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SUMMARY

Background

SNPs within PLA2R1 (rs4664308) and HLA-DQA1 (rs2187668) were identified as strong risk
factors for IMN. PLA2R1 is the major antigen in IMN while HLA-DQA1 plays a central role in
immune system response. CNVs within FCGR3A and FCGR3B genes are associated with various
autoimmune diseases due to the crucial role of these genes in the generation of a well-
balanced immune response. The extremely variable clinical course of IMN includes
spontaneous remission, immunosuppressive therapy response, and poor response to

immunosuppressive therapy with progression to ESRD.

Aims

The aims of this study were 1) to validate the associations of HLA-DQA1 and PLA2R1 risk alleles
with IMN in a Spanish population, 2) to study the putative association of CNVs within FCGR3A
and FCGR3B genes with IMN, and 3) to assess the use of these genetic variants in predicting

spontaneous remission, immunosuppressive therapy response, and renal function decline.

Materials and methods

A cohort of 89 biopsy-proven IMN patients and 286 age- and sex-matched Spanish controls
were considered. PLA2R1 and HLA-DQA1 SNPs were genotyped using TagMan SNP Genotyping
Assays. Akaike’s Information Criterion was used to decide the inheritance model of each SNP.
FCGR3A and FCGR3B CNVs were determined by paralogue ratio test followed by restriction
enzyme digest variant ratio assay. Association analyses were performed by means of chi-
squared or Fisher’s exact test. The contribution of these polymorphisms to predict clinical
outcome was analyzed by logistic regression, Kaplan-Meier, and multivariate Cox regression

analyses.

Results

The association of HLA-DQA1 (rs2187668) and PLA2R1 (rs4664308) with IMN was validated in a
Spanish cohort. The risk for IMN increased when combining the disease-associated genotypes
of both SNPs. No association was found between FCGR3A and FCGR3B CNVs and IMN.
Spontaneous remission was not significantly associated with any of the genetic variants tested,
although a higher proportion of FCGR3B CNVs was observed in non-spontaneous remission
patients. In contrast, carrying the combination of HLA-DQA1 and PLA2R1 risk genotypes for

IMN development strongly predicted a response to immunosuppressive therapy. HLA-DQA1
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risk genotypes for IMN development also predicted protection against renal function decline.

These predictive values increased when adjusting for baseline proteinuria.
Conclusions

The association of HLA-DQA1 (rs2187668) and PLA2R1 (rs4664308) with susceptibility of IMN
was validated in a Spanish cohort, whereas no significant association was found for FCGR3A or
FCGR3B CNVs. For the first time, evidence is presented for the contribution of these HLA-DQA1
and PLA2R1 SNPs to the prediction of IMN immunosuppressive therapy response and renal
function decline. This finding may help to identify potential responding and non-responding

patients and, thus, provide some help in treatment decisions.
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Summary

Background and objectives Single nucleotide polymorphisms (SNPs) within HLA complex class [ HLA-DQ
a-chain 1 (HLA-DQAT) and M-type phospholipase A2 receptor (PLA2R1) genes were identified as strong risk
factors for idiopathic membranous nephropathy (IMN) development in a recent genome-wide association
study. Copy number variants (CNVs) within the Fc gamma receptor ITI (FCGR 3) locus have been associated with
several autoimmune diseases, but their role in IMN has not been studied. This study aimed to validate the
association of HLA-DQA1 and PLA2R1 risk alleles with IMN in a Spanish cohort, test the putative association of
FCGR3A and FCGR3B CNVs with IMN, and assess the use of these genetic factors to predict the clinical outcome

of the disease.

Design, settings, participants, & measurements A Spanish cohort of 89 IMN patients and 286 matched controls
without nephropathy was recruited between October of 2009 and July of 2012. Case-control studies for SNPs

within HLA-DQAT (rs2187668) and PLA2R1 (rs4664308) genes and CINVs for FCGR3A and FCGR3B genes were
performed. The contribution of these polymorphisms to predict clinical outcome and renal function decline was

analyzed.

Results This study validated the association of these HLA-DQA1 and PLA2R1 SNPs with IMN in a Spanish
cohort and its increased risk when combining both risk genotypes. No significant association was found be-
tween FCGR3 CNVs and IMN. These results revealed that HLA-DQAT and PLA2R1 genotype combination
adjusted for baseline proteinuria strongly predicted response to immunosuppressive therapy. HLA-DQAI ge-
notype adjusted for proteinuria was also linked with renal function decline.

Conclusion This study confirms that HLA-DQAT and PLA2R1 genotypes are risk factors for IMN, whereas no
association was identified for FCGR3 CNVs. This study provides, for the first time, evidence of the contribution
of these HLA-DQA1 and PLA2R1 polymorphisms in predicting IMN response to immunosuppressors and
disease progression. Future studies are needed to validate and identify prognostic markers.

Clin | Am Soc Nephrol 9: 335-343, 2014. doi: 10.2215/CJN.05310513

Introduction

Idiopathic membranous nephropathy (IMN) is the
most common cause of nephrotic syndrome in the
adult white population (1), with an incidence of ap-
proximately 1 case per 100,000 persons per year (2).
IMN is defined as a histopathological entity charac-
terized by subepithelial deposits of IgG and comple-
ment, which causes membrane-like thickening and
subsequent proteinuria (3).

The M-type phospholipase A2 receptor (PLA2RI)
located on podocytes has been identified as the major
target antigen, which triggers the accumulation of
circulating autoantibodies in more than 75% of indi-
viduals with IMN (4,5). Furthermore, autoantibodies
against aldose reductase, mitochondrial superoxide
dismutase 2, a-enolase and synaptonemal complex
protein 65 have been discovered to be present in se-
rum and glomeruli from patients with IMN (6-8).
Therefore, IMN is considered to be an autoimmune

www.cjasn.org Vol 9 February, 2014

disease. However, at least six familial cases have been
reported, suggesting a genetic contribution to the dis-
ease (2,9-13).

Recently, a genome-wide association study in-
volving three independent cohorts (British, Dutch,
and French cohorts) identified a highly significant
association between IMN and single-nucleotide
polymorphisms (SNPs) within PLA2R1 and HLA
complex class II HLA-DQ a-chain 1 (HLA-DQATI)
genes (14). HLA-DQAL is part of the heterodimer
forming the antigen-binding groove that plays a
central role in the immune system by presenting
peptides derived from extracellular proteins to im-
munocompetent cells. Many genes within the HLA
locus have previously been associated with IMN
(15-17). Moreover, other SNPs within PLA2R1
have been associated with IMN in Taiwanese and
Korean populations (18,19). Additional studies to
identify and validate genetic risk factors for IMN
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in independent populations may help to elucidate its
pathogenesis.

Another important source of genetic variability is copy
number variants (CNVs) consisting of gains or losses of
DNA segments of at least 1 kb. The Fc gamma receptor
(FCGR) locus on chromosome 123 is subject to CNVs,
and their role in susceptibility to various autoimmune
diseases has been widely studied (reviewed in ref. 20).
The genes included in this locus encode Fc receptors for
IgG that have a crucial role in the generation of a well bal-
anced immune response. FCGR3A is mainly expressed by
natural killer cells and participates in antibody-dependent
cell-mediated cytotoxicity, whereas FCGR3B is predomi-
nantly expressed by neutrophils and is involved in im-
mune complex clearance (21).

The extremely variable clinical course of IMN and the
controversial immunosuppressive therapy make treat-
ment decisions challenging (1,22). About one third of
IMN patients experience spontaneous remission (SR) of
the nephrotic syndrome (23). However, a significant num-
ber of patients have a poor response to immunosuppres-
sive therapy and progress to ESRD (24). Prognostic
markers of disease progression would be very helpful
tools for treatment decision making (25).

The goals of the present study were to (1) validate the
association of HLA-DQAI and PLA2R1 risk alleles with
IMN in a Spanish population, (2) study, for the first
time, the putative association of CNVs within FCGR3A
and FCGR3B genes with IMN, and (3) assess the use
of these genetic variants in predicting SR, immu-
nosuppressive therapy response, and decline in renal
function.

Materials and Methods
Study Population

Spanish patients with biopsy-proven IMN who attended
our center between October of 2009 and July of 2012 were
recruited (1=89). The diagnosis was achieved by renal bi-
opsy performed between 1974 and 2011. None of the pa-
tients enrolled had any evidence of a secondary cause of
membranous nephropathy. The control group consisted
of 286 age- and sex-matched Spanish adults without
nephropathy kindly provided by the Biobank of our insti-
tution. The study was approved by the Institutional Re-
view Board, and all participants gave their signed informed
consent.

For all genoty pe-phenotype correlation studies, patients
referred to our center for renal transplantation (1n=5) and
patients with no clinical information (n=1) were excluded
(Figure 1). Baseline characteristics and follow-up data of
the remaining 83 patients were obtained from medical re-
cords until an end point (remission or ESRD) was reached
or until July of 2012 (Table 1). Initially, patients were trea-
ted using a conservative approach based on supportive
treatment with angiotensin-converting enzyme inhibitors,
angiotensin II receptor blockers, diuretics, statins, and /or
dietary sodium restriction. After an observational period
of approximately 6 months, patients with persistent ne-
phrotic syndrome and no significant decrease in proteinuria
levels started immunosuppressive therapy. Patients with de-
terioration of renal function or proteinuria>10 g/d started

immunosuppressive therapy at the same time as angiotensin-
converting enzyme inhibitors. All patients were treated in
our center, and the first-line treatment was based on existing
recommendations at that time. In the event of resistance,
patients were treated with an alternative immunosuppres-
sive regimen, and in case of relapse, another course of im-
munosuppressive therapy was attempted.

