters where 95% 

probably clouds are built around the clusters based on PCA scores (Subramanian et al., 

2007; Grasso et al., 2009). Misclassifications algorithm indicates that the training set is 

homogeneous and all samples are correctly classified into their corresponding category. 

Interclass distances (ICD) are Euclidian distances between centers of clusters, and above 

3.0 are considered significant to identify two clusters as different classe (Dunn and Wold, 

1995; Brereton, 2003). Discriminating power is a measure of variable importance in 

infrared frequencies and contributes to the development of the classification models 

(Brereton, 2003). 

SIMCA have been applied to discriminate, classify and predict vegetative cells and 

spores (Whittaker et al., 2003; Baldauf et al., 2006; Manning et al., 2008; Kansiz et al., 

2009; De Lamo-Castellví and Rodríguez-Saona et al., 2011; Grewal et al., 2015). 

 

1.2.3. Signal Pre-Processing 

The signals generally required to be suitably pre-treated since the analytical 

information is not the exclusive component due a number of different variations generally 

affect signals. Due to these unwanted variations, signal pre-processing aimed improves the 

quality of signals and the conversion of data to valuable information (Pico, 2012). In 

particular the main three objectives of data pre-processing are reduction of random noise, 
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reduction of systematic unwanted variations and reduction of data size. The techniques 

for reduction random noise include the moving average filters, the Savitzky-Golay 

smoothing (Savitzky and Golay, 1964) and Fourier Transform based filters (Reis et al., 

2009). 

In order to minimize or remove unwanted systematic effects a number of 

mathematical methods should be employed, such as the standard normal variate (SNV) 

transform and derivatives. SNV or row auto-scaling is particularly applied in spectroscopy 

since it is useful to correct baseline shifts and global intensity variations (Barnes et al., 

1989). Each signal is row-centred by subtracting its mean from each single value, and then 

scaled by dividing the signal standard deviation. After the transformation, each single 

signal presents mean equal to zero and standard deviation equal to one. SNV has the 

peculiarity of possibly shifting informative regions along the signal range, so should be 

performed with caution (Fearn et al., 2009). Derivatives are the main pre-processing 

techniques used in order to reduce random noise and unwanted systematic effects in 

spectroscopy. Derivatives profiles usually exhibit an increased apparent resolution of 

overlapping bands and may accentuate small structural differences between nearly 

identical signals (Taavitsainen et al., 2009). First derivative of a signal, in our case a 

spectrum signal (y=f(x)), consist in the change of y with x(y’=dy/dx). The way to interpret 

the first derivative is as the slope of the tangent line to the signal, providing a correction 

for the baseline shift (Pico, 2012). Otherwise, the second derivative could be understood 

as a further derivative of the first derivative (y’’=d
2

y/dx
2

) representing a measure of the 

curvature of the original signal. The transformation allows the correction of both baseline 

and shifts. But second derivative signal pre-processing also have a disadvantage, which is 

the enhancement of the random noise of the signal. 

The analysis of microorganism by NIR or MIR spectroscopic methods has 

yielded to high dimension vectors containing a multiple dependent variables (Shaw et al., 

1999). Therefore, advanced data pre-processing and statistical analysis are required to 

distinguish minor differences in the spectral features (Lu et al., 2011). Different options of 

data processing have been selected by researchers working with FTIR spectroscopy. For 

instance, Yu et al., (2004) used first derivative instead of the original spectra to enhance 

enhancing the important IR bands of different microorganisms and to amplify minor 

differences in the spectra. Wenning et al., (2002) used second derivative for a better 

identification of yeasts analysed by identification by microspectroscopy. These authors 
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also applied smoothing to diminish the effects of baseline shifts and to enhance the 

resolution of complex bands. 

 

1.3. Saccharomyces cerevisiae Cell Wall Structure and Composition 

Saccahromyces cerevisiae cells are well known to have an important role on the 

production of a variety of fermented foods and beverages such as bread, beer and wine 

(Querol and Fleet, 2006; Braconi et al., 2011). S. cerevisiae cells are eukaryotics and have 

mainly two envelopes: the cell wall and the cellular membrane separated by the 

periplasmic space (Braconi et al., 2011). Their cell wall is composed of a 10 nm thick 

layer of polysaccharides, predominantly β-glucans and mannoproteins. It serves as the 

interface between the cell and the neighbouring environment providing osmotic and 

physical protection and determining the shape of the cell (Klis et al., 2002). The major 

load-bearing polysaccharide is a moderate branched β(13) glucan (Fleet, 1991; Kitagaki 

et al., 1997). Due to the presence of side-chains, β(13) glucan molecules can only 

locally associate through hydrogen bonds, resulting the formation of a continuous, three 

dimensional network. In Figure 1.8 schematic representation of cell wall components is 

shown: 

 

Figure 1.8.Schematic representation of cell wall components and their linkages. The β(13), 

β(14) and β(16) glucosidic bonds are represented as green, blue, and orange respectively. 

GlcNac: N-acetylglucosamine; CWP: Cell wall proteins; PIR: proteins; ASB: Alkali-sensitive 

bonds; GPI: Glycosyl-phosphatidylinositol; GPI Rem: remnant GPI anchor. (adapted from 

Lesage et al., 2006). 

Numerous studies have shown that the cell wall external protein layer has at least 

20 different glycoproteins and its composition, structure and thickness may vary 

depending on growing and environmental conditions (Shimoi et al., 1998; Aguilar-
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Uscanga et al., 2003; De Groot et al., 2004). For instance, all these cell wall components 

contribute substantially to the chemical and sensory profile of wines (Braconi et al., 

2011).In Table 1.2 is shown S. cerevisiae cell wall components: 

Table 1.2. Macromolecules of the S. cerevisiae cell wall from the outside to the inside (adapted 

from Klis et al., 2006). 

Macromolecule % of wall mass Mean Mr (DP)(kDa) 

Mannoproteins 30-50 Highly variable 

β(16) Glucan 5-10 24 (150) 

β(13) Glucan 30-45 240 (1500) 

Chitin 1.5-6 25 (120) 

 

Mannoproteins can be linked to β(16) glucose chains through a processed 

glycosylphosphatidylinositol (GPI) anchor or to β(13) glucans through an alkali-labile 

bond (Kollar et al., 1995; Kollar et al., 1997; Kapteyn et al., 1999; Dijkgraaf et al., 2002; 

Klis et al., 2002). 

Chitin is a linear polymer of β(14) linked to N-acetylglucosamine (GlcNAc) that 

forms microfibrils stabilized by hydrogen bonds. The lengths of chitin chains in the cell 

wall and in bud scars are estimated to be approximately 100 and 190 GlcNAc residues, 

respectively (Kang et al., 1984; Klis et al,. 2002). In the cell wall, about 40 to 50% of the 

chitin chains are linked to the non-reducing end of β(13) glucan via a β(14) bond 

engaging the reducing end of the chitin polymer (Kollar et al., 1995). Its crystalline 

structure confers stretching resistance to the cell wall. 

 

1.3.1. Wine Definition and Fermentation Processes 

Wine is a complex mixture of chemical compounds in a hydro-alcoholic solution 

(Ribéreau-Gayon et al., 2006). These chemical compounds contribute to the wine 

characteristics such as colour, aromatic properties, phenol composition, and mouth 

feeling among others. Moreover, the wine characteristics also depend on other factors 

such as viticulture and oenological practices, grape variety, grape maturation, storage 

conditions, oxygen management and yeast strain used during the alcoholic fermentation 
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(Esteruelas et al., 2015; Hernandez-Orte et al., 2015; Kizildeniz et al., 2015). Grapes are 

the raw material used to elaborate wine and are pressed or macerated to avoid or increase 

the contact area between liquid phase and the grape skins to produce different types of 

wines, white and red. (Figure 1.9). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. Main steps outline of white and red wine production process from white and red 

grapes respectively (adapted from Pretrorius et al., 2000). Green: white wine; Red: red wine and 

Blue: common steps in white and red. 

 

Grape must is mainly composed by sugars (glucose and fructose) and organic 

acids (tartaric, malic and lactic acids and in less amount succinic and ceto acids). The 

main process in wine production involves the transformation of grape must into wine and 

happens through an alcoholic fermentation (AF) perform by one or more strains of yeast, 

typically S. cerevisiae (Sumby et al., 2014). The main role of yeasts during the 

fermentation process is the biotransformation of sugars into ethanol and carbon dioxide. 

In 1890, Müller-Thurgau introduced the concept of inoculating pure yeast strains for wine 

fermentation. This revolutionary strategy was vastly applied by wine producers around the 

world (Pretorius et al., 2000) challenging the tension existing between tradition and 
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innovation (Pretorius et al., 1999). Nowadays, the focal point in winemaking for 

innovation is using genetically modified grape cultivars and wine yeast (Pretorius et al., 

2000). AF could be performed by other species of yeast called Non-Saccharomyces wine 

species such as Hansensiaspora, Lachancea, Phichia among others. Recent studies have 

shown that these species mainly present in grape skins are able to carry on the AF and 

provide the wines with other desirable properties or attributes such as release of 

mannoproteins (Domizio et al., 2014), lowering alcohol levels by sugar respiration 

(Quiros et al., 2014) and release of cell wall polysaccharides (Giovani et al., 2012). 

After the AF, a secondary fermentation also known as malolactic fermentation 

(MLF) could be performed. It is carried out by lactic acid bacteria (LAB), typically 

Oenococcus oeni (Carr et al., 2002). It is more common in red wines than in white wines, 

but is often undertaken. The MLF involves the bioconversion of malic acid to lactic acid 

and carbon dioxide, producing an important impact on wine acidity. LAB of grape must 

and wine belong to the genera Lactobacillus, Leuconostoc, Oenococcus and Pediococcus 

(Rebéreau–Gayon et al., 2006).  

In white wines, a second alcoholic fermentation could be performed in order to 

obtain sparkling wines. Sparkling wines produced by the traditional Méthode 

Champenoise require a second in-bottle alcoholic fermentation of a base wine (Kemp et 

al., 2014). A mixture of sugars and yeast is added to white wines in order to produce small 

quantities of ethanol and carbon dioxide. Comparing the first and the second alcoholic 

fermentations, the second one is performed in a medium with elevated ethanol content 

and increasing the carbon dioxide pressure summiting the yeast cells to an altered 

environmental (Ganss et al., 2011). This second fermentation is followed by prolonged 

ageing in contact with yeast cells, also know lees. During the ageing time, the autolysis of 

yeast occurs, releasing different compounds as mannoproteins and polysaccharides that 

modify the organoleptic properties of the wine increasing the roundness and flavour 

characteristics (Kemp et al., 2014). 

Another microorganism could play an important role in wine quality, acetic acid 

bacteria (AAB). They are very prevalent and can grow and adapted in sugar and alcohol 

rich media. Their principal propriety is the oxidation of ethanol into acetic acid in two 

different steps: firstly to acetaldehyde and secondly to acetic acid. AAB belong to 

Acetobacteraceae family, which could be separated into the genera: Acetobacter, 
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Gluconobacter, Gluconacetobacteramong others. (Drysdale and Fleet, 1989; Henick-

kling, 1993; Bartowsky et al., 2002; Matthews et al., 2004) 

1.3.1.1. Nutrient Supplementation 

One of the main environmental variations that yeast could experiment during the 

alcoholic fermentation is the addition of several additives to the must by winemakers, 

being nutrients one of the most common products (Gobbi et al., 2013). The availability of 

diverse nutrients in grape musts as vitamins, sterols, unsaturated fatty acids, pantothenic 

acid, or nitrogen is often limited and one of the most restricting yeast cell growth factor 

(Bely et al., 1990ab). In the case of grape must nitrogen, its concentration could vary from 

60 to 500 mg/L of yeast assimilable nitrogen (YAN) depending on many factors such as 

climate conditions, viticulture practices, grape variety, grape processing (Bely et al., 

1990ab). In fact, nitrogen between 120 and 180 mg/L of YAN is considered sufficient 

concentration for yeast to carry on a proper alcoholic fermentation (Bely et al., 1990a; 

Sablayrolles et al., 1996). 

The most common methodologies to analyse total nitrogen content in musts are 

distillation and back-titration according to the Kjeldahl mineralization method (Scheiner, 

1976) and ammonia concentration measured using an enzymatic method (Francis, 2006) 

and the concentration of free amino acid nitrogen determination using a 

spectrophotometric assay (Munik et al., 2002). The addition of ammonium and amino 

acids in terms of nitrogen represents the yeast assimilable nitrogen (YAN) (Dukes et al., 

1998). 

Numerous studies were carried out to study the effects of nutrient 

supplementation in different parameters such as alcoholic fermentation kinetics; H2S 

evolution and aroma profile production (Ugliano et al., 2010; Bohlscheid et al., 2011; 

Ugliano et al., 2011; Barbosa et al., 2012; Gobbi et al., 2013) or also in order to study de 

contribution of yeast fermentation metabolites to the aromatic profile of wine in function 

of the nutrient availability (Carrau et al., 2008; Barbosa et al., 2012; Mouret et al., 2014; 

Rollero et al., 2015). These studies have concluded that nitrogen supplementation have 

an important effect on these parameters an also have pointed out that it is important to 

consider the source of nitrogen used (organic such as glutathione or inorganic such as 

ammonium phosphate) (Gobbi et al., 2013) as well as the alcoholic fermentation step and 

UNIVERSITAT ROVIRA I VIRGILI 
APPLICATION OF INFRARED SPECTROSCOPY IN MID-INFRARED RANGE COMBINED WITH MULTIVARIATE ANALYSIS TO STUDY YEASTS 
INVOLVED IN WINE PRODUCTION 
Miquel Puxeu Vaqué 



Introduction & Objectives 

23 

yeast physiological growth phase (Schulze et al., 1996; Beltran et al., 2005; Brice et al., 

2014; Lage et al., 2014). 

 

1.3.1.2.  Non-Saccharomyces Wine Yeast Species 

As has been aforementioned above, S. cerevisiae has been traditionally used for 

their oenological properties to successfully produce alcoholic fermentations transforming 

grape sugar into alcohol and carbon dioxide (Jolly et al., 2006). But other indigenous 

Non-Saccharomyces yeast species can be also present in the grape must and frequently in 

greater numbers that S. cerevisiae. These yeasts are commonly well adapted to this 

specific environment and present in active growing phase (Cray et al., 2013). Originally, 

these Non-Saccharomyces yeast species have been considered responsible of microbial 

problems in wine production, mainly due to their isolation from spoiled wines (Le Roux 

et al., 1973; De Benedictis et al., 2011; Dashko, et al., 2015). Wineries performing 

spontaneous fermentations, consider autochthonous yeast a key factor of their 

winemaking process for their role on providing desired and distinct regional 

characteristics to their wines (Romano et al., 1996; Romano et al., 1998) and for 

improving wine characteristics such as mouth-feel, complexity and integration of flavours 

(Gil et al., 1996; Soden et al., 2000; Varela et al,. 2009; Dashko et al., 2015). 

The origin of Non-Saccharomyces yeast species is diverse, within the winemaking 

environment grape berry surfaces, cellar equipment surface and grape could be 

considered specific niches where wine-related yeasts form communities (Polsinelli et al., 

1996; Gayevskiy and Goddard, 2012). Despite the variables in grape harvest and wine 

production, yeast species are generally found on grapes and in wines similar through the 

world (Amerine et al., 1967; Longo et al., 1991; Constantí et al., 1997; Jolly et al., 2006). 

Otherwise, there are other Non-Saccharomyces with a recognized spoilage action in 

winemaking process as Dekkera/Brettanomyces. This specie is normally left out of the 

description of Non-Saccharomyces or autochthonous yeasts description. 

Dekkera/Brettanomyces bruxellensis is considered a one of the main microorganisms 

with a spoilage action in wine, and responsible of 4-ethylphenol and 4-ethylguayacol off-

flavours related to medicinal, barnyard or sewage descriptors becoming a global problem 

for the global wine industry (Curtin et al., 2013; Sturm et al., 2015). When favourable 

conditions are conducive for growth of Dekkera Brettanomyces in wine, they efficiently 
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convert non-volatile hydroxycinnamic acids into aroma-active ethylphenols, and thereby 

reducing the quality of the wine. 

 

1.4. Conventional Techniques to Study Yeast 

Wine microbial ecology has been well studied due to its impact and importance in 

the wine final quality (Pretorius, 2000; Fleet, 2003; Barata et al., 2012; Pinto et al., 2015). 

Traditional methods for detecting and quantifying different wine microorganisms are 

based on morphological and physiological tests that help to determine enzyme 

production profiles and growth characteristics, respectively (Barnett et al., 2000).  

Yeast can be identified and classified following the schemes described by Barnett et 

al., (2000). Several tests are needed to be applied to identify most yeast at specie level, 

requiring time-consume techniques and considerable expertise for an accurate 

interpretation of the results. The first microbiological test, is the examination of the 

microorganism morphology shape (cocci, rods, pointed ends, bowling pin, egg, ogival, 

elongated, groups or chains), size and arrangements (single, pairsm tetrads, proups or 

chains) of the cells using a phase contrast microscope. This test can lead to 

misinterpretations due to the fact that cell morphology or cell appearance can change 

during cell aging and depending on the culture conditions used to grown these cells 

(Andorrà, 2010). Moreover, in order to correctly analyse the cell morphology it is 

important to consider the characteristics of the colonies created in a specific medium like 

shape (circular, irregular or rhizoid), size (dimensions as well), topography (flat, raised, 

convex, concave or umbonate), presence of pigments, opacity (transparent, translucent or 

opaque), surface (smooth, rough, dull or glistening), edge (entire, undulated, lobate, 

denate or rhizoid) or any changes to agar medium (Fugelsang et al., 1997; Fugelsang, 

2007). Once isolated, unknown microorganisms can be characterized using physiological 

traits such as the assimilation of carbon and nitrogen sources, the carbohydrate 

fermentation and the formation of carbon dioxide from sugars among other numerous 

tests (Fugelsang, 1997; Fugelsang et al., 2007). 

