
Code-Centric Domain Isolation:

A Hardware/Software Co-Design

for Efficient Program Isolation

Lluı́s Vilanova
<vilanova@ac.upc.edu>

Barcelona, 2015

ADVISORS: Nacho Navarro
Universitat Politècnica de Catalunya
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Abstract

Current Operating Systems (OSs) employ a process-centric isolation model. This is partly attributed to
existing processors providing memory isolation across page tables. In this prevailing model, threads are
bound to their creating process, and invoking functionality across processes requires costly OS kernel medi-
ation and application developer involvement to synchronize and exchange information through Inter-Process
Communication (IPC) channels. Therefore, using processes as an isolation unit imposes performance and
programmability overheads. Nonetheless, processes also serve two other necessary roles. First, they act as
resource containers; OSs track resources like memory and open files at the process granularity. Second, pro-
cesses provide in-memory persistence; using a process ensures that its state is consistent across the coming
and going of other processes that communicate with it. The architectural foundations used for building pro-
cesses impose performance overheads in the excess of 10× and 1000× compared to a function call; that is,
privilege level and page table switches, respectively. Even more, part of these overheads are not attributable
to the hardware itself, but to the inherent overheads imposed by current OS designs.

This thesis proposes a hardware and software co-design to eliminate the overheads of process isolation,
while providing a path for gradual adoption for more aggressive optimizations. On the hardware side, this
thesis proposes the CODOMs protection architecture. It provides memory and privilege protection across
software components in a way that is at the same time very efficient and very flexible. This hardware
substrate is then used to propose DomOS, which provides changes to the OS at the runtime and kernel layers
to allow threads to efficiently and securely cross process boundaries using regular function calls. That is,
a thread in one process is allowed to call into a function residing in another process without involving the
OS in the critical communication path. This is achieved by mapping processes into a shared address space
and eliminating IPC overheads through a combination of new hardware primitives and compile-time and
run-time optimizations.

IPC in DomOS is up to 24× times faster than Linux pipes, and up to 14× times faster than IPC in L4
Fiasco.OC. When applied to a multi-tier web server, DomOS performs up to 2.18× better than an unmodified
Linux system, and 1.32× on average. On all configurations, DomOS provides more than 85% of the ideal
system efficiency.
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Chapter 1

Introduction

The security and reliability of computing systems are ever growing concerns in today’s networked comput-
ing world. Complex software systems, ranging from financial services to mobile phones, have increasingly
important roles in most facets of our lives. These systems have seen a very large growth in software com-
plexity and are increasingly used for security-sensitive tasks. Whether they are handling sensitive private
data such as passwords, banking information, corporate financial data, or user credit card numbers, any
insecure or unreliable system is an instant threat of financial and personal calamity.

Complex software systems contain a multitude of software components: fragments of code with their
associated internal data that communicate through well-defined interfaces. Such components include indi-
vidual functions, libraries, multiple plugins in a single application, separate applications, or separate device
drivers in an Operating System (OS) kernel; they may be as tiny as a handful of instructions or as large as
an entire complex application or driver. Each of these components can be unreliable, or may distrust other
components. Enforcing inter-component isolation can thus greatly enhance system security and reliability
by, for example, preventing the spread of faults across multiple components, or by keeping private secrets
such as encryption keys outside the reach of compromised components. System security and resiliency thus
require that individual software components be isolated in separate domains.

1.1 The Granularity, Performance and Programmability Dilemma
Conventional systems impose large performance and programmability overheads when isolating compo-
nents. Importantly, when performance and isolation are at stake, performance often takes precedence at the
expense of security and reliability. Programmers employ coarse-grained isolation domains, running many
distrustful and unreliable software components on the same domain. Functions are all located on the same
code segment; plugins all run in the same address space; kernel drivers all run at the highest privilege level.
The improved security and reliability that could be had through finer-grained isolation remains unattained.

These overheads are rooted at the co-evolution of conventional architectures and OSs, which expose iso-
lation in terms of a loose “virtual CPU” model. Most architectures provide isolation through a combination
of privilege levels and page tables. In turn, OSs expose isolation domains to users in the form of processes,
which embody this virtual CPU model. The OS kernel is isolated from user code by running at a privileged
level, from where it can manage external devices and perform privileged operations that are unavailable to
user processes. At the same time, user processes are isolated from each other through the utilization of
different page tables, which function as separate domains. The OS kernel then multiplexes these processes

1



Chapter 1. Introduction

across the available physical resources, providing processes the illusion of having a machine for their ex-
clusive use. Since processes provide such virtual CPU model, they must usually interact through interfaces
designed for networked distributed systems, making their programming more cumbersome.

An idealized microkernel is a clear example of bringing isolation of native code components to its in-
evitable conclusion [22, 27, 33, 53, 56, 76, 78, 86]. Each device driver, system service and user application
runs as a separate process isolated from the rest. But as aforementioned, this comes at the expense of per-
formance and programmability:

• Existing hardware isolation mechanisms are expensive. Switching between privilege levels (i.e., user
and OS kernel) and page tables (i.e., processes) imposes non-negligible performance overheads [73,
78, 116] that can go beyond 10× and 1000× of the cost of a regular function call, respectively.

• The process isolation model is conservatively designed for the worst case: every process is completely
isolated from each other for security and reliability purposes. This adds unnecessary overheads in
cases where the semantics of an application do not require this level of isolation.

• Processes must use Inter-Process Communication (IPC) primitives to communicate with each other.
Since processes are mutually isolated (acting as a networked system), the privileged OS kernel must
mediate communication through its IPC primitives.

• Processes impose concurrency. Since threads are bound to processes, IPC triggers a control transfer
across threads. This breaks the synchronous execution model assumed by the programmer, who must
then wrap IPC calls to regain her synchronous model.

• IPC primitives are designed for generality to cater to workloads with diverse needs. This generality
makes them necessarily inefficient. For example, IPC primitives require dedicated data (de)serializa-
tion, memory copies and request (de)multiplexing routines that can amount for more than a 1000×
overhead compared to a regular function call.

The more processes a system uses to isolate software components, the more reliable and secure it can be
but, at the same time, the more performance and programmability overheads it has to pay for such desirable
features. Therefore, achieving high isolation and performance levels while maintaining the so desirable
synchronous semantics of function calls requires a combined effort on both the hardware and software sides
of the system.

1.2 Conjoining Isolation, Performance and Programmability
This thesis goes after two complementary targets, which can be applied to all kinds of systems (e.g., mobile,
servers and High-Performance Computing (HPC)):

• Increase isolation without impacting performance. By gradually partitioning existing systems into an
increasing number of efficient isolation domains, systems can increase their security and reliability.
Examples include isolating OS kernel modules (Section 8.1.4) or high-performance user-level drivers
(Section 8.2.3) into their own domains.

• Increase performance on systems with existing isolation. By making isolation primitives more ef-
ficient, systems that already have isolation in place can experience a performance boost. Examples
include speeding up high-assurance systems (Section 8.2.2) and server environments (Section 8.2.4).

2
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Since both targets are complementary, they can be gradually applied to the same system. To achieve this,
programmers must be able to easily partition their systems into many isolation domains; like in a microkernel
system, each component should be isolated from the rest [22, 27, 33, 53, 56, 76, 78, 86]. But this must
come with the same performance and synchronous function call semantics that are provided by non-isolated
software components; like in an exokernel or library OS system, both user and system components should
interact through simple function calls [18, 44, 65, 66, 82, 92].

A very important observation that can be taken from existing systems is that different software com-
ponents have different isolation and concurrency requirements. For example, the UNIX idea of processes
concurrently streaming data to each other is very convenient to decouple and parallelize the stages of data
processing pipelines, but does not fit applications that synchronously request an operation to another ser-
vice. A typical example of such applications would be a web server performing a query to a database server;
the web server computation for a request cannot continue until the database returns its result. Application
plugins are an example of different isolation requirements. Plugins should be isolated from the rest of the
application and other plugins, but there is no reason why the application itself should not be allowed to
directly access the plugin’s resources; this is something that processes prohibit.

This thesis describes the design and implementation of the CODOMs architecture (for COde-centric
memory DOMains), which provides efficient memory and privilege protection, and the DomOS system (for
DOMain OS), which maps its abstractions into that architecture. They have been co-designed with the
following goals in mind:

• Offer efficient component isolation.

• Maintain existing programmability through a synchronous function call interface for cross-domain
requests.

• Provide an expressive and composable set of isolation primitives to ease the implementation of dis-
parate isolation policies with minimal performance overheads.

• Ease gradual adoption on existing systems.

• Be general enough to be applied across the whole software stack.

To this end, CODOMs and DomOS stress the concept of concern separation to allow programmers to
express their own component isolation policies across its full spectrum. Two common policies exemplify the
disparity of possibilities in this spectrum. On one hand, simple hierarchical isolation, like the one exhibited
by applications and their plugins or user applications and the OS kernel, makes one domain fully accessible
to the other. On the other hand, full-fledged mutual isolation, like the one provided by processes, makes two
domains completely inaccessible to each other.

CODOMs provides the low-level mechanisms to enforce fine-grained protection (i.e., memory and priv-
ilege isolation) in a very efficient and flexible way. On one hand, regular call/return instructions can trigger
domain and privilege level switches at negligible latency through CODOMs’ code-centric isolation domains.
On the other hand, CODOMs facilitates in-place data sharing across domains using application-controlled
capabilities. Given its baseline efficiency, CODOMs avoids optimizing common operation sequences into
a single instruction to maximize the flexibility of its mechanisms. This keeps the architecture free of pre-
defined isolation models, leaving programmers to build their own.

DomOS provides the OS primitives that programmers use to define component isolation domains and
build component isolation policies and communication models. At its lowest level, DomOS’ primitives are
mapped into the CODOMs architecture. Processes in DomOS are mapped to a global virtual address space,
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and are no longer used as isolation primitives. Instead, a thread from one process can simply call into a rou-
tine of another process, eliminating all the unnecessary overheads imposed by process-based isolation and
without involving the OS kernel in the call. Essentially, an isolation policy is a sequence of steps that enforce
certain properties when control crosses a domain boundary. To maximize efficiency and flexibility, program-
mers can define their own per-domain policies. Applications benefit from the fact that most of the steps in
a policy can be more efficiently implemented at user-level, without losing its isolation properties. When
necessary, DomOS generates optimized code at run-time to enforce the isolation of privileged resources as
requested by the communicating domains. This model leaves concurrency to programmer discretion (unlike
traditional processes that impose concurrency among domains), and using CODOMs’ capabilities avoids
intermediate copies during cross-domain calls. Programmers are still free to use concurrency and perform
copies, but these are no longer a side-effect of the isolation model imposed by the OS. Finally, DomOS ships
with a thin compiler wrapper and run-time that simplifies the construction and management of the isolation
domains.

Attacking a problem from multiple layers bears a higher potential for large benefits by co-optimizing
the system. But more interestingly, it helps uncovering the subtle relationships that exist among layers, and
how they influence each other. The evaluation of the proposed design shows up to 24× speedup for cross-
domain communication compared to Linux pipes, and up to 14× compared to IPC calls in the L4 Fiasco.OC
microkernel. Furthermore, a multi-tier web workload provides up to 2.18× speedup over an unmodified
Linux system, and 1.32× on average. On all configurations, these results provide more than 85% of the
ideal system efficiency.

1.3 Document Organization
Chapter 2: A Comparison of Related System Organizations and Isolation Primitives Presents some

of the many efforts that have gone into hardware and software system design in order to make isolation
more efficient. It discusses the strong and weak points of those works that are more closely related to
this thesis.

Chapter 3: The Interplay Between Isolation and System Design Discusses the effects that OS design
has on user applications, as well as discusses and quantifies the various issues that make processes
necessary in current systems but, at the same time, ill-suited for the role they fulfill as an isolation
primitive. This analysis leads to the conclusion that co-designing hardware and OS primitives has the
best potential in yielding better performance results and programmability.

Chapter 4: Efficient and Composable Isolation Primitives Provides a technical overview of the design
and relationship between the pieces that conform this thesis. Namely, CODOMs, DomOS and the
associated compiler support.

Chapter 5: Hardware Support Describes the design of the CODOMs architecture, which provides the
efficient hardware protection mechanisms used by other software layers.

Chapter 6: Compiler Support Describes the thin compiler support that helps programmers define isola-
tion domains and their relationship. The generated code makes programming multi-domain applica-
tions simpler by mapping them to the underlying OS primitives.

Chapter 7: Operating System Support Describes the design of DomOS, which provides the necessary
system primitives for programmers to define their isolation domains. The OS maps these primitives to
the underlying CODOMs architecture to offer efficient isolation.
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Chapter 8: Evaluation Shows a quantitative comparison of the proposed changes to some of the relevant
state of the art. It also evaluates the potential benefits of such changes on large non-trivial systems.

Chapter 9: Conclusions Draws some conclusions for this thesis and points to some of the interesting open
roads for future work.

Appendix A: FlowTAS: Making Data-Centric Mandatory Access Control Practical Describes the de-
sign of a secure infrastructure for cloud applications managing security-sensitive information. Us-
ing the ideas proposed in this thesis, the infrastructure can achieve an order of magnitude speedup
compared to state-of-the-art isolation mechanisms.
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Chapter 2

A Comparison of Related System
Organizations and Isolation Primitives

Software isolation is a two-axis problem. On one hand hardware has a huge impact on isolation efficiency,
since it defines what software organizations can be efficiently expressed through its primitives. On the other
hand, the underlying OS or system model defines how hardware resources are exposed to applications. The
OS defines the system abstractions that software components must adhere to, how they can communicate,
and how they can be isolated from each other. Therefore, OS design also plays a major role on isolation
efficiency, since isolated components in a real system need to communicate beyond the boundaries of a
single application.

2.1 A Note on Nomenclature

This thesis repeatedly uses the terms protection, isolation and domain, each with a slightly different meaning.
Protection refers to hardware resources such as memory accessibility and the ability of accessing privileged
hardware resources; i.e., memory protection and privilege levels. Isolation refers to the higher-level model
exposed to software components, like isolating the OS kernel from its users, isolating an application plugin
or isolating applications from each other. Finally, the domain concept refers to an isolated unit, and can
be applied to both protection and isolation. The extent of a domain is defined as the transitive closure of
resources it can access without switching to another domain.

2.2 Hardware Protection Mechanisms

Hardware protection mechanisms provide the basic blocks for software to build its isolation abstractions
and enforce its policies. The design of all hardware mechanisms is a result of a trade-off between three
main axes: (1) the complexity of defining and switching between domains, (2) the performance of switching
between domains, and (3) the performance of sharing data between domains. These hardware mechanisms
are managed by the TCB code, which must be protected from other code in order to maintain the integrity
of the system isolation policies. For example, the OS kernel is part of the TCB, since it manages privileged
hardware resources like the page table pointer. This section discusses commercial and academic hardware
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protection mechanisms while focusing on these three main axes. Figure 2.1 illustrates some of these mecha-
nisms in a scenario where one domain (the caller) invokes some functionality on another domain (the callee)
which requires access to two buffers in the caller to perform its operations.

(*) Caller and callee execute within the same page/protection table.

Figure 2.1: Illustration of a cross-domain request using various hardware protection mechanisms. The
“caller” (or “client”) domain passes two data buffers as arguments to the “callee” (or “server”) domain
(identified in the top-right corner). The Time column illustrates the stages of a domain crossing, indicating
the grants (regions of memory) available at each stage at the bottom. The Grants column shows the per-
domain configuration of each mechanism. The Memory column shows the layout (and grants) from the
point of view of each domain.

2.2.1 Privilege Levels
Privilege Levels (or protection rings) are one of the basic mechanisms to enforce isolation between domains,
as depicted in Figure 2.1a. Its use was introduced by Multics [102], providing hardware support for eight of
them. This was a multi-level generalization of the supervisor mode concept, used by system-level software
(the OS kernel or TCB) to isolate itself from user-level software. Multics defined a privilege level as a
descriptor for a set of capabilities1 hold by the currently executing domain, where level N contained, at
least, all the capabilities of level N + 1. That is, each privilege level was a separate isolation domain and
each domain could, at least, execute all the instructions and access all the memory available to domains with

1Note that the term “capability” is used here to refer to the ability to execute certain instructions and access resources like memory.
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a higher privilege level number. Multics also provided call gates, a mechanism used to request a call or a
return into a different privilege level [100]. Privilege levels in current Intel x86-based processors identify
which subset of instructions and virtual memory is currently available to the executing code. This is used by
the OS kernel to forbid user processes from accessing the kernel memory, and to limit access to instructions
that could otherwise subvert the security policies that the OS kernel is trying to enforce.

Limitations

Privilege levels provide strong isolation guarantees by placing each domain on a separate level, but have
their own limitations:

• Their number is limited by hardware.

• Switching between privilege levels is a relatively expensive operation when compared to a simple
function call. In most cases, it hampers Instruction-Level Parallelism (ILP) by inducing a pipeline
flush. This is because all younger instructions have a Read-After-Write (RAW) dependency against the
micro-architectural register that holds the current privilege level. Furthermore, instructions typically
used to switch between privilege levels (like int or syscall in x86–64) not only switch between
levels, but also have other (visible) side-effects like changing the values of other registers, adding to
their latency.

• Privilege levels define a total order of the capabilities available to each of them. That is, isolation based
on privilege levels only works in one way, as the more privileged level holds all the capabilities of all
less privileged levels, as can be seen in the “callee” line of Figure 2.1a. Sharing in the opposite way
requires data copies or changing page permissions (see below). Therefore, they are not appropriate for
cases where pairs of components do not have a hierarchical relationship; e.g., privilege levels cannot
be exclusively used to isolate two processes from each other.

• The use of call gates hardwires isolation policies into the architecture. For example, call gates in
x86 provide a function call interface, but also define that each side of the gate should use a different
stack to avoid one domain interfering with the other through the stack. Therefore, a call gate changes
the privilege level and what code and data segments are accessible on each side of the gate, but also
switches between different stacks and copies arguments across them. While handy on situations of
symmetric (mutual) distrust between domains, a stack switch is not necessary in asymmetric isolation
scenarios.

Modern implementations for privilege level switching like Intel’s syscall provide faster switch times
compared to previous implementations, but at the expense of even simpler models. First, it only supports
two privilege levels, user and OS kernel level. Second, it drops the concept of call gates and instead forces
the OS kernel to demultiplex requests through a single entry point.

2.2.2 Address Spaces
Address spaces (or memory virtualization) are the second pillar for constructing processes in modern OSs,
the first being privilege levels. They are depicted in Figure 2.1b. Hardware enforces address space isolation
by translating all (virtual) memory addresses generated by code into their respective physical memory ad-
dress, and generates an exception if no such translation exists. There are two mechanisms for virtualizing
memory addresses:
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Paging was first introduced in the Atlas Computer [51]. It divided memory into fixed-size pages of 512
words each, and translation information was stored in a Content-Addressable Memory (CAM).

Segmentation was first introduced in the Burroughs B5000 [79]. Every memory operation was performed
relative to a segment descriptor that encoded the actual physical address and length of the segment.

Memory virtualization and protection do not necessarily come hand by hand, but it is common to mix
both in a single mechanism. The data structures describing memory virtualization can be made inaccessible
to regular user code, making address spaces the basis for memory protection. The introduction of mem-
ory virtualization simplified storage management, relieving applications from the burden of managing the
multiple levels of storage. But it also was key to efficiently and securely support multiprogramming. Each
application (each process, in fact) is set up as a separate protection domain, and the memory virtualization
mechanisms ensure they do not interact with each other’s physical memory unless they are explicitly allowed
to do so.

Limitations

A few shortcomings prevent their use as the basis for fine-grained domain isolation:

• Page table and segment switching is a necessarily protected operation. Therefore, the OS kernel
has to mediate the operation in order to enforce the correctness of its security policies (“OS” line in
Figure 2.1b).

• Page table switches also impose large performance overheads due to hardware design. At the very
least, they impose a pipeline RAW dependency that negatively impacts ILP because all instructions
depend on the register that identifies the current page table. These overheads are usually larger due to
additional micro-coded operations. Also, non-tagged Translation Lookaside Buffers (TLBs) require
flushing their entries to forbid the new domain from using stale cached translations pertaining to the
old page table. In comparison, tagged TLBs avoid flushes as long as tags do not need to be multiplexed
across different page tables. Nonetheless, they add lookup latency costs for non-trivial associativities
and tag sizes, making them not viable because TLB lookups are on the critical path.

• Page tables limit the minimum granularity at which memory can be shared between domains; i.e., the
callee in Figure 2.1b is shared two entire pages instead of the buffers passed by the caller.

• Memory access grants and revocations are costly operations. Both require modifying the page table,
which (as page table switches) requires OS intervention. Revocations also require costly TLB shoot-
down operations to maintain the consistency of translations cached in the TLB across all CPUs using
the same page table [121]. Revocation costs can be coarsely reduced to Inter-Processor Interrupts
(IPIs) and TLB entry invalidation costs on both local and remote CPUs.

• Segmentation does not suffer from the granularity problem, but they can only describe consecutive
memory ranges and the number of active segments is limited by hardware. The system must therefore
multiplex all logical segments among the ones provided by the hardware. Since segment switches are
protected operations, the OS kernel must mediate them.

Refinements to Page Table-Based Protection

To alleviate some of the drawbacks in page table based protection, other architectures (comercial and aca-
demic alike) have provided very interesting refinements:
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Protection Tables decouple memory protection from address translation [67]. They were proposed to al-
low processes to run on a single address space, where the OS kernel manages address translation
through the page table and TLB, and manages protection through an additional the protection table
and Protection Lookaside Buffer (PLB). The PLB is a separate hardware TLB-like structure that maps
virtual page addresses and protection domains to access permissions, where entries are tagged with
the protection domain identifier.

The PLB exhibits the same limitations found on paging and tagged TLBs.

Mondriaan Memory Protection (MMP) builds on the PLB concepts [124, 125], but instead provides
memory protection at arbitrary granularity, as shown in Figure 2.1c. MMP also supports unsuper-
vised domain switches, at the cost of an additional in-memory entry point table and a hardware CAM
cache (the GLB) that controls the ability to switch domains at call/return boundaries.

While MMP has the benefit of fine-grained protection, it also incurs in all the other limitations found
on paging and tagged TLBs when switching between protection tables and managing protection grants
and revocations. Furthermore, to keep hardware-assisted domain switches fast, the architecture hard-
wires semantics that control grants to the data stack.

Sentry proposes a scheme conceptually similar to MMP with cache line granularity, but with an entirely
different implementation [106]. Instead of performing one permission check per access, accesses to
any line present in the L1 are always permitted, as long as its C (for correct) bit is set. Cache misses
and accesses to lines with an insufficient coherency state perform a lookup on an ancillary software-
managed table that caches domain permissions, and set the C bit for that line.

This implementation is quite performance- and complexity-efficient for the average memory access
case, since it does not require modifying the processor pipeline nor the cache coherency protocol.
Nonetheless, domain switches require resetting the C bit of all lines. More importantly, domain
switches can only be managed through exceptions; i.e., a call to an address of another domain raises
a user-level exception that signals a domain switch to the (user-level) TCB and resumes execution on
the target address.

Protection Keys have been implemented in commercial processors like PA-RISC [67], Itanium [55] and
POWER 6 [61], and are shown in Figure 2.1d. Every page table entry contains a tag identifier, and a
small key set implemented in hardware (Grants column) describes the tags that can be accessed at any
given time.

The key set is a privileged resource that can only be managed by the OS kernel. Also, the number
of tags is limited by hardware and multiplexing them requires changing the corresponding page table
entries and expensive TLB shootdown operations.

2.2.3 Machine Virtualization
The late implementation of machine virtualization hardware in off-the-shelf processors has renovated the
interest in using virtualization for reliability and security purposes. Even though implementation details are
vastly different, it follows the same concept of process isolation through a mix of privilege levels and address
spaces.

Just as the OS kernel manages privileged machine resources, the trusted hypervisor manages the privi-
leged machine virtualization resources. A hypervisor is typically simpler than a general-purpose OS kernel,
and is thus easier to ensure the correctness of the TCB (in this case, the hypervisor).
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Limitations

• Precisely because the hardware implementation is much more complex, domain switches are very
expensive. This applies both to calling a more privileged level (hypercalls) and to switching between
virtual machines.

Bastion provides an extension to maintain data confidentiality and integrity in the face of intermediate
untrusted software stacks [31]. It tags pages at the hypervisor level to identify protected components,
and encrypts and hashes memory that interacts with other protection domains, including I/O devices.

Its confidentiality and integrity properties are largely orthogonal to isolation. Furthermore, it not
only incurs the overheads imposed by virtualization; encryption and hashing (whose information is
interspersed with code and data) also delays memory accesses and induces poor memory bandwidth
utilization.

2.2.4 Capability Architectures
Capabilities are communicable and unforgeable tokens that at the same time authorize and identify the des-
tination of an operation. Although early architectures provided similar structures, the term was coined by
Jack Dennis and Earl Van Horn in a paper that generalizes their use in the construction of an OS kernel for
a multiprogrammed system [40]. In a capability addressing architecture, capabilities are implemented in
hardware and are typically used to grant access to ranges of memory that contain code, data and/or other
capabilities. A typical analogy is that of “fat pointers”; when used to access memory, hardware capabilities
identify a range of addresses and authorize specific permissions to that range. Any access outside this range
or requiring more permissions than granted is simply not authorized. For example, one capability can grant
read-only access to a buffer, while another can grant read-write access to the same buffer. Therefore, capa-
bilities can be thought of (and in fact implemented as) handles to memory segment descriptors. Capabilities
must be loaded from memory into a register in order to use them, and then user code can index memory
accesses through them. Instructions are also provided to manipulate the extents of a capability, as well as the
permissions it grants. Some systems also use hardware capabilities to interact with higher-level abstractions
implemented by the hardware, as will be described later.

The extents of a protection domain are defined as the transitive closure of an initial set of “root” ca-
pabilities (i.e., the set of capability registers), from which memory and other capabilities can be accessed.
Therefore, new domains can be created by sub-dividing a large segment into smaller ones. This allows
users to implement systems where trust between domains is organized in a distributed and non-hierarchical
manner.

Several capability-based architectures have been proposed in the last 40–50 years, both for research and
commercial purposes [28, 72, 126], but all have been exposed to the following concerns:

Paging vs. segmentation: Early systems implemented capabilities as segments to physical memory. On
larger and more complex systems this posed a problem when managing external memory fragmen-
tation. The IBM System/38 later used segmentation of virtual (paged) address spaces instead. This
traded physical memory fragmentation for virtual memory fragmentation. Since the virtual address
space is much larger than the physical one, the fragmentation problem is less pressing.

Domain switching: A domain switch in a capability architecture requires a switch of the “root” capabilities.
A typical approach is to implement domain switching instructions in hardware or microcode to make
the operation as fast as possible by avoiding a call into the OS kernel. Systems like CHERI [126] or the
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one presented in Carter et al. [28] limit roots to a single capability. An “enter capability” grants access
to a well-defined entry point in another domain. When calling into that entry point through the enter
capability, the hardware changes some capability registers to those identified in the entry capability,
granting access to the memory region that contains the entry point of that domain. By allowing code,
data and capabilities to be mixed in the same memory region, other capabilities can be loaded from it
to access other memory regions that conform the same domain (remember that a domain is defined as
the transitive closure of its “root” capabilities).

Capability unforgeability and integrity: Hardware must ensure that unprivileged code cannot create arbi-
trary capabilities (they are unforgeable) nor can tamper with the contents of capabilities (their integrity
is ensured). Failing to do so allows bypassing memory protection. Capability register unforgeability
is very easy to enforce: new capabilities can only be created from other capabilities, either by copying
them or by loading them from memory (the OS kernel can create arbitrary capabilities). Likewise, ca-
pability register integrity is also easy to enforce: capability-modifying instructions must never allow
the amplification of the permissions or memory range that they encode (although it is safe to allow
their reduction). Enforcing the unforgeability and integrity of capabilities stored in memory is a bit
more complex, and architectures have used one of two main approaches:

• The first approach is to keep data and code segregated from capabilities, and making the latter
not accessible by unprivileged code. Dennis termed these as C-lists [40] (for capability lists),
which saw their way into commercial processors in the form of Intel’s segment descriptor list.
Each segment descriptor was referenced as an index to this list. The Chicago Magic Number
Machine [72] provided a more sophisticated implementation. Each segment descriptor (a capa-
bility) had a bit indicating whether its memory stored capabilities. Unforgeability was trivially
enforced by disallowing the load of capabilities from memory segments without the capability
storage bit. Likewise, enforcing their integrity was as simple as disallowing raw memory modifi-
cations to segments with the capability storage bit. This also allowed software to construct more
complex C-list organizations, where any list could contain capabilities pointing to another list,
instead of relying on a single global array.

• The second approach is byte-level memory tagging2. Architectures like the IBM System/38 [72]
only allowed capability-related operations on bytes with the tag set, and non-capability opera-
tions on bytes without the tag set. To allow memory to be re-purposed, a store into memory set
the tag bits according to whether the source operand contained a capability.

Capability revocation: The common understanding of capabilities is that of granting access to a logical
structure defined by the programmer. Structures are allocated in specific virtual memory addresses,
and virtual memory is typically reused across multiple allocations in order to minimize internal mem-
ory fragmentation and, to some extent, virtual memory space usage. In turn, most capability address-
ing architectures grant access to virtual memory addresses, not logic structures. Therefore, failing to
“destroy” a capability (i.e., revoking it) before reusing the addresses of the data structure it points to,
will let others with that capability have access to a structure different than the one that was originally
intended. For example, a web server might use a capability to grant access to a buffer where one of its
plugins will generate results. If the web server then reuses that buffer to store some encryption keys
without revoking the capability, the plugin will then have access to the private encryption keys. Note
that not revoking capabilities after reusing some memory might be safe in some situations, depending

2Tag granularity can be optimized by disallowing unaligned capability loads and stores, and keeping tags at the granularity of the
storage size of a single capability.
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on the application’s semantics. Therefore it is not always mandatory to revoke a capability whenever
memory is reused.

Revocation has two properties that are not necessarily always satisfied:

Immediate: Revoke capabilities to a specific memory region at any point in time even if they are still
being used.

Selective: Only revoke capabilities (to a specific memory region) that were granted to specific do-
mains. For example, the web server example above might decide to revoke all capabilities to its
buffer that were granted to a specific plugin, but not to other plugins.

A typical approach is to garbage-collect memory allocations and capabilities, so that a byte of virtual
memory cannot be reused until there is no capability pointing to it in the system. An alternative
approach is to add a revocation table to capabilities; every time a capability is used, it is indirected to
check if it has been revocated in the revocation table.

In contrast, Multics [72, 100] provides a different “back pointers” mechanism. Each “object” in the
system has a list of capabilities pointing to it, and every time a new capability is created for an object,
the list must be updated. When an object is “destroyed”, the system goes through its capability list to
invalidate each of the capabilities pointing to it.

Limitations

• Segregating regular memory from capabilities at the segment level made it harder for older compilers
to manage both. On the opposite side, tagging memory words to enforce capability unforgeability and
integrity can have a negative effect on memory space and bandwidth utilization.

• Sharing non-consecutive regions of memory requires setting up multiple capabilities. For example the
caller in Figure 2.1e has the two roots cap0 and cap1 where each of the argument buffers is contained;
therefore it must create cap3 and cap4 from these roots to only pass the intended argument buffers to
the callee. This makes their management much more complex, and increases the memory overheads
when capabilities occupy more memory than a regular pointer. Code and data can be carefully laid
out in memory to keep it consecutive and accessible through a single capability, but that is not always
feasible for dynamic data structures or when dynamically loading code into an existing domain. In the
worst case, each node in a linked-list or tree could be pointed to through a separate capability. In the
case of dynamically loaded code this can be even more complex, since each page would potentially
have to use a different capability for its code if pages from different domains are interspersed.

Carter et al. [28] addressed the memory overhead problem by making capabilities and regular pointers
occupy the same space, at the expense of limiting capabilities to memory ranges aligned according to
their grant size.

• Switching between domains adds the overhead of switching the root capabilities, and the target (callee)
domain cannot start executing until the root capabilities have been switched.

Explicitly managing root capability switches in software is a complex operation and burdens the pro-
grammer. An alternative is to manage it through the OS kernel using some form of exception, making
it very flexible at the expense of performance. Another alternative is to automatize root capability
switches through hardware (see next bullet). Still, this comes at the expense of embedding domain
organization and switch semantics into the hardware, and is an operation that potentially requires
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multiple cycles. In all cases, switching capability roots necessarily hinders ILP by introducing RAW
dependencies in the pipeline.

