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Abstract
Field Programmable Gate Array (FPGA) devices persist as fundamental
components in the design and evaluation of electronic systems. In the case
of Xilinx SRAM-based FPGAs they support Dynamic Partial Reconfigura-
tion (DPR) by means of the Internal Configuration Access Port (ICAP).
This hardwired element allows the configuration memory to be accessed at
run time and therefore change specific parts of the system while the rest
continues to operate with no affection in its computations.

This thesis is focused on using DPR as a mechanism to: i) improve hardware
flexibility, ii) implement precise fault emulation of ASIC designs mapped in
FPGAs and iii) improve tolerance to accumulated or multiple faults in the
configuration memory of Triple Modular Redundancy (TMR) circuits. This
work addresses the three challenges considering as one of the most relevant
figures of merit the speed at which the tasks can be performed. Therefore
one of the main objectives we consider is the speed-up of DPR related tasks.

In the first place we developed a new high speed ICAP controller, named
AC_ICAP, completely implemented in hardware. In addition to similar
solutions to accelerate the management of partial bitstreams and frames,
AC_ICAP also supports DPR of LUTs without requiring pre-computed
partial bitstreams. This last characteristic was possible by performing re-
verse engineering on the bitstream. This allows DPR of single LUTs in
Virtex-5 devices to be performed in less than 5 µs which implies a speed-up
of more than 380x compared to the Xilinx XPS_HWICAP controller.

In the second place, the fine grain DPR obtained with the utilization of the
AC_ICAP is used in the emulation of faults to test ASIC circuits imple-
mented in FPGAs. It is achieved by designing a CAD flow that includes a
custom technology mapping of the ASIC net-list to LUT-level FPGA net-
list, the creation of fault dictionaries and the extraction of test patterns. A
hardware platform takes the fault list and leverages the partial reconfigura-
tion capabilities of the FPGA for fault injection followed by application of
test patterns for fault analysis purposes.
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Finally, we use DPR to improve the fault tolerance of TMR circuits im-
plemented in SRAM-based FPGAs. In these devices the accumulation of
faults in the configuration memory can cause the TMR replicas to fail.
Therefore fast detection and correction of faults without stopping the sys-
tem is a required constraint when these FPGAs in the implementation of
critical systems. This is carried out by inserting flag error detector based
on XNOR and carry-chain components, isolating and constraining the three
domains to known areas and extracting partial bitstreams for each domain.
The latter are used to correct faults when the flags are activated.
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Resumen
Los dispositivos FPGA persisten como componentes fundamentales para
el diseño y evaluación de sistemas electrónicos. En el caso de las FPGAs
basadas en memoria SRAM de Xilinx, éstas soportan Reconfigurabilidad
Parcial Dinámica (DPR) por medio del Internal Configuration Access Port
(ICAP). Este componente físico permite acceder a la memoria de configu-
ración mientras el sistema está operando y por lo tanto la DPR puede ser
usada para modificar partes específicas del sistema mientras que el resto
sigue funcionando sin ser afectado.

Esta tesis está enfocada en usar DPR como un mecanismo para: i) mejorar
la flexibilidad del hardware, ii) emular fallos de forma precisa en diseños
ASIC mapeados en FPGAs y iii) mejorar la tolerancia a fallos acumulados
o múltiples en la memoria de configuración de circuitos con Triple Redun-
dancia Modular (TMR). Este trabajo aborda los tres aspectos considerando
como figura de mérito fundamental la velocidad de ejecución de las tar-
eas. Por lo tanto, uno de los principales objetivos es acelerar las tareas
relacionadas con DPR.

En primer lugar un controlador hardware para el ICAP fue diseñado. Éste
es denominado como AC_ICAP y además de soportar lectura y escritura
de frames, manejo de bitstreams parciales desde memoria flash y memoria
interna de la FPGA, también permite DPR de alta velocidad a nivel de
LUTs sin necesidad de bitstreams parciales previamente generados. Esta
última característica es posible gracias a ingeniería inversa en el bitstream
con la cual se puede ejecutar DPR de LUTs individuales en menos de 5 µs.
Ésto representa una mejora en tiempo de reconfiguración de más de 380
veces comparado con el controlador XPS_HWICAP de Xilinx.

En segundo lugar, la DPR a nivel de LUTs obtenida gracias al AC_ICAP
es utilizada en la emulación de fallos para evaluar circuitos ASIC mapeados
en FPGAs. Esto se consigue gracias a una herramienta CAD que incluye un
traductor de la descripción ASIC a una descripción basada en LUTs para ser
implementada en FPGAs, generación de diccionarios de fallos y extracción
de patones de prueba. Una plataforma hardware usa el listado de fallos y
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aprovecha la DPR de la FPGA para la precisa inyección de fallos seguida
de la aplicación de los patrones de test para analizar los efectos de los fallos
en el circuito.

Finalmente la DPR es utilizada para mejorar la tolerancia a fallos de cir-
cuitos TMR implementados en FPGAs basados en memoria SRAM. En
estos dispositivos la acumulación de fallos en la memoria de configuración
puede generar fallos en las réplicas TMR. Por lo tanto la rápida detección y
corrección de fallos sin detener el sistema es un requerimiento que se debe
cumplir cuando se usan estas FPGAs en la implementación de sistemas críti-
cos. Para ello se insertan detectores de errores de tipo XNOR que convergen
en componentes carry-chain de la FPGA y además cada dominio es aislado
en áreas diferentes del dispositivo para los cuales se extraen bitstreams par-
ciales. Éstos son utilizados para corregir los fallos cuando los detectores son
activados.
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Introduction 1

Field Programmable Gate Array (Field Programmable Gate Array (FPGA))
devices persist as fundamental components in the design and evaluation of
electronic systems. They are continuously reported as final implementation
platforms rather than only prototype elements. FPGAs have moved ac-
cording to VLSI scaling technology pace making it possible to develop these
devices in state-of-the-art fabrication processes. The inherent reconfigurable
characteristics that FPGAs offer are among one of the most important ad-
vantages in the actual hardware implementation and redesign of systems.
In the case of Xilinx Static random access memory (SRAM)-based FPGAs,
they support Dynamic Partial Reconfiguration (Dynamic partial reconfigu-
ration (DPR)) by means of the Internal Configuration Access Port (Internal
Configuration Access Port (ICAP)). This hardwired element allows the con-
figuration memory to be accessed at run time. Dynamic Partial Reconfig-
uration can then be used to change specific parts of the system while the
rest continues to operate with no affection in its computations [2]. There-
fore, the architecture of the system can be modified at level of basic logic
components, such as Look-Up-Tables (Look-Up Table (LUT)s), or bigger
blocks, such as Intellectual Property (IP) cores, and in this way more flex-
ible systems can be designed. It is a great advantage, especially in critical
and aerospace applications, where the access to the system to re-design the
hardware is not a trivial task. But on the other hand, the main problem
FPGAs present when used for critical applications is their high sensitivity
to external factors such as Single Event Upsets (Single Event Upset (SEU))
and Multi Bit Upsets (Multi-bit upset (MBU)) in the configuration mem-
ory. It is a limiting factor that must be considered to avoid misbehavior of
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2 CHAPTER 1. INTRODUCTION

the implemented hardware.

Xilinx tools provide general controllers to drive the ICAP but they per-
form most of the processing as software routines in the processor. It im-
plies flexibility but avoids reaching the maximum supported reconfiguration
throughput. Diverse alternatives to these controllers have been reported [3],
[4] to improve the reconfiguration speed. Most of them have been oriented
to manage partial bitstreams generated at design time and also to manipu-
late frames, that are the minimum addressable configuration memory. But
an efficient mechanism that allows LUTs to be modified at run-time is also
required as LUTs are basic components to implement any logic function in
FPGAs. Therefore, the ICAP controller should offer a way to perform DPR
of LUTs (fine-grain DPR) at maximum supported speed but presenting a
simple interface, doing the complexity of the architectural device transpar-
ent to the user. This limitation is addressed in this thesis as will be explained
in chapter 3.

The aggressive technology scaling of CMOS circuits and the physical limita-
tions of photo-lithography based chip fabrication process require faster and
more affordable approaches for testing manufacturing defects. Software-
based fault simulation approaches are traditionally used to evaluate the
test patterns goodness against the targeted faults. However, this is a high
timing consuming process that grows up with the size of the device under
test. As an alternative, a hardware fault emulation approach for Application
Specific Integrated Circuits (ASICs) on FPGAs can considerably reduce the
time required for performing the fault simulation. In addition, this approach
more closely mimics the hardware behavior of the device when the circuit
is faulty, providing in this way, more realistic figures. With this in mind,
the fine grain DPR can be applied in the emulation of faults to test circuits
implemented in FPGAs [5].

Therefore, DPR can be used in different ways: as a mechanism to improve
hardware flexibility [6], precise fault emulation [7] and fast fault correction
[8]. For all this aspects one of the most relevant figure of merit is the speed
at which the tasks can be performed. When DPR is used to improve the
flexibility in hardware, a critical aspect is the speed at which the switching
of the different hardware tasks is performed. The inherent speed up that the
hardware-based tasks offer can be affected by the time required to reconfig-



3

ure the FPGA resources where such tasks will be implemented. This is why
the time that the partial reconfiguration engine spent should be optimized
to avoid considerable overheads in timing. Fast DPR switching is required
to minimize timing overhead in the hardware-based functions.

For fault tolerant systems implemented in SRAM-based FPGAs [9] one
critical aspects that affect the overall dependability of the system is related
with how fast a fault can be detected and corrected [10]. Moreover, the
better performance behavior between commercial and radiation hardened
parts also increase the demands for efficient solutions to use the COTS
devices in critical systems [11], [12].

Triple Modular Redundancy is a widely used fault tolerance methodology
[13] to protect circuits against radiation-induced Single Event Upsets. But
this technique, that is very efficient in masking errors, should be comple-
mented when using SRAM-based FPGAs [14], [15]. In these devices the
accumulation of SEUs or MBUs in the configuration memory can cause the
TMR replicas to fail, requiring a periodic refresh of the configuration bit-
stream [16]. This imply a system downtime due to scrubbing and the prob-
ability of simultaneous failures of two TMR domains increase with growing
device densities. Therefore fast detection [17] and correction of faults with-
out stopping the system is a required constraint to use SRAM-based FPGAs
in the implementation of real-time critical systems[18].

In this thesis we address the mentioned challenges by developing a new
high speed ICAP controller, named AC_ICAP, completely implemented in
hardware. In addition to similar solutions to accelerate the management
of partial bitstreams and frames, AC_ICAP also supports DPR of LUTs
without requiring pre-computed partial bitstreams.

Such fine grain DPR obtained with the utilization of the AC_ICAP is used
in the emulation of faults to test ASIC circuits implemented in FPGAs.

Finally, we use DPR to improve the fault tolerance of TMR circuits imple-
mented in SRAM-based FPGAs focused on CDE.



4 CHAPTER 1. INTRODUCTION

1.1 Thesis organization

The thesis is organized as follows. In chapter 2 we present the context,
state-of-the-art and objectives of this thesis in the area of dynamic partial
reconfiguration in FPGAs. Once the context has been set up, the chapter 3
describes the new ICAP controller as the core component of improved run-
time reconfigurable systems. It is followed by chapter 4, which employs fine
DPR as a mechanism to precisely emulate faults in ASIC design mapped
into FPGAs. Chapter 5 presents an alternative partial bitstreams extraction
for CDE improvement and fast recovery of TMR circuits. Finally, Chap-
ter 6 summarizes the main contributions of this thesis and presents future
research tasks based on these results.



Dynamic Partial
Reconfiguration in

FPGAs for Critical
Applications 2

This chapter contextualizes the research by providing background information on Dynamic Partial
Reconfiguration. The chapter is divided into three sections. In Section 2.1 the main characteris-
tics of DPR and its associated controller are summarized. Section 2.2 analyzes the utilization of
DPR to emulate faults on ASICs followed by Section 2.3 that addresses the correction of faults
by means of DPR. Finally, Section 2.4 presents the objectives of this thesis.

2.1 DPR in SRAM-based FPGAs

Field Programmable Gate Array (FPGA) devices persist as fundamental
components in the design and evaluation of electronic systems. They are
continuously reported as final implementation platforms rather than only
prototype elements [19]. FPGAs have moved according to VLSI scaling tech-
nology pace making it possible to develop these devices in state-of-the-art
fabrication processes. For instance, 7-series family of Xilinx SRAM-based
FPGAs are built on 28 nm, high-k metal gate process technology [20], Xil-
inx Virtex UltraScale+ uses 16 nm FinFET+ and Altera Stratix 10 devices
are produced using Intel-14 nm Tri-Gate (FinFET) process technology [21].
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Figure 2.1 FPGA architecture

This is one of the reasons that favor the increasing presence of such devices
as programmable alternatives to ASICs.
In addition, technical improvements in the design and fabrication of FPGAs
have produced more robust and flexible components embedding larger RAM
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memory blocks (BRAMs), DSP blocks, processors and dedicated hardwired
components as depicted in Fig. 2.1. The inherent reconfigurable character-
istics that FPGAs offer are among one of the most important advantages in
the actual hardware implementation and redesign of systems. In the case of
Xilinx SRAM-based FPGAs, they support Dynamic Partial Reconfiguration
(DPR) by means of the Internal Configuration Access Port (ICAP). This
hardwired element, depicted in Fig. 3.1, allows the configuration memory
to be accessed at run time. It is possible to modify specific parts of the
system while the rest continue operating and is not affected by the specific
run-time modification. Dynamic Partial Reconfiguration can be used at
different granularity levels. Considering the architecture of the device, it
can be employed to modify basic logic components, such as Look-Up-Tables
(LUTs), or bigger blocks, such as IP cores. Therefore, DPR is employed in
a wide range of applications involving the design of self-adaptive systems
and the evaluation of critical systems that need to be exhaustively tested
before final production.

Xilinx tools such as PlanAhead or command line “bitgen − r" take the
difference between two implementations to produce partial bitstreams that
allow for modifying the specific parts that have been defined to change at
run-time. The partial bitstreams are then copied in external or internal
memory of the FPGA and from there are sent to the ICAP when a new
hardware task is required by the system. In addition to this type of run-
time reconfiguration that is especially suitable for coarse grain modules,
there are alternatives to dynamically modify basic elements, such as LUTs,
using certain software functions executed in an On-chip processor.
With this in mind, the hardwired ICAP primitive and its associated con-
troller become fundamental and inseparable modules in the design of dy-
namic run-time reconfigurable systems. The ICAP controller is responsible
for performing all the commands to access and modify the configuration
memory. Therefore it is desirable that such a controller meets at least two
basic requirements: high reconfiguration throughput and flexibility.
Xilinx tools provide general controllers to drive the ICAP but they perform
most of the processing as software routines in the processor. It implies
flexibility but avoids to reaching the maximum supported reconfiguration
throughput. Diverse alternatives to these controllers have been reported
to improve the reconfiguration speed. Most of them have been oriented to
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manage partial bitstreams generated at design time and also to manipulate
frames that are the minimum addressable configuration memory.

Going deeper into the granularity of the device any dynamic modification on
the LUTs of an implemented design should also be available to increase the
flexibility of the system. Therefore, an efficient mechanism that allows LUTs
to be modified at run-time is also required as LUTs are basic components
to implement any logic function in Xilinx FPGAs. The ICAP controller
should offer a way to perform DPR in LUTs at maximum supported speed
but presenting a simple interface making the complexity of the architectural
device transparent to the user.

2.1.1 ICAP controllers

In this section we outline some of the most relevant implementations of
ICAP controllers used in FPGA Dynamic Partial Reconfiguration.

Partial reconfiguration has been widely used in diverse applications [22–24]
that exploit the possibility of adapting hardware modules at run-time. A
common requirement when using this technique is that the switching of
hardware modules should be performed with minimal time overhead.

Taking as reference the Virtex-5 XC5VLX110T FPGA we analyze the con-
figuration time when the configuration bitstream resides on a 16-bit FLASH
memory 28F256P30.

According to equation 2.1, for a given data bus width (16 bit in our case),
the configuration time of an FPGA depends on the size of the configuration
file and the configuration frequency.

Configuration time = bitstream size

configuration frequency ∗ data bus width
(2.1)

configuration frequency (also known as ConfigRate) depends on diverse
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parameters as shown in equations 2.2 and 2.3[25]

1
ConfigRate ∗ (1 + FMCCKTOLMAX)

≥ TBPICCO+TACC+TBPIDCC

(2.2)

ConfigRate ≤ 1
(TBPICCO + TACC + TBPIDCC) ∗ (1 + FMCCKTOLMAX)

(2.3)

Where the timing parameters, for Virtex 5 according to [26], represents:

FMCCKTOLMAX : FPGA Master CCLK frequency tolerance = 50% (0.5)

TBPICCO: ADDR[25:0] outputs valid after CCLK rising edge = 10 ns

TACC: BPI flash address to output valid (access) time. For 28F256P30 it
is tAV QV = 95 ns.

TBPIDCC: FPGA data setup time = 3 ns

Applying the above values on Equation 2.3, we got ConfigRate ≤ 6.17MHz.
This value can be set in the ISE tools in the Generate Programming File
properties. By default the ConfigRate is set to 2 MHz, but for the men-
tioned case it can be increased to 6 MHz. In doing this the configuration
time of the XC5VLX110T FPGA, when the bitstream resides on 28F256P30
Flash memory, using the Equation 2.1 is:

Configuration time = 31118848bits
6MHz ∗ 16bits = 324 ms

This value shows the time required to modify the hardware by loading the
full configuration bitstream. This time can be unaffordable for many appli-
cations, therefore a more efficient way to perform fast modifications on the
hardware is by using dynamic partial reconfiguration where the size of the
bitstream is smaller and consequently the reconfiguration time is lower.