In the wineries, the traditional methods used to analyse qualitatively yeast or bacteria 

are counts under the microscope and counts direct plating. Both techniques had 

advantages and disadvantages. 
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Microscope technique is faster than plating but require a minimum of 10
4

 cell x ml
-1

, 

lower populations needs to be concentrated. Otherwise, lower population densities, direct 

plating is normally used. Counting by microscope consist of quantification using a 

microscope counting chamber, such as Neubauer chambrer (Rodríguez et al., 1993). 

Themain drawbacks are that by this technique the cells are quantified without distinction 

and that the final counts include viable, non-viable and dead cells. Otherwise, plate 

enumeration consists of growing different microorganisms in selected media, and after 

that, counting the colonies formed (Andorrà, 2010). To overcome these limitations, 

plating media need to be used with selective media to suppress the growth of undesirable 

species. Lysine agar is an example of a selective medium which prevents S. cerevisiae 

from growing because this yeast is unable to grow if Lysine is the sole nitrogen source 

(Angelo and Siebert, 1987). Otherwise, this medium is effective at isolating and 

enumerating Non-Saccharomyces yeast. Plating techniques takes a long time to growth of 

different microorganisms, yeast usually need 48 h and LAB or AAB might need 5 to 10 

days (Andorrà, 2010). 

Unlike the classic techniques, molecular methods can genotype, identify and quantify 

the various wine microorganisms as a function of their variability in the genome. 

Compared with the previous traditional methods, these are generally, faster, more 

specific, more sensitive, more accurate and more expensive (Andorrà, 2010). Modern 

molecular techniques methods such as Random Amplified Polymorphic DNA (RAPD-

PCR) will correctly differentiate at strain level (Sohier et al., 1999). In indirect analysis the 

sample is plated, the microorganisms are allowed to grow, and then the DNA is isolated 

from the sample and used most often for identification. The analysis of the 

microorganism’s population in these cases is not conducted on the original population; 

these methods are considered to be indirect methods (Mills et al., 2008). The second way 

of using molecular methods is to analyse the microorganism’s population directly from 

the sample. A classic example of direct analysis, which has been used from the vineyard 

through bottling, would be denaturing gradient gel electrophoresis (DGGE) where DNA 

is isolated directly from the fermentation or the grape, amplified by PCR and analysed by 

gradient gel electrophoresis without ever having to culture the microorganisms presents in 

the original sample (Ivey and Phister, 2011). Indirect analyses are typically more sensitive, 

being able to identify organisms to the strain level. While direct methods are often faster, 

they are typically less specific, being able to provide the genus and possibly species-level 
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information for identification. They are however, useful for rapid identification and 

profiling of communities often being able to detect non culturable organisms (Millet and 

Lonvaud-Funel, 2000). The major disadvantage of direct methods when compared to the 

traditional indirect methods is the inability of many direct methods to differentiate viable 

from dead cells, as both many contain DNA or RNA. DNA is very stable and will often 

persist long after the cells have died; RNA may have a short half-life and, in some cases 

may be a useful marker for cell viability. The molecular methods used in detection and 

identification of wine-related microorganisms can be separated in four groups: 

Hybridization methods, sequencing methods, Fingerprinting methods, PCR detection 

and QPCR. 

DNA or RNA hybridization is most often used as an indirect method to identify 

various microorganisms and may include simple probes or microarrays to examine 

similarities in whole genomes. Hybridization is performed by adding a labelled probe of 

single-stranded DNA, specific to a gene or species in the case of total genomic DNA 

probes, to a sample of DNA isolated from an unknown organism. The mixture is then 

heated and the double helix of the DNA unravels or denatures to form single strands. 

After cooling, the helices will begin to reform and if there is similarity, the labelled probe 

will bind to the unknown DNA. Most common methods in this group are Fluorescence 

in situ hybridization (Indirect/Direct method, allows discrimination from groups to genus 

and species) (Bilhere et al., 2009; Borneman et al., 2010), Flow cytometry (Direct 

method, allows discrimination at genus and species level) (Malacrino et al., 2001; Graca 

da Silveira et al., 2002) and complete genome hybridization (Indirect method, allows 

from groups to specific strains) (Ivey and Phister, 2011). 

In the case of sequencing methods the most commonly used method to identify wine-

related microbes is rDNA sequencing. It is a powerful tool for rapid and accurate 

microbial identification and is even used in conjunction with many direct analysis 

techniques such as DGGE. However, it is still common to isolate DNA from a colony on 

a plate and sequence a gene from that DNA. The resulting gene sequence is then 

compared to other genes in a database to identify that colony (Ivey and Phister, 2011). 

Fingerprinting methods, in general, examines the whole genome of an organism, 

often creating a banding pattern by digesting or amplifying regions of the genome, which 

can be compared between organisms. The fingerprinting methods, such as amplified 
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ribosomal DNA restriction analysis, can be used to differentiate species. However, most 

fingerprinting methods are only able to differentiate between strains of a particular 

organism (Ivey and Phister, 2011). Different Finger printing methods are RAPD-PCR 

(Indirect method, allows strain level discrimination) (Zavaleta et al., 1997; Urso et al., 

2008), δ-sequence amplification (Indirect method, allows strain-yeast level discrimination) 

(Legras et al., 2003; Schuller et al., 2004; Charpentier et al,. 2009), RFLP mt-DNA 

(Indirect method, allows strain-yeast discrimination level) (Schuller et al., 2004), 

microsatellite (Indirect method, allows strain level discrimination) (Schuller et al., 2004; 

Gallego et al., 2005) or DGGE/TGGE (Direct method, allows species discrimination, but 

many identity strains depending on targets for PCR). 

Traditional PCR has been used to detect target populations. The targeted gene for 

the assay can differ greatly among species, but is generally chosen because it is unique to 

that specie (Zapparoli et al., 1998). A target gene can help ensure specificity, but PCR can 

also be used with just a small random DNA sequence that is unique to the species (Ibeas 

et al., 1996; Ivey and Phister, 2011). QPCR, real time polymerase chain reaction (QPCR) 

is similar to traditional PCR but incorporates a fluorescent dye, and after each PCR cycle, 

the fluorescence increases. DNA amplification is linked to fluorescence in one of two 

ways, either through the addition of a DNA binding dye such as SYBR Green or by the 

addition of a probe labelled with a fluorophore (Ivey and Phister, 2011). 

All these techniques can help to know and carry on the wine alcoholic fermentation 

and winemaking process as a complex microbiological process in which yeast 

predominate. However, the application of methodologies described above in routine 

analysis of yeast in the food or winemaking industry is limited by their high cost and the 

requirement for highly skilled personnel (Wenning et al., 2002). 
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1.5. Infrared Spectroscpy 

1.5.1. Applications of Infrared Spectroscopy for the Wineries 

Infrared spectroscopy has been extensively used for routine wine analysis 

(Dambergs et al., 2015). Numerous physicochemical parameters could be measured 

using infrared spectroscopy such as ethanol and sugars content, pH value, titratable 

acidity, volatile acidity, glycerol content and tartaric, malic and lactic acids concentration 

in musts and wine (Kupina and Shrikhande, 2003). Commonly, MIR spectroscopy in 

transmission mode (Gallignani et al., 1994; Nieuwoudt et al., 2006; Lachenmeier et al., 

2007) combined with multivariate analysis has been used for the wine sector as a fast and 

reliable method for applying simultaneous estimation of multiple physicochemical 

parameters in wine and must (Wold et al., 2001; Balabin and Smirnov, 2011). FTIR 

equipments developed by the wine sector, most commonly use transmission cuvettes with 

fixed and variable pathlengths. 

When the concentration of the chemical parameter analysed is low (eg. organic 

acids), using transmission work modes with large pathlengths allow to obtain more 

reliable results. Nonetheless, for chemical parameters present in higher concentrations 

such as ethanol and sugars, the results obtained with an ATR work mode are comparable 

or better than those obtained with transmission instruments with long pathlengths (Friedel 

et al., 2013). Therefore, equipments working with ATR work mode have been developed 

for the wine sector (Shah et al., 2010; Cozzolino et al., 2011; Silva et al., 2014). Moreover, 

MIR spectroscopy has been also used to analyze other components such as phenols and 

anthocyanins (Laghi et al., 2011; Silva et al., 2014). It is well known that these 

components are present in grapes and are released from grape skins into the wine during 

the maceration process (Argyri et al., 2005). While some colour compounds contribute to 

the taste and sensorial profile of wine (Gawel, 1998; Landon et al., 2008), the colour itself 

is considered an important marker of the degree of extraction of skin components 

(Kennedy, 2010). Some methodologies such as UV-Vis spectroscopy have been 

developed over the years to predict wine colour (Harbertson et al., 2003). In addition, 

there are several assays based on spectrophotometric techniques that allow wineries to 

obtain the total anthocyanin content, the copigmentation index, the polymeric pigments 

and the total phenols content in wine in a very easy way (Somers and Evans, 1977; 

Harbertson et al., 2003).  
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More recently, spectroscopic techniques combined with multivariate analysis have 

been used to measure and predict red wine colour (Laghi et al., 2011). In the 1680-900 

cm
-1

 region can be found numerous bands originating from wine phenols, among others 

(Coates et al., 2000; Picque et al., 2001). Wine authentication by IR spectroscopy is 

another important application for the wine sector to prevent adulteration and certify 

origin (Dixit et al., 2005; Liu et al., 2006; Martelo-Vidal et al., 2013). For instance, 

Cozzolino et al., (2006) used MIR and NIR spectroscopy combined with chemometrics 

to classify wines of different varieties. Martelo-Vidal and Vazquez et al., (2014ab) 

combined ultraviolet (UV), NIR and ANN analysis as a rapid method to classify wine 

from different Designation of Origen from Galicia showing that the worst classification 

was 96.7%. 

 

1.5.2. Hand-held and Portable Infrared Spectrometers 

Miniaturization of vibrational spectroscopy components has allowed the 

development of portable or hand-held systems that are simple to use, require minimal or 

no sample preparation and performance similar than a laboratory bench top instrument 

(Mossoba et al., 2012; Mossoba et al., 2014). Hand-held and portable infrared 

spectrometers are ideal instruments to be used in food quality control, providing 

sensitivity and portability for in situ analysis. Several applications such as determination 

quality factors of fruits and vegetables have been studied (Teixeira dos Santos et al. 2014). 

For instance, Ayvaz and Rodriguez-Saona (2014) have used hand-held and portable 

infrared spectrometers to screen the acrylamide content in commercial potato chips. 

Moreover, hand-held infrared spectrometers have been also used to detect food 

adulteration (Rodríguez-Saona et al., 2011) and food authenticity (Reida et al., 2006). In 

the wine sector, some portable infrared spectrometers (UV/NIR) have been developed 

mainly to determine grape quality parameters (Carrara et al., 2008). Nevertheless, the 

potential of using hand-held infrared spectrometers to discriminate between different 

strains of bacteria or yeast has still not been examined. 
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1.5.3. Infrared Spectroscopy and Yeasts 

Infrared spectroscopy combined with chemometrics has been used by several 

researchers to identify microbial genera and species with a high degree of confidence 

(Kümmerle et al., 1998; Kirschner et al., 2001; Sockalingum et al., 2002). In addition, 

FTIR spectroscopy has been proved to be a very sensitive technology to detect subtle 

biochemical changes in cell composition (Orsini et al., 2000; Galichet et al., 2001; 

Burattini et al., 2008) leading to the hypothesis that the identification of yeasts at strain 

level might be possible under well-controlled conditions (Schmalreck et al., 1998; 

Sockalingum et al., 2002; Sandt et al., 2003). It is important to point out the key role of 

yeasts on the production of food and beverages (Shapaval et al., 2013ab) and the existing 

need of developing a rapid method to monitor directly yeast cells during an undergoing 

fermentation process (Correa-García et al., 2014; Puxeu et al., 2014). Kümmerle et al. 

(1998) used MIR spectroscopy with an ATR work mode combined with HCA to identify 

722 unknown yeast isolates based in 332 food-borne yeast strains spectra library. These 

authors analysed by IR scraped yeast cultures diluted in water and an aliquot was dried 

out on the surface of the ZnSe crystal at 42ºC for 1 h. Timmins et al., (1998) studied the 

identification of brewing yeast strains and Candida species by pyrolysis gas 

chromatography and infrared spectroscopy obtaining excellent discrimination between 

yeast species at species and subspecies level. Wenning et al., (2002) compared 

microspectroscopy and macrospectroscopy technologies to discriminate yeast cells. In this 

study, the authors used different sample preparation. For the macro spectroscopy analysis 

used scraped yeast cultures diluted in water. For the microspectroscopy, colonies, grown 

directly from the agar plate, were transfer the IR transparent ZnSe carrier to be analysed 

by IR. Under these conditions, microspectroscopy was the technology that offered a 

higher discrimination between the yeast strains tested. In wine, Burattini et al., (2008) 

used FTIR microspectroscopy in the MIR range in transmission and in attenuated total 

reflectance (ATR) mode combined with PCA and HCA analysis to study the major 

biochemical changes associated with autolysis of S. cerevisiae cells in model wine medium 

and in a Chardonnay base wine. The comparison performed between ATR and 

transmission modes allowed to conclude that ATR measurements were more sensitive to 

the biochemical changes produced by the autolytic process. Moreover, these authors 

proposed a list of IR bands characteristics of S. cerevisiae cells that are shown in Table 

1.3:  
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Table 1.3. Relation between absorption bands (cm
-1

) in the FTIR of S. cerevisiae and chemical 

assignments (adapted from Burattini et al., 2008). 

Absorption bands (cm
-1

) Main assignments 

~ 2960 ⱱasymCH3 lipids 

~ 2925 ⱱasym CH2 lipids 

~ 2890 CH deformation of CH3 lipid, proteins, and peptides 

  

~ 2875 ⱱsym CH3 lipids 

~ 2855 ⱱsym CH2lipids 

~ 1740 C=O stretching in lipid esters 

~ 1670 Amide I: C=O vibrations of different protein structures 

  

~ 1550 
Amide II: N-H and C-N vibrations of the peptide bond in 

different protein conformations 

  

~ 1470 CH2 scissoring in lipids 

~ 1455 Various CH2/CH3 bending vibrations in lipids and proteins 

  

~ 1440 CH2 deformation mainly in proteins and peptides 

~ 1415 C-O-H in plane bending in proteins 

~ 1405 C(CH3)2 stretching mainly in proteins 

~ 1390 C=O of COO
-
 symmetric stretching in proteins 

~ 1370 CH2 wagging vibrations in lipids and β(13) glucans 

  

~ 1350 CH2 wagging vibrations in lipids 

~ 1340 CH2 wagging vibrations in lipids 

~ 1300 Amide III: C-N and C-O stretching, N-H and O=C-N bending 

  

~ 1240 ⱱsymPO2
-
 in DNA, RNA and phospholipids 
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~ 1215 C-O stretching free nucleotides 

~ 1200 C-O-C carbohydrates 

~ 1156 C-O, C-OH carbohydrates, various contributions 

  

~ 1135 mannans and β(13) glucans 

~ 1080 ⱱsymPO2
-
 mainly from RNA 

~ 1050 mannans 

~ 972 mannans 

~ 1108 β(13) glucans 

~ 1025 β(14) glucans 

~ 998 β(16) glucans 

~ 915 pyranose ring asymmetric vibrations 

~ 905 mannans 

~ 880 β-glycosidic linkage vibrations 

~ 860 α-glycosidic linkage vibrations 

~ 822 mannans 

~ 808 mannans 

~ 780 Pyranose ring symmetric vibrations, GMP ring stretching 

 

Cavagna et al., (2010) continued using FTIR microspectroscopy combined with 

PCA to monitor autolysis of S. cerevisiae cells in a base wine. These authors identified 

seven regions of the S. cerevisiae cells spectra most affected by the autolytic process, 

3700-2990 cm
-1

 linked to increase of lipids due membrane disorganization, 2875-1670 cm
-

1

 associated to degradation of proteins and mannoproteins, 1450-1400 cm
-1

 related to 

membrane disorganization and degradation of proteins, 1350-1200 cm
-1 

 linked to 

degradation of proteins, increase of free nucleotides and wall polysaccharides, 1050-970 

cm
-1

 related to increase mannans and decrease glucans and finally, 970-780 cm
-1 

associated 

to increase and hydrolysis of mannans and loss of glucose residues. 

On the other hand, Adt et al., (2010) studied the potential of using Fourier-

transform infrared absorption spectroscopy combined with PCA to discriminate S. 
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cerevisiae and S. bayanus strains. The main spectral regions taken into account to 

discriminate between Saccharomyces and Non-Saccharomyces strains were 700-900 cm
-1

, 

900-1200 cm
-1

, 1200-1500 cm
-1

, 1500-1750 cm
-1

 and 2800-3000 cm
-1

 linked to the 

“fingerprint”, polysaccharides, mixed (proteins, nucleic acids, polysaccharides and fatty 

acids), protein, lipids, and fatty acid absorbing regions, respectively. This study showed 

the potential of FTIR spectroscopy to identify S. cerevisiae and S. bayanus at the strain 

level, but stated that the identification at specie level was more difficult to achieve. Finally, 

Correa-García et al., (2014) used FTIR spectroscopy combined with PCA to discriminate 

S. cerevisiae yeast cells in two different preparations, fresh and lyophilized. These authors 

concluded that FTIR spectroscopy could be used to discriminate and classify yeast 

samples based on IR spectral features related to metabolomics changes induced by the 

type of minimal growth media used regardless the nature of the sample, lyophilized or 

fresh pellet. 