• Embedding high-level semantics into the hardware constricts higher-level software to the few primi-
tives envisioned by the hardware architects. If we look at isolation, embedding certain semantics into
hardware mechanisms can make them insufficient or too heavyweight.

Domain switches are a clear example of this. The Plessey System 250 [72] went as far as embedding
the concept of processes and inter-process calls into the hardware, and Intel’s iAPX 432 [72] even
extended hardware reach to process scheduling. These implementations make the targeted operations
much faster than a pure software implementation through the OS kernel. However, they make it
harder to implement system organizations that deviate from the organizations and semantics intended
by the hardware architects. For example, whether a separate stack and register state should be used
on different domains depends on the trust they have with each other; a trusted memory encryption
domain could use the same stack and register state of its caller as long as the caller cannot interfere
with it while the encryption domain is executing. Therefore, no isolation policy should be imposed by
the hardware mechanisms.

• Revoking the access granted by a capability is a complex operation. Depending on the implementation,
support for revocation can have a negative performance impact during regular execution of code that
does not perform any revocations.

Garbage-collection is a non-trivial task; capability and regular memory life-cycle must be tracked in
coordination between the OS and user code, inducing performance overheads, and not immediately
reusing virtual memory addresses induces larger internal memory fragmentation. Furthermore, it does
not support immediate nor selective revocation.

Using a revocation table supports immediate and selective revocation, but checking the revocation
table imposes additional latency every time a capability is used. It also makes capability creation
more complex, since an entry must be created in the table. Furthermore, an entry in the table cannot
be reused until the system ensures no capability pointing to it remains in the system.

Using the back pointers mechanism makes capability creation even more expensive, since a list must
be updated, and the costs of revocation scale with the number of capabilities pointing to an object.
Furthermore, this approach does not support selective revocation; one can either revoke all capabilities
to that object, or can revoke none of them.

Language and Compiler Support to Manage Capabilities

To simplify the life of programmers in capability addressing architectures, the language and the compiler
must understand their existence to automatically manage them and minimize programming burden. The
lack of such compiler support has typically been argued as a longstanding roadblock for capability adoption,
specially when applied to existing low-level languages like C.

Fortunately, the latest iteration of the recent CHERI project has shown very exciting progress in this
area [34]. The project shows very positive results in securing C codebases against pointer errors through
minimal extensions to their previous CHERI hardware prototype; e.g., to eliminate vulnerabilities like buffer
overruns. This new prototype was developed as a response to their previous experience and a careful exami-
nation of the C language specification and common coding idioms found on a large selection of public code-
bases. The CHERI compiler is now able to automatically use capabilities as pointers, or through minimal
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Figure 2.2: Comparison of the characteristics of a web server and a backend database service for different
OS organization models.

code annotations when mixing capability-aware code with other code that is not. Therefore, the management
of capability-protected arguments passed across domains can be offloaded to the compiler.

2.3 Operating System Organization Models

Figure 2.2 illustrates a web server example to highlight the performance and isolation differences between
common OS design models. Upon receiving a request, the web server dynamically generates a web page by
first reading data from disk and then querying a backend database service.

In a traditional monolithic kernel system (Figure 2.2a), the web server and database are isolated as
separate processes. OS services run inside the privileged kernel, and are thus unprotected from each other.
The web server must first retrieve its data from the disk through a system call, while the file system and disk
I/O subsystems use regular function calls to interact. Next, the web server must issue a query to the database
process, which must be actively listening for requests to service. Since both reside in different processes,
the programmer must adapt code from a regular function call for requests and responses to the interface
provided by IPC primitives (blue areas).

In an idealized microkernel [22, 27, 33, 53, 56, 76, 78, 86] system (Figure 2.2b), OS services run as sepa-
rate concurrent user-level processes. This minimizes kernel code, and potentially provides higher flexibility,
security and reliability [59]. As a result, all OS services and the web and database servers must listen for
incoming requests and communicate with each other through IPC.

In an exokernel [44, 65] or library OS [18, 66, 82, 92] system (Figure 2.2c), OS services can run inside
the application processes, at the expense of eliminating isolation. This potentially simplifies code because
no IPC calls are needed, just regular function calls. It also improves performance mainly because hardware
isolation is bypassed, but also because service implementations can be tailored to the application at hand.
Nevertheless, the web server still incurs IPC overheads, since the database may service other clients and thus
runs as a separate process.
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2.4 Software Isolation Mechanisms

Software isolation mechanisms provide abstractions that software can use to build isolation domains. These
abstractions are usually mapped into the lower-level memory protection offered by hardware, even though
some isolation systems work purely in software.

2.4.1 Processes

Processes are the most common isolation mechanism in current systems, and traditional OSs provide them
as the only isolation container for user code. Since processes are completely isolated from each other, they
must use the OS as a mediator to communicate with each other through IPC primitives. Users thus isolate
functional components by mapping them onto multiple processes, some of which serve as frontends and
others as service processes. For example, the web server process in Figure 2.2 (Web) acts as a frontend
listening to incoming network connections, and the database process (DB) services requests issued by Web.
On mapping these into the underlying architecture, the OS uses a separate page table for each process, and
the privileged IPC primitives are invoked through system calls that transition into the OS kernel privileged
level. Being the most common mechanisms, processes, page tables and privilege levels have co-evolved
along time to expose users to an illusion of running code on a machine for their exclusive use. Privilege
levels (through system calls) provide a software interface that extends the hardware instruction interface to
more complex (protected) abstractions; each process acts as a virtual CPU; and multiple processes (isolated
through page tables) interact through IPC as if they were networked machines.

Other forms of software isolation exist, but all common OS organization models rely on the use of
processes. Therefore, this thesis provides a more detailed analysis of the limitations attained by process-
based isolation in Chapter 3.

2.4.2 Address Spaces

Page tables and privilege levels are the basic hardware protection mechanisms to build process isolation in
current OSs, but other applications and mechanisms have also been proposed. Nooks [112] and Fides [110]
take the kernel and user process domains (respectively) and further subdivide them to offer additional com-
ponent isolation. Isolation of each subdomain is enforced through separate page tables 3.

Alternatively, small spaces [77] uses the segment registers found in older x86 to isolate multiple pro-
cesses inside the same page table. Instead of using segments as the only isolation mechanism, they are used
as an acceleration method for processes that communicate frequently.

Limitations

• Nooks and Fides are bound to the limitations of using address spaces; namely page table switch and
management overheads, as well as granularity.

• Small spaces is limited by the number of segments available in the system. Domains must occupy
non-overlapping memory ranges, which coupled with the 32-bit address space in x86 makes it not
suitable for general use.

3In addition, Fides leverages machine virtualization to provide a much smaller TCB to enforce its policies.
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2.4.3 Machine Virtualization
Privileged resources are typically out of the reach of user processes because the integrity of the OS kernel
depends on this precise condition. In such cases, user processes must use system calls to request modifica-
tions of such privileged resources under the scrutiny of the OS kernel policies. Machine virtualization has
proven an excellent target for library OSs like Drawbridge [92], OSv [66] and Dune [18, 19]. In these sys-
tems, the hardware enforces isolation across virtual machines, but each virtual machine can directly manage
the privileged resources typically reserved to the OS kernel.

Limitations

• Isolation is not necessarily enforced between the components that are running inside a virtual machine.

• Such approaches are still subject to the overheads incurred by domain switches in virtualized machine
environments (see Section 2.2.3).

2.4.4 Software Fault Isolation
Software Fault Isolation (SFI) foregoes the protection mechanisms provided by hardware and instead en-
forces isolation purely in software. SPIN [23], Java [54], BGI [30] and Mirage [82] are clear examples of
SFI. Applications run in a software virtual machine that ensures data access safety. This same virtual ma-
chine can also be used to provide component isolation by programmatically applying restrictions on which
components can interact with each other. Interaction with system services or other isolated user components
can be as cheap as a simple function call, since there is no longer a need to switch between page tables or
privilege levels. Similarly, Singularity [60] relies on a trusted toolchain that generates signed binaries that
are ensured to adhere to memory safety and the system interfaces.

Native Client [104, 127] provides an alternative approach where the program loader can statically verify
if a component is well-behaved, and applies dynamic checks otherwise. This goal is achieved by generating
binaries that use a subset of the available instruction sequences, such that this subset can be statically verified.

Interestingly, the first incarnation of Native Client [127] provides a hybrid approach with hardware seg-
mentation; whenever segmentation can ensure memory access safety, software checks are ellided. XFI [45]
and Vx32 [48] provide similar tradeoffs (using paging and segmentation, respectively), and use dynamic
binary translation to allow execution of binaries that cannot be statically verified.

Limitations

• Requires non-trivial additions to the TCB (e.g., trusted toolchains, static verifiers or binary translators),
substantially increasing the attack surface.

• Relying on a trusted software virtual machine or toolchain makes it harder for third parties to develop
and distribute their software.

• Perfectly safe computational code can see overheads associated to the base costs of the SFI infrastruc-
ture.
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Chapter 3

The Interplay Between Isolation and
System Design

The OS must support the partitioning of a system into isolated functional components in order to provide
security and reliability, as well as fault detection to prevent fault propagation. Security is built on:

Resource isolation: i.e., which hardware and software resources can be accessed, like memory addresses
or files. This is implemented on top of the hardware protection mechanisms.

State isolation: i.e., not allowing domains to interfere with the state of other domains, like modifying their
registers. This is typically implemented in software; e.g., the OS kernel code that implements IPC
saves and restores the state of the communicating processes.

Argument immutability: i.e., whether a domain should not modify the arguments it sent while they are
being processed (e.g., between a server validates and uses them). This is implemented purely in
software, since it usually requires copying data in a form that is specific to the system at hand; e.g., a
write system call copies data across both ends of a pipe.

Fault detection requires resource isolation and fault notification, since the OS needs a way to notify its
users of a fault in case they want to handle it. Reliability builds on fault detection and state isolation, but
also on application-specific knowledge to survive faults [59]. Given the requirement of application-specific
knowledge, reliability is beyond the scope of this thesis, even though the low-level OS mechanisms that it
requires are addressed.

Current systems use privilege levels and page tables for resource isolation, and exceptions for fault no-
tification. OSs thus build their abstractions on top of them. Ideally, OS and hardware primitives should
naturally integrate into common programming paradigms and not affect performance. Unfortunately, exist-
ing OSs and hardware have co-evolved around models that unnecessarily increase code complexity and limit
the ability to efficiently partition code into domains.

3.1 The Inadequacies of Process-Based Isolation
Processes are deeply embedded into the abstractions of current OSs, and serve multiple roles:
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Resource container: The OS uses processes as a container for both hardware (i.e., memory allocations)
and software resources (e.g., threads and open file descriptors). A process thus defines a subject
for accounting and managing the life cycle of resources. When a process is destroyed, the OS also
destroys the resources associated with it.

The EROS software capability system [105] provides a slight deviation from this model. The space
bank abstraction is used to hierarchically sub-partition storage. When a parent process creates a child
process, the parent provides a sub-partition of its space bank from where the OS will allocate memory
for that child. A space bank can also be destroyed, giving users control of storage for an entire
subsystem that could contain multiple processes. Therefore, a process in EROS still identifies its
own resource container, but resource reclamation can be managed independently (although reclaiming
storage will also destroy the processes it contains).

Persistence: Processes also serve as units of computation state persistence. All resources in a process are
teared down upon its destruction, obviously including its state. Therefore, separate processes must be
used to ensure state survives the coming and going of other processes. A typical example would be
a database server process, which for performance reasons caches some structures in memory instead
of performing all its operations on the disk (which is persistent by definition). If a database client
process is destroyed, the state cached in the database server process is persisted across requests from
multiple client processes. Without a separate database server process, maintaining consistency of the
data cached in memory would generally be impossible without performing disk operations on every
request.

An alternative exists to eliminate the persistence role from the process abstraction; nonetheless it de-
viates from existing OS designs. A “persistent library” could be implemented by ensuring it is always
loaded at the same addresses across processes, including a persistent copy of its dynamic allocations.
The addresses used by such library must be the same across all processes because otherwise the val-
ues of pointers stored in memory would be inconsistent across processes that use that same library
“instance”. Nonetheless, such design is beyond the scope of this thesis.

Isolation unit: By instantiating each process on a separate page table, the OS provides memory isolation
across them. In addition, each process has a separate set of high-level software resource descriptors
(e.g., the file descriptor table), which are implemented in and only accessible by the OS domain.
Therefore, processes serve as an isolation unit for all types of resources, both software and hardware.

As this chapter will show, using processes as an isolation unit degrades performance and programma-
bility, even though processes are still necessary to provide its container and persistence roles. Some of
the trade-offs involved in isolation have been well studied in the past, such as the overhead of context
switches [73, 116] and the performance of OS-mediated IPC [78]. Figure 3.1 shows the overheads of per-
forming a synchronous call to a function on another domain (the callee) that receives a single buffer from its
caller domain as an argument. The following primitives are analyzed, which exist in current OSs:

Syscall: A user application invokes a Linux system call using the syscall function provided by libc
(implemented with the syscall instruction in x86–64), much like the example shown in Figure 2.1a.
The “Syscall” experiment simply performs the system call. In the “Syscall +copy” variant, the ker-
nel uses Linux’s copy from user function to copy the user-level buffer (caller argument) into the
kernel memory (where the callee resides).
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L4 inline: The caller and callee are two separate processes that use the IPC primitives in L4 Fiasco.OC to
communicate synchronously. The argument buffer is transferred as inlined data on the IPC message
using L4’s “message registers” through functions l4 ipc call and l4 ipc reply and wait.

L4 remap: The caller and callee are two separate processes that use the IPC primitives in L4 Fiasco.OC to
communicate synchronously. The argument buffer is passed “by reference” across processes using a
software capability to the range of pages that contain it. The pages are mapped by the callee during
its operation and are unmapped before returning, much like the example shown in Figure 2.1b. The
benchmark is implemented using L4’s runtime library to pass a “dataspace” through an “iostream”
call operation. The callee receives requests through an “iostream” reply and wait operation,
and performs an “attach” and “detach” operation of the “dataspace” before and after executing its
workload, respectively.

Semaphore: The caller and callee are two separate processes that use raw IPC primitives to communicate
synchronously, implemented on top of POSIX semaphores (the futex system call in Linux). The
semaphores are used to synchronize the cross-process request, but the argument buffer is passed “by
reference” by allocating it in memory pages that are pre-shared among the two processes; therefore,
no data copy is necessary. The “Semaphore (=CPU)” and “Semaphore ( 6=CPU)” variants identify
whether the communicating processes are pinned to the same or different CPUs, respectively. The
same CPU variants are also applied to the following experiments.

Pipe: The caller and callee are two separate processes that use raw IPC primitives to communicate syn-
chronously, implemented on top of POSIX pipes. A first pipe is used to signal the call and copy the
argument buffer contents between processes, while a second pipe is used to signal the return.

RPC: The caller and callee are two separate processes that use a Remote Procedure Call (RPC) to provide a
synchronous function call interface for communicating. The RPC implementation internally wraps the
use of UNIX sockets as the low-level IPC primitive, as provided by glibc’s rpcgen. Like in “Pipe”,
the argument buffer is copied across processes.

The experiment results are normalized to a regular function call, and cross-domain calls are repeated
in a loop to ensure the standard deviation is below 1% and timing overheads below 0.01% of the mean.
Figure 3.1a shows how efficiency is affected by the amount of instructions executed by the callee, modelled
as a sequence of register increments (i.e., a measure of how bound the benchmark is to IPC performance).
Figure 3.1b quantifies how the amount of communicated data impacts performance (note the different log-
arithmic scales). Finally, Figure 3.1c provides a more detailed comparison of the results when transferring
a 1-byte buffer argument; the parenthesized “(+proc)” annotation indicates that communication happens
between different processes, while “(+copy)” indicates that copies are implicit in the interface. The first
two (Figures 3.1a and 3.1b) do not show the results for “Pipe” to avoid cluttering them, since its results
consistently fall between “Semaphore” and “RPC” (see Figure 3.1c). It is important to note that all these
experiments were performed without frequency scaling to maximize their performance. Unless explicitly
noted, results are referred to with their prefix name; i.e., “Semaphore” refers to all semaphore experiments
(i.e., “Semaphore *”).

Privilege level switches have non-negligible costs for short routines, even though they are fairly opti-
mized in modern processors; compare “Syscall” with other mechanisms in Figure 3.1c, and with less than
1K instructions in Figure 3.1a. In comparison, isolation between processes yields orders of magnitude higher
overheads (see “Semaphore (=CPU)”). This is because the OS has to manage costly resource isolation (page
table switches), and state isolation (register state of processes) whenever multiple processes communicate.
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Figure 3.1: Comparison of the costs of different cross-domain communication primitives, normalized to
a function call. Figure 3.1a depicts the cost of a synchronous caller/callee control transfer for different
amounts of work performed by the callee (X axis). Figure 3.1b depicts the overhead of passing an argument
of different sizes to the callee (the callee performs no work). Note the different logarithmic scale on the
axes. Figure 3.1c depicts in more detail the results of Figure 3.1b with a 1-byte argument (leftmost points).
Note that “Pipe” is not shown in Figures 3.1a and 3.1b to avoid cluttering them. Frequency scaling has been
disabled, which otherwise increases cross-CPU overheads.
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(a) Steps for a RPC between the web server and the database of Figure 2.2. Dashed arrows
highlight operations imposed by the RPC/IPC layers, as compared to a regular function call.

RPC (= CPU)
RPC ( 6= CPU) CPU1

CPU0
CPU0

RPC layer
Syscall dispatch

Kernel code
Scheduling / ctxt. switch

Idle time

(b) Modelled per-CPU overhead breakdown. Left side shows the base costs; right side shows
the mean transfer costs for every 1 KB.

Figure 3.2: Anatomy of a RPC sequence.

Finally, “L4 inline (=CPU)” is a testament to the role that OS design can play in improving IPC perfor-
mance; even though the underlying hardware is the same, it is more efficient than Linux semaphores, but
still has to cater to the same needs of the process model.

These results suggest that IPC semantics and general kernel design play a major role in performance, as
can be seen by the large performance variability shown by the different non-“Syscall” experiments. Also,
comparing “Syscall” to the other mechanisms shows the importance that hardware mechanisms have in
performance. In fact, hardware and OSs have co-evolved in a way that processes provide a loose form
of machine virtualization, whereas threads provide a loose CPU virtualization abstraction. These concepts
provided a very convenient way to evolve from the early single-program machine model to the later multi-
programmed systems, but the networked model implied by processes is not necessarily the most efficient.
Therefore, co-designing the hardware protection mechanisms and the OS isolation primitives looks as a
promising approach to improving isolation performance and programmability. The following sections high-
light other implications of the existing process and IPC designs, often overlooked.

3.2 Mismatch Between Procedure Call and IPC Semantics

IPC primitives provide semantics very different from those of the function calls that programming languages
offer. Where a function call is synchronous and can pass multiple arguments with references to data, IPC
primitives are typically asynchronous and can only pass a copy of a single buffer of data. This semantic
mismatch impoverishes the programmability of the system, and is often hidden under a RPC layer that
preserves function call semantics. Therefore, RPC regains the programmability lost to raw IPC primitives.
But comparing “RPC (=CPU)” with other mechanisms in Figure 3.1 shows that bridging this semantic gap
adds large overheads due to the added complexity of the underlying code.
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Mechanism Slowdown (times)
try/except 1.00
try/except + throw 681.79
setjmp 2.50
setjmp + longjmp 6.36

Table 3.1: Costs of common state isolation/recovery mechanisms normalized to a regular function call.

Figure 3.2a depicts the anatomy of an RPC; dashed arrows represent operations added to bridge the
semantic mismatch. Figure 3.2b shows the sources of its overheads. The results show a time breakdown of
the “RPC” experiments in Figure 3.1, using a modified Linux kernel to measure where time is spent in a
very light-weight and accurate manner (see Section 8.2.4 for more details).

First, RPC layer in Figure 3.2b shows the performance costs of the glue code added in the user code.
This glue must marshal and demarshal the arguments and return values over IPC (steps 2 , 4 , 5 , 7 ).
This is because most IPC primitives send a single buffer of consecutive memory, and even in a simple RPC
benchmark these overheads are far from negligible. In contrast, these operations are not needed in regular
function calls, which can use pointers to memory as arguments. The RPC glue also requires a service loop
in the callee to dispatch requests to routines ( 4 ), and it must invoke low-level routines to listen on the
communication channel and wait for a request/response ( 1 , 2 , 5 ). This last overhead corresponds to
the time difference in RPC layer between the caller (CPU0) and the callee (CPU1) for “RPC (6=CPU)” in
Figure 3.2b.

At the OS kernel layer, IPC provides resource and state isolation ( 1 , 3 , 6 ). This requires tracking the
currently executing process and saving/restoring its register state when switched. Conversely, the compiler
can optimize register state management in regular function calls by not saving unused registers, since it
knows what registers are used by each function. For example, Table 3.1 shows a comparison of two common
state isolation and recovery mechanisms. The implementation typically used by the OS kernel during an
IPC call saves and restores all registers due to process switching, equivalent to the setjmp and setjmp +
longjmp experiments. A regular function call does not require any of these operations, since the compiler
knows the registers used by each side of the function call. Nevertheless, if the callee severely tampers with
the computation’s state (e.g., thrashes the stack), the caller function may not be able to properly resume
execution; in comparison, the strict isolation provided by processes ensures the caller can resume execution
no matter what happens in the callee. Interestingly, the C++ language provides very efficient state isolation
across functions inside the same process in the case of non-malicious errors (e.g., does not handle cases of
a domain randomly thrashing its state). The C++ compiler is able to hide these costs for the common case
of non-faulting exceptions (try/except) by generating ancillary information structures that describe how to
recover the state of the computation from well-known safe values. When an exception is actually raised
(try/except + throw) the costs are much higher because the runtime must reconstruct the state at the call site
from previous values. The important bit here is that cross-domain communication could be implemented
using similar techniques to safeguard against errors, instead of saving and restoring all the state across
domains. Since errors are the least common case, it should not be a problem if fault processing code is
penalized.

IPC also transfers data between buffers of the communicating processes ( 3 , 6 ). Interestingly, Fig-
ure 3.1b shows that none of the primitives is a best fit for all sizes. “L4 inline” incurs the least overhead
for small transfers. This comes at the cost of one L4 IPC for every 512 B (a limitation in the implemen-
tation necessary to make it this fast), leading “RPC” to perform better for ≥ 2 KB. Copies are necessary
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in these two mechanisms because they provide argument immutability, leading to the copy semantics they
implement. Larger buffers can be better amortized by sharing memory pages on demand like in “L4 remap”
for ≥ 4 KB. “Semaphore” shows a faster alternative for large transfers where pages are pre-shared and IPC
is just used to synchronize processes. Unfortunately, this strategy is limited to page granularity, requires
agreeing on buffer sizes beforehand, and data must usually be copied back and forth from the shared buffer
during cross-domain transfers. Evidently, copies are not required in regular function calls. Using copies in
function calls is left to programmer discretion, who knows when they are necessary to maintain the program
semantics.

IPC also imposes additional hardware operations when compared to regular function calls. First, cross-
process copies generate cache and TLB capacity misses. Interestingly, “RPC ( 6=CPU)” in Figure 3.1b shows
better results starting at ≥ 16 KB because the L1 data cache (32 KB) is overflown with “RPC (=CPU)”.
Nevertheless, this might not be beneficial on a busy system due to the added cache coherence traffic. Second,
sharing pages on-demand across multi-threaded processes can be more harmful than large copies due to the
costs of additional TLB shootdowns and the IPIs they require [121]. Third, the added IPC and RPC code
pollutes caches and TLBs and contaminates the branch predictor. In fact, the aggregate RPC layer time in
Figure 3.2b is slightly lower for “RPC ( 6=CPU)” due to an order of magnitude less cache and TLB misses
(since each process executes a different subset of the code).

3.3 False Concurrency

Ideally, one would use threads only when concurrency is desired by the programmer. However, threads
cannot typically cross process boundaries. Therefore, different threads must be used on each process,
and threads must explicitly synchronize to communicate across processes, incurring performance and pro-
grammability overheads. As a result, a thread that initiates an inter-process transaction, which we refer to
as a primary thread, must transfer control to a service thread that executes the transaction in the server
process. Service threads only serve as remote process proxies for primary threads, imposing concurrency
across processes even when the application has synchronous semantics. For example, whenever a web server
thread (a primary thread) interacts with a database thread (a service thread), they must coordinate control
transfers back and forth. The same applies to microkernels whenever a process issues a synchronous request
to a service process (e.g., the file system service). Synchronization triggers costly context switch operations
(register state and page table), which are shown in Figure 3.2b as Scheduling / ctxt. switch. Ultimately,
this translates into the performance difference between “Syscall” and “Semaphore (=CPU)” in Figure 3.1.
Waking up a process on a different core also incurs a costly IPI, which can be seen as higher costs for the
“* (6=CPU)” experiment variants in Figures 3.1 and 3.2b. As noted before, the experiments were performed
without frequency scaling. When enabled, frequency scaling increases cross-CPU communication delays
and further accentuates the IPI overheads.

This false concurrency also isolated processes in terms of their threading model (i.e.,, each process must
separately manage its set of threads). Each process must dispatch requests to its service threads, which
are either created on-demand or kept in a thread pool. This either incurs substantial run-time overheads or
increases programming complexity, respectively. For example, the web server and database processes from
Figure 2.2 each allocates and manages its own set of threads. In addition, the database tends to many clients,
and must provision for a high load even though load is dictated by the number of client primary threads.

Summarizing, service threads and their context switches are artifacts imposed by current OS designs
whose process model ties each thread to a process. This forces transactions to span multiple threads even
when no concurrency is possible given the program’s semantics. Therefore, allowing primary threads to
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securely cross process boundaries would improve performance and programmability.

3.4 A Case for Configurable Isolation Policies
Processes enforce full isolation even when that is not needed. For example, the OS kernel assumes processes’
state must be isolated from each other and memory copies are used in IPC primitives to communicate.
Such level of isolation is often not necessary. Therefore, allowing programmers to express their isolation
policy requirements can minimize programming complexity and increase performance without violating the
isolation properties required by the programmer.

This is because software components often have asymmetric relationships, while processes enforce a
single symmetric isolation policy. For example, application extensions (e.g., a web server PHP interpreter
or a web browser plugin) can be fully sandboxed while the master application is allowed to directly interact
with the extension’s memory without going through IPC. In addition, state isolation can be eliminated when
faults are merely forwarded. For example, if a database crashes while a PHP interpreter performs a query to
it, the error is reflected to the PHP interpreter. If the interpreter does not contain code to explicitly recover
from such errors, it is left in an inconsistent state, rendering state isolation useless. In this case, it would
be thus more efficient to eliminate state isolation from the PHP interpreter, and instead forward faults to the
caller web server, who will centralize the complexity of handling faults.

The need for argument immutability (i.e., copies) is also dependant on program semantics; more specif-
ically, it is not necessary when security is not affected. For example, a disk driver does not need a private
copy of its input buffers; a requester could modify them while the write is in process without affecting the
driver’s security, just like in an asynchronous write it is safe to modify the buffer contents between requesting
the write and synchronizing with its end. Conversely, a database needs a private copy of its requests, since it
must parse and verify them before actually executing them. Argument immutability is thus only necessary
when time-of-check-to-time-of-use (TOCTTOU) atomicity is required, and only the programmer knows the
application semantics well enough to know when this is needed.
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Chapter 4

Efficient and Composable
Isolation Primitives

This chapter provides an overview of the hardware and OS co-design proposed in this thesis. The rationale
behind this design is driven by the four goals set by Chapter 1:

• Offer efficient component isolation.

• Maintain existing programmability through a synchronous function call interface for cross-domain
requests.

• Provide an expressive and composable set of isolation primitives to ease the implementation of dis-
parate isolation policies with minimal performance overheads.

• Ease gradual adoption on existing systems.

• Be general enough to be applied across the whole software stack.

Efficiency, programmability and gradual adoption are obvious goals for any proposal that targets ex-
isting systems. Unmodified components should still run in the system, and code oblivious to isolation
should maintain its original performance. The system should also provide a path for software components
to gradually adopt the proposed primitives. Since paging is still useful for multiplexing physical memory,
multiple isolation domains should coexist in the same virtual address space, so that protection is overlaid on
top of translation. Commonly used primitives should be cheap enough to pass inadvertently in the perfor-
mance profile, and their efficiency should scale with the number of cores and threads in the system. From
the experiences of past work, this last point is particularly difficult to achieve for access grants and revo-
cations. Domain switches should follow the same model provided by regular function calls to eliminate
unnecessary programmability overheads: arguments can be passed by reference and (cross-domain) calls
are synchronous.

The generality and composability of primitives plays a prominent role in the design of this thesis. Primi-
tives should be able to enforce all types of isolation required by software in an efficient way; from user/kernel
separation, to application extension and inter-process isolation. Furthermore, primitives should avoid seman-
tic overload in favour of composability to foster the exploration of novel isolation organizations. Current
systems have prohibitive overheads and, even worse, using them in ways that deviate from their intended
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model imposes even larger overheads. RPC is a clear example of this; side-stepping the intended model
of processes requires additional coding complexity that leads to performance overheads. Ultimately, these
overheads deter the exploration of new designs. In this same vein, asynchronicity and argument immutability
should be left to programmer discretion and not be imposed by the system primitives.

4.1 Security Model
Given that this thesis seeks to expose users to mechanisms that can be efficiently composed to build various
isolation policies, a security model cannot be strictly defined. Instead, the proposed primitives serve as
isolation policy building blocks. Therefore, a list of properties that the system must be able to enforce is
provided instead:

Memory and privilege protection : This is the most important property that the hardware itself must en-
force at all times. Without it, it is not possible to implement domain isolation.

Entry point identification : Domains must be able to identify which addresses are valid entry points for
other domains. The system must enforce that cross-domain calls only go through identified entry
points when requested. Failing to do so could be used by a malicious caller to force the execution of
unintended paths on another domain.

Return address validation : A callee domain must be able to ensure that its return address follows the
intended semantics of a function call. Failing to do so could be used by a malicious caller to misdirect
the callee into unintended code when it returns.

Computation state integrity : Callers must be able to enforce the integrity of the state of their computation
around a cross-domain call (i.e., forbid unintended writes). Memory protection is handled in the first
point above, so computation state comprises the thread’s stack and register values. Failing to do so
could be used by a malicious domain to manipulate the state of another domain.

Computation state confidentiality : Callers and callees must be able to enforce the confidentiality of their
computation state for anything that is not an intended call argument or result, respectively (i.e., forbid
unintended reads). Failing to do so could be used by a malicious domain to gain access to leaked
sensitive information like private encryption keys.

4.1.1 Asymmetric Isolation Policies
These building blocks can be used to tackle security and reliability against errors and malicious actions. Fur-
thermore, providing a system with policy building blocks (instead of imposing a single policy on all cases),
allows the construction of isolation policies that more accurately follow the programmer requirements while
avoiding the overheads of unnecessary isolation properties. This level of control allows the implementation
of asymmetric isolation policies; that is, policies that are different on each side of a cross-domain call.

Using asymmetric policies implies that isolation guarantees can be traded off for performance. The
safest option is to enable all isolation properties by default, but let the programmer to select when, and
which, to disable in specific circumstances. This is specially important when invoking short routines across
domains. Short calls to other domains are typically avoided in current systems due to the overheads imposed
by existing isolation mechanisms. If one such function is used frequently, the programmer can stop to think
if the other domain can be trusted and select which isolation properties are unnecessary, therefore improving
performance.
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Such decisions involve two observations. First, whether the code on the other domain can be trusted to
follow the system’s conventions; i.e., it is not maliciously trying to exploit weaknesses on the domains it is
interacting with. Second, whether the code on the other domain can be assumed to be correct; i.e., it does
not contain a bug that can lead to a break of the assumptions of the domains it is interacting with.

For example, a web server could split its encryption code into a separate domain, maintaining encryption
keys outside the reach of the rest of the application in case it is compromised. Since both domains are part of
the same application, they can be trusted to not be malicious to each other. It does not make sense to assume
the code malicious, since the programmer would then be defeating herself. In this example, the web server
can safely decide to forego integrity and confidentiality. Likewise, the isolated encryption code can forego
integrity, but maintain confidentiality in case the web server is compromised (to avoid partially leaking the
encryption key; e.g., through stale register values [88]). Similarly, the web server can call into an isolated
plugin while maintaining both integrity and confidentiality. Since the plugin is exposed to external inputs, it
could be subject to vulnerability exploitation attacks. At the same time, the plugin does not need to maintain
integrity nor confidentiality with the web server; in this case, the web server can be fully trusted by the
plugin, since doing otherwise would defeat the purpose of a plugin architecture.