For the association study of the genetic variants with SR,
patients with a minimum follow-up of 2 years were
classified according to their clinical outcome into SR or
non-SR (NSR) patients, and the latter group was separated
into immunosuppressive responders and immunosuppres-
sive nonresponders (Figure 1). Of note, those patients that
only received corticosteroid monotherapy (1=3) were ex-
cluded. SR patients (n=23) were defined as achieving par-
tial or complete remission (proteinuria<<3.5 or <0.3 g/d,
respectively, in at least three consecutive determinations
and normal renal function) in the absence of immunosup-
pressive therapy (23). Responders (n=27) included patients
treated with one or more courses of immunosuppressive
therapy who achieved partial or complete remission. Non-
responders (1=28) were defined as patients treated with
one or more courses of immunosuppressive therapy who
reached ESRD or had no significant and /or sustained re-
duction of proteinuria levels (proteinuria>3.5 g/d) and
severe deterioration of renal function. For renal function
decline analysis, the time from renal biopsy to doubling of
serum creatinine (DSC) was calculated in 83 patients who
had not reached ESRD at diagnosis (Figure 1).

HLA-DQAT and PLA2R1 SNP Genotyping

Genomic DNA was isolated from peripheral blood
using a standard method. SNPs rs2187668 (located within
the first intron of the HLA-DQA1 gene) and rs4664308 (lo-
cated within the first intron of the PLA2R1 gene) were
genotyped using TagMan SNP Genotyping Assays
(C_58662585_10 and C_27902747 10, respectively) accord-
ing to the manufacturer’s instructions (Applied Biosys-
tems, Foster City, CA). Amplification reactions were
performed on an ABI 7000 Real-Time PCR System (Ap-
plied Biosystems). Internal controls for each genotype
were included in all runs. Genotype frequencies for
both SNPs were within Hardy—Weinberg equilibrium in
controls.

CNV Analysis

The paralogue ratio test was used to determine CNVs at
the FCGR3 locus (including FCGR3A and FCGR3B genes).
Restriction enzyme digest variant ratio assay was used to
distinguish between FCGR3A and FCGR3B genes based on
the work by Hollox ef al. (26) with small changes (Supple-
mental Material).

Statistical Analyses

Descriptive data were expressed as mean=SD for nor-
mally distributed variables and median (range) for skewed
variables. Comparisons of baseline characteristics among
clinical outcome groups were made using Kruskal-Wallis
and chi-squared tests. Association analyses were assessed
by means of chi-squared or Fisher’s exact test when ap-
propriate. SNPStats software was used to decide the best
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Figure 1. | Flowchart for the classification of idiopathic membranous nephropathy (IMN) patients included in the genotype-phenotype

correlation studies.

inheritance model for each SNP (27). This software uses
the likelihood ratio test to compare every model with the
most general model (the codominant) and calculates
Akaike’s Information Criterion; the best model for a spe-
cific SNP is the one with the lowest Akaike’s Information
Criterion. Unadjusted and adjusted logistic regression
analyses were performed to evaluate the relationship be-
tween response to immunosuppressive therapy and ge-
netic and clinical variables. Model performance was
evaluated using the area under the receiver operating
characteristics curve and the Hosmer-Lemeshow good-
ness-of-fit test. Leave-one-out crossvalidation was per-
formed as an additional measure of accuracy. The odds
ratios (ORs) and their 95% confidence intervals (95% Cls)
were calculated. Associations between genetic variants
and renal survival rate were estimated by the Kaplan-Meier
method and the log-rank test. DSC was considered as the
primary end point. Multivariate Cox regression analysis
was performed to evaluate the relationship between renal
function decline and genetic and clinical variables. The
hazard ratio was calculated with 95% CI. P<0.05 was
considered significant for all analyses. Statistical analyses
were performed using SPSS version 17.0 software.

Results
Association of HLA-DQAT and PLA2R1 SNPs with IMN in a
Spanish Cohort

SNPs within HLA-DQA1 (rs2187668) and PLA2R1
(rs4664308) genes were genotyped in a Spanish cohort of
89 IMN patients and 286 controls. Association analysis un-
der different genetic models showed that HLA-DQAI
(rs2187668) and PLA2R1 (rs4664308) were significantly as-
sociated with IMN under a dominant model (OR, 3.70;
95% CI, 2.25 to 6.08; P<0.001 and OR, 2.00; 95% CI, 1.23
to 3.23; P=0.005, respectively) (Table 2). The risk for IMN
increased when combining the disease-associated geno-
types of both SNPs (A/A or A/G for HLA-DQAI1
[rs2187668] and A/A for PLA2R1 [rsd4664308]), yielding
an OR of 7.33 (95% CI, 3.55 to 15.13; P<(0.001) (Table 3).

Association of CNVs of the FCGR3 Locus with IMN in a

Spanish Cohort
The copy number (CN) of FCGR3A and FCGR3B genes

was determined in our Spanish cohort of 89 IMN patients
and a subset of 93 controls. The CN profile of FCGR3A and
FCGR3B genes did not differ significantly between IMN
patients and controls (Table 4). However, controls
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Table 3. Odds ratios for idiopathic membranous nephropathy according to genotype combinations of SNPs within HLA-DQAT and
PLA2RT genes
Genotype Combination

HLA-DQAT® PLA2RI® n Cases (%) n Controls (%) OR (95% CI) P Value®

(rs2187668) (rs4664308)
G/G G/Gor A/G 17 (19.1) 129 (45.1) 1.00
G/G A/A 23 (25.8) 86 (30.1) 2.03 (1.02 to 4.02) 0.04
A/Aor A/G G/Gor A/G 21 (23.6) 42 (14.7) 3.79 (1.83 to 7.86) <0.001
A/Aor A/G A/A 28 (31.5) 29 (10.1) 7.33 (3.55to 15.13) <0.001
“Classification of HLA-DQAT genotypes according to a dominant model.
PClassification of PLA2R1 genotypes considering a dominant model.
“Chi-squared test.

showed a trend to low FCGR3A CN (5% versus 0%, re-
spectively; P=0.06).

Genotype-Phenotype Correlations

Genetic Variants and Spontaneous Remission. We
tested whether HLA-DQA1 (rs2187668), PLA2R1 (1s4664308),
and FCGR3B CNVs were associated with IMN SR in a
group of 23 SR and 55 NSR patients. The FCGR3A gene
was not included because of its low variation in CN. No
significant association was found for any of these variants.
However, all patients who achieved SR (except for one pa-
tient) had two copies of the FCGR3B gene, whereas 18% of
NSR patients presented either high (more than two) or low
(less than two) FCGR3B CN (Supplemental Table 1).

Genetic Variants and Immunosuppressive Therapy
Response. Association of these three genetic variants with
response to immunosuppressive therapy was assessed by
comparing responding (1=27) and nonresponding (n=28)
patients. Genotypes were combined under a dominant
model that considered the nonrisk genotypes for IMN sus-
ceptibility as a reference. In unadjusted regression analy-
sis, the carriers of the IMN susceptibility genotypes (A/A
and A/G for HLA-DQA1 [rs2187668] or A/A for PLA2R1
[rs4664308]) showed a trend to response to immunosup-
pressive therapy that became significant when combining
both genotypes (OR, 0.12; 95% CI, 0.02 to 0.72; P=0.02).
In the multivariate model, adjustment for baseline pro-
teinuria significantly increased the predictive value of

this genotype combination for response to immunosup-
pressive therapy (OR, 0.08; 95% CI, 0.01 to 0.58; P=0.01),
whereas no association was found for the type of immu-
nosuppressor, age, sex, or baseline serum creatinine (Ta-
ble 5). This model showed moderate discrimination (area
under the receiver operating characteristics curve=0.728;
leave-one-out crossvalidation=61.5%), and the Hosmer—
Lemeshow test indicated good fit (P=0.61). No signifi-
cant results were found for FCGR3B CN (data not
shown).

Genetic Variants and Decline in Renal Function. Sur-
vival analysis over a mean follow-up of 7.2 years of time to
DSC was performed considering patients who had not
reached ESRD at diagnosis (n=83). Results showed that
patients carrying the A/A or A/G genotype for HLA-
DQA1 had a longer mean DSC-free time than patients car-
rying the G/G genotype (16.3 versus 13.0 years, respec-
tively; log-rank P=0.05) (Figure 2). Multivariate Cox
regression analyses revealed that the A/A and A/G gen-
otypes for HLA-D(QA1 were significant protective factors
after adjusting for baseline proteinuria (hazard ratio, 0.37;
95% CI, 0.15 to 0.90; P=0.03). No association of the PLA2R1
SNP or the FCGR3B CNVs was found.

Discussion
In this study, we confirmed the association of HLA-
DQAT1 (rs2187668) and PLA2R1 (rs4664308) with IMN

Table 4. Association between FCGR3A and FCGR3B CNVs and idiopathic membranous nephropathy

n (Frequency)
Gene (CNV) OR (95% CI) P Value®
CN<2 CN=2 CN=2
FCGR3A
IMN 0(0) 88 (98.9) 111 0.09 (0.01 to 1.65) 0.06
Controls 5(5.4) 86 (92.5) 2(22)
FCGR3B
IMN 10 (11.2) 74 (83.2) 5 (5.6) 1.66 (0.60 to 4.58) 0.45
Controls 7(7.5) 81 (87.1) 5(5.4)

“Fisher’s exact test considering CN<2 versus CN=2 and CN>2.