 

UNIVERSITAT ROVIRA I VIRGILI 
APPLICATION OF INFRARED SPECTROSCOPY IN MID-INFRARED RANGE COMBINED WITH MULTIVARIATE ANALYSIS TO STUDY YEASTS 
INVOLVED IN WINE PRODUCTION 
Miquel Puxeu Vaqué 



UNIVERSITAT ROVIRA I VIRGILI 
APPLICATION OF INFRARED SPECTROSCOPY IN MID-INFRARED RANGE COMBINED WITH MULTIVARIATE ANALYSIS TO STUDY YEASTS 
INVOLVED IN WINE PRODUCTION 
Miquel Puxeu Vaqué 



Introduction & Objectives 

35 

 

1.6. Aim of the Thesis 

The main objective of this work was to evaluate the potential of using attenuated total 

reflectance infrared spectroscopy (ATR-FTIR) in the mid-infrared region combined with 

multivariate analysis to discriminate, classify and analyse yeasts involved in wine 

production. This main objective was achieved by fulfilling secondary goals: 

 To study the ability of ATR-FTIR combined with soft independent modeling of 

class analogy (SIMCA) to discriminate and classify Saccharomyces cerevisiae 

strains. 

 To study the biochemical changes of S. cerevisiae strains during a fermentation 

process depending on their physiological phase (lag, exponential and stationary) 

 Evaluate the biochemical changes experimented by S. cerevisiae during an 

alcoholic fermentation process when two different sources of nitrogen (organic 

and inorganic) are added to the grape must  

 To obtain mid-infrared spectroscopy profiles of S. cerevisiae and Non-

Saccharomyces wine species. 

 To develop multivariate classification and prediction models for discrimination of 

S. cerevisiae and Non-Saccharomyces wine species. 
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Abstract 

ttenuated total reflectance infrared spectroscopy (ATR-FTIR) 

combined with soft independent modeling of class analogy (SIMCA) 

was used to study the physiological state (exponential and stationary) of three 

commercial strains of Saccharomyces cerevisiae (ES454, E491, and ES181) 

fermented in Grenache blanc and Chardonnay musts. Microvinifications were 

performed with 150 mL of cleaned must at 17°C. Fermented juices at 

exponential and stationary phase were centrifuged, and the pellets obtained 

were placed onto ZnSe crystal. Spectra were collected in the attenuated total 

reflectance (ATR) mode in the mid-infrared region (4000–700 cm
-1

) and were 

analysed by a multivariate analysis technique, SIMCA. The chemical 

differences detected between S. cerevisiae strains at exponential and 

stationary phases were mainly related to differences in their cell wall 

composition. ATR-FTIR combined with multivariate technique was a rapid 

and simple method to study psychological states of S. cerevisiae during wine 

fermentation. 

 

A 
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2.1. Introduction 

Fourier transform infrared spectroscopy (FTIR) technique has been widely used in 

winemaking sector as a rapid method to determine control parameters such as alcoholic 

strength, acetic acid, pH, and total acidity (Ferreira et al., 2009; Lachenmeier et al., 2010). 

Moreover, in wine research, this technique has been found useful to perform a variety of 

analyses such as color prediction (Versari et al., 2012), classify wines in function of their 

origin, and determine phenol compounds (Laghi et al., 2011). 

Attenuated total reflectance infrared spectroscopy (ATR-FTIR) provides bands from 

all the cellular components of microorganisms, mainly from cell membrane and cell wall 

that permit the classification of microorganisms (Baldauf et al., 2007). Microorganisms 

can be classified at the strain and species/variety level using supervised multivariate 

classification models. ATR -FTIR has been used to detect Alicyclobacillus in fruit juice 

(Grasso et al., 2009), Lactobacilli in meat and cheese (Oust et al., 2004), and Salmonella 

in apple juice (Yu et al., 2004). Burattini et al., (2008) and Cavagna et al., (2010) studied 

the autolysis of Saccharomyces cerevisiae in sparkling wines. These authors showed that 

FTIR spectroscopy in the mid-infrared range is a rapid and accurate technique to 

determine simultaneously the main biochemical modifications induced by autolysis when 

the cells enter to autolysis stage. They also demonstrated that mid infrared 

microspectroscopy in ATR mode combined with principal component analysis (PCA) 

allowed to monitor the three main biochemical processes involving the degradation of 

lipids, proteins, and polysaccharides. 

The application of ATR-FTIR to study microorganisms during the fermentation, 

stock, or aging processes would be of great interest in the winemaking sector. ATR-FTIR 

technique has several advantages such as short time of analysis, little sample preparation, 

and no need for qualified employees among others. Moreover, analysing the IR raw 

spectra with multivariate analysis, the physiological state of S. cerevisiae could be 

determinate, in order to prevent stuck and sluggish fermentations and problems with the 

end of fermentations. All previous uses would increase the applications of ATR-FTIR 

equipments present in many wineries. 

The main objective of this research is to evaluate the potential of using ATR-FTIR 

combined with soft independent modeling of class analogy (SIMCA) to discriminate and 

classify S. cerevisiae strains and analyze their chemical changes produced by their 
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different physiological states during a fermentation process. Developing a simple, rapid, 

reproducible, and sensitive infrared spectroscopy method based on analysing yeast pellets 

to study wine fermentation will be a breakthrough for wine industry. 

 

2.2. Material and Methods 

2.2.1. Must Preparation 

Chardonnay and Grenache blanc grapes were acquired from Lleida (Costers del 

Segre, ES) and Gandesa (Terra Alta, ES), respectively. Must (2.3 L) was obtained by 

pressing the grapes with a manual press with total capacity of 5 kg (Magusa, Vilafranca del 

Penedès, ES) until obtaining 47 and 49% of must yield for Chardonnay and Grenache 

blanc, respectively. After adding 40 mg/L of sulphur dioxide and 1 g/hL of depectil 

clarification enzyme (Martin Vialatte, Sant Miquel d’Olèrdola, ES), the grape must was 

settled for 24 h to remove the solid fraction. The clarification performance was measured 

by calculating the ratio between must weight obtained from the grape weight (72% for 

Chardonnay and 78% for Grenache blanc). 

 

2.2.2. Must Characterization 

Brix degree and alcoholic potential strength by refractometry, pH, total acidity, 

and final alcoholic strength by official European method, turbidity in nephelometric 

turbidity units (NTU), and assimilable nitrogen were analysed following the procedure of 

the Office International de la Vine et du Vin (OIV, 2008). All these parameters were 

used for characterization of the musts and identifying the main differences between two 

types of grapes used in this study. The analyses were performed in triplicate for each 

sample tested. 

 

2.2.3. Microvinification Process 

A volume of 150 mL of clarified must was fermented in sterile Erlenmeyer using 

three commercial strains of S. cerevisiae, E491 (Station Oenotechnique de Champagne, 

Cormontreuil, FR), ES454, and ES181 (SEPSA Enartis, Vilafranca del Penedès, ES). 
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Each strain is recommended by the commercial supplier for white grapes such as 

Chardonnay and Grenache blanc. In each case, inoculum was prepared according to the 

instructions provided by the supplier to reach an initial concentration of 10
6 

cfu/mL S. 

cerevisiae in the grape must. Fermentation was performed at 17°C using a thermostatic 

water bath (Grupo-Selecta, Abrera, ES) and was daily monitored by controlling density 

with an electronic densimeter (Metler Toledo, Hospitalet de Llobregat, ES) until the total 

glucose and fructose concentration was lower than 5 g/L. 

Fermentation was complete after 240 and 384 h approximately for Chardonnay 

and Grenache blanc, respectively. All fermentations were performed in triplicate, after the 

fermentation residual sugars (sum of the concentrations of glucose and fructose) and 

acetic acid contents were analysed by an enzymatic method following the procedures of 

OIV (OIV 2008) using an automatic enzymatic device (Biosystems, Barcelona, ES). For 

the IR analysis, samples were taken when yeast cells where at exponential phase (48 and 

120 h for Chardonnay and 198 h for Grenache blanc) and stationary phase (172 h for 

Chardonnay and 344 h for Grenache blanc). 

 

2.2.4. Genetic Test 

DNA extraction was performed as described by Querol et al., (1992). The 

characterization of S. cerevisiae strains was performed using the primer pair delta 12 and 

delta 21 described by Legras and Karst (2003). PCR amplifications were carried out in 25 

μL reaction containing 5–20 ng yeast DNA, 0.2 mg/mL of BSA, 0.2 mM of dNTPs, 1 

μM of each primer, 2.5 mM of MgCl2, 1× of reaction buffer (Biotaq™, Bioline Reagents, 

UK), and 0.5 U de TaqDNA polymerase (Bioline). Amplification reactions were 

performed with a Bio-Rad T11 thermal cycler (Bio-Rad, Alcobendas, ES) following the 

program described by Legras and Karst (2003). Amplification reactions were separated by 

electrophoresis on 0.8% agarose (Ecogen, Barcelona, ES) gels supplemented with 0.6× of 

Red safe TM nucleic acid staining solution (iNtRon Biotechnology, Sevilla, ES) submitted 

to 100 V for 1 h in 1× TBE buffer. Gels were then scanned with a Gel Doc™ XR+ 

apparatus (Bio-Rad). Yeast profiles were normalized and compared with the Image Lab™ 

software (Bio-Rad). Restriction analyses of mitochondrial DNA were also performed in 

order to genotype S. cerevisiae strains belonging to S. cerevisiae species and were 

differentiated at strain level according to their mitochondrial (mt) DNA patterns. Total 
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DNA extraction and mtDNA restriction analysis were performed as described by Querol 

et al. (1992) with the restriction endonuclease HinfI (Roche Molecular Biochemicals, 

Barcelona, ES). 

 

2.2.5. Sample Preparation 

Fermented juices (1.5 mL) were centrifuged (15,900g for 5 min at room 

temperature) and washed three times under the same conditions using 1 mL of saline 

solution (SS, 0.88% NaCl) to obtain clean yeast cells and remove phenols, anthocyanins, 

organic acids, and other potential remaining components to ensure that IR spectra were 

not influenced by these compounds. After the cleaning process, 1.5 μL of pellet was 

placed onto ZnSe crystal. Six spectra per each sample and day of experiment were 

collected in the attenuated total reflectance (ATR) mode in the mid-infrared region 

(4000–800 cm
-1

). 

 

2.2.6. FTIR Used in ATR Mode 

Spectral data of S. cerevisiae pellets were obtained using an FTIR spectrometer 

Nicolet 380 (Thermo Scientific, Madrid) adapted with an ultra-high performance ATR 

plate of Zinc Selenide (ZnSe) crystal (Smart iTR, Thermo Scientific, Madrid, ES). 

Spectra were collected from 4000 to 800 cm
-1

 with a resolution of 2 cm
-1

. The spectrum of 

each sample was obtained by taking the average of 32 scans to improve the signal-noise 

ratio. Spectra were displayed in terms of absorbance obtained by rationing the single 

beam spectrum against that of the air background. 

 

2.2.7. Multivariate Analysis 

Spectra were exported to the Pirouette® multivariate analysis software (version 4.0, 

InfoMetrix, Inc., Woodville, USA). The FTIR spectral data were mean-centered, 

transformed to their second derivative using a 25-point Savitzky-Golay polynomial filter, 

and vector-length normalized; sample residuals and Mahalanobis distance were used to 

determine outliers (Kansiz et al., 1999; Hruschka, 2001). Soft independent modeling of 
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class analogy (SIMCA) was used to build a predictive model based on the construction of 

separate PCA models for each class to describe and model the variation (Kansiz et al., 

1999). SIMCA class models were interpreted based on class projections, 

misclassifications, discriminating power, and interclass distances. Class projections were 

visible through a three dimensional graphic of clustered samples and are built around the 

clusters based on PCA scores, allowing SIMCA to be used as a predictive modeling 

system. Variable importance, also known as discriminating power, was used to define the 

variables (wavenumbers) that have a predominant effect on sample classification, 

minimizing the difference between samples within a cluster and maximizing differences 

between samples from different clusters (Dunn and Wold, 1995). Total misclassifications 

were analysed and interpreted for the input data. 

 

2.3. Results and Discussion 

2.3.1. Must Characterization 

Physical-chemical characteristics of the Chardonnay and Grenache blanc musts 

used for our fermentations are shown in Table 2.1. 

Table 2.1. Physical-chemical characteristics of the Chardonnay and Grenache blanc musts and 

wines. 

Must Chardonnay Grenache blanc 

Brix degree 17.2 ± 0.1 19.3 ± 0.2 

Alcoholic potential strength 

(%vol.) 9.7 ± 0.1 11.4 ± 0.2 

Assimilable Nitrogen (mg/lL) 196 ± 4 252 ± 6 

pH 2.8 ± 0.1 3.0 ± 0.1 

Total acidity (g/L) 13.4 ± 0.1 5.9 ± 0.1 

Turbidity (NTU
a
) 13.0 ± 2.0 11.0 ± 2.0 

Press yield (%) 46.9 ± 0.7 49.4 ± 0.7 

Clarification yield (%) 71.9 ± 0.7 78 ± 0.7 

Results are shown as mean ± standard deviation ; 
a
Nephelometric turbity units 

UNIVERSITAT ROVIRA I VIRGILI 
APPLICATION OF INFRARED SPECTROSCOPY IN MID-INFRARED RANGE COMBINED WITH MULTIVARIATE ANALYSIS TO STUDY YEASTS 
INVOLVED IN WINE PRODUCTION 
Miquel Puxeu Vaqué 



CHAPTER 2 

 

62 

No significant differences between Chardonnay and Grenache blanc alcoholic 

potential strengths were detected being these values low enough to not produce problems 

during the alcoholic fermentation. No important differences were detected between press 

and clarification yields resulting in similar values of final turbidity of the musts. 

Assimilable nitrogen content was appropriate in Chardonnay and Grenache blanc musts 

for yeast to grow during early exponential phase and carry on the fermentation during the 

exponential phase until the end without any nutritional problem. Total acidity showed the 

highest differences between values in both varieties, mainly due to the different stage of 

grape ripening. To support this statement, the initial concentration of sugars was 

calculated to detect differences between maturity of the two varieties (Walker, 1998) 

being 171 and 213 g/L for Chardonnay and Grenache blanc, respectively. 

 

2.3.2. Fermentation Behaviour 

Fermentation performance was assessed through the daily measurement of density 

(Figure 2.1) and the residual sugar at the end of fermentation (lower than 5 g/L, Table 

2.2). In all fermentation processes tested, the kinetics curves obtained showed typical 

shape without detecting stuck fermentations or any other alterations such as long early 

exponential phase produced by yeast acclimatization and slow fermentation speed in the 

stationary phase due to the concentration of ethanol. 

Fermentations performed with Chardonnay must inoculated with S. cerevisiae 

ES454 and E491 strains (Figure 2.1 a, c), lag phase lasted less than 24 h, starting the 

exponential phase after 24 h being the density and sugar values 1063 and 163 g/L 

respectively for both yeast. Whereas for the S. cerevisiae ES181 strain (Figure 2.1b), the 

lag phase lasted for 48 h, being the density and sugar values 1081 and 163 g/L, 

respectively. In the case of fermentations produced using Grenache blanc inoculated with 

S. cerevisiae ES454 and E491 strains (Figure 2.1 d, f), yeast cells started the exponential 

phase after 72 h of lag phase. 
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Figure 2.1. Density plots for fermentation kinetics: a) strain ES454 for Chardonnay must, b) strain 

ES181 for Chardonnay must, c) strain E491 for Chardonnay must, d) strain ES454 for Grenache 

Blanc must, e) strain ES181 for Grenache must and f) strain E491 for Grenache must. 

 

Density and sugar values were 1071 and 186 g/L for strain ES454 and 1067 and 

174 g/L for the strain E491. For strain ES181 (Figure 3.1e), the lag phase lasted almost 48 

h more to starting the exponential phase after 120 h of being inoculated, being the density 

and sugar values 1073 and 191 g/L, respectively. 

 

  

 
a)

b)

c)

d)

e)

f)
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Table 2.2. Physical-chemical characteristic of the Chardonnay and Grenache blanc wines 

obtained. 

Parameter Methodology Strain Chardonnay 
Grenache 

blanc 

Glucose + 

Fructose (g/L) Enzymatic ES454 3.1 ± 0.2 2.3 ± 0.2 

  ES181 2.9 ± 0.5 3.9 ± 0.3 

  E491 0.8 ± 0.2 2.9 ± 0.3 

Acetic acid (g/L) Enzymatic ES454 0.30 ± 0.03 0.48 ± 0.05 

  ES181 0.34 ± 0.03 0.25 ± 0.02 

  E491 0.51 ± 0.04 0.37 ± 0.05 

Final alcoholic 

strength (%vol.) 
Distillation and 

hydrostatic balance ES454 10.3 ± 0.1 12.9 ± 0.1 

  ES181 10.4 ± 0.1 12.7 ± 0.1 

  E491 10.6 ± 0.1 13.0 ± 0.1 

Results are shown as mean ± standard deviation 

In conclusion, S. cerevisiae ES454 and E491 strains needed less time to adapt in 

both grape must varieties than strain ES181. Their adaptation was better in Chardonnay 

than in Grenache Blanc due their lower sugar concentration (171 g/L for Chardonnay 

and 213 g/L for Grenache blanc) and their final alcoholic strength. 

 

2.3.3 Genetic Results 

The PCR amplification of delta sequences interspersed regions showed different 

patterns for three yeast strains studied (Figure 3.2 a). The RFLP of mitochondrial DNA 

also showed different patterns for the different yeast studied (Figure 3.2 b). The analysis 

of the genetic variability of three commercial S. cerevisiae wine strains by both techniques 

indicated that the three species are different at strain level. 
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Figure 2.2. Characterization of S. cerevisiae strains by: a) restriction analyses of mitochondrial 

DNA (order: marker, S. cerevisiae E454, S. cerevisiae E491 and S. cerevisiae ES181) and b) 

primer pair delta 12 and delta 21 (order: marker: S. cerevisiae ES181, S. cerevisiae E454 and S. 
cerevisiae E491). 