OSs pose another common example where policy asymmetry can be used. By design, the OS kernel is
fully trusted by all applications; therefore, user applications can forego integrity and confidentiality when
interacting with the OS kernel.

Importantly, mis-configuring the policies on one domain can expose it to errors or malicious attacks, but
will never directly expose other domains that interact with it. Of course, this conforms the system into a
chain of trust; if a domain A assumed another domain B safe, but B is exposed through a mis-configuration,
A’s assumptions are not valid. Nonetheless, this chain of trust already exists in current systems; for example,
a bug in a binary serializer application can break another application that consumes that data, or a bug in a
device driver can break applications that use it.

4.2 System Design Overview

The most ambitious goal of this thesis is to substitute existing RPC primitives with highly efficient cross-
process calls, without percolating the process concept nor its semantics into the architecture. That is, allow
the coexistence of multiple user-level isolation domains in the pure micro-kernel style, but providing a simple
synchronous function call interface and without mediating their communication through the OS kernel.

Existing capability architectures have the highest potential to achieve this goal with high performance,
but suffer from numerous shortcomings and many challenges remain open. First, many capability architec-
ture proposals concentrate on isolating components inside a single application. Extending their concepts
across processes requires a careful hardware design and significant changes on the OS. Second, many ca-
pability architectures hardwire semantics and concepts of system structure, precluding the optimization of
isolation properties when they are not needed (e.g., by implementing the process concept in hardware like
in the Plessey System 250 [72]). Third, capability architectures are typically hard to integrate in existing
codebases without large changes on the code and/or the compiler; while these can provide the best mix of
isolation granularity and performance, there must exist intermediate points for gradual adoption.

This section provides an overview of the design of the different parts of the proposed design, and how
they relate to each other, as illustrated by Figure 4.1. Some simple compiler support is used to allow the
programmer to describe her isolation domains and desired isolation policies. In turn, the DomOS OS pro-
vides the interfaces and necessary logic to enforce the isolation of the programmer-specified policies, which
are then mapped into the CODOMs architecture. As a result, programmers can perform regular function
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Figure 4.1: Overview of the relationship between the different parts of the proposed system. Programmers
can perform regular function calls that cross isolation domains, and each domain can equally be inside the
same or a different process.

calls that cross domain boundaries, and each domain can equally be inside the same or a different process.
An in-depth description of the design, implementation and the finer points behind each of the parts of the
proposed system is provided in Chapters 5 to 7.

4.2.1 CODOMs
The CODOMs architecture, partly shown at the bottom of Figure 4.1, provides the low-level mechanisms to
enforce memory and privilege protection. Its design is inspired by key-based memory protection and capa-
bility architectures, taking the best of both worlds. On one hand, code-centric protection provides efficient
mechanisms to define the boundaries of isolation domains and their long-term grants to other domains at
page granularity, with a special emphasis on very efficient cross-domain function calls. On the other hand
capabilities allow transient sharing of information across domains at arbitrary granularities, with a special
emphasis on efficient revocation.

CODOMs provides code-centric isolation by deriving the active protection domain from the instruction
pointer of the executing instruction; that is, the instruction pointer acts as an implicit capability. This seem-
ingly simple property allows implementing cross-domain function calls at virtually no latency. Each domain
is associated with a tag, and the page table is extended with a per-page tag to assign each page to a domain.
An additional per-page bit indicates if execution of privileged instructions is allowed in code stored on that
page. To describe which other domains one can access, every tag (or domain) T is associated with an Access
Protection List (APL): a list of tags in the same address space that code pages in domain T can access, along
with the granted access permissions. For example, the APL for the green domain in Figure 4.1 could be
configured to allow it to call into functions on the orange (“proxy”) domain, but not the blue domain that
exists on another process. Figure 4.2 shows a comparison of a cross-domain call in CODOMs, key-based
memory protection and traditional capability architectures. The main advantages of CODOMs’ code-centric
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Figure 4.2: Comparison of CODOMs with other cross-domain request mechanisms shown in Figure 2.1. It
compares CODOMs (Figure 4.2c) against protection keys (Figures 2.1d and 4.2a) and traditional capabilities
(Figures 2.1e and 4.2b).

protection are:

Performance: Changing the current domain is implicit in control flow operations. Therefore, domain
switches do not require OS kernel supervision (unlike key-based protection, as shown by the OS
line in Figure 4.2a), and careful hardware design makes them have virtually no overhead even in out-
of-order pipelines (unlike the overheads of changing the root capabilities in Figure 4.2b, as described
in Section 2.2.4).

Transparency: Code-centric protection can be used transparently by existing code since a simple func-
tion call can transition between domains. This is unlike key-based memory protection and traditional
capability architectures, where management of cross-domain calls must be explicit (e.g., using a spe-
cialized instruction, or having to explicitly manage grants at every cross-domain call boundary).

Sparsity: Domains can be “sparse”, unlike in traditional capability architectures; this can be seen by the
pair of capabilities cap0 and cap1 in Figure 4.2b which are both necessary to define the caller domain
(see Section 2.2.4). That is, like in key-based memory protection, domains can be composed of non-
consecutive memory pages, as can be seen in the Grants column of Figures 4.2a and 4.2c.

Domain count: The domain space is virtually infinite. This is unlike key-based memory protection (Fig-
ure 4.2a, described in Section 2.2.2), where per-page tags must be changed to multiplex multiple
logic domains into the keys provided by the hardware (ultimately leading to costly TLB shootdown
overheads).

Privilege protection: Code-centric protection also encodes access to privileged resources, unlike key-based
memory protection and traditional capability architectures. Therefore, regular function calls can be
used to provide zero-latency system calls.

Nonetheless, the APL is a privileged structure supervised by the OS kernel and only works at page
granularity, making it more suitable to express long-term properties of the system. Therefore, CODOMs
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provides hardware capabilities to allow efficient passing of data references as function arguments across
domains. They do not require OS supervision and can express arbitrary granularities, making them suitable
for short-term, or transient, grants. The main advantages of CODOMs’ capabilities compared to other more
traditional implementations are:

Revocation: CODOMs provides two types of capabilities to support immediate and selective revocation
(explained in Section 2.2.4) in a very efficient way:

Synchronous capabilities are used to temporarily grant access rights for the duration of a function
call, and are implicitly revoked after the function returns at no cost. Note that this allows further
delegating a grant across nested function calls. Therefore, a special emphasis is put on zero-
overhead revocation for the case of sharing capabilities in synchronous, cross-domain call/return
scenarios which are, by far, the most common case.

Asynchronous capabilities are used to grant access rights that outlive the callee. They are useful
during asynchronous data transfers between domains (e.g., an asynchronous disk read), or when
two threads exchange capabilities through the memory. In this case, CODOMs provides an
efficient implementation for immediate and selective revocation using a per-capability pointer to
a “revocation counter”.

Support for efficient immediate and selective revocation is specially important in the scenario where
capabilities can be shared across processes. Even when immediate and selective revocation is not
exposed to the programmer, capabilities must be revoked when the virtual memory used by a process
that has been killed is eventually reused to allocate a new process. One could argue in favor of using
a garbage collection approach, but this is simply not feasible at the whole-system level; i.e., across
processes. Implementing garbage collection across processes requires involving the TCB (e.g., the
OS kernel) on every single call to malloc and free to track allocations and coordinate them with
uses of capabilities across all processes in the system. One could provide a more conservative garbage
collection approach that treats processes as a single unit of memory, reusing virtual memory used by
a process only when there is no alive process that has ever had direct or indirect call access to that
process; nonetheless, this would very easily degrade to an information flow graph where all nodes
(processes) keep all others alive (i.e., un-reusable).

Sparsity: Capabilities in CODOMs are “sparse”, since they are derived from the code-centric protection
definitions. This is shown by the single capability cap0 required by CODOMs in Figure 4.2c, instead
of the many capabilities required by traditional implementations (cap3 and cap4 in Figure 4.2b, as
explained in Section 2.2.4).

This feature opens the door to alternative designs more efficient than the typical approach of using
one capability for each pointer. For example, one can allocate an entire dynamic data structure on
a separate domain, and pass a single capability to that domain. Since CODOMs’ capabilities are
“sparse”, the allocating domain does not need to worry about whether allocations are in consecutive
addresses, something that cannot be ensured in the general case. Therefore, a callee can use a single
capability to grant access all elements of a dynamic data structure (e.g., a graph), instead of the more
conventional (and expensive) approach of using capabilities as a pointers to grant access to each of
the elements in the data structure. Furthermore, using this approach it is very simple to provide
a read-only capability to the entire data structure. Doing so in a traditional capability architecture
either requires having two data structures (one with read-only capabilities and one with read-write
capabilities) or requires changing the hardware to transitively apply the read-only limitation (e.g.,
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transform read-write capabilities into read-only ones when they are fetched as a result of chasing the
pointers/capabilities of the data structure, similar to how EROS transitively enforces the weak property
in its software capabilities [105]).

Unforgeability and integrity: Capability unforgeability and integrity is ensured without resorting to ex-
pensive memory tagging (described in Section 2.2.4). Instead, a per-page bit indicates if a page can
be used to store capabilities, in which case unprivileged code cannot directly access its raw contents.

Transparency: To make gradual porting easier, capabilities in CODOMs can be used implicitly by code
oblivious to them. In this case, CODOMs checks if a memory access is authorized by any of the
available capabilities before raising a memory protection exception. For example, a capability-aware
caller can pass arguments through capabilities to an unmodified, backwards-compatible callee.

4.2.2 Compiler Support
At the other side of the design lies some simple compiler support, shown at the left-hand side of Figure 4.1,
that programmers can use to express how to take advantage of the underlying CODOMs architecture to
isolate multiple components inside the same application. The compiler provides simple annotations that
allow programmers to assign code and data into domains, identify domain entry points, and express domain
isolation properties at the domain and entry point boundary. This information is embedded in the output
binary, and later used by the program loader to setup the corresponding domains.

There is an important observation to make about the role of the compiler: many of the isolation proper-
ties described in Section 4.1 can be enforced by user level software. This is in contrast to existing systems
that rely on privileged code or hardware instructions with complex semantics to enforce a fixed set of iso-
lation properties that many times are unnecessary. The compiler can generate caller and callee stubs that
enforce the selected properties at user level, therefore reducing the amount of code and complexity in the
TCB. Furthermore, compiler-generated code follows an Application Binary Interface (ABI) convention that
defines how each register is used across a function call. Therefore, the compiler can co-optimize these stubs
with knowledge from the rest of the application; e.g., there is no need to enforce the integrity of registers
that are considered dead at the call point, something that depends on both the function signature (translates
into code through the ABI) and the architectural state of the code at the call site.

4.2.3 DomOS
DomOS provides the necessary primitives to let software use the mechanisms provided by CODOMs. The
net result is that processes can be composed of multiple isolation domains and, importantly, domains from
different processes can issue simple function calls instead of going through expensive RPC primitives.

The DomOS functionality is spread through the application loader, the run-time and the OS kernel, all
shown at the top-right corner of Figure 4.1. The application loader reads the information generated by the
compiler to create and configure the domains inside an application. The runtime then resolves cross-domain
calls lazily the first time they are used, following the same scheme used by dynamic libraries [71]. A helper
runtime library also simplifies the management of cross-process entry points, in a similar way to existing
RPC libraries.

The domain and entry point configurations expressed by the additional compiler/language support are
mapped into the DomOS kernel which, in turn, maps these into CODOMs’ tags and APLs. Some of the
isolation properties of domains and entry points refer to privileged resources unavailable to user code; e.g.,
changing the identity of the current process during cross-process calls. In this case, DomOS generates
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Figure 4.3: Comparison of the different system organizations in Figure 2.2 and DomOS. DomOS is able to
keep the different components isolated from each other. At the same time, it does not add extraneous code
to send and receive requests and does not need to go through the OS kernel on every request.

a thin trusted proxy routine at run-time that bridges the calls between domains and is specialized to the
required isolation properties and entry point signature (orange Proxy domains in Figure 4.1). By producing
a specialized trusted proxy at run-time, cross-domain calls do not need to go across sub-optimal generic
functions implemented in the OS kernel. To achieve all these goals, DomOS also maps all processes into
a global virtual address space using a single page table, and different CODOMs tags and APLs to keep
processes isolated from each other (green and blue Domain boxes in Figure 4.1). Figure 4.3 revisits the
different OS organizations models described in Section 2.3 and compares their performance with the model
proposed in DomOS. Software components in DomOS can be isolated from each other, like in an idealized
microkernel. Furthermore, cross-domain calls in DomOS are implemented as synchronous function calls at
their lowest level. They do not need to go through the generic IPC primitives implemented by the OS kernel,
no code is necessary in the caller or callee to bridge the semantics of function calls into those of the IPC
primitives, and the system is not subject to the overheads of false concurrency (Chapter 3).

4.3 Isolation Scenarios

CODOMs and DomOS allow programmers to efficiently implement a variety of scenarios. For example:

Sandboxing: This is the typical case for an application plugin (e.g., Chrome isolates plugins by running
them as separate processes), but from the point of view of the OS kernel one can also see processes
as sandboxed domains. In this last case, CODOMs’ efficient privilege isolation can be used to replace
system call instructions with regular function calls. Thanks to CODOMs’ code-centric isolation, the
parent domain (the main application in the plugin case, or the OS kernel in the case of user-kernel
separation) can easily have full access to the sandboxed domain without using capabilities. At the
same time, the sandboxed domain cannot access its parent’s resources, and implicit capability use
allows running sandboxed code that is oblivious to isolation.
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Privilege amplification: Is the exact opposite of sandboxing; e.g., a request from a plugin into the main
application, or a request from a process to the OS kernel goes from a “less privileged” to a “more
privileged” domain. In this case, the parent must export entry points to the sandbox. Nonetheless, the
sandbox does not need to use capabilities to pass arguments to the parent, since the parent has direct
access to the sandbox.

Mutual isolation: Is the typical scenario found in communicating processes or different subsystems and
plugins inside a single application. None has direct access to the other, and thus communication in
both ways must happen through entry points exported by each of the domains.

These scenarios describe isolation at the memory protection level. Nevertheless, other isolation proper-
ties (like register state or stack isolation) can be controlled separately, as described in Section 4.1, to allow
implementing more efficient asymmetric isolation policies. Nonetheless, it is perfectly possible to instead
use noan intermediate domain that provides a more generic (and thus less efficient) implementation that does
not require annotating the applications. In fact, the IPC primitives provided by the OS kernel are examples
of such generic implementations, albeit quite sub-optimal given the OS and hardware designs they support.

35



Chapter 4. Efficient and Composable Isolation Primitives

36



Chapter 5

Hardware Support

“You’re very clever, young man, very
clever”, said the old lady. “But it’s
functions all the way down!” 1

CODOMs provides the low level hardware mechanisms to enforce memory and privilege protection.
The architecture is prototyped by adding and modifying some of the elements present in an x86–64 CPU,
as shown in Figure 5.1. These elements provide two coupled mechanisms (overviewed in Chapter 4): code-
centric protection defines the long-term properties and access grants of domains, while capabilities provide
efficient short-term data access grants across domains. As a result, regular function calls can be used to
switch across domains, and capabilities can be used to efficiently grant access to data passed as function
arguments. The following sections describe the implementation and purpose of each of these mechanisms
and the hardware elements that are involved.

5.1 Code-Centric Protection
Each domain in CODOMs is defined through an extension of the regular page table. In addition, each domain
also identifies which other domains (and with which permissions) it can access. Therefore, the instruction
pointer implicitly defines what is the current domain and, importantly, what other pages it can access. This
is the basis for allowing regular function calls to transparently and efficiently cross domain and privilege
boundaries.

5.1.1 Page Table Capabilities
Page table capabilities define the bounds of a domain (in terms of memory pages), as well as some of its
properties. They are implemented as an extension of the regular page table through some of its unused bits.
Their format is shown in Figure 5.2, where greyed-out areas are ignored by CODOMs:

Tag (64 bits): Identifies the domain to which a page table entry pertains. Tags are stored in the page physi-
cally contiguous to the one they describe, and occupy the same space of a page table entry (the 4 KB at

1https://en.wikipedia.org/wiki/Turtles_all_the_way_down
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Figure 5.1: The CODOMs architecture. Added elements are colored, and extended elements are white.
Light green elements are controlled by the application, while others are controlled by the TCB. Numbers
are used in Section 5.4 to describe the different steps of how information flows through the architecture to
perform access checks.
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Figure 5.2: Location of added (bold face) and relevant fields in the page table structures. Greyed-out areas
are ignored by the CODOMs extensions. The additional (physically contiguous) page containing tags is
present only when the T bit is set in one of the page table entries.

the bottom of Figure 5.2). Keeping both segregated maintains backwards compatibility with the page
table format.

Tag presence bit (T): Indicates if the page table entry has an associated tag. If the bit is set, it means that
the associated tag must be used, which is located 4 KB forward on the physical address space.

Not setting this bit allows executing existing code without CODOMs. Since the bit exists at all page
table levels, tags can be set for entire sub-trees. This minimizes space and management overheads for
the page table.

Privileged capability bit (P): Indicates whether privileged operations are allowed in the code contained in
the range of memory described by the page table entry.

Serves as an efficient replacement to privilege levels, ensuring regular code cannot execute privileged
operations. Note that the existing U/S bit in x86 (for user/supervisor) could be repurposed instead of
implementing P on an unused bit.

Capability storage bit (S): Indicates if the range described by a page table entry contains capabilities. Ca-
pability load and store instructions must be aligned to the capability size and must reference a capabil-
ity storage page, otherwise an exception is raised. Regular load and store instructions must reference
pages without the S bit, otherwise an exception is raised. Together, these rules ensure the integrity of
capabilities stored in memory.

This bit provides a low complexity implementation that allows mixing code/data and capabilities on
the same domain, as long as they are on different pages. This is unlike other systems, where one of
the following is true:

• Capabilities use a separate address or indexing space.

• Capabilities contain a bit indicating whether the target segment contains data or capabilities.
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• Memory is tagged at byte granularity to identify which bytes must be integrity-protected.

Nevertheless, data structures must be split between data and capabilities. Given the maturity of current
compiler technology, it is safe to assume the compiler can be modified to automatically manage such
structures in high-level languages. Furthermore, Section 4.2.1 describes a design where data structures
(including complex dynamic data structures) do not need to keep track of associated capabilities (see
Sparsity under CODOMs in Section 4.2.1).

Discussion

Traditional memory-addressing capability architectures provide a design that is very enticing in its clean-
liness and simplicity. Nonetheless, they are not “sparse”; memory-addressing capabilities cannot easily
support multiple isolation domains in the same address space unless all code is fully aware of their exis-
tence. That is, one can create a separate capability for every single function and memory allocation, at
the expense of making the system non-compatible and less efficient. This extreme situation is externally
imposed because dynamic memory allocations and dynamically loaded libraries (e.g., through dlopen)
cannot be ensured to exist in consecutive virtual memory addresses that are not interleaved with those of
other domains. One could pre-reserve large virtual memory ranges to accomodate future memory growth
inside a domain; but that is not effective in the general case because it limits the number of possible domains
and their maximum virtual memory size.

In contrast, using a per-page tag in CODOMs allows domains to be “sparse”, and can be defined by the
programmer at the software component boundary. That is, each domain can be composed of non-consecutive
virtual memory addresses that can be interleaved with those of other domains. This design allows compo-
nents unaware of CODOMs to be properly isolated from other domains in the same address space.

5.1.2 Domain Access Permissions

Domain access permissions specify the type of access that can be exercised on any page of a domain, and are
used by both code-centric protection and capabilities (see Sections 5.1.3, 5.2 and 5.4). They are implemented
as a 2-bit field with four totally-ordered values, which are combined with the per-page permissions when
performing access checks:

None: Grants no access at all to any of the pages of a domain.

Call: Allows calling into code as long as the target address is aligned to a system-configurable value. If used
through a capability with size zero, the alignment restriction is not applied and return instructions are
also allowed.

Note that this permission does not allow regular jumps. This ensures the architecture provides the
intended return address according to the call semantics (i.e., the return address is not forged; see
Sections 5.3 and 7.2.2 for more details).

Read: Allows executing and reading arbitrary addresses of pages without the capability storage bit. In the
latter case, it allows loading capabilities from such pages.

Write: Allows executing, reading and writing arbitrary addresses of pages without the capability storage
bit. In the latter case, it allows loading and storing capabilities on such pages.
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Figure 5.3: Example code-centric protection in CODOMs for three functions on different isolation domains.
It shows the page table (left), APL configuration (center) and the resulting access permissions for each
domain (right).

Discussion

Combining domain permissions with per-page permissions ensures that, for example, a non-executable page
cannot be used to execute code even if the domain is accessed through the read permission (which includes
support for execution).

Since CODOMs supports an unlimited number of domains, these can also be used as a “unit of sharing”.
Suppose domain A whants to have read access to data owned by domain B. In the case that domain B also
contains code, giving A read permission to B would also allow it to execute arbitrary code in B. In this
case, an intermediate domain D can be created to hold that data. Domain A would have read permission to
D, while domain B would have write permission to D.

Alternatively, domain permissions could be easily turned into a 3-bit field with orthogonal permissions
(call, read and write), instead of the current 2-bit field with totally-ordered values. In such a case, the
intermediate domain D would not be necessary. The only limitation to do this in the current design is in the
space available in hardware capabilities, but a bit could be easily borrowed for this purpose from other fields
present on capabilities (e.g., the revocation counter value field; see Section 5.2).

5.1.3 Access Protection List
The Access Protection List (APL) describes the access permissions that a domain has over other domains.
Conceptually, it can be understood as a mapping from target domains (i.e., tags) to domain access permis-
sions; on every memory access, an entry is searched that describes the target domain (identified by the tag
of the target address’ page) and has the adequate domain access permission. CODOMs provides a software-
managed cache to perform access checks against this structure, as explained in Section 5.4.

5.1.4 Example of Code-Centric Protection
Figure 5.3 illustrates an example of code-centric protection where three domains (A, B and C) invoke each
other. Specifically, routine f A in domain A invokes routine f B in domain B. The latter then invokes routine
f C in domain C. The figure also illustrates on its right-hand side how domain access permissions in the
APLs are combined with the existing per-page protection bits.

The left side of Figure 5.3 shows that pages 1, 2, 4 and 7 are associated with domain A. This is an
example of a “sparse” domain, since its pages are not consecutive. Suppose for a moment that f A wants to
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access the variable varC in domain C, stored in page 5. The APL for f A (domain A; center of Figure 5.3)
does not allow accessing it, but it does allow calling into the entry points of domain B which can access
varC in its behalf. After calling into f B (the entry point of domain B stored in page 3), CODOMs will use
the APL of domain B, which is currently executing. Since the current APL now has read access to domain
C, the variable varC can be directly accessed by f B without executing any code in domain C. Although
not shown in the figure, access permission grants of a domain to oneself’s pages is implicit. The example
also shows on the right side of Figure 5.3 that, even though page 3 (from domain B) has read and execute
permissions, the APL for domain A only allows function f A to call into the entry points of B. Likewise,
even through page 5 (variable varC from domain C) has read and write permissions, f B is not allowed to
write into it because the APL for domainB caps its permissions to domain C to read and execute operations.

The example also demonstrates the ability to directly invoke procedures across domains using regular
function calls. The right side of Figure 5.3 shows that once code in domain A (f A) calls into the entry point
of B (f B), CODOMs uses B’s APL, since the instruction pointer now originates from a page in domain B.
This, in turn, enables B to directly jump into code of domain C (pages 0, 5 and 6), which is not directly
accessible to domain A. It is important to note that if B’s page 3 had the privileged capability (P) bit set,
a call into B’s entry point (f B) would be all it takes to execute privileged code (e.g., a system call). Note
also that B can call or jump into arbitrary addresses in C (as long as they are executable), since B’s APL is
not enforcing any entry point (B has read permission to C, instead of having call permission). This shows
how CODOMs can be used to enforce asymmetric policies where domains are not mutually isolated (e.g.,
B could be the OS kernel and A and B could be isolated kernel modules or user processes). Also, the type
of operations that B can perform on C’s pages is capped by B’s APL. For example, even though C’s pages
5 and 6 are writable, B’s APL limits accesses to reads (i.e., B cannot write into C’s pages 5 and 6), while
C’s APL does allow writing into them.

Discussion

Traditional capability systems make it specially tricky to have global variables, which might be shared by
multiple domains. Suppose that functions f A and f C require access to a common global variable v G. When
the program is started, the loader must create capabilities for domains A and C and load the corresponding
code into the memory pointed by each. The loader must also create a capability G for the global variable
v G and, importantly, store it twice in the memory pointed by the code capabilities, once in A and once
in C. Therefore, when functions f A or f C execute, their respective capabilities will grant access to the
appropriate code and to a portion of memory that contains a copy of the G capability to access v G. Even
though the example describes a shared global variable, the same can be applied to accessing code, for
example. Therefore, capabilities A and C in this example are acting as “root capabilities”.

Code-centric protection makes this much more simpler to implement, since no capabilities are needed.
If variable v G is stored in domain G, and G is in the APL of both A and C, the functions f A and f C
immediately have access to the global variable without further ado.

5.2 Capability Protection

Capabilities are termed as passive when stored in memory, and active when stored in registers. Each passive
capability occupies 256 bits (32 B). This is half a cache line in the target architecture, making it simpler to
implement atomic reads and writes without having to lock multiple cache lines (remember that accesses to
capability storage must are aligned). Each passive capability contains the following fields:
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Base address (48 bits): Specifies the base virtual memory address that this capability grants access to.

Size (48 bits): Specifies the size of the grant of this capability. Therefore, the range of virtual memory
addresses that can be accessed through the capability is [base address, base address + size).

Tag (64 bits): Specifies which tag’s APL must be used for checking accesses performed through this capa-
bility. Therefore, a capability can be used to access all pages accessible by code in the given tag.

Access permission (2 bits): Specifies the maximum access permission granted through this capability. The
memory access check logic combines this information with the domain access permission for the
target tag, as encoded by the APL of the tag of this capability (see Section 5.4).

Revocation counter address (48 bits): Specifies a virtual address that is used for immediate capability
revocation (see Section 5.2.5) and/or as a pointer to a protected opaque payload (see below).

Revocation counter value (46 bits): Specifies a value used to verify if a capability has been revoked. If the
value is zero, the capability is said to be “synchronous” in which case it is implicitly revoked at cross-
domain boundaries at zero cost (it is said to be “asynchronous” otherwise). Section 5.2.5 provides a
detailed description of the two capability types and revocation.

CODOMs provides a set of capability registers to store the per-core set of active capabilities, and exist
side-by-side with the general-purpose registers. The current implementation provides 8 of these registers,
which can be managed with the following operations:

Create initializes a capability register. The application must provide all fields but the tag, which is set by the
hardware from the executing instruction. Providing a non-zero revocation counter (address or value)
requires the privileged capability (P) bit. Therefore, creation is safely implemented as an unprivileged
instruction as long as a revocation counter is not provided.

Modify only allows code to weaken the access permissions of a capability and to shrink the address range it
encodes, either by increasing the start address (and decreasing the size accordingly) or by decreasing
the size (ensuring the size never goes below zero).

Copy allows copying capabilities between different registers.

Load and store move capabilities between memory and registers. They are only permitted if: the address
is 32 B-aligned, the target page has the capability storage (S) bit and the address is accessible with (at
least) read or write permissions (for loads and stores, respectively).

Usage performs a memory access checked against the given capability registers. That is, capabilities must
be loaded into a register before being used to perform a memory access.

Two usage models are supported. Implicit use validates memory accesses against all active capabilities
(i.e., all capability registers). This is currently the default. It simplifies compiler support and enables
transparently adding capability use to existing code that is oblivious to their existence. Explicit use
is provided trough separate instructions that identify which capability register to use to check an
access. Compilers can use these instructions when they know what capability is to be used by a
specific memory access. This mode of operation minimizes the number of capability register checks,
improving energy efficiency.
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Probe checks if a capability register allows a specific access to a given address. This can be used by code
to verify that a capability is valid according to its expectations.

Revocation is allowed if the revocation counter value is not zero (an asynchronous capability) and the
capability’s tag is the same as the executing instruction. That is, only the domain that created a
capability can revoke it.

Discussion

Implicit capability use checks accesses against all capability registers. This functionality is key to allow
unmodified code to perform accesses through capability registers that have been set by another (calling)
domain. If hardware resources and energy consumption of this approach were an issue, checks can be
limited to a single capability in the common case by using an approach similar to the sidecar registers found
in MMP [124], caching the recently matched capability.

An interesting characteristic of explicit capability check instructions is that they can be used to secure
code that processes untrusted inputs against malicious attacks (e.g., to avoid buffer overflows). Fully inte-
grating these with the compiler is the common way in which capability architectures achieve this goal [34].
Nonetheless, capability probing instructions can also be used instead by the programmer to secure code that
is otherwise unaware of capabilities. Furthermore, functions sensitive to this type of attacks can be placed on
a separate domain to enforce the use of the appropriate exit point even in code that uses implicit capability
checks (see Section 5.3 for more details).

The addressing model that allows implicit capability checks also has its downsides: explicit capability
use requires passing a capability to check accesses against, and another immediate or general-purpose reg-
ister that indicates the address to access. Instead, capabilities on the third version of the CHERI design [34]
embed an additional offset field that is used instead of the immediate/register argument in CODOMs. This
proved to be useful for compiler-assisted pointer protection inside a domain by using capabilities as “fat
pointers”. Nonetheless, the model in CHERI deters the use of implicit capability checks on existing, un-
modified code. Furthermore, adding an offset field in CODOMs would bump passive capability size over
the 32 B mark, because CHERI does not support revocation and instead relies on garbage collection (saving
that space on capabilities for other purposes). Therefore, 64 B should be used to keep simple memory access
atomicity for capabilities, leaving a lot of unused space even if the existing fields in CODOMs’ capabilities
were enlarged to occupy 64 bits each.

5.2.1 Example of Capability Protection

Given the domain configuration shown in the example of Figure 5.3, assume that function f C (in domain C)
wants to read the contents of variable varA (in domain A). Since f C cannot directly access varA (the APL
for domain C does not have read access to domain A) f A must grant f C read-only access to varA through
a capability.

Function f A will start by creating a read-only capability that marks the extents of varA (say, some range
inside page number 4). CODOMs will automatically store in the capability the tag of the code creating it,
in this case domain A (where f A resides). Having the capability in a capability register, f A can now call
f B which, in turn, calls f C, all maintaining the capability in its register. Now, f C can perform a memory
access to varA using the capability (either explicitly or implicitly). Even though the variable is not accessible
through the APL of domain C, the capability uses the APL of domain A, grating access to it. Note that even
though the APL of domain A allows write accesses to varA, the capability limits it to read permission.
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Therefore f C cannot write into varA using this capability. Of course, the memory range encoded in the
capability only allows accesses to varA, and not the entirety of domain A.

5.2.2 Capability Confidentiality
The architecture does not provide instructions that allow peeking at the contents of the capability fields.
Adding them would be a trivial modification, but it could open the door to attacks that use these values to
infer the internal state of the domain that created these capabilities. While this might sound far-fetched,
there are examples of working attacks that extract sensitive information like private encryption keys through
indirect observation of the state of another computation [88]. In the current implementation, capability
content confidentiality can be overridden by privileged code, which has direct access to the contents of
passive capabilities.

5.2.3 Capability Unforgeability and Integrity
CODOMs ensures that the unforgeability and integrity properties of capabilities are enforced in the face of
unprivileged code. Active capabilities cannot be forged because they can only be created through operations
that set the capability register fields based on the tag of the instruction that creates them and, by extension,
based on the APL of the creating instruction. Their integrity is also not affected, since the manipulation
operations can be trivially shown to never increase permissions nor increase the address range they grant
access to. Passive capabilities cannot be forged because pages with the capability storage (S) bit cannot be
directly accessed for reads nor writes. The same applies to their integrity. These limitations do not apply to
code executing with the privileged capability (P) bit. Therefore, privileged code has the ability to create new
capabilities for domains it does not own.

5.2.4 Domain Capability Stack
Since the regular data stack cannot be used to store capabilities, CODOMs provides a per-thread Domain
Capability Stack (DCS) where capabilities can be stored. Just like x86 code uses the rbp and rsp registers
to manage the stack frames, CODOMs provides the dcsb (for DCS base) and dcsp (for DCS pointer)
registers to manage DCS frames (see top-left corner of Figure 5.1).

In the current implementation, the dcsb register can only be modified by privileged code. At the same
time, the dcsp register can only be modified through capability push/pop instructions, and an exception
is raised when a pop instruction surpasses the dcsb address (i.e., a negative DCS frame size). The range
identified by these two registers acts as an implicit capability with write permission, and the TCB must
ensure it points to pages with the capability storage (S) bit set. Together, these conditions ensure that the
DCS is effectively thread-local.