The most frequent approach to implement systems with DPR capabilities
is by using the ICAP controllers available in Xilinx tools. XPS_HWICAP
[1], depicted in Fig. 2.2, AXI_HWICAP and OPB_HWICAP are IP cores
designed to be connected to the PLB [27], AXI and low speed OPB buses re-
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Figure 2.2 XPS_HWICAP [1]

spectively. They are used as part of embedded processor systems (PicoBlaze
or MicroBlaze) and the support for partial reconfiguration is given through a
collection of software functions provided with the processor API. The func-
tions allow to process partial bitstreams located in memory, access configu-
ration frames (XHwIcap_DeviceReadFrame, XHwIcap_DeviceWriteFrame),
and modify LUTs (XHwIcap_SetClbBits, XHwIcap_GetClbBits). An
example of the utilization of the functions to modify specific LUTs is de-
tailed in [28] and authors in [5] use the functions to modify frames to emulate
faults on the configuration memory.

The Xilinx functions perform most of the operations as software routines in
the processor. The commands to manage the ICAP and process the par-
tial bitstream header executed in the processor, along with the bus latency
affect the speed of the partial reconfiguration process. Therefore, diverse
alternative controllers have been developed to overcome these limitations.
Authors in [29] explore different ICAP controllers analyzing the reconfig-
uration speed and propose three variations to speed up the processing of
partial bitstreams but all of them require the presence of a processor. It is
also the case of [30] and [31]. In the latter case the controller is integrated
in the processor data path using the FSL link to minimize the bus latency.
In contrast, authors in [32] and [3] present controllers for Virtex-5 devices
able to load partial bitstreams from BRAM and Flash memory totally im-
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plemented in hardware and independent of the processor. In a similar way
[33] and [24] report implementations of processor-independent ICAP con-
trollers for Virtex-4 FPGAs. Authors in [34] exploit DPR for the design of
fault tolerant systems. Such approaches show improvements in reconfigura-
tion speed that can reach the maximum supported throughput when using
BRAMs. Further, some works such as those presented in [24, 35], achieve
throughput speed higher than the specified one in the technical documents
by overclocking the ICAP.
All these works have been oriented to efficiently access the partial bitstreams
and perform the tasks of hardware switching, but some further operations
that a complete controller should support are not considered. A robust
controller should be able to read back and write configuration frames and
also give the possibility to modify LUTs besides only controlling partial
bitstreams.

These last features are of paramount importance in the implementation of
critical systems where the ICAP controller is a fundamental part of the
design [36]. With this in mind, diverse approaches such as that reported
in [37–39, 4] use improved ICAP controllers as fundamental parts of fault
tolerant systems in SRAM-based FPGAs. In such systems, the ICAP is
used for the detection and correction of faults in the configuration memory.
To do that, it is not enough controlling pre-computed partial bitstreams,
they implement reading and writing of frames as the fault detection is per-
formed at this level. For instance, once a frame is read, its CRC can be
obtained to check if errors are present in its constituent bits. In the case
of erroneous values, the frame can be corrected and write back to the con-
figuration memory with the right values. Therefore, these reported works
include frame handling for both writing and reading of configuration frames.

To the best of our knowledge, the only work reported on performing run-
time reconfiguration at LUT level implemented as part of the ICAP con-
troller is presented in [40], but it is only valid for Xilinx Virtex-II devices
where LUTs have four inputs and the architecture of the device is consider-
ably different from newer Xilinx families. The frames cover the full height
of the device and it is not detailed how the LUT configuration values are
located on frames. In addition, this family is currently considered obsolete.
With this in mind we identified that there is a lack of ICAP controllers that
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perform fast DRP at different granularity levels and also support newer
devices. In consequence this is one of the aspects addressed in this thesis.

2.2 DPR for ASIC Fault Emulation on FPGAs

Photo-lithography driven VLSI chip fabrication technology is reaching its
physical limits due to aggressive technology scaling towards nano-metric
dimensions. The dimensions of individual transistors and the wiring in-
terconnection density considered proportional to the wavelength of etching
beams in lithography are prone to introduce manufacturing defects during
the last phases of the circuit production life. For the fast moving Appli-
cation Specific Integrated Circuits (ASIC) industry, increasing the yield
within stringent time-to-market requirements is essential; thus, fault simu-
lation is a mandatory step to guarantee the quality of the final test set that
leads to yield of any VLSI chip fabrication process. Roughly speaking, a
fault simulation process consists of running a set of input patterns in the
considered circuit, while injecting every one of the considered circuit faults
(stored in a fault list) in order to determine whether the faults are detected
or not. Clearly, for large designs the time required for fault simulation is
extremely long. One reason of lengthy simulation times is the adoption of
software based mechanisms. Although they provide flexibility, these tech-
niques are inherently slow due to the high number of computations required
to trace and analyze every signal related to every one of the circuit faults;
this task is particularly critical on large circuits. An alternative solution
is to use hardware based fault emulation on state-of-the-art reconfigurable
Field Programmable Gate Arrays (FPGAs) which can greatly reduce the
timing requirements. Furthermore, compared to the software based simula-
tion approaches, FPGA-based approaches can more realistically emulate the
actual design behavior in a faulty condition performing in this way a more
accurate application behavioral analysis. Fault effects on the running ap-
plications on microprocessors is an important validation task that requires
long times and careful consideration which are essential for safety-critical
applications involved in automotive, space and avionic systems.

Since the birth of FPGA, designers are constantly exploiting their reconfig-
urable nature for prototyping digital VLSI circuits before final chip fabrica-
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tion. This task usually intends to verify if the design goals are achievable.
The usage of these devices in fault emulation and testing is relatively under
explored due to lack of design methodologies and tools. For fault emulation
of ASICs on FPGA-based systems, it is necessary to recall the differences on
the technology nodes used by the two paradigms. On the one hand, ASIC
net-lists are usually composed of single basic logic gates, as well as of stan-
dardized modules devoted to perform well defined operations, for example,
integer addition, floating point division and multiplication. On the other
hand, FPGA net-lists are comprised of Look Up Tables (LUTs). LUTs can
implement any combinational Boolean function on “k” inputs, where “k” is
the maximum number of inputs to the LUT.

Considering the synthesis processes for ASIC and FPGA, both of the pro-
cesses try to optimize similar parameters, e.g., area, delay, power, perfor-
mance; however, every one of them is basically oriented to optimize during
the actual synthesis different basic elements: the ASIC synthesis is oriented
to optimize logic gates, while FPGA synthesis optimizes LUTs. This differ-
ence on the synthesis processes makes it difficult to perform a one-to-one
mapping of the ASIC net-list on an FPGA; in addition, it may lead to struc-
tural differences in the considered circuits, modifying the circuit structures
that will be emulated. Thus, performing an accurate fault emulation of an
ASIC device by using FPGA-based techniques requires initial handling with
this particular issue. A possible solution may rely on partitioning the ASIC
net-list to a set of circuit chunks suitable to be placed in single FPGA LUTs;
however, this division process is hard to obtain by using commercial FPGA
tools. Therefore, a customized technology mapping from the ASIC net-list
to FPGA net-list is mandatory for maintaining the same circuit structure,
that guarantees the actual emulation of all the ASIC faults.

This approach was first investigated by the authors in [41] exploiting a com-
mercial fault emulation platform for serial fault emulation. This technique
provides at the end a logic mapping for every gate of the original ASIC in
the final FPGA design. As a result, the fault emulation for each ASIC fault
is performed using a corresponding LUT configuration string. However, the
technique was applied using a commercial fault emulation platform requir-
ing a vendor specific tool-chain. A preliminary work presented in [42] devel-
oped a framework to apply constrained mapping to commercially available
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SRAM-based FPGAs without resorting to expensive vendor-specific emula-
tion platforms.

Next we outline some of the most relevant techniques used for emulating
ASIC faults on reconfigurable hardware based on FPGAs. These methods
can be mainly classified according to the adopted fault injection methodol-
ogy:

2.2.1 Circuit instrumentation based approaches

Circuit Instrumentation approaches add extra hardware resources in the
design for fault injection purposes. A dynamic fault injection approach is
presented in [43], [44] which instruments the model of circuit with a global
shift register controlling the activation of signals for fault injection. The
activation signals selects between duplicated LUT representing faulty and
fault-free functions. The faulty behavior is achieved by reconfiguration of
LUT site designated to be faulty therefore no recompilation is needed. In-
dependent faults are identified and instrumented in such a way to inject
multiple faults at the same time reducing the reconfiguration time. To
avoid reconfiguration and for fast injection of faults the authors in [45],
[46] included all the desired faults in the model and design and synthe-
sized them necessitating the activation of control signals in run-time using
a scan-chain based fault injector circuit. Instrumentation at the gate-level
for fault injection and scan-chain based activation mechanisms is used by
the authors in [47] enabling them to avoid time consuming re-compilation
steps for generating fault bit-streams. However, the size of the fault list is
directly proportional to the hardware complexity of the injector circuitry,
introducing a bottleneck for large VLSI circuits. To attain more speed up
for the whole process of fault injection, test patterns applications and faults
classification, a system is proposed by authors in [48], [49] that exploits
the idea of minimum communication between host and emulation platform.
To summarize, techniques based on circuit instrumentation are intrusive in
nature and in some cases have a large area overhead.
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2.2.2 Reconfiguration based approaches

Reconfiguration based fault injectors modify the configuration bit-stream
of the design to emulate faults. The authors in [41] utilize a commercial
fault emulation platform that constrains the technology mapping of logic
cones to LUTs and generates a corresponding bit-stream for each fault in
the logic cone in form of FPGA reconfiguration list. The authors show
that for designs with more than 100,000 gates hardware emulation is two
times faster compared to software fault simulation. JBits based tool-flow
[50] is used for directly changing the configuration bits of a CLB in order
to inject faults by authors in [51], [52], [53]. However, JBits is no longer
supported for state-of-the-art commercial FPGAs. A direct bitstream ma-
nipulation based injection is used by the authors in [54], [55] to inject faults
in LUTs without constraining technology mapping. They reduce the size
of the fault list by considering only the active inputs of LUTs. However,
this technique does not guarantee that every ASIC fault will be covered.
The fault injection for a wide variety of fault models was presented in [56]
where the authors develop faulty bit-stream by changing the HDL models.
This requires time-consuming re-compilation for each injection of the fault
model. Another interesting work exploiting partial reconfiguration for fault
injection is presented in [57]. The authors present a methodology for the
correlation of stuck-at fault model with that of Single Event Upset (SEU)
fault model. Improving and generalizing upon the methodology presented
by authors in [41] this work develops a general framework for fault emulation
on commercial FPGA platforms without resorting to expensive platforms
and vendor tools. It presents a general method that can be applied to any
FPGA device without resorting to very costly commercial fault emulation
platforms and vendor tools.

The chapter 4 of this thesis extends the approach presented in [42] by
proposing a novel hardware emulation platform based on dynamic partial
reconfiguration. The proposed methodology consists of a novel CAD flow
able to map a synthesized ASIC circuit into a FPGA and accurately em-
ulate all the circuit permanent faults; the fault simulation is performed
by generating several versions of fault dictionaries that fully exploit the fea-
tures of dynamic partial reconfiguration available through various interfaces
and vendor software APIs. Thanks to the proposed flow flexibility, minor
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changes are required to include the definition of new fault models as well as
to define different ASIC logic gates.

2.3 DPR for CDE improvement in TMR circuits

As fabrication technology advances Integrated Circuits become more com-
plex, compact and consequently more susceptible to external factors. These
are sensitive to radiation and charged particles with effects that have been
observed even at ground level [58].

SRAM-based FPGAs are very valuable for remote missions and long-time
missions because of the possibility of being reprogrammed by the user as
many times as necessary. It is a great advantage especially in critical and
aerospace applications where the access to the system to re-design the hard-
ware is not a trivial task. But on the other hand, the main problem SRAM-
based FPGAs present when used for critical applications is their high sen-
sitivity to Single Event Effect (SEE) such as Single Event Upset (SEU) in
the configuration memory. It is a limiting factor that must be considered
to avoid misbehavior of the implemented hardware.

Triple Modular Redundancy is a widely used fault tolerance methodology
to protect circuits against radiation-induced Single Event Upsets. But this
technique that is very efficient in masking errors should be complemented
when using SRAM-based FPGAs [14]. In these devices the accumulation
of SEUs in the configuration memory can cause the TMR replicas to fail,
therefore some type of fast correction should be added. One common ap-
proach is to use continuous scrubbing. This is the periodic refreshing of the
configuration memory with the golden bitstream located in memory, nor-
mally on external flash. This implies a system downtime due to scrubbing
and the probability of simultaneous failures of two TMR domains increases
with growing device densities. The main disadvantage of this approach is
its blind characteristic which means that the system is rewriting the config-
uration memory even if no errors are present. In addition, this task must
require the utilization of the ICAP port which implies that it cannot be
employed for user hardware-based tasks switching: If the ICAP is perform-
ing the continuous scrubbing no user Dynamic Partial Reconfiguration can
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be performed. On the contrary, if DPR is important for the application,
while it is being performed no scrubbing can be done which implies longer
times for possible error correction (MTTR increase). With this in mind, a
more efficient approach is to use DPR for correction only when a fault is
detected. Here the importance of efficiently and quickly detecting faults to
avoid error propagation and perform corrections as soon as any anomaly is
discovered.

Therefore fast detection [17] and correction of faults without stopping the
system is a required constraint to use SRAM-based FPGAs in the implemen-
tation of real-time critical systems and such characteristics are investigated
in this thesis.

A considerable amount of literature has been published on fault tolerance in
SRAM-based FPGAs [59]. Studies such as the presented in [60], [61], [14],
[62], [63] report approaches that use redundancy combined with certain type
of fault detection mainly at coarse grain level. It means that the circuit to
be protected is replicated and constrained to a defined reconfigurable area.
Authors in [60], [14] and [61] utilize DPR as correction mechanism once
a fault is detected. For detection they compare the outputs of the circuits
using DWC or TMR applied at the complete circuit but any of them employ
X-TMR. When the circuit to be protected is processed through the X-TMR
tool a flat design is produced and it is not supported by the standard CAD
tools to generate the partial bitstreams.

Other approaches focus on monitoring the configuration memory at frame
level to detect and correct faults. For Virtex-5 devices [64] Xilinx offers a
solution that read back frames, compute its CRC value along with the syn-
drome value that indicates the position of the faulty bit that is flipped and
the frame written back. Such approach allows for detecting and correcting
one SEU within one frame while MBUs or accumulated SEUs is limited to
two and these can only be detected but the position of the faulty bits are
not known. [65] is an improved version of this controller for newer families
of Xilinx devices. It also uses the hardwired ICAP component to access the
frames content and SEU correction is possible for two adjacent SEUs inside
one frame. The work presented in [66] uses a coarse grain TMR design
where every replica is configured with the same frames information and a
scrubber can detect and correct MBUs on different frames. The voter and
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scrubber should be protected to avoid single points of failure.

The approach presented in [67], [68] improves the recovery time and use
flags and carry-chains but they do not employ the X-TMR. They improve
the recovery time by avoiding full device scrubbing. Instead the starting
point of the scrubbing is predicted by an on-chip algorithm.

[7] showed how 2-bits MBUs may corrupt TMR circuits 2.6 orders of mag-
nitude more than SEUs. In [69] and [70]experimental results of radiation
also analyzed the susceptibility of TMR protected circuits in Virtex devices
to MBUs.

Therefore MBUs must be considered as an important design constraint when
aerospace systems are developed in SRAM-based FPGAs. As described in
[70] the routing network of CLBs is vulnerable to domain crossing errors.
One error in two or more domains of the TMR circuit can cause the voter
to select the wrong value. In the concrete case of the X-TMR generated
circuits the domains are mixed and are not easily identified nor isolated. As
a result MBUs or accumulated faults can affect the components of different
domains and produce erroneous outputs.

We focus on the utilization of X-TMR as it has been reported to be highly
reliable when using FPGAs based on SRAM. We take as reference design
the X-TMR version of the circuit to be evaluated. This approach follows
a similar flow as the presented in [71] but it is improved by using more
efficiently the LUTs that implement the majority voters to manage flags
activation.

Therefore our approach leverages the ease with which X-TMR tool can gen-
erate protected circuits but we improve it by resource-efficient domain fault
detection and alternative partial bitstreams generation. This last feature
allows run-time reconfiguration of individual domains to be used for correc-
tion. Our approach improves CDE resilience thanks to the individual flags
per domain and the domain-based placement.
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2.4 Contribution and Objectives of the Thesis

The aim of this thesis is to develop efficient DPR techniques at different
granularity levels to improve the switching time of hardware tasks, precisely
evaluate circuits implemented in SRAM-based FPGAs and improve cross-
domain resilience of TMR circuits mapped in these devices. To achieve this
goal the main tasks developed in this thesis are:

• Design a fast and flexible dynamic partial reconfiguration controller
fully implemented in hardware with support for fine-grain DPR. This
means that single LUTs could be modified at run time for which de-
tailed analysis of the bitstream structure and FPGA architecture are
required.

• Design a fault emulator platform and CAD flow to map ASIC circuits
in FPGAs and leverage DPR of LUTs to precisely emulate faults.