 

2.3.4. Discrimination of Saccharomyces cerevisiae Strains at Exponential Phase by 

ATR-FTIR Combined with SIMCA 

Multivariate analysis technique SIMCA was used to discriminate between three S. 

cerevisiae strains fermenting in Chardonnay and Grenache blanc during exponential 

phase (Figure 2.3 and Figure 2.4). In each principal component direction, a 95% 

confidence interval probability cloud is assigned around each class (Subramanian et al., 

2007; Grasso et al., 2009). Clusters permitted tight clustering and clear differentiation 

between S. cerevisiae strains analysed at the early (48 h, Chardonnay) and late (120 h 

Chardonnay and 172 h Grenache blanc) exponential phase.  

Interclass distances (ICD) are Euclidian distances between centers of clusters, and 

above 3.0 are considered significant to identify two clusters as different classes (Dunn and 

Wold, 1995). ICD ranged from 2.4 to 15.1 in the case of Chardonnay (Table 2.2) and 

from 2.9 to 5.4 in the case of Grenache blanc (Table 2.3), showing differences between 

their biochemical composition, excepting between S. cerevisiae ES181 and E491 strains 
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fermented for 120 and 198 h in Chardonnay must and between S. cerevisiae E491 and 

ES181 at 344 h in Grenache Blanc must. 

SIMCA’s misclassification algorithm indicated that the training set was 

homogeneous, and all S. cerevisiae strains were correctly classified into their 

corresponding categories. Figures 2.3 d,e and Figure 2.4 c shows the wavenumbers that 

had a predominant effect on discrimination of S. cerevisiae strains during their 

exponential phase of fermentation in Chardonnay and Grenache blanc musts, 

respectively. 

 

Figure 2.3.Soft independent modeling of class analogy (SIMCA) class projections (a–c) and 

discriminating power (d–f) f transformed attenuated total reflectance (ATR) infrared spectroscopy 

spectra (1900–800 cm
-1

). S. cerevisiae strains fermented in Chardonnay must in early exponential 

phase at 48 h (a, d), late exponential phase at 120 h (b, e), and stationary phase at 198 h (c, f). 

Experiments were performed in triplicate. 
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Discriminating power of S. cerevisiae strains fermented for 48 h in Chardonnay 

must showed mainly three spectral bands at 1752, 1636, and 1489 cm
-1

, linked to C=O 

stretching in lipid esters, amide I absorption of proteins, and CH2 scissoring in lipids, 

respectively (Cavagna et al., 2010). In the case of S. cerevisiae strains fermented for 120 h 

in Chardonnay, the major discriminating bands were 1534 and 1150 cm
-1

 associated to 

protein amide II band (N–H and C–N vibrations) of the peptide bond in different 

protein conformations (Cavagna et al., 2010) and C–O–C stretching (glycosidic linkages) 

of β(13) glucans (Naruemon et al., 2013) or C–O, C–OH stretching of carbohydrates 

(Cavagna et al., 2010), respectively. Analysing the most predominant bands detected in 

the case of S. cerevisiae strains fermented for 172 h in Grenache blanc, two spectral 

bands 1612 and 1374 cm
-1

 related to protein amide II band and CH2 wagging vibrations in 

lipids, and β(13) glucans (Cavagna et al., 2010), respectively, were observed. The 

polysaccharide absorbing region including component structures of mannans and β-

glucans of S. cerevisiae strains has been assigned to the spectral range of 925–1190 cm
-1

 

(Galichet et al., 2001). 

Since cell walls of S. cerevisiae are mainly composed of mannoproteins that form 

radially extending fibrillate at the outside of the cell wall (Kapteyn et al., 1999) and 

β(16) and β(13) glucans (85–90% of the cell wall dry mass) (Kapteyn et al., 1999; 

Lesage and Bussey, 2006; Huang et al., 2008), these seem to be the main components 

responsible of the discrimination between different S. cerevisiae strains during their 

exponential phase of growth. 

Moreover, lipids may also play a role to explain the biochemical differences 

between S. cerevisiae ES181, E491, and ES181 strains, especially at early exponential 

phase in Chardonnay must. Glycoprotein anchors that appear in the cell wall or at the 

plasma membrane of S. cerevisiae are mainly composed by glycosylphosphatidylinositol 

(Komano and Fuller 1995). Another hypothesis to explain this result is that lipid fraction 

of yeast cells mainly changes during wine fermentation due to several factors: adaptation 

to environmental agents such as temperature, oxygen, nutrient limitation (Ratledge and 

Evans, 1989; Beltran et al., 2008), and environment’s lipid composition (Rosi and 

Bertuccioli, 1992). 
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Figure 2.4.Soft independent modeling of class analogy (SIMCA) class projections (a, b) and 

discriminating power (c, d) f transformed attenuated total reflectance (ATR) infrared spectroscopy 

spectra (1900–800 cm
-1

). S. cerevisiae strains fermented in Grenache blanc must in exponential 

phase at 172 h (a, c) and stationary phase at 344 h (b, d). Experiments were performed in 

triplicate. 

 

2.3.5. Discrimination of Saccharomyces cerevisiae Strains at Stationary Phase by 

ATR-FTIR Combined with SIMCA 

Infrared spectra analyses (2100–900 cm
-1

) using SIMCA classification models of 

three S. cerevisiae strains fermented in Chardonnay and Grenache blanc musts during 

stationary phase are shown in Figures 2.3c, 2.3f and 2.4b and 2.4d respectively. The 

SIMCA class projection plots showed well-separated grouping of the samples analysed in 

a three-dimensional pattern. ICD values varied from 1.5 to 4.0 in the case of Chardonnay 

and from 2.8 to 4.1 in the case of Grenache blanc showing significant differences between 

the samples compared excepting S. cerevisiae ES181 and E491 strains fermented in 

Chardonnay must for 198 h (Tables 2.3 and 2.4). 
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Table 2.3. Soft independent modeling of class analogy (SIMCA) of interclass distance of S. 

cerevisiae strains fermented in Chardonnay must at early exponential phase (48 h) and late 

exponential phase (120 h) and stationary phase (198 h) of transformed (second derivative, 25 

points window) Attenuated total reflectance infrared spectroscopy (ATR-FTIR) spectrum. 

48 h S. cerevisiae ES454 S. cerevisiae ES181 S. cerevisiae  E491 

S. cerevisiae ES454 0.0   

S. cerevisiaeES181 8.6 0.0  

S. cerevisiae E491 10.0 15.1 0.0 

120 h S. cerevisiae ES454 S. cerevisiae ES181 S. cerevisiae  E491 

S. cerevisiae ES454 0.0   

S. cerevisiaeES181 4.1 0.0  

S. cerevisiae E491 4.3 2.4 0.0 

198 h S. cerevisiae ES454 S. cerevisiae ES181 S. cerevisiae  E491 

S. cerevisiae ES454 0.0   

S. cerevisiaeES181 4.0 0.0  

S. cerevisiae E491 5.2 1.5 0.0 

 

Discriminating power of SIMCA model build up with S. cerevisiae strains 

fermented in Chardonnay until reaching the stationary phase (198 h, Figure 2.2 f) showed 

three spectral bands at 1018, 993, and 1059 cm
-1

 linked to β(14) glucans, β(16) 

glucans, and mannans, respectively (Galichet et al., 2001). 

In the case of S. cerevisiae strains fermented in Grenache blanc at 344 h (Figure 

2.3 d), the discriminating power showed mainly one band at 1057 cm
-1

 responsible of 

their biochemical differences and was related to mannans (Cavagna et al., 2010). 

Stationary-phase cells have thick, less porous cell walls, and their resistance to degradative 

enzymes has been related to changes in their mannoprotein structure (Werner-

Washburne et al., 1993). 
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Table 2.4. Soft independent modeling of class analogy (SIMCA) of interclass distance of S. 

cerevisiae strains fermented in Grenache blanc must at exponential phase (172 h) and stationary 

phase (344 h) of transformed (second derivative, 25 points window) attenuated total reflectance 

infrared spectroscopy (ATR-FTIR) spectra. 

172 h S. cerevisiae ES454 S. cerevisiae ES181 S. cerevisiae  E491 

S. cerevisiae ES454 0.0   

S. cerevisiaeES181 5.4 0.0  

S. cerevisiae E491 4.3 2.9 0.0 

344 h S. cerevisiae ES454 S. cerevisiae ES181 S. cerevisiae  E491 

S. cerevisiae ES454 0.0   

S. cerevisiaeES181 4.1 0.0  

S. cerevisiae E491 3.7 2.8 0.0 

 

 

2.3.6. Discrimination of Saccharomyces cerevisiae strains during the Fermentation 

Process in Chardonnay and Grenache Blanc Musts by ATR-FTIR Combined with 

SIMCA 

It was also important to study which functional groups were mainly responsible of 

the biochemical differences between each S. cerevisiae strain at exponential and stationary 

phase. The SIMCA class projection plot showed well-separated and non-overlapping 

clusters between S. cerevisiae ES454, ES181, and E491 (Figures 2.5 and 2.6) strains. 

Moreover, ICD were ranging from 3.7 to 17.7 (Tables 2.5 and 2.6) showing differences in 

their biochemical patterns. 

In the case of S. cerevisiae ES454 fermented in Chardonnay and Grenache blanc, 

discriminating power of SIMCA showed two and three strong spectral bands per each 

type of must tested at 1570 and 1009 cm
-1

 (Figure 2.5 d) and at 1060, 1380, and 1270 cm
-1

 

(Figure 2.6 d), respectively. 

The absorption band at 1570 cm
-1

 was linked to N–H and C–N vibrations of the 

peptide bond in different protein conformations (Cavagna et al., 2010); the IR band at 

1009 cm
-1

 was associated to β(14) or β(16) glucans (Galichet et al., 2001). The IR 

band at 1060 cm-1 was related to mannans, at 1237 cm
-1

 to asymmetric stretching of PO2

-
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in RNA and phospholipids, and at 1380 cm
-1

 to CH2 wagging vibrations in lipids and 

β(13) glucans. Two bands had a predominant effect on the classification S. cerevisiae 

ES181 strain fermented in Chardonnay, 1695 cm
-1

 (Figure 2.5 e) linked to amide I group 

vibrations of peptides and α-helix secondary protein structure and 1079 cm
-1

 associated to 

symmetric stretching of P=O (PO2

−
 ) in phosphodiesters. 

Table 2.5.5Soft independent modelling of class analogy (SIMCA) of interclass distance of S. 
cerevisiae ES181 strain fermented in Chardonnay must at early exponential phase (48 h) and late 

exponential phase (120 h) and stationary phase (198 h ) of transformed (second derivative, 25 

point window) attenuated total reflectance infrared spectroscopy (ATR-FTIR) spectra. 

 
S. cerevisiae 

ES454 48 h 
S. cerevisiae 

ES454 120 h 
S. cerevisiae 

ES454 198 h 

S. cerevisiae ES454 48 h 0.0   

S. cerevisiae ES454 120 h 4.3 0.0  

S. cerevisiae ES454 198 h 4.8 5.2 0.0 

 
S. cerevisiae 

ES181 48 h 
S. cerevisiae 

ES181 120 h 
S. cerevisiae 

ES181 198 h 

S. cerevisiae ES181 48 h 0.0   

S. cerevisiae ES181 120 h 7.6 0.0  

S. cerevisiae ES181 198 h 7.6 3.7 0.0 

 
S. cerevisiae E491 

48 h 
S. cerevisiae E491 

120 h 
S. cerevisiae E491 

198 h 

S. cerevisiae E491 48 h 0.0   

S. cerevisiae E491 120 h 9.3 0.0  

S. cerevisiae E491 198 h 17.7 4.2 0.0 

 

In the case of S. cerevisiae ES181 strain fermented in Grenache blanc (Figure 2.6 

e), only one band at 1511 cm
-1

 related to amide II group vibrations of N–H and C–N 

vibrations of peptide bonds in different protein conformations (Cavagna et al., 2010) was 

found mainly responsible for the biochemical differences of this strain during the 

fermentation process. 

On the other hand, three bands had a predominant effect on the classification of 

S. cerevisiae E491 strain fermented in Chardonnay (Figure 2.5 f): 1051, 1722, and 990 

cm
-1

. 
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Figure 2.5. Soft independent modeling of class analogy (SIMCA) class projections (a–c) and 

discriminating power (d–f) of transformed attenuated total reflectance (ATR) infrared 

spectroscopy spectra (1900–800 cm
-1

). S. cerevisiae ES454 (a, d), ES181 (b, e), and ES491 (c, f) 

strains fermented in Chardonnay must at 48, 120, and 198 h. Experiments were performed in 

triplicate. 

These bands were associated to vibration of mannans, C–O stretching in lipid 

esters, and β(1→6) glucans bounds present in their cell wall (Galichet et al., 2001; 

Maquelin et al., 2002; Huang et al., 2008). In the case of this yeast strain fermented in 

Grenache blanc (Figure 3.5 f), the absorption band at 1080 cm
-1

 was mainly responsible of 

the biochemical differences and was linked to symmetric stretching of PO2

−
 mainly from 

RNA (Cavagna et al., 2010). 
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Table 2.6.6Soft independent modeling of class analogy (SIMCA) of interclass distance of S. 

cerevisiae ES181 strain fermented in Grenache blanc must at exponential phase (172 h) and late 

exponential phase (344 h) and stationary phase (198 h) of transformed (second derivative, 25 

point window) attenuated total reflectance infrared spectroscopy (ATR-FTIR) spectra. 

 
S. cerevisiae 

ES454 172 h 
S. cerevisiae ES454 

344 h 

S. cerevisiae ES454 172 h 0.0  

S. cerevisiae ES454 344 h 3.7 0.0 

 
S. cerevisiae 

ES181 172 h 
S. cerevisiae ES181 

344 h 

S. cerevisiae ES181 172 h 0.0  

S. cerevisiae ES181 344 h 4.8 0.0 

 
S. cerevisiae E491 

172 h 
S. cerevisiae E491 

344 h 

S. cerevisiae E491 172 h 0.0  

S. cerevisiae E491 344 h 5.3 0.0 
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Figure 2.6. Soft independent modeling of class analogy (SIMCA) class projections (a–c) and 

discriminating power (d–f) of transformed attenuated total reflectance (ATR) infrared 

spectroscopy spectra (1900–800 cm
-1

). S. cerevisiae ES454 (a, d), ES181 (b, e), and ES491 (c, f) 

strains fermented in Grenache blanc must at 172 and 344 h. Experiments were performed in 

triplicate. 
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2.4. Conclusions 

The combination of ATR-FTIR with SIMCA to monitor S. cerevisiae grape must 

fermentation showed promising results to discriminate between different yeast strains and 

study biochemical changes produced during the fermentation process. Their 

differentiation was mainly associated with IR frequencies of S. cerevisiae cell wall. 

Depending on the physiological state, the components that played an important role to 

discriminate S. cerevisiae strains changed. At exponential phase, the cell wall components 

were mainly glucans, mannoproteins, and lipids and, at stationary phase, were mainly 

glucans and mannans. 
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Abstract 

he main objective of this research was to use attenuated total 

reflectance (ATR) in the mid-infrared range (MIR) combined with 

multivariate analysis to study biochemical changes of Saccharomyces 

cerevisiae cells supplemented with nitrogen during an alcoholic fermentation 

process. Microvinifications were performed with 150 mL of Grenache blanc 

cleaned must inoculated with a commercial strain of S. cerevisiae E491 with 

and without the addition of commercial inorganic and organic nitrogen 

preparations: 10 g/hL ammonium salts with thiamin nutrient as a inorganic 

source and 30 g/hL for organic nitrogen source rich in amino acids, vitamins 

and minerals. Spectra were collected in the attenuated total reflectance mode 

in the mid-infrared region (4000-800 cm
-1

). The SIMCA analysis confirmed 

that S. cerevisiae cells grown with the addition of inorganic and organic 

nitrogen were biochemically different from those cells grown without extra 

nitrogen added. The highest discrimination was detected at exponential and 

stationary phase and was related to proteins and lipid esters structures from 

yeast cell wall. 

 

T 
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3.1. Introduction 

It is well known that adequate nutritional conditions are essential to the correctly 

growth of Saccharomyces cerevisiae for a proper alcoholic fermentation (Bell et al., 

2005). Grape juice is the main source of nutrients and quantitative and qualitative 

composition influences strongly the kinetics of fermentation and its duration. Nitrogen is 

a particularly significant nutrient being essential to the growth and metabolism of 

Saccharomyces cerevisiae (Bezenger et al., 1988; Bely et al., 1990; Manginot et al., 1998; 

Bell et al., 2005). Qualitative and quantitative composition of nitrogen fraction of the 

grape juice influences the kinetics fermentation, the final aroma, and the health-related 

metabolic by-products (Amerine et al., 1980; Torrea et al., 2011). Yeast available nitrogen 

(YAN) is essential for a successful fermentation. A rich supply of nitrogen allows high 

growth rated and biomass yield and stimulates fermentation activity and the formation of 

the end-products. Otherwise, a limited supply of nitrogen directly restricts the metabolic 

activity and growth of yeast ending in a sluggish or even non-existent alcoholic 

fermentation (Jiranek et al., 1995). Sluggish or stuck fermentation, together with the 

production of undesirable by-products such as H2S formation are the main problems 

produced by a deficient nutrition environment (Bisson et al., 1999; Spiropoulos et al., 

2000). 

Various studies had shown that S. cerevisiae cells required minimum level of YAN/L 

120 to 180 mg to obtain optimum fermentation kinetics (Bely et al., 1990; Sablayrolles et 

al., 1996). Nitrogen supplementation is recommended to correct the must deficiencies 

and ensure fine fermentation (Bely et al., 1990). The timing of nutrients addition is also 

important in winemaking process. Nitrogen is most effective when is added halfway 

through the fermentation process, during the acclimation phase at the beginning of the 

alcoholic fermentation (Bely et al., 1990; Sablayrolles et al., 1996). At this stage, it is 

assimilated and has immediate effects on the kinetics of fermentation, through the protein 

synthesis reactivation and particularly on sugar transporters (Bely et al., 1994). On the 

other hand, the late addition of YAN avoids its transportation and assimilation by the 

yeast cells (Bisson et al., 1991). Moreover, it has been reported that the supplementation 

of grape musts with inorganic sources of nitrogen mainly ammonium chloride and 

diammonium phosphate salts can decrease risks of slow and sluggish fermentations and 
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reduce the formation of undesirable volatile sulphur compounds (Bell et al., 2005; 

Torrea et al., 2011). 