Discussion

In retrospective, the DCS register restrictions were a product of early optimization, when the design of sys-
tem software (runtime and OS) was not completely fleshed out. First, to provide zero-cost revocation of
synchronous capabilities (see Section 5.2.5) the system must differentiate between the DCS and other capa-
bility storage pages. Second, the original design envisioned using the DCS as both a stack for capabilities
and as a scratch memory space for the TCB to store cross-domain call information. This information was
expected to be stored right before the current DCS frame, where the user cannot reinterpret it as a capability.
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Later, this proved to make sharing portions of the DCS too complicated (e.g., when capability arguments
exceed the number of capability registers and need to be passed through the DCS).

The current DomOS design addressed these concerns without modifying the architecture. Nonetheless,
if CODOMs were now redesigned it would be much simpler to have a special type of capabilities for the
DCS: an internal privileged bit indicating if the target memory is for the DCS. This would allow user code
to freely manage the DCS and its frames by exposing the DCS registers as regular general-purpose registers
and by using a capability to grant access to the DCS.

5.2.5 Capability Revocation

As introduced in Section 2.2.4, capability revocation is a very tough problem in both hardware and software
implementations. CODOMs has been carefully designed to provide a very efficient implementation for
immediate and selective capability revocation, which is key to allow DomOS to pass capabilities across
processes.

The first difference with other systems is in the optimization of capability revocation by distinguishing
between synchronous and asynchronous capabilities, as described in Section 4.2.1. A capability is con-
sidered synchronous when its revocation counter value is zero, and is considered asynchronous otherwise.
The implicit revocation property of synchronous capabilities is enforced by ensuring they are not shared
with other threads through memory; therefore, once a callee domain returns, it no longer has access to the
synchronous capabilities it received. Since the number of capability registers is limited, synchronous capa-
bilities are allowed to be stored into the DCS, but not to other capability storage pages. Since the DCS is
strictly a per-thread resource (see Section 5.2.4), storing synchronous capabilities in the DCS does not pose
any problem.

The second difference with other systems is in efficiently supporting immediate and selective revoca-
tion of asynchronous capabilities. Asynchronous capabilities can be stored in any capability storage page,
including those of the DCS. Software starts by creating a revocation counter in memory. An asynchronous
capability is created by passing it the address and value of the revocation counter stored in memory. An
asynchronous capability is considered valid as long as its cached version of the counter (the revocation
counter value field) matches the one stored in memory (retrieved through the revocation counter address
field). When a revocation instruction is executed, CODOMs first verifies that the instruction’s tag matches
that stored on the capability, ensuring that only the domain that created a capability can revoke it. CODOMs
then immediately revokes it by incrementing the value of the revocation counter stored in memory, thereby
invalidating all capabilities that use the same counter (the value cached in the capability does not match
the one stored in memory). Therefore, selective revocation is possible by associating a different revocation
counter to different capabilities, even if they grant access to the same memory range (i.e., the same logic
object from the point of view of the programmer).

Passive (stored in memory) asynchronous capabilities are lazily invalidated when loaded from memory.
Hardware will reset their access permission (set it to None) if the counter value does not match the one in
memory.

Active (stored in a register) asynchronous capabilities that use the revocation counter being revoked are
immediately invalidated. The simplest approach is to send an internal signal to all cores, which invalidates
all capability registers that have the specified revocation counter address. More efficient alternatives exist,
such as using a central directory to track the active asynchronous capabilities. In this case, the revoking core
signals the directory, which in turn invalidates all capabilities that use the same revocation counter (similar
to the approach used by DiDi for TLB shootdowns [121]). In all cases, since most capabilities are expected
to be synchronous (and not asynchronous), this operation will be infrequent.
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A revocation counter can be reused 246 − 1 times until it overflows (raising an exception), and 248

different counters can exist in the system. When a counter is reused after an overflow, the system must ensure
that all passive capabilities that use the overflowed counter are immediately invalidated. Nevertheless, the
magnitude of the revocation counter (246 − 1) makes such events extremely infrequent, and the existence
of the capability storage (S) bit greatly reduces the number of possible addresses where capabilities can
be stored (as opposed to using memory tags to identify capabilities). More importantly, the system is not
involved in synchronous capabilities (the vast majority), and does not need to perform garbage collection on
the memory the capabilities grant access to.

Discussion

Setting a non-zero revocation counter is a privileged operation because the capability revocation operation
performs memory writes based on it. CODOMs could instead verify that the revocation counter address is
writable by the requestor before allowing unprivileged code to create an asynchronous capability, or could
have an additional per-page bit to identify pages with user-managed revocation counters. Nonetheless, do-
main switches in CODOMs are sufficiently efficient that this restriction should not severely impact perfor-
mance. Furthermore, the current design allows the TCB to keep a tight control on asynchronous capabilities
and revocation counters. This can be specially important since DomOS allows capabilities to cross process
boundaries.

5.3 Enforcing Domain Entry and Exit Points

Entry points are enforced through the call permission, which limits cross-domain control flow to call in-
structions at addresses with a specific alignment. Nevertheless, directly granting call permission to a do-
main containing the code of a regular binary would mean the compiler must carefully lay out code to avoid
callers entering in the middle of a function; remember that the only limitations are using call instructions
and adhering to the target alignment restriction.

Instead, a properly aligned “proxy” routine is created for each entry point, which serves as a trampoline to
the actual entry point. Therefore, the regular callee code does not need to care about alignment. Access to a
subset (or all) of these proxies can be granted through the two means available in CODOMs: (1) a capability
with call permission to the range of memory containing the selected proxies; or (2) a call permission to
an intermediate domain with the proxies. This second approach is shown in Figure 4.1, where the caller
(green) domain has access to a Proxy domain which, in turn, has access to a callee (blue) domain; the flow
of execution is the same as in Figure 5.3, where function f B (on domain B) would be the proxy for function
f C (on domain C). Note that proxies are not strictly necessary; one can directly create a capability with
call permission and size zero to the address of an entry point (remember that size zero disables alignment
checks).

Exit (return) points can also be enforced in CODOMs. It is important to note that a callee domain does
not necessarily have access to its caller domain; for example, none of the domains in Figure 5.3 has access
to its caller domains. In this case, a caller domain can create a “return capability”; that is, a capability to
the return address with its size set to zero, which disables the alignment checks and allows using return
instructions.

The discussed approaches are taken by the compiler and OS support described in Chapters 6 and 7 to
enforce domain entry and exit points.
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Discussion

Providing controlled cross-domain entry points through capabilities and additional proxy domains provides
a path for gradual adoption with binary compatibility. Intermediate proxy domains allow cross-domain calls
on unmodified code, while capabilities provide tighter control without the need for intermediate domains.

The use of capabilities with a zero size as described raises a very interesting question: how does the sys-
tem differentiate between capabilities intended for calls and those intended for returns? For domains inside
the same application, we can assume components will not willingly attack each other; this is because the
programmer is linking them together, so a minimum of trust exists on code being well-behaved. Therefore,
in this case there really is no need to check against willful misinterpretations. For domains on different
applications, where distrust may exist, an intermediary must be used to exchange the initial access grants.
That is, processes in DomOS cannot initially access each other, and the OS must setup an initial communi-
cation channel. This is exploited to enforce the use of a proxy domain whose code tracks the proper usage
of return capabilities, as described in Section 7.2.2. Performing these checks in software provides the in-
tended safety, but at the expense of a few additional instructions. A future CODOMs implementation might
simplify this by adding a per-capability bit that clearly differentiates which capabilities are meant to be used
for cross-domain returns.

5.4 Implementation of Access Protection Checks
Figure 5.1 shows the steps followed by the information involved in implementing access protection checks.
The APL describes the access permissions that a domain has over other domains. 0 The hardware caches
these permissions in a per-CPU APL cache. It is a software-managed cache that is refilled by the OS,
allowing the multiplexing of the unbounded number of tags without changing the page table entries. The
APL cache maps the Tag field found in the page table capabilities into a smaller HwTag field and a HwAPL
field that encodes the access permissions of domain HwTag for all other domains currently cached in the
APL cache. Therefore, the APL cache can be understood as the “access control matrix” of the domains
currently cached by this core at a specific moment in time [69]. If a domain is not present in an APL, the
None permission is used in the HwAPL. The APL cache exposes following privileged operations:

aplcache get: Gets the contents of the given entry.

aplcache set: Sets the contents of the given entry.

aplcache reset: Triggers a recalculation of the HwAPL fields stored in other hardware structures of
this core. A bitmask argument indicates which HwTag values need recalculation; i.e., recalculate the
HwAPL corresponding to the selected HwTags.

aplcache index: Returns the index of the entry used to cache the information of a given tag (see Sec-
tion 7.4.4).

aplcache lru: Returns the index of the least recently used entry.

The current implementation has 32 entries in a fully-associative configuration. Therefore, each entry
contains 128 bits: 64 bits for the Tag field (used for lookups), and 32 2-bit entries for the permissions of
the 32 cached tags (the HwAPL field of each entry). The HWTag field requires 5 bits but is not stored in
the cache, since it is implicit in the entry’s index. Section 8.1.4 shows that 8 entries are enough in complex
scenarios (99.6% hit rate for isolating all Linux kernel modules). Nonetheless, a 32-entry configuration
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Figure 5.4: Access protection check logic for memory accesses.

provides a reasonable trade-off between hardware costs and a high APL cache hit ratio for more aggressive
system configurations that use a larger number of domains (i.e., systems that provide finer-grained isolation).

Entries on the data and instruction TLBs are extended to contain the HwTag corresponding to the page
table entry they describe. 1 On a TLB refill, the hardware page table walker issues an aplcache index
operation to retrieve the HwTag corresponding to the Tag encoded in the page table entry. If the mapping
does not exist, an exception is raised, in which case the OS must multiplex one of the entries with the new
tag (e.g., using aplcache lru to evict the least recently used tag and using aplcache reset to inform
of the change to other hardware structures in the core). Additionally, the instruction TLB is extended to
store the privileged capability bit (P) from the page table entry. Likewise, the data TLB is extended to store
the capability storage bit (S). This information can be stored on a separate structure to optimize energy and
delay, since it is only needed after a TLB hit.

2 When an instruction is fetched, the relevant information from the instruction TLB is stored in the
architectural register currdom. This register encodes the information of the current domain, acting as an
implicit capability to the program counter. Since many instruction sequences reside in the same page, this
can be optimized to reduce the number of instruction TLB lookups and the amount of storage required to
pass that information. 6 Whenever the contents of the currdom register are modified (i.e., a domain switch
takes place), its previous value is copied to the architectural register prevdom.

3 When a capability is created, the Tag and HwAPL of the currdom register are copied into the
capability register. This ensures a capability always has the same permissions of the instruction that created
it, and avoids lookups in the APL cache when the capability register is used. 5 When a capability is loaded
from memory, the aplcache get operation is used to copy the corresponding HwAPL field into it; this
ensures HwAPL fields are never stored in memory, limiting tag multiplexing to changes in the state of a
single core.

4 An access check utilizes information from the currdom and capability registers, as depicted by
Figure 5.4. The HwTag in the data TLB is used to index the HwAPL of the currdom register and retrieve
the protection level for the target address. Conversely, the HwTag in the currdom register is used to check
control flow instructions. The same applies to capabilities, except that CODOMs uses the stricter value
between the selected HwAPL entry and the capability’s permission. The protection checks are performed in
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parallel to the actual cache access, effectively hiding their latency.

Discussion

The OS uses the aplcache reset operation to multiplex the set of active tags. This reloads the cor-
responding HwTag and HwAPL values in the capability registers and TLB entries of that CPU. No TLB
shootdown-like operations are required, since there is one independent APL cache per CPU, and its infor-
mation does not leak into passive capabilities.

Multiplexing a HwTag typically requires changing the HwAPL of multiple other HwTags (i.e., other APL
cache entries that had access to the evicted HwTag). To make this more efficient, a second bitmask argument
could be added to aplcache reset to support lazy tag multiplexing. This would reset, for all APL cache
entries, the HwAPL bits corresponding to the HwTags identified in this second argument; i.e., the index’th
permission of all entries is set to None for each index in the bitmask,

Exposing the identity of the previously executing domain (prevdom register) can be used by the OS to
identify which domain raises a software interrupt or an exception without having to track every cross-domain
call or traverse the page table to retrieve the domain of the previously executing instruction.

5.5 Efficient Execution in Out-of-Order Pipelines
A challenging design point is how to make cross-domain calls efficient in a high-ILP out-of-order processor.

Protection Domain Checks and Switches on out-of-order processors are efficiently implemented through
the currdom register. The information provided by the instruction TLB is sent to the rename stage. The
currdom register is renamed every time a domain switch occurs (when its contents change). Since the
register is not changed beyond that stage, the rename stage itself can set the new value and mark the register
as ready. Similarly, the prevdom register points to the physical register used for currdom before renaming
it. This eliminates RAW hazards during domain switches and allows maintaining instructions from different
domains in-flight. Importantly, this efficiency includes switching from privileged to non-privileged code,
since currdom also contains the privileged capability (P) bit (i.e., zero-latency system calls). Experimental
measurements show that 6 physical currdom registers are sufficient to eliminate all RAW hazards on a
tight call/return loop. Moreover, for functions doing some actual work, 4 physical currdom registers are
sufficient to make the domain switch completely seamless even on short routines.

Capability Registers may also generate RAW hazards when modified and used implicitly. CODOMs
alleviates this by providing a 2-wide register window for active capabilities. Register capX is used by the
current instruction sequence, and capXn for the “next” window. Writing into capX also writes into capXn.
The windows are swapped on protection domain switches, thus allowing software to eliminate RAW hazards
on capX. This can be used, for example, by highly-optimized proxies that interface with code running in
the implicit capability use mode.

5.6 Revisiting Isolation Scenarios
The presented code-centric protection and implicit capability use provides a form of limited ambient au-
thority for memory and privilege protection. It is ambient authority because it is not explicitly exercised
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(e.g., all capabilities are implicitly checked). It is limited in the sense that it does not necessarily grant ac-
cess to the entire address space. This brings its own benefits when using CODOMs on code with none to
minimal changes. Hierarchical isolation (sanboxing and privilege amplification) can be easily implemented
only using code-centric protection (i.e., page table capabilities and APLs). Since different domains can have
interleaved pages, there is no need to partition the virtual memory space beforehand to accommodate all
possible domains. Only small wrappers are necessary for calls to sandboxed domains when they receive
information from their parent domain. Since all capabilities are implicitly used by default, no changes are
necessary on the sandboxed code.

The same can be applied to non-hierarchical isolation when domains communicate through a common
parent domain. Process-level isolation is a clear example of this. System calls can be replaced with function
calls to the OS kernel domain, and each process can be allocated on a separate domain inside the same page
table. In fact, this is the approach taken by DomOS (see Chapter 7), only that cross-process calls are further
optimized.

Stricter isolation can also be achieved by moving into explicit capability use, at the expense of extensive
compiler changes and/or code annotations. If all code running in a system arrived at such level of integration,
the architecture could be simplified in favour of relying solely on capabilities. In this case the APL, APL
cache and the HwTag and HwAPL fields would no longer be necessary, while the other positive aspects of
the CODOMs design could be retained.
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Compiler Support

Experimental compiler support has been implemented to ease the management of isolation domains using
simple programmer annotations. These annotations can be used to split the different components of an
application into domains, define their entry points and establish the isolation policies between domains.
They are synthesized into ancillary data structures in the output binary, which are later fed into the program
loader in DomOS to automate the initialization of isolation domains. Annotations are sufficiently flexible
that different policies can be expressed, including asymmetric isolation policies.

6.1 Language Interface
The compiler provides the following annotations:

Domain assignment: The macro dom("<name>") allows assigning global symbols (code and data)
into the specified domain. Any unassigned symbol is implicitly assigned into a default domain.

Domain-level permissions: The macro perm("<regexp>", "<perm>", "<regexp>") can be
used at global scope to indicate the access permissions (i.e., APL configuration) between domains of
the same application. By default, no permission is granted. The regular expression arguments select
which domains should be granted the given permissions. For example, perm("d1", "call",
"d2") specifies that domain d1 should be granted call permission to d2 in its APL.

Entry point identification: The macro entry() can be used in function symbols to identify them as
domain entry points, analogous to “extern” in C.

Entry-level isolation: A set of iso * macros define the set of isolation-sensitive actions that should be
performed when calling into or receiving a call from another domain or entry point (see below). By
default, no isolation-sensitive action is taken. The actions can be specified for interactions with a
specific domain or entry point name.

There also are variants of the annotations with the “ push” and “ pop” suffixes to specify information
for blocks of code (e.g., multiple consecutive functions), minimizing programmer hassle. The annotations
account for order, so one can use regular expressions to refine permissions over a previous annotation. Each
isolation-sensitive action is defined as a pair of isolation property (integrity or confidentiality) and a resource
(register, data stack and DCS):
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Register integrity translates into making a copy of live registers before a cross-domain call, and restoring
them afterwards. Only applies to callers.

Register confidentiality translates into zeroing non-argument registers (for callers) and non-result registers
(for callees) that are known to contain confidential information. Without further compiler support all
these registers must be assumed to contain confidential information, but differentiating which infor-
mation is confidential could further reduce the number of registers that must be zeroed.

Data stack integrity translates into creating a capability for in-stack arguments before a call, and another
capability that points to the rest of the stack. Only applies to callers. This leaves previous stack frames
inaccessible to a callee. As explained later in Section 7.2.2, the stack is accessible through a capability.

Data stack confidentiality translates into using separate stacks for the caller and callee. It applies to both
callers and callees.

DCS integrity translates into adjusting the DCS base pointer (dcsb register) to exclude non-argument
entries. Only applies to callers.

DCS confidentiality translates into using a separate DCS for the caller and callee. It applies to both callers
and callees.

An additional action controls process switches which, in the current prototype, control switching the
process identity; namely, resource accounting (e.g., CPU time and memory) and software resource isolation
(i.e., file descriptor table). Therefore, it is possible to call into a function of another process with and without
switching the process identity (see Section 7.2.2).

Establishing isolation actions at this very low granularity provides a very tight control of what isolation
actions the programmer deems necessary. By only generating code for the desired actions, performance can
be kept closer to that of a regular function call while preserving the isolation required by the programmer.
Note that higher-level or simpler policies can be implemented on top as a combination of these annotations.

Most of these actions involve unprivileged resources, like registers or the data stack. Therefore, the
compiler can inject caller and callee stubs on entry point call points and entry point definitions (respectively)
to implement most isolation actions at user level. This removes code from the TCB, while still ensuring each
domain handles its own share of the isolation work. If a programmer mis-configures the isolation actions of
a caller domain (making them too unrestrictive), this will never expose the callee domain (which has its own
stub). For example, if a caller does not enforce register confidentiality, the callee can still do so (since this is
implemented on the respective stub).

Whenever a privileged resource is involved, the action is implemented on a privileged proxy routine
managed by the TCB (see Section 7.2.2). This includes process identity, the DCS and data stack confiden-
tiality (this last one for performance reasons). In this case, DomOS ensures that trusted proxies satisfy the
actions requested by both the caller and the callee domains. Therefore, a mis-configuration of the isolation
actions of a caller will never inadvertently affect the actions requested by the callee. For example, if the
callee requests a process identity switch, the trusted proxy will do so regardless of whether the caller also
requested it.

Discussion

Implementing isolation actions in user-level code provides two benefits. First, the size of the TCB code
is reduced. Second, low-level knowledge from the compiler can be exploited to minimize the costs of
operations like register integrity.
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This knowledge is available to the compiler through the target architecture’s ABI (and the function
signature) and information from the architectural state at a call or return site. The ABI conventions define
how to map arguments into registers and the data stack, and also define what registers should be preserved
by a callee across function calls (i.e., must be restored to their original value before returning). For example,
the ABI for x86–64 defines registers rdi and rsi as the locations for the first and second arguments,
respectively. It also defines that r11 and r12 are never used for arguments, but only the latter must be
preserved across function calls.

For a call to a function with one argument, the compiler will already safeguard the values for rdi, rsi
and r11 if they are later used on the caller function (i.e., they are live at the call site). This is because
the ABI defines they are not preserved across function calls, while the caller will restore the value of r12
before returning (in case it was modified). Now, if the target function is on a separate domain of the same
application, the programmer does not need to enforce register integrity. The code, generated by the compiler,
can be trusted to follow the ABI and therefore to return with the appropriate register values. The same can
be applied when performing a call to some other application that the programmer trusts to be well-behaved
(e.g., a system service). If the target code cannot be trusted to faithfully follow the ABI conventions, register
integrity can be greatly optimized with knowledge from the call site. The caller stub only needs to safeguard
register r12, and only if it is live at the call site. Registers rdi, rsi and r11 are already managed at the
call site by the regular ABI rules. Similarly, a caller stub providing register confidentiality does not need to
zero register rdi, since the ABI establishes it as non-confidential by virtue of being an argument.

Stubs can be inlined into the point where they are used, further optimizing their contents with knowl-
edge of what registers are live at the call or return site. Nonetheless, optimizations like handling register
integrity only for live registers can make debugging the caller code harder in case the callee fails. In such
case, it is very easy to have a compiler flag to perform less aggressive optimizations for debugging builds.
Alternatively, inlining can be avoided and, intead, select between an optimized and a non-optimized stubs at
run-time depending on on whether the application is being debugged.

6.2 Implementation

Compiler support is extended for the C and C++ languages using a wrapper for the target compiler program.
The wrapper is a source-to-source compiler that uses LLVM’s clang library to generate new source files
from the original inputs according to programmer annotations. Internally, the wrapper injects a header
using the -include <file> command-line argument, which uses defines to map these annotations into
the parseable attribute attribute ((annotate(("<annotation info ...>")))). In the
case of global annotations (i.e., the push/pop variants), a phony function declaration with the appropriate
attribute is generated instead. The wrapper then replaces the original source files with the newly-generated
ones to invoke the target compiler, which will generate the binary files. Domain assignment is translated into
generating code and data on specific ELF sections [71] in the form .dom.<name>.<type>. For example,
code for domain d1 will be generated in section .dom.d1.text instead of .text. In fact, sections of
the form .<type> are regarded as pertaining to the default domain (e.g., a non-annotated function will be
placed on the .text section). Other annotations generate additional sections that are later parsed by the
program loader. For every entry point, the number of data stack and DCS arguments must also be stored to
properly handle stack switching actions (see Section 7.2.2).

The program linker is also extended with a wrapper. It replaces the linker script used by the target
linker with one that is enhanced to manage the additional DomOS-specific ELF sections. For each of these
sections, it generates two symbols that identify their bounds once loaded, so that the information can be
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easily parsed by the loader. Both the compiler and linker also provide additional command-line arguments
that can be used to manage domain assignment at the object file and ELF section level.

The callee stub names are generated in a way similar to C++ name mangling, since the same entry point
can have different callee stubs depending on who is calling it. Therefore the compiler registers the addresses
of entry point callee stubs in the section that describes entry points, instead of registering the entry point
addresses. Uses of an entry point symbol of another domain are replaced with the name of the caller stub.
In turn, the caller stub calls into an intermediate symbol that is resolved at run-time by the program loader
(see Section 7.3.2).

Discussion

Since the current compiler prototype relies on source-to-source transformations, it cannot reliably determine
how many registers and how much stack space is used for arguments, nor cannot determine which registers
are live or contain confidential information at a call point. Therefore, the compiler is currently unable to
reliably generate caller and callee stubs, relying on the programmer to write them instead. Nonetheless, the
state isolation results for C++ presented in Section 3.2 suggest that working closely with the low-level layers
of the compiler could provide state integrity at extremely low costs. The same applies to capabilities, even
though recent works demonstrate it is feasible to have the compiler automatically manage them [34].

Nonetheless, many interfaces of existing software components try to minimize the use of pointers when
designed to operate across isolation domains (e.g., across processes). This makes it more feasible to extend
annotations to selectively manage capabilities for function arguments. It also makes it easier to integrate
with existing code, instead of treating every single user-level allocation as a capability [34].

6.3 Example
Figure 6.1 shows a simple example of how to use the source code annotations, and how they influence the
generation of the resulting binary. The target goal is the following: a function funcA generates some value
in variable varA, and then performs a call into function funcB in some other domain that computes a result
based on the value of varA. To make this happen, the value of varA must be either passed as an argument,
or must be accessible by both domains (the latter case is shown in the example).

The annotation in Line 3 of Figure 6.1a assigns variable varA to domain A1 ( dom("A1")), while
Line 5 assigns function funcA to domain A2. Finally, Line 14 assigns function funcB to domain B. This
results in generating the corresponding code and data on separate sections of the output binary. This can be
seen in lines Lines 2, 7 and 12 of Figure 6.1b, where sections are tagged with the name of the domain they
are part of (i.e., sections .dom.A1.bss, .dom.A2.text and .dom.B.text).

Lines 1, 2 and 12 of Figure 6.1a establish the permissions of these three domains. This generates addi-
tional information on the output binary, which is later used by the program loader to configure the APL of
each domain. The first two establish the permissions to domain A1, shown by Lines 4 and 5 of Figure 6.1b.
Line 1 lets all domains read the value of varA (domain A1), while Line 2 lets domain A2 also write into
it. This allows funcB to access varA (Line 17) without passing a capability to it. In turn, Line 12 of
Figure 6.1a lets funcA perform the call to the entry points in domain B, which is encoded in Line 18 of Fig-
ure 6.1b. Note that the annotation sets a permission of entry, instead of the expected call permission. This is
to differentiate between direct call access to a domain (where entry points must be aligned; see Section 5.3)
and call access to a domain with auto-generated proxies to the actual entry points (see Section 7.3).

Line 6 of Figure 6.1a establishes the caller-side of the isolation policy when funcA calls into funcB.
In this case, it establishes that calls into functions of domain B should ensure the integrity of registers (i.e.,
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1 perm ( ” .∗ ” , ” r e a d ” , ”A1” ) ;
2 perm ( ”A2” , ” w r i t e ” , ”A1” ) ;
3 i n t varA dom ( ”A1” ) ;
4
5 void funcA ( void ) dom ( ”A2” )
6 i s o c a l l e r ( ”B” , ” r e g i s t e r ” , ” i n t e g r i t y ” )
7 {
8 varA ++;
9 p r i n t f ( ”%d\n ” , funcB ( ) ) ;

10 }
11
12 perm ( ” .∗ ” , ” e n t r y ” , ”B” ) ;
13
14 i n t funcB ( void ) dom ( ”B” ) e n t r y ( )
15 i s o c a l l e e ( ”A2” , ” dcs ” , ” c o n f i d e n t i a l i t y ” )
16 {
17 re turn varA ;
18 }

(a) Source code annotations.

1 . dom . A1 . b s s :
2 varA
3 . dom . A1 . i s o :
4 dom , . ∗ , r e a d
5 dom , A2 , w r i t e
6 . dom . A2 . t e x t :
7 funcA
8 . dom . A2 . e n t r y r e f :
9 funcB from funcA , funcB ,

10 s i g n a t u r e
11 . dom . B . t e x t :
12 funcB
13 f u n c B c a l l e e s t u b
14 . dom . B . e n t r y :
15 f u n c B c a l l e e s t u b , funcB ,
16 s i g n a t u r e
17 . dom . B . i s o :
18 dom , . ∗ , e n t r y
19 dcs , A2 , c o n f i d e n t i a l i t y ,
20 f u n c B c a l l e e s t u b

(b) Sections and information on the binary.

Figure 6.1: Example of source code annotations.

saving them into the stack before the call, and restoring them afterwards). This generates a caller stub for
funcB, which is inlined into the caller at Line 9 of Figure 6.1a.

The cross-domain call is possible because funcB is declared as an entry point for domain B ( entry()
annotation in Line 14 of Figure 6.1a). In addition, Line 15 of Figure 6.1a sets the callee-side of the isolation
policy for calls to funcB. This results in creating a callee stub (funcB callee stub in Line 13 in
Figure 6.1b) that wraps a call to funcB to enforce the selected policy. In this case, the policy requests
maintaining the confidentiality of the DCS, so the stub is empty because the DCS cannot be managed by
unprivileged code (see Section 7.2.2). Instead, some additional information is generated on the output binary
that can be later used by the program loader to generate a proxy that implements this part of the policy. This
information includes registering the callee stub as an entry point for funcB (Lines 15 and 16 of Figure 6.1b)
and recording the requested policy (Lines 19 and 20 of Figure 6.1b).

The actual call into funcB performed in the caller stub of funcA is substituted with a call to an un-
resolved symbol funcB from funcA. This symbol is later resolved by the program loader at run-time
to point it to the appropriate proxy or callee stub, which is decided based on the isolation information for
funcB embedded in the binary (Lines 9, 10, 15 and 16 of Figure 6.1b; see Section 7.3.2).
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Operating System Support

DomOS examines the isolation interfaces in a way that eliminates the semantic mismatch between regu-
lar functions and IPC (see Chapter 3). It removes unnecessary overheads and provides copyless and syn-
chronous call semantics across domains (including processes) without going through the OS kernel. Appli-
cations can define their own isolation domains, wherein processes are just a group of domains. By placing all
processes in a shared address space, threads can safely call into routines in other processes, and arguments
are communicated without copies through the hardware capabilities of CODOMs. Instead of providing fixed
isolation policies across domains, DomOS exposes a list of critical resources that programmers can “opt-in”
to isolate if necessary. Non-privileged resources are directly managed by user-level code, making isolation
simpler and more efficient (see Chapter 6). With this flexibility, applications can build the most adequate pol-
icy for their needs on a per-function/call-site basis, ranging from ring-like hierarchical isolation to full-blown
RPC-like isolation at a fraction of the run-time costs. Furthermore, this efficiency opens new possibilities
for component and process compositions that were until now unfeasible due to existing overheads.

DomOS has been prototyped on top of the Linux kernel, but the concepts presented here can be applied
to other OSs as well. The aforementioned goals are achieved using the following mechanisms:

• Applications create domains through software domain capabilities, and configure how they can access
each other through domain grant capabilities. The DomOS kernel then maps this information into the
underlying CODOMs architecture (using tags and APLs, respectively).

• Applications identify the entry points of domains and the policies they want to enforce on callers
through software entry point capabilities. Callers can later provide which policies they want to enforce
on callees and an entry point capability to DomOS, which uses the information at run-time to generate
thin trusted proxy routines that bridge calls between these domains. Proxies implement the requested
policies in the most efficient way, and only manage the isolation of privileged resources (whereas
isolation of unprivileged resources is managed by the application).

• The code annotations described in Chapter 6 are consumed by the DomOS program loader and runtime
to automate the use of the two mechanisms above.
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7.1 Processes and Threads

Processes in DomOS function as persistent resource containers, holding multiple domains and threads. Pro-
cesses (and therefore domains) in the system share a 64-bit address space, similar to a Single Address Space
OS (SASOS) [32, 58, 60, 94, 113].

A thread in one process is allowed to call into an entry point in another process, but UNIX systems use
user identities to control when a thread can be killed by a given user. Therefore, DomOS maintains existing
thread control policies by exposing a different thread identifier for every primary thread and process pair,
similar to what is provided by the concept of migrating threads on other OSs [35, 49, 57].

Discussion

Instead of processes, one could provide a new “service” abstraction to manage persistence and resource
containers orthogonally to threads and processes; i.e., a service could be used as if linking against an iso-
lated third-party persistent library. This would require registering services into the system, initializing them
either when registered or the first time they are used. Persistence is simple enough to maintain (by keeping
their state present in memory or swap space), but resource containers require identifying a subject to charge
resource requests to, and other subjects need a mechanism to manage computations taking place inside a
service (e.g., killing a thread). Since DomOS is implemented as an extension of Linux, it is simpler to reuse
processes in a way that maintains backwards compatibility; resources are charged to the user that starts a
process, and threads inside a process have different thread identifiers that can be controlled separately. An
alternative “service” abstraction would be simpler to implement if backwards compatibility was not a con-
cern. For example, it could be implemented similarly to the constructor abstraction in the object capability
system EROS [105]. Migrating threads provide a similar design to that of DomOS. In the implementation
found in Mach [49], processes acting as services register an activation block with the kernel. When a client
performs an RPC with the service, an unused activation is selected, which appears as a separate thread to
a user observing the system. Nonetheless, reusing activations has its own problems; an activation can ap-
pear as a different thread each time it is used (regardless of the process that triggered it), and reusing them
makes it harder to keep persistent per-thread information that easily correlates to the primary thread that it
is servicing.