• Proposes a TMR architecture that exploits the fracturable nature of
Look Up Tables for simultaneously mapping of majority-voting and
error detection at the granularity of TMR domains. An associated
CAD flow is developed for partial reconfiguration of TMR domains
incorporating changes to the technology mapping, placement and bit-
stream generation phases.
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AC_ICAP: A Flexible
High Speed ICAP

Controller 3

In this chapter, we describe the AC_ICAP: A high speed ICAP controller, completely imple-
mented in hardware. In addition to similar solutions to accelerate the management of partial
bitstreams and frames, AC_ICAP also supports run-time reconfiguration of LUTs without requir-
ing pre-computed partial bitstreams. This last characteristic was possible by performing reverse
engineering on the bitstream. We give a general description of ICAP in Section 3.1. In Section
3.2 we present the main considerations regarding fine-grain partial reconfiguration. In Section
3.3 we detail the new AC_ICAP controller. In Section 3.4 the extension of the controller to be
accessible from On-chip processors is presented. In Section 3.5 we describe the considerations
to follow in porting the controller to a newer family of devices. In Section 5.5 we present the
experimental results of the reconfiguration time and area followed by Section 3.7, that concludes
the chapter.

3.1 ICAP for Dynamic Partial Reconfiguration

The Internal Configuration Access Port (ICAP) is the core component of any
dynamic partial reconfigurable system implemented in Xilinx SRAM-based
FPGAs. These devices support Dynamic Partial Reconfiguration (DPR)
by means of the ICAP hardwired element, depicted in Fig. 3.1. Thanks to
this physical component it is possible to access to the configuration memory

21
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at run time to modify specific parts of the system while the rest continue
working without being affected by the specific run-time modification. DPR
can be used at fine grain level, such as Look-Up-Tables (LUTs), and to
modify bigger blocks, such as IP cores.

ICAP

Configuration

Memory

CLK

CE

WRITE

BUSY

I

O

8,16,32

8,16,32

Figure 3.1 ICAP hardwired primitive

Therefore, the hardwired ICAP primitive and its associated controller be-
come fundamental and inseparable modules in the design of dynamic run-
time reconfigurable systems. The ICAP controller is responsible for per-
forming all the commands to access and modify the configuration memory.
Therefore it is desirable for such controller to meet at least two require-
ments: high reconfiguration throughput and flexibility.

In addition to partial bitstream efficient management and frames read/write
support, the ICAP controller should offer a way to perform DPR in LUTs
at maximum supported speed but presenting a simple interface, doing the
complexity of the architectural device transparent to the user.
In the following sections, we detail the novel run-time reconfiguration con-
troller fully implemented in hardware and supporting partial reconfiguration
of LUTs in Xilinx FPGAs.
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3.2 Dynamic partial reconfiguration for LUTs

In this section we describe the general architecture of Xilinx FPGAs and the
relevant concepts of partial reconfiguration taking as reference the Virtex-5
XC5VLX110T device. FPGAs are organized as an array of Configurable
Logic Blocks (CLBs) connected to a switch matrix. Fig. 3.2 shows the
disposition of the XC5VLX110T FPGA where it can be observed that it is
horizontally divided into two halves. In the top (0) and bottom (1) halves,
we find a fixed number of rows that depend on the size of the specific device.
The Virtex-5 LX110T FPGA is divided into eight horizontal clock rows
(HCLK): four in each half. Each HCLK includes a determined number
of CLBs, BRAMs, DSPs, I/Os. CLBs are distributed in 160 rows by 54
columns covering the whole device. Each CLB consist of two Slices and
every Slice contains 4 LUTs, 4 flip flops, multiplexers and carry logic. As a
result, this FPGA has 17280 Slices, 69120 LUTs and 69120 registers.
One CLB column is defined as a group of 20 x 1 CLBs that spans the HCLK
height. It means that in each CLB column inside the HCLK rows, there are
40 Slices and 160 LUTs.

The configuration memory is organized in frames. One frame is the smallest
size of configuration memory able to be addressed. Therefore, any action
on configuration memory should be carried out taking frames as reference.
One frame consists of 41 words of 32 bits each one (1312 bits). Virtex-5
LX110T requires 23712 configuration frames to configure the whole chip. In
consequence, the configuration file (bitstream) is composed of 972464 32-bit
words (3.7 MB). It includes 272 words of control information in the header
and the rest corresponds to configuration frames.
Every time we want to configure the whole device, the bitstream of 3.7 MB
containing the description of the circuit to implement, should be loaded into
configuration memory.

Dynamic partial reconfiguration allows to modify specific parts of the sys-
tem, in consequence, the complete bitstream is not required but a smaller,
partial bitstream, with the information of the specific region to modify is
used. Partial bitstreams are generated at design time using the difference-
based approach. PlanAhead [72] or bitgen command line [73] are used to
generate them. The command: bitgen −r config1.bit config2.ncd partial2.bit
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Figure 3.2 X, Y coordinates and Frame Addresses for
XC5VLX110T

takes as inputs the two different files for each configuration (config1 and
config2) and the result is the partial bitstream partial2.bit, with the differ-
ence between them. The minimum size of partial bitstreams corresponds to
one configuration frame increased with one extra dummy frame and control
information.

To configure a column of CLBs, 36 frames are required. Inside the 36 frames,
we have the information of every individual element present in the 20 CLBs.
We focus on LUTs as these are the basic elements that implements all the
combinatorial logic in FPGAs.
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The LUTs or logic-function generators are six inputs elements that require
64 bits to define the function to perform. The logic behavior of the LUT de-
pends on the values (INIT value) configured in these 64 bits. To handle any
individual LUT it is necessary to define its location and its INIT value. The
location uses three parameters: (X, Y, Bel). X and Y are the coordinates of
the Slice and Bel is an index to select the individual LUT inside the Slice.
The range of X and Y depends on the size of the FPGA (108 x 160 in the
considered device). The Bel index, ranges from 0 to 3, to select one of the 4
LUTs (LUT-A, LUT-B, LUT-C, LUT-D) inside the Slice with coordinates
(X,Y). Once the specific LUT has been identified, its INIT value can be
modified through the 64 configuration bits. This LUT parameter can be
modified at run-time thanks to certain software routines provided by Xilinx
API. The function XHwIcap_GetClbBits is used to read back the INIT
value of the LUT and store it in memory. XHwIcap_SetClbBits allows
to write to the LUT the INIT value available in any location accessible from
the processor. Both functions require the same type of parameters: X, Y,
Bel coordinates and memory location where to read or write the INIT value.

Very limited information about these functions and the operations they per-
form is available. In addition, the time required to read and write the config-
uration value of a LUT using these functions is in the order of 2 ms while the
time for reading and writing frames, using XHwIcap_DeviceReadFrame
and XHwIcap_DeviceWriteFrame functions, is in the order of 30 µs.
These numbers, experimentally obtained using a MicroBlaze-based system
operating at 100 MHz, suggested us opportunities to improve the reconfig-
uration time for LUTs. Therefore, we performed experiments to deduce the
relationship between LUT parameters and configuration frames. By com-
bining the XHwIcap_SetClbBits function to write to a specific LUT with
the XHwIcap_DeviceReadFrame to analyze the programmed values on
frames, we found that four frames are used to reconfigure a single LUT.
As it is shown in Fig. 3.3, the 64 bits of the INIT value spans four consec-
utive frames with each frame containing 16 INIT bits. The 40 Slices inside
every CLB column can be seen as 2 columns of 20 Slices. One Slice column
contains the 20 Slices with even values on X coordinate while the other 20
Slices presents odd values. The frames 26 to 29 enclose the LUT configura-
tion values for the 20 Slices with odd-X coordinates while the frames 32 to
35 have the corresponding information for the 20 Slices when X coordinate
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is even. In a similar way, Slice-Y coordinate determines what specific word
insde each frame to use. For any CLB column, Y takes 20 consecutive val-
ues. Depending on this value, a specific word in the frame corresponds to a
single LUT. Two consecutive frame words have the partial information for
the 4 LUTs of a Slice. 16-bits of INIT LUT-A and 16-bits of INIT LUT-B
configuration values are in one 32-bit word. Similarly, LUT-C and LUT-D
INIT values are located in the following word.
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3.3 AC_ICAP Implementation
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Figure 3.4 AC_ICAP detail

The AC_ICAP controller, detailed in Fig. 3.4, offers similar functional-
ity as the XPS_HWICAP available in Xilinx tools but AC_ICAP is fully
implemented in hardware, instead of doing most of the tasks as software
routines in the processor. It includes support for read frames, write frames,
modify LUTs, and load partial bitstreams from Flash and BRAM memory.
Compared to similar approaches, that also implement read and write of
frames in hardware [4], our controller is improved by the run-time reconfig-
uration of LUTs without the need of pre-computed partial bitstreams. The
controller and its internal modules use Finite State Machines (FSMs) to
operate on diverse configuration levels according to the values of the input
Op_sel specified in Table 3.1. The AC_ICAP was developed using a board
equipped with the Virtex-5 LX110T FPGA and the implementation flow
was performed in Xilinx tools, version 14.7.

As explained in section 3.2, DPR of LUTs require to modify specific parts of
frames. Therefore, the two modules for read and write frames are indispens-
able in the implementation of LUT run-time reconfiguration. We designed
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Table 3.1 Coding of tasks

Operation Op_sel input
Read BRAM 000
Read Frame 001
Write Frame 010
Modify LUT 011
Recover LUT 100
Load partial bitstream from Flash 101
Copy partial bitstream from Flash to BRAM 110
Load partial bitstream from BRAM 111

the AC_ICAP controller with 7-36Kbit BRAM elements (31.5 KB) config-
ured as dual port memory. It represents less than 5% of the 148 BRAM
memory blocks available in the device. This space of memory serves to store
frames read and it is also used as the source of the frames to send to the
ICAP. The initial 2800 Bytes are reserved to perform LUT modification and
frame tasks. The remaining 28.7 KB can be used for both frame or partial
bitstreams storage, as it is depicted in Fig. 3.5. When partial bitstreams
fit into the available BRAM, its corresponding partial reconfiguration task
can reach the maximum specified throughput because of the direct connec-
tion between the on-chip BRAM and the ICAP through a link of 32 bits.
By using a clock of 100 MHz, one 32-bit word is available with every clock
cycle, which corresponds to the maximum ICAP supported throughput (3.2
Gbps). We adhere to the constraints specified in the technical documents
regarding the maximum operation frequency of the ICAP: 100 MHz [1]. But
it should be taken into account that Hansen et al. [35] reported the correct
operation of the ICAP when it is overclocked to achieve better reconfigura-
tion throughput speed.
The constituent modules of the AC_ICAP controller are detailed next.
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Figure 3.5 BRAM memory map

3.3.1 ReadFrames

ReadFrames module uses two parameters to define the location (FAddr)
and number of frames (Nf) to read. Nf takes the value 1 for a single
frame read or any other value for multiple frame read. It is limited by the
available BRAM memory on the controller. It should be noted that for
LUT modification tasks, one BRAM block is enough but we included six
extra blocks to store frames or small partial bitstreams. We store all the
read frames on BRAM and there we can access to perform any operation
on them. Alternatively, an external module able to process and store the
read frames, could acquire more frames than the limited by the size of the
BRAM.
In the case of multiple frames (Nf > 1), FAddr is the address of the first
frame where the reading process starts. From there, the routine will read
Nf consecutive frames. The steps involved in ReadFrames routine are de-
picted in Fig. 3.6. When op_sel = “001" and the start signal is asserted,
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Figure 3.6 Read frame FSM

the ICAP is configured to read the specified frames. This is done by writing
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to certain registers of the ICAP as it is detailed in [74]. It is important to
point out the correct assertion of the CE and WRITE inputs to define read
or write operations on the ICAP. In both cases, WRITE should be modified
before CE to avoid causing an abort sequence. It is detailed in the two
boxes ICAP WRITE and ICAP READ in Fig. 3.6.
The inputs FAddr and Nf are used in the two steps of the the flow iden-
tified with the word Input. These two values are adapted to the format of
the corresponding registers. FAddr should have the format of the Frame
Address Register, it is, one 32-bit word with the fields: Block type, Top,
HCLK row, column and frame inside the column. Nf is used to calculate
the number of words to read (N) and generate a Type 2 word to send to
the ICAP. FAddr and Nf can be specified by the user through the inputs
StartAddr and NumFrames respectively. Or they can be generated by the
LUT2Frames module, as it will be explained in subsection 3.3.3.

We must consider that any reading of frames includes one extra dummy
frame generated at the beginning of the process and also one extra word.
With this in mind, the number of words to read for the Virtex-5 device can
be calculated as:

N = 41 ∗ (Nf + 1) + 1 (3.1)

Equation 3.1 is valid for any Virtex-5 FPGA as in these devices all the
configuration frames have the same size. It is 41 32-bit words. The dummy
frame is represented by the addition of 1 to Nf . The last addition represents
the initial word.
The state READ N Words from FDRO performs the actual read of the
N 32-bit words that compose the frames. With every word read from the
FDRO register of the ICAP, the BRAM address is increased to store the
frames on this memory. Fig. 3.5, shows the location of the frames and the
extra word.

3.3.2 WriteFrames

This module was designed following the same approach as the presented
in ReadFrames. The main differences are in the configuration commands
required to prepare the ICAP to write to the configuration memory. Write-
Frames module is activated when the Op_sel input, defined in Table 3.1, is
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“010" and the Start signal is asserted. To reach the maximum throughput
speed the preferred source for the frames to write is BRAM. If the frames
are located in the BRAM of the AC_ICAP, one 32-bit word is available
with every clock cycle.
As this module is normally used in combination with ReadFrames, the
frames to be written have already been read and stored on BRAM. Then,
WriteFrames uses the same memory space, detailed in Fig. 3.5, where Read-
Frames placed the read back frames.
In the same way that ReadFrames needs to consider one dummy frame,
in every write frames routine, the dummy frame should be sent to the
ICAP at the last part of the process. Therefore, data frames starts at
BRAM_address=42 and finishes at address 41 ∗ (Nf + 1). Immediately
after data frames are sent, the dummy frame should follow. To do that, the
starting address changes to 1 and finishes when 41 words (1 frame) are sent.
The extra word at address 0 is not used in writing processes.

We generate the Op_done output to signalize the end of a write process.
It is necessary to guarantee that the ICAP tasks finish properly. After all
words are sent, it is necessary to send the DESYNC command and disable
the ICAP. Op_done goes high when the ICAP receives and process the
DESYNC command. It is observed when the output port O changes from
0xDF to 0x9F. This process has a delay of 6 clock cycles independently of
the value on the input CE.

3.3.3 DPR of LUTs with LUT2Frames module

The LUT2Frames module allows the dynamic partial reconfiguration of
LUTs by doing the translation of the LUT parameters into Frames rep-
resentation. As it was described in Section 3.2, the LUTs are characterized
by the coordinates (X, Y, Bel) and the INIT value. The LUT2Frames mod-
ule, depicted in Fig. 3.7, carries out two main tasks: (1). Translate the X,
Y, Bel coordinates into FAR format and (2). Transform the INIT (64-bits)
LUT function into 4 words of 16-bit each one.

The X, Y, Bel inputs, merged into one 32-bit word, and the INIT value are
used by the LUT2Frames module when the Start input is set. Based on the
coordinates values, one 32-bit word with the format of the Frame Address
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Figure 3.7 LUT2Frames module

Register (FAddr) is generated to define the frame where the reading and
writing start. In addition X, Y and Bel values determine the word_offset
that is the concrete word of each frame (the first one of the 2-41 words)
that need to be manipulated. From the 32-bit word only 16-bits correspond
to a specific LUT. Therefore the signal msb_lsb indicates what part of the
32-bit word should be modified: 0 for the LSB part of the word (LUT-A or
LUT-C) and 1 for the 16 MSB (LUT-B or LUT-D).
In parallel with the previous processing, LUT2Frames generates four 16-bit
words (fword1... fword4) that corresponds to the INIT value transformed
and adapted to the four frames.
All the complexity of the Frames location and addressing is transparent
to the user. The LUT2Frames module implements all the translations and
computes adequate addresses and memory management to allow to the user
a simple operation when require to modify any LUT throughout the device.

When a LUT modification is required, the steps controlled by an FSM, as
depicted in Fig. 3.8, are executed. The process is triggered by the Start sig-
nal, then the LUT2Frames module is activated. With the values generated
by this module, 4 frames starting at FAddr are read and stored in BRAM
(read frames). Word_offset and msb_lsb signalize the specific words that
should be modified. These 4 words are backed up (backup words), modified
with the four words that LUT2Frames produced and copied back to BRAM.
At this point the BRAM contains the frames with the new words, and the
write frames module performs the writing of the 4 frames corresponding to
the LUT.

The Recover LUT routine uses the four backed up values obtained at backup
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Figure 3.8 FSM for DPR of LUTs

words stage to recover the LUT to its previous configuration value. Consid-
ering the Fig. 3.8, it only performs the last two steps of a LUT modification
routine. It modifies the 4 frames on BRAM and then these are sent through
Write frames module to recover the LUT to its previous INIT value. This
routine is useful in applications that need to recover the previous function
of a LUT before modifying another. By following this approach we avoid
to read again four frames as these are already on BRAM.