Fourier transform infrared spectroscopy (FTIR) technique has been widely used in 

winemaking sector as a rapid technique to determine quality control parameters (Ferreira 

et al., 2009; Lachenmeier et al, 2010). Some researchers have also used FTIR to study 

the main biochemical changes associated with autolysis in yeast cells finding IR bands 

related to proteins, peptides, mannans and β(13) glucans that are responsible of those 

changes (Lesage et al., 2006; Burattini et al., 2008; Cavagna et al., 2010). In a previous 

research, we used attenuated total reflectance Fourier transform infrared spectroscopy 

(ATR-FTIR) combined with soft independent modeling of class analogy (SIMCA) to 

study S. cerevisiae cells at exponential and stationary phase of growth during a 

fermentation process (Puxeu et al., 2014). The aim of the present research was to use 

ATR-FTIR combined with multivariate analysis to study the biochemical changes 

experimented by S. cerevisiae cells when two different sources of nitrogen (inorganic and 

organic) were added at the beginning of their alcoholic fermentation process. 

 

3.2. Materials and Methods 

3.2.1. Must Preparation and Chemical Analysis 

Grenache Blanc grapes were acquired from Gandesa (Terra Alta, ES) and must (2.5 

L) was obtained by pressing the grapes with a manual press with total capacity of 5 kg 

(Magusa, Vilafranca del Penedès, ES) until obtaining 54% of must yield. After adding 40 

mg/L of sulphur dioxide and 1 g/hL of depectil clarification enzyme (Martin Vialatte, Sant 

Miquel d’Olèrdola, ES) the grape must was settled for 24 h to remove the solid fraction. 

The clarification performance was 81%. Brix degree and alcoholic potential strength by 

refractometry, pH, total acidity and final alcoholic strength were analysed by official 

European method, turbidity in Nephelometric Turbidity Units (NTU) and assimilable 

nitrogen were analysed following the procedure of the Office International de la Vigne et 

du Vin (OIV, 2008). All these parameters were used for characterization of the must 

tested. All the analysis was performed in triplicate. 
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3.2.2. Nutrients Addition and Microvinification Conditions 

Three batches of cleaned must (150 mL) were inoculated with Saccharomyces 

cerevisiae strain E491 (Zymaflore X5
®
, Laffort, Bordeaux, FR). Inoculum was prepared 

according to the instructions provided by the supplier (20 g/hL) to reach an initial 

concentration in must of 10
6 

cfu/mL. In the first batch, no exogenous nitrogen source was 

added (Control). In the second and third batch, 10 g/hL of an inorganic nitrogen based 

on ammonium salts with thiamin (20 mg/L of YAN, Thiazote, Laffort, Bordeaux, FR) 

and 30g/hL of an organic nitrogen source rich in amino acids, vitamins and minerals (21 

mg/L of YAN, NutriStart OrganiQ, Laffort) were added respectively. Nutrients were 

added during the yeast rehydration following the manufacturer’s instructions (Laffort).  

Fermentations were performed at 21ºC using a thermostatic water bath and was daily 

monitored by controlling density with an electronic densimeter (Metler Toledo, 

Hospitalet de Llobregat, ES) and sugars as a sum of glucose and fructose (Biosystems, 

Barcelona, ES). Fermentations were considered ended when the concentration of these 

sugars was lower than 3 g/L. All fermentations were performed in triplicate. After the 

fermentation residual sugars (sum of the concentrations of glucose and fructose) and 

acetic acid contents were analyzed by an enzymatic method following the procedures of 

OIV (OIV, 2008) using an automatic enzymatic device (Biosystems, Barcelona, ES). For 

IR analysis, samples were taken at 0 h (initial point), 18 h (early exponential phase), 42 h 

(exponential phase) and 90 h (stationary phase). Sampling times were selected to monitor 

the changes induced by the addition of inorganic and organic sources of nitrogen in the 

main physiological stages described during alcoholic fermentation (Puxeu et al., 2014). 

 

3.2.3. Sample Preparation 

Samples (1.5 mL) were taken from fermentation batches using sterile material and 

centrifuged (15900 g for 5 min at room temperature). After centrifugation, the 

supernatant was carefully removed, and the pellets were washed three times under the 

same conditions described above using 1 mL of saline solution (SS, 0.88% NaCl) to 

obtain clean yeast cells, free of phenols, sugars, anthocyanins, organic acids and other 

potential remaining components to reduce interferences with the IR analysis. After the 

cleaning process, 1.5 µL of each pellet was placed onto Zinc Selenide (ZnSe) crystal in 
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order to acquire the spectral data. Six spectra per each sample and time (0 h, 18 h, 42 h 

and 90 h) were collected in the attenuated total reflectance (ATR) mode in the mid-

infrared region (4000-800 cm
-1

). 

 

3.2.4. Fourier Transform Infrared Spectroscopy (FTIR) Used in Attenuated Total 

Reflectance (ATR) Mode 

Spectra were obtained using an FTIR spectrometer Nicolet 380 (Thermo Scientific, 

Madrid, ES) adapted with an ultra-high-performance attenuated total reflectance (ATR) 

plate of ZnSe crystal (Smart iTR, Thermo Scientific, Madrid, ES). Spectra were collected 

from 4000 to 800 cm
-1

 with a resolution of 2 cm
-1

. The spectrometer was controlled using 

OMNICTM control software (Version 7.0, Thermo Scientific, Madrid, Spain). The 

spectrum of each sample was obtained by taking the average of 32 scans to improve the 

signal-noise ratio. Spectra were displayed in terms of absorbance obtained by rationing 

the single beam spectrum against that of the air background. 

3.2.4. Statistical and Multivariate Analyses 

Analysis of variance was performed using the General Linear Models Procedure of 

SAS® software (SAS® System for Windows™, 8.02, 1999; SAS Institute, Cary, North 

Carolina, USA). Tukey was used to obtain paired comparisons among sample means. 

Level of significance was set at P <0.05.  Experiments were run three times with duplicate 

analysis in each replicate. 

Spectra were exported to the Pirouette® multivariate analysis software (version 4.0, 

InfoMetrix, Inc., Woodville, WA). The FTIR spectral data were mean-centered, 

transformed to their second derivative using a 15-point Savitzky-Golay polynomial filter, 

and vector-length normalized; sample residuals and Mahalanobis distance were used to 

determine outliers (Park et al., 2001; Kansiz et al., 1999). Soft independent modeling of 

class analogy (SIMCA) was used to build models based on the construction of separate 

PCA models for each class to describe and model the variation (Kansiz et al., 1999). 

SIMCA class models were interpreted based on class projections, misclassifications, 

discriminating power and interclass distances. Total misclassifications were analysed and 

interpreted for the input data. 
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3.3. Results and Discussion 

3.3.1. Must and Wine Characterization 

Physical-chemical characteristics of Grenache blanc must are shown in Table 3.1. 

Grenache blanc must YAN content (170 mg/L) was appropriate for S. cerevisiae strain 

E491 to grow during early exponential phase and complete the alcoholic fermentation 

until all the sugars were consumed without any nutritional problems (Bely et al., 1990; 

Sablayrolles et al., 1996). 

Table 3.1. Physical-chemical characteristics of Grenache blanc must. Results shown as mean ± 

Standard Deviation. 

 Grenache blanc 

Brix degree (ºBx) 20.3 ± 0.2 

Alcoholic potential strength (% vol.) 11.8 ± 0.2 

YAN (mg/L) 170 ± 6 

pH 3.1 ± 0.1 

Total acidity (g/L) 5.5 ± 0.1 

Turbidity (NTU
a
) 18 ± 2 

Press yield (%) 54 ± 0.7 

Clarification yield (%) 81 ± 0.8 

A

 Nephelometric Turbity Units 

A grape must with initial concentration of YAN without any extra addition was used 

as Control to reproduce a common practice applied by the wineries (Torrea et al., 2001). 

Total acidity (5.5 g/L)and pH (3.1) values were common for Grenache blanc grape at this 

ripening stage. Other authors had analysed the total acidity and pH values of Grenache 

blanc at the same ripening state being 5.9 g/L and 3.3, respectively (Ricardo-da Silva et al., 

1993). 
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Table 3.2. Acetic acid and alcoholic strength of Grenache blanc wines obtained. Results are 

shown as mean ± Standard Deviation. 

 Acetic acid (g/L) Alcoholic strength (%vol.) 

Control
1 0.42

a
 ± 0.03 12.1

B
 ± 0.1 

Inorganic nitrogen 0.38
a
± 0.02 12.3

A
 ± 0.1 

Organic nitrogen 0.40
a
 ± 0.02 12.3

A
 ± 0.1 

a
column means of acetic acid values with different lower case superscripts differ (P < 0.05). 

A,B
column means of alcoholic strength values with different upper case superscripts differ (P < 

0.05). 
1
Without nitrogen supplementation. 

 

When fermentations processes were completed, the content of acetic acid and its 

alcoholic strength were also analysed (Table 3.2) finding significant differences only in the 

case of alcoholic strength values. Control fermentations had lower alcohol concentration 

at the end of the fermentation process than those performed adding inorganic and 

organic sources. These results were consistent with other studies (Bisson et al., 2000; 

Gobbi et al., 2013) showing that the increase of nitrogen stimulated the fermentation 

activity and the formation of the end-products. 

 

3.3.2. Fermentation Performance 

Fermentation performance was assessed through the daily measurement of sugar 

(glucose and fructose). Sugar concentration obtained at each time of the fermentation 

process (18, 42 and 90 h) were statistically compared (Table 3.3). At the early exponential 

phase (18 h), sugar concentration was significantly different between the three batches 

tested (Table 3.3). The batch produced with supplementation of inorganic nitrogen had 

the highest sugar concentration (164.7 g/L) and the batch fermented adding the organic 

source of nitrogen showed the lowest one (161.2 g/L). Moreover, significant differences 

were also detected at exponential and stationary phase (42 and 90 h, Table 3.3).  
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Table 3.3. Mean and Standard deviation of sugars concentration at different fermentation times 

studied (18, 42 and 90 h). 

 
Glucose + Fructose 

(g/L), 18 h 
Glucose + Fructose 

(g/L), 42 h 
Glucose + Fructose 

(g/L), 90 h 

Control
1
 162.1

ab
 ± 1.5 71.6

c
 ± 1.5 1.7

e
 ± 0.5 

Inorganic nitrogen 164.7
b
 ± 1.5 56.0

d
 ± 1.5 0.0

f
 ± 0.0 

Organic nitrogen 161.2
a
 ± 0.7 87.8

d
 ± 1.5 0.0

f
 ± 0.0 

a,b,c.d,e,f
 column means of sugars concentration values with different lower case superscripts differ 

(P< 0.05). 
1
Without nitrogen supplementation. 

 

At exponential phase, sugar concentrations were 71.6 g/L for Control, 56.0 g/L for 

inorganic source of nitrogen and 57.8 g/L organic source of nitrogen. At stationary phase, 

sugar concentrations were 2 g/L for Control and 0 g/L for the batches supplemented with 

inorganic and organic nitrogen sources. The nutrient additions at the beginning of 

alcoholic fermentation is quickly assimilated by yeast and immediately have effects on the 

kinetics of fermentation (Bely et al., 1994) stimulating fermentation activity and the 

formation of the end-products (Bisson et al., 2000; Gobbi et al., 2013). This behaviour 

had been reported by several authors, could explain the significant differences between 

sugar concentration values detected at exponential and stationary phases. 

 

3.3.3. Raw Spectra and Second Derivative 

Typical attenuated total reflectance Fourier transform infrared spectroscopy (ATR-

FTIR) and their second derivative of fresh pellet of S. cerevisiae strain E491 fermented 

without and with the supplementation of inorganic and organic source of nitrogen are 

shown in Figure 3.1. The IR bands of highest proportion in the raw spectra were mainly 

concentrated in two different regions. The first one was located between 900 and 1200 

cm
-1

 associated mainly with the polysaccharide absorbing region of S. cerevisiae (Galichet 

et al., 2001) and the second region was located between 1500 and 1750 cm
-1

 formed 

mainly by the vibrations of proteins and lipid structures (Cavagna et al., 2010; Puxeu et 

al., 2014). 
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Figure 3.1. Typical attenuated total reflectance infrared spectra (ATR-FTIR) and their second 

derivative of S. cerevisiae strain ES491 fermented for 18 h without (a) and with a source of 

inorganic (b) and organic (c) nitrogen. The spectra were taken with a zinc selenide crystal 

accessory in reflectance mode. 
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3.3.4. Biochemical Changes during Alcoholic Fermentation Analysed by ATR-

FTIR Combined with SIMCA 

Class projections of SIMCA classification model of transformed spectra (1900-800 

cm
-1

) of S. cerevisiae strain E491 fermented in Grenache blanc must with and without 

using an extra nitrogen source (Figure 3.2a, Figure 3.3a and Figure 3.4a) showed clear 

differentiation between non-fermented (0 h) and fermented S. cerevisiae cells (18, 42 and 

90 h). 

Figure 3.2.Soft independent modeling class analogy (SIMCA) of class projections (a) and 

discriminating power (b) of transformed (second derivative, 15 points window) attenuated total 

reflectance infrared spectroscopy spectra of S. cerevisiae strain E491 fermented in Grenache must 

without nitrogen supplementation (Control) for 0, 18, 42 and 90 h. 

 

Figure 3.3.Soft independent modeling class analogy (SIMCA) of class projections (a) and 

discriminating power (b) of transformed (second derivative, 15 points window) attenuated total 

reflectance infrared spectroscopy spectra of S. cerevisiae strain E491 fermented in Grenache must 

with supplementation of inorganic source of nitrogen for 0, 18, 42 and 90 h. 
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Figure 3.4. Soft independent modeling class analogy (SIMCA) of class projections (a) and 

discriminating power (b) of transformed (second derivative, 15 points window) attenuated total 

reflectance infrared spectroscopy spectra of S. cerevisiae strain E491 fermented in Grenache must 

with supplementation of organic source of nitrogen for 0, 18, 42 and 90 h. 

 

Interclass distances (ICD) values further proved these findings. Generally, ICD 

values above 3.0 are considered significant to discriminate two clusters of samples as a 

different class (Dunn et al., 1995). ICD values between non-fermented and fermented S. 

cerevisiae cells without extra nitrogen added, inorganic source and organic source of 

nitrogen (Table 3.4) varied from 4.4 to 22.4 showing different pattern of clustering 

between S. cerevisiae cells at early and exponential phase and at stationary phase. 

Moreover, S. cerevisiae cells cluster fermented for 18 h (early exponential phase) without 

and with nitrogen supplementation showed the highest values of ICD when was 

compared with the clusters of S. cerevisiae cells fermented for 42 h (exponential phase) 

and 90 h (stationary phase). For instance, in the case of Grenache blanc must 

supplemented with the organic source of nitrogen (Table 3.4) the ICD values of  S. 

cerevisiae cells fermented for 18 h compared with S. cerevisiae cells fermented for 42 h 

and 90 h were 13.7 and 17.1 respectively. Nonetheless, when S. cerevisiae cells fermented 

for 42 h and 90 h were compared among them, the ICD value was 5.8 and 4.4 for 

inorganic and organic nitrogen sources respectively. 
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Table 3.4.Soft independent modeling of class analogy (SIMCA) of interclass distance of 

transformed (second derivative, 15 points window) attenuated total reflectance infrared 

spectroscopy spectra of S. cerevisiae E491 strain fermented in Grenache must without and with 

inorganic and organic nitrogen supplementation for 0, 18, 42 and 90 h. 

Control 0 h 18 h 42 h 90 h 

0 h 0.0    

18 h 13.3 0.0   

42 h 10.3 15.6 0.0  

90 h 16.0 22.4 6.2 0.0 

Inorganic 

nitrogen 0 h 18 h 42 h 90 h 

0 h 0.0    

18 h 7.9 0.0   

42 h 7.0 13.9 0.0  

90 h 9.5 16.3 5.8 0.0 

Organic 

nitrogen 0 h 18 h 42 h 90 h 

0 h 0.0    

18 h 4.7 0.0   

42 h 9.5 13.7 0.0  

90 h 11.7 17.1 4.4 0.0 

 

These results showed that the highest biochemical differences between S. cerevisiae 

cells were found when yeast cells were at early exponential phase in the three matrices 

tested. Discriminating power of S. cerevisiae cells non-fermented and fermented without 

and with nitrogen supplementation (Figure 3.2b, Figure 3.3b and Figure 3.4b) showed a 

common band at 986 cm
-1

 linked to with β(16) glucans (Cavagna et al., 2010; 

Kuligowski et al., 2012). In the case of discriminating power of S. cerevisiae cells non-

fermented and fermented with nitrogen supplementation (Figure 3.3b and Figure 3.4b), 

two secondary IR bands at 1026 and 1156 cm
-1

 linked to β(14) glucans and C-O, C-OH 

carbohydrates present in yeast cell wall (Cavagna et al., 2010; Kuligowski et al., 2012). 

These results are in agreement with a previous research performed with several strains of 
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S. cerevisiae fermented in Grenache blanc and Chardonnay musts (Puxeu et al., 2014). In 

this case, SIMCA models were used to detect biochemical changes produced by S. 

cerevisiae cells at different physiological states during a fermentation process. Depending 

on the strain tested, the compounds mainly responsible of S. cerevisiae cells 

discrimination during the entirely fermentation process in Grenache blanc were 

mannoproteins, lipids and RNA. Moreover, it is important to mention that discrimination 

power values of 986 cm
-1 

band decreased with the supplementation of inorganic (2990 to 

1432 units) (Figure 3.2b and Figure 3.3b) and organic nitrogen (2990 to 1646 units) 

(Figure 3.2b and Figure 3.4b) showing higher discrimination when S. cerevisiae cells were 

fermenting without nitrogen supplementation. 