CNV, copy number variant; CN, copy number; FCGR3, Fc gamma receptor IIL
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response to immunosuppressive therapy

Table 5. Logistic regression analyses between SNPs within HLA-DQAT and PLA2R1 genes and idiopathic membranous nephropathy

Univariate Multivariate
Analysis® Analysis®®
HILA-DQA1 PLA2R1 o o OR OR
(rs2187668) (rsd664308) nR (%) nNR (%) (95% CI) PValue (95% CTI) PValue
Genotype
G/G - 8(29.6) 15 (53.6) 1.00
A/G - 18 (66.7) 12(429) 037 (0.12-1.11) 008  032(0.10-1.00)  0.05
A/A 22 1(3.7) 1(3.6)
- GG 3(11.1) 2(7.1) 1.00
= A/G 5(185) 13 (46.4)
- A/A 19 (70.4) 13(46.4) 037 (0.12-1.11)  0.08  031(0.09-1.03)  0.06
Genotype combination
G/G G/GorA/G 2(20.0)  8(80.0) 1.00 1.00
c/C A/A 6(46.1)  7(539) 029 (0.05-1.65) 0.14  020(0.03-1.23)  0.08
A/AorA/G  G/GorA/G 6(46.1)  7(539)
A/AorA/G A/A 13(684) 6(316) 012 (0.02-0.72)  0.02  008(0.01-0.58)  0.01

P Adjusted for proteinuria at diagnosis.

R, responder to immunosuppressive therapy; NR, nonresponder to immunosuppressive therapy.
“Univariate analysis considering a dominant model for HLA-DQAT and a dominant model for PLA2R1. The nonrisk genotypes for

idiopathic membranous nephropathy susceptibility were considered as the reference.

susceptibility in a Spanish cohort. The combination of
high-risk genotypes for both SNPs was associated with
higher risk of IMN, which was previously described (14).
In contrast, FCGR3A and FCGR3B CNVs were not signif-
icantly associated with IMN. For the first time, we showed
that HLA-DQA1 (rs2187668) and PLA2R1 (rs4664308) con-
tribute to predict IMN prognosis.

Little is known about the contribution of HLA-DQAT and
PLA2R1 genetic variants in IMN pathogenesis. The fact
that autoantibody response in IMN is restricted to a con-
formation-dependent epitope of PLA2R1 led to the hy-
pothesis that modifications in the coding sequence of this
gene may contribute to antibody formation (4,28). Coenen
et al. (29) found no evidence to support this hypothesis;
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Figure 2. | Survival analysis of time without doubling serum creatinine (DSC-free) according to the HLA-DQA1 genotypes. The number of
patients at risk at selected time points is shown below the plot. Log-rank test considering a dominant model for HLA-DQAT genotypes shows

P=0.05.
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in a cohort of 95 IMN patients, only 9 patients carried rare
sequence variants in the PLA2R1 gene, and only 4 of the 9
patients were among the 60 patients who presented circu-
lating autoantibodies against PLA2R. Our study provides
additional support to the previously found associations
between IMN and common coding and noncoding var-
iants within PLA2R1 and HLA-DQA1 genes (14,18,19,29).
Interestingly, the disease-associated genotype of PLA2R1
(rs4664308) is the common genotype, which was previ-
ously reported (14,30). These associations with relatively
common variants, although IMN is a rare disease, raised
the hypothesis that the confluence of relatively common
polymorphisms in these genes may result in a rare haplo-
type that confers susceptibility to IMN (29,31).

In this study, we assessed, for the first time, the putative
association between FCGR3A and FCGR3B CNVs and
IMN. We hypothesized that low FCGR3A CN could de-
crease antibody-dependent cell-mediated cytotoxicity,
thereby playing a protective role in IMN development.
Low FCGR3A CN was only found in control individuals,
supporting our hypothesis; however, statistical significance
was not reached. In mice, deletion of the ortholog of human
FCGR3A, fcyRIV, is protective against the development of
nephrotoxic nephritis (32). However, in humans, either high
or low FCGR3A CN was associated with susceptibility to
antiglomerular basement membrane disease (33). FCGR3B
CNVs have been described as a putative risk factor for sev-
eral autoimmune diseases, such as GN in systemic lupus
erythematosus and primary Sjogren’s syndrome (34,35).
Our results indicate no contribution of FCGR3B CNVs to
IMN susceptibility. Similarly, no association has been ob-
served in Graves’ and Addison’s diseases (35,36). Additional
studies may help to clarify the relationship between
FCGR3A and FCGR3B CNVs and IMN.

The highly variable clinical course of IMN encourages
the search for prognostic markers of clinical outcome. Age
at onset<<50 years, women, baseline proteinuria<§ g/d,
and preserved renal function at presentation are predictors
of SR (37,38). The genetic variants analyzed in this study
showed no significant association with SR, although 18%
of NSR patients exhibited either high (more than two) or
low (less than two) FCGR3B CN compared with 4% of SR
patients; this finding suggests that alterations in FCGR3B
CN could hinder SR. FCGR3B CN was correlated with
protein expression and immune complex clearance (39);
therefore, changes in FCGR3B CN could alter the balance
between Fc receptors, disrupting the tightly regulated im-
mune system (20) and impeding achievement of SR.

More interestingly, our results showed that the risk
genotypes for IMN development (A/A or A/G for HLA-
DQA1 and A/A for PLA2R1) also predict response to im-
munosuppressive therapy and protection to renal function
decline. Recently, Lv et al. (30) found that 73% of individ-
uals carrying these IMN susceptibility genotypes had anti-
PLA2R antibodies, whereas these antibodies were absent
in all carriers of the protective genotypes. In our cohort,
immunosuppressive therapy was more effective in pa-
tients carrying the IMN susceptibility genotype combina-
tion, likely by decreasing anti-PLA2R levels. We speculate
that other genetic and environmental factors could contrib-
ute to the development of IMN in patients carrying the
protective genotypes (G/G for HLA-DQAT and A/G or

HLA-DQAT and PLAZRT in IMN, Bullich et al. 341

G/G for PLA2R1), explaining their low likelihood of re-
sponse to immunosuppressive treatment. To the best of
our knowledge, this association is the first found between
genetic variants and clinical outcome in IMN. Thibaudin
et al. (40) reported an association study of TNF-a gene
polymorphisms with IMN. This group found a significant
association of a SNP in the promoter region and a down-
stream microsatellite of the TNF-a gene with IMN suscep-
tibility. However, no association of these polymorphisms
with IMN progression was identified.

We propose that the HLA-DQA1 (rs2187668) and
PLA2R1 (rs4664308) genotypes could add some predictive
value to the currently used clinical and histologic markers.
The two most accurate and validated markers for IMN
progression to ESRD are the Toronto Risk Score and the
urinary excretion of 8s-microglobulin or IgG (41,42). Re-
cently, the level of anti-PLA2R has been correlated with
clinical disease activity (4,5,43,44), and high anti-PLA2R
levels have been associated with a significantly reduced
frequency of SR (45). The clinical complexity of the disease
suggests that a combination of prognostic markers would
be the best option for prediction of clinical outcome.

The small size of our cohort is the main limitation of this
study. Genotype—phenotype correlation studies require
large cohorts of IMN patients with long follow-up time
because of their stratification depending on clinical out-
come. SR and responder patients attended our center less
frequently than nonresponder patients. For this reason, SR
and responder patients are underrepresented in our co-
hort. The inclusion of patients diagnosed over a 30-year
period implied the use of different treatment regimens
among patients. However, our analysis showed no influ-
ence of the type of treatment in the association of HLA-
DQA1 and PLA2RI1 genotypes with immunosuppressive
response. Nevertheless, because most patients were trea-
ted with calcineurin inhibitors as first-line treatment, our
results should be confirmed for patients treated with other
immunosuppressive regimens.

In conclusion, we have validated the association of HLA-
DQAT (rs2187668) and PLA2RI (rs4664308) with suscepti-
bility to IMN in a Spanish cohort, whereas no significant
association was found for FCGR3 CNVs. For the first time,
we have presented evidence of the contribution of these
SNPs to the prediction of IMN response to immunosuppres-
sive therapy and decline in renal function. This finding may
help to identify potential responding and nonresponding
patients and thus, provide some help in treatment decisions.
Future collaborative efforts to incorporate large datasets will
indeed be critical to validate the relationship between these
genetic variants and IMN clinical outcome.
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Supplementary methods

CNV analysis

The paralogue ratio test (PRT) was used to determine CNVs at the FCGR3 locus (including
FCGR3A and FCGR3B genes). The same pair of fluorescently labeled primers amplified the
test locus and a region within chromosome 18 known to have two copies (26). We amplified 10
ng of genomic DNA by 24 PCR cycles in order to obtain a non-saturated amount of product
using standard conditions. PCR products were differentiated by length using an ABI 3100 Avant
Genetic Analyzer (Applied Biosystems, Foster City, CA). Fragment analysis was carried out
using Genescan software (Applied Biosystems, Foster City, CA). Peak area ratios between
FCGR3A+FCGR3B (73 bp) and the reference region on chromosome 18 (83 bp) were used to
estimate the total copy number (CN) of the FCGR3 locus. Restriction enzyme digest variant
ratio (REDVR) assay was used to distinguish between FCGR3A and FCGR3B genes using a
single fluorescently labeled primer pair (26). Digestion products were separated by capillary
electrophoresis on an ABI 3100 Avant Genetic Analyzer (Applied Biosystems Foster City, CA).
Peak height ratios between FCGR3A (182 bp) and FCGR3B (134 bp) were used to estimate the
CN of each gene. Mean values for the duplicates were taken. Internal controls for CN<2, CN=2,

and CN>2 were run in each experiment.