Previous OSs implemented the migrating threads concept under the observation that dissociating the
thread and process abstractions improved CPU time accounting. As a side effect, they also eliminated the
need for synchronizing threads of communicating processes. The main difference with DomOS are that
it: (1) maintains stable thread identifiers and per-primary-thread persistent state, (2) provides cross-process
calls in a way that optimizes the steps necessary to maintain isolation, (3) eliminates data copies, and (4)
does not have to go through the OS kernel.

Since DomOS uses a single addres space, components must be compiled as Position-Independent Codes
(PICs) [71]. In fact, this is already commonplace to increase security through Address Space Layout Ran-
domization (ASLR) [50, 90]. For the sake of backwards compatibility, processes are still created using the
POSIX fork operation in DomOS, maintaining their traditional copy-on-write semantics. After a fork, the
process uses a separate page table and loses its ability to interact with domains on other processes. When
the POSIX exec operation is invoked with a PIC executable, the new contents are merged into the global
page table and the temporary page table is destroyed. Existing systems already provide alternatives like
posix spawn and vfork+exec to initialize a child without executing code in its context, avoiding the costly
copy-on-write and eliminating the need for a temporary page table.

Since threads can cross process boundaries, the common approach of using garbage collection for ca-
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pability revocation cannot be easily applied here unless a large part of the language runtime and garbage
collection is added as part of the TCB. A simpler approach is to forbid capabilities from crossing process
boundaries, but that defeats the point of using capabilities to avoid a trusted intermediary to perform copies at
domain boundaries (like conventional OS kernels do through their IPC primitives). As previously discussed,
CODOMs provides a good substrate to efficiently manage revocations (see Section 5.2.5).

7.2 Low-Level Isolation Interface
The DomOS kernel provides two sets of abstractions to manage isolation: domains and entry points. They
can be directly used by applications, or left to the DomOS program loader and runtime to automate their
management.

7.2.1 Domain Management
Domains serve as the memory isolation unit of DomOS, composed of an arbitrary collection of code and data
pages. They are managed through the operations in Table 7.1. The software domain capabilities (domx) are
used as handles to the underlying CODOMs tags. In turn, domain capabilities can be used to create domain
grant capabiltiies, which are translated into managing the corresponding APL in CODOMs; that is, which
other domains can be accessed by a domain (e.g., domdst and domsrc in grant create, respectively).
Both types of software capabilities are implemented as file descriptors operated through ioctl, and can
thus be passed around across processes (i.e., using UNIX sockets).

Domains in DomOS have the same permissions used by CODOMs (call, read, write), plus an additional
owner permission. The owner permission is required to perform operations that modify domain’s grants
(see Table 7.1). By default DomOS associates memory to the allocating domain (e.g., through mmap). It
also provides functions to explicitly allocate memory on a given domain (dom mmap) and to “remap” pages
from one domain to another (i.e., change their tag with dom remap).

7.2.2 Entry Point and Cross-Domain Proxy Management
Entry points are used by domains to enforce where other domains can call into. They do not have a special
representation in CODOMs, except that a call permission is necessary to enforce known addresses and call
instructions are used (see Section 5.3). Therefore, it is sufficient for applications to use domain and grant
capabilities. For example, suppose domdst wants to grant access to some of its functions to domsrc. In
this case, domdst can create a “proxy” domain domproxy (with read permission to domdst) that contains
trampolines to the functions in domdst (to avoid alignment issues in regular code). In turn, domdst can pass
a copy of domproxy (with call permission) to domsrc, who will install it in its APL with grant create.
In fact, the functionality provided by the intermediate proxy is very similar to that of the Procedure Linkage
Table (PLT) [71], and can be easily implemented by user code.

Nonetheless, there are isolation-critical resources that cannot be managed by user code, like the DCS or
the set of software resource that are associated to a process (i.e., open files). To this end, DomOS provides
the operations shown in Table 7.2 to create privileged proxies that can manage these resources.

Applications use the entry register operation to register a set of functions that act as entry points to
a domain, and returns an entry capability (entrye). Each entry point descriptor contains the target’s function
address, its signature (argument register set and number of data stack and DCS arguments), and the set of
isolation properties that it (the callee) wants to enforce on its callers. These properties are a subset of the ones
used by the compiler annotations described in Section 6.1; namely, data stack confidentiality, DCS integrity,
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Operation Effect
dom default()→ domd Return domain capability domd for current process’ default

domain.

dom create()→ domd Return domain capability domd with owner permission to a
new tag domd.tag.

dom copy(domsrc, permdst)→
domdst

Return domain capability domdst with permission permdst

and domsrc’ tag iff permdst ≤ domsrc.perm.

dom close(domd) Release domain capability domd. Tag domd.tag is released
iff there are no more domain or grant capabilities referencing
it.

dom mmap(domd, ...)→ ... mmap-like allocation on specified domain iff domd has owner
permission.

dom remap(domdst, domsrc,
addr, size))

Reassign selected pages from domsrc to domdst iff pages are
in domsrc, and both domsrc and domdst have owner permis-
sion.

grant create(domsrc,
domdst)→ grantg

Return domain grant capability with domdst.perm permis-
sion to domdst in domsrc’ APL iff domsrc.perm ==
owner.

grant revoke(grantg) Set permission to none for grantg.dst in grantg.src’ APL.

grant close(grantg) Release domain grant capability grantg .

Table 7.1: Domain-management operations in the DomOS kernel.

Operation Effect
entry register(domd, count,

entries[count])→ entrye

Return entry capability entrye for the given entry descrip-
tors iff domd.perm == owner and all descriptors point to
domd.

entry request size(entrye)→
size t

Return the number of entries registered in the entry capabil-
ity entrye.

entry request(entrye,
count, entries[count])→
domp

Return domain capability domp with call permission to a
new domain with proxies to entrye iff ∀i < count :
entries[i].signature == entrye.entries[i].signature.
Each descriptor is set to its proxy’s entry point on re-
turn. Per-entry isolation properties are entries[i].props ∪
entrye.entries[i].props.

entry alignment()→ size t Return the currently configured entry point alignment value.

Table 7.2: Entry point-management operations in the DomOS kernel.
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DCS confidentiality and process switch. That is, those that are not purely enforced at user-level by the caller
and callee stubs. Issuing an entry request operation actually creates the proxies for each of the entry
points in the entry point capability, provided that function signatures match. Entry point capabilities can
also be passed across processes to establish cross-process calls, in which case the process switch property is
implicitly set on all entries. The result is a domain capability that contains the code for each of the proxies
(the domain has access to all other domains and its pages have the privileged capability bit). Also, the entry
descriptors passed through the entries argument are modified to point to the proxy addresses, so that a caller
can redirect execution to the proper proxy address. At this point, a caller domain can use grant create
to have access to the proxy functions and call into them.

Instead of using a generic routine in the OS kernel to manage isolation (as happens with traditional
IPC), DomOS removes the OS kernel from the critical path and instead generates the optimal proxy for the
selected isolation properties and function signature. The DomOS kernel contains a set of proxy templates,
one per combination of signature and isolation properties. The appropriate template is copied into the actual
proxy location, and its contents are adjusted via a very simple symbol relocation process [71]. The number
of templates is relatively low, and they are generated from a single source file. Register signatures are used
to select the template that makes the best use of unused registers.

All proxies make sure that caller and callee have a valid stack; they start by verifying that the caller’s
stack pointer and stack capabilities point to the thread’s stack, and restore the stack pointer after the callee
returns. This ensures a callee can use the stack to safeguard thread-specific information in its caller stub. To
this end, proxies replace the callee’s return address with one in the proxy and create a CODOMs capability
with call permission to it (since the callee does not have access to that address). Note that checking the stack
is not strictly necessary, since an additional isolation property could be added so that callers and callees can
identify when stack register integrity is necessary.

Discussion

When generating proxy routines, DomOS checks that function signatures provided by the caller (through
entry request) match those provided by the callee (through entry register) to ensure one does
not trick the other on what registers or portions of the stack are really unused.

Data stack confidentiality is implemented by changing the stack pointer and transferring in-stack argu-
ments between the caller and callee stacks, similar to GCC’s split stacks [114]. This property is implemented
in the trusted proxy for performance reasons, since doing it on the user code would require twice as many
switches and copies unless the function call ABI was changed to support in-stack arguments existing on a
separate stack.

Invoking entry register and entry request from the same process generates non-process-
switching proxies by default. Access to this proxy can later be granted to a different process, in which
case the call will not perform a process switch. Nonetheless, this does not break DomOS, since the callee is
aware that access to proxies did not happen through entry request (i.e., it must have been a conscious
decision from the callee).

Since proxies are privileged, they must make sure the return address they receive is valid. Proxies retrieve
the return address from the stack before injecting their own, and restore it before returning into the callee.
This opens up two vulnerability windows where another thread could overwrite this value to subvert the
proxy’s return operation. The second window (restoring the return address and returning) can be fixed by
using a jump to the return address in the proxy code, instead of using a return instruction. Nonetheless,
experimental measurements show that this interferes with the return address stack predictor. Still, the first
window (reading the original return address) remains open. Therefore, DomOS uses a private per-thread
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Operation Effect
cap create(base, size,

perm, async, payload)→
capc

Create capability that can be asynchronous and/or have an
associated payload.

cap get payload(capc)→
payload

Retrieve payload of given capability.

cap revoked(capc) Mark capability capc revoked to reuse its revocation counter
in the future.

Table 7.3: Capability-management operations in the DomOS kernel.

stack to ensure return addresses are always correct. This is achieved by setting up a synchronous CODOMs
capability for each thread’s stack. It is worth noting that architectures that store the return address in a
register, like the jump-and-link instructions found in ARM or MIPS, make this much easier to enforce
because the return address register cannot be concurrently modified by a third party.

7.2.3 Capability Management

Synchronous capabilities, which are the vast majority, can be directly created by user code. Nonetheless,
DomOS provides the operations shown in Table 7.3 to interact with the privileged revocation counter fields.
These can be used to obtain asynchronous capabilities, or capabilities that can be used as opaque pointers to
user-provided addresses (see Sections 7.5 and 7.6).

If non-zero async or payload arguments are provided to cap create, DomOS gets the address of
an unused revocation counter and sets the revocation counter address to point to it. If there were no free
counters, a new one is allocated. In the case of async, the revocation counter value field is set to that stored
in memory (with an initial value of one, since zero implies asynchronicity is disabled). A revocation counter
occupies 128 bits; 64 bits for the revocation counter value (ignoring the upper part, since the value field has
46 bits), and 64 bits for the payload. Therefore, when payload is provided by the user, it is stored on these
last 64 bits; its usage is described in Sections 7.5 and 7.6. The rest of the fields in a capability are filled
with the provided arguments, except for the capability’s tag, which is set to that of the requesting domain
(obtained through the prevdom register). This payload can then be retrieved with cap get payload,
as long as the caller domain’s tag (prevdom) matches the one in the capability. Finally, DomOS reclaims
revocation counters when a domain is destroyed (after revoking all asynchronous capabilities created for it),
and when cap revoked is called.

The unsupervised CODOMs instructions to create capabilities set the tag field to that of the currently
executing domain. Therefore, DomOS also provides variants of the cap create operation that can be used
to create a capability to a specific domain, as long as the requestor has access to that domain or provides
a software domain capability to it. This functionality is provided to support the design pattern described
in Sparsity under CODOMs in Section 4.2.1. For example, assume domain A allocates its dynamic data
structure in domain B; since domain B might not contain code that can be used to create a capability to
it, domain A can instead use cap create to create a capability (not necessarily asynchronous nor with a
payload) to grant access to domain B (i.e., domain A creates a capability to the allocation pool domain B).
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Figure 7.1: Domain contents and CODOMs configuration of the example application of Figure 6.1.

7.3 Runtime Support

7.3.1 Program Loading
The program loader in DomOS takes the per-domain information described in Chapter 6 to automatically
create domains, assign the appropriate pages to them, and configure their APLs. Since the information
refers to domains on the same application, the untrusted program loader can safely assume the information
is correct.

This can be seen in Figure 7.1, which shows the layout and configuration for the domains generated
by the compiler annotations in Figure 6.1. The program loader assigns each function and variable to its
corresponding domain (using the dom create and dom mmap operations from Table 7.1). In this case
it creates domains A1, A2 and B, shown in the top-right of Figure 7.1. Note that domains A2 and B also
contain the caller and callee stubs funcB caller stub and funcB callee stub, respectively. The
loader then reads the domain permission information from the binary (Lines 4, 5 and 18 of Figure 6.1b) and
uses it to configure the APLs (bottom-right of Figure 7.1) using operations dom copy (for the read-only
grant from B to A1) and grant create from Table 7.1.

Shared Libraries

An unannotated shared library can be used by multiple domains inside the same application. In this case,
the library’s state should pertain to the domain that calls it, not to the shared library itself. Note that this is
different than having a shared library act as a separate domain, in which case no special action is necessary.
There are various ways to handle the sharing case:

• The simplest approach is to map the library multiple times, once for each domain that uses it. This
makes the domain have a private copy of the library embedded into it, while code and read-only data
for the library shares the same physical memory and cache lines.

• An alternative that is also evaluated instead, places a single copy of the library on its own domain. In
this case, constructor and destructor functions and writable sections are forbidden, since the domain
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where the library is loaded does not have state of its own by definition. In exchange, callers must pass
a capability to the library, which is used to access its dynamically allocated memory on a per-caller
basis. This further reduces TLB pressure, since virtual addresses are not duplicated.

It is important to note that this second approach is key to mutually isolating threads of the same appli-
cation, even when they are executing the same code. This feature is essential to efficiently enforcing critical
data security policies (see Section 8.2.2 and Appendix A).

7.3.2 Entry Point Resolution

The same logical entry point can be accessed through different addresses depending on the isolation proper-
ties that the caller and callee specify. Therefore, entry points are resolved lazily, like other dynamic symbols
through the PLT. This effectively provides a form of run-time entry point versioning.

The first time an entry point is called, the program loader checks if the target is for a domain defined
in the same process. In such case, if the caller and callee isolation properties do not require a proxy, the
call is resolved into the corresponding callee stub. If a proxy is necessary, the loader creates an entry point
capability for the entry, requests a proxy for it, and grants the caller access to it.

This can be seen in the logical call from funcA to funcB in Figure 7.1. The caller stub (funcB-
caller stub) calls into an undefined function that the runtime must resolve (funcB from funcA).

Now, the loader sees that the symbol refers to an entry point of domain B (Lines 9 and 10 of Figure 7.1).
In turn, the loader checks the information of the funcB entry point. Since the call originates in do-
main A2, the loader will use the callee stub funcB callee stub. First, it will register the entry point
(entry register operation in Table 7.2) with the signature information (Lines 15 and 16) and the callee-
side of the policy (Lines 19 and 20). Then, it will invoke an entry request operation with the caller-side
signature information (Lines 9 and 10) and the policy (none in this example, since it is all implemented at
user-level through the caller stub). This results in a domain capability for the new domain with the requested
proxy (function funcB proxy in domain P). Finally, the loader creates a call-only domain capability to P
(using dom copy) and grants domain A2 access to it (using grant create).

To minimize overheads, entries are registered and requested in batches. Therefore, resolution of entries
for the same domain do not need to request new proxies, but merely point to them. Note that it is possible
to eagerly resolve entry points at compile time when no such proxies are involved (therefore saving a jump
instruction, equivalent to a PLT entry indirection).

Cross-Process Entry Points

For a remote process call, the loader asks the callee process for the corresponding entry point capability (re-
member that it can be passed across processes using POSIX file descriptors). Deciding whether to return an
entry point capability, and what isolation actions is should have requires application-specific knowledge. On
one hand, the caller process must be able to uniquely identify the appropriate callee process; e.g., one cannot
rely on some global naming service to identify processes because processes could otherwise mischievously
register themselves as being someone else. On the other hand, the callee must be able to authenticate the
caller process to decide on its policy; e.g., today’s MySQL clients start by providing some user credentials
to the database, which athorizes the connection properties based on that information.

The DomOS loader provides the base mechanisms to make this possible; applications can simply register
callbacks that return the entry point capability given the target domain and entry point information. This lets
applications implement their own authorization scheme for cross-process entry points.
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Currently, a simple helper library is also provided to automate this process in a way similar to what
other RPC systems do. Remote entry points are identified through a random binary string (i.e., a password
or sparse capability), that must be known to both sides. Programmers can either provide a constant value
to both sides, or implement some application-specific protocol to exchange them. When a callee process
starts, it automatically maps the identifiers of its entry points to the actual entry point information (function
address, signature and callee-side policy). In turn, caller processes register the remote entry point identifiers
with the cross-domain symbol that the loader must resolve (funcB from funcA in the example above).
Finally, caller processes provide a default callback to the loader that uses that information to automatically
resolve the remote entry points.

Note that alternative more complex protocols can also be implemented on top of the support provided by
the loader. DomOS can provide a trusted user-level service that serves as a global entry point request broker.
Since there must be a way to authorize entry point registrations and requests, the entry point service can use a
mix of sparse and software capabilities. Sparse (or password) capabilities can be used to request entry points
using an unguessable “password” provided as out-of-band information (e.g., as a command line argument).
Software capabilities can be used to pass access to entry points across a hierarchy of processes (using file
descriptors). For example, a parent process opens a connection to the entry point service to register new
entry points. From that connection, it then retrieves a new one that allows requesting access to any entry
point registered through the first connection. Now, the parent process can create two children, the caller
and callee processes, passing the first connection to the callee and the second connection to the caller. This
effectively allows the caller and callee processes to resolve the cross-process entry point without resorting
to passing “passwords” through the command line or through configuration files. In fact, this scheme shows
the most typical way to organize services in systems that use software capabilities as references to objects
implemented on other processes (usually termed object-capability systems [105]).

7.4 Implementation Details

7.4.1 Unified Virtual Address Space
The SASOS implementation in DomOS uses a two-level allocation algorithm. Every memory allocation
starts by requesting a large fixed-size block of virtual memory space (currently 1 GB, minimizing the use
of page tags). Actual memory is then sub-allocated from virtual memory blocks owned by the requesting
process. Since memory for different domains uses different tags and addresses are non-overlapping, multiple
processes can safely use the same page table. The current implementation does not use any sophisticated
locking scheme, nor implements the optimal reuse algorithm of holes during sub-allocation of virtual mem-
ory space blocks. Therefore, the current implementation is expected to provide suboptimal performance due
to locking contention.

TLB coherence domains

DomOS provides a unified (or global) virtual address for all processes, and uses CODOMs to isolate them
on this address space. Therefore, DomOS can use a single page table for all processes in the system (see
Section 7.1). This is key to provide efficient cross-domain calls, since now there is no need to switch between
different page tables (an expensive operation) during critical cross-process communication operations.

Nonetheless, sharing a page table across processes accentuates the concerns regarding TLB shootdown
operations [121]. Linux keeps a bitmap on each page table that indicates which CPUs might currently be
caching entries for that page table on their TLB. This is used to calculate the set of CPUs that must be

67



Chapter 7. Operating System Support

taken into account during a TLB shootdown operation, which translates into interrupting them using an IPI.
Since all processes share a single page table in DomOS, the chances of affecting more CPUs during a TLB
shootdown operation increases, even when processes are not communicating with each other. Nevertheless,
this already is a well-known problem in multi-threaded workloads for existing systems, and it is thus rea-
sonable to expect that future architectures will remedy TLB shootdowns using some form of TLB coherence
mechanism [95, 121].

At the same time, DomOS can alleviate this problem without additional hardware. The SASOS imple-
mentation actually allows creating multiple of these unified (or global) virtual address spaces, which are
called “environments”. Each SASOS environment has its own page table, and therefore acts as a separate
“TLB coherence domain”. Each process can be part of one, and only one, environment, and each environ-
ment can hold multiple processes. Therefore, processes that communicate frequently can be grouped into
an environment, while other processes can be put on separate environments to minimize the span of TLB
shootdown operations. Unfortunately, this implementation implies that different environments can never be
“merged” in the future (e.g., the system detects they communicate very frequently) because they might have
overlapping addresses.

Analyzing the performance and optimizing the performance of this palliative technique is out of the
scope of this thesis. Nonetheless, a production implementation would ideally provide the unified (or global)
virtual address space orthogonally to page table sharing. With this approach, the OS could dynamically adapt
which groups of processes share a page table inside the same SASOS environment in a way that minimizes
the span of TLB shootdown operations (i.e., spreading processes across multiple page tables on the same
environment) while keeping frequently communicating processes on the same page table.

7.4.2 Thread Management

Since thread management is not critical to the measurements of this thesis, a very simple approach is used
to support cross-process threads that minimizes kernel changes. The first time a primary thread uses a proxy
routine that crosses into a different process, it creates a worker thread for the callee process. The proxy issues
a kernel upcall to the DomOS runtime, which creates the worker thread. Subsequent process crossings from
the same primary thread refer to the same worker thread, keeping a stable mapping from the logical (primary)
thread to the actual thread identifiers in the system. These worker threads stay blocked in the kernel, and
most of their storage is thus not necessary; this is similar to Mach’s activations [49], which consume less
resources than a full-blown thread object.

7.4.3 Thread-Local Storage

The ELF format defines Thread-Local Storage (TLS) as a per-thread array of pointers, indexed by a variable
identifier [41]. In order to support dynamic module (code) loading, TLS storage is lazily allocated the
first time a thread accesses a TLS variable of another module. Since threads in DomOS can cross process
boundaries, domains can be treated like dynamically loaded modules that allocate TLS space on first use. To
avoid modifying libc and the TLS-specific ABI to implement this approach, the current prototype instead
changes the active TLS array base in proxy routines that cross process boundaries to that of the target worker
thread (fs segment in x86–64).
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7.4.4 Cross-Process Proxies
Conceptually, cross-process proxies implement an immediate process switch with time-slice donation. The
hot path (the most common) is highly optimized to provide efficient cross-process calls. It gets the index
of the target domain’s tag on the per-CPU APL cache using the aplcache index instruction (see Sec-
tion 5.4); note that the target tag is known as an immediate constant when generating the proxy. This index
is then used to access a small cache array on the primary thread’s task structure. The proxy first checks if
the entry is caching the requested target domain’s tag (otherwise goes to the warm path), and then uses that
entry to retrieve the information for the target process. The warm path searches for the target worker thread,
indexed by the target domain’s tag, and stores it in the aforementioned cache array. If the target worker
thread does not exist (cold path), it asks the target process to create a new one for the requesting primary
thread. A similar approach is also applied to lookup for target stacks.

DomOS also has a small Kernel Control Stack (KCS) for each primary thread, which links cross-domain
call information together. Any value that must be restored by the proxy upon return is stored on the KCS,
which is not accessible by regular user code.

7.4.5 Fault Notification
Fault handling in cross-process calls can be made to provide the same guarantees of existing systems; i.e.,
a failed callee process can be terminated and an error returned to its caller. For example, assume a scenario
with three domains (A, B and C), and four numbered threads with the following call chain: (1)→ A; (2, 3)
→ A → B; and (4)→ A → B → C. If an unhandled fault happens in thread (2), while executing code in
domain B, the process that contains B will be terminated, and a fault raised to its immediate caller domain,
A. Likewise, all other threads executing inside the B domain at that moment, thread (3), will raise a process
termination exception to their callers (domain A). Thread (4) shows the most interesting case. It cannot be
immediately terminated, since the computation in C must rightfully continue. When the thread returns from
C, since B has been terminated, an exception will be raised to the previous caller, A.

Therefore, a fault on a domain invokes a signal handler on it. If the fault is not recovered by the domain,
the process might be terminated and a signal raised on its caller, which is identified through the information
stored on the KCS by a cross-process proxy. By overriding the default handler with a user-provided callback
(like a regular signal), a per-thread variable can be implemented to indicate when cross-domain calls fail.
Therefore, after a call, one can read the variable to check if a cross-process call failed. This allows checking
for errors without changing the signature of the entry point. If changing the signature were possible, fault
notification could be implemented on the trusted proxies, just like POSIX functions return an error value in
most cases.

7.5 Capabilities as Opaque Handles to User-Defined Objects
Many cross-domain interfaces have the notion of stateful objects. This is very clear in object-oriented
languages like C++, where the structure with the object’s state is the first (implicit) argument of a method.
Nonetheless, this is also found on every C interface that does not operate on some system-global state (e.g.,
file descriptors identify the internal file state on file-management operations).

The payload functionality described in Section 7.2.3 precisely supports this pattern in a very efficient
manner. A domain can create some logic object and use the address of the data structure describing it as a
payload for a capability; at the same time, the capability can grant access to the functions used to operate
on that object. When a call to one of these methods is received, the caller can use the capability’s payload
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value as a pointer to the object, almost as if it received a pointer to it as an argument. The payload cannot
be changed nor inspected by other domains, effectively turning such capabilities into protected and opaque
object references. Note that this pattern is implemented in software, and not imposed by CODOMs. One
could instead use a capability payload to identify the user-level object data structure, and use separate means
to grant access to its methods (i.e., use the APL itself or a separate capability).

For example, a capability for a read-only version of an object could grant access to different methods
than a capability for a writable version of the same object. This can be used to enforce in hardware the same
properties that type qualifiers provide in, for example, C++ objects (e.g., non-const methods cannot be
invoked on const-qualified objects).

In both cases, this approach is more efficient than what is currently implemented in other systems to
name objects from other domains. For example, POSIX systems use an integer to identify open files, which
are actually implemented by another domain (the OS kernel in the case of a monolithic system). In this
case, the domain implementing the object must lookup the provided object identifier in a table to retrieve the
actual data structure that describes it, making sure the identifier is looked up in the object space pertaining
to the caller (e.g., each process has a different file descriptor table). Note that this problem not only applies
to POSIX file descriptors, but to any software capability system, since capabilities must also be looked up
by the OS kernel [122] (file descriptors are, in fact, software capabilities).

7.6 Unified Resource Access Controls
For time constraints, DomOS minimizes the amount of changes to a typical UNIX system organization
(Linux, in this case). This means, among others, that software resources provided by the system are isolated
at process granularity (e.g., the file descriptor table). This yields two different mechanisms to manage
the authorization of different resources: memory (including application software abstractions) and system
software resources.

As described above, capabilities with a payload can be created as opaque handles to software abstrac-
tions. This could be extended to the OS interfaces, such that domain grants and hardware capabilities could
be used as the sole authorization mechanisms for remotely addressed resources. On one hand, domains
would not need separate processes to have their own isolated set of system software resources. On the other
hand, system services could use these opaque handles to directly point to their internal resource structures,
eliminating the overheads of intermediate lookups.
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Evaluation

8.1 Hardware Mechanisms (CODOMs)
The architectural changes for CODOMs were first prototyped on a 32-bit x86 system using QEMU [20],
together with minimal changes to the Linux kernel to expose the CODOMs features to user and kernel code.
Evaluation then moved to the cycle-accurate GEM5 simulator [24] running in full-system out-of-order mode
with version 2.6.27.62 of the Linux kernel (the kernel version was limited by the simulator version). The
simulation parameters, listed in Table 8.1, mimic an Intel Nehalem processor, which was also natively used
in some of the experiments.

8.1.1 Comparison of Different Cross-Domain Call Mechanisms
This section compares the performance of domain switching in CODOMs and other mechanisms (see Chap-
ter 2) through a set of micro-benchmarks that call a procedure on a different domain 10 K times. Every
benchmark tests a combination of mechanism, number of function arguments, and randomly generated caller
and callee workloads. The parameters are shown in Table 8.2, and the the workload for each mechanism was
generated using the same seed for a given parameter combination. Results are compared against a regular
function call/return, taking the second of two repetitions. The mechanisms evaluated are:

Mondrix [124, 125]: Implicitly switches domains using call/return instructions, as implemented by the sec-
ond MMP design [125]. The benchmark optimistically approximates the cost of a domain switch
using an instruction barrier. It also optimistically ignores any other costs; namely, OS intervention
and TLB-shootdown-like costs associated to memory access grants and revocations, misses on the
PLB and GLB hardware cache structures, and any extra delays involved in the domain reconfiguration
process implemented by the hardware (e.g., adjusting the stack-protecting registers; see Section 2.2.2).

Syscall: The overhead of using a system call, which implements the callee code. This is the base mechanism
for user/kernel interaction.

NaCl [127]: The callee switches segments at user-level before and after performing its workload, imitating
a naively optimistic implementation of NaCl. This is implemented by pre-registering a segment de-
scriptor for each of the segments that are modified: cs, ds, es and gs. Segment fs is not modified
to avoid breaking the TLS support. Although it is not evaluated here, the same technique has also been
applied at the kernel level [77].
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Processor speed 2.4 GHz
Processor width 4 (insts in fetch; µops for the rest)
Register file 160 (int), 144 (float)
Load/Store/Inst. queue entries 48/32/36
ROB entries 128
i/d TLB 64 entries, 4-way
i/d Cache 32 KB, 8-way, 4 cycles
L2 cache 256 KB, 8-way, 7 cycles
L3 cache 6 MB, 12-way, 30 cycles
RAM latency 65 ns

Capability registers 8
APL cache entries 32
currdom/prevdom registers 6

Table 8.1: Configuration of the simulated architecture for CODOMs.

Parameter Values

Number of arguments 0, 5, 10
Caller/callee workload insts. 0, 25, 50, 100, 1000
Workload distribution 60% integer / 20% read / 20% write

Table 8.2: Micro-benchmark execution parameters.
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Figure 8.1: Comparison of domain switch overheads for CODOMs and other mechanisms. The overhead is
depicted as additional cycles over a function call/return. “Mondrix” and “Memory Keys” are optimistically
approximated by an instruction barrier. The “Mondrix” approximation does not simulate any other costs
(e.g., grants and revocations). “CODOMs” uses the policy “None (leak GPR)” later shown in Figure 8.2.

Memory Keys (kernel) [55, 61, 67]: An approximation of a key-based memory protection switch, used to
isolate kernel components. A system call implements the callee, switching keys before and after the
call. Optimistically assumes that the cost of switching keys is equivalent to an instruction barrier.

Memory Keys (user) [55, 61, 67]: Like “Memory Keys (kernel)”, but used to isolate user components. Be-
fore and after its workload, the callee invokes a system call that switches the keys. This is similar to
the use of protection keys of DB2 running in IBM System p [36].

Address Spaces: The cost of switching address spaces by communicating data using a POSIX pipe. Web
browsers such as Chrome use this to isolate untrusted plugins into separate processes.

Figure 8.1 depicts the overheads of these mechanisms as the number of cycles they add on top of the
baseline function call. The figure shows that “CODOMs” and “Mondrix” provide the lowest overheads.
The “CODOMs” results are for the “None (leak GPR)” policy shown in Figure 8.2, which is slightly more
secure than the “Mondrix” policy. Note that CODOMs uses additional instructions to implement its policies;
therefore, hoisting some of them into a single instruction could further reduce overheads. The results indicate
that instruction barriers (used as an approximation for “Mondrix” and “Memory keys”) have an order of
magnitude larger overheads than CODOMs. This points to the importance of addressing pipeline stalls
during domain switches, which can be very important for short isolated routines.
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Figure 8.2: Comparison of domain switch overheads for different isolation policies in CODOMs. The
overhead is depicted as additional cycles over a function call/return.

Other mechanisms incur substantially higher overheads. All but “CODOMs”, “Mondrix” and “NaCl”
require intermediate system calls; i.e., switching between domains is a privileged operation. In addition, all
mechanisms but “CODOMs” hinder pipeline throughput by introducing RAW hazards on a domain switch.
Therefore, CODOMs is the only system that eliminates both sources of overheads, while at the same time is
flexible enough to implement different policies on top.

8.1.2 Effect of Isolation Policies

Isolation policies define the overhead incurred by the proxy and caller/callee stub routines. The following
configurations are evaluated1:

All: Both domains trust each other, meaning that resource integrity and confidentiality is not enforced by
any party. In addition, the callee can access code in the caller, meaning that a return capability is not
necessary. As a result, the proxy is equivalent to a resolved PLT entry.

This could be used, for example, to have two domains that can freely call each other, but whose
allocations are placed on separate domains to avoid memory corruption across them.

1These experiments do not handle data stack confidentiality nor process switches, since they were developed before defining these
properties during the development of DomOS.
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Caller: The callee trusts the caller, but the caller preserves the integrity and confidentiality of its register
state and integrity of its stack against the callee (e.g., kernel→module).

Callee: The trust relationship opposite to “Caller” (e.g., module→kernel).

None: Domains do not trust each other (≈ “Caller” + “Callee”). This can be used for mutually isolating
any pair of domains.

None (leak GPR): Similar to “None”, but general-purpose registers are not managed. Slightly more secure
than Mondrix, which provides read access to the whole stack.

None (leak all): Similar to “None”, but general-purpose and capability registers are not managed (e.g.,
guard against dangling pointers and stack smashing).