It was also important to study the possibility to discriminate between S. cerevisiae 

cells fermented without and with nitrogen supplementation. For this purpose, SIMCA 

models were built up using IR data from non-fermented (0 h) and fermented S. cerevisiae 

cells (18, 42 and 90 h) without and with inorganic and organic nitrogen supplementation 

(Table 3.5). The distance between the clusters of non-fermented without and with 

nitrogen supplementation and fermented samples increased over the time of fermentation 

excepting for S. cerevisiae cells fermented for 42 h (exponential phase) with the addition 

of nitrogen and S. cerevisiae cells fermented for 90 h (stationary phase) with the addition 

of organic nitrogen (Table 3.5). In this case, ICD values of non-fermented and fermented 

S. cerevisiae cells without and with the supplementation of nitrogen varied from 1.6 to 

19.2 (Table 3.5). In general, S. cerevisiae cells fermented without and with the addition of 

inorganic source of nitrogen were clearly differentiated at early (ICD 2.7), exponential 

(ICD 4.2) and at stationary phase (ICD 3.6). Nonetheless, S. cerevisiae cells fermented 

without and with the addition of organic nitrogen were only differentiated at exponential 

phase (ICD 2.8). When S. cerevisiae cells fermented with the supplementation of 

inorganic and organic sources of nitrogen were compared, just yeast cells fermented for 

42 h (exponential phase) were different (ICD 3.1) and the lowest differences were found 

at stationary phase (ICD 1.6). Moreover, S. cerevisiae cells cluster fermented for 18 h 

without and with the supplementation of nitrogen showed the highest values of ICD when 

was compared with the clusters of S. cerevisiae cells fermented for 42 h and 90 h (Table 

3.5). This trend was also detected when SIMCA models of fermented S. cerevisiae cells 

without and with nutrient supplementation were built up separately (Figure 3.2a, Figure 

3.3a, Figure 3.4a and Table 3.4). 
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Discriminating power (Figure 3.5) showed a unique IR band at 986 cm
-1

 mainly 

responsible of the biochemical differences between the samples compared. This band 

also played an important role on the differentiation of non-fermented and fermented S. 

cerevisiae cells when SIMCA models were built up separately.  

 

Figure 3.5.Soft independent modeling of class analogy (SIMCA) of discriminating power of S. 
cerevisiae E491 strain fermented in Grenache must for 0, 18, 42 and 90 h without and with 

inorganic and organic nitrogen supplementation. 

 

All the IR bands mainly responsible of the biochemical differences between the 

samples compared were related with compounds presents in the S. cerevisiae cell wall 

(Kapteyn et al., 1999; Klis et al., 2002; Klis et al., 2006). According to these results, 

supplementing the Grenache blanc must with inorganic and organic sources of nitrogen 

had an impact on the composition of the yeast cell wall, especially at early exponential 

phase related to the presence of β(16) glucans. 
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Table 3.5. Soft independent modeling of class analogy (SIMCA) of interclass distance of transformed (second derivative, 15 points window) attenuated 

total reflectance infrared spectroscopy spectra of non-fermented (0 h) and fermented S. cerevisiae E491 cells (18, 42 and 90 h) without and with inorganic 

and organic nitrogen supplementation. 

 
Control, 

0 h 

Inorganic 

nitrogen, 0 

h 

Organic 

nitrogen, 

0 h 

Control, 

18 h 

Inorganic 

nitrogen, 

18 h 

Organic 

nitrogen, 

18 h 

Control, 

42 h 

Inorganic 

nitrogen, 

42 h 

Organic 

nitrogen, 

42 h 

Control, 

90 h 

Inorganic 

nitrogen, 

90 h 

Organic 

nitrogen, 

90 h 

Control, 0 h 0.0            

Inorganic nitrogen, 0 h 6.0 0.0           

Organic nitrogen, 0 h 3.8 3.8 0.0          

Control, 18 h 9.2 6.5 4.6 0.0         

Inorganic nitrogen, 18 h 9.9 7.2 5.9 2.7 0.0        

Organic nitrogen, 18 h 9.0 6.7 4.6 2.0 2.3 0.0       

Control, 42 h 7.7 5.5 6.6 13.0 12.1 11.7 0.0      

Inorganic nitrogen, 42 h 10.1 7.2 9.6 16.2 13.2 14.0 4.2 0.0     

Organic nitrogen, 42 h 9.5 7.3 9.6 15.2 12.0 13.6 2.8 3.1 0.0    

Control, 90 h 11.0 9.4 12.5 19.2 17.4 17.0 6.2 10.3 7.0 0.0   

Inorganic nitrogen, 90 h 10.4 9.4 13.0 18.9 15.1 16.7 4.2 5.5 4.3 3.6 0.0  

Organic nitrogen, 90 h 8.7 7.8 10.6 17.1 14.9 15.3 4.0 5.5 4.5 2.3 1.6 0.0 
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3.3.5. SIMCA Biochemical Changes Induced by Inorganic and Organic Nitrogen 

Supplementation Analysed by ATR-FTIR Combined with SIMCA 

In this research it was also interesting to compare among fermented S. cerevisiae cells 

without and with nitrogen supplementation at early exponential (18 h), exponential phase 

(42 h) and stationary phase (90 h) to study the biochemical differences present in each 

physiological phase depending on the source of nitrogen used. At early exponential 

phase, clusters from fermented S. cerevisiae cells without (Control) and with inorganic 

(ICD 4.4) and organic (ICD 3.1) nitrogen supplementation were clearly separated (data 

not shown). The major discriminating bands observed when 2-classes SIMCA 

classification models were developed using transformed spectra from S. cerevisiae 

fermented without (Control) and with inorganic (Figure 3.6a) and organic (Figure 3.6d) 

sources of nitrogen were  1538 and 1511 cm
-1

, respectively. The IR bands at 1538 and 

1511 cm
-1

 were related to amide II group vibrations of N-H and C-N bounds from 

peptides (Cavagna et al., 2010; Kuligowski et al., 2012). In addition to these major 

discriminating bands, there was a small contribution of amide I band resulting from 

antiparallel pleated sheets and β–turns of proteins at 1696 cm
-1

 (Maquelin et al., 2002) in 

the discrimination of S. cerevisiae fermented without (Control) and with organic (Figure 

3.6d) nitrogen. In the case of S. cerevisiae cells at exponential phase (42 h) fermented 

without (Control) and with inorganic nitrogen (Figure 3.6b), the biochemical differences 

were also linked to IR bands (1550 and 1647 cm
-1

) related to different protein structures. 

Whereas, when SIMCA models were built up using IR data from S. cerevisiae cells 

fermented at exponential phase without (Control) and with organic nitrogen (Figure 3.6e), 

the discrimination among clusters was due to two IR bands at 1714 and 1744 cm
-1

 related 

to C-O stretching of carbonic acid or nucleic acids (Maquelin et al., 2002). Finally, at 

stationary phase (90 h), S. cerevisiae cells fermented without (Control) and with inorganic 

nitrogen were mainly discriminated by IR bands related to protein structures (1678 and 

1541 cm
-1

), to asymmetric stretching of PO2

−
 in RNA and phospholipids and lipid esters 

(1285 and 1748 cm
-1

) and to CH2 scissoring vibrations of lipids (Figure 3.6c). In the case 

of S. cerevisiae cells fermented at stationary phase without (Control) and with organic 

nitrogen (Figure 3.6f) a unique band at 1714 cm
-1

 linked to C-O stretching of carbonic 

acid or nucleic acids  (Maquelin et al., 2002) was mainly responsible of their 

discrimination. 
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Figure 3.6.Soft independent modeling class analogy (SIMCA) of discriminating power of 

transformed (second derivative, 15 points window) attenuated total reflectance infrared 

spectroscopy spectra of S. cerevisiae strain E491 fermented in Grenache must without and with 

inorganic nitrogen for18 h (a), 42 h (b) and 90 h (c) and without and with organic nitrogen for 18 

h (d), 42 h (e) and 90 h (f). 

 

To summarize, the supplementation of Grenache blanc must with inorganic and 

organic sources of nitrogen showed biochemical differences especially when S. cerevisiae 

cells were grown at exponential and stationary phase. These results are in agreement with 

previous studies performed to evaluate the effect of nitrogen supplementation on S. 

cerevisiae cells alcoholic fermentation. Some authors have described the relation between 

must nitrogen supplementation and the formation of ethyl esters from medium-chain fatty 
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acids (MCFA) (Saerens et al., 2006) derived from the metabolism of sugars and also 

amino acids by yeast (Lilly et al., 2000; Swiegers et al., 2005; Carrau et al., 2008). The 

synthesis of MCFA ethyl esters is produced by of substrate availability and could be 

related to the relative increase of fatty acids synthesis due to nitrogen supplementation 

(Sarens et al., 2006 and 2008). Other studies showed that the addition of organic nitrogen 

(mixture of amino acid and ammonium nitrogen) resulted in higher concentrations of 

MCFA ethyl esters that those samples supplemented with inorganic sources alone 

(ammonium salts) (Torrea et al., 2011). In contrast to these results, other authors have 

suggested that when a high total YAN concentration is naturally present in the grape must, 

the addition of amino acids can reduce ester concentration due to feedback inhibition 

suppressing amino acid uptake (Miller et al., 2007). From our research, we can conclude 

that a positive correlation between total nitrogen and esters formation was detected as 

other authors suggested (Vilanova et al., 2007; Ugliano et al., 2008) and the nature of the 

source of nitrogen used can influence the ester production and the composition of the 

yeast cell wall composition. 

 

3.4. Conclusions 

The combination of ATR-FTIR with SIMCA allowed studying the biochemical 

changes produced during alcoholic fermentation induced by the supplementation of 

Grenache Blanc with organic and inorganic sources of nitrogen. Depending on the source 

of nitrogen used and the physiological phase studied, the yeast cell wall components that 

were revealed to differentiate no supplemented and supplemented S. cerevisiae cells were 

different. In the case of inorganic source of nitrogen, at exponential phase the 

components were protein structures and at stationary phase there was a contribution of 

lipid esters. Nevertheless, when a source of organic nitrogen was used, the main changes 

at exponential and stationary phase were produced by changes on nucleic acids and lipid 

esters. 
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Abstract 

he potential of using attenuated total reflectance infrared spectroscopy 

(ATR-FTIR) combined with multivariate analysis to discriminate 

Saccharomyces cerevisiae and Non-Saccharomyces wine yeast species was 

investigated. Thirty eight strains (twenty nine S. cerevisiae  and nine Non-

Saccharomyces ) isolated from Spanish wines and identified by molecular 

techniques, were inoculated to Tempranillo thermovinificated red must and 

fermented juices were taken after 48 h at 28ºC. Pellets obtained after a 

centrifugation process, were placed onto diamond crystal. Spectra were 

collected in the attenuated total reflectance (ATR) mode in the mid-infrared 

region (4000–800 cm
-1

) and were analyzed by a multivariate analysis technique 

(SIMCA). To discriminate between yeast strains, 2-classes SIMCA model of 

Non-Saccharomyces and S. cerevisiae strains was built up showing tight 

clustering but close grouping (interclass distance of 1.7). Then, two SIMCA 

models were created separately with IR data from Non-Saccharomyces and S. 

cerevisiae strains and were validated obtaining scores above 89%. 

Physiological growth phase of each strain was taken into consideration to 

build up SIMCA models improving substantially the close grouping detected 

between yeasts strains or species. Discrimination between Non-

Saccharomyces and S. cerevisiae strains was linked to cell wall components. 

 

T 
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4.1. Introduction 

Fourier-Transform infrared (FTIR) spectroscopy in mid infrared range combined 

with powerful supervised pattern recognition techniques such as Soft Independent 

Modeling Class Analogy (SIMCA) is a non-destructive, simple, fast and highly specific 

technology that can be used for the differentiation and identification of vegetative cells 

and spores (Subramanian et al., 2007). The application of chemometrics to IR data has 

allowed the detection of subtle chemical differences between strains of the same species 

of bacteria and yeast. Some researchers have successfully built up multivariate 

classification models for discrimination and prediction of food-borne yeasts (Kümmerle 

et al., 1998) or S. cerevisiae and S. bayanus strains (Adt et al., 2010). Others authors, have 

used micro spectroscopy to monitor autolysis of S. cerevisiae cells in a base wine 

(Burattini et al., 2008; Cavagna et al., 2010). There is considerable controversy 

concerning the effect that different alcoholic fermentation processes exercise on the 

organoleptic quality of wine. Some researchers have found remarkable differences 

between fermentations conducted with pure cultures and those with native yeasts (Bisson 

1999; Dominzo et al., 2011). The Non-Saccharomyces yeasts contain numerous species, 

dominated numerically by the apiculate yeasts, e.g. Kloeckera spp. and Candida spp. 

(Jolly et al., 2006) and each yeast confers specific desired wine properties (Ciani and 

Maccarelli et al., 1998). For instance, Metschnikowia pulcherrima produces 

highconcentrations of β-glucosidase (Rodríguez et al., 2010), medium chain fatty acids, 

esters, terpenols and glycerol (Rodríguez et al., 2010; Sadineni et al., 2012). On the other 

hand, Debaryomyces hansenii is capable of maintaining β-glycosidase activity in the 

presence of high ethanol content (up 15% vol) and releases terpens (Yanai and Sato, 

1999). Therefore, Non-Saccharomyces yeast species can be used to develop unique and 

singular wine products (Jolly et al., 2003; Ciani et al., 2010). Traditionally, methods to 

discriminate yeasts are based on morphological tests supplemented with physiological 

tests (Fugelsang and Edwards 2007). Molecular techniques such as restriction fragment 

length polymorphism analysis of PCR-Amplified Fragments (PCR-RFLP) could be used 

for the identification of different wine yeast species (Esteve-Zarzoso et al., 1999). 

Nonetheless, molecular techniques required trained personnel and sample preparation is 

laborious and time consuming. Therefore, there is a need for simple, high-throughput, 

and reliable technique for rapid discrimination of S. cerevisiae and Non-Saccharomyces 

species in the wine sector. 
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The goal of this work is to study the potential of using infrared spectroscopy 

combined with multivariate analysis to develop a non-destructive method to discriminate 

S. cerevisiae and Non-Saccharomyces yeast species. 

 

4.2. Materials and Methods 

4.2.1. Yeast Isolation 

Autochthonous yeasts species were isolated from five different Spanish wine 

regions Penedès, Terra Alta and Ribera Sacra Designation of Origin (DO) and Priorat 

and Rioja Qualified Designation of Origin (DQO). From each region typical grape 

varieties were chosen to isolate their characteristic yeast species: Xarel·lo grapes for DO 

Penedès, Mencia grapes for DO Ribera Sacra, Grenache blanc grapes for DO Terra Alta, 

Carignan and Grenache noir grapes for DOQ Priorat and Tempranillo grapes for DOQ 

Rioja. In order to simulate industrial conditions, in the case of white musts spontaneous 

fermentations were carried out using 30 L stainless-steel vats immersed in chiller water 

bath at 18 ºC and for red grapes 50 L stainless-steel vats placed in a thermostatic chamber 

at 25ºC were used. In each spontaneous fermentation, carbon dioxide was used to inert 

the vat headspace in order to prevent must oxidations and acetic acid bacteria 

appearance. Sugar consumption was daily monitored by measuring the density (g/L) of 

the fermenting must with an electronic densimeter (Metler Toledo, Hospitalet de 

Llobregat, ES). Fermentations were considered to be finished when the level of reducing 

sugars was below 2 g/L. All fermentations were performed in triplicate. For yeast 

isolation, fermented musts were taken at different stages of the spontaneous fermentation, 

at the beginning (0-2 days), in the middle of alcoholic fermentation (4-6 days), at the end 

of alcoholic fermentation (8-12 days) and finally from the lees. 

Tenfold dilutions of each sample were plated on Yeast Extract-Peptone-Dextrose 

(YPD) (Panreac Química SL, Castellar del Vallés, ES). An aliquot of 0.1mL of the 

appropriated dilution was plated onto Yeast Extract-Peptone-Dextrose Agar (YPDA) 

(Panreac Química SL). In order to differentiate between Saccharomyces and Non-

Saccharomyces yeast, all colonies that grown onto YPDA were transfer onto Lysine 

Medium (LM, Oxoid, Hampshire, United Kindom), this medium only allow the growth 

of Non-Saccharomyces yeast. Twenty five colonies from each fermentation time and 
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grape must variety were randomly isolated and purified for future identification. DNA 

from wine samples was extracted according to Querol et al. (1992) and diluted to 1-50 

ng/µL. Sample DNA was extracted from 1 mL of must or wine and used for the 

identification of S. cerevisiae strains and other Non-Saccharomyces yeast species. The 

identification of S. cerevisiae strains were done by amplification of interdelta regions as 

described in Legras and Karst (2003). For the identification of Non-Saccharomyces yeast 

the ITS region and 5.8S rDNA gene were amplified as described previously by Esteve-

Zarzoso et al. (1999). Consequently, 5 µL of the ITS/5.8S rDNA gene amplified product 

were digested with the DNA restriction enzimes HinfI according to the supplier’s 

instructions (Roche Diagnostics, Mannhein, GR). CfoI, DraI and/or HaeIII DNA 

restriction enzymes were also used for further identification when needed (Roche 

Diagnostics, Mannhein, Germany). All the amplifications were performed using a T100 

Thermal Cycler (Bio-Rad, California, USA). Once yeast species were correctly identified 

were kept with glycerol at -80 ºC for further analysis. From a total of 1350 strains isolated 

from the grape varieties studied 29 S. cerevisiae different strains and 9 Non-

Saccharomyces yeast species were selected for the present study (Table 4.1). 

Table 4.1. Non-Saccharomyces and Saccharomyces wine yeast species studied in the present 

research. 