The correct operation of the controller was verified using ChipScope Pro
Debugger [75]. Fig. 3.9 shows the details for a LUT modification process.
We specified the X, Y, Bel and INIT values of the LUT to modify. The steps
shown in Fig. 3.8 can be identified in Fig. 3.9. The LUT2Frames module
requires only two clock cycles and the information it generates is used to
address the four frames to read and to modify the four specific words in
these frames.

Bus/Signal X O
5 45 85 125 165 205 245 285 325 365 405 445 485 525

OT X

wea_s(0) 0 0

START_ICAP_RDn 1 1

read_done_s 0 0

done_s 0 0

Start_TRANSn 0 1

ready_LUT2fr 1 0

START_ICAP_WRn 1 1

addra_s 166 0 0 166166

addrb_s 0 0 0 43 0 00

dataINa 00002222CAFECAFE 000... 00... 00... 00... 00... 0000222200002222

I AAAABBBBFFFFFFFF 00000000 00... 00... 00... 00000000 AAAA...AAAA...

ReadWordICAP 0000009F0000009F 000... 00... 00... 00... 00... 000000DF 0000...0000...

WordBRAM_s 0000000000000000 00000000 0000FFFF ... 00... 00... 00... 00000000 0000000000000000

Figure 3.9 Chipscope detail of LUT-DPR with AC_ICAP
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3.3.4 Load Partial bitstreams

The Load partial bitstreams module performs three main tasks: (1). load
partial bitstreams from Flash, (2). Copy partial bitstreams from flash to
BRAM, and (3). Load partial bitstreams from BRAM. To do that, this
module includes a memory access controller to read the partial bitstreams
from flash memory. Therefore, the data read from flash can be directly
send to the ICAP I port or it can be copied into internal BRAM. When
partial bitstreams are on BRAM, the maximum configuration speed on the
ICAP can be reached. If partial bitstreams are on external memory, the
reconfiguration time depends on the latency of the access to the memory.
In this case we use the Intel StrataFlash memory 28F256P30 which requires
26 clock cycles at 100 MHz to get a 32-bit word.

The size of the partial bitstreams that can be placed on BRAM is limited by
the available BRAM memory on the controller. From the 7-36Kbit BRAM
present in the AC_ICAP, we reserved 2800 Bytes to perform LUT modifi-
cation and frame tasks. Therefore the maximum size of partial bitstreams
that can be placed is of 28.7 KB. It can be increased as the FPGA includes
more BRAMs (148 in the LX110T device) but it depends on the application
constraints.

The partial bitstreams are generated following the standard Xilinx flow,
it is using PlanAhead or bitgen tools. These configuration files include
header information regarding the type of device, size of the configuration
data, date and time of the generation of the bitstream, etc. We adapt the
partial bitstreams to remove unnecessary information from the header and
keep only the last header-field that corresponds to the size (in Bytes) of the
partial bitstream not including the header. Therefore our controller firstly
reads the word that contains the size of the partial bitstream and uses
this information to calculate the number of words (16-bit word for flash
and 32-bit word for BRAM) to read from memory. With this approach
the only required parameter is the initial address where partial bitsrtreams
are located. The controller automatically calculates the end address and
performs the reading process. Depending on the operation selected by the
input Op_sel, the data is sent to the ICAP or to BRAM. In a similar
way, when Op_sel is set to "‘111"’, this module configures the ICAP control
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signals and BRAM address to allow high throughput partial reconfiguration.

3.4 AC_ICAP adapted to on-chip processor

To make the controller able to be attached to processor-based designs, it
was adapted to the Peripheral Local Bus and Fast Simplex Link interfaces
used by MicroBlaze systems. To this end, the AC_ICAP was considered as
a black box with the I/O ports depicted in Fig. 3.4 and these were adapted
to the respective buses. This approach offers increased flexibility as the
controller can be easily commanded from the processor. We created a col-
lection of functions adapted to each interface to perform the tasks presented
in Table 3.1. Such functions, depicted in Code 1, use specific routines from
the Xilinx API to access to the PLB and FSL interfaces.
Code 1: Functions to drive the AC_ICAP IPs

ReadBRAM(StartAddr);
ReadFrame(StartAddr, NumFrames);
WriteFrame(StartAddr, NumFrames);
ModifyLUT(XYBel, INIT);
RecoverLUT(XYBel);
LoadPBitsFlash(StartAddr);
CopyFlash2BRAM(StartAddr);
LoadPBitsBRAM(StartAddr);

The StartAddr parameter refers to a unique input that should be adapted
according to the op_sel value. In case of read and write frames, it corre-
sponds to the address of the initial frame (FAddr). For the other functions
it is the memory address where data are stored. NumFrames is the num-
ber of frames to read or write and X, Y, Bel, INIT are the parameters that
control single LUTs. These are the only values required to command the
AC_ICAP controller as this performs internally all the operations such as
transforming the X, Y, Bel and INIT into frame format, compute end ad-
dress after reading the size of a partial bitstream, etc.
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3.4.1 PLB IP

The PLB bus is used to connect peripherals to the MicroBlaze processor.
The original AC_ICAP, designed in VHDL, is instantiated in a PLB wrap-
per to generate the custom PLB_AC_ICAP IP. The inputs and outputs
of the controller are connected to signals of the PLB bus and then the
processor can access to them using register addresses. In consequence, the
PLB_AC_ICAP can be attached to any MicroBlaze-based system such as
the depicted in Fig. 3.10. This architecture includes the Flash memory

PLB_AC_ICAP

MicroBlaze

processor

Flash memory

UART Timer

PLB Bus

Partial

bitstreams

Figure 3.10 Architecture with PLB_AC_ICAP IP

where the full and partial bitstreams that modify the reconfigurable areas
are located. The direct connection to the flash memory is also performed in
the IP design by defining the AC_ICAP connections to the Flash as external
ports. Once included in the hardware design in EDK, the software running
in the processor is able to control the PLB_AC_ICAP peripheral by using
the functions listed in Code 1. In consequence, a partial reconfiguration
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related task uses any of the functions specified in Code 1 and monitor the
output op_done until it goes high as confirmation that the task has been
completed.

3.4.2 FSL co-processor

Fast Simplex Link is an interface of the MicroBlaze processor that allows
to include dedicated hardware routines with high execution priority and
therefore, implies low latency in the communication with the processor. In
this approach we adopted a solution similar to the presented in [31], in order
to obtain minimal degradation in the performance of the controller due to
the bus latency. Thus, the VHDL-based AC_ICAP was adapted to the FSL
interface to be easily connected as a co-processor and consequently exploit
all the flexibility of the processor but taking advantage of the hardware
acceleration in the ICAP related tasks. Fig. 3.11 presents a system using
the FSL_AC_ICAP co-processor.

The FSL_AC_ICAP co-processor is accessed in a similar way to the consid-
ered in the PLB_AC_ICAP IP. It is, by means of a collection of functions
such as the presented in Code 1. The main differences are in the type of
routines that these functions require to drive the FLS. In this case, we in-
corporate the blocking routines putfsl and getfsl available with Xilinx
API as we consider that the reconfiguration tasks are of high priority.

3.5 Using the AC_ICAP in newer device families

To validate the controller in 7 series devices we use the KC705 board
equipped with a Kintex7 XC7325T FPGA [76]. This FPGA contains 50,950
Slices, inside every Slice 4 6-input LUTs and 8 FF are present. The 445
BRAMs correspond to 2002 KB and the bitstream size is of 10.9 MB. To
adapt the AC_ICAP, designed for Virtex-5, to 7 series devices, certain
changes are required. The main differences are summarized below:
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Figure 3.11 Architecture including FSL_AC_ICAP co-processor

• The number of words per frame in 7 series family is 101 instead of 41
(Virtex-5). It is because the CLB columns in 7 series FPGAs are 50
high by 1 wide which implies that 100 Slices are present in the CLB
columns. Similarly, the number of HCLK rows is different, for this
specific device it is 7 (3 top and 4 bottom).

• The address of the frame where to start reading or writing is defined
by the FAR register. For 7 series this register uses 26 bits of the 32
available while in Virtex5 FAR uses 24. It is due to the increased size
of the FPGA.

• Differently from Virtex-5, for 7 series no extra word is required at
the beginning of a read frames task. Therefore, the number of words
(Nwords7) to read/write from these devices can be computed accord-
ing to Equation 3.2 that is valid for any 7 series FPGA as in these
devices all the configuration frames have the same size. The dummy



40 CHAPTER 3. AC_ICAP CONTROLLER

frame is represented by the addition of 1 to the number of frames
(Nf).

Nwords7 = 101 ∗ (Nf + 1) (3.2)

• The word_offset that indicates what specific word on a frame should
be modified in a LUT DPR process now have a range of 0 to 100.
It varies between 0 and 40 for Virtex-5. In a similar way, the skip
columns (columns that contain resources different from CLBs: BRAMs,
DSPs I/O) and the the major column numbering require to be up-
dated. The first column in Kintex7 has a major address of 2, while it
is 1 for Virtex-5.

• In 7-family the primitive ICAPE2 does not have the BUSY output.
Instead we should consider 3 clock cycles after CE assertion to get the
valid data.

• The write frames module required also some changes. In Virtex-5 it
is possible to bypass the CRC calculation by setting a configuration
register (COR0-bit28) and loading the value 0xDEFC to the CRC
register every time that the FAR is modified. In 7-family such register
is not present, by default the new control register (COR1-bits15-16) is
set to allow the system a continuous operation after CRC is computed
and therefore such steps were removed.

• The FLASH memory available in this board is of the same type as
the present in the Virtex-5 but as the size is different, the FLASH
controller was modified to include two extra address lines.

The number of frames required to configure a CLB column remain the same
(36), also as the specific frames that contain the information for LUTs. We
used 22 BRAM blocks to occupy a similar percentage (5%) as in Virtex-5.

Once the presented changes were performed in the AC_ICAP it was imple-
mented in the Kintex7 FPGA and tested with all the operations it supports.
In Fig. 3.12 we present again the details for DPR of one LUT as it involves
diverse tasks available in the controller.
This new AC_ICAP was adapted to the AXI interface as this is used for all
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DEV:0 MyDevice0 (XC7K325T) UNIT:0 MyILA0 (ILA) Page Index: (row=0, col=0) (window=0 sample=0, window=0 sample=1160)

Bus/Signal X O
-10 70 150 230 310 390 470 550 630 710 790 870 950 1030 1110 1

OT X

CE 1 1

word_ready 0 0

wea_s 0 0

START_ICAP_RDn 1 1

read_done_s 0 0

write_done_s 0 0

ICAP_WRITEn 1 1

ready_LUT2fr 1 0

START_ICAP_WRn 1 1

addra_st 459 0 0 459459

addrb_st 101 101 156 0 101101

dataINa 00002A2ACAFECAFE 00000000 0... 0... 0... 00002A2A00002A2A

I AAAABBBBAAAABBBB 00000000 0... 0... 0... 00000000 AAAABBBBAAAABBBB

ReadWordICAP FFFFFF9BFFFFFF9B 00000000 0... 0... 0... FFFFFFDB FFFFFF9BFFFFFF9B

WordBRAM_s 0000000000000000 00002A2A 00000000 0... 0... 0... 0000000000000000

ΔX-T: 1091

Figure 3.12 Chipscope detail of LUT-DPR with AC_ICAP in
Kintex7

new Xilinx families. This IP is identified as AXI_AC_ICAP and support
the same functions presented in Code 1 that were adapted to the AXI API.

Based on the previous descriptions we have different variations of the con-
troller to evaluate. AC_ICAP: the standalone hardware version, PLB_AC_ICAP
and AXI_AC_ICAP: adapted to PLB and AXI buses respectively, and
FSL_AC_ICAP: used as a co-processor. We used PlanAhead 14.7 and Vi-
vado 2015.3 to define reconfigurable partitions of different sizes (from 1 to
10 CLB columns) and generate different partial bitstreams.
For the Xilinx-based controllers we implemented architectures such as the
depicted in Fig. 3.10 but instead of using the PLB_AC_ICAP we added the
XPS_HWICAP or the AXI_HWICAP with the parameters that allow the
best performance in reconfiguration throughput (Write FIFO Depth=1024,
Read FIFO Depth=256 and FIFO type enabled). For these two cases, the
Xilinx Flash memory controller was also included to have access to the par-
tial bitstreams located in this memory. In doing this we can get accurate
comparisons as we used the same tools version and synthesis options.
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3.6 Experimental Results

This section summarizes the main results regarding the reconfiguration
speed and resources utilization of the diverse versions of the AC_ICAP con-
troller. We consider as primary reference to compare the Xilinx XPS_HWICAP
for Virtex-5 and the AXI_HWICAP for Kintex7 as these are, among the
reported alternatives, the ones that support most of the DPR tasks. We
take into account that for partial bitstreams that configure up to 4 CLB
columns it is possible to copy them into BRAM as it is limited to 28.7 KB
for Virtex-5 and to 99 KB for Kintex7. To record the time performance
of the AC_ICAP (standalone version), the ChipScope Pro was used. For
versions adapted to processor interfaces the timer included in the systems
was used to register the number of clock cycles required for the specific
tasks. These numbers are reported in Table 3.2. Here we want to mention
some issues in regard to the values obtained for Kintex7 FPGA. The LUT
functions that the AXI_HWICAP includes do not support the 7 family.
With the most recent version of the tools at the moment of performing the
experiments (Vivado 2015.3 and driver hwicap_v10_0), the support is only
given for Virtex6 and previous devices and we cannot modify them as the
source code is not available. The functions for read and write frames using
the AXI_HWICAP required the modification of some header files as these
present some erroneous values. The file xhwicap_i.h: uses the values for
Virtex6 in the 7 family but these should not be the same. For instance, it
is declared that the Number of Words in a frame for both families is 81.
But for 7 series families the correct value is 101. Something similar happens
with the FAR creation. The driver creates the FAR with some parameters
that are valid for Virtex-6 but not for Kintex7 and these were modified to
obtain correct operation.
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As it can be observed from Table 3.2 the reconfiguration time of LUTs
using the AC_ICAP is, at the best of our knowledge, the fastest reported
alternative. Compared to the XPS_HWICAP in Virtex-5, it implies speed
up of more than 320 times for the PLB_AC_ICAP, the slowest version,
and the standalone AC_ICAP offers improvement in reconfiguration time
of LUTs of more than 380 times. In a similar way the speed up of read
and write frame tasks, considering both Virtex-5 and Kintex7, experience
improvements of more than 18 and 21 times respectively.

The reconfiguration throughput for load partial bitstreams from BRAM,
for the AC_ICAP, is of 380.47 and 381.03 MB/s for Virtex-5 and Kintex7
respectively. It is close to the maximum supported throughput of 400 MB/s
and to the reported values on [4] and [3]. For the work reported on [3] it
should be noted that the value is estimated and not measured in a real im-
plementation since that controller does not include BRAMs. The deviation
of our controller from the 400 MB/s value is due to the extra clock cycles
required to start reading the BRAM and processing the DESYNC command
(0x0D) by the ICAP. For every ICAP related task, we consider it finishes
when the DESYNC command is acknowledged. It is done by monitoring
the O port of the ICAP which changes from 0xDF to 0x9F in Virtex-5 and
from 0xFFFFFFDB to 0xFFFFFF9B in Kintex7, as a confirmation of the
success in completing the tasks. This implies six extra clock cycles after the
last data is sent to the ICAP.

For the PLB, AXI and FSL versions, there are some degradation in time
due to the latency of the interfaces, but in all cases they offer improvements
of more than 11times for load partial bitstream from Flash.
The time to copy the partial bitstrem from Flash to BRAM is on the same
range as the required to load partial bitstream from Flash. Instead of send
data to ICAP these are stored on BRAM. Therefore, it can be especially
useful when the application can copy the partial bitstreams to BRAM be-
fore the execution starts, for instance at booting time.

In regard to resources utilization, Table 3.3 presents the details for every
module of the AC_ICAP controller.
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Table 3.3 Resource utilization of AC_ICAP

Module
Virtex5 Kintex7

LUT FF BRAM LUT FF BRAM
AC_ICAP 1667 1161 7 1286 1193 22
+Top FSM 691 471 0 452 585 0
++BRAM 36 3 7 27 3 22
++Load Partial

109 133 0 70 130 0
bitstreams
+++Flash controller 129 112 0 73 68 0
++Lut2Frames 119 118 0 39 136 0
++Read Frames 230 138 0 232 113 0
++Write Frames 353 186 0 393 158 0

It should be noted that the AC_ICAP includes the flash memory controller,
which is not the case for XPS_HWICAP and AXI_HWICAP. Table 5.1
summarizes the resources required by the diverse options of the controller.
The extra resources of PLB, AXI and FSL versions of the AC_ICAP are
due to the wrapper logic required to adapt the controller to these interfaces.
It can be seen that the most resource demanding approach uses 5% of the
Slices, which can be considered a reasonable size as all the operations are
done in hardware.