FCGR3B CN was confirmed by duplex quantitative PCR using TagMan CN assay for FCGR3B
(Hs04211858 cn, Applied Biosystems) and normalizing with TagMan Copy Number Reference
Assay RNAse P (Part Number 4403326, Applied Biosystems Foster City, CA) on an ABI Prism
7000 Instrument (Applied Biosystems Foster City, CA). Quantitative PCR was carried out with
20 ng of DNA in triplicate following the manufacturer’s instructions. Internal controls for CN<2,
CN=2, and CN>2 were run in each experiment and CN calculations were performed using the

delta-delta Ct method.

90



Supplementary Table 1. Association between SNPs within HLA-DQA1 and PLA2R1 genes

and FCGR3B CNV with spontaneous remission

n (Frequency) Genotypic
Gene (SNP) OR (95% Cl)
GIG AIG AIA P value
SR 10 (43.5) 13 (56.5) 0(0) 0.95 (0.35-2.61) 0.92°
HLA-DQAL
2187668
rs ) NSR 23 (41.8) 30 (54.5) 2 (3.6)
SR 2(8.7) 7 (30.4) 14 (60.9) 1.36 (0.48-3.85) 0.57°
PLA2R1
(rs4664308)
NSR 5(9.1) 18 (32.7) 32 (58.2)
CN <2 CN =2 CN >2
SR 1(4.3) 22 (95.7) 0(0) 4.84 (0.59-39.59) 0.17°
CN FCGR3B
NSR 7(12.7) 45 (81.8) 3(5.5)

Abbreviations: SR, spontaneous remission; NSR, no spontaneous remission; CN, copy number; OR, odds ratio; 95%
Cl, 95% confidence interval.

2Genotype frequency difference test (X?) under dominant model for HLA-DQAL and PLA2R1.

PFisher’s exact test considering CN =2 vs CN different from 2.
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STUDY II

Targeted next-generation sequencing in
steroid-resistant nephrotic syndrome:
mutations in multiple glomerular genes may

influence disease severity
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SUMMARY

Background

The high genetic heterogeneity and phenotypic variability of SRNS makes genetic testing using
Sanger sequencing costly and time-consuming. Targeted next-generation sequencing (NGS) of
a broad panel of NS-related genes has emerged as a cost-effective strategy to screen the

multiple genes involved in SRNS/FSGS.

Aims

The goals of this study were to develop a glomerular disease gene panel for genetic diagnosis
of SRNS/FSGS and to study the influence of mutations in multiple genes on phenotype

variability.

Materials and methods

High-throughput mutation analysis of a 26-glomerular-disease-gene panel was performed in a
heterogeneous cohort of 50 SRNS/FSGS patients, a validation cohort of 25 patients with
previously identified mutations, and a discovery cohort of 25 uncharacterized patients with
probable genetic etiology. Five control individuals who had previously been genome-wide

genotyped were included to assess the sensitivity and specificity of our targeted NGS panel.

Results

In the validation cohort, all 42 previously known pathogenic mutations in their correct
heterozygous/homozygous state were detected. Analysis of the controls revealed that our
targeted NGS panel had a sensitivity of 95.6% and a specificity of 99.9%. In the discovery
cohort, disease-causing mutations in NS genes were identified in 9 out of the 25 SRNS/FSGS
patients. Also, three patients carrying mutations in an SRNS/FSGS gene in combination with
COL4A3 were identified. In the clinical phenotype of these patients, the co-existence of NS and
microhematuria at presentation stands out. Two of them were familial cases that presented a

more severe phenotype than their family members with mutations in only one gene.

Conclusions

In this study, the feasibility and robustness of targeted NGS for genetic diagnosis of SRNS/FSGS
is demonstrated. This approach allows for a more complete characterization of patients with
SRNS/FSGS. Our results indicate that patients carrying mutations in an SRNS/FSGS gene and

also in COL4A3 gene have increased disease severity.

95



96



European Journal of Human Genetics (2015) 23, 1192-1199
@ 2015 Macmillan Publishers Limited All rights reserved 10184813715

www.nature.com/ejhg

Targeted next-generation sequencing in steroid-
resistant nephrotic syndrome: mutations in multiple
glomerular genes may influence disease severity
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Genetic diagnosis of steroid-resistant nephrotic syndrome (SRNS) using Sanger sequencing is complicated by the high genetic
heterogeneity and phenotypic variability of this disease. We aimed to improve the genetic diagnosis of SRNS by simultaneously
sequencing 26 glomerular genes using massive parallel sequencing and to study whether mutations in multiple genes increase
disease severity. High-throughput mutation analysis was performed in 50 SRNS and/or focal segmental glomerulosclerosis
(FSGS) patients, a validation cohort of 25 patients with known pathogenic mutations, and a discovery cohort of 25
uncharacterized patients with probable genetic etiology. In the validation cohort, we identified the 42 previously known
pathogenic mutations across NPHS1, NPHS2, WT1, TRPC6, and INF2 genes. In the discovery cohort, disease-causing mutations
in SRNS/FSGS genes were found in nine patients. We detected three patients with mutations in an SRNS/FSGS gene and
COL4A3. Two of them were familial cases and presented a more severe phenotype than family members with mutation in only
one gene. In conclusion, our results show that massive parallel sequencing is feasible and robust for genetic diagnosis of
SRNS/FSGS. Our results indicate that patients carrying mutations in an SRNS/FSGS gene and also in COL4A3 gene have

increased disease severity.

European Journal of Human Genetics (2015) 23, 1192-1199; doi:10.1038/ejhg.2014.252; published online 19 November 2014

INTRODUCTION
Nephrotic syndrome (NS) is characterized by heavy proteinuria,
hypoalbuminemia, edema, and dyslipidemia. Although most patients
are steroid-sensitive NS (SSNS), about 20% of children and 40% of
adults are steroid-resistant NS (SRNS) and progress to end-stage renal
disease (ESRD). In these cases, renal histology typically shows focal
segmental glomerulosclerosis (FSGS).1-3

Inherited structural defects in the glomerular filtration barrier
proteins are responsible for a significant proportion of SRNS.*?
Patients with SRNS of genetic origin have poor renal survival but
low rate of disease recurrence after renal transplantation.® Genetic
forms of SRNS can be inherited as an autosomal recessive (AR) or
autosomal dominant (AD) condition and can be isolated or
f.~iy‘nd.r{_m'1ic.5 Mutations in nephrin (NPHSI Y and podocin (J\IPI-;'.S‘E)‘s
with an AR inheritance, are the major cause of congenital and
childhood onset NS, respectively. However, mutations in other genes
have also been rcpurtcd.s'g Mutations in inverted formin-2 {INE?),IO
transient receptor potential channel 6 (TRECH),M and rarely, in
o-actinin-4 (ACTN4)'? and CD2-associated protein (CD2AP)!3 genes

cause juvenile or adult onset FSGS with AD inheritance. In rare cases,
recessive mutations in NPHS2 are associated with adult onset FSGS. 14
De novo heterozygous mutations in exons 8 and 9 of Wilms tumor
(WTI) gene can cause both syndmmicls and isolated childhood onset
SRNS.'® The study of the relative frequency of mutations in the most
commonly altered genes in patients with SRNS and/or FSGS allowed
the development of genetic testing algorithms based on age at onset,
family history, or renal histolugy.”‘m However, the genetic
heterogeneity and significant phenotypic variability of SRNS make
genetic testing using standard Sanger methods costly and time
consuming, even if the analysis is restricted to the most frequently
mutated genes.

Massive parallel next-generation sequencing (NGS) technology has
dramatically increased the throughput and reduced the cost per
nucleotide sequenced compared with traditional Sanger methods,
enabling cost-effective sequencing of multiple genes simultaneously.
Over the past 3 years, whole-exome sequencing has revealed new
genes associated with SRNS in a few cases, expanding the genetic
heterogeneity of the disease.2=25 Based on this scenario, targeted NGS

!Molecular Biclogy Laboratory, Fundacia Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (11B-Sant Pau), Universitat Autdnoma de Barcelona, REDInREN, Instituto de
Investigacion Carlos 11, Barcelona, Catalonia, Spain; “Nephrology Department, Fundacio Puigvert, Instituto de Investigaciones Biomédicas Sant Fau (lIB-Sant Pau), Universitat
Autbnoma de Barcelona, REDInREN, Instituto de Investigacién Carlos Ill, Barcelona, Catalonia, Spain; *Genomics and Disease Group, Bicinformatics and Genomics Programme,
Centre for Genomic Regulation (CRG), Barcelona, Catalonia, Spain; ‘1Depa tment of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain;
SHospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Barcelona, Catalonia, Spain; “Genomic
and Epigenomic Variation in Disease Group, Centre for Genomic Regulation (CRG), Barcelona, Catalonia, Spain; ®Pediatric Nephrology Department, Hospital Universitario La Fe,
Valencia, Spain; “Pediatric Nephrology Department, Hospital de |a Santa Creu i Sant Pau, Barcelona, Catalonia, Spain: ‘“Pediatric Nephrology Department, Hospital Vall

d'Hebron, Barcelona, Spain

*Correspondence: Dr E Ars, Molecular Biology Laboratory, Fundacio Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Fau), Universitat Autbnoma de
Barcelona, REDINREN, Institut de Investigacion Carlos Ill, Cartagena 340-350, Barcelona, Catalonia 08025, Spain. Tel: +34 93 416 97 00; Fax: +34 93 416 97 30;

E-mail: ears@fundacio-puigvertes

Received 27 May 2014; revised 14 October 2014, accepted 16 October 2014; published online 19 November 2014

97



of a broad panel of NS-related genes has emerged as a cost-effective
strategy to screen the multiple genes involved in SRNS/ESGS,*® but
optimal sensitivity and specificity must be demonstrated for each gene
in the panel.