Yeast strain Grape variety Wine region 

S. cerevisiae RI I Tempranillo RI 

S. cerevisiae RI II Tempranillo RI 

S. cerevisiae RI III Tempranillo RI 

S. cerevisiae RI IV Tempranillo RI 

S. cerevisiae RI V Tempranillo RI 

S. cerevisiae RI VI Tempranillo RI 

S. cerevisiae RI VII Tempranillo RI 

S. cerevisiae RI VIII Tempranillo RI 

S. cerevisiae RI X Tempranillo RI 

S. cerevisiae RI XI Tempranillo RI 

S. cerevisiae RI XII Tempranillo RI 

S. cerevisiae TA I Grenache blanc TA 

S. cerevisiae TA II Grenache blanc TA 

S. cerevisiae TA III Grenache blanc TA 
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S. cerevisiae TA IV Grenache blanc TA 

S. cerevisiae RS I Mencía RS 

S. cerevisiae RS II Mencía RS 

S. cerevisiae RS III Mencía RS 

S. cerevisiae RS IV Mencía RS 

S. cerevisiae PE I Xarel·lo PE 

S. cerevisiae PE II Xarel·lo PE 

S. cerevisiae PE III Xarel·lo PE 

S. cerevisiae PE IV Xarel·lo PE 

S. cerevisiae PE V Xarel·lo PE 

S. cerevisiae PR I Carignan PR 

S. cerevisiae PR II Carignan PR 

S. cerevisiae PR III Carignan PR 

S. cerevisiae PR IV Grenache noir PR 

S. cerevisiae PR V Grenache noir PR 

S. cerevisiae PE II Xarel·lo PE 

S. cerevisiae PE III Xarel·lo PE 

S. cerevisiae PE IV Xarel·lo PE 

S. cerevisiae PE V Xarel·lo PE 

S. cerevisiae PR I Carignan PR 

S. cerevisiae PR II Carignan PR 

S. cerevisiae PR III Carignan PR 

S. cerevisiae PR IV Grenache noir PR 

S. cerevisiae PR V Grenache noir PR 

Pichia anomala Grenache blanc TA 

Hanseniaspora uvarum Grenache blanc TA 

Kluyveromyces thermotolerans PE I Xarel·lo PE 

Pichia fermentans Xarel·lo PE 

Metschnikowia pulcherrima PR I Carignan PR 

Metschinikowia pulcherrima PR II Grenache noir PR 

Candida zemplinina Grenache noir PR 

Debaryomyces hansenii Grenache noir PR 

Kluyveromyces thermotolerans PR I Grenache noir PR 

RI: DOQ Rioja; TA: DO Terra Alta; RS: DO Ribera Sacra; PE: DO Penedès; PR: DOQ Priorat
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4.2.2. Must Preparation and Characterization 

Thermovinificated Tempranillo red must was purchased from Sant Josep 

Agricultural Cooperative (Bot, ES). Sterilized must (2.5 L) was obtained by four cycles of 

vacuum filtration, decreasing in each cycle the pore size of the cellulose nitrate filter used 

from 8.0 to 0.2 µm (Sartorius Stedim Biotech GmbH, Göttingen, GR). Brix degree and 

alcoholic potential strength by refractometry, pH, total acidity and final alcoholic strength 

were analysed by official European method and turbidity in Nephelometric Turbidity 

Units (NTU) were analysed following the procedure of the Office International de la 

Vigne et du Vin (OIV, 2008). All these parameters were used for characterization of the 

must tested. All the analyses were performed in triplicate. 

 

4.2.3. Growing Conditions 

An aliquot of 0.1 mL of the selected strains were revived by platting them onto 

YPDA: 2% glucose, 2% peptone, 1% yeast extract and 2% agar (Panreac Química SL, 

Castellar del Vallés, ES) in the case of S. cerevisiae strains and onto Lysine medium 

(Oxoid) for the Non-Saccharomyces yeasts at 28ºC during for 48 h. A colony of each 

strain was selected and placed into 10 mL of YPD (Panreac Química SL) and incubated 

at 28°C for 18 h. Elapsed this time, cells were counted microscopically by using an 

improved Neubauer chamber (OIV, 2008). Counting was performed by triplicated. 

From each pure yeast strain different volumes of the starting culture were taken in 

order to inoculate 10
6

 cell/mL in 7.5 mL of sterile red grape must. Cells were grown at 

28ºC for 48 h and kept in constant agitation using a mini orbital shaker (Vidrafoc SA, 

Barcelona, ES). 1,5 mL of sample must were taken for ATR-FTIR analysis and 1,5 mL 

for sugars (OIV, 2008) to know the physiological phase of each yeast strain. All the 

analysis was performed in triplicate. 

 

4.2.4. Sample Preparation 

Samples (1.5 mL) were centrifuged (15900 g for 5 min at room temperature) and 

the pellets obtained were washed three times under the same conditions described above 
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using 1 mL of saline solution (SS, 0.88% NaCl). Then, 1.5 µL of each pellet was placed 

onto diamond crystal in order to acquire the spectral data.  

 

4.2.5. Fourier Transform Infrared Spectroscopy (FTIR) Used in Attenuated Total 

Reflectance (ATR) Mode 

Spectra were obtained using a FTIR spectrometer Jasco FT/IR-600 Plus (Jasco 

Comparison Proven, Madrid, Spain) adapted with an ultra-high performance ATR plate 

of Diamond. Spectra were collected from 4000 to 800 cm
-1

 with a resolution of 2 cm
-1

. 

The spectrometer was controlled using Spectra Manager software (Jasco Comparison 

Proven, Madrid, ES). The spectrum of each sample was obtained by taking the average of 

32 scans to improve the signal-noise ratio. Spectra were displayed in terms of absorbance 

obtained by rationing the single beam spectrum against that of the air background. 

 

4.2.6. Statistical and multivariate analyses 

Analysis of variance was performed using XLSTAT 2015 software (Microsoft, 

Redmond, USA). Tukey test was used to obtain paired comparisons among sample 

means. Level of significance was set at P <0.05. Experiments were run three times with 

duplicate analysis in each replicate. 

Spectra were exported to the Pirouette® multivariate analysis software (version 4.0, 

InfoMetrix, Inc.,Woodville, USA). The FTIR spectral data were mean-centered, 

transformed to their second derivative using a 15-point Savitzky-Golay polynomial filter, 

and vector-length normalized; sample residuals and Mahalanobis distance were used to 

determine outliers (Kansiz et al., 1999; Hruschka 2001). Soft independent modeling of 

class analogy (SIMCA) was used to build a predictive model based on the construction of 

separate PCA models for each class to describe and model the variation (Kansiz et 

al.,1999). SIMCA class models were interpreted based on class projections, 

misclassifications, discriminating power, and interclass distances. Total misclassifications 

were analysed and interpreted for the input data. Variable importance, also known as 

discriminating power, was used to define the variables (wavenumbers) that have a 

predominant effect on sample classification, minimizing the difference between samples 
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within a cluster and maximizing differences between samples from different clusters 

(Dunn and Wold 1995). SIMCA models can be used for the prediction of unknown 

samples. The identity of unknown samples can be predicted using the training models 

with three possible outcomes: the unknown sample is part of one class, the unknown 

sample is part of more than one class or the unknown sample does not belong to one 

class. Validation of the model was conducted by internal validation. SIMCA was used to 

build a predictive model based on the PCA models constructed separately (Kansiz et al., 

1999). The build model was validated using two randomly spectra for strain and 

evaluating the correct classification of each strain in their correct class in the SIMCA build 

models (Grasso et al., 2009). 

 

4.3. Results and Discussion 

4.3.1. Fermentation Conditions 

It is well known that culture conditions strongly affect FTIR grouping of 

microorganisms (Mariey et al., 2001; Baldauf et al., 2007; De Lamo-Castellví and 

Rodriguez-Saona, 2011). Moreover, it has been reported that the concentration of 

fermented sugars is a key factor for the alcoholic fermentation kinetics (van Dijken et al., 

1993). Therefore, for this research, we selected to standardize the growing medium of S. 

cerevisiae and Non-Saccharomyces yeast species using commercial Tempranillo 

thermovinificated red must. Composition parameters for red must are shown in Table 

4.2. Sugar concentration of 231 g/L was appropriated for Tempranillo grapes in advance 

stage of ripening. Total acidity (4.6 g/L) and pH (3.8) also indicated the advanced stage of 

grape maturity. Assimilable nitrogen content of 104 mg/L was sufficient for the growth of 

yeast species. 
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Table 4.2. Physical-chemical characterization of thermovinifcated Tempranillo red must. Results 

are shown as mean ± standard deviation. 

 Tempranillo 

Sugars (glucose+fructose) 231.1 ± 0.2 

Density (mg/mL) 1097 ± 1 

Alcoholic potential strength (vol%) 13.2 ± 0.1 

pH 3.8 ± 0.1 

Total acidity 4.6 ± 0.1 

Primary Amino Nitrogen (mg/L) 80.7 ± 5 

Ammonium (mg/L) 30 ± 5 

Assimilable nitrogen (mg/L) 104 ± 5 

Acetic acid (g/L) 0.25 ± 0.03 

Malic acid (g/L) 1.8 ± 0.1 

Lactic acid (g/L) 0.0 ± 0.1 

 

 

4.3.2. Discrimination of Non-Saccharomyces Yeast Species by ATR-FTIR 

Combined with SIMCA 

Infrared spectra analyses (800-1800 cm
-1

) using SIMCA classification models of nine Non-

Saccharomyces wine yeast species are shown in Figure 4.1. Class projections illustrate the 

ability of SIMCA to differentiate IR data based on the first 3 principal components; 

however, more principal components were used for actual differentiation (Subramanian 

et al., 2007; Grasso et al., 2009). This model offered good class separation, tight clustering 

among yeast species (Figure 4.1a) and interclass distances (ICD) ranging from 1.2 to 8.3 

showing differences between the species compared (Table 4.3). The ICD are Euclidian 

distances between centers of clusters and values above 3 are considered good for class 

discrimination (Dunn and Wold, 1995). Close grouping between samples indicates 

biochemical similarities. For this model, similarities where found between C. zemplinina 

and M. pulcherrima PR I, K. thermotolerans PE I and P. fermentans, D. hansenii and M. 

pulcherrima PR II and P. fermentans, P. anomala and H. uvarum and between D. 

hansenni and K. thermotolerans TA I. Discriminating power of SIMCA showed two 

strong spectral bands at 1032 and 1630 cm
-1

 (Figure 4.1b) related to β(14) glucans and 
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N-H and C-N vibrations of peptide bond in different protein conformations, respectively 

(Cavagna et al., 2010). Domizio et al. (2011) and Giovani et al. (2012) reported that Non-

Saccharomyces wine yeasts have a high capacity to release polysaccharides mainly 

mannoproteins into wine. 

 

Figure 4.1.Soft independent modeling of class analogy (SIMCA) class projections (a) and 

discriminating power (b) of transformed attenuated total reflectance (ATR) infrared spectroscopy 

spectra (1900–800 cm
-1

) of nine Non-Saccharomyces cerevisiae strains fermented in Tempranillo 

must. 

 

Mannoproteins are polymers with high mannose content that exist as covalent 

complexes with proteins and are released into the extracellular medium by yeast during 

yeast growth and autolysis (Llauberes et al., 1987; Boivin et al., 1998; Dupin et al., 2000; 

Rosi et al., 2000; Alexandre and Guilloux-Benatier, 2006; Palomero et al., 2007). 

Domizio et al. (2014) also confirmed that the polysaccharides released in the media for 

Non-Saccharomyces wine yeasts species were indeed of cell wall origin and essentially 

mannoproteins. Moreover, these authors reported that Non-Saccharomyces yeasts were 

growth-independent when they were starting the fermentation process. 
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Table 4.3. Soft independent modelling of class analogy (SIMCA) of interclass distance of nine studies Non-Saccharomyces of transformed (second derivative, 15 

points window) attenuated total reflectance infrared spectroscopy (ATR-FTIR) spectra. 

 

P. 

anomala 

H. 

uvarum 

K. 

thermotolerans 

PE I 

P. 

fermentans 

M. 

pulcherrima 

PR I 

M. 

pulcherrima 

PR II 

C.  

zemplinina 

D. 

hansenii 

K. 

thermotolerans 

PR I 

P. anomala 0.0         

H.uvarum 1.2 0.0        

K. thermotolerans PE I 3.7 3.0 0.0       

P. fermentans 2.9 2.6 1.6 0.0      

M. pulcherrima  PR I 3.4 3.1 4.2 3.5 0.0     

M. pulcherrima PR II 6.4 6.0 7.1 5.7 4.8 0.0    

C. zemplinina 2.9 2.7 3.7 3.3 1.3 6.3 0.0   

D. hansenii 2.7 2.7 2.8 2.3 2.9 2.4 3.5 0.0  

K. thermotolerans PR I 
7.1 6.6 7.6 5.8 6.8 3.5 8.3 2.1 0.0 
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4.3.3. Discrimination of S. cerevisiae Yeast Strains by ATR-FTIR Combined with 

SIMCA 

A SIMCA model of S. cerevisiae strains was built up. Class projections plot 

showed well-separated grouping of the strains analysed (data not shown). ICD ranged 

from 1.3 to 8.7 (data not shown) pointing out that a high number of samples (30 pairs of 

samples) with close grouping. The wavenumbers that have predominant effect on 

discrimination of S. cerevisiae strains were mainly two 1558 and 1684 cm
-1 

(Figure 4.2). 

These bands were related with N-H and C-N vibration of the peptide bond in different 

protein conformations (Cavagna et al., 2010) and protein β-turns and pleated sheets 

conformation (Corte et al., 2014), respectively. As we reported in previous research 

(Puxeu et al., 2014), mannoproteins present in yeast cell wall seem to be the key factor to 

discriminate S. cerevisiae strains. 

 

 

Figure 4.2. Soft independent modeling of class analogy (SIMCA) discriminating power of 

transformed attenuated total reflectance (ATR) infrared spectroscopy spectra (1900–800 cm
-1

) for 

29 studied Saccharomyces cerevisiae strains fermented in Tempranillo must at 48 h at 

exponential phase. 
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4.3.4. Discrimination of Non-Saccharomyces and S. cerevisiae Yeast Strains by 

ATR-FTIR Combined with SIMCA 

A 2-classes SIMCA model to discriminate Non-Saccharomyces wine yeast species 

and S. cerevisiae strains was created (Figure 4.3a and b). The two clusters of Non-

Saccharomyces and S. cerevisiae strains were well-separated (Figure 4.3a) but the ICD 

was 1.7 showing close grouping. The IR bands mainly responsible of their discrimination 

were 1032 and 1541 (Figure 4.3b) linked to β(16) glucans and N-H and C-N vibrations 

of the peptide bond in different protein conformations (Cavagna et al., 2010). 

 

Figure 4.3. Soft independent modeling of class analogy (SIMCA) class projections (a) and 

discriminating power (b) of transformed attenuated total reflectance (ATR) infrared spectroscopy 

spectra (1900–800 cm
-1

) of nine Non-Saccharomyces cerevisiae and twenty nine S. cerevisiae 

strains fermented in Tempranillo must. 

 

Under these circumstances, the objective of having a unique model to 

discriminate between Non-Saccharomyces yeast species and S. cerevisiae strains was not 

suitable. Nonetheless, the two SIMCA models built up separately with IR data of Non-

Saccharomyces wine yeast species and S. cerevisiae strains could be used to predict 

unknown wine yeast species. To test the performance of these two SIMCA models, an 

internal validation (2 spectra per specie or strain not used to build up the SIMCA 

models) was performed obtaining 100% correct predictions into the appropiate class 

(Table 4.4). Moreover, we decided to apply an external validation using as data set Non-

Saccharomyces yeast species IR data to predict their class into the SIMCA model of S. 
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cerevisiae strains and vice versa (Table 4.4). In this case, 89% correct predictions were 

obtained for S. cerevisiae strains and 87% were correctly predicted as Non-

Saccharomyces wine yeast species. 

 

Table 4.4. Saccharomyces cerevisiae and Non-Saccharomyces cerevisiae models validation by 

Internal Validation and Cross Validation using 2 spectra per strain in both cases. 

SIMCA Models 

Internal Validation 

(2 spectra per strain) 

Cross validation 

(2 spectra per strain) 

S. cerevisiae 
100% 

(29 samples) 

89% 

(9 samples) 

Non-Saccharomyces species 
100% 

(9 samples) 

97% 

(29 samples) 

 

 

4.3.5. Physiological Growth Phase 

In a previous research, we found that depending on the physiological phase, the 

biochemical components that played an important role to discriminate S. cerevisiae 

strains changed (Puxeu et al., 2014). Moreover, most of the Non-Saccharomyces species 

isolated from wine-related environments have limited fermentation potential, such as low 

fermentation power and rates, as well as low SO2 resistance (Jolly et al., 2003). 

Consequently, the sugar consumption of our selected yeasts was monitored to determine 

their growing phase after 2 days of fermenting at 28ºC (Table 4.5 and Table 4.6). Even 

though the growing process started with equal amounts of sugars, grape must fermented 

by P. anomala, H. uvarum, K. thermotolerans PE I, P. fermentans, M. pulcherrima PR I, 

M. pulcherrima PR II and C. zemplinina, sugars used up more slowly over the course of 

two days of fermentation showing low fermentative capacity with sugar values and leading 

to yeast cells  
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Table 4.5. Sugar concentration per each Non-Saccharomyces wine specie after 48 h of 

fermentation at 28ºC and its physiological phase of growth. Results are shown as mean ± standard 

deviation. 