Finally in Table 3.5 we compare the resources required by complete MicroBlaze-
based architectures including different versions of the ICAP controller. We
can see that the systems using the AC_ICAP adapted to the PLB and
FSL require in average 3% more resources of the Virtex-5 FPGA than the
XPS_HWICAP alternative. This is the area overhead to pay in order to
speed-up all the reconfiguration tasks, such as the reconfiguration time of
LUTs that is improved in 356X when the FSL_AC_ICAP is used. When
we see the data for Kintex7 the area percentage are lower as the devices
are bigger. Therefore the speed up of tasks takes increased relevance as
the quantity of configuration data to manage has become bigger but the



46 CHAPTER 3. AC_ICAP CONTROLLER

Table 3.4 Resource utilization of ICAP controllers

Controller Slices LUTs Flip Flops BRAM

V
irt

ex
-5

AC_ICAP 690 (3%) 1667 (2%) 1161 (1%) 7 (4%)
PLB_AC_ICAP 952 (5%) 2375 (3%) 1609 (2%) 7 (4%)
FSL_AC_ICAP 903 (5%) 2329 (3%) 1484 (2%) 7 (4%)
XPS_HWICAP [1] 453 (2%) 714 (1%) 745 (1%) 3 (2%)
[3] * 96 87 0
[32] * * * *

K
in

te
x7 AC_ICAP 595 (1%) 1286 (1%) 1193(1%) 22 (5%)

AXI_AC_ICAP 734 (1%) 1578 (1%) 1332 (1%) 22 (5%)
AXI_HWICAP 248 (1%) 546 (1%) 741 (1%) 2 (1%)

* Not reported

speed and bus width supported by the ICAP primitive remains the same
since the Virtex-4 generation (32-bits@100MHz). From the presented data,
we can summarize that the best performance-area trade-off is given by the
AC_ICAP which uses 3% of the FPGA resources but offers speed up of
380X in LUTs DPR.

Table 3.5 Resource utilization of full systems with different
ICAP controllers

System using: Slices LUTs Flip Flops BRAM

V5
PLB_AC_ICAP 2084 (12%) 4556 (6%) 3516 (5%) 23 (15%)
FSL_AC_ICAP 2094 (12%) 4643 (6%) 3450 (4%) 23 (15%)
XPS_HWICAP 1631 (9%) 3077 (4%) 2981 (4%) 19 (12%)

K7
AXI_AC_ICAP 2054 (4%) 4160 (2%) 3725 (1%) 37 (8%)
AXI_HWICAP 1471 (2%) 3311 (1%) 2708 (1%) 17 (3%)

Dynamic partial reconfiguration of LUTs using this approach presents the
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advantage that it does not require pre-computed partial bitstreams for each
modification to be performed. It allows run-time LUT modification with any
boolean value and it is not limited by the availability of partial bitstreams
in memory. This fine partial run-time reconfiguration is of increasing rele-
vance in applications such as fault injection platforms and in cryptographic
implementations where the hardware can be modified at LUT level to avoid
certain types of attacks.

3.7 Summary

In this chapter we have presented the AC_ICAP, a new ICAP controller ver-
ified in Virtex-5 and Kintex7 FPGAs. It is able to load partial bitstreams,
read and write frames and also modify any LUT in the FPGA, in this last
case without the need of pre-generated partial bitstreams.. The controller
was adapted to be easily included in systems with embedded processors
using the PLB, FSL and AXI links. Reconfiguration speed analysis of the
processor independent version show improvement of more than 380 times
in run-time reconfiguration of LUTs compared to XPS_HWICAP functions
for Virtex-5 FPGAs. As our controller is fully implemented in hardware it
obviously requires more resources, but in any case it occupies more than 5%
of the available elements on the device. Therefore the AC_ICAP offers a
complete high speed solution to perform diverse dynamic partial reconfigu-
ration tasks with acceptable FPGA footprint.

The main contributions of this chapter are:

• Design and implementation of the AC_ICAP controller that supports
DPR of LUTs.

• Transparent on-chip translation of LUT coordinates and LUT config-
uration values into frames locations.

• Speed up of the LUT DPR and similar reconfiguration speed (com-
pared to existing solutions) for partial bitstreams located in BRAM
or flash memory.
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• FSM standalone operation and IP versions adapted to different Em-
bedded Microprocessor interfaces (PLB, FSL).



ASIC Fault emulator
through DPR 4

Following the utilization of DPR in the evaluation of electronic systems we developed an emula-
tor of permanent faults in ASIC designs mapped into FPGAs. In the case of the emulation of
permanent faults in SRAM-based FPGAs it is mandatory to have precise control of the LUTs
to modify its configuration value and consequently to change its logic behavior. The emulation
approach is described in Section 4.1. In Section 4.2 we present the proposed methodology con-
sisting of the CAD flow for constrained technology mapping and fault dictionary generation, the
automatic extraction of test patterns and its representation and the architecture of hardware
emulation platform. It is followed by Section 5.5 that supports the proposed methodology with
experimental results; and finally, Section 5.6 concludes the chapter.

4.1 ASIC fault emulation using an FPGA

State-of-the-art SRAM based FPGAs consists of tiles of different primi-
tive types mainly supporting routing infrastructure, logic and Input/Output
functionality. There are tiles for Configurable Logic Blocks (CLBs), DSPs,
BRAMs, IOBs and Interconnects. Each CLB can connect to the global
horizontal and vertical interconnects lines using the Interconnect Tile lo-
cated near to it. The CLBs are the workhorse of FPGAs for implementing
combinatorial and sequential elements of a circuit. Each CLB consists of a
number of function generators in form of LUTs. Within each CLB, flip-flops
reside in close proximity to LUTs as can be seen in Fig. 4.1. For a LUT

49
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with “k” inputs the maximum number of configurations is 22k .

X-Ref Target - Figure 5-4
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Figure 4.1 Slice architecture for Virtex-5 FPGA

Internally, a LUT is implemented using multiplexers which select from the
LUT configuration string or LUT INIT value stored in SRAM-cells at the
input of multiplexers according to the current inputs at the address lines
as shown in details in Fig. 4.2. This figure shows the circuit that needs
to be mapped to a LUT labeled with wire names, a truth table showing
the equivalent functionality and implementation of a LUT realized as a
tree of multiplexers. The top row of the truth table is annotated with the
LUT address line names and its assignment to the circuit’s primary inputs
“a”, “b” and “c”. This assignment is a particularly important step that
is determined by the routing phase of the FPGA CAD flow and affects
the circuits timing to a great extent. The configuration of a LUT to the
mapped circuit requires a correct LUT initialization value often termed as
LUT INIT. Fig. 4.2 shows two methods to determine this LUT configuration
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value for a circuit under consideration. In the truth table method, the
combination of output bits into nibbles (half byte) and its arrangement
position in the final LUT INIT value is vital for the correct configuration
of a LUT. For example, in this case of a 3-LUT the final configuration LUT
INIT value is “D5”. The truth table method become quite cumbersome
when determining the LUT INIT value for a 6-LUT requiring a table of 64
entries to be constructed. The alternative equation method is more scalable
and general and applies the basic Boolean logic operation for the formation
of correct configuration value as shown in Fig. 4.2. The same methods
can be used for finding the LUT configuration value if we are interested in
permanent stuck-at fault emulation for one of the wire in the circuit under
consideration. For example, for the wire “e” stuck-at zero the required LUT
configuration value will be determined only by the value at wire “d" which is
“C0”. This methodology can be applied to the primary inputs for the circuit
which are bound to the LUT address lines or the internal wires, therefore,
all the faults on the structure of the circuit can be emulated in this manner.
Similarly, fault emulation for a flip-flop needs to be considered. Unlike,
the ASIC gates which may undergo optimizations resulting in changes to
circuit structure which must be retained for the guaranteed emulation of
ASIC faults, the flip-flops in the ASIC netlist are always retained during
the FPGA CAD flow process. There are several inputs lines for a flip-
flop where fault emulation may be desired but the FPGA slice architecture
can become a hindrance. All the flip-flops of a slice are connected to the
same clock, set, reset and clock enable signals which means that it is not
possible to separately emulated faults at the input of these lines. Also, most
of the times all the slice flip-flops sites are not configured in this manner.
This scenario can be considered equivalent to the case of a multiple fan-
out nets when performing fault simulation with traditional software based
approaches in which the faults at all the sinks are equivalent and are only
performed once. Therefore, the fault emulation for the clock and control
signals is performed once for all the slice flip-flops. For the flip-flop “D”
input, assuming that the multiple fan-out faults are treated as equivalent, a
LUT that connects to the primary input of the flip-flop, can be reconfigured
for the fault

emulation purposes. This assumption eliminates the requirement to leverage
the local interconnect tile to be configured as a local ground/vcc for stuck-at
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Figure 4.2 Example of mapping a circuit to an FPGA LUT

fault emulation at the input of a flip-flop which was utilized in a preliminary
work by the authors in [42]. These relaxations achieved with the assump-
tions of fault equivalence relieves us from the dependence on routing-level
changes required for emulation of faults at the input of flip-flops, there-
fore, post-place and route level modification of the physical description of
the circuits in form of Xilinx Design Language (XDL) format are totally
avoided. This not only helps with the development of a cleaner and seam-
lessly integratable CAD flow but also optimizes the reconfiguration times
with alternative fault injection approaches based on available APIs from
the commercial vendor tools as will be explained in details in the hard-
ware platform (section 4.2.2). Exploiting the LUTs and flip-flops for fault
emulation assumes that the ASIC net-list is maintained during the CAD
flow, however, the flow significantly differs from ASIC’s one because the
underlying technology both utilize are very different. Therefore, a standard
FPGA tool-flow may result in different circuit structure since these tools
usually make several logic optimizations modifying the ASIC net-list. The
mapping of ASIC gates to LUTs, is usually referred to as K-LUT technol-
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ogy mapping. This process may duplicate part of the original ASIC gates
for reducing the number of LUTs or reducing delay or both [78]. Another
optimization uses functional decomposition of ASIC gates to smaller gates
for reducing the number of LUTs [79]. However, it is not possible to know
how the FPGA tools partitioned the ASIC net-list for mapping to LUTs. In
any case, the different approaches for K-LUT technology mapping combine
multiple ASIC gates into one FPGA LUT, while maintaining the circuit
flip-flops. Thus, it is possible to exploit the similarity between the two net-
lists for fault emulation purposes. However, for guaranteed fault emulation
(i.e., every ASIC fault has a corresponding LUT configuration) the behav-
ior of both the ASIC circuit and the FPGA model must be the same for all
possible inputs. Using this criteria for finding the equivalent LUT configu-
ration for each ASIC fault using commercial software CAD tools for FPGA
is hugely time consuming. Consider the case when multiple LUTs reside
in a combinational logic between two flip-flops. For finding the equivalent
LUT configuration for an ASIC fault the size of search space is shown in
equation 4.1.

NP Is ∗ (Nluts ∗ 22k) (4.1)

Where “Nluts” represents the number of LUTs that resides in the combina-
tion logic between two flip-flops, “NPIs” is the number of primary inputs
and 22k is the number of possible configuration for each LUT. Obviously, for
guaranteeing fault emulation this is prohibitively time consuming task, and
diminishes the returns of hardware emulation when all faults are considered.
The search space for this problem can be limited by using the active number
of inputs to the LUT as presented in [54] and [55]. However, for guaranteed
fault emulation it is still excessively large. Therefore, it is necessary to use
a custom technology mapping that avoids changes to net-list and results in
a known mapping of ASIC gates to FPGA LUTs.

4.2 Proposed Methodology

In this section, we discuss in detail the proposed methodology for ASIC fault
emulation on state of the art Xilinx FPGAs. The overall scheme consists of a
novel CAD flow and a hardware fault injection and emulation platform. The
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CAD flow enables the translation of ASIC designs into equivalent FPGA
descriptions. This is achieved thanks to the custom mapper that trans-
lates the ASIC circuit net-list to FPGA LUT-level net-list and allows the
equivalence between ASIC logic and FPGA LUT configuration values to
be preserved. A commercial tool produces the ASIC fault list and the test
patterns. Both of them are transformed into fault list and test patterns
adapted to the FPGA-based implementation. The outcomes of the mapper
are used in the design of the fault emulator. The FPGA LUT-level net-list
hardware is included in the fault emulation platform which also takes this
the fault list and leverages the partial reconfiguration capabilities of state-
of-the-art reconfigurable FPGAs for fault injection. Based on the fault list
a single LUT modification is performed to emulate a fault. It is followed by
the application of test patterns for fault emulation purposesto analyze the
effects of the emulated fault on the circuit. The complete methodology is
described in detail in the following sections.

4.2.1 The proposed CAD Flow

The proposed CAD flow is responsible for generating equivalent fault dic-
tionaries for the ASIC fault emulation. The flow consists of three main
phases: a custom technology mapping of the ASIC net-list to LUT-level
FPGA net-list, the creation of a fault dictionary and the extraction of test
patterns. The developed tools integrate in-house ad-hoc tools with commer-
cial FPGAs tool-chain and uses Boost C++ libraries while extending the
framework presented in [80]. The flow starts by parsing a gate-level synthe-
sized ASIC netlist to build a Directed Acyclic Graph (DAG). A duplication-
free mapping algorithm then processes the in-memory graph representation
of the ASIC netlist to generate a new DAG with LUT-based nodes com-
bining multiple ASIC gates as will be discussed in details in section 4.2.1.
This mapped LUT-level netlist is then passed through commercial tools to
implement the design on an FPGA and produce place and route level in-
formation that needs to be fed to the Fault Dictionary Generator tool. The
Fault dictionary generator algorithm produces several versions for the dic-
tionary that have different space and time trade-offs and are also influenced
by the fault location in the FPGA netlist. This will be described in detail
in section 4.2.1. The test patterns are generated with industrial strength
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Figure 4.3 Constrained Technology Mapping and Fault Dictio-
nary Creation Flow

ATPG tools and stored in Standard Test Interface Language (STIL) for-
mat. An in-house STIL parser is developed to extract the test patterns to
be used later with the fault emulation on FPGAs as will be described in
section 4.2.1. Fig. 4.3 pictorially represents the whole flow and the following
sub-section describes it in more detail.

Mapping ASIC design to FPGA

The goal of this step is to translate an ASIC gate-level net-list to a LUT-
level FPGA net-list suitable for fault emulation. This problem of converting
the ASIC gates to LUTs is usually called K-LUT technology mapping. The
existence of multiple fan-out nodes makes the problem of optimal technology
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mapping very challenging [81].
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Figure 4.4 Mapping without duplication

Fig. 4.4 shows an ASIC net-list with a couple of multiple fan-out gates. The
circuit is then mapped to three FPGA LUTs, represented in Fig. 4.4 by the
boxes labeled as LUT1, LUT2, and LUT3. This technology mapping uses
the concept of Maximum Fan-out Free Cones (MFFCs) [82]. The MFFC
of a node “v” represents the maximum number of nodes in the transitive
fan-in of a gate in such a way that the fan-out of every node in the MFFC
except the node “v” is inside the MFFC. For example, the MFFC of node
“k” represented by MFFCk is composed of all the gates in the transitive
fan-in “h, i, b, c” except the node “a” because it fan-outs to MFFCj . It
is interesting to note that gate “b” also has multiple fan-out but they re-
converge on gate “k” and therefore are a part of MFFCk. If the MFFC
is k-feasible (i.e., the number of inputs are less than or equal to k, the
maximum number of inputs to a LUT) can be collapsed into a LUT. All
the MFFCs in Fig. 4.5 are k-feasible and therefore are a candidate for a
LUT. The advantage of MFFC based mapping is that emulating a fault on
a multiple fan-out node requires reconfiguring only a single LUT and thus
can exploit a collapsed ASIC fault list to reduce the fault emulation time.
However, the required number of LUTs can be reduced from three to two if
duplication is allowed as shown in Fig. 4.5. It can be noted that node “a”
has been duplicated. For fault emulation purposes every ASIC fault on the
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structure of node “a” should be emulated in both LUTs. With state of the
art ASIC synthesis tools it is often the case that a gate fan-outs to more
than two gates. As a result, allowing duplication during technology mapping
would mean that a single ASIC fault is converted to multiple FPGA faults.
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Figure 4.5 Mapping with duplication

In the proposed approach the presented mapping process uses MFFC duplication-
free mapping of the ASIC net-list avoiding nodes duplication in the resulting
LUTs. In order to create the actual LUT-level net-list the initial values every
LUT is going to assume need to be identified. Using the equation method
with arbitrary binding of cones input wires to LUT address lines, a LUT
initialization value is calculated and the resultant description is translated
to the required format to be mapped into the FPGA. The standard FPGA
CAD steps are performed for the implementation of the golden version,
followed by the bitstream generation phase.

Fault Dictionary Creation

The Fault Dictionary Creation (FDC) phase is responsible for generating
fault dictionaries compatible with the requirements for partial reconfigura-
tion based fault injection. The FDC algorithm requires inputs from the
mapper and commercial FPGA implementation phases. The information
from the mapper includes the databases for where the individual ASIC gates
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end up in the FPGA LUTs and the local gate-level net-list database for each
of these LUTs. While the information from the commercial implementation
phase consists of the BEL-level User Constraints File (UCF) and the post
place and route level Verilog simulation model. Also, the collapsed fault
list for the ASIC net-list derived using a commercial ASIC fault simulator
is also required for the FDC phase. The FDC algorithm is presented in
detail in Algorithm 4.1. In the initialization phase, a number of databases
are created from the input files from the mapper and the physical informa-
tion generated through commercial tools. After population of these data
structures, the next phase of the algorithm reads as ASIC collapsed fault
list picking up one fault and generating a corresponding FPGA fault. In
detail, for each ASIC fault in the fault list file the corresponding gate, port
and fault type (SA0 or SA1) are extracted. A quick lookup of the gate in
the gates to cones database generated during the mapping process yields
the corresponding LUT in which the gate resides. As the resident cones in
each LUT are stored as an EDIF net-list, they are imported back to gen-
erate an in-memory Directed Acyclic Graph (DAG) representation. To get
the corresponding fault site in terms of the net in the DAG, the gates and
port names are used. At this point we know the net on which fault has to
be emulated and the LUT DAG. The other important information is LUT
input address lines binding for the DAG inputs wires which are determined
by the routing phase of the FPGA flow.