In this study, we used targeted NGS to simultaneously sequence 26
genes associated with inherited glomerular diseases in a heterogeneous
cohort of 50 SRNS/FSGS patients and 5 control individuals. We aimed
to develop a glomerular disease gene panel for SRNS/FSGS and to
study the influence of mutations in multiple genes on phenotype
variability.

MATERIALS AND METHODS

Patients

A total of 50 Spanish patients with idiopathic SRNS/FSGS were included.
Patients developing steroid resistance at a later stage of the disease or with
recurrence after kidney transplantation were excluded as we considered that
they likely had an immunological cause. Biopsy findings included FSGS,
minimal change disease (MCD) or diffuse mesangial sderosis. The validation
cohort consisted of 25 patients with known pathogenic mutations in the five
most commonly mutated SRNS/FSGS genes that had been previously identified
by Sanger sequencing.'® The discovery cohort consisted of 25 patients with
diagnosis of SRNS/FSGS, 21 genetically uncharacterized, and 4 incompletely
characterized. All 25 had a probable genetic etiology, based on early onset of the
disease (n=10), familial history of SRNS/FSGS (n=11), or consanguinity
(n=4). Four of these patients had been analyzed by Sanger sequencing for the
most frequently mutated SRNS/FSGS genes in our previous study, and only one
recessive pathogenic mutation was identified.'® We also included five control
individuals without nephropathy who had been previously genome-wide
genotyped with a HumanOmni 2.5-8 BeadChip (Illumina, Inc., San Diego,
CA, USA) to test the performance of the assay across the whole panel. Blood
samples were obtained from other family members if they were available. All
the samples were codified, and data analysis was performed blindly. The study
was approved by the Institutional Review Board, and all participants gave their
signed informed consent.

Sequencing and data analyses

We selected 26 genes associated with hereditary glomerular diseases based on
published literature (Table 1). The complete genomic sequence (plus 1 kb of 5°
and 3’ flanking genomic regions) of NPHSI, NPHS2, WT1, TRPCS, INF2,
LAMB2, COL4A3, COL4A4, COL4A5, and GLA genes and all exons and intron
boundaries (plus 100 bp at each end) of the remaining genes were captured
using a custom NimbleGen SeqCap EZ Choice Library (Roche NimbleGen,
Madison, WI, USA). After removal of repetitive sequences, 83.6% of the
targeted bases were covered with capture baits ranging from 68 to 6689 bp
(average 1062 bp), for a final targeted region of 0.9 Mb.

Genomic DNA was isolated from peripheral blood using the salting-out
method. Libraries were prepared with the TruSeq DNA Sample Preparation Kit
(IMumina, Inc.) according to the manufacturer’s instructions. In familial cases,
only the proband was analyzed by NGS. Pools of 24 individuals were prepared,
hybridized to the custom NimbleGen SeqCap EZ Choice Library (Roche
NimbleGen) for 72 h, stringently washed, amplified 17 PCR cycles, and run in a
HiSeq2000 instrument (Illumina Inc.).

Data analysis was performed blindly with an in-house developed pipeline
previously described.”” All candidate variants were required on both sequenced
DNA strands and to account for > 20% of total reads at that site. Common
polymorphisms (>5% in the general population) were discarded by compar-
ison with dbSNP 138, the 1000G (httpy/ fwww.1000genomes.org), the Exome
Variant Server (http://evs.gs.washington.edu), and an in-house exome variant
database to filter out both common benign variants and recurrent artifact
variant calls. To identify large structural variants, we used Pindel, ¥ Conifer,®
and PeSV-Fisher (http://gd.arg.eu/tools).

Evaluation of the pathogenicity of the variants
Nonsense, frameshift, and canonical splice site variants were classified as
definitely pathogenic mutations (mutation group (MG)=A). Missense variants
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were considered a priori unclassified sequence variants (UCV), and their
potential pathogenicity was evaluated using an in silico scoring system
developed for the PKDI and PKD2 genes”” This scoring system with some
minor modifications was tested using previously described pathogenic muta-
tions, for which functional studies had been performed, as positive controls,
and known neutral variants or polymorphisms as negative controls.*'* This
scoring system takes into consideration the biophysical and biochemical
difference between wild type and mutant amino acid, the evolutionary
conservation of the amino-acid residue in orthologs® a number of in silico
predictors (Sift, Polyphen, Mutation taster, and Condel}, and population data.
All candidate pathogenic variants not previously identified were validated by
conventional PCR amplification and Sanger sequencing and were not detected
in 284 control chromosomes. Segregation of these changes with the disease was
assessed for all the available family members. We scored each of these factors,
and their sum resulted in an overall varant score (VS). The UCV were
classified into four MGs: highly likely pathogenic (VS>11, MG=B), likely
pathogenic (5=VS <10, MG=C), indeterminate (0<VS<4, MG=I), and
highly likely neutral (VS £—1, MG=NV). To evaluate the pathogenicity of
non-canonical splice site variants, RNA analysis was performed by RT-PCR and
Sanger sequencing, If no RNA was available, these variants were analyzed using
Alamut version 2.3 (Interactive Biosoftware, Rouen, France), a software package
that uses different splice site prediction programs to compare the normal and
variant sequences for differences in potential regulatory signals.”

We designated pathogenic mutations to be: (i) those sequence variants
predicted to result in a truncated protein (MG=A), (ii} canonical and non-
canonical splice site variants showed to alter splicing patterns (MG =A), and
(iil) those amino-acid substitutions expected to severely alter the protein
sequence using in silico predictors (MG = B). Missense substitutions classified as
MG =C or MG=1 were considered as mild mutations in NPHSI?? or variants
of unknown clinical significance. All the variants were entered in the Leiden
Open Variation Database (http://databases.lovd.nl/shared/genes).

RESULTS

Validation of the technology

Sequencing of the 26 glomerular disease gene panel (Table 1) in 50
patients with SRNS/FSGS and 5 control individuals generated a mean of
14.3 million reads per patient. On average, 99.1% of these reads
mapped to the reference genome. A mean depth of coverage of 466 x
was achieved for the 26 targeted genes across all individuals, with 99.6%
of targeted bases covered by at least 20 reads (Supplementary Table S1).

The validation cohort incuded 25 SRNS/FSGS patients who carried
a total of 42 known pathogenic mutations in NPHSI, NPHS2, WTI,
TRPCS, or INF2 genes and with different phenotypic characteristics
(Table 2). We identified all known pathogenic mutations (33 different)
in their correct heterozygous/homozygous state, specifically: 22 mis-
sense, 3 nonsense, 2 splice site, 4 small deletions, 1 small insertion, and
1 deletion/insertion (Indel) (data not shown). No spurious pathogenic
mutations were found in any of these samples. Prior Sanger sequencing
of these patients had revealed a total of 285 variants in these genes, 281
of which were also detected by NGS, resulting in 98.6% accuracy.

To assess the sensitivity and specificity of our assay across all 26
genes incduded in the panel, we evaluated 5 control individuals
without nephropathy who had been previously genome-wide geno-
typed. Sensitivity of detecting homozygous and heterozygous poly-
morphisms across the 26 genes was 95.6% (1315/1375), and specificity
of detecting non-variant sites from the reference genome was 99.9%
(3387/3391). No spurious pathogenic mutations were found in any of
these samples. Detailed quality control parameters are provided in
Supplementary Table S2.

Sequence variants in NS genes in the discovery cohort
We identified disease-causing mutations in NS genes in 9 out of
the 25 SRNS/FSGS patients in the discovery cohort (Table 3).
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Table 1 Panel of genes involved in inherited glomerular diseases

Gene Disease association Inheritance Target Accession no. Chromosome
NPHS1 CNS, SRNS AR Whole gene NM_004646.2 19
NFHS2 CNS, SRNS AR Whole gene NM_014625.2 1
WwT1 SRNS, Denys-Drash syndrome AD Whole gene NM_000378.4 11
INF2 SRNS, FSGS AD Whole gene NM_001031714.3 14
TRFCE SRNS, FSGS AD Whole gene NM_004621.5 11
LAMBZ2 SRNS, Pierson syndrome AR Whole gene NM_002292.3 3
COL4A5 Collagen type IV nephropathy AL Whole gene NM_000495.4 X
CoL4A3 Collagen type |V nephropathy AD/AR Whole gene NM_000091.4 2
CoL4A4 Collagen type IV nephropathy AD/AR Whole gene NM_000092.4 2
GLA Fabry disease XL Whole gene NM_000169.2 X
PLCEI CNS, SRNS AR Exons NM_016341.3 10
ACTNG SRNS, FSGS AD Exons NM_004924.4 19
CD2AF SRNS AD/AR Exons NM_012120.2 6
MYOIE SRINS AR Exons NM_004998.3 15
ARHGAF24 NS, FSGS AD Exons NM_001025616.2 4
CUBN NS AR Exons NM_001081.3 10
CFH NS AR Exons NM_000186.3 1
coQ2 NS AR Exons NM_015697.7

coae6 NS AR Exons NM_182476.2 14
ITGA3 NS AR Exons NM_002204.2 17
LMXIB NS, FSGS AR Exons NM_001174146.1 9
NEIL1 NS AR Exons NM_001256552.1 15
POSS2 NS AR Exons NM_020381.3 6
PTPRO SRNS AR Exons NM_030667.2 12
SCARBZ NS AR Exons NM_005506.3 4
SMARCALI NS AR Exons NM_001127207.1 2

Abbreviations: AD autosomal dominant; AR, autosomal recessive; CNS, congenifal nephrotic syndrome; FSGS, focal segmental glomerulosclerosis; NS, nephrotic syndrome; SRNS, steroid-resistant

nephrotic syndrome; XL, X-linked.