Species Glucose + Fructose (g/L) Physiological phase 

Grape must 231.1
a
 ± 0.2  

P. anomala 180.7
bc ± 5.5 Early exponential 

H. uvarum 186.7
bc

 ± 6.5 Early exponential 

K. thermotolerans PE I 182.7
bc

± 10.1 Early exponential 

P. fermentans 200.7
b
 ± 9.0 Early exponential 

M. pulcherrima PR I 197.0
b
 ± 11.1 Early exponential 

M. pulcherrima PR II 179.0
bc

 ± 17.1 Early exponential 

C. zemplinina 185.7
bc

 ± 11.9 Early exponential 

D. hansenii 168.7
c
 ± 3.5 Exponential. 

K. thermotolerans PR I 116.3
d
 ± 8.1 Exponential 

 

mainly at early exponential phase (Table 4.3). Nevertheless, D. hansenii and K. 

thermotolerans PR I showed the highest fermentative capacity with sugar concentration 

values of 168.7 and 116.3 g/L, respectively, leading to yeast cells at exponential phase 

(Table 4.3). Several researchers have reported that Non-Saccharomyces wine species have 

different fermentative capacity. For instance, Jolly et al., (2003) has reported that apiculate 

yeasts such as Kloeckera apis, K. javanica and H. uvarum have low fermentative activity 

and Santos et al. (2008) found that Torulaspora delbrueckii showed the highest 

fermentation power. 

In the case of S. cerevisiae strains, S. cerevisiae RI IX (83 g/L) showed the highest 

fermentation capacity and S. cerevisiae PE II (202.7 g/L) the lowest (Table 4.6). 

Regarding their physiological phase, six strains were classified at early exponential phase, 

eighteen at exponential phase and five at late exponential phase (Table 4.4). 
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Table 4.6. Sugar concentration per each S. cerevisiae strain after 48 h of fermentation at 28ºC and its physiological phase of growth. Results are shown as mean ± 

standard deviation. 

Strain Glucose + Fructose 

(g/L) 

Physiological 

phase 

 Strain Glucose + Fructose 

(g/L) 

Physiological 

phase 

Grape 231
a
 ± 0.2 -  S. cerevisiae TA IV 133.7

ghij
 ± 3.1 Exponential 

S. cerevisiae RI I 93.7
lm

 ± 7.8 Late exponential  S. cerevisiae RS I 128.0
ghijk

 ± 7.5 Exponential 

S. cerevisiae RI II 129.7
ghij

 ± 8.5 Exponential  S. cerevisiae RSII 145.3
efgh

 ± 6.4 Exponential 

S. cerevisiae RI III 125.3
hijk

 ± 3.5 Exponential  S. cerevisiae RS III 142.7
efgh

 ± 7.5 Exponential 

S. cerevisiae RI IV 99.7
klm

 ± 4.5 Late exponential  S. cerevisiae RS IV 182.3
bc

 ± 9.7 Early exponential 

S. cerevisiae RI V 175.0
bcd

 ± 5.0 Early exponential  S. cerevisiae PE I 166.7
cde

 ± 17.6 Exponential 

S. cerevisiae RI VI 179.3
bc

 ± 5.5 Early exponential  S. cerevisiae PE II 202.7
ab ± 10.3 Early exponential 

S. cerevisiae RI VII 106.3
jklm

 ± 5.5 Exponential  S. cerevisiae PE III 154.3
cdefg

 ± 7.1 Exponential 

S. cerevisiae RI VIII 136.0
fhgi

 ± 8.7 Exponential  S. cerevisiae PE IV 164.0
cdef

 ± 10.8 Exponential 

S. cerevisiae RI X 86.0
m
 ± 3.6 Late exponential  S. cerevisiae PEV 166.0

cde
 ± 21.2 Exponential 

S. cerevisiae RI XI 126.3
ghijk

 ± 6.0 Exponential  S. cerevisiae PR I 145.3
efgh ± 6.8 Exponential 

S. cerevisiae RI XII 87.0
lm

 ± 3.6 Late exponential  S. cerevisiae PR II 175.0
bcd

 ± 13.5 Early exponential 

S. cerevisiae TA I 100.7
klm ± 4.5 Exponential  S. cerevisiae PR III 165.3

cde
 ± 11.0 Exponential 

S. cerevisiae TAII 96.0
lm ± 10.9 Late exponential  S. cerevisiae PR IV 149.7

defgh ± 14.5 Exponential 

S. cerevisiae TA III 115.0
ijkl

 ± 5.6 Exponential  S. cerevisiae PR V 174.7
bcd

 ± 7.0 Early exponential 
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In order to improve the multivariate classification models developed to 

differentiate and predict Non-Saccharomyces species, the physiological growth phase was 

taken into account. In this study, we had two species of Non-Saccharomyces yeasts at 

exponential phase and these IR data were not used to create a SIMCA model due to the 

lack of sufficient samples and spectra to build up a consistent model. Therefore, IR data 

from Non-Saccharomyces species at early exponential phase were used to build up a 7-

classes SIMCA model (1900–800 cm
−1

, Figure 4.4) obtaining well defined clusters for 

each Non-Saccharomyces wine yeast (Figure 4.4a) along with clear differentiation between 

most of the species tested.  These findings were further proved with ICD that ranged 

from 1.2 to 6.7 reducing the numbers of species with close grouping to 3 (H. uvarum and 

P. fermentans, K. Thermotolerans PE I and M. pulcherrima PR I and M. pulcherrima 

PR II and C. zemplinina, Table 4.7).Discriminating power of this SIMCA model (Figure 

4.4b) showed mainly two spectral bands at 1032 and 1507 cm
−1

, linked to β(14)glucans 

and C=C stretching modes in aromatic rings (Cavagna et al., 2010). Whitener et al., 

(2015) found that some Non-Saccharomyces species such as M. pucherrima at early 

fermentation phase have high production of different aromatic metabolites formed by 

aromatic rings. 

 

 

Figure 4.4. Soft independent modeling of class analogy (SIMCA) class projections (a) and 

discriminating power (b) of transformed attenuated total reflectance (ATR) infrared spectroscopy 

spectra (1900–800 cm
-1

) of seven Non-Saccharomyces cerevisiae strains fermented in Tempranillo 

must at early exponential phase. 
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Table 4.7. Soft independent modeling of class analogy (SIMCA) of interclass distance of Non-Saccharomyces cerevisiae wine species at early exponential phase 

of transformed (second derivative, 15 points window) attenuated total reflectance infrared spectroscopy (ATR-FTIR) spectra. 

 

P. 

anomala 

H. 

uvarum 

K. thermotolerans 

PE I 

P. 

fermentans 

M. pulcherrima 

PR I 

M. pulcherrima 

PR II 

C. 

zemplinina 

P. anomala 0.0       

H. uvarum 6.7 0.0      

K. thermotolerans PE I 6.2 3.4 0.0     

P. fermentans 5.3 1.6 2.7 0.0    

M. pulcherrima PR I 6.1 3.9 1.4 2.8 0.0   

M. pulcherrima PR II 4.6 3.9 3.1 3.2 3.2 0.0  

C. zemplinina 6.2 3.8 2.9 3.2 3.0 1.2 0.0 
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Three SIMCA models (at early, exponential and stationary phase) were built up 

for S. cerevisiae strains. At early and late exponential phases, clusters from fermented S. 

cerevisiae strains were well separated (Figure 4.5 and Figure 4.6). 

 

Figure 4.5. Soft independent modeling of class analogy (SIMCA) class projections (a) and 

discriminating power (b) of transformed attenuated total reflectance (ATR) infrared spectroscopy 

spectra (1900–800 cm
-1

) of six Saccharomyces cerevisiae strains fermented in Tempranillo must at 

early exponential phase. 

 

 

Figure 4.6. Soft independent modeling of class analogy (SIMCA) class projections (a) and 

discriminating power (b) of transformed attenuated total reflectance (ATR) infrared spectroscopy 

spectra (1900–800 cm
-1

) of five S. cerevisiae strains fermented in Tempranillo must at late 

exponential phase. 
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ICD varied from 1.9 to 8.4 (Table 4.8 and Table 4.9) showing differences 

between their biochemical composition, excepting between S. cerevisiae PR V and S. 

cerevisiae TA IV and S. cerevisiae RI IX and S. cerevisiae RI XII. At early exponential 

phase, major discrimination between S. cerevisiae strains (Figure 4.5b) occurred in all 

cases, at 1558, 1642 and 1698 cm
-1

, presumably due to N-H and C-N vibrations of 

peptide bond in different protein conformations (Cavagna et al., 2010), vibrations of 

amide I of β-sheets (Yu and Irudayaraj, 2005) and protein β-turns and pleated sheets 

conformations (Corte et al., 2014), respectively. At late exponential phase (Figure 4.6b), 

yeast species were also discriminated by the IR band at 1032 cm
-1

 linked to 

β(14)glucans and the IR band at 1771 cm
-1

 associated to C=O stretching in lipid esters 

(Cavagna et al., 2010). 

Table 4.8.Soft independent modeling of class analogy (SIMCA) of interclass distance of S. 
cerevisiae strains at early exponential phase of transformed (second derivative, 15 points window) 

attenuated total reflectance infrared spectroscopy (ATR-FTIR) spectra. 

 

S. 

cerevisiae 

RI V 

S. 

cerevisiae 

RI VI 

S. 

cerevisiae 

TA IV 

S. 

cerevisiae 

RS IV 

S. 

cerevisiae 

PE II 

S. 

cerevisiae 

PR V 

S. cerevisiae 

RI V 
0.0      

S. cerevisiae 

RI VI 
2.7 0.0     

S. cerevisiae 

TA IV 
8.4 6.9 0.0    

S. cerevisiae 

RS IV 
6.0 4.4 2.9 0.0   

S. cerevisiae 

PE II 
4.4 3.4 4.9 3.3 0.0  

S. cerevisiae 

PR V 
7.6 6.3 2.2 2.6 4.3 0.0 
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Table 4.9. Soft independent modelling of class analogy (SIMCA) of interclass distance of S. 

cerevisiae strains at late exponential phase of transformed (second derivative, 15 points window) 

attenuated total reflectance infrared spectroscopy (ATR-FTIR) spectra. 

 

S. cerevisiae 

RI I 

S. cerevisiae 

RI IV 

S. cerevisiae 

RI X 

S. cerevisiae 

RI XII 

S. cerevisiae 

TA II 

S. cerevisiae 

RI I 
0.0     

S. cerevisiae 

RI IV 
1.9 0.0    

S. cerevisiae 

RI X 
3.3 3.7 0.0   

S. cerevisiae 

RI XII 
4.7 4.8 2.6 0.0  

S. cerevisiae 

TA II 
5.6 5.6 5.1 3.3 0.0 

 

Infrared spectra analysis (1900-800 cm
-1

) using SIMCA classification models of 

cerevisiae strains at exponential phase (data not shown) permitted tight clustering and zero 

misclassifications among clusters between strains. ICD ranged from 1.7 to 11.4 (Table 

4.10) showing differences between their biochemical patterns in mostly all classes 

compared. Major discrimination between these S. cerevisiae strains (Figure 4.7) also 

occurred at 1032, 1558, 1642 and 1698 cm
-1

. These results are in agreement with previous 

experiments (Puxeu et al., 2014). We have already reported that depending on the 

physiological phase, the components that played an important role to discriminate S. 

cerevisiae strains changed. At exponential phase, the cell wall components were mainly 

glucans, mannoprotiens and lipids. 
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Table 4.10.Soft independent modeling of class analogy (SIMCA) of interclass distance of S. cerevisiae strains at exponential phase of transformed (second 

derivative, 15 points window) attenuated total reflectance infrared spectroscopy (ATR-FTIR) spectra. S. c.: Saccharomyces cerevisiae 

 

S.c.

RI 

II 

S.c.

RI 

III 

S.c.

RI 

VII 

S.c.

RI 

VIII 

S.c.

RI 

XI 

S.c.

TA 

I 

S.c.

TA 

III 

S.c.

TA 

IV 

S.c.

RS 

I 

S.c.

RS 

II 

S.c.

RS 

III 

S.c.

PE 

I 

S.c.

PE 

III 

S.c.

PE 

IV 

S.c.

PE 

V 

S.c.

PR 

III 

S.c.

PR 

IV 

S.c.RI II 0.0                 

S.c.RI III 2.2 0.0                

S.c.RI VII 4.0 3.7 0.0               

S.c.RI VIII 7.5 6.7 6.0 0.0              

S.c.RI XI 4.7 4.0 3.0 3.7 0.0             

S.c.TA I 5.3 4.9 4.9 3.7 4.5 0.0            

S.c.TA III 3.8 3.7 3.3 5.2 3.7 4.6 0.0           

S.c.TA IV 3.6 3.2 4.8 4.9 3.1 4.6 5.0 0.0          

S.c.RS I 7.7 7.7 7.9 7.4 5.4 6.2 7.7 4.5 0.0         

S.c.RS II 8.5 8.3 8.5 7.7 5.5 6.5 8.4 4.8 1.8 0.0        

S.c.RS III 11.2 11.3 11.4 8.7 6.9 7.2 10.4 5.9 2.4 1.7 0.0       

S.c.PE I 9.4 9.3 9.7 8.6 5.9 7.0 9.1 4.8 3.4 3.1 3.7 0.0      

S.c.PE III 2.9 2.6 3.0 4.0 2.7 3.8 3.4 2.3 3.4 3.5 4.2 3.3 0.0     

S.c.PE IV 4.8 4.4 5.0 5.3 3.3 4.8 5.6 2.6 3.1 3.0 3.6 2.2 1.9 0.0    

S.c.PE V 7.2 6.9 7.2 7.2 4.7 6.2 7.2 4.0 3.3 3.0 3.7 1.8 2.8 1.8 0.0   

S.c.PR III 5.9 5.7 6.1 5.2 3.6 5.2 6.5 3.0 2.9 2.8 5.7 2.9 2.6 2.3 2.9 0.0  

S.c.PR IV 5.1 4.8 4.6 4.6 3.5 3.0 5.4 5.5 4.9 4.9 4.8 5.2 3.1 3.4 4.7 3.6 0.0 
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Figure 4.7. Soft independent modeling of class analogy (SIMCA) discriminating power of 

transformed attenuated total reflectance (ATR) infrared spectroscopy spectra (1900–800 cm
-1

) of 

eighteen Saccharomyces cerevisiae strains fermented in Tempranillo must at exponential phase. 

 

Using the IR data at early exponential phase, a 2-classes SIMCA model to 

discriminate Non-Saccharomyces wine yeast species and S. cerevisiae strains (Figure 4.8) 

was created. In this case, the two clusters were well-separated (Figure 4.8a) and the ICD 

was 3.0 showing good class discrimination and biochemichal differences between the 

samples compared. The IR bands mainly responsible of their discrimination were 1032, 

1541 and 1643 cm
-1

 (Figure 4.8b). These bands were associated to β(16) glucans, 

vibrations of amide I of β-sheets (Yu and Irudayaraj, 2005) and N-H and C-N vibrations 

of the peptide bond in different protein conformations (Cavagna et al., 2010). 

Therefore, SIMCA models were improved when physiological growth phase was 

considered. Nonetheless, the lack of Non-Saccharomyces species at exponential and late 

exponential phases did not allow producing 2-classes SIMCA models to further proved 

these findings. Nonetheless, the lack of Non-Saccharomyces species at exponential and 

late exponential phases did not allow producing 2-classes SIMCA models to further 

proved these findings. 
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Figure 4.8. Soft independent modeling of class analogy (SIMCA) class projections (a) and 

discriminating power (b) of transformed attenuated total reflectance (ATR) infrared spectroscopy 

spectra (1900–800 cm
-1

) of Non-Saccharomyces cerevisiae and S. cerevisiae strains fermented in 

Tempranillo must when physiological growth phase. 

 

4.4. Conclusions 

This study showed the potential of using ATR-FTIR combined with multivariate 

analysis to differentiate S. cerevisiae and Non-Saccharomyces wine yeast species. In order 

to develop appropriate SIMCA models to discriminate between S. cerevisiae and Non-

Saccharomyces wine yeast species, their physiological growth phase needed to be taken 

into account. Non-Saccharomyces species were mainly discriminated by β-glucans and 

proteins from the components presents in their cell way. Nevertheless, S. cerevisiae were 

mainly discriminated by proteins compounds. 
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5.1. Conclusions 

Based on the objectives and the background described in the present work, the main 

conclusions of this thesis are: 

 ATR-FTIR  combined with soft independent modeling of class analogy (SIMCA) 

is a powerful technique to discriminate and classify Saccharomyces cerevisiae 

strains. Detailed spectral analysis of different S. cerevisiae strains has provided 

unique signature profiles allowing their differentiation. 

 S. cerevisiae strains differentiation was mainly associated with IR frequencies of 

cell wall components. 

 The physiological growth phase of yeasts played an important role to S. cerevisiae 

strains discrimination by infrared spectroscopy combined with SIMCA. At 

exponential phase, the cell wall components were mainly glucans, mannoprotiens, 

and lipids and, at stationary phase, were mainly glucans and mannans. 

 The effect of nitrogen supplementation at the beginning of the alcoholic 

fermentation was successfully evaluated by ATR-FTIR combined with SIMCA. 

Depending on the source of nitrogen used and the physiological phase studied, 

the yeast cell wall components that were revealed to differentiate no 

supplemented and nitrogen supplemented S. cerevisiae cells were different.Two 

effective algorithm classification SIMCA models were developed to differentiate 

and predict Non-Saccharomyces yeast species and Saccharomyces cerevisiae 

strains based upon data obtained from mid-infrared spectroscopy profiles. 

 When the physiological growth phase of yeasts was taken into account, better 

SIMCA models to differentiate and predict Non-Saccharomyces yeast species and 

Saccharomyces cerevisiae strains were built up. 
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Role:Investigador. Start date: 01/01/2010. Time: 1 year.  

Project title: Estudio de la adaptación de un vinyedo situado en Les Garrigues y sometido. 

a condiciones de gran sequedad y temperatures. Role: Investigador. Start date: 

01/01/2009. Time: 3 years. 

Project title: Estudio de la adaptación de un vinyedo situado en Les Garrigues y sometido 

a condiciones de gran sequedad y temperaturas elevadas para la producción de 

vinos ecológicos. Role: Investigador. Start date: 01/01/2009. Time: 2 years. 

Project title: Elaboración de microvinificaciones y determinaciones analíticas en mostos y 

vino . Role: Investigador. Start date: 01/01/2008. Time: 3 years. 
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