Figure 8.2 depicts the overhead of switches for the different isolation policies, measured as the number
of cycles that each experiment adds on top of a regular function call. Note that Figure 8.2b shows the
overhead of all empty-body workloads, which are the most sensitive to ILP reductions during the domain
switch. The figure shows that “All” delivers the best performance by avoiding RAW hazards, and only incurs
in the overhead of the jump in the proxy routine (cannot be appreciated in Figure 8.2a because some of the
workloads perform operations before returning). In contrast, “None” shows the highest overhead since it
implements the most restrictive policy. Still, its overhead is lower than that of other mechanisms. The rest of
experiments show intermediate overheads whose main factors are the DCS frame management, the proxy’s
return address injection, and the safeguard of the caller’s stack pointers (this last not present in “Callee”).
These results show that separating mechanisms from policies allows tuning the performance to the desired
isolation properties.

8.1.3 Area and Energy Overheads
Area and energy estimates for CODOMs were obtained with McPAT [75] using a 32nm process. The es-
timates show a 1.89% per-core area overhead, and Table 8.3 shows the average energy overheads of the
micro-benchmarks compared to those of other mechanisms found in x86. Overheads for CODOMs are de-
composed into the hardware structures and the execution of the additional policy-specific code. These results
show that CODOMs energy overheads are practically negligible.

Benchmark CODOMs Code Total
CODOMs: All 0.45 0.09 0.54
CODOMs: Callee 0.47 2.41 2.88
CODOMs: Caller 0.49 6.69 7.18
CODOMs: None 0.50 7.57 8.07
CODOMs: None (leak GPR) 0.48 3.54 4.02
CODOMs: None (leak all) 0.47 3.01 3.48
Address Spaces - - 1280.83
NaCl - - 40.75
Syscall - - 29.42

Table 8.3: Average energy overheads (%) relative to a function call/return. Includes the same CODOMs
policy configurations shown in Figure 8.2, as well as other mechanisms available in x86.
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Energy overheads are for the steady-state of the system when running micro-benchmarks that stress the
CODOMs architecture. Therefore, they do not account for the additional energy overheads of the APL cache
miss handler that is implemented by the OS kernel. Nonetheless, as Section 8.1.4 shows later, the number
of APL cache misses is also negligible in macro-benchmarks.

8.1.4 Linux Kernel Module Isolation

The following experiments quantify the system-wide impact of CODOMs by considering all Linux kernel
modules as separate domains. Two macro-benchmarks were measured: a parallel Linux kernel compilation,
and netperf using the TCP bulk transfer test.

Since detailed full-system simulation is too slow, the macro-benchmark’s timing was extrapolated by
injecting the domain switch overheads (obtained by the micro-benchmarks) into the running time of a na-
tive execution. The number of domain switches was measured using a modified version of QEMU [20],
considering every module as a separate domain by inspecting their load addresses.

Table 8.4 shows that modules typically perform short bursts of operations. Therefore, CODOMs is well
suited to this environment since it provides unsupervised domain switching and access grant primitives with
a low impact on ILP. Furthermore, more than 99.6% of the domain switches involve no more than 8 domains,
ensuring that the APL cache hits for the vast majority of the time.

Domains Switches Instructions
→ ←

C
om

pi
le

kernel / ext2 6403400 1029 16
kernel / scsi 1777834 200 19
kernel / libata 1638960 360 26
kernel / cfq-iosched 1187154 390 31
kernel / unix 149170 234 13
scsi / scsi-sd 105444 21 48
libata / scsi 63270 111 13
Others 114327 - -
Total 11439559 - -

ne
tp

er
f kernel / e1000 22098737 261 41

Others 14048 - -
Total 22112785 - -

Table 8.4: Number of domain switches (calls & returns) during the benchmarks’ execution. The two right-
most columns show the arithmetic mean of instructions executed in a domain before switching into the
other.

Table 8.5 depicts the modelled system slowdown. In all cases, the overheads are effectively negligible
(less than 1%), although replacing system calls with CODOMs would actually improve system performance.
Even though the Mondrix approximation provides similar raw performance, it still requires OS intervention
and operations similar to a TLB shootdown for access grants and revocations.

Figure 8.3 shows the memory access distribution of the domains, according to the owner of that memory.
Memory dynamically allocated through a pool is owned by the domain that created the pool, while other
dynamically allocated memory is owned by the domain requesting the allocation. The vast majority of the
non-stack accesses fall in one of two categories:
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Isolation policy Compile (%) netperf (%)

None 0.10 ± 0.01 0.15 ± 0.02
None (leak-GPR) 0.03 ± 0.01 0.05 ± 0.02

Table 8.5: Runtime overheads incurred when considering each kernel module a separate domain.

• “Self *”: Accesses to memory owned by the accessing domain. This type of accesses do not require
using capabilities.

• “Synch. *”: Accesses to “remote” memory owned by another domain that is part of the current call
chain; i.e., the owning domain is (indirectly) calling into the domain that performs the access. This
type of access suggests that synchronous capabilities can be used to efficiently grant access, since it
is possible to transitively pass a synchronous capability as an argument to all functions that lead from
the owner domain to the domain that performs the memory access.

A third category, “Asynch. *”, identifies those accesses that should be performed through asynchronous
capabilities, since the owner domain is not part of the call chain that led to the domain performing the access.
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Figure 8.3: Distribution of memory accesses according to the owner domain of the accessed memory.

Of all the “Synch. *” accesses, most go to the main kernel memory (“Synch. * (kernel)”). This is primarily
due to structures allocated at its generic layers, which are later accessed by the device- or protocol-specific
modules. A rewrite of the system could minimize these accesses, as could having the core Kernel domain
accessible from all domains, while retaining inter-module isolation. Still, “remote” accesses are an intrinsic
property of fine-grained isolation.

Importantly, most “remote” accesses can be handled with synchronous capabilities (“Async., *” is small),
showing the convenience of distinguishing between the different capability types in CODOMs.

8.2 System Performance (DomOS)
DomOS was also evaluated using a set of micro- and macro-benchmarks. The micro-benchmarks provide a
quantitative comparison of different existing IPC mechanisms and DomOS, whereas the macro-benchmarks
explore the performance improvements on applications that use DomOS.
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Board Dell PowerEdge R210 II
Processor Intel Xeon E3–1220 V2 @ 3.10GHz, 4 cores
Memory 16 GB
Ethernet Broadcom NetXtreme II BCM5716 (1Gig)
Infiniband Mellanox ConnectX MT26428 (10GigE)

Table 8.6: Configuration of the evaluation machines for DomOS.

DomOS was prototyped on top of version 3.9.10 of the Linux kernel. Initially, the option of using open
microkernel OSs (e.g., L4Linux, Minix and GNU/Hurd) was explored, but none of the available microkernels
supported both a 64-bit address space (necessary to fit all processes in a single virtual address space) and all
the evaluated benchmarks. The system was natively evaluated using a Dell PowerEdge R210 server, which
is described in Table 8.6. This allowed executing the applications and OS in their entirety and not be limited
by simulation time. Naturally, the evaluation machine does not provide the CODOMs hardware, which was
instead emulated in software. Every per-CPU resource in CODOMs was emulated using per-CPU variables,
and handled in the OS kernel as part of the CPU state (variables are accessed through the gs segment, which
Linux x86–64 already uses for that purpose). Hardware capability instructions were emulated using regular
loads and stores. Nonetheless, argument capabilities were assumed to be handled by the compiler. Processes
share a single page table (SASOS), but of course the processor does not enforce CODOMs’ APLs. The
privileged capability bit in CODOMs was emulated by running all code in privileged mode using Kernel
Mode Linux (KML) [83]. Note that system calls still go through Linux’ standard syscall/sysret path
in this prototype. Changing this could provide interesting benefits, but is not in the scope of this evaluation.

This emulation approach allows evaluating the broader effects of the DomOS design, but the hardware
does not actually enforce protection. Furthermore, using memory variables is slower than a hardware imple-
mentation of CODOMs. Therefore, the described emulation approach provides a reasonable approximation
of the underlying hardware.

8.2.1 Comparison of Different Domain Communication Primitives

As observed in Chapter 3 and Figure 3.1, faster hardware isolation mechanisms are necessary but not suf-
ficient to improve IPC. Process synchronization (“Semaphore (=CPU)”) adds very high overheads, and
cross-core IPIs make the overheads even higher (“Semaphore (6=CPU)”). Overheads are further exacerbated
when performing transfers and hiding the complex IPC interfaces under synchronous function call semantics
(“RPC” experiments). Therefore, this section quantifies the effectiveness of eliminating these overheads in
DomOS.

Figure 8.4 shows the overhead of IPC using DomOS, compared the other mechanisms shown in Fig-
ure 3.1 (and using the same methodology). Additionally, Figure 8.5 shows where time is spent on the
DomOS experiments; each line shows the time spent on each of the layers involved in a cross-domain call,
and the total execution time is obtained as the concatenation of these lines.

The DomOS experiments have two main sets of variants. The High variant (“DomOS - High (=CPU)”)
shows the performance of full isolation inside the same process: symmetric integrity and confidentiality
(i.e., all elements shown in Figure 8.5, except Switch process and Switch TLS). The Low variant (“DomOS -
Low (=CPU)”) shows the performance of minimal isolation inside the same process, where the base proxy
code only injects its return address and caller/callee stubs are empty (i.e., only the Function, PLT indirection
and Base elements shown in Figure 8.5). The High variant is only slightly slower than “Syscall”, but unlike

78



Chapter 8. Evaluation

100 101 102 103 104 105 106

(a) Callee workload (# instructions)

100

101

102

103

104

Sl
ow

do
w

n
vs

.f
un

ct
io

n
[l

og
(t

im
es

)]

↓ Lower is better

Syscall
DomOS - Low (=CPU)
DomOS - High (=CPU)
Semaphore ( 6=CPU)
DomOS - Low (=CPU; +proc)
DomOS - High (=CPU; +proc)
Pipe ( 6=CPU)
RPC ( 6=CPU)
DomOS - High ( 6=CPU; +proc +copy)

20 22 24 26 28 210 212 214 216 218 220

(b) Transfer size (Bytes)

100

101

102

103

104

105

106 ↓ Lower is better
Distance grows with size

100

101

102

103

104

Sl
ow

do
w

n
vs

.f
un

ct
io

n
[l

og
(t

im
es

)]

15×

2×

17×

814×
1683×

22×
39×

909×
1741×

2716× 3263×

939×

Low High Low High High
Syscall DomOS Semaphore

(+proc)
DomOS
+proc

Pipe
(+proc)
(+copy)

RPC
(+proc)
(+copy)

DomOS
+proc
+copy

↓ Lower is better
= CPU
6= CPU

(c) No instructions and 1-byte transfers.

Figure 8.4: Performance of cross-domain calls using DomOS for different caller/callee isolation policies.
Note that transfers in DomOS are not necessary, but are shown for comparative purposes. Also shown are
other mechanisms from Figure 3.1.
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Function
Call/return

Caller stub
PLT indirection Backup regs. Zero regs.

Callee stub
Zero regs.

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Execution time (ns)

Proxy 56.28

Base Switch process Switch stack/DCS Switch TLS

Figure 8.5: Execution time breakdown of a cross-domain call/return in DomOS. There is one line for each
layer involved, where Function corresponds to the baseline regular function call/return. The total execution
time corresponds to the concatenation of all lines.

privilege levels it is not limited to implementing hierarchical isolation. The Low variant is even 7.43× faster
than the High one, mainly due to the caller saving a copy of its registers in High. Therefore, optimizing
isolation policies yields promising performance benefits. Furthermore, a system using DomOS is simpler
to program, since in the “Syscall” case the kernel has to explicitly handle accesses to user-level data (e.g.,
passed as references on the argument list) using special-purpose functions.

The variants with +proc show the performance of cross-process calls in DomOS, providing semantics
similar to those of RPC at a fraction of the overheads. The DomOS results are substantially better than
existing mechanisms, around 2 orders of magnitude faster than semaphores, pipes and RPC. Importantly,
DomOS is much less complex for the programmer, since she does not need to manage the synchronization
of threads on each process, nor the (de)marshaling of cross-process arguments (the same applies to RPC).
Furthermore, in the worst case DomOS is only 2.55× slower than a system call, but without any of its lim-
itations. Isolation policies make the High+proc variant only 1.78× slower than Low+proc, since both have
to perform a costly TLS segment switch. A domain-aware TLS implementation in libc (see Section 7.4.3)
would thus improve performance between 1.54× and 3.22×, depending on the isolation policy.

Finally, “DomOS - High ( 6=CPU; +proc +copy)” shows the performance of providing the exact seman-
tics of a synchronous RPC across CPUs; that is, caller and callee execute on separate threads (and different
CPUs), and argument immutability is implemented at user-level (i.e., copies, even if they are not strictly
necessary with CODOMs’ capabilities). The callee uses semaphores to synchronize with the thread that
performs the workload on a different CPU, and then relinquishes control to its caller. Interestingly, this ap-
proach could be used to transparently implement the semantics of all other IPC mechanisms using DomOS
(e.g., using library interposition). DomOS performs 3.82× better than the semantically equivalent RPC ver-
sion. Importantly, performance could be easily improved by using primitives optimized for synchronous
control transfers, like those found in L4’s IPC, since semaphores are not optimized for this use case. Note
that this experiment also performs better than “Semaphore”, since changing between privilege levels in the
original Linux implementation is more expensive. More importantly, this approach allows significant simpli-
fications on critical synchronization code in the OS kernel, since complex cross-process memory transfers
can now be implemented at user level. As an interesting side effect, user-level cross-process copies in
DomOS perform better as the buffer size increases (hard to see on the logarithmic scale of Figure 8.4b).
This is because kernel-level transfers must ensure pages are mapped in its address space before performing
process-to-process copies.

In summary, DomOS provides leaner and efficient communication primitives, which do not require pro-

80



Chapter 8. Evaluation

100 101 102 103 104 105 106 107

Per-folder workload (log)

0

10

20

30

40

50

60

70

80

Sl
ow

do
w

n
(t

im
es

)v
s.

un
se

cu
re

sh
ar

ed
lib

ra
ry

↓ Lower is better

Process
Secure library (replicated)
Secure library (replicated, preloaded)
Secure library (shared)

Figure 8.6: Performance of isolating computations based on the data they operate with. Results are shown
for a total of 800 folders, 100 per core, normalized to the performance of an unsecured shared library. The
X-axis shows the amount of work necessary to process each folder.

Processor Intel Core i7-4770 @ 3.40GHz, 4 cores, 2-way SMT
Memory 12 GB DDR3
Disk Seagate ST3500413AS, 500GB, 7200 rpm, 16MB cache
Network Intel 82574L, 1Gbit

Table 8.7: Configuration of the evaluation machine for the thread isolation experiments.

cess synchronization, the RPC mapping of function calls into traditional IPC, nor cross-domain data copies.
The customizability of isolation policies in DomOS also yields an extra performance boost. Finally, Do-
mOS could transparently replace IPC in existing applications with a substantial performance improvement,
freeing the kernel from the complex burden of managing cross-process copies.

8.2.2 Thread Isolation

This section explores the performance of mutually isolating threads that run the same computation on dif-
ferent data. A complete use-case and framework exploiting such organization is described in more detail in
Appendix A. The reason for isolating threads of the same application is to enforce system-wide policies that
limit the flow of information across different units of the same category (termed “folders” in Appendix A).
This can be used to safely analyze sensitive information (e.g., medical records) with untrusted third-party
code. This design is in stark contrast to the conventional approach of isolating computations based on which
software component they execute (e.g., different users or processes), not based on what data they process.
Different threads executing the same component must be isolated from each other when processing infor-
mation from different folders. Therefore, each folder must be processed on a separate isolation domain,
regardless of what code is used to process it.
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Figure 8.6 shows the performance of isolating the untrusted code using different techniques when pro-
cessing the information of 800 different folders. This experiment was run on a different machine (described
in Table 8.7), and at each point in time 8 worker threads or processes were running, each processing 100
folders iteratively. For each folder, the child opens a folder-specific file and computes the factorial of its
contents. The different values stored on files are shown across the X-axis to calculate how much workload is
necessary to make the performance of isolation mechanisms irrelevant. In all cases, a different SELinux la-
bel is assigned to each folder to prohibit information to flow between them. The main application dispatches
the processing of each folder to one of its children, and aggregates the results of computing the workload on
each folder. The evaluation used the following techniques:

Unsecure shared library: A per-core thread uses the code of a regular shared library to process the per-
folder files. This provides the best-performing baseline system (with no isolation).

Process: Isolation using a new process per folder on an existing system. The main application sets a per-
folder SELinux label for the process (by invoking setexeccon before execve), ensuring infor-
mation cannot flow across folders nor processes. This setup shows the most efficient container imple-
mentation (for executing code) of the ones described in Appendix A.

Secure library (replicated): The per-folder files are processed using the code of a shared library that is
isolated using DomOS. The main application reuses the same per-core threads (8 in total) to process all
folders. Therefore, a new replica of the isolated shared library is loaded for each folder, as an example
of the first approach to executing shared libraries described in Section 7.3.1. Each replica is loaded
on a separate domain and uses a fresh per-thread stack, which is isolated from that of other threads.
To isolate threads at the OS level as well, the Linux kernel was modified to add an iolated mode of
execution for threads. This execution mode makes the file descriptor table and the current SELinux
label a private per-thread structure, effectively isolating threads of the same process. Changing the
execution mode is a privileged OS operation executed by the proxy routine that bridges the main
application with the isolated execution of the workload.

Secure library (replicated, preloaded): Shows a variant of “Shared library (replicated)” where all library
replicas are preloaded into their respective domains before timing the experiment. This is not a rea-
sonable design for a production setup, since the number of folders (i.e., domains) is potentially un-
bounded. Nonetheless, it factors out of the experiment results the cost of loading the secure library
(dlopen) every time a thread enters isolated mode.

Secure library (shared): The same library replica is executed by all threads, as an example of the second
approach described in Section 7.3.1. A single copy of the workload library is shared among all do-
mains, but it only contains code and read-only data. Per-domain stack and heap space are separately
allocated on their respective domains by the main application before entering isolated mode on each
of the threads, and are deallocated after executing the per-folder workload. Access to them is passed
to the isolated thread through a capability created by the main application.

Even if the “Process” experiment provides the best performance in existing systems, its slowdowns range
from more than 70× to 1.47x with increasing workloads. The slowdowns for “Secure library (replicated)”
range from 12.25x to 1.01x, demonstrably better than using existing process isolation. Nonetheless, “Secure
library (shared)” reduces slowdowns to 3.65x–0.98x, since only dynamically allocated memory and the
isolated execution mode needs to be managed by the main application across folders. Finally, the “Secure
library (replicated, preloaded)” experiment shows slowdowns lower than “Secure library (replicated)”, in
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Figure 8.7: Bandwidth and latency overheads when isolating the Infiniband driver in three scenarios: Do-
mOS, user-level processes (IPC) and a kernel driver (user/kernel isolation).

the range of 3.76x–1.01x. Unlike “Secure library (shared)”, using library replicas does not allow an efficient
sharing of micro-architectural state. These inefficiencies were already observed under the concept of “multi-
execution” [25], which adds additional hardware to consolidate the resources used by multiple processes
executing the same code (e.g., in server environments). Nonetheless, performance-critical code like this can
be ported to the model offered by “Secure library (shared)” instead of adding further hardware support.

8.2.3 High-Performance Device Driver Isolation
Infiniband comes with extra hardware complexity to bypass the OS kernel overheads for its critical opera-
tions. To gain this performance, the OS must relinquish its control over many of the user’s operations with
Infiniband. The user is given a buffer shared with the NIC, and a user-level driver library directly operates
the hardware. To ensure security, each user is given a randomly-generated stream identifier that the hard-
ware tracks (i.e., a password or sparse capability). The current Infiniband implementation thus serves as an
upper-bound performance scenario, albeit at the cost of additional hardware complexity and less OS control
on the policies applied to the communications (e.g., fairness). Figure 8.7 shows the latency and bandwidth
overheads of isolating the user-level driver in its own domain, where the OS could implement its policies
and the Infiniband NIC would not need to provide the extra protection hardware.

Results are shown for the netpipe benchmark (NPtcp), mapped into Infiniband through the rsocket
library. The actual driver still resides in the user application, but the Infiniband operations are interposed to
make the corresponding synchronous requests to an isolated driver domain. The experiments provide results
for the following configurations:

Pipe implements the driver as a separate process, interacting through a POSIX pipe.

Semaphore implements the driver as a separate process, interacting through a POSIX semaphore (futex
in Linux).

Kernel implements the driver as a kernel module, accessible through an additional system call.
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DomOS implements the driver as an isolated domain. In the “DomOS (+proc)” variant, the domain exists
as a separate process, while the “DomOS” variant implements the domain as an isolated library inside
the user application process.

In all cases, there are no additional copies between the application, the driver and the NIC, following the
same model of shared transmission buffers found in the baseline Infiniband system.

Only DomOS can sustain the low latency characteristics of Infiniband, incurring only a ∼1% overhead.
In comparison, system calls incur a 10% overhead but cannot isolate the driver from the kernel, and IPC
mechanisms incur more than 100% latency overheads. Bandwidth is less affected, but still sees overheads
higher than 60% for a 4 KB transfer in the IPC scenarios. Finally, the difference between the “Pipe” and
“Semaphore” results show that unnecessary IPC semantics produce further slowdowns, since data copies are
not needed in this case.

Unlike other IPC mechanisms, DomOS achieves low-latency isolation. This could be used in the future
to regain OS control of transfer policies in cases like Infiniband, without adding complex security hardware
in the NIC.

8.2.4 Multi-Tier Web Server Isolation
This section quantifies the system-wide performance benefits of DomOS using a dynamic web server macro-
benchmark. The experiment uses Apache (version 2.4.16) to generate dynamic pages with PHP (version
5.6.0), that in turn retrieves data from a MySQL database (version 5.5.42). In addition, MySQL was con-
figured to use a regular disk and an in-memory database (by storing its files in a tmpfs file system). The
experiments also contain measurements to categorize where each core spends its execution time: user-level
code, system call dispatch (assembly code in the entry 64.S file), thread scheduling and context switch,
time spent in idle and, finally, any other time spent in the kernel. Existing performance analysis tools either
add too much overhead or are not sufficiently accurate. Therefore, the Linux kernel was modified to perform
these measurements with a negligible performance impact.

The setup was evaluated with the DVDStore benchmark [38] (version 2.1) with a 500 MB and a 1 GB
input set, running for 2 min after a 1 min warmup period. All software components were executed with 4,
8, 32 and 64 threads each (or processes, depending on the case) in order to isolate the impact of server
concurrency. Larger thread counts saturated the client application and the benchmark failed. Performance
was compared with the following configurations:

Linux is the baseline, where all components run as isolated processes. Apache uses the multi-threaded
mpm-worker, PHP worker processes run using FastCGI [87], and MySQL uses a separate threaded
process.

KML+SASOS shows the performance contributions of eliminating privilege level switches (although reg-
ular system calls are still used) and of sharing a global address space and page table across processes.
Given that this setup does not use CODOMs, processes and the kernel are not isolated from each other.

DomOS places each component (Apache, PHP and libmysqld) on separate domains with an asymmetric
isolation policy. Both Apache and MySQL do not trust PHP in any regard, but PHP completely trusts
both. This includes the caller/callee stubs, as well as process-switching proxies.

Ideal (unsafe) is intended to show the ideal performance if all cross-process communication costs were
eliminated. This configuration runs on the baseline Linux system, but embeds all components in a
single process. PHP is used as an Apache plugin, and MySQL is embedded into PHP using the
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Figure 8.8: Performance of different dynamic web server configurations using vanilla Linux and DomOS.
To isolate communication and performance factors, the benchmark was run with 4, 8, 32 and 64 threads (1,
2, 8, 16 threads/core).

libmysqld library. The core implementation of each component is identical to that of the baseline, but
without component isolation they are stripped from the unnecessary concurrency across processes and
the glue code needed to manage IPC.

It is important to note that the baseline was configured in a way that minimizes the speedups of DomOS.
On one hand, the setup does not use a separate bytecode cache for the PHP interpreter. Doing so would make
the PHP component more IPC-bound (less computation time with the same amount of IPC calls), therefore
making DomOS look faster in comparison. On the other hand, the baseline uses FastCGI instead of plain
CGI; the latter spawns a new process for each request, while FastCGI (commonly used for performance)
dispatches requests to multiple long-lived processes. Therefore, using CGI instead of FastCGI would provide
higher benefits for DomOS since creating a process for each request is more expensive than communicating
with an existing process.

Figure 8.8 shows the performance achieved by each configuration on the 500 MB database. Since the
experimental compiler support cannot reliably auto-generate caller and callee stubs for all cases (see Sec-
tion 6.2), their code was folded into the proxy routines. The performance difference of this approximation is
below 2% of the equivalent experiments in Section 8.2.1, but shows the most conservative approximation by
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assuming the worst-case function signature; i.e., all registers need to be saved and zeroed. Also, register and
stack usage is unknown without compiler support. Therefore, stack switch costs are measured by performing
a switch to the same stack without copying any of its arguments.

“Ideal (unsafe)” shows that IPC imposes large performance overheads (which are eliminated in this con-
figuration), with speedups of up to 1.22× and 3.05× for the on-disk and in-memory versions, respectively.
It eliminates around 70%–20% of kernel time, and around 20%–10% of user time (for 4 and 64 threads,
respectively). Likewise, syscall dispatch and context switch times are reduced by around 50%. Most inter-
estingly, concurrency increases performance of all configurations with an on-disk database. In comparison,
the in-memory version of “Ideal (unsafe)” achieves close to maximum throughput with only 4 threads (1
thread per core; see Figure 8.8b): the in-memory “Ideal (unsafe)” is between 20×–2× faster compared to
on-disk “Linux” (for 4 and 64 threads, respectively). This is because the on-disk version spends most of the
time waiting for I/O, masking the overall improvements of “Ideal (unsafe)”, while the in-memory database
version removes most of that I/O-boundness.

The “KML+SASOS” experiment (on which DomOS is later built on) shows a general decrease in per-
formance. This is contrary to intuition, since user/kernel transitions are faster when the privilege level does
not change (especially in interrupts and exceptions) and context switches do not need to change between
different page tables. This behaviour is explained by two main reasons. First, the memory management al-
gorithms for the current SASOS implementation are largely unoptimized for concurrency, leading to larger
contention. Second, as the number of threads increases there are more chances that TLB shootdowns will
affect other cores, since they all use the same page table. Nevertheless, it is reasonable to expect that fu-
ture architectures will remedy TLB shootdowns using some form of TLB coherence mechanism [95, 121].
Furthermore, the problem can also be palliated in software by using multiple TLB coherency domains (see
Section 7.4.1).

The “DomOS” experiment follows the ideal performance very closely for the on-disk database, achiev-
ing a 1.17× speedup for 64 threads. The little difference is mainly due to slightly less improvements on user
time, since it executes the caller/callee stubs and proxy routines, and the limitations of “KML+SASOS”. It
also achieves a 1.24× speedup in the in-memory database for 64 threads, but the limitations in “KML+SASOS”
have a larger negative impact on this case. Importantly, the speedup of the in-memory database with 4 threads
is of 2.15×, and as explained earlier adding more threads has a lower impact on total throughput (compared
to the on-disk database version). The 1 GB database shows similar results for the in-memory database.
Nonetheless, the on-disk case is even more I/O-bound, masking the speedups of DomOS to around 7%.

These results clearly demonstrate the potential benefits of the DomOS isolation model and its reduced
domain crossing overheads, as opposed to the severe performance impact of existing IPC mechanisms. Do-
mOS outperforms a standard Linux setup by up to 1.2× when using an I/O-bound setup (on-disk database),
and is up to 2.15× faster when palliating I/O overheads with an in-memory file-system for the database. In
all cases, it achieves more than 85% of the ideal system efficiency.
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Conclusions

This thesis presents a hardware/software co-design for efficient isolation of software components. The hard-
ware substrate (CODOMs) provides a hybrid protection model that provides a high degree of performance
while solving some of the shortcomings of other works targeting isolation. It makes isolation of short
routines feasible by providing function calls across isolation domains in a way that does not thwart ILP
in out-of-order cores. Importantly, it provides very efficient mechanisms to allow revoking cross-domain
access grants; something that in previous works was either avoided or induced large overheads on every
capability access.

CODOMs is also designed to provide expressive and composable isolation primitives. These properties
can be used to add more efficient isolation in a gradual way that maintains backwards compatibility. Gradual
adoption and compatibility are also heavily embedded into the design, up to the point that cross-domain calls
are implemented using regular function call and return instructions. When combined, these features allow
implementing an unlimited number of domains in ways that require from no changes to minimal changes on
existing code, and eliminate the need for redundant protection mechanisms like privilege levels.

An OS design (DomOS) that takes advantage of the underlying hardware mechanisms is also provided to
make cross-process communication much more efficient. Instead of using the OS kernel as an intermediary
for cross-process communication, the proposed system streamlines communication through direct process-
to-process function calls. This greatly simplifies programming by eliminating the implicit concurrency and
communication interface complexities that processes impose in current OSs. Performance is also carefully
taken care of by eliminating all isolation-related code that is not needed on a case-by-case basis. Instead
of using the typical approach of bridging cross-domain calls through a generic OS kernel routine, a set
of compile-time and run-time optimizations are applied to dynamically attune execution to its isolation
requirements. Quantitative measurements show that the proposed primitives are up to 24× times faster than
Linux pipes, and up to 14× times faster than IPC in L4 Fiasco.OC. Performance gains also hold for a large
multi-tier web server benchmark that is not perceived as being limited by IPC performance. The proposed
system performs up to 2.18× better than a baseline unmodified Linux system, and 1.32× on average. In all
cases, it provides more than 85% of the ideal system efficiency.

Proposing changes across all layers of a system is a daunting challenge, but a necessary one to achieve
larger benefits through co-optimization. Even then, there still remain lots of work to do. Integrating the code-
generating compiler backend with knowledge from the added architectural features can further eliminate
overheads. Just like the compiler knows which registers need to be saved across function calls, it could also
know which part of the architectural state of a computation needs to be saved on cross-domain calls even
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when the other end of the call is not trusted.
The proposed hardware mechanisms are also in a very good position to be adopted for isolating I/O

devices and their drivers. In such a scenario, regular user code could drive low-level devices without fear
of corrupting the system on an error nor the possibility of using such capabilities to access unauthorized
information. This would provide a large leap forward from the current state of I/O isolation. On one hand,
current device drivers pay large performance overheads to isolate them from user applications. On the other
hand, using the IOMMU to isolate I/O devices from the rest of the system also imposes large overheads
and OS kernel complexity [21]. By using the proposed design, applications, device drivers and I/O devices
could all coexist on a single virtual address space, where CODOMs capabilities could be used to enforce
protection of all components, including both software (applications and device drivers) and hardware I/O
devices (by integrating capabilities with the IOMMU).

Since all applications in DomOS share a single virtual address space, memory translation resources
(like the TLB, which are on the critical path) can be removed from the core. Instead, TLBs could be
placed in other levels of the memory hierarchy. This would consolidate their costs and reduce hardware
complexity and performance overheads. CODOMs tags could be assigned at a much larger granularity, like
the segments found in IBM Power processors [61]. By placing memory translation (TLBs) on less-critical
memory hierarchy levels, their operation could be overlapped with the already large latency of accessing
main memory or larger shared caches.

The efficient cross-process calls prototyped in DomOS, could also be transparently integrated with sys-
tems that expose RPC interfaces as the basis for IPC, like GNU/Mach, since they already use an RPC inter-
face compiler to generate caller and callee stubs. Pure object capability systems like EROS [105] also use the
same approach, and could take even further benefits because cross-domain calls could also be transparently
applied to requests to OS kernel resources.

Finally, efficient cross-domain calls can also be applied to implement pico-para-virtualization. Instead
of using complex hardware or emulation to virtualize machine resources like I/O devices or certain instruc-
tions, cross-domain calls could be used instead. By providing efficient cross-domain calls, one can use
function calls as the interface to virtualize operations at a very small granularity. For example, to replace
virtualization-critical instructions or the memory write operation that triggers an I/O device operation. If
the caller is being virtualized, the call would be directed to the virtualization layer, while executing in a
non-virtualized environment would simply translate into calling a function on the same domain.