Table 2 Overview of genotypic data obtained by next-generation sequencing

Total Familial Sporadic Congenital onset Early or late childhood onsel  Adolescent or aduit onset

Validation cohort 25 10
Patients with pathogenic mutations in an SRNS/FSGS gene 23 9
Patients with mutations in an SRNS/FSGS gene and COL4A3 g i
Patients with no pathogenic mutations found 0 0

Discovery cohort 25 15
Fatients with pathogenic mutations in an SRNS/FSGS gene 9
Patients with mutations in an SRNS/FSGS gene and COL4A3 1 1
Patients with no pathogenic mutations found 15 10

15 10 9 6
14 9 8 6
1 1 1 0
0 0 0
10 5 12 8
5 5 2 2
0 0 0 1
5 0 10 5

Abbreviations: FSGS, focal segmental glomerulosclerosis; SRNS, steroid-resistant nephrotic syndrome. Onset was classified as follows: congenital, 0-3 months; early childhood, 4 months to 5 years;

late childhood, 6-12 years; adolescent, 13-18 years; adult, =18 years.

The distribution of mutations in SRNS/FSGS genes differed depend-
ing on the age at onset. The mutation detection rate decreased as the
age at onset of NS increased. In congenital onset patients {from 0 to
3 months), all the five patients (100%) carried mutations in NPHSI
(n=3) and NPHS2 (n=2) genes. In the early-childhood onset cohort
(from 4 months to 5 years), two out of the nine patients (22%) had
mutations in NPHSI (n=1) and WTI (n=1). No disease-causing
mutations were found in any of the three patients with late-childhood
onset NS (from 6 to 12 years). In patients with adult onset of NS or
FSGS (=18 years), two out of the eight patients (25%) carried
mutations in INF2 (n=1) and TRPC6 {n=1) (Table 2). A detailed
scoring matrix for the missense variants is provided in Supplementary
Table S3.

European Journal of Human Genetics

In the discovery cohort, we included four cases (one familial and
three sporadic), with only one recessive pathogenic mutation pre-
viously identified by Sanger sequencing. The NGS approach detected
variants predicted to alter the non-canonical splice site sequences by
the Alamut software but with uncertain clinical significance in three
patients.

Phenotypic effect of mutations in multiple glomerular genes

We found four patients belonging to the validation cohort with three
mutated alleles in two recessive SRNS/FSGS genes (Supplementary
Table S4). Phenotype modification of the third mutated allele could

not be assessed in these patients as three of them were sporadic cases,
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and only two siblings, both carrying the three mutated alleles, were
identified.

We identified three patients carrying mutations in an SRNS/FSGS
gene and also in COL4A3 (Table 3). Patient 266 carried two NPHSI
pathogenic mutations, an in-frame deletion and a frameshift, together
with a heterozygous missense mutation in COL4A3, previously
reported by Heidet et al®® She had a congenital NS presenting with
microhematuria and no family history of NS. Patient 10-1 and his
affected sister (10-2) both carried compound heterozygous missense
pathogenic mutations in NPHS2 gene, but only the proband 10-1
harbored a heterozygous missense variant in COL4A3 predicted to be
likely pathogenic. Both siblings had early childhood onset of SRNS.
Patient 10-1 presented with nephrotic range proteinuria and micro-
hematuria. His renal biopsy revealed FSGS, and he developed ESRD at
12 years, His sibling 10-2 presented with borderline nephrotic range
proteinuria but no evidence of microhematuria, renal biopsy showed
MCD and she presented normal renal function by the age of 18 years
(Figure 1a). Patient 253-1 carried a heterozygous splicing mutation in
COL4A3, demonstrated to produce exon 46 skipping by RNA analysis
and predicted to result in a protein lacking 42 amino acids, in
combination with a missense variant in the exon 12 of INF2. This
novel non-conservative substitution, p.R689W, is located at a highly
conservative domain (FH2) in the INF2 protein and scored as highly
likely pathogenic, using mutation prediction programs. The arginine
in the position 689 is totally conserved in mammals and a basic amino
acid in all the species. She presented with SRNS and microhematuria
at 32 years, and her renal biopsy showed mesangioproliferative lesions
with FSGS. Her renal function rapidly deteriorated, reaching ESRD at
33 years. The COL4A3 mutation was inherited from her affected father
(253-2) who presented with non-nephrotic range proteinuria and
hematuria at 39 years. His renal biopsy showed FSGS, and he reached
ESRD at 51 vyears. The INF2 variant was inherited from her
asymptomatic mother (253-5). Two of the proband’s uncles carried
the COL4A3 mutation, but they only presented microhematuria at 61
(253-3) and 56 years (253-4) (Figure 1b).

DISCUSSION

In this study, we show that the simultaneous analysis of 26 genes
causative of inherited glomerular diseases allows a more complete and
efficient characterization of patients with SRNS/FSGS than traditional
Sanger sequencing, In addition, we identified three patients carrying
combined mutations in an SRNS/FSGS gene and COL4A3, suggesting
that mutations in different genes that converge in the glomerular
filtration barrier influence disease severity.

In the past years, several genetic testing algorithms for SRNS/FSGS
have been developed to help in establishing a prioritization of the
genes to be sequenced by Sanger. However, the genetic heterogeneity
and phenotypic variability of this disease make this approach
expensive and time consuming.!’~2% Recently, two studies used NGS
technology to analyze the exons and intron boundaries of 24 genes?®
and 21 genes® associated with SRNS. Our gene panel included not
only genes related with SRNS/FSGS but also genes involved in other
glomerular diseases, as we hypothesized that disease severity could be
influenced by mutations in multiple glomerular genes. The identifica-
tion of all previously known pathogenic mutations and no spurious
pathogenic mutations in our validation cohort, as well as the high
sensitivity and specificity obtained with the analysis of the previously
genotyped controls, demonstrate the suitability of this approach for
genetic diagnosis of SRNS/FSGS.

In the discovery cohort, we identified disease-causing mutations in
NS genes in 9 out of the 25 patients. All patients carried pathogenic

European Journal of Human Genetics

mutations in the most likely mutated NS gene according to their age at
disease onset.'® Interestingly, patient 324 had a congenital onset of the
disease but still normal renal function at the age of 19 years. He
carried a homozygous splicing mutation (¢.1930+5G>A) in NPHSI
found to produce the deletion of the 31 last nucleotides of exon 14 in
the mRNA, which is predicted to result in a truncated protein. The
mild phenotype of this patient could be explained, because splicing
mutations that do not affect the canonical GT/AG splice sites could
allow the coexistence of a certain proportion of wild-type NPHSI
mRNA with the altered mRNA, as previously Snggcstcd.38 Although
mRNA analysis from patient’s blood did not confirm this hypothesis,
we cannot discard the occurrence of this phenomenon i kidneys
(Supplementary Figure S1).

We also included four patients with only one recessive candidate
pathogenic mutation in an SRNS gene identified by Sanger sequen-
cing. We hypothesized that these patients would carry a large insertion
or deletion or a deep intronic splicing mutation as a second
pathogenic mutation. Thus we included the whole genomic sequence
of the most frequently mutated genes in glomerular diseases in our
NGS gene panel and analyzed the data using specific algorithms to
search for structural variants. No clear pathogenic mutation was
detected, but only variants in non-canonical splice sites were found in
three patients. However, RNA from these patients was not available,
and the pathogenicity of these variants could not be assessed.

The phenotypic variability observed in SRNS/FSGS patients bearing
mutations in the same gene suggests that modifier genes and
environmental factors may have a significant role in the renal
presentation and outcome.! Evidence of oligogenic inheritance with
mutations in genes encoding proteins that converge in common
pathomechanistic pathways has been reported in Bardet-Biedl
syndrome.>® In addition, the p.R229Q variant in NPHS2 gene has
been suggested to contribute to proteinuria and ESRD in thin
basement membrane nephropathy.*®*! Recently, modifier genes have
been proposed to explain early and severe polycystic kidney disease.*?
McCarthy et aP® described two patients carrying a homozygous
mutation in NPHSI and a possibly pathogenic variant in WT1, who
developed a more aggressive disease than a third patient carrying the
same mutation in NPHSI but without the WT1 variant. To study the
putative role of mutations in multiple glomerular genes on SRNS/
FSGS clinical variability, disease severity should ideally be compared
among various family members with different genotype combinations.
Here, four patients carrying three mutated alleles in two SRNS/FSGS
genes were found. Unfortunately, three of them were sporadic cases,
and only two affected siblings—both carrying the three mutated alleles
—were identified. Therefore, the putative effect of the third variant on
disease severity could not be assessed.