Listing 4.1 Fault Dictionary Creation (FDC) algorithm
Input: ASIC Logic Cones filepath, ASIC Gates2Lut filepath,

ASIC Collapsed Fault List,
UCF, Verilog Model, XDL description

Output: LUT-level Fault Dictionary,
Frame-level Fault Dictionary,

Partial Bit-stream level Fault Dictionary
Definitions: map<Net,bitset> WireValueMap; //LUT-level FD

map<Net,string> WireValueMap; //Partial Bitstream FD

//******* Initialization Phase ****************
1: LutConesDB = buildLutConesDB(ASIC Logic Cones filepath);
2: Gates2LutDB = buildGates2LutDB(ASIC Gates2Lut filepath);
3: LutPlacementInfoDB = buildREsourceLocationMap(UCF);
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4: LutRouterInfoDB = LutParser(Verilog Model);
//******* Fault Dictionary Creation Phase ****************
5: While (ASIC fault list file is not read) do
6: [gateName, portName, fault] = split_read_line(current_line);
7: LogicConeName = Gates2LutDB[gateName];
8: LogicConePath = LutConesDB[LogicConeName];
9: LogicConeDAG = buildLogicConeDAG(LogicConePath);
10: faultyNet = getFaultSite(LogicConeDAG,gateName,portName);
11: WireValueMap = LutRouterInfoDB[LogicConeDAG];
12: InstanceStack = TopologicalSort(LogicConeDAG);
13: while(InstanceStack is not empty) do
14: Instance = InstanceStack.top();
15: OutputNet = gateValueCalculation(WireValueMap,Instance);
16: if(OutputNet==faultyNet) do

//StuckAtValue: 0xFFFFFFFFFFFFFFFF or 0x0000000000000000 or
//an equivalent equation

17: WireValueMap[OutputNet]=StuckAtValue;
18: endif
19: InstanceStack.pop();
20: endwhile
21: [Slice , BEL] = LutPlacementInfoDB[LogicConeName];
22: LUT_faulty_Value = WireValueMap[Output];
23: formatted_fault =

faultformatconverter(Slice,BEL,LUT_faulty_Value);
24: WriteToBinaryFile(formatted_fault);
25: endwhile

The annotated LUT DAG is topologically sorted and the sorted instances
are stored on a stack. The calculation of faulty LUT INIT value follows
by popping instances from the stack and applying the Boolean operation
according to LUT DAG structure following the equation method presented
in section 4.1. Whenever the faulty net is encountered a precedence set on
the faulty net overwrites the current values calculated through the traversal
of LUT DAG with predetermined values for SA0 and SA1 faults. In this
manner, the faulty LUT INIT values are generated. After that, the physical
placement information in form of slice and bel location is extracted from
the user constraint file for the LUT DAG. This information uniquely iden-
tifies each LUT in the placed and routed design and is vital for the fault
dictionary formats that the algorithm generates. Specifically, the algorithm
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can generate fault dictionaries in three formats that are compatible with
partial reconfiguration capabilities at different granularities exploiting the
available APIs.

X (14 bits), Y (14 bits), BEL (4 bits)

LUT Configuration Low-Word (32 bits)

LUT Configuration high-Word (32 bits)

32 bits

(a) LUT-Level Fault For-
mat

Top/Bottom(1 bit) , Row(5 bits),

Major Column (8 bits), Minor Frame (7

bits)

Frame N: (16 bits) , Frame N+1: (16 bits)

Frame N+2: (16 bits) , Frame N+3: (16

bits)

32 bits

(b) Frame-Level Fault For-
mat

Figure 4.6 Partial Reconfiguration Compatible Fault Formats

Fig. 4.6 shows the fault representation formats utilized by CLB-level and
frame-level fault dictionaries while the third representation is based on the
standard format of partial bitstreams generated by vendor tools. The CLB-
level fault dictionary along with the pointer to reconfiguration controller
and physical information necessary to identify the LUT requires the 64 bit
LUT INIT value. The binary format defined for a fault in this dictionary
consists of three fields each one of 32 bits as shown in Fig. 4.6a. The first
field of 32 bits contains the LUT identification information as (x , y) coor-
dinates each one represented by 14 bits locating the FPGA’s slice where the
LUT resides while the remaining 4 bits are related to the LUT BEL identi-
fication within each FPGA’s slice. The remaining two 32 bit fields contain
the low and high words for faulty LUT INIT value. The CLB-level fault
dictionaries representation is based on an architectural representation and
slice coordinate system making it necessary to convert this representation
to the corresponding frames. As this processing is to be performed by the
software running on the processor, this reduces the efficiency of fault emu-
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lation. An alternative fault representation based directly on the frame-level
details is shown in Fig. 4.6b. However, directly identifying the LUT frames
is not an easy task because the vendor documentation barely provides the
required level of details leaving only the option of extensive experimenta-
tion and hit and trial methods. Each CLB column is reconfigured by 36
frames each one 1 bit wide and 20 CLBs high. Four frames are required for
a LUT reconfiguration as shown in Fig. 4.7. It is worth mentioning that
the position of LUT frames in the CLB frames and the division of 64 bits
across these frames is vital for correct fault injection as illustrated by the
diagram in Fig. 4.7. It can be noted that the 64 bits spans four frames with
each frame containing 16 bits for a LUT. Moreover, the function in this dic-
tionary requires the minor frames offset of LUT to reconfigure, the major
CLB column and Top/bottom division of the chip as shown Fig. 4.6b. The
three fields in the binary format each one of 32 bits represents the physical
frame position and the corresponding half-words that should be written to
four consecutive frames for reconfiguration.
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Figure 4.7 Position of LUT frames in CLB frames
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Test Patterns Extraction and Representation

Standard Test Language Interface (STIL) is an IEEE standard for semi-
conductor testing across various platforms and systems. The language is
specifically designed for test vectors applications for combinational and se-
quential logic and is also extended to support mixed signal designs. After
the fault dictionary generation phase, the proposed methodology utilizes
an industrial strength Automatic Test Pattern Generation (ATPG) tool to
generate test vectors that can cover the faults in the circuit. The test vec-
tors are exported as a STIL format file. An ad-hoc parser tool is developed
to automatically extract the signal names, signal widths and the patterns
from the file and store them in binary format as shown in Fig. 4.8. It can
be noted that the extracted information from the STIL file consists of sev-
eral important pieces of information in order for successful application of
the test patterns. Firstly, in Pattern block each pattern consists of several
other patterns in form of primary inputs “pi”. The number of “pi” in each
pattern are counted and stored in a binary file. Secondly, the individual
“pi” are extracted and stored in binary format. It is important to mention
here that the “pi” are further divided into signals whose width is determined
from the signal block at the beginning of the STIL file. Thirdly, before the
application of these “pi” the specification can either have a reset, clock pulse
or no clock pulse. This information is stored for each “pi” and represented
using a 2 bit number where “0” means no clock/reset, “1” means reset and
“2” means clock. The resultant binary files successfully enables the transla-
tion of the test program in STIL format to our custom binary format that is
used for test pattern application to our custom IP cores as will be explained
in details in section 4.2.2.

4.2.2 Fault Injection and Emulation Platform

The fault emulator scheme is depicted in Fig 4.9. This was developed us-
ing a board equipped with the Virtex-5 LX110T FPGA. The fault injector
is completely implemented in the FPGA board and a host computer, con-
nected to the board through JTAG and serial links, is used to initialize the
system and visualize the results of the experiments. The hardware/software
co-design of the platform was made with Xilinx tools. This takes the LUT-
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SignalGroups {

"_pi" = "datai[0]" + "datai[1]" + "datai[2]"

+”memi[0]” + “memi[1]” + “memi[2]”;

"_po" = "dataO[0]" + "dataO[1]" +

"dataO[2]" +”memO[0]” + “memO[1]” +

“memO[2]”;

}

Pattern Block {

"pattern 1": { "_pi"=000100; }

{ "_po"=LHLL; }

{ "reset"=P; }

{ "_pi"= 001110; }

{ "_po"=LLLL; }

{ "clock"=P; }

{ "_pi"=001111; }

"end 1 measurePO": { "_po"=LLLL; }

"pattern 2": { "_pi"=001100; }

{ "_po"=LLLH; }

{ "reset"=P; }

{ "_pi"=001101; }

{ "_po"=HLLL; }

{ "clock"=P; }

{ "_pi"=101100; }

{ "_po"=LLLL; }

{ "_pi"=001101; }

{ "_po"=LLHH; }

{ "clock"=P; }

{ "_pi"=000001; }

"end 2 measurePO": { "_po"=LLLL; }

}

Pattern1 3

Pattern2 5

000100

001110

001111

001100

001101

101100

001101

000001

0

1

2

0

1

2

0

2

Patterns Counter

Test Vectors Clock/Reset Info

datai memi

Figure 4.8 Binary format for storing of STIL file

level FPGA netlist produced by the mapper to generate two instances of
the circuit to be tested: one to compute the golden results and the other
(DUT) to perform the fault injection. The DUT area placement step con-
fines the DUT circuit into a region of the FPGA as required by the partial
reconfiguration tasks. The post-route information of the DUT (location
and INIT function of the LUTs) is used by the Fault Dictionary Creation
process to generate the Fault dictionaries. The fault injector is controlled
by the software running on the MicroBlaze processor, which employs the
functions to perform dynamic partial reconfiguration and allow the faults
to be emulated by modifying the configuration memory of the FPGA. Af-
ter programming the FPGA, the Fault dictionaries and Test patterns are
copied to the DRAM memory of the platform and then the fault injection
loop can be started. The details of the hardware architecture and flow of
the fault injector are presented next.
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Figure 4.9 Fault emulation scheme

Hardware Fault Emulation Platform

The hardware architecture of the fault emulator is depicted in Fig. 4.10. It is
designed around a MicroBlaze-based system using the Peripheral Local Bus
(PLB) to connect the components required by the platform. The circuits to
be tested are designed as IP cores adapted to the PLB interface. The main
elements of the platform are described next.

• DUT and GOLD IPs: The Design Under Test (DUT) IP contains the
circuit to be tested. The netlist description of the circuit generated
by the mapper (described in subsection 4.2.1) is instantiated in a PLB
wrapper to obtain a custom IP. The inputs and outputs of the circuits
are connected to the PLB bus and then the processor can access them
using register addresses. In addition the outputs of the circuit are
routed to user defined ports for later connection to the Error Flag
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comparison logic. If the DUT is a sequential circuit, the reset and clock
inputs are also routed to external ports as these should be connected
to the Clock Control IP. The GOLD IP is a replica of the DUT and
is used to compute online the correct outcomes of the circuit. In
this way it is not necessary to pre-calculate the correct values for the
pattern inputs nor store them in memory for later comparison. By
doing this, we avoid delays in memory access and comparison in the
processor software. Instead of that hardware comparison is performed
in the Error Flag component which allows faster error detection using
minimal resources. Once these two IPs are connected to the system
location constraints are applied to confine the circuit to a specific
region of the FPGA.

• ICAP: The Internal Configuration Access Port (ICAP) is the hard-
wired element of the FPGA that gives access to its configuration mem-
ory. Xilinx tools offer the XPS_HWICAP controller to be used with
the MicroBlaze processor. The combination of drivers and software
routines provided with the XPS_HWICAP makes it possible to per-
form partial reconfiguration at different levels. It can be used to mod-
ify the hardware with partial bitstreams located in the system mem-
ory and to modify basic elements of the system such as LUTs. The
CLB functions (XHwIcap_SetClbBits, XHwIcap_GetClbBits) and
FRAME functions (XHwIcap_DeviceReadFrame, XHwIcap_DeviceWriteFrame)
access the configuration memory thanks to this component.
As presented in chapter 3 the developed AC_ICAP is an alternative
controller to the XPS_HWICAP available from Xilinx tools with im-
proved time performance. We use the PLB_AC_ICAP which is the
version adapted to the PLB bus, and the XPS_HWICAP in the de-
sign of the platform in order to analyze the fault emulation speed.
Therefore two versions of the platform are implemented. The first
one uses the XPS_HWICAP controller and the second one uses the
PLB_AC_ICAP.

• Clock Control: This IP generates the clock and reset signals for the
GOLD and DUT IPs when these implement sequential circuits. This
is required as the clock and reset signals should be precisely applied to
propagate the test patterns. As explained in section 4.2.1, the STIL
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Xilinx FPGA platform

DUT
ICAP

LUT

Error Flag

MB processor

RAM memory

Clock

Control

Clk

Rst

GOLD

DUT

UART
Timer

Unit

PLB Bus

Fault dictionaries

Test Patterns

Partial bitstreams

Figure 4.10 Fault injection platform

format demands a reset, a clock pulse or any of these, before applying
each test vector. The clock frequency is selected at the IP design
phase taking into account the maximum throughput supported by the
DUT circuit. Such information is obtained from the reports of the
implementation tools. The processor commands this IP to generate
the clock/reset signals that the DUTs require.

• MicroBlaze processor: This is a soft-core implemented in the logic
of the FPGA and runs the algorithm that controls the fault injec-
tion process. Its software libraries include the functions to access the
configuration memory using the ICAP. The UART serves as a user in-
terface to control certain initial features of the experiments and also to
visualize the results in the host computer. The reports include timing
information of the experiments, collected using the Timer Unit along
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with an Interrupt Controller, to precisely record the number of clock
cycles elapsed during the execution of any task of the fault injection
process.

Fault Injection Flow

The hardware system, designed according to the scheme depicted in the pre-
vious subsection, produces the FPGA configuration file. This bitstream is
merged with the software application that runs in the MicroBlaze to obtain
a single configuration file including the hardware and software components
of the fault emulator system. The fault injection flow, depicted in Algo-
rithm 5.1, is divided in three main parts. The initial steps are controlled
from the host computer and the remaining steps are completely performed
in the MicroBlaze-based system. First, the host computer downloads the
bitstream to the FPGA. Once the device is configured the Load_memory()
step is performed to copy the fault dictionaries and the test patterns into
the RAM memory of the board. These two tasks use the JTAG link that
connects the host computer to the board. From this point the system runs
completely on the FPGA board but the Select_mode()function expects from
the user one command to continue. By means of the serial communication
link, Select_mode() gives the user the possibility to choose between differ-
ent options to perform the fault injection process. As two versions of the
platform are available, these options depend on the ICAP controller used.

For the XPS_HWICAP the options are:
(1) Using CLB functions
(2) Using Frame functions
(3) Using partial bitfiles

For the PLB_AC_ICAP there is only one option:
(1) Using ModifyLUT functions
After selecting the injection mode, the MicroBlaze application follows the
next steps to run the fault injection:

1) The reset_DUT()function applies a Reset to the GOLD and DUT IPs.
2) For each fault N, fromDRAM(N) function reads the LOC coordinates
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and LUT faulty value (FV) from the fault dictionary located in the RAM
memory. Depending on the mode selected for the injection, LOC and FV
change their format: If CLB functions are selected, LOC has the form of (x,
y), bel coordinates and the FV is the LUT INIT that emulates the fault.
If frame functions are used, LOC and FV have the form depicted Fig. 4.6b
(Top, Rows, Major, Minor and 4 16-bit words for LUT value).

Listing 4.2 Fault Injection Algorithm

//******* Initialization Phase ****************
1: Load_memory();
2: Select_mode();
//******* Run Injection Phase ******************
3: for each fault N
4: {
5: reset_DUT();
6: {LOC, FV} = fromDRAM(N);
7: correct_lut = read_LUT(LOC);
8: write_LUT(LOC, FV); //inject fault
9: {PI} = fromDRAM(NP);
10: RES = Gold_DUT_comp(PI);
11: write_LUT(LOC, correct_lut); //correct fault
12: }
//******** Results Communication ***************
13: send_results(RES)

3) Read back, with the read_LUT(LOC) function, the configured value of
the LUT to be modified. This non-faulty value is saved in correct_lut mem-
ory for later fault recovery. Again, the internal details of read_LUT(LOC)vary
according to the selected mode and therefore uses XHwIcap_GetClbBits
for CLB functions and XHwIcap_DeviceReadFrame for Frame functions.
4) Inject the fault by writing the FV to the LUT with LOC coordinates:
write_LUT(LOC, FV). Following the same rule as the previous step, this
function uses XHwIcap_SetClbBits or XHwIcap_DeviceWriteFrame. 5)
Read from RAM memory (fromDRAM(NP)) the patterns to apply on the
Golden and DUT circuits. PI refers to the patterns input to test the DUT.
For combinational circuits, these test vectors are sent directly to the GOLD
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and DUT inputs. For sequential circuits, these includes the clock/reset
information and in these cases, the processor commands the Clock Con-
trol Unit to manage the reset and clock signals. 6) When a pattern block
(PI) has been applied, the results of the GOLD IP are the correct values
to be compared to the outcomes of the DUT at the Error Flag element
(Gold_DUT_comp(PI)). The MicroBlaze reads the Error Flag output to
classify the effect of the injected fault on the circuit behavior. The result of
the classification is saved in the RES memory. 7) After the fault injection
and the pattern applications, the LUT must be corrected. This is achieved
by writing the correct_lut value read at step (3): write_LUT(LOC, cor-
rect_lut). At this point, continuing with the next fault until all the available
faults in the dictionary are covered.

When all the faults are applied, the consolidated results are communicated
to the host computer: send_results(RES).