Clearly, providing flexible and efficient primitives for software component isolation allows programmers
to use new secure domain composition designs that were until now unfeasible due to existing overheads.
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Appendix A

FlowTAS: Making Data-Centric
Mandatory Access Control Practical

This annex describes a secure infrastructure for running untrusted third-party applications on security-
sensitive information. The entire infrastructure was designed and developed from scratch as a result of a
stay at the Spark group at UT Austin, led by Dr. Mohit Tiwari. The infrastructure is designed to work on
existing systems (various isolation mechanisms are evaluated), but results from Section 8.2.2 show that in-
frastructures with this type of characteristics could get large benefits from the system proposed in this thesis.
The evaluation of the entire infrastructure has been eliminated from this appendix for the sake of brevity.

A.1 Introduction
Platforms such as Google Drive, Dropbox, and TrueVault1 present the simplest of privacy controls to users.
Users create and share folders with other users, a form of user-level discretionary access control (DAC) – and
then insert data such as images, text, and video into each folder. Folder-level access control is particularly
attractive since users can set access controls independent of specific applications. Once a folder is shared,
all PDFs, presentations, spreadsheets, images, health records, etc. are shared with only the folder’s Access
Control List (ACL), implying a Mandatory Access Control (MAC) policy over all applications that use a
folder. What users want, thus, is data-centric DAC that the system translates into MAC over each application.

In practice, however, access controls are application-centric, and a malicious or compromised applica-
tion today can easily violate users’ folder-level access controls. Consider an example from healthcare in
Figure A.1. TigerText handles all messages, ZocDoc handles scheduling, and Athena Health handles health
records, and all store encrypted data in HIPAA-compliant TrueVault databases (the last two not shown in
Figure A.1 to save space). For such software-as-a-service (SaaS) applications, users can only decide whether
an application has access to a data type — e.g., messages, calendar events, or health records. The application
then has unfettered access to all messages (TigerText) or all calendar events (ZocDoc), which opens the door
for data breaches.

Data breaches can happen when an application simply copies data over to an unauthorized entity. How-
ever, enterprises, such as hospitals, can prevent such leaks by self-hosting third-party applications — in an
on-premise server or a private-cloud [1, 14] — and by firewalling the app from communicating to outside

1https://truevault.com: HIPAA compliant storage
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Figure A.1: Current systems provide application-centric access control, where compromised or malicious
apps can cause data breaches. E.g, TigerText leaks all Alice’s and Bob’s messages to Eve. Data-centric
access control matches users’ expectations better — e.g., all messages and calendar events in folder Frac-
ture’13 are only shared with Alice.

entities. A more insidious breach can occur when a malicious or compromised application copies data from
one folder to another with a different ACL. For example, if TigerText is compromised, it can leak all of
Alice’s and Bob’s messages into Eve’s folders. Self-hosting and firewalling external communications can-
not protect against such breaches, which are extremely harmful for an enterprise that works with sensitive
healthcare [4] or financial [11] data.

Our goal is to prevent such data breaches by making data-centric access control practical. To this end, we
design and build FlowTAS — a platform for self-hosted clouds to turn users’ folder-level sharing decisions
into a MAC policy on untrusted applications. Figure A.1 illustrates our baseline approach. FlowTAS runs
separate TigerText instances for each folder, so that even a compromised or malicious TigerText instance
cannot leak Alice’s data into Eve’s folders. Folders thus become units of isolation. FlowTAS enforces non-
interference across folders by executing one isolated application instance per folder, therefore forbidding
untrusted code from accessing data from two or more folders. It also provides folder non-interference on
untrusted cross-folder storage components.

FlowTAS’s design relies on “containers” as a fundamental isolation mechanism. The containers can
communicate with trusted FlowTAS services, but are firewalled from all other external communication,
including other containers. Interestingly, containers can be implemented as reference monitors [8, 108] that
can be deployed today, or more efficiently using capabilities [120, 123] or decentralized information flow
control [37, 43, 68, 115, 130] in future systems.

Data-centric per-folder MAC, however, poses two major technical challenges.
Challenge 1: Restricted functionality. Running separate application instances per folder curtails important
application functionality. For example, a messaging application will not be able to show an inbox of all
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(a) Developer view of the TAS pattern to produce the “Health: gather” view.

(b) Flow of user interaction views.

Figure A.2: High-level overview of the TAS (template-app-storage) pattern. Gray boxes are trusted
components, and circles are isolated containers. Applications without cross-folder views can simply run on
a per-folder container (app component). The Template Processor builds cross-folder views from untrusted
templates provided by the application. The Storage Declassifier allows cross-folder data optimizations
from untrusted storage components. Existing browser mechanisms ensure folder non-interference on the
client.

messages, or search for a message across all folders. A calendar application will be split into one calendar
per folder without a view of all events for a user. Storage services rely on deduplication on unencrypted
data to minimize cost — now, deduplication can only be applied per folder and thus will be inefficient. It is
evident that simply replicating the entire application per folder is not a feasible design point, even if it makes
the system’s access control invariant desirable and easy to describe.
Challenge 2: Slowdown. Executing several instances of an application concurrently, each in its own con-
tainer and each accessing a different folder, multi-execution [26], puts greater pressure on CPU and main
memory resources than the non-secure baseline of one application for all data. Our evaluation finds that
existing container isolation systems impose 3.1× latency and 3.0× throughput slowdowns compared to a
non-secured application; some of which can be eliminated using well-known web-proxying techniques. Im-
portantly, cross-folder operations suffer from overheads in excess of 70×, which are intrinsic to the multi-
execution model. Nonetheless, experiments using a prototype architecture are able to exploit the FlowTAS
pattern with much lower overheads.
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Making FlowTAS programmable and low-overhead is crucial to make data-centric access control prac-
tical. To this end, we make the following specific contributions:

1. Programmability: Application design pattern. To make applications functional in a data-centric MAC
system, we propose a novel yet simple design pattern (shown in Figure A.2) that developers can use to
port their applications to FlowTAS. The design pattern — template-app-storage (TAS) — enables
developers to start with their entire application as an app component. This app component provides per-
folder functionality, while the template and storage components enable cross-folder functionality.
Each component runs on a separate container, making their isolation simple to enforce. We present a safe
templating language that developers can use to construct views of cross-folder data, creating message in-
boxes, calendars, and similar pages. Further, we demonstrate that several untrusted application modules,
such as deduplication, key-value stores, compression etc, can be given access to cross-folder data as long
as they present a known interface to the rest of the application. Overall, the TAS pattern integrates well
with Model-View-Controller (MVC) based web applications, providing developers with a simple security-
agnostic method of partitioning their applications.

2. Non-interference: Robust declassifiers. We have to ensure that cross-folder functionality does not break
non-interference across folders. To this end, we propose robust declassifiers (see Figure A.2) to ensure that
(a) data from different folders cannot interfere inside a template-generated view, and (b) storage
modules cannot leak data from one folder into another. Our templates constrain the developer to functionality
that can compose data into views but not affect any data sent to an app when a user follows a URL from
a view back into a specific app. This is enforced through a combination of existing browser mechanisms
and a trusted Template Processor that composes the cross-folder views from untrusted templates. App
components send JSON objects to the Template Processor, which uses the data to inflate a template
provided by the untrusted app. For storage components, we propose a Storage Declassifier that integrity
checks each data read operation to ensure that it only returns the value from the corresponding most recent
write operation. Interestingly, this Storage Declassifier can ensure that even components that work with
unencrypted data, such as deduplication, can be given access to cross-folder data without breaking cross-
folder non-interference.

3. Slowdown: Efficient containers using capabilities. We have built and optimized prototypes using two
off-the-shelf containers, LXC [8] and a custom SELinux [108] module, which make applications easy to port.
We have also measured the performance of pulling data from several per-folder containers and composing
a cross-folder view. It yields overheads of more than 70× in the worst case, which are intrinsic to the
multi-execution model. Hence, we have designed a new container prototype based on capabilities [120] that
puts many app instances in the same multi-threaded address space and uses capabilities for light-weight
isolation. Our capability-based FlowTAS design reduces slowdown to only 3.1× in a worst case stress test.
Applications such as document/presentation editors where users typically work with one document at a time
fit well on FlowTAS and incur vastly lower overheads.

4. Evaluation: Seven web applications. We have developed 5 web-based applications from scratch (a
mock healthcare application, programming IDE, calendar, image viewer, and PDF viewer) and ported 2
off-the-shelf applications (Gitlab and Hacker Slides) to FlowTAS. We find that across all seven off-the-shelf
applications, ∼600 lines of code were modified, and ∼1.25M lines of code were removed from the trusted
code base (detailed in Table A.1 and Table A.2).
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A.2 Motivation
We now present a motivating example that we will use to define our problem, demonstrate threats against
user-data privacy, shortcomings of previously proposed solutions, and where FlowTAS fits in.

A.2.1 Example Setting and Privacy Expectations
Alice, Bob, and Eve are patients in a hospital under the care of Dr. Dave. Dave maintains per-encounter
folders that he shares with relevant patients, e.g., Fracture’13 (with Alice), Fever’14 (with Alice and Bob),
and Flu’15 (with Eve). Each folder includes data generated by applications such as messages, calendar
events, to-do milestones, health records, images, and other documents. Maintaining these documents in
cloud-backed storage, such as Google Drive, Dropbox, and True Vault, and using web-based applications
enables Dave to share folders and collaborate with his patients.

Dave’s expectations about the confidentiality of his online data can be expressed for almost all applica-
tions in terms of access-control lists (ACLs) as shown in Figure A.2: e.g., Fracture’13 information should
only be accessible to Alice. Unfortunately, even if Dave translates his confidentiality expectations correctly
into ACLs, many opportunities exist for his information to be diverted inappropriately to recipients he has
not explicitly authorized.

A.2.2 Data Leaks with Untrusted Applications
Opportunities for data leaks are primarily rooted on the fundamental difference between access control
and information flow control. Access controls govern how a hosting platform grants access requests by
other users to Dave’s documents; they are, essentially, perimeter controls. They say nothing about how
information flows internally within the platform.

For example, the system is not secure even if the platform implements ACLs correctly and prevents
Eve’s attempts to read Fracture’13 documents but allows her to see a Flu’15 photo. If the contents of a
Fracture’13 X-ray are somehow copied into a Flu’15 health record, Eve would be able to read them anyway.
This could happen in the cloud (say within Google Drive) if a buggy image-indexing application ends up
inadvertently copying image content from one file to another. Even worse, malicious applications can exploit
legitimate cross-folder accesses to exfiltrate information across folders. In the worst case, these could result
in information leaking to all folders that an application can access.

Ultimately, granting an application access to private information implies trusting that application; if
Dave allows Google Presentation to access Alice’s medical record, he implicitly trusts it not to spread the
information from that record all over the other documents Presentation has access to. In summary, all
documents accessible by an untrusted application effectively share the same privacy policy (e.g., the same
ACL), even if their owners have set that policy differently. System- or language-based confinement has been
the typical response, as we see next.

A.2.3 Plugging Untrusted-Application Data Leaks
To deal with promiscuous information flows among sensitive documents, careful tracking of information-
flow labels has been designed in various guises. One effective example is programming-language sup-
port for information-flow control. Applications built on top of such languages (e.g., JIF [99], Hails [52],
Resin [128]), carefully annotate program inputs, intermediate variables, and outputs, to ensure that informa-
tion does not flow between inputs and outputs that have incompatible privacy policies. Unfortunately, such
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languages are notoriously complex to use in practice, they require that developers have significant security
expertise, and constrain those developers to use only supported programming frameworks, libraries, and
components. What is worse, these approaches only work as long as application developers are trusted [99],
or when platform developers maintain the model for all third-party MVC applications [52]—which might
not be the case for many mobile and web-based applications [91].
OS-level containers. A typical, more brute-force response is to put an untrusted application “in a box”:
confine it in an operating system container and grant access to that container only to authorized users. This
ensures that, regardless of what the application does, information flowing out of a confidential document
stays within the container and accessible only to authorized parties. Mechanisms for the definition of fine-
granularity privacy domains have been studied extensively, including OS virtualization (e.g., LXC [8]), MAC
systems (e.g., SELinux [108] and SEAndroid [107]), and decentralized information flow control OSes (i.e.,
DIFC systems like HiStar [130], Flume [68], and Hails [52]). Moreover, logical boxes that extend across the
cloud servers and client devices have also been demonstrated (e.g., πBox [70]).

OS-level application-centric confinement as employed by Android, web-browsers, cloud applications,
and πBox [70] follows a container-per-application model. Unfortunately, this makes it difficult for Dr. Dave
to isolate the various privacy domains (folders) he may have access to: if he grants access to an image-
manipulation application to “his files” (e.g., images on all his folders), then vulnerabilities in the application
might still leak Alice’s records to Eve.

As a data-centric alternative in our example, the system can have distinct containers for Fracture’13,
Fever’14, and Flu’15 (ellipses in Figure A.2), and then use arbitrarily buggy or malicious applications within
each separate container. All users can remain assured that no information leaks from one folder to another,
eliminating the leak scenarios described above. Using existing systems to map each folder to a unique in-
formation flow label and enforce non-interference [52, 68, 130] would be sufficient — except that legitimate
cross-folder functionality will be curbed due to illegal information flows.

A.2.4 Limitations of Prior MAC systems

Cross-folder views. On the user-facing front-end, Dr. Dave often needs to inspect information from multiple
folders. Although he could maintain a separate calendar, email account, and search index per folder, being
productive is at odds to such extreme separation. Figuring out if he is available for a 2pm meeting without
mixing information from all of his calendars would require him to check the 2pm meeting slot in each
calendar, and the more distinct folders he had access to, the more tedious the exercise would become. It
is more convenient to have a global calendar spanning all the separate calendars from each of the distinct
folders Dr. Dave can access (“Health: gather” view in Figure A.2b). However, aggregating all of his
calendars together, finding an entry in question (e.g., an existing Flu’15 meeting on the 2pm slot), and
modifying that entry subsequently (e.g., attaching an image to the Flu’15 calendar entry) violates a number
of information flow rules; it is possible that some information that came from a Fever’14 calendar entry, via
the aggregate calendar, flowed into the Flu’15 entry without Dr. Dave’s explicit intention to do so.
Cross-folder storage optimizations. Similarly, on the back-end, developers or even platforms often need
to store data from all users in a single global storage layer, such as an SQL database or Google’s BigTable,
due to cost or time-to-market concerns. Developers will logically attempt to keep items with distinct ACLs
separate, but global operations such as deduplication will “mix” information with distinct ACLs (right-hand
of Figure A.2a). So a presentation file containing Fracture’13 data may be deduplicated with identical files
from Fever’14 (both of which are accessible to Alice but otherwise distinct), or even worse from completely
unrelated folders like Flu’15 with the same file, before being written to disk. This means that a potentially
buggy operation on the storage platform can leak Alice’s information to unauthorized users like Eve (e.g., a
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Figure A.3: FlowTAS design pattern and infrastructure overview; the trusted code components of FlowTAS
are shown as gray boxes. User flow: The user (“Alice”) logs into the Trusted User Interface, which redi-
rects her to the Trusted Desktop Interface (not shown). After selecting an application (“Health”), U1 the
user requests an operation that triggers a cross-folder view (“Fracture’13” and “Fever’14”). U2 From
that view she can select to operate with the data on a specific folder (“Fracture’13”). Developer flow:
Untrusted developers split applications into template, app, and storage components, which are exe-
cuted inside containers (ellipses). FlowTAS executes multiple instances of the app components (“Health”),
each on a separate container and running on behalf of a user (“Alice”). An app instance can trigger a
cross-folder operation when it does not have access to any folder (container “<Health,Alice>”; bold solid
arrows). D1 The programmer provides an untrusted template. D2 The trusted Template Processor
then uses it to render a view with information gathered from multiple app instances, each with access to
a separate user’s folder (“Fracture’13” and “Fever’14”). D3 FlowTAS ensures folder non-interference
(even with malicious programmers) by prohibiting information to flow (directly or indirectly) between con-
tainers. D4 App instances with access to a folder can directly interact with the client (bold dashed arrows).
D5 Developers can also specify cross-folder storage optimizations — the Storage Declassifier ensures

data non-interference across folders.
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faulty modification by Alice on the copy in Fracture’13 is seen by the deduplicated copy in Flu’15).
Such back-end mixing is common not only with deduplication, but also with other storage optimizations

that benefit in performance from operating over larger collections of (unencrypted) data, such as in-memory
key-value stores, compression, erasure coding, striping, etc. This back-end mixing of information, again,
strictly violates information flow rules and existing work on declassifying data from an untrusted process
does not robustly support such operations [52, 99]. Furthermore, as with PL-based DIFC, DIFC-enabled
storage layers (e.g., IFDB[103]) can help developers protect their users’ data from information leaks, but
they require sophistication in setting privacy labels, as well as porting existing applications to a new storage
platform.
Declassification. The way out of such information-mixing conundrums, legitimate violations of strict
information-flow confinement, is to declassify. Declassification mechanisms are custom application logic
that decides which cross-folder information flow is actually allowed by the intent of the policy; such logic
must be trusted, since it can violate strict information-flow rules. But declassification logic tends to be com-
plex and highly critical to security; if it is incorrect, it can compromise the confidentiality of the system, and it
is strictly harder to write correctly than the applications themselves. Prior OS-based MAC systems [68, 130]
would mark such cross-folder views and storage modules as trusted declassifiers. The downside is that writ-
ing such application-specific declassifiers falls upon the same application developers who, ultimately, can
be expected to be neither trustworthy nor security experts.

A.2.5 Problem Definition
We seek to (continue to) enable users to share their sensitive data, using privacy policies as simple as ACLs
on folders, on web-applications that run in private clouds. We target a threat model in which the platform
is itself trusted (i.e., a private cloud), but the applications hosted within the platform (and their developers)
are not. This private cloud requirement can be relaxed, however, and an enterprise could also use other
Infrastructure-as-a-Service providers using attestation and trusted boot mechanisms [62, 89]. Further, our
design is not limited to web-applications — any application that can interface with user-facing views can
work by replacing our templates with, e.g., Android layout templates.

We are particularly interested in simultaneously achieving the following properties:

P1 Fine-grained, cross-application privacy domains. Definition of privacy domains, who can access
which folders, should be independent of application-specific constructs like messages, events, health
records, etc.

P2 MAC over applications. Policy definition should be enforced in depth, i.e., on all applications and not
just on users, to prevent cross-folder information flows.

P3 Untrusted applications. Applications should not be assumed to be correct nor benign.

P4 Development freedom. Applications should be allowed to use any language, library, or framework.

P5 Safe cross-folder user views. Per-user global views across all privacy contexts (folders) should be
possible, without leaking information across contexts.

P6 Safe cross-folder storage optimizations. Global storage optimizations across privacy contexts (folders)
should be possible, without leaking information across contexts.

We limit the scope of our problem by taking integrity out of the discussion. Specifically, although it is
our goal to prevent untrusted applications from violating users’ privacy policy, we do not prevent them from
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mangling user data or destroying it. A system such as Frientegrity [46] may compliment our approach in
that respect.

We also place out of scope information leaks via timing or termination channels. We assume com-
plementary techniques that either randomize (through fuzzing [117]) or normalize (through deterministic
execution [17]) the timing of outputs.

Finally, users fully delegate trust in handling sensitive data to other users they share folders with. We
do not seek to protect against poor judgment when sharing a sensitive file with an untrustworthy friend; that
friend is free to take that sensitive file and communicate it to the world. Plugging the “analog hole” is out of
scope for our work.

A.2.6 FlowTAS Overview

FlowTAS’s design is founded on the following principles, which are exemplified in Figure A.3. Users work
with folders as the simple abstraction for access control (P1; Folder ACLs component in Figure A.3). Folders
are finer-grained than Home vs. Work virtual machine based control [98, 101], simpler than defining long-
term security label lattices [39, 64], and are popular in platforms like Google Drive and Dropbox.

An application instance is launched within a container that is tied to a specific folder. This mandatory
access control over applications ensures that information does not leak across folders (P2; different contain-
ers in Figure A.3). Since containers are OS-based, each application instance gets a standard system view,
including system calls, libraries, and runtimes for any convenient development framework. For example,
programmers may use standard frameworks like node.js, Django, PHP, and Rails, or other completely cus-
tom and buggy frameworks (P3 and P4). This is important for adoption given the diversity in toolkits for
developing complex applications.

Applications that require no declassification trivially run within a per-folder container (P4; bold dashed
arrows for Fracture’13 in Figure A.3). Those that do require cross-folder viewing or cross-folder back-end
functionality, however, must be refactored into the TAS pattern such that they provide one or more views
(“Health: gather” in Figure A.2b), an app component to provide the bulk of the user-facing functionality
(“Health”), and storage components (e.g., “Deduplication”). This refactoring task is privacy-insensitive
and developers who are security-novices only need to work with functionality-based decisions. In contrast
to refactoring to TAS, assigning security labels to program variables [99] or the Model [52] (in a MVC
application) requires security expertise.

A cross-folder view, such as listings of notifications, encounters, prescriptions, etc., in an untrusted appli-
cation is expressed in terms of a template (bold solid arrows in Figure A.3). FlowTAS’s trusted Template
Processor “gathers” data (JSON objects in our prototype) generated by each per-folder app component and
inflates the template to create views for the user. In this system, Dr. Dave can view all encounters and
transition into a specific app component to create new or update existing encounters. The Template Proces-
sor ensures that data (JSON objects) from one folder’s app are used to create URLs (i.e., HTTP requests)
to only that same app component (i.e., accessing the same folder). Hence, HTTP requests and arguments
sent from a view to each app can be declassified safely to the client (P5). Incorrect or otherwise malicious
templates cannot send one folder’s JSON to another since the template processor creates the URLs on a per-
JSON-object basis. Thus, the template processor fulfills the requirement for robust declassification [129].

The template language also includes special tags for a view to trigger search and sort operations across
data gathered from all folders. Interestingly, such minimal functionality aligns well with popular template
languages [7, 10] and supports many common use-cases (P4).

Back-end cross-folder functionality (application-specific or provided by generic storage layers) is ex-
ecuted in separate global back-end storage containers (right-most containers in Figure A.3). Their in-
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formation flows back to the rest of the app containers, and is thus declassified via a Storage Declassifier
(right-hand side of Figure A.3). The Storage Declassifier keeps track of all data objects (at units such as
files, disk blocks, or key-value pairs) flowing from an app to a storage component, and only allows the
same, seen data objects to return back to that app (P6). Suppose an X-ray image is pushed by a Fracture’13
app to a deduplicating storage component (and its hash recorded by the Storage Declassifier); when
the same file is fetched by the Fracture’13 app, the Storage Declassifier ensures that the file returned from
storage has the same content digest and only then “declassifies it”, allowing it to flow back to the app.
By this storage and declassification, back-end information mixing cannot expose information across folders,
since apps explicitly cannot obtain new information from storage (recall we have placed implicit channels
such as timing information leaks out of the scope of this work).
Mixing information across folders. Functionality such as analytics (e.g., clustering, training classifiers,
etc.) on data across folders is a valuable component of “big data” applications. Such functionality funda-
mentally violates the access control policies set by users, and instead requires complementary approaches
such as differential privacy [42, 84, 85, 93, 96] or quasi-identifier based privacy [74, 81, 111]. Differential
privacy literature has shown that releasing datasets is fundamentally unsound. Instead, the privacy preserving
approach is to bring analytics functions into a container with all private data and only release the perturbed
output of the function on the private dataset. This approach, as exemplified in GUPT [85], integrates directly
with FlowTAS as the differentially private container reads all folders’ data, receives analytics functions from
the developer, and releases declassified output to the developer if the privacy budget is not exhausted. Similar
declassifiers can be built for advertisement impressions [70] and debugging output [29].

A.3 Design of the FlowTAS System
FlowTAS is comprised of five primary software components, which are shown in Figure A.3: (A) the Trusted
User Interface, (B) the Web Proxy, (C) The Container Manager, (D) the Template Processor, and (E) the
Storage Declassifier. The design and interaction between each of the components can be best explained
by examining a typical user workflow with the FlowTAS system. Importantly, our design is not limited
to web-applications; any application that can interface with user-facing views may work by replacing our
templates with, e.g., Android layout templates.

A.3.1 Trusted User Interface
A user begins an interaction with FlowTAS by authenticating through the Trusted User Interface (TUI).
Similar to Google Drive or Dropbox, the TUI provides functionality such as creating folders, uploading data
to folders, and launching applications. Additionally, the TUI provides users a simple way to manage ACLs
through folder sharing decisions. In fact, the TUI is a regular containerized application that has additional
rights to request changes to the folders’ ACLs of the user it runs on behalf of. Since app instances run inside
containers, clients interact with a Web Proxy that dispatches requests to the appropriate container.

A.3.2 Web Proxy
The Web Proxy serves two roles. First, it dispatches client requests to the appropriate container, and forwards
their responses to the clients. Secure dispatching to containers is implemented through a mix of cookies (for
authentication) and randomly-generated URLs (for authorization). Second, it provides all FlowTAS abstrac-
tions (users, folders, apps, ports, etc.) to developers through a RESTful API accessible via secure HTTP.
Authentication and authorization of each function on the API is implemented through a secure random token
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argument (i.e., a sparse capability), a technique widely used in existing web service technologies [12, 63].
The set of capabilities (e.g., create folders, share folders, launch applications, etc.) given to an app instance
(i.e., container) is established according to the user’s role and the application category, and is passed to the
app instance when started. Therefore, the TUI is trusted in that it receives more capabilities than other ap-
plications to the system operations, but otherwise uses the same mechanisms as any other application. The
folder sharing decisions (“Folder ACLs” in Figure A.3) are later used by the Container Manager.

A.3.3 Container Manager

Isolated execution environments (containers) are at the core of FlowTAS. They are managed by the Container
Manager, shown in Figure A.3, which ensures the non-interference property of all folders when creating
containers. This property is trivially enforced by the Container Manager as it creates a new container for
each folder, and uses a MAC system to ensure complete container isolation (see Appendices A.4.2, A.4.3
and A.6). This implies using a separate app instance for each folder (since they run on separate containers),
but optimizations are also explored in Appendix A.6. To avoid cross-application interference (e.g., safeguard
trade secrets on application code), FlowTAS runs app and folder pairs on separate containers.

As explained in Appendix A.2, container non-interference enables P2, but makes P5 impossible by
design. As we discuss next, FlowTAS facilitates cross-folder views through the Template Processor com-
ponent.

A.3.4 Template Processor

The Template Processor component, shown in Figure A.3, renders templates provided by applications
that request cross-folder information. First, the app returns a template to the Template Processor which,
in turn, requests that per-folder data be collected. This data is collected using a per-folder container, trivially
maintaining the non-interference property. Since app instances run on behalf of a user, the Folder ACLs
component (Figure A.3) limits through what folders the operation can take place. The per-folder data is then
aggregated by the Template Processor, which renders it according to the provided template. Therefore,
templates are a key element of FlowTAS to provide cross-folder functionality (P5; see Appendix A.4.3
for more details).

Robust Declassification: Data from different folders must be declassified to render it on a single page
on the user’s browser, while ensuring it cannot flow to other folders. To prevent this information from
flowing to unauthorized subjects, FlowTAS executes a simple implementation of Information Flow Control
(IFC) during the template rendering phase and on the client side (see Appendix A.4.4 for more details).
The rendering of templates is carefully controlled through a stateless templating language. On the client
side, it is controlled through a mix of the Same-Origin Policy (SOP) functionality (already implemented
by browsers) and controls over the JavaScript on the client (which can otherwise observe and manipulate
cross-folder data to exfiltrate data). Several JavaScript sanitation and parsing libraries exist, but the syntax
of HTML and JavaScript make it difficult to prevent all possible malicious or buggy JavaScript injections
from being executed. Therefore, rather than implementing an IFC policy on client-side JavaScript, FlowTAS
forbids using arbitrary JavaScript in templates, except for trusted snippets provided by the template lan-
guage (see Appendix A.4.4 for more details). Note that regular views that do not go through templates
are not affected.
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A.3.5 Storage Declassifier

The Storage Declassifier component, the right-most gray box in Figure A.3, allows untrusted storage
components to apply optimizations across folders (e.g., to consolidate storage resources through cross-folder
deduplication; P6).

FlowTAS allows applications to use untrusted Storage Backend components with access to cross-folder
data while maintaining folder non-interference through a trusted Storage Declassifier component that keeps
track of data integrity (one component per supported interface). The current prototype provides a trusted
Storage Declassifier component that implements a simple key/value storage interface with put and get oper-
ations. It keeps track of the integrity of data that is put into it, and drops the results of get operations whose
data integrity has been compromised. Therefore, the trusted component acts as a transparent proxy to the
real untrusted Storage Backends, which can safely operate with data from multiple folders (right-most boxes
in Figure A.3). Note that in a production system, the file-system itself could be used as the trusted Storage
Declassifier interface, transparently redirecting operations to untrusted Storage Backends [109].

Another legitimate use-case for declassification is using existing databases for compatibility with large
code-bases. Databases like MySQL are already deployed in privacy-sensitive environments. In this case,
FlowTAS provides a small trusted Service Declassifier component that configures the existing authorization
mechanisms in the Service Backend component (the database) to isolate the per-folder information (e.g.,
using different per-folder views). The Service Declassifier can then hand out per-folder authentication
information to each app instance (i.e., each container). Note that Service Backends are a special case of
Storage Backends, since they can be trusted to maintain folder non-interference.

All component instances (both trusted and untrusted) run isolated from each other; i.e., on different
containers. Access to services is then managed through the port grant capabilities provided by the RESTful
API implemented by the Proxy. For example, regular apps are given capabilities to access the trusted
declassifiers; in turn, these trusted components have capabilities to access the untrusted backends.

A.4 FlowTAS Implementation

FlowTAS exposes a simple ACL-based system (which is data-centric by nature) to its users to manage the
sharing of folders (P1). Additionally, FlowTAS imposes the non-interference property between folders (P2).
Intuitively, one would translate these into IFC policies, since they provide a convenient way to express data-
centric policies. Instead, FlowTAS uses a MAC system to enforce its properties. MAC systems are readily
available on most environments, and can be generally enforced at lower costs than IFC. Nonetheless, MAC is
eminently application-centric (i.e., the application acts as a subject for controlling access), while FlowTAS’s
policies are data-centric (i.e., information flow is controlled using the data as a subject for control).

FlowTAS turns MAC controls from application-centric into a data-centric policy-enforcement mech-
anism by running a separate instance of each application, and allowing each instance to access a single
folder. Internally, FlowTAS makes a few exceptions to this simple rule in order to make writing applications
practical (see below).

A.4.1 Object Categories for Data-Centric MAC

FlowTAS uses folders as the core storage abstraction to control all information, regardless of whether they
are generated by the user or not. Therefore, it internally distinguishes between the following folder cate-
gories:
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Application Are automatically created when installing an application (shown as “<App>”). When an
application runs, it always has read-only access to its folder.

Settings Are automatically created the first time a user starts an application (shown as “<App,User> Set-
tings”). They store user-specific settings for the application.

Data Are managed through desktop applications (see below), and contain regular user data. The term
“folder” without a category usually refers to data folders.

Containers also have an internal category property, which is used to distinguish between different appli-
cation phases:

Start Have read-only access to the corresponding application folder, and read-write access to the corre-
sponding settings folder. This is the phase applications start on, where users can set their own settings
(see Appendix A.4.3).

Gather Have read-only access to the corresponding application and settings folders. They also have read-
write access to a single data folder. This phase is used to construct cross-folder views (see Ap-
pendix A.4.3).

Enter Have the same access rights as the gather phase/category. This phase is used to spawn application
instances with access to a specific data folder (see Appendix A.4.3).

These simple rules ensure that data never flows across data folders: application folders can never be
written to (except during application installation, which does not have access to data folders); and settings
folders can only be written into from start containers, which do not have access to any data folder. The only
place where data could flow across data folders is in the client’s browser when it is running untrusted code
from the application (e.g., JavaScript). As explained later, this is taken care of by randomizing URLs and
ensuring the safety of cross-folder views (see Appendix A.4.3).

All applications in FlowTAS (trusted and untrusted) use the same mechanisms to run as isolated instances
on containers. Therefore, the system distinguishes between the following categories to grant them different
capabilities to interact with the system abstractions (see also Appendix A.3.5):

TUI FlowTAS runs a single instance of the TUI application, which has capabilities to manage and authen-
ticate users.

Desktop Is the application that is started after a user logs in, which has capabilities to manage the applica-
tions and folders of that user.

Storage Backend FlowTAS runs a single instance of each untrusted storage backend. Each backend is tied
to a single storage interface (see next).

Storage Declassifier FlowTAS runs a single instance of each trusted storage declassifier interface. Has
capabilities to access all untrusted backends for that specific interface.

Service Backend FlowTAS runs a single instance of each “trusted” service backend (e.g., a shared database).

Service Declassifier FlowTAS runs a single instance of each trusted service declassifier. Has capabilities to
access the target service backend.