We identified three patients carrying mutations in an SRNS/FSGS
gene in combination with a heterozygous mutation in COL4A3 gene.
Heterozygous mutations in COL4A3 and COL4A4 genes cause the
mildest phenotype of collagen type IV (a3a4) nephropathy, also
named thin basement membrane nephropathy. This nephropathy is
characterized by hematuria and low proteinuria,*>** and progression
to ESRD has recently been described in 30% of cases.*> The clinical
phenotype of the three patients with combined mutations in an SRNS/
FSGS gene and COL4A3 stands out for the coexistence of NS and
microhematuria at presentation. Interestingly, in two of these three
cases, several family members with different genotype combinations
were available (Figure 1). In both families, patients with mutations in
an SRNS/FSGS gene and COL4A3 had a more severe phenotype than
their family members carrying mutations in only one gene. Variable
disease penetrance in INF2-mutated patients has been reported® likely
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Figure 1 Pedigrees of two families with mutations in an SRNS/FSGS gene and COL4A3. (a) In family 10, both siblings had compound heterozygous
pathogenic mutations in NPHSZ gene and the more severely affected individual (10-1) carried an additional likely pathogenic variant in COL4A3 gene. (b) In
family 253, individuals 253-1 to -4 carried a pathogenic mutation in COL4A3 gene demonstrated to produce exon 46 skipping by reverse transcriptase-PCR
and Sanger sequencing and predicted to result in a protein lacking 42 amino acids. Patient 253-1 carried an additional variant in /NF2 gene inherited from
her mother and developed a more aggressive phenotype than the other affected family members. Cr, creatinine; wt, wild type. The arrows indicate probands.
Squares denote males, circles denote females. Filled symbols indicate affected status. Quarter solid symbols indicate microhematuria.

explaining that, in family 253, the proband’s mother (253-5) remained
asymptomatic. These findings suggest that mutations in multiple
glomerular disease genes explain some of the phenotypic variability
in nephropathies. Another possible explanation for clinical intrafami-
lial variability could arise in families carrying a splicing mutation that

does not affect the canonical splice sites, such as the mutation in
COL4A3 gene detected in family 253. This mutation could lead to
variable amounts of the correctly spliced transcript and could explain
the phenotypic variability among the three siblings carrying this

splicing mutation.*®
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Despite the broad panel of genes analyzed, we could not find
pathogenic mutations in 15 of the patients in the discovery cohort, 8
of whom were familial cases. The fact that some SRNS/FSGS patients
present with recurrence after kidney transplantation indicates that
some of these cases may be due to an immunological cause, although
no evidence of immunological bases was observed in our cohort. In
the familial cases, it is highly likely that an SRNS/FSGS gene, as yet
non-identified, is responsible for the disease. The next step should
therefore be to sequence the whole exome in the 8 familial cases to
identify new candidate genes.

The results obtained in the validation cohort demonstrate that our
approach is suitable for genetic diagnosis of SRNS/FSGS but, based on
the discovery cohort findings, we propose some modifications: (1) to
sequence a gene panel with only the six most frequently mutated genes
in SRNS/FSGS (NPHS1, NPHS2, PLCEl, WTI, INF2, TRPC6). The
COL4A3, COL4A4 and COL4A5 genes, associated with collagen type
IV (o304 ) nephropathy, could also be included as they may influence
disease severity. If no pathogenic mutations are identified, a more
extensive glomerular gene panel or exome sequencing could be
performed; and (2) to restrict the targeted sequence to exons and
intron boundaries as the assessment of the pathogenicity of deep
intronic variants is challenging and their involvement in the disease
speculative. In terms of the cost, NGS will allow the simultaneous
analysis of around 250 exons for approximately the same cost of
consumables than sequencing 40 exons by Sanger, with three times
saving in hands-on time. Identifying pathogenic mutations in SRNS is
important for many reasons. It can help to avoid the adverse effects of
steroid therapy, modify the intensity and duration of immuno-
suppressive therapies, encourage living donor kidney transplantation,
provide prognostic information regarding the gene and type of
mutations, and enable genetic counseling. Sequencing a panel of
genes involved in glomerular inherited diseases will also help to
elucidate cases with atypical renal phenotypes and/or with high clinical
intrafamilial variability. Based on our findings, such cases could be
more prevalent than previously expected.

In conclusion, this study shows the feasibility and robustness of
targeted NGS for genetic diagnosis of SRNS/FSGS, allowing a more
complete characterization of patients with SRNS/FSGS. Our results
indicate that patients carrying mutations in an SRNS/FSGS gene and
also in COL4A3 gene have increased disease severity.
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Supplementary Table 1. Coverage statistics of the 26-glomerular disease gene panel

Gene Target Mean Depth Depth Depth Depth Depth Depth
coverage (%) depth (x) 2>100x (%) =250x (%) =20x (%) =10x (%)  =5x (%) 21x (%)
ALL 99.91 465.72 95.95 98.80 99.56 99.73 99.81 99.91
NPHS1 100.00 590.30 98.58 99.89 99.99 100.00 100.00 100.00
NPHS2 100.00 533.42 96.88 98.09 98.83 99.44 99.82 100.00
WT1 99.95 512.64 97.41 98.30 99.02 99.44 99.69 99.95
INF2 99.53 444.92 95.79 97.84 98.65 98.93 99.15 99.53
TRPC6 100.00 397.87 96.11 99.04 99.80 99.95 99.99 100.00
LAMB2 100.00 652.95 95.97 98.58 99.79 99.97 100.00 100.00
COL4A5 100.00 274.88 89.99 98.18 99.73 99.93 99.98 100.00
COL4A3 100.00 447.63 96.99 99.15 99.72 99.91 99.97 100.00
COL4A4 100.00 462.38 96.49 98.77 99.54 99.79 99.92 100.00
GLA 100.00 358.18 96.01 99.59 99.93 99.98 100.00 100.00
PLCE1 99.62 582.17 97.81 98.45 98.66 98.86 99.09 99.62
ACTN4 99.99 614.85 92.17 95.23 98.12 99.20 99.67 99.99
CD2AP 100.00 268.86 89.67 97.65 99.81 99.95 99.98 100.00
MYO1E 100.00 570.37 98.49 99.73 99.96 99.99 100.00 100.00
ARHGAP24 99.98 521.64 97.55 99.19 99.76 99.87 99.90 99.98
CUBN 100.00 528.75 97.62 99.32 99.91 99.99 100.00 100.00
CFH 99.95 357.15 91.38 97.10 98.65 98.85 99.20 99.95
COQ2 99.99 343.29 87.59 94.66 98.58 99.48 99.86 99.99
COQ6 100.00 645.30 99.78 100.00 100.00 100.00 100.00 100.00
ITGA3 100.00 611.80 93.40 97.79 99.61 99.92 99.99 100.00
LMX1B 98.56 471.47 90.17 92.65 94.60 95.69 96.51 98.56
NEIL1 100.00 571.56 96.69 98.93 99.90 99.98 99.99 100.00
PDSS2 100.00 476.96 96.89 99.90 100.00 100.00 100.00 100.00
PTPRO 100.00 540.18 97.65 99.10 99.90 99.98 100.00 100.00
SCARB2 98.75 474.95 94.12 95.24 95.97 96.60 97.19 98.75
SMARCAL1 100.00 676.42 99.27 99.93 100.00 100.00 100.00 100.00
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Supplementary Table 2. Sequencing quality control parameters of the 26-glomerular disease

gene panel in the five control individuals

Control individuals

Sum 462 586 606 616 624

Total genotyped positions 4766 953 954 953 953 953

Total genotyped SNPs 1375 258 276 287 297 257
Total NGS SNPs 1319 248 264 276 284 247
NGS TP 1315 247 263 275 283 247
NGS FP 4 1 1 1 1 -
NGS TN 3387 694 677 665 655 696
NGS FN 60 11 13 12 14 10
NGS PPV 1.00 100 1.00 1.00 1.00 1.00
NGS sensitivity 096 096 095 096 095 0.96
Genotyping Het 919 191 179 179 187 183
Het TP 886 186 170 174 179 177
Het TP (correct allele) 880 186 167 172 178 177
Het TP (wrong allele) 6 3 2 1 -
Het FP 3 1 1 - 1 -
Het FN 33 5 9 5 8 6
Het PPV 1.00 099 099 1.00 0.99 1.00
Het sensitivity 096 097 095 097 096 0.97
Genotyping Hom 456 67 97 108 110 74
Hom TP 429 61 93 101 104 70

Hom TP (correct allele) 427 61 93 101 103 69

Hom TP (wrong allele) 2 - - - 1 1
Hom FP 0 - - - - -
Hom FN 27 6 4 7 6 4
Hom PPV 1.00 100 1.00 1.00 1.00 1.00
Hom sensitivity 094 091 096 094 095 0.95

Abbreviations: FP, false positive; FN, false negative; Het, heterozygous; Hom, homozygous; NGS, next-generation
sequencing; PPV, positive predictive value; SNPs, single nucleotide polymorphisms; TN, true negative; TP, true

positive.