For the version of the platform that uses the PLB_AC_ICAP, instead of
using the XHwIcap_GetClbBits and XHwIcap_SetClbBits functions, the
ModifyLUT (XYBel, INIT) and RecoverLUT (XYBel) functions mimic the
same behavior but adapted to the PLB_AC_ICAP controller.

In addition to the previous descriptions, we implemented another fault injec-
tion scheme using DPR with pre-computed partial bitstreams. This option
requires the generation of partial bitstreams for each fault to be emulated.
It uses the difference between the circuit with the correct LUT and the
circuit with the faulty one. According to the fault dictionary information
we identify the LUT where a fault should be emulated, modify the LUT
INIT value in the XDL description file, and generate the ndc file (xdl2ncd).
The tool bitgen (with –r option) uses as inputs the original and modified
circuit files to produce the partial bitstream based on the difference between
them. This process should be repeated for each fault and obtain two partial
bitstreams per fault. One with the faulty LUT and other with the original
non-faulty LUT. The latter is necessary to correct the circuit after apply-
ing the patterns. As a result the number of partial bitstreams is twice the
number of faults to be emulated. The partial bitstreams are then copied
to the system RAM memory and the MicroBlaze software application per-
forms the run-time reconfiguration using certain functions available in the
Xilinx software libraries. We adapted the function XHwIcap_FLASH2Icap,
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designed to read partial bitstreams from flash memory, to do the same when
partial bitstreams reside in DRAM memory. Therefore, the modified func-
tion, ram2icap, requires the DRAM memory start address where the partial
bitstream is located. The partial bitstream contains all the information
regarding the size of the data and the specific configuration memory to
be modified. When using this approach some modifications in the fault
injection flow should be done. The LOC and FV are included in the par-
tial bitstreams and therefore it is not necessary to read them from memory
(fromDRAM(N)). In a similar way, the correct LUT, necessary for fault cor-
rection, is contained in the non-faulty partial bitstream and the correct_lut
= read_LUT(LOC)step is not required. Instead of that, the ram2icap is
used for both injection and correction.

4.3 Experimental Results

The experimental results were collected on a set of representative circuits
relating to combination and sequential logic including some circuits from
the ITC benchmarks. The selection of ITC benchmarks was to test the
proposed methodology with circuits specifically designed for testing and
fault simulation including hard to test circuits. The collected results are re-
lated to timing efficiency comparison, fault coverage, fault statistics and the
area/delay overhead. Table 4.1 represents the comparison of fault simula-
tion and fault emulation times considering the ASIC netlist and the FPGA
netlist utilizing the proposed approach. The ASIC design was synthesized
with Design Vision for pdt2002 library while the FPGA version utilizes
Xilinx tools and the developed CAD tools in the proposed methodology.
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The FPGA’s results comprise four versions of the fault dictionaries that
were previously discussed. It can be noted that the CLB-level fault dictio-
nary version has relatively poorer performance than the traditional ASIC
fault simulation times with software-based fault simulation. This is due to
the large overhead of the software APIs to convert from abstract-level LUT
representation to frame-level representation which requires processing times.
Obviously, in this case the vendor APIs for reconfiguration are very slow and
the advantages offered by at-hardware processing speed of FPGA are amor-
tized. The partial bitfiles version of the fault dictionary has improved per-
formance compared to the ASIC and the CLB-level fault dictionary because
the processor is not required to perform intensive work for frame identifica-
tion. The partial bitfiles version has header information and synchronization
data making them slow compared to the frame-level fault dictionary ver-
sion. In order to quantitatively analyze the differences between the fault
emulation speeds of the three versions of fault dictionaries which mainly
depend on the fault injection times we defined TPR_InjectCorrect as the
time required to inject and correct a fault in a LUT. As detailed in section
4.2.2, when using CLB functions and Frame functions, for every single fault
to be emulated we need to read the LUT programmed value (TreadLUT),
perform the fault injection (TwriteLUT) and once all the patterns are ap-
plied the faulty LUT should be corrected (TwriteLUT). Therefore the time,
considering all the LUT read and writes for a single fault, can be expressed
according to equation 4.2.

TPRInjectCorrect = TreadLUT + 2 ∗ TwriteLUT (4.2)

For LUT level representation, TreadLUT = 1.91ms and TwriteLUT = 2.88
ms, producing TPR_InjectCorrect = 7.67 ms. When Frame level repre-
sentation is used, TreadLUT = 134 µs (4* reading one frame + backup
its content), TwriteLUT = 150 µs (copy 4 words in frames + 4* writing
one frame), and consequently, TPR_InjectCorrect = 434 µs. In the case of
partial bitstreams, it is not necessary to read the LUT content before in-
jecting a fault. The fault and correction are applied by loading the partial
bitstreams. TloadPBits is the time required to perform the partial recon-
figuration. It includes memory access time to read the partial bitstream,
processing of the bitstream header, and data sending to the ICAP. This
value depends on the size of the partial bitstream. For the modification of



4.3. EXPERIMENTAL RESULTS 73

a single LUT the size of the produced files is of 1588 bytes, which includes
the header and data corresponding to four frames different between original
and modified files (the same for faulty and non-faulty bitstreams). For such
size TloadPBits= 873 µs. Then, TPR_InjectCorrect = 2*TloadPBits=
1.75 ms. This lower performance compared to frame functions is due to the
processing of the partial bitstream data, which imply reading the bitstream
header, determining bitstream length and adapting the format of data to
send to ICAP. This is processed in the software of the MicroBlaze and af-
fects the overall processing time. Specifically, frame level fault dictionary
is 17 times faster than CLB-level fault dictionary and 4 times faster than
partial bitsfiles based fault dictionary.

When using the PLB_AC_ICAP controller the time required to modify
a single LUT is 5.88 µs and the recovery time of a LUT is 3.37 µs. This
means that TPR_InjectCorrect = 9.25 µ. The advantage of this approach
is that the controller is designed to keep the original configuration value of
the last modified LUT in BRAM memory to be used by the RecoverLUT
function. Therefore the RecoverLUT only requires the XYBel identification
that should match the value of the previously used ModifyLUT function.
In this way it is not necessary to read four frames again. Every time that
ModifyLUT is performed the value before modification is kept in BRAM.

With these numbers the speed up obtained by using the PLB_AC_ICAP is
of 829 times compared to frame functions of the XPS_HWICAP. Such speed
improvement is possible thanks to the hardware-based processing performed
by the AC_ICAP controller.

After getting the complete timing information for fault emulation of the
presented circuits, we came up with a formula to calculate the time required
to perform any other experiment. It is presented in equation 4.3

TF P GAemul = Ncf∗[TreadDict+TP RInjectCorrect+Np∗(TP atterns+TClassification)]
(4.3)

In this case we consider all the steps involved in performing full injection
campaigns. TreadDict represents the time required to read the LUT coordi-
nates and configuration values from RAM memory and extract the informa-
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tion (e.g. get x, y, bel from one 32-bit word). This time is not considered
for partial bitstreams scheme. TP RInjectCorrect, as explained previously, de-
pends on the injection scheme. TP atterns includes memory access time; bus
latency for sending the data to the DUTs and circuit delay or clock pe-
riod in case of sequential circuits (Tpd). In addition, for sequential circuits,
the delay produced by commanding the Clock Control Unit is considered.
Finally, TClassification measures the time for error flag reading and results
classification.

Table 4.2 Fault Statistics

Circuits Total Ncf Np Coverage
Faults %

Adder32 1226 712 25 100
Adder64 2436 1410 34 100
Multiplier32 42304 23431 137 99.81
Multiplier64 170612 94125 288 99.87
B03 1018 527 14 73.48
B04 2768 1403 58 88.35
B05 3398 1703 2 9.81
B07 2128 1133 3 48.32
B08 1074 519 5 73.26
B14 49002 21457 396 87.21

Table 4.2 illustrates the results related to fault statistics including the total
faults, the collapsed faults, the average number of patters to detect faults
and the coverage achieved with these patterns. The deterministic mapping
of ASIC gates to FPGA LUTs enables the achievement of the same cov-
erage. Some of the benchmark circuits (for example B05) have a very low
coverage and a small number of patterns because the ATPG tool from the
Tetramax tool was taking a prohibitively long time because of the hard
to test structure of the circuit. It would be interesting to investigate such
behavior when the platform is extended to be used for automatic pattern
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generation.

Table 4.3 Area and Delay Comparison

Circuits Xilinx Mapper Custom Mapper
Gates FFs LUTs Delay[ns] LUTs Delay[ns]

Adder32 160 0 49 17.031 64 23.167
Adder64 320 0 96 29.81 111 34.86
Multiplier32 7025 0 1624 43.4 2679 71.19
Multiplier64 28359 0 7110 87.68 11114 131.32
B03 122 30 39 2.392 76 5.212
B04 362 66 114 2.914 241 7.49
B05 498 34 142 3.895 384 13.161
B07 282 44 99 3.001 211 7.054
B08 145 21 25 2.401 97 5.076
B14 7706 215 1238 15.836 4534 50.125

Table 4.3 shows the characteristics of the ASIC and FPGA designs in terms
of area and delay. It can be observed that the FPGA designs mapped
with Xilinx mapper has better performance and area utilization than the
custom mapper utilized by the proposed approach. It is due to the fact that
the mapping phase is not optimized for minimizing area and delay which
could result in increasing the size of the fault list by converting single ASIC
faults to multiple FPGA faults. It would be interesting to utilize multi-
objective optimization to simultaneously improve the area utilization while
not drastically increasing the size of fault list.

4.4 Summary

This chapter presented a methodology to emulate ASIC permanent faults
using FPGAs. A novel hardware fault emulation platform utilizing a semi-
custom CAD flow was presented. It performs the injection of faults in



76 CHAPTER 4. ASIC FAULT EMULATOR THROUGH DPR

run-time using dynamic partial reconfiguration. The flow utilizes a cus-
tom technology mapping for directly converting the post layout gate-level
net-list into a LUT level net-list. This known mapping of gates to LUTs
enables us to develop equivalent fault dictionaries from the ASIC fault list
to FPGA faults representation. The approach is flexible enough to generate
fault dictionaries in different formats compatible with partial reconfigura-
tion requirements which results in significant variation in achievable fault
injection speedups. The methodology avoids drastic changes to the net-
list, therefore, does not need lengthy re-compilation times during the fault
emulation process. Furthermore, our experimental results demonstrate a
significant speed up for fault emulation compared to software based fault
simulation.
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This chapter focuses on Triple Modular Redundancy as it is a widely used fault-tolerance method-
ology for highly-reliable electronic systems mapped on SRAM-based FPGAs. However, the state-
of-the-art TMR techniques are unable to effectively deal with cross-domain errors and increased
scrubbing time due to growing size of configuration memory. Section 5.1 describes the generation
of modified X-TMR circuit for fast fault detection and the post-mapping manipulation to re-use
the LUTs that implement majority voters. It is followed by Section 5.2 that presents the proposed
CAD flow based on the EDIF modification and alternative partial bitstream generation. Section
5.3 details the developed testbed to validate the approach which includes fault injection campaigns
as described in Section 5.4. The results of the experiments are presented in Section 5.5.

5.1 Dinamically reconfigurable X-TMR

Xilinx TMR (X-TMR) is particularly designed for SRAM-based FPGAs,
however, the commercial CAD tools are unaware of reliability-oriented phys-
ical design rules which are vital for avoiding Multiple Cell Upsets (MCUs)

77
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causing Cross-Domain Errors (CDE). Avoiding CDEs with non-overlapping
domain placement has been proposed by the authors in [71]. This work
improves upon it by exploiting the fact that majority voters are residing
in 6-LUT while only three inputs are utilized. An equivalence function
can also be implemented in the same LUT with majority voter generat-
ing a logic-0 when the three inputs are not the same, otherwise, a logic-1
values is produced. This value is then steered towards the carry-chain mul-
tiplexers for realization of AND-tree required for generating a unique flag
per TMR domain. The whole scheme is illustrated in figure 5.1. Instru-
mentation of the TMR circuit with the mentioned error detection logic is
achieved with modification in a post-synthesis netlist. In particular, the
usage of fracturable LUT for realization of majority voting and equivalence
function is achieved through a custom re-mapper. However, this circuit-
instrumentation at TMR domain granularity and non-overlapping domain
placement is happening to a flat netlist which does not conform to the
partial reconfiguration flow requirements supported by vendor tool-chains.
Therefore, an alternative method for synthesizing the partial bitstreams by
accumulation of frames corresponding to reconfigurable slots to which do-
mains are mapped are extracted and stitched together to build valid partial
bitstreams. The details of this developed methodology are given in the
following sections.

5.2 CAD flow

This section presents the proposed CAD as depicted in Fig. 5.2. It details
the steps required to implement and evaluate the modified X-TMR-based
circuits.

5.2.1 Hierarchy formation

The proposed CAD flow in Fig. 5.2 starts with the conventional steps re-
quired for applying Xilinx TMR (XTMR) approach. The flat netlist repre-
sented in Electronic Design Interchange Format (EDIF) is passed through a
hierarchy formation block. A Directed Acyclic Graph (DAG) is developed by
parsing the EDIF representation. The DAG is processed using conventional
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Figure 5.1 TMR fracturable LUT

graph search algorithms to identify logic resources in each TMR domain.
In particular, Voter elements are identified for the re-mapping phase in the
flow. Each logic element is renamed in a hierarchical manner. In this way,
the whole flat netlist is converted to hierarchical netlist to which user con-
strains can be applied seamlessly conforming to conventional requirements
which the implementation tools supports.

5.2.2 Re-mapping, error detection and flag convergence

In the re-mapping phase, the LUT elements which implements the majority-
voter functions identified in the previous steps are modified to realize a
fracturable LUT as shown in Fig. 5.1. The majority-voters are instances of
an EDIF cell TRV LUT which is a based upon a three input LUT configured
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with the string ”E8”. As the proposed methodology is based on utilization
of dual output LUT, which is only possible with a six input LUT. Therefore,
a new EDIF cell is designed based upon a 6-LUT and configured with the
string ”E8E8E8E881818181” to simultaneously implement majority voting
and equivalence functions with the corresponding outputs on ”O5” and ”O6”
output lines. The majority-voted ”O6” output has to pass through an extra
slice mux ”AOUTMUX” for connections to other slice logic, consequently,
introduction a propagation delay compared to the standard X-TMR circuits.

However, the propagation delay associated with this extra logic element has
negligible effect on the circuit’s critical path and hence its performance.
The equivalence function’s ”O5” output has to control the select line of the
carry-chain multiplexer according to the scheme outlines in Fig 5.1. How-
ever, the multiplexers belonging to slice’s carry-chain have to be instantiated
at cell-level and connected for realization of error detection and flag con-
vergence. It is worth mentioning that the ”Cin” line has to be connected
to a logic-1 value and the auxiliary slice lines ”Ax/Bx” lines have to be
connected to logic-0 values. The ”O5” output of the LUT will select which
logic value propagates along the chain. These logic values are vital for a
working AND-tree required for error detection and flag convergence. These
logic values are readily available as TIE-OFF elements near every slice in
modern FPGAs. The mapping tools will automatically infer the need of
TIE-OFF elements in the place and route design. Each TMR domain is
instrumented in this way and the corresponding flag signals are added as
top-level EDIF ports in the netlist. Then, the standard tool-flow for map-
ping designs to FPGA is followed. After these custom modification, it is
possible to add user constraints in ucf file to floor-plan each TMR domain to
a separate non-overlapping region. However, as the requirements for partial
reconfiguration flow dictates the partially re-configurable regions should be
mapped into from separate modules and not a flat netlist, therefore, even
after these custom modification for error detection and placement control,
the partial bitstream generation is non-trivial and challenging due to no
support through standard bitstream generation tools.
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5.2.3 Partial bitstreams generation

The standard flow available in Xilinx does not support partial bitstream
generation for each domain taking the modified X-TMR flat design as in-
put. Even though the modified EDIF can be constrained in area to improve
resilience to CDE, Xilinx tools require independent netlists for each parti-
tioned area. As the X-TMR is a flat design independent netlists for each
domain are not available. It would imply complex split of the flat edif design
and therefore we use an alternative approach using the post-implemented
information.

Initially we include the modified DUT-XTMR edif design and perform the
floor-planing step to isolate each domain to a defined area. This is done
in PlanAhead and it allows us to generate the User Constraint File (UCF)
with the area in terms of (X,Y) Slice coordinates for each domain. As a
result three regions are available to be used at different states of the design
flow. These regions correspond to partitions for which partial bitstreams
are required.

Our approach uses partial bitstreams skeletons for which we created a de-
sign with empty partitions occupying the same regions previously defined
at the floor-planing step. These three partitions, also known as black boxes,
permit blank partial bitstreams to be generated: one per reconfigurable par-
tition. Each generated partial bitstreams contains key information such as
the bitstream header, the initial control commands followed by the empty
frames (all zero) and the final control commands. These Partial bitstreams
are seen as skeletons to latter replace the empty frames with the actual
configuration frames of the DUT. The standard flow for partial bitstream
generation would require at this point to specify the different variations that
each reconfigurable partition would perform (individual ngc files). As it is
not available for the X-TMR flat design we are not able to use such ap-
proach. As alternative we instantiate the DUT-XTMR edif design, include
the hardware based ICAP controller (FC_ICAP) and follow the standard
flow to produce the full bitstream and program the FPGA. Once this is
programmed the FSM commands the FC_ICAP to read back the frames
corresponding to the three domains of the DUT-XTMR. Based on the in-
formation of the area where each domain is placed (UCF) we compute two
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values: The initial frame address where the read back should start (Star-
tAddr input of the FC_ICAP) and the number of frames that needs to be
read (NumFrames input of the FC_ICAP).