Regular Instantiated for each user and folder pair; has capabilities to access trusted storage and service
declassifiers.
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A.4.2 Web Proxy and Container Manager
The Proxy is implemented in approximately 3,100 lines of Python, in the form of a Flask web server ap-
plication [6]. It runs behind Apache, uses MySQL as a long-term database and Redis [15] as a short-term
database and to implement distributed locks, and uses Celery [3] for running gather operations in parallel on
the background. It currently exposes 23 different endpoints on its RESTful API, providing means to manage
capabilities for applications, authentication, users, folders, files, sharing, ports, etc..

The Container Manager is written in around 1,600 lines of Python. It offers a RPC interface to the Proxy
via Pyro [13]. It provides three different container implementations (LXC, SELinux, and CODOMs), which
are discussed further in Appendix A.6.

A.4.3 Container and Application Instance Management
Each application is installed on its own folder through a tarball, which contains a manifest file that describes
it (e.g., its name and category), and declares what other applications in the system it depends on (e.g., ser-
vices). The Proxy can launch application instances on many hosts, each controlled by a separate Container
Manager. Each application instance is uniquely identified through the application itself, its user and the
data folder it has access to. Therefore, multiple effective containers with the same identifier are considered
a single logic container where application instances can freely communicate without violating the isolation
policies. This identifier is transformed into a random URL sub-domain (to avoid forging) that the Proxy uses
to locate the target application instance.

Application lifecycle goes through three distinct phases, which trigger container and app instance cre-
ations. The start is the initial phase of all applications. When the application sends a response with the
x-flowtas-gather header, the Proxy triggers a set of application instances in the gather phase and uses
the Template Processor to render their results using the application-provided template. Finally, when the
user clicks on a link generated by a gather template, the Proxy creates an application instance on the enter
phase, which has access to a specific data folder. Each of these phases executes on different containers, and
is therefore identified through separate sub-domains. For security purposes, cookies set by applications for
any parent domain are dropped.

Start Phase: Application Spawning

Figure A.4 shows the sequence of operations involved in starting the Health application. The desktop ap-
plication (on the desktop subdomain) uses the target application identifier (Health) to point the client to
start it. 1 The client’s browser requests to start the Health application. 2 The Proxy contacts the Container
Manager service to request a new application instance. 3 It creates a settings folder, and spawns the app
instance with read-write access to the settings folder and read-only access to the application folder. 4 The
Proxy then registers the new “<Health,Alice>” sub-domain, and redirects the client to it. 5 – 6 From now
on the Proxy simply forwards the traffic between the client and the new app instance.

Gather Phase: Cross-folder Data Aggregation

Figure A.5 shows the sequence of operations that allows the Health application to show a page with a sum-
mary of all the appointments in Alice’s folders. 1 When the client requests the page at /get-encounters
on the application, 2 it responds with the x-flowtas-gather header. This header must be a JSON list
(a command line), and the body of the response a gather template. 3 – 4 When the Proxy detects this
header, it coordinates the creation of containers and app instances for each of the folders used for the gather
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Figure A.4: Start phase: sequence of operations for starting a new app instance. The operation is triggered
by requesting a URL with the target application’s identifier (step 1 , top URL). Interaction with the new
instance is triggered by a redirect to a URL that identifies the target container (step 4 , bottom URL). The
application can use the “settings” folder (top-right) to store user-specific configuration.

Figure A.5: Gather phase: sequence of operations for rendering cross-folder results. The operation is trig-
gered by a gather request from the application running in its start phase (step 2 ). The Template Processor
composes the per-folder results using an app-provided template (step 5 ). Finally, the Proxy redirects
the client to the page containing the rendered template (step 7 ).
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Figure A.6: Enter phase: sequence of operations for executing an application in a folder. The operation
is triggered by requesting a URL that a previous gather phase registered to a specific folder (step 1 ).
Interaction with the new instance is triggered by a redirect to a URL that identifies the target container (step
4 , bottom URL). The application can still read the “settings” folder (top-right), but it cannot write into it to
avoid interference across data folders.

operation. In the current prototype, all the data folders accessible by the user are selected (Folder ACLs
component), but one could easily implement a way to select a sub set of these. Each new container runs
the command provided in the aforementioned header. Each container also has read-write access to one of
the selected data folders (“Fracture’13” and “Fever’14”), and all have read-only access to the application’s
and settings folders (“Health” and “<Health,Alice> Settings”, respectively). 5 – 6 FlowTAS then sends
a request to each of the instances, which provide a JSON response, and uses these results to render the
resulting page from the template. 7 Finally, the Proxy redirects the client to a temporary sub-domain
that serves the rendered page (“<Health,Alice,Gather>”). This enforces the use of the client browser’s
SOP mechanism, preventing a malicious JavaScript from analyzing the results by impersonating the client’s
browser.

Enter Phase: Editing folder Contents

Figure A.6 shows the sequence of operations that allows Alice to view the details of an appointment with
the Health application. 1 First, the client requests an address that was generated during a gather phase
(i.e., /details?id=flu; see tag FlowTAS.enter below). 2 – 3 This triggers a new app instance
on the selected folder, which is identified through its URL (i.e., /details?id=flu). The application is
started with the command registered during gather (see tag FlowTAS.entercmd below), and its container
has the same folders used by the gather (e.g., the data folder Fever’14, plus the settings and application
folders). 4 The Proxy then creates a new sub-domain for the new app instance, and redirects the client to it
(“<Health,Alice,Fever’14>”). 5 - 6 From now on the Proxy simply forwards the traffic between the client
and the new app instance.

A.4.4 Template Processor

The Template Processor uses the Python implementation of the Mustache templating language [10]. This
templating language uses a set of tagged blocks to operate, and is state-less (it has no explicit complex
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control-flow operations like loops) which makes it simpler to reason about. The Template Processor analyzes
the template before and after expansion to ensure it is not used to exfiltrate information across folders.
First, JavaScript is not allowed (except through special FlowTAS-specific tags; see below), since it could be
used to observe and modify the resulting page. Second, links and forms that span beyond an expanded block
are not allowed (they could mix information from multiple folders).

Regular blocks are expanded according to the results provided by each application instance during a
gather operation. FlowTAS also provides two special tags. The first, FlowTAS.enter, is used to generate
links that will be used to trigger an enter operation into a specific folder. The second, FlowTAS.entercmd,
is used to specify a command to run on the new container created after the enter operation.

To make up for the lack of application-provided JavaScript in gather templates, FlowTAS provides a
few additional tags that expand into trusted snippets of JavaScript. These provide functionality like searching
and auto-completing across the per-folder gather results. It is important to note that none of these restrictions
apply outside of gather templates.

A.5 Security Properties

This section summarizes the security properties of FlowTAS to clarify which piece is enforcing it and
through what means.

The TCB of FlowTAS contains the trusted framework itself (gray boxes in Figure A.3), the underlying
container implementation backend (e.g., LXC) and the client’s browser. Therefore, from a security perspec-
tive the client’s browser is part of a logic container, but the application code that runs in the client is not
trusted (i.e., Javascript). Containers are isolated both “spatially” (direct communication) and “temporally”
(communication across application phases).

Spatial container isolation: The Container Manager isolates containers at the file system and network
level. Every container always has write access to a single folder, and initially can only interact with the
Proxy (either to respond to client requests or to perform requests to the Proxy). Finally, the trusted Template
Processor ensures that a gather view never expands into a page that can mix information from multiple user
folders into a single request stemming from it (e.g., a form or a link). Untrusted client code in the browser
is not allowed by the Template Processor, making gather views safe even if they contain information
from multiple user folders (untrusted client code is allowed on all other views). FlowTAS exposes every
container through a separate randomly-generated sub-domain. This ensures that client code cannot guess the
sub-domain of other containers, that cookies are container-specific, and that the browser’s SOP mechanism
prevents client code from impersonating the user (e.g., to request a gather view and exfiltrate its results).

Temporal container isolation: Information of different application phases (Appendix A.4.3) can only
cascade across the following folder categories (Appendix A.4.1): application→ settings→ user. This cor-
responds to information only cascading across the following container categories: start→ gather→ enter.
Note that information can come from both folder accesses and data passed through application arguments.
An application folder can never be written into by containers (it is only created at application installation
time). A settings folder can only be written into by start containers. A user folder can only be written into
by gather and enter containers. Finally, the trusted Template Processor ensures that information cannot flow
from a gather container (a user folder) into the start container that triggered it (a settings folder). On the
client browser side, exposing gather views as separate random sub-domains ensures information cannot
flow back from a user folder (as part of the gather view) into a settings folder. The same applies to enter
containers.

Storage and service isolation: The Proxy exposes management operations to containers, which are
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secured through sparse capabilities (random tokens). Capabilities are conscientiously granted to containers
to ensure they do not break the security properties of the system. For example, port grants allow applications
to break the strict isolation of containers. Regular applications can only use port grants to containers running
trusted Storage and Service Declassifiers. In turn, these trusted components are the only ones with port grants
to the corresponding Storage and Service Backends. The integrity checks in a Storage Declassifier ensures
folder non-interference even when Storage Backends are not trusted. Service Declassifiers ensure that a
partially trusted Service Backend is properly configured to enforce folder non-interference before a regular
application can interact with it (e.g., using a per-folder database view).

A.6 Containers Optimized for Multi-Execution

A.6.1 Baseline Container Implementations
We implemented our baseline containers using two different backend mechanisms: LXC [8] and SELinux [80,
108]. An additional process-based backend was also implemented as a baseline for performance compar-
isons (even though it cannot provide the required isolation). We did not try conventional virtual machines
since previous studies show that LXC containers are more efficient [47, 97].

Container life-cycle goes through the following operations: (1) create; (2) warmup, or prepare it to
run processes inside; (3) execute a process; (4) cooldown, or de-prepare it from running processes; and (5)
destroy. Folder life-cycle simply consists on creating and destroying storage locations.

LinuX Containers (LXC) Provide lightweight OS-level virtualization containers. They are widely used as
a core piece of Docker [5], a framework for application deployment. Each container corresponds to an LXC
container, with its own OS namespaces (e.g., list of processes, file-system and virtual network interfaces).
Processes from different containers can use the same port numbers without interfering with each other, since
each container has its own IP. The Container Manager uses iptables to isolate containers from each other
at the network level. Creation is implemented using a “clone” of a base file-system (lxc-clone). folder
storage locations are then overlaid into the container’s file-system using the appropriate access properties
(read-only or read-write) using AUFS [2]. A warmup boots the container up (lxc-start) until it acquires
its IP address. Execution spawns a process inside the container using lxc-attach. Cooldown simply
stops the container (lxc-stop), freeing all its memory and CPU resources. Finally, destroy unmounts the
overlaid storage locations and destroys the LXC container (lxc-destroy).

SELinux Implements flexible and fine-grained MAC mechanisms for the Linux kernel. Each Container
Manager host has a minimal base policy that provides the necessary resources, and each container is im-
plemented as a separate SELinux policy module. Policies limit what files can be accessed, and define
which network ports can be used. Therefore apps cannot listen in ports that have not been assigned to
them, and the Container Manager uses iptables to forbid network connections across containers. Bi-
nary policy modules are constructed in-flight from a textual template description. Folder creation creates
and installs (semodule -i) a binary policy module, and sets the storage location labels. Creation creates
a binary policy module that defines its labels, establishing the permissions of processes for that container,
and warmup simply installs the policy module (semodule -i). Execution is more involved, since it must
grant the main application’s port to the container’s label (semanage port -a), spawn a process with
that label (runcon) and revoke the port when the process finishes (semanage port -d). Cooldown
simply removes the policy module (semodule -r) and, finally, destroy removes the policy module file.
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A.6.2 Intrinsic Container Performance
Our measurements show that both LXC and SELinux as the container primitive yield non-trivial overheads
when compared to a non-isolated application (the baseline process backend). Even when effectively hiding
their cost, each application phase requires separate containers; and containers, in turn, require separate
processes because threads share memory but their code is not trusted. The following sections explore using
future capability-based architectures to construct more efficient containers by isolating threads of the same
process. We implemented an experimental capability-based container backend to demonstrate the benefits
of isolation without multi-execution during gather operations — the same approach can also be applied to
other phases as well.

In this design each thread of a single process can handle multiple folders by iteratively: (1) entering “iso-
lated mode”; (2) handling the information of a single folder; (3) communicating its results to the Proxy; and
(4) exiting “isolated mode”. We have modified the OS and the architecture such that threads can efficiently
switch into and from isolated mode, ensuring data is not leaked across threads nor across mode switches.
Specifically, when executing in isolated mode, we assign each thread its own private SELinux label and
file descriptor table, and we use the CODOMs capability architecture [120] to prevent threads from sharing
memory with other isolated threads (thread-private memory contents are never reused across isolated phases
of the same thread).

A.6.3 The CODOMs architecture
The CODOMs architecture [120] is a capability architecture [40] designed around code-centric protection
domains, allowing multiple domains to coexist in the same page table. Code-centric domain isolation differs
from traditional data-centric isolation by deriving the active protection domain from the instruction pointer
of the executing instruction. A protection check thus verifies whether the current instruction can access an
address, rather than whether the current OS process can access it. As a result, the instruction pointer serves
as a capability that determines whether an instruction can access a memory address, and cross-domain calls
are possible without OS intervention. This section highlights the key concepts of CODOMs relevant to
FlowTAS.

CODOMs groups pages into domains by adding a per-page tag in the page table, and a separate structure
defines long-term cross-domain grants. Access grants are totally ordered, and can be one of call, read, and
write. For example, the grant “A: (B, write)” means that code in pages with tag A can execute code, read
and write into any page with tag B (modulo the per-page protection bits). Additionally, code pages can be
marked as having access to privileged processor resources. Finally, cross-domain entry points are enforced
through call grants, which only allow routine calls at addresses aligned to a globally-configured value.

CODOMs also provides a set of dedicated capability registers that are managed by user code. As in all
capability-architectures, capabilities cannot be forged and can be safely stored into memory, allowing do-
mains to share memory at a fine granularity. In CODOMs, capabilities are created from the aforementioned
cross-domain grants, and can be efficiently and selectively revoked.

A.6.4 Thread-level Containers using CODOMs
Figure A.7 shows an overview of our design. The Proxy creates as many threads as cores in the system (T1
and T2). For a gather operation, each thread iteratively executes the untrusted Health code with each of its
assigned folders in isolated mode (“Fracture’13” and “Fever’14”). Once a thread is in isolated mode, it has
the same security guarantees of the containers described in Appendix A.3, and returning “de-isolates” it to
continue executing the Proxy code normally. The application generates results in its per-thread memory (not
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Figure A.7: Isolating two threads (T1 and T2) during a gather operation using a combination of CODOMs
and SELinux.
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Figure A.8: Sequence of steps for a thread to execute the untrusted code of the Health application.

accessible by other threads), returning a pointer to these when it finishes. The Proxy then checks the validity
of the pointer and uses its contents to render the result of the gather.

The Proxy manages the sequence of operations for a thread to enter and exit isolated mode through a
combination of new system calls (flowtas enter, flowtas exit and flowtas free) and a privi-
leged Trampoline routine (provided by the OS). The trampoline handles the transition between executing the
Proxy and the untrusted application code, ensuring that the latter returns with a well-known machine state.
The trampoline uses a CODOMs tag that has access to all other tags (“Tr: (*, write)” in Figure A.7), and
has access to privileged processor resources2.

The Proxy is granted call access to the entry point of the Trampoline (“P: (Tr, call)”). The Proxy
dynamically loads application code (using dlopen) into a separate tag H (resulting in “P: (H, write)”),
and immediately disallows writes to these pages. Threads executing the application are thus unable to write
into any domain but H, which has non-writable pages. The Proxy also creates one tag to hold the per-thread
memory (resulting in “P: (T1, write)” and “P: (T2, write)”). These operations are executed only once
when an application is loaded.

We now describe operations that every thread goes through, as depicted by Figure A.8 3: (1) Create
a capability to the input arguments, which reside in the P domain, and to the per-thread memory domain
(T1 or T2). (2) Allocate a new stack into the per-thread domain. (3) Privatize the file descriptor table. This
ensures threads cannot share information through shared open files. (4) Set the per-thread SELinux label

2We could have implemented flowtas enter and flowtas exit using the same technique, but since most of their function-
ality is already inside the kernel, we used system calls for simplicity.

3The Proxy Stub code can be automatically generated from a declaration of the entry point function for the Health code.
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for the target container. This ensures threads can only access resources of their assigned folders. (5) Save
all the live callee-saved registers (and live non-output capability registers). (6) Zero all non-input registers.
This ensures the application will not see stale values from registers (e.g., from previous iterations of the
same thread). (7) Set the return address in the new per-thread stack to an instruction in the Trampoline.
This ensures the application will always return through a controlled point. Since H has no access to the
Tr domain, the Trampoline also creates a capability with call access to that return address. (8) Save the
stack pointers and switch to the new stack. This ensures the application will not see stale values from the
stack. (9) Execute the actual application code for the per-folder gather. (10) Restore the previous stack. This
ensures the Proxy uses a well-known stack for its return path. (11) Restore the registers saved in 5, ensuring
any register tampering by the application has no effect. (12) Restore the previous SELinux label and file
descriptor table. (13) Free the per-thread memory, ensuring future iterations will not read stale values left
behind.

Implementation details

FlowTAS does not execute constructor and destructor functions [71] in the untrusted code Health, because
they would run with Proxy privileges. It also forbids binaries with writable sections, since threads must be
prohibited to write into the shared Health domain (H). Untrusted code must instead allocate mutable data
in the heap, which is per-thread (i.e., T1 or T2). This means that untrusted code must be linked against
libraries that follow that same rule. This can be applied to common libraries (e.g., libc), but is not feasible
for every single third-party dependency.

We have also implemented an alternative version to support such cases. The untrusted code and all its
dependencies are loaded into the per-thread domains (i.e., T1 and T2, we no longer use the H domain).
Every thread thus gets a private replica of the target application, while the OS internally shares physical
read-only memory.

A.7 Developer Porting Experience

For the majority of applications, very few changes to the codebase are required in order to function on
FlowTAS. In fact, applications that provide only per-folder functionality run on FlowTAS without any mod-
ifications. These applications, such as PDF viewers (which are notorious for vulnerabilities), document and
image editors, etc. need only to provide a manifest file for launching the application (see Appendix A.4.3).
These applications naturally operate on a single document in a per-folder instance.

Often times per-folder functionality is not enough, and developers will need to provide cross-folder
views of data. This requires developers to make more substantial changes to their applications. Namely,
developers must alter application flow, modify user management, create cross-folder templates, and use the
FlowTAS storage interface. A summary of the approximate effort required to create or port each of the seven
applications can be seen in Table A.1 and Table A.2. We now discuss the developer effort for porting an
existing application to FlowTAS, using Gitlab as the driving example.

A.7.1 Application Design from Scratch

To best illustrate the development process to design an application from scratch for FlowTAS, we use Flow-
TAS Health, a mock healthcare application built upon the MEAN stack [9], as a driving example. FlowTAS
Health is an encounter based sharing application for patients, physicians, and pharmacists. Encounters in
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1	
  

2	
  

(a) A screenshot of Gitlab running on FlowTAS. This page displays the result of a gather request for all of a user’s
projects. The numbers correspond to the rendered HTML from template code in Figure A.9b.

1*****{{#FlowTAS.results}}**{{#projects}}!
2**********<a*class=“project”*href=“{{#FlowTAS.enter}}/{{project_name}}{{/FlowTAS.enter}}”>*
3**********{{#FlowTAS.entercmd}}[“start”,“<<enter”]{{/FlowTAS.entercmd}}*
4***************<div*class=“dash<project<avatar”>*{{project_icon_le3er}}*</div>*
5***************<span*class=“project<name”>*{{FlowTAS.folder}}*/*{{project_name}}!</span>*
6**********</a>*
7**********<div*class=“project<controls">*
8***************<i*class=“fa*fa<star”>*{{project_star_count}}!</i>*
9**********</div>*
10**********<div*class=“project<descripEon”>*
11*************<p>*{{project_descrip6on}}!</p>*
12********</div>*
13!!!{{/projects}}!!{{/FlowTAS.results}}*

1*****<form*acEon=“/search”*method=“get”>*
2**********<input*id=“{{#FlowTAS.autocomplete}}search{{/FlowTAS.autocomplete}}”>*
3*****</form>*

1*

2*

(b) Template code corresponding to the rendered HTML in Figure A.9a. FlowTAS provided tags are highlighted in red,
while tags specific to Gitlab data are embolden in black. The code has been slightly minified for readability.

1*****class*Dashboard::ProjectsController*<*Dashboard::ApplicaEonController*

2**********before_acEon:*authenEcate_user*

3**********#*This*funcEon*iniEates*the*gather*and*automaEcally*returns*the*template*

4**********def*gather<view*

5***************response.headers[“x<flowtas<gather”]*=*‘[“start”,“<<gather”]’*

6**********end*

7**********#*This*funcEon*responds*to*the*gather*request*with*the*user’s*project*list*

7**********def*gather<folder*

8***************@projects*=*current_user.authorized_projects.sorted_by_acEvity.non_archived*

9***************#*Create*the*project*list*for*the*current*user*

10*************@projects_list*=*@projects.map*do*|p|*

12******************{*:project_name*=>*p.name,*:project_star_count*=>*p.star_count,*\*
13*********************:project_descrip6on*=>*p.descripEon,*:project_icon_le3er*=>*p.name[0]*}*

14*************end*

16*************render*:json*=>*{“projects”*=>*@projects_list}****

17********end*

18***end*

(c) Gitlab’s Project Controller for initiating and handling gather requests.

Figure A.9: Writing a cross-folder view for Gitlab.
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the application correspond to either a doctor’s appointment or prescription. Patients, doctors, and pharma-
cists have the ability to create, edit, and share encounters with one another. This type of health application
was chosen as a precursor for an ongoing pilot being conducted with PATIENeT 4, a patient engagement
application aimed at improving patient care.

Application By designing an application from scratch, it is possible to move as much access-control
functionality out of an application to FlowTAS as possible. The first step in designing an application for
FlowTAS is to reason about the minimum unit of sharing that the platform should work with. For FlowTAS
Health, this could be as course grained as a patient’s entire medical history, or as fined grained as a single
encounter. A per-encounter level of sharing was selected because it allows an end-user to share as much, or
more importantly as little, information as desired.

With the minimum unit of sharing selected, FlowTAS Health does not have to implement any of the
access-control logic for the sharing of encounters. Instead, it may rely on FlowTAS to enforce a user’s
sharing decisions for each encounter. All requests for access to database Models in the application can pass
through unchecked, trusting FlowTAS to enforce that the current user has permission to access the data. This
saves developers time from reasoning about complex access-control logic, and instead allows them to focus
on functionality.

User Management User authentication and password management are also no longer required to be
maintained by an application. Instead, a ‘filter’ (a function that is called before any route handling code
is run) is implemented for each URL endpoint available in the application. The filter extracts the current
user passed in by FlowTAS from the headers, and sets the current session to the corresponding user. Now,
users become just another attribute for an encounter or prescription instead of having their individual Model
in the database (which is still possible if desired). For FlowTAS Health, this is as simple as defining an
‘app.all(callback)’ method with Express 5.

Gather Templates Gather endpoints and templates are required for all cross-folder views in FlowTAS
Health. These pages are implemented as two overview pages for displaying encounters and prescriptions.
For annotated screenshots of pages from a different application showing identical functionality, refer to
Figure Figure A.9a. Navigating away from these pages requires a user to select a particular folder-backed
app instance to work with, transferring control to a per-folder instance of the application.

Storage Interface Applications are free to use the backend storage of there preference. Since FlowTAS
Health is written with the MEAN stack, Node.js is the database of choice. The application interfaces with
the FlowTAS Storage Declassifier to first request access to a Node.js instance, and then finally connect (see
Section Appendix A.3.5).

Development Effort In total, five applications have been developed for FlowTAS from scratch. We
detail below each of the applications, and the lines of code (LOC) removed from the TCB with FlowTAS:

1. FlowTAS Health (mentioned above) was written with the MEAN stack in LOC (mostly javascript)
and 25 third party libraries.

2. FlowTAS Coding is a browser based IDE written with Django in 250K LOC (mostly javascript, 1.5K
of Python) and 28 third party libraries.

3. FlowTAS Calendar is written with the MEAN stack and 200K LOC (mostly javascript) with 15 third
party libraries.

4. FlowTAS Images is a browser image viewing application written with the MEAN stack in 100K LOC
(mostly javascript) with 16 third party libraries.

4https://patienet.com
5http://expressjs.com/api.html#app.all
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Application Framework
LOC Removed
From TCB

FlowTAS Health MEAN Stack 250,000
FlowTAS Calendar MEAN Stack 145,000
Image Viewer MEAN Stack 100,000
PDF Viewer Node.js 40,000
FlowTAS Coding Django 230,000

Table A.1: LOCs removed from the TCB with FlowTAS (including third-party libraries).

Application Framework
LOC
Added

LOC
Removed

LOC Removed
From TCB

Gitlab Rails 350 50 90,000
Hacker Slides Flask 90 100 400,000

Table A.2: LOCs we added and removed from off-the-shelf apps to enable FlowTAS functionality, and
LOCs removed from the TCB with FlowTAS (including third-party libraries).

5. FlowTAS PDF is a browser PDF viewing application written with Node.js and AngularJS in 50K LOC
(mostly javascript) with 1 third party library.

A.7.2 Porting Existing Applications

To examine the effort required to port an existing application to FlowTAS, we use Gitlab, a widely used
web-based repository management application, as an example. We select Gitlab because it is popular among
the developer community, and our closest related work [52] was only able to support plugins, rather than the
full application.

Gitlab uses the Ruby on Rails Framework [16] and is based on the Model-View-Controller design pattern.
The application consists of 7 primary database Models: Projects, Activities, Groups, Milestones, Issues,
Merge Requests, and Snippets. It uses Redis as an in memory cache, PostgreSQL for persistent database
storage, and file storage for git repositories.

Application By only adding a bash script to start Gitlab, the application component of Gitlab is usable on
FlowTAS. However, functionality is curtailed due to the lack of cross-folder views. For example, a user must
select the particular folder-backed application instance that contains their repository of interest. Changing
to a new repository may require closing the current application instance, navigating to a new folder, and
starting a new application instance. This manual switching between app instances will grow tiresome for
users, making cross-folder views essential.

User Management The porting effort begins by removing user authentication from the application. For
Gitlab, a simple filter is defined for all endpoints in the application. Ruby on Rails makes this task trivial
by providing the ‘before action’ filter for Controllers that handle HTTP requests. The application takes the
current username from the request headers, creates a new user account if it does not exist, and then signs in
the user as usual.

Gather Templates For maximum functionality, cross-folder templates had to be made to give cross-
folder views of all database Models in the application. For example, Figure A.9a and Figure A.9b show
the rendered HTML and template for the projects Model in the application. Additional gather templates are
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also required when creating an instance of a new Model, to ensure the Model is created in the correct folder.
Creating a gather page simply requires a slight alteration the current HTML code to include the correct
Mustache tags.

Gather requests must be initiated and their gather URL endpoints specified for each of the Models men-
tioned in the previous paragraph. Gather requests are initiated by modifying the Model’s original endpoint in
the Controller to set the appropriate gather header response and returning the template (see Appendix A.4.3).
A gather response is created as a function for each Model in the app, and returns a JSON list of all Model
entries in the database for that particular folder. The template and application logic responsible for handling
the gather operation for the projects Model can be seen in Figure A.9c.

Storage Interface Porting an application to FlowTAS means that the database must be interfaced with
the Storage Declassifier. For storage, Gitlab uses the file system for repositories and two databases, Post-
greSQL for longterm storage and Redis for an in memory cache. Repositories are simply saved in the
mounted file system for each folder. PostgreSQL for the application was interfaced with FlowTAS by re-
placing the default PostgreSQL connection with the connection provided by the Service Declassifier. Redis
on the other hand is not a trusted storage endpoint. Therefore, redis is accessed through the put/get interface
of the Storage Declassifier (see Appendix A.3.5).
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Appendix B

Tools

This annex describes a pair of publicly-available projects that have been developed as tools to aid in the
evaluation of this thesis.

B.1 QDBI: QEMU Dynamic Binary Instrumentation
QDBI is a dynamic binary instrumentation framework built on top of QEMU [20]. QEMU is a portable
emulator that is able to run code for many architectures (17 at the time of this writing) on top of almost any
host system. It uses dynamic binary translation techniques, and guest code can be run as both stand-alone
applications as well as full systems (a virtual machine). In fact, latest QEMU versions also serve as virtual
machine managers using hardware virtualization.

Dynamic binary instrumentation is not a new topic, but QDBI offers a single interface that can perform
instrumentation of code for any of the architectures supported by QEMU, as well as can instrument both
stand-alone applications and full systems using the very same interface. QDBI also offers efficient mecha-
nisms to dynamically switch between different instrumentation contents for the same guest code. This can
be exploited, for example, to perform high-frequency sampling, or to instrument code only under certain
conditions (e.g., instrument a specific kernel subsystem only for certain processes).

The work has still not been published academically, but the code itself is publicly available [118] and
work is underway to have a large portion of it adopted in upstream QEMU.

B.2 SciExp2: Scientific Experiment Exploration Framework
SciExp2 (or simply SciExp2) stands for Scientific Experiment Exploration. It provides a comprehensive
framework for easing the workflow of creating, executing and evaluating experiments.

The driving idea behind the framework is that of quick and effortless design-space exploration. That
is, the definition and evaluation of experiments that are based on the permutation of different parameters in
the design space. The framework is available in the form of Python modules, which can be integrated into
larger applications, and provides a workflow broken down into three main steps: (1) defining experiments
and creating the necessary files to run them, (2) facilitate experiment execution either through simple local
execution or through existing job management systems, and (3) aid in the process of collecting and analyzing
the results of the successfully executed experiments.
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The framework started a little bit before this thesis (initially as a crude experiment automation script for
a paper), but it has seen continuous improvements during the thesis and is publicly available [119].
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A number of papers have been written as a result of this thesis:

• Lluı́s Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion and Mateo Valero. “CODOMs: Pro-
tecting Software with Code-centric Memory Domains”. In Intl. Symp. on Computer Architecture
(ISCA). June 2014.

• Lluı́s Vilanova, Marc Jordà, Diego Marrón, Nacho Navarro, Yoav Etsion and Mateo Valero. “DomOS:
Fast and Secure Inter-Process Calls Using the CODOMs Capability System”. Submitted to ASPLOS
2016.

• Lluı́s Vilanova, Casen Hunger, Nacho Navarro, Yoav Etsion and Mohit Tiwari. “FlowTAS: Making
Data-centric Mandatory Access Control Practical”. Submitted to S&P Oakland 2016.

Leading to this thesis, other publications have also appeared as a result of collaborations with other groups
and PhD students. The following shows these publications related to the topic of this thesis:

Patents
• Yoav Etsion, Yonatan Gottesman and Lluı́s Vilanova. “Logical-to-Physical Block Mapping Inside the

Disk Controller: Accessing Data Objects Without Operating System Intervention”.

Conferences
• Carlos Villavieja, Vasileios Karakostas, Lluı́s Vilanova, Yoav Etsion, Alex Ramirez, Avi Mendelson,

Nacho Navarro, Adrian Cristal and Osman Unsal. “DiDi: Mitigating The Performance Impact of
TLB Shootdowns Using A Shared TLB Directory”. In Intl. Conf. on Parallel Arch. and Compilation
Techniques (PACT). September 2011.

Workshops
• Isaac Gelado, Javier Cabezas, Lluı́s Vilanova and Nacho Navarro. “The Cost of IPC: and Architectural

Analysis”. In Workshop on the Interaction between Operating Systems and Computer Architecture
(WIOSCA). June 2007.
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ABI Application Binary Interface.

ACL Access Control List.

APL Access Protection List.

ASLR Address Space Layout Randomization.

CAM Content-Addressable Memory.

DCS Domain Capability Stack.

HPC High-Performance Computing.

IFC Information Flow Control.

ILP Instruction-Level Parallelism.

IPC Inter-Process Communication.

IPI Inter-Processor Interrupt.

KCS Kernel Control Stack.

KML Kernel Mode Linux.

MAC Mandatory Access Control.

MMP Mondriaan Memory Protection.

MVC Model-View-Controller.
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PIC Position-Independent Code.

PLB Protection Lookaside Buffer.
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Acronyms

PLT Procedure Linkage Table.

RAW Read-After-Write.

RPC Remote Procedure Call.

SASOS Single Address Space OS.

SFI Software Fault Isolation.

SOP Same-Origin Policy.

TCB Trusted Computing Base.

TLB Translation Lookaside Buffer.

TLS Thread-Local Storage.

TUI Trusted User Interface.
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