PPV was calculated as: [number of true positives/(number of true positives + number of false positives)]
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Supplementary Table 3. Classification of amino acid substitutions (in silico scoring system) found in the discovery cohort

Substitutions Exon Previous description® Control Chrs® Segregation analysis® GD° GV® GD/GV matrix score’ GDev®  Polyphen” SIFT' Condell Mutation Taster* SNP database' VS MG™
NPHS1

EL21K 3 OED 0284 (+2) 4 57 1129 2 36.7 (+1) 70 1 1 1 0 3
R367C 9 2)(+1) 0/284 (+2) +4 180 851 +4 126.7 (+0) +1 +1 +1 +1 +0 15 B
A552D 13 Novel 0/284 (+2) NA 126 0 [xe] +6 125.8 (+2) +1 1 +1 +1 +0 12 B
C623F 14 GB)+1) 01284 (+2) NA 204 0.0 +8 204.4 (+2) +1 +1 1 +1 +0 15 B
NPHS2

G92C 1 @D 01284 (+2) 2 158 0.0 7 158.2 (+2) ) 1 K] ) 0 8 B
L107P 2 G)(+1) 01284 (+2) NA 98 513 +3 67.8 (+1) +1 +1 +1 +1 +0 11 B
R138P 3 (6)(+1) 0/284 (+2) NA 103 0.0 +6 102.7 (+2) +1 +1 +1 +1 +0 15 B
R138Q 3 (@) (+1) 0/284 (+2) NA 43 0.0 +5 42.8 (+2) +1 +1 +1 +1 +0 14 B
L169P 4 (7)+1) 0/284 (+2) +4 98 0.0 +6 97.8 (+2) +1 +1 +1 +1 +0 19 B
WT1

H4730 9 Novel 01284 (+2) +2 24 00 2 24.1(+2) 1 1 1 1 0 4 B
INF2

E220K 4 (10)(+1) 0/284 (+2) +4 57 0.0 +5 56.9 (+2) +1 +1 +1 +1 +0 18 B
R689W 12 Novel 0/284 (+2) -10 101 26.0 +5 96.0 (+2) +1 +1 1 +1 +0 1
TRPC6

E886K 13 Novel 0/284 (+2) +4 57 0.0 +5 56.9 (+2) +1 +1 +1 +1 +0 17 B
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PLCE1

R1195W 12 Novel 01284 (+2) NC 101 26.0 +5 95.8 (+2) +1 +1 1 +1 +0 13
H1905R 26 Novel 01284 (+2) NC 29 00 +2 28.8 (+2) +0 -1 +1 +1 +0 7 C
CUBN

D2160G 43 Novel 01284 (+2) NC 94 0.0 +6 93.8 (+2) +1 1 +1 +1 1 11
COL4A3

G1277S 43 ID)(+1) 01284 (+2) NC 55 0.0 +5 55.3 (+2) +1 +1 1 +1 1 11
F1502L 49 Novel 01284 (+2) NC 22 00 +2 21.8 (+2) +1 +1 -1 +1 +0 8 C
LAMB2

R9AW 4 Novel 01284 (+2) NC 101 0.0 +6 101.3 (+2) +1 +1 +1 +1 +0 14

Abbreviations: Chrs, Chromosomes; NA, not assessed; NC, not considered; MG, mutation group; SNP, single nucleotide polymorphism, VS, variant score; *When a change was described previously

in the literature as a pathogenic mutation or in the HGM database (+ 1); "When a sequence variant was not present in the control chromosomes (+2), if present less than 1% (-1) or more than 1% (-

2); °Segregation demonstrated in family (+4) if there were affected siblings or an affected parent, (-10) present in asymptomatic patient; ‘GD (Grantham distance), score of chemical difference

between the normal and mutated residue (high score, greater difference); *GV (Grantham variation), score of chemical difference between orthologs (ranging from chimpanzee to zebrafish,

0 = completely conserved among orthologs, [xe] = conserved among orthologs except in Xenopus; 'GD/GV matrix score, ranging from -2 to +8 [lower matrix scores corresponded to low GD and high

GV (conservative change and strong variation within the MSA), while higher matrix scores corresponded to high GD and low GV (non-conservative change and strong conservation within the

multiple sequence alignment, MSA)]; GDev (Grantham deviation), score of chemical difference between the mutated residue and the range of variation between orthologs (GD similar to GDev,

higher difference, +2); hPolyphen prediction: probably damaging (+1); possibly damaging (+0); benign (-1); 'SIFT prediction: not tolerated (+ 1), tolerated (-1); ICondel prediction: deleterious (+1),

neutral (-1); “Mutation Taster: disease causing (+1), polymorphism (-1); 'SNP database: not described (+0), described (-1); "MG: B, highly likely pathogenic—VS=211; C, likely pathogenic—5<VS<10;

|, indeterminate pathogenicity—-4<VS<4; NV, neutral variant -VS<-5.
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Supplementary Table 4. Clinical and genetic data of patients with three mutated alleles in two NS genes

Familial/ Age at onset Features at Renal

Immunosuppressive

Family Gender sporadic (vears) presentation  biopsy therapy Evolution Gene Mutation 1 (MG) Mutation 2 (MG) Gene Mutation (MG)
20 M Sp 0 NS NP - ESRD at 1 years NPHS1® ¢.1701C>A €.1868G>T LAMB2  ¢.280C>T
p.(C567*%) (A) p.(C623F) (B) p.(R94W) (B)
19 F Sp 0.2 NS CNF - ESRD at 1 years NPHS1® c€.1701C>A €.3343G>T CUBN C.6479A>G
p.(C567*) (A) p.(E1115%) (A) p.(D2160G) (B)
79-1 F Fam® 6 NS FSGS Cs, CsA, CP, MMF - Normal Cr at 20 years NPHS1® ¢€.1099C>T c.361G>A PLCE1 €.3583C>T
p.(R367C) (B) p.(E121K) (1) p.(R1195W) (B)
79-2 M Fam® 1 NS FSGS* Cs, CsA - Normal Cr at 12 years NPHS1¢ ¢.1099C>T Cc.361G>A PLCE1 ¢.3583C>T
p.(R367C) (B) p.(E121K) (1) p.(R1195W) (B)
77 F Sp 5 NS FSGS Cs, CP, CsA, MMF - ESRD at 13 years NPHS2°  c¢.855_856del €.855_856del PLCE1 c.5714A>G

p.(R286Tfs*17) (A)

p.(R286Tfs*17) (A)

p.(H1905R) (C)

Abbreviations: CNF, congenital nephrotic syndrome of Finnish type; CP, cyclophosphamide; Cr, creatinine; Cs, corticosteroids; CsA, cyclosporin A; ESRD, end-stage renal disease; F, female; Fam,

familial case; FSGS, focal segmental glomerulosclerosis; FSGS*, mesangioproliferative lesions with FSGS; M, male; MG, mutation group; MMF, mycophenolate mofetil; NP, not performed; NS,

nephrotic syndrome; Sp, sporadic case.

Therapy effect categories: (-) no response. Mutations on these genes were classified according to Genebank Accession numbers: NG_013356.2, NM_004646.2 & NP_004637.1 (NPHSL1);
NG_007535.1, NM_014625.2 & NP_055440.1 (NPHS2); NG_008967.1, NM_001081.3 & NP_001072.2 (CUBN); NG_008094.1, NM_002292.3 & NP_002283.3 (LAMB2); NG_015799.1,

NM_016341.3 & NP_057425.3 (PLCE1). The nomenclature used in this study for the description of sequence variants in DNA and protein is in accordance with the Human Genome Variation Society

guidelines and can be found at http://www.hgvs.org/. Mutation groups: A, definitely pathogenic; B, highly likely pathogenic—VS=11; C, likely pathogenic—5<VS<10.

2proband; "Proband’s brother; “Mutations in these genes were previously known by Sanger sequencing.
Leiden Open Variation Database proband IDs (following the order of the table from top to bottom): 18845, 19409, 19411, 19412.
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Supplementary Figure 1: NPHS1 mutation analysis of patient 324 at a) DNA (¢c.1930+5G>A)
and, b) mRNA (r.1900_1930del31) level, which produces the deletion of the last 31 nucleotides
of exon 14. c) Schematic representation of the wild type and abnormal mRNA sequences, the
deleted sequence is highlighted. The boxed nucleotides indicate the same sequence in DNA (in

forward) and mRNA (in reverse). Abbreviations: homozygous (H).

a)

GAGC TCC GCGEAHCChTGAGCTCCTTCTAT CGCCTCAACGTACTGTBTATATGC CCCGGCCTGAAAGCCCCTCTCGATGCCT
il 180 1%0 200 210 . 21T 230 240 250
1

I c.1930+5G>A (H)

Exon 14 Intran 14

b)

GCTCCACCGC GG TCACCACCAGCACCTGCTCCCCCAGGBAACTCTEGACGGEGTGAET TTCGCOGAGCTCEGCGC TGTGEGBCed GG
290 oo 310 320 ExT] 340 is0 360 37

e .J;.LLJA»M.&_LA.&. il

r.1900_1930del (H)

<)

Normal sequence Exon 14 Exon 15

CGCCGAGCTCCGCGAAACCGTGAGCTCCTICTATCGCCTCAACGTACTGTACCGTCCAGAGTITCCTGGGGGAGCA

Mutated sequence CGCCGAGCTCCGCGAAACCACCGTCCAGAGTTCCTGGGGGAGCA

Exon 14 Exon 15
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