The starting address has the format of the Frame Address Register (FAR).
For its generation we consider the equation 5.1.

StartAddr = InitSlice/2 + Familyoffset + Coloffset (5.1)

where InitSlice is the most left X coordinate of the region and Familyoffset

is a device-family-dependent value that identifies the first CLB column (in-
creases from left to right). It corresponds to the major address field of the
FAR for that column. It is 1 for Virtex-5 and 2 for 7-series devices. Coloffset

corresponds to the information of the intra columns of other components
different from CLBs such as BRAMs, DSPs, IOBs.

The second value depends on the region and components of the FPGA
required to implement the circuits. To this end we only use CLBs for which
the corresponding number of frames is obtained according to equation 5.2;

Nframes = NCLB ∗ 36 (5.2)

where NCLB is the number of CLB columns occupied by a given area. It
means that for every CLB column 36 frames are required. Depending on
the family of the device the size of the CLB columns varies. For Virtex-
5 one column of CLBs corresponds to 20x1 CLBs that spans one HCLK
height. This information is used to command the FC_ICAP to read back
the configuration memory of specific areas of the design. With these two
parameters the FC_ICAP computes the number of words to read from the
configuration memory. For Virtex-5 it is: Nwords = 41∗(Nframes+1). These
values for a specific domain are obtained using the ChipScope debugger and
are used to replace the blank frames previously generated by planAhead as
shown in Fig. 5.3. It should be taken into account that the CRC value
of the new partial bitstreams does not correspond to its frame contents.
Therefore its calculation is bypassed by setting the value 0xDEFC in the
field corresponding to the CRC register at the end of the partial bitstream.
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Figure 5.3 Partial bitstream alternative generation

5.2.4 Faulty bitstreams for emulation

The generation of bitstreams to emulate SEUs in the configuration memory
of the X-TMR domains is done by modifying the bits on the bitstream that
configure the corresponding replicas of the circuit to evaluate. To this end
we designed a SW to analyze such information and deduce what frames and
bit inside them correspond to the DUT domains. This is done thanks to
the knowledge of the architecture and how it is related to the frames in
the bitstream. In other words, we can find the part of the bitstream that
corresponds to any CLB region of the device. As we know the location of
the DUT replicas we can deduce what exact frames of the full bitstream
correspond to any of the domains and consequently we can manipulate the
bits for each domain. Based on the number of CLB columns that the circuit
to be evaluated requires, the SW computes the number of bits that such
region requires to be configured. Similarly as the FAR and Nframes was
calculated in the prior description, the number of bits is obtained using the
equation 5.3:

Nbits = NCLB ∗ 36 ∗ 1312 (5.3)
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For a circuit as the one that will be detailed in section 5.5, each domain
occupies 4 CLB columns requiring 188928 bits. Considering the three do-
mains, the total number of bits that can be considered for evaluation are
566784.

With this information the golden bitstream is used to generate the faulty
bitstreams by modifying the bits that configure the DUT domains. To avoid
a huge amount of generated bitstreams (one per fault for every bit flipped)
we generate the faulty bitstream and perform the fault injection for that
specific fault. The details of this approach will be explained in Section 5.4.

5.3 Developed Testbed

This section describes the constituent components of the architecture shown
in Fig 5.4. These are required to implement the designs in a board equipped
with a Virtex5 XC5VLX110T FPGA. VHDL is used to instantiate and
control the elements as explained in the following.

• FSM manager: This component is responsible for arbitrating all the
tasks related to the operation of the system. Its main functions involve
controlling the FC_ICAP, sending the pattern inputs to the DUT and
GOLD circuits, monitoring the FLAGS coming from the three DUT
domains to account for faults and launch partial reconfiguration in
case that any domain reports an error through its associated FLAG.
It also controls the timers used to record diverse statistics such as the
time required to detect a fault and correct a domain. The results for
each applied fault are stored and sent through the UART module.

• FC_ICAP: The fast Fault Correction ICAP controller is the com-
ponent that makes it possible to perform run-time reconfiguration.
Thanks to this it is possible to access the configuration memory at
run-time. The FC_ICAP is a reduced version of the AC_ICAP, de-
signed to support frames readback and manipulation of partial bit-
streams located in both flash and BRAM memories. As the recovery
time is directly related to the time required to perform the partial
reconfiguration tasks, the run-time reconfiguration controller should
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Figure 5.4 Dynamically reconfigurable architecture

performs these tasks at maximum supported speed. In this regard,
the available controller provided by Xilinx (XPS_HWICAP for Vir-
tex5) does not meet these requirements as this is designed to be used
along with an embedded processor, such as the MicroBlaze, and many
of the run-time reconfiguration tasks are performed as software rou-
tines in the processor. This limits reaching the maximum supported
configuration throughput and demands the presence of a processor
to control it. Therefore an alternative ICAP controller was designed
to speed-up the process and avoid the presence of the processor. The
hardware-based run-time controller, depicted in Fig. 5.5, performs two
main tasks: read frames and load partial bitstreams from BRAM and
FLASH memories. These tasks are required to extract (read frames)
the information that allows the partial bitstreams to be generated
as explained in Section 5.2.3 and to correct faults in specific do-
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mains by dynamically reconfiguring the faulty domains. Internally
the FC_ICAP computes the number of words to read from the con-
figuration memory.

Read Frames

Load Partial

Bitstreams
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Flash Memory
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Figure 5.5 Hardware-based ICAP controller

• DUT and GOLD circuits: The GOLD or original circuit to be
tested is processed by the X-TMR tool that generates the triplicated
version of the design under test (DUT). This X-TMR_DUT descrip-
tion is in EDIF format and it is processed by the SW to perform
hierarchy formation, insert the XNOR-based error detectors reusing
the LUTs where the majority voters reside and add the flag conver-
gence using carry chains. The architecture to validate the presented
CAD flow uses the GOLD circuit to perform online comparison of the
outcomes of the DUT. The GOLD circuit produces the correct results
that are compared to the produced by the DUT in the classifier com-
ponent. To avoid synchronization issues both the golden and DUT
circuits operates at a frequency lower than the maximum supported
for the slower of them. In the case of the RISC5x[ref to opencores],
that is the circuit used for this test, its frequency is set to 40 MHz.
The RISC-based processor is considered for the tests as this offers
the possibility to include different algorithms described in C and con-
sequently to have a flexible testbed that allows for fault analysis at
different levels. In this way we can analyze what effects the faults
injected in the RISC hardware produce on the SW-based algorithm
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running on it.

5.4 Emulation of CDEs

The evaluation of the presented approach requires a way to emulate CDEs.
To this end we perform fault injection on the configuration bits specific to
the circuits to evaluate. This can be a flat design confined to a known area,
such as the X-TMR version or our modified version where each domain can
be managed independently. We developed a SW to emulate MBUs (also
SEUs) in the configuration memory of the DUT circuits according to the
flow detailed in algorithm 5.1

Listing 5.1 Fault Injection Algorithm
____________________________________________________
input: golden.bit
input: Region(s) to be tested (RANGE=SLICE_X_Y_)
input: N Number of faults to emulate
input: M = Number of MBUs (2, 3, 4,...)
output: UART report
output: Injector report
**** Fault Injection loop *****
1: for N {
2: for M {
3: {MBU_LOCs} = BaseAdd+rand()
4: }
5: fin=fopen("golden.bit","rb")
6: fout=fopen("faulty.bit","wb")
7: for all bits{
8: at MBU_LOCs addresses:
9: faulty_bit = not(golden_bit) //flip bits
10: }
11: programFPGA(faulty.bit)
12: run_algorithm(1s)
13: {REP} = error_flag(DUT vs GOLD)
14: {REP} = FLAGS
15: {REP} = timer_values
16: if(FLAGS)
17: DPR(faultyDomain)
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18: run_algorithm
16: UART_report(REP)
17: }
____________________________________________________

Once the DUT is instantiated and instrumented with the components de-
scribed in section 5.3 the full bitsrtream is used to perform the fault injection
experiments. This is the golden.bit input of the algorithm. The read back
values obtained to generate the partial bitstreams, described in section 5.2.3,
are also used to find what specific parts of the full bitstream contains the
DUT configuration bits. This information is used by the fault injection soft-
ware to define the location of the bits to be flipped. Therefore the physical
location of a given area is translated to an address range of the bitstream.
For instance, if one domain of the DUT that only requires CLBs is confined
to the area Slice_X48Y120:Slice_X55Y139, the configuration bits will be
located between the addresses 0xE4A12 and 0xEA651 of the full bitstream.

N is the number of MBU sets to emulate (number of multiple faults) and M
the number of MBUs. For instance, N=1000 and M=2 will produce 2000
bits flipped, 2 for each one of the 1000 configurations to perform.

The position of the bitstream where the fault is injected is selected by a
pseudo random number generation function. As we know the area where
the domains of the DUT are implemented also as the sizes of such regions we
can deduce the exact number of bits that correspond to these areas. So the
PRNG function is limited by this maximum number of bits (Maxbits), and
it generates a number between one and Maxbits that is used to compute the
address of the bitstream where the fault(s) will be injected: MBU_LOCs.

The SW then reads the golden bitstream until the addresses match MBU_LOCs
and once there the bits are flipped and stored in the faulty bitstream. The
golden is never modified. As our focus is to analyze resilience against CDEs
it is important to have a way to emulate and detect such type of effects.
Thanks to the isolation of the domains made possible by the hierarchy for-
mation phase we are able to place any domain in different regions of the
FPGA. So it is possible to have the three domains one after the other in
such a way similar to the X-TMR flat design or use different placements
schemes to analyze its influence in the CDEs. The flags available for each
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domain are used to easily detect errors in any of the circuit domains. These
outcomes are considered when comparing the outcomes of the DUT and the
GOLD circuit to signalize if CDEs have been detected. If the output of the
circuit is erroneous as it does not match with the GOLD values and flags of
different domains are activated it represents detection of CDEs.

5.5 Experimental Results

To evaluate the presented approach we chose the RISC5x processor [83].
This is a RISC-based processor compatible wit 12-bit PIC architecture. It
allows applications described in C code to be compiled and adapted to
be executed in the FPGA. A set of typical software applications [84] are
selected to run on the RISC5x processor. Every algorithm is coded and
compiled using the MPLAB IDE [85] with the CC5X C compiler which
generates HEX files. These are transformed into VHDL to be stored in a
ROM memory block that contains the program code.

As shown in table 5.2 the test bed platform can operate to frequencies higher
than 60 MHz but for the experiments the operating frequency of the RISC5x
processor was fixed to 40 MHz.

For the experiments a total of 3000 runs were done. This value represents
the number of iterations the experiments perform but in every iteration
different number of bits are flipped. For instance in the case of two MBUs
two bits are flipped in every iteration. Table 5.1 summarizes the experiments
for the three versions of the circuit and for 2, 3 and 4 MBUs.

As the X-TMR version is a flat design where the elements of the different
domains are mixed, it is more susceptible to CDE. For such a design there
is not detectors implemented inside the circuit and that is why the CDE
detected columns are zero.

The second row of table 5.1 corresponds to the X-TMR design modified ac-
cording to the description presented above where every domain is identified
and the error flags are included for every domain. In this case the three
domains remain one after the other occupying the same region as the X-
TMR base design. Such domains isolation improve CDE resilience as now
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Table 5.1 CDEs for bubble sort

Circuit
CDE CDE CDE CDE CDE CDE

2MBU detected 3MBU detected 4MBU detected
(%) (%) (%) (%) (%) (%)

X-TMR 0.633 0 2.133 0 2.567 0
Modif X-TMR

0.633 0 0.724 0 0.833 4
single area
Modif X-TMR

0.567 100 0.667 100 1.633 100
three areas

the probability MBU affect different domains is lower. But the flags that
signalize error on the domains are rarely activated.

The third row represents exactly the same circuit of second row but now the
three domains are placed in different areas of the FPGA. For this specific
case the domains are constrained to different HCLK regions. Only with
this placement modification the flags for domains error are always activated
when CDE are present. In addition the CDE resilience is improved in this
way.

According to table 5.2 TError_prop is the error propagation time that cor-
responds to the average time until injected faults manifest as erroneous
outputs of the circuit. It can be noticed that such time is improved by
isolating the domains and constraint them to regions of the FPGA with
certain distances. In the test case the three domains corresponding to the
third row of table 5.2 were placed in different HCLK regions.

In a similar way TF lags_detect is the average time until flags of different
domains are activated. For the bubble sort algorithm these flags are mainly
activated when we use the placement with the three domains at different
regions. In such a case the carry-chain-based flags are activated within 5 ns
after applying the faults.
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Table 5.2 Timing bubble sort

Circuit

Maximum TError_prop TF lags_detect

Frequency (ms) (ns)

(MHz)
MBUs:

2 3 4
X-TMR 62.231 5.769 4.327 3.876 –
Modif X-TMR 66.300 15.081 12.549 10.430 –
single area
Modif X-TMR 60.727 38.781 37.449 23.543 5
three areas

As described in Section 5.2.3 the presented flow allows partial bitstreams
to be generated for each domain. For the RISC5x circuit very domain
occupies 4 CLB columns giving as a result partial bitstreams of 36 KB. The
recovery time represent the time required to perform the DPR with the
gold configuration values. For this test circuit the partial bitstreams can be
located in BRAM memory and in consequence the FC_ICAP performs the
DPR of each domain in 92.266 µs.

5.6 Summary

In this chapter we present an efficient way to improve resilience of TMR
circuits against CDE by using an alternative CAD flow that includes flag
insertion on individual domains also a post-implemented partial bitstream
generation of each domain. Compared to X-TMR, our approach allows for
detection of CDE and makes it possible to correct the domains thanks to
the partial bitstreams available for them.
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In this dissertation we focused on using Dynamic Partial Reconfiguration in
the design and evaluation of critical systems. To this end we designed the
AC_ICAP, a new ICAP controller verified in Virtex-5 and Kintex7 FPGAs.
It is able to load partial bitstreams, read and write frames, and also modify
any LUT in the FPGA, in this last case without the need for pre-generated
partial bitstreams. This fine grain DPR was possible thanks to reverse
engineering on the bitstream and analysis of the architecture of the FPGA.
The controller was adapted to be easily included in systems with embedded
processors using the PLB, FSL, and AXI links.

Reconfiguration speed analysis of the processor-independent version presents
improvement of more than 380 times in run-time reconfiguration of LUTs
compared to XPS_HWICAP functions for Virtex-5 FPGAs. As the con-
troller is fully implemented in hardware, it obviously requires more re-
sources, but in any case it occupies more than 5% of the available elements
on the XC5VLX110T device. Therefore, the AC_ICAP offers a complete
high speed solution to perform diverse Dynamic Partial Reconfiguration
tasks with acceptable FPGA footprint.

This DPR knowledge and its low level relationship with the device architec-
ture is used in the chapter 4 where we presented a methodology to emulate
ASIC permanent faults using FPGAs. A novel hardware fault emulation
platform utilizing a semi-custom CAD flow is presented that can inject fault
in run-time using dynamic partial reconfiguration. The flow utilizes a cus-
tom technology mapping for directly converting the post layout gate-level
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net-list into a LUT level net-list. This known mapping of gates to LUTs
enables us to develop equivalent fault dictionaries from the ASIC fault list
to FPGA faults representation. The approach is flexible enough to generate
fault dictionaries in different formats compatible with partial reconfigura-
tion requirements which results in significant variation in achievable fault
injection speedups. The methodology avoids drastic changes to the net-
lists therefore, does not need lengthy re-compilation times during the fault
emulation process. Furthermore, our experimental results demonstrate a
significant speed up for fault emulation compared to software based fault
simulation. In the case of using the PLB_AC_ICAP the speed up is of 829
times compared to fastest XPS_HWICAP alternative.

The approach presented in chapter 5 proposes a TMR architecture that ex-
ploits the fracturable nature of Look Up Tables for simultaneously mapping
of majority-voting and error detection at the granularity of TMR domains.
An associated CAD flow was developed for partial reconfiguration of TMR
domains incorporating changes to the technology mapping, placement and
bitstream generation phases. In doing this we achieved better resilience to
cross domain errors with zero hardware overhead and the three domains
can be independently reconfigured to correct faults improving MTTR com-
pared to full circuit configuration. As the alternative CAD flow includes flag
insertion on individual domains also a post-implemented partial bitstream
generation for each domain, our approach allows for detection of CDE and
makes it possible to correct the domains thanks to the partial bitstreams
available for them. For the test circuit analyzed the recovery time of each
domain corresponds to the DPR of the domains with the partial bitstreams
located in BRAM memory. This is 92.266 µs.

As future work, we plan to extend the AC_ICAP with a DDR controller to
speed up the reconfiguration tasks when these are based on precomputed
partial bitstreams not able to be copied into BRAM due to their sizes. In
addition we will use the presented mechanisms for error detection and flag
convergence described in chapter 5 to improve the AC_ICAP controller as
this is a critical component of the system. In the worst case scenario a full
reconfiguration could be launched when an error FLAG is activated on the
logic that is controlling the ICAP port.



95

We also plan to extend the methodology presented in chapter 4 to auto-
matic test pattern generation and fault behavior analysis for a wide set of
permanent and dynamic fault models